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1.  INTRODUCTION

Along with the booming of nature science, bioscience has been 
explored widely and developed fast. Along with the knowledge from 
macro to micro, and further deeper to nano, nanotechnology has been 
developed fast, such as electrospinning, which uses a “top-down” way 
to produce nanomaterials. Nanomaterials have gradually entered the 
lives of people. Nanomaterials, including nanofibers and nanoparti-
cles, have been explored in myriad fields, such as drug delivery systems 
[1], sewage treatment [2,3], material reinforcing [4], tissue engineering 
[5], catalysis [6], sensors [7,8], filtration membranes [9,10], osmosis 
membranes [11,12], and electrolytes [13] inter alia.

Electrospinning is a membrane preparation technology which has 
developed rapidly in recent decades. As the sister technology of elec-
trospraying [14–17], takes advantage of the interactions between 
working fluids and electrical fields. It is a facile, efficient, econom-
ical, and flexible route to prepare nanoscale fibers via a “top-down” 
approach. Four key components are required to implement this pro-
cess as shown in Figure 1: (1) a high (kV) voltage generator [18];  
(2) an infusion pump, which can dispense solutions or melts at a pre-
cisely controlled rate; (3) a metal needle or spinneret; (4) a collector.

In electrospinning, a working fluid dispensed through the spin-
neret is stretched into nanoscale fibers by applying the high volt-
age electrostatic field (Ffield). The process can be divided into three 
steps as shown in Figure 1. First, the working fluid is extruded by 
the pump, and gathers on the tip of the spinneret. The droplet that 
would form in the absence of an electric field owing to surface 
tension is deformed into a conical shape (the Taylor cone) when a 
voltage is applied. This process is governed by a balance of gravity 

(G), electrostatic repulsion (Fer), and surface tension (Fst). Second, 
the jet would not be ejected with charges until the voltage exceeds a 
specific critical value, which means electrostatic repulsion exceeds 
surface tension, linear jet formed. Third, the linear jet could sustain 
a short time due to Rayleigh Taylor instability, and the interaction 
between charges along with jet and electrostatic field, therefore, 
whipping and swing as a consequence. Working fluid with charges 
in the electricity field will be elongated by electrostatic repulsion 
among like charges on the jet surface, Coulomb repulsion (Fcr) 
between layers, and gravity. Meanwhile, the solvent evaporates rap-
idly and cure into fibers in microscale or even nanoscale.

The development of electrospinning has taken place over a prolonged 
period of time, as shown in Figure 2. In the 16th century, William 
Gibert recorded and reported the phenomenon of electrostatic inter-
actions with liquids. He found that when a moderate amount of charge 
exists on a liquid droplet’s surface, it deforms into a cone and then tiny 
drops are ejected from the tip. The droplet disintegrates into a mist 
under a suitable high electricity field. In 1885, the critical amount 
of charge required for droplet deformation was calculated by Lord 
Rayleigh, who proposed the first explanation of the electrospinning 
process [19].

In 1902, John Cooley was granted the first patent relating to electro-
spinning [20]. Formhals Anton applied for another patent in 1934, 
and this has been commercialized [21]. In the 1960s, Geoffrey Taylor 
systematically investigated the process of electrospinning [22,23], 
but after this time the technique fell out of favor. It was not until the 
1990s that the group of Reneker conducted experiments to electro-
spin over 20 different polymers, and as a result were able to fabricate 
fibers on the nanoscale [24]. With the increasing interest in nano-
technology which the world has witnessed in recent decades, since 
this time the, electrospinning technology has developed rapidly.  
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Figure 2 | The development history of electrospinning.

Figure 1 | Key parameters affecting the electrospinning process, and three stages within electrospinning with interactions.

Sun et al. [25] built on the standard single-fluid electrospinning 
process and developed core-shell fibers by processing two liquids in 
coaxial electrospinning in 2003. In the same year, Gupta and Wilkes 
[26] realized a side-by-side electrospinning approach which could 
also process two liquids. Building on this, Lallave et al. [27] per-
formed triaxial electrospinning (with three fluids), and Yu et al. [28] 
developed new coaxial electrospinning processes permitting a wider 
range of fluids to be processed [28] and Zheng et al. [29] started work 
on near-field electrospinning. Three years later, a four fluids electro-
spinning process was reported [30]. In parallel to the development of 
the electrospinning technology, the applications of electrospinning 
have also advanced, such as for tissue scaffolds [31], drug delivery [1] 
or cancer treatment [32].

2. � MULTIFLUID ELECTROSPINNING  
PROCESSES

Multifluid electrospinning has been explored for a number of years, 
and used to prepare a range of complex structures [33]. This can 
have a range of additional functionalities or improved performance 
compared to monolithic fibers from mono-axial spinning. To date, 
the most widely studied processes are coaxial, side-by-side (or 
Janus), and triaxial electrospinning.

2.1.  Coaxial Electrospinning

The coaxial spinneret was one of the four spinnerets developed 
by Cooley in 1902, and the other three are traditional single fluid 

spinneret, the air-assist spinneret, and a spinneret with rotating the 
valve distributor [20]. Coaxial electrospinning (or electrospray) has 
been further development among 2002 and 2003. Moreover, mod-
ified coaxial electrospinning technology vastly expands the solu-
tion, which can be adopted in electrospinning.

Coaxial electrospinning provides the opportunity to develop 
diverse nanostructures (see Figure 3a and 3b) with tunable func-
tional performance. Coaxial electrospinning can be used to fabri-
cate core-shell fibers (Figure 3a) [34,35], or hollow fibers (Figure 3b) 
[36–39]. Such core-shell structures can provide more functions. For 
example, heterojunction, which is a better way to transfer charge, 
can be formed between core and sheath [6,40,41]. For example, 
the sheath can be used to increase hydrophilicity, and the core to 
increase fiber strength. This has been found to produce materials 
which can be used for seawater desalination [42]. In addition, other 
properties of the core and sheath can also be implemented, such 
as concentration distribution [43], strength performance [44], or 
hydrophilic and hydrophobic properties [42].

Meantime, in modified coaxial electrospinning, first reported by 
Yu et al. [28], an unspinnable solution, which has too few chain 
entanglements to implement electrospinning process, could be 
used as the sheath solution. This could prevent the solvent rap-
idly evaporating (which is problematic because it might cause the 
fibers to have a rough surface). Furthermore, the working fluid 
can be more effectively well stretched in the electric field in the 
presence of a sheath solvent. As a result, the fibers produced tend 
to be finer. Using a modified coaxial electrospinning process with 
a pure solvent or dilute solution as the shell, problems which 
often arise with the formation of solid substances at the spinneret 
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Figure 3 | Core–shell and hollow fibers prepared by coaxial electrospinning. (a) Core–shell structure [Transmission Electron Microscopy (TEM) image]. 
(b) Hollow structure [Scanning Electron Microscopy (SEM) images]. Core–shell and hollow fibers prepared by tri-axial electrospinning. (c) single-wall 
hollow structure (TEM image). (d) Core–shell structure via modified tri-axial electrospinning (SEM image and the spinneret as inset) [45]. (e) Core–shell 
structure via air-blowing-assisted coaxial electrospinning [TEM image and picture for blow-assisted set: (A) inner capillary, (B) middle capillary, (C) outer 
bracket for air blow]. (f) It is the general set-up of (c) with different solutions in each layer.

Figure 4 | The influence of the spinneret on the structure of electrospun fibers. (A) Janus electrospinning: (a and b) pictures of the acentric and structured 
spinnerets; (c and d) schematics of the charged distribution and fluid contact interfaces; (e) Janus structures from structured spinneret F(TEM image); 
(f and g) fibers from acentric and structured spinnerets (SEM image) - Published by The Royal Society of Chemistry. (B) Side-by-side electrospinning: 
(a and b) picture and schematic of the specific spinnerets; (c) Janus structure nanofibers (SEM image). (C) Conjugate electrospinning: (a) diameter 
distribution of nanofibers in Janus Nanofiber Array Pellicle (JNAP); (b) SEM images of JNAP; (c) schematic diagram of the conjugate electrospinning - 
Published by The Royal Society of Chemistry.

(and cause it to become blocked) and continuous electrospinning 
can be achieved [46,47].

2.2.  Janus Electrospinning

The Janus structure was first achieved using electrospinning by 
Gupta and Wilkes [26]. The Janus structure can be a better choice 
than uniaxial electrospinning in some cases, because two kinds of 
materials that provide different functions will affect each other. 
The separation will let them perform well [48,49]. A fiber with two 
parts and can realize two or three functions those can be mutual 
independence, such as fluorescence and magnetic properties 
[48,50,51]. Fluorescence property are easily affected by magnetic 

substances, which will lower the fluorescence property if the two 
materials mixed in one fiber. And they also can work together, such 
as light absorption and hydrophilicity [52], adsorption property 
and photocatalytic performance [6].

Two kinds of spinnerets have been used to fabricate Janus nanofi-
bers. One comprises cylinders arranged side by side; the other one 
is a small cylinder touch a bigger cylinder internally as Figure 4A 
(a and c) [53,54]. With the former spinneret, it is very hard to pre-
pare Janus nanofibers, because as a result of Coulombic repulsion 
there is a tendency of the fluids to repel one another and split apart 
[55]. As a result, researchers have developed more spinneret designs 
such as that shown in Figure 4B(a–c) [56]. Moreover, the latter 
spinneret enlarges the contact area between the two working fluids, 
which means the viscous force is increased. Janus fibers can also 
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be prepared smoothly and continuedly if there is a shell solution 
around the two side-by-side fluids [Figure 4A(b and d)]. Compared 
with Figure 4A(f) has few other finer fiber, Figure 4A(g) has a 
smoother morphology and clear Janus structure. Conjugate elec-
trospinning process [Figure 4C(c)] can also prepare Janus nanofi-
bers with good size contribution [Figure 4C(b)] and use a different 
method. Coulomb attraction plays a vital role in binding two fibers 
together, and then Janus fiber formed. For now, three forces can be 
used to conduct Janus electrospinning. They are Coulomb repul-
sion, Coulomb attraction, and viscous force, respectively. There 
may be other forces that could be used in electrospinning. And the 
combination of conjugate electrospinning and complex structure 
spinnerets could produce many possibilities.

2.3.  Triaxial Electrospinning

Triaxial electrospinning uses three cylinders nested concentrically 
as the spinneret, which can be used for the electrospraying process 
as well, which uses unspinnable solutions to produce nanoparticles 
through same technalogy [57–59]. Here control of the operational 
parameters is particularly complicated because of the interaction 
between working fluids. Recently, triaxial electrospinning has 
begun to attract increasing attention; the recent reported on triaxial 
fibers are summarized in Table 1. Typical triaxial fibers are shown 
in Figure 5a.

Triaxial electrospinning can also be used to prepare core–shell and 
hollow structures. Using a pure solvent as the outer layer can pro-
tect the inner fluids preventing the solvent evaporating too fast and 
siding the formation the smooth fibers (Figure 3d). Furthermore, air 
can also be used as the shell in triaxial electrospinning as a role to 
increase the productivity of fiber by enhancing flow rate (Figure 3e). 
Hollow fiber and multiwall hollow fiber prepared by triaxial electro-
spinning have also been reported as Figure (3c and 3f) and Zanjani 
et al. [4].

The utilize of mediate layer in triaxial fibers has been explored for 
many purposes. For example, the middle layer can be utilized as 
a restricted zone to realize molecule self-assemble into ultrafine 
nanoparticles [60]; a “nanowire in nanotube” structure can be pre-
pared by removing the middle layer [61], and the middle layer can 
also act as a reinforcing phase for enhanced mechanical properties 
[62]. With further treatment including removal, carbonization, and 
modified, various morphology and structure will be obtained. For 
instance, Lee et al. combined triaxial electrospinning with carboniza-
tion to prepare a C–Si–C tri-layer nanofiber formulation, depicted in 
shown as Figure 5c. This has a very high specific capacity at a high 
current rate and potential in lithium-ion batteries [63]. Chen et al. 
[64] remove the mineral oil core of the core–shell fiber and decorated 
the resultant hollow fiber with nanoparticles (as Figure 5d), which 
gain led to used for good performance in Li-ion batteries.

The further development of multifluid electrospinning lies in two 
aspects. One is the creation of complex nanofibers on a large scale. 
Different from monoaxial electrospinning, very limited researches 
have been reported on the scale-up production of complex struc-
tural nanofibers using multifluid electrospinning, although the 
scaling up of monoaxial electrospinning has been reported for 
many years, particularly the needleless electrospinning, which is 
low-cost and high-efficient [81]. The other aspect is the reasonable 

design of multi-chamber spinnerets for implementing the corre-
sponding multifluid electrospinning processes. This is not an easy 
thing because of the mutual influences of multiple factors. With the 
double-chamber side-by-side spinneret as an example, the repul-
sion of two working fluids with the same charges, their contact 
surface area at the co-exit, and their flow rates will co-exist on the 
behaviors of working fluids under the electrical fields, and in turn 
the integrity of the final Janus fibers.

2.4. � Other Multifluid Electrospinning  
Processes

Core–shell and Janus structures have been most widely researched 
in multifluid electrospinning. However, other multifluid electro-
spinning can also be used to develop more complex, for example, 
multichannel nanofibers were prepared by two to five working 
fluids packaged through sheath solution [82,83]; high-quality Janus 
fiber was fabricated by surrounding solvent by using a complex 
structure spinneret shown as Figure 4A(b and d) [55].

A four-layer fiber material has been prepared from a four-needle 
multiaxial electrospinning process. Labbaf et al. use Polyethylene 
Glycol (PEG), Poly(lactic-co-glycolic Acid) (PLGA), polycaprolac-
tone (PCL) and polymethylsilsesquioxane as the outermost layer, 
second outermost layer, second innermost layer and innermost 
layer, respectively [30]. It is clear that the more layers bring more 
possible complex structures just like coaxial electrospinning and 
triaxial electrospinning.

3.  BIO-APPLICATIONS

Owing to its advantages in developing nanofibers through a “one-
step” process, the technology has been applied in various biological 
fields including drug release, tissue engineering, biosensor, wound 
dressing, theranostics and functional textile. Some of the functions 
which have been realized using electrospun fibers are depicted 
schematically in Figure 6.

3.1.  Tissue Engineering

3.1.1.  Cell scaffolds

Scaffolds play a crucial part in tissue engineering, aiding cell 
adhesion, growth, and proliferation. Effective scaffolds in tissue 
engineering: (1) be biocompatible and allow cells to adhere to 
them for growth; (2) have appropriate mechanical strength;  
(3) mimic the native extracellular matrix; (4) provide appropri-
ate functionality at the implantation site; (5) possible sufficient 
durability.

Hydroxyapatite (HA) is extensively used in preparing bone tissue 
scaffolds. By using a mixture of hydroxyapatite and Tussah Silk 
Fibroin (TSF) as a core solution and pure TSF as the shell solu-
tion, researchers have used multifluid electrospinning to prepare 
scaffolds for use in bone tissue engineering. Compared with pure 
TSF scaffolds, the core–shell structure improves both strength of 
extension, and biocompatibility of scaffold [84].
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Figure 6 | Schematic of the potential of electrospun nanofibers for use in 
biomedicine.

Figure 7 | Multifluid electrospinning used for improving the mechanical 
strength and functions of core–shell fibers [85].

Figure 5 | Selected three-layer structures prepared by triaxial electrospinning. (a) Triaxial nanofibers (TEM image) providing a linear drug release profile 
with a schematic explanation. (b) Diagram of preparing multiwall hollow structure fibers. (c) Tri-layer nanofiber with nanoparticles stored in medium 
layer (SEM image) and schematic diagram (inset). (d) Single-wall nanofiber decorated with nanoparticles inside and outside (SEM image).

Multifluid electrospinning processes have also been used to prepare 
effective vascular tissue scaffolds [86]. However, in uniaxial electro-
spinning process, there is a trade-off among different functions within 
one fiber. With using coaxial electrospinning, core–shell fibers are 
prepared with better mechanical property than other fibers shown 
in Figure 7. A tubular vascular tissue engineering scaffold compris-
ing PCL/collagen core–shell nanofibers was prepared by using coax-
ial electrospinning and found to have good biocompatibility and cell 

affinity [87]. Core–shell electrospun scaffolds with suitable mechan-
ical properties, good hydrophilicity, the ability to promote osteoblast 
maturation and antibacterial properties were prepared by De-Paula 
et al. [88]. Coimbra et al. used PCL and synthetic gel-methacrylate 
(GelMA) in coaxial electrospinning to prepare a core-shell nanofiber 
network for vascular tissue regeneration. The content of gelatine influ-
ences the size distribution of the fibers and their hydrophilicity [89].

3.1.2.  Cell adhesion

Since the expending of raw materials that can be used in elec-
trospinning, various applications have been developed, such as 
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peptide, protein [90], which benefit for developing the applica-
tions of electrospinning within biofield.

Biomaterials for cell adhesion must have the following properties: 
(1) Biocompatible materials, which allow cell can alive on and is 
safe to implant in the body or put on the skin, are necessary, such 
as gelatin, PCL, chitosan, Polylactic Acid (PLA) and so on [91–93]; 
(2) cell should has interaction with the biomaterial, which can 
improve the adhesion by incorporating specific materials, such as 
ZnO [94,95], peptides [96] (Arg-Gly-Asp [97], Arg-Glu-Asp-Val 
[98], CREDVW and CAGW [99]), protein [100] (silk fibroin [101], 
collagen [102]); (3) some cell adhesion biomaterials should pos-
sess the ability in improving cell proliferation and guiding their 
direction [103]. A highly anisotropic array film compose of Janus 
nanoribbons may provide a new strategy in guiding cell prolifera-
tion [104,105].

With the using of multifluid electrospinning, various functional 
molecules can be incorporated into cell adhesion biomaterials. 
Shalumon et al. [106] prepared a kind of antibacterial core–shell 
nanofiber membrane which can be used for tendon adhesion with 
long-time anti-bacterial. Besides the selecting of various materi-
als, some other reasons also affect cell adhesion, such as texture. 
Hughes-Brittain et al. [107] explored the influence of endothe-
lial cell adhesion on the surface texture electrospun fibers, which 
means not only materials, but also texture on the fiber can also 
affect cell adhesion.

3.1.3.  Bio-regeneration

Guided Tissue Regeneration (GTR) and Guided Bone Rege
neration (GBR) membrane are two major present foci in bio-
regeneration. Multiple functions are needed to realize effective 
GTR and GBR membranes, such as drug release, durability, and 
guiding function. The traditional uniaxial electrospinning pro-
cess can potentially might able to integrate multiple functions in 
a monolithic fiber with further treatments, but multifluid elec-
trospinning can implement simpler in one-step. Tang et al. [108] 
used a coaxial process to produce a GTR membrane from PLGA 
and hydroxyapatite as the core and collagen and amoxicillin as the 
shell, and prepared core–shell fiber that performs well. Moreover, 
the effect of each function needs to be controlled. The initial 
burst release as a difficulty of the drug release process needs to 
be solved. In order to inhibit the production of bacteria on a scaf-
fold, the drug release time needs to be extended [109]. We need 
the GTR to remain intact in the body for more than two months 
to ensure complete tissue repair [108]. Uniaxial electrospinning 
processes used to mix some substances into monolithic fiber. By 
using multifluid electrospinning processes, different layers per-
form their functions and work together.

Infection is a major for the failure of GBR membranes, and thus 
an extended period of drug release is required to prevent this and 
aid successful bone regeneration. Wang et al. [110] prepared elec-
trospun PCL/gelatin core–shell nanofibers loaded with metro-
nidazole in the core and nano-hydroxyapatite in the shell which 
prolonged the antibacterial efficacy and lowered the cytotoxicity of 
metronidazole. Xie et al. prepared core–shell fibers to control gene 
transfer to human periodontal ligament stem cells. This core–shell 
scaffold has an excellent gene release behavior and exhibited a pro-
longed-expression time [111].

3.2.  Drug Delivery System

Along with the modern medicine booming, modern synthetic drugs 
are also present exponential growth, but most of the synthetic drug 
exists in the crystalline, poorly soluble in water that is substantially 
limited in application. Electrospinning appeared as a convenient, rapid 
prototyping technology, which can solidify working fluid in a very 
short period. It takes a uniform water-insoluble drug dissolve suit-
able solvent as the working fluid, which removes the solvent by rapid 
evaporation in the electric field, and fixes the drug to an amorphous 
state. In one recent study, Wang et al. used hydrophilic hydroxypropyl 
methylcellulose as the fiber-forming matrix polymer and an insolu-
ble model drug Ferulic Acid (FA). Modified coaxial electrospinning 
was applied to produce nanofibers, which were found to release the 
embedded FA quickly. And X-ray diffraction result shows that FA was 
dispersed in nanofibers in an amorphous form [112].

However, in the process of drug release there typically an initial 
burst release and later tailing off when working with monolithic 
fibers from unaxial electrospinning. An appropriate burst release 
process will increase drug concentration to effective drug concen-
tration in a short time, which requires precise control and constraint 
on drug release. Han and Steckl [67] observed the phenomenon of 
initial explosive release and later sustain release by using two dyes 
as release models through triaxial electrospinning. However, an 
initial burst if release can result in overly high drug concentrations 
which cause toxicity to the body; late trailing may lead to drug con-
centrations that are insufficient to produce the desired therapeutic 
effect. Wither initial burst can be control or not is important.

Using triaxial electrospinning technology, Yu et al. set different 
concentrations of Ketoprofen (KET) in the inner, middle, and 
outer working fluids, respectively. Furthermore, they took Ethyl 
Cellulose (EC) as the matrix to realize a zero-order drug release 
profile, with the release time exceeding 20 h as Figure 5a [69]. This 
team also used the same technology to encapsulate FA, an insolu-
ble drug, in the CA, to achieve zero-order drug release over 36 h 
[76]. The use of the shell can also alleviate the initial burst [66]. 
Yang et al. [78] obtained the CA/ibuprofen-gliadin core–shell fiber 
by using modified triaxial electrospinning, which eliminated the 
initial burst and prolonged the drug release time. Later, this team 
explored the relationship between the thickness of CA shell and 
drug release through modified triaxial electrospinning [43].

In addition, it can often be desirable to deliver multiple drugs at 
the same time. One route to do this is to load multiple drugs in the 
same fiber formulation. Jouybari et al. [77] prepared three degrad-
able three-layer fibers that can simultaneously control the release of 
three drugs through triaxial electrospinning, which can be used for 
treating breast cancer in vitro. Kim and Kim [66] prepared PLGA/
Poly(DL-Lactic Acid) (PDLLA) biodegradable triple-layered cap-
sules for the release of taxol and doxorucin by triaxial electrospray-
ing [66]. A more intuitive approach is to use side-by-side fibers to 
release two drugs. By using Polyvinyl Pyrrolidone (PVP) K60 and 
EC as substrates, Yu et al. [113] prepared parallel fibers that con-
trolled the different release rate of KET.

3.3.  Wound Dressing

Biocompatibility and antibacterial properties are key for effective 
wound dressings. Various antibacterial materials have been applied 
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Figure 8 | Core–shell nanofibers used for constructing heterojunction 
as a sensor. (a–c) WO3 NTs with multiple pores was prepared by coaxial 
electrospinning. (d) Dynamic resistance changes in detecting H2 using 
different materials: dense WO3 NTs, porous WO3 NTs, and Pd-porous WO3 
NTs. (e) A schematic diagram of H2 sensing using Pd–porous WO3 NTs.

using electrospun nanofibers to generate wound dressing materials, 
such as Ag Nanoparticles (AgNPs) [114,115], honey [116], vitamin E  
[117], broad-spectrum antimicrobial (such as trimethoxysilylpropyl  
octadecyldimethyl ammonium chloride (QAS), ciprofloxacin,  
tetracycline hydrochloride and simvastatin) [118–120], peptides 
[121] and so on. However, the majority of studies have been under-
taken using single-fluid electrospinning, which is problematic for 
fibers from single-fluid electrospinning cannot draw drug release 
profiles very well compared with multifluid electrospinning.

Multifluid Electrospinning could diminution wound dressing to 
nanoscale into fiber membranes and achieve good antibacterial 
properties and anti-inflammatory properties. Kalwar et al. [122] 
prepared a core–shell fiber membrane comprising PCL@chitosan 
nanofibers incorporating AgNPs, and found them to have good 
antibacterial properties. By using coaxial electrospinning, Heydari 
et al. [119] obtained an antibacterial and healing promotion core–
shell membranes by loading simvastatin in the core and ciproflox-
acin in the shell. Wen et al. [123] also prepared a dual-functional 
core–shell electrospun mat with the ability to accurately control the 
release of anti-inflammatory and anti-bacterial agents.

Nanofibers from multifluid electrospinning can also combine other 
functions, such as mechanical property, healing-promoting, bio-
degradable. Zahedi et al. [124] prepared core–shell fibers with a 
core containing Polyethylene Oxide (PEO)/Aloe vera extract and 
a shell comprising PCL/chitosan/keratin, which has great mechan-
ical strength and can be used for wound healing. Wei et al. [125] 
use AgNPs and vitamin A palmitate as an antibacterial agent and 
healing-promoting drug in develop core–shell fibers. To over-
come problems with wound healing in patients with type-2 diabe-
tes, Augustine et al. [126] used Connective Tissue Growth Factor 
(CTGF) in the preparation of membranes composed of nanofibers 
with a CTGF-Polyvinyl Alcohol (PVA) core and PLA shell, and 
these membranes were found to have excellent potential in cell 
proliferation, migration and angiogenesis. By utilizing the coaxial 
electrospinning process, Fang et al. prepared biodegradable nanofi-
bers, which comprising poly(γ-glutamic acid) as the core and PLA 
as the shell, with more than 90% re-epithelialization [127].

3.4.  Biosensor

Electrospun fibers can be used in sensors for gas detection, such as 
ethanol [41], acetone [40], H2 [128], etc. However, when the sensor 
embedded in the body, it is a different environment and different sub-
stances needed to detect, such as dopamine [129], aflatoxin B1 [130], 
glucose [131,132], 25-hydroxy vitamin‑D3 [133], urea [134], etc.

To improving sensitive and selective sensors, many tools have 
been incorporated in or loaded on electrospun fibers and used to 
detect singles, such as metal catalysts [129], inorganic compounds 
[131,135], enzymes [136,137], antibodies [130], etc. Because of 
the very large specific surface area of electrospun nanofibers, elec-
trospun biosensors have been found to be much more sensitive 
electrochemical than conventional sensors. Using multi-fluid elec-
trospinning processes, hollow porous nanofibers can be prepared 
(see Figure 8a–8c) to construct heterogeneous junctions between 
the shell and the nanoparticle formed on shell porous. shown as 
Figure 8e, which is conducive to the transformation of gas signals 
and electrical signals. From Figure 8d, it is clear that Pd-porous WO3 
Nanotubes (NTs) performs better than porous WO3 NTs [128].

There are also reports of biosensor from coaxial electrospinning 
being used in vivo. Wang et al. prepared an implantable biosensor 
incorporating Pt-Glucose Oxidase (GOD) in order to detect glu-
cose. The biosensor coated with core-shell fiber membranes, which 
compose 6 wt% polyurethane in core and 10 wt% gelatin in the 
shell, was immersed in phosphate buffer for 12 weeks also remain 
fiber morphology [138]. Furthermore, compared with core–shell 
heterogeneous [139], the Janus fibers can be used to construct 
heterogeneous junctions as well and load different tools to detect 
different substances. By utilizing heterogeneous junctions that play 
an important role in many fields [140], multifluid electrospinning 
processes can involve other fields easily.

3.5.  Theranostics

Theranostics, which can diagnose and treat simultaneously, com-
prising an emerging field in biotechnology. It is one area where 
multifluid electrospinning could have great potential, because of its 
inherent ability to introduce multiple functions into nanomaterials. 
Signals, which can be detected by advanced technology or eyes or 
feelings, are essential characteristics that theranostic biomaterials 
should possess.

By using coaxial electrospinning, Jin et al. prepared core–shell nano-
fibers containing gadolinium (III) Diethylenetriaminepentaacetate 
[Gd(DTPA)] hydrate Gd(DTPA) as a contrast agent core and Eudragit 
S100 as a shell to allow the targeting of drug release. This core–shell 
nanofiber can be used for magnetic resonance imaging of the colon 
ex vivo [141]. This team also research on the simultaneous imaging 
and sustained drug release over 12–29 h at pH 7.4 by using core–shell 
nanofibers [142].

3.6.  Functional Textiles

Functional textiles based on electrospun nanofibers possess great 
potential. Many functions can be incorporated into membranes 
through single fluid electrospinning, such as waterproofing [143], 
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antibacterial [144] and conductive [145] properties. Bin et al. 
have reported many studies on electrospun functional textiles for 
water-transport [146], ultraviolet resistance, waterproofing [147], 
waterproof-breathable [148], and air filters used for protect from 
PM2.5 [149].

We believe that multifluid electrospinning can perform better than 
monoaxial electrospinning in preparing multifunctional textiles, and 
is likely to lead to nanofiber membranes with more functions and 
better performance. Even so, problems remain to be overcome, such as 
scaleup. Scaling up monoaxial electrospinning has been explored for 
many years, and various solutions have been proposed [81]. However, 
relatively few reports discuss coaxial electrospinning scale-up [150], 
because of the difficulty of handling multiple fluids and ensuring that 
the desired multi-compartment products are generated.

4.  CONCLUSION AND PROSPECTS

As a facile, low-cost, and flexible method to produce nanofibers, 
electrospinning has been explored in various bio-fields and the 
products have been found to have very good performance in many 
cases. We summarize here a range of different multifluid electro-
spinning processes, discussing some of the key parameters which 
must be considered in implementing an effective and reproducible 
process. Biomaterials composed of nanofibers prepared by multi-
fluid electrospinning have been introduced, and selected studies 
highlighted to show the enhanced properties which can be achieved 
compared to the monolithic fibers from single-fluid spinning. 
Multifluid electrospinning processes can produce materials with 
many functions and structures that cannot be realized when work-
ing with a single solution. Challenges, such as the difficulty in scal-
ing up multifluid electrospinning and structural spinnerets, have 
also been introduced. It is clear from the limited publications about 
multifluid electrospinning that the electrospun complicated nano-
structures always showed a better functional performance than the 
corresponding monolithic nanofibers [151]. The reasons are obvi-
ous that multiple-chamber nanostructures are able to provide more 
opportunities for tailoring the components, compositions, and 
ingredient spatial distributions within the nanofibers, and thus act 
as a more powerful platform than the traditional blending electro-
spinning for endowing the electrospun nano products the desired 
functional performances [152,153]. In the authors’ view multifluid 
electrospinning is likely to attract increasing attention owing to the 
exceptional performance that can be realized.
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