
On the Sample Complexity of
Reinforcement Learning

Sham Machandranath Kakade

Gatsby Computational Neuroscience Unit

University College London

PhD Thesis

March 2003

ProQuest Number: 10042742

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest 10042742

Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

PhD Thesis for the University of London

Degree: PhD

Year: 2003

Name: S. M. KAKADE

Medium hlue cloth
Lettered in gold on spine with Degree, Year, Name and Initials
Letters in 16 or 18 point (.25 inch)

4 hard bound copies
1 soft hound copy

Contact: Alexandra Boss 020 7679 1179
Or Abla Hatherell 020 7679 1176

Gatshy Computational Neuroscience Unit
University College London
Alexandra House
17 Queen Square
London WCIN 3AR

Abstract

This thesis is a detailed investigation into the following question: how much data must an
agent collect in order to perform “reinforcement learning” successfully? This question
is analogous to the classical issue of the sample complexity in supervised learning, but is
harder because of the increased realism of the reinforcement learning setting. This thesis
summarizes recent sample complexity results in the reinforcement learning literature and
builds on these results to provide novel algorithms with strong performance guarantees.

We focus on a variety of reasonable performance criteria and sampling models by which
agents may access the environment. For instance, in a policy search setting, we consider
the problem of how much simulated experience is required to reliably choose a “good”
policy among a restricted class of policies II (as in Kearns, Mansour, and Ng [2000]). In
a more online setting, we consider the case in which an agent is placed in an environment
and must follow one unbroken chain of experience with no access to “offline” simulation
(as in Kearns and Singh [1998]).

We build on the sample based algorithms suggested by Kearns, Mansour, and Ng [2000].
Their sample complexity bounds have no dependence on the size of the state space, an
exponential dependence on the planning horizon time, and linear dependence on the com­
plexity of n. We suggest novel algorithms with more restricted guarantees whose sample
complexities are again independent of the size of the state space and depend linearly on the
complexity of the policy class II, but have only a polynomial dependence on the horizon
time. We pay particular attention to the tradeoffs made by such algorithms.

Acknowledgments

Many thanks to my family — Mom, Dad, Mish, and Suj — for all the love and encourage­
ment you have given me. You have always taken keen interest and much enjoyment in my
education and my life.

I also express deep gratitude to my advisor Peter Dayan for his guidance. I owe much to
him for the clarity he has brought to my ideas and the freedom he gave me to pursue them.

I give warm thanks to John Langford, my closest collaborator in this work. Most work
presented in this thesis was in direct collaboration with John or affected by his ideas. Only
Kakade and Langford [2002] has been previously published, and this work appears mainly
in chapter 7. John directly worked with me on the following results: the upper and lower
bounds in chapter 2, the variance analysis for gradient methods, the CPI algorithm, and in
providing the tightened upper and lower bounds of exploration in part 3. All other results
in this thesis are original.

There are numerous other people I wish to thank, and it is likely I will forget someone but
here goes. Matt Beal, Nathaniel Daw, Zoubin Ghahramani, Geoff Hinton, Sam Roweis,
Maneesh Sahani, Yee-Whye Teh, Emo Todorov, and Chris Watkins strongly influenced my
early ideas at the Gatsby Unit. I have also had edifying conversations with Peter Bartlett,
Jonathan Baxter, Drew Bagnell, Daniela de Farias, Michael Keams, Michael Littman,
David McAllester, Andrew Ng, Satinder Singh, Dale Schuurmans, Rich Sutton, and Ben
Van Roy.

I am grateful to my committee, Satinder Singh and Chris Watkins, for their feedback.

Finally, I must thank all my close friends with whom I have shared many good times
during graduate school. I also thank all those friends who have visited me during my time
in London (which I think includes just about of all of them).

I received financial support from the Gatsby Unit and the National Science Foundation.

Contents

Abstract 3

Acknowledgments 5

Chapter 1. Introduction 9
1.1. Studying the Sample Complexity 10
1.2. Why do we we care about the sample complexity? 12
1.3. Overview 14
1.4. “Agnostic” Reinforcement Learning 18

Part 1. Current Methods 21

Chapter 2. Fundamentals of Markov Decision Processes 23
2.1. MDP Formulation 23
2.2. Optimality Criteria 25
2.3. Exact Methods 29
2.4. Sampling Models and Sample Complexity 31
2.5. Near-Optimal, “Sample Based” Planning 33

Chapter 3. Greedy Value Function Methods 41
3.1. Approximating the Optimal Value Function 43
3.2. Discounted Approximate Iterative Methods 44
3.3. Approximate Linear Programming 48

Chapter 4. Policy Gradient Methods 51
4.1. Introduction 51
4.2. Sample Complexity of Estimation 53
4.3. The Variance Trap 58

Part 2. Sample Based Planning 61

Chapter 5. The “Mismeasure” of Reinforcement Learning 63
5.1. Advantages and the Bellman Error 64
5.2. Performance Differences 65

8 CONTENTS

5.3. Non-stationary Approximate Policy Iteration 68
5.4. Remarks 72

Chapter 6. /x-Leamability 75
6.1. The Trajectory Tree Method 78
6.2. Using a Measure n 82
6.3. /u-PolicySearch 84
6.4. Remarks 91

Chapter 7. Conservative Policy Iteration 95
7.1. Preliminaries 96
7.2. A Conservative Update Rule 96
7.3. Conservative Policy Iteration 100
7.4. Remarks 107

Part 3. Exploration 109

Chapter 8. On the Sample Complexity of Exploration 111
8.1. Preliminaries 114
8.2. Optimality Criteria 115
8.3. Main Theorems 117
8.4. The Modified Rmax Algorithm 120
8.5. The Analysis 125
8.6. Lower Bounds 131

Chapter 9. Model Building and Exploration 135
9.1. The Parallel Sampler 136
9.2. Revisiting Exploration 139

Chapter 10. Discussion 143
10.1. AT, A and T 143
10.2. From Supervised to Reinforcement Learning 146
10.3. POMDPs 148
10.4. The Complexity of Reinforcement Learning 149

Bibhography 151

CHAPTER 1

Introduction

Reinforcement learning has become the standard framework in the artificial intelligence
community for studying how agents learn and plan in uncertain environments. In a rein­
forcement learning problem, an agent must learn a course of actions, ie a policy, through
its interaction with a dynamic environment. Typically, the goal of an agent is to find or
execute a policy that maximizes some measure of the long-term future reward. This para­
digm is attractive because it offers a compact formalization of a host of problems that both
people and artificial systems face.

Reinforcement learning is one step more realistic than the more widely studied problem of
supervised learning. In supervised learning, the learner receives a “training set”
of input/output pairs, where the output value y of an input x is a (possibly noisy) estimate
of a “target function” /(x). Usually, the samples in the training set are identically and
independently distributed {i.i.d.) according to some distribution P{x,y), and the goal of
the learner (as in Valiant [1984]) is to construct an approximation to the relationship be­
tween the inputs and outputs such that when given a “test set” of input points distributed
according to P(x), the algorithm labels these points accurately.

In the past decade, much work in the field of learning has advanced our understanding
of efficient supervised learning (see Anthony and Bartlet [1999] and Keams and Vazirani
[1994]). The quantities of interest are both the computational complexity and the sample
complexity of finding a good approximation to the target function. Loosely, the sample
complexity is: how large a training set is required in order to learn a good approximation
to the target concept? The relevant computational complexity is: how much computation
is required to manipulate a training set and output an approximation to the target?

The greater step toward realism in reinforcement learning stems from allowing the actions
taken by an agent to affect the environment. This makes studying efficiency considerably
harder for reinforcement learning than for supervised learning for various reasons. First,
the environment doesn’t unilaterally provide a “training set” to the agent. In general, the
information the agent receives about the environment is determined by both the actions
it takes and dynamics of the environment. Second, the information the agent receives is
“partially labeled” in the sense that although the agent desires to maximize some measure
of its long-term future reward, it only observes an immediate reward. Additionally, there

10 1. INTRODUCTION

is no sharp boundary between a “training” and “test” phase. The time the agent spends
trying to improve the policy often comes at the expense of utilizing this policy — this is
often referred to as the exploration/exploitation tradeoff.

Perhaps the two most important questions in the study of efficient reinforcement learning
are as follows. The question of sample complexity is: how much data must we collect in
order to achieve "learning”? The corresponding question of computational complexity is:
how much computation is required in using this data to achieve ‘‘learning"? This thesis is
detailed investigation into the former question on the sample complexity of reinforcement
learning (although to a lesser degree computational issues are also investigated). In gen­
eral, the answers provided strongly depend on how the agent can access the environment
as well as the performance criterion used to judge the amount of learning. This thesis
summarizes recent sample complexity results in the reinforcement learning literature and
builds on these results to provide novel algorithms with strong performance guarantees.

1.1. Studying the Sample Complexity

Let us now discuss a framework for studying the efficient use of samples. An informal
notion of the sample complexity, which is in terms of the number of observed samples pro­
vided by some sampling model for the environment, was first discussed in Keams, Man­
sour, and Ng [2000] (though see Keams and Singh [1999] and Keams, Mansour, and Ng
[1999]). The first subsection presents some idealized sampling models. Then we discuss
what constitutes efficient use of samples.

Idealized Sampling Models. The most general model is the online simulation model
in which the environment itself is the sampling model and the agent has neither “offline”
simulation access to the environment nor recourse to “resets”, where a “reset” is the ability
to move back to some fixed start state. In this model, the agent must follow one unbroken
chain of experience for some number of decision epochs. Here a decision epoch is just a
timestep in which a state is observed and an action is taken, and so the number of decision
epochs is equivalent to the amount of observed experience. This is the most challenging re­
inforcement leaming setting. The notion of sample complexity we consider is inspired by
that of the algorithm of Keams and Singh [1998]. Informally, the question we consider
is: at how many states is the agent “exploring” and not “exploiting”?

A considerably more powerful sampling model is the generative model, which was in­
troduced by Keams, Mansour, and Ng [1999]. This model is a simulator which provides
sampling access to any state in the environment of our choosing. This model is a much
stronger assumption than having only online access, but it is a much weaker assumption
than having complete knowledge of the environment. In real applications, this tums out
to be a natural assumption, such as the case in which we have a physical simulator of the

1.1. STUDYING THE SAMPLE COMPLEXITY 11

environment or where our model is in the form of some compact Bayes net. Here, we are
often interested in the number of calls to the generative model required to find or execute
a good policy (as in Keams, Mansour, and Ng [1999,2000]).

We also consider an intermediate setting in which we have access to a /li-reset model,
which allows “resets” of the state to some state chosen according to a fixed distribution /u,
but is otherwise an online simulation model (as in Kakade and Langford [2002]). This is
a considerably weaker assumption than the generative model, since we cannot access any
particular state of our choice. Here, we consider algorithms which explicitly use the dis­
tribution /X as a preferential measure under which to optimize the policy. These algorithms
are similar to and inspired by supervised leaming algorithms which minimize the error
with respect to some input distribution P{x). This simulation condition could be quite
useful, particularly if the fixed distribution fj, provides us with states at which it is impor­
tant to optimize the performance. Again the question we consider is: how many observed
transitions are required to obtain a “good” policy? In this setting, we consider a notion of
“goodness” that is defined with respect to //.

What Constitutes Efficient Use of Samples? We study the sample complexity as
a function of the sampling model at our disposal and the performance criterion used. In
particular, we consider the sample complexity to be the number of calls to the sampling
model required to satisfy a specified performance criterion, and we are interested in how
this scales with the relevant problem dependent parameters. In the reinforcement leaming
setting, the parameters are the size of the state space N , the size of the action space A, the
number of decision epochs T (or, altematively, a discount factor 7), and the variance of the
reward function. In addition, this scaling is dependent on an accuracy parameter e (which
is with respect to the performance criteria used) and a certainty parameter Ô. In a policy
search setting, where we desire to find a “good” policy among some restricted policy class
n, the dependency on the complexity of a policy class II is also relevant (as in Keams,
Mansour, and Ng [2000]).

This thesis reviews and presents a variety of algorithms which use particular sampling
models to retum or execute “e-good” policies, with probability of error less than S. We
consider upper and lower bounds on the sample complexity of these algorithms in terms
of the aforementioned quantities. Close attention is paid into understanding what tradeoffs
are made by various algorithms and what is reasonable to expect based on these tradeoffs.

In the supervised leaming setting, the theoretical guarantees of most algorithms have no
dependence on the size (or dimensionality) of the input domain which is analogous to N
in our setting. Note that the supervised leaming problem is closely related to a degenerate
reinforcement leaming problem where T = 1 (or 7 = 0).

12 I. INTRODUCTION

In contrast, many reinforcement leaming algorithms (T / 1) depend polynomially on N,
which is acceptable if the environment has a small state space. Unfortunately, the state
space in many realistic settings is prohibitively large or infinite. The most important topic
in the reinforcement leaming literature over the last decade has been on the constmction
of algorithms which scale to cope with large of infinite state spaces.

Keams, Mansour, and Ng [1999,2000] present two leaming algorithms with a sample com­
plexity that has no dependence on the size of the state space N , but have exponential depen­
dence on the horizon time T. These algorithms provide an important, yet harsh, tradeoff.
These “sparse sampling” methods call the generative model sufficiently many times such
that a good policy can be computed or executed, but, in general, the samples obtained
are insufficient to constmct an accurate model of the environment (due to the lack of N
dependence).

Particular attention is paid to the case of large or infinite state spaces and large horizon
times. The most practically important novel algorithms provided are those with guarantees
that have a polynomial dependence on T, and yet have no dependence on the size of the
state space (along with a linear dependence on the complexity of the policy class II). Un­
derstanding the tradeoffs made by such algorithms is perhaps the most practically relevant
contribution of this work. Although the case of large action spaces is also important, this
work does not focus on dealing with this setting though it is an important direction for
further work (and we retum to this point in the discussion of this thesis).

1.2. Why do we we care about the sample complexity?

Unlike in supervised leaming, there is as of yet no “formal” definition in the literature of
the sample complexity of reinforcement leaming, though an informal one was provided in
Keams, Mansour, and Ng [20(X)]. The cautious reader should ask: is the notion of sample
complexity even relevant to the reinforcement leaming setting?

Let us consider the two settings in which reinforcement leaming is performed. One setting
is where the agent has real ignorance about the environment, and samples are useful in
an information theoretic sense (as in supervised leaming). It is obvious that the notion
of sample complexity is important for this case. In an altemative setting, the agent may
have complete knowledge of the environment. This setting does not have an analogue in
the supervised leaming setting, since if the target function is known then our problem is
solved. For this latter case, the agent only has computational ignorance about the world.
Here, for computational purposes, our algorithm might simulate the environment, and the
sample complexity can be viewed as a surrogate for the computational complexity.

Let us discuss these cases in tum, beginning with the complete knowledge setting.

1.2. WHY DO WE WE CARE ABOUT THE s AMPLE COMPLEXITY? 13

Complete Knowledge of the Environment. The problem of finding a good policy in
a fully known environment is perhaps the best studied problem in reinforcement leaming.
In some instances, the physical laws of the real world allow us to consider problems in
which the environment dynamics are known. In other instances, the environment itself is
artificially constmcted with simple rules, such as in Chess, Tetris, Go, and Backgammon.

In large-scale problems where our knowledge of the environment is complete, it is rarely
possible to specify a model of the environment in terms of a table of rewards and transition
probabilities, and a compact model description is required. Commonly used representa­
tions of environment dynamics are systems of differential equations or generalizations of
Bayes nets {eg dynamic Bayes nets or influence diagrams).

Using these compact models, it is often computationally expensive to perform certain exact
computations, such as taking an expectation. However in a large class of compact models
(such as Bayes nets), it is often computationally efficient to obtain Monte Carlo samples
from a model and to use these samples for purposes of estimation.

Since Monte Carlo simulation is often the most tractable way to manipulate models, it is
not surprising that most optimization techniques are simulation based. For these methods,
a notion of “sample complexity” is how much experience must be simulated by our model
in order to find a good policy. Note that for this complete knowledge setting, the “sample
complexity” question is really a question of computational complexity, since to obtain a
sample involves some amount of computation with our model. However, there is a natural
split of the overall computational complexity into computations related to simulating the
environment and computations related to optimization using these samples (such as in
fitting a value function). Hence, the “sample complexity” provides a lower bound on the
overall computational complexity (which is what we are ultimately interested in).

It should be noted that this notion of sample complexity is tied to using simulation based
methods. Instead, if our algorithm could somehow directly manipulate the model (perhaps
based on its special structure) to perform direct computations, then this notion is no longer
relevant.

However, the two predominant techniques, value function methods and policy search meth­
ods, are simulation based. In simulation based value function methods, typically the policy
is executed in the environment (using the model) to obtain sample trajectories and then
some regression procedure is used to estimate its value (see Bertsekas and Tsitsiklis [1996]
and Sutton and Barto [1998] for a thorough discussion of these methods). These values are
then used for policy improvement. By contrast, “direct” policy search techniques use sim­
ulated experience to find a good policy among some restricted set of policies without using
any value functions (such as in policy gradient methods, see Baxter and Bartlett [2001] for
review).

14 1. INTRODUCTION

Incomplete Knowledge of the Environment. In many real applications, the dynam­
ics of the environment are unknown. Here, we are strongly limited by what access we have
to our environment. In many practically successful applications, we often have “off-line”
access to the environment. For instance, we might have a physical simulator of the sys­
tem which allows us to obtain estimates of the value (or gradient) of a policy by executing
our policy in this physical simulator. The same sample complexity notion of the last sub­
section applies — though now the samples are “real” and not “computed” (ie information
theoretically the samples provides us with more information about the environment).

Altematively, we could attempt to construct a model by using sampled transitions in our
physical simulator. This model could then be used for planning purposes to obtain a good
policy for the task at hand. For example, in the (real) autonomous helicopter control prob­
lem (of Bagnell and Schneider [2001]), data was collected using a pilot tele-controlling the
helicopter and using this data a non-parametric model of the dynamics was constructed.
Importantly, due to the pilot’s expertise, they had the ability to obtain samples in various
regimes, which would otherwise have not been possible. This model was then used for
planning purposes.

For this case, a notion of the sample complexity is how much experience from our physical
simulator do we need to “accurately” construct a model of the environment. Here, what
constitutes “accurate” is determined by what the model is used for. For instance, we might
want a model that is minimally accurate enough to determine a good policy.

In the purest reinforcement leaming setting, an agent is placed in an environment, with
only limited knowledge of the environment and no “offline” simulation access. This is the
most challenging setting, since the agent only obtains additional information through the
actions it takes and must cope with any youthful mistakes it makes during the course of
leaming. In the previous setting, we only discussed efficiently obtaining a good policy.
This is often a sensible goal when we have “offline” access to the environment or when
there is a certain “leaming” period in which poor performance by the agent is acceptable.
In the “online” setting, we often care about maximizing some measure of the sum total
reward that we obtain over some (possibly infinite) horizon.

1.3. Overview

This thesis focuses on Markov Decision Processes and is divided into three parts. Part
1 reviews the most commonly used approximate methods in the reinforcement leaming
community. It focuses on understanding why many of these methods do not enjoy strong
performance guarantees (typically, performance guarantees depend on the size of the state
space). This analysis is useful for motivating new algorithms with stronger performance

1.3. OVERVIEW 15

guarantees. Part 2 is concerned with “sample-based” planning. The classical assump­
tion for planning is that the agent has complete knowledge of the environment. Here, we
consider the more reasonable case in which our planning algorithm has access to either a
generative model or a //-reset model. The policy search algorithms that are reviewed or
presented here also have extensions in the partially observable (PO)MDP setting, and we
retum to this point in the discussion of this thesis. In part 3, the unadulterated scenario is
considered, in which the agent only has access to the online simulation model.

Of particular interest throughout this thesis is the use of non-stationary, ie time depen­
dent, policies to optimize the future reward. The use of non-stationary policies leads to
particularly clear results and a deeper understanding of the difficulty of planning in the re­
inforcement leaming problem. The reason for this is that the use of non-stationary policies
allows us to view the planning problem as a sequence of T supervised leaming problems
where the solution to each supervised leaming problem is used to constmct part of the
non-stationary policy. Chapter 7 also considers the more challenging tricky problem of
constmcting a good stationary policy.

Part 1; Current Methods. Chapter 2 presents the standard definitions and the sam­
pling models considered in this thesis. In addition to reviewing the exact algorithms (which
assume complete knowledge of the MDP), this chapter also reviews generic planning al­
gorithms which assume access to a generative model. The phased value iteration (similar
to that in Keams and Singh [1999]) uses the generative model to output a near-optimal
policy and has a linear dependence on N and a polynomial dependence on T. The sparse
sampling algorithm of Keams, Mansour, and Ng [1999] executes a near-optimal policy
and assumes access to the generative model during execution of the policy. This algorithm
has no dependence on N but has an mntime dependence that is exponential in T. Lower
bounds are also presented for both of these algorithms.

Chapter 3 reviews the standard approximate value function methods. Performance bounds
are presented in terms of the intractable max norm regression error, which is a worst case
error over the entire state space. This metric is the bane for obtaining strong sample com­
plexity results independent of N. Typically, supervised leaming algorithms (and the related
theoretical analyses) exploit the fact that an expectation of a (bounded) random variable can
be accurately obtained using a number of samples that has no dependence on the size of the
input domain (this number depends only on an accuracy parameter e, a certainty parameter
5, and the upper bound of the random variable). Exploiting this elementary sampling result
in the reinforcement leaming setting to provide algorithms with no dependence on N has
proved to be quite elusive. This is often due to the max norm error not being an expected
quantity.

16 I. INTRODUCTION

This chapter also presents convergence rates for these approximate dynamic programming
iterative methods, which are developed based on the analysis in Bertsekas and Tsitsiklis
[1996]. Interestingly, these convergence rates are similar to those of their exact coun­
terparts (though the regions to which these methods converge are obviously different).
Additionally, this chapter briefly reviews the recent and promising approximate linear pro­
gramming method of de Farias and Van Roy [2001], where the algorithm constructs an
“accurate” approximation to the optimal value function (in an average /i sense), de Farias
and Van Roy [2001] also have examined the sample complexity of this approach.

Chapter 4 focuses on simulation based, gradient methods (as in Marbach and Tsitsiklis
[2001] and Baxter and Bartlett [2001]). These methods have achieved recent popularity
due to their performance improvement guarantees. However, this chapter presents an anal­
ysis showing how the lack of exploration in gradient methods leads to an unreasonably
(and arbitrarily) large variance in the estimates of the gradient direction (as discussed in
Kakade and Langford [2002]). Thus, their finite-sample size convergence guarantees are
particularly weak (though asymptotically they converge to a local optima).

Part 2: “Sample Based” Planning. Chapter 5 is concerned with performance bounds
that shed light on the difficulty of the reinforcement leaming problem. These bounds are
extensions of the bounds of Bertsekas [1987] and Singh and Yee [1994]. Importantly,
the performance bounds presented here are not stated in terms of a max norm error, but
instead are stated in terms of expectations with respect to the future state distribution of
an optimal policy. Informally, the future state distribution is a distribution over the state
space induced by the state visitation frequency of a policy over the relevant horizon time.
The bounds presented show how the reinforcement leaming problem can be viewed as a
supervised leaming problem where the agent is “tested” under a distribution imposed by
the optimal policy. These results directly motivate the non-stationary approximate policy
iteration (NAPl) algorithm, which is presented in this chapter.

Chapter 6 considers the setting in which we desire to find a policy that has good perfor­
mance as compared to those policies in some (potentially infinite) policy class II. First,
the trajectory tree method of Keams, Mansour, and Ng [2000] is reviewed. This algorithm
assumes access to a generative model and has an exponential dependence on T, a linear
dependence on the complexity of the policy class II, and no dependence on the size of the
(potentially infinite) state space. Inspired by practical considerations, the question that is
then addressed is: what guarantees can be made if we desire polynomial dependence on
T, in addition to having no dependence on the size of the state space and linear depen­
dence on the complexity measure of II? Here, we consider finding a good non-stationary
policy based on II and the algorithm presented assumes access to only the weaker //-reset
model. The tradeoff paid for obtaining a polynomial dependence on T is that we now

1.3. OVERVIEW 17

have a more restricted optimality guarantee that is stated in terms of distribution /x (yet the
sample complexity bounds are independent of /x).

Chapter 7 examines the same problem as that in the previous chapter, except now we desire
a stationary policy. Obtaining a good stationary policy proves to be a much more chal­
lenging problem. The conservative policy iteration algorithm is presented (from Kakade
and Langford [2002]), which resorts to using stochastic, stationary policies. Again, the
sampling model required by this algorithm is the /x-reset model. The sample complexity
bounds and performance guarantees of this algorithm are comparable to the one from the
previous chapter (ie polynomial in T, performance guarantees that depend on /x, etc.).

Interestingly, the /x-based planning algorithms presented in part 2 are not guaranteed to
retum policies which are both stationary and deterministic.

Part 3: Exploration. Chapter 8 considers the purest scenario where the agent has no
access to resets and can only obtain information about the environment through its choice
of actions. Bounds are provided on what can be construed as the sample complexity of
exploration. The notion that is considered is inspired by the algorithm of Keams and
Singh [1998], where the performance guarantees of are stated in terms of “mixing
times” for the undiscounted case and in terms of the quality of the output policy of E^ for
the discounted case. This chapter provides a more general guarantee that is not stated in
terms of “mixing times” and that is more parsimonious for both the discounted and undis­
counted case. The question addressed is at how many states is the algorithm’s expected
long-term reward (with respect to some fixed horizon time) not near-optimal, where each
timestep corresponds to one transition in the environment. Informally, this question is ask­
ing: at how many timesteps is the agent “exploring” and not “exploiting”? The algorithm
and bounds presented are developed from Keams and Singh [1998] and Brafman and Ten-
nenholtz [2001] and considerably tightened results are presented. Nonetheless, the results
presented here are still stated in terms of the size of state space. Perhaps rather intuitively,
an upper bound on the “sample complexity of exploration” is 0(N ^ A) (neglecting log and
other relevant factors), which is the number of parameters required to specify the transition
model in the MDP. Lower bounds are also presented.

Chapter 9 examines the issue of model building for exploration. The algorithm presented
in the previous chapter explicitly builds an accurate model of the MDP (at least in some
subset of the states). However, the results presented in Keams and Singh [1999] show
that if the agent has access to a generative model, then a near-optimal policy can be ob­
tained using an impoverished model of the world. This raises the controversial question of
whether or not the demand to build an accurate model is too stringent. Adding to this co-
nundmm, the discrepancy between the lower and upper bound presented in the last chapter
is essentially the difference between building an accurate model of the world and using

18 1. INTRODUCTION

an impoverished model. The analysis presented in this chapter examines the possibility
of constructing a crude model for exploration (with lower sample complexity), using the
techniques described in Keams and Singh [1999]. Unfortunately, this analysis does not
lead to tightened results and the gap between our lower and upper bound persists.

1.4. “Agnostic” Reinforcement Leaming

Before we begin, a few comments are in order about the approach taken in this thesis. The
framework in which we work closely resembles that of the probably approximately cor­
rect (PAC) and agnostic leaming framework for supervised leaming (as in Valiant [1984],
Haussier [1992] and Keams, Schapire, and Sellie [1994]). There are two assumptions that
characterize this framework in supervised leaming. First, the setting is “distribution free”
in the sense that no assumptions are made with regards to the input distribution P{x). Al­
though the error of interest is defined with respect to P{x), the sample complexity bounds
are independent of P{x). Second, no assumptions are made about the “tme target” function
being contained in the hypothesis set H.

Let us now outline the connections. For the policy search setting where the goal is to
find a “good” policy in some restricted policy class II, we make no assumptions about the
environment and II (as in Keams, Mansour, and Ng [2000]). We still could (and should)
use our problem dependent priors in choosing II. However, as in the supervised leaming,
the theoretical guarantees do not assume these priors are correct.

In the setting where a //-reset model is considered, although optimality criteria are stated
in terms of //, no assumptions are made on // and the sample complexity bounds do not
depend on //. Hence, with respect to //, the sample complexity bounds presented could be
considered to be “distribution free”. For the exploration setting, no knowledge is assumed
about the environment (as in Keams and Singh [1998]).

Our motivation for adopting this setting is identical to that given in supervised leaming —
we wish to understand fundamental sample complexity issues without making strong prob­
lem dependent assumptions. The most important and sensible counterpart to this approach
is the Bayesian framework.

The natural Bayesian setting for reinforcement leaming is one in which we have some prior
distribution Q over environments. Here, the agent is set in an environment that is sampled
according to Q. As usual, the goal of the agent is maximize some measure of expected
future reward, and for this case, the expectation is taken with respect to Q and the agent’s
course of actions. When working in this setting, it is important to think carefully about
prior distributions Q over environments that are indicative of those that arise in practice.

Note that in this setting we assume complete knowledge of Q, so the problem is purely
computational and can be cast as a POMDP whose adverse computational costs are well

1.4. “AGNOSTIC’ REINFORCEMENT LEARNING 19

understood (see Littman [1996]). For a single state MDP, an optimal efficient algorithm
exists using Gittins indexes (Gittins [1989]). We retum to this case in the discussion and
point out how the methods discussed herein have connections.

For situations in which the environment is fully known, more thought must be given to the
Bayesian setting as to what constitutes appropriate priors. The reason being is that from
an information theoretic perspective the agent has complete knowledge, and the problem
is a purely computational one. Although, in solving the computational problem, we may
invoke sampling methods, the issue of how to incorporate a Bayesian prior when doing this
optimization requires more thought.

Part 1

Current Methods

CHAPTER 2

Fundamentals of Markov Decision Processes

The Markov decision process (MDP) is the model used throughout this thesis. This chapter
reviews this framework along with the standard exact dynamic programming algorithms for
MDPs. Special attention is paid to non-stationary policies, since the use of such policies
leads to algorithms with strong performance guarantees. These algorithms are presented
in chapters 5 and 6.

Fundamental to this thesis is the notion of a sampling model for the MDP. These sampling
models are the means by which an agent obtains information about the MDP. As discussed
in the introduction, the quantity of interest is how many calls to the sampling model are
made by an algorithm in order to satisfy various performance criteria.

This chapter also introduces the sampling models used throughout this thesis and reviews
two generic, near-optimal, “sample-based” planning algorithms, which assume access to a
generative model (a natural simulator of the MDP). The first algorithm presented is phased
value iteration which can be viewed as a sample based counterpart to the exact dynamic
programming algorithms. A variant of this algorithm was originally developed by Keams
and Singh [1999] in order to analyze the Q-leaming algorithm of Watkins [1989]. A
slightly tightened sample complexity bound (as compared to Keams and Singh [1999])
is provided on how many samples are required in order for the algorithm to compute a
near-optimal policy. Interestingly, the reasons behind this tightened bound are related to
the use of non-stationary policies. Lower bounds are also provided for this algorithm.

The second generic, “sample-based” algorithm reviewed is the sparse sampling algorithm
of Keams, Mansour, and Ng [1999]. Whereas phased value iteration retums a policy, the
sparse sampling algorithm only retums a single action when given a state as input. In
this sense, the algorithm itself acts a policy which uses the generative model at mntime.
This algorithm executes a near-optimal policy and provides a different sample complexity
tradeoff, since the the number of samples used by algorithm per call has no dependence on
the size of the state space, but has an exponential dependence on the horizon time.

2.1. MDP Formulation

Consider the problem in which an agent is faced with the task of influencing an environ­
ment through the actions it takes. At each timestep the agent is at a state in the environment

23

24 2. FUNDAMENTALS OF MARKOV DECISION PROCESSES

and it must make a decision of which action to perform. This action alters the state the
agent is at and determines the reward the agent receives. The agent is allowed to make T
such decisions. A Markov decision process formalizes this interaction between the agent
and the environment.

D efinition 2.1.1. A Markov Decision Process (MDP) M is a tuple which consists of:

• A set of decision epochs {0 ,1 ,..., T — 1}. This represents the set of times at
which decisions are to be made. If T is finite, then the MDP is said to be a finite
horizon MDP with T-epochs. If T = oo, then the MDP is said to be an infinite
horizon MDP.

• A set of states S. This set is referred to as the state space and could be finite or
infinite. If this state space is finite, the number of states is N.

• A set of actions A. This set is assumed to be finite and of size A.
• The transition model P(-|s, a). For each s € S and a 6 the probability dis­

tribution P(-|s, o) is on S. The probability P (s '|s , a) represents the probability
of transitioning to s' after performing action a in state s.

• The reward function r : <S x ,4 [0,1]. The reward function is always assumed
to be deterministic and bounded such that r(s, a) € [0, 1].

This treatment follows that of Puterman [1994], which should be referred to for a thorough
definition of an MDP.

Both finite and infinite state spaces and both finite horizon and infinite horizon MDPs are
treated in this thesis with respect to various optimality criteria. However, this thesis only
considers MDPs which have a finite action set and which have a stationary transition model
and a stationary reward function.*

Some comments regarding the technical assumptions on the reward function are in order.
The assumption of a bounded reward function is necessary for finite time convergence
results with sampling based methods. Our choice of [0,1] as the bounded interval for r
is for clarity of presentation, and the results provided easily generalize to the case of an
arbitrary interval. The use of a deterministic reward function is for technical simplicity
and it is straightforward to generalize the results to a (bounded) non-deterministic reward
function.

A policy specifies a sequence of decision rules for action selection at all timesteps (or
decision epochs) in M. For now, we only define Markovian (memoryless) policies. In
part 3, we consider memory dependent policies, though these are termed algorithms. The
standard definitions of Markovian policies follow.

*The “planning” methods in chapters 5 and 6 can be extended for finite horizon MDPs which have a time depen­
dent transition model (- |s , o) and reward function r t (s , a).

2.2. OPTIMALITY CRITERIA 25

D e fin it io n 2.1.2. Let M be a T-epoch MDP. A policy t t is the sequence of distributions

{7r(-|s,0),7r(-|s, 1) , . . . ,7t(-|s,T - 1)} where 7r(-|s,f) is a probability distribution on the
action space. The probability 7r{a\s,t) represents the probability of taking action a in state
s at time t. A deterministic policy t t is a policy in which each distribution 7r(-|s,t) is
deterministic. We slightly abuse notation and write this policy as the function 7r{s,t). A
stationary policy t t is a policy in which for every state s, the distribution 7r(-|s,f) does

not change with time, and we write this distribution as 7r(-|s). A deterministic stationary
policy 7r is a policy that is both deterministic and stationary, and again, we slightly abuse

notation by writing this policy as the function 7t (s) .

Let us define a path as a sequence of state-actions, e g { s q , Oq, . . . s t - i , a r - i) - A policy tt

for an MDP M along with a starting state Sq induces a probability distribution over paths,
where the probability of a path (s q , o q , . . . s t - i , û t - i) is defined as:

Pr(so,0o,- • .St - 1, O T -lk ,M ,S o) = 7r(ao|so,0)njri P (Sr|5r-l,O r-l)7r(ar|Sr,T) .

where P is the transition model of M. This distribution specifies the complete joint prob­
ability of state-action sequences in M under tt from starting state So- Again, see Puterman
[1994] for a thorough treatment of this induced stochastic process.

Under this distribution, the probability that the path (sf, a*, . . . s t , û t) is traversed in M
from time t onward starting from state st at time t is then ^

Pr(si ,at , . . . St - 1 , ot- i k , M, St) = 7r(at\st,t)U^~}^^j^P{Sr\sr-i,ar-i)n{ar| sr, r) .

This latter distribution is useful when defining the value functions.

2.2. Optimality Criteria

The policy chosen by the agent induces a distribution over paths which in tum induces a
distribution over the sequences of rewards the agent receives. The objective of the agent
is to obtain a reward sequence that is as “large” as possible. This section defines some
standard optimality criteria.

This thesis only treats the cases of maximizing the sum undiscounted reward in the finite
horizon setting or maximizing the discounted future reward in an infinite horizon setting.
This thesis does not consider maximizing the average reward in an infinite horizon setting.
However, through standard notions of “mixing”, maximizing the average reward in an
infinite horizon setting has strong connections to both the finite horizon setting (see Keams
and Singh [1998]) and the discounted setting (see Baxter and Bartlett [2001] and Kakade
[2001]).

26 2. FUNDAMENTALS OF MARKOV DECISION PROCESSES

This thesis breaks with tradition by only considering value functions which are normalized
in both the discounted and undiscounted setting. This is for clarity of exposition and we
retum to this point in this section.

2.2.1. The Undiscounted Setting. The normalized undiscounted value of interest in
the finite horizon setting is defined as follows.

Definition 2.2.1. Let M be a T -epoch MDP and tf be a policy with respect to M. The
value function V-„^m{s) for a state s is

'T -l
^ r (s r , a r)

.T = 0
i >o t —i) ~ P r ('|’r,M ,eo = s)

Note that this value is bounded in [0,1].

It is also convenient to consider the value of the reward obtained from time t onward. We
term this the (-value, and it is defined as follows. We slightly abuse notation and use V to
define this function.

D efinition 2.2.2. Let M be a T-epoch MDP, ?r be a policy with respect to M, and t be
a timestep in M. The (-value function for a state s is

r r - i

.T = t

We drop the M subscripts when the MDP is clear from context. Due to the factor of
the function Vn,t is bounded in [0, ^]. Clearly, = K,o-

For a deterministic policy t t , these functions satisfy the following relation
1
f

Note the presence of the ^ factor.This relation implies an efficient procedure for computing
that avoids using the full joint distribution Pr(-|7r, M, s q = s) . This procedure is the

essence of dynamic programming.

Another useful definition is that of the state-action value.

D efin itio n 2.2.3. Let M be a T-epoch MDP, tf be a policy with respect to M, and (be a
timestep in M. The (state-action value function Qn,t,M{s, a) for a state-action (s, a) is

Q7T,t,M(s,a) = —r(s,a) + £?«'~p(.|9,o) •

It is clear that V^,t(s) = ^^a~7r(-|»,t) [Q,r,f(g, a)].

2.2. OPTIMALITY CRITERIA 27

2.2.2. The Infinite Horizon, Discounted Setting. We now consider the discounted
optimality criteria for infinite horizon MDPs. Recall that an infinite horizon MDP is one
in which T = oo. Let us break from tradition by defining normalized discounted value
functions.

D efinition 2.2.4. A discount factor 7 is in the interval [0,1). Let M be an infinite
horizon MDP, t t be a policy with respect to M, and 7 be a discount factor.

The 7-discounted value function for state s is

K t, 7 , m (s) — (1 7) -® (« i,o i,e a ,a 2 ,. . .)~ P r (- |j r ,A f ,s o = «) ^ 7 V (S r ,a r)
. r = 0

The 7-discounted state-action value function Q7t,7,m(s, û) at state-action (5, a) is

Q7r,7,M(a,o) — (1 7)f(a, (Z) 7-®»'~P(-|«,a) [%r,7,M(a)] .

See Puterman [1994] for a more technically precise definition of this value function with
respect to the sequence of random variables distributed according to Pr(-|7r, M, so = s).
For the 7-discounted setting, it is not particularly useful to define the t-values, since we
typically use stationary policies in the discounted setting.

As in the finite horizon setting, the subscript of M is suppressed when M is clear from
context. For a deterministic, stationary policy t t , these discounted value functions satisfy
the following consistency equations:

%r,7(a) = (1 — 'y)r{s,7r{s)) + 7-®«'~P(|«,7r(e)) [%r,7(a)] .

Note how the use of normalized value functions alters the form of this equation in com­
parison to the unnormalized version. Again, this consistency equation is at the heart of
dynamic programming methods.

2.2.3. A Word on the Use of Normalized Value Functions. Due to the normaliza­
tion, the value functions and V̂ ,̂7,m lie in the bounded interval [0,1]. The literature
sometimes uses normalized value functions for the T-step case, but rarely uses normalized
value functions in the 7 discounted case. The importance of normalization stems from the
fact that often we are interested in e-accurate approximations to the value functions.

Let us consider the 7-discounted setting. In the unnormalized case, the value function is
bounded by and so demanding an e-accurate value function is somewhat unnatural
since as 7 1, the ratio between e and the upper bound of tends to 0. This leads to
sample complexity results that contain excessive factors of due to this more stringent,
unnatural fractional accuracy demand. In the normalized setting, an e-approximation to the
value function is more interpretable and intuitive, because regardless of the 7 , e represents
the fractional accuracy compared to an upper bound of 1. Hence, the use of normalized

28 2. FUNDAMENTALS OF MARKOV DECISION PROCESSES

value functions leads to sample complexity statements that are more interpretable than their
unnormalized counterparts.

2.2.4. Optimal Value Functions and Optimal Policies. The standard definitions of
optimality in the undiscounted setting follow.

D e fin itio n 2.2.5. Let M be a T-epoch MDP and let II be the set of all policies with
respect to M.

The optimal undiscounted value function V^{s) for a state s is

Vm (s) = sup V^,m {s) .
ir£H

The optimal undiscounted t-value function V^j^{s) for a state s is

^tV(s) = sup •
TrSn

A policy TT is an undiscounted optimal policy at state s if

= ^m(s) •

The definitions in the discounted setting are analogous.

D efinition 2.2.6. Let M be an infinite horizon MDP, II be the set of all policies with
respect to M, and 7 be a discount factor.

The 7 -discounted optimal value function V* j^{s) for a state s is

= sup K ,7,m(s) •
ttCII

A policy TT is a 7 -discounted optimal policy at state s if

The optimal value functions satisfy the following well-known Bellman equations (Bellman
[1957]);

V;{s) = [V4 i(s'}])

V*(s) = m |x ((1 -7) r (s ,a) + 7Eg/,..p(.|g,a) [^7*(«')]) •

Note that in the T-epoch case, the optimal t-value function is written in terms of the 14-1
optimal value fimction. It is clear that optimal deterministic policies must satisfy

7T*(s,t) e argmax ^ ^ r (s , o) a) [14+1 («')])

7T*(5) € argm ax((l-7)r(s,a)-b7E ,.,^P (.|,,a) [l^7*(s')]) •

2.3. EXACT METHODS 29

respectively. For the discounted case, optimal policies that are both deterministic and
stationary exist. It is a well known fact that these 7r* are simultaneously optimal from
every state-time or state, respectively.

2.3. Exact Methods

Given complete knowledge of the MDP M, there is a variety of algorithms to compute an
optimal value function (both exactly and approximately). The optimal (or near-optimal)
policy is then just the corresponding “greedy” policy. This section reviews the dynamic
programming algorithms of value and policy iteration for both the T-step and 7-discounted
case.

2.3.1. Value Iteration. The undiscounted value iteration algorithm for a T-epoch
MDP is shown in algorithm 1. The algorithm recursively computes the exact optimal
value functions for f = T — 1 ,... 0. Using these value functions, the optimal deterministic
policy is computed.

Algorithm 1 Undiscounted Value Iteration(M)
(1) Setl^(g) = 0.
(2) Forf = T - 1 , . . . 0

Vt{s) = max ^ ^ r (s ,a) -f- [F^;_i(/)]^

7t*{s,t) = argmax ^^r(s,a)-b£;g'^P(.|»,o) [V4i(5')]^

(3) Return ?r* and V̂*

Discounted value iteration (shown in algorithm 2) is similar to the undiscounted version
except now the algorithm keeps track of a vector Jt € . Let B be the backup operator
defined as

[5J](s) = max((l - 7)r(a,o) + [«/(«')]) •

The iterative algorithm sets Jt = B J t- i and is run for T ' steps. The policy returned is
greedy with respect to the final vector Jt> .

Algorithm 2 Discounted Value Iteration(M, 7 , T')
(1) Set Jo = 0.
(2) Fori = 1 ,2 ,. . .T '

Jt = B J t- i
(3) Return the policy

7r(s) = a rg m ^ ((1 - 7)r(s,a) -f 7 ^ , '- f (|,,a) [<^T'(s')])

30 2. FUNDAMENTALS OF MARKOV DECISION PROCESSES

Let US now address the quality of the greedy policy based on Jt> • Define the m a x n o r m

(or the Zoo n o r m) of J as follows

= m ax |J (s) |.

A standard result is the contraction property for vectors J and J'

which implies

\\B Jt > — Jt >Woo < 7 ^ ll -B J o — .Tolloo

< (1 - l) l ^ '

where the last line follows since Jo = 0 and ||SJo||oo < (1 — 7) due to our use of
normalized reward functions. It can be shown that the greedy policy 7r based on this Jt>
satisfies, for all s,

k , ^ W > k ; w -2 7 ^ '

(see Puterman [1994]).

2.3.2. Policy Iteration. In the exact setting, policy iteration is only defined in the
7-discounted case. For the undiscounted case, the policy iteration variant is identical to
undiscounted value iteration.

Algorithm 3 presents policy iteration for the discounted case. The iterative algorithm con­
structs a policy tf* that is greedy with respect to the vector J t , and the next vector Jt+i is
just the value of the policy tf*.

Algorithm 3 7-Discounted Policy Iteration(M, 7 , T')
(1) Set the initial policy TFo randomly.
(2) For < = 1 ,... T'

«Zt(s) = V^t_i,7(s)
TFf(5) = a r g ^ ((1 - 7)r(s, o) -h 7 ^ ,'r .p (. | , ,a) [« t̂(s')])

(3) Return TFT'

Here, we have a slightly different contraction property (see Puterman [1994]),

< 7 " " I I K „ - k ; i u

< 7^'

2.4. SAMPLING MODELS AND SAMPLE COMPLEXITY 31

where the last step follows since the value functions are normalized. Note that this contrac­
tion property is with the respect to the values of the policies themselves (unlike in value
iteration which was with respect to the vector Jt).

2.3.3. Some Comments on the Choice of T'. These bounds on the convergence rate
show that after T ' updates both algorithms provide policies that are 0 (7^*) close to opti­
mal.^ Hence, if we choose

T ' = log- £

then both algorithms provide policies that are 0 (e) near-optimal.

Perhaps unsurprisingly, this T ' is just the time in which the finite sum of rewards (1 —
7) YÎt=ô^ 7*rf is e close to the infinite sum (1 - 7) 7V*. This suggests that a non-
stationary (T-epoch) version of value iteration also requires 0 (^ ^) updates to find an
e-good non-stationary policy.

2.3.4. Other Methods. Asshownby Williams and Baird [1993], there is a variety of
asynchronous dynamic programming methods which interleave policy updates and value
updates that converge to the optimal value function.

Additionally, linear programming can be used to compute V* and this is the only known
polynomial time algorithm for this exact computation (see Littman [1996] for a review of
the complexity of these exact algorithms).^ The exact optimal value function is specified
as the solution to following linear program. For the discounted case, with variables J(s),

min Egr.,f^J{s)

s.t.Vs,a J(s) > (1 - 7)r(«, a) + 7^»'~P(>,o) [J(&')]

where // is an any probability distribution that gives weight to all states.

2.4. Sampling Models and Sample Complexity

The classical assumption for planning is that the MDP is given explicitly by a table of
rewards and transition probabilities. For large or infinite state MDPs, this assumption is
clearly infeasible. Instead, of assuming complete knowledge of the MDP, this thesis con­
siders various sampling models in which transitions based on the MDP can be observed
by calling the sampling model. The sample complexity can be construed to be the num­
ber of calls to the sampling model required to achieve “learning”. Clearly, this notion is

^However, these are just upper bounds on the algorithms. In practice, policy iteration appears to converge much
faster than value iteration.
^To the authors knowledge, no exponential time lower bound on the computational complexity o f the policy
iteration algorithm exists where the algorithm operates in the full batch mode where J B J . Also both exact
value and policy iteration are polynomial time algorithms if the discount factor 7 is fixed.

32 2. FUNDAMENTALS OF MARKOV DECISION PROCESSES

dependent on the sampling model assumed and what constitutes “learning”. As discussed
in the introduction, the question of sample complexity is analogous to that in supervised
learning, but significantly harder.

In the purest setting, we only assume access to an online sim ulation m odel of the MDP
M. In this model, the agent is started at a state so and the agent must follow a single
unbroken chain of experience. In other words, the agent can take any action a and the next
state is s' ~ P (|g, o). The agent has no option to “reset” the MDP to another state. The
need for explicit exploration is an important concern here. This is case is considered in
part 3.

The following considerably stronger sampling model was introduced by Kearns, Mansour,
and Ng [1999], defined as follows.

D efin itio n 2.4.1. A generative model G{M) for an MDP M is a randomized algorithm
that, on input of a state-action (a, a), outputs the reward r(s,a) and a state s', where
s' ~ P(-|s,a).

This model weakens the need for explicit exploration, since samples can be obtained from
any state of our choice. Here, the issue of exploration is reduced to the problem of deciding
which states to obtain samples from. Kearns and Singh [1998] and Kearns, Mansour, and
Ng [1999,2000] show how this generative model can be used for near-optimal planning in
a variety of settings. Two such methods are reviewed in the next section.

A weaker /iz-reset m odel was introduced by Kakade and Langford [2002]. In this model,
the agent has the option to reset the current state to a state s sampled according to /x, but
the model is otherwise an online simulation model (the model is defined more formally in
chapters 6 and 7). This model is considerably weaker than the generative model since it
does not allow direct access to states of our choosing, but only allows us to “break” the
chain of experience with a reset. The difficulty of exploration lies somewhere between that
of the generative model and the online simulation model, since the agent has easy access
only to states distributed according to //.

An interesting situation arises if we have the ability to use a single /i-reset model of our
choice. This choice potentially provides us with a natural means of incorporating prior
domain knowledge. In chapters 6 and 7, a more refined notion of optimality is formulated
in terms of the measure //. As we shall see, a good choice of is one that matches the state
visitation frequency of an optimal (or a near-optimal) policy. The choice of a measure over
the state space is also particularly important to the recent approximate linear programming
approach of de Farias and Van Roy [2001], where they also argue that domain knowledge
is important in this choice.

2.5. NEAR-OPTIMAL, “SAMPLE BASED” PLANNING 33

2.5. Near-Optimal, “Sample Based” Planning

This section examines the sample complexity of two generic, near-optimal, sample-based
planning algorithms which assume access to a generative model. The first algorithm we
consider is phased value iteration, which is a sample-based version of exact value iteration.
This algorithm returns a near-optimal policy. The second algorithm is the sparse sampling
algorithm, which does not return a policy, but returns a single action when given a state
as input. Here, the algorithm itself acts as a near-optimal policy, and the relevant sample
complexity is that required to return a single action.

2.5.1. Phased Value Iteration. Clearly, with only access to a generative model G{M)
of an MDP M, exact value iteration is not feasible. Instead, one could consider obtaining
samples from G{M) to empirically perform the backups. The phased value iteration does
just this.

Undiscounted phased value iteration is shown in algorithm 4 (which is a variant of phased
Q-leaming by Kearns and Singh [1999]). During each iteration t, the algorithm calls the
generative model m times per state-action, so a total of m N A calls are made. The algo­
rithm then uses these samples to construct an empirical model Pt of P and this empirical
model Pt is used to do the f-th backup. The total number of calls to the generative model
made by the algorithm is m N AT.

Algorithm 4 Undiscounted Phased Value Iteration(G(M), m)

(1) Set Vt {s) = 0
(2) For t = T — 1,. ..0

(a) Using m calls to G{M) for each state-action

(b) Set

Vt{s) = ^ (ÿ>-(s.o) + [^t+i(»')] j

7r(s,t) =

(3) Return tt and Vt

The following theorem addresses how many observed transitions, using a generative model,
are sufficient to compute a near-optimal policy from every state. This sample complexity
bound was first addressed by Kearns and Singh [1999]. The result presented here provides
an improved dependency in terms of T (which is due to the non-stationary algorithm).

^ h e ir analysis did not focus on the horizon time and treated 7 as a constant. However, if we examine the
complexity in terms of H = then the bound is a factor o f more than that presented here. The difference

34 2. FUNDAMENTALS OF MARKOV DECISION PROCESSES

Theorem 2.5.1. (Upper Bound) For an appropriate choice ofm, the phased value itera­
tion algorithm calls the generative model G{M)

^ (N A T ^ , N A T \
j

times and with probability greater than 1 — ^, returns a policy tt such that for all states s,

V M > V ^ (s) - e .

Importantly, note that this bound is linear in N A (neglecting log factors), which is signifi­
cantly less than the N ^A number of parameters it takes to just specify the transition model
of M.

The proof is based on the one in Kearns and Singh [1999]. The proof entails finding
an appropriate value of m such that Vt is a good approximation to V̂ *. The key to the
improved sample size result is in showing that Vt is a also a good approximation to the
value of the greed policy, V^,f This latter fact is tied to the use of a non-stationary policy.

Proof. Assume that the following expectations are e accurate for all s, a, t:

(2.5.1) [^(^ ')] I ^

Later, an appropriate value of m is chosen to satisfy this condition. It follows that

< m ^ [Vfi '̂)] ~ “̂ « '~ P (|8,a) [^ t (s ')] I + S

< m ^ |Vf*(g) - 14(8)1 + 6 .

Recall that tt is the greedy policy with respect to Vt. Let a = n(s, f — 1), and so Vt-i (s) =
+ Similarly,

|V ;r ,i - l (s) - ^ t - l (s) | < |̂ 8̂'~P(-|8,o) [K r,t(s ')] “ [^ (^ ')] I

< |£ ,̂'~p(.|»,o) [V̂7r,t(«')] - ^8'~P(-|«,o) I + S

< m ^ |v ;,t(s ') - 7 t(s ') |-be .

Recursing on the previous two equations, leads to:

max|V'*(s) - y (s)| < eT

m ^|% r(g) - y (a) I < sT .

and so max, |Kr(s) - V^*(s)| < 2eT.

is due to the fact that our non-stationary algorithm allows to us show that ÿ is a good approximation to V* (see
the proof). It is not clear how to prove this using a stationary policy.

2.5. NEAR-OPTIMAL, “SAMPLE BASED” PLANNING 35

It remains to choose m such that equation 2.5.1 holds with error which ensures that
our policy will be e near-optimal. Since each P t-i is constructed independently of Vt, we
can apply Hoeffding’s bound. There are N A T of these conditions that must hold, and so
by Hoeffding’s bound and union bound, we have the probability that equation 2.5.1 fails
is less than N A T exp(—2e^m/T^). If we demand that this probability be less than 5, this
implies m = The result follows, since m N A T calls to the generative
model must be made. □

This phased algorithm is considered to be “direct” rather than “model based”. This is
because at each step t an independent batch of samples is obtained to do each backup. In
contrast, in a “model based” approach, all the samples would be used to construct only one
empirical model of the world, and this model would be used for planning purposes. The
“direct” variant is considered here since, in this analysis, it provides a tighter sample size
result over the model based approach, with respect to the horizon time (unlike the analysis
in Kearns and Singh [1999]). The model based approach is considered in chapter 9.

The following lower bound shows that, in general, the factor of N in the upper bound
cannot be reduced if instead we only demand to obtain a near-optimal policy from just a
single state. This shows that the gap between the lower and upper bound is a factor of ^
(ignoring log factors).

T heorem 2.5.2. (Lower Bound) Let A be an algorithm that is given only access to a
generative model for an MDP M, and inputs s, £, and 5. Assume the output policy tt

satisfies, with probability greater than 1 — 6, (s) > V* (s) — e. There exists an MDP M
and a state s, on which A must make f2 log |) calls to the generative model G(M).

This theorem uses the common fi notation, where / = ü{g) if g = 0 { f) . The proof is
provided in the last subsection.

2.5.2. The Sparse Sampling Algorithm. The sparse sampling algorithm of Kearns,
Mansour, and Ng [1999] takes a different “on-line” approach. In the approach described
above, phased value iteration uses the generative model to construct a policy, and the policy
returned is just a table of probabilities. For large or infinite MDPs, it is clear that storing
a policy in a tabular representation is infeasible, let alone computing this policy. Instead,
the sparse sampling algorithm implements the policy itself and the algorithm uses the gen­
erative model at each state to compute an action at that state. In this sense, the algorithm
itself could be considered to be a compact representation of the policy.

A high level description of sparse sampling algorithm and the insight behind the proof is
now provided. In the infinite horizon, 7-discounted setting, a cutoff time Hg = O (^ Y ^)
is imposed, which introduces a bias of e into estimates of the discounted value function
over this horizon (see subsection 2.3.3).

36 2. FUNDAMENTALS OF MARKOV DECISION PROCESSES

F ig u re 2.5.1. A sparse sample “look-ahead” tree constructed using a
generative model with A = 2, m = 3, and H e — 2.

First, let us specify an algorithm for the simple, deterministic case. Start by using the
generative model to do a brute force lookahead search, ie try every action once at every
state reached until the depth He is reached. This requires 0(A ^*) calls to the generative
model. After doing this, it is clear we have observed all possible outcomes until this depth,
and dynamic programming suffices to compute a near-optimal policy from the root state.

For the general stochastic MDP case, the description of the algorithm/policy A is as fol­
lows. When A is given a single state a as an input, A(s) builds a tree with s as the root
state. This tree is used to compute a single action, and A returns this single action. When
A is viewed as a policy being executed, the algorithm/policy A builds a tree for each in­
put state s and then executes the single output action A(s). The question is then: how
should we build this tree such that the policy implemented by A is near-optimal? Clearly
for an infinite state space, stochastic MDP M, it is not feasible to construct a tree which
accurately approximates the transition model in M using only a generative model G{M),
unlike in the deterministic case. However, for A to be a near-optimal policy, A only needs
to build sparsely sampled trees.

A tree can be built in the obvious way (as is shown in figure 2.5.1): at the root state, call the
generative model m times for each action to create m A children (so there are m children
for each action), and then recursively perform this procedure on each child until a depth of
He is reached. Label each node with the associated reward. This tree naturally induces an
MDP M ' in which nodes are the states and taking an action from a state causes a uniform
transition to a child node (assume the leaves are absorbing). The single action returned by
A at state s is just the optimal action on M ' at the root state s. Hence, during the execution
of the policy A, a tree must be constructed for each state s visited by the policy, which
requires 0 ((mA)^*) calls to the generative model.

The following theorem shows that the size of the tree is independent of the size of the
state space, yet the policy A is e near-optimal. This is because m can be chosen to be
polynomial in A, e, and He- The tradeoff is that the number of calls to generative model is
exponential in the horizon Hg for just one call to A.

2.5. NEAR-OPTIMAL, “SAMPLE BASED” PLANNING 37

For comparison to T, define an analogous horizon time

and the theorem is stated in terms of H.

Theorem 2.5.3. (Sparse Sampling; Keams, Mansour, and Ng [1999]) Let M be an MDP,
and let A b e a sparse sampling algorithm with access to the generative model G{M). For
an appropriate choice of m, the number of calls to the generative model G{M) during
each call to A is

Furthermore, the value function of the policy implemented by A satisfies

Va {s) > V * { s) - s .

simultaneously for all states s € «S.

Importantly, although the algorithm is sample based, there is no confidence parameter Ô
here. The expectation of the discounted return achieved by A is e-near to the optimal value
(with probability 1).

Interestingly, the tree MDP M ' is, in general, a terrible approximation to M since the size
of the tree has no dependence on the size of the state space. In fact, after executing any
action a returned by the policy A the next state observed is in general a state that was
not present in the tree that was constructed to choose this action (consider the case of a
continuous state space). Contrast this to the deterministic case, where the tree provides a
perfect model of the MDP up to depth H^.

Now the high-level intuition behind the proof is provided (see Keams, Mansour, and Ng
[1999] for the full proof). Let us consider the simpler problem of computing an approxi­
mation to the T-step optimal value function P^(g) at a particular state s for a binary action
MDP. For now, assume that we know the function V f. For each action a, let us call the
generative model m times with (s, a) and construct the quantities j^r(s, a) + X}*
for each action, where {s,} are the samples obtained from the generative model called with
(s, a). Then an estimate of Vo*(s) is just the max of these quantities. It is straightforward
to show that if we set m = 0 (^ log y), then our estimate of I^(g) is e accurate with
error probability less than S. Note that m does not depend on the size of the state space.

The two key insights to the analysis are as follows. The first is that we only need to
know the values T^*(s*) at the sampled states Si to approximate Vo*(s) and do not need to
know the entire function V f. The second is that if an e' approximation is used for Vj*(sj)
instead of its exact value then our estimate of V^(a) is an e -f- e' approximation. These
points imply the recursive estimation procedure for Vy(g) using the tree, where we only

38 2. FUNDAMENTALS OF MARKOV DECISION PROCESSES

Figure 2.5.2. MDPs in which learning is difficult (for A = 2). See
text for description.

estimate the functions at states in the tree. We start at the leaves, where is 0. Then,
recursively, we do the “backups” to estimate with our estimate of from depth
f + 1. The proof carefully alters e to account for the propagation of errors and 5 to ensure
the total error probability is appropriate.

Now let us return to the sparse sampling algorithm. The procedure for computing a near-
optimal action at the root node s is a slight variation on the procedure described above.
Essentially, we use the estimates of V* to choose the best action at s rather than to estimate
Vq {s). The only caveat is that the certainty factor 5 is not present in the statement of
theorem 2.5.3. This certainty factor can be absorbed into the error e (since an independent
tree is built for every state visited during the execution of A). See Keams, Mansour, and
Ng [1999] for complete details.

The following lower bound shows that in the worst case the exponential dependence on H
is unavoidable.

Theorem 2.5.4. (Lower Bound; Keams, Mansour, and Ng [1999]) Let A be an algorithm
that is given access only to a generative model for an MDP M, and inputs state s and e.
Let the stochastic policy implemented by A satisfy %r(a) > V*(s) — £ for all states s.
Then there exists an MDP M on which A must make 0 calls to the generative
model G{M).

Note that for large 7, log 7 = 0(H), so this lower bound is approximately (For
completeness, the proof is provided in the next section.

2.5.3. Lower Bounds and “Challenging” MDPs. The proof for the lower bound on
the sample complexity for returning an optimal policy from just a single state involves
constructing a “well-mixed” MDP in which learning is difficult.

Proof, (proof of theorem 2.5.2) First, let us consider a family of two state MDPs
(see figure 2.5.2). The first state is an absorbing state with a maximal reward of 1. For the
second state, there are A actions, all of which have 0 reward. Of these actions. A — 1 of them
lead to self transitions and the remaining action has an associated transition probability of
^ to the absorbing state. Label which action is this remaining action randomly.

2.5. NEAR-OPTIMAL, “SAMPLE BASED” PLANNING 39

The optimal value V*{2) is equal to p(escape from 2) times the expected normalized re­
ward assuming escape has occurred. The probability of escape in T steps is ü{e), since
the probability of escape is ^ * T plus higher order terms. The normalized reward as­
suming that escape does occur is the fraction of the T-steps spent in state 1 given that
escape has occurred. This is 0(1). This makes V*{2) = 0(e). Hence, the agent must
discover this transition in order to execute a T-step policy which has expected return that
is e near-optimal, from state two.

The probability that the agent does not transition to the absorbing state from state two
when the rewarding action is tried k times is (1 — p)*. Thus, in order to just discover this
transition, with probability greater than Ô, the number of calls to the generative model is
log(i-̂ p) ~ log 6). The algorithm must take every action this number of times, since
a test of one action provides no information about another action. Thus, log5) is
a lower bound on the number of calls to the generative model in order to obtain a near-
optimal policy at state 2.

The extension to an iV state MDPs is as follows. State 1 is identical to that above, and all
other states are non-rewarding. At any state i > 1, A — 1 of the actions transition uniformly
to a non rewarding state. The remaining action has a probability of ^ of entering state
1, else the transition is uniform to a non-rewarding state. Hence, to act optimally for any
single state i > 1, the agent must discover the rewarding action at Cl{N) of the states, since
the agent is visiting these states uniformly before entering the rewarding state. Discovery
at each state requires H ^ log 5) calls, so the total number of calls is H log 6). □

The proof of the lower bound for the sample complexity of the sparse sampling algorithm
follows.

Proof, (proof of theorem 2.5.4 from Keams, Mansour, and Ng [1999]) Define an
MDP based on a binary tree of depth log.̂ e. The states are the nodes in the tree and the
actions are {1,2}. Action a at state s results in a transition to the a-th child of s. The
leaves are absorbing. Choose a random leaf to be maximally rewarding and set the rewards
at all other states to be 0. If A is given the root node of this tree, then 0 (2^) calls to the
generative model must be made in order to just discover the rewarding node. □

CHAPTER 3

Greedy Value Function Methods

The most widely-used techniques for obtaining approximate solutions to large-scale rein­
forcement learning problems are approximate value function methods. The basic idea is
to approximate the value functions (or state-action values) with some regression algorithm
and use these approximations in lieu of their counterparts in an exact method. Typically,
the regression algorithm used is simulation based, where a “training set” is constructed by
obtaining Monte Carlo estimates of the policy from various states. This has lead to a num­
ber of empirical successes including backgammon (Tesauro [1994]), job-shop scheduling
(Zhang and Dietterich [1995]), dynamic channel allocation (Singh and Bertsekas [1997])
and chess (Baxter, Tridgell, and Weaver [2000]).

3.0.4. Background. There are a plethora of greedy approximate methods in the liter­
ature (see Sutton and Barto [1998], Bertsekas and Tsitsiklis [1996], and Gordon [1999]).
The most straightforward of these are just approximate variants of value or policy itera­
tion, where there are distinct policy update phases and value update phases. We review the
performance guarantees of these methods in this chapter.

A variety of more asynchronous schemes are also commonly used, such as optimistic pol­
icy iteration, SARSA, Dyna-Q, etc. (see Sutton and Barto [1998], Bertsekas and Tsitsiklis
[1996] and Singh [1994]). These methods interleave the policy updating and value updat­
ing, without waiting for convergence of the policy evaluation algorithm. Typically, the pol­
icy evaluation algorithm makes slow changes determined by a “learning rate” parameter,
and the policy is greedy with respect to these values (or the policy is updated occasionally).
Part of the reasoning behind these latter methods is to avoid making more drastic policy
changes, which is often the problem in providing convergence results.

In fact, much of the literature has focused on obtaining various convergence results for
these algorithms. In general, it is expected that “chattering” occurs for many algorithms,
where the policy fluctuates between some set of policies without ever converging (see Gor­
don [1996] and Bertsekas and Tsitsiklis [1996]). Bertsekas and Tsitsiklis [1996] provide
the most extensive convergence analysis (both experimental and theoretical) for a variety
of algorithms. For TD-leaming, convergence results have focused on the quality of the
policy evaluation for a single policy (Tsitsiklis and Van Roy [1997]). Gordon [1995,2001]
has also studied the convergence properties of a variety of algorithms, and has shown that

41

42 3. GREEDY VALUE FUNCTION METHODS

SARSA(O) doesn’t converge (but it converges to a region). Other negative results exists,
such as the divergence of Q-Ieaming with function approximation (Baird [1995]). There
are a number of cases where significant policy degradation has been observed during the
course of an algorithm (Boyan and Moore [1995], Weaver and Baxter [1999] and the Tetris
example in Bertsekas and Tsitsiklis [1996]).

3.0.5. The Question of Sample Complexity. Convergence results are often a first
step in obtaining more powerful results. Ultimately, the quantities of interest are the time
it takes a planning algorithm to halt, the related sample complexity, and the quality of the
output policy. Furthermore, it is not unreasonable to allow algorithms where the policy
“chatters”, provided that the set of policies in which the algorithm chatters around all have
acceptable performance and that this asymptotic set is reached quickly.

Asymptotic convergence results do not shed light on the answers to these questions. In
fact, in the limit of an infinite amount of data, we could argue that any sensible algorithm
should find an optimal policy (at least if the MDP is finite). Additionally, many of the
convergence results do not address the quality of the final policy returned by the algorithm
and this question seems particularly difficult to address. Those bounds that do exist are
typically stated in terms of a max norm error of the policy evaluation step, which is the
worst case error over the entire state space.

This max norm error is the bane in providing strong sample complexity results for these
approximate iterative methods that are independent of the size of the state space. Though
asymptotically this error can be minimized within some parametric class of function ap­
proximators, finite sample size bounds are not well understood.

Furthermore, most algorithms typically do not directly minimize this max norm error. For
example, the common error metric used in TD methods is the mean squared error under an
“on-policy” distribution, ie a distribution that is induced by the state visitation frequency
of the current policy (see Tsitsiklis and Van Roy [1997]). If such a function approximation
scheme is used, say in approximate policy iteration, then it is unclear what the quality of the
final policy will be (since it is the max norm which determines this latter quantity). A crude
attempt to keep the max norm error small might use a somewhat more uniform distribution
(for the mean squared error) in a TD method. However, the convergence properties of TD
under an “off-pohcy” measure are not clear (Tsitsiklis and Van Roy [1997]).

This chapter focuses on the fundamental convergence results for approximate iterative al­
gorithms based on the max norm error. Examples are provided which suggest that the max
norm error is the appropriate error to consider for these algorithms. Although the policy it­
self does not converge, the quality of the asymptotic set of policies reached can be bounded
in terms of the max norm error. Further, stronger results on the convergence rate, at which
this asymptotic performance level is achieved, are stated. Most of the theorems in this

3.1. APPROXIMATING THE OPTIMAL VALUE FUNCTION 43

chapter have been developed from the analysis in Bertsekas and Tsitsiklis [1996]. In ad­
dition, a promising recent linear programming approach of de Farias and Van Roy [2001]
is also discussed (where sample complexity bounds of this approach have been explicitly
examined).

3.1. Approximating the Optimal Value Function

For simplicity, this chapter only deals with finite state spaces and deterministic policies.
We only work in the 7-discounted setting (so the 7 subscripts are suppressed).

Define Q* to be the optimal state-action value, ie Q*{s,a) = Qw*{s,a) where t t * is an
optimal policy. Let us start by assuming that we have an estimate Q of Q* and that the
max norm error (or the loo error) of Q is bounded by e, ie

\\Q — Q * l l o o < £

where ||a:||oo = max,,^ |z(s,a)| for x G The standard procedure is to use the
greedy policy 7r(«) = argmax^g^ Q(g,a). The following theorem from (Bertsekas [1987]
and Singh and Yee [1994]) bounds the quality of this policy.

T heorem 3.1.1. Assume | | Q — Q * | | o o < e and let t t be the greedy policy with respect to
Q. Then for all states s,

V , (s) > V '(s) - ^1 - 7

This shows that for a greedy update our policy does not get worse by more than a factor
related to our worst case error e.

Proof. Letvr* be an optimal policy. By construction of vr, Q(g, 7r(g)) > Q{s,7r*{s)).
Using this and the approximation condition,

V * (s)-Q * (s ,7 t(s)) = V*{s) - Q { sM s)) + Q{sM s)) - Q % s M s))

< V*{s)-Q {s,7r*{s))+e

= Q *{s,n*{s))-Q {s,ir*{s))+e

< 26

Since F^(s) = Q ^ (s , 7t(s)) , it follows that

V * (s) - V M = V*(s) -Q *(3 ,7 r (s)) + Q * (s , 7 r (s)) - V M

< 2e + Q*(s,7r(s))- Q ^ (s , 7t(s))

= 2e + 7^s'~P(-l8,n(a)) [^*(«0 - Kr(&')] •

The result follows from recursing on this equation and using linearity of expectation. □

44 3. GREEDY VALUE FUNCTION METHODS

Figure 3.1.1. An example showing the bound in theorem 3.1.1 is tight.
See text for description.

The following example shows that the previous bound is tight (modified from Bertsekas
and Tsitsiklis [1996]).

Example 3.1.2. Consider the two state MDP shown in figure 3.1.1. State 1 has two
actions, a “stay” self transition and a “go” transition to state 2. State 2 is absorbing. Let the
“self” action at state 1 have 0 associated reward and let all other actions have reward
Clearly the optimal value from all states is (recall we use normalized rewards), and the
optimal policy chooses “go” at state 1. Consider starting with an optimal policy t t . Then
Q;r(l,go) = and Q,r(l>stay) = and the difference between these state-action
values is 2e. Hence, if we have an approximation error of e, a greedy update could reverse
the preference and set 7t '(1) = stay. For this update, Kr'(l) = 0, so %r'(l) — %r(l) =

which shows the bound is tight.

The important point to note in this example is how the error compounds. Due to an er­
ror at one state, the agent is forced to stay at the state where it has made an error (thus
compounding the error at this worst case state in the worst possible manner).

Note that the previous bound doesn’t suggest a procedure to approximate Q* since there
is no straightforward means of obtaining samples of Q* or V*. The following section ad­
dresses the optimality guarantees of approximate iterative dynamic programming schemes
which attempt to approximate Q* or V*.

3.2. Discounted Approximate Iterative Methods

This section presents results on both discounted approximate value and policy iteration.
We start with the approximate value iteration algorithm since it is easier to analyze. How­
ever, it should be noted that this algorithm is somewhat more unnatural than the approxi­
mate policy iteration algorithm (see Bertsekas and Tsitsiklis [1996] for a discussion of this
point).

3.2. DISCOUNTED APPROXIMATE ITERATIVE METHODS 45

3.2.1. ^-Discounted Approximate Value Iteration. In the approximate value itera­
tion algorithm, approximate backups of a vector Jt are performed rather than exact back­
ups. Assume that each vector Jt satisfies the following approximation condition

\\Jt — BJt-\\\oo < £

where B is the “backup operator” defined in subsection 2.3.1 and ||x||oo = max, |z(s)|.
As usual, let 7Tt{s) be the greedy policy

TTtis) = a rg m ^ ((l - o) +

where for simplicity we have assumed that P is known.

It is too much to hope that such a scheme converges to a single policy. However, the values
of the asymptotic set of policies do converge into some region, as the following theorem
shows (developed from Bertsekas and Tsitsiklis [1996]).

Theorem 3.2.1. Assume the sequence of vectors Jt generated by ^-approximate value
iteration satisfies \\Jt — < £ tind that J q = 0. Then the sequence of greedy
policies Ttt satisfies

11̂ * - KJloo < •

In addition to the unappealing max norm error, there are two factors of the horizon time
present in this bound. One might hope for only one factor.

Proof. Using the approximation condition and the standard contraction property of
an exact value iteration update,

l|y*-Jtlloo < \ \V*-BJt- i \ \^- \ - \ \BJt- i -Jt \ \^

< 7|1V* - J t_ i||o o + e

Recursing on this equation using Jq = 0,

IIV”* - JtWoo < 7* + 1 - 7

Hence, as f oo, ||V* - Jf||oo and the result follows from the greedy update
theorem 3.1.1. □

The last equation in the proof along with theorem 3.1.1 imply the following bound on the
convergence rate

1 - 7 (1 - 7)^

Note that this bound on the convergence rate of is worse than that of exact value
iteration which was just ||y* - ||oo < 27* (see section 2.3.1).

46 3. GREEDY VALUE FUNCTION METHODS

3.2.2. 7-Discounted Approximate Policy Iteration. In approximate policy itera­
tion, for each update, the value of the policy is approximated with some regression proce­
dure, and then the policy is updated to be greedy with respect to this approximation.

Let 7Tt be the policy at the t-th step and Qt be our approximation of (s, a). The policy
at the next timestep is the greedy policy 7rt+i(s) = argmaxo Qt(s, a). Let us assume the
following bound on our max norm error at each timestep

WQt — QTTtlloO < G .

The following theorem (from Bertsekas and Tsitsiklis [1996]) provides a performance
guarantee for this algorithm that is identical to that of approximate value iteration.

Theorem 3.2.2. (Bertsekas and Tsitsiklis [1996]) Assume the sequence of approximate
state-action values Qt generated by 'y-approximate policy iteration satisfies \\Qt—Qnt\\oo <
e. Then the sequence of policies ttj satisfies

lim sup||7* - K r J I o o < •t-^oo (i — 7)

The proof is not provided, since it is somewhat technical. However, the following lemma
(developed from Bertsekas and Tsitsiklis [1996]) gives insight into the algorithm. This
lenuna shows that, even though improvement at each step is not guaranteed, a pseudo
contraction property still holds.

Lemma 3.2.3. Assume the sequence of approximate state-action values Qt generated by
'y-approximate policy iteration satisfies \ \Qt — Qtt* Hcxa < s. Then the sequence of policies
Ttt satisfies

l |F ' - (4.+.I k < l \ \V ' - K . l k + .

Note that the theorem immediately follows from this lemma. Also, the lemma implies the
following bound on the convergence rate.

Unlike the case of approximate value iteration, this bound on the convergence rate of ap­
proximate policy iteration is identical to its exact counterpart, since for exact policy itera­
tion 11U* — Uyrt I loo < 7 ^ (see section 2.3.2) — though of course the limit is different.

Unfortunately, the following example shows this bound is tight (from Bertsekas and Tsit­
siklis [1996]) by providing a sequence of policy degradations where the worst case penalty
is incurred at every update. Further, the sequence shows that the worst case error could
occur at any single state and yet still cause maximal performance degradation. This makes
the subtle point, that the max norm is the appropriate error to consider for this greedy
algorithm (rather than some average error).

3.2. DISCOUNTED APPROXIMATE ITERATIVE METHODS 47

Figure 3.2.1. See text for description.

Example 3.2.4. Let us consider the infinite state MDP shown in figure 3.2.1. State 0 is
absorbing. The other states have two actions. At a state i > 1, one action is a self transition
and the other action transitions to state i — 1. Let us label these actions as “stay” and “go”,
respectively. Define the constant p as

2e
P = (1 - 7)

and define the rewards in terms of p as follows:

r(0) = p

r(i, go) = p

r(i, stay) = 7*p-

Clearly the optimal policy is to choose “go” at all states, except for state 0 (which is ab­
sorbing), and this policy has value V*{i) = p for all i (again recall we use normalized
rewards).

Let us set the initial policy tiq to be optimal. We now show that at timestep t a the policy
7Tt could choose to stay at state t, with a value of V^t (t) = 7*p. This proves the bound is
tight since

V{t)-v„(i) = P - Ÿ P
2 e (l - 7 ‘)
(1 - 7)2

which approaches ̂sufficiently large.

Proceeding inductively, the claim is as follows: at time step f, the policy TT* could stay at
the f-th state, and for all states i > t, the policy is unaltered {ie the go action is chosen).
Note that if the difference between the exact state-action values for the go and stay action
is 2e, then due to approximation error, a policy update could choose the stay action.

48 3. GREEDY VALUE FUNCTION METHODS

By assumption, the i = 0 base case is true. At time step t, assume the the claim is true.
Hence, (t) = ŸP which implies

V.,{t + 1) = (l - 7)p + y + V

Q7rt(̂+ ljgo) — ((+ 1)

+ l,stay) = (l - 7)r(i + l ,s ta y)+ 7 V;,(t + l)

It follows that

(pTT. (f + 1, go) — Qvrt ((+ 1, stay) = (1 — ?)(%[« (̂ + 1) — + 1; stay))

= (1 - 7) ((1 - 7) P + 7*‘‘'V -7 * '' 'V)

= (1 - 7) V

= 2 e .

Hence, the next policy wt+i could choose to stay at state f + 1. Also, it straight forward to
see that the difference between the state-action values for states i > f -f- 1 is greater than
26, and so the policy update does alter the policy for these states. This proves the claim.

3.3. Approximate Linear Programming

This section highlights the recent results of the approximate linear programming approach
of de Farias and Van Roy [2001]. See section 2.3.4 for the exact linear program formula­
tion. In the approximate version, we replace the vector J by the function approximator

Jw{^) — ^ y (^)
i

where 0i(s) is a feature vector and Wi are the weights. The w /s are now the variables in
the linear program:

minti;.
. i

s.t. Vs, a ^ Wi(f)i{s) > (1 - 7)r(s, a) 4- 7-Ê «'~P(|»,a)

where p is some probability distribution. The number of these features (and hence the
number of weights) can be chosen to be much smaller than the size of the state space.

Let w* be a solution to this linear program. A bound from de Farias and Van Roy [2001]
on the quality of Ju,* (s) states that

Eg^fjt\V*{s) - J«;*(5)| < Y ^^ n u n ||V * - Jyj\\oo •

The appealing aspect of this bound is that the quality is stated in terms of some measure of
the best approximation possible under the chosen feature set.

3.3. APPROXIMATE LINEAR PROGRAMMING 49

Unfortunately, the result is stated in terms on a max norm error. However, de Farias and
Van Roy go on to refine this bound in order to take of advantage of the choice of the
distribution fx. This weakens the max norm error to a weighted max norm error (see the
paper for full details). This result is interesting (and powerful) because it suggests that, with
an appropriate choice of the features and weights, we can obtain a good approximation to
the optimal value function on average, ie our bound on Es^fi\V*{s) — (s)| could be
small.

Unfortunately, note that the number of constraints is equal to the size of state-action space.
However, de Farias and Van Roy [2001] provide a constraint sampling procedure and
conditions under which the sample size bounds for obtaining a vector “close” to J^* is
bounded independently of the size of state space and polynomially in the number of fea­
tures (see de Farias and Van Roy [2001] for details).

Obtaining a bound on the quality of the resulting greedy policy, tTu,», is much trickier.
Recall our greedy update bound (theorem 3.1.1) is in terms of the infinity error. Translating
a bound on the average error F?<,^ |̂V*(s) — (s)| to a bound on the max norm error
||V*(g) - Jw '(8)||oo leads to quite a weak result for the quality of de Farias and
Van Roy present a bound on the quality of that is stated in terms of which states the
TTw* tends to visit. Essentially, the bound states that if 7t«,* happens to visit states with low
approximation error, then this policy is close to optimal.

In general, the problem with greedy updates is that, we can’t control which states our
greedy policy visits and this leads to the devastating max norm greedy update bound.
Though empirically we are often not this unlucky. An important open question is under
what formal conditions (or even natural heuristics) do greedy updates provide good policies
when we have some average guarantee on J . Conditions on this latter result would be most
helpful in understanding the successes (and failures) of greedy value function methods.

CHAPTER 4

Policy Gradient Methods

4.1. Introduction

In recent years, policy gradient methods have seen a rise in popularity as an alternative to
approximate value function methods. As discussed in the last chapter, the performance of
a greedy policy derived from some approximate value function can be worse than the old
policy by an amount related to the max norm error. This has motived the use of policy
gradient methods which have stronger performance improvement guarantees.

In the policy gradient approach, the goal is to find a good policy among a class of stochastic
policies parameterized by 6 € (without recourse to value function methods). The use
of stochastic policies for these methods is an interesting (and perhaps questionable) option
since every MDP has a deterministic optimal policy (and there is a trivial transformation
to go from any stochastic optimal policy to a deterministic optimal policy). However, with
an impoverished policy class or partial information, stochastic policies can be useful (see
Singh, Jaakkola, and Jordan [1994]).

Policy gradient methods attempt to adjust the parameters in the direction of the gradient
of the performance measure. For large scale problems or when the transition model is
unknown, the gradient is not efficiently or exactly computable, and simulation methods are
typically used to estimate the gradient. In this chapter, the sample complexity issues related
to simulation based policy gradient methods are examined. The most striking problem
is that gradient methods intertwine exploration and exploitation, which could lead to an
unreasonably large sample complexity.

4.1.1. Background. Simulation based gradient algorithms to optimize the average
reward performance criterion have a long history in a variety of related fields (see Baxter
and Bartlett [2001] for a review of these likelihood ratio methods). Gradient algorithms for
Markov decision processes were provided by Glynn [1986] and Williams [1992]. Here, the
gradient is estimated using sequences of states and rewards encountered between visits to
some designated recurrent state, and the parameter 6 is updated during every recurrence cy­
cle, ie between every visit to the recurrent state. Eligibility traces can be used to efficiently
perform these updates in an online manner (see Marbach and Tsitsiklis [2001]).

52 4. POLICY GRADIENT METHODS

One problematic issue is that the variance in the gradient estimate grows with the recur­
rence time. This time can often be unreasonably large in large-scale problems. This time is
also dependent on the policy, so as performance improves, it is possible that the recurrence
time can increase.

A number of more recent approaches present variants to deal with the case when the re­
currence time is excessive (Kimura, Yamamura, and Kobayashi [1995]; Marbach and Tsit­
siklis [2001]; Baxter and Bartlett [2001]). These approaches introduce a discount factor in
order to obtain biased estimates of the gradient with lower variance. The idea is that the
“mixing time” determines the effective recurrence time, and, by using a discount factor, the
gradient can be estimated over this effective recurrence time (Baxter and Bartlett [2001]).
Informally, the “mixing time” is the time until the stationary distribution is reached.

An additional appealing aspect of policy based gradient methods is their applicability to
POMDPs (Baird and Moore [1999]). Intuitively, the underlying reason why gradient meth­
ods are applicable to POMDPs is that one can consider the restricted class of policies to be
a class which only uses the observable data from the underlying MDP. Some approaches
attempt to exploit gradient methods for memory purposes in POMDPs (Peshkin, Meuleau,
Kim, and Kaelbling [1999]).

Though standard policy based gradient approaches don’t involve value function approxi­
mation, a few papers have addressed the connections between gradient methods and actor-
critic methods (Barto, Sutton, and Anderson [1983]). Baird and Moore [1999] present
an approach which combines value function methods with policy search methods through
the choice of the performance measure. Sutton, McAllester, Singh, and Mansour [2000]
and Konda and Tsitsiklis [2(X)0] examine approaches where function approximators can be
used in lieu of empirical estimates of the state-action values. Kakade [2002] points out that
these later approaches have strong connections to a natural (covariant) gradient method (as
in Amari [1998]).

4.1.2. The Question of Sample Complexity. Perhaps the most important question
for gradient methods is “How many samples are required before a policy gradient method
finds a good policy, in the sense that the this policy can be compared favorably within our
restricted class of policies (or some sensible subset)?”. Unfortunately, there are few results
in the literature that shed light on the answer to this question.

Marbach and Tsitsiklis [2001] present asymptotic convergence results that prove stochastic
gradient ascent algorithms asymptotically reach a point where the gradient is zero. Though
important from a consistency point of view, this does us not help us answer our aforemen­
tioned question. Also, in the limit of an infinite amount of data, it is reasonable to desire
an algorithm which finds an optimal policy (at least if the MDP is finite).

4.2. SAMPLE COMPLEXITY OF ESTIMATION 53

Closer in spirit to our question, Bartlett and Baxter [2000] examine the sample size suf­
ficient for obtaining an accurate gradient estimate. More specifically, they examine the
number of samples sufficient in order for each component of the gradient to be e-close (in
magnitude) to its true value. This analysis stresses the importance of the mixing time of
the process in obtaining accurate gradient estimates. However, at least one crucial question
is left unanswered, and that is when the the gradient is “small”, ie when it is difficult to
obtain accurate estimates of the gradient, what is the quality of our policy?

This chapter examines the aforementioned question of sample complexity. It is argued that
policy gradient methods can require an unreasonably large number of samples before a
good policy is obtained. Essentially, the lack of exploration in these methods leads to an
unreasonably (and an arbitrarily) large sample complexity in order to obtain an accurate
estimate of the gradient direction. The problem is that due to a lack of exploration the
gradient magnitude could be arbitrarily small making it difficult to estimate the gradient
direction accurately, which is the quantity of interest. Furthermore, a small gradient mag­
nitude does not necessarily imply that the policy is close to any local (or global) optima.
It is also argued that the “mixing time” is a red herring in this variance problem caused by
the lack of exploration.

4.2. Sample Complexity of Estimation

This section analyzes the sample size sufficient to obtain an accurate gradient estimate (in
magnitude). For clarity, this analysis focuses on the T-step setting, where the sampling
procedures are simpler since unbiased estimates can be obtained easily (in contrast to the
discounted setting, where a cutoff time is often imposed).

4.2.1. Future Distributions. This subsection defines the “future distributions” of a
policy TT. These distributions are useful throughout this chapter and all of part 2.

We start with the T-epoch case. In the definition, Pr(st = s|7r, soj M) is the probability
that the state at time f is s when the policy t t is followed in M starting from state so (see
section 2.1 for a definition of this induced stochastic process by t t on M).

D efinition 4.2.1. Let M be a T-epoch MDP with state space <S, t t be a policy with
respect to M, and sq be a starting state for M. The future state-time distribution
d7T,so,M(s, t) on 5 X {0 ,1 ,... T - 1} is

Ĉ7T,so,Af (s, f) = —Pr(g(= &0, Af).

When clear from context, we suppress the M dependence of djr.so.M- Note that the distri­
bution is properly normalized and has a simple sampling procedure. To sample from d,r,so’

54 4. POLICY GRADIENT METHODS

first uniformly choose a time t € {0 ,... ,T — 1} and then choose a state s according to
Pr(g* = g|7T, So, M). The sample (s,t) is distributed according to d̂ r.go-

The definition for the 7-discounted distribution follows (see Sutton, McAllester, Singh and
Mansour [2000] for a similar definition). We only define this distribution for stationary
policies.

D e fin it io n 4.2.2. Let M be an infinite horizon MDP with state space «S, ?r be a stationary
policy with respect to M , 7 be a discount factor and so be a starting state for M. The 7 -

discounted future state distribution d,r,*o,7,M(s) on S is

d - n , 8 0 , - 1, m { s) = (1 - T) E = « k , S o , M) .
t=0

Again, this distribution is properly normalized. Unlike for the T-epoch case, this distri­
bution is just over states (which is motivated by the fact that ?r is stationary). A sampling
procedure is also straightforward. Start the MDP in state s q , and simulate t t . Accept each
state as the sample with probability 1 — 7 . The accepted state is then distributed according

to d - , r , 8 o , ' r -

Note that we can write the value functions in terms of these distributions. For a T-epoch
MDP,

V^(Sq) = [f(s,o)j

and for an infinite horizon MDP where tt is stationary

^ , 7(^0) — [r(g, a)] .

These relations suggests that these future distributions are natural to consider.

4.2.2. The Policy Gradient. For the T-epoch case we consider non-stationary poli­
cies of the form 7r(a|s, t, 6), and for the 7-discounted case, we consider stationary policies
of the form 7r(o|s, 6). We also assume that the derivatives Vtt exist.

Theorem 4.2.3. Let M be a T-epoch MDP and let 7r(a|s, f , 6) be a parameterized policy.
Then

V%r(ao) — ^ V7r(a|s,f,0)Q,r,i(s,a)

Note that the natural form of this gradient is in terms of an expectation over the state-times
but a sum over actions. This has important implications for sampling methods.

4.2. SAMPLE COMPLEXITY OF ESTIMATION

Proof. For notational convenience, we use Pt{s) for Pr(sf = g|7r, So, M). Hence,

Esr^Pt [VKr,t(s)]

— Egr^Pt [V£'ar,.7r(.|s,f,0) [Q7r,t(s> û)]]

55

8<̂Pt

= E,gr̂ Pt

V 7 r (a | s , t, d)Qrr,t(s, a)

^ V 7 r (a | s , t , e)Qn , t (s , a)

" i * o)]

+

E„r̂ P. E.8<̂Pt -̂ o~7r(- + Egi^p(^.\g^a)Vn,t+l{s'))

= E. ^ V7r(a|s,i, 9)Qn,t(s,a)

where the last step uses the definition of P*. Since V%r(&o) = P̂ «~Po [V%r,o(8)], recurs­
ing on the previous equation and using = 0 leads to

T -l
V%r(go) =

i= 0

= TE(

where the last step uses the definition of dn,so •

'^'V7T{a\s,t,e)Qn,t{s,a)

'^'V7r{a\s,t,$)Q^,t{s,a)

□

The policy gradient for the discounted case is as follows.

Theorem 4.2.4. Let M be an infinite horizon MDP and let 7r(a|a, 6) be a stationary
parameterized policy. Then

^%r,T(&o) — _ '̂ s~d7T..o.n

The proof for the discounted case is from Sutton, McAllester, Singh, and Mansour [2000]
and is included for completeness.

56 4. POLICY GRADIENT METHODS

P roof. Again, for notational convenience, we use Pt{s) for P{st = s\n, sq,M) .

^ V7r(a|s,0)Q^,^(5,a)

V7r(a|s,0)Q^,^(s,o) +

■Ë'ŝ Pi-®a~7r(-|s,f,é>) [^((1 *i“'y-^s'~P(-|ff,o)^,7(®))]

«~Pi V7r(a|s,0)(5^,^(s,o) + 7^s~Pt+i [^ ^ , 7()̂1

where the last step uses the definition of P*. Since VV^,^(ao) = P̂ 8~Po [VKr,7(s)], re­
cursing on the previous equation leads to

VV^,7(so) — 5 ^ 7 Egr̂ p̂
t=o

1
■P1 - 7

where we have used the definition of dTr,go,j

'^V7t(a\s,d)Q n,j{s,a)

'^V7r{a\s,e)Q„,y{s,a)

□

VV^(So) — TE(^g t̂)'^dn,.oEar^Tr(-\s,t,9)

4.2.3. Estimation. We now analyze the number of samples sufficient to obtain an
accurate gradient estimate in magnitude. An important point is that the form of the gradient
formula is in terms of an expectation over the state space and so sampling methods can be
applied for estimation (with no dependence on the size of the state space).

First, note the presence of a sum over actions, rather than an expectation. The standard
way to deal with this is to write the gradient as:

'V7r(q|s,f,g)
. 7r(a|s,t,^)

which suggests an “on-policy” importance sampling procedure, where one follows the
policy 7T and estimates the gradient from sample trajectories from the start state So-

Unfortunately, this procedure is unappealing when tt is close to a deterministic policy,
since then the factor of could become arbitrarily large. One could assume that
^ is bounded by a constant over all s, a, 6, but this is a rather unnatural assumption for
some near deterministic policies (since this constant must be chosen to be quite large).

Instead, let us explicitly recognize the lack of an expectation over the actions and treat esti­
mation as an importance sampling problem. Ideally, we would like to incorporate domain
knowledge in the choice of an importance sampling distribution to decrease the variance,
but without this knowledge, let us use the uniform distribution over the action space. We

4.2. SAMPLE COMPLEXITY OF ESTIMATION 57

write the gradient as:

VV^(So) = [V7r((l| s, 0)Q,r,t(s> o)] •

where A is the size of the action space. This form implies a sampling procedure with the
uniform distribution.

A procedure to obtain an unbiased estimate of the gradient is as follows. First, we obtain
a sample (s,t) ~ d,r,Bo (&s described in section 4.2.1) and an a ~ Uniform. Then ob­
tain an unbiased estimate Q of (s, a) by simulating w for the remaining T — t steps
and using the empirical return to construct Q. An unbiased estimate of the gradient is
ATV7r(als,t,0)Q. This procedure requires T samples. It should be clear that the only
modelling requirements for this procedure are the need to “reset” to so and the ability to
act in the MDP.

Algorithm 5 EstimateGradient(0, m)

(1) Obtain m samples of the form {a*, Qi)} where
(a) Si,U ~ djr.eo and a* ~ Uniform
(b) Qi is an estimate of Qtt, O i)

(2) Set

W = ^ ^ V 7 r (a i |5 i , f i , 0) g i

(3) Return W

The EstimateGradient algorithm is shown in algorithm 5. This algorithm constructs m
estimates, as described above, and returns the average of these m estimates. The number
of observed samples by this algorithm is mT. The following theorem provides a bound on
the sample complexity for obtaining an accurate (in magnitude) estimate of the gradient.
Here, V* is the fc-th component of the gradient.

Theorem 4.2.5. (Gradient Sample Size) Assume that 6 € andVir < B. With an ap­
propriate choice o fm and upon input of a parameter 6 and m, EstimateGradient observes

o (d ! ^ i o g |)

transitions and with probability greater than 1 — <5, the output satisfies, for all k,

| ^ - V k % r W | < 6 .

Proof. Each estimate is bounded in the interval [0, ATB]. By Hoeffding’s and the
union bound, the probability that there exists an i such that our estimate of is e
inaccurate is less than k exp(). Hence, if

m = -----2— log -
à

58 4. POLICY GRADIENT METHODS

A)

? I

n states

Fig u re 4.3.1. A) MDP where two actions move agent to the left and
one actions moves agent to the right. B) A two state MDP.

then this probability is less than Ô. The total number of observed transitions is 0{m T). □

The immediate question is what is the quality of the policy when we can no longer obtain
an accurate gradient estimate. The next section argues that due to the lack of exploration
this policy can be arbitrarily poor.

4.3. The Variance Trap

Essentially, the lack of exploration in gradient methods translates into arbitrarily large vari­
ance in obtaining an accurate direction of the gradient. The previous analysis only guaran­
tees that the gradient is accurate in magnitude. If the gradient is small in magnitude, then
we don’t have a guarantee on obtaining an accurate direction, which is what is necessary
for policy improvement.

Consider the MDP shown in Figure 4.3. lA (adapted from Thrun [1992]), where the agent
starts in the leftmost state. Two actions take the agent to the right and one action takes
the agent to the left. There are 50 states, and let us set T = 50. Obviously, the optimal
policy always chooses the right most action and reaches the goal state in the horizon time.
Now let us consider the time to the goal under a policy that gives equal probability to all
actions. Under this policy, we have an equal probability of any T-step sequence of actions
ai, 02, . . . o t, and only one such sequence reaches the goal. There are 3®° such sequences
and so the probability of reaching the goal state in T steps is roughly 10“ ®̂. Thus, any
"on-policy" method using this random walk policy has to run for about 10 ®̂ in order to
just reach the reward state. Instead if T = 60, then the chance of reaching the goal in
T-timesteps under a random walk policy is roughly 10” ®̂.

This MDP falls into the class of MDPs in which random actions are more likely than not
to increase the distance to the goal state. For these classes of problems (see Whitehead
[1991]), the expected time to reach the goal state using undirected exploration, ie random
walk exploration, is exponential in the size of the state space. It is clear that a large class
of problems fall into this category.

Now let us return to gradient methods. Topically, the parameter 6 is initialized randomly,
which often leads to random policies. Hence, for this problem, any sensible estimate of the

4.3. THE VARIANCE TRAP 59

1.50 .5
A) tim e X 10' tim e X 10^B)

Fig u re 4.3.2. A)The average reward vs. time (on a 10 ̂ scale) of a
policy under standard gradient descent in the limit of an infinitesimally
small learning rate (initial conditions stated in text). B) The stationary
probability of state j vs. time (on a 10 ̂scale).

gradient without reaching the goal state would be zero and obtaining a non-zero gradient
estimate with "on-policy" samples has an exponential dependence on our horizon time
(eventhough there are only 50 states).

In this example, note that a zero estimate is a rather accurate estimate of the gradient in
terms of magnitude, but this provides no information about the direction, which is the cru­
cial quantity of interest in order to improve the policy. The analysis above (and in Bartlett
and Baxter [2000]) shows that the magnitude of the gradient can be estimated accurately
(up to e tolerance). However, this only implies a a correct direction if the magnitude is
larger than e. As this example shows, the magnitude of the gradient can be very small
even when the performance of the policy is not close to optimal. Furthermore, note that the
random walk policy “mixes” quickly in this example, which shows that the mixing time
results in Baxter and Bartlett [2002] are not a relevant factor for this problem.

Importance sampling methods (Precup, Sutton, and Dasgupta [2001]; Meuleau, Peshkin,
and Kim [2001]) have been considered in reinforcement learning and provide “off-policy”
methods. Loosely, in an off-policy method, the agent can act according to any policy,
and importance weights are used for appropriate corrections. Unfortunately, these do not
provide feasible solutions for this class of problems. The reason is that if the agent could
follow some “off-policy” trajectory to reach the goal state in a reasonable amount of time,
the importance weights would have to be exponentially large.

The following additional example demonstrates that estimating a gradient could become
arbitrarily difficult for a simple two state MDP. Consider the MDP shown in Figure 4.3. IB,
where each state has a self transition action and a cross transition action. The cross tran­
sition actions are not rewarding and the self-transition has a reward of .5 at state i and a
reward of 1 at state j. It is clear that the optimal policy just stays at state j for maximal
reward.

60 4. POLICY GRADIENT METHODS

For simplicity, we consider the average reward setting for this problem (which has effec­
tively the same behavior as that of the “large” T case). Now let us consider some initial
policy which has the stationary distribution p{i) = .8 and p(j) = .2. Under this policy, the
self-transition at action at i looks rewarding since Qjrih self) > cross). Note that
if the probability of the self transition action at state i is increased, then this decreases the
probability of visiting state j . However, it is state j where learning must occur at, if the
agent is to act near-optimally. In fact, as long as the the agent does not improve the policy
at state j , the self transition at i looks preferable.

Recall that the gradient weights the contribution from a particular state by its future state
distribution. Hence, the higher state visitation frequency at state i might have a self­
reinforcing effect — the more the agent visits state i the more the agent will reinforce
the self transition at state i (and perhaps suppress the learning to state j where ultimately
learning must occur, if the agent is to stop reinforcing state i). The question is then can the
agent get trapped reinforcing only the self transition at state i, due to a lack of exploration.

Let us use the common Gibbs table-lookup distribution, {ire : 7r(a|s) oc exp(^,a)}. This
parameterization is interesting because it is capable of representing all policies (except
those completely deterministic policies which can be approximated to arbitrary precision
in this class). Under an initial policy that has the stationary distribution p{i) = .8 and
p{j) = .2 (using 7r(stay|i) = .8 and 7r(stay|j) = .9), the agent reinforces the action
at state i more than that of state j, which has the effect of decreasing the probability of
visiting state j. This leads to an an extremely flat plateau of improvement at .5 average
reward shown in Figure 4.3.2A. Figure 4.3.2B shows that this problem is so severe that
p{j) drops as low as 10“ ̂ from its initial probability of .2. Again, in this example, the
policy “mixes” extremely quickly.

These results suggest that in any reasonable number of steps, a gradient method could end
up being trapped at plateaus where estimating the gradient direction has an unreasonably
large sample complexity, yet the performance of the policy is not even near to any local
optima.

Part 2

Sample Based Planning

CHAPTER 5

The “Mismeasure” of Reinforcement Learning

In the previous chapter, we saw that the policy improvement of a parameterized policy t t

is inherently linked to expectations with respect to the future state distribution of t t . The
intuitive reason as to why the future state distribution of t t is relevant is because when
dealing with a restricted class of policies, the policy gradient must take into account the
states where it visits frequently in order to avoid making errors at these states, since these
errors are more costly and could lead to policy degradation. However, in order to find a
near-optimal policy it is often the case that policy improvement must occur at states which
are not visited often under the current policy. This latter issue is related to the problem of
exploration and leads to policy gradient methods having excessive sample complexity.

In contrast, exact dynamic programming methods uniformly improve the policy at all
states, which obviates the need for exploration. Furthermore, most performance bounds
are stated in terms of a max norm error, which doesn’t stress the importance of any partic­
ular set of states. Bertsekas [1987] and Singh and Yee [1994] provide a performance bound
that depends on the maximum difference between a vector J and the optimal value func­
tion V*, ie IIJ — y*||oo (see theorem 3.1.1). An alternative bound of Williams and Baird
[1993] is presented in terms of the Bellman error of a vector J, which does not depend on
V*. The Bellman error is the maximum difference between J and the one-step lookahead
of J, ie \ \B J — J||oo (where B is the backup operator defined in subsection 2.3.1). Most
sensible value function methods attempt to minimize this Bellman error. Unfortunately,
these max norm errors are not amenable to sampling-based methods, unlike the situation
for gradient methods where expectations with respect to the future state distributions can
be easily evaluated.

This chapter provides bounds and algorithms in which max norm statements can be avoided.
Since it is often the policy that we ultimately care about, we do not wish to be tied to using
only value function methods and desire bounds that are more generally applicable. Instead
of stating bounds in terms of a vector J, the difference between the performance of a pol­
icy TT and that of optimal is stated in terms of the advantages of the policy it (as defined in
Baird [1993]) and in terms of an expectation with respect to the future state distribution of
an optimal policy. Informally, the advantage of a policy at state action (s, a) is the amount
by which the performance will increase by taking action a in state s. Rather intuitively, this

63

64 5. THE “MISMEASURE” OF REINFORCEMENT LEARNING

result shows that if we desire to find a policy tt which competes favorably against some
optimal policy t t * then we desire an algorithm which minimizes the advantages of t t at the
states where t t * tends to visit. Essentially, if tt has no large advantages at states where t t *

tends to visit then there is not much room to improve t t .

Additionally, this result directly motivates a non-stationary approximate policy iteration
algorithm (NAPI), which is a generahzation of undiscounted value iteration (see subsection
2.3.1). This algorithm assumes access to a “black box” PolicyChooser algorithm, which
outputs greedy policies that are used by NAPI. This algorithm enjoys a performance bound
in which the performance difference between the output policy and that of an optimal
policy is dependent only on an average error of the PolicyChooser. Intuitively, this average
is taken with respect to the future state distribution of an optimal policy.

This chapter also briefly examines implementing the PolicyChooser using a regression
algorithm and compares the results with the function approximation methods of chapter
3. In this setting, the discrepancy between the performance of the policy returned by
NAPI and that of optimal is just an average regression error. Here, we do not explicitly
consider the sample complexity of this implementation (though much work has gone into
understanding the sample complexity of regression algorithms with respect to an average
error, see Anthony and Bartlett [1999] for review). In the next chapter, we consider a more
natural policy search setting, where sample size bounds are provided.

The bounds and algorithms presented here suggests interesting connections to the super­
vised learning setting. In the supervised learning setting, we obtain a “training set” of the
form {(a:,y)} from a distribution P{x,y) and our test error is probed by examining our
performance on a test set {(æ, ?)} which is sampled according to the input distribution
P{x). In contrast to the standard supervised learning setting, where we typically “train”
and “test” under the same distribution P{x), the results in this chapter show how the rein­
forcement learning problem can be viewed as a supervised learning problem where we are
“tested” under a (possibly) unknown input measure Q{x) (where Q{x) turns out to be the
future state distribution of an optimal policy). This is referred to as the “mismeasure” of
reinforcement learning.

5.1. Advantages and the Bellman Error

First, let us define the advantages of a policy (similar to Baird [1993]).

DEFINITION 5.1.1. Let M be a T-epoch MDP and tt be a policy with respect to M. The
t-step undiscounted advantage A^,*(g, a) is

tt) — tt) %r,f,M(ë) •

5.2. PERFORMANCE DIFFERENCES 65

Let M be an infinite horizon MDP, tt be a stationary policy with respect to M, and 7 be a
discount factor. The 7 -discounted advantage a) is

(l) ~ QiT,'y,M{,S,(l) •

It is clear that the advantages are bounded between [-1,1]. The advantage is
the amount by which the t-value at state s, Vir,f(s), increases if action a is taken at time t
instead of following 7r(-|g, t) . The interpretation is analogous for the discounted case.

Another useful quantity is the Bellman error (or Bellman residual), which is a max-norm
error over the state-action space. It is typically defined with respect to some vector J in
the state space and we only define it for the discounted case.

D e fin it io n 5.1.2. Let M be an MDP and let J be a vector on the state space. Define
Q j(s,a) = (1 - 7)r(5,a) + 'yEg>^p(.̂\g^a)J{s')- The Bellman error B j with respect to
J is:

Bj{s) = sup \Qj{s,a) - J (s) | .
8,a

Note the similarity between the Bellman error and the advantages. If J is the value of a
policy TT, ie J = then B j is just the maximal advantage ||A^,7||oo. The following
theorem restates the error bound from Williams and Baird [1993] for a greedy policy t t

based on J (ie t t = argmax^ Q j(s, a)).

T h eorem 5.1.3. (Williams and Baird [1993]) Let M be an MDP and let J be a vector
on the state space of M with a Bellman error B j. The greedy policy t t with respect to J
satisfies for all states s

Exact dynamic programming algorithms minimize this Bellman error (see section 2.3).
However, minimizing this Bellman error is much trickier in an approximate setting.

5.2. Performance Differences

The following lemma shows how the difference between two policies can be stated in
terms of the advantages of one policy and the future state distribution of the other policy
(recall the definition of the future distributions from subsection 4.2.1). This result is not
stated in terms of max norms, but instead is stated in terms of expectations with respect to
future state distributions. This key lemma is useful throughout this chapter and the next
two chapters.

Lemma 5.2.1. (Performance difference) Let M be an MDP

66 5. THE “MISMEASURE” OF REINFORCEMENT LEARNING

(Undiscounted) I fT is finite, then for all policies t t and t t ' , and for all S q ,

V)r'(So) — %r(8o) = ■®a~7r'(|s,t) [-̂ 7r,t(S} û)]

(Discounted) I fT is infinite, then for all stationary policies t t and t t ' , and for all S q and 7,

^ ' , 7(^0) ~ ^ , 7(^0) — J _ [-̂ 7t,7(5> û)]

Importantly, this result is stated in terms of an arbitrary policy t t ' rather than an optimal
one. The lemma shows that t t competes favorably against t t ' if the advantages of t t are
small where t t ' tends to visit. Thus policy t t is near-optimal if the advantages A;r,7 are
small at the state-actions that are frequently visited by some optimal (or near-optimal)
policy. This suggests that we desire an algorithm which is capable of minimizing the
advantages under the future distribution of a good policy.

Before proving this lemma, a high level outline of the proof is provided. If the agent is in
state s and deviates from t t at only the first timestep by choosing an action from t t ' , then
the change in performance is Æ?o~7t'(|«,o) »)]• To switch from policy t t to t t ' , one
can consider deviating from t t to t t ' at every step. The contribution to the performance
change at the f-th step when the state is st = s is then £^o~7r'(|8,t) [^7r,t(«)û)]- We must
then sum these performance changes over the horizon and take an appropriate expectation
over the states. This leads to the expectation with respect to •

The statement for the infinite horizon setting was proved in Kakade and Langford [2002].
For completeness, the proof is included.

P roof. The proof for the finite T-case is as follows. As in section 2.1, Pr(-|7r', so> M)
is the distribution over T length paths (s, a) under the policy t t ' starting from so in M,
where s is the sequence (s q , . . . s t - i) and a is the sequence (o q , . . . a r - i) . For notational
convenience, we write this distribution Pr(*|7r', Sq, M) as (and explicitly maintain the
t t ' dependence). By definition of the value functions.

Kr'(ao) — %r(ao)

1

Lt=o
T-1

— K-(so)

Lt=o
T - 1

- %r(ao)

+ K ,t - |- l (S t+ l) - Vrr,t{St)
Lt=o

where we have rearranged the sum and used the fact that V^,o(so) = %r(ao) and V',t,t (s) =
0. Define Uniform to be the uniform distribution on { 0 ,1 ,. . . ,T — 1}. Since Sf+i ~

5.2. PERFORMANCE DIFFERENCES 67

J Ot). we can use the definition of Qjr,t to write the last term as:
'T-1 1

.t=0
T-1

t=0
— 1'^8,ai^P„i -Ef^Uniform [-^7r,t (®f > O t)]

— 2 ^ -® t~ U n ifo m i-® 8 < v /P r (s t= s |7 r ',M ,s o) -® a ~ 7 r '(- |f f , t) [- ^ 7 r , t (^ j o) j

= ^-®«,t~d^/,ij-Ë'o~7r'(-|ff,f) [-^7r,t(5,o)] .

The last step follows from the definition of djr'.so.

The proof for the infinite horizon statement is analogous to the previous proof. Let P̂ fi
be the distribution Pr(-|7r',M , so), ie P-̂ i is over infinite length sequences (s,a) which
are generated under the policy tt' starting from sq in M, and where s = (so, S i,. • •) and
O — (oojOi . . .) .

^ ' , 7(^0) ^ , 7(^0)

= (1 - i)Es ê^ p , ^ Y r (a t ,o t)
,t=o

- ^ , 7(^0)

^ 7 * ((1 - 7)r(St,Ot) 4- 14-,̂ (st) - %r,7 (8t))
, t = 0

^ , 7(^0)

- 7)^(«i,Ot) + 7l4,7(«t+i) - 14,7(«t))
,t=0

where we have rearranged the sum. Since St+i ~ -P(-|st, Ot), we can use the definition of
to write the last term as:

?,a~P„
lt=0

^ ^ 7 -^7r,7(Sf J Of)
lt=0

— ^] 7 ■̂ ff~Pr(et=«|jr',M,so)-®o~7r'(|») [-̂ ’r,7 (®> o)j
t=0

1

7
where the last step uses the definition of d,r',so• □

68 5. THE “MISMEASURE” OF REINFORCEMENT LEARNING

The previous lemma leads to the following max norm bound, which is analogous to the
Bellman error bound from Williams and Baird [1993] (theorem 5.1.3). This bound hides
the important measure dependence on an optimal policy ?r*.

C oro llary 5.2.2. Let M be an MDP.

(Undiscounted) I fT is finite, then for all policies tt and for all Sq,

K (« o) > V (« o) - r |K , , | | „

(Discounted) I fT is infinite, then for all stationary policies Tt, and for all Sq and 7,

K,^(»o) > v;(so) -

5.3. Non-stationary Approximate Policy Iteration

The previous lemma avoided the use of the max norm error. Unfortunately, it is not clear
how to use this result to provide more powerful bounds for the 7-discounted approximate
algorithms of chapter 3, where we argued that the max norm error was appropriate. The un­
derlying difficulty in applying this lemma is due to the fact that these stationary algorithms
are not directly attempting to minimize the advantages.

This section presents the undiscounted non-stationary approximate policy iteration (NAPI)
algorithm, where the errors made by the algorithm are directly related to the advantages,
which allows us to avoid statements with max norms.

Recall from chapter 2 that for the undiscounted case, exact value iteration and exact policy
iteration are identical (unlike in the discounted case), since the vectors computed in value
iteration are equal to the value of the policy. However, there is a sensible policy iteration
variant of the algorithm for the approximate setting.

5.3.1. The Algorithm. For simplicity, we only specify the algorithm for determin­
istic policies. First, let us define a decision rule to be a procedure for action selection
at a specified time (see Puterman [1994]). We use this terminology to stress the dis­
tinction between a procedure for acting over the entire T-steps in the MDP (a policy)
and a procedure for acting at a particular time (a decision rule). For a particular time
t , the distribution h(|s) over actions is a decision rule. A deterministic decision rule is
of the form h { $) . A policy t t for a T-epoch MDP M is a sequence of T decision rules
{7r(-|s,0),7r(-|s,l),...,7r(-|s,T - 1)}.

The approximate algorithm assumes access to a PolicyChooser algorithm which takes as
input a (T-epoch) deterministic policy n and a time t and returns a deterministic decision
rule h . Informally, when given as input a policy t t and a time t , the goal of the Policy­
Chooser is to construct the best decision rule for timestep t , subject to the constraint that t t

5.3. NON-STATIONARY APPROXIMATE POLICY ITERATION 69

is followed for the other timesteps. An ideal PolicyChooser is one that returns the decision
rule h{s) — argmaxo a) .

The undiscounted NAPI algorithm is shown in algorithm 6. First, randomly initialize a
T-epoch (deterministic) policy t t = 0), 7f (- , 1),.. • 7t (- , T -1)) . Recursively updating
backward from time T — 1, the algorithm calls the PolicyChooser to obtain a decision rule
ht(s), and then the algorithm simply sets to he ht- The algorithm is a “policy itera­
tion” algorithm (rather than a “value iteration” algorithm) since PolicyChooser is provided
with the policy t t as an input (instead of a backed up approximation to the value of this
policy).

Algorithm 6 T-Step NAPI

(1) Randomly initialize ^ = (7r(-.0) , . . . j f (- ,T - l))
(2) Fort = T — 1 ,... 1

ht = PolicyChooser(^, t)
= ht

(3) Return tt

In the most general setting, the PolicyChooser has access to some sort of sampling model
for obtaining information about the MDP (such as a generative model). If the state space
is finite, then with access to a generative model, the PolicyChooser could provide an arbi­
trarily near-optimal policy at every step using sufficiently many calls at each state-action
(as in the phased value iteration algorithm in section 2.5). However, this procedure clearly
has large sample complexity for large state spaces and is not applicable to infinite state
spaces. Ideally, we desire the PolicyChooser to generalize from a relatively small number
of samples. These sample complexity issues are examined further in the next chapter.

5.3.2. The PolicyChooser Errors and the Advantages. An ideal PolicyChooser al­
gorithm is one which returns the decision rule argmaxg Qn,t(s, a) upon input of a policy
7T and a time t. Let us now examine how the errors made by an arbitrary PohcyChooser
algorithm effect the quality of the output policy of NAPI.

Let 7T be the input policy to PolicyChooser during update t and let ht be the output of the
policy chooser. The sensible definition for the per state error et{s) at update t is

6t{s) = max a) - Q^,t{s, h t{s)).

Intuitively, this error £t{s) is the amount by which any action could improve upon the
decision rule ht{s). If the decision rule ht{s) is greedy with respect to QTr,t{s, a), then this
error is 0 at state s and clearly there is no better action when we are constrained to follow
7T for the remaining t — 1 steps.

70 5. THE “MISMEASURE” OF REINFORCEMENT LEARNING

The following simple lemma shows that this error bounds the advantages of the output
policy of NAPI. This lemma is useful in the following chapters. Importantly, note that this
error et was defined with respect to the input policy ?r to PolicyChooser at update t.

Lemma 5.3.1. Let f = (Ao,. . . , Ht - i) be the output policy of NAPI. Ifir was the input
policy to the PolicyChooser for the t-th update, then

Q-7T,t(̂ } tl) = Qvr,* ()̂ (*)

Furthermore, if the per state error is (s), then

oi) ^ Ef (a) .

The key to the proof is that the state-action value Qn,t{s,a) does not depend on the
choice of the initial action. Therefore, the choice of the decision rule ht{-) does not al­
ter Q7r,i(s, a). The first result directly implies the error bound.

P r o o f . Let 7t be the input to the PolicyChooser at update t. By definition of the t
state-action value, QTr,t(s,a) does not depend on the initial action. Therefore, Qn,t{s, a)
is not altered after update t + 1, since after this update, the decision rules after time t are
fixed to h{-, f 4- 1) , . . . , h{-, T — 1). It follows that for the output policy tt,

(8, (Z) =

and that

— QtT,* (S> O) “ (5)

— Qir,t{piO ̂ b,t{s))

— ~ Qir,ti^yb,t{s))

< £t{s)

where we have used the definition of e*. □

Importantly, this lemma shows how NAPI can control the size of the advantages since the
errors of the PolicyChooser directly bound the advantages of the output policy. In the
Remarks section of this chapter, it is pointed out that it is not clear how to obtain such a
result for stationary (7-discounted) algorithms. This is because there is no simple relation
between the errors and the advantages of the output policy.

5.3.3. Regression and The Policy Chooser. The implications of this result are per­
haps most clear in a function approximation setting. This section examines implementing
the PolicyChooser algorithm with a regression algorithm and compares the results with
that of chapter 3. There is a direct relation between the per state-action error defined above
and the regression error.

5.3. NON-STATIONARY APPROXIMATE POLICY ITERATION 71

In the next chapter, we consider a more natural policy search implementation of the Poli­
cyChooser, which has no recourse to function approximation. In this policy search setting,
we explicitly consider sample complexity bounds. In the current regression setting, we do
not address the sample complexity for finding a good policy, though much work has gone
into understanding the sample complexity of regression algorithms which use some sort of
average error (see Anthony and Bartlett [1999] for review).

The straightforward RegressionPolicyChooser algorithm is shown in algorithm 7. Similar
to the function approximation methods in chapter 3, the algorithm approximates the state
action values QTr,t with Qjr,* for a particular input time t. The output decision rule is then
greedy with respect to Qn,t-

Algorithm 7 RegressionPolicyChooser(7r, t)

(1) Approximate Çtt,* with Qn,t
(2) Set

ht(s) = aigmaxQn,t{s,a) a£A
(3) Return hi

Define the per state regression error ët{s) at the t-th update as

£t{s) = max|Q,r,t(«,a) - Qvr,t(g,a)|.

where tt is the input policy to RegressionPolicyChooser at time t. The following theorem
shows that the performance bound of NAPI using a RegressionPolicyChooser is dependent
on an average error not a max norm error.

T heorem 5.3.2. Assume that NAPI uses RegressionPolicyChooser. Let n be the policy
returned by NAPI with a regression error ofêt- For all policies t t ' and for all states Sq.

K(so) > Kr'(so) — [St(s)] •

Hence, the amount vr differs from some optimal policy w* is dependent on the average er­
ror under a distribution that is provided by the future state distribution of the optimal policy
7T*. Note that this is a significantly different situation than the bounds for 7-discounted ap­
proximate policy and value iteration (see section 3.2), where we argued the max norm
bounds were appropriate. Here, we have the intuitive and appealing result that we desire
our error to be small under the states visited by an optimal (or near-optimal) policy. Fur­
thermore, note that there is only one factor of T in the bounds as opposed to the bounds for
approximate discounted value and policy iteration where two factors of the horizon time
are present.

The proof involves showing that the per-state update error et(s) is bounded by twice the
regression error e* (s).

72 5. THE “MISMEASURE” OF REINFORCEMENT LEARNING

P r o o f . By definition of the RegressionPolicyChooser, the output ht is greedy with
respect to and so for all actions a, Qw,t(s, ht{s)) > Let vr be the input
policy to RegressionPolicyChooser. By definition of et{s),

^i(a) = max (s, o)aEA

~ o) + Qir,t(s, ht{s)) — QTT,t(s, ht{s))^

< 2m ax\Q ^^t{s,a)-Q ^,t{s,a)\a^A
= 2ê t(s).

From the last lemma, it follows that for all a, A-,r,t{s,a) < et{s) < 2ët{s). The perfor­
mance difference lemma from the last section implies the result. □

Standard regression methods in the supervised learning literature typically use some dis­
tribution /2 over the input space and attempt to minimize some average error with respect
to II. In our setting, the input space is {states x times}. One scheme is to simply choose
a distribution n over state-times and try to minimize our error with respect to this fj,. The
previous theorem shows that the relevant “test” distribution is not n but that of an optimal
(or near-optimal) policy. Hence, it is sensible to try to choose a /i which matches the future
state-time distribution of a good policy. It is not clear how to justify such a measure for
the standard function approximation methods in chapter 3, where we argued the max norm
was the appropriate error measure.

The important observation is that under this algorithm the reinforcement learning problem
can be viewed as a supervised learning problem where we do not necessarily know the
“test” distribution. We focus more on algorithms which use a distribution n over state-
times in the next chapter, where we explicitly examine the sample complexity of these
approaches. It is difficult to get a handle on the sample complexity of this regression
approach, due to the fact that accurately approximating the value function is only a means
to the end goal of obtaining a good policy. The classification setting that we consider in
the next chapter is a more natural supervised learning problem, since one could consider
the decision rule ht{s) to be a “classifier” of actions.

5.4. Remarks

5.4.1. Stationarity and The Problem Of Greedy Updates. The avoidance of the
max norm error in NAPI is inherently tied to the use of non-stationary policies. The reason
is due to the direct control we have over the advantages as shown in lemma 5.3.1.

Let us step back and examine exact undiscounted value iteration. After the t-th step of exact
value iteration, the maximal advantages at time t are set to 0, ie maXg,o = 0.
Furthermore, in the approximate version, lemma 5.3.1 shows that, regardless of the current

5.4. REMARKS 73

policy 7T at update t — 1, NAPI has the opportunity to set the maximal advantages with
respect to time i to 0 by acting greedily with respect to Qn,t{s, a) .

Such a result is not true even for e x a c t 7-discounted, stationary policy iteration. Let t t ' be
the result of an exact greedy update with t t , ie 7 t ' (s) = argmaxa QTr,'y(s,a). After this
exact update, there are no advantages that are necessarily set to 0. Chapter 7 considers the
use of stationary policies in approximate updates, which is a considerably more involved
analysis.

5.4.2. The Mismatched Measure for Gradient Methods. Let us consider the dis­
counted case. In terms of the advantages, we can write the policy gradient (see section
4.2.2) as:

V%r(&o) = 1 - 7

1
1 — 7

1
1 - 7

A
1 - 7

B~d„

Bsr̂ d-n

E:Sr̂ d,,

'^Q„{s,a)VTT{a\s,d)

a) + K (s)) V7r(a|s, d)

^ A„{s, a)V7r(o|5,6) + V„(s) ^ V7r(a|s, 0)

Esî dn,MQ ■®a~Uniform [Air{s, û) V7t(£i|s, 0)]

where we have used the fact for a probability distribution t t , V 6) = V I = 0.
Clearly, this expectation is with respect with to the future state distribution of the current
policy TT.

From the performance difference lemma 5.2.1, the difference between the performance of
7T and that of an optimal policy t t * is:

2 _ ^Egr^d„* ̂ ,^Ear^n* •

This elucidates the “mismeasure” problem for gradients. The gradient is small when the
advantages are small under the c u r r e n t distribution d,r,»o- However, to be close to optimal,
the advantages must be small under .

CHAPTER 6

/x-Learnability

This chapter considers the sample complexity of reliably choosing a good policy among
some restricted class of policies 11 in a large or infinite state MDP. The framework con­
sidered is one in which we have access to a sampling model that allows us to observe
transitions in a T-epoch MDP M. The question that is studied is: how many transitions
must be observed in order to have a sufficient amount of experience in order choose a
“reasonably good” policy among 11?

The answer to this question clearly depends on what constitutes a “reasonably good” pol­
icy. The most straightforward goal is to find a policy that has return close to the highest
return among those policies within II. This is the goal of the trajectory tree method of
Keams, Mansour, and Ng [2000]. This algorithm uses a number of observed transitions
that is exponential in T but has no dependence on the size of the state space (and has a
natural dependence on the complexity of II).

Clearly, the drawback in obtaining a practical algorithm is the exponential dependence on
T. With practical concerns in mind, one could attempt to find a policy vr that satisfies a
more restricted notion of optimality in the hope that this allows us to obtain a polynomial
sample complexity dependence on T. This motivates us to consider optimizing a policy
with respect to a probability measure p over the state space. The results from the last
chapter showed that for a policy vr to compete favorably against the performance of a
policy t t ' , then tt only needs to have advantages that are small on average, with respect to
the set of states that t t ' tends to visit. This suggests that imposing a measure p over the
state space is as a natural means to incorporate domain knowledge as to which states are
important to optimize the performance at.

Informally, the goal here is to obtain a policy which competes favorably against those
policies 7r € n whose future state distribution is comparable to p. The sample complexity
question of interest is: how much experience is required to obtain a good policy with
respect to our choice of p i

This chapter presents the /li-PolicySearch algorithm which satisfies a more restricted notion
of optimality based on the measure p and which requires significantly less experience —
/i-PolicySearch has a sample complexity bound that is now only polynomial in T and still
has no dependence on the size of state space. Importantly, although the algorithm gathers

75

76 6. /x-LEARNABILITY

sufficiently less experience, the dependence on the complexity of the class H is comparable
to that of the trajectory tree method, which suggests that this method is making efficient
use of samples.

From personal communication. Drew Bagnell and Andrew Ng are working on very similar
algorithms.

These results suggest that using a measure /x might lead to feasible algorithms for prob­
lems which have both large-state spaces and large horizon times. Before heading in to the
analysis, let us discuss the issue of efficient learning and what we hope to do by imposing
the measure /x.

6.0.3. Efficient Use of Samples. The efficient reuse of samples in reinforcement
learning is a considerably more tricky issue than in supervised learning. In supervised
learning, we desire to leam some function f{x) given a sample set of the form {(x, f{x))].
A common framework for supervised learning is one in which we have a “hypothesis class”
H and desire to find a function h €71 that is a good approximation to / . In the supervised
learning setting, every sample (x, f(x)) provides feedback for all h €71. This permits us
to reliably choose a good h €71 with a number of samples that is far less than the size of
this hypothesis set |?^|. For the case in which |'H| is finite, we have 0(log \7i\) bounds (ig­
noring other parameters) on the sample size sufficient to choose a near best h € 7 i. For the
case that \H\ is infinite, sample complexity bounds are often stated in terms of some mea­
sure of the complexity of 7i, such as the VC dimension (see Anthony and Bartlett [1999]
for review). Crucially, these sample complexity bounds have no dependence on the size of
the input domain.

Keams, Mansour, and Ng [2000] provide the “trajectory tree” framework which general­
izes these sample complexity results to reinforcement learning. The setting considered is
where the goal is to find a policy in II with performance near to the best policy in II. A
naive method to find a good policy is to simulate each policy in II, which requires 0(11)
samples. This is clearly inefficient and is not applicable if II is an infinite class.

The trajectory method assumes access to a generative model and builds a set of trees over
all possible actions over the horizon time, requiring O(A^) calls. Efficient reuse of ex­
perience is possible since each tree simultaneously provides an estimate of the value of
all 7T € n . This leads to the important 0(log |II|) sample size in order to choose a good
7T € n , with no dependence on the size of the state space (though the dependence on hori­
zon time T is exponential). For the case of infinite II, Keams, Mansour, and Ng [2000]
show how the standard VC complexity approaches can be applied.

6.0.4. A Measure p and Exploration. This harsh exponential dependence on T can
be viewed as the cost of exploration. By building a tree, we obtain sufficient information

6. ^-LEARNABtLITY 77

about the MDP to accurately estimate the values of all t t € II regardless of which states
these policies tend to visit. Importantly, as with the related spare sampling algorithm (see
section 2.5), this information is not enough to construct an accurate model of the MDP’s
transition probabilities.

We seek to avoid this dependence. Clearly, this means that our planning algorithm
will have significantly less information about the MDP. The question is then how should
we collect and use this limited information about the MDP. The question of data collection
is essentially a problem of exploration. As discussed in chapter 4, obtaining information
about the MDP in an “on-policy” manner is in general not sensible, since ultimately it
might be necessary to improve the policy at states where the current policy tends to visit
infrequently.

We might hope that prior domain knowledge can help us deal with the problem of ex­
ploration. In this chapter, we consider optimizing the policy with respect to a probability
measure fj, over the state-space. The choice of // is a means to incorporate prior knowledge
into the algorithm. The high level idea is to use this measure // to obtain samples instead
of building a tree or using an “on-policy” distribution. The tradeoff we seek is to obtain
a polynomial T dependence in exchange for a more limited notion of optimality based on
the measure /x.

In many challenging domains, it is clear that significant prior knowledge must be taken
into account in order to obtain powerful algorithms. In supervised learning, this is of­
ten addressed in the choice of the hypothesis class H and the analogous incorporation of
prior knowledge for supervised learning is in the choice of II. A more unique aspect of
reinforcement learning is knowledge related to where a good policy tends to visit. The
trajectory tree method and gradient methods do not incorporate such knowledge. In many
natural domains, we might have prior knowledge of the states a good policy tends to visit.
In robotic control problems often we have an idea of the desired trajectory. In a queuing
networks, there is rich literature on understanding the stability and the stationary properties
of various controlled processes, and often there exists significant knowledge as to which
operating regimes are appropriate. We desire our optimization algorithm to make use of
such knowledge.

This chapter introduces the /x-PolicySearch algorithm, which is variant of NAPI. This vari­
ant uses a PolicyChooser algorithm which picks a decision rule from a “hypothesis set”
Hi. The policy returned is a non-stationary policy composed of a sequence of T decision
rules chosen from Hi. Note that each /i e Hi is just a mapping from states to actions,
and so h can be viewed as a classifier of actions. The problem faced by the PolicyChooser
is essentially one in which in it attempts to minimize a cost sensitive classification loss
function where the training set distribution is obtained using the distribution /x.

78 6. /i-LEARNABILITY

F igure 6.1.1. A Trajectory Tree. See text for description.

The guarantee of //-PolicySearch is that it drives the advantages to be small on average
with respect to n and this translates into a bound on the quality of the returned policy. The
main results of //-PolicySearch are:

• no dependence on the size of the state space
• polynomial sample complexity bounds on T
• efficient reuse of data (which allows infinite policy classes to be considered)
• a reasonable (restricted) notion of optimality based on //

Throughout this chapter, we only deal with non-stationary policies in the T-epoch case. It
turns out that obtaining similar guarantees using stationary policies (in the 7-discounted
case) is much more challenging and this is addressed in the next chapter. For simplicity,
this chapter only deals with deterministic policy classes II and Hi.

6.1. The Trajectory Tree Method

Let us begin by reviewing the trajectory tree method of Keams, Mansour, and Ng [2000].
Assume that II is some restricted, finite class of deterministic T-epoch policies, which
is analogous to our “hypothesis” set. The question of interest is how many calls to a
generative model are sufficient in order to find a policy that has return near to that of the
best policy in II, with respect to some start state so- A naive method to do this is to make
0(|n|) calls in order to independently estimate the return of each vr € II. However, this is
clearly inefficient and is not applicable for infinite |II|.

The trajectory tree method efficiently calls the generative model in order to find a good
policy in II. The idea is to start at state sq and build a tree recursively, by trying each
action once at each state encountered as shown in figure 6.1.1. At the root so, all actions
are sampled once using the generative model. Then for each child, we also sample each
action once. This is continued until the tree is completely filled out to depth T, requiring
O(A^) samples for each tree.

It is straightforward to construct an unbiased estimate of the return of a deterministic policy
TT using a single tree r, since ?r defines a unique trajectory on the tree. Let i?(?r, r) be the

6.1. THE TRAJECTORY TREE METHOD 79

average return on the trajectory defined by ?r on the tree r. R {'k , t) provides an unbiased
estimate of V)r(so). Now consider building m trees n , . . . ,Tm. The obvious empirical
estimate of t t is

1 ^
K r (s o) = — ^ ^ (^ j ' ^ O -

which can be used to simultaneously estimate the value of each vr € H. The question that
is addressed in the following subsections is: what is the appropriate value of m in order to
have a uniform convergence result, ie in order for (sq) to accurately approximate V-̂ (so)
for all TT € n .

Before doing this, let us digress by recalling the sample complexity of the sparse sampling
algorithm of Keams, Mansour, and Ng [1999] (see section 2.5 for a review of this method).
Here, the algorithm itself is the policy, since the algorithm takes as input a state and then
outputs an action. For each input, the algorithm builds a tree using the generative model
in order to compute a single action (though the tree here is slightly different as shown in
figure 2.5.1).

The sparse sampling algorithm/policy is an e near-optimal policy and makes ^
calls to the generative model per input. This of course leads to the question of why bother
building trajectory trees to search a restricted class of policies when we could just use
the generative model to execute a near-optimal policy, since both have sample complexity
bounds that have exponential dependence on T (though this dependency is per timestep for
the sparse sampling algorithm). ‘

In the original formulation, this method was applied to partially observable MDPs. Since
sparse sampling methods cannot be directly applied to the partially observable setting, this
search is sensible. Also, in the MDP setting, if we don’t have access to the generative
model at runtime, then it might be desirable to find a good policy offline by searching II.

However, the point here is not to justify the use of this method (which is clearly provided by
Keams, Mansour, and Ng [2000]), but to recognize (for the MDP setting) that although this
exponential dependence allows us to efficiently search a restricted class of policies, we can
execute an {unrestricted) e near-optimal policy with a dependence that is also exponential
inT.

6.1.1. The Case of Finite II. As discussed earlier, a hallmark of supervised leaming
methods is a log dependence on the size of the hypothesis space. The following straightfor­
ward theorem shows that this result can be replicated in the reinforcement leaming setting.

Ît should be noted that the sample complexity bound for the sparse sampling algorithm is still worse though they
are both exponential algorithms. Essentially, we are comparing "0 ((m A)^)" vs. “0 {m A ’̂) ' \ where “m ” is
polynomial in T for both algorithms.

80 6. ^-LEARNABILITY

T heorem 6.1.1. (Finite II; Keams, Mansour, and Ng [2000]) Let H be a deterministic
class of policies for a T-epoch MDP M and let I ^ (s o) be the empirical value function
constmctedfrom m trees. With an appropriate choice ofm, the total number of calls made
to the generative model is

and with probability greater than 1 — 6, the estimates (so) satisfy the following accuracy
condition for all t t € II,

| % r W) - ^ (%) | < G .

Proof. For any t t € n, each tree provides an unbiased, independent estimate of the
% r (g o) - By Hoeffding’s bound and the union bound, we have that the probability there
exists a t t such that | F ^ (g o) - K r (s o) | > 6 is less than |II| exp(-2me^). This implies that
^ log ■^) is sufficient to obtain a 5 bound on this probability. The result follows
since each tree requires O(A^) calls to the generative model. □

6.1.2. The Case of Infinite II. For simplicity, we only review the = 2 binary
action case (and extensions to the multi-action case can be found in Keams, Mansour, and
Ng [2002]). The analysis parallels the theme of efficient data re-use in supervised leaming.

In the supervised leaming setting, a cmcial observation is that eventhough a hypothesis
set FL maybe infinite, the number of possible behaviors of on a finite set of states is
not necessarily exhaustive. Let us review the usual definition of the VC dimension for
a hypothesis set H of boolean functions. We say that the set x i, X2, •.. Xd is shattered if
there exists an ft, € that can realize any of the possible 2'̂ labellings. The VC dimension
VC('H) is the size of the largest shattered set. It is known that if d = VC('H), then the
number of possible labellings $j(m) on a set of m points by functions in is at most
(em)d pqj. d m, this is much less than 2*". This bound provides the backbone for
proving classical uniform convergence results.

These ideas also lead to uniform convergence results for the infinite II case. For any
particular tree, a policy t t induces a set of “labellings” on the tree, where the label at each
node/state is just the action chosen by it at that node. By definition, R{Tt, r) is solely
determined by the labelling of the tree r by ?r and the reward function. Therefore if two
policies have different values of V, then there must exist a node in one of the m trees that
is labelled differently by the two policies. Hence, the number of different values of for
the policies t t € II is bounded by the number of different labellings on the m trees by II.

Again, the key observation is that although the set II may be infinite, the set of possible
labellings for the m trees is not exhaustive. Note that each ir € II is a deterministic
mapping from the state space to a set of two actions, and so t t can be viewed as a boolean
function. Hence, let VC(II) denote the VC dimension of the set of Boolean functions in II.

6.1. THE TRAJECTORY TREE METHOD 81

For m trees, there are m2^ nodes and so the number of possible labellings on these trees
is $d(m2^) < (Y . The formalized argument leads to the following theorem.

Theorem 6.1.2. (Infinite II; Keams, Mansour, and Ng [2000]) Let Ube a deterministic
class of policies for a binary action T-epoch MDP and let V^(so) be the empirical value
function constmcted from m trees. With an appropriate choice ofm , the total number of
calls made to the generative model is

o Æ (r v c { n) + i o g i))

and with probability greater than 1 — 5, the estimates (s q) satisfy the following accuracy
condition for all tt € II,

|%rW) - ^7t(So)| < £ •

The proof is somewhat technical and is not provided here.

6.1.3. Approximate Planning and PEGASUS. These uniform convergence results
immediately imply the following corollary.

Corollary 6.1.3. For the case considered in theorem 6.1.1 or 6.1.2. Let

TT = arg in |x (sq) •

Then with probability greater than 1 — 5, for all t t ' G II,

%rW) > %r'(8o) — 2e .

Hence, the optimization problem is just a search problem over F^(go). Unfortunately, this
might be a rather formidable task since the size of the trees are exponential in T.

Before we examine the complexity of this search, let us now review the PEGASUS method
of Ng and Jordan [2001]. This method can viewed as providing a compact representation
of the trajectory tree. The algorithm assumes access to a deterministic generative model,
which is stronger assumption than access to a generative model. Roughly speaking, it
assumes that we have an implementation of a generative model that has no internal random
number generator and that in addition to providing the generative model with a state-action
as input, we must also provide it with a random number (in order for it draw samples from
the transition probability). In many problems, such as those where we implement the
generative model on our computer, this is quite a reasonable assumption, since we often
have to explicitly use a random number generator to induce stochasticity.

The key insight to this method is that if we fix the seed to our random number generator,
then this uniquely determines a trajectory tree. Hence, to represent one trajectory tree, we
do necessarily have the memory problem of generating an entire tree and storing it. The

82 6. ^-LEARNABILITY

tree can be compactly represented by the seed to the random number generator. Though we
have a concise representation of the tree, we still have the computational cost of computing
a transition (using the seeded random numbers). Here, the sample complexity question now
becomes one of computational complexity (as discussed in introduction to this thesis, see
section 1.2).

The most common optimization method is to perform a local search to maximize T^(ëo).
Unfortunately, it turns out that the exploration problem still rears its head in this computa­
tional problem. Let us return to example 4.3.1 from chapter 4, where the agent desires to
reach a goal state in a 50 state MDP (two actions move the agent to the left and one action
moves the agent to the right). Building a tree is clearly not feasible since the required sam­
ple size is roughly 10̂ ®, though PEGASUS allows us to avoid building this tree. However,
once again we have the same problem discussed in chapter 4, which is that with a randomly
initialized policy, then the number of calls to the generative model needed to obtain a non­
zero gradient is exponential in T. Hence, the number of transitions that we must compute
is still exponential in T. Essentially, PEGASUS is a variance reduction mechanism not a
means to solve exploration.

In general, the lower bound for the sparse sampling algorithm (in section 2.5) suggests that
the factor of is unavoidable (since there could be some leaf of the tree that we must
discover in order to find our good policy, see subsection 2.5.3). Therefore, a tradeoff is to
be expected if we desire an algorithm with sample complexity that is polynomial in T.

6.2. Using a Measure p,

This factor of does not take into account domain knowledge of where good policies
tend to visit. The performance difference lemma (5.2.1) of the last chapter quantified
the importance of optimizing our policy at states where a good policy tends to visit. As
an attempt to deal with this exploration problem through the use of prior knowledge, we
introduce a particular distribution p and optimize with respect to this distribution.

The /i-PolicySearch algorithm presents an interesting tradeoff— the factor of 0{A ^) can
be reduced to a polynomial T bound under a restricted notion of optimality. In practice,
we desire to tackle problems with both infinite state spaces and large horizon times. These
results suggests that planning in such problems may be feasible by carefully considering
how to choose p through domain knowledge.

6.2.1. The p-Reset Model. The generative model allows us to obtain samples from
any state of our choosing. Let us now consider using a jU-reset model, which is an interme­
diate sampling model between the generative model and the online simulation model (see
section 2.4).

6.2. USING A MEASURE ^ 83

Let ̂ (s, t) be a joint distribution over states and times. As with the future state distribution,
assume that /jl is uniform over the times in the set {0, . . . , T — 1}. A ^-reset model is
defined as follows. The model allows simulation of the MDP in the usual way (as in the
online simulation model of 2.4) and the model allows resets. If time t is given as an input
to the model, the next state is set to s' ~ ju(-|f) . Essentially, the //-reset model allows us
to simulate the MDP and reset the state in the MDP according any of the T distributions,
XIOXXII) , - X i r - i) .

This is a weaker assumption than having access to a generative model and a considerably
weaker assumption than having complete knowledge of the transition matrix in M. In a
large or continuous state space, it might be difficult to obtain two samples from exactly
the same state (as is assumed by a generative model). For example, for a simulator that is
instantiated by a physical model in the real world, it may be infeasible to reconfigure the
system into the exact same state twice. Our assumption is that we only need our physical
simulator to configure the states according to the same d is tr ib u t io n . Also, note that we can
always simulate a //-reset with a (deterministic or non-deterministic) generative model, but
we can’t necessarily simulate a generative model with a //-reset model.

The //-PolicySearch algorithm ties the optimization to the distribution // and so optimality
guarantees are dependent on this choice. It turns out that a sensible choice for // is the
future state distribution of a good policy. Additionally, if we desire to set all //(|() to a
single distribution p(-) then it is sensible to choose p(-) to be the stationary distribution of
a good policy.

Although a //-reset model may be a weaker simulation assumption, we desire control over
the choice of // in order to select a “good” reset model. With access to a generative model,
we have the option to simulate the //-reset model of our choice.

6.2.2. Generalized Value Functions. The following overloaded definitions are use­
ful. Recall from subsection 5.3.1 that a decision rule specifies an action selection procedure
for just one timestep, while a policy specifies the means of acting over the entire T-epoch
MDP.

D efinition 6.2.1. Let M be a T-epoch MDP, i be a time, tt be a policy for M , and // be

a state-time distribution.

The value V^,t(//) of //(•) is:

The state-action value h) of a decision rule h and p() is:

[Qtt, / tt)] .

84 6. ^-LEARNABILITY

The advantage A,r,t(Â , h) of a decision rule h and /u(-) is:

■'4.7r,t(/̂ 5 h.) = [^7r,f (s, û)] .

Note that h) represents the expected value of choosing an action a ~ A(-|g) when
given a state s ~ and then following tt for the remaining t — 1 steps. Hence, the
notation is overloaded with (57r,i(«,û)- The value and the advantage /i)
have similar interpretations. Note the familiar equality:

-̂ 7r,t(A4, h) = QnjtifJ'i h) — %r,*(//) .

Under fj,, a natural goal is to find a policy tt such that there does not exist an h such that
h) is large. Intuitively, this goal is to find a policy w that has small advantages with

respect to /j,.

6.3. /x-PolicySearch

Recall from the performance difference lemma (5.2.1), that the difference in value between
an optimal policy tt* and tt at Sq is

V ^ * (s q) — V ^ (s q) = £ / a ^ 7 r « (. | n)] •

Therefore, if e a c h advantage of tt is less than e /T then tt has value that is e near-optimal.

In large or infinite state spaces, the sample complexity required to guarantee that each
advantage is small could be excessive. Instead, let us consider forcing the average of the
advantages to be small with respect to //.

The /i-PolicySearch algorithm is a “policy search” variant of NAPI (see subsection 5.3.1)
which uses a restricted class of deterministic decision rules Hi. This Hi is analogous to
our “hypothesis” class H. At time t of the algorithm, the /x-PolicyChooser attempts to find
a good decision rule G IIi and this h is then used to set 7r(-, t).

The class IIi induces the class of T-epoch policies

n = Hi X Hi X . . . X III = n f

where each ti G II is a sequence of T decision rules, ie for each t, 7t(-, i) G Hi. Note that
the policy returned by //-PolicySearch is in II.

Our goal is to find a policy tt such that for all times t < T , and for all ft G Hi.

7̂T,t(/4, ft) < ÿ .

Intuitively, this condition states that at each time t, there is no ft G Hi that has a large
advantage over tf on a v e r a g e with respect to //(](). Interestingly, note that this condition
does not necessarily imply that the future distribution of tt is similar to //.

6.3. /i-POLICYSEARCH 85

6.3.1. //-Optimality. The following lemma gives us reassurance as to why this is a
sensible goal. If p and q are two distributions over a finite (or countable) set X, we use the
standard definition that ||p — g||i = J lxex b(^) “ if «V is a continuous space,
the sum is replaced by an integral. Recall, II = I lf .

T heorem 6.3.1. (p-Optimality) Let M be a T-epoch MDP and let H i be a set of decision
rules for M. Assume that a policy t t satisfies for all h € Hi and t < T ,

Then for all policies t t ' G II and for all S o .

Vtt{so) > Vir'(5o) — £ — — /:||i -

Note that this guarantee holds for all so as opposed to the trajectory tree method, which
holds only for the prechosen so (which was used for the root in the trees). Also note that
the optimality guarantee of the trajectory tree method did not contain the penalty term
ll<̂7r',<ro -

Essentially, the bound states that the policy t t is guaranteed to compete favorably against
any policy vr' G II whose future state distribution is close to p. The bound is stated in
terms of the additive mismatch between djr'.so and p. It is straightforward to construct an
alternative bound in terms of a multiplicative mismatch 11 | |oo> as was done in Kakade
and Langford [2002].

This bound looks somewhat weak, since it suggests that we must choose p rather carefully
to match a good policy. However, it should be noted that this bound is essentially identical
to the performance bound in the supervised learning setting where we “train” under one
particular input distribution p{x) and we are “tested” under a different distribution P{x).
In practice, this bound can be very loose, so we hope to achieve much better performance.

The more general statement is just that we know the advantages A^r.tip, h) are ^ small
with respect to Hi and that our performance regret is given by the performance difference
lemma (5.2.1). The previous theorem provides the simplest performance bound using these
constraints. Unfortunately, there are few results on more informative and tighter bounds
for this common setting.

The following proof implicitly uses the fact that our “training” and “testing” distributions
are different. Here our “training” distribution is p and our “test" distribution is dTr'.so-

86 6. /i-LEARNABILITY

P r o o f . Let ht{s) = Tr'(s,t) and so ht € Hi. Using the performance difference
lemma (5.2.1), we have

— t t)] +T||cÎ7r',«o A t||l

“ ■ ŝ~ (̂ |t)-®o~7r'(-|s,f) [-̂ 7T,f(s> t l)] + T||ci7r',ffo “ A t||l

t

— ^ ̂-̂ 7T,f (̂ t; ht) + /t[|i
t

= e+ T\\dir',8o ~ t̂ Wi

where the last step follows by assumption. □

6.3.2. Main Results of ^-PolicySearch. First, let us specify an exact version of ju-
PolicySearch which provides insight into the sample based version. Given a t — 1 step
policy TT, the natural goal is to find an /i 6 Hi that optimizes Qvr.tC/t, h). Intuitively, At(-|t)
is the distribution over states at time t that we wish to stress, so we desire to find a good
decision rule with respect to this distribution. The Exact //-PolicySearch algorithm (8) is a
version of NAPI that does this optimization exactly.

Algorithm 8 Exact //-PolicySearch
(1) Randomly initialize TT
(2) Fort = T - 1 , . . . , 0

ht = aigmaxQjt,t{(^,h) heui
7r(-,t) = ht

(3) Return TT

The following theorem shows that this exact algorithm exactly achieves our goal with
6 = 0 .

T heorem 6.3.2. (Exact ti-PolicySearch) Let M be a T-epoch MDP and let IIi be a set
of decision rules for M. Exact p-PolicySearch returns a policy t t such that for all h € IIi
and t < T,

-^7r,<(/t) h) < 0 .

Proof. Let t t be the input policy at update t to the ExactPolicyChooser in the al­
gorithm. By construction, of ht, it follows that QTi,t(P',ht) > Q ,r,/(//, h) for h € Hi.
Lemma 5.3.1 shows that the state-action values of the output policy f are identical to this
input policy rr. Hence, for all h € Hi, ht) > Qw,t{P', h). Using the definition of

6.3. /«.POLICYSEARCH 87

h),

— QîT.tCÂJ ^) ~ QtT,* (/̂ J ^t)

< 0

Where we have used the fact that #(-, t) = ht- □

From the //-optimality theorem (6.3.1), this tt has value at so that is T||cL,6o ~ /^||i close
to the best value in II at sq.

Algorithm 9 //-PolicySearch (Hi)
(1) Randomly initialize ^
(2) For < = T - 1, . . . , 0

ht = //PolicyChooser(^,t,IIi)
7r(-,t) = ht

(3) Return ^

Of course, this exact algorithm is impractical, and we are interested in understanding the
sample complexity of implementing this algorithm with a sample based PolicyChooser.
Algorithm 9 presents a high level sketch of the //-PolicySearch algorithm. The algorithm
uses //-PolicyChooser to construct the decision rules ht- The //-PolicyChooser uses only
a //-reset model to find a good decision rule among Hi. First, let us provide the main
theorem on sample complexity bounds for //-PolicySearch to return a “reasonably good”
policy.

T heorem 6.3.3. (yt-PolicySearch) Let M be a T-epoch MDP and let IIi be a class of de­
terministic decision rules for M. For any £ and 5, the total number of observed transitions
by p-PolicySearch is

• ifU i is finite,

o (^ (> ° s i n i l + i o g f)) ■

• if Hi is infinite and M is a binary action MDP,

o (^ (v c (n i) + i o g |))

For either case, with probability greater than 1 —6, p-PolicySearch returns a policy t t

such that for all h G Hi and t < T ,

■^ir,t{p,h) < —.

Hence, with //-PolicySearch, we can obtain our more restricted optimality guarantee with
only polynomial T dependence while maintaining no dependence on the size of the state

88 6. /i-LEARNABILITY

space. Importantly, the dependence on the complexity of Hi is comparable to that of the
trajectory tree method, which suggests that this method also makes efficient use of samples.

Extensions to multi-action MDPs and stochastic policy classes are presented in Kearns,
Mansour, and Ng [2000] and these results can be generalized to our setting as well.

The following sections spell out the algorithm and the technical lemmas required for the
proof. We start by specifying the //-PolicyChooser that is used. This algorithm is essen­
tially a cost sensitive classification algorithm.

6.3.3. The //-PolicyChooser. The //-PolicyChooser attempts to return a good deci­
sion rule from IIi using only the //-reset model. A naive and inefficient procedure is to
independently estimate h) for each // 6 IIi and use the empirical maximum. We
turn to importance sampling for efficient estimation.

We can write this value as:

— -̂ ■®»~/i(-|f)-®o~lInifonn [Q ^ 0,)I(Jl^s) — û)]

where Uniform is the is the uniform distribution on the action space (of size A) and
I{h(s) = o) is the indicator function which is 1 if h{s) = a and 0 else. In the Remarks
section (6.4.1), we point out that this is function is essentially a cost sensitive classification
loss function for a “classifier” h with weights Qn,t-

Algorithm 10 //-PolicyChooser(7r, t, Hi)

(1) obtain m samples of the form {(sj, a*, Qi)} where
(a) s*,ai ~ //(|t) X Uniform
(b) Qi is an estimate of

(2) define the function Q

QiTjtilt) ~ ^ ̂Q il

(3) determine h
h = argmax(5^,t(//,h)h£lli

(4) Return h

The sampling procedure for the //-PolicyChooser is as follows (see algorithm 10). At the
t-th step, obtain an s ~ //(|f) and an a ~ Uniform. Then follow t t for the remaining t
steps to obtain an unbiased estimate of Q of Qn,t{s, a). An unbiased estimate h)
is then AQI{h{s) = a).

Consider obtaining m-samples constructed in this fashion. For the i-th sample, let (sj, o,)
be the sample of the state-action and let Qi be the estimate of Qir,t{si, a*). Our unbiased

6.3. /i-POLICYSEARCH 89

estimate of h) is then

for any policy h 6 H i. The total number of transitions observed by //-PolicyChooser under
this method is m t , since each estimate Qi uses t transitions.

6.3.4. Uniform Convergence Results for //-PolicyChooser. This following lemmas
determine a value of m sufficient to obtain uniform convergence results for //-PolicySearch.
Recall that //-PolicySearch makes T-calls to the //-PolicyChooser and so there are T func­
tions Qjr.T-iC/i, Qn,oifJ>, •) constructed. We desire each of these functions to be
accurate to the tune of Since each call to //-PolicyChooser requires 0{m T) transitions,
the total number of transitions observed by //-PolicySearch is mT^.

The result for the finite II case is presented first.

Lem m a 6.3.4. (Finite IIi j Let Hi be a class of deterministic decision rules for a T-epoch
MDP M. Let

/ 4 2 7 1 2 1 \
m = (logIHil -blog-)j .

Upon input of a policy t t arui time t , the p-PolicySearch algorithm constructs a function
h) such that with probability greater than 1 —5, for a// h € Hi

h) - Qn,t{p, h)\ < — .

Thus, we have the important 0(log |IIi|) dependence.

Proof. The values AQiI{h{si) = o«) are in the bounded interval [0, A]. Hoeffd-
ing’s and the union bound imply that the probability that there exists an h € Hi where
\Qn,til^,h) - Q^,/(//,h)| > f is less than |IIi|exp The result follows by
setting this bound to be less than Ô. □

The following theorem shows that //-PolicySearch can be extended to infinite policy classes
just as was done in the trajectory tree method.

Lem m a 6.3.5. (Infinite Hi) Let Hi be an infinite class of deterministic decision rules for
a binary action T-epoch MDP M. Let

m = o (J { v c (n o + io g i))

Upon input o f a policy tt and time t, the p-PolicySearch algorithm constructs a function
Qir,t{p, h) such that with probability greater than 1 — 5, for a// h 6 Hi

\Q-!r,t{P‘, h) - Qw,t{p, h)\ < — .

90 6. ̂ -LEARNABILITY

The proof is essentially identical to that in Kearns, Mansour, and Ng [2000], except we
use importance sampling and we are in simpler case where the tree depth is one. For
completeness the proof is provided.

For the proof, it useful to define VCriH) for a set % = {h\h ; X of real
valued functions bounded by B. Define VCriV.) to be the standard VC-dimension of
the set of all binary functions •) : h 6 7f,r G {—B ,B)} , where I{h ,r,x) = 1
if h{x) > r, I{h ,r,x) = 0 else (as in Vapnik [1982]). Intuitively, this is the set of all
indicators of all threshold functions constructed from "H.

Proof. Note that each h G IIi can be viewed as a set of real valued functions which
map a sample {s,a, Q) to a real value in [0,2], where the corresponding function value
is 2I[h{s) = a] Q. Let us denote Hi by Hi when it is viewed as this set of real valued
function that map samples of the form (s, a, Q) to [—2,2]. First, let us prove that

vC r(ü i) = 0 { vc { n i)) .

(see Keams, Mansour, and Ng [2000] for a more general result for trajectory trees).

Let d = V’C'(IIi). The set IIi can realize (^) ‘* labellings for a set of m samples. Further,
for any sample (s, a, Q), there are only 2 possible values that this sample can take for all
h G fii (either 2Q or 0). Hence, there are only 2m values that functions in Hi could take
on m samples, and so we only need to consider 2m settings for threshold parameter r.

Therefore, the set of indicator functions {I{h, r, •)} can realize at most at most 2 m { ^ Y
labellings on m samples. If this set is to shatter m samples, then it must be greater than
2^, ie

2m (^) ‘* > 2^ .

This implies that m = 0{d) = 0 (y C (rii)) . Since m > VCr(fii), VCr{fLi) =
0{VC{Ui)).

The other useful result from Vapnik [1982] is on the estimation accuracy. In our setting,
this implies, with probability greater than 1 — <5,

' d l o g f + l o g f
sup |Q7r,t(//, h) - h) \< 0
heui \ V j

where d = VCr(J\-i) = 0 (yC (IIi)). The result now follows by substituting m =
O log ^-^5̂ j into the previous bound. □

Now we are ready to prove our theorem on sample complexity bounds of jU-PolicySearch

6.4. REMARKS 91

Proof, (of theorem 6.3.3) The //-PolicyChooser is called T times, so if (5 4- ^ then
all T functions constructed by the //-PolicyChooser are ^ accurate, with probability
of error is less than 5.

Let 7T be the input policy at update t to the //-PolicyChooser. By construction, of ht, it
follows that Q T r , t { f J ' , h t) > Q-^,t{fi,h) for h 6 Hi. Using, our accuracy condition, this
implies that

< y-
for either the infinite or finite Hi case.

Now the remainder of the proof is similar to that of the exact theorem (6.3.2). Lemma 5.3.1
shows that the state-action values of the output policy ^ are identical to this input policy vr,
so for all € Hi

Qn,t{f^,h) — < —

Hence, A^^t{fj,, h) = Q^,f(//,/i)-Qjf,t(//,h,f) and the result follows by settings 4- | . □

6.4. Remarks

6.4.1. The //-PolicyChooser and Cost/Reward Sensitive Classification. Let exam­
ine connections between the loss function used by //-PolicyChooser and the loss functions
in a classification setting. //-PolicyChooser desires to maximize the function

Q?r,/(/4, h) = [Qt t , a) I = </)]

with respect to € H i.

Consider the binary classification case where P (x,y) is the joint distribution over in­
put/output pairs, where y € {0,1}. The most common loss function for a hypothesis h
is Ex,yr.p [ï{h(x) = y)]. A weighted loss function variant is

Ex,yr^p [w{x,y)I{h{x) = y)]

where w{x, y) are the costs.

For comparison purposes, let us consider a binary action MDP. The input space is the state
space and the output space is the binary action space. Each /i G Hi is “classifier” of
actions. The function —Qtt,/(iu, h) is just a cost sensitive classification loss function for
hypothesis h. The joint distribution P is analogous to the distribution //(-|f) x Uniform and
the weights w{x, y) are analogous to the state action values a) (which are bounded
in [0, 1]).

6.4.2. Optimization and PEGASUS. As in many supervised learning theory anal­
yses, we have made a distinction between the sample and computational complexity and

92 6. /i-LEARNABILITY

have only addressed the sample complexity. The computational problem of finding a de­
cision rule in arg max/igm h) still remains. However, as pointed out in the last
subsection, this optimization is equivalent to that of optimizing a cost sensitive classifica­
tion loss function, which is a relatively common problem.

Let us recall the PEGASUS method of Ng and Jordan [2001], where we implement a de­
terministic generative model on a computer (by “seeding” our random number generator).
Here, the only relevant question is one of the computational complexity (see section 6.1.3).
In the //-PolicySearch setting, we have effectively bounded the amount of computation that
the deterministic generative model must perform, but the computational cost of the arg max
optimization remains.

Furthermore, with access to the deterministic generative model of PEGASUS, we might be
able to preform some additional tricks to reduce variance. Currently, the //-PolicyChooser
uses importance sampling with a ~ Uniform. Under the deterministic generative model,
it might be sensible to try all actions for each state s ~ //(-|f) and avoid this importance
sampling.

6.4.3. //-PolicySearch vs. Gradient Methods. This subsection provides an informal
comparison of //-PolicySearch vs. gradient methods. As was done in subsection 5.4.2, we
can write the T-epoch gradient as

VV^(so) — Æ/ô Unifomj [■'4-7T,f (s> tt) V7r(û|5, f, 0)] .

In practice, the termination condition of a gradient method is when the magnitude of the
gradient is small. As discussed in chapter 4, this is typically when estimation of the gradi­
ent direction is difficult.

A common termination condition for gradient methods is when

l|-^(e,i)~tiw.»o'^“~Uniform o) V 7t (û |s , <, 0)] H2 ^ £

where e is “small”. Here, ||ar||2 is the standard I2 norm (“mean-squared norm”). The
guarantee of //-PolicySearch is that for all /i e Hi and for all t,

//)Z(//(s) = <%)] ^ £

where e is “small”.

There are two important differences. First, is that //-PolicySearch guarantees the advan­
tages to be small under the state distribution // rather than the on-policy distribution •
This incorporates the “exploration” into //-PolicySearch. Through an appropriate choice of
// we have the option of forcing the advantages to be small where we desire. A reasonable
heuristic to consider for gradient methods is to use a starting distribution // rather than Sq-

6.4. REMARKS 93

Second, and equally important, is that /^-PolicySearch guarantees the advantages to be
small with respect to all /i € Hi and Hi is a potentially infinite policy class. In contrast,
gradient methods only guarantee the advantages are small with respect to the direction
V7r(a|s, t, 6). It is hard to understand the implications of this condition for gradient meth­
ods. This point is essentially about the efficient use of samples.

Both of these distinctions allow us to make a nontrivial statement on the quality of the
output 7r of /4-PolicySearch (see theorem 6.3.1).

CHAPTER 7

Conservative Policy Iteration

The algorithms we discussed in the last two chapters have required the use of the non-
stationary policies in order to maximize T-step future reward. These algorithms can also
be applied to find a good non-stationary policy in the discounted case, by choosing an
appropriate horizon time of T = (see subsection 2.3.3). In many reinforcement
learning applications, stationary policies are commonly used. This chapter considers the
problem of finding a good stationary policy in the '/-discounted case.

It turns out that finding a good stationary policy is considerably harder in an approximate
setting. The fundamental difficulty with this case is that an approximate greedy update can
have dire consequences, as shown by the max norm bound 3.1.1. The underlying problem
with stationary greedy updates is that replacing the old policy at all timesteps allows the
worst case error to propagate over the entire horizon. In the non-stationary case, a greedy
update only alters the policy at one timestep, and max norm bounds can be avoided (as
shown in the previous two chapters).

This chapter introduces the Conservative Policy Iteration (CPI) algorithm. CPI uses sto­
chastic policies as a way to avoid making drastic policy changes to a stationary policy.
After each policy update in CPI, the new policy is a mixture distribution of the previous
policy and a greedy policy (which is returned by a PolicyChooser algorithm).

Recall that //-PolicySearch guarantees the return of deterministic, non-stationary policy.
In contrast, CPI can guarantee the return of a stochastic, stationary policy. Neither algo­
rithm guarantees the return of a policy which is both deterministic and stationary. In the
Discussion chapter of this thesis, we return to this point.

As in //-PolicySearch, CPI optimizes a performance criterion that is defined with respect
to the measure //. Again, the use of this measure is a surrogate for explicit exploration.
However, in CPI, the //-reset model used is stationary, ie // is only a distribution over
states and not times (unlike for //-PolicySearch). An important distinction between CPI
and //-PolicySearch is that at each policy update in CPI, the algorithm considers improving
the policy over its entire horizon, whereas in //-PolicySearch only one decision rule at a
particular timestep is altered.

95

96 7. CONSERVATIVE POLICY ITERATION

7.1. Preliminaries

Throughout this chapter, we assume access to a stationary fi-reset model. A stationary
^-reset model is a //-reset model in which // is stationary, ie // is not time dependent. In
the //-reset model, when given an input time t, the next state was reset to a state s ~ //(■ |t).
In the stationary //-reset model, the algorithm allows only a reset to s ~ //(•) (and no time
input is required since // is not time dependent). Additionally, this model allows the usual
online simulation of MDP. Since we are only dealing with the stationary //-reset model in
this chapter, we just say //-reset model and the stationarity is clear from context.

We overload value functions in the same manner as was done in the last chapter.

D e fin it io n 7.1.1. Let M be an infinite horizon MDP, t t be a stationary policy for M , 7

be a discount factor, and // be a distribution over the state space.

The value 1 ^ ,7 (//) of distribution // is:

^ , 7 (a*) — •

The state-action value Qtt.tCa*» h) of a stationary policy h and // is:

Qn,y{iJ>yh) = [Qjt,7(s, (/)] .

The advantage A ,̂7 (//, h) of a stationary policy h and // is:

•^’T,7(/t, h) = [- î̂r,7(S) û)] •

Again, we have the familiar equality:

•̂ 7T,7(/t> h) = h) — %r,7(//) •

We also overload the future state distribution.

D e fin it io n 7.1.2. Let M be an MDP, 7 be a discount factor, t t be a stationary policy, and
// be a distribution over the state space.

Hence, the future state probability dn,'y,n{s) represents the expected future probability of
s when the initial state sq ~ //.

This chapter only deals with the discounted case, so we drop the 7-subscripts.

7.2. A Conservative Update Rule

Although, ultimately we may desire a good policy from some distinguished start state Sq,
directly improving %r(ao) has the problem that this measure is not sensitive to improve­
ment at states that are infrequently visited under tt (which leads to the “variance trap” of

7.2. A CONSERVATIVE UPDATE RULE 97

gradient methods, see section 4.3). We return to this point in the Remarks section of this
chapter.

Let us consider using the performance measure to optimize a policy with respect to
the distribution /x. Since we are in the stationary setting, we wish to avoid making greedy
updates to a new policy ?r', since this has the potential for serious policy degradation.
Instead, consider improving this measure using the more conservative update rule

(7.2.1) 7Tnew(o|s,a) = (1 “ o:)7r(a|5) + o:7r'(a |5)

for some t t ' and some a € [0, 1].

This section focuses on understanding improvement with this conservative update rule.
Obviously, other update rules are possible, but this rule is particularly simple and leads to
sensible improvement guarantees. The following subsections presents these improvement
guarantees — the first subsection provides a “small” a improvement condition and the
following subsection provides a condition on how large we can safely set a.

7.2.1. The Future Advantage and Policy Improvement. Now let us consider the
conditions for policy improvement with respect to a. The gradient (from subsection 5.4.2)
with respect to a is

5 ^ (7r'(a|s) - 7r{a\s))A^(8,a)

[-^7r(s>û)]1 - 7

where we have used the fact that 7r(a|s)A;r(a,a) = 0. Importantly, note that the
expectation over the state space is with respect to the measure induced by i t (d n , f j ,) , but the
expectation over the action space is with respect to t t ' .

This motivates the following definitions.

D efinition 7.2.1. Let M be an infinite horizon MDP, 7 be a discount factor, vr be a
stationary policy, and fj,hea distribution over the state space.

The future value V ,̂.y()u) of distribution fj, is;

The future state-action value Qn-,7 (//, h) of a stationary policy h and is:

Q v r , 7 &)] •

The future advantage {fi, h) of a policy h is:

98 7. CONSERVATIVE POLICY ITERATION

We drop the 7 subscripts when clear from context. Note that the future advantage satisfies

Ajr { fJ i, h) = h)

and so the future advantage measures the degree to which h is choosing better actions than
7T with respect to states sampled according to t h & f u t u r e state distribution In Kakade
and Langford [2002], this future advantage was referred to as the policy advantage.

As shown above,

^^^ikw(/^)|q:=0 — ̂ (A*j tt) .

Hence, a sufficiently “small” a can improve the policy if k^{n,Tt') > 0. This suggests
that we desire a policy t t ' which chooses actions with large advantages with respect to the
future state distribution

Contrast this to ^-PolicySearch, where at each step t the goal is to find a decision rule that
chooses large advantages with respect to the state distribution Here, we desire to
find a 7t ' that is “good” with respect to the e n t i r e horizon (induced by 7).

7.2.2. Non-Trivial Policy Improvement. This “small” a condition is not a powerful
enough result to allow us to understand the sample complexity of finding a good policy.
We care about how much policy improvement is possible per update and how large we
can safely set a during an update. The following theorem provides a bound on how much
improvement is possible.

Lemma 7.2.2. L e t r r a n d t t ' b e s t a t i o n a r y p o l i c i e s f o r a n i n f i n i t e h o r i z o n MDP M. L e t

€oo = maxg F o r t h e u p d a t e r u l e 7.2.1 f o r a l l a € [0,1]

- vA p) > (/^ ,/) - •

Note that for small a the bound behaves as

> ^ A , 0 . , 7 r ') + O(a^)

which is consistent with the gradient ^ (p) | «=0 • Hence, the bound is tight for “small”
a for all policies t t and ?r'.

For a = 1, the bound reduces to

{ p , t t ') 27Coo
Viv^ip) - V^rip) > 1 — 7 1 — 7

Note that this penalty term of is analogous to the penalty term in the greedy update
bound for function approximation (theorem 3.1.1). There s was the max norm error in
approximating the optimal value function. Consider the case where t t is an optimal policy.
Then Eqo = min,_a A;r(s,a), since all advantages are non-positive. For this case, Sqo is
the analogous max norm error made by t t ' . An example provided in the Remarks section

12. A CONSERVATIVE UPDATE RULE 99

o f th is c h a p te r sh o w s th a t th is b o u n d is t ig h t fo r a ll a a n d 7 fo r a p a r t ic u la r (n o n triv ia l)

c h o ic e o f n ' a n d 7r.

The intuition for the proof is as follows. The mixing parameter a determines the probabil­
ity of choosing an action from t t ' . If the state distribution is d , r , / u when an action from ?r'

is chosen, then the performance change is proportional to the future advantage (/x , 7r').

This effect leads to the 0{a) first term. However, as a is increased the future state distri­
bution changes so these deviant actions are chosen when the state distribution is not quite

This latter effects leads to the 0{a^) penalty term.

Proof. We overload notation by writing h) = |e)^7r(g, a) for a policy
h. For any state s,

A^{s,7Tatv,) = ((1 - Q:)7r(a|s) + a 7r'(a|a)) A„{s, a)

= a^7r'(a |5)> l^(5 ,a)

— (s , 7r)

where we have used Yja a) = 0.

While following Trnew, the probability that an action is chosen according to vr' is a. Let ct
be a random variable that is 0 if all actions before time t were chosen according to t t , and
Ct = 1 else. Hence, Pr(ct = 0) = (1 - a)*, and define pt = Pr(ct = 1) = 1 - (1 - a)*.
As usual, Pr(st = s\h,M,p,) is the probability that the state at time f is s while following
the policy h starting from Sq ~ jW. The p, and M dependence are clear from context, so
their dependence is suppressed. By definition of Ct, we have

Pr(St — 5|7Tnew)Ct — 0) — Pr(st — •

Hence,

-®8~Pr(«(=«|7rDew) Trnew)]

— *^^8'̂ PT{8t=8\lTar»/) [AniSjlT)]

0;(1 Pt)-®8~Pr(»t=«|7roew,ci=0) [-^7r(s>7r)] 4- Apt^gr^Pr(g(=g|n^ncw ,c«=l) \Ai^{s,'ïï)]

^ 0!(1 Pt)-®»~Pr(»t=»|7r))] O-Pt̂ oo

^ ÛÎ-®9~Pr(8i=9|7r))] 2opt^oo

where we have used the definition of Soo.

100 7. CONSERVATIVE POLICY ITERATION

Using the performance difference lemma (5.2.1), we have

~ 7̂t(Â) — 2 _ -̂®»~d7r„w,M-̂ a~7rnew(-|s) [-^7r(ë, &)]

— ŷ 7*-̂ g~P(gt=g|7rnew) [-̂ 7r(g> TTnew)]
t

^ ^] 7 (•̂®g~P(gt=g|7r))] lOiptSoo)
t

j ^ '~-^g~d^,M [^ 7 r (s ,7 r ')] - 2 a £ o o ^ 7 * (1 - (1 - a) *)

:A ,(^,,r') - - — L ^)

7
a

1 - 7 '

- 1 _ a) ̂ ”)
which proves the lemma. □

Provided that (/n, tt') is greater than 0, then a value of a can be determined to guarantee
a certain amount of improvement.

C o r o l la r y 7.2.3. Assume t h e s e t t i n g i n t h e o r e m 7 . 2 . 2 . vr') > 0, t h e n s e t t i n g

1 'Y
Ot = - A,r(/i,7r)

t o t h e f o l l o w i n g p o l i c y i m p r o v e m e n t

V . ^ { p) - V M > A,(/i,7r')V8.

Proof. Since £oo < 1 and 0 < a < 1, it follows that
rv

v . M - V M > — K { n y) -

Optimizing this quadratic expression with respect to a leads to the result. □

This corollary suggests choosing policies tt' with large future advantages.

7.3. Conservative Policy Iteration

As in the //-PolicySearch case, the goal of the algorithm is to return a policy that has small
advantages on average, except we now desire a stationary policy. In order to make the
comparison to the T-step case more evident, define the horizon time H as

This definition was also used for comparisons in section 2.5.

7.3. CONSERVATIVE POLICY ITERATION 101

Recall from the performance difference lemma (5.2.1) that the difference in value between
an optimal policy ?r* and ?r at sq is

V̂r* (Sq) %r(^o) — [-̂ 7r(®)û)] •

Therefore, if each advantage is less than e /H then tf has value e near to the optimal value.
Instead of attempting to ensure that each advantage is small (which is a max norm condi­
tion), CPI attempts to ensure that on average the advantages are e /J f small.

We consider a “policy search” setting for CPI, where the algorithm uses a restricted class
of stationary policies II (see Kakade and Langford [2002] for a slightly different version
of CPI). The goal of CPI is to find a policy ?r such that for all € II

This guarantee is similar to that of /^-PolicySearch, except now the future advantage is the
natural quantity to consider (as opposed to the advantage h)).

The first subsection discusses optimality guarantees, the next subsection presents the main
results of CPI, and the final subsection provides the sample complexity analysis. Note
that we expect the analysis to be somewhat more involved than that of /t-PolicySearch,
since /t-PolicySearch naturally terminates after T calls to the PolicyChooser. However, for
our conservative update rule, we must explicitly decide when to terminate policy updates
in order to obtain finite sample size bounds. The performance bound from the previous
section helps us here.

7.3.1. /i-Optimality. This subsection examines the analogous performance guaran­
tees to that of /f-PolicySearch. Note that if for all € II, (//, /i) < j j , then

h') ^ £ .

The first statement is due to the fact that (/t, h) = h). The second statement is
due to the fact that which follows from the definition of future advantage (the
future distribution has a ^ contribution form the starting distribution). This implies that
Ayr (/f, h) > ^Ayr(/f, h), and so A^{iJ,, h) < e.

Note that that we effectively have a “local” and “non-local” guarantee. The local guarantee
is that 7r has small advantages with respect to the states that it currently visits {ie with
respect to The “non-local” guarantee is that t t has small advantages with respect to
/t. However, note that this condition is a factor of H worse (the bound is £ rather than

102 7. CONSERVATIVE POLICY ITERATION

The following lemma gives reassurance as to why this is a sensible goal. Again, define
||p - g||i = “ gW |, and if % is a continuous space, the sum is replaced
by an integral. Importantly, note that the theorem is stated assuming a bound of j j on the
advantage and not the future advantage (see the equations above).

T heorem 7.3.1. Let Jibe a class of stationary policies for an infinite horizon MDP M.
Assume that t t is a policy such that for the distribution u and for all h € H,

< —

Then for policies t t ' € II and for all s q ,

%r(ao) > Kr'(so) - £ — — v\\i .

So if 1/ = the policy tt is guaranteed to compete favorably against any policy t t ' € II
whose future state distribution is close to If A.^{p, h) < e, then we also have the
weaker guarantee (by a factor of H) that tt competes favorably against those t t ' G II
whose future state distribution is close to p.

Essentially, the proof uses the notion that we are being “tested” under a different distribu­
tion than our “training” distribution and is similar to the proof of the analogous theorem
for the T-case (6.3.1).

Proof. Using the performance difference lemma (5.2.1) and the fact that ?r' G II,

%r'(^o) " %r(^o) — -^o~7r'(|e) [-̂ 7r(5j o)]

^ [-̂ 7r(®>®)] "1“ l|d,r',8o “ ^l|l

= HATr{u,7r') + H\\d.,r',so ~ ^ \\i

^ ^ + H\\dTr> ,80 ~ t/\\i

where the last step follows by assumption. □

7.3.2. The Algorithm. The high level idea of CPI is straightforward. The algorithm
calls the PolicyChooser to obtain a t t ' and then performs a conservative update with this
7t'. The immediate questions are: when should the algorithm terminate and how should the
PolicyChooser be implemented? Let us first specify an exact version of CPI, which gives
insight into the sample based version

In Exact /u-PolicySearch (algorithm II), the algorithm chooses the decision rule h G IIi
to maximize Q-„,t{p, h). In this setting, it is the future values that are relevant, so the exact
algorithm chooses h G II to maximize (/x, h).

We now specify a termination condition. Recall that if the PolicyChooser algorithm ever
returns a policy t t ' where A^(/x, t t ') < 0 then improvement is no longer guaranteed. The

7.3. CONSERVATIVE POLICY ITERATION 103

termination condition used by CPI is that it continues to update the policy as long as the
PolicyChooser returns a vr' such that (/i, ?r') > Note this condition translates into a
small gradient condition, since

(/)̂ Ia=0 — ^ £

However, this “gradient” is determined by the t t ' that is returned by the PolicyChooser,
which chooses t t ' from a potentially infinite set II (see the Remarks section in the last
chapter for a comparison of these methods to gradient methods).

The exact version of CPI is shown in algorithm 11. In addition to assuming that an exact
PohcyChooser is used, the algorithm assumes that it can set the value of a using the exact
future advantage vr'). The algorithm then sets a to the value specified in corollary
7.2.3 in order to improve %r(//) by 0(A^ (//, vr')^). Both of these assumptions are removed
in the following subsections when we consider the a sample based version of CPI.

Algorithm 11 Exact CPI
(1) Randomly initialize 7r
(2) Call the ExactPolicyChooser:

7t' = argm ^Q ^

(3) If A^(/i,7r') > jj,
(a) set

_

4H
(b) perform the update:

TT 4 - (1 — a)7r + a i r '

(c) go to step 2.
(4) Else, HALT and return tt

7.3.3. The Main Results. The following theorem is on the guarantee of this exact
algorithm.

T heorem 7.3.2. (Exact CPI) Let Tlbea class of stationary policies for an infinite horizon
MDP M. Exact CPI improves the value V)r(^) after each update and halts after 0 { ^)
calls to the ExactPolicyChooser (in line 2 of the algorithm). Furthermore, the policy t t

returned by Exact CPI is stationary and satisfies, for all h G II,

Â^{p,h) < — .

Proof. At every policy update à^{p,h) > j j , so corollary 7.2.3 implies that VT îp)
improves by 0 (- ^) after each update. Since this value function is bounded by 1, the

104 7. CONSERVATIVE POLICY ITERATION

algorithm must halt in O (ÿ-). After the algorithm halts, the algorithm must have obtained
some t t ' such that (/̂ > vr') < By construction, for this t t ' and for all /i € II,

Q tt (/^j h) < Q tt (/ / ; 7T) .

Since Â r (/x, h) = (//, h) - then for all h € II,

K {fi,h) < A^(/x,7t') < ^

which completes the proof. □

Interestingly, note that the policy tt returned is not necessarily in II. In fact, II could be a
deterministic policy class and yet the output policy t t is stochastic, in general.

Obviously, the exact algorithm is impractical. The following theorem is on the sample
complexity of a sample based CPI algorithm which assumes access to the ^-reset model.
This algorithm is spelled out the in following subsections.

Theorem 7.3.3. (Sample Based CPI) Let U bea class of stationary deterministic policies
for an infinite horizon MDP M. For any e and S, with probability greater than 1 — 5, CPI
observes a number of transitions that is

• if Hi is finite,

if Hi is infinite and M is a binary action MDP,

o (^ ^ (m n) + i o g ^))

and, for either case, CPI returns a stationary policy tt such that for allhÇ.H

A tt (/ X , / i) < — .

Again, we have a polynomial T dependence, no dependence on the size of the state space,
and a dependence on the complexity of II that is comparable to the trajectory tree method.
In comparison to the sample complexity bounds for the /Lt-PolicySearch algorithm (theorem
6.3.3), the polynomial factors of H and e are slightly higher.

The next subsection discusses the construction of the sample based PolicyChooser and the
following section completes the proof.

7.3.4. The “Stationary” /i-PoIicyChooser. As in subsections 6.3.3 and 6.4.1, we
can write our cost function as a “cost sensitive classification loss”

Qtt (/̂ j — û)]

7.3. CONSERVATIVE POLICY ITERATION 105

which implies a sampling procedure. In comparison to the T-step case, the sampling pro­
cedure has the additional complication that our horizon time is infinite. First, the sampling
procedure is outlined assuming that we can obtain samples from and unbiased esti­
mates of Qnis, a). This procedure is similar to the one of /^-PolicySearch (see subsection
6.3.3). First, obtain an s ~ and an o ~ Uniform (see section 4.2.1 for this sampling
procedure), and then obtain an unbiased estimate Q of Qtt(s, a). Then AI{h{s) = a)Q is
an unbiased estimate of Q,r (iw, h). Let Qi be the i-th sample with a corresponding state-
action of (si,ai) . If m samples are obtained, then an estimate of (//, h) is

Q t t ~ ^ Q i ^ (h { S i) = t t i)

for any h E U.

To deal with the infinite horizon, let us impose a horizon of 0 {H loge) which introduces a
bias of e (see section 2.3.3). The biased sampling procedure from d,r,^ is as follows. First,
sample s o ~ n , then follow the policy t t . At each step, accept the current state as a sample
with probability 1 /H . If the time 0 (H log e) is reached, then accept the current state as
the sample. A biased sample of Qn(s, a) is the empirical discounted reward (normalized
by 1/H) obtained by simulating ?r over the horizon time of 0(Zf logs). This procedure
introduces a bias of 0(e) into our estimate The total number of transitions
observed by /^-PolicyChooser under this method is 0{m H log e).

Algorithm 12 “Stationary” //-PolicyChooser(7r, H)

(1) Obtain a biased sample set {(si, ai, Qi)} of size m as described in the text
(2) Construct the estimates

(3) Set

(4) Return 7t'

7t' = argm ^Q „

The complete Stationary //-PolicyChooser is shown in algorithm 12 (we say stationary to
distinguish this //-PolicyChooser from the one in the last chapter). The policy returned is
just the policy t t ' € II that optimizes the empirical estimate Q,r (//, h).

The following uniform convergence lemma is useful in establishing the soundness of CPI.
This lemma is analogous to the sample size lemmas (6.3.4 and 6.3.5) of the last chapter.
Recall that 0{m H log e) is the total number of samples observed by the PolicyChooser.

Lemma 7.3.4. Let Jibe a finite class of stationary policies for an MDP M. Let m be set
as follows:

m

106 7. CONSERVATIVE POLICY ITERATION

• i/H i is finite

"• = o (^ (l o g | n | + lo g i))

• if Til is infinite and M is a binary action MDP

= o Æ (lo g K C (n) + lo g i))

then, for either of these two cases and upon input of of a policy tt , p-PolicySearch con­
structs a function (//, h) such that with probability greater than 1 — 6, for allh €Tl

IQn- (//, h) - Qvr A,) I < -jj •

Proof. The sampling procedure has two forms of bias. One is from biased samples
of dTr,fi and the other is from using a cutoff value function (1 — -y)E [X1t=o ®r)]
where T ' is the cutoff. With a horizon time of T' = O(If loge), then the bias in this
function can be reduced to 0(e). Also using this T', the cutoff sampling distribution for

introduces another bias term of 0(e) into the expectations taken. It suffices to show
that the biased estimates are | accurate with probability of error less than 5. The remainder
of the proof is identical to the proofs of lemmas 6.3.4 and 6.3.5 except now the analysis is
applied to these biased functions. □

7.3.5. Completing the proof. We are almost ready to specify the algorithm and proof.
There is the remaining technicality that given an output policy ir', we wish to estimate
A,r (jW, 7r') in order to set a. Since Â r (fi, 7r') = Q,r tf') — Q,r (ff, tt), we can estimate the
future advantages as follows:

&r {P, 7r') = Q,r (ff, 7t') - Qtt (M, 7t)

The previous lemma ensures us that our estimate of (//, ?r') is accurate. Additionally,
we just need to ensure accuracy on {p, t t) , (since n is not necessarily in II, the previ­
ous lemma does not guarantee accuracy on this input). However, it easy to demand that
Qyr { p , 7 t) also be accurate.

The CPI algorithm is presented in algorithm 13. The value of a is now set using {p, t t ') —

The factor of ^ is due to the technicality that we are using estimates of { p , t t) , s o

this accounts for the approximation error (see the following proof).

The proof of theorem 7.3.3 follows.

Proof, (proof of 7.3.3) For now, assume that estimates

A;r (/̂ j /t) = Qtt {p , h) Qtt (/X, 7r)

are ^ accurate for all A, € II at every step of the algorithm. Then at every update the
true future advantage of t t ' satisfies A^(/x,7t') > ^ (by line 4 in the algorithm). By

7.4. REMARKS 107

Algorithm 13 CPI(//-reset,II)
(1) Randomly initialize tt

(2) Obtain t t '

t t ' = n PolicyChooser(7r, II)
(3) If i 7t') > |^ ,th en3H’

(a) set

„ _ - A
iH

(b) perform the update
7r ^ (1 — a)7r + a7r'

(c) go to 2.
(4) Else, HALT and return vr

corollary 7.2.3, the improvement of must be 0{jj^), and so the algorithm must
halt in O (^) steps. Furthermore, by step 4, the algorithm halts when A„^(/i,7r') <
By construction (and the above equation), the policy returned by the /u-PolicyChooser
is in argmax/jgn h). Therefore, when the algorithm ceases, the policy vr returned
satisfies, for all h € II, {n, h) < e.

The remainder of proof involves determining the sample size such that at every step our
estimation error in (fi, h) is ^ for all h € II. This occurs if the estimates of Q̂ r (//, h)
and % (/i, t t) are ^ accurate. Lenuna 7.3.4 provides a value of m in order to obtain
0 { jj) accurate estimates for one call to PolicyChooser with probability of error less than
Ô. Hence, we must ensure that this accuracy condition is satisfied for all O (^) calls to
PolicyChooser, so replace S After this replacement, the proof follows by noting
that total number of observed transitions is since each call to the Policy­
Chooser requires 0{m H loge) transitions and there are O (^) calls to the PolicyChooser
(with probability of error less than 6). □

7.4. Remarks

7.4.1. What about improving P^(so)? In policy gradient methods, we are often in­
terested in improving the policy under some distinguished performance measure V^(so),
where the state sq is some distinguished start state. Here, we argued that even if ultimately,
we desire a good policy from sq, it is important to improve the measure Vjrifj) (where
fi is some distribution that hopefully reflects where good policies from sq tend to visit).
Furthermore, CPI reliably improves at every step before the algorithm halts.

A natural question is: can we jointly improve both V^{so) and Under exact meth­
ods this is certainly possible. However, under this approximate scheme the general answer
is no (unless we expend an extreme number of samples). The reason is again related to
those situations discussed in chapter 4, where it is hard to determine the gradient of y^(so)

108 7. CONSERVATIVE POLICY ITERATION

due to the problems related to exploration. However, it might be sensible to try and use
the measure /i = (1 - where is the distribution in which = 1.
Essentially, this gives /3 weight to the distinguished start-state. Here, it might be possible
to “often” improve Vjriso)-

7.4.2. Greedy Improvement and Line Searches. The greedy update bound uses a
pessimistic value of a, since it sets a based on the worst case bound in lemma 7.2.2. It
would certainly be sensible to try one dimensional line searches over a to improve the
policy, since in practice it is unlikely we are in this worse case.

However, as the following example shows, the improvement bound 7.2.2 can be tight,
simultaneously for all a and 7 .

E x a m ple 7.4.1. There are two states, i and j , and two actions, 1 and 2, at each state. At
state i, action 1 is a self transition with r(i, 1) = | and action 2 transitions to state j for
maximal reward r{i, 2) = 1. At state j , both actions lead to self transitions and r(J, 1) = |
and r{j, 2) = 0. Let the reset distribution be the state i {ie /x(i) = 1).

Consider the starting with the deterministic policy 7r(i) = 1 and 7r(j) = 1, so = 1.

The advantages are 2) = (1 - 'y)/2 and 2) = —(1 - 'y)/2 (and the advantages
are 0 for the actions taken by t t) . Consider a policy tt' such that Tr'{i) = 2 and Tr'{j) = 2.
The future advantage is then

= 1 * (1 - 7)/2 + 0 * (- (1 - 7) / 2)

= (1 - 7) /2

and so policy improvement of t t is possible using t t ' since this quantity is positive. Also,
£oo = (1 — 7) /2. Substituting these quantities into the bound gives;

where TTnew = (1 - Oi)7r -f- a?r'.

It is clear that Kr(l) = | and using some algebra it can be shown that

which shows that the bound is tight for all a and 7 for this w' and 7 r .

Part 3

Exploration

CHAPTER 8

On the Sample Complexity of Exploration

We now turn to the purest reinforcement learning setting in which we are only able to sim­
ulate the MDP in an online manner, and we don’t have access to either a generative model
or /x-reset model. Here, the “exploration/exploitation” dilemma is with us strongly. With­
out knowledge of the MDP, some of this time will be spent gaining knowledge about the
MDP (“exploration”) and some time will be spent using this knowledge to obtain reward
(“exploitation”).

This chapter examines how much time an agent must spend “exploring” in order for it
to act near optimally. This question is ill posed and we first suggest one notion for the
“sample complexity of exploration” motivated by the (“Explicit Explore or Exploit”)
algorithm of of Kearns and Singh [1998] (also see Fiechter [1994] for a precursor to this
algorithm).

8.0.3. Notions of Optimality. First, consider the case in which the agent has knowl­
edge that it is placed in an L-epoch MDP. In this chapter, we use L to denote the number of
epochs (and reserve T as a planning horizon time used by our algorithm). Often the most
sensible goal for the agent is to maximize the total reward over the L decision epochs. Ob­
viously if the agent has knowledge of the MDP, this has a well defined solution. Consider
the weaker setting in which the agent only has knowledge that it is in some MDP M that
was chosen according to some distribution Q, ie at the start M Q and then agent the
acts in M for L epochs (and the agent learns about M through the actions it takes). An
optimal strategy is one which optimizes the total expected reward in L steps, where the
expectation is taken with respect to Q and the strategy. Note that from this point of view
the exploration/exploitation tradeoff is artificial, since all actions of an optimal strategy are
chosen to maximize the total reward. For a single state MDP, an optimal efficient algo­
rithm exists using Gittins indexes (Gittins [1989]). The multi-state case can be cast as a
partially observable Markov Decision Problem whose adverse computational costs are well
understood (see Littman [1996]). We return to this point in the discussion of this thesis.

In a more agnostic setting, one might not assume knowledge of Q. Now the notion of op­
timality is less well defined. One could consider an adversarial setting where one assumes
that Nature is malicious. Here, we may desire an algorithm that is competitive against
this malicious Nature which picks Q after we choose our algorithm. This analysis has not

111

112 8. ON THE SAMPLE COMPLEXITY OF EXPLORATION

been formalized in the MDP setting and it is likely to lead to relatively weak guarantees
(an idealized setting that is not directly applicable to MDPs was considered in Langford,
Zinkevich, and Kakade [2002]).

Also working in this agnostic setting, the algorithm satisfies a somewhat different and
more tractable goal (see Brafman and Tennenholtz [2001] and Kearns and Koller [1999] for
subsequent generalizations). The guarantee of the algorithm is different for the discounted
and undiscounted cases, and the guarantee does not explicitly take into account the number
of decision epochs L.

We sununarize the 7-discounted case first. The question that is addressed is how many
transitions does an agent need to observe in the MDP before it arrives at a state such that,
with some certainty, the agent has a policy which has value near to the optimal discounted
value from that state. The algorithm can make this claim in time that is polynomial
in the size of the state space, action space, and relevant factors for the certainty and
approximation parameters. By time, we mean both the number of observed transitions in
the MDP and off-line computation time.

For the undiscounted, finite T-step horizon case, the algorithm compares itself with poli­
cies that “mix” in time T. Roughly speaking, a distribution “mixes” in time T if the
distribution is close to its stationary distribution after T timesteps.* Here, the guarantee is
that the algorithm achieves an average reward that is comparable to the maximal average
reward of those policies that “mix” in time T and that this occurs in time polynomial in
the relevant quantities. In contrast to the discounted case, this algorithm does not halt, and
continues to execute many T-step near-optimal polices.

For our purposes, we find the distinction between the statements for the discounted and
undiscounted cases somewhat artificial. Notions of “mixing” seem irrelevant to the behav­
ior of the E^ algorithm. For the T-step case, one could modify the E^ algorithm such that
it halts and returns a T-step optimal policy from some state, which is a guarantee that is
more parsimonious to the 7-discounted case. For this discounted case, halting also seems
unnecessary. One could again make a more parsimonious guarantee to the T-step case by
modifying the algorithm to compete with those policies that “mix” in time (see Bax­
ter and Bartlett [2001] and Kakade [2001] for connections between the mixing time and a
discount factor).

8.0.4. The Sample Complexity of Exploration. This chapter takes a different in­
terpretation of these results. In our setting, we assume the agent is in an T-epoch MDP.
Additionally, we assume that some planning horizon based on 7 or T is imposed (where
T is some less than L). Informally, the question of interest is: For each of the L visited

^See Keams and Singh [1998] for their slightly weaker notion o f mixing, which is stated with respect to the time
in which the average T-step return approaches the average infinite horizon return.

8. ON THE SAMPLE COMPLEXITY OF EXPLORATION 113

states, does the agent act near-optimally with respect to 'y or T from that state? This no­
tion is formalized by considering the agent to be just an algorithm and then considering the
expected reward obtained by the algorithm itself. Recall that the value of the sparse sam­
pling algorithm itself is near-optimal from every state the algorithm visits (see section 2.5).
Without knowledge of the MDP (or access to a generative model as the sparse sampling
algorithm assumes), then it is unreasonable to expect to an algorithm to act near-optimally
from all states the algorithm visits.

Once a horizon based on T or 7 has been imposed (which is not equal to L), there is
a natural “exploration/exploitation” distinction. As the agent obtains information about
the MDP it could alter its behavior based on this experience such that it attempts to act
near-optimally (with respect to T or 7) from subsequent states. Loosely, those states (or
equivalently timesteps) in the L-epoch horizon in which the agent acts near-optimally can
be labelled as “exploitation” and those states (or equivalently timesteps) in which the agent
is not acting near optimally can be labelled as “exploration”. We view this number of times
in which the agent is not acting near-optimally as the "sample complexity o f exploration”
(and this notion is with respect to T or 7).

Note that this is a rather different question than maximizing the total reward in L steps.
However, in a more agnostic setting it is unreasonable for the agent to find an optimal L-
epoch policy with only L observed transitions. The ’s notions of mixing gives us some
reassurance as to why planning with respect to a smaller horizon based on T or 7 may be
a sensible goal. However, the guarantees themselves can be stated more generally without
any notions of mixing.

The original statements were primarily interested in providing only polynomial time
guarantees and the actual bounds are somewhat loose. This chapter is focused on placing
tight upper and lower bounds on the sample complexity. It turns out that the Rmax al­
gorithm of Brafman and Tennenholtz [2001] allows us to make stronger guarantees with
respect to our aforementioned sample complexity question. The Rmax algorithm is a gen­
eralization of the E^ algorithm (to stochastic games), which implicitly makes the explo­
ration/exploitation tradeoff by directly rewarding uncertainty.

We first formalize our notion of the sample complexity of exploration for both the T-step
and 7-discounted case and then present our results. Importantly, the number of wasted
steps on exploration is bounded independently of L, so regardless of the number of states
visited in the MDP, there is only a fixed number of states in which the agent is “exploring”.
The results for the both the T and 7 case are analogous and this chapter focuses on the
T-step case for clarity. An upper bound is provided which states that the algorithm must
waste 0 (~ 4^ ~ log^ ^) actions on exploration, which is perhaps intuitively appealing,
since N"^A is the number of parameters used to specify the transition matrix.

114 8. ON THE SAMPLE COMPLEXITY OF EXPLORATION

Unfortunately, a lower bound is presented which is only log j) . This lower bound
is identical to the lower bound where the agent has access to a generative model (as in the
PhasedValuelteration algorithm of section 2.3.2). This lower bound suggests that building
an accurate model of the MDP is not required. It is not clear if the gap lies in a loose upper
or lower bound. This issue of accurate model building is focused on in the next chapter,
where examine this gap more closely.

This chapter also presents results on the case in which the MDP is deterministic, which
are related to results in Koenig and Simmons [1993]. Here, our upper and lower bounds
are identical and are 0{N A T). Papadimitriou and Tsitsiklis [1987] show that the com­
plexity classes are different for general and deterministic MDPs with respect to computing
an optimal policy given complete knowledge of the MDP (also see Littman, Dean, and
Kaelbling [1995]). In light of this result, it is not unreasonable to obtain different results
for the deterministic and stochastic case.

8.1. Preliminaries

Again, we use our standard definitions of an L-epoch MDP, where there are N states and
A actions. We use L as the number of epochs and reserve T as the time used by our
planning algorithm. It is important to note that in this chapter the agent only has access to
the online simulation model of the MDP (as defined in section 2.4), which does not allow
any “reset” actions. In the online simulation model, the agent is started at state So and
follows one unbroken path of experience determined by the transition model of the MDP
and the actions chosen by the agent.

The following definition is useful.

D e fin it io n 8.1.1. Let M be an L-epoch MDP and let i be a time t < L. A f-path c is
a sequence of the form c = (s q , o q , s i , a i . . . St) where Si and O i are states and actions in
M. The f-subpath c* of an L-path (so, «o, s i , a i . . . s l) is ct = { s q , o o , s i , a i . .. st).

An algorithm is a mapping from the set of all paths with respect to M to the set of all
actions. More formally.

Definition 8.1.2. Let M be an L-epoch MDP. An algorithm A for M is a deterministic
function:

A : {paths} {a i,0 2 , . . . üa)

where {paths} is the set of all {0,1, . . . T — 1}-paths for M and {oi , 02, . • . o î} is the set
of all actions for M.

For simplicity, we only consider deterministic algorithms. Note that there is little differ­
ence between an algorithm and an “agent”. However, in our terminology, an algorithm

8.2. OPTIMALITY CRITERIA 115

differs from a policy in that the algorithm has a “memory” where as a policy is “mem-
oryless”, i e the pohcy only maps a state-time to an action and disregards the previous
experience.

An algorithm A along with an L-epoch MDP M and a starting state s q induces a distribu­
tion over L-paths, This distribution is analogous to the distribution over paths induced by
a policy n (see section 2.1) and is defined as

Pr(Soj ÛQ j • • • \ A j So) = n.j._Q I (.A(Ct-) = d-r)P{^ST-\-l l&T) ® t)

where P(-|s, a) is the transition model of M, and I{A{Cr) = ûr) is the indicator function
which is 1 if A(cr) = Ur and is 0 else. The indicator function is used since our algorithm
is deterministic.

Under this distribution, given a (-path (sq, oo, • • •, St), the probabihty that . . . s l)

is the remainder of the L-path is:

P r(sf j (X f f . . . S j j \Aj M .j So, ciq, . . . s^) = 11^—̂ I («4(cj-) = o^-)J^(St--j.i |s^ , û t) •

Although the transition model obeys a Markov property, A does not necessarily obey such
a property since this function could be dependent on the entire (-path {so,0o,. . . ,St). This
distribution is useful when defining the value of an algorithm for a (-path.

8.2. Optimality Criteria

The situation we are considering is one in which A is run in M starting from so and an
L-path c is obtained, i e c is sampled from Pr(-|M, A, Sq) . We desire a notion of optimality
that reflects the algorithm .4’s behavior. The notion optimality considered is one with
respect to an imposed planning horizon imposed by T of 7 . Informally, we say that ̂ 4 is e
near-optimal at time (if the v a l u e of A at time (is a close to the optimal value, with respect
to T or 7 . We start with the 7-discounted case since the notion is more straightforward than
the T-step case.

8.2.1. 7-Discounted Optimality on a Path. Let us define the value of an algorithm
on a (-path. Informally, it is the expected discounted reward of our algorithm from time
(onward, assuming that the initial sequence of state-actions is the (path {so,ao,. . . st).
The following definition uses the probability Pr(-|>l, M, 80, oo, ■■■St) which was defined
in the last section.

D e fin it io n 8.2.1. Let M be an infinite horizon MDP. The 7 -discounted value of algo­
rithm A with respect to M from a (-path (sq, ao ,. . . st) is:

UA,'r ,M{so,ao, . . .St) = (1 - 7)^(st,ot,...)~Pr(-|AM,«o,ao,-«0 ^r{Sr,ar)
,T = t

116 8. ON THE SAMPLE COMPLEXITY OF EXPLORATION

Let n be the class of all algorithms for M. The optimal 7 -discounted value from a f-path
cis:

= sup UA,yM^) •
Aen

We drop the M dependence when clear from context. Due to the Markov property, we
know that U*{c) = V*{s), where s is the last state in the path. Since a policy ?r is a
memoryless algorithm, then

7̂T,7(S0 J UQ> • • • Sf)

which follows form the Markov property.

A notion of optimality is as follows. Let c = (so, uqj 81, ..) be an 00-path sampled
from Pr(-|.4, M, sq), where M is an infinite horizon MDP. ̂Recall that a subpath ct is just
the subsequence (sq, oo, • •. «t). We say .4 is e near-optimal at time t if

UA,'r{ct) > U*{ct) — e •

Note the somewhat self-referential nature of this statement, since the algorithm produces
the path c and optimality at time t is judged with respect to the value of the algorithm on
the subpath c*.

Clearly, it is not feasible for A to be near-optimal at all times t, if A has no knowledge
of the MDR We refer to the number of timesteps in which the previous condition is not
satisfied as the sample complexity of exploration. Intuitively, it is the number of states
at which the agent is not exploiting for near-optimal reward with respect to the horizon
imposed by 7 .

8.2.2. T-step Optimality on a Path. Defining a similar notion for the T-step case
requires some additional technicalities. Unlike in the discounted case, a T-step optimal
policy is non-stationary. Crudely, our notion of a good algorithm is one which executes a
T-step, near-optimal policy for every cycle of T-steps. Consider a counter which counts
as follows

0 ,1 , . . . ,T — 1 ;0 ,1 ,.. .T — 1 ,0 ,1 ,2 ,... .

ie the counter value at time t is tmodT. We say t' is the T-step end time of time f if f' is
the next time at which the counter value is 0. Hence the time 2T is the T-step end time
for all of the times T, T -I-1 , . . . , 2T — 1. The value of A for a f-path is the (normalized)
expected reward obtained from time t up until the T-step end time of f. More formally.

Definition 8.2.2. The time t' is the T-step end time of time f, if t' is the smallest time
such that f'modT = 0 and f > t. Let M be an L-epoch MDP, and let t' be the T-
step end time for time f. The T-step undiscounted value of an algorithm A from a path

See Puterman [1994] for a more formal definition of the probability of oo-paths in infinite horizon setting.

8.3. MAIN THEOREMS 117

(SQj do) • • • ^t) IS.

U ^ ^ m {S o , Û q , . . . S t) — rp^{8 t ,a t , - . .8L) '^P r{ \A ,M,8o,ao,- -8t)

t ' - l

5 ^r(S r,O r)

Let n be the class of all algorithms for M. The optimal T-step undiscounted value from
a t-path c is:

Um (c) = sup •
>ten

Again, we normalize these values by T. Intuitively, U a { s q , Oq , . . . S t) is the sum (normal­
ized) reward obtained until the T-step cycle is over. This is the analogous definition to
UA.jiso, do, • • • S t) . Again, due to the Markov property, we know that ï7*(so, Oq, . . . S t)

only depends on the last state st-

A notion of optimality similar to the 7-discounted case is as follows. Let c = (so » do,.. • s l)
be an L-path sampled according to Pr(-|,4, M, sq) . We say ,4 is e near-optimal at time t if

> U*(ct) — £ .

where ct is the subpath (sq, oo,.. • «t). Again, it is not feasible for A to be near-optimal
at all times t if A has no knowledge of the MDP. As in the discounted case, we refer
to the number of timesteps in which the previous condition is not satisfied as the sample
complexity of exploration.

8.3. Main Theorems

This section presents the main claims of this chapter, which are upper and lower bounds
on the sample complexity of exploration. We begin with the results on general MDPs and
then state the results for deterministic MDPs. Our analysis focuses on the T-step case, and
for the discounted case, we only state an upper bound.

8.3.1. General MDPs. The first theorem is an upper bound on the sample complex­
ity of exploration for the T-step case. Recall each timestep corresponds to one sample
transition.

T heorem 8.3.1. (T-step sample complexity) Let M be an L-epoch MDP and Sq be a
state for M. There exists an algorithm A taking inputs N, A, T, e, and 5, such that if c
is an L-path sampled from Pr(-|.4, M, Sq), then with probability greater than 1 — 5, the
statement

U A {c t)> U '(c t)-e

is true for all but 0 (log^ timesteps t < L.

118 8. ON THE SAMPLE COMPLEXITY OF EXPLORATION

Crucially, note that this number of non-near optimal steps does not depend on L. Thus,
regardless of how long the algorithm is run, there is only a fixed (polynomial) number
of steps in which A is not acting near-optimally. This guarantee does not imply that the
agent finds a near-optimal policy from every state, but only that it is executing near-optimal
sequences of actions (with respect to T) from those states it happens to visit. Fixing other
variables and ignoring log factors, this bound is 0{N ^A), which is precisely the number
of parameters used to specify the transition model.

The following theorem is for the discounted case (where L = oo). For comparison pur­
pose, we state the result in terms of which is the cutoff time in which the
infinite-horizon, 7-discounted value function is 0{e) close to a value function with cutoff
time Te (see section 2.3.3)

T heorem 8.3.2. (^-discounted sample complexity) Let M be an infinite horizon MDP
and So be a state for M. There exists an algorithm A taking inputs N, A, 7, e, and Ô, such
that if c is an 0 0 -path sampled from Pr(-|w4, M, Sq), then with probability greater than
1 — 6, the statement

UA,'y{Ct) >U*{ct) — £

is true for all but 0{ ̂ log ̂^) timesteps, where Tg =

This guarantee is parsimonious with the T-step undiscounted case, since in this case there
is no L dependence (so we could set L = 00 to obtain an analogous statement).

As mentioned earlier, these guarantees are different than the original guarantee which
referred to mixing times and made ergodicity assumptions. For the T-case, the original
statement is of the form that L needs to be polynomial in the appropriate quantities before
the return reaped by the agent is close to the optimal return among those policies that mix
in time T. Here, we allow L to be arbitrary and make our statements with respect to the
expected value of the algorithm itself (rather than the return received). Note that if L is
chosen to be sufficiently large, the time spent on “exploration” is a small fraction of the
total time L. The statement referring to mixing times follows in a straightforward manner
from this fact with appropriate additional ergodicity assumptions.

For 7-discounted case, the original guarantee is of the form that the algorithm only
finds a single state at which it obtains a near-optimal policy from that state. This guar­
antee is stronger since the algorithm A is near-optimal from all states it visits except for
0 { ^ log^ ^) states. One can easily use this theorem to make a guarantee that com­
pares the return reaped by A to the return of those policies that mix in O time (see
see Baxter and Bartlett [2001] and Kakade [2001] for notions of “7 mixing”).

In addition to this sample complexity statement, the following theorem bounds the total
number of dynamic programming computations performed by ̂ on an MDP of state-action

8.3. MAIN THEOREMS 119

size N X A. Here, we say a “table lookup” is just accessing a table stored in memory of
size N by A.

Theorem 8.3.3. (Computational Complexity) There exists an algorithm A that satisfies
the conditions in theorem 8.3.1, and uses a total number of dynamic programming compu­
tations that is bounded by N and a total number of “table lookups” that is 0{L).

Similar to the sample complexity result, the total number of dynamic programming com­
putations performed by the algorithm does not depend on L. Only the number of “table
lookups” depends on L which is due to executing a policy stored in memory for 0{L)
steps. Note that the original algorithm does not guarantee that the amount of off-line com­
putation is independent of the run time. The modification we make to the algorithm is
intuitive. The algorithm simply caches the exploitation and exploration policies at states
where it has learned an accurate exploitation policy and uses a “table lookup” to execute
the policy at these states.

These sample complexity results are intuitively appealing since N “̂A is the number of
parameters used to specify the transition matrix. Unfortunately, there is gap between this
upper bound and the following lower bound.

Theorem 8.3.4. (Lower Bound) For any algorithm A there exists an L-epoch MDP M
and a state So such that ifc is an L-path sampled from Pr(-|.4, M, gg), then with probability
greater than 1 — 5, the statement

U A { c t)> U \c t) - e

is false for log j) timesteps t < L.

Recall that lower bound is identical to the lower bound on the sample complexity required
to compute an optimal policy (at a single state) with access to a generative model (see
section 2.5). Importantly, note that this lower bound suggests that an accurate estimate of
the transition model is not required to obtain a near-optimal policy. We return to the issue
of accurate model building in the next chapter.

8.3.2. Deterministic MDPs. A deterministic MDP is one which has deterministic
transition probabilities and rewards. For these MDPs, optimal T-step polices can be found
exactly so we don’t concern ourselves with probably approximately correct statements.

The results for deterministic MDPs are similar to those in Koenig and Simmons [1993],
except we explicitly state the dependencies in terms of N , A, and T.

Theorem 8.3.5. (Deterministic Sample Complexity) Let M be an L-epoch deterministic
MDP and Sq be a state in M. There exists an algorithm A such that if c is an L-path

120 8. ON THE SAMPLE COMPLEXITY OF EXPLORATION

sampled from Pr(-|^, M, sq)» then the statement

UA{ct) = U*{ct)

is true for all but N A T timesteps t < L,

Unlike in the stochastic case, the lower bound matches the upper bound.

Theorem 8.3.6. (Deterministic Lower Bound) For any algorithm A, there exists an L-
epoch MDP M and a state So In M such that ifc is an L-path sampledfrom Pr(|^ , M, So).
then the statement

UA{ct) = U*(ct)

is false for Cl{N AT) timesteps t < L.

8.4. The Modified Rmax Algorithm

This section specifies the Rmax algorithm, which is a generalization of the algorithm.
Both algorithms are model based algorithms, ie the algorithms estimate a transition model
using the experience obtained through acting in the MDP. Both algorithms then use this
empirical model for both exploration and exploitation purposes. The key insight to both
algorithms is that exploration can be done efficiently when the agent is not exploiting.
The Rmax algorithm handles the tradeoff between exploration and exploitation in a more
natural way than its precursor, and this additional modification provides the leverage in
making our more general performance guarantees.

A crucial notion in both algorithms is that of a known state — a state visited often enough
such that the estimated transition model for that state is “close” to its true values in M.

D e f i n i t i o n 8.4.1. A state is m-known if each of its actions has been tried m times.

We typically just say known rather than m-known. It turns out that in this analysis the value
of m is the gap between our upper and lower bounds. Later we take care in specifying what
constitutes “close” and in what value of m is sufficient to obtain an accurate model with
high probability.

The algorithm makes a distinction between the known and unknown states. We refer to
the currently known set by K . Successful exploration is when the agent visits a state
not in K . When an unknown state is visited, the agent engages in balanced wandering
— it chooses the action at that state that it has tried the least often (and ties are broken
randomly). Therefore, after mA visits to an unknown state, it becomes known, since
each action has been tried m times. By the pigeon hole principle, successful exploration
can only occur m N A times before all state-actions become known (though this does not
necessarily occur).

8.4. THE MODIFIED ALGORITHM 121

The algorithm proceeds by using observations at the known states to construct an approx­
imate MDP M k at these states. To do this, the algorithm maintains the obvious statistics
from its observed experience, and it constructs the approximate transition model with ob­
served empirical frequencies. Estimating the reward function is trivial due to our assump­
tion that the reward function is deterministic.

This approximate model is used for planning exploration and exploitation policies. In the
Rmax algorithm, M k is altered such that all states not in AT are absorbing and maximally
rewarding (for r = 1 in our setting) — this construction can though of as optimism in
the face of uncertainty. It turns out that an optimal policy tt for Mk is either a “good”
exploration or a “good” exploitation policy in M. A good exploitation policy in M is one
which has near-optimal T-step reward and a good exploration policy in M is one which
escapes from the set of known states K quickly.

This variant and analysis differ from and Rmax the following ways:

(1) a more general optimality guarantee is made
(a) no notions of “mixing” are assumed (for the T case)
(b) the discounted case has an analogous optimality guarantee

(2) computations are re-used.
(3) a tight bound on m is used, which requires

(a) a less stringent li accuracy condition on Pk

(b) a tight sample complexity result to satisfy this condition
(4) a more general “induced inequahty” lemma is used for explore/exploit tradeoff
(5) a weaker accuracy condition (8.5.1) is explicitly stated for the algorithm

First, some definitions related to the value of a policy are useful. Then we are ready to
present the key “induced inequality” lemma and the algorithm.

8.4.1. T-Step Values. Recall that the value Vir,t,Af(s) is the undiscounted return, of
a policy w starting from state s, over the timeperiod starting at t and ending at L (since M
is an L-epoch MDP). Here, ?r is a sequence of L decision rules.

The Rmax algorithm uses deterministic T-step policies t t , which are T-step sequences
of decision rules of the form (7t(-, 0), 7t(-, 1) ,... 7r(*, T — 1)).^ It is useful to define the

value of a T-step policy in the L-epoch MDP M. The f-value is just the reward obtained
from from time t up until time T from starting at state s and following (7r(-, t), ?r(-, t -t-
1) ,... 7t(-, T — 1)). More formally.

^Technically, a policy is a rule for acting over the entire L-epoch MDP (see section 6.2), and this T-step policy
is not a policy but a sequence o f T decision rules.

122 8. ON THE SAMPLE COMPLEXITY OF EXPLORATION

D e h n it io n 8.4.2. Let M be an L-epoch MDP and let tt be a T-step policy for M. For a
time t < T , the (value Un,t,M{s) of tt at state s is

1
U n , t , M { s) = ÿ L '(e t ,a t , . . .« T - i ,O T - i) ~ P r (|7T ,M ,st=s) ^ ']

\.T = t

Let n be the class of all T-step policies for M. The optimal t-value of tt at state s is:

U I m (s) = sup ■
Tfsn

A T-step optimal policy tt at state s is one such that

As opposed to is just the (normalized) sum reward from time t up until
time T (rather than L) obtained under the execution of the T-step policy t t for T — (steps.

8.4.2. Explore or Exploit? The following definition of an induced MDP M k with
respect to M and a set of states K is useful. We define M k and M to have the same
state-action space. For all states in K , M k is identical to M. For all states not in K ,
Mk modifies these states to be absorbing and maximally rewarding (for r = l).'^ More
formally.

D efin itio n 8.4.3. Let M be an MDP with transition model P and let AT be a set of states.
The induced MDP M k, with respect to K and M is defined as follows. M k has the same
number of epochs and the same state-action space as M. M k has a transition model P k

and reward function t k specified as follows.

If 5 6 ÜC, for all actions a and states s'

PK{s'\s,a) = P{s'\s,a)

rK{s,a) = r{s,a).

If s ^ K , for all actions a

P K { s \ s , a) = 1

rK(s,a) = 1 .

The following lemma on inequalities based on value functions for M and M k provides
the foundation for the algorithm. Here, Pr(escape from K\7t, M, st = s) is the probability
of reaching a state not in K in the path {st, a*. . . , s t - i , û t - i) obtained while following
?r in M starting from state st — s, i e

Pr(escape from LTItt, M, St = s) = [^(3r s.t. Sr i K)]

^For simplicity, we avoid using a single additional absorbing state as in and Rm ax ■ Instead, we just make all
states not in K absorbing. Hence, M and M k have the same state space.

8.4. THE MODIFIED A m », ALGORITHM 123

where I is the indicator function denoting if some state Sr is not in K.

Lemma 8.4.4. (Induced Inequalities) Let M be an MDP, K be a set of states, and M k
be an induced MDP with respect to K and M. For all T-step policies w, times t < T , and
states s,

(^) —

and
Un,t,M{s) > (s) - Pr(escape from K\-k, M, St = s)

The first inequality trivially follows from the construction of M k - The second inequality
states that a policy in M has value close to that in M k if the policy does not escape quickly
(in T-steps) from K in M. An important point is that this guarantee is made simultaneously
for all t < T. This is relevant to our notion of optimality since we desire the expectation
of our algorithm to be near-optimal at every state encountered with respect to our imposed
horizon time of T.

P roof. The first inequality immediately follows since M k and M are identical on
K , and outside of K , M k is absorbing and maximally rewarding.

To prove the second inequality, let Pt,Mk (®) and Pt,m{s) be the probability that the state
at time r is a while following t t starting from st at time t in M k and M, respectively. We
slightly abuse notation and write rK{s,T) = 7r(s,r)) and r(a ,r) = r(s,7r(s,T))
for the reward obtained at state-time (s, r) by following the policy.

Following from the definition of M k , for all s € K , Pt,Mk (s) < Pt,m {s). Also, for
s € K , Tk {s , t) = r(s, r) and for s ^ K , rK{s, r) = 1. Hence, for alH < r < T

(&, 7")] T)]

= P t ,Mk {s)rK (s , t) - Pr,M {s)r{s, t)
s e K

+ ^ P T , M K (s) r K { s , T) - P r , M { s) r { s , T)

s ^ K

< 5 3 ^ r , M K i s) { r K { s , T) - t (^S,t)) -f- J 3 P t ,Mk {s) t k {s , t)
s G K 8 ^ K

— (^)
s ^ K

< f (escape from K \k, Mk , st)

< f (escape from K \tt, M, St) -

124 8. ON THE SAMPLE COMPLEXITY OF EXPLORATION

Since

~ ^ [f(8; 7")]̂
T = t

the second inequality now follows. □

To point out connections with both ±e and Rmax explore or exploit lemma, we state
the following corollary, which is a shghtly stronger version, with respect to time, of the key
lemma in Rmax (Brafman and Tennenholtz [2001]). However, it is the previous lemma that
is used in the analysis of our algorithm.

The corollary states that if we derive an optimal policy tt from M k then either tt escapes
quickly from K in M ox else tt is a near-optimal policy in M (with respect to T). Hence,
by following the single policy tt no explicit decision to explore or exploit needs to be made,
since ?r is implicitly making this tradeoff.^

C o r o l l a r y 8.4.5. (Implicit Explore or Exploit) Let M be an MDP, K be a set of states,
and M k be an induced MDP with respect to K and M. Let tt be an optimal T-step policy
in Mk- For all states s and times t < T

U-^,t,M{s) > («) - Pr(escape from AT|7r, M, st = s)

P r o o f . Let t t * be an optimal T-step policy in M. Using the fact that tt is T-step
optimal in M k and using both inequalities in the previous lemma, we have for all t < T ,

Un,t,M{s) > U-„,t,MK W) - Pr(escape from K \ t̂ , M, st = s)

> Un*,i,MK M - Pr(escape from K\7r, M, st = s)

> U lui^o) - Pr(escape from K\7t, M, st = s)

where last step follows since U-,r*,t,MK («0) > U^*,t,M{so). □

8.4.3. The algorithm. Let K be an m-known set. If we knew the MDP M k , then
the last lemma suggests that this MDP is sensible to use for planning. Since the transition
model of Mk is not known, we use an approximation to this MDP Mk , with transition
model Pk - For states s € K , define Pk follows,

(# of times s s' under action a)
Pa: (s'I s, a) =

of visits to 8

The use o f a single policy by Rm ax also allows us to make our stronger guarantees. The reason is because the
guarantees o f interest are with respect to the expected return of the algorithm itself. The use o f a single policy
means that the value o f the algorithm is directly related to the value o f the policy. In contrast, the algorithm
switches between an explore and an exploit policy, so the expected value o f the algorithm itself is not directly
connected to the value of the policy, unless executes a single policy for T steps. However, executing a single
policy for T steps makes it more tricky to make our guarantee that the algorithm is optimal from every subpath
Ct- The author conjectures that the straightforward E^ variant has a larger sample complexity bound in terms of
T a n d e .

8.5. THE ANALYSIS 125

and for states not in K , Pk is absorbing. Clearly, the value that is chosen for m determines
the quality of this approximation. However, let us ignore this for now and present the
algorithm in terms of the parameter m.

Algorithm 14 Rmax__
(1) Set i f = 0
(2) Act: I s s e K l

(a) Yes, execute the action f (g, tmodT). Goto 2.
(b) No, perform balanced wandering for one timestep.

(i) If a state becomes m-known, goto 3.
(ii) Else, goto 2.

(3) Compute:
(a) Update K and M k
(b) Compute an optimal policy -k for Mk - Goto 2.

The slightly modified Rmax algorithm is shown in 14, where s is the current state and
t is the current time (so fmodT is the current cycle time). Initially K is empty, and so
the algorithm first engages in balanced wandering, where the agent tries the action which
has been taken the least number of times at the current state. This is continued until a
state becomes m-known, which must occur by the pigeonhole principle. Upon obtaining a
state that is m-known, the algorithm then updates K and M k and an optimal policy tt is
computed for M k -

If the algorithm is at a state s Ç. K , then tt is executed with respect to the T-step cycle
(recall section 8.2.2), ie the action w(s, tmodT) is taken. At all times, if the agent ever
reaches a state s ^ K , balanced wandering is resumed. If the known set K ever changes,
then MDP M k is updated and the policy ü is recomputed. Note that computations are
performed only when the known set K changes, else the algorithm just performs “table
lookups”.

We hope that M k is a good approximation to M k and that this implies the agent is either
exploiting or efficiently exploring. By the Pigeonhole Principle, successful exploration can
only occur m N A times. Hence, as long as the escape probability is “large”, exploration
must “quickly” cease and exploitation must occur (as suggested by the explore or exploit
corollary, 8.4.5).

8.5. The Analysis

This section provides the analysis of the upper bounds. In the first subsection, we assume
that a value of m is chosen large enough to obtain sufficiently accurate M ^ ’s and a sample
complexity bound is stated in terms of m. It turns out that m is essentially the gap between
the lower and upper bounds, so we desire a tight analysis to determine an appropriate
value of m. The following subsection provides an improved li accuracy condition for

126 8. ON THE SAMPLE COMPLEXITY OF EXPLORATION

determining if M k is accurate. It turns out that a straightforward Chemoff bound analysis
is not sufficient to obtain a tight bound and a more involved analysis is used to determine
m. The final subsection completes the proofs of the upper bounds for both general and
deterministic MDPs.

An important point to note is that the accuracy condition we state in the first subsection
is, informally, the weakest condition needed for our analysis to go through. This accuracy
condition does not necessarily imply that we need to obtain an accurate transition model
for M k , only that optimal policies derived from Mk are accurate. However, when deter­
mining m in the subsection thereafter, we actually ensure that the transition model for Mk
is an accurate estimate to that in M k (though this is done in a weaker /i sense as com­
pared to the original and Rmax algorithms). This issue of “accurate model building”
lies at the heart of the gap between our lower and upper bound and is discussed in the next
chapter, where we examine “model based” based approaches more carefully.

8.5.1. The Sample Complexity in terms of m. For now let us just assume a value of
m is chosen such that Mk is accurate in the following sense.

C o n d itio n 8.5.1. (Approximation Condition) If R m a x uses the set of states K and an
MDP M k, then for the optimal policy tt for M k assume that for all states s and times
t < T

Uif,t,MK (s) > ^t,MK (®) “ ^

The assumption states that the policy t t that our algorithm derives from M k is near-optimal
in M k- Informally, this is the weakest condition needed in order for the analysis to go
through. Note that this condition does not state we require an accurate transition model of
M k- In the next subsection, we determine a value of m such that this condition holds with
high probability.

The following lemma bounds the sample complexity of exploration in terms of m.

Lemma 8.5.2. Let M be an L-epoch MDP and so be a state for M. If c is an L-path
sampled from Pr(-|/?r„ox > M, Sq) if condition 8.5.1 holds, then with probability greater
than 1 —Ô, the statement

U n .., . .(c t)> U '(c) -2 s

is true for all but log ^) timesteps t < L.

The high-level idea of the proof is as follows. Under the induced inequality lemma (8.4.4)
and the previous condition, then we can show that either rt escapes K m M with probability
greater than an e or ^ is a 2s near-optimal policy in M (where one factor of e is due to
the accuracy assumption and the other factor is due to having an escape probability less

8.5. THE ANALYSIS 127

than e). By the Pigeonhole Principle, successful exploration can only occur m N A times,
so eventually exploitation must occur.

P r o o f . Let ^ be an optimal policy with respect to some M k that is used by Rmax-
Let 7T* be an optimal policy in M. The induced inequality lemma (8.4.5) and condition
8.5.1 imply that for all f < T and states s

(s) - Pr(escape from K\7t, M, st = s)

> U^Mj ̂(s) - £ - Pr(escape from M, st = s)

> (a) - G - Pr(escape from K\it, M, st = s)

> Ut M(s) —e — Pr(escape from K\-k, M, St = s)

where we have used both inequalities in the induced inequality lemma and have used the
optimality of vr* in M.

Recall that Rmax executes the policy tt in sync with the T-step cycle time as along as
s € K . The definition of Ua and the previous inequality imply that either

U R „ ..(c t)> U '{c ,)-2 e

or the probability that tt escapes from K before the T-end time for t must be greater than
e.

Now, we address how many timesteps the T-step escape probability can be greater than e
for any K . Each attempted exploration can be viewed as a Bernoulli trial with chance of
success greater than e. There can be at most m N A successful exploration attempts, until all
state-actions are known and the escape probability is 0. Note that in steps the mean
number of successful exploration attempts is m NA. The Hoeffding’s bound states that we
need ^ log j samples to obtain a J3 fractionally accurate estimate of the mean, where each
“sample” is attempts. Hence, we can choose a such that 0 (m ^ log j) attempts
are sufficient for all m N A exploration attempts to succeed, with probability greater than
1 — Since each attempted exploration takes at most T steps, the number of exploration
steps is bounded by O() log i . □

Note that our lower bound is log j) , and so the gap between our lower and upper
bound is essentially m. The issue we now address is what is the sample size m. Clearly, a
tight bound is desired here to minimize this gap.

8.5.2. What is the appropriate value of m? First, an approximation condition for
M is provided, such that the approximation condition 8.5.1 holds. We use the following
definition for our less stringent li accuracy condition.

128 8. ON THE SAMPLE COMPLEXITY OF EXPLORATION

D efinition 8.5.3. (/i accuracy) We say that a transition model P is an e-approximation

to a transition model P if for all states s and actions a

^ |P (s> , a) - P (s ' |s, a) I < e ,

The following lemma addresses our accuracy needs.

L e m m a 8.5.4. (e-Approximation Condition) Let M and M be two MDPs with the same
reward functions and the same state-action space. If the transition model of M is an e-
approximation to that of M, then for all T-step policies t t , states s, and times t < T ,

As mentioned earlier, this guarantee is actually stronger than what is needed for our accu­
racy condition, since it holds for all policies. We address this issue in the next chapter.

P r o o f . Let S t - i = (s, s t + i , . . . , s t - i) be a T — t length sequence of states starting
with a fixed state s and let Sr be the subsequence Sr = {s, St+i,. . . , Sr). Let Pr(5'T) and
Pr(S'T) be the probability of in M and M, respectively, under policy n starting from
St = 5 at time t. Let R { S t- i) = y J2r=t ^(^r, 7r(sr)) and so

l^ 7r,t,M(®) ~ = I ^ (P r (5 T -l) - f t (5 'T - l))P t (‘S'7’- l) |
S t —1

< ^ |Pr(5'T-i) - PtCS't - i)!
St -1

since R is bounded between 0 and 1.

We now show that the error between Pr(5T-i) and Pr(S'T-i) is bounded as follows

^ | P r (S T - i) - f i (5 T - i) l < £ T
S t -1

where the sum is over all T — t length sequences St - i that start with state St = s. Let
P and P be the transition models in M and M respectively. Slightly abusing notation,
let P(s'|5'T) = P (s '|5r , 7r(sr)) andP(s'|5 'r) = P (s '|s r ,7r(sT)). The e-approximation

8.5. THE ANALYSIS 129

condition implies that | P (s ' | 5 ' r) — P(s'|S 't)| < s. For any r < T — 1, it follows that

^ |P r (S ,+ i) - P r (S ,+ i) |
'S'r+1

= Y . |ft(S'r)P(s'|Sr) - ft(Sr)P(s'|Sr)l
S-r,8'

< Y |Pr(S,)P(s'|S,) - ?i{Sr)P(a'\Sr)\ + |fi(S ,)P (s'|S ,) - fi(Sr)P(s'|S ,)|
S - r , s '

= ^ |P r(5^) - f t (5 ,) |^ P (s ' l S ,) + ^ f i (S ,) 5] |P (s ' |S ,) -P (s ' |S ,) |
Sr »' S t s '

< ^ |P r (S ,) - P r (g ,) |+ 6 .
5r

Recursing on this equation leads to the result. □

The following technical lemma addresses how large m needs to be such that P is an s-
approximation to P . The following lemma is for an arbitrary distribution p over N ele­
ments.

Lemma 8.5.5. Assume that m samples are obtained from a distribution p, which is over
a set of N elements. Let p be the empirical distribution, ie p{i) = ^ subserved ^
m = 0 (^ log y), then with probability greater than 1 — 5

-p (i) \ < e

A straightforward Chemoff bound analysis is not sufficient to prove this result (as this
would lead to an O(N^) result). The proof demands different fractional accuracies for
different values of p(i).

Proof. For simplicity, we write pi for p{i) and pi for p{i). The form of the Chemoff
bound that we use is

P{\Pi -P i\ > ocPi) < 2exp{-a^pim /2) .

Let us define the values a* as follows, based on the values pi as follows:

a ,= { i

Let us assume that for all i that

(8.5.1) \P i - P i \ < o i i P i .

130 8. ON THE SAMPLE COMPLEXITY OF EXPLORATION

This implies that

^ l p (i) - p (i) l <

= I E P‘+| E i

- I + I
and so it is sufficient to show equation 8.5.1 holds with probability greater than 1 — 5 for

= 0 { ^ log y).

By the union bound and the Chemoff bound,

P{3i s.t. \pi - p i \ > aiPi) < 2 exp(-a-pim /2)

< 2 ^ ex p (-a-p im /2) + 2 ^ exp(-a?p im /2) .
i-Pi>-k i-Pi<-k

Using the value of tti Stated above, it follows that fori such that Pi > E^exp(-o:fpim/2) <
e x p (-- ^) < e x p (- ^) . Similarly, for i such that p, < exp(-a?Pim /2) <
e x p (-y ^) . Therefore,

l !
8NP(3i st |pi - pi| > OiPi) < 2 ^ e x p (- ^)

= 2 i V e x p (- ^)

and the result follows if we demand 2iV exp(- < J. □

The previous two lemmas directly imply the following tightened result for m over the
and Rmax algorithm.

Lemma 8.5.6. (Setting m) In order for the approximation condition to hold (equation

58.5.1) with probability of error less than 5, it is sufficient that m = log

Proof. By lemma 8.5.4, we need to set the li error of P (|s, a) to be less than ^ for
all s and o. This implies that an optimal policy tt in M k has value in M k that is e close to
the optimal value in M k- There are N A of these transition probabilities, so if we allocate

error probability to each one, then the total error probabihty is less than <5. The result
follows from the the previous lemma with e 4- ^ and S 4- □

8.5.3. Putting the lemmas together. The proof of the main sample complexity upper
bound for the T-case follows.

8.6. LOWER BOUNDS 131

Proof, (of theorem 8.3.1) For the T-step case, lemma 8.5.2 and lemma 8.5.6 directly
j and Ôimply the theorem with the alteration e <- | and <5 ^ f - □

The proof for the discounted case requires a few alterations, which we now outline.

P r o o f , (of theorem 8.3.2) The 7-discounted case requires a few straightforward al­
terations to the lemmas. Note that if we choose T ̂ = then the discounted return
in time will be e close to the infinite horizon discounted return. The induced inequality
lemma can be modified to show that for any policy 7r

Utt,j ,m {s) > C/7r,7,MK («) - Pr(escape from K in time M, st = s) - 0{e) .

We must also modify the Rmax algorithm (14) as follows. Instead of computing a non-
stationary policy TT, compute a stationary, 7-discounted optimal policy i t for M k - Then at
each time R m a x executes tt at state s, it chooses the action it{s) (which does not depend
on any cycle time). Using these modifications, the proof parallels the T-case. □

The proof that the number of dynamic programming steps is 2N is straightforward.

P r o o f , (of theorem 8.3.3) The Update line in the Rmax algorithm (14) is only called
when K changes. K only monotonically increases for N steps, which proves the first
claim. The remainder of the steps only use “table lookups”. □

For deterministic MDPs, we can use the same Rmax algorithm by setting m = 1. The
proof of the upper bound for deterministic MDPs is straightforward.

P r o o f , (of theorem 8.3.5) It is clear that if m = 1 then M k is a perfect approxi­
mation to M k- Since the MDP is deterministic, any attempted escape from K in t steps
succeeds with probability 1. By the pigeon hole principle, there are at most N A attempted
explorations. Since each exploration is successful and could take at most T steps, there
are at most N A T steps spent exploring. All other steps must be spent executing T-step
optimal policies. □

8.6. Lower Bounds

Now we prove the lower bound for the stochastic case. The proof is an extension of the
proof given for the lower bound on the number of calls to the generative model required to
find a near-optimal policy, which was provided in section 2.5. Recall that this lower bound
(theorem 2.5.2) was log Ô).

Let us review the simple two state MDP used in the proof (shown in figure 8.6.1). State 1
is the only maximally rewarding (absorbing) state. In state 2, all but one action is absorb­
ing. For this one action, the probability of a transition to the rewarding state is e/T , else

132 8. ON THE SAMPLE COMPLEXITY OF EXPLORATION

F i g u r e 8.6.1. Stochastic MDPs. See text for description.

a self-transition occurs. The optimal policy has a reward of fi(e) from state 2, since the
probability of transitioning to the maximally rewarding state is ü{e). To discover the opti­
mal action at state 2 requires log j) actions, and while this action is not discovered
the agent cannot act near-optimally (see subsection 2.5.3).

P roof, (of theorem 8.3.4) Extend the previous 2-state MDP to an iV-state MDP as
follows (see figure 8.6. IB). At any state i > 1, A — 1 of the actions are self transitions
and the remaining action has a probability ÿ of entering state 1 (else a self transition
occurs). All states i > 1 are not rewarding. State 1 is maximally rewarding. If state 1 were
absorbing, then to act optimally for any particular state i > 1, the agent must discover
the rewarding action at this state which requires observing log S) calls. However, as
it stands, once the agent enters state 1, then, trivially, an optimal policy is executed since
state 1 is absorbing.

Modify state 1 such that with probability 1/T^, the agent transitions uniformly to any
other state. This does not alter the optimal value of H(e) at states i > 1. However, for
a sufficiently large L, the agent will eventually reach all states. Hence, log6)
transitions must be spent on discovering the optimal actions, while not executing a near-
optimal policy. □

We now prove the lower bound for the deterministic case (which is related to the lower
bound in Koenig and Simmons [1993]). Again, we exploit L being arbitrary.

P r o o f , (of theorem 8.3.6) First, consider the simple case where N = T in the figure
shown in 8.6.2A. Here, only one action takes the agent to the right and all other actions

8.6. LOWER BOUNDS 133

r= l

r=lr=lr=l

B)

Figure 8.6.2. Deterministic MDPs A) Here, N = 5, T = 5, and
A = 2 and the rightmost state is rewarding. B) Here, N = lb and three
copies of the MDP in A) are joined as shown. If ÿ is not an integer, then
additional dummy states can be added in the construction, where each
dummy state moves to the next dummy state (and then back to leftmost
state).

return the agent to the leftmost state. The only reward is at the rightmost state. The actions
in the MDP shown in the figure are unlabeled. Using the algorithm, we can label the
actions such that the algorithm must try every action at every state, requiring N A steps,
else the algorithm will fail to discover the rewarding state. Each action returns the agent
back to the left most state, and so fl{NAT) = fl{T^A) samples are required for A to find
a near-optimal policy.

For the general case consider joining [ÿ j of these T-state MDPs, as shown in figure
8.6.2B (see figure caption for description). If ^ is not an integer, dummy states can be
used as shown in the figure. Here, each rewarding state takes the agent to the next set of
T-states. If L is sufficiently large, then A must find an optimal policy from every state.
Each constituent MDP requires Q{T^A) to find an optimal policy and there are such
MDPs. Therefore, Cl{NAT) timesteps are required. □

CHAPTER 9

Model Building and Exploration

In the last chapter, we saw that the maximum number of timesteps, while Rmax is not
executing a near-optimal policy, is log ̂^) . In obtaining this result, an e-
accuracy condition (in an /i sense) was imposed on the empirically estimated transition
model. This is a very different demand than all other algorithms discussed in this thesis,
where no explicit demands were made on obtaining an accurate transition model of our
MDP. Recall in phased value iteration (in section 2.5), the algorithm assumes access to a
generative model, and after observing 0{ log transitions, the algorithm returns
a near-optimal policy from every state. Importantly, the empirical transition model from
this latter approach (which uses 0{N A) samples neglecting log and other factors) is, in
general, a poor approximation to the true transition model (which takes N ^A parameters
to specify). However, these samples are sufficient to reliably compute an e near-optimal
policy.

Furthermore, the accuracy condition (8.5.1) sufficient for the success of Rmax did not
explicitly require that an accurate transition model be constructed. This condition only
demanded that Rmax obtain near-optimal policies in the induced MDPs M k using the
approximate MDP M k -

This raises the important question of whether or not our demand to obtain an accurate
transition model is too stringent. Recall that our lower bound (8.3.4) on the number of
timesteps in which our algorithm is not near-optimal is 0 (log ^). If this bound is
tight (which is unclear), then an accurate model is not required to make our optimality
guarantee. We focus on this question in this chapter.

In the first section of this chapter, we examine the sample complexity of a model based
approach. In this approach, a model P is constructed to approximate the transition model
in an MDP M and this approximate model is used for planning purposes. First, the result
of Keams and Singh [1999] is summarized, which shows that a model based approach
(using access to a generative model) has a comparable sample complexity to phased value
iteration. Importantly, both have sample complexity that is 0{N A) (neglecting log and
other factors). We then ask the question of how difficult is to use this model P to reliably
obtain near-optimal policies in k different induced MDPs M k - It is easy to show that the
overhead required to compute near-optimal policies for these k different induced MDPs,

135

136 9. MODEL BUILDING AND EXPLORATION

specified independently of the samples, is cheap — an additional factor of log k samples is
sufficient.

The next section then examines the implications of this result for Rmax- Recall that Rmax
computes an optimal policy in at most N induced MDPs before all states are known (see
theorem 8.3.3). Crucially, Rmax chooses these induced MDPs in a manner that is de­
pendent on the prior observations. If we demand accuracy on all possible induced MDPs
apriori, our analysis leads to roughly the same sample complexity bound since there are
2^ such MDPs (and so log k = N). Unfortunately, the analysis presented in this chap­
ter does not close the gap between our lower and upper bound, though it does provide a
different interpretation as to why exploration in the online setting is challenging.

9.1. The Parallel Sampler

Let us start by reviewing the analysis of Kearns and Singh [1999], which was concerned
with comparing the sample complexity of model based approaches with that of the Q-
leaming algorithm of Watkins [1989], which does not explicitly build a model of the MDP.

It is convenient to define a parallel sample, as in Keams and Singh [1999]. A parallel
sample for an MDP M is a a set of transitions (s, a) —̂ s' for every state-action (s,a),
where s' ~ P('\s, a) and P is the transition model in M. Clearly, a parallel sample can be
obtained with N A calls to the generative model G{M), with one call per state-action.

The ApproximateMDP algorithm (15) shows the obvious way to construct an empirical
MDP M using the generative model. The algorithm constructs the model P using the
empirical transition frequencies in the m parallel samples and the reward function f is
identical to the one in M. Let us also assume that M is a T-epoch MDP and so M is also
a T epoch MDP.

Algorithm 15 ApproximateMDP (G(M),m)
(1) Obtain m parallel samples using G{M)
(2) Construct a T epoch MDP M using

f{s,a) = r{s,a)
(3) Return M

The following lemma is on the number of parallel samples m that are sufficient in order
for the optimal policy in M to be near-optimal in M. Since m is the number of samples
obtained at each state-action, then m N A is the total number of calls to the generative
model. The result is essentially identical to that presented in Keams and Singh [1999]
(except that we treat the undiscounted case and explicitly state the T dependence).

9.1. THE PARALLEL SAMPLER 137

Lemma 9.1.1. Let M be a T-epoch MDP. If M is an MDP returned by ApproximateMDP
with inputs G{M) and m where

_ fT ^ , N A T \
m = 0 [^ l o g —)

then, with probability greater than 1 — 6, any policy rt that is optimal in M satisfies, for
all s and t < T

Vjr,t,M{s) > - £ .

Importantly, note this 0(\ogN) dependency (fixing other constants) means that P(-|s, o)
is highly sparse, since there are N entries in P(-|s,o). Hence, in general, P (-|s,a) is a
terrible approximation to P{-\s, a) under any sensible measure.

Note that the total number of transitions is a factor of T more than the “direct” phased value
iteration algorithm in section 2.5. This is a slightly different result than the one obtained
in Keams and Singh [1999] where their model based algorithm required fewer samples
than their phased Q-leaming algorithm. ̂ Here, the (non-stationary) phased value iteration
algorithm tightens up the number of calls to the generative model (as discussed in section
2.5), so this implies, in our analysis, that the direct algorithm calls the generative model
fewer times (though it is not clear if this dependency is realized in practice).

The proof is based on the one sketched in Keams and Singh [1999].

P r o o f . Assume the following expectations are accurate under P for all t, s, a

(9.1.1) l <E .

We later determine an appropriate value of m such that this condition holds.

Using the notation that a) is the state-action value of an optimal policy in M, then
the above condition implies

\QU i m M - % « (» ')] - [n :* (s ')] I

< - ^8'~P{ \s,a) K m (s ')] I

< e -t- max |V;*m(«) “ I

- ^ \QIm (s, a) - a)I

where the last step follows since = maxa o).

 ̂Keams and Singh [1999] did not explicitly examine the dependence in the discounted case, but the different

e dependence in their results is directly related to the different dependence, had this factor been included.

138 9. MODEL BUILDING AND EXPLORATION

By recursion, it follows that for all t < T , straightforward
to use this result and the performance difference lemma 5.2.1 to show that this implies the
greedy policy tt is 2T^e near-optimal. Hence, we make the replacement e <r-

Now we address the number of samples m that allows equation 9.1.1 to be satisfied with
e Since there are N A T constraints, by Hoeffding’s bound and the union bound,
the probability of an approximation error of more than is less than iV AT exp(—̂ m) .
The result follows by demanding that this be less than <5 and solving for m. □

As discussed in Keams and Singh [1999], it is easy to show that if we desire to compute
optimal policies in k MDPs which differ only in the their reward functions, then this can
be done with the single model P with the overhead of obtaining only an additional factor
of 0 (log k) samples — provided that reward functions are chosen independently of P.

Instead, let us consider the case in which we wish to find optimal policies in the induced
MDPs M ki , M k 3 . •. Mk^ , where K i,K 2 , . . .K k a ie k sets of states. Based on the single
MDP M , we also have a set of induced MDPs M ki , • • • Mk^ • Let us consider planning
with respect to these induced MDPs in an attempt to obtain a near-optimal policy for each
MKi • The following theorem is on the number of transitions required to obtain accurate
policies 7Tj for all M xi ■ As expected, there is only an additional log k cost. Crucially, in
order to obtain this log k dependence the sets Ki must be chosen independently of M.

Theorem 9.1.2. (Multiple Induced MDPs) Let M be a T-epoch MDP. If M is an MDP
returned by ApproximateMDP with inputs G{M) and m where

/T ^ N A T \m = o f ^ (l o g t - H o g ^) j

and if K i, K 2 , . . . are sets of states chosen indeperuiently of the transition model in
M, then, with probability greater than 1 — (5, then any policy TTj that is optimal in M%.
satisfies, for all s, Ki, and t < T :

(«) > K,MKi (®) “ ^

Proof. By construction, the MDP MKi is distributed identically to one that had been
created using a generative model for MKi • This is because the parallel samples contain no
dependencies between samples and the choice of Ki does not correlate the samples with
transition model in Hence, it suffices to demand an error less than | for each
and the previous lemma implies the result. □

9.2. REVISITING EXPLORATION 139

9.2. Revisiting Exploration

Recall from lemma 8.5.6 that the number of times that Rmax tries each state-action before
the state becomes known is

(9.2.1) m = 0 I log

With this value of m, we have the strong guarantee that all policies in Mk are accurate
estimates of their values in Mk (with error probability less than 6). In obtaining this result,
we demanded that each P(-|s, o) be an accurate approximation to P(-|a, a) in an Zi sense
(see definition 8.5.4).

Recall that this li condition is a more stringent condition than that required by our accuracy
condition 8.5.1 which only demanded that the optimal policies derived from M k be near-
optimal policies in M k in order for Rmax to succeed.

Importantly, note that this value of m is a factor of N more than that provided in lemma
9.1.1, which was only concerned with obtaining a single optimal policy using a generative
model (though the T dependence is less). This lemma shows that a highly impoverished
model of the MDP is sufficient to compute a near-optimal policy. The question we now
investigate is: is this li condition on P too stringent? Our lower bound (theorem 8.3.4)
leaves open this possibility.

Recall that Rmax uses at most N induced MDPs since the known set is only increasing
in size. Hence, there are at most N induced MDPs for which we desire near-optimal
policies. The proof for the last theorem implied that if these induced MDPs were chosen
independently of the observed samples then only O log — ^ visits per state-action
are sufficient to satisfy our accuracy condition for Rmax (since there is only a log k =
log N overhead).

Crucially, as we argue in the next subsection, these Mk are chosen dependently on the
observed samples so we cannot invoke the last theorem to enjoy this minor 0{\ogN)
overhead. In light of this dependency, we then consider demanding that we obtain accurate
optimal policies on all possible induced MDPs that Rmax might encounter. This would
ensure the success of Rmax- Unfortunately, there are 2^ such MDPs.

9.2.1. Dependencies on an L-Path. Let c be an L-path sampled according to the
distribution Pr(-|Bmw,M, so). Clearly, each transition (s, o) s' is generated according
to the transition model in M. Also, each Mk that is used at time t is constructed using
only the number of times in which each state action (s, o) was visited in the subpath Ct-
Hence, Rmax does not actually need to observe complete transitions (s, a) s' when it
constructs Mk - Nonetheless, the following example demonstrates that this construction
could correlate K with the empirical transition matrix of M k -

140 9. MODEL BUILDING AND EXPLORATION

A)

Figure 9.2.1. See text for description

Example 9.2.1. Consider a two state MDP M shown in figure 9.2.1, where there is one
action at each state. The transition from 1 has equal probability to go to either state, ie
P (2 |l) = I and the transition from 2 is to state 1. Conditioned on the occurrence of m i
and m2 visits to state 1 and state 2, we can infer exactly what the empirical probability of
1 2 in this chain and it is • Hence, any decision made based on only mi and m2
is equivalent to making a decision using the empirical frequencies in this path.

The previous example can be viewed as a problem of “mixing”. If independence samples
are desired, a clever algorithm might only accept samples from state-actions if there is a
sufficiently long time between the last accepted sample, such that each sample is indepen­
dent. Standard definitions of the “mixing time” formalize this notion. In Keams and Singh
[1999], this suggestion is discussed as a method to simulate the parallel sampler.

Unfortunately, this method is, in general, only applicable to stationary algorithms {ie sta­
tionary policies), since paths provided by these algorithms satisfy the Markov property.
A non-stationary algorithm could impose arbitrarily long dependencies in the path such
that no amount of “mixing” could provide near i.ld. samples. Essentially, the algorithm’s
choice of action at time t could be dependent on the state-action at time f = 0, and this
violates the Markov property. In general, algorithms required for exploration are non-
stationary, since based on the prior experience the algorithm decides to explore or exploit.

9.2.2. Independence and Rmax- This section addresses the number of samples suf­
ficient to guarantee that all computed escape policies are accurate.

First, let us review the setting. The case considered is one in which a path c is obtained
using some algorithm A (say Rmax)- At each point in time t < L, v/e could consider
building some Mk where K is the m-known set on the subpath c* = (sq, oo, • • • ,st). The
question of interest is: how large does m need to be such that all Mk 's constructed from
some subpath c* are accurate enough to provide near-optimal policies for the corresponding
M%? This is precisely what is required for the success of Rmax-

The crucial problem is that the induced MDP must be chosen independently of the samples
in order to apply the previous theorem. One way to cope is to demand accuracy on all
possible induced MDPs that Rmax may encounter. Unfortunately, there could be 2 ^ such

9.2. REVISITING EXPLORATION 141

induced MDPs, which is due to the fact that each induced MDP corresponds to a subset K
of the state space and there are 2 ^ such subsets.

The following theorem addresses the aforementioned sample size by appealing to our pre­
vious theorem on multiple induced MDPs (9.1,2) with k = 2^. Although we are dealing
with paths rather than parallel samples the proof shows that we can use previous theorem
if we set k = 2^.

Theorem 9.2.2. Let A be an algorithm and So be a state with respect to an L-epoch
MDP M, Let c be an L-path sampled from Pr{-\A, M, Sq). If

fT ^ N A T \
^ = 0 f ^ (^ + l 0 g ^) j .

then with probability greater than 1 — Ô, for all times t < L, if M k ^ induced MDP
with respect to the m-known set on subpath Ct, then any optimal policy H that is optimal
on M k satisfies for all s and t < T

U n ,t ,M ic (s) > U ^^M k (®) ~ ^ •

Here, we use U because technically M k is an L-epoch MDP, so U denotes that the value
functions are with respect to T (see section 8.4.1).

Unfortunately (and not surprisingly), this analysis does reduce the gap between our lower
and upper bound, since we are demanding accuracy on 2 ^ MDPs. Also note the T de­
pendence is slightly worse in this analysis, so it is not worth carrying this result through to
provide an alternative upper bound for the sample complexity of exploration (compare to
equation 9.2.1).

The proof just requires a careful (yet intuitive) argument that we can use our last theorem
when we construct our model from an L-path rather than using parallel samples.

Proof. Consider generating m parallel samples, where m = O ̂ (iV 4- log)^ .

For this set of parallel samples, the last theorem implies the corresponding MDP M is one
in which the optimal policies in all fc = 2 ^ induced MDPs are e near-optimal in their
corresponding exact induced MDP, with probability of error less than <5.

Now let us consider a generative procedure for sampling c from Pr(|X, M, gg). This
procedure uses the same m parallel samples as mentioned above to generate transitions
(without reuse) as follows. If A takes action a at state s, then we use a transition (s,a) s'
(without reuse) from the parallel sample to set the next state in the path to s'. If all the
samples at (s, a) have been used in the parallel sample, then we just generate a next state
from P(-|s,a). It should be clear that this procedure provides a path c that is sampled
according to Pr(-|,A, M,So). By the previous argument, all induced MDPs constructed
from this path must be accurate with probability of error less than 5, since these induced

142 9. MODEL BUILDING AND EXPLORATION

MDPs are just a subset of all possible induced MDPs (constructed from the m parallel
samples). □

CHAPTER 10

Discussion

This thesis has summarized recent progress toward obtaining efficient algorithms and has
provided novel algorithms with strong performance guarantees. We now discuss some of
the important issues and insights raised by this work.

10.1. AT, A, and r

A critical issue for the application of reinforcement learning algorithms to realistic prob­
lems is how the sample (and computational) complexity scales with N , A, and T. The first
two subsections examine the sample complexity connections between N and T. Perhaps
the most important practical contribution of this work is in understanding the tradeoffs
made in order to provide algorithms which have no dependence on N and polynomial de­
pendence on T. The final subsection points out why the scaling with A is fundamentally
different.

As a unifying theme to this section, let us compare the algorithms to a degenerate MDP
with T = 1 and A = 2. For this case, let us assume we are interested in a good perfor­
mance under the initial state distribution D, ie we desire to find a good policy as measured
by the function Egr^n [^(g)]- This makes the reinforcement learning problem related to
a classification problem under the standard indicator loss function (with the caveat that the
rewards weight the indicator loss, see subsection 6.4.1). This is a minor variant of per­
haps the best studied problem in machine learning, where almost all theoretical guarantees
have no dependence on the size (or dimensionality) of the input domain, which is N here.
Now let us ask ourselves: why does the problem become so difficult as we increase these
parameters?

10.1.1. N vs. A ^ Dependence. Let us start with value function methods. Sample
based algorithms such as phased value iteration have a polynomial sample complexity in
both N and T (ignoring other relevant factors) when we assume access to a generative
model (see section 2.5). For T = 1, the phased value iteration just learns the reward
function at every state in the input domain, and the algorithm performs perfectly for any
choice of D (recall the reward function is deterministic).

143

144 10. DISCUSSION

For approximate value function methods (as in chapter 3), performance bounds are stated
in terms of max norm regression errors, which suggests that there is no relevant measure
over the state space with respect to which it is appropriate to optimize. Loosely, the reason
the max norm error is relevant for a greedy (stationary) policy update from a policy t t to a
policy t t ' is because the greedy policy ?r' may visit only those states where the worst case
errors have occurred — compounding this error over the entire horizon. Furthermore, the
reason it visits these states might be due to the errors themselves.

It is this max norm error that is often the thorn in providing strong sample complexity
results that are independent of jV in an approximate setting. Also, note the incongruous
situation: when T = 1, it is clear that D is the appropriate measure to use and that max
norm error bounds over the state space are not relevant.

Now let us consider the “tree based” methods of Keams, Mansour, and Ng [1999,2000],
starting with the sparse sampling algorithm which can be viewed as the exact counterpart
to an algorithm such as phased value iteration (see section 2.5). Here, the algorithm pays
a runtime sample complexity that is exponential in T, but has no N dependence. For the
degenerate T = \ case, the algorithm also behaves perfectly, but here the algorithm only
calls the generative model at runtime to do the classification.

The corresponding approximate algorithm to the sparse sampling algorithm is effectively
the trajectory tree method. Here, the key idea is that a single tree of size O(A^) simul­
taneously provides an unbiased estimates for any policy. As in supervised learning, this
method has no dependence on N (for both T ^ 1 and T = 1) and a linear dependence on
the complexity of the policy (or hypothesis) class. Furthermore the algorithm always uses
the measure D when sampling the root state ̂ (whereas for approximate value functions
methods, only for T = 1 is it clear to use a measure). This method provides a more parsi­
monious generalization of supervised learning to reinforcement learning, and we return to
this point in the next section.

10.1.2. vs. fj, Dependence. In practical applications, we often are dealing with
both large state spaces and large horizon times. Clearly, we desire algorithms that can cope
with this situation. However, as argued, we must expect a tradeoff to be made, since an
0{N) or 0{A?-) sample complexity dependence is intrinsic to the problem (see the lower
bounds in section 2.5).

The “mismeasure” results in chapter 5 showed how the difference between two policies
can be stated in terms of the advantages of one policy and the future state distribution of
the comparison policy. Here, we can view the comparison policy as providing the “test”
distribution, and to compete favorably against this policy, our advantages must be small on

In our presentation, we considered building the trees from a single stale s q . However, in general, if D is the
input distribution, then the trees would start with a root state s ~

10.1. A N D T 145

average with respect to this “test” distribution. This sheds some light on the difficulty of
the reinforcement learning problem — we may be ignorant of what this “test” distribution
is.

Of course neither approximate value function methods nor the trajectory tree methods take
this notion of a “test” distribution into account, and their more general guarantees come at
a cost. The approximate value function methods use the max norm condition which bounds
the performance under any “test” distribution. The trajectory tree method effectively ob­
tains samples from all possible “test” distributions (which scales as 0{A'^)).

It is likely that to make reinforcement learning work on any real and challenging domain
significant problem dependent information must be taken into account. We have used this
idea of a “test” distribution as a way of incorporating domain knowledge — effectively
building in expectations where a good policy visits. If we have such information, then it is
clear we would like to bias our optimization procedure to favor these states.

One natural approach is to force the advantages to be small under a measure // of our
choosing. The hope was that since by making a less stringent optimality demand, then we
can find algorithms with a lower sample complexity. Example 3.2.4 suggested that it is
not reasonable to expect standard greedy value function approaches to achieve this small
advantage condition and chapter 4 suggested that it is unclear as how to force gradient
methods to achieve this condition either.

Two algorithms were presented, /i-PolicySearch and CPI, which have sample complexity
bounds that are independent of N and polynomial in T. Importantly, these methods still
preserve the linear dependence on the complexity of a restricted policy class II. The trade­
off is that these algorithms only guarantee to return policies which have advantages that
are small with respect to fj,. However, we can still make a non-trivial optimality guarantee
based on ^ (as in theorems 6.3.1 and 7.3.1).^ We return to the reasons for their success in
the next section.

Another promising approach is the approximate linear programming approach of de Farias
and Van Roy [2001]. This method guarantees that a “good” approximation to the optimal
value function can be obtained, where “good” means that the average approximation error
with respect to // is small relative to all other functions in the (linear) function approxi­
mating class (see section 3.3). Again, this method stresses the importance in the choice of
the measure //. de Farias and Van Roy [2001] also provide conditions under which sam­
ple complexity bounds can be obtained that are independent of the size of the state space

As discussed in section 6.3.1, there are no more informative and tighter bounds on this relatively common case in
which we know our error is small under one measure and we are interested in the error under a different measure.
However, as in supervised learning, we have the potential to compete favorably even for cases in which the test
distribution differs significantly from /r. Intuitively, we are lucky if the test distribution doesn’t focus on states
where there are large advantages.

146 10. DISCUSSION

and that depend polynomially on the number of features. However, the nature of the fi-
guarantee in the linear programming approach is different from ^-PolicySearch and CPI
— the guarantee is with respect to the error in approximate value function rather than the
advantages of the output policy itself (see section 3.3).

10.1.3. A Dependence. We have made no effort to deal with the polynomial A de­
pendence in this work. Furthermore, all the methods that we have reviewed and presented
in this thesis have difficulty in dealing with large action spaces.^

Again, let us consider the T = 1 case, but with A = oo. If the action space is uncount­
able, this problem is similar to a regression problem, where typically additional Lipschitz
continuity conditions are assumed in order to make sensible performance guarantees.

Since in the supervised learning case (T = 1), additional assumptions are usually made
to deal with the infinite action case, then it is likely as we scale T we must also consider
additional assumptions to deal with this case. Lipschitz continuity conditions for T ^ 1
have been consider by Ng and Jordan [2000] and it should be possible to apply these
conditions to our /4 based algorithms.

10.2. From Supervised to Reinforcement Learning

Though reinforcement learning is a more general problem than supervised learning, much
insight has been gained by considering how we can apply techniques from supervised
learning to reinforcement learning.

10.2.1. The Trajectory Tree Method and Beyond. Keams, Mansour, and Ng showed
how standard complexity ideas from supervised learning can be applied to the reinforce­
ment learning setting to obtain uniform convergence results for all policies within some
restricted “hypothesis” set of policies II. Here, the bound on the sample complexity is
linear in the complexity of II (and of course exponential in T but independent on N). This
method replicates a fundamental property in supervised learning, that a tree can provide
simultaneous feedback on all policies in the hypothesis set II.

Clearly, building trees of size O(A^) is not feasible and we desire polynomial T depen­
dence for practical approaches." ̂However, when we move to a more practical setting, we

Recall the discussion in section 4.2.2 where we argued that gradient methods also have dilhculty with large
action spaces. This is due to variance reasons related to importance sampling. Essentially, the natural form of the
gradient involves a sum over actions while it involves an expectation over the state space.
^ h e PEGASUS method of Ng and Jordan [2000] does not need to explicitly build the tree o f size A ^ . Here, we
can view fixing the seed to the random number generator as proving a compact representation o f the tree, and the
relevant question is now a computational one: how many transitions must be computed using this method? We
argue this could, in some cases, be exponential in T (see 6.1.3). Essentially, PEGASUS is a variance reduction
method and does not address the problem o f exploration. PEGASUS could also be used with the p, based policy
search methods for reducing variance.

10.2. FROM SUPERVISED TO REINFORCEMENT LEARNING 147

do not wish to lose this efficient reuse of samples. Gradient methods are one method to po­
tentially avoid building trees. As a heuristic, these methods could be used with a measure
/i in an attempt to alleviate their exploration related problems (see chapter 4). However,
it is not clear how they hang on to this idea of efficient reuse (see 6.4.3). Here, we have
argued that the /x-PolicySearch and CPI algorithms are natural methods which both effi­
ciently reuse samples and optimize with respect to a measure fi. Let us now discuss what
in particular allowed these algorithms to achieve both of these goals.

10.2.2. Successful Policy Update Rules. Both //-PolicySearch and CPI algorithms
use PolicyChooser subroutines which attempt to return decision rules t t ' € II which choose
actions with “large” advantages with respect to the current policy t t , and the notion of
“large” is an average one based on the measure /i. These PolicyChooser algorithms effi­
ciently reuse samples to find a “good” t t ' in a manner similar to the trajectory tree method
(except now the measure n is used in lieu of building the tree, see subsection 6.3.3). A
central theme in part 2 was the construction of policy update rules which drive the ad­
vantages to be small with respect to a measure // using the output decision rules of the
PolicyChooser.

The ingredients for successful updates for both /i-PolicySearch and CPI are twofold. First,
both algorithms make “small” policy changes. Second, both algorithms are variants of
policy iteration. This means that each subsequent decision rule attempts to choose better
actions by taking into account the advantages of the current policy.

In /i-PolicySearch, the small policy change is implemented by only altering the policy
at one decision epoch at a time starting from time T — 1 and working down to time
0. The policy iteration nature of the algorithm forces the PolicyChooser to construct
the decision rule 7 r (- , f) by taking into account the remaining sequence of decision rules
7 t(- , f -f-1), . . . , 7 r(-, T — 1). This allows max norm error bounds to be avoided (such as in
the regression version of non-stationary approximate pohcy iteration, see section 5.3). The
final policy returned by /2-PolicySearch is both deterministic and non-stationary (assuming
that n is a class of deterministic decision rules).

In contrast, CPI returns a good stationary policy. The natural update rule implemented by
CPI just mixes the new policy with the old policy using some mixing parameter a (see
equation 7.2.1). Unlike in ^-PolicySearch which halts after T updates, it was much harder
to understand the behavior of this update rule and we had to think more carefully about
when to halt CPI and how to set a.

Note that both algorithms are using all their previous decision rules — //-Policy search
is executing all the decision rules in backward order of construction while CPI is mixing
between all its decision rules (in order to preserve stationarity).

148 10. DISCUSSION

Interestingly, we have only presented /i-based algorithms (with polynomial T dependence)
which output either stochastic, stationary policies or deterministic, non-stationary policies.
It is not clear how to present an algorithm which has a similar ^-based guarantee (with
respect to the advantages) and that outputs a deterministic and stationary policy.

10.2.3. Query Learning. A fruitful direction to consider is query (or active) learning
(as in Angluin [1987]). The typical setting is one in which the learner is permitted to
actively query the instances over an input space in order to reduce generalization error
with respect to a fixed distribution D. This setting has been shown to help reduce the
generalization error with respect to D in a variety of problems. Ideally, we would like to
consider an algorithm which is not tied to using a single measure D and perhaps tries to
efficiently and robustly reduce the error with respect to multiple measures. Though, in the
extreme, this leads back to dealing with the max norm error or the dependence. This
direction for future work might provide a more general means to tackle the exploration
problem rather than using a fixed distribution fx.

10.3. POMDPs

We have so far tended to avoid issues of planning and exploration in partially observable
Markov decision processes (POMDPs).

10.3.1. Planning. Although the computational complexity of exact planning in MDPs
and POMDPs is different (see Littman [1996]), there is a close connection between ap­
proximate planning in MDPs and POMDPs. Intuitively, the reason is that using only par­
tial information for approximate planning in an MDP can often be viewed as working
in a POMDP framework. For this reason, gradient methods have direct applicability to
POMDPs.

The trajectory tree method was originally presented as means for sample-based planning
in POMDPs. Our summary only described this algorithm for MDPs, but it is clear that a
single tree in a POMDP provides simultaneous estimates for the values of all policies (and
so the same uniform convergence arguments can be applied in the POMDP setting). Of
course the policy class II must be restricted to use only observable information.

In our setting, it is not too difficult to see that our /Li-based planning approaches can also be
applied to POMDPs. However, now ^ is a distribution over history vectors or belief states,
and, of course, the policy class is only restricted to use observable information. Here the
problem of choosing and representing a good n becomes more interesting and challenging
(and we could certainly consider using “memoryless” fx's).

10.4. THE COMPLEXITY OF REINFORCEMENT LEARNING 149

10.3.2. Bayesian “Exploration” in MDPs. In the sensible Bayesian view of rein­
forcement learning, the agent has a prior Q over MDPs and the goal is maximize some
measure of the future reward when the agent is placed in an MDP M ~ Q. As discussed
in chapter 8, this solution has a well defined optimal (memory dependent) policy, which
makes an optimal exploration/exploitation tradeoff.^ In fact, the notions of exploration and
exploitation are rather artificial in this setting.

It is clear that this problem can be cast in a POMDP, where the agent does not have knowl­
edge of which MDP it is in. Since Q is known, the problem is a purely computational
one. Hence, one could attempt to obtain an approximate solution using the trajectory tree
method or the //-based planning algorithms (assuming that we can sample from Q and M
efficiently). This may be a promising approach for “exploration” in large state spaces.

The appeal of this framework is that a sensible notion of optimality is well defined. The
drawback is that it is often not clear how to construct a prior that is indicative of the task at
hand and the results may be quite sensitive to the prior distribution used.

10.4. The Complexity of Reinforcement Learning

The overall complexity of reinforcement learning can be considered to be both the sample
and computational complexity required to achieve “learning” given only some sampling
model of the environment and a performance criterion. Much work has gone into under­
standing the computational complexity of exactly solving MDPs and POMDPs when they
are specified in a tabular representation (see Littman [1996] for review).

Once we no longer assume complete knowledge of the MDP or desire approximate algo­
rithms, there is a host of new complexity related questions, which we have discussed in this
thesis. For instance, in the policy search setting we are interested in the overall complexity
of finding a good policy within a restricted policy class II.

As in many supervised learning analyses, we have only considered using an arbitrary policy
class n in our policy search setting and have not considered how to efficiently manipulate
this class II. The bounds in part 2 are purely information theoretic. An important direction
is in understanding the computational complexity of performing the necessary optimiza­
tions using this policy class.

For the trajectory tree method, this optimization may be an expensive proposition due to
the sheer size of the trees (though the performance guarantees are unrestricted). For the
//-based methods, we have pointed out that the optimization is equivalent to minimizing
a cost sensitive classification loss function. This might open a door to the application of

In this case, the value o f an algorithm is just its expected return in an MDP M that is sampled according to
Q , and the expectation is taken with respect to Q and the M ~ Q. The optimal algorithm is the one which
maximizes this value.

150 10. DISCUSSION

more standard supervised learning methods in which the computational complexity and
optimization tools are more well-studied.

Furthermore, not only are we interested in being able to efficiently optimize within our
policy class, we are also interested in constructing policy classes that contain good poli­
cies. Understanding, how to use domain knowledge (which often comes in the knowledge
of environment dynamics) to construct good policy classes is important for the design of
practically successful algorithms. Unfortunately, it should be noted that for factored dy­
namics it may not be possible construct compact policy classes (Allender, Arora, Moore,
Keams, and Russell [2003]). A direction we have not considered and that is a relatively
open area is the use of non-parametric policy search methods which may help to avoid the
need for making strong parametric assumptions which are often violated in practice.

Bibliography

[1] Allender, E., Arora, S., Moore, C., Keams, M., and Russell, A. (1993). A Note on the Representational

Incompatibility o f Function Approximation and Factored Dynamics. To appear in: Proceedings o f NIPS.

] Angluin, D. (1987). Queries and concept learning. Machine Learning, 2:319-432.

] Anthony, M. and Bartlett, RL. (1999). Neural Network Learning: Theoretical Foundations. Cambridge

University Press.

] Amari, S. (1998). Natural gradient works efficiently in learning. Neural Computation, 10.

] Bagnell, J. and Schneider J. (2001). Autonomous Helicopter Control using Reinforcement Learning Policy

Search Methods. Proceedings o f the International Conference on Robotics and Automation, IEEE.

] Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983). Neuronlike adaptive elements that can solve difficult

learning control problems. IEEE Transaction on Systems, Man and Cybernetics.

] Brafman, R. I. and Tennenholtz, M. (2001). R-MAX - A General Polynomial Time Algorithm for Near-

Optimal Reinforcement Learning. In Proceedings o f the Eighteenth International Joint Conferences on Ar­

tificial Intelligence.

] Baird, L. C. (1993). Advantage updating. Technical report. WL-TR-93-1146, Wright-Patterson Air Force

Base.

] Baird, L. C. (1995). Residual algorithms : Reinforcement learning with function approximation. In Machine

Learning : proceedings o f the Twelfth International Conference.

] Baird, L. C. and Moore, A. (1999). Gradient descent for general reinforcement learning. In Neural Informa­

tion Processing Systems, 11.

] Bartlett, P. and Baxter, J. (2000). Estimation and approximation bounds for gradient-based reinforcement

learning. Technical report. Australian National University.

] Baxter, J. and Bartlett, P. (2001). Infinite-Horizon Policy-Gradient Estimation. Journal o f Artificial Intelli­

gence Research, 15.

] Baxter; J., Tridgell, A., and Weaver, L. (2000). Learning to Play Chess Using Temporal-Differences. M a­

chine Learning, 40.

] Bellman, R. E. (1957). Dynamic programming, Princeton University Press, Princeton, NJ.

] Bertsekas, D. P. (1987). Dynamic Programming: Deterministic and Stochastic Models. Prentice-Hall, NJ.

] Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming. Athena Scientific.

] Boyan, J. A. and Moore, A. W. (1995). Generalization in reinforcement learning: safely approximating the

value function. In Advances in Neural Information Processing Systems 6 .

] de Farias, D. P. and Van Roy, B. (2001). On Constraint Sampling in the Linear Programming Approach to

Approximate Dynamic Programming. Operations Research (submitted 2001).

] de Farias, D. P. and Van Roy, B. (2001). The Linear Programming Approach to Approximate Dynamic

Programming. Operations Research (submitted 2001).

I] Fiechter, C. (1994). Efficient reinforcement learning. In Proceedings ofthe Seventh Annual ACM Conference

on Computational Learning Theory. ACM Press.

] Gittins, J. C. (1989). Multi-armed Bandit Allocation Indices. Wiley-Interscience series in systems and opti­

mization.

[8

[9

[10

[11

[12

[13

[14

[15

[16

[17

[18

[19

[20

[21

151

152 BIBLIOGRAPHY

[22

[23

[24

[25

[26

[27

[28

[29

[30

[31

[32

[33

[34

[35

[36

[37

[38

[39

[40

[41

[42

[43

[44

Glynn, P. W. (1986). Stochastic approximation for Monte Carlo optimization. In Proceedings o f the 1986

Winter Simulation Conference.

Gordon, G. J. (1999). Approximate Solutions to Markov Decision Processes. PhD thesis, Carnegie Mellon

University.

Gordon, G. J. (1996). Chattering in SARSA(A) - A CMU Learning Lab Internal Report.

Gordon, G. J. (2001). Reinforcement learning with function approximation converges to a region. Advances

in Neural Information Processing Systems.

Gordon, G. J. (1995). Stable fimction approximation in dynamic programming. In Proceedings o f the Twelfth

International Conference on Machine Learning.

Haussier, D. (1992). Decision theoretic generations o f the PAC-model for neural nets and other applications.

Information and Computation, 100, 78-150.

Kakade, S. (2001). Optimizing Average Reward Using Discounted Rewards. In Proceedings o f the I4th

Annual Conference on Computational Learning Theory.

Kakade, S. (2002). A Natural Policy Gradient. In Advances in Neural Information Processing Systems, 14.

Kakade, S. and Langford, J. (2002). Approximately Optimal Approximate Reinforcement Learning. In Pro­

ceedings o f the Nineteenth International Conference on Machine Learning.

Kearns, M., and Koller, D. (1999). Efficient Reinforcement Learning in Factored MDPs. In Proceedings o f

the Sixteenth International Joint Conference on Artificial Intelligence.

Keams, M., Mansour, Y. and Ng, A. (1999). A sparse sampling algorithm for near-optimal planning in large

Markov decision processes. In Proceedings o f the Sixteenth International Joint Conference on Artificial

Intelligence.

Kearns, M., Mansour, Y. and Ng, A Y. (2000). Approximate planning in large POMDPs via reusable trajec-

tories.In Neural Information Processing Systems 12. MIT Press.

Keams, M., and Singh, S. (1998). Near-optimal reinforcement teaming in polynomial time. In Proceedings

o f the Fifteenth International Conference on Machine Learning.

Keams, M. and Singh, S. (1999). Finite sample convergence rates for Q-leaming and indirect algorithms. In

Neural Information Processing Systems 12. MIT Press.

Keams, M., Schapire, R., and Sellie, L. (1994). Toward efficient agnostic learning. Machine Learning,

17(2/3):115-142.

Keams, M. and Vazirani, U. (1994). An introduction to computational learning theory. MIT Press, Cam­

bridge, MA.

Kimura, H., Yamamura, M., and Kobayashi, S. (1995). Reinforcement Learning by Stochastic Hill Climbing

on Discounted Reward. In Proceedings o f the 12th International Conference on Machine Learning.

Koenig, S. and Simmons, R. G. (1993). Complexity Analysis of Real-Time Reinforcement Learning. In

Proceedings o f the International Conference on Artificial Intelligence.

Konda, V. and Tsitsiklis, J. (2000). Actor-Critic Algorithms. In Advances in Neural Information Processing

Systems, 12.

Langford, J. Zinkevich, M. & Kakade, S. (2002). Competitive Analysis o f the Explore/Exploit Tradeoff. In

Proceedings o f the Nineteenth International Conference on Machine Learning.

Littman, M. L., Dean, T. L. and Kaelbling, L.P. (1995). On the complexity o f solving Markov decision

problems. In Proceedings o f the Eleventh International Conference on Uncertainty in Artificial Intelligence.

Littman, M. L. (1996). Algorithms for Sequential Decision Making. Ph.D. dissertation. Brown University,

Department o f Computer Science, Providence, RI.

Marbach, P. and Tsitsiklis, J. N. (2001). Simulation-Based Optimization of Markov Reward Processes. IEEE

Transactions on Automatic Control, Vol. 46, No. 2, pp. 191-209.

BIBLIOGRAPHY 153

[45

[46

[47

[48

[49

[50

[51

[52

[53

[54

[55

[56

[57

[58

[59

[60

[61

[62

[63

[64

[65

[66

[67

[68

Meuleau, N., Peshkin, L., and Kim, K. (2001). Exploration in Gradient-Based Reinforcement Learning.

Technical report. Massachusetts Institute o f Technology.

Ng, A. Y. and Jordan, M (2000). PEGASUS: A policy search method for large MDPs and POMDPs. In

Uncertainty in Artificial Intelligence, Proceedings o f the Sixteenth Conference.

Papadimitriou, C. H. and Tsitsiklis, J. N. (1987). The complexity o f Markov decision processes. Mathemat­

ics o f Operations Research, 12(3).

Peshkin, L., Meuleau, N., Kim, K. and Kaelbling, L. (1999). Learning policies with external memory. In

Proceedings o f the Sixteenth International Conference on Machine Learning.

Precup, D., Sutton, R.S., and Dasgupta, S. (2(X)1). Off-policy temporal-diflference learning with function

approximation. Proceedings o f the 18th International Conference on Machine Learning.

Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Programming. John

Wiley & Sons, New York.

Singh, S. (1994). Learning to Solve Markovian Decision Processes. PhD thesis. University o f Mas­

sachusetts.

Singh, S., and Bertsekas, D. (1997). Reinforcement learning for dynamic channel allocation in cellular

telephone systems. In Neural Information Processing Systems, 9.

Singh, S., Jaakkola, T., and Jordan, M. I. (1994). Learning without state-estimation in partially observable

Markovian decision processes. In Proceedings l l th International Conference on Machine Learning.

Singh, S. and Yee, R. C. (1994). An upper bound on the loss from approximate optimal-value functions.

Machine Learning, 16:227.

Sutton, R. S., and Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT Press.

Sutton, R.S., McAUester, D., Singh, S., and Mansour, Y. (2000). Policy Gradient Methods for Reinforcement

Learning with Function Approximation. In Neural Information Processing Systems, 13. MIT Press.

Tesauro, G. (1994). TD-Gammon, a self-teaching backgammon program, achieves master-level play. Neural

Computation, 6.

Thrun, S. B. (1992). Efficient Exploration in Reinforcement Learning. Technical report. Carnegie Mellon

University.

Tsitsiklis, J. N. and Van Roy, B. (1997). An Analysis o f Temporal-Difference Learning with Function Ap­

proximation. IEEE Transactions on Automatic Control, Vol. 42, No. 5.

Valiant, L.G. (1984). A Theory o f the Leamable. Communications o f the ACM 27, pp. 1134-1142.

Vapnik, V.N. (1982). Estimation o f dependences based on empirical data. Springer-Verlag, New York.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD thesis, Cambridge University.

Weaver, L. and Baxter, J. (1999). Reinforcement Learning From State Differences. Technical report. Aus­

tralian National University.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement

learning. Machine Learning, 8:229-256.

Williams, R. J., and Baird, L. C. (1993). Tight Performance Bounds on Greedy Policies Based on Imperfect

Value Functions. Technical report. Northeastern University.

Williams, R. J., and Baird, L. C. (1993). Analysis o f Some Incremental Variants o f Policy Iteration: First

Steps Toward Understanding Actor-Critic Learning Systems. Technical report. Northeastern University.

Whitehead, S. D. (1991). A Study o f Cooperative Mechanisms for Faster Reinforcement Learning. Technical

report. University o f Rochester.

Zhang, W. and Dietterich, T. (1995) A reinforcement learning approach to job-shop scheduling. In Proceed­

ings o f the 14th International Joint Conference on Artificial Intelligence.

