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Abstract: We propose an algorithm to estimate the path followed by refracted signals from a source to a target, through a 
medium formed by uniform parallel layers with known different refractive indices, a common model used for ice radio-echo 
sounding. The analytical solution is a polynomial with a degree that exponentially depends on the number of layers, being 
computationally inefficient. For low incidence angles, the small-angle approximation can be used to avoid the polynomial. In 
our technique, we normalize the governing equations to obtain a framework where to find a narrow angular interval 
containing the solution, finally estimated interpolating the boundaries. The new approach improves the results regarding the 
small-angle approximation for a wider angular range at a slightly higher computational time. This method has been applied 
to focus airborne SAR images for deep ice sounding, reducing the calculation time and improving the detected response in 
wide-beam and squinted geometries, used for high along-track resolution or the detection of sloping internal layers. 
 

1. Introduction 

The elapsed travel time along the path followed by 

signals from a transmitter to a receiver is a key calculation in 

antenna arrays processing. In the case of a synthetic aperture 

radar (SAR), provided the propagation environment is known, 

the relative paths between the received signals in the channels 

of the array depend on the transmitter, target and receiver 

locations. These paths are the first step for calculating the 

range-azimuth reference functions, which in turn will be 

applied for cross-track beamforming, channel calibration, 

SAR focussing or direction of arrival (DoA) estimation 

algorithms. 

When considering point-like sources and targets, the 

incidence angle of an electromagnetic (EM) wave through a 

half-spaced multilayer medium is obtained by ray tracing, 

with the equations defined by Snell's law and the ground 

distance between the source and the target. For the simplest 

case of two different uniform media, the exact incidence 

angle is found by solving the roots of a degree-4 polynomial 

[1], computationally time-demanding when processing 3D-

distributed targets. For ice-sounding SAR imaging, where the 

path calculation is a bottle-neck during the processing, the 

small-angle approximation has been used [2-3], but it is 

inaccurate for large incidence angles, e.g. when a wide 

aperture is needed for high azimuth resolution, or for squinted 

processing (useful to detect the steep internal ice layers). 

Through-The-Wall Imaging (TRWI) [4] and Ground 

Penetrating Radar (GPR) [5] techniques can address the 

refraction mechanisms with the small-angle approximation, 

although in some applications the effect of refraction is 

neglected under the straight-ray approximation [6]. In fields 

where the layering is needed, other approaches have been 

applied, such as using a look-up table [7] followed by an 

interpolation. In ice-sounding applications, the convenience 

of at least two ice layers was put forward in [8], meaning for 

airborne systems a 12-th degree polynomial or a look-up table 

with at least 5 dimensions. In seismic analysis, the Dix’s 

approximation [9] estimates speeds and thicknesses of the 

different layers, using two sensors deployed on the surface in 

a bistatic configuration, measuring the propagation times 

varying the distance between the sensors. Conversely, Dix’s 

equations allow to obtain the propagation time from a known 

environment and sensor locations. 

This work is an extension of [10], for estimating the 

path from a source to a scatterer, given their locations and the 

environment, without data collected with the pertinent sensor. 

Its application is an initial step before processing the final 

products like radar images or DoA estimations. The details of 

the technique here presented are valid for an environment 

with arbitrary refractive indices in parallel media. The 

advantage of the last constrain is that the angle within a layer 

is invariant regardless its order of appearance, and hence it is 

possible to refer to a commutative property. With different 

interface slopes this property is no longer valid, adding 

degrees in the polynomial analytical solution. These 

environments are out of the scope of this paper, but their 

solution can be found with the strategy of the parallel media, 

after rotating the initial environment to obtain one, such that 

the overall effect of the slopes is counteracted, and hence the 

layers within the new system can be approximated as parallel. 

The rotation angle depends on the slope, thickness and 

refractive index of each layer.  

In Section 2 is presented the environment model, 

following a section where the existing methods and their main 

properties are discussed. Section 4 develops the algorithm, 

firstly consisting in the normalization of parameters and 

equations [10], and secondly restricting the solution to be 

within close boundaries (detailed in this paper), before an 

iterative procedure [10], which at each step halves the interval 

length to converge to the solution. When the distance between 

boundaries is narrow enough according to the required 

accuracy, an interpolation can be made to get the final 

estimation. Approximations of the propagation time are also 

detailed. Section 5 includes the results and calculation time 

comparisons for different interval limits and interpolations, 
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together with a range migration fitting of a SAR data take in 

Antarctica, collected with PASIN airborne radar by the 

British Antarctic Survey (BAS). The novelty of the present 

paper compared with [10] is to use small-angle 

approximations, among others, to efficiently achieve a tight 

initial interval and save iterations. 

2. Parallel-layers model [10]  

The speed of EM wave propagation varies inversely 

with refractive index and density of the medium. In ice, the 

wave propagation speed decreases with depth, since the air 

concentration reduces regarding the surface because of the 

precipitating snowflakes, and the ice becomes more compact 

due to higher pressure. In the shallowest ice layer, known as 

firn and which might extend down to about 150m depth, the 

propagation speed is higher, decreasing until a solid ice 

region, known as glacier ice, is reached, with an expected 

constant refractive index of about 1.78 [11], compared to a 

minimum value of about 1.20 for ice on surface [8]. 

Because the real estimation of the vertical-varying ice 

profile might be difficult, to simplify, a single uniform layer 

medium is considered, whereas a mean correction of around 

10m is usually added for depth estimation, to account for the 

faster speed of propagation through firn [11]. Since refractive 

index increases with depth in the firn, a representative model 

should include discretized ice layers, as depicted in Fig. 1, 

where H is the radar height over the surface, RG and RGP are, 

respectively, the ground distances from radar to target and 

refraction point on surface, θ0 the elevation angle in the 

source medium (air, for airborne SAR) and di, ni, θi and RGi 

are, respectively, the thickness, the relative refractive index 

regarding the source medium (n0 = 1), the incidence angle and 

the ground distance covered, of the i-th layer, out of L in 

which ice is divided. 

The refraction path and elevation angle are calculated 

from the distance RGP, as 

 

1

0 tan GP

H
R

     
 

. (1) 

 

In case the layers present identical slope but not 

perpendicular to the vertical, an equivalent environment can 

be obtained by a rotation around the radar. The presented 

model, with pure refractions and a single backscattering or 

reflection, can also account for reflections on the internal 

interfaces, by adding as many extra layers as internal 

reflections and considering only refraction. 

3. Previous methods 

The direct application of Snell’s law, i.e. a wave 

propagating through different media follows the fastest path, 

provides a polynomial for the exact solution. An 

approximation of Snell’s law leads to small-angle (SA) 

calculations. As the equations to introduce these methods are 

the starting point for the contribution of the paper, they are 

reproduced from [10]. 

 

3.1. Exact polynomial solutions 
 

Snell’s law relates each layer i to the first medium (air) 

by 

 

0sin sin ,  1 .i in i L      (2) 

 

The ground distance RG from source to target must be 

covered by the ground distances at each medium 

 

1

.
L

GP Gi

i

GR RR


   (3) 

 

The case for the single-layer ice medium (L = 1) was 

solved in [1] as a degree-4 polynomial. The equation for the 

general case of L ice layers is [10] 

 
2

2 2

1

21

L
GP i

G GP GP

i i

d R d
R R R

P P

 
    
 
 

 , (4) 

 

with Pi the degree-2 polynomial on RGP 

 

   2 2 2 21 .i GP i GP iP R n R n H    (5) 

 

The degree of the polynomial (4) on RGP is [10] 

 

 1 2LN L   , (6) 

 

what makes this technique computationally demanding. 

 

3.2. Single small-angle approximation 
 

Recalling from [10], an approximation for small 

angles can be applied [2], in which the sine of the incidence 

angles in free space and ice is approximated by the tangent. 

Rewriting (3) as 

 

0

1

tan tan
L

i G

i

iH d R 


     (7) 

 

and approximating (2) by means of the tangents, it results 

 

 

Fig. 1. Refraction path in a multilayer ice medium [10]. 
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d
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





 
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An alternative SA approximation is obtained substituting the 

sines and tangents in (2) and (7) directly by the angles, 

resulting θ0D (label D for direct), in radians, 

 
1

0

1

L
i

G

i

D

i

d
R H

n






 
 

 
  . (9) 

 

called direct small-angle in this work. This method can lead 

to incidence angles greater than π/2rad (90°, the limit 

according to Fig. 1), being a problem for shallow depths or 

large ground distances, and hence (8) is a more cautious 

estimation. Both offer fast analytical approaches. However, 

as the refraction paths are usually needed for elapsed time 

estimations from which to obtain phase measurements, its 

validity is finally wavelength dependent. Due to the small-

angle constrain, specifically in SAR processing this 

approximation might be not valid for squinted geometries, 

high along-track resolutions or cross-track beamforming. 

 

3.3. Dix’s Method 
 

This approach [9] estimates the propagation time, 

rather than the incidence angle, which can be calculated from 

the propagation time with a polynomial of degree (6). In the 

environment model of vertical variation, the estimation is 

based on a vector with vertical and horizontal propagation-

time components, tv and th, respectively. The vertical is 

calculated with the real propagation speed from the refractive 

indices ni, whereas the horizontal requires an effective 

refractive index nhRMS, as  

 

2 1

1 1

1

L

p i i

i
hRMS L

p i i

i

H n d n

n

H n d n



 



  



  




. (10) 

 

The horizontal speed covers the ground distance RG. Hence, 

the Dix’s estimated round-trip propagation time tDIX is  

 

 

2 2

2

2

10

2
.

DIX h v

L

G hRMS p i i

i

t t t

R n H n d n
c 

 

 
      

 


 (11) 

4. Development 

Our method consists in delimiting an interval 

containing the solution, rather than directly obtaining a single 

point. The advantage of this technique is that it works for all 

angles, and the maximum error can be improved adding a 

recursive interval search. First, we introduce a normalized set 

of identities that represents the basis for all calculations and 

avoids trigonometric functions. 

 

4.1. Development frame 

 

Recalling from [10], with new variables x, yi, ai and bi 

defined as 

 

   

0

2 2

tan ,    tan ,

,    
1 1

i
i i

G G

i i
i i

G i G i

dH
x y

R R

d n H
a b

R n R n

  


 

 

 (12) 

 

(x, yi ∈ [0, 1]), (7) is transformed into 

 

1

1,
L

i

i

x y


   (13) 

 

and the set of L equations in (2) into 

 

2 2
,   1 .i

i

i

a x
y

b x
i L  


 (14) 

 

Clearing y1 in (13) and with (14), it results 

 

1 1
2 2

2

1
2

2 2

1

( ) 1 1

   ( ) .

L
i

i
i

a
y f x x

b x

a x
f x

b x



 
     
  

 



 (15) 

 

The solution to the system is the crossing point xc 

 

        

        
1 2

1 2

0,1    0

   0,1    0

cx x g x f x f x

x g x f x f x

    

    
 

(16a) 

(16b) 

 

to finally obtain the ground distance from radar to surface as 

 

0tanGP c GR H x R    . (17) 

 

In Fig. 2 [10] are plotted the functions in (15)-(16), for 

the case of L = 2, with radar at a ground distance of 300m and 

height of 500m, pointing a target within the glacier layer (n2 

= 1.78) 2km below the firn, the latter with a thickness d1 = 

150m and n1 = 1.5. Those points where y1 is not within the 

interval [0, 1] are not valid, since it would mean the EM wave 

refracts backwards (only possible in case the layers are not 

parallel), suggesting the interval where to find xc can be 

reduced. 

In case a look-up table is chosen for the path 

estimations, the normalization (12) of the layer thicknesses 

regarding RG allows to reduce one dimension. 

 

4.2. Interval limits 
 

The unitary interval where to find the solution through 

(16) can be drastically reduced to facilitate the intersection 
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point search, saving the iterative steps otherwise needed to 

diminish the interval to an equivalent length. 

The lowest and highest bounds will be found assuming 

a uniform medium made up by the minimum and maximum 

refractive indices, respectively. In the case of ice penetration 

with airborne radar, the lowest refractive index medium 

corresponds to the air, whereas the highest will be the deepest 

ice layer (not considering the likely reduction due to the 

warming bedrock). The case of a single uniform medium with 

the lowest refractive index and a total thickness equal to the 

sum of all media, provides a minimum incidence angle limit 

θ0um in the radar medium (layer 0, label u for uniform, and m 

for minimum), since adding any layer with higher refractive 

index will bend the wave towards the direction perpendicular 

to the layers (all assumed to be parallel), and then, for 

covering a given ground range RG, the incidence angle should 

be higher than this limit. With only one medium and a 

thickness sum of all media, the normalized variable x in (12) 

for θ0um is, by geometry, 

 
1

0

1

1
tan 1 .

L

um um i

iG

H
x d

R H






 
   

 
  (18) 

 

On the other hand, if a single medium filled with the 

highest refractive index and thickness equal to the sum of all 

media is considered, it allows to obtain a maximum incidence 

angle, because any lower refractive index will increase the 

aperture angle regarding the case of the assumed uniform 

medium. The highest angle θLuM (layer L, label u for uniform, 

and M for maximum) in the deepest medium will be 

 

0

1

tan tan ,G
LuM umL

i

i

R

H d

 



 


 

(19) 

 

with θLuM equal to θ0um, since the geometries are the same. 

The angle θLuM is yet to be related to the air medium for 

calculating the boundaries of the solution xc. The incidence 

angle in air medium will be obtained through the Snell’s law 

(2), which relates the tangent of angles in media i and j, 

without approximations, as 

 

   
 

  2
2

tan tan asin sin

tan
.

1 1 tan

j i

j i

j

i j

ji

j

n n

n n

n n

 



















 (20) 

 

In (20), setting i = 0 (n0 = 1, by definition) and j = L 

relates the angle in air medium θ0uM to the angle θLuM in ice 

layer L. After (18) and (19) are used, the highest limit xuM is 

 

 
0

2

22

tan

1 1

um
uM M

L

u
L

G
G

um

n x

n

H
x

R R
x

H

 

 
   

 


 

(21) 

 

The interval length can be further reduced with the SA 

approximation (8), where the sinus of an angle was 

approximated to its tangent. For angles θi and θj, after the 

Snell’s law, θj and its approximation θ̃j take the form 

 

   tan tan asin sin ,j i j in n    (22a) 

 tan tan .j i j in n    (22b) 

 

Equation (22a) can be developed as 

 

 

 
2

2

sin
tan

1 sin

i j i

j

i j i

n n

n n









 

, (23) 

 

leading to two cases according to the refractive indices, 

 

 
2

sin
tan tan ,

1 sin

i j i

j i j j

i

n n
n n


 




   


 (24a) 

 
2

sin
tan tan .

1 sin

i j i

j i j j

i

n n
n n


 




   


 (24b) 

 

(24a) means that the SA approximation θ̃j in medium 

j, using as reference the medium i, is an overestimation of the 

real angle θj (θ̃j ≥ θj) when the reference medium has a lower 

refractive index, whereas (24b) points out an underestimation 

(θ̃j ≤ θj) when the refractive index in the reference medium is 

higher. If the medium with lowest refractive index is taken as 

the reference (i = 0, the air for airborne radar application), and 

(22b) is used for approximating θj with θ̃j through θ0, these 

approximations are an overestimation of the real angles, and 

when included in (7) the resulting horizontal distance from 

radar to target is longer than RG, 

 

 

Fig. 2. Intersection point and evaluation curves (15)-(16) 

for H = 500m, RG = 300m, n1 = 1.5, n2 = 1.78, d1 = 150m 

and d2 = 2km [10]. 
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 (25) 

 

what defines a new lower limit angle θ0sm in the air medium, 

with the corresponding inferior limit for the search interval 

xsm (label s for SA, and m for minimum) 
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 (26) 

 

This inferior limit is greater than xum in (18), since ni ≥ 

1, fact assumed choosing as the reference medium the one 

with lowest refractive index (n0). In Fig. 3(a) is included this 

situation, for L = 2 and refractive index increasing with the 

depth. The solid trajectory represents the real path, whereas 

the dotted one approximates the angles θ̃1 and θ̃2 in ice by the 

overestimation (24a), and has an incidence angle in air equal 

to the real path, because it is the reference layer. The dashed 

path represents the angle θ0sm, lower than θ0 to compensate 

the horizontal distance excess E0 > 0 due to the 

overestimations. 

Similarly, if the reference medium is the one with the 

highest refractive index (in ice-sounding the deepest layer, 

with index L), the angles for the rest of the layers are 

underestimated, and thus for covering RG the angle θLsM in the 

reference medium is larger than θL. Using (22b) in (7) for 

approximating θj with θ̃j through θL 
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 (27) 

 

After converting θLsM in (27) to an angle θ0sM in the air 

medium by means of (20), a new maximum xsM is found 
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lower than xuM in (21), because the corresponding angle θLsM 

(27) in layer L is also lower than θLuM (19). In Fig. 3(b) is 

represented the L = 2 case for θ0sM, with the solid trajectory 

being the real path (equal to the solid path in Fig. 3(a)), the 

dotted lines the approximated with the underestimated angles 

θ̃0 and θ̃1 (24b), and the dashed path the case of θ0sM (from 

θ2sM), greater than θ0 to compensate the horizontal distance 

lack E2 < 0. 
The limits xsm and xsM use the SA approximation with 

the reference layers of minimum and maximum refractive 

index, respectively, to ensure the over- and underestimation 

of the angles in the rest of layers. In general, if more than two 

layers are considered (i.e. more than a single ice layer in 

airborne ice sounding), tighter boundaries can be found with 

other layers. If for every layer is measured the excess or lack 

of the ground range travelled due to the corresponding SA 

approximation, those layers with the least excess or lack are 

finally chosen as references. For a reference layer with index 

ref, the difference Eref between the horizontal distances 

covered by the approximated angles θ̃i and the real ones θi is 

 

 
0

tan tan .
L

ref i i i

i

E d  


    (29) 

 

By means of the θ̃i SA approximation using θref in 

(22b), the Snell’s law in terms of the tangents in (20) for 

relating θi and θref to θ0, and renaming the height H as d0, the 

excess is 

 

Fig. 3. Boundary angles with small-angle approximations. 

(a) Lower limit θ0sm, with layer 0 as reference. 

(b) Upper limit θ0sM, with layer 2 as reference. 
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with S1 and S2 independent of the reference layer ref, as 
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(30) is positive when the horizontal distance is greater 

than RG and negative when it is lower. θ0 can be approximated 

by the mean of the limits xsm and xsM 
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H H



   . (32) 

 

Since the only interest of (30) is the qualitative 

positive or negative value, it is convenient to obtain the 

reference refractive index that gives zero excess, nz, as 
 

 
1

2

1 2

2

0

1
1 .

tan
z

S S
n





 
  
 
 

 (33) 

 

The layer m with a refractive index nm closest from below to 

nz, will be the reference with the minimum positive excess Em, 

allowing the infimum of the interval (the maximum lower 

limit, xm). Similarly, the layer M with a refractive index nM 

closest from above to nz, with maximum negative excess EM, 

gets the supremum (the minimum upper limit, xM). 

 

   0, ,  0, , , 0 ,i refm i L ref L E E       (34a) 

   0, ,  0, , , 0.ref iM i L ref L E E       (34b) 

 

The corresponding limits xm and xM will be obtained 

following a development like (27)-(28), with 
 

2

2
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,
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1
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n
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x

 
      
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(35a) 

2

2

.

1
M

sm
M

sm

x
x

b

x




 
(35b) 

 

For ice-sounding with an increasing refractive index, 

Eref will decrease as the layer under test is deeper located. 

Thus, a strategy to avoid the calculation of all the excesses is 

to start with the shallowest ice layer (as the air has the lowest 

refractive index), and the first with negative Eref will be the 

one for obtaining the maximum, whereas the layer above, the 

best for the minimum, so that m = M - 1. A summary of the 

limits in increasing order and their equations is in Table 1. 

In Fig. 4 is plotted the evaluation function against the 

points x within the search intervals, together with the 

boundaries of Table 1, using the same parameters as in Fig. 2. 

The solution of the system is the point where g(x) = 0. The 

initial unitary interval in abscises is in Fig. 4(a), where the 

uniform-media approximations (triangles) give xum ≈  

189x10-3
 with the air medium (lowest refractive index), and 

xuM ≈ 341·10-3 with the deepest layer (highest refractive 

index). Fig. 4(b) is limited to the previous intervals, and 

includes the SA approximations using the air and the deepest 

ice layer (circles), giving the limits xsm ≈ 290.1x10-3 and xsM 

≈ 293.1x10-3. The latter is improved by the firn (n1 = 1.5) as 

reference, satisfying the condition (34b) for a supremum xM ≈ 

292.6x10-3 (square mark in Fig. 4(c)). 

Because when the layers are parallel they are 

commutative from the point of view of the elapsed time along 

 

Table 1. Interval limits, in increasing order, and solution xc. 

limit xum xsm xm xc xM xsM xuM 

eq. (18) (26) (35a) (16a) (35b) (28) (21) 
 

Fig. 4. Evaluation function g(x) and interval limits of Table 1, for the environment of Fig. 2. 

(a) Boundaries from the uniform-media approximation (triangles). (b) Small-angle approximations (circles) using air 

medium and the deepest layer as references. (c) Improvement (square) of upper limit with firn layer as reference. 
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the path, with an arbitrary distribution of refractive indices, 

the algorithm must sort the layers in ascending refractive 

index to fast converge to the optimal interval search. 

 

4.3. Solution search algorithms 
 

Since f1(x) and f2(x) in (15) are respectively strictly 

monotonically decreasing and increasing, the solution g(x) = 

0 is unique, what enables to apply an optimized algorithm to 

find the solution by means of g(x), with zero-crossing, or 

|g(x)|, with the minimum. The ‘Bisection’ method [12], based 

on the divide-and-conquer technique, was used to calculate 

(16), halving the interval according to the sign of g(x). 

The number of iterations determines the maximum 

error in the abscise interval [0, 1]: as the ratio of the interval 

length after consecutive iterations is 2, after K steps the ratio 

is 2K+1 (for K = 0 the point 0.5 would be taken as the solution), 

and thus an error of 2-(K+1) occurs [10]. 

The iterative search of minimum or crossing point, as 

it approximates to the solution, can be regarded as a method 

to set better infimum and supremum limits than those in 

section 4.2 (see Table 1). Also, for a given number of 

iterations, the boundaries previously explained may offer a 

narrow interval. For example, with the environment defined 

for Fig. 2 and Fig. 4, the interval length due to the uniform-

media approximation is Δxu = xuM - xum ≈ 152x10-3, whereas 

after the SA approximations is Δxs = xM - xxm ≈ 2.5x10-3. 

Because each iteration divides the search interval by 2, the 

interval length is 2-K, and the algorithm needs 3 iterations (Δ 

= 125x10-3) to improve the uniform media approximation, 

and 9 (Δ = 1.95x10-3) for beating the SA interval. The 

equivalent number of iterations (ENI), defined as the number 

of iterations needed to obtain an interval equal to the limits 

distance, 
 

2logENI x   , (36) 

 

allows to compare the performances of the interval limits and 

the iterative procedures. 

 

4.4. Solution interpolation 
 

A linear interpolation of g(x) in (16a) within an 

interval improves the estimation of xc, offering better 

resolution than several further iterative steps. With lower and 

upper boundaries x- and x+, and approximating the slope of 

g(x) within the boundaries as g′(xc) ≈ (g(x+) - g(x-))/(x+ - x-), the 

estimated solution is 
 

 

     1
c

c

g x x x
x x x

g x g x g x

  
 

 


   

 
. (37) 

 

Following with the example plotted in Fig. 2 and Fig. 

4, the infimum and supremum are x- = xsm and x+ = xM, with 

g(x-) = 7.1x10-3 and g(x+) = -1.2x10-3, resulting in xc ≈ 

292.2x10-3. 

Since the absolute value of the slope of function g(x) 

decreases with x, the linear interpolation is always an 

overestimation of the solution, what may justify the use of a 

quadratic interpolator. Because the interpolated value is a 

better approach than (32), it improves the estimation of nz (33), 

although in practice a recalculation is not needed. 

4.5. Sensitivity analysis 
 

The solutions after the mean and linear interpolations 

offer analytical approaches in a close form, for analysis that 

with the polynomial forms cannot be easily performed, like 

the relative sensitivity to depth and refractive index. This 

measurement is defined as the ratio of the relative variation 

in parameter v to the relative variation in u, and is given by 

 

0
0

limv

u
v
u

v uv u
S

v u u v 
 

      
       

     
. (38) 

 

With L=2, for a scatterer located at fixed depth dB, the SA 

lower bound limit xsm is (26) 

 
1

1 1

1 2

1
1 B

sm

d d d
x

H n n



  
      

  

, (39) 

 

with sensitivities to thickness d1 and refractive index n1 of the 

firn layer as, respectively, 

 

1

1

2 1
1

2

/ 1
1 1 0smx

d

B

n n
S d

d n H



  
          

, (40) 

1

1

1

1 2 1

1
1 1 0smx B

n

dH
S n

d n d



   
          

   

, (41) 

 

the former improving (closer to zero) when the refractive 

index of the firn approaches that of the glacial layer (n2), and 

the latter when the firn is narrow compared to the total 

thickness dB. The sensitivity for the upper bound xsM is 

obtained from the chain rule 

 

w w v

u v u

w u w v v u
S S S

u w v u w v

  
       
  

, (42) 

 

using (28) and (40), resulting in 

 

1 1 1 12

2

1
2

1sM sM sm sm sm

sm

x x x x xsm
d x d d d S

b

x
S S S S



 
      

 
, (43) 

  

and analogous for the sensitivity regarding n1. Finally, the 

sensitivity of the mean interpolation (32) is 

 

 
1 1 1

1c sm sMx x x

d d dS S S     , (44) 

  

with 

 

sM

sm sM

x

x x
 


, (45) 
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and similarly for the sensitivity regarding n1. 

 

4.6. Propagation time 
 

Most radar applications require the travelling time for 

data processing, being the traced path an intermediate step. 

Dix’s equations (11) estimate directly the propagation time, 

saving the calculation of the incidence angle. With the 

incidence angle θ0 of the initial layer and the subsequent θi 

from the Snell’ law (2), the exact propagation time tSNELL is 
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





 
  

 

               





 (46) 

 

Any approximation of the incidence angle in first layer with 

θ̃0, and in next layers after Snell’s law with θ̃i, will lead to an 

error if applying (46), because the EM trajectory will not 

reach the scatterer. However, the trajectory with the small-

angle (SA) does impinge on the scatterer (Fig. 3(a), with 

dashed trajectory), although the initial incidence angle is 

worse than other approximations with (32) or (37). This 

suggests the travelling time with SA could be more accurate 

than using a more precise incidence angle together with the 

Snell’s law. From the exact expression (46), using cos-2θ = 

1+tan2θ, with the initial incidence angle θ0sm from SA and the 

SA approximations (22b) for the rest of layers, the 

propagation time is tSA (referred as pure SA) 

 

2
2

2

0

0
0

1

tan2
1 tan 1SA i i

sm

i

L

sm

i

t H d n
c n






 
    
 
 

 . (47) 

 

The propagation time improves if for the initial layer 

the travelling time and ground distance are solved with an 

accurate incidence angle, whereas the remaining time and 

distances are accounted for with the SA approximations. With 

the initial incidence angle θ̃0 and the corresponding 

normalized solution x̃c, the residual ground distance ŔG is 

 

 0 1tanG G G G c G cR R H R R x R x        . (48) 

 

After removing the first layer, the SA approximation for the 

second layer (i=1) results in the incidence angle θ́1sm  
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Hence, a better approximation t̃ of the total propagation time 

is the summation of the travelling times of, first, the initial 

layer with an accurate incidence angle, and second, the rest 

of layers with SA estimations: 
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sm

i
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n
t H R x d n
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

 
     

 
 

 . (50) 

5. Results and comparisons 

Fig. 5 displays the errors of the incidence angles and 

propagation times. The errors are calculated by subtracting to 

the estimations the expected values, the latter obtained with 

the polynomial solution for the upper incidence angle and 

Snell’s law for the rest of layers. The model parameters are 

the same as for Fig. 2, except for the ground distance RG, now 

from 0 to 1640m. Because there are L=2 ice layers, the 

polynomial solution is of degree-12 (6). Fig. 5(a) shows the 

errors of the incidence angle θ0 (deg) at the air-ice interface, 
for the single SA (dashed) (26), direct SA (dashed-dotted) (9), 

SA intervals followed by mean (dotted) (32) and linear 

interpolation (solid) (37) techniques. The error increases with 

the ground distance, being higher for the single SA methods, 

improved by the mean of the interval limits, and significantly 

reduced after a linear interpolation. Due to the scatterer depth 

and RG, the direct SA presents a lower absolute error than 

with xsm. The propagation time errors (ns) against the 

expected incidence angles (deg) are shown in Fig. 5(b): Dix’s 

method (solid black) (11); exact with Snell’s law tSNELL (46), 

starting with incidence angles from single SA (thin dashed)  

and SA with linear interpolation (thin solid yellow); pure SA 

approximation tSA (47), starting from single SA (thick dashed); 

and travelling times t̃ (50), starting from SA with mean (thick 

dotted) and linear (thick solid yellow) interpolations. For a 

given error limit in the propagation time, after comparing 

tSNELL from the linear SA interpolation with pure tSA, the 

maximum incidence angle is improved in the former by only 

3°, which might not justify its higher computational effort of 

(37). The error slope for pure tSA is lower than for tSNELL from 

the linear SA interpolation, with errors crossing at 40° with 

15ns (not displayed in Fig. 5(b)). At 50° incidence angle, the 

errors of tSA and tSNELL are 58ns and 116ns, respectively. 

However, the travelling times with t̃ (50) greatly improve the 

maximum incidence angle in more than 20° regarding tSA, 

even with the mean SA interpolation (32) as starting 

incidence angle.  

The order of complexity of the polynomial solutions 

for L ice layers is O(L222L) [10]. The single SA approximation 

has an order O(L), and during the iterative part, for K 

iterations, the complexity is O(K·L) [10]. The calculation of 

the greater bound needs an extra root square (21), (28) to be 

added to the single SA approximation. The evaluation 

function has also a linear order, but it requires the calculations 

of root squares according to L (15). The time consumption for 

a single angle calculation is in Fig. 6, for the same cases as 

Fig. 5(a). The horizontal axis represents the ENI, to compare 

the interpolation methods against the method with only 

iterations. As the ENI value is not applied for the SA 

approaches (dashed) they have a constant consumption time, 

lower for the direct SA (dot-dashed) (9) than for SA with xsm 

(dashed, crosses) (26), because the former does not calculate 

the inverse of the tangent. For the cases of mean (dotted) and 

linear interpolation (solid), the time is constant until an ENI 

of 9, meaning the interval reduction is equivalent to 9 

iterations. If the requirements of the angle calculation are 

beyond this number, the iterative method must start from the 

reduced interval limits, linearly increasing the time. The 
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difference between the mean and linear methods is that the 

latter needs the evaluation (16a) of the lower and greater 

interval limits: since each iteration means the evaluation of a 

point, the time difference between mean and linear 

interpolations up to 9 ENI is comparable to two iteration steps 

plus extra time for the calculation of parameters in (12). For 

higher ENI, the difference is reduced and kept constant, as the 

mean interpolation now requires a single evaluation for each 

new step, whereas the linear reuses one evaluation point from 

the last iteration. The polynomial solution (L=2, degree-12) 

took ~50μs, whereas neglecting the firn layer (L=1, degree-4) 

resulted in ~15μs. 

Fig. 7, adapted from [10], shows the range(vertical, 

samples)-Doppler(horizontal, Hz) SAR response (dB, 

normalised) of an approximately flat bedrock at 3.4km depth, 

assuming the main detected responses are from scatterers 

below radar trajectory. The Doppler domain is calculated 

with the Fourier Transform. The data were taken above 

Recovery Glacier, using the British Antarctic Survey PASIN 

(Polarimetric Airborne Scientific Instrument) airborne SAR 

at 150MHz, with height above surface 340m, speed 55.2m/s, 

pulse repetition frequency 156.25Hz and sampling frequency 

24MHz. Superimposed on the image are the expected 

footprints after estimating the paths with the refraction model, 

and the consequent range and Doppler frequency 

corresponding to each radar location. Assuming a uniform 

ice-layer (L = 1) with thickness 3.4km and refractive index 

1.78, the incidence angles are estimated with the single SA 

approximation (26) (dashed), the single direct SA (9) (dotted), 

SA interval with mean (32) (dot-dashed) and linear (37) (solid) 

interpolations, and pure iterative method after 17 steps (thin, 

dot-dashed). If the first d1 = 100m are considered as a new 

layer (firn) with refractive index n1 = 1.3, the expected bed is 

27m deeper than for L=1. The propagation time is estimated 

with the Snell’s law (46). The thin solid line, corresponds to 

this case (L = 2) with the pure iterative method, after 17 steps. 

On the top axis, the corresponding incidence angle in air 

medium has been included, equivalent to the along-track 

look-angle for nadir geometry, related to the Doppler 

frequencies fd by 

 

0

0

2
sind

v
f


 , (51) 

 

with λ0 the wavelength in air medium and v the aircraft speed. 

All estimations match the curvature obtained from the radar 

data for vertical incidence angles. For oblique angles, the SA 

approximations with single values and mean interpolation 

clearly divers from the iterative estimation, expected to be 

accurate after 17 steps. As seen in the positive Doppler 

frequency branch (with stronger response than the negative), 

the SA mean interpolation is the solution that better fits the 

detected response, but as this is not the most accurate path 

estimation given a model, this best fit occurs because the 

current model should be modified, like for example with off-

nadir backscattering (not below aircraft trajectory) or with 

sloping internal ice layers. The SA linear interpolation almost 

overlaps with the iterative case, the latter with negligible error 

provided a model. The iterative cases for L=1 and L=2 ice 

layers also almost overlap, because when L=2 the firn layer 

of 100m is very narrow compared to the glacial layer of 

3.327km (for a total ice thickness of 3.427km, against the 

3.4km when L=1), in agreement with the sensitivity analysis 

in (40) and (41). For shallow scatterers, for example when the 

main interest are the internal ice layers, or for other 

applications like mine detection, the significance of upper 

layers is greater, and hence they should be considered.  

The wavelength analysis has not been included in this 

work, but depending on it, the environment model and the 

approximations carried out might be invalid, needing more 

layers or accuracy in the estimation, the shorter the 

wavelength. For PASIN, with 150MHz, the error of 1ns in 

Fig. 5(b) equals to a phase error of 54°. The sensitivity of 

PASIN allows a depth detection of 5km, but it finally depends 

on the ice column properties, such as ice type, internal 

crevasses and bottom interface. 

6. Conclusions 

The proposed approach allows a fast estimation of 

signal paths when travelling across a stratified medium made 

up of parallel layers, delimiting the solution by small-angle 

  

Fig. 6. Calculation time of a single incidence angle, for the 

same parameters and estimation methods as in Fig. 5. 

Fig. 5. Path errors regarding the expected angles, for the 

same parameters as in Fig. 2, with RG from 0 to 1640m. 

(a) Incidence angle error (deg), on air-ice interface. 

(b) Propagation time error (ns). 
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approximations, and when needed, applying any of the well-

known minimum search algorithms based on iteration. 

Finally, an interpolation can be performed to reduce the error. 

Its efficiency can be improved processing each layer with 

parallel computing, for initially obtaining the smallest 

interval around the solution and also during the iterating stage. 

Although this work is framed in ice-sounding, it can be 

applied to other fields, with environments which have parallel 

layers and arbitrary refractive indices, and in particular to 

soil-sounding for mine and water detection, atmospheric 

radars or radar through-the-wall. The next step will be the 

development of an algorithm to take into account non-parallel 

layers, using the same strategies here presented. 
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Fig. 7. Path estimation results, superimposed to the range(vertical)-Doppler(bottom) SAR response (dB, normalised) 

of bedrock calculated with a Fourier Transform, and the along-track incidence look-angle (top), adapted from [10]. 

Radar data were collected with PASIN, an airborne SAR. The range-Doppler footprint was estimated using the 

propagation delay from the refraction angles. 


