
Department of Electronic and Electrical Engineering

University College London

University of London

T h e Ev o l u t io n o f
C o n t r o l A r c h it e c t u r e s

T o w a r d s
N ext G e n e r a t io n N e t w o r k s

By

Christos Solomonides BEng(Hons), MRes(Distinction)

7 September 2001

A thesis submitted to the University o f London

fo r the Ph.D. in Electronic and Electrical Engineering

ProQuest Number: U643054

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest U643054

Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

A b s t r a c t

This thesis describes the evolution of control architectures and network intelligence towards

next generation telecommunications networks. Network intelligence is a term given to the group

of architectures that provide enhanced control services. Network intelligence is provided

through the control plane, which is responsible for the establishment, operation and termination

of calls and connections.

The work focuses on examining the way in which network intelligence has been provided in the

traditional telecommunications environment and in a converging environment. In the case of the

traditional telecommunications environment, the thesis examines the Intelligent Network (IN)

architecture as a case scenario. In the case of the converging telecommunications environment,

the work focuses on examining the relation and impact of emerging architectures and protocols

and the ways in which these can inter-work with the IN. The discussion is presented using a

taxonomy reference model of network intelligence architectures and their relation to the IN. For

example, a protocol based on existing IN capabilities is presented that allows end users to

engage in electronic commerce without the need for credit cards.

The control plane architecture in the Public Switched Telephony Network (PSTN) is heavily

based on state machines. The role of state models and the reliance of IP-based protocols on state

models are also examined. For this, IP-based architectures are examined and the extent of state

utilisation is presented. This enables a classification of IP-based architectures and protocols to

be drawn with regard to state utilisation.

The role of existing network intelligence within the context of open programmable networks

and application servers is also examined. The work identifies the need for a common

communications framework between third-party service providers. This is the focus of the API

server architecture, which draws from IN concepts and from approaches in the IP domain.

Dedicated to my parents

A c k n o w l e d g e m e n t s

I would like to express my deepest appreciation and gratitude to my supervisor Dr. M. D, Searle

for his constant support, encouragement and guidance throughout this project. Without his help

this work would never have been completed.

I would like to express my most sincere gratitude to my family for their unfailing support. To

my Father who has provided me with the enthusiasm to complete this work. To my Mother for

her continuous encouragement that has enabled me to successfully complete this work. Without

the moral and financial help of my parents I would never have undertaken this work and for this

I dedicate the work to them. I would like to extend this to my brother for always being there and

supporting me at difficult times.

My deepest heartfelt appreciation is offered to my wife Vania Bastajian for her patience and

support.

I would sincerely like to thank Adonis Michael ides for his support and genuine friendship.

I would also like to sincerely thank the following people: Aram Bastajian for taking the time to

proof read the text; Christos Drakos for his support; Aristos Michaelides for his sincere

encouragement; Jason Spencer and Ognjen Pmjat for their friendship and support; Chryssanthos

Kouriefs and Melina Georgiou for providing me with hours of entertainment and helping me

cope with the work.

My sincere thanks go to all the staff at INSIG Ltd for allowing me to engage in activities that

have provided me with the practical experience that compliments the theoretical aspects of this

work.

Finally the financial support provided by Martin Stanley and the Department of Electronic &

Electrical Engineering at University College London.

T a b l e o f C o n t e n t s

ABSTRACT..2

ACKNOWLEDGMENTS... 4

TABLE OF CONTENTS...5

LIST OF FIGURES.. 11

LIST OF TABLES.. 15

CHAPTER 1: INTRODUCTION..16

1.1 M o t iv a t io n ..16

1.2 A im s a n d O b j e c t iv e s ..17

1.2 T h e P r o b l e m F ie l d a n d t h e A p p r o a c h ... 17

1.3 S u m m a r y o f M a in C o n t r ib u t io n s ..18

1.4 T h e s is O u t l in e ... 19

CHAPTER 2: TRADITIONAL APPROACH TO NETWORK INTELLIGENCE............................21

2.1 In t r o d u c t io n ... 21

2.1.1 Introduction to Telecommunications Networks... 22

2.1.2 Distribution o f Service Logic .. 24

2.1.3 Historical Switching and Signalling... 27

2.1.4 The Strowger Switch... 28

2 .2 S w it c h in g a n d t h e R o le o f S i g n a l l i n g ..29

2.2.1 Access Network...30

2.2.2 Core Network..30

2.2.3 Channel-Associated Signalling...31

2.2.4 Common-Channel Signalling.. 31

2 .3 C o m m o n -C h a n n e l S ig n a l l in g S y s t e m N o . 7 ... 32

2 .4 T h e In t e l l ig e n t N e t w o r k ... 34

2.4.1 The Intelligent Network Conceptual Model..36

2.4.2 The IN Service Processing Model and the Basic Call Process..38

2.4.3 IN Capability Sets... 39

2.4.3.1 IN Capability Set 1 (CS-1).. 40

2.4.5.2 IN Capability Set 2 (CS-2).. 42

2.4.3.3 Inter-working Functions in Future Capability Sets.. 44

2.4.4 The Basic Call Model...46

2.4.4.1 The Basic Call State Model for CS-1.. 47

2.4.4.2 The Basic Call State Model for CS-2.. 48

2.4.5 The IN Switching State Model (IN-SSM).. 50

2.4.6 IN CS-2 Call Party Handling.. 51

2.4.7 IN Summary... 53

2 .5 T h e IN , t h e T IN A Re f e r e n c e A r c h it e c t u r e a n d N e w T e c h n o l o g ie s ...54

2 .6 S t a t e M a c h in e s in T e l e c o m m u n ic a t io n s N e t w o r k s .. 57

2 .7 C h a p t e r S u m m a r y .. 60

CHAPTER 3: TOWARDS A NEW ROLE FORNETWORK INTELLIGENCE

IN THE CONVERGING ENVIRONMENT...61

3.1 In t r o d u c t io n ... 61

3 .2 In t e r n e t -P r o t o c o l B a s e d N e t w o r k s .. 62

3.3 A T a x o n o m y R e f e r e n c e M o d e l f o r th e IN A r c h it e c t u r e ..65

3.3.1 Support o f PSTN: The IN as the Control Architecture..66

3.3.1.1 Broadband Multimedia Services..67

3.3.1.2 Internet (IP)-Based Services... 67

3.3.1.3 Other Multimedia Services..68

3.3.2 Using IP-Based Architectures to Support the IN M odel...68

3.3.2.1 PINT and IETF Protocols and Architectures Requiring IN Inter-operability... 68

3.3.2.1.1 The Session Initiation Protocol...69

3.3.2.1.2 The Session Description Protocol..69

3.3.2.1.3 The PINT Architecture...69

3.3.2.1.4 PINT and IN C S -4 ..70

3.3.2.2 Computer Telephony Integration Call M odel... 73

3.3.2.3 Java Telephony A PI... 74

3.3.2.4 Open Inter-working Standards..78

3.3.2.4.1 The Parlay Group.. 79

3.3.2.4.2 JAIN: Integrated Network APIs for the Java Platform..80

3.3.2.4.3 Integrating Control Elements from JCC, JCAT and JT A PI..81

3.3.2.4.4 JAIN and Parlay...82

3.3.2.5 Internet Call Waiting: Replacement Initiative to IN Call W aiting... 83

3.3.3 Supporting IP-Based Services using the IN M odel...85

3.3.3.1 Customer Service System s... 86

3.3.3.2 Authentication, Certification, Billing and E-Commerce Services...86

3.3 .3 .3D N S for M obility.. 86

3.3.3.4 MEGACO and H .2 4 8 ..87

3.3.3.5 ETSI Project TIPHON.. 88

3.3.4 Using the IN Architecture for Layer 2 Operations and to Support the Convergence Process. 92

3 .4 T h e R o l e o f t h e T IN A S e r v ic e A r c h it e c t u r e in a C o n v e r g in g E n v i r o n m e n t93

3.5 S t a t e M a c h in e s in C o n v e r g in g N e t w o r k s a n d t h e R o l e o f I N ..96

3 .6 C h a p t e r S u m m a r y a n d R e s e a r c h C o n t r ib u t io n s ...97

CHAPTER 4: UTILISING EXISTING IN INFRASTRUCTURE FOR

IP-INITIATED BILLING & ELECTRONIC PAYMENT SYSTEMS........................99

4 .1 In t r o d u c t io n ... 99

4 .2 E x is t in g E l e c t r o n ic P a y m e n t S y s t e m s ..100

4.2.1 Limitations with Traditional Payment Systems... 101

4 .3 D e s ir a b l e C h a r a c t e r is t ic s of E l e c t r o n ic P a y m e n t S y s t e m s ..103

4.3.1 Security and Data Transmission...103

4.3.2 Authentication.. 103

4.3.3 Transaction Cost and Use o f Additional Hardware..105

4.3.4 Traceability o f Payments... 106

4.3.5 Acceptability and Transferability..107

4.3.6 Implementation Issues..107

4 .4 T h e IE PS IN -b a s e d B illin g S y s t e m .. 108

4.4.1 Overview o f the IEPS Model... 108

4.4.2 Elements o f the IEPS..109

4 .5 T h e IE PS P r o t o c o l ...110

4.5.1 Phase 1: User Connects to ISP ... I l l

4.5.2 Phase 2: User Exchanges IP Packets... 112

4.5.3 Phase 3: Charging using the IN Gateway..115

4 .6 S e c u r it y w it h in t h e IE P S S y s t e m ... 115

4.6.1 Elements o f a Public Key Infrastructure.. 115

4.6.2 PKI and the IEPS System .. 116

4 .7 E v a l u a t io n o f t h e IE P S P r o t o c o l a s a n E P S .. 116

4.7.1 Software-only versus Tamperproof Hardware.. 117

4.7.2 System Security and Data Transmission.. 117

4.7.3 Transaction Cost.. 117

4.7.4 Traceability o f Payments..117

4.7.5 Acceptability and Transferability..118

4.7.6 Comparison with Currently Available Systems... 118

4 .8 IN C S-1 In f o r m a t io n F l o w s fo r IE PS R e g is t r a t i o n ... 118

4.8.1 The SCF-SSF Interface..119

4.8.2 The SCF-SRF Interface...120

4.8.3 The SCF-SDFInterface...120

4.8.4 Resuming Processing at the SSF ...121

4 .9 T h e G a t e w a y b e t w e e n IN a n d I P ...121

4.9.1 The Gateway as an SRF ...122

4.9.2 The Gateway as an SSF..122

4 .1 0 C h a p t e r S u m m a r y a n d R e s e a r c h C o n t r ib u t io n s ..123

CHAPTER 5: IMPLEMENTATION & SIMULATION OF THE IEPS SYSTEM........................... 125

5.1 In t r o d u c t io n ... 125

5 .2 Im p l e m e n t a t io n o f t h e IE PS P r o t o c o l ...125

5.2.0 WRITE_ORDER_DETAILS... 127

5.2.1 TRANSACTION_START_REQUEST (TSReq).. 128

5.2.2 PUBLIC_KEY_REQUEST (PKReq).. 128

5.2 J PUBLICJŒ YJŒ SPONSE (PKRes)..128

5.2.4 TRANSACTION_DETAILS_TO_USER (TDUser).. 129

5.2.5 TRANSACTION_DETAILS_TO_1S (TDls)..129

5.2.6 USER_TO_GATEWAY(UtoG).. 130

5.2.71S_T0_GATEWA Y (IStoG)...130

5.2.8 A UTH0R1SE_TRANSACT10N_REQUEST (ATReq)..132

5.2.9 AUTH0R1SE_TRANSACT10N_REPLY (ATReply).. 132

5.2.10 PROCEED_T0_B1LL (PTB)... 133

5.2.11 BILL ... 133

5.2.12 CHARGE..133

5.3 The IEPS Classes.. 133

5.3.1 The dbManagement Class..134

5.3.2 The myPacket Class... 135

5.3.3 The mySocket Class.. 135

5.3.4 The TCPServer Class... 136

5.3.5 The UServer Class...137

5.3.6 The GServer Class...138

5.3.7 The ISServer Class... 139

5.3.8 The SCPServer Class... 140

5.4 Results of the IEPS Simulation.. 141

5.4.1 Output from the isServer..141

5.4.2 Output from the gServer...142

5.4.3 Output from the userServer..142

5.4.4 Output from the scpServer..143

5.4.5 Output from the IS Servlet Server..143

5.4.6 The Applet Output...144

5.5 Chapter Summary and Research Contributions... 144

CHAPTER 6: USE OF STATE IN ARCHITECTURES & PROTOCOLS

IN THE IP DOMAIN...146

6.1 Introduction...146

6.2 Controlling State-Dependent Behaviour.. 146

6.2.1 Deciding on an Adoption Policy fo r State-Dependent Behaviour... 147

6.2.2 Representation o f State...148

6.2.2.1 Interfaces... 148

6.2.2.2 Logical State.. 148
6.2.2.3 History and Execution States.. 149

6.2.3 Implementation o f Guarded Suspension... 150

6.2.3.1 Waits and Busy-Waits..150
6.2.3.2 Interrupts.. 151
6.2.3.3 Notifications.. 151

6.2.4 Tracking State... 152

6.2.5 Optimistic Policies..152

6 .3 U se o f S t a t e in C l ie n t - S e r v e r A r c h it e c t u r e s ...153

6.3.1 Remote Authentication and Dial-In User Service..154

6.3.2 Authentication, Authorisation and Accounting..156

6.3.3 Common Open Policy Service Protocol..159

6.3.4 Web Servers... 160

6.3.5 The Session Initiation Protocol Revisited..161

6.3.6 Integrated Services Architecture... 162

6.3.7 Use o f State in Client-Server Architectures: A Summary...162

6 .4 U se o f S t a t e in D ist r ib u t e d O b je c t T e c h n o l o g ie s & A r c h it e c t u r e s .. 164

6.4.1 Common Object Request Broker Architecture... 165

6.4.2 Enterprise Java Beans.. 165

6 .5 A S t a t e -B a s e d C l a s s if ic a t io n o f IP -B a s e d P r o t o c o l s ... 167

6 .6 C h a p t e r S u m m a r y a n d R e s e a r c h C o n t r ib u t io n s ... 171

CHAPTER 7: INVESTIGATING STATE MODELS IN THE IP-DOMAIN

THROUGH A WEB-BASED NETWORK MANAGEMENT SYSTEM....................172

7.1 In t r o d u c t io n ..172

7.1.1 Motivation and Approach... 172

7.1.2 Introduction to the Simple Network Management Protocol..174

7 .2 T h e N e t w o r k M a n a g e m e n t S y s t e m .. 175

7.2.1 Communication across the Components...177

7.2.2 The DB Interface and the DB Agent.. 177

7.2.3 The SNMP Agent and the SNMP Interface... 178

7.2.4 The NMS Components...179

7.2.5 The Web Server and the Applet... 179

7 .3 D is t r ib u t e d S t a t e -B a s e d B e h a v io u r o f t h e N M S ..180

7 .4 C h a p t e r S u m m a r y a n d R e s e a r c h C o n t r ib u t io n s ... 182

CHAPTER 8: OPEN PROGRAMMABLE NETWORKS, APPLICATION SERVERS AND

NETWORK INTELLIGENCE..183

8.1 In t r o d u c t io n ..183

8 .2 O p e n N e t w o r k s ...184

8.2.1 Traditional View on Service Implementation... 184

8.2.2 Open Network Access through APIs.. 186

8.2.3 Hierarchical Third-Party Service Provisioning...187

8.3 IN-BASED A pp l ic a t io n S e r v e r .. 189

8.3.1 WhylN-Based?.. 189

8.3.2 API Server Logical Interfaces..190

8.3.3 API Server Functional View...191

8.3.4 API Server State Model..193

8.3.5 Server State Model... 194

8.3.6 Client State Model.. 195

8.4 U s i n g SDL t o S i m u l a t e t h e API S e r v e r ... 196

8.4.1 UML Sequence Diagrams... 196

8.4.1.1 Accessing the Parlay Framework..197

8.4.1.2 The Alarm Call (WakeUp) Application Example..198

8.4.2 Simulation Overview..199

8.4.2.1 Client-Side Specification of Parlay API... 199

8.4.2.2 Server-Side Specification of Parlay API...204

8.4.3 Simulation...206

8.5 S u m m a r y a n d C o n c l u s i o n s .. 206

CHAPTER 9: CONCLUSIONS AND FURTHER WORK...208

9.1 D i s c u s s i o n ... 208

9.2 S u m m a r y o f C o n t r i b u t i o n s ..211

9.3 F u r t h e r W o r k ..212

CHAPTER 10: REFERENCES...214

APPENDIX A: LIST OF ACRONYMS & ABBREVIATIONS... 241

10

L is t o f F ig u r e s

Figure 2.1 : The hierarchy of the PSTN network... 24

Figure 2.2: Switch-based service provisioning in the traditional POTS

environment adopted from [Mage96]..24

Figure 2.3: Service provisioning in an IN environment..25

Figure 2.4: IN implementation of freephone service..26

Figure 2.5: A fully interconnected mesh topology.. 29

Figure 2.6: Channel-associated and common-channel signalling..31

Figure 2.7: The SS7 protocol stack in relation to the OSI reference model..................................32

Figure 2.8: Signalling points within the SS7 network..33

Figure 2.9: The four planes of the IN conceptual model...38

Figure 2.10: The Intelligent Network service processing model [Q.1201]...................................38

Figure 2.11: The BCP in the global functional plane.. 39

Figure 2.12: Distributed functional plane for IN CS-1 [Q.1211]... 41

Figure 2.13: Distributed functional plane for IN CS-2 [Q.1221]... 43

Figure 2.14: Example of a possible mapping of IN functional entities into

IN physical entities supported by IN CS-2 [Veni98]... 44

Figure 2.15: IN and inter-working functional relationships... 45

Figure 2.16: The BCM, detection points and points in ca ll... 46

Figure 2.17: Separation of the BCSM into an 0/T BCSM ... 47

Figure 2.18: The 0_BCSM for IN CS-1 [Q.1214]..48

Figure 2.19: The T BCSM for IN CS-1 [Q.1214]...48

Figure 2.20: The 0_BCSM for IN CS-2 [Q.1224]..49

Figure 2.21: Representation used in a call configuration..51

Figure 2.22: Representation of a call association object...51

Figure 2.23: Finite state model for CPH of IN CS-2 [Kumm98]...53

Figure 2.24: The TINA service architecture [TINA-SA]..55

Figure 2.25: The CAMEL architecture.. 57

Figure 3.1: IN control plane taxonomy reference model..65

Figure 3.2: The Intelligent Network providing support to the PSTN ... 66

Figure 3.3: The Intelligent Network is supported by new IP technologies...................................68

Figure 3.4: PINT architecture... 70

Figure 3.5: Enhanced functional architecture for IN support of IP networks [Q.1244]..............71

Figure 3.6: Possible CTI network configuration... 73

Figure 3.7: Connection state model for CTI [ECTF97]..74

11

Figure 3.8: Objects within the JTAPI model [JTAPI].. 75

Figure 3.9: State model for Connection object..75

Figure 3.10: State model for Terminal Connection object..76

Figure 3.11: Architecture of the Parlay A PI..79

Figure 3.12: Location of JAIN within a communications network [JAIN].................................. 81

Figure 3.13: JAIN/Parlay Interactions... 83

Figure 3.14: ICW based on existing IN CS-1 FEs [RFC2995].. 84

Figure 3.15: Support of IP with IN ...85

Figure 3.16: MEGACO NAS reference architecture.. 88

Figure 3.17: H.248/MEGACO.. 88

Figure 3.18: TIPHON release 1 architecture with reference points [ETSI TS 101-312]............89

Figure 3.19: TIPHON release 2 functional planes...89

Figure 3.20: Functional layers in the IP Telephony Application plane [ETSI TS 101-314].........90

Figure 3.21: Mapping of IN functions onto TIPHON functional architecture..............................91

Figure 3.22: Call model integration framework...92

Figure 3.23: ICW based on existing IN CS-1 FEs.. 92

Figure 3.24: SCPs responsible for the communication session.. 94

Figure 3.25: The TINA service architecture, PINT, Parlay, and JAIN..95

Figure 4.1: Parties involved in IEPS framework.. 108

Figure 4.2: IEPS network elements...109

Figure 4.3: Registration phase of IEPS...I l l

Figure 4.4: The IP packets of the IEPS... 112

Figure 4.5: IN CS-1 IFs for the registration phase of the IEPS protocol...................................119

Figure 4.6: The gateway as an SR F..122

Figure 4.7: The gateway as an SSF...122

Figure 5.1: Deployment of IEPS... 126

Figure 5.2: Data as a linked list... 130

Figure 5.3: Monitoring for matching pairs using shared local data.. 131

Figure 5.4: Class diagram for dbManagement... 134

Figure 5.5: Class diagram for myPacket...135

Figure 5.6: Class diagram for mySocket...135

Figure 5.7: Class Diagram for TCPServer... 136

Figure 5.8: Class diagram for UServer..137

Figure 5.9: State transition diagram for UServer class...137

Figure 5.10: Class diagram for GServer..138

Figure 5.11: State transition diagram for GServer class... 138

Figure 5.12: Class diagram for ISServer...139

12

Figure 5,13: State transition diagram for ISServer class... 139

Figure 5.14: Class diagram for SCPServer.. 140

Figure 5.15: State transition diagram for SCPServer class...140

Figure 5.16: Simulation output from the IS Server..141

Figure 5.17: Simulation output from the Gateway Server..142

Figure 5.18: Simulation output from the User Server (continues on next page)........................142

Figure 5.19: Simulation output from the SCP Server... 143

Figure 5.20: Output from the Servlet simulator...143

Figure 5.21 : Simulation output from the applet...144

Figure 6.1: Guarded suspension.. 150

Figure 6.2: State transition diagram for RADIUS client... 155

Figure 6.3: State transition diagram for RADIUS server.. 155

Figure 6.4: Basic authorisation entities, service agreements, and access methods.....................157

Figure 6.5: Distributed services and agreements...157

Figure 6.6: The primary policy control architecture components.. 159

Figure 6.7: SIP server state transition diagram..162

Figure 6.8: Communication between resource managers across administrative domains 163

Figure 6.9: Stateful session bean state diagram based on EJB..166

Figure 6.10: Classification of state-dependent architectures...167

Figure 6.11: Distributed control with RMs residing across administrative boundaries............. 169

Figure 6.12: Application entity structure adopted from [Q.1208]... 170

Figure 6.13: The management layer interface.. 170

Figure 7.1: Example of the components of a Network Management System............................. 174

Figure 7.2: Interfaces of the NMS... 176

Figure 7.3: Communication between the applet, web server and NMS.......................................177

Figure 7.4: The DB Agent class.. 178

Figure 7.5: The SNMP Agent class...178

Figure 7.6: The N M S... 179

Figure 7.7: Extensions to the NMS architecture..181

Figure 8.1: Traditional approach to service provisioning... 184

Figure 8.2: Hierarchy of third-party service providers... 188

Figure 8.3: Logical interfaces of the API Server...190

Figure 8.4: The API Server architecture.. 191

Figure 8.5: Details of the API Server architecture...192

Figure 8.6: The API Server state model..193

Figure 8.7: The Server state model (S_SSM).. 194

Figure 8.8: The Client state model (C SSM)... 196

13

Figure 8.9: UML sequence diagram showing an application accessing

a Parlay Server adopted from [ParlaySeq99]...197

Figure 8.10: UML sequence diagram for an Alarm Call Service adopted from [ParlaySeq99] 198

Figure 8.11: Specification of the Wakeupapplication system.. 201

Figure 8.12: Part of the IparlayAppLogic state diagram...201

Figure 8.13: Part of the Parlay Access block showing process IparlayAppAuthentication

receiving signal authenticateClient from the environment via channel C3.........................202

Figure 8.14: Part of process IparlayAppAuthentication.. 203

Figure 8.15: Process AccTimeOutl generating output signal accTimeoutl............................... 204

Figure 8.16: Sequence diagram of alarm call service, adopted from [ParlaySeq99]................. 205

Figure 8.17: Part of block Parlay Server showing the implementation of process

IparlayAuthentication interfacing to the system via R2 and R 3 ..206

14

L is t o f T a b l e s

Table 3.1: Description of states for a Connection object..76

Table 3.2: Description of states for a Terminal Connection object... 76

Table 3.3: Standards for inter-working among IP Telephony and the PSTN...............................87

Table 4.1 : Packet structure for message 8.. 113

Table 4.2: Record structure for IS agent.. 113

Table 4.3: Packet structure for message 9 .. 113

Table 4.4: Packet structure for message 10...114

Table 4.5: Packet structure for message 11...114

Table 5.0: WRITE_ORDER_DETAILS packet structure..127

Table 5.1: TRANSACTION_START_REQUEST packet structure...128

Table 5.2: PUBLIC_KEY_REQUEST packet structure.. 128

Table 5.3: PUBLIC_KEY_RESPONSE packet structure..128

Table 5.4: TRANSACTION_DETAILS_TO_USER packet structure.......................................129

Table 5.5: TRANSACTION_DETAILS_TO_IS packet structure.. 129

Table 5.6: USER TO GATEWAY packet structure.. 130

Table 5.7: IS TO GATEWAY packet structure...130

Table 5.8: AUTHORISE_TRANSACTION_REQUEST packet structure................................ 132

Table 5.9: AUTHORISE_TRANSACTION REPLY packet structure.......................................132

Table 5.10: PROCEED TO BILL packet structure... 133

Table 5.11: BILL packet structure...133

Table 5.12: CHARGE packet structure... 133

Table 6.1: Pessimistic and optimistic policies for state-dependent actions................................. 147

Table 6.2: Session and entity beans..166

Table 8.1 : Messages used by an application accessing a Parlay Server.......................................198

Table 8.2: Messages used by an alarm call service..199

15

Ch a pte r 1

In t r o d u c t io n

Changes in telecommunications technology and the telecommunications environment
provide sufficient ground for the proliferation of open service provisioning by third-

party service providers. Such advances give rise to a number of issues relating to the
control plane of telecommunications networks.

1.1 M o t iv a t io n

Historically, telecommunications services were designed, developed and implemented with the

traditional telecommunications network as the target environment. This is an environment with

strictly standardised functional entities that are owned and maintained by the incumbent

operator.

The telecommunications environment is changing: market dynamics, regulatory initiatives and

technological advances are necessitating changes [Melo97] [ECOO] [PI 110] [Haya98] [Ishi98].

Such technological and market-related [Walk97] changes have an impact on the way in which

control is provided. The control plane can be thought of as a collection of hierarchically

distributed functional entities whose aim is to establish, monitor and terminate the calls and

connections. In the traditional environment, control and network intelligence is provided

primarily by the Intelligent Network architecture. In the new telecommunications environment it

is crucial for traditional telecommunications networks and services to inter-work with IP-based

networks and services [Stro99]. The inter-operability and, therefore, the convergence process is

driven by the demand of end users for seamless service access, regardless of the transport

network. Such a level of inter-operability requires a re-think in the way network intelligence is

provided.

IP-based networks have shown explosive growth [AsatO 1] [ITU97] [ITUOO][ECOO]. Unlike in

the telecommunications domain, the drive for new protocols, services, and capabilities has come

from open groups, rather than from standardisation bodies. The IP approach does not require the

presence of an explicit control plane architecture that standardises external and internal state

models; rather, the client-server architectures of the IP world are sufficient. This is supported by

the way standardisation bodies such as the Internet Engineering Task Force (IETF) operate.

16

1.2 A im s a n d O b je c t iv e s

The thesis examines and identifies the control plane mechanisms that enable network

intelligence in both telecommunication and data networks. In telecommunication networks,

specifically the public switched telephony network (PSTN), a major architecture contributing

towards control and intelligence is that of the Intelligent Network (IN). The thesis examines the

IN architecture as a case scenario in order to pinpoint the mechanisms through which it enables

services and therefore intelligence to be provided in a complex and distributed network such as

the PSTN.

The work also aims at examining how the traditional view of network intelligence is affected in

the converging environment of telecommunication and data networks. To achieve this, the

thesis examines current and evolving IP-based architectures and suggests ways in which inter­

operability with network intelligent architectures in the PSTN can be achieved. By doing this,

the author presents a taxonomy that classifies numerous packet-switched protocols and their

relation to the IN architecture.

The thesis also puts forward a classification of existing IP-based protocols according to their

utilisation of state and state-dependent actions. The work shows the way in which state can be

implemented and discusses the need for state-utilisation. More importantly, the author identifies

some of the complexities that necessitate state-utilisation.

Finally, the thesis looks at the issues relating to the control plane within the framework of open

programmable networks and initiatives for service provisioning by third-parties. The aim is to

present an architecture for third-party service providers that draws from IN principles for

providing control and intelligence.

1.2 T h e Pr o b l e m F ie l d a n d t h e A p p r o a c h

The problem field that this research work focuses on is that of the control plane in next

generation telecommunications networks. The control plane is of crucial importance in the

converging environment of telecommunication and data networks. Unless there is a clear

understanding of the way in which network intelligence can be offered - through the control

plane - the inter-working of telecommunications services will be problematic. The problem

statement can be summarised as: "What is the role o f network intelligence and the control plane

in next generation telecommunications networks?”

17

The approach the author has adopted is one that represents a mixture of practical and theoretical

work. The theoretical work focuses on the role of the control plane in traditional and evolving

telecommunications networks and services. The practical work involves the implementation and

simulation of three systems, the aims of which were to: examine the role of existing intelligent

network infrastructure; analyse the role of the control plane in a distributed system in an IP-

based environment; and to propose an application server architecture that is based on concepts

from the IN world, but also draws from the flexibility and openness of the IP domain.

1.3 Su m m a r y o f M a in C o n t r ib u t io n s

The thesis presents both traditional and emerging network intelligence architectures within the

converging telecommunications environment. By doing this it provides a unique view of the

current state of convergence. This is a useful and important contribution. The classification

presented in chapter 3, provides the reader with a chronological snapshot of the convergence

between telecommunication and computer science practices, principles and approaches. Such a

classification has not been published before, and it is the author’s view that the taxonomy is

useful for the categorisation of new computer science and telecommunication-based

architectures and their relation to the Intelligent Network. At the same time, such a

classification is important as it enables a reader with little background in either of the two fields

(telecommunications or computer science), to quickly understand the relation of existing

network intelligent architectures to the Intelligent Network.

The author also presents an application for e-commerce, based on the Intelligent Network

architecture, with support for micro-transactions without the need of credit cards. The

application was designed, implemented and simulated by the author. Furthermore, a patent

application was also filed [lEPSPat]. The application is entirely based on existing IN

capabilities, and requires no change in the telecommunications environment.

Another important contribution is the classification of IP-based architectures with respect to

their utilisation of state. The author scrutinises numerous IP-based protocols and frameworks

and shows that although some systems may be characterised as “stateless”, the complexity of

their operating environment may impose the introduction of “state” and/or “state dependent

actions and events”. Specifically, the author argues that in certain systems, the utilisation of

state is imposed by the concurrency complexities of the system and not the complexities of the

system perse.

18

The thesis also puts forward an architectural framework for the communication of third-

party service providers within an open network service provisioning environment. The

framework, proposed by the author, conforms to the Parlay API’s framework interfaces for

allowing the interconnection of third-party service providers. The architectural framework is

based on the principles of the IN control architecture and also on the flexibility exhibited by IP-

based architectures. Incorporated within the framework are state machines that aim and achieve

to simplify the billing and management of services in an open network environment. The

framework is necessary as new third-party service providers are

The work presented in this thesis is supported by the following publications of the author:

1. C. Solomonides and M. Searle, “/A and the INternet”, University College London,

London Telecommunications Research Symposium, London, July, 1998.

2. C. Solomonides and M. Searle, ''''Relevance o f Existing Intelligent Network

Infrastructure to the Internet, University College London, Lecture Notes in Computer

Science, Springer-Verlag, 5th International Conference on Intelligence and Services in

Networks, IS&N'99, Barcelona, Spain, April 1999.

3. C. Solomonides and M. Searle, "An Intelligent Network E-Commerce ProtocoN,

University College London, 38th European Telecommunications Congress, Utrecht,

The Netherlands, August 1999.

4. C. Solomonides and M. Searle, "Evolution Towards the TINA Service Architecture

Through PINT and Parlay”, 6th International Conference on Intelligence in Networks,

17-20 January 2000, Palais Des Congres D'Archachon, Bordeaux, France, 2000.

5. C. Solomonides and M. Searle, "Intelligent Network Application Programming

Interface Server Architecture”, University College London, IEEE IN 2000 Workshop,

Cape Town, South Africa, May 2000.

6. C. Solomonides and M. Searle, "Network Intelligence, APIs and Service Creation”,

University College London, 39th European Telecommunications Congress, Limerick,

Ireland, August 2000.

7. C. Solomonides and M. Searle, "Application Server Architecture for Open Networks”,

University College London, London Telecommunications Symposium, London,

September 2000.

1.4 T h e sis O u t l in e

Chapter 2 provides a short background to telecommunications concepts that are relevant to this

thesis and discusses the traditional approach to network intelligence. The Intelligent Network is

19

presented and the mechanisms through which it provides the control plane for

telecommunications networks are analysed.

Chapter 3 aims at examining current research activities in network intelligence and presents

these in relation to the Intelligent Network architecture. It also examines the new role of the

Intelligent Network: that is, the IN as a control architecture that provides ways to initiate

services on the PSTN. Within this context, the chapter discusses ways of using the IN as it

currently is but also identifies the additional functionality that is needed within a converging

environment.

One of the areas in which the existing IN control architecture can be used unchanged is for

providing authentication, certification and electronic commerce capabilities. This is examined in

chapter 4, where a specific application area uses legacy IN to provide a desirable, secure and

trusted platform for IP-based payments. The strength of the protocol that is described lies in its

ability to handle micro-transactions on behalf of the end users, without the need for credit cards.

The implementation and simulation of the protocol is presented in chapter 5.

Chapter 6 examines the notion of “state” in IP-based protocols and architectures. The chapter

presents the ways in which state can be maintained and implemented. Following this the chapter

provides a classification of various IP-based architectures with respect to their reliance on state-

dependent actions. The work presented in chapter 6 is applied in chapter 7 by presenting a

network management system which aims at examining the control aspects in a distributed

system. The network management system presented in chapter 7 draws from traditional

telecommunication principles, but also from techniques traditionally found in the data networks

environment.

Chapter 8 presents an application-server architecture based on principles from the IN

environment, but also from computer-science practices. The application server that is presented

in aimed towards third-party service providers. The chapter examines the need for such an

architecture within the overall framework of open network service provisioning.

Finally, chapter 9 gives the conclusions regarding the research work presented and provides

suggestions for further work that may be undertaken as a result of the author’s work.

20

C h a p t e r 2

T r a d i t i o n a l A p p r o a c h t o

N e t w o r k I n t e l l i g e n c e

The aim of this chapter is to develop an understanding of the traditional role of
network intelligence in telecommunications. This is done by outlining some key

concepts such as switching, the role of signalling and their relation to control
architectures such as the Intelligent Network. In doing this, the chapter presents a useful
background to the new research conducted.

2.1 In t r o d u c t io n

In chapter 1 it was mentioned that one of the aims of the work is to examine the role of the

control plane in traditional telecommunication networks. Chapter 2 supports this aim by

examining the way in which control has been achieved in traditional telecommunications

networks. Hence, a large section of this chapter deals with the control mechanisms and

architectures that form part of today’s telecommunications networks.

Network Intelligence is a term given to the group of architectures that provide enhanced

control services. A number of these will be examined in this thesis. One important example of

network intelligence is called the Intelligent Network (IN) [Q.1200-Q.1205], discussed in this

chapter. The IN is implemented as an overlay to the voice network and facilitates advanced call

control services through its capability sets (CSs).

Telecommunications networks have been developed to support voice services. The basic

services of such networks are discussed in section 2.1.1, while section 2.1.2 discusses the way

service logic is distributed in an IN and non-IN environment.

Section 2.1.3 gives a brief history of the development of the telecommunications network. The

motivation for providing a historical walkthrough is to understand that the evolution of a

telecommunications network has been driven by the need to provide voice services with an

extremely high quality of service. This basic requirement has also driven the characteristics of

21

the traditional telecommunications network. The fundamental characteristics of a

telecommunications network are at odds with the features of an Internet Protocol network.

A telecommunications network typically comprises a number of planes. From the point of view

of this thesis, the main ones are the transport and control plane. The transport plane provides the

bearer connections on which voice channels are transported and the control plane supports the

bearer channels through the signalling services. Section 2.2 examines the control plane and, in

particular, the switching and signalling aspects of a telecommunications network. The key

signalling protocol is Signalling System No. 7, which is discussed in section 2.3.

The IN control architecture is presented in detail in section 2.4, where the focus is to identify the

major characteristics of any network intelligent architecture. An essential element of the IN is

its reliance on state models, which will become apparent through the discussions in this chapter.

While architectures such as the IN focused on standardising the technical issues, others such as

the Telecommunications Information Network Architecture (TINA) [TINA-GA] had a wider

scope, attempting to address and standardise less technical issues such as the business and

managerial structures [TINA-BM]. The TINA model is presented in section 2.5. However, the

focus is on the relation of IN to TINA, rather than the TINA architecture per se. Finally, section

2.6 focuses on the use of state models in telecommunications networks.

2.1.1 Introduction to Telecommunications Networks
The aim of any communications network is to provide channels for the exchange of

information.* In the traditional telecommunications world, the aim of the communications

network has been to provide for the transfer of speech. This has driven the structure and

characteristics of the network.

Telecommunications networks have evolved significantly since their original conception even

though, to a certain extent, the basic service offering has remained unchanged throughout this

time. This is because the design requirements of the telephone network were set by the

characteristics of human voice, which have not changed.

The telecommunications network is referred to as the “Public Switched Telephony Network”

(PSTN). This has evolved from the traditional “plain old telephony service” (POTS) and adds

In traditional telecommunications involving voice, these “channels” can be thought of as physical

connections between the two subscribers.

22

new services such as freephone, credit card calling, etc. The rest of this section presents the

basic concepts of the PSTN.

A network involves the interconnection of resources. The network topology dictates the number

of links that are required, the cost of the deployment, and possibly, the robustness of the

network. As the network becomes distributed across geographical regions, there is a need for

this interconnection if two or more networks are to communicate.

A subscriber in the PSTN can place a call from any geographical location to another subscriber

who might be located thousands of miles away. This can be achieved using a hierarchical

architecture of interconnected network components (see figure 2.1) between any two parties

involved in a conversation. Having achieved the interconnection of these geographically

distributed networks, there is a requirement to notify network components (residing in the core

of the network) so that one subscriber can initiate a call to another. This is achieved using

switching and signalling. The process of switching and signalling results in resources (channels)

being allocated between the calling (originating) and the called (terminating) parties. This pre­

allocation of resources for the duration of a call* is a fundamental principle in

telecommunications networks. The PSTN approach is in stark contrast to the approach of data

networks such as the Internet, where no pre-allocation of resources takes place. The details

involved in switching and signalling are the focus of the work presented in section 2.2.

Making a connection and allocating the resources requires a call to proceed through the

following phases:

1. Pre-selection", where a new call request is recognised and decisions on how to deal with

the call are made.

2. Call completion: the originating and terminating parties are connected and the charging

process is initiated.

3. Conversation

4. Release: the call is disconnected, releasing the allocated resources, the billing record is

completed, and the network returns to the normal (idle) state.

When channel-associated signalling is used (section 2.2.3), the resources are allocated when the

subscriber’s handset goes off hook and the signal is received by the local exchange.

23

International E xch an ge

Tertiary E xch an ge

S e co n d a ry E xch an ge

Local E xch an ge

Local Loop

Figure 2.1: The hierarchy o f the PSTN network

2.1.2 Distribution of Service Logic
This section discusses the way in which service logic is distributed in two environments. Figure

2.2 illustrates the implementation o f a service without an IN eontrol architecture; figure 2.3

illustrates the way a service is implemented with an IN architecture. The section discusses the

two approaches to service distribution and implementation and puts forward the principles,

advantages and basic operation o f the IN.

Operations Administration
and Management

(0 AM)
services 1..n

Switch A

Service Logic

Service Data

Basic Call Processing

Switch B

Service Logic

Service Data

Basic Call Processing

Switch C

Service Logic

Service Data

Basic Call Processing

Figure 2.2: Switch-based service provisioning in the traditional POTS
environment adopted from [Mage96]

Figure 2.2 depicts the components o f the switches and the way service logic is distributed

without the IN control architecture. The switches enable the connection o f subscribers located at

the edges o f the network. Its components are the service logic, service data and basic call-

processing functionality.

24

The implementation of services without an IN control architecture has a number of

disadvantages [Ambr89][Eple90][Zolz92][Filk00]. The switches may be from different vendors

and, as a result, the service logic and data have to be customised for the vendor-specific

platform. To introduce new services, the service logic has to be implemented on all the switches

and this task is costly due to the geographical distribution o f the switches. Subscribers can only

access services implemented by the local switch, unless the service logic is identical throughout

the network.

To achieve homogeneity at the switch-level means that a substantial proportion o f the operator’s

revenue and time is spent in updating the service logic at the switches. This is costly, time-

consuming, and inefficient and, unfortunately, it was the only approach available until the

introduction o f the Intelligent Network architecture.

With the introduction o f the Intelligent Network, it became possible to implement a service in a

more efficient manner, as shown in figure 2.3.

SOP

Service Logic

Service Data

Switch A (SSP)

Basic Call Processing

Switch B (SSP)

Basic Call Processing

Switch C (SSP)

Basic Call Processing

Figure 2.3: Service provisioning in an IN environment

The service logic now resides in a central node, called the Service Control Point (SCP). When

the individual switches require additional service functionality, that may not present in the

switch, it is provided by the SCP.

The separation o f basic call-processing from enhanced service logic enables the rapid

provisioning of new services [Kun97]. This is because service logic is now centrally located,

and there is no need to individually update every single switch; a single update on the SCP is

sufficient.

25

To illustrate the operation o f an IN service, the freephone service* is presented in figure 2.4. The

following communication channels are used: communication between the Service Switching

Point (SSP) and the SCP/Service Data Point (SDP) is achieved via the signalling network, while

communication across the SSPs (switches) is over the bearer connection. The signalling links

are shown in figure 2.4 using dashed lines while the bearer connection is represented using the

solid line.

The process begins with the initiating party dialling “0800192192”. The local exchange (switch

A) recognises that this is a specific service access number as it begins with “0800”. It therefore

queries the SCP for call handling support. The SCP then queries the SDP, which contains a

database, in order to translate the “0800192192” logical number to the specific destination

number, for example “02073342123” . This translated number is passed back to switch A and

call handling resumes. Switch A now has sufficient information to be able to set up the call, i.e.

to establish the corresponding bearer connection to the appropriate final destination. When

either o f the two subscribers hangs up, the call is terminated in the usual manner (i.e. by moving

to the Release phase).

0800-192192

02073342123

Service Logic

Service Data

SCP SDP

Data

0800-192192
<3 02073342123

- 0800-192192

Switch A (SSP)

6

Switch B (SSP)

Basic Call Processing Basic Call Processing

02073342123

Figure 2.4: IN implementation o f freephone service

The freephone service proved to be a desirable service with network operators and customers

alike. Indeed, British Telecom’s reason for adopting the IN architecture was to enable freephone

* Freephone enables a calling party to dial a number without incurring charges. The call is charged to the

terminating party.

26

and call-stream services [OBri89]. NTT in Japan, introduced an IN-like architecture in 1985,

and the first service that was made available was freephone [Suzu93].

This introductory section provided a short description of the various elements that are involved

in a modem telecommunications network. In summary, the main concepts that were introduced

include the hierarchical and distributed nature of the network, the presence of a separate

signalling network to that of the bearer connections, the fundamental requirement of the

sharing of resources and their explicit allocation, service provisioning with and without the

Intelligent Network, and some of the advantages of the Intelligent Network. These concepts

are further discussed in the following sections in this chapter.

Firstly, however, there is a short chronological walkthrough of the telecommunications

developments up to the point of the introduction of the Intelligent Network to show that, at the

initial conception of the telecommunications network, there was intelligence at the core, which

was then removed.

2.1.3 Historical Switching and Signalling
The aim of the POTS network was to provide the capability for voice communication among

subscribers. At the time (late 1870s), the approach adopted was to interconnect subscribers

through local offices. Within these offices, human operators were responsible for physically

connecting the circuit between the caller and the destination subscriber using a switchboard.*

This process is now known as circuit switching.

The presence of the human operator provided the “network” with a very significant capability -

that of intelligence. Operators were in a position to know that the doctor was not at home, but at

a friend’s house - and in this way could re-direct the call. In today’s environment, this is call

forwarding. Furthermore, unwanted calls were filtered (call-screening) and messages could be

left with the operator (voice-mail). When either of the two parties ended the conversation, the

operator would terminate the connection. This would release the bearer channels and resources

were no longer explicitly allocated to the two parties. It can be deduced that the explicit

allocation of resources has had its roots in the original conception of the network.

While the services described above were provided by the human operator, other services, for

example, call queuing and call waiting were more difficult (if not impossible) to achieve,

because of the limitation in the number of resources (bearer connections) and not due to lack of

* At the time, subscribers were important people in the community, such as doctors, policemen, etc.

27

intelligence. What is more, as the number of subscribers grew, operators struggled to keep up

with the demand for switching [Russ98]. It then became evident that if the switching and

connection process could be automated, it would provide lower running costs and therefore

increased profits. Increasing the speed of the connection process also meant subscribers would

spend more time talking rather than waiting to be connected.

The automation of the connection process required a component that could automatically switch

and connect the originating and terminating parties. Unfortunately, the introduction of

automated switches also removed the intelligence that was present.

2.1.4 The Strowger Switch
The first automated switch came from an unexpected source. Almon B. Strowger was an

undertaker in Kansas City, USA in the late 1890s. The story says [AGCS] [Lesh98] [TeReOO]

that there was a competing undertaker locally, whose wife was an operator at the local telephone

exchange. Whenever a caller asked to be put through to Strowger, calls were deliberately put

through to his competitor. This obviously frustrated Strowger greatly and he set about devising

a system that would reduce the reliance on the human part of the equation. Strowger developed

a system of automatic switching using an electromechanical switch based around

electromagnets and pawls [AGCS]. With the help of his nephew, Walter S. Strowger, he

produced a working model in 1888 under US Patent No. 447918 dated 6/I0/189I.

There was now however a need to re-introduce the network intelligence and the “advanced

services” that were removed. Of course, the electromechanical switch developed by Strowger

did not provide the necessary “environment” to be “software-controlled”. Software within

switches was introduced with the development of Stored Program Control (SPC).

By the early 1960s, advances in computer science* made it possible to develop software which

could control devices. In May 1965, the No. 1 Electronic Switching System was put into

commercial service in Succasunna, New Jersey. The switch utilised technology with a relatively

slow central control, very expensive memory (Ferrite sheet and Twister), and slow peripherals

[Memm90]. These factors adversely affected the development of SPC-type switches - the

competing crossbar systems were cheaper to manufacture.

In the early 1980s, digital switching began to appear and distributed control was more widely

adopted - together with its overheads [Memm90]. Multiple control programs were accompanied

* Such as the introduction of the silicon transistor by Texas Instruments.

28

by multiple distributed databases and interactions among distributed programs and databases

were a challenge. The software development practices in the 1980s did not exactly follow the

software engineering principles of abstraction, coherence or decoupling [SommOl]. Instead,

software was characterised by the “spaghetti approach” and endless use of the “goto” keyword.

The rest of this chapter focuses on discussing the role of switching and signalling, followed by a

detailed description of the IN control architecture.

2.2 Sw it c h in g a n d t h e R o l e o f S ig n a l l in g

In an ideal world, communicating parties would be physically interconnected across a medium

with no loss, delay or bandwidth limitations. In practice it is impossible to physically

interconnect all the communicating parties in a mesh arrangement due to scalability, practicality

and logistics.

Figure 2.5: A fully interconnected mesh topology

Equation (1) presents the total number of links that are required if n nodes are to be connected in

a fully-meshed arrangement, as shown in figure 2.5.

n - n
(1)

This is expensive if the number of nodes is large, as in the case of the PSTN where the number

of nodes is in the order of millions. For this reason, from its infancy the telecommunications

network has adopted a hierarchical approach (see figure 2.1).

In order to enable the network to interconnect two subscribers in a hierarchical topology,

switches (that are controlled through signalling) must be placed along the transmission path to

direct the bearer connections from the caller to the person being called. The process of

switching allows the physical interconnection of subscribers by directing a call path in a way

that enables the caller to establish a bearer connection to the party being called [Russ98]. The

size and position of the switches are carefully chosen using network planning and performance

measurements, as their cost is very high.

29

The signalling network is used to control the switches and its aim is to establish and maintain

control connection paths through the link-by-link setting up of a path [Russ98]. In doing so,

valuable resources are allocated by the switches to establish the connection. To maintain the

signalling network in an operational state and increase robustness, some of the links at the

various levels are interconnected (see figure 2.1).

The interconnection increases robustness in the case of link failure at the physical and transport

planes. However, due to the importance of the signalling network it is also vital that the

signalling protocol maintain mechanisms that provide resilience and robustness.

Signalling protocols such as Signalling System Number 7 (discussed in section 2.3) define

ubiquitous state models to assist in ensuring the robustness and reliability of the signalling

network. The concept of state models is a central issue to the work presented in this thesis (see

particularly sections 2.6, 3.5, 6.6 and 7.3).

The signalling network is divided into two parts: the access network and the core network.

2.2.1 Access Network
The access network is defined as the part of the network between the end terminal and the local

exchange. Access network signalling in the POTS network utilises a very simple analogue

signalling scheme called Dual Tone Multiple Frequency (DTMF) [ETSI TS 101 235]. DTMF

signalling uses a set of audible frequency tones in response to buttons being pushed on the

telephone. The goal is for the telephone device to signal to the exchange across the user channel.

In the case of private businesses, the customer premises do not have a single telephone line but

a large number of telephones in a private network. In such cases, a business often possesses a

Private Branch Exchange (PBX). PBXs control the routing of calls within the business

organisation and provide customised services between offices of the same company. These

services include the allocation of personal number extensions across multiple office sites. The

Digital Private Network Signalling System (DPNSS) is a scheme that interfaces the PBX with

the local exchange. Access signalling has differing requirements from the trunk (core) network.

2.2.2 Core Network
The core network is the part from the local exchange to internal signalling points, such as

Signal Transfer Points (STPs). Core (inter-exchange) signalling between exchanges or switches

establishes the resources for a call and optionally communicates supplementary service

30

requirements to an intelligent network platform, such as the Intelligent Network. The core

network uses core signalling schemes and protocols. SS7, the ubiquitous inter-exchange

signalling scheme, has evolved from a previous version named Common Channel Signalling

System No. 6, developed by the ITU-TS (formerly CCITT) in the mid-1960s. SS7 employs

digital signalling.

Early signalling methods were limited because they used the same circuit for both signalling

and voice. The circuit would be busy from the time the caller started dialling until the caller

went “on-hook”. A solution to this was to separate the signalling and the bearer connections.

This way, the call setup and teardown procedures required with every call could be faster. Voice

and data circuits could be reserved for use when a connection was possible, instead of

maintaining the connection even when the destination was busy.

C h a n n e l - A s s o c i a t e d S ig nal ling C o m m o n - C h a n n e l s igna l l ing

Bearer channel 1
Switch Switch

Signalling for
bearer channel 1

Control
System

Bearer channel 3

Signalling for

Control
System Switch Switch

Common Signalling

Control
System

Control
System

Channel
bearer channel 3

Figure 2.6: Channel-associated and common-channel signalling

2.2.3 Channel-Associated Signalling
In channel-associated signalling (figure 2.6, left), the signalling messages are sent across

logical signalling channels that are dedicated to each speech channel. In other words, although

the signalling channel may be a separate physical channel from the voice (bearer) channel, a

dedicated channel is allocated to support the voice call. The disadvantage o f this technique is

that signalling resources are provided regardless o f whether the voice channel needs it. There

are times in a call, such as the mid-call period, when less signalling information is required. At

such times it would be useful if the signalling channel could be used for another signalling

circuit.

2.2.4 Com m on-Channel Signalling
In common-channel signalling (figure 2.6, right), signalling for a number o f voice channels is

aggregated into a single shared (common) signalling channel. The introduction o f separate

signalling links means that a bearer (voice) connection is only utilised if a connection can be

established. As a result, the availability o f voice circuits is higher and the need for additional

31

circuits decreases. Common-channel signalling schemes include SS6 and SS7, as well as the

DPNSS and its successor QSig [ECMA-143],

2.3 C o m m o n -C h a n n e l S ig n a l l in g Sy st e m N o . 7
Figure 2.7 depicts the Common-Channei Signalling System No. 7 (SS7) protocol stack in

relation to the OSI reference model [ISO-IS7498-1]. In contrast to IP networks, SS7 networks

do not adhere to the full seven-layer OSI reference model. This is because SS7 was developed

before the OSI reference model. SS7 adheres to a four-level model.

OSI lay e rs 8 5 7 levels

Application layer

P resentation layer

S ession layer

T ransport layer

Network layer

Data link layer

Physical layer

Mobile Application
Part

Intelligent Network
Application Part

Transaction Capabilities
Application Part (TCAP)

Signalling Connection Control Part
(SCCP)

M essage Transfer Part (MTP)
Levels 1-3

Figure 2.7: The SS7 protocol stack in relation to the OSI reference model

The Message Transfer Part Levels 1-3 [Q.701] define the physical transport, the data link

layer and the network layer. As in the OSI model, each layer is responsible for delivering a

service to the layer above it. In the case o f call-connection, MTP-3 provides an end-to-end

packet-based transfer that routes signalling packets based on a unique element address

called a Point Code (PC).

The User Parts are shown as the shaded areas on the right. The Telephony User Part

(TUP) [Q.721-Q.725] is a set o f well-defined messages for the establishment,

conversation and termination phases o f a call. Many national variants o f TUP exist

including the BTUP in the UK and SSUTR2 in France. In the USA, the ISDN User Part

(ISUP) [Q.761-Q.767] is used and supports ISDN services including the establishment

and control o f data channels.

32

■ The Signalling Connection Control Part (SCCP) [Q.711-Q.716] provides connection-

oriented and connectionless services.* A significant feature provided by the SCCP layer is

global title translation^ [Q .711]. Through global title translation, it is possible for any

signalling node to communicate with any other signalling node, even if the address o f the

destination node is not known by the originating node. For instance, there may be cases

when Service Switching Points (SSPs) need to communicate with Service Control Points

(SCPs). If the SSP does not know the address o f the destination SCP, the Signal Transfer

Point (STP) provides the address, through global title translation.

■ The Transaction Capabilities Application Part (TCAP) [Q.771-Q.775] is designed for

non-circuit related messages. TCAP messages are destined for database entities as well as

actual end-office switches. TCAP therefore allows end-to-end client-server invocation o f a

service. The first usage o f the TCAP protocol was for freephone number translation (see

section 2.1.1).

■ The Intelligent Network Application Part (INAP) [Q. 1208] is the application layer. It

provides the information flows between IN elements.

The physical elements o f the SS7 network are named Signal Points. As in IP-based networks,

the SS7 network uses packet-switching for transferring messages across the network. Signal

points can also perform message discrimination and route messages to another signal point.

S C P

S S P S S P

S S P

S S P

S S P

S S P

ST P STP

STP STP

S S P

Figure 2.8: Signalling points within the SS7 network

* Connectionless services use parameters to emulate a connection-oriented service.

 ̂Arguably, global title translation is similar to the service provided by Domain Name Servers (DNS) and

the Address Resolution Protocol (ARP) in the IP domain. A domain name server in one zone initiates a

request to a domain name server in a different zone, while global title translation requires a “number

translation service” for a specific point-code. A network node makes an ARP request to a logical IP

address which is matched to a physical Ethernet (hardware) address, while an STP refers a point-code

request to a higher-level STP; and this is similar to a referral in the DNS.

33

There are three different types of signalling points (as illustrated in figure 2.8). These are the:

■ Service Switching Points (SSPs) represent the local exchange in the telephone network by

converting signalling from the voice switch into SS7 messages.

■ Signal Transfer Points (STPs) serve as routers and are responsible for directing requests to

and from the SSPs.

■ Service Control Points (SCPs) serve as an interface to databases.

Figure 2.8 illustrates a key functional requirement of the SS7 network, which may be apparent

from the links. This is to remain operational at all times and, as far as the physical layer is

concerned, it is achieved by using alternative links to some destinations. For instance, for SSP-B

to be completely isolated, all links to STP-4 must fail. This redundancy means that all signalling

points can be accessed even if some of the links fail.

2.4 T h e In t e l l ig e n t N e t w o r k

This section provides a detailed description of the Intelligent Network architecture. The

Intelligent Network architecture is of importance to the overall work presented in this thesis

because it shows how control and network intelligence has been achieved in a complex network,

such as the PSTN, through the extensive use of state models.

One of the aims of this section is to provide the reader with the technical details and an

appreciation of the architectural complexities within it. Arguably, the complexities of the IN

architecture have been both its strength and its weakness. In the former case, the rigid, clear and

concise definition of the architecture in ITU Recommendations in Series Q.1200 that span

thousands of pages have enabled the IN to provide a common architecture (in theory) for the

robust control of the PSTN network. However, at the same time a “limiting” or “failing” factor

has been the time delay that is inherently present if a body such as the ITU* tries to standardise^

on such a huge and ambitious architecture as the Intelligent Network. This is in stark contrast to

* Standards produced by standards organisations such as the ITU-T and ISO are called de jure standards.

These are stable and easily socialised in the global sense. In the past, de jure standards usually took a long

time to set. For example, CCITT (ITU-T’s predecessor) Recommendations were approved by the Plenary

Assembly held once every four years [AsatOl]. Furthermore, according to the same reference, “one of the

biggest challenges ITU-T faces is to cope with market demands in competitive areas.” As a result, the

ITU-T is aiming to shorten the approval time for new standards from 4 years (1998) to between 4 weeks

to 9 months in 2001 [AsatOl].

 ̂For an appreciation of the standards process, refer to [JakoOl].

34

the IP domain and the work from the IETF, where the approach is to standardise on protocols

and the architecture of the functional entities is left to each proprietary implementation.

According to [Q.120I], the Intelligent Network (IN) is a:

“telecommunications network service control architecture that is a generic platform for open,
distributed, service-independent communication. Its goal is to provide an open platform supporting
the uniform creation, introduction, control, and management of services beyond the basic
telephony services in the telecommunications environment.”

This definition of the IN is far more complex than what the IN architecture offered at the time of

its conception. Initial versions of the IN infrastructure aimed simply to enable services such as

freephone and local-call. This initial aim was desirable, and indeed British Telecom’s initial

reason for deploying IN infrastructure was to enable services such as Freephone and Callstream

Services. Furthermore, BT realised that the IN “simplified service administration and data could

now be centralised - rather than replicated at various locations in the network, thereby avoiding

unnecessary use of valuable computing resources” [OBri89].

The IN has developed from the “single database” application, such as freephone, it offered at

the time of its conception. This section describes the present capabilities of the IN, as defined by

the ITU Q.12xc series of Recommendations [Q.1200].

Today’s IN is a service-oriented network architecture that separates service control functions

from service switching functions, with typically both types of functions being implemented in

different physical equipment.

It is as a direct result of this separation that it is possible to introduce new services rapidly

without the need to change the functionality of the switches [VeniOOj. Through this separation,

the intelligence required for the provision of a service is now placed in dedicated IN servers

instead of every switch of the network. The switch functionality is restricted to basic call-

processing, to the identification of IN service calls and to the routing of these calls to the IN

servers.

What is more, through the adoption of re-usable components, the IN can achieve service

independence. Service components (i.e. Service Independent Building Blocks, or SIBs), such as

“authentication”, “number translation”, and “charge” [Q.I201], can be re-used. The principle is

to be able to introduce new services by combining basic SIBs where appropriate.

35

The creation of new services requires a Service Creation Environment (SCE). Service creation

is defined as “an activity whereby supplementary services are brought into being through the

specification phase, development phase and verification phase” [Q.1201]. Essentially this is the

process of transforming service descriptions into service logic. The IN does not standardise on

the approach that must be followed in order to create a new service but rather provides the

capabilities and tools for rapid service creation and provisioning. For this reason, service

creation and SCEs attracted numerous interests from the research community.

For example, the work of the TINA Open Service Creation Architecture (TOSCA) [TOSCA-IS]

aims at incorporating TINA [TINA-GA] principles (see section 2.5) to further the capabilities of

the traditional SCE. Further work on SCEs can be found in [Lodg97][Ku94][Gill94][Niits95].

2.4.1 The Intelligent Network Conceptual Model
The Intelligent Network Conceptual Model [Q.1201] provides a set of viewpoints* for looking

at the IN architecture. It reduces the complexity of the IN service modelling, analysing the

problem from four different points of view, called planes (refer to figure 2.9). Each plane

provides an abstraction of a problem that can be studied independently from the other points of

view. The four planes derive from a top down analysis of the IN architecture, starting from the

service point of view down to the physical point of view [Q.1201]. The four planes address

■ Service aspects (the service plane),

■ Global functionality (the global functional plane),

■ Distributed functionality (the distributed functional plane), and the

■ Physical aspects (the physical plane), of an Intelligent Network.

The service plane describes the services from the user point of view without any reference to an

IN based implementation. Services are described in terms of service features. A service is “a

stand-alone commercial offering, characterised by one or more core service features, and [it]

can be optionally enhanced by other service features” [Q.1201].

A service feature is defined as “a specific aspect of a service that can also be used in

conjunction with other services and service features as part of [a] commercial offering. It is

either a core part of a service or an optional part offered as an enhancement to a service”

[Q.1201].

The viewpoint here is based on the Open Distributed Processing terminology defined by the
International Organisation for Standardisation (ISO).

36

The global functional plane (GFP) models the network from a global perspective, hiding the

details related to the distribution of functional entities. The GFP expresses a service in terms of

Service Independent Building Blocks (SIBs). “A SIB is a standard reusable network-wide

capability residing in the Global Functional Plane used to create service features” [Q.1203].

In [Q.1201] the Basic Call Process (BCP) is defined. The BCP is responsible for providing

basic call connectivity between parties in the network. The BCP can be viewed as a specialised

SIB which provides basic call capabilities including connecting and disconnecting the call and

retaining the Caller Instance Data [Q.1203].

An IN service can be represented as a chain of SIBs connected to the BCP. A Point of Initiation

(POI) is the BCP functionality needed to launch a chain of SIBs, while a Point of Return (POR)

is the functionality needed to terminate the chain. The POI, POR and the BCP are further

discussed in section 2.4.2.

The distributed functional plane (DFP) models the distributed view of an IN structured

network in terms of computational objects called functional entities (FEs). ITU [Q.1204]

defines a functional entity as

“a unique group of functions in a single location and a subset of the total set of functions required
to provide a service. One or more functional entities can be located in the same physical entity.
Different functional entities contain different functions, and may also contain one or more of the
same functions. In addition, one functional entity cannot be split between two physical entities; the
functional entity is mapped entirely within a single physical entity. Finally, duplicate instances of a
functional entity can be mapped to different physical entities, though not the same physical entity.”

The FEs may perform atomic functional entity actions (FEAs) and, as a result of the FEAs,

exchange messages called information flows (IFs).

The physical plane models the physical aspects of an IN structured network, including the

detailed design of physical network elements. Physical Entities (PEs) (i.e. switches, general-

purpose computers that contain databases, etc.). The FEs of the DFP are assigned to PEs and the

IFs between the communicating FEs in different PEs are mapped into the protocol messages.

37

SF1
S erv ice
P la n e

^2

SIB2 SIBS/ GSLA

G lobal I— i— I I 1 I---------
F unctional | siBi siB2 | - | siB3
P la n e

G SLB

SIB1 SIB3SIB5 M SIB2

PORPCI POR POR POI POR

BCP BCP BCP

D istributed
Functional
P la n e

P hysical
P la n e

IF ——(^ ^ S C F ^---------------- IF---------------- -(^^ S R F ^

(!!9
Figure 2.9: The fo u r planes o f the IN conceptual model

Figure 2.9 depicts the result o f the IN service decomposition through the four IN conceptual

model planes. Examples o f FEs in figure 2.9 are the SSF, SCE and SDF; examples o f PEs are

the SSP, SCP, and SDP.

2.4.2 The IN Service Processing Model and the Basic Call Process
In a non-IN world, the switching nodes deliver service to the parties involved in a call. Services

are programmed within the switching nodes (SSP) and may be basic or supplementary.

Essentially, the service logic is contained within the switching nodes.

In the IN world, the service logic for the supplementary services may be developed and

executed outside the switching nodes. Figure 2.10 illustrates the IN service processing model,

with the switching nodes represented by circles.

F ast serv ice Im plem entation

IN Service Logic

B asic and
supplem entary

serv ices offered
to custom ers

■Hooks""Hooks" "Hooks"

Basic Call
P rocessing

B asic Call
P rocessing

B asic Call
P rocessing

N ode CN ode A Node B

Figure 2.10: The Intelligent Network service processing model [Q.1201]

38

Supplementary services, when requested, trigger the execution o f the IN service logic by means

o f software “hooks”. One o f the aims o f IN is to standardise these “hooks” and the messages

between them.

The Basic Call Process (BCP) [Q.1203] represents the well-defined call control process. It is

related to the basic call state model in that the trigger points o f the BCP correspond to the entry

points, Points O f Initiation (POI), into the Global Service Logic, that is an entry point into an IN

service.

The Global Service Logic (GSL) [Q.1203] can be characterised as the “glue” that defines the

order in which SIBs will be chained to accomplish services. Each instance o f GSL (figure 2.11)

is (potentially) unique to each individual call, but uses common elements:

■ BCP interaction points (POI and POR).

■ SIBs.

■ Logical connections between SIBs and between SIBs and BCP interaction points.

■ Input and output data parameters, service support data and call instance data defined for

each SIB.

G S L

SIB SIB

POI POR

B asic C a ll P ro cess

Figure 2.11: The BCP in the global functional plane

Since the BCP is based on a state-dependent process, IN services can only be created within the

boundaries set by the BCP. There are many consequences for the creation o f services within

these boundaries in terms o f service control. For example, at one extreme, invoking the service

logic only when the call has been completed does not leave the service logic much to do. At the

other extreme, the ability o f a service logic programmer to activate a trigger anywhere in the

BCP may easily lead the system to a chaotic state.

2.4.3 IN Capability Sets
Capability Sets (CS) [Q.1202] are the phases o f IN evolution that give rise to particular service

capabilities. Each IN CS is defined by the hardware and software elements described in the

standards. Each new IN CS adds functionality and thereby increases the scope for services. At

39

the top level, each CS introduces benchmark services. A benchmark service is not standardised

but is “a stand-alone commercial offering, characterised by one or more core service features,

and it can be optionally enhanced by other service features” [Q.1202],

2.4.3.1 IN Capability Set 1 (CS-1)

IN CS-1 [Q.1211] capabilities are intended to support services and service features that fall into

the category of “single ended” or “single point of control” services referred to as Type-A, while

all other services are placed in a category called Type-B. Single-ended is defined as [Q.1211]:

“A single-ended service feature applies to one and only one party in a call and is orthogonal
(independent) of both the service and topology levels to any other parties that may be participating
in the call. Orthogonality allows another instance of the same or a different single-ended service
feature to apply to another party in the same call as long as the service feature instances do not
have feature interaction problems with each other.”

Single point of control is defined as “a control relationship where the same aspects of a call are

influenced by one and only one service control function at any point in time” [Q.1211]. The

single point of control characteristic of IN CS-1 services restricted a service process to only

one call party (single-ended). This was a limiting factor and has changed with the introduction

of IN CS-2 which supports both Type-A and Type-B services (see section 2.4.3.2).

The IN CS-1 benchmark services identified in [Q.1211] are:

Abbreviated Dialling (ABD) Security Screening (SEC)
Account Card Calling (ACC) Selective Call Forward on
Call Distribution (CD) Busy/Don’t Answer (SCF)
Call Forwarding (CF) Split Charging (SPL)
Call Rerouting Distribution (CRD) Tele-voting (VOT)
Credit Card Calling (CCC) Terminating Call Screening (TCS)
Destination Call Routing (DCR) Universal Access Number (UAN)
Folio w-me Diversion (FMD) Universal Personal
Malicious Call Identification (MCI) T elecommunications (UPT)
Mass Calling (MAS) User-defined Routing (UDR)
Originating Call Screening (CCS) Virtual Private Network (VPN)
Premium Rate (PRM)

Figure 2.12 depicts the DFP for IN CS-1. The functions that have been defined as a first subset

of a target IN architecture are related to traditional call handling (service switching and

triggering), service execution (service control) and service management.

40

SMF)-------------------------- SMAF J

/
\ \ T oSM Fs

\ ' ' '
SRF 1------------------------- \ ------\ ------ (SCF)--------------------------------------4 SDF)

© X
\ \ ToSCFs ToSDFs

\ / © S F © ''x / S S F ©

M an agem en t S erv ice Control B earer C h an n el

Figure 2.12: Distributed functional plane fo r IN CS-1 [Q.1211]

The IN CS-1 DFP functions can be grouped into the following categories [Q.1211]:

■ Basic call-handling functions

The Call Control Agent Function (CCAF) [Q. 1214] represents the user terminal function

and hence provides access to the network. The CCAF accesses a call control function (CCF)

that provides basic call-processing functionality and can thus be considered as a traditional

“switch” . Central to the operation o f the CCF is the basic call model that is discussed in

section 2.4.4.

■ Service execution functions

These functions provide supplementary services. A Service Switching Function (SSF)

[Q.1214] represents additional functionality for controlling switch resources and provides a

well-defined, service-independent interface to the service control function (SCF) that

controls resources in a switch or peripherals, based on an appropriate service logic program.

A Service Data Function (SDF) contains the service data and provides standardised real­

time access for SCFs to service data. Finally, the Specialised Resource Function (SRF) is

used for controlling resources such as speech synthesisers and voice recognition systems.

41

■ Service management functions

The Service Management Function (SMF) [Q.1214] supports service introduction and

maintenance; it is accessed by a Service Management Agent Function (SMAF) that

provides the man-machine interface to the SMF, Also, an additional Service Creation

Environment Function (SCEF) allows for the specification, testing and introduction of

services in the IN.

As discussed in section 2.4.1, IN Services, i.e. service features, are composed of SIBs in the

GFP. The monolithic view of a SIB in the GFP has to be decomposed in the DFP into an

interacting set of capabilities. Each functional entity in the DFP may perform specific

operations, referred to as Functional Entity Actions (FEAs). Thus each SIB is decomposed in

the DFP into a set of “client-server” relationships between one or more functional entities, with

the client being the SCF and the server being one of the other FEs, such as the SDF, SRF, or

SSF [Q.1211].

Consequently, different functional entities in the DFP must exchange messages to perform a

desired SIB functionality. These client-server information exchanges between the functional

entities are called Information Flows (IFs). The total set of IFs between any two functional

entities in the DFP will be a number of such client-server information flows. Some examples of

functional IFs are the following:

■ Initial detection point - the SSF starts a dialogue with the SCF and requests further

instructions (based on the occurrence of a specific trigger event).

■ Play announcement - the SCF instructs the SRF to send an announcement to a user.

■ Prompt and collect user information - the SCF instructs the SRF to collect some dialled

information from the user.

2J.3.2 IN Capability Set 2 (CS-2)

IN CS-2 is defined in the ITU Recommendation of series Q.122%. IN CS-2 consolidates and

enhances the features of IN CS-1 by the addition of functional entities and information flows

and by specifying a number of additional services and service features that include mobility

services and B-ISDN services [Feyn97]. More importantly however, IN CS-2 includes services

that allow the end user to control the services to which they are subscribed [Feyn97].

IN CS-2 also acknowledges a situation that may be desirable or undesirable. This is called

feature interaction and is defined as the interaction of features that could be desirable or not

[Q. 1221]. A desirable interaction is defined as feature cooperation, while an undesirable one is

termed feature interference [Lin98]. However, feature interaction has come to be synonymous

42

with feature interference. The issue o f feature interactions has attracted considerable research

activities [Peng98][Ever97][Cape96][Naka95][Kell94][Brot93].

The increased capabilities o f IN CS-2 are reflected by comparing the DFP for IN CS-1 (see

figure 2.12) with that o f IN CS-2 (shown in figure 2.13).

SCEF

N etw ork
B oundarySMAF

to SMFS'SMF

SRF SCF SDF to SDFs'

to SCFs,

CUSF

/SCUAF'^ SSF SSF

CCF CCFCCAF CCF

M a n a g em en t S erv ice Control B earer C h an n el

Figure 2.13: Distributed functional plane fo r IN CS-2 [Q.1221]

IN CS-2 defines two additional functional entities: the Service Control User Agent Function

(SCUAF) and the Call Un-Related Service Function (CUSF). The SCUAF provides the user

access to the network CUSF [Q.1221]. The CUSF allows the specific triggering o f services

outside the basic call process, and only supports connection-oriented communication between a

user and the network. This is a significant capability as it can be used for billing applications on

different networks, such as IP.

The IN CS-2 also defines the Basic Call Unrelated Process (BCUP), which is the counterpart

o f the BCP for modelling the capabilities implemented through actions that are not performed

on behalf o f a particular call, even though they are necessary for supporting calls. The BCUP is

defined as “a specialized SIB which provides the call unrelated capabilities. These capabilities

enable the use o f GSL as well as other SIBs to completely describe IN CS-2 services and

service features” [Q.1223].

43

Figure 2.14 shows a possible mapping o f the IN CS-2 DFP onto the physical plane. The figure

is included for completeness to provide an appreciation o f the number o f protocols and

functional entities that are involved in a simplified IN implementation.

SMAF
SCEF[E — SMAFSCEF

SMF
SCEP SMAF

SMF

SSF SCF
SCF

CCF SDF
SDFX.400 SSF SCFSDFTCAF

SCCF
,MTF

SSCF SDF
CCF SDF

SCF
CCF SDF

SDF TCAF
SCCF
MTF

iRI/FRI
SN

SSFBRI/FRI CCFDSS1SCUAF CUSFDSS1
CCAFCCF

CCAF

SSF NAF
ISDN
CFE

Figure 2.14: Example o f a possible mapping o f IN functional entities into IN
physical entities supported by IN CS-2 [Veni98]

The protocols that are depicted in figure 2.14 include parts o f the SS7 core signalling protocol.

Examples o f these are TCAP, SCCP and MTP. Also shown are access signalling protocols such

as DSSl [Q.931].

2.4.3.3 Inter-working Functions in Future Capability Sets

A particular area o f research and development in IN CS-2 is in the enhanced

telecommunications Inter-working functions. Inter-working functions enable service features

to be made available outside the home network and reflect the converging telecommunications

environment. The interest shown in inter-working functions as part o f the convergence process

is supported by a number o f publications [Scho98][Zhen98][Deci97][ETSI EG 201-722]. The

IN must be in a position to provide inter-working capabilities. Inter-working is the process by

which several networks (potentially o f different types such as IN-structured and non-IN-

structured, public and private) work together to provide a service.

The DFP sees the introduction o f standardised interfaces for the inter-working o f inter-domain

SCFs and SDFs. Additionally internetwork management interactions and distributed data

handling processes are supported.

44

Specifically, IN CS-2 allows SDF-SDF, SDF-SCF and SCF-SCF communication across

network boundaries. For example, the SDF-SDF inter-working interface can serve two

purposes: it provides a mechanism to copy data between networks and it provides transparent

data access. Similarly, the SCF-SCF interface (across network boundaries) allows two service

logics to communicate; for example, a network can handle a call without having full knowledge

of the service logic, as long as it can find another network that can help.

IN Network A IN Network B non-IN Network

SM F SM F

SD F SD F

S CF lAFSCF

SSF SSF

Figure 2.15: IN and inter-working functional relationships

Figure 2.15 depicts the possible IN network inter-working functional relationships. Although

the functional relationship SCF-SSF is outside the scope of IN CS-2, the SCF-SCF relation is

new. However, it is not possible for the SCF to interact with a remote SCF that is directly

interacting with the call. This is a limitation, or the absence of a requirement, for multiple point-

of-control capabilities in IN CS-2. The top interface defined in figure 2.15 is the SMF-SMF

interface. This protocol follows the Telecommunications Management Network (TMN) generic

protocols and the TMN X-interface [M.3320].

A different inter-working capability is emerging. This is the need to inter-work with non-IN

structured networks. Such a form of inter-working requires the introduction of additional

functional entities, such as the Intelligent Access Function (lAF) [Q.1224]. The lAF is

responsible for providing access to and from the SCF of the IN-structured network, and for

mapping the information between the internal and external representations.

Comparing the DFP of IN CS-1 and the DFP of IN CS-2, one notices that the IN has been

incrementally adding functionality to reflect the changing telecommunications environment

45

conditions. O f course, this is a natural step in any developing system. As a result, the role that

IN is asked to play in the future may be far from the initial aims and objectives of

Recommendation Q.1201. The area o f inter-working and the new role o f the intelligent network

within the wider scope o f network intelligence is examined in chapter 3.

2.4.4 The Basic Call Model
The primary goal o f IN services is to enhance the basic call process, thereby creating new

services such as premium rate. To achieve this, IN services have to control network resources in

a flexible and efficient way through a standard resource control interface, the SSF-SCF.

This approach requires the switches, i.e. the connection control function/service switching

function, to be capable o f providing visibility and control on detailed call events. Hence, a

corresponding model is required within the DFP that identifies all possible points in basic call-

processing, as seen in a switch, from which IN services can be invoked, i.e. when interactions

between the SSF and SCF can take place.

This model is called the Basic Call Model (BCM). The BCM represents a standardised view of

call-processing functions to external service logic and provides the framework for IFs between

the SSF and SCF. This means that IN service logic located in the SCF “sees” a call only by

means o f the information it receives from the SSF, i.e. the received IFs, based on the states

identified in the BCM (figure 2.16).

Entry ev en t x

D P 1

PIC a

1

Exit ev e n t y

Entry ev en t y

D P 2

P IC b

Figure 2.16: The BCM, detection points and points in call

The Basic Call State Model (BCSM) identifies the logical points in basic call-processing where

the IN service logic located in the SCF is permitted to interact with basic call control

capabilities provided by the switch [Q.1204]. The states that need to be visible to the IN service

logic are identified by the BCSM.

46

The BCSM is built from three fundamental components, discussed below;

■ Points in Call (PIC) provide an external view o f a call-processing state or event to IN

service logic. PICs are vendor independent, providing a standardised view o f call-processing

behaviour. A PIC is characterised by means o f entry events, exit events, actions performed

within the PIC, and information available at the end o f the PIC.

■ Detection Points (DPs) are placed between the PICs. A DP (also referred to as a trigger

check point) is associated with a particular PIC. DPs indicate states in the basic

call/connection processing where the control can be transferred to the IN service logic with

or without the CCF suspending processing. If the CCF processing is suspended, the DP is

called a Request DP, otherwise it is a Notification DP. A DP can be armed, i.e. the

monitoring o f a CCF processing state can be requested, statically on a configuration base (in

which case the DP is referred to as a Trigger DP) or dynamically on IN service logic request

base (in which case the DP is referred to as an Event DP).

■ Transitions indicate the normal flow of basic call/connection processing from one PIC to

another.

Any IN service involves two separate sets o f basic call-processing logic in the switching

network [Feyn97]. These are closely related, as illustrated in figure 2.17.

0_BCSM T_BCSM 0_BCSM T_BCSM

Switch A
SSP-A

Switch B
SSP-B

Calling Called
Party Party

Figure 2.17: Separation o f the BCSM into an O /T B C S M

An originating call model supports the call’s originating side (i.e. the calling party). This is

modelled by the originating basic call state model (0_BCSM). On the terminating side, there is

a terminating call model for the call’s terminating basic call state model (T_BCSM). Both

sides o f the call state model are active within an IN SSF; even an intra-switch call requires both

call state models.

2.4.4.1 The Basic Call State Model for CS-1

The O BCSM (figure 2.18) specifies six PICs and ten DPs. One non-IN event, Route_Busy, is

considered. The event is caused by either a corresponding indication from the T BCSM (if this

is a local switch) or a reception o f the call “rejected” message (indicating the selected route is

busy) from another switch. Depending on the switch application, this event may result in either

a transition to PIC 2 (in order to select another route) or exception processing.

47

I o Abandon
1.0_Null and Authorise Origination_Attempt 6. 0_E xception

Orig. Attempt_Authorised

2. Collect Info

R oute_B usy

C ollected Info

3. Analyse_lnfo

Analysed_lnfo

4. Routing & Alerting —, R oute S elec t Failure

0_C all_Party_B usy

 ►

0 _ D isco n n e ct / /

0_N o_A nsw er

0_M id_Call

Figure 2.18: The 0_BCSM for IN CS-1 [Q. 1214]

The T_BCSM (figure 2.19) speeifies five PICs and seven DPs. Note that a transition from PIC 8

to PIC 9 has no DP associated with it. The event that causes this transition (i.e., the start o f the

alerting process) is the only strictly non-IN event visible to T BCSM.

T A b a n d o n

7.T_Null & A uthorise_Term ination_Attem pt11 ,T_Exception

T erm_A ttempt_A uthorised

I. Select_Facility & P rese n t Call

T_Busy

T_No-Answer

T_Answer

10. T_Active

T_D isconnect

9. T_Aler1ing

T_Mid_Call

Figure 2.19: The T_BCSMfor IN CS-1 [Q.1214]

2.4.4.2 The Basic Call State Model for CS-2

The BCSM for IN CS-2 (figure 2.20) is visibly richer than its IN CS-I counterpart. This section

points out the main differences between the two models. A complete description can be found in

the ITU Recommendations Q.122.x and Q .I2Ix.

48

0_A bandon DP

Origination_Attempl_DP

Origination_Attempt_Authonsed_DP

CollectedJnform ation_D P

route _busy
A n a lyse d jn fo DP

Route_select_Failure DP

0_ck lled_P arty_B u sy DP0_M id_CallD P

0_T erm _ S eized DP

0_N o_A nsw er DP0_M id_CallD P

0 _A nsw er DP

0_M id_Call 0 & 0 _ R e-a n sw er DP

0_ S u sp e n d DP [reconnect

0_D isconnect DP
0_M id_Call DP

0_E xcep tion

0_Aler1ing

Collect Information

0_A ctive

Analyse Information

0_N ull

Send Call

Autfiorise Call Setup - aighor_rowle:_feiture->

Select Route

Autfiorise Origination Attempt

Figure 2.20: The 0_B C SM for IN CS-2 [Q.1224]

Non-functional modifications include the removal o f numbers from DPs in IN CS-2. More

substantial modifications are manifested in the new functions o f the PICs and DPs, and their

applications to services.

For example, the 0_Disconnect and T_Disconnect PICs have been replaced in the originating

and terminating models by the 0_Suspended and T_Suspended PICs. The justification for this

change is dictated by a special way in which many services are set up; unless the called party

explicitly wishes to disconnect the call, it should not be immediately disconnected. This allows

for the called party to hang up momentarily and pick up the phone again (reanswering). In

order to reanswer the call, it cannot be disconnected even though the called party hangs up. The

state o f the call is captured in the model as suspended and it is treated differently. While the

call is suspended, both the calling and called parties are placed in the O Suspended and

T_Suspended PICs. On the terminating side, the physical resources associated with the call

remain connected and the appropriate timer is started. If the terminating side reanswers before

49

the timer has run out, T_BCSM sends the reanswer indication to the 0_BCSM and the call

becomes active again, otherwise the T_BCSM sends the disconnect notification.

2.4.5 The IN Switching State Model (IN-SSM)
The IN-SSM is defined in [Q.1204] as a means of providing the “finite state machine

description of SSF/CCF IN call/connection processing in terms of call/connection states”. The

IN-SSM is a class of objects that corresponds to the SCF view of call and connection processing

within the SSF/CCF.

The call segments defined in [Q.1204] are expanded to include the new types of objects called

Legs and Connection Points as well as the BCSM objects (i.e. O BCSM or T BCSM)

associated with them.

■ A leg represents a connection with an “addressable entity”, that is, an end user, the SRF, or

another SSF/CCF [Q.1204]. Any leg may be either active or passive. In IN CS-1, only a leg

that represents an access interface may be active.

■ A connection point is the object that associates two legs so that the information entering the

SSF/CCF through one leg is carried out (via that object) on the other leg and vice versa

[Q.1204].

According to [Fayn97] in IN CS-1, the role of the IN-SM has not been emphasised and,

consequently, neither has that of the IN-SSM, though the technical case for their future

exploitation was given. IN CS-2 defines a more powerful IN-SSM that focuses on connection

control issues. It therefore contains objects that are abstractions of switching and transmission

resources.

The CS-2 IN-SSM uses the Call Configuration (CC) model as a tool to represent the CCF

activities. The CC is a model that categorises the status of one or more network connections. It

is based on the Connection View (CV), in the sense that CV objects provide the SCF with a

generic view of call-processing and each Call Configuration models a CV state in an SSF.

The purpose of defining call configurations is to produce a set of examples used to describe IN

call manipulation services. Figure 2.21 illustrates the notation and the objects used in describing

the call configurations.

50

local / controlling leg remote / passive leg

r \

LP Id ['̂ \ c

/ "N

HID] i rl ID J
RFID

V y

CP=connection point

Figure 2.21: Representation used in a call configuration

Attached to a connection point (CP) are one or more legs, with the leg to the left being the

controlling (or local) leg. The legs to the right are defined as passive (or remote) legs, o f which

there can be one or more. Associated with each o f the passive legs is a BCSM.

Figure 2.22 depicts the Call Association Object (CAO) that is used for the representation of

multiple calls associated with a particular user as perceived by the serving node associated with

that user. The CAO allows the graphical representation o f the condition when a user is engaged

in more than one call.

Call Association Object

o

o

Figiire 2.22: Representation o f a call association object

This approach has been developed to provide IN multiparty handling capability, and it can be

used as a tool for associating different calls.

2.4.6 IN CS-2 Call Party Handling
IN CS-1 was limited to Type-A services. This meant that it could only manipulate specific

aspects o f a single leg o f a call. As a result, for instance, capabilities to alter the Calling or

Called number were provided, but it was not possible to alter how one leg o f a call related to

another leg o f the same call.

The introduction o f Call Party Handling (CPH) [Q.1224] service features in IN CS-2 is

arguably the most important addition [Hink98][ORei98][Haze98]. CPH allows multiple bearer

connections to be split, merged and manipulated more flexibly during the course o f a telephone

conversation. Therefore, CPH provides the capability to manage and control individual parties

in a call involving two or more parties. The current call topology is maintained by the SCF,

while atomic commands from the SSF can alter this topology. Typically, instructions from the

SSF add, delete, join or separate bearer channels from other parties in the call.

At the highest level, the SSF consists of a Call Segment Association (CSA). A CSA represents

half a call. The CSAs communicate with each other using the SSF-SCF INAP operations

defined in IN CS-2 [Q.1228]. Communication events among the CSAs consist of inter-BCSM

events (e.g. Setup, Answer).

A CSA consists of one or more Call Segments. The call segments communicate with either the

0_BCSM or the T_BCSM, and the SSF Finite State Model (FSM).

The Call Segment can be in four possible states [Q.1228]:

■ Joined - indicating that a path is joined to the connection point which enables the user to

communicate with other users in the call segment

■ Pending - indicating that a path is in the process of being set up

■ Surrogate - indicating that a leg supports a communication path towards a virtual party in

the network, rather than towards an external end party

■ Shared - indicating that a controlling leg is absent from a call segment and is present in the

associated call segment.

The CPH finite state model (see figure 2.23) is examined here using an example of the

transitions involved in setting up a two-party call.

A call begins from the “Null” call segment that indicates that no Call Segment Connection View

(CSCV) instance exists and one can be created. The state represents the condition where no call-

processing is active and there is no controlling or passive leg connected to the connection point.

When the SSF detects a Setupind signal, the CSCV is represented by the “Originating Setup”

CSCV. The SetupReqInd finally causes the CSCV to move to the “Stable 2-Party” CSCV. The

“Stable 2-Party” CS represents a stable two-party call, and is either an originating or a

terminating call from the perspective of the controlling user with a “joined” controlling leg and

a “joined” passive leg with either an O BCSM or T BCSM associated with it.

52

Null >1

o
)

B C S M S lo^

L-

ImponLeg(c)

BCSMSlop

Collecilnformalion
Connect
S eleclR oute

BCSMStop

Setupind

DisconnectLeg(c)

BCSM Stop

InitiateCailAttempt

R eleaseR eq ind
DisconnectLeg(c)
D isconnectLeg(p)
C onnecl(p)

1-Party

Joined

II I. I llt- SN

Originating Setup

Joined ^ P e n d in g
- u - - J -

jO l i t SM I

T U T T 7

/"------------ -V
Originating l-F’artySeti

Surroga^p^,„jl„g
- — O - I - -

[I) IKSM|

)

SetupR eqInd

R eleaseR eq ind
DisconnectLeg(p)

Kck’iisKailml
n i i C i ' l l l l C L ' t l 1

[_BCSMSwp

R eleaseR eq ind
DisconnectLeg(p)
C onnect tp)

R eleaseR eq ind
ImponLeg(p)
ExpotiLeg(p)
DisconnectLeg(p)
BCSM Stop

Exportleglpl

ItnpoftLeg(c)
R econnect

3ÇSMSI0P ^ \ X
îJpoftL egtO \ y

ExportLeg(c)

SetupReqInd

VU
On I lold

Shared I) I l«. SV

Joined
III I IK SM

S etupR eqInd

D isconnectLeg(c)

r
l erminaling Setup

P en d in g^ Joined

| l IK SM |

V /

SetupR espC onf
ImporlLeg(c)

f
R econnect SetupR espC onf

Stable 2 -Party

Joined Joined
1

|ll. 1 IKSM|

)

f

DisconnectLeg(c)

Stable I-Party

Surrogate joined
- — O

|D 'I IK SM|

Terminating 1-Party Se

S u rro g a ^ Joined

| l IK SM |

\)

up

R econnect
ImportLeg(p)ImportLeg(c) R eleaseR eq ind

D isconnectLeg(c)
D isconneclLeg(p)ss e

R eleaseR eq ind R eleaseR eqind
DisconnectLeg(p) D isconnectLeg(c)

DisconneclLegip)
ExportLeglcj

R eleaseR eqind
DisconnectLeg(p)

ImportLeg(c)
Im portLegtd

DisconnectUeg(cl
ExportLeg(c) R eleaseR eqind Forward

ImportLeg(p)
R eleaseR eqind
ImportLeg(p)
ExporlLeg(p)
DisconnectLeg(p)
BCSMStop

ExportLeg(c) Surrocate"*”'!^ExportLeg(p)
I), I IK SMDisconneclLeg(c)

DisconneclLegipl Pet̂ inĝC o n n ed
ExportLeg BCSMStop

I I IK S \ExportLeg(p)
BCSM Stop

T ransfcrStable Multi-Part\ D isconnectLeg(c) SetupReqInd
ExportLeg(p)

SurrogateJoined BCSM StopReconnect 1.1 IK SMll/I IKSM

Joined BSCM Stop
111 I IK SM (I IKSM

R eleaseR eq ind
ExportLeg(c)(Error]
ExportLeg(p)
D isconnectLegjc)
DisconnectLeg(p)
C o n n ed (p) 0_B CSM only
BCSM Stop

Figure 2.23: Finite state model for CPH o f IN CS-2 [Kumm98]

2.4.7 IN Summary
In this section a summary of the IN architecture is presented. The discussion on the IN control

architecture presented and examined issues such as:

■ The advantages of the IN architecture are the result of the separation of basic call-processing

from additional service logic. This separation also provides the ability to introduce new

services rapidly.

■ The BCM provides a standardised representation of call-processing functions to external

service logic. As a result the only view provided to an external IN service is based on the

states identified by the BCP.

53

■ Through DPs, control can be transferred to the IN service logic with or without the CCF

suspension.

■ IN CS-2 provides a much richer and more complete set of service features than IN CS-1, in

particular the introduction of Type-B services. Type-B services in IN CS-2 were examined

by analysing the Call Party Handling service feature.

■ The IN architecture relies on distributed state models. These form an integral part both of

the signalling protocol (SS7) and of the IN architecture itself.

■ Traditional network intelligence was focused on providing advanced services by enhancing

the basic call state model.

2.5 T h e i n , t h e T IN A REFERENCE ARCHITECTURE AND
N e w T e c h n o l o g ie s

The Telecommunications Information Networking Architecture (TINA) defines a framework

for the development of service and network management applications [TINA-GA] [TINA-GU].

TINA defines four architectures:

■ The computing architecture [TINA-CA] defines a set of concepts and principles for

designing and building distributed software and the software support environment, based on

object-oriented principles.

■ The service architecture [TINA-SA] defines a set of concepts and principles for design,

specification, implementation and management of telecommunication services. It identifies

three main concepts: session, management and access.

■ The network architecture [TINA-NA] defines a set of concepts and principles for design,

specification, implementation and management of transport networks.

■ The management architecture [TINA-MA] deals with software systems that are used to

manage services, resources, software and underlying technology.

The TINA approach foresees that service components are deployed on a Distributed

Processing Environment (DPE), which may in turn be implemented on top of different

network infrastructures [TINA-DPE]. The DPE is used for both the transmission of control

information and the multimedia streams that may flow between user applications. Therefore, the

network has to satisfy the connectivity requirements of different types of services, such as

multimedia, multiparty, or multicasting services.

From the computational point of view, TINA considers that the service and network

management and control facilities are deployed on a distributed, object-oriented processing

environment, such as the Common Object Request Broker Architecture (CORBA) [CORBA95].

54

A c c e s s
S e s s io n

S erv ice
S e s s io n

A c c e s s
S e s s io n

C om m u nication s
S e s s io n

U ser
S e s s io n

U ser
S e s s io n

Figure 2.24: The TINA service architecture [TINA-SA]

The TINA Service Architecture (figure 2.24) identifies four major types o f sessions as follows:

1. The Access Session models the user actions for accessing a service

2. The Service Session represents the control and management actions needed for the support

o f a specific service from the system point o f view

3. The Communication Session encompasses the set o f control and management procedures

from the network’s resource point o f view in order to support the needs o f services making

active use o f the underlying network infrastructure

4. The User Session reflects the activities performed and the resources allocated by one user

for one specific service session.

The TINA architecture employs an object-oriented view [TINA-GA]; as such, it is

fundamentally different to the function-oriented IN architecture. For instance, rather than

defining functional network elements for the distributed implementation o f SIBs, as is done in

the IN architecture, the DPE supports the arbitrary distribution o f TINA service components, i.e.

the computational objects. Hence, there is no need for specific network nodes with dedicated

functionality within TINA. Furthermore, the information flows between IN functional entities

(via the signalling network) are replaced by TINA computational object interactions, through

operational interfaces (supported by the DPE).

While most o f the efforts surrounding TINA pertain to how an existing architecture could

migrate towards TINA, such as [P508], it has been argued [SoloOOa] that the TINA architecture

can be used as a reference model for viewing new technologies. This role is examined next.

It has been argued that the communications session o f the TINA service architecture reflects the

traditional role o f the telecommunications network operators [SoloOOa]. The service session

distinguishes the growing role o f the provider o f application services as a separate entity apart

from the communication session. The access session co-ordinates the access o f users towards a

55

set of services, by providing services such as password authentication, or terminal capability

negotiation.

The author takes the view that the TINA service architecture is a useful and desirable way of

understanding the roles of the players in the future communication environment. Of course, this

does not imply that the underlying technology is that specified by TINA [SoloOOa], for instance

that one has to develop a Distributed Processing Environment (DPE) approach.

The IN CS-2 increases the importance of the SCF over IN CS-1 for establishing connections.

One of the most significant developments in CS-2 is that of call party handling where fine­

grained manipulations of multiple-associated call paths is possible. Services such as

multicasting or multimedia rely on these services. In future capability sets, such as IN CS-3/4

there will be enhanced support for connection control. The SCP will be able to establish a

communication session independently without the intervention of the end user. This is a very

significant development because it will allow greater control of the TINA Service Session

through the SCP [SoloOOa].

Mobile networks and specifically Global System Mobile (GSM), provide a set of IN services

without the explicit use of an IN architecture. Services such as mobility are much sought after in

the PSTN but are seen as basic services in the GSM. However, to achieve service differentiation

in GSM and support customers while they are roaming in other operator’s networks,

Customised Applications for Mobile Enhanced Logic (CAMEL) [ETSI TS 101-285], was

developed. The CAMEL architecture is outlined in figure 2.25.

In CAMEL, the Home Location Register (HLR) bears similarities to the SCP but does not allow

customised service logic that interacts with the basic call process. CAMEL is necessary to allow

operator specific services. A CAMEL Service Environment (CSE) allows the customisation of

services and is equivalent to an SCP in the PTSN.

56

Home Network CAMEL Service Environment

HLR gsmSCFMAP-

MAP CAP CAP

MAP

In c o m in g L ine gsmSSF VLR gsmSSF

GMSC MSCR o a m in g L eg

M O call - O u tg o in g legF o rw a rd e d leg

Interrogating Network V isited Network

Figure 2.25: The CAMEL architecture

Section 3.6 follows the discussion o f this role by mapping IP-based technologies onto the TINA

Service Architecture and putting forward the conclusions o f this part o f the work.

2.6 St a t e M a c h in e s in T e l e c o m m u n ic a t io n s
N e t w o r k s

The extent to which the state machine model is used to describe the behaviour of network

intelligent architectures has been identified. The state models explicitly describe in a

standardised manner the way in which the functional entities interact. This section identifies the

importance o f the state models within the control plane o f the PSTN network.

The PSTN network is based on the principle o f providing controlled access to a limited bearer

channel resource which, arguably, represents the main source of revenue for a network

operator.* Therefore it is crucial for the network operator to use the bearer connections in a way

that allows the greatest return on investment. After all, without an operational bearer

connection^ no utilisation o f the network can take place, leading to loss o f revenue. The

importance o f the bearer connection is reflected by the fact that the network is performance

engineered, with design focused on limiting down-time and ensuring that network load does not

’ This is within the context o f fixed networks, i.e. PSTN. In the GSM case, text messaging has proved to

be an additional significant source o f revenue that does not require the use o f a bearer channel.

 ̂ Recent examples o f network failure include the brownout o f the AT&T American network

[M cDo92][Hatt97] with a financial loss amounting to 1 billion dollars, the 1998 integrity breach in the

AT&T Chicago frame relay network [Meht98], and the latest example is the brownout in the BT network

in February 2000, which blocked millions o f calls [BBCOO].

57

hinder performance. To achieve this, it is vital that a resilient control-plane architecture be in

place.

Furthermore, it was put forward that the PSTN network is a huge distributed network with

components from different vendors. Each of these components may potentially have different

capabilities but nevertheless it is essential that they interact to form the network. It is critical

that a common underlying capability enables the interconnection* of these vendor-specific

components and, again, this is provided by the control-plane architecture.

A control-plane architecture can be characterised by two key features: firstly, it provides the

robust foundations for the communication of the components and, secondly, it provides a

resilient environment for the execution of advanced services. The common controlling

element in both of these features is the state machine. While the communication part is

handled by the signalling network, through the SS7 protocol, the resilient environment is

provided by a network intelligence architecture, such as the standardised architecture of the

Intelligent Network.

Having provided a control-plane architecture, there is now a need to allow communication with

the end users based on their activities. These activities are unpredictable but, nevertheless, it is

the responsibility of the network to implement measures that capture this changeable behaviour

of the users in a formal manner. This must be done in a way that does not severely limit the user

experience. By definition, an unpredictable behaviour cannot be captured in a model and, as a

result, there needs to be a trade-off between the capabilities available to end users against the

complexities involved in capturing parts of this unpredictable behaviour. The IN CS-1 has

provided sufficient benchmark services that enable a wide range of service capabilities; through

the IN CS-2 these services have been enhanced and widened to include capabilities such as

multi-party calls.

The state-machine approach in the PSTN has proved to be a technique that is capable of

providing resilience for the IN architecture and also robustness for the signalling layer.

In the case of the IN architecture, the state machine is the fundamental controlling component

from which services can be triggered, and in the IN architecture the state machine is manifested

in the form of the 0/T BCSMs.

* The regulatory framework relating to inter-connection and inter-operability is addressed in [OfteI99].

58

Although there are significant differences between various IN implementations a number of key

features apply to each of them. These key features enable the network-of-networks to be

controlled through similar actions, and hence provide a common denominator in the

convergence of these architectures. The presence of fully defined state machines on all the

interacting FEs and the BCM provide for the resilience needed in the PSTN environment.

Controlling the bearer connections is achieved in the PSTN through the

■ extensive use of state machines

■ ubiquitous description of the BCM

■ complete encapsulation of the call process in the BCSM

■ robust nature of the signalling network and its protocols.

The IN mandates the use of FSMs for the description of protocol-related behaviour of the FEs.

All possible actions by the FEs are rigorously tested before any attempt is made to deploy a new

service. The specification of the FEs is done using the Specification and Description Language

(SDL) [Z.lOO], which is a standardised language for describing systems that are reactive,

concurrent, real-time, distributed and heterogeneous* [Haug95].

If a scenario arises that may result in an invalid transition in the BCP, the IN is able to achieve

graceful degradation of service, which ensures that the network remains operational.

The features provided by timers aid in maintaining the network in an operational state: for

example, the user dialling an insufficient number of digits and replacing the handset should not

leave the system with resources permanently reserved - the timers ensure this. If a single state

machine view can represent the complex call setup within a switch then small controlled

changes in the state machine can create new services. Therefore, a resilient network demands

that operators and vendors develop a complete understanding of the BCP.

The traditional approach to providing network intelligence was by providing enhancements to

the basic call state model. This is supported by looking at the development of the capability sets

of the IN. For instance, the introduction of Call Party Handling (section 2.4.6) in IN CS-2,

allowed further call manipulation by the end user, even though the service offering was still that

of telephony. It must be kept in mind, however, that the additional functionality still operated

within the “constrained environment” of the BCSM and the BCP.

* A complete description of SDL can be found in [Ells97].

59

Chapter 3 examines the changes to the IN architecture in a converging environment where, for

instance, telephone calls can be initiated on an IP-network and terminated on the PSTN

network. Specifically, section 3.5 discusses the use of state models within a converging

environment.

2.7 C h a p t e r Su m m a r y

This chapter provided the background needed for the discussion of the new research work that is

presented in the rest of this thesis. Initially, the reader was introduced to the area of

telecommunications, with later sections focusing on specific architectures of the control plane,

such as the signalling network and the Intelligent Network architecture.

The IN architecture is a PSTN control-plane architecture that is transparent to the PSTN’s

switching procedures, and has minimal impact on existing equipment. The main points

regarding the IN architecture are summarised below.

■ The IN, through separation of service logic from the call-processing logic, provides for a

service-oriented view of the network. This separation and the adoption of re-usable

components (SIBs) allows the fast deployment of new services (section 2.4).

■ The IN Service Processing Model highlights the IN approach for service execution: basic

call-processing is carried out in the switches, whereas the supplementary service logic

resides on a higher level. The communication between the two planes is achieved through

detection points and triggers (section 2.4.5).

■ IN CS-2 enhances IN CS-1 by allowing communication across network boundaries.

■ The basic call model (section 2.4.4) represents a standardised view of call-processing

functions to external service logic and, as such, provides the framework for IPs between the

SSF and SCF. This means that IN service logic located in the SCF “sees” a call only by

means of the information it receives from the SSF, i.e. the received IPs, based on the states

identified in the BCM.

This chapter has focused on the traditional role of IN: to provide the means of enhancing the

basic call process, by providing a control plane for the PSTN network. This control is heavily

based on finite state models, with the robust architecture of the underlying SS7 protocol.

60

Ch a pte r 3

T o w a r d s a n e w R o le f o r

N e t w o r k In t e l l ig e n c e in th e

C o n v e r g in g E n v ir o n m e n t

The aim of this chapter is to look at the ways the IN architecture can inter-work with
IP-based protocols and architectures - in the current state of convergence - in order

to present how network intelligence architectures can fit together.

3.1 In t r o d u c t io n

The traditional PSTN network is converging with IP-based networks. This has necessitated a re­

think of the traditional role of the PSTN and the way services are to be implemented in the IP

domain. In order to appreciate this change, this chapter looks at the role of the various layers in

the traditional PSTN domain, including the control plane and the Intelligent Network (IN)

architecture.

Within the converging environment, PSTN services have to be re-evaluated because the IP

domain is adopting PSTN services and making them available. Therefore, as part of the

convergence process, the PSTN is being more integrated in the IP domain rather than the other

way round. Part of this re-evaluation concerns the analysis of the new role of the IN in a

converging environment.

Examining the way in which the IN environment can be used in the converging environment is

complex not because the IN and IP architectures are complex per se, but because such a

proposition gives rise to a large number of new architectural offerings. The complexity in

examining these architectures is increased further as there is a large number of basic

components that contribute towards a single architecture. For example, the PSTN and Internet

Inter-working framework (PINT) [RFC2995] architecture (which is discussed in section 3.3.2.1)

is based on the SIP [RFC2543] and SDP [RFC2327] protocols. The inter-dependence exhibited

by the majority of the architectures requires that key complementary protocols also be

discussed.

61

Section 3.2 presents IP-based networks and highlights the various characteristics of the network,

architectural details, and the IP-approach towards service provisioning. The taxonomy reference

model is then presented in section 3.3. The taxonomy presents the various ways the inter­

working propositions come together. The network intelligence architectures (i.e., the protocols

and the architectures) that populate the taxonomy represent ongoing research activities by

various organisations, working groups and industry bodies.

In chapter 2, the TINA model was presented with the focus being on the relation of TINA to IN.

Section 3.4 extends the work already presented by examining a role of the TINA service

architecture in the converging environment. As in chapter 2, the work presented is not focused

on the TINA architecture, but rather on where TINA could be positioned within a converging

environment.

Section 3.5 provides a discussion on network intelligence, state models and the role of IN in a

converging environment. Finally, section 3.6 presents a summary of the chapter and identifies

research contributions from the work discussed.

3.2 In t e r n e t -P r o t o c o l B a s e d N e t w o r k s

In recent years, the Internet has developed to become a global data network, which attracts

numerous user types (home users and business users; young and old) with the variety of

information and multimedia applications offered online [USDOC][ITU97].

It is important to note that the primary access to the Internet is the PSTN [ITU97]. The PSTN,

the largest telecommunications network worldwide, represents an immense investment in

infrastructure, and carries all channel-switched public, and substantial corporate, voice and data

traffic* [ITU98a][ITU98b].

The Internet was developed mainly for the data networks environment [ISOC] where a very

different set of service requirements exist.^ The Internet is characterised by the interconnection

of heterogeneous transport networks and other layer-two technologies. These networks are

viewed by users as a single, unified-network architecture, through the use of the IP protocol

[RFC760] in association with the User Datagram Protocol (UDP) [RFC768] and the

* This enables the PSTN (through its control plane) to provide some revolutionary services (see section

3.3.3.2 and the specific application presented in chapters 4 and 5).

 ̂Recall that section 2.1.1 highlights the fact that the design requirements of the PSTN were provided by

the characteristics of human voice.

62

Transmission Control Protocol (TCP) [RFC793]. What is important is that there is very little

control within the core of the Internet; intelligence is placed at the edges of the network

instead.*

By contrast, telecommunications networks are performance engineered [McMil96][Scer97] and

rest on the tradition of services that are essential to the economic well-being of the country

[Cout97][Davi97]. Therefore, IP networks present a challenge to the accepted views of

telecommunications developers who are rooted in the performance and reliability requirements

of the classic telecommunications sector.

The acceptance of IP-based networks by the business community is a fact, as is the increased

use of IP to support PSTN services such as telephony [ITUOO]. This presents a number of

significant challenges, especially in the short to medium term. Regardless of the level of the

dominance of IP in the long term and the effect this may or may not have on the role of ATM,

in the short term, there is a need to support the inter-working of widely heterogeneous networks

[Deci97][Solo99b]. A call may now originate on a mobile network, be transported across the

PSTN, and terminate on a business IP phone. Quite apart from the problems of billing for such

services, a voice user has come to expect a range of call control services. A business caller

dialling a freephone number from an IP phone should not have to pay for the call regardless of

the network type or the chain of network operators through which the call is routed. A corporate

Virtual Private Network (VPN) is a business offering that may still be demanded by a company

making use of IP calls. These services are traditionally supported by IN platforms but they must

now be introduced on IP-based networks.

The confidence of data network providers has become almost unbounded as new markets open

up for such services. It is therefore a natural next step for data network operators to look

towards the core markets of telecommunications operators [Stro99]. One compelling argument

is that the bandwidth of data services is very large in comparison to the voice service [ITUOO].

Corporations are being shown that they can make use of spare bandwidth in the data network to

support voice [ITU97][Wong99], implying that voice services will almost be ffee\ Whether one

* Although some routers may offer packet-discrimination services, these are not “intelligent” services

according to the definition of network intelligence in section 2.7.
 ̂ In [Wong99], analyst B. Kasrel of Forrester Research believes that “the U.S. Federal Communications

Commission will further erode Internet telephony's price advantage in 2001 by imposing long distance

access charges to Internet calls.” As a result, “telecommunications companies will have to invent unique

services to better compete and stave off a perpetual price war.”

63

believes that it is possible to support voice over IP with a universal-carrier class of service is

still the subject of debate and trial. The business case alone is very compelling.

In such a consolidated environment, the business and technical case for the widespread use of

IP-based networks to support telecommunication services is now very strong. This view is

supported by a number of highly publicised announcements [QOSNet][BTPr01][FT01a]

[FT01b][FT01c][Poncin98] by traditional telecommunications vendors pledging their

commitment to the development of IP-based products and services. In most cases, this requires

more than an expansion of the company’s product portfolio. It also necessitates a complete

change in business practice. What is driving companies to such a drastic change in policy is a

combination of factors [ITUOO]:

■ IP-based networks are demonstrating their ability to support services, such as voice, that

were previously seen to be firmly in the province of traditional telecommunications

operators.

■ The market for fixed voice telephony is growing at a modestly linear pace and is not

demonstrating the exponential demand for equipment and bandwidth that is seen in the case

of the Internet or, more generally, IP-based applications [Moha99].

It is projected that the IP market will continue to grow at an even higher rate for several years to

come and, in July 2000, the ITU Council selected IP Telephony as the topic of the third World

Telecommunication Policy Forum [ITUOO]. This emphasises the importance of IP Telephony,

which is driving the convergence of circuit-switched and packet-switched networks.

Regardless of the growth and expansion of IP-based networks, the architectural differences

between IP-based and telecommunication-based networks still remain. These differences are

clearly rooted in their origins (section 2.1.1). Telephone networks have been carefully

engineered to provide extremely reliable, high-quality voice transmission, making real-time

conversations possible. IP communications are typically connectionless and stateless

[Stev94] [RFC768] [Veer99].

Current IP Telephony developments seek to imitate the more connection-oriented, state-based,

PSTN-like circuits [Q.1224][Q.701]. As a result, current IP telephony standards activities

attempt to replicate long-established technical practices in the PSTN, such as call set-up and

tear-down, IN services and guaranteed QoS. For example, inter-connectivity between the PSTN

network and IP Telephony networks has been accomplished by utilising a gateway. The

gateway is state-based and converts and forwards calls in one direction or the other [H.323]

[H.245] [Haer99] [Databeam98].

64

3.3 A T a x o n o m y R e fe r e n c e M o d e l f o r t h e IN
ARCHITECTURE

This taxonomy reference model presents the various ways current research in network

intelligent architectures can inter-work with the Intelligent Network. The model is a “snapshot”

o f the various technologies that utilise the IN control architecture at the point in time when the

taxonomy was developed.

S u p p o rt o f PST N

Intelligent N etw ork

S u p p o rt o f IN witti IP S u p p o rt o f IP with IN S u p p o rt o f L ayer 2 S u p p o rt o f C o n v e rg e n c e

C S-1 C S-2 C S -3 /4 O verlay R e p la c e m e n t L eg acy IN IPIN C S -3 /4 C P H ATM PST N IP M obile P riv ate

I

C PH

N u m b er S cre en in g

T ransla tion

In te r n e t C all
W a itin g

M obility Q o S C ontro l M E G A C O TIPH O N G S M U M TS G P R S

C u s to m e r
Billing S e r v ic e A u th e n t ic a t io n

S y s te m s

PINT CTI A P Is

S IP S D P P „ , „

JC A T JC C

S erv ice S e rv ic e S e rv ic e
C ontrol M ngm nt P rov ision ing

Figure 3.1: IN control plane taxonomy reference model

The five areas depicted at the top o f the taxonomy classify the network intelligent architectures

from the perspective o f how they can inter-work with the IN.

■ Support of PSTN: Essentially, this is the area encapsulated by the original concepts o f the

IN architecture.

■ Support of IN with IP: This is the area where IP architectures can be used in order to

support the traditional capabilities o f the IN model. PINT (discussed in section 3.3.2.1.3)

provides services in the IP domain that initiate requests on the control plane o f the IN;

through PINT, the control plane o f the IN can be accessed from the IP domain.

■ Support of IP with IN This is further divided into two areas, those that involve legacy IN

components and those that require new functional entities on the IN side, e.g. IPIN. For

example, databases included in legacy IN can be used to provide authentication

functionality. IPIN, on the other hand, requires enhancements to the IN architecture.

■ Support of Layer 2

65

■ Support of Convergence

3.3.1 Support of PSTN: The IN as the Control Architecture
Intelligent Network

Support of PSTN

CS-1 CS-2 CS-3/4

I
CPH

Number Screening
Translation

Figure 3.2: The Intelligent Network providing support to the PSTN

This branch (represented in bold in figure 3.2) represents the area captured by the traditional

role of the IN architecture. Example services include billing, number translation, and call

screening. Some o f these (e.g. number translation) were discussed in section 2.1.2; this section

focuses on new functionality that may be provided by future capability sets such as IN CS-3 and

IN CS-4.

The IN and IN CS-1 and IN CS-2 were described in chapter 2. This section focuses on

capability sets that are under development (i.e. IN CS-3 and IN CS-4) and highlights the service

features that are being considered by standards bodies [ETSI EG 20I-766][ETSI ETR 199]

[ETSI TR 101-779].

One area being considered is that o f voice recognition. In this area, a class o f services require

complex voice processing and little or no additional call routing. Such services are currently

provided by interactive voice response (IVR) systems.* Such functionality is now being

considered for incorporation in the core o f the network. If services such as these are to be

implemented in the core network, there is a need for a broadband intelligent peripheral (B-IP) .

The Specialised Resource Function (SRF) would provide the interaction functionality with the

subscribers, while the service control function (SCF) would manage database functions and

perform the “traditional” tasks, such as call routing.

* An IVR unit would be located outside the core network o f the operator. Therefore, it would be limited to

voice processing, without offering any routing capabilities.

66

3.3.1.1 Broadband Multimedia Services

An additional area of interest is that involving broadband multimedia services. Multimedia

services are characterised by a multimedia session, which is generally defined as being

composed of three entities:

■ The Multimedia Controller is the entity responsible for the control of the session.

■ The Control Connection is established between each user and the Multimedia Controller to

exchange session control information.

■ The Media Connection is the connection between the users which allows them to exchange

media information.

Broadband multimedia services can be implemented using an enhanced SRF that interacts with

image and voice signals [ETSI ETR 101-799]. Such an SRF can provide services including the

following:

■ Video on Demand - the SRF acts as the communication partner to the set-top-box during

user-interactive dialogues.

■ Video Conference - the SRF acts as a server to merge and to distribute flows to the users in

the conference.

For such functionality, the SRF should contain commands to control a media stream, for

instance to go backwards and forwards, pause, and skip [ETSI EG 201-766]. The SRF could

implement these procedures in the form of User Interaction scripts (Ul-scripts). According to

[ETSI ETR 199] Ul-scripts are advantageous because they:

■ allow the grouping of the user interaction parts of the service into functional blocks which

use SRF resources in the most efficient way.

■ lead to a substantial decrease of network traffic over the SCF-SRF interface since only

message exchanges related to the triggering and reporting of script execution actions are

necessary.

■ represent a generic action which may be parameterised, thereby reducing implementation

complexity.

3.3.1.2 Internet (IP)-Based Services

Services in this category include for example, “click-to-fax”, “click-to-fax-back” and “voice

access to content.” For these services, the SRF requires protocol conversion capabilities in order

to convert text-to-fax content or text-to-speech synthesis as well as voice recognition.

67

This group o f services is described in section 3.3.2. In the case o f PINT (section 3.3.2.1.3), the

services are implemented using PINT servers in the IP domain. From the IN perspective, they

are mentioned here to illustrate that such services are possible with an enhanced SRF function.

3.3.1.3 Other Multimedia Services

The SRF could be used to implement a Voice Calling Card service, whereby the user is

identified based on a speaker verification function rather than personal identification numbers.

3.3.2 Using IP-Based Architectures to Support the IN Model
This branch o f the taxonomy (represented in bold in figure 3.3) represents the areas where open

standards, framework models and other industry initiatives have proposed protocols which can

be used to support the existing IN architecture.

Intelligent Network

Support of IN with IP [

— I
Overlay Replacem ent

in te r n e t C all
W aitin g

PIN T CTI

P a r la y JAIN

Figure 3.3: The Intelligent Network is supported by new IP technologies

This set o f initiatives can be further divided into two areas:

■ Overlay initiatives, which enhance the IN capabilities and are discussed in sections 3.3.2.1

through to 3.3.2.4.

■ Replacement initiatives, which propose a different solution to an already implemented IN

service, discussed in section 3.3.2.5.

3.3.2.1 PINT and IETF Protocols and Architectures Requiring IN Inter-operability

In order to discuss inter-operability issues between PINT and IN, the protocols on which PINT

is based must first be presented. Therefore, this section presents protocols defined by Working

Groups o f the Internet Engineering Task Force (IETF) [IETF]:

■ The Session Initiation Protocol (SIP), presented in section 3.3.2.1.1,

■ The Session Description Protocol (SDP), presented in section 3.3.2.1.2,

■ The PSTN and Internet Inter-working Framework (PINT), presented in section 3.3.2.1.3,

68

■ IN CS-4 developments in relation to PINT are discussed in section 3.3.2.1.4.

3.3.2.1.1 The Session Initiation Protocol

The Session Initiation Protocol (SIP) is an application layer protocol that “is used to establish,

modify, and terminate multimedia sessions” [RFC2543]. SIP is a text-based client-server

protocol that relies on HTTP-type requests and can run over TCP or UDP*; however the

message format is independent of the transport protocol.

An SIP server can operate in two modes: proxy mode and redirect mode [RFC2543]. In proxy

mode, the proxy server returns responses on behalf of the user; the server takes care of the

location of the user and in this way the process is transparent to both clients. In redirect mode,

the SIP server locates the user and returns this information to the initiating client, who then

contacts the terminating client directly. The media to be exchanged in a SIP session is described

by the Session Description Protocol.

3.3.2.1.2 The Session Description Protocol

The purpose of the Session Description Protocol (SDP) is to “convey information about media

streams in multimedia sessions to allow the recipients of a session description to participate in

the session” [RFC2327]. A multimedia session, for these purposes, is defined as “a set of media

streams that exist for some duration of time” [RFC2327]. SDP includes information about the

type of media (video, audio, etc.), the transport protocol (RTP^/UDP/IP, H.320) and the format

of the media (H.261 video, MPEG video).

3.3.2.1.3 The PINT Architecture

The PSTN and Internet Inter networking Working Group of the IETF (PINT WG) defined

the PINT reference architecture, depicted in figure 3.4 [RFC2995]. PINT aims to study the

architecture and protocols needed to support services in which a user of the Internet requests

initiation of a telephone (i.e., PSTN-carried) call to a PSTN terminal.

The PINT WG has examined services that are initiated in the Internet domain and carried out in

the PSTN domain. Examples of the initial proposed PINT services [RFC2995] are:

■ Request to call (Click-to-dial): a request is sent from an IP host to initiate a phone call.

If UDP is used as a transport layer protocol, the application layer must implement mechanisms to

provide reliability such as re-transmissions and loss detection mechanisms.

 ̂This is the Real-Time Transport Protocol, defined in [RFC 1889]

69

■ Request to fax (Click-to-fax): a request is sent from an IP host to deliver a fax to a fax

machine. The request must contain a pointer to the fax data (which could reside in the IP

network or on the PSTN).

■ Request to hear content (Click-hear-content): a request is sent from an IP host to make a

phone call to a user and dictate some sort o f content. The request must either contain a URL

pointing to the content or the content itself.

A PINT system consists o f the following functional elements (figure 3.4):

■ PINT Client: An IP host that sends requests for invocation o f a PINT service.

■ PINT Gateway: An IP host that accepts requests for PINT services and dispatches them to a

PSTN network.

■ Executive System: A system that interfaces the IP network to a PSTN network that is

executing the PINT service.

PINT S erver
CloudProtocol s o m e other

PINT C lient protocol

PINT G atew ay

Figure 3.4: PINT architecture

y y
a

PSTN

E xecutive S y stem

It is important to emphasise that PINT services always involve two networks: the PSTN and the

Internet. As a result, the control of a PINT service resides in both the IP and IN domains and

communication between the two networks is required. This is the role o f the PINT gateway.

The system o f PINT servers in figure 3.4 is represented as a cloud to emphasise that a single

PINT request might traverse a series o f location servers, proxy servers and redirect servers

before finally reaching the PINT gateway that can actually process the request by passing it to

the executive system on the PSTN network.

The PINT gateway might have a physical PSTN network interface, or it might be connected via

some other protocol or Application Programmers Interface (API) to an Executive System that is

capable o f invoking services within the PSTN network cloud. The relation between PINT, the

IN and the role o f the Executive System is discussed further in section 3.4.

j. j.2.y.4 aW /A Œ-4
The interfaces between PINT and the IN are under development by the ITU-T Study Group 11

whose area o f responsibility includes, amongst others, signalling requirements and protocols for

70

IP-related functions and enhancements to the existing recommendations on access and

“internetwork” signalling protocols of ATM, N-ISDN and PSTN.

The distributed functional plane (DFP) for IN CS-4 as defined in [ETSI ETR 199] [Q. 1244] is an

extension to the IN CS-2 functional model (section 2.4.4.2) and is intended to be included in the

IN CS-4 standards. IN CS-4 will include a new component, a service control gateway function

(SCGF), that transmits service requests and responses between the two networks. Figure 3.5

shows the proposed functional architecture.
Intelligent Network IP Network

SCEF

M GF
. Management
Layer

SMF

SMAF Pint
Server

SDF

Service
Control
Layer

SC GFSCF

SRF
SSF

H.323
GKF

Call/
Bearer
Layer

SSF

C /BG FCCF

II

Management Control Bearer

Figure 3.5: Enhanced functional architecture fo r IN support o f
IP networks [Q. 1244]

MGF Management Gateway Funetion
SC GF Service Control Gateway Function
C/B GF Call/Bearer Control Gateway Function
H.323GKF H.323 Gatekeeper Function

The proposed functional model (figure 3.5) is an extension of the IN CS-2 functional model. It

is intended to support IN CS-3/4 benchmark services. Internet-based service customisation and

termination of VoIP to reach users in the telephone domain, as well as general IN management

capabilities.

The functional entities introduced by the model include:

71

■ The SCGF, which allows the inter-working between the service control plane in the IN and

IP networks

■ The H.323 GKF, which can be seen as a logical switch (CCF) that deals with

o call control signalling [H.225], [Q.931] and

o connection control signalling H.245 for VoIP (transferred via the Gatekeeper which

makes the network routing decisions)

■ The C/B GF, which is equivalent to a composite function combining both the Media

Gateway and the Media GW controller as defined in [ETSI TS 101-313].

In order to provide full inter-operability and inter-working of PINT services, a number of

additions need to be made to the existing IN functional entities. For example, the SRF has to be

extended with capabilities:

■ that exchange data with gateway functions to IP networks,

■ that support the specialised resources it needs for some of the services, with media

transformation functions* such as Text-to-fax and Text-to-speech, and

■ that enable the SCF to access a database-like entity with service-related information to be

shared between the IN and the IP network.

A similar approach that aims to provide inter-operability across the two networks is proposed in

[LeboOO]. The Soft-Switch [SOFTSWITCH] acts as an overlay between the IP telephony call

control and the IN layer provided by the SSF and the SCF. The soft-switch provides the

necessary mapping between the SIP protocol state machine and the IN BCSM. This is similar to

the functionality of the SCGF described by [Q.1244].

The soft-switch approach defines a Call Manager Function (CMF), which acts as a mediation

node and is responsible for passing service related information to and from the IN service plane

[LeboOO]. This approach is under consideration by the ITU SG-11 and there is ongoing work to

define such a CMF.

The CMF is a functional entity responsible for handling call signalling on either network and

appears, to the CCF on the IN side, as another CCF. The CMF is responsible for passing

service-related information to and from the IN service plane, namely the SCF, and managing the

service control relationship [LeboOO].

* This is covered in section 3.3.5.2 of [Q.1244] as the TTS function.

72

The CMF also contains a Session Manager responsible for managing the IP network services.

The Session Manager is responsible for Security and Authentication, real-time data collection

and triggering of services in the IN or IP domains [LeboOO]. To implement such functionality,

the session manager may contain SSF-like functionality or a subset, to model the pre- and post­

conditions that are required to interact with an SCF.

Also introduced in [Q.1244] is a Soft Service Switching Function (Soft-SSF). The Soft-SSF

interacts with the IN SCF and IP representation o f the CMF, mapping the Call Control protocol

into the INAP events, trigger points and procedures. The Soft-SSF differs from the classical

SSF as follows:

■ Processes such as call control, database and billing are retained or enhanced,

■ SIP-server inter-working functions are introduced and

■ circuit-switching and ancillary processes are removed.

In order to provide such inter-operability, it is essential for the interface between the SIP-ser\er

and the Soft-SSF to carry sufficient call data for the SSF to function correctly, and to deliver the

necessary information to the SCF so that service logic decisions can be made.

3.3.2.2 Computer Telephony Integration Call Model

Computer Telephony Integration (CTI) enables a private enterprise to route calls within the

organisation and to manage caller information that is stored within databases, for example in

customer management systems. Devices in a CTI environment are application-specific,

predominantly proprietary such as Interactive Voice Response Systems (IVR), Voice Mail

Systems, E-mail Voice Gateways, Fax Servers, Switches (PBX), Automatic Call Distributors

(ACDs) and Predictive Diallers. Figure 3.6 shows a possible CTI network configuration.

o } -

_h

Figure 3.6: Possible CTI network configuration

73

In [ECTF97] the definition o f connection state as applied to CTI is that the “connection has an

associated connection state, an attribute that characterises the relationship o f a call and a

particular device to each other. Connection states must transition in conformance with the

following diagram.” The connection state model that CTI is based on is presented in figure 3.7.

The CTI Connection state model re-enforces the different approaches that are adopted by the IN

world and the IP world. Comparing the model with that o f IN CS-2, it can be seen that it is more

“flexible”, with numerous transitions.

Null

Initiated Alerting

Q ueued Fail

Connected F * Hold

Figure 3.7: Connection state model fo r CTI [ECTF97]

Within the CTI space, Java Telephony API (JTAPI) [JTAPI] is an example protocol that is used

for controlling PBXs. Although it does not communicate directly with any IN control elements,

it is discussed here because, as will become apparent, the state models o f the JCC API (which is

used for communicating with the IN) are identical to those o f JTAPI.

S.3.2.3 Java Telephony API

The Java Telephony API (JTAPI) focuses on call processing and applications for a private

branch exchange (PBX) or call centre environment [Dawk97]. In such an environment,

processing and control tend to be centralised in comparison to the distributed nature o f the IN.

A call within the context o f JTAPI refers to a communication session among two or more

parties. Each party (as in the IN world) is said to be participating in one leg o f the call.

Moreover, a call has as many call legs (connections) as the number o f parties in the call.*

[JTAPI].

This is very similar to the O/T BCSM discussed in section 2.4.4.

74

The telephony classes that are included in the core model and their relationships are shown in

figure 3.8. This section provides a brief discussion o f the objects within the model.

Applications

JTAPI
Provider

Call

Physical Logical Logical Physical

Connection Connection

Terminal
Connection ,

Terminal
Connection

Address)Address

Terminal Terminal

Figure 3.8: Objects within the JTAPI model [JTAPI]

The Provider object represents an abstraction o f the telephony service provider. The Call object,

which is managed by the Provider object, represents a telephone call. A telephone call

comprises a Call object and zero or more connections.* For instance, in the case o f a three-party

call there would be three Connection objects associated with the Call object. A Connection

object models the (logical) communication link between a Call object and an Address object.

An Address object is therefore a logical endpoint. The Terminal object represents a physical

device (such as a telephone) and its associated properties. Multiple Terminal objects can be

mapped onto the same Address object.

D is c o n n e c te dIdle

In P ro g re s s

A lerting

C o n n e c te d

U n k n o w n

F ailed

Figure 3.9: State model fo r Connection object

As is the case for CSAs in IN CS-2 discussed in section 2.4.5.

75

A Connection object is responsible for modelling the state that reflects the relationship between

a Call and an Address object. The state transition diagram for the Connection object is depicted

in figure 3.9.

The states are described in table 3.1.

IDLE The initial state for all Connection ob jec ts . An idle connection indicates that the
party has just jo ined the telephone call.

IN PRO GR ESS Indicates that a telephone call is currently being placed to this destination
endpoint.

ALER TIN G Indicates that the destination party o f a telephone call is being alerted to an
incom ing telephone call.

C O N N E C T E D Indicates that a party is actively part o f a telephone call.
D ISC O N N E C T E D Indicates that a party is no longer a part o f a telephone call. N o m ethods are

valid for C onnection ob jects in this state.
FAILED Indicates that a telephone call placed to the endpoint has failed.
U N K N O W N Indicates that the P ro v id er ob jec t cannot determ ine the state o f the C onnection

ob ject. A connection may transition in and out o f the U N K N O W N state at any
tim e, unless it is in the D ISC O N N E C T E D or FAILED states.

Table 3.1: Description o f states fo r a Connection object

Similarly, figure 3.10 depicts the state model for the Terminal Connection object.

Idle

Unknown Ringing

Active P assive

Dropped

Figure 3.10: State model fo r Terminal Connection object

The states are described in table 3.2.

IDLE The initial state for all new Term inal Connection ob jects.
AC T IV E Indicates that a Term inal is actively part o f a telephone call. This often im plies

that the terminal handset is off-hook.
PA SSIV E Indicates that a Term inal is part o f a telephone call, but not actively so.

Indicates that a resource on the Term inal is being used by this telephone call.
RING ING Indicates that a Term inal is signalling to a user that an incom ing telephone call

is present at the Terminal.
D R O PPE D Indicates that a Term inal was once part o f a telephone call, but has since

dropped o f f from that telephone call. This is the final state for all Term inal
C onnection objects.

U N K N O W N Indicates that the P ro v id er cannot determ ine the state o f the Term inal
C onnection object.

"'able 3.2: Description o f states fo r a Terminal Connection object

A point o f interest in the above state models is the U N K N O W N state. As shown in table 3.2, the

U N K N O W N state indicates that the Provider cannot determine the state o f the Terminal

76

Connection object. In IN, no such case exists and invalid transitions have graceful degradation

by moving to an exception state. This indicates the different approaches adopted in call control.

The IN control architecture is characterised by robustness and strict control, while the CTI

approach is more relaxed. For the two approaches to inter-work, there needs to be a way to map

the robust transitions of the one side to the less demanding approach of the other.

It has been argued [JainOO] that JTAPI overcomes several of the limitations of the IN.

According to the same reference, in the IN world “there is no explicit abstraction offered to

allow the programmer to manipulate entire calls, or legs of a call, or the principal logical entities

in the call (e.g. the calling or called party’s address), and certainly not in any object-oriented

fashion.” It is the author’s view that the reasons for this are to do with the fact that the

telecommunications network was never open to third-party service providers. It is easier to

provide an API-type interface to a CTI environment, where the equipment and the network are

owned by the organisation that may be developing the services.

The author agrees that JTAPI offers the programmer clear and explicit abstractions for

manipulating calls and the logical entities in a call in an object-oriented [Jaco92] manner.

However, it must also be kept in mind;

■ that JTAPI is mainly applicable to PBXs or large-scale VPNs. Such systems are much

smaller rather than the average IN implementation,

■ JTAPI systems are centralised (e.g. a PBX), and that

■ a Provider object is assumed to be in control of all the legs of a call, which is clearly

impractical in integrated next-generation networks.

Moreover, comparing the JTAPI models with the BCSMs of IN CS-1 and CS-2 (section 2.4.4),

one can quickly realise the simplicity of the FSMs employed by JTAPI in comparison to the IN

BCSMs:

■ JTAPI does not currently capture all the states that the IN model does (refer to section

2.4.3).

■ JTAPI has no concept of triggers or detection points [JTAPI].

■ it is impossible to suspend call processing at a defined state in the FSM, invoke an

application (supplementary service logic), and return results.

■ JTAPI includes a number of unknown states and “a connection may transition in and out of

the UNKNOWN state at any time, unless it is either in the DISCONNECTED or FAILED

states” [JTAPI].

77

In order to enhance the capabilities provided by JTAPI, the JCC/JCAT API is attempting to

incorporate the “powerful aspects” of JTAPI (such as object-orientation) and the flexibility and

robustness of the IN models. This is discussed in section 3.3.2.4.3.

3.3.2.4 Open Inter-working Standards

Within telecommunications networks, the desire for new business growth has been a major

driving force towards the development of open network APIs, such as the Parlay API

[ParlSpecOO]. The Parlay API enables network operators and third parties (external companies,

operating outside the secure domain of the network operator) to build new applications that rely

on real-time control of network resources.

A second community, driven mainly by Sun Microsystems, is developing the Java APIs for

Integrated Networks (JAIN) [JAIN]. JAIN defines a Java implementation of the Parlay API to

bring the benefits of the Java language to the Parlay API. This section looks at the background

and rationale behind the work of Parlay and JAIN.

Traditionally the network operator, in conjunction with network equipment providers, has

designed, developed, deployed, and administered applications that run above switched voice

and data networks. These applications typically suit mass-market demand for services such as

virtual private networks (VPNs), inbound services, and unified messaging [ParlBuss99].

According to [ParlBuss99] the potential for innovation that lies outside the network operator’s

domain has remained unexploited until now. By enabling third-parties (such as service

providers) to build and deploy new applications on their network, the network operator can reap

the benefits of increased network revenues while not enduring the overhead costs of deploying

specialist applications. APIs provide increased network traffic through greater exploitation of

network intelligence capabilities by a much wider development community, and the opportunity

to charge* for access to these via the API. Moreover, from the service provider’s perspective

there is significant market opportunity for new services and the ability to address niche market

requirements. Furthermore, end users can benefit from the vastly reduced time from identifying

a requirement for a new service to that application solution being developed. A further

discussion of the issues surrounding open network access can be found in chapter 8.

There are issues with charging for such services. These are identified in chapter 8.

78

3.3.2.4.1 The Parlay Group

The Parlay group was formed in March 1988, by BT, Microsoft, Nortel, Siemens and Ulticom

[PARLAY]. The initial set o f APIs was published in December 1998 as the Parlay API 1.0

specification. The latest specification o f the API is version 2.1 dated March 2001.

The Parlay API defines a set o f technology-independent interfaces that specify methods, events,

parameters and their semantics to allow external (untrusted third-parties) and internal

(traditional network operators) application developers the control over core network resources

and capabilities [ParlSpecOO].

The applications execute on the enterprise domain utilising the network capabilities offered via

the API. The latter defines object-oriented interfaces on both the network and client application

sides o f the API in the form of network interfaces (e.g., IparlayCall) and client application

callback interfaces (e.g., IparlayAppCall). The third-party application vendor implements

callbacks as part o f the application to handle remote methods that are called from the network to

the client application during a Parlay session.

Third-Party A pplications

Parlay API

Fram ew ork Interfaces S erv ice Interfaces

Mobility Call Control
SecurityM a n a g em en t

C onn.M ngm nt M essa g in g

R e so u r c e
Interface n

R e so u rce
Interface 1

Figure 3.11: Architecture o f the Parlay API

As shown in figure 3.11, the Parlay API is composed o f two sets o f interfaces:

■ Framework interfaces provide the capabilities necessary for the Service Interfaces to be

open, secure, resilient and manageable [ParlSpecOO]. The framework can be considered as

a number of functional building blocks and is independent o f any o f the Parlay services. In

order to access the Parlay framework, the network must authenticate itself because

ultimately the client application shares private data with the network. Similarly, the

network must prove its identity to the client for repudiation reasons.

79

■ Service interfaces provide the mechanism by which applications can access underlying

network capabilities. Parlay has defined five services: Call Control, Mobility, User

Interaction, Messaging and Connectivity Management [ParlSpecOO]. The service

interfaces, such as the generic messaging service (GMS), provide access to the capabilities

necessary to support intelligent network, integrated services digital network user part

(ISUP), H.323 and unified messaging applications. The high level of abstraction of these

services ensures that both existing voice networks and VoIP networks can be controlled in

the same way, giving independence of the technology. Each service has a service manager

responsible for control, object creation and event notification.

The Parlay Group’s prime focus is to define a computing and distributed technology-

independent API for controlling voice and data networks. The Parlay API has utilised

distributed computing technology specifications in order to make it applicable to the real world.

Such examples include the definition of the Parlay API using the Distributed Component Object

Model (DCOM) [DCOM] and CORBA [CORBA95]. This approach enjoys the flexibility of

being able to map to multiple programming languages such as C+-f, C, Java and Visual Basic.

Advocates of Parlay have argued that the application developer must be skilled in three areas:

the Parlay API, distributed computing techniques, and programming languages [BeddOO]. The

specification of a language-dependent API on the client side removes the distributed computing

element and even more so if the API is platform-independent. One such API is the JAIN

initiative from Sun Microsystems.

3.3.2.4.2 JAIN: Integrated Network APIs fo r the Java Platform

The objective of the JAIN initiative is “to create an open value chain from third-party service

providers, telecom providers, and network equipment providers to telecom, consumer and

computer equipment manufacturers” [BhatOO]. JAIN builds on Java portability by standardising

the signalling layer of the communications networks into the Java language, and defines a

communications framework for services to be created, tested, and deployed. According to

[KeizOO] the strengths of JAIN are in service portability, network convergence, and secure

network access. Firstly, the uniform use of Java interfaces is utilised to deliver portable

applications. Secondly, the JAIN call model [JAIN] includes facilities for observing, initiating,

answering, processing and manipulating calls irrespective of the underlying multi-network path

of the call. Finally, through the use of the JAIN Parlay interface it is possible to enable untrusted

services, residing outside the operator’s trusted network, to access network resources directly

and carry out specific actions or functions inside the integrated network.

80

The JAIN architecture comprises a JAIN Application Server and the JAIN Softswitch

Platform [BeddOO]. The Application server is responsible for implementing the JAIN Service

Provider APIs. These allow secure access to network resources. The JAIN Softswitch Platform

ensures that there is a mapping between the JAIN Call Control elements to the network and

signalling layers. The network layer includes the IN functional entities, as well as SS7 including

ISUP, INAP, TCAP protocols, wireless networks with access to the MAP layer, as well as the

Internet with access to SIP, the Media Gateway Control Protocol (MGCP) and H.323. The

Signalling layer includes access to functional entities such as SSPs, MSCs, and also H.323

gatekeepers in the IP domain.

Figure 3.12 depicts the position o f JAIN APIs within a communications platform. It shows the

hierarchical use o f APIs at various levels: the protocol APIs, call control APIs and service APIs.

U ntm sted
third-party

applications

JAIN S erv ice
C reation

Environm ent
(JS C E)

Trusted
third-party

app lications

S ervice APIs

JAIN S erv ice
Provider

Cc II C ontrol/Session APIs

Security Interface:

S e c u r e T elco S p a c e

JAIN S erv ice L ogic E xecution Environm ent
(JSLEE)

JAIN Call Control Elem< nts

JAIN Call Control (JCC)
&

JAIN Coordination and T ran saction s (JCAT)

tocol/Connection API

TCAP M GCP

Figure 3.12: Location o f JA IN within a communications network [JAIN]

3.3.2.4.3 Integrating Control Elements from JCC, JC AT and JTAPI

Presented here are the details relating specifically to the finite state model representation o f the

call model within JCC and JCAT. JCC is responsible for the basic call-processing and control.

The JCAT extension package is responsible for providing coordination and transaction-related

methods. According to [JainOO], the call model within JCC is identical to that o f JTAPI Release

1.2 (section 3.3.2.3).

81

JCAT additions include an extension of the Connection object FSM to become a richer FSM

similar to that for IN. There is also a proposal to provide a version which includes both the

O BCSM and T BCSM of the IN model in a single FSM. Furthermore, IN-style triggers will be

added. These could be implemented by:

■ requiring applications to register with the Address object; in this way, the application would

be invoked when a particular trigger in the Connection object FSM fires.

■ treating each transition as a trigger; an application registered with that transition would

execute, while call processing would be halted until the application returns and call

processing can resume.

■ implementing callback objects and interfaces; this however, needs to deal with the problem

of feature interaction - which is beyond the scope of the JCC/JCAT API.

It remains to be proved if JCAT can capture the richness, completeness and robustness provided

by the IN state models.

Having briefly introduced the architecture of the JAIN APIs, the next section discusses the work

that is currently under development by the JAIN Parlay Edit Group in order to provide a Java

implementation of the Parlay API.

3.3.2.4.4 JAIN and Parlay

JAIN set up what is known as the JAIN Service Provider API (SPA) Group to look into the

development of a Java technology API for Parlay. The goal of the SPA group is to “provide the

industry with a standard Java technology version of the Parlay APIs” [JAIN]. To achieve this,

the group looked initially at how a JAIN/Parlay implementation client can interact with a

JAIN/Parlay implementation server, and how that maps onto the existing JAIN standards.

Figure 3.13 shows the JAIN Parlay Edit Group API operating on a third-party client’s machine.

The client’s machine is connected to the network operator across, for instance, an IP network.

The transfer mechanism for the messages between the JAIN/Parlay implementation client and

the JAIN/Parlay implementation server is implementation-dependent. The JAIN/Parlay

implementation server interacts with the JSLEE, JCC and JCAT APIs to use the JAIN

community service plane and control plane capabilities.

82

O pen Network
A pplications

JAIN Parlay API Applkalloi^

JAIN Parlay
Im plem entation

Client
C lient B o u n d ary

IP N etw ork

O p e ra to r B o u n d ai
Multimedia

A ppiicationsJAIN Parlay
Im plem entation Server JSLEE API

JSLEE Im plem entation

S e rv ic e P la n e

JCC/JCA T E
ap p s t

JC C/JC A T API

JC C/JC A T
im plem entation

iSU PA PI MGCP API H .323 API

MGCP
Im plem entation

H.323
im plem entationISUP Im plem entation

C o n tro l P la n e

Figure 3.13: JAIN/Parlay Interactions

3.3.2.5 Internet Call Waiting: Replacement Initiative to IN Call Waiting

Internet Cali Waiting (ICW) is a service that enables a subscriber engaged in an Internet dial-up

session to be notified o f an incoming call to the same telephone line, to specify the desirable

treatment o f the call and to have the call handled as specified [Brus98],

In [RFC2995] the desirable features o f ICW are identified. Here is a summary:

■ Incoming call notification - The subscriber is notified of an incoming call over the Internet,
without having any effect on the telephone line that is being used by the modem.

■ Online Incoming Call Disposition - Once informed of the incoming call, the subscriber has
various options for handling the call.

■ Automatic Incoming Call Disposition - Incoming calls are automatically handled based on
dispositions pre-defined by the subscriber without real-time intervention.

■ Multiple Call Handling - Multiple calls arrive during call disposition processing. With multiple
call handling, the subscriber is notified of the multiple calls one by one.

■ Call Logging - A detailed log of the incoming calls processed during the ICW service is kept.

In order to highlight the inter-operability and inter-working issues that arise from the ICW

service, this section presents the implementation adopted by Korea Telecom [RFC2995]; the

network architecture o f the Korea Telecom ICW service is presented in figure 3.14.

83

IN CS-1 F E s

S C F U : P I N T G W

ICW / SIP
Proxy S erv er

SOP — PINT

Prop, interface

PSTN
Network

ICW Client

SSP SSP

ICW S u b scr ib er

Caller

Figure 3.14: IC W based on existing IN CS-1 FEs [RFC2995]

The SSP is a standardised IN CS-1 SSP. On detecting that the called party is busy, it sends a

query to the SCP and processes the call under the control o f the SCP.

The SCP processes the call based on the logic associated with that service. In the case o f the

ICW service, the service logic includes the notification o f a waiting call to an online ICW

subscriber and the disposition o f the call. The service logic requires that the SCP inter­

works with the ICW proxy server.

The SCP-ICW protocol is PINT. The translation between INAP and PINT is performed by

the SCGF. For this, a proprietary protocol is used between the SCP and the SCGF, whilst on

the other end the SCGF is an IP-endpoint.

The IP is a standardised SRF. When necessary, it utilises the Play Announcement IF to

inform the caller according to the settings of the ICW subscriber.

The ICW server is a SIP proxy or redirect server for message routing between the ICW

client and the SCGF. The ICW server is also responsible for:

• managing the ICW clients that are connected to it,

• monitoring the connection status o f the registered ICW client and

• managing profiles for each ICW subscriber.

The ICW client is an application program running on the subscriber’s PC. The application

monitors the Internet connection status o f the PC and, upon connection, sends a registration

request to the SCGF via the ICW Server, which is eventually passed to the SCP.

84

From the above architecture, it can be observed that:

■ the implementation depends on a proprietary function - the SCGF - and therefore a

proprietary interface between the SCGF and the SCP

■ the implementation o f the IP-side o f the SCGF is specific to the version o f SIP that is being

used and

■ the implementation o f the ICW client application is specific to the version o f PINT.

In order to resolve some o f these limitations, the “Service in the PSTN/IN Requesting InTemet

Services” SPIRITS IETF WG [RFC2995] has proposed a standardised architecture for future

SPIRITS services [Fayn99]. The SPIRITS architecture proposed in [RFC3136] aims at

providing inter-operability between existing commercially available systems, such as the one

discussed here.

The SPIRITS WG [SPIRITS] would resolve the last two issues associated with the above

architecture, but it would still not tackle the issue o f the proprietary interface between the SCGF

and the SCP. This could either be resolved using the architecture presented in section 3.3.2.1.4

o f the proposed IN CS-4 SCGF or by adopting a Parlay-based approach that would enable third-

party service providers to directly access the SCP through a Parlay-compliant API and thus

overcome the limitations o f the proprietary interface.

3.3.3 Supporting IP-Based Services using the IN M odel
Intelligent Network

Support of IP with IN

Legacy IN IPIN

L

Mobility QoS Control MEGACO TIPHON

I C u sto m er '
Billing S erv ice A uthentication

S y s tem s

E C o m m erce C ertification
Billing

Service Service Service
Control Mngmnt Provisioning

Figure 3.15: Support o f IP with IN

This section identifies IP services that can be implemented using the functionality provided by

existing (i.e. legacy) IN architecture, as well as by introducing new (i.e. IPIN) components on

the IN-side. Figure 3.15 illustrates the branch (in bold) o f the taxonomy this section focuses on.

85

3.3.3.1 Customer Service Systems

The IP architecture could be used in conjunction with IN for Customer Service Systems. This

includes web-based customer service control and management. Users could in this way

subscribe and unsubscribe to services “on-the-fly” via a secure web-based interface.

3.3.3.2 Authentication, Certification, Billing and E-Commerce Services

Such service capabilities use information which is already contained within the IN environment.

The IN model and its billing capabilities can be used in order to utilise the important

information and “trust” set within the traditional telecommunications network and enhance this

by promoting the IN billing capabilities over an IP platform [Solo98].

In this respect, the SCP is treated as a general certification authority*. The SCP can provide

access for all manner of secure information (such as passwords) that could be used in Internet

applications. Chapter 4 discusses in detail an example application for this role.

3.3.3.3 DNS for Mobility

This involves utilising the IN infrastructure in order to allow outside control to IN and

intelligent use of information within the IN network for services such as mobility. DNS

[RFC 1591] offers a one-to-many mapping from a globally unique, hierarchical identifier to one

or more host names or IP addresses. Therefore, the DNS server provides a means to access

location information for servers. This key element in the IP network could be used in

conjunction with IN, in order to provide mobility through DNS.

In such a scenario, the SCP can treat the DNS as an SDF. Hence, since IN CS-2 provides

enhanced support for user interaction and service profile customisation the user could register a

binding between the IP address and URL through the IN. Number translation services are

relevant to the Internet. The DNS currently serves as a resolution protocol allowing the

translation of fully-qualified domain names to IP addresses. In this sense, the DNS can be

viewed as an IN platform [Solo99b]. The difference is that the end terminal (rather than SSP)

interrogates the DNS.

A certification authority is an independent party that verifies the credentials of a public key. A complete
description can be found in [GanlOl].

86

3.3.3.4 MEGACO andH.248

Before the protocols of MEGACO, H.248 and the ETSI Project TIPHON are introduced, a brief

background to the origins of these protocols is given. Table 3.3 presents an overview of the

protocols developed by two of the major standardisation bodies.

Standards Body URL M ajor Standards N otes

International
Telecommunications
Union (ITU)

www.itu.int

T.120 Real Time Data Conferencing
H.248 Gateway control protocol (same as IETF

MEGACO)
H.320 Narrow-band visual telephone systems and

terminal equipment
H.323 Packet-based multimedia communications

systems

Internet Engineering
Task Force (IETF)

www.ietf.ore

SIP Session Initiation Protocol
RSVP Resource Reservation Protocol (prioritises

packet traffic by use)
Diffserv Differentiated Services
MEGACO Same as ITU H.248

Table 3.3: Standards for inter-working among IP Telephony and the PSTN

Two major components of the H.323 architecture [H.323] are the Media Gateway (MG) and the

Media Gateway Controller (MGC). The MG performs simple encoding and decoding of

analogue voice signals, compression and conversion to/from IP packets. The MGC contains all

control intelligence, analyses how calls are to be handled and performs functions similar to the

SS7 network in the PSTN environment. The MGC needs to understand various signalling

systems such as SS7 and GSM in order to ensure PSTN inter-connectivity.

Competing with H.323 is the IETF-developed standard SIP (discussed in section 3.3.2.1.1). A

number of papers have been published that make this comparison (either directly or indirectly),

such as [Henn], [LiuOO] and [SIP].

Although the ITU Recommendations of series H.323 intended to standardise both the media

gateway and the media gateway controller, an industry initiative called Media Gateway Control

Protocol (MGCP) gained momentum in further decomposing media gateway controllers from

media gateways. A result of this initiative was the formation of a working group, named

MEGACO [MEGACO], by the IETF. The resulting H.248/MEGACO protocol defines a client-

server protocol to control media gateways that can pass voice, video, facsimile, and data traffic

between PSTN and IP-based networks [RFC2705]. H.248/MEGACO supports various

“packages” that interface with conventional PSTN switches and IN services, with plans to

support a range of existing signalling protocols including ISUP, and MAP. The MEGACO

architecture is presented in figure 3.16.

87

http://www.itu.int
http://www.ietf.ore

Signalling

(Q

IP N etw ork
B earer

MGC

NAS

AAA

Figure 3.16: MEGACO NAS reference architecture

In figure 3.17, depicting the approach adopted by H.248/MEGACO, the IP, signalling and

bearer connections are physical, whilst the interface between the MGC and the Network Access

Server (NAS) is logical. The signalling path between the MGC and the NAS server is through

the IP network. The NAS is an access gateway, or MG, which terminates modem signals from a

network (e.g. switched-circuit network or xDSL network) and provides data access to the packet

network.

T elep h o n y M edia G W H .323 ,
S ign alling C ontroller

1 1
SIP

Control
Interface

B earer
1 1

IP
C on n ection M edia G W N etw ork

Figure 3.17: H. 248/MEG AGO

One of the technical challenges raised by the ever-closer integration between circuit-switched

and packet-switched networks concerns how to address calls that pass from one to the other.

Generally, it is assumed to be desirable that a single integrated global addressing system exists.

For example, the same ITU E.164 telephone number would reach a subscriber regardless o f

whether IP-based or PSTN network technologies are used. Indeed the concept o f being

“technologically independent” suggests that any global numbering or addressing plan should be

abstracted as much as possible from the underlying lower-layer technologies. These issues are

addressed by the ETSI Project TIPHON. The following section highlights the work o f TIPHON

that is related to the control plane.

3.3.3.S ETSI Project TIPHON

The Telecommunications and Internet Protocol Harmonisation over Networks Project

(TIPHON) by ETSI aims at “specifying the inter-operability mechanisms and related parameters

to enable multimedia communications to take place, to a defined quality o f service, between

switched-circuit networks (SCNs) and IP-based networks and their associated terminal

equipment” [TIPHON]. TIPHON also supports mobility and roaming within IP-based networks

as well as with other networks [ETSI TR 101-300].

[ETSI TR 101-300] identifies five scenarios for different cases o f traditional and IP Telephony:

0. IP-phone to IP-phone over an IP network

1. Source on IP network to destination on SCN network

2. Source on SCN network to destination on IP network

3. Source and destination on SCN network using an IP transit network

4. Source and destination on IP network using an SCN transit network.

TIPHON Release 1 defines the architecture presented in figure 3.18.

E.b

E.a
M edia GW

M edia GW
Controller

Signalling
G atew ay

H .323
Terminal

GK GK
B ack End

Server

Figure 3.18: TIPHON release 1 architecture with
reference points [ETSI TS 101-312]

Note the Back End Server (BES) represents services provided by third parties. The BES is

further examined in section 3.4.

In order to provide a structured analysis o f the requirements, the concept o f “functional planes”

is adopted by TIPHON (see figure 3.19). Each functional plane contains a high level grouping

of functionality.

IP Transport P lan e SC N P lan e

IP T elep h on y A pplication P lan e

Figure 3.19: TIPHON release 2 functional planes

89

The IP Telephony Application plane is further decomposed into the functional layers depicted in

figure 3.20.

Service

Service
Centrai

Caii
Control

Bearer
Control

Media
Controi

Figure 3.20: Functional layers in the IP Telephony
Application plane [ETSI TS 101-314]

The services functional layer supports a range of services (e.g. authentication). The service

control functional layer contains the functionality that is needed for the calls but may have a life

span that is longer or shorter than the duration of the call (examples are terminal registration,

call routing). Additionally, the service control functional layer provides number portability,

called user location, name-to-name translation, name to address translation, and call access

authorisation.

The call control functional layer is responsible for maintaining a call context, which allows the

services offered by the bearer control functional layer to provide the connections and

capabilities requested by the customer. More importantly, it maintains the call state, as well as

providing services that change the call state, for instance call hold, suspend, three way, and

conferencing.

A mapping between the IN functional planes and TIPHON's functional planes is given in figure

3.21.

90

Management
Functional

Areas
TIPHON IP Telephony Planes

SD F Data for ser v ic e s
SC E F

S erv ices
Control

SC F IN S erv ice Dom ain

SM F

S S F IN S S F
Call
Control

Integrated CCF
(IP -b ased protocol, IN, CCF)

CCF

SM AF

S S FB earer Control

Media Control CCF

Figure 3.21: Mapping o f IN functions onto TIPHON functional architecture

As previously mentioned, the original protocols o f IP Telephony have limited the inter­

operability o f IN and IP services. It is vital that IP users also benefit from services in the IN

network if a means is found to permit IN service access from IP endpoints. This arises from the

fundamental issue o f allowing full inter-operability as a natural step to the convergence process

[Cian99].

The next section discusses a fundamental issue o f providing inter-operability in the context o f

call models. As call models and their respective FSMs represent building blocks for IN

architectures and IP-based services, it is essential that the inter-working among them is achieved

without compromising robustness in either domain.

The inter-working o f two different call models is a problem o f Call Model Integration (CMI).

A fundamental requirement for CMI is to have a unified view on the two call models (i.e., the

IN BCSM and the IP-based FSM, e.g. H.323 or JTAPI).

A call model, in its most general form, consists o f three basic components [Vemu99]:

■ the Call Control Element, which handles call processing related functions,

■ the Service Switching Element, which handles all service access related functions, and

■ the Feature Interaction Manager Element, which resolves conflicts in feature access and

execution.

91

Every entity that processes calls possesses these elements in some form. “The CMI issue arises

because the base domain has its own FSM representation o f these elements, as does the external

domain o f interest” [Vemu99].

As different services are triggered at different states within the context o f a given call, it is

essential to be able to maintain a unified view o f call state across the two domains. In order to

achieve this, the two state models must operate in lock-step (i.e., state changes in one FSM are

accompanied by corresponding state changes in the other) [ETSI TS 101-314].

^ fo r e ig n s e r v ic e ^

b a se domain

foreign S erv ice
Sw itching E lem ent

foreign Call Control
E lem ent

^ b a s e serv ice ^

b a s e S erv ice
Sw itching E lem ent

B a se Call Control E lem ent

Figure 3.22: Call model integration fram ework

However, this lock-step behaviour is sometimes difficult to implement, especially since, in most

cases, two call model FSMs do not have the same number o f states and there may be a one-to-

many relationship across the two call models. The concept o f state models and their

implementations is discussed further in chapter 6. The next section focuses on open inter­

working standards using APIs.

3.3.4 Using the IN A rchitecture for Layer 2 O perations and to Support
the Convergence Process

Intelligent Network

Support of Layer 2 Support of C onvergence

I I I I I I I
CS-3/4 CPH ATM PSTN IP Mobile Private

GSM UMTS GPRS

Figure 3.23: IC W based on existing IN CS-1 FEs

92

The last two parts of the taxonomy (see figure 3.23) identify areas where the IN may provide

additional support as a control architecture.

Firstly, to support layer-2* operations, the IN could provide additional QoS control over the

ATM AAL2 using additional functionality that may be provided in future IN capability sets.

Secondly, the IN could be viewed as a control architecture that is supporting the convergence

process. The number of architectures that need to inter-work in order to provide transparent

services are increasing. For example, the following architectures are currently available for

mobile telephony: GSM, GPRS and the slow evolution towards UMTS. Similarly, there are IP

networks over ATM, as well as the traditional PSTN networks. The PSTN network still is the

primary access network for home users, therefore the primary gateway (from the viewpoint of

control) to home users is through the IN control architecture.

It is the author’s view that the IN has a role to play in supporting this convergence process. Of

course, it remains to be seen whether the name “Intelligent Network” will withstand the test of

time. What is important however is that the concepts, capabilities and architecture of the IN are

contributing and impacting the design of IP-based technologies.

The next section moves on to re-examine the TINA service architecture (section 2.5) within the

context of the converging environment and the various protocols and architectures that have

been presented in this chapter.

3.4 T h e R o l e o f t h e T IN A Se r v ic e A r c h it e c t u r e in a
C o n v e r g in g E n v ir o n m e n t

Section 3.3.3.5 presented the ETSI Project TIPHON and its architecture. As already mentioned,

TIPHON aims at “standardising the interfaces between SCN networks and IP-networks to

enable their inter-operability for voice and multimedia applications” [ETSI TR 101-300]. The

TIPHON architectural configuration defines, among other entities, a Gatekeeper (GK), whose

main function is number translation, and a BES (section 3.3.3.5, figure 3.18).

This section examines TIPHON, PINT [RFC2995] and the new role of IN within the context of

the TINA service architecture (section 2.5).

Layer 2 here refers to the ATM Adaptation Layer

93

In a converged environment QoS guarantees must be made between homogeneous network

types as well as heterogeneous network types. For example, one may wish to establish a call

between three parties, each originating from a different network type. It has been argued

[SoloOOa] that the IN architecture provides an existing and evolving set o f standards that will

facilitate the migration towards these types o f scenarios. Hence, IN should be viewed as an

important architecture for the communication session as illustrated in figure 3.24. The figure

shows the view of the communication session controlled by the SCPs. The service session is

seen as a distinct entity.

Service Provider
S erv ice S e ss io n

Access
S ession

API In te rface 2

Gatew ay

SC P
CS-1

SC P
BES

SCP
CAMEL

CAMEL PSTN/ATM IP Network

C o m m u n ica tio n s S ess io n

Figure 3.24: SCPs responsible fo r the communication session

The two API interfaces represent the work discussed in section 3.3.2.4. Specifically, the two

interfaces are the subject o f the work o f PINT, Parlay, and JAIN. Figure 3.24 shows the

relationship between PINT, Parlay, and JAIN.

Although it is not very clear at this point the direction PINT will follow, it seems to be one of

functional decomposition o f the required blocks in order to achieve the initiation o f PSTN

services from the IP domain. It is the author’s view that taking an object-oriented approach to

the development o f PINT services can result in an easier integration between these and the

TINA architecture, specifically the DPE. By placing the DPE as a means o f allowing access to

the PINT gateway it provides a number o f enhancements to the basic PINT services [SoloOOa].

This for example could allow a number o f service providers to make use o f the gateway and

provide customised solutions. PINT provides an interface with the SCP that can be controlled

by a service provider. It provides a connection between the service session and the

communication session.

94

Service Provider
PINT ServerServ ice S ess io n

User Session
PINT User AgentIT (SiP.SDP)

PINT
Gateway

Parlay/JA

S C P
C S -1

PSTN /A TM

C om m unications S ess io n

Figure 3.25: The TINA service architecture, PINT, Parlay, and JAIN

Furthermore, the use o f APIs to open up the interface between the communication session and

the service session (chapter 8) is an important step forward. It allows a service provider to write

applications that can incorporate features as necessary [Solo00a][ParlBuss99]. In the case o f

Parlay, the service creator need only implement the required software interface for the

underlying capability to be made available. This opens up important possibilities for service

development. Firstly, by making network resources available as required, service creation may

be viewed as a Network Capabilities Service Creation Environment [SoloOOb]. As new network

capabilities become available, they can be made available as class libraries. As such, it is not

necessary to standardise on information flows as in the case o f IN CS-1 and IN CS-2. It is

necessary only to standardise on the description o f the API, as is the case for Parlay.

Convergence requires the inter-working o f services across the different network types or

different operator domains. It is not yet clear whether the API approach will provide a solution

to the problem or even scale across multiple domains. However the work presented in [SoloOOb]

[SoloOOc] and [SoloOOd] points to an approach where a second set o f APIs or even overlaid

state models be made available to provide service providers with a higher level o f service

interaction. This issue is further examined in chapter 8.

The following section discusses the role o f state machines in a converging environment, and

builds upon the views presented in section 2.6 where the role o f state machines in traditional

telecommunication networks was discussed.

95

3.5 St a t e M a c h in e s in C o n v e r g in g N e t w o r k s a n d
THE R o l e o f IN

Chapter 2 examined the state models and control plane of the PSTN. As part of the convergence

process, the state models on the IP side need to inter-work with the less well-structured models

of the IP network.*

IP as a connectionless service apparently has no need for a basic call state model. In fact, there

is no state information stored in traditional IP routers.^ In general, IP routers are designed to

achieve high packet throughput with little or no attention to the service the packet is

transferring^ This makes it unnecessary for an SCP-like architecture to support the connection

process. In addition, many of the CS-1 services (e.g. call screening) supported by the SCP are

better placed on the edge of the IP network and handled by intelligent terminals.

However, through the discussion of the taxonomy, it was suggested (section 3.3.2) that the state

models that are available in the IP world need to inter-work with the IN. Section 3.3.2.4.3

identified that there are limitations to this. It is the author’s view that the well-defined state

models of the IN world are unlikely to be relaxed in any way to support the convergence

process. Certainly, there has not been an indication that this may be the case as such a move

could compromise the integrity of the PSTN, the major carrier [ITU97][ITU00] for a large

proportion of IP networks.

The approach that is adopted to provide such inter-operability is one whereby additional

functional entities (such as gateways) are introduced in the IN domain to support the translation

functions. Such functions were discussed in section 3.3.2.

Within the context of the converging environment, there may be reluctance to adopt IN

principles in the IP domain. Contrary to this, there are a number of areas where IN is likely to

play a role. Although such services may be provided with architectures that do not adhere to the

* The arguments presented in sections 3.2 and 3.3.2.2 indicate that this is the case.
 ̂ Some routers offer packet discrimination services that involve maintaining state information. Such

routers are generally deployed in dedicated networks that are designed with QoS in mind [Adis98].
 ̂In fact the datapath functions of the router that are performed on every datagram that passes through the

router, are often implemented in special purpose hardware. In trying to improve the per-packet
performance of a router [Part96], the datapath functions are optimised using parallel processing and

special-purpose hardware [McKe00][Wang01]

96

IN standards the author’s viewpoint is that there are good reasons why IN should be adopted in

the IP environment.

The first of these is to do with the support of QoS sensitive services. For example, RSVP

[RFC2205] and Diffserv [RFC2475] define state machines for the establishment of resources on

behalf of the user. If a service session is being defined and the streams for the session have to be

controlled within the communication session then there is a role for an SCP [SoloOOa]. In

addition, in section 3.4, it was argued that a combination of the Gateway and the BES

effectively performs the function of the SCP and that other services may be established on

behalf of the end user through the “SCP.”

The second issue is to do with the requirements for Universal Personal Telecommunications

(UPT) [UPT]. UPT requires that a service should be made available to any user anywhere

within the network [ETSI ETR 055-1]. In the short term, this means allowing registration of the

user at any terminal on any network and allowing the user’s portfolio of services to be made

available subject to the terminal capabilities or other specialised resources. For example, a

registered user may be contacted from and connected to any of the other networks for which the

user has a subscription. This will require the interchange of user data between networks of the

same type (i.e. PTSN-PSTN) and different types (PSTN-IP). The requirement for the IP case is

that the same rules apply. Whether one calls the device a BES or an SCP, it still needs to exist in

the IP [SoloOOa].

What can be extracted from this section is that the traditional role of IN is undergoing an

evolutionary change as a result of the convergence process. The new role of IN is one where it

should be viewed as a control architecture that enables the convergence of PSTN and IP

networks.

3.6 C h a p t e r Su m m a r y a n d R e s e a r c h C o n t r ib u t io n s

As noted in the introduction to this chapter, there is a clear transition from single service

networks to integrated service networks. This entails the inter-working of networks to achieve a

level of inter-operability which a few years ago was unheard of, as it did not fit within the

regulatory telecommunications environment.

The inter-operability and inter-working of these networks is a requirement imposed by the

service characteristics. Different services have different transport requirements. The transport

capabilities of networks and available network resources have advanced over the last decades

97

allowing a convergence of fixed telephony, data transmission, multimedia and mobile services.

One of the driving forces behind this integrated network has been the market deregulation,

technological advances and of course the availability of funds within the telecommunications

environment (such as the well-publicised funds spent towards acquiring 3G licences).

Within this framework, an aggregation of the technological, market and evolutionary issues

surrounding the convergence process and its impact on the control plane has been provided.

A large part of the work presented focused on the new role of the IN control architecture. This

was presented using the taxonomy reference model. The author believes the model is a useful

way to understand the interactions of the architectures participating in the convergence process.

At a high level, the model can be viewed as presenting the two extremes towards network

intelligence. On the one side control is provided to the PSTN through the IN and, on the other,

through the more relaxed approach of the IP domain. These two architectures must inter-work in

order to provide the services end users have come to expect regardless of the underlying

network. For this reason, architectures such as PINT are emerging to support such hybrid

services. To achieve this the inter-operability requires inter-working of the state models.

The state models for JTAPI, CTI and JCC have been discussed and it has been determined that

although JTAPI offers the programmer clear and explicit abstractions for manipulating calls and

the logical entities in a call in an object-oriented manner, it lacks certain desirable functionality,

such as the single association of call legs.

In section 3.3.2.3, the JTAPI Call model was presented. It has been argued [JainOO] that JTAPI

overcomes several of the limitations of the IN. According to the same reference, in the IN world

“there is no explicit abstraction offered to allow the programmer to manipulate entire calls, or

legs of a call, or the principal logical entities in the call (e.g. the calling or called party’s

address), and certainly not in any object-oriented fashion.” But the author has pointed out that

JTAPI does not currently capture all states that the IN model does and in JTAPI there is no

concept of triggers or detection points [JTAPI]. Moreover, it is impossible to suspend call

processing at a defined state in the FSM, invoke an application (supplementary service logic),

and return results, although some improvements are suggested by JCC (section 3.3.2.2).

Another application that was discussed within the context of the taxonomy is the utilisation of

IN infrastructure to support billing, authentication, and payment systems within the area of

electronic commerce. This application is the focus of the work that is presented in chapter 4 and

chapter 5.

98

C h a pte r 4

U t il isin g E x is t in g IN In f r a s t r u c t u r e

F o r IP-In it ia t e d B il l in g &

E l e c t r o n ic P a y m e n t S y s t e m s

The previous chapter identified that legacy IN control elements can be used to
provide authentication, billing and certification services for electronic commerce.

This chapter discusses the design of a system for electronic payments that is based on the
capabilities of IN CS-1.

4.1 In t r o d u c t io n

The system that is described in this chapter utilises existing IN CS-1 infrastructure and

capabilities to enable home users to engage in electronic commerce. At a functional level, the

Intelligent Electronic Payment System (lEPS) provides two important capabilities. Firstly, it

provides authentication capabilities for both end users and shops and, secondly, it performs the

billing through the existing PSTN connection of the user. Through the lEPS, users can charge

for micro-payments on their telephone bills [Solo98][Solo99a][IEPSPat].

The operation of the lEPS is based, for the most part, on existing IN CS-1 functional entities

and information flows. The additional component that is required to provide the interface

between the IN and IP worlds is a gateway.

Section 4.2 looks at existing electronic payment systems, and identifies some of their

limitations. Section 4.3 provides an overview of their desirable characteristics of electronic

payment systems. Following this, section 4.4 provides a description of the proposed system and

section 4.5 describes the operation of the protocol. Section 4.6 briefly describes the security

features of the lEPS. Section 4.7 evaluates the system as an electronic payment system by

comparing its operation to the desirable characteristics of electronic payment systems presented

in section 4.2. Finally sections 4.8 and 4.9 examine the inter-operability between the lEPS and

the capabilities provided by the IN CS-1. Section 4.10 provides a summary of the chapter.

99

4.2 Existing Electronic Paym ent System s

In the past, most European and US operators have invested heavily in IN platforms to support

key bearer-type services such as Freephone and Premium rate. Such systems have complex

structures for interfacing with existing billing systems that are resilient and trusted* by the end

users. In contrast, there is still much mistrust over the security of the Internet. This is indicated

by market research and polls regarding online shopping as well as by the Bank of International

Settlements in the 1996 report [BIS96].

In the past decade, rapid advances in communications, electronic service networks, multimedia

and interactivity have been opening up new opportunities for business. They are contributing to

new and effective ways of disseminating information, promoting products and services and,

more recently, carrying out electronic business transactions, both in the business-to-business

and business-to-consumer sectors [KaprOl].

The Internet is one example of a communications network that is transitioning from an

inexpensive medium for advertising, marketing, and customer support to a common platform

for transactions and business applications [ITUOO]. At the same time, technological and

commercial developments are melding together information, communications, commerce, and

entertainment into one large, consolidated industry. Part of the reason for this evolution is that

more consumers are accessing the Internet using multiple devices and over multiple

communications networks [AmarOl].

Electronic payment systems, first introduced in the late 1990s, such as ecash™, cybercash™

and barclayCoin™ require the use of a credit card.^ At the same time however, there is a

reluctance by individuals to divulge their credit card details online, despite the efforts made to

promote such usage [WResInc98].^ In any case, this framework is limiting, both for end users

and for businesses. The reasons for this are discussed in the following section.

Not many people are known to individually check an itemised phone bill.

 ̂ While ecash and cybercash have now evolved into a more mature system, barclayCoin has been

completely dropped by Barclays. At the time of its development, only 12 retailers signed up to accept it as

a form of online payment.

 ̂ In cases where fraud is reported, the issuing bank for the credit card provides refunds quickly, thus

encouraging confidence among end users. An analysis of the legal aspects of electronic commerce and
security can be found in [Baum92].

100

4.2.1 Limitations with Traditional Payment Systems
The term “traditional” in the context of this section refers to payment systems that were not

designed for use on the Internet or for electronic payments. Examples of these include cheques

and credit cards. To the lay person, credit cards may appear to be quite efficient for online

commerce. It is however, a misconception to accept credit cards as a system designed

specifically for online payments - after all, credit cards* were in existence long before online

commerce.

These traditional payment methods are inadequate for real-time payment interaction [Furc96].

Here, “real-time” means a transaction is triggered and committed when the consumer hits the

“proceed” button on a Web page. Even with credit cards, a number of systems require the

intervention of personnel to authorise the transaction. This incurs overhead costs as well as

inconvenience to the end user. Furthermore, a large number of traditional payment methods

generally require that the consumer leaves the online platform and uses the telephone or sends a

cheque in order to make a payment. This is particularly true with small companies, which may

not accept payment by credit card, or where the transaction value is too small to use one. It may

also be expensive in terms of time to enter the credit card numbers [Furc96][Kala97]. Some

companies continue to require users to send information offline and arguably, these companies

have not been very successful.

One of the reasons for requiring the user to submit his payment details offline is the lack of

security of the system. It is widely accepted that most users do not feel safe when submitting

their credit card information over the Internet [DOCOO] and, furthermore, that the most

important factor in promoting electronic commerce is trust [OECD97b].

In [OECD97a], the Organisation for Economic Co-operation and Development identifies that

“trust is central to any commercial transaction” and that “typically it is generated through

relationships between transacting parties” and “familiarity with procedures.” The report

furthermore identifies that “some observers fear that unless action is taken very soon to bolster

trust in electronic commerce, it will never assume its place as an important channel for

commerce.” However [OECD97b] continues by saying that “such fears [of fraud] are

exaggerated and that in time as consumers become more familiar with the technologies, [they]

will gain confidence in electronic commerce.” The author agrees that, for non-technical users.

* According to Encyclopaedia Britannica, the first universal credit card, one that could be used at a variety

of stores and businesses, was introduced by Diners Club, Inc., in 1950.

101

familiarisation with procedures will overcome a large obstacle in the growth of electronic

commerce.

However, the author takes the view that there is a different notion to trust. Trust can be viewed

as a trade-off between actions (desire), consequences, and risk. For instance, if an end user is

potentially risking fraudulent use of their credit card account by shopping online for a service of

low intrinsic value, then that is a very high risk.

A further characteristic that adds to the limitations of any payment system is its coverage. This

is defined as the ability of a store to accept credit cards as a form of payment. This makes credit

cards applicable only with signed-up shops. Furthermore, this form of payment does not

generally support consumer-to-consumer or direct business-to-business payment transactions.

Therefore, the payment method is limited in its acceptability.

The coverage and acceptability characteristics are also compounded by the eligibility of end

users to qualify for a credit card. Not all potential buyers have suitable credit ratings to allow

them access to credit cards. It therefore follows that both acceptability and coverage are

hindered in these groups.

A major disadvantage of credit-card-based payment methods is the lack of support for micro­

transactions. Micro-transactions are defined as transactions that are of low intrinsic value. Many

payments made over the Internet are of lower value than the cost of a phone call or even a letter

(for sending payment information). What is more, the time it takes to type the required

information may be too high an overhead. The cost of handling these payment methods is often

too high for the seller to break even. This is a very important limitation. Credit card companies

usually charge commission for every transaction they process - and very often impose a

minimum transaction charge. This automatically rules out the use of credit cards for micro­

transactions. Even if credit-card fees are brushed aside, it is still impractical for the user to enter

all the credit-card information for such small transactions. For example, single database-type

applications could charge the user 10 pence for every successful match in the lookup process, a

pay-per-click approach. The Internet (both fixed and wireless) presents a convenient platform

for micro-payments and the IN infrastructure (with billing systems in place) is strategically

positioned to provide support for such transactions.

102

4.3 D e s ir a b l e C h a r a c t e r is t ic s o f E l e c t r o n ic
Pa y m e n t Sy s t e m s

Having identified the limitations of traditional payment systems, the characteristics that are

desirable for Electronic Payment Systems (EPS) are next presented. A complete discussion of

these can be found in [Maho01][Kala97][Furc96][Okam93][Essi92].

4.3.1 Security and Data Transmission
One of the most important requirements is to maintain the security of the system. Protection

against various forms of fraud, the generation of non-existent funds or the malicious use of lost

or stolen cards, are central issues in making payment systems viable. Different infrastructures

behind payment schemes require different kinds of protection mechanism. Most systems need a

user authentication mechanism or access control system. This is often implemented using a

personal identification number (PIN).

The security aspect extends to the data transmission [BIS96]. This is extremely important as, in

most cases (particularly for Internet transactions), a transaction is transmitted for remote

processing. Such transactions can be intercepted, which can lead to unauthorised use of the

payment system [Baum92][Basle99]. At a high level, there are two approaches which could be

used for dealing with this problem.

The first involves the isolation of the transmission infrastructure. This concept requires the

setting up of isolated networks to be used for financial transactions processing. The scheme is

secure but expensive, as it requires setting up a complete network infrastmcture, as well as

protecting it from intruders (which can prove to be the most costly part).

A second approach is the use of encryption in order to secure transactions (data transmitted as

part of a transaction record). This scheme allows the use of public communication networks to

transmit financial transaction data. A number of techniques can be applied to encrypt data

transmitted over public networks. One of the most commonly used is that of public-key

encryption and is implemented by the RSA* algorithm [Rive83][RSA98].

4.3.2 Authentication
The second important characteristic deals with authentication and proof of identities [Furc96].

In electronic payment schemes, it is often necessary to restrict user access, for example, to the

* RSA is named after its inventors, R. Rivest, A. Shamir, L. Adleman.

103

owner of an electronic wallet* and to verify the identity of a particular user, to ensure that the

person to whom a payment is made is, in fact, who they identify themselves as. Different

schemes of identification exist, the most popular of which are PIN numbers, passwords and

personal hand-written signatures. Hand-written signatures, although not really an electronic

authentication scheme, are included as they are used to secure credit card transactions as well as

being the original model for authentication schemes. There is a problem however with personal

signatures - that of verification. It takes an expert to tell a forged signature from an authentic

one and therefore it does not offer protection to the credit card user from the misuse of a stolen

card; however, people have come to accept this authentication mechanism. Similarly, digital

signatures allow parties transmitting information over an insecure channel to sign the

transmission digitally so that these signatures can be used in the same way as hand-written

signatures are used in paper documents [CurrOl].

Digital signatures are used for authentication of the sender, as well as maintaining the integrity

(here meaning that the data has not been altered by a third party) of the data throughout the

transmission [Kala97]. This also means that the originator cannot falsely deny having signed the

data. In addition, a digital signature enables the computer to “counter-sign” the message,

assuring the recipient that the message has not been forged in transit.

Digital signatures ensure authentication by combining the data to be transmitted with a private

key. The user’s private key is combined with the document and performs a computation on the

composite (key + document) in order to generate a unique number called the digital signature.

Digital signatures must exhibit the following characteristics [ABA01][Furc96]:

■ Verifiable - Anybody should be able to validate a signature.

■ Unforgeable - It should be impossible for anybody but the issuer to attach the issuer’s

signature to a document.

■ Non-reusable - It should be impossible to “lift” a signature off one document and attach it

to another.

■ Unalterable - It should be impossible for anybody to change the document after it has been

signed.

■ Non-deniable - The person signing the signature cannot deny having done so.

The process involved in digitally signing a message requires the sender to apply his private key

to the data to be transmitted. To increase the speed of the process, the private key is applied to a

* “Electronic wallet” here refers to a collection of data that is stored on the user’s machine and contains

information regarding bank details.

104

shorter form of the data, called a “message digest” rather than to the entire set of data. The

resulting digital signature can be stored or transmitted along with the data. The signature can be

verified by any party using the public key of the signer. This feature is very useful, for example,

when distributing signed copies of virus-free software. Any recipient can verify that the

program remains virus-free. If the signature verifies properly, then the verifier has confidence

that the data was not modified after being signed and that the owner of the public key was the

signer.

For example, when an electronic document, such as an order form with a credit card number, is

run through the digital signature process, the output is a unique “fingerprint” of the document.

This “fingerprint” is attached to the original message and further encrypted with the signer’s

private key. If a user is communicating with her bank, she sends the result of the second

encryption to her bank. The bank then decrypts the document using her public key and checks to

see if the enclosed message was tampered with by a third party. To verify the signature, the

bank performs a computation involving the original document, the purported digital signature

and the customer’s public key. If the results of the computation generate a matching

“fingerprint” of the document, the digital signature is verified as genuine; otherwise, the

signature may be fraudulent or the message may have been altered.

4.3.3 Transaction Cost and Use of Additional Hardware
Transaction cost can be defined as both the time required for a transaction and the financial

expense associated with processing overheads, hardware costs and other financial expenses

[Essi92]. Transaction cost determines the amount of money the user of a system is effectively

charged for a purchase on top of the actual sale price. For instance, high financial transaction

costs make it uneconomical to use a system for small financial transactions (e.g., the writing of

a cheque for the amount of five pence) and long processing times of transactions can make it

inconvenient to use on a particular system.

Transaction cost and the use of additional hardware are linked*. In most cases, an EPS requires

that every payment is cleared online with a central database located at the authorisation

organisation (e.g. a bank or a credit-card company). If a decision about the validity of a payment

can be made locally without the need for online clearance by a central authority, then both the

transaction cost and processing time decrease. Such systems however require additional

tamperproof hardware [Bran93]. Prepaid smart card payment systems usually do not perform

online verification, as the hardware is assumed to protect the information stored on the cards.

For example, in [VISA] there are minimum specifications for VISA card readers.

105

Requiring online verification on the Internet is less of a problem, as the communication

infrastructure is already in place. An offline verification system would be advantageous only if

no online connection to the central authority can be established. Thus, the online verification

requirements of an EPS could produce an unwanted overhead.

Transaction cost can be divided into three categories - high, medium, and low [Essi92]. An EPS

is said to have a high transaction cost if any part o f the transaction has to be processed

manually. Automated transactions that cause a substantial overhead are not quite as expensive

as those involving manual transactions and they are also faster. For example, SWIFT [SWIFT]

is an example of this level of transaction cost. These systems are cheaper and faster to use, but

still involve substantially higher costs than the use of cash. Finally, a system with low

transaction cost eliminates the need for online clearance and (by definition) reduces the

hardware and communication expenses. An example of this level of transaction cost are pre­

paid phone card systems. There is no online clearance (from a financial authority) as they are

prepaid.

4.3.4 Traceability o f Payments
Traceability of payments involves tracking a transaction without compromising or revealing the

details of a user. Common electronic payment systems, such as credit cards, generate a record

for every payment made. This is needed to ensure that all payments can be verified. It is now

possible to devise payment systems that do not allow payments to be traced without

compromising the system’s security standards. This permits the implementation of systems that

are cash-like in that they ensure some limited anonymity of payments. At the other extreme, an

anonymous credit card system was proposed by [Okam89].

In general, payment systems can be grouped into four categories. These are Unconditional,

Conditional, Untraceable, and User-controlled:

■ Unconditionally Traceable

Payments in a system are unconditionally traceable if a transaction generates a record that

identifies buyer, seller, amount, date and time, and optionally some additional information.

This allows the bank, or another party obtaining the bank’s records, to trace all payments

made within the system. This is the way in which today’s credit-card payment system

operates. There are however a number of other alternatives which provide some form of

anonymity.

■ Conditionally Traceable

A conditionally traceable system is one in which payments are generally anonymous but

allow for the identification of transaction details by obtaining what is referred to as a

106

“reference transaction”. According to [Furc96] “conditional traceability provides for a

somewhat higher level of privacy and anonymity than unconditional traceability, as it

requires some action to ‘de-anonymise’ the transactions, and this will not always be done

(i.e. these systems will not be used to obtain marketing data or for personalised loyalty

schemes).”

■ Untraceable Payment Systems

These allow the payer to remain completely anonymous. These systems have to mimic the

properties of cash as far as possible. In [Chau82], [Chau83] and [Chau92] the author

demonstrates that, by using blind signatures*, such systems can be implemented.

■ User-Controlled Traceability

In such systems, every payment generates its own receipt together with the payment in

encrypted form. Only the user making the payment owns the key to the encrypted receipt

(and can selectively make that known). Commercially implemented systems which provide

user-controlled traceability include DigiCash’s ecash system. It could be argued that these

systems from the payer’s perspective are the most powerful. This is because in terms of

privacy the payer decides on who can access his identity.

4.3.5 Acceptability and Transferability
This is the property of a payment system to be accepted universally, that is, its acceptance is not

limited to one bank or organisation issuing the system [MahoOl]. The acceptability property is

easy to add to any system. Upon receiving a payment of some form that was issued by another

bank, the bank processing the payment clears it with the issuing bank. Acceptability is therefore

achieved at the expense of higher communication overhead and therefore higher transaction

cost. It is more difficult to achieve acceptability in pre-paid services.

Transferability is concerned with the ability of users of the system to transfer funds to each

other without the need to contact the bank for clearance of the transaction. Transferability is

difficult to implement without compromising the system’s security [Furc96].

4.3.6 Implementation Issues
The final characteristic of an EPS is the trade-off between providing a software-only solution

for its implementation versus tamperproof hardware. Systems use a software-only solution

when they can be implemented in such a way that all data and communication on the user side

is accessible by the user. In such a system, the user must not be able to obtain any benefits from

* Blind signatures are a variation of digital signatures, where the sender multiplies the digital signature by

a random number [Chau92].

107

tampering with data or communication. Systems employing tamperproof hardware use

additional hardware that is assumed to be designed in such a way that it protects the information

it contains from the user o f the device. For example, not even the holder o f a smart card can

access or modify directly the information stored on the smart card. Generally, according to

[Furc96], a software-only solution that does not require additional hardware is considered

superior to a solution that requires additional specific hardware to be employed.

4.4 T he IEPS IN-BASED B il l in g Sy st e m

This section discusses how an existing IN infrastructure can enable support for online secure

transactions. It focuses on the design and operation o f the Intelligent Electronic Payment

System (IEPS). It also identifies inter-operability issues with existing IN CS-I infrastructure.

4.4.1 Overview of the IEPS Model
Figure 4.1 depicts the parties involved in the IEPS. These are the Customer (user), the Internet

Shop (IS), and the Network Operator.

In figure 4.1, the Service Provider is a public or private company that develops and provides IN
services commercially over the common IN-structured network and underlying basic (bearer)
services. A Network Operator who utilises an IN CS-1/2 compliant infrastructure can become a
service provider o f the IEPS. The software required for this is defined as the Network
Operator’s Agent Software, NO Agent.

S e r v i c e
P r o v id e r

IN S e r v ic e

IS Agent User Agent

IN P la t f o r m
(S S P + S C P)

B e a r e r N e tw o r k

U ser

O p e r a t o r

NO Agent

Figure 4.1: Parties involved in IEPS fram ework

The Service Subscriber is an organisation that obtains an IN service from a service provider on a

contractual basis and has to pay the charges to that service provider. In the context o f this

108

protocol, the service subscriber is the Internet Shop (IS). The software that is running on the

IS’s equipment is defined as the IS Agent.

Similarly, the person who has access to and makes use o f a service, i.e. represents the called or

calling party depending on the type of IN service, will not necessarily be the service subscriber.

This person must belong to the subscribed users o f the service provider. The software that is

running on the user’s machine is defined as the UA.

As previously discussed, the proposed IEPS protocol makes use o f the fact that large sections o f

the Internet user community rely on home access to the Internet using modems. As a result,

access to Internet Service Providers (ISPs) for most homes involves the use o f dial-up services

via connections through the PSTN. ISPs for the most part rely on leased line services that are

part o f a core public telecommunications infrastructure.

The proposed system provides the subscriber with a secure link through which transactions can

be made. The Network Operator can be viewed as both a credit-card authority and a telecom

operator. This fits nicely with the expectation o f users for a “one-stop shopping” solution. The

following section analyses the network elements o f the IEPS.

4.4.2 Elements of the IEPS
This section provides a brief overview o f the proposed IEPS. Figure 4.2 depicts physical

interconnections between the parties involved in the IEPS.

SDP

Signalling

B earer Network
Internet
Shop

m
& 5 & ,,

ISPUser

SSP
Internet

Modem/CCAF

Figure 4.2: IEPS network elements

There are three distinct classes o f connection. Firstly, there is the bearer connection between the

User and the Intelligent Peripheral (IP) through the local exchange and the Service Switching

Point (SSP). Secondly, there are the signalling connections between the various functional

entities o f the IN CS-1/2 infrastructure. An important point here is that the interconnection

between the Gateway (G) and the Service Control Point (SCP) is also treated as a standardised

109

signalling connection. Finally, there are two connections which are based on IP: one is from

the ISP to the Internet and the other is from the Internet Shop (IS) to the Internet. To clarify a

point, the IS, in most cases, will have to go through an ISP but this is not depicted, since it does

not interfere with the operation of the protocol.

4.5 The IEPS Proto co l

This section discusses the protocol for the IEPS. Before discussing the technical details of the

protocol, a description of the operation of the protocol is given, in a concise manner, avoiding

many of the implementation details.

The protocol is divided into three phases. Firstly, the user connects to the ISP; then the user

exchanges IP packets with the Internet Shop and the Gateway; finally, the Gateway completes

the transaction using the SCP.

The User connects to the Internet using a PC and, in the large majority of cases, a modem, by

connecting to an ISP. To the IN model, the modem represents a Call Control Agent Function

(CCAF). The Switching Exchange, where the SSP usually resides, is a switching centre of the

Network Operator. It routes the call of the Internet Connection from the customer (user) to the

ISP. The IP is the physical entity responsible for the implementation of the SRF and is

controlled by the SCP. The SCP is responsible for payment-related processing. It includes

database access, information validation and verification as well as any transaction-processing

related procedures. Attached to the SCP is an SDP, which is a database containing information

about customers who are registered as service users. Information stored includes access

passwords, credit limits and customer preferences. This information is made available to the

SCP for payment-related processing. Finally, the Gateway provides the connectivity as well as

the translation functions for the inter-operability between the IP and IN worlds. The Gateway is

discussed in detail in section 4.9.

The following sections provide a detailed description of the operation of the protocol.

110

4.5.1 Phase 1: User Connects to ISP
Figure 4.3 depicts the initial phase o f the protocol, which takes place while the user is

connecting to the ISP.

SDP

B
User

S S P
ISP InternetCCAF

Modem

Internet Shop (IS)

Figure 4.3: Registration phase o f IEPS

This phase o f the protocol is initiated when the user requests a dial-up connection from the PC

to the ISP (stage 1). One convenient feature o f the protocol arises from the access numbers the

vast majority o f ISPs assign to their Points o f Presence (PoP). Usually, they provide local-call

numbers (or increasingly freephone), which will trigger an IN transaction to interpret the

number (stage 2). At this point, the service logic for the protocol will be associated with the

standard number translation logic within the SCP. As a result, the SCF will also request from

the SRF/IP (stage 3) to ask the user to enter a password or PIN associated with the physical

connection (telephone line) the user is connecting from (stage 4). The SRF will collect the

user’s PIN and return it to the SCF for further processing (stage 5).

A point that needs to be addressed is the security o f the PIN. Specifically, the PIN is not

encrypted; however it is not possible for an intruder to pick up the information transmitted

either from the SCF to the Specialised Resource Function (SRF) or from the SRF to the SCF,

unless the line is physically tapped. Even if an intruder does collect a user’s PIN the only way it

can be used is if the intruder connects to the SCP from the telephone number associated with

that PIN. It would be irrational for someone to physically tap a telephone line to collect a PIN

and then break into the house in order to use a PC for e-commerce, and even more illogical to

do so for micro-payments!

Following stage 5, the SCF must now match the PIN received with the PIN stored in the Service

Data Point (SDP) and the telephone number o f that user. On a successful match, the SCF

111

generates a ConnectionNumber and passes it to the SRF using the A u thorisationC ode

information flow. If the match fails, the following options are available:

■ The user is asked by the SRF to re-enter the PIN, or

■ The user is not issued with a unique Connect ionNumber, which is required to make any

purchases (further discussed later), or

■ The SCF asks the SSF to terminate the connection.

These options can easily be re-configured in the SCF. An important parameter to the protocol is

the Connect ionNumber. This is a unique number generated by the SCF, which ties the user’s

PIN and user details with the active connection. It is required by the protocol in the final phase

(billing), where the information is cross-checked for validity. To avoid the likelihood o f the

same Connect ionNumber being assigned to two distinct users, the connection number is made

a function o f three parameters as follows:

ConnectionNumber = f (userPIN, telephoneNumber, randomNumber)

At this point, the user has connected to the ISP and, most importantly, the UA holds a valid

ConnectionNumber. The next section discusses the exchange o f IP packets.

4.5.2 Phase 2: User Exchanges IP Packets
Figure 4.4 shows the packets that are exchanged after a user has visited a web page and selected

to make a purchase.

Proceed to bill?

reply□
User

ISP CCAF

Modem --------
In ternet S hop (IS)

i4!4:
TNu_.TN^) I i i i :Enc(T(TN|g, Conn.Number), IP,Enc(T(

PKey,

Enc(T,

Receipt Information

Figure 4.4: The IP packets o f the IEPS

The IS sends a request to the user for his public key. The User Agent (UA) replies by sending

the user’s public key.

12

In stage 8, the IS Agent sends the following packet to the User Agent.

Enc (T co st-is , T N is) , PKEYis

The packet contains the following information:

Encrypted
using the

User’s public
key obtained
from stage 5.

Name Tcost-is
Description Transaction cost as calculated by the IS Agent.

Name TNis
Description Transaction number generated by the IS Agent.

No encryption Name PKEYis
Description The public key of the IS.

Table 4.1: Packet structure for message 8

The User Agent must accept the packet. This can be achieved in the following ways:

■ The UA can wait while it is polling the incoming data for a special message, after which it

saves the incoming data for decryption, or

■ The UA can use Java Servlets [JAVA] to accept the incoming packet and write it to disk.

Whichever way is chosen, the data to be sent must be encrypted as it is sent over an insecure

network such as the Internet. The encryption that is chosen is public key encryption.

Authentication is achieved using digital signatures.

The IS Agent creates a record in a database, with the following record structure:

Field Name Type
TransNumber Numeric

TransCost Numeric
TransDate Date

Table 4.2: Record structure fo r IS agent

In stage 9, the UA sends to the IS Agent the packet:

E n c (Tcost-Uaer, TNuser)

Encrypted
using IS’s
public key

otitained from
stage 6

Name Tcost-User
Description The Transaction cost reported by the IS Agent at

stage 6.

Name TNuser
Description Transaction number generated by the UA

Table 4.3: Packet structure fo r message 9

113

The UA uses the IS’s public key to encrypt the TNuser and the TNcost as initially reported by

the IS Agent. It then uses the IPis, received at stage 5, to send the information to the IS Agent.

The IS Agent accepts the packet and sends it to the Gateway, so that the necessary validation

and verification can be performed.

In stage 10, the User Agent sends to the Gateway the following packet:

Enc (T cost-is , TNis, TNuser, Conn. Number) , I P is

Encrypted
using the
Network

Operator’s
Public Key

Name Tcost-is
Description Transaction Cost calculated by the IS Agent.

Name TNis

Description Transaction Number generated by the IS Agent.

Name TNugei-

Description Transaction Number generated by the UA.

Name Conn.Number
Description The unique connection number assigned to the User

by the NO Agent.

Not Encrypted Name IPiS
Description The IP of the IS.

Table 4.4: Packet structure for message 10

The User Agent also sends the IPis, in an unencrypted form as it is required by the gateway to

contact the IS Agent.

In stage 11, the IS agent sends to the gateway the following packet:

E n c (Tcost-User, TNuser, T N is)

Name Tcost-User

Encrypted
using the
Network

Operator’s
Public Key

Description Transaction Cost returned to the IS by the User
agent at stage 7.

Name TNuser
Description Transaction Number returned by the IS Agent at

stage 7.

Name TNis
Description Transaction Number generated by the IS Agent

Table 4.5: Packet structure fo r message 11

In stage 12, the gateway sends a final confirmation to the IS Agent in the form of an “ok to bill

message” which contains the T r a n s a c t ionN um ber and C o st.

114

In stage 13, the IS Agent processes the transaction number and the cost. If there is a pending

transaction in its database that matches that transaction number and cost, it returns a true

response, otherwise false.

4.5.3 Phase 3: Charging using the IN Gateway
This packet (stage 14) is sent independently of the Charge request to the SCP from the gateway.

The IS Agent will confirm to the User the transaction number, receipt number (generated by the

IS) and method of dispatch or delivery. This part of the protocol does not need to be defined, as

different Internet Shops may choose different ways to send the Receipt Information, depending

on the type of service/product that was purchased. However, the way in which the gateway can

be implemented in discussed in section 4.8.

4.6 Se c u r it y w it h in t h e IEPS Sy s t e m

The implications of security in a payment platform are of paramount importance. The IEPS

Protocol is in an advantageous position because it utilises an existing billing system that,

through time, has come to be accepted by end users as relatively secure. The basis for this is that

few people individually check telephone bills in case of over-charging. However, since it is

utilising an insecure network for Phase 2 of the protocol, security is still an essential ingredient

in enabling electronic transactions.

Public-key technology is widely accepted as a qualified technology to meet the necessary

security requirements for electronic business and it has become the preferred means for

providing these capabilities [DOC94]. The benefits of public-key cryptography in relation to

secure transactions are that it uses encryption to keep the information confidential and, through

digital signatures, it provides for authentication, data integrity, and non-repudiation [Kali93a]

[Hale98][Baum94]. These techniques are combined to effectively “sign and seal” any electronic

transaction and the signing can be done in such a way that the user who signed the information

cannot later successfully deny signing that information.

The elements of a public-key infrastructure (PKl) are presented here. Further the section

identifies how these relate to the IEPS System. The aim is not to give a detailed analysis of the

workings of public key encryption, but rather to identify how it relates to the IEPS System. A

detailed explanation of PKl can be found in [Aust00][Kali93a][Kali93b][RSA98].

4.6.1 Elements o f a Public Key Infrastructure
The public-key infrastructure (PKl) is used to manage keys and certificates on behalf of users

and applications. An important requirement of the PKl is to do this in a way that is transparent

115

to end users. If it is not easy to use, people will not take advantage of its features. In addition to

user transparency, the following are some of the key elements for a PKl:

■ Certification Authority

The certification authority (CA) is the trust centre of a PKl as it manages public key

certificates for their whole life cycle. The CA is responsible for issuing certificates by

binding the identity of the user to a public key with a digital signature and for scheduling

the expiry date for these certificates.

■ Registration Authority

The Registration Authority (RA) provides the interface between the user and the CA. It

captures and authenticates the identity of the users and submits the certificate request to the

CA. The quality of this authentication process determines the level of trust that can be

placed in the certificates.

■ Certificate Distribution System

Certificates can be distributed in a number of ways depending on the structure of the PKl

environment, for example, by the users themselves, or through a directory service.

Other features include support for key backup and recovery. More essential is the support for

non-repudiation of digital signatures. The automatic update of key pairs and certificates and the

management of key histories are also desirable.

4.6.2 PK l and the IEPS System
As mentioned above, public key encryption requires two keys. The two keys are mathematically

related so that data encrypted with one key can only be decrypted using the other.

Unlike secret key encryption, which uses a single key shared by two (or more) parties, public

key encryption uses a pair of keys for each party. One of the two keys is public and the other is

private. The public key can be made known to other parties; the private key must be kept

confidential and must be known only to its owner. The parties involved in the IEPS will have

their own public keys. These are denoted as follows:

■ Network operator’s public key denoted as Pkeywo

■ Internet shop’s public key denoted as Pkeyis

■ Consumer’s public key denoted as PKeyco.

4.7 E v a l u a t io n o f t h e IEPS P r o t o c o l a s a n EPS
Section 4.3 presented key desirable characteristics of electronic payment systems. This section

evaluates the IEPS against those characteristics.

116

4.7.1 Software-only versus Tam perproof Hardware
The IEPS provides a software-only solution. This is true except for the IN/lntemet Gateway that

is an essential component to the IEPS. However, once the gateway is implemented it can be

used to provide a wide number of integrated services.

4.7.2 System Security and Data Transmission
In terms of system security, the IEPS is classified as one that utilises an isolated infrastructure

for the registration phase, as well as an unsecured transmission network for the second phase.

Clearly, the registration phase of the protocol is in isolation from the Internet. However, unlike

most systems utilising a network that is in isolation, it does not require the setting up of a

complete network infrastructure (except from the SCP-Gateway link). Therefore, it makes use

of existing links. Of course, these links must be maintained in order to protect them from

intruders. For the second phase, encryption and security are clearly of paramount importance.

For the first phase, the system achieves authentication by means of a PIN, which is bound to the

specific physical link of the isolated network. In order for the system to enhance the

identification of Internet Shops in the second phase, the network operator could provide users

with a customised browser that limits access to Internet Shops that are in agreement with the

operator. This would provide the user with a more secure feel for the system than if a standard

“open” browser is used. In any case, PKl is an essential component for ensuring the security of

the second phase.

4.7.3 Transaction Cost
The system is classified as having a low transaction cost. This is because the online clearance is

obtained by the Gateway after it requests an authorisation from the SCP. The SCP makes a

database enquiry in the SDP to check, for example, the credit limit of the customer before it

authorises the transaction. The protocol could also be enhanced to operate as a form of prepaid

service, where the subscriber buys credit from the operator in advance and therefore further

limits the need for online clearance.

4.7.4 Traceability of Payments
The protocol can be adapted to provide conditional traceability or user-controlled traceability.

Obviously from the user’s perspective to the Network Operator, the first phase of the protocol is

classified as being unconditionally traceable. This is because the PIN number is associated with

the physical connection. However, from the Internet Shop’s perspective the system could be

classified as offering a user-controlled traceability. If the user is buying a service, then the

system is user-controlled. However, if the user is buying goods then the Internet Shop needs to

117

know the delivery address of the user. Currently the protocol offers unconditional traceability in

this respect (i.e. payer and payee are always identified). This can be changed and instead of the

user providing the information to the Internet Shop, the information could be sent to the

gateway and submitted to the Network Operator, who in turn arranges for the delivery of the

goods.

4.7.5 Acceptability and Transferability
The acceptability of the system is limited only to Internet Shops that have signed an agreement

with the Network Operator. However, different Network Operators can reach agreements

amongst themselves therefore allowing a wider choice to the subscriber. Of course, this would

require a higher communication overhead between the involved network operators and thus

slightly increase the transaction cost of the system. At present, the system does not offer

transferability of funds and there should be no need to do so.*

4.7.6 Comparison with Currently Available Systems
This system, unlike most currently available systems, does not require the user to open an

account with the organisation providing the service. It plainly uses the account that is already in

place (i.e. the phone bill). Unlike other systems, it does require the providing organisation (the

network operator) to form alliances and reach an agreement with the shops. This could be a

problem but, depending on the size of the organisation, it can be solved relatively easily.

Because the organisation providing this system would almost certainly be the network operator,

it should not be a major problem to reach agreements with Internet Shops. The bargaining

power of the network operator would easily convince a smaller company to try their system.

A major advantage of this system in comparison with existing ones is that it does not use credit

cards and hence completely avoids the existing public controversy about whether submitting

credit card information over the Internet is safe or not. It could easily be marketed as a system

that does not require credit cards because those systems are not secure.

4.8 IN CS-1 In f o r m a t io n F l o w s f o r IEPS
R e g is t r a t io n

This section describes the capabilities of IN CS-I (discussed in section 2.4.3.1) that can be used,

unchanged, for the implementation of the IEPS. As previously identified, IN CS-1 capabilities

are utilised in two phases: the registration phase and the billing phase. The IN CS-1 flows that

Transferability is a desirable characteristic for electronic payment systems that are targeted at the

business-to-business sector, rather than the business-to-consumer.

118

are needed for the registration phase are discussed in this section. The second phase requires a

gateway for translation between IN and IP and this is discussed in section 4.9.

Figure 4.5 presents the information flows (IPs, refer to section 2.4.3.1) that are utilised by the

protocol. It is important to make the distinction here that the IPs are physical connections. For

example, at the point where the PIN number is collected from the user, the SSP is connected to

the SRF (as indicated by the dashed grey line).

IN CS-1
SRF

Initla IDP
IN CS-1

SCF
IN CS-1

SDF
IN CS-1

SSF

Figure 4.5: IN CS-I IFs fo r the registration phase o f the IEPS protocol

4.8.1 The SCF-SSF Interface
In IN CS-1 the SCF-SSF relationship is established either as a result o f the SSF sending a

request for instruction to the SCF, or at the request o f the SCF for initiation o f a call for some

non-call related reason [Q.1214]. As previously discussed in section 2.4.1, information flows

(IF) are used for the communication between IN functional entities.

One such IF is the InitiaIDP IF. This IF is generated by the SSF, when a trigger is detected at

any DP in the BCSM, to request instructions from the SCF. One o f the information elements o f

this IF is Dialled digits, which contains the actual digits received by the SSF from the calling

party. It is used by the SCF to perform the number translation. When the number is translated,

the call is re-directed to the ISP.

One o f the IFs between the SCF and the SSF is the Analyse Information IF. This IF requests the

SSF to perform the originating basic call-processing actions to analyse destination information,

which is either collected from a calling party or provided by the SCF (e.g. for number

translation). This includes actions to validate the destination information according to a

specified dialling plan, and if valid, to determine call setup information (e.g. called party

address, nature of address, and route index to a list o f one or more outgoing trunk groups).

119

Although the Connect to Resource IF is depicted in figure 4.5 between the SCF and SSF, it is

discussed in the next section because it is essentially a request to instruct the SSF to connect the

user to the SRF.

4.8.2 The SCF-SR F Interface
This interface provides capabilities to authenticate the user using a Personal Identification

Number (PIN).

In order for the SRF to be accessible to the user, the SCF must request the SSF to perform this

connection. This is done by using the Connect to Resource IF, at the SCF-SSF interface. The

information elements of the Connect to Resource IF include the Call ID, which identifies a

specific instance of a relationship between an SCF and SSF.

After the SSF is connected to the SRF, the user is prompted with a welcome message. This is

done using the Play Announcement IF. One of the information elements of the Play

Announcement IF contains the Inbandinfo structure, which allows the SCF to specify an

elementary message or text, the number of repetitions as well as the duration and the interval of

the announcement. Play announcement can be used to welcome the user with an introductory

message.

Following that, the Prompt and Collect user information IF is used to collect the information

from the user. The information collected from the user is stored in the Collected Info information

element that can contain either Digits or IA5 information (for collection of text from the user).

The structure of Digits enables the definition of the minimum and maximum number of digits to

be collected, timeouts and the way errors should be treated. In the case where an error (e.g.

timeout) does occur, it can be handled in a number of ways including playing to the user a

“help” message, repeating the prompting message, or sending the information collected to the

SCF for further processing. An additional element of the Digits record is Voicelnfo, which

indicates that digits may be collected using voice recognition.

Once the data is collected from the user, the SCF needs to match the entered PIN with the PIN

of the user stored in the SDF. For this the SCF-SDF Interface is used.

4.8.3 The SCF-SDF Interface
The Query IF is used by the SCF to collect information from the SDF. The Query IF allows the

collection of data from the SDF and is widely used in applications such as number translation

and freephone numbers. Its information elements include DatabaselD, RequestedlnfoType and

120

Information key. In the IEPS, the Information Key allows data to be retrieved from the database

based on the calling line ID. More specifically, any data that is contained within the InitiaIDP

can be used as an Information key. The response to the Query IF is the Query Result IF The

returned information element. Result, may contain either data or simply a true or false value.

4.8.4 Resuming Processing at the SSF
An important point is that throughout the time that the processes of translating the dialled

number, connecting the user with the SRF, then collecting the user’s PIN and matching the

information entered with the information in the SDP are being carried out, the call is on hold at

the SSF. Once these procedures are completed, the SSF is connected to the terminating

exchange and the user has access to an IP connection - provided by the ISP.

Having discussed the IFs that are available for implementing the registration phase of the IEPS

protocol, the next section moves on to introduce two potential architectures for the

implementation of the gateway function, which allows the inter-connectivity between IN

functional entities (FE) and the IP end-points of the IEPS.

4.9 T h e G a t e w a y b e t w e e n IN a n d IP
An important functional entity of the protocol is the gateway. It provides seamless inter­

operability across two fundamentally different networks. On the one side, the gateway must be

treated as a standardised IN functional entity and, on the other, the gateway must be able to

process IP packets according to the design of the protocol. Therefore, the gateway is essential in

providing the interconnection between a circuit and a packet-switched network. At the same

time there are some fundamental non-functional requirements imposed on the gateway.

Essentially these are the capabilities of the underlying IN infrastructure; in this case IN CS-1.

The gateway device must be in a position to communicate interactively with the proposed

application. This communication should minimise any potential changes that may be needed on

the IN-side because a new system, or protocol, is being introduced into an already extremely

well defined and standardised environment. It would not be feasible to expect already

standardised systems to adapt to newly-developed systems. To achieve this, two potential

functional entities that could be used to allow this interaction are examined: the Intelligent

Peripheral and the SCF. To these, the gateway would appear as another standardised element of

the existing IN infrastructure.

This section describes two possible options for implementing the gateway between the IN and

IP worlds. The section focuses on the specific way in which it can be implemented for the IEPS

121

protocol. The two proposed implementation options are to treat the gateway as an Intelligent

Peripheral (SRF) or as an SSF. The difference between these cases is in the communication

primitives which are used between the elements, which in turn extend or limit its capabilities.

4.9.1 The Gateway as an SRF
Under this approach, the SCP views the gateway as an Intelligent Peripheral. As a result, the

gateway must adhere to the standard composition o f an IN CS-1 SRF, whose main components

include the Functional Entity Access Manager (FEAM) and the SRF Resource Manager (RM)

[Q.1214].

SCF

À

SRF-SCF AS Es

IN CS-1 SRF

FEAM RM

Translation Function

IP Node Internet

Figure 4.6: The gateway as an SRF

Figure 4.6 illustrates the SRF approach. The top part consists o f a standardised IN CS-1 SRF.

The translation function is responsible for converting IP packets to SRF-SCF IFs. While this

approach can provide the necessary functionality, the second, where the gateway is treated as an

SSF, is more powerful as it allows the triggering o f SCP-based IN services.

4.9.2 The G ateway as an SSF
SCF

SSF -SC F ASEs

IN CS-1 SS F

FIM IN-SM

Translation Function

IP Node Internet

Figure 4.7: The gateway as an SSF

Figure 4.7 depicts the second approach, where the gateway is treated as an SSF from the point

o f view of the SCP whilst the IP side could be an application or even a router function. If the

router QoS mechanism can be described as a state machine then this can potentially be used for

triggering services in the same way that the BCSM can in the call control function. The CCF

122

then effectively becomes an IP Control Function (IPCF). The SSF/Gateway now allows the

triggering of SCP-based IN services and is much more powerful than the intelligent peripheral

case where the IN standards would not allow the intelligent peripheral to be the instigator of

services.

The question remains as to whether it is a good thing to apply the IN concept to routers within

the network. It could be argued that one of the reasons why IP networks are so successful is

because there is little operator control of the core of the IP network.

The IP router case draws out the fundamental difference between the telecommunications

paradigm and the Internet. A connectionless Internet Service does not have a basic call state

model because there is no network layer connection. This makes it difficult to work with the

equivalent of the detection point mechanism of the SSF/CCF. On the other hand, the concept of

a basic call routing function is not seen to be impossible if one considers the possibility of

connection-oriented IP mechanisms such as cell tagging.

4.10 C h a p t e r S u m m a r y a n d R e s e a r c h C o n t r ib u t io n s

This chapter presented a protocol that was developed to demonstrate one of the ways in which

existing IN CS-1/2 infrastructure can be utilised to support new and innovative IP-based

services. The proposal has the following innovative features:

■ It is advantageous over existing electronic payment systems as it does not require the use of

credit cards.

■ Existing IN capabilities are sufficient to implement the system.

■ Two distinct options for implementing the gateway were put forward.

The proposed system is based on the principle that the large majority of consumers are reluctant

to engage in electronic commerce activities due to lack of trust [OECD97a]. This lack of trust is

a result of the insecurities of the transmission protocols used in the Internet, as well as the large

publicity that Internet break-ins receive versus the millions of transactions that are completed

successfully.

The IEPS is innovative and secure. It allows end users to engage in electronic commerce

without the controversy surrounding credit cards. It utilises existing billing platforms that,

through time, have been accepted by users as secure and have gained their trust. The system

design utilises models from the IN world to create a robust system. This is discussed in the next

chapter, which deals with the implementation of the IEPS.

123

The work involved designing the protocol for both the IP domain and the IN domain. For this,

the work put forward two possible designs in which a gateway function can be implemented in

order to allow inter-operability across two dissimilar network architectures. It was also noted

that the existing IN capability sets provide sufficient functionality to be utilised in new service

implementations.

The IEPS utilises existing architectures, protocols and billing systems in a way that allows

network operators to further enhance their position by engaging in electronic commerce

activities as an authentication authority. This is clearly a desirable situation for the operator

because of the revenue streams it offers. It is also desirable for the end user, because the

payment is carried out without the need for credit cards, but rather on an existing billing system

that is trusted by the majority of end users.

124

Ch a pte r 5

Im p l e m e n t a t io n & S im u l a t io n

OF THE lE P S S y s t e m

The utilisation of existing IN infrastructure as a means of authentication and billing
was described in the previous chapter, through the description of the lEPS. This

chapter describes the implementation of the lEPS.

5.1 In t r o d u c t io n

This chapter presents the design of the protocol and the implementation and simulation of the

system. The implementation presented in this chapter covers Phase 2 of the protocol (section

4.5.2) and the interface between the gateway and the SCP (phase 3, section 4.5.3).

The reasons for implementing the system were threefold: firstly to identify potential limitations

of the protocol; secondly, to examine the interactions of the functional entities in order to

appreciate where the complexities of such a system lie; and, finally, to gain a better

understanding of Java in a concurrent client-server environment

Section 5.2 describes the implementation of the protocol and provides a walk-through by

describing the packets that are exchanged by the parties involved. Section 5.3 presents the Java

classes and the state transition diagrams that implement the system and section 5.4 provides

output from the simulation of the system. Finally, section 5.5 provides a chapter summary and

outlines research contributions.

5.2 Im p l e m e n t a t io n o f t h e IE P S Pr o t o c o l

The IEPS consists of three parties: the User, the Internet Shop and the Gateway. For each of the

three, a separate server is used. These are, respectively, the uServer, the isServer and the

gServer. Additionally, in order for the protocol to be fully simulated, an scpServer (simulating

the SCP and the G-SCF interface) and a serv i e t Server (simulating servlets) are also

implemented.

125

The system is distributed as follows: The uServer runs on the user’s machine as part of the

software that may be provided by the Network Operator. The gServer runs on the gateway and

the isServer may either run on the machine that hosts the Internet Shop’s web page or on a

dedicated system.

Figure 5.1 shows the architecture of the implementation. It consists of five servers and an

applet. One of the servers is used to simulate the servlet connection. The name in italics below

each server identifies the workstation the server is running on. The serv letsim u lator and

isServer are running on the same workstation.

A point to note here are the multiple instances of uServer, which represent multiple users, and

the multiple instances of isServer, representing multiple Internet shops. The implementation

can cope with multiple users and Internet shops.

ISApplet

I 1 1 -AUTHORISE,
10 - AUTHORISE_TRANS_REQUESl{ TRANS_

I RESPONSE 1 - TRANSACTION_START_ REQUEST

8 - PROCEED_TO_BILL

9 - BILL (FLAG)

metropolis
7 - IS_TO_GATEWAY- USER_TO_GATEWAY

2 - PUBLIC_KEY_REQUEST

3 - PUBLIC_KEY_RESPONSE

4 - TRANSACTION_DETAILS_TO_USER

5 - TRANSACTION_DETAILS_TO_IS

IsServer
(metropolis)

Figure 5.1: Deployment o f IEPS

As mentioned earlier, the initiating action for the protocol is the user submitting an order on a

web page. This is the trigger for the elements to begin exchanging IP packets. The isServer

needs to be made aware of the items the user has selected. This requires the applet to

communicate the information to the isS erver, which can be achieved using a Java Servlet

[Voss97a][Voss97b][Cowa01]. Servlets require the presence of a web server that is capable of

providing the required underlying functionality. The use of such a platform for the simulation

would not have provided additional results, as the focus was on the core part of the protocol

126

rather than the edges (i.e. web-browser to internet shop). As a result, a server was used to

achieve this communication.

In what follows, the structure of the packets that make up the IEPS is presented.

5.2.0 WRITE ORDER DETAILS*
When the user clicks the “proceed” button on the applet, the applet sends a

write_order_details packet to the servletsimulator. In the case where a servlet is used

with an application server, such as Tomcat Jakarta, an http request would initiate the servlet on

the Internet shop. The servletsimulator receives the packet, extracts the individual tokens

from the string and writes the information to disk. The packet that is received by the

servletsimulator has the following structure.

S o u rce lP jav a .n e t.In e tA d d re s s 4 U ser's IP
O rd erT o ta l F loat 4 O rd e r total repo rted by ap p le t
Ite m s O rd ered Strlngfl V a ria b le List with o rd ered item s and quantity

Table 5.0: WRITE_ORDER_DETAILS packet structure

BufferedReader in = newBufferedReader(newInputStreamReader(data.getlnputstream()))
theStr = in.readLine0 ;
StringTokenizer st = new StringTokenizer(theStr,

System.out.printlnC'Servlet received:");
while (st.hasMoreTokens0) {
theToken = st.nextToken();

if (count == 1) {
// this is the IP of the user.
theFile = new File("IS-SERVLET-" + theToken + ".dat");
os = new FileOutputStream(theFile);
out = new PrintWriter(os);

The code extract above shows the process of extracting the individual tokens by using the

StringTokenizer class. The conditional if-statement checks for the first token, which contains

the IP, and creates a file called "is-SERVLET-a.b.c.d.dat", where a.b.c.d represents the IP

address of the user. The user’s IP address represents a unique way of identifying the user and it

is therefore treated as a primary key^ throughout the protocol.

* N ote that the section and table numbers are intentionally numbered from 0, as they correspond to the

packets that are exchanged, as depicted in figure 5.1.

 ̂ For simulation purposes this is satisfactory; however a real implementation needs to use a user id,

possibly with a session identifier. This is because the user’s IP address may not be static and also IP

addresses are easy to spoof.

127

5.2.1 TRANSACTION_START_REQUEST (TSReq)
At the same time, the applet sends a TSReq packet to the isServer. The packet structure is

shown in table 5.1.

MessagelD Int 4 Protocol M essage identifier
SourceAddress Java.net.InetAddress 4 User’s IP
DestAddress Java.net.InetAddress 4 Is.ip file

Table 5.1: TRANS ACTION_START_REQUEST packet structure

The SourceAddress is obtained by the applet after it makes an inetAddress .getLocalHost ()

call. The DestAddress is read from a text file. This is the “is.ip” file. Two similar files exist:

the “gateway.ip” and the “scp.ip” contain the IP addresses of the gServer and the scpServer

respectively.*

5.2.2 PUBLIC_KEY_REQUEST (PKReq)
The table below shows the packet structure.

M essagelD Int 4 Protocol M essage identifier
SourceAddress Java.net.InetAddress 4 Internet Shop’s IP
DestAddress Java.net.InetAddress 4 TSReg Source Address

Table 5.2: PUBLICKEY REQUEST packet structure

When the isServer receives the TSReq packet, it sends a PKReq to the IP of the party that

initiated the TSReq. This is simply the SourceAddress of the TSReq packet.

5.2.3 PUBLIC_KEY_RESPONSE (PKRes)
Table 5.4 shows the packet structure.

MessagelD Int 4 Protocol M essage identifier
SourceAddress Java.net.InetAddress 4 User’s IP
DestAddress Java.net.InetAddress 4 PKReq Source Address
Pkey Int 4 User’s Public Key

Table 5.3: PUBLIC KEY RESPONSEpacket structure

At this point the uServer has received a PKReq to which it replies by sending its public key. The

DestAddress of the packet will be the SourceAddress of the PKReq packet. Now the isServer

knows the public key of the user. The next step is to submit to the user a packet that contains all

the items the user has ordered, in encrypted form, using the user’s public key.

In a real implementation, this would be configured on a database to allow easy management.

128

5.2.4 TRANSACTION_DETAILS_TO_USER (TDUser)
The packet structure is shown below.

M essagelD Int 4 Protocol M essage identifier
SourceAddress Java.net.InetAddress 4 Internet Shop’s IP
DestAddress Java.net.InetAddress 4 PKRes Source Address
T rnsCost Float 4 Applet saved info
TrnsNumber Int 4 Assigned by IS

Table 5.4: TRANSACTION_DETAILS_TO USER packet structure

Once the isServer has received the PKRes, it has to send to the isServer of the corresponding

user a TDUser packet. The isServer opens the "iS-SERVLET-a.b.c.d.dat" file with the IP of

the user, which is the SourceAddress of the PKRes packet.

// Delete the Public Key Request datafile.
dbManagement.PKRequestDelete(inPacket.getSourceAddress{));

// first get the transaction information from the applet datafile.
theCost = dbManagement.retrieveAppletInfo (inPacket.getSourceAddress())

// Send a TransactionDetaiIs packet.
outPacket.TDUser(java.net.InetAddress.getLocalHost().getHostAddress(),

inPacket.getSourceAddress(),
theCost,
dbManagement.getTransactionNumber(),
isPublicKey);

// increment the transaction number
dbMngmnt.writeTransactionNumber(dbManagement.getTransactionNumber 0 + 1) ;

mySocket userSocket = new mySocket("USR", inPacket.getSourceAddress());
userSocket.sendPacket(outPacket.getPacket());
userSocket.killConnection();

The isServer reads the transaction number and the transaction cost reported to it by the applet,

using the dbManagement. retrieveA pplet Info call. This is shown in the code extract above.

Also shown above is that the isS erver sends its public key to the user so that the user can

encrypt the next packet.

5.2.5 TRANSACTION_DETAILS_TO_IS (TDIs)
Once the user receives the TDUser packet from the IS, it forwards the information to the

gServer. The packet structure is shown below.

M essagelD Int 4 Protocol M essage identifier
SourceAddress Java.net.InetAddress 4 User’s IP
DestAddress Java.net.InetAddress 4 TDUser Source Address
TrnsCost Float 4 TDUser
TrnsNumber Int 4 TDUser

Table 5.5: TRANSACTION_DETAILS_TO_ISpacket structure

129

At this point, the IS and User have exchanged information and each holds the information

reported to them by the other party. They must now both send the information to the gateway,

using the is_to_gateway and the user_to_gateway packets respectively.

5.2.6 USER_TO_GATEW AY (UtoG)

M essagelD Int 4 Protocol M essage identifier
SourceAddress Java.net.InetAddress 4 User’s IP
DestAddress Java.net.InetAddress 4 Gateway.ip file
TrnsCost Float 4 TDUser m essage
TrnsNumber Int 4 TDUser m essage
ConnectionNumber Int 4 SCP (not simulated)

Table 5.6: USER_TO_GATEWAYpacket structure

5.2.7 IS_TO_GATEW AY (IStoG)

M essagelD Int 4 Protocol M essage Identifier
SourceAddress Java.net.InetAddress 4 Internet Shop’s IP
DestAddress Java.net.InetAddress 4 Gateway.ip file
T rnsCost Float 4 TDis m essage
TrnsNumber Int 4 TDis m essage

Table 5.7; IS_TO_GATEWAYpacket structure

In order for the gServer to send the ATReq message, both the UtoG and iStoG messages must

have been received by the gateway and the information in them must match.

Different delays are introduced by the parties involved at various points in the protocol. For

instance, there may be delays in the network, or delays by the shop in processing the order, or

even by the user due to lost transmissions. As a result, these two messages can arrive at the

gateway in any order (and may be amongst messages received from different Internet Shops).

The gServer must therefore have a mechanism for identifying matching pairs. Here, the

primary key is chosen to be the transaction number. As a result, this imposes a requirement that

each Internet Shop is allocated a special range of transaction numbers or has a uniquely

identifiable flag within the transaction number.

4000315

next

true

true

523612

false

next

true

956874

false

next

true

Figure 5.2: Data as a linked list

130

The local data could be implemented using a linked list, as indicated in figure 5.2. Starting from

the top, the first field represents the transaction number. The next two fields are Boolean flags

that indicate whether the IStoG and UtoG messages have been received. When the

communications threads receive iStoG and UtoG requests, these are passed to the control

process, which in turn creates a new entry in the data store and notifies the control process that a

new packet has arrived.

G -S C P Interface

Gateway

Monitoring Thread

Data

notification

Local Data
Control
P r o c e ss

C om m u nication s T hread s
IS_TO _G ATEW AYU SE R_TO _G ATEW AY

Figure 5.3: Monitoring fo r matching pairs using shared local data

The monitoring thread (figure 5.3) scans the local data for matching packet pairs and when two

packets are identified as referring to the same transaction, further processing of the transaction

can take place.

The purpose of the simulation was to focus on the robustness and operational issues of the

protocol rather than to implement a “real-world” system. If a linked-list approach was adopted,

a monitoring thread such as the one depicted in figure 5.3 would be needed. What is more,

additional functionality would have to be implemented and simulated to ensure that the

monitoring thread and the notification mechanisms operated correctly. Furthermore, the

additional threads and the presence of the control processes would impose a requirement for an

internal communication mechanism for the notifications. As a result, the approach adopted for

the implementation uses a temporary file on disk. The gServer creates the file whenever it

receives either an iStoG or a UtoG message.

Because each type of incoming packet is handled by a different thread (of the gServer) the

method that creates the file must be synchronised. This is done in order to avoid the case where

both threads are trying to access the same file concurrently. The code extract below shows the

operation of handling either an istoG or a UtoG message.

131

switch (inPacket.getID0)
{
case 6:

// User to gateway transaction
rvalue = dbManagement.createGWtransaction(inPacket.getTNis(),

inPacket.getTCOSTis());
// Need to save the transaction number and the IP of the internet shop,
// as it is needed later to match a transaction number to the IP of
// the Internet shop to send the final Proceed to bill message.
dbManagement.saveTNumber(inPacket.getTNis(),inPacket.getSourceAddress())

if (rvalue == 1) {
outPacket.AuthoriseTransactionRequest(inPacket.getConnectionNumber()

inPacket.getTCOSTis(),
inPacket.getTNis0);

mySocket scpSocket = new mySocket("SCP", settings.scpIP());
scpSocket.sendPacket(outPacket.getPacket0);
scpSocket.killConnection();

}
b r e a k ;

}

Another point which needs to be addressed is that the gateway must save the IP of the IS in

order to subsequently send the proceed_to_bill message. This is achieved by making a

dbmanagement. saveTNumber call. The first parameter is the transaction number and the second

is the IP of the Internet Shop.

At this stage the gServer needs to get authorisation from the SCP. This is achieved by using the

following three packets.

5.2.8 AUTHORISE TRANSACTION REQUEST (ATReq)
An ATReq message is sent by the gServer to the SCP. For simulation purposes, once the

scpServer receives an ATReq message, it simply replies with the ATReply message.

M essagelD Int 4 Protocol M essage identifier
SourceAddress Java.net.InetAddress 4 The gateway’s IP
DestAddress Java.net.InetAddress 4 scp.ip file
TrnsCost Float 4 IStoG or UtoG Packet
TrnsNumber Int 4 IStoG or UtoGPacket

Table 5,8: AUTHORISE_TRANSACTION REQUEST packet structure

5.2.9 A U T H O R ISE T R A N SA C T IO N R E PL Y (ATReply)
The scpServer sends an ATReply to an incoming ATReq request.

MessagelD Int 4 M essage identifier
AuthoriseFlag Boolean 4 Boolean flag
TrnsNumber Int 4 The transaction number

Table 5.9: AUTHORISE_TRANSACTION REPLY packet structure

132

5.2.10 PROCEED_TO_BILL (PTB)
The gServer has confirmation from the scpServer and at this stage performs a last double­

check with the isServer. The gServer knows the IP of the corresponding IS to send the PTB

message by reading the file created previously and by calling the dbmanagement. saveTNumber

method.

M essagelD Int 4 Protocol M essage identifier
SourceAddress Java.net.InetAddress 4 Gateway’s IP
DestAddress Java.net.InetAddress 4 SCP’s IP from scp.ip file
TrnsNumberlS Int 4 UtoG or IStoG m essage

Table 5.10: PROCEED_TO_BILL packet structure

5.2.11 BILL
The isServer performs various checks, some of which are related to stock-levels, before

sending a b i l l message. The flag of the message is set accordingly.

M essagelD Int 4 Protocol M essage identifier
SourceAddress Java.net.InetAddress 4 The Internet Shop’s IP
DestAddress Java.net.InetAddress 4 Gateway.ip file
TrnsNumber Int 4 PTB m essage
Flag Boolean 4 When set to true, indicates

that the gateway can
proceed to the charging
phase.

Table 5.11: BILL packet structure

5.2.12 CHARGE
The gServer receives the BILL message, checks the flag and sends the final CHARGE message

to the scpServer.

M essagelD Int 4 M essage identifier.
ConnectionNumber Int 4 The connection number.
TrnsCost Float 4 The transaction cost
TrnsNumber Int 4 The transaction number

Table 5.12: CHARGE packet structure

Having discussed the various packets of the protocol, the next section focuses on presenting the

Java classes and the state transition diagrams that make up the system. These were developed

using the Unified Modelling Language (UML) [UML99].

5.3 T h e IEPS C l a s se s

Having given a walkthrough of the protocol and an outline of the implementation decisions, the

next sections identify three of the major base classes of the system. These were designed using

UML, a modelling language that has a broad spectrum of usage. It can be used for business

modelling, software modelling in all phases of development and for all types of systems, and

133

general modelling of any construction that has both a static structure and a dynamic behaviour

[UML99].

The initial aim for the development of UML was to bring together the various design

methodologies, such as Booch [Booc99], OMT [Rumb91], and Yourdon [Cons79]. As the name

suggests, UML incorporates ideas from these methods, thus “unifying” the disparate attempts

that existed at the time. Some of the goals of UML include [UML99]:

■ To model systems (and not just software) using object-oriented concepts,
■ To establish an explicit coupling to conceptual and executable artefacts and
■ To address the issues of scale inherent in complex, mission-critical systems.

One of the advantages of UML is its acceptance. To establish UML, the developers and

Rational Software Inc. [Rational] realised that the language had to be made available to

everyone at no charge. Therefore, the language is non-proprietary and open to all. The UML

specification can be found in [UML99].

5.3.1 The dbManagement Class

File
(from io)

PrintWriter
(from io)

FileOutputStream
(from io)

{^PKReqFileNam e : String = " IS-PKreq-"
{^PKReqFileExt : String = "-.dat"
Ü^TransactionFilename ; String = "IS-TRNS-"
Ü^TransactionFileExt : String = ".dat"
(^AppletFilename : String = "IS-APPLET-"
t^AppietFileExt : String = " dat"

4createPKRequestEntry(userlP : String) : void
♦PKRequestExists(userlP : String) : boolean
♦PKRequestDelete(userlP : String) : void
4savBAppletlnfb(thePacketCSV : String) : void
♦retireveAppletlnfo(thelP : String) : float
4createTransaction(thePacketCSV : String) : void
♦matchTransaction(TNumber : int, TCost : float, thelP : String) : boolean

dbManagement

Figure 5.4: Class diagram fo r dbManagement

The dbManagement class provides the database functionality required by the system.

Throughout the operation of the protocol, the servers need to save a number of parameters as

previously discussed.

134

5.3.2 The myPacket Class

myPacket
^ > th eP ac k e t : String

! l^ o u r c e A d d r e s s : String
I ^ d e s tA d d r e s s : String
I ^ K e y i i n t
I i^ iim sC o sttS : float
% * n s C o s tU s e r : float

' d ^ n s N u m b e r iS : int
I ^> trnsN U m berU ser : int
I i^xxtnnectionN um bar : int
\ ^ th e M e s s a g e : String

! ♦m yPacket(...) : void
' ♦m yPacket(theStr : String) ; void
! ♦displayAliO : void
' ♦ getP acketO : ttiePacket
' ^ e tS o u rc e A d d re s s O : sou rceA ddress

^ e tO e s tin a tio n A td re s s O : destA ddress
I ♦getT m sC ostlS O : tm sC ostiS
, ♦ g etT m sC o stU serO : tm sC o stU ser
' ♦ g e tT m sN um berlS ():tm sN um borlS
1 ♦ g etT m sN u m b erU ser():tm sN u m b e rU se r |

♦getC onnectionN um berO : connectionN um berj
♦ getT lieM essageO : T heM essage

Figure 5.5: Class diagram fo r myPacket

The myPacket class provides the encapsulation for containing the IEPS packets. It has two

overloaded constructors. It also contains a number of selector methods, which allow the users

of this class to gain access to the private attributes of the class.

5.3.3 The mySocket Class

Socket
(from net)

PrintWriter
(from io)

i%>gatewayPort : int = 4000
i^ isP ort: int = 5000
i%»userPort : Int = 3000
i^ theSocket : java.net.Socket = null
i^theStream : PrintWriter = null

^killConnectionO : void
^m ySocket(dest : String, IP_String : String) : void
♦sendPacket(theString : String) : void

mySocket

Figure 5.6: Class diagram fo r mySocket

This class provides the basic socket functionality for the system. It comprises three methods.

The constructor, mySocket, takes two arguments: The first is a string that denotes where the

user of the class wants to connect. This is used to determine the port to be used for the

connection. The second argument, the lP _string , denotes the IP address of the target

connection.

135

In Java, when information needs to be transmitted using soekets, a soeket needs to be created.

Information is then printed onto the stream of the socket and the stream is closed, as follows:

theSocket = new Socket (dest_address, port); '
theStream = new PrintWriter(theSocket.getOutputStream(), true); j
theStream.println("this will be sent"); |
theStream.close 0 ; I
theSocket.close();

The first call creates the socket, the second creates an output stream to that socket, the third

sends the string to the stream, and the final two close the stream and the socket respectively. To

avoid the above repetition, the mySocket class encapsulates the stream and the socket in the

class, and the above call can now be made using the following code.

mySocket scpSocket = new mySocket("SCP", settings.scpIP());
scpSocket.sendPacket{"this will be sent"); I

scpSocket.killConnection(); ;

The next section discusses the implementation of the parent class, TCPServer, which all servers

inherit.

5.3.4 The TCPServer Class
The TCPServer class creates a ServerSocket and accepts connection requests from clients.

This is done in a separate thread. Once a connection is made, the server clones itself so that it

may handle the new client connection in a new thread.

«In terface»
Cloneable

(from lang)

\

« In terfa ce»
Runnable

(from lang)

/

A
TCPServer

l^runner : Thread = null
^>server : ServerSocket = null
i%>data : Socket = null

♦startServer(port : int) : void
♦stopServerO : void
^run() : void
♦run(data : Socket)

Figure 5.7: Class Diagram for TCPServer

The TCPServer implements the Runnable interface (this is because new threads will be created,

which will be executed by this class). The class is Cloneable, so that a copy of this class can be

created for each connection. As a result, since the copy of the class is also Runnable, another

136

copy for each client connection can also be created. The startS erver and stopServer

methods are synchronised.

5.3.5 The UServer Class

uServer

^mainQ

userTCP

^run()

^ ru n n er : Thread = null
^ s e r v e r : ServerSocket = null
^>data : Socket = null

♦startServer(port : int) ; void
^stopServerO : void
^run() : void
^run(data ; Socket)

TCPServer

Figure 5.8: Class diagram fo r UServer

Wait for packets
ext: theStr = in.readline()

data arrived[theStr != null]

 i/_____
E)dract Packet Into

entry 'HepsPacket.extractPacket(lnPacket)

Check messagelD
entry 'HnPackeLgetlD(lnPacket)

PUBLIC_KEY_REQUEST[messagelD == 2]

_________ V___________.
TRANSACTION_DETAILS_FROMJS[messagelD == 4]

Sending Public Key Response Send Transaction Details to IS
entry \)utPacket.PKResponsePacket
do: ^sSockeLSendPacket
ex t 'SsSocket.KIIIConnectlon

entry 'YrutPacket.TransactionDetallstolS
do: ^s Sockets e nd Packet
ex t 'SsSocket. KillConnection

Send Transaction Details to Gateway
entry \)utPacket.TransactlonDetalistolS
do: mySocket gSocket= new mySocket("GTW")
do: *gSocketsendPacket
exit: *gSocket.KIIIConnectlon________________

Figure 5.9: State transition diagram fo r UServer class

In figure 5.9 the state transition diagram for the UServer class is shown. The initial state is the

state depicted at the top of the transition diagram. The exit condition from the state is specified

in the lower part of the state, i.e. theStr=in.readline(). When this occurs and the condition set by

the transition (i.e. theStr != null) the class moves to the ExtractPacketlnfo state. In this state,

137

the entry condition is verified to ensure that the received packet has not been corrected in

transit.

When the class moves to the CheckMessagelD state, a valid packet has been received, and this

state therefore contains the actions that extract the packet identifier. Depending on the type of

packet that was received, the class moves either to the sending PublicKeyResponse or send

TransactionDetailstoIS states. Following this transition, the class eventually returns to the

idle state, where it waits for further incoming packets.

5.3.6 The GServer Class

T C P S e rv e r

^ r u n n e r : T h re a d = null
^ s e r v e r : S e rv e rS o c k e t = null
^ d a t a : S o c k e t = null

♦ s ta r tS e rv e r(p o rt : int) ; void

^ s to p S e rv e rO : void

^ r u n () : void
♦ r u n (d a ta : S o cket)

g a te w a y lC P g S e rv e r

>
% u n ()

- >
♦ m a in ()

Figure 5.10: Class diagram fo r GServer

The state transition diagram for the GServer class (figure 5.11) is similar to that of the UServer

class (figure 5.9).

V

data amvedj iheStr l= null J

V
entry: *iepsPacl«i.extr8ctPactet(inPac*5ei)

extractPactet suceeds

V
entry: '‘inPactel.getiOCmPactet)

j PKRequeslEwsls*» false]

AUTH0RISE_RHPLY_MESSAGE(measegelD *» 11)

V
entry: '‘dbManagemeni.createGW Transaction

V
entry *dbManagement,aaveTNumt>er

V
entry, ''outPactet.AuthoriaeTrBnsactionRequeat
do; *ouiPaci*t sendPacMei
exit *outPac*et kllConnection

USER_TO_GATEWAY || IS_TO_GATEWAY(messagelD == 6.7)

V
Finding IP of

entry; *lhelPoflS = dbM anagem ent.getlNum ber

1 thelPofiS »= null)

V
Sending

entry. *outPaclet.ProceedToBill
do: *isSodet.new MySodetflNS*)

BILL_R£PtY_MESSAGE(messagelD •= 9 j

V
entry. ''inPacHet.getBiMFlag
on 8ilt(getBillFlag »» 1}; outPa<*et.Charge
on 8ill(getBillFlag l> 1): ou tP aclet CancelTransacüon

Figure 5.11: State transition diagram fo r GServer class

138

The class waits for an incoming packet, when it is received, it is checked for validity and the

class moves to the appropriate internal state, depending on which packet was received.

5.3.7 The ISServer Class

_________TCPServer_________
^ru n n er : Thread = null
^ se r v e r : ServerSocket = null
^ d a ta : Socket = null

^startSer\er(port ; int) : void
^stopServerO : void
^run() ; void
^run(data : Socket)

>
isTCP isServer

%un()
- >

>main()

Figure 5.12: Class diagram fo r ISServer

V
W alt for packets

TRANSACT10N_STPRT_REQUEST1 m e ssa g e lD == 1)

S ave C o s t received in packet

en try 'y)bM anagem ent.sateA ppietlnfo(inPacket)

d a ta arnved[ttieStr 1= null]

Extract P acke t Info

en try '4epsPacket.e% fraclPacket(inPacket)

ex tractPacket su c e e d s [PK R equestE x ists == fa lse |

C tieck m e ssa g e lD

en try 'SepsPacket.getlD (inPacket)

PUBLIC_KEY_RESPONSE[m e ssa g e lD == 3)

V
C tieck a PK R eq ex ists

en try 'db tv lanagem en t.P K R eques tE x is ts (inPacket)
exit: M bM anagem en t.P K R equestD ele te (inP acke t)

P ro c e s s in g Bill R e q u e s t

en try "ou tP acket Bill
do: ^ S o c k e t new MySocket("GTW)
do: 'g S o c k e ls e n d P a c k e l
exit: '^S ocket.k illC onnection

A

PROCEED_TO_BILL[m e ssa g e lD == 8]

TRANSACTION_DETAILS_TO_IS[m e ssa g e lD == 5 |

C rea te T ransaction

en try 'k jb M an ag em en t.c rea teT ran sac tio n (in P ack e t)

(s a w - - successfu l!]

C rea te a P K R eq u est entry

en try 'dbM an ag em en tc rea teP K R eq u est(in P ack e t)
do: \)utPacket.k illC onnection
e « t 'Y rutPacket.PK R equest(outPacket.getPacketO)

PK R eq Matctied

S e n d tran sac tio n details

en try 'dbfvlanagem ent.re triew A ppletlnfb(inPacket)
en try "ou tP acke t T ransactionD etailstoU ser(T info)
exit: userSocket.killC onnectionO

V
S en d in g P ack e t to G atew ay

en try "o u tP acke tlS toG atew ay
do: V S o c k e ln e w fVlySocketCGTW)
do: "g S o ck e lsen d P ack e t(o u tP ack e t)
exit: "gSocketk illC onnection

Figure 5.13: State transition diagram fo r ISServer class

In figure 5.13, note the transition from the checking PKReq details state back to the idle state

(wait for packets), and the associated failure event, i.e. PKRequestExists=false. This indicates

that a public key request was received prior to the IS sending a request for a public key.

139

5.3.8 The SCPServer Class

TCPServer

^ ru n n er : Thread = null
^ s e r v e r : ServerSocket = null
^>data : Socket = null

^startServer(port : int) : void
^stopServsrQ : void
^run() : void
^run(data : Socket)

scpTCP scpServer

^run()
>

^mainQ

Figure 5.14: Class diagram fo r SCPServer

wait for packet
— ^ exit: theStr = in.readline() < -------------

V
Processing Packet

entry '4nPacket.extractPacket(inPacket)

Check M essage Identifier

entry ''inPacket.getlD

AUTHORISE_TRANSACTION REQUEST[m essa g e lD -= 10] CHARGE_MESSAGE[m essa g e lD = = 1 2]

Sending Authorisation

entry ^)utPacket.AuthoriseTransactionReply
do: ^ S o c k e tn e w MySocketfGTW')
do: '^ S o ck ets end Packet
exit: '^Socket.killConnection

Sending Charge to SDP

Figure 5.15: State transition diagram fo r SCP Server class

For simulation purposes the state transition diagram for the SCPServer class (figure 5.15) is

simplified. In a real implementation INAP [Q.1208] states would have to be incorporated within

the state diagram.

140

5.4 R e s u l t s o f t h e IEPS Sim u l a t io n

In this section, the results of the simulation are presented in the form of output from each of the

servers. The simulation can be followed by referring to figure 5.1 and cross-referencing the

MessagelD of each packet.

5.4.1 Output from the isServer
The simulation starts when the user submits the order through the applet. The applet sends the

TSRes message to the isServer, which is the first packet below. The isServer then sends the

PKReq and receives the PKRes. It then sends a TDUser message and receives a TDis message.
started IS-Server, Port 5000
Message received on Sat Aug 29 20:17:07 GMT+00:00 1998

*** TRANSACTION START REQUEST ***

MESSAGE ID 1
Source IP = 212.228.179.77
Dest. IP = 128.40.38.119
Tr. Cost = 916.5
The Packet = 1,212.228.179.77,128.40.38.119,916.5

Message received on Sat Aug 29 20:17:10 GMT+00:00 1998

*** PU BLIC KEY RESPONSE ***

MESSAGE ID = 3
Source IP = 212.228.179.77
Dest. IP = 128.40.38.119
Enc. Key = 9999
The Packet = 3,212.228.179.77,128.4 0.38.119,9999

Message received on Sat Aug 29 20:17:15 GMT+00:00 1998

*** TRNS D ETAILS TO I S ** *

MESSAGE ID = 5
Source IP = 212.228.179.77
Dest. IP = 128.40.38.119
Tr. Cost = 916.5
Tr. Number = 44
The Packet = 5,212.228.179.77,128.40.38.119,916.5,44

Message received on Sat Aug 29 20:17:21 GMT+00:00 1998

*** PROCEED TO B IL L (f r o m G a te w a y) ***

MESSAGE ID = 8
Source IP = 128.40.38.129
Dest. IP = 128.40.38.119
Tr. Number = 44
The Packet = 8,128.40.38.129,128.40.38.119,44

Figure 5.16: Simulation output from the IS Server

141

5.4.2 Output from the gServer
started Gateway-Server 4000

Message received on Sat Aug 29 20:17:16 GMT+00:00 1998

*** USER TO GATEWAY ***

MESSAGE ID = 6
Source IP = 212.228.179.77
Dest. IP = 128.40.38.129
Tr. Cost = 916.5
Tr. Number = 44
Conn.Number = 333
The Packet = 6,212.228.179.77,128.40.38.129,916.5,44,333

Message received on Sat Aug 29 20:17:18 GMT+00:00 1998

*** I S TO GATEWAY ** *

MESSAGE ID
Source IP =
Dest. IP
Tr. Cost
Tr. Number =
The Packet =

7
128.40.38.119
zardoz
916.5
44
7,128.40.38.119,zardoz,916.5,44

Message received on Sat Aug 29 20:17:20 GMT+00:00 1998

*** AUTHORISE TRANSACTION RESPONSE ***

MESSAGE ID 11
Tr. Number = 44
Authorised Flag= 1
The Packet = 11,1,44

Message received on Sat Aug 29 20:17:21 GMT+00:00 1998

*** BILL ***

MESSAGE ID 9
Source IP = 128.40.38.119
Dest. IP = zardoz
Tr. Number = 44
Bill Flag 1
The Packet = 9,128.40.38.119,zardoz,44,1

Figure 5.17: Simulation output from the Gateway Server

The gServer receives the iStoG and the UtoG message and, after a successftil match, it sends an

ATReq, to which it receives the ATRes message.

5.4.3 Output from the userServer
Message received on Sat Aug 29 20:16:34 GMT+00:00 1998

*** PU BLIC KEY REQUEST * * *

MESSAGE ID = 2
Source IP = 128.40.38.119
Dest. IP = 212.228.179.77
The Packet = 2,128.40.38.119,212.228.179.77

Figure 5.18: Simulation output from the User Server
(continues on next page)

142

Message received on Sat Aug 29 20:16:38 GMT+00:GO 1998

*** TRNS D ETAILS TO USER ***

MESSAGE ID = 4
Source IP = 128.40.38.119
Dest. IP = 212.228.179.77
Tr. Cost = 916.5
Tr. Number = 44
The Packet = 4,128.40.38.119,212.228.179.77,916.5,44

Figure 5.18: Simulation output from the User Server (continued.)

Depicted in figure 5.18 are the two messages the uServer deals with. Firstly, the PKReq

message from the is S e r v e r and, secondly, the TDUser message.

5.4.4 Output from the scpServer
Shown below is the scpServer receiving an ATReq.

started SCP-Server 4001

Message received on Sat Aug 29 20:17:19 GMT+00:00 1998

*** AUTHORISE TRANSACTION REQUEST ** *

MESSAGE ID = 10
Tr. Cost = 916.5
Tr. Number = 44
The Packet = 10,-1,916.5,44

Figure 5.19: Simulation output from the SCP Server

5.4.5 Output from the IS Servlet Server
started IS-Servlet/CGI Simulator 123

Servlet received:
count = 1 token = 212.228. 179.77
count = 2 token = 916.5
count = 3 token = Joe
count = 4 token = Bloggs
count = 5 token = Sir Matt Busby Way
count = 6 token = Trafford
count = 7 token = Manchester
count = 8 token = n/a
count = 9 token = M4 4DX
count = 10 token = 4
count = 11 token = This is item:8
count = 12 token = 2
count = 13 token = 251.45
count = 14 token = This is item:30
count = 15 token = 3
count = 16 token = 454.72
count = 17 token = This is item:80
count = 18 token = 1
count = 19 token = 210.32

Figure 5.20: Output from the Servlet simulator

Figure 5.20 shows the isServletS im ulator. The output is the information entered by the user

when completing the applet. All the information is written onto a file, as discussed in section

5.2.0.

143

5.4.6 The Applet Output
Shown here is the output from the applet. It provides infonnation to the user pertaining to the

progress and status of the order.

C:\My Stuff\IEPS>appletviewer testnew.html
Symantec Java! JustlnTime Compiler Version 3.00.029 (i) for JDK 1.1.x
Copyright (C) 1996-98 Symantec Corporation

*** New order processing BEGIN ***
User address = 212.228.179.77
IS address = metropolis.ee.ucl.ac.uk/128.40.38.119
Order total was:916.5
System is now processing order., beginning to send packets.
*** New order processing END

Figure 5.21: Simulation output from the applet

5.5 C h a p t e r Su m m a r y a n d R e s e a r c h C o n t r ib u t io n s

This chapter dealt with the implementation and the simulation of the IEPS. To achieve this, the

following tasks were undertaken:

■ Analysis of the communication mechanisms of Java

■ Gaining a clear understanding of the communication capabilities of the IN

■ Identification of potential limitations and complexities within the designed protocol.

One of the important requirements of the protocol was that it needed to operate in an already

well-established and, more importantly, standardised environment. This meant that the protocol

must be designed in such a way that it operated without requiring any change to the registration

and billing phases. Such changes would weaken its position considerably, indeed to the extent

that they could render the system unusable. As a result, existing information flows that provide

sufficient functionality to perform the authentication, authorisation and billing were identified

from the IN CS-I. Therefore, through this chapter it was shown that it is possible within the

“new role of IN” to utilise existing infrastructure in a way that was never conceived before.

The simulation has also identified some of the potential limitations of the existing system. For

example, there is a requirement for the protocol to support session identifiers and user

identifiers, rather than IP addresses. Session identifiers, for instance, would enable the system to

cope with lost connections from the user side. An additional desirable feature that needs to be

looked at is the behaviour of the servers as the number of incoming requests increases.

Java was chosen as the implementation language for the simulation. If such a system is to be

implemented commercially, the way that the Internet shop handles incoming requests must be

optimised and functionality to support load-balancing, robustness, and scalability must be

incorporated.

144

One of the most important components of the system is the gateway that provides the translation

between the IP and IN worlds. The previous chapter showed that the gateway can be

implemented in two different ways. The simulation of the system in this chapter provided a

better understanding of the complexities involved in the design of such a network element. For

instance, the gateway needs to maintain the robustness of the IN world at all costs, so that it

does not degrade the integrity of the IN network. Further work is needed in this area in order to

ensure that any gateway function that interfaces to the IN world does not hinder the robustness,

integrity and reliability of the underlying network.

In implementing the system, the servers maintained state to track the progress of individual

transactions. State transitions within these servers are caused explicitly by external events (for

example when the servers receive a valid incoming request). One limitation of the existing

implementation is that it does not maintain internal state. This means that an individual server

does not keep track of “active” sessions.

Chapter 6 continues to examine state utilisation in IP-based architectures, by presenting ways to

implement and maintain state. Furthermore, the chapter identifies the extent to which state is

utilised in existing IP protocols.

145

C h a p t e r 6

U se of S t a t e in A r c h it e c t u r e s &

Pr o t o c o l s in t h e IP D o m a in

So far the work presented has focused on the general view of “state”. This is
particularly true when IP architectures were presented. This chapter examines in

detail the concept and use of “state”. IP-based protocols, architectures and frameworks
are presented with the aim of examining the control elements - and therefore the control
plane - within such systems.

6.1 In t r o d u c t io n

Firstly, section 6.2 provides an overview of concurrency concepts and describes how these are

implemented in Java. Section 6.3 presents traditional client-server architectures and examines

the use of state within them, while section 6.4 examines distributed object technologies. Section

6.5 provides a classification of the IP architectures according to their use of state. Finally,

section 6.6 provides a summary of the work presented in this chapter.

6.2 C o n t r o l l in g St a t e -D e p e n d e n t B e h a v io u r

State-dependent actions are implemented in software using policies that may be optimistic or

pessimistic. This section examines the ways in which state-dependent actions can be configured

using appropriate policies and highlights the complexities involved in deciding on the adoption

of a specific policy. A complete discussion on concurrent systems and state-dependent policies

can be found in [Rosc97][Baet99][Thom00][Pala00].

The discussion first focuses on the types of trigger that cause state-transitions. Actions

performed by mutable objects* generally have two kinds of triggering conditions, external and

internal. An external trigger is caused when the object receives a message from another object

requesting that an action is performed [Lea99]. An internal trigger is caused when the object is

in an appropriate state to perform the action [Lea99]. Each of these triggers has associated pre-

A mutable object is one that can change behaviour depending on its internal state [Alex93].

146

and post-conditions. If a trigger is to be allowed and a transition to occur, these conditions must

be satisfied.

The way in which a system deals with triggers is described by its policy on state-dependent

behaviour. Policies may be optimistic or pessimistic. A protocol is called optimistic if it

optimistically assumes that failures are rare events, so optimizing failure-free performance is

more important than achieving good recovery performance. In contrast, a pessimistic protocol

always pessimistically prepares for failures, so it is willing to pay higher failure-free overhead

in order to recover faster should a failure occur [Huan95].

Table 6.1 classifies policies into these two categories. According to [Lea99], in general

pessimistic policies lead to simpler and more reliable designs in most concurrent settings.

Pessimistic Policies
Inaction A request is ignored if it cannot be fulfilled

Balking
Failure indications are returned to the client if the action cannot
be perform ed

Guarded suspension Execution is suspended until preconditions becom e true
Optimistic Policies

Provisional action
A n action is perform ed but its effects are not com m itted until
success is assured

Rollback/recovery
The by-products o f partially com pleted actions are undone.
Rollback refers to reverting back to the initial state and recovery
refers to attaining an com parable valid state

Retry
Failed actions are attem pted repeatedly after recovering from
previous attempts

Table 6.1: Pessimistic and optimistic policies fo r state-dependent actions

The following section discusses the issues affecting the choice of policy.

6.2.1 Deciding on an Adoption Policy for State-Dependent Behaviour
In deciding which of the policies listed in table 6.1 a system is to adopt, a number of

considerations need to be looked at. This section provides a concise discussion regarding these

considerations.

The following issues are important when regarding the adoption of a specific policy:

■ The internal and external computability: internal computability refers to the ability of the

host object to detect state-based pre-conditions; external computability refers to the ability

of clients or other objects to know if the host object is in a state that allows the action.

■ The ability for a client to ensure that an object that was in an appropriate state remains so

when a subsequent message is issued.

■ The cost of computing the above preconditions [Lea99]. Determining the preconditions can

be computationally more expensive than just trying the action and then coping with any

147

failures. The computation of the preconditions must also be balanced against the probability

of failure and the cost of recovery.

Further considerations are about resource contention. This pertains to whether the action

requires exclusive access to a resource [Lea99]. Associated with this is the acceptability of

indefinite suspension, which refers to whether the activity that invoked the method is allowed to

suspend while waiting for preconditions to become true [Lea99].

The ability to “undo” internal by-products of failure is important because, otherwise, the host

may enter inconsistent states, after which nothing can be guaranteed about the future behaviour

of the object or other objects that depend on it. This capability is termed recoverability

[Lea99]. In association with recoverability, clients need to take special action upon failure and

there needs to be provisions for doing so.

The next section discusses ways in which state can be represented in a system implementation.

6.2.2 Representation of State
When a system is designed and a policy on state-based behaviour (i.e. optimistic or pessimistic)

is adopted, there needs to be a formal way of representing state information for the objects that

make up the system. The representation of the state must be explicit, in sufficient detail to

prevent actions from occurring when they are not wanted and to ensure evasive action when

they fail [Lea99]. This section presents three approaches for representing state: interfaces,

logical definition within variables, and history and execution states.

6.2.2.1 Interfaces

Interfaces [SommOl] provide tools for defining abstract state and implementing the required

state representations. This means that since interfaces provide a particular abstraction of an

object’s behaviour, and interfaces cannot reference code or instance variables, they force the

designer to describe monitor invariant properties and functionality in ways that help avoid the

need for other designers to have to read implementation source code to discover intent.

6.2.2.2 Logical State

Logical states are usually defined in terms of predicates [KaliSO] that distinguish particular

ranges, values or other computable properties of instance variables. These predicates can be

coded either as free-standing internal Boolean methods or as Boolean conditions written inside

the methods that rely on them [Aror98].

148

Logical state can also be represented explicitly* in a variable, with each distinct state labelled as

an integer or any other discrete data type. The instance variable representing state is then re­

evaluated upon each update so that it is always accurate.

A different approach, rather than coding state as a value, is for the state to be coded as a

reference to a state-object. For each state, a class describing the behaviour of the object when it

is in that state is written. In the main class, a reference instance variable is created that is always

bound to the appropriate state-object.

If state is represented as a state-object, then state-specific behaviour is localised as well as

partitioned for different states [Gamm95]. All behaviour associated with a particular state is put

into one object and, because all state-specific code lives in a State subclass, new states and

transitions can be added easily by defining new subclasses. However, there is a drawback to this

approach. This has to do with the distributed behaviour of different states across several State

subclasses - there is an increase in the number of classes and it is less compact than a single

class. Regardless of this, E. Gamma in [Gamm95] makes the point that “encapsulating each

state transition and action in a class elevates the idea of an execution state to full object status.

This imposes structure on the code and makes its intent clearer.”

A further advantage of this approach according to [Cham93] is that “state transitions are

explicit.” When internal variables are used to define state, the state transitions have no explicit

representation but rather “only show up as assignments to some variables” [Gamm95].

The implementation of state-objects could be achieved using lookup tables [Carg92]. However,

according to [Gamm95] “the State pattern models state-specific behaviour, whereas the table-

driven approach focuses on defining state transitions.”

6.2.2.3 History and Execution States

It is desirable in some situations to maintain a complete history log that records all messages

received and sent, along with all corresponding internal actions that are initiated or completed

[Lea99]. As this can lead to inefficient representations of state as well as possibly uneconomical

use of resources, a compromise method is to define execution state variables that are particular

forms of meta-variables [MarcOO].

* The disadvantage o f this approach is that sim ilar conditional statem ents w ould be scattered throughout

the implementation and, as a result, the addition o f a new state could require the changing o f several

operations, which com plicates maintenance.

149

E xecu tion sta te variab les can rep resen t the fact tha t a g iven m essag e w as rece iv ed , w h eth er the

co rresp o n d in g action w as in itiated , w h e th e r the ac tio n has te rm in ated , and w h e th e r a rep ly to the

m essag e w as issued.

T he in troduc to ry sections p resen ted the vario u s p o lic ie s fo r s ta te -d ep en d en t ac tions and

d iscu ssed the w ays in w h ich “ sta te” can be rep resen ted . T he fo llow ing sec tion describes the

im p lem en ta tio n o f tw o specific ap p roaches , one fo r a p essim is tic p o licy an d one for an

op tim istic po licy .

6.2.3 Im plem entation of G uarded Suspension
G uarded m ethods are those tha t b lock i f the o b jec t is no t in a sta te in w h ich the associa ted

ac tions can be executed . “ In co ncu rren t p ro g ram m in g , a guarded m eth o d m ay be th o u g h t o f as a

cu s to m isab le ex tension o f synch ron ised m ethods, w ith the ‘g u a rd ’ fo r a p la in synch ron ised

m ethod b e in g that the ob jec t is in the R ead y ex ecu tio n s ta te” [L ea99]. C o rresp o n d in g ly , in

sequen tia l p rog ram m ing , g uards m ay be eo n s id ered to be specia l fo rm s o f co nd itiona ls : an if-

s ta tem en t can check w hether a cond ition ho ld s upon en try to a m ethod [M agee99].

aM e ssa g e
j inR ightS tate

V . ^

>
Figure 6.1: Guarded suspension

6.2.3.1 Walts and Busy-Waits

In Java, the standard cod ing m ethod for ex p ressin g g u ard ed w aits is b y u sing a sim ple loop,

w h ile invok ing the O b jec t.w a it m ethod. T he code ex trac t b e lo w iden tifies h o w th is can be

ach ieved:

public class GuardedClass {
protected Boolean cond_ = false;
protected synchronised void awaitCondO {

while (!cond) {try (wait();}
catch (InterruptedException ex) {}

}
}
public synchronised void guardedAction() {

awaitCond(); //actions

150

Busy-waits, on the other hand, are implemented using:

Protected void spinWaitUntilCondO {
While (!cond_)

Thread.currentThreadO .yield() ;
}

According to [Lea99], the implementation of busy-waits has the following drawbacks:

■ They can waste an unbounded amount of CPU time spinning without success [Thom95]. In

contrast, waits recheck conditions only when another thread sends notification that the

object’s state has changed, thus possibly affecting the guard condition.

■ The yield in the spin-loop is not guaranteed to be effective in allowing other threads to

execute so that they can change the condition.*

In addition, both implementations suffer from fairness.

A comprehensive description of the issues surrounding the advantages and disadvantages of

various implementation mechanisms of guarded suspension can be found in [Boge01][Coli91],

6.2.3.2 Interrupts

A guarded wait can be viewed as if it were an undirected call to objects running in other threads

asking them to take any action that makes the condition true. A notification serves as a signal

that the desired condition may have been attained.

In Java, this analogy is made stronger by the fact that a wait can also be broken by an

InterruptedException caused by some object invoking Thread.interrupt. Interruptions can serve

as notifications indicating that the required state changes can never occur, for example due to

the termination of certain threads.

6.2.3.3 Notifications

Wait-based constructions make up the bulk of the safety side of guard translation. The first step

to ensure liveness^ is to insert code that wakes up waiting threads when the conditions they are

waiting for change value. Every time the value of any variable or object mentioned in a guard

changes in a way that might affect the true value of the condition, waiting tasks should be

* This occurs for example in the case where the busy-wait is running at a high priority, therefore not

allowing other processes to change the condition that would take it out of the loop.

 ̂A liveness specification is a set of state sequences that meets the following condition: for each finite

state sequence a, there exists a state sequence /3 such that 00 is in that set [Aror98].

151

woken up so they can recheck guard conditions. The simplest way to do this is to insert

notify All in methods that cause state changes.

6.2.4 Tracking State
One of the problems associated with using the Notify All method has to do with the possibility

that some of these notifications cannot possibly affect the guard conditions of any waiting

thread. These are ineffective notifications and can be eliminated by using logical state analysis.

So, rather than generating notifications for all changes in instance variables, notifications are

issued only upon transitions out of the logical states in which threads can wait. The

disadvantage of this approach is that any changes in the implementation of the class may require

different partitioning of logical state, which alters both the guard and the notification conditions

for the base methods, which in turn leads to a total rewrite of the class.

Another way to monitor state is by tracking state variables. State variables represent the entire

logical state of an object, usually in a single instance variable. According to [Lea99] the most

extensible way to implement state-variable designs is to isolate state re-evaluation in a single

method that is called after each update method.

6.2.5 Optimistic Policies
In pessimistic designs objects refuse to engage in actions unless they are known to be in states

that allow the action to succeed [Stro85]. In optimistic, try-and-see designs, objects proceed

with actions without necessarily checking to see if all preconditions are met. However, they also

possess strategies and mechanisms for detecting failures and, when necessary, undoing the

effects of any of the actions that led to failure.

Optimistic control techniques share three basic features: a way of detecting failure, for example

by assessing the logical state; a way of dealing with failure; and a way of dealing with the

consequences of actions leading to failure.

Dealing with the consequences that lead to the failure can be achieved in a forward or backward

direction. One approach to dealing with the consequences is by provisionally performing the

operations in a dry-run way. When this is successful and the possibility of failure has been ruled

out, the operations are re-performed only this time their actions are not running in a dry-run

mode. A second approach is to use rollback and recovery for every action.

It can be argued that optimistic policies are computationally expensive. This is because of the

large number of variables that need to be maintained to control operations in a dry-run manner.

152

Also to implement rollback and recovery, every internal system message would need its counter

message to undo the effect of the original message, although in some cases it is possible to

implement optimistic systems without the need of additional messages [Venk97], An additional

method to implement rollback and recovery is through message logging [Alvi98]; the cost of

recovery using message logging is discussed in [RaoOO].

However, regardless of the computational expense, if a system’s functional requirements

include real-time characteristics or some safety-critical issues, then the computational

complexity is a minor concern. A performance-oriented comparison of optimistic and

pessimistic policies can be found in [Song95].

The following section builds on the theory presented in the previous sections and moves on to

examine IP-based protocols in order to highlight their reliance on state-dependent actions as

well as internal and external triggers.

6.3 U se of State in Client- S erver Architectures

A client-server architecture is a network architecture in which each host or process on the

network is either a client or a server. Some of the characteristics of client-server architecture

include [Orfa99]:

■ Service; Client-server is primarily a relationship between processes running on separate

machines. The server process is a provider of services and the client is a consumer of

services.

■ Shared resources: A server can service many clients at the same time and regulate their

access to shared resources.

■ Asymmetrical protocols: There is a many-to-one relationship between clients and server.

Clients always initiate the dialogue by requesting a service. Servers passively await requests

from the clients.

■ Transparency of location: The server is a process that can reside on the same machine as the

client or on a different machine across a network.

■ Message-based exchanges: Clients and servers are loosely coupled systems that interact

through a message-passing mechanism. The message is the delivery mechanism for the

service requests and replies.

Irrespective of the transport layer protocol that is used or the type of server, there exists a

general categorisation of client-server architectures that is included in this section for

completeness. These are the “fat clients” and “fat servers.”

153

Client-server architectures often require the client to act as a server at some point during the

execution of a service. For instance, in the system described in section 6.2, the web server is a

server from the applet’s point of view but it is also a client when the requests are forwarded to

the NMS command processor.

For this reason, client-server applications can also be differentiated by how the distributed

application is split between the client and the server [Orfa99]. A fat server model places more

functionality on the server, whereas a fat client model places more functionality on the client.

Fat clients are the more traditional form of client-server architectures, where the bulk of the

application runs on the client side. For example in a database server, the client knows how the

data is organised and stored on the server side.

It may be apparent from this initial discussion of client-server architectures that in most cases

there is no clear-cut line that separates a host from being a “pure client” or a “pure server.” This

grey-scale representation holds true in a discussion of state-based versus stateless architectures.

Traditional IP-based protocols and architectures are overwhelmingly based on the client-server

model. Edge components (clients) require services from the core of the network (servers). Some

of these architectures are defined as stateless, claiming that “no state information” is maintained

thereby making it “easy to cope with failures” of servers [Schu98].* The following sections

present IP-based client-server architectures, beginning by looking at the RADIUS protocol, and

analyse the use of state in them.

6.3.1 Remote Authentication and Dial-In User Service
The Remote Authentication and Dial-In User Service (RADIUS) is an IETF protocol “for

carrying authentication, authorisation and configuration information between a Network Access

Server that desires to authenticate its links and a shared authentication server.” [RFC2138].

A RADIUS server is usually deployed (as the name suggests) to authenticate remote access to

resources. For instance, organisations that allow employees to gain access to corporate intranets

* There are “opposing” views as to whether state should be maintained in a system. In the author’s view,

state is useful because it provides the system designer with a powerful tool to control the behaviour of the

system. State-dependent information can also be used in systems that are more general, in order to collect

information pertaining to the status of the system, as will be shown in chapter 8. Furthermore a conclusive

view on state is presented in chapter 9.

154

utilise RADIUS components to achieve this. This section focuses on the presence of state

behind a RADIUS server, rather than the operation of the protocol.
timeout

accessR eq u est
accessA ccept

awaitingidle

accessR ejec t

accessC hallenge
replyMsg

processing
challenge

Figure 6.2: State transition diagram fo r RADIUS client

From [RFC2138], the state model presented in figure 6.2 can be derived for a RADIUS client.

The state transition diagram comprises four states and six transitions. More importantly, the

timeout transition implies that the RADIUS client needs to maintain information about the time

elapsed since the accessRequest message was sent to the server.

accessR equest
accessA ccept

clientauthenticating

clientidle

accessR eject

accessC hallenge
replyMsg

issuing
challenge

Figure 6.3: State transition diagram fo r RADIUS server

This is not the case for the RADIUS server, as depicted in figure 6.3. It can be seen that there

are no timers associated with the transitions*. Essentially, it is the responsibility of the client to

initiate any re-transmissions.

In [RFC2138], the authors also note that “the stateless nature of this protocol simplifies the use

of UDP” and that “UDP simplifies the server implementation.” The initial approach^ towards

This is true because the state transitions are generated from external messages rather than internal

timers.

 ̂An enhanced version of RADIUS is currently under development by the DIAMETER project [CalhOl]

of the IETF; the DIAMETER API is presented in [KempOl]. The specification [CalhOl] and the API

155

RADIUS was one that assumed a single process with a single request. The request is received,

processed and returned - therefore the complexities associated with multiple threads do not

apply and, as a result, there is no need for state management.

6.3.2 Authentication, Authorisation and Accounting
The Authentication, Authorisation and Accounting (AAA) Architecture of the IETF, aims at

“providing a generic framework that allows complex authorisations to be realised through a

network of interconnected AAA servers” [LaatOO].

This section examines the work presented in [LaatOO], [VollOOa], and [VollOOb] by looking at

the protocols and the architectures from the perspective of state utilisation and the extent of its

use.

[VollOOa] presents the requirements for Authorisation of Internet Resources and Services. The

generic framework identifies the following conceptual entities that may be participants in an

authorisation:

■ A user who wants access to a service or resource

■ A user home organisation that has an agreement with the user and checks whether the user

is allowed to obtain the requested service or resource

■ A service provider’s AAA server, which authorises a service based on an agreement with

the user home organisation without specific knowledge about the individual user.

Figure 6.4 depicts these conceptual entities as well as the service agreements (thick dashed

lines) between the parties involved.* The figure also identifies the sequences of accessing the

resources for a single-domain scenario. In sequence 1, the agent sequence, the user

communicates with the resources (service equipment) through the AAA server. In sequence 2,

the pull sequence, the user communicates directly with the resources. In sequence 3, the push

sequence, the user must first contact the AAA server but direct access to the resource equipment

is permitted following the authentication and authorisation by the server. A detailed explanation

of these procedures can be found in [VollOOa] and [LaatOO].

[KempOl] explicitly define two state machines: there is a peer state machine, section 8.0 of [CalhOl], and

a session state machine, section 11.1 of [CalhOl]. Furthermore, the client session manager is expected to

maintain both the peer state machine and the session state machine [KempOl].
* These service agreements can take the form of formal contracts or service level agreements. However,

an important element in any agreement is trust. The authors in [LaatOO] say that “trust is necessary to

allow each entity to ‘know’ that the policy it is authorising is correct. This is a business issue as well as a

protocol issue.” The issue of trust was also highlighted in section 4.2.1.

156

4-

User

i--------

4“ ' —
4-

User Hom e Organisation

— ► AAA Server

Service Provider

AAA Server

— ►’ Service
— K Equipment

Figure 6.4: Basic authorisation entities, service agreements, and access
methods

The emerging open standards through APIs (such as the ones discussed in section 3.4.2.3)

enable the provisioning of service components, with the final service offering being a

combination of service components from distributed service providers. For this reason, the

AAA authorisation framework also considers the scenario where services are combined across

administrative domains. Figure 6.5 shows the agreements present in a distributed service

hierarchy.

User

Organisation 1

AAA Server

Service
Equipment

Organisation 2

AAA Server

Service
Equipment

Figure 6.5: Distributed services and agreements

The agreements in the distributed services scenario imply that “the request from the User will be

authenticated and authorised by the first organisation, then forwarded to the second

organisation” [VollOOa].

As the authorisation requests may be chained (e.g. by forwarding from organisation 1 to

organisation 2 etc.) there is a requirement for resource management. Furthermore, in many

applications, the authorisation results in establishing an ongoing service, i.e. a session. “Each of

the servers involved in the authorisation may also want to keep track of the state of the session,

and be able to effect changes to the session if required” [VollOOa]. The framework proposes the

use of a resource manager that is responsible for tracking the session as well as being able to

initiate changes to the session and inform other resource managers when changes occur.

157

The Resource Manager (RM) is defined as “the anchor point in the AAA server from which a

session can be controlled, monitored, and coordinated even if that session is consuming network

resources or services across multiple Service Provider administrative domains” [VollOOa].

Numerous requirements for the RM are identified in the specification, however one that is of

importance for the discussion is that an RM cooperates with “policy servers” or policy decision

points [Stev99, section 7.3.3]. The RM “maintains internal state information, possibly complex

cross-administrative domain information, supported by dialogues with its peer Resource

Managers” [VollOOa].

Some of the issues that are identified by [VollOOa] include the capability of service equipment

to notify its resource manager when a session terminates or changes state; the RM must inform

other RMs that keep state for this session. The RM must also set a time limit for each session,

which must be refreshed by having the resource manager query for authorative status or by

having the authorative source send periodic keep alive messages that are forwarded to all RMs

in the authorisation chain. Finally, any RM in the chain must have the ability to terminate a

session. This requires the RM to have knowledge of at least the adjacent AAA servers in the

authorisation chain.

In order to provide the above functionality, the RM must maintain session state information in

order to make decisions about new sessions based on the state of existing ones and to allow

monitoring of sessions by all interested AAA Servers. Furthermore, session identifiers are

required to identify sessions; these must be unique within each AAA Server and, according to

[VollOOa], it is desirable that the session identifier for a specific session be the same across all

AAA servers.

The requirements for maintaining session information in AAA servers increase the complexity

of the server, especially if session state must be maintained across administrative boundaries.

The RM must be able to track the state of sessions and allocate resources to a session that is

associated with an AAA server. Furthermore, it may track use of resources allocated by peer

resource managers to a session. All session-specific AAA state information required by the

AAA server is also maintained by the RM. Session information includes pointers to peer RMs

in other administrative domains that possess additional AAA state information that refers to the

same session.

158

6.3.3 Common Open Policy Service Protocol
The Common Open Policy Service protocol (COPS) [RFC2748] is a simple query and response

protocol that is used to exchange policy information between a policy server, i.e. a policy

decision point, and its clients, i.e. policy enforcement points.

Figure 6.6 depicts a simple configuration for a framework for policy-based admission control,

defined in [RFC2753]. The two main architectural elements for policy control are the policy

enforcement point (PEP) and the policy decision point (PDP). The PEP is a component at a

network node and the PDP is a remote entity that may reside at a policy server.

Policy Server

Policy Server may
use LDAP, S N M P,
etc. for accessing
policy database.

CO PS
PDP

PEP

Network Node

autfientication etc.

Figure 6,6: The primary policy control architecture components

The PDP may make use of additional mechanisms and protocols to achieve additional

functionality such as user authentication, accounting and policy information storage.

The interaction between the components begins with the PEP receiving a notification that

requires a policy decision. The PEP then generates a request for a policy decision and sends it to

the PDP. The PDP returns the policy decision and the PEP enforces it by appropriately

accepting or denying the request.

The COPS protocol maintains state information in the following ways.

■ The request/response state is shared between the client and server. This means that requests

from the client PEP are remembered by the remote PDP until they are explicitly deleted by

the PEP. Furthermore, responses by the remote PDP can be generated asynchronously at

any time for a currently installed request state.

■ The state from various events may be associated. This means that the server may respond to

new queries differently because of previously installed request/decision states that are

related.

■ The protocol is stateful in that it allows the server to push configuration information to the

client and allows the server to remove such state from the client when it is no longer

applicable.

159

As the protocol maintains state information, it must be able to deal with broken connections as

well as provide synchronisation methods. When a TCP connection is lost, the PDP is expected

to clean up any outstanding request related to request/decision exchanges with the PEP. Once a

connection is re-established, the “PEP is expected to notify the PDP of any events that have

passed local admission control. Additionally, the remote PDP may request that all the PEP's

internal state be re-synchronized (all previously installed requests are to be reissued) by sending

a Synchronize State message” [RFC2748].

6.3.4 Web Servers
Arguably, the capabilities of the HTTP protocol with regard to complex manipulation of state-

dependent actions are limited. In fact, the HTTP protocol is stateless and a web server forgets all

information about a particular client after it has responded to a specific HTTP GET request.

Often there is a requirement to maintain information for a session in a web browser. For

instance, when a CGI form is filled, and the user moves to the next page, the information

submitted by the user on the first page needs to be transferred onto the next page. This can be

achieved using hidden fields within the CGI form. Hidden fields are invisible fields that store

the information a user enters and resubmit that information in subsequent forms without any

need for the user to re-enter it or even be aware that the information is being passed around.

Arguably, hidden fields act as variables that maintain “state” between form submissions; here,

the term “state” is used very lightly, since holding the value of a variable across HTTP

transactions in the same session is regarded by the author as a very weak form of “state.”

An alternative way to maintain session information is by using cookies. A cookie

[Javal31][Laur98] is a small piece of data that is stored in the client on behalf of a server.

Typically, servers use a cookie to store the user identifier or basic configuration information.

The cookie is sent back to the server in subsequent page requests from this client.

Session persistence generally means that a client has reserved some form of session state on a

server and that state is maintained even if connections are destroyed and re-established. Cookies

enable HTTP sessions to be persistent and the state information to be maintained even when the

session has ended.

Arguably, cookies are a new approach towards managing state. Until now, all the architectures

presented have maintained state throughout the execution lifecycle of the specific process

requiring state. Cookies however, enable state to be maintained even after a process has

160

terminated. The term persistence is re-defined in section 6.4 where persistence for CORBA and

Enterprise Java Beans (EJB) is defined.

6.3.5 The Session Initiation Protocol Revisited
As discussed in section 3.3.2.1.1, the operation of the SIP protocol caters for two modes of

operation: proxy server and redirect.

When SIP is used in a proxy mode, the proxy server may be either stateless or stateful. A proxy

server operating in stateful mode tracks incoming requests that generate outgoing requests and

the outgoing requests. Furthermore, a stateful proxy acts as a virtual user agent client-server

(UAC, UAS) by implementing the server state machine, when receiving requests, and the client

state machine for outgoing requests.*

A stateful proxy needs to maintain internal tables to store previously processed requests

(including acknowledgements and responses), in order to decide how to deal with further

incoming messages. When an incoming request is received, the server must check a number of

fields in the incoming packet (for instance, the To, From and Call-ID fields) against existing

requests to determine how to deal with it. Furthermore, acknowledgements and responses must

also be examined against the table that contains previously processed messages to determine

how to respond.

A stateless proxy on the other hand, forgets all information once an outgoing request is

generated. As a result, a stateless proxy does not behave as a virtual UAC/UAS but forwards

incoming requests downstream and all responses received upstream. Furthermore, “proxies that

accept TCP connections must be stateful otherwise if the proxy were to lose a request, the TCP

client would never retransmit it” [RFC2543].

* The exception to this is when receiving a 2xx response to an INVITE [RFC2543].

161

Initial

INVITE
1xx

INVITE status Change
\ 1xx

CANCEL
200

Call P rocessing

failure
>= 300

callee picks up
 1200

INVITE
sta tu s

INVITE
sta tu s

Failure S u c c e ss
sta tu s

Confirm ed

Figure 6.7: SIP server state transition diagram

The state within a SIP proxy server is explicitly defined in the case of stateful SIP proxy

servers. However, even in the case where a stateful SIP proxy server is not used, its behaviour

can still be characterised by a state transition diagram. This does not mean that internal state is

maintained. The events and movement from one state to the next are based on an ordered set of

client-server transactions, as depicted in figure 6.7 [Schu98].

6.3.6 Integrated Services Architecture
The Resource Reservation Protocol (RSVP) provides resource reservations for multicast or

unicast data flows [RFC2205]. In terms of state maintenance, RSVP opts for the soft state

approach. The state is maintained within the routers and periodically refreshed by incoming

packets.

6.3.7 Use of State in C lient-Server Architectures: A Summary
This section provides a summary and identifies whether the systems discussed maintain state

and support sessions. It also identifies whether transitions are triggered exclusively by external

events or whether internal triggers are automatically generated.

The RADIUS protocol is simple as it comprises a small number of transitions and states, and is

based on simple message-passing. State transitions are triggered by both external and internal

events, such as requests. In the case of the RADIUS client, there are also internal triggers

arising from the timer that is maintained to detect timeouts and issue re-transmissions. However,

it could be argued that the simplicity of the protocol arises from the fact that the initial approach

taken for its design assumed a single process with a single request. This removed any

concurrency issues such as the ones discussed in section 6.2.

162

The next architecture that was presented was that of the AAA. This architecture is arguably

simple until the complexities of open service provisioning through APIs and third-party service

providers are introduced. These require the AAA architecture to be able to provide resource

management (for the reasons identified in section 6.3.2).

The introduction of the resource manager considerably complicates the implementation of the

AAA architecture. The RM is a complex functional entity with compounded requirements. It is

responsible for maintaining state information across administrative boundaries, tracking

sessions by keeping a time limit for each of them and for communicating with peers in order to

terminate sessions across domains. Furthermore, state and session information must be

replicated and kept up-to-date along the chain of AAA servers; this means that resources need to

inform the RM when an event occurs that may affect the state.

S ta te Inform ation
in c lu d e s s e s s io n

Identifiers a n d s e s s io n
AAA

Server

Resource
Matter

PEP

A d m in is tra tiv e Dom ain 1

s t a t e in fo rm ation
in c lu d e s all p rev io u sly
a u ttio r is e d r e q u e s ts

S ta te in form ation m u s t
b e c o n s is te n t a c r o s s all
r e s o u rc e m a n a g e r s COPS

AAA
Server

AAA
Server

Policy
Server

Resource
Manager

PEP

AAA
Server

Resource
Manager

PEP

RADIUS
Server

PDPResource
Manager

PEP Atdministrative Domain
RADIUSR esources

Administrative Domain
RADIUS

ClientIn ternal S ta te on ly
in c lu d e s a tim er for
d e te c tin g tim e o u ts Iministrative Domaii

Figure 6.8: Communication between resource managers across
administrative domains

A further specific requirement that was presented is that “any resource manager in the chain

must have the ability to terminate a session” [VollOOa]. For instance, in figure 6.8, the resource

manager in administrative domain 2 must be able to terminate the session of a user who lies

within domain 1 and is accessing resources in domain 3 through domain 2.

The capabilities for an entity such as the resource manager point towards an architecture that

resembles more the control plane of the PSTN rather than an IP network. The RM is responsible

163

for controlling peer sessions across domains and terminating sessions that are in the path. To

provide this, state is maintained at the heart of the IP network in the case of RSVP. This

approach is similar to that provided by SSPs and SCPs in the IN architecture. The author has

argued in [SoloOOa] that such state information could be used to describe a BCSM-like state

machine.

Figure 6.8 also depicts a PEP, a PDP and a policy server communicating using the COPS

protocol. The protocol relies on storing state information for all previously processed requests.

This is because previous requests may alter the behaviour of the RADIUS server for new

requests.

The following section moves on to discuss the presence of state in distributed object

technologies.

6.4 U se o f St a t e in D is t r ib u t e d O b je c t
T e c h n o l o g ie s & A r c h it e c t u r e s

The focus of the work presented in this section is to identify the use and presence of state in

Distributed Object Technologies (DOT). A comprehensive introduction to distributed

computing can be found in [Orfa99]. All DOTs include the characteristics and mechanisms that

are given below [VeniOO]:

■ Remote Method Invocation (RMI) is an evolution of the Remote Procedure Call [RMI]

method for object-based distributed scenarios. While classical RPC [RFC1831] foresees the

invocation of a function that is naturally separate from the data it handles, in an object-

based distributed environment, RMI invokes operations (methods) on specific object

instances.

■ Implementation-independent Interface Definition Language (IDL) defines the interfaces

between objects. An object is characterised by a contractual interface that describes the

methods and attributes that are available to clients [COREA95] [Quantitative97]. In a

distributed environment, objects need to communicate even though they may have been

implemented in different programming languages and the contractual interface defined in

IDL enables this communication.

■ Location transparency allows objects that participate in interactions to do so without

conveying location information or being aware of the actual transport mechanism that is

used for this communication [Orfa99].

164

The next sections discuss the distributed object architectures of CORBA and DCOM and

Enterprise Java Beans.

6.4.1 Common Object Request Broker Architecture
The Common Object Request Broker Architecture (CORBA) is the product of the Object

Management Group (OMG) consortium. CORBA is an architecture based on the concept of a

common software or object bus allowing for distributed object inter-operability and providing a

wide set of services to interacting objects [CORBA95]. The OMG has also defined the Object

Management Group Architecture (OMA) with the goal of “providing a high level specification

of the functionality needed for object oriented distributed processing” [OMA97].

CORBA provides a description of the interfaces and services that an OMA-compliant Object

Request Broker (ORB) must implement in order to conform with the OMG standards

[CORBA95]. In addition, it defines a software infrastructure to facilitate the development of

reusable and portable applications in a distributed environment [CORBA95].

One of the services provided by the CORBA Services Specifications is that of Persistent State

Service (PSS) [PSS99]. The PSS “presents persistent information as storage objects stored in

storage homes. Storage homes are themselves datastores; a datastore is an entity that manages

data” [PSS99].

A full description of the capabilities provided by the PSS can be found in [PSS99]. The focus

here is on a small subset that is of interest to illustrate the use of state models within CORBA.

6.4.2 Enterprise Java Beans
This section discusses the Enterprise Java Beans (EJB) architecture and focuses on the specific

issues regarding state management, presence of state and persistence. A complete and

comprehensive coverage of the architecture can be found in [EJB99]. However, for the purpose

of completeness a short introduction to the constituents of the architecture is provided before the

issues regarding state are examined.

EJB is an architecture for component-based distributed computing [EJB99]. It defines a state-

management protocol that, according to [EJB99], is simple but “provides an enterprise Bean

developer great flexibility in managing a Bean’s state.”

An Enterprise Bean is a body of code with fields and methods to implement modules of

business logic. Client programs interact with one or more Beans and an Enterprise Bean can be

165

implemented to interact with other Beans. An Enterprise Bean is a building block that can be

used alone or with other Beans to build a complete and robust thin-client multi-tiered

application.

There are two types of Enterprise Beans: session Beans, which implement business tasks, and

entity Beans, which implement business entities.

Table 6.2 provides a high level view of the comparison between session and entity Beans.

Contains conversation state Represents data in a database
Handles database access for the client Shares access for multiple users
Persists for the life of the client Persists as long as data in the database
Can be transaction-aware Is transaction-based
Does not survive server crashes Survives server crashes

Table 6.2: Session and entity beans

Figure 6.9 presents the state diagram for a stateful session Bean. Note the presence of time-

dependent transitions, such as timeouts. These imply internally generated messages.

Instance throws system
exception from any methoddoes not exist

create RemoveO
or timeout timeout

method ready passive

commit ro llb a c k

method
ready in TX

ERROR

Figure 6.9: Stateful session bean state diagram based on EJB

The presence of state for session and entity beans is related more to “transactional” state rather

than “control” state. Transactional state information is used to decide the validity of a

transaction on a database; control state information is used to decide, for instance, the

availability of resources as in the other architectures discussed.

166

6.5 A St a t e -B a s e d C l a s s if ic a t io n o f IP -B a s e d
P r o t o c o l s

The work presented up to this point showed that the majority of the systems examined rely on

state to some extent. This section provides a classification of the systems using metrics such as

whether:

■ state is critical to the operation of the system, i.e. the system cannot function if the state

information is lost.

■ the system is stateless or state plays a supplementary role to the operation of the system.

Systems that maintain no state information appear in this category, as do systems where

state is maintained but is not critical for the operation of the system.

■ maintaining session information is a requirement. This classification includes systems that

need state information to be maintained in the form of a session, such as a system that

maintains a history of all processed requests during a single lifecycle.

■ the use of persistent sessions is mandatory. Systems that maintain state information which

can be retrieved across subsequent lifecycles fall into this category.

With the above metrics in mind, the Venn diagram depicted in figure 6.10 can be constructed.

Web clients without hidden fields or cookies

Stateless SIP Proxy Server
Stateful SIP Proxy Serverstateless

session
Information CORBA/EJB

AAA Framework
RADIUS

COPS Protocol

Web clients with cookies enabled Persistent
sessions

RSVP

stateful

Figure 6.10: Classification o f state-dependent architectures

Figure 6.10 represents the interactions of the various architectures. It shows that the CORBA

and EJB architectures rely extensively on maintaining state information for their execution. Of

course, this is not surprising as the state information that is maintained for these DOTs is

required to provide transactional capabilities.

167

The RADIUS protocol can be characterised as having a low dependence on state. This means

that although external messages result in state transitions, there is not heavy reliance or

communication between the states. Furthermore, the fact that RADIUS can operate over UDP

implies that the protocol is connectionless. By design the protocol does not exhibit a high

degree of state-dependent behaviour, otherwise it would have been designed over TCP.

Importantly, RADIUS does not support multiple requests. This implies a single-instance view of

the protocol that partly accounts for its simplicity. If RADIUS could support multiple requests

concurrently, it would need to provide mechanisms such as threading, queue management and

resource management (as the AAA framework does). To provide these, a manager would be

needed. Furthermore, the manager would have to be aware of the status of these sub-systems.

This can be phrased in a statement that says that the complexities and overheads that arise in

maintaining state in any form may be partly attributed to the underlying complexities imposed

by the concurrent behaviour of such a system.

In a concurrent or real-time system, a limited pool of resources may need to be allocated to

processes requesting these resources. Such a system needs to control access to these resources

and to ensure that they are allocated to the requesting processes in a manner that is determined

by a scheduling algorithm. In order for the control process to maintain a view on the status of

the resources, there must be a way for it to keep track of the status of the resources that are

available. Such systems explicitly impose the requirement for state-dependent actions and the

need to maintain internal state.

The PSTN is one such system with a limited pool of resources and a large number of processes

(individual users) making requests. The IN architecture and the SS7 protocol play a major role

in maintaining the robustness of the PSTN. Deeply embedded within both the IN architecture

and the SS7 protocols are state models that form an integral part of the control plane.

The AAA architecture that was presented in section 6.3.2 identified the need for the resource

manager and its requirements. Some of the requirements that were presented include:

■ Sending of notifications from service equipment to the RM,

■ Maintaining time limits for sessions,

■ Refreshing the time limits and

■ Terminating sessions anywhere in the authorisation chain.

168

Such capabilities reflect closely the functionality provided traditionally by the IN control

architecture rather than the control plane of the IP domain. The functionality provided by AAA

servers must exhibit the robustness usually associated with the control plane of the PSTN.

The capability of an AAA RM to terminate sessions anywhere in the authorisation chain as

identified by [VollOOa] requires that each RM maintain state information such as active sessions

and timers for each session. Figure 6.11 shows a graphical representation of one way that an

AAA server could maintain a list of the active sessions and the participants in that session.

Resource Manager in
Administrative Domain 1

Session

Participant G

Participant E

Participant A

APi for remote managerV\ent

Resource Manager in
Administrative Domain 2

Session

Participant F

Participant B

Participant A

Resource Manager in
Administrative Domain 3

Session

Participant E

Participant A

Figure 6.11: Distributed control with RMs residing across administrative
boundaries

The association of participants with a unique session is similar to the mechanism of the IN CS-2

CPH that was discussed in section 2.4.6.

169

Application Process

MACF

SAO 1 SAO SAOSACF SACF SACF

ASE ASE ASE ASE ASE ASE ASE ASEASE

R e so u rc e M anager in A dm inistrative D om ain 1 R eso u rce M anager in A dm inistrative D om ain 2 R e so u rc e M anager in A dm inistrative D om ain 3

A ssociation A ssociation

Figure 6.12: Application entity structure adopted from [Q.1208]

Furthermore, the controlling RM can be viewed as a multiple association control function

(MACF) [Q.1208]. The associations represent the communication pipes through which one

AAA RM communicates with another. In the case o f AAA, since an RM needs to be aware of

all participants in an authorisation chain, this relationship can be implemented using a Single

Association Object (SAO).

M an agem en t Platform

Figure 6.13: The management layer interface

There is a further point that needs to be examined - the effect on the system if a management

platform needs to have a view on the state o f multiple RADIUS servers. This problem is

represented graphically in figure 6.13, which shows a management platform communicating

with various RADIUS servers. Potentially such a platform could collect information regarding

170

the state of the underlying resources (in this case RADIUS servers), either by requesting the

information or by having the RADIUS servers send status information to the management layer.

If such a mechanism is incorporated into the existing RADIUS architecture, it adds complexity

to the implementation of the protocol. This problem is further aggregated in the case where the

resources may not be in the same administrative domain. For such a scenario a common API

must exist that allows vendor-specific resources to communicate with the management layer, or

any overlaid layer.

This issue is further discussed in chapter 8, where the architecture for an application server is

presented based on the concepts of both the IN architecture and the IP-domain.

6.6 Chapter Sum m ary and Research Contributions

This chapter presented the control constructs for implementing state behaviour, the

representation of state and the policies on state-dependent actions. A number of client-server

architectures and protocols were then presented and examined with respect to their reliance on

state. This was followed by a discussion on the presence of state in distributed object

technologies, such as CORBA and EJB. The last section provided a view on state models by

incorporating ideas that were presented in the previous chapters.

Through the work that was presented in this chapter, the presence or absence of state in various

IP-based technologies was demonstrated in a Venn diagram. A discussion on state models

incorporated both ideas from the work presented in this chapter regarding state-dependent

actions and principles from the IN control architecture.

Another important issue that can be drawn through the work presented in this chapter is the

issue regarding the classification of whether a system is state-based or stateless; this depends on

the level at which the system is looked at. As discussed in section 6.3.1, when a single-instance

view of a system is examined, it may lead to the system being characterised as stateless.

However, once the system becomes distributed through middleware technologies, the system

may then be viewed as maintaining state at the middleware layer.

In the following chapter, the implementation of a network management system is presented. The

system was implemented by utilising the approaches to state-management that were presented

in this chapter as well as from state models present in the IN-domain.

171

C h a p t e r 7

In v e s t ig a t in g St a t e M o d e l s in t h e

IP -D o m a in t h r o u g h a W e b -B a s e d

N e t w o r k M a n a g e m e n t S y s t e m

The work presented in this chapter aims to investigate the notion of state in
distributed IP-based systems. For this, a web-based Network Management system is

presented. The system was developed for use in the department of Electronic and
Electrical Engineering at UCL.

7.1 Introduction

The Network Management System (NMS) allows administrators to monitor the status of the

various devices on their network. The system makes use of the Simple Network Management

Protocol (SNMP) [RFC1098] and standard Management Information Bases (MIBs) [RFC1155]

[RFC1212].

In this chapter, section 7.1.1 provides the motivation for this work. Following this, section 7.1.2

gives a brief overview of the operation of the SNMP protocol. Section 7.2 then presents the

Network Management System and section 7.3 examines the distributed behaviour of the NMS.

Finally, section 7.4 provides a chapter summary.

7.1.1 Motivation and Approach
The motivation for the work presented in this chapter was to gain a clear understanding of the

issues surrounding “state” and the notion of “state” in IP-based systems. Chapters 2 and 3

examined telecommunications control architectures, such as those of the IN, and signalling

protocols, such as SS7. In chapter 6 state-management and the existence of state in IP-based

systems was presented.

Therefore, chapters 2, 3 and 6 provided a clear understanding of the use of state models within

IN-based as well as IP-based systems. For instance, chapters 2 and 3 demonstrated that state-

dependent actions are deeply embedded within the core of the control plane of the PSTN,

whereas chapter 6 showed that IP-based systems can be classified both as “stateless” and “state-

172

dependent”, depending on the specific viewpoint. To fully examine the role of the control plane

and the role in which network intelligence is provided, it is essential to study the notion of

“state” by adopting the state-management techniques discussed in chapter 6.

In order to investigate the communication of distributed systems while focusing on the specific

issue of state-based and stateless transactions in IP-based architectures and systems the author

took the view that a useful way to examine the behaviour of such systems was to design and

implement a relatively complex system that is used in a real-time environment, such as the

NMS.

In the implementation of the system, the author also believed that a useful way to understand the

state-based and stateless behaviour of such systems at the application layer was by excluding

middleware technologies that could have taken care of the communication layer. For instance,

middleware technologies such as CORBA [CORBA95], DCOM [DCOM][Will94] and

Enterprise Java Beans [EJBOl] could have been used.

Moreover, a slightly similar approach was to utilise existing software patterns [Gamm95] (see

section 6.2.1) to represent state. However, this again would involve some overheads of driving

the state models and may have obstructed a clear view of the underlying system.

The approach that was adopted was to implement the system using message-passing to simulate

the effects of internal state using external trigger conditions (section 6.2). These messages

effectively make up transactions that are used to drive the distributed system from one state to

another according to the internal state transition tables. The internal state transition tables are

therefore explicitly defined using language-dependent constructs, such as “case” and “if-

statements”.

The message-passing approach does not maintain persistent session state. This means that

requests are received, processed and replied to using a request identifier that is not maintained

across sessions. For example, if an incoming request is received and the server processing the

request does not respond, the client will not re-issue that request, as it does not maintain a list of

the sent requests and, therefore, does not maintain persistent state information.

173

The reason for this lies in the environment of the system. Since this is a Network Management

System, if a request is lost and the NMS server responds with a time lapse, the results of the

request may not be reliable.*

Having introduced the motivation and approach of the work that is presented in this chapter, the

next section provides a brief background to the SNMP protocol.

7.1.2 Introduction to the Simple Network Management Protocol
The Simple Network Management Protocol [RFC1098][RFC2570] is an application layer

protocol for the management of network devices. These network elements are called managed

objects. Associated with each managed object is a defined set of management-related

information. This includes variables, also known as attributes, that can be read or written to by

the network manager via the network. Figure 7.1 depicts the components of a Network

Management System.

workstation
Plotter

Ethernet-

A gentDA gent

nBridge PC
A gent

Network IVIanagement Station (NMS)

Printer Bus

Figure 7.1: Example o f the components o f a Network Management System

The management information associated with a network is kept at the network manager station

in a Management Information Base (MIB) [RFC1155][RFC1212]. The MIB specifies the

variables that the network elements contain. The variables have unique object identifiers

(objectID) and use a hierarchical numbering system. For example, [RFC1213] defines the

ipInReceives attribute as:

* This occurs in the case where the client sends a request which is received by the server, which then

issues an SNMP request to the SNMP agent. The server obtains the result but, for some reason, does not

respond. If the client re-issues the same request with the same request identifier and the data is returned

by the server from the cache, it may not reflect the real-time view o f the managed device.

174

“iplnReceives OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION

"The total number of input datagrams received from
interfaces, including those received in error."

: : = { i p 3 } ”

This identifies the attribute as a counter, with read-only access (i.e. the network manager cannot

change this value), and a mandatory attribute. The hierarchical name for iplnReceives is:

.iso.org.dod.internet.mgmt.mib-2.ip.iplnReceives

while the numerical value corresponding to the same object identifier is:

.1.3.6.1.2.1.4.3

A network management station is used to query this information for each device in figure 7.1.

Such queries are handled by agents located on each of the managed objects. SNMPvl

[RFC 1098] defines five message types whereas SNMPv2 [RFC1441] defines an additional two

requests, as well as two new MIBs: the SNMPv2 MIB [RFC1213] and the SNMPv2-M2M MIB

(Manager-to-Manager). A full description of the SNMP protocol can be found in [Stal99].

7.2 The Netw ork M anagem ent System

The Network Management System (NMS) is composed of the following main subsystems:

■ Web Server Manager,

■ Applet,

■ Network Management System,

■ SNMP Agents and

■ Database Agents.

At a high level, the aim is to allow an applet to access the managed objects.

175

Web Server Manager

Processor
Network
Comms

Applet Piped Communications

WS
Interface NMS

Interface

Network Management System

Comm Ttiread
for Incoming
Messages

Comm Thread
for Outgoing
Messages

Result Sender
Queue Thread

Message
Processor and

Scheduler

SNMP
Agents

Interface

DB
Interface

SNMP
Agent 2

SNMP
Agent n

SNMP
Agent 1 Agent

Java SQL
Class

AdventNel
SNMP API

SQL
DBmanaged objects

Figure 7.2: Interfaces o f the NMS

The web server provides the communication between the applet and the NMS. When the

administrator logs onto the system, the applet presents a floor-view* of the requested floor. The

floor maps represent a top-down view of all managed objects for that floor. This includes

devices from printers to workstations, ports, hubs, routers and PCs.

The NMS controls the interface between the information that the web server requires and the

information that the agents can provide. It controls the agents and updates the web server so that

the web pages reflect the underlying status of the managed objects. It does this by polling the

agents at regular intervals so that the data is updated automatically. Furthermore, the NMS is

responsible for controlling the SNMP agents and their polling intervals, as well as setting

SNMP traps when such requests are received from the web server.

The database agent provides an interface to the database containing information about all the

managed objects. For each object, information in the database includes its location (i.e. room),

the IP address (if appropriate), as well as the MIB file that corresponds to that device.

* A floor-view represents a literal top-down view of a specific floor, and the colours of the devices on that

floor represent the status of the devices.

176

The SNMP agent is responsible for collecting the information from the managed object. When

an object is constructed, it accesses the SNMP daemon for that device. The object then uses the

object!D to query the DB agent, which loads the appropriate MIB for that managed object. For

example, if the SNMP agent is responsible for a router, then the router MIB provided by the

manufacturer will automatically be loaded. The SNMP agents are threaded objects that are

controlled by the NMS system and which can access the specific attribute from the managed

object by using the AdventNet SNMP API [Advent].

7.2.1 Communication across the Components
Communication between the web server and the NMS is implemented using pipes, as illustrated

in figure 7.3. Communication between the applet and the web server uses sockets, with the web

server creating a Server socket.

The applet and the NMS are therefore responsible for controlling separate threads for incoming

and outgoing messages; the web server establishes a connection with both the applet and the

NMS and hence requires four threads (two for incoming and two for outgoing).

Having given a brief description o f the communication between the system’s components, the

individual interfaces (figure 7.2) are discussed next.

AppletCommThreadNetOut

NettoServerCP■c^

ServerCPtoPipe

NMStoPipeIn thread33 d I

S4

S2

S3

P3

P2

P4

Applet

Web Server

Network Management
System

I AppletCommThreadNetin

&ServerCPtoNet

NettoServerCPI Netto!

I NMStoPipeOut thread

Figure 7.3: Communication between the applet, web server and NM S

7.2.2 The DB Interface and the DB Agent
The database interface provides access to the database through the agent. Figure 7.4 shows the

class diagram for the DB Agent.

177

The methods made available by the class allow access to the relational SQL database, which

contains all managed objects. Two methods whose function may not be apparent are getX and

getY. These provide the x-coordinate and y-coordinate to the applet. Essentially the applet

generates an image of the floor based on these coordinates, which are entered by the

administrator.

« In t e r f a c e »
dbm Interface

♦getD eviceType(int devicelD) : int |
♦getD evice lP (int devicelD) : String |
♦getD eviceFloor(int devicelD) : int
♦getF loorD evices(in t floor) : Vector |
♦getDeviceList(intdeviceType) : Vector j
♦getPortDevices(in t devicelD) : Vector j

^ e t X (in t devicelD) : int
♦getYOnt devicelD) : Int j
♦getlconLocation(int devicelD) : String
♦getAdditionallnfo(int devicelD) : String
♦getM ibFile(int devicelD) : String i

Figure 7.4: The DB Agent class

7.2.3 The SNMP Agent and the SNMP Interface
The SNMP agent class uses the SnmpTarget class from the AdventNet API [Advent]. The

public methods of the class essentially allow the NMS to assign a new agent to a specific device

using its devID. The getStatus method informs the NMS of the status of the device.

com.adventnet.snmp.beans.SnmpTarget

" 7̂
InstanHates

_____ _ _ J_ _
SnmpAgent

(%,tfieAgent : SnmpTarget = null
ü ^ b A g e n t ; DBAgent

♦SnmpAgentQ
♦assignToDevice(devlD)

^ In d M ib F ile O

5verTriggerTime(last, current) *
►overTriggerLeveijcurrValue, maxValue, trigger) j
findHardDiskCapacityO : int
findNodeO : String
îetHost(ttieHost) j

HoadMibnie(theFile)
jetEnquiryTableO : Vector

Figure 7.5: The SNMP Agent class

A detailed explanation of the AdventNet API and MIB Browser tool can be found in [Advent].

178

7.2.4 The NMS Com ponents
It can be seen from figure 7.6 that five o f the classes that make up the NMS extend the

java.lang.Thread class. This enables the NMS to deal with multiple requests from the applet; it

also monitors the managed objects at the requested polling intervals.

A second point to note is that the outgoing messages from the NMS are sent by the

ResultSender class. This works as follows. When the concurrent threads o f the NMS need to

send messages to the web server, the ResultBuffer.put() method is called by the thread and

places the message in a buffer. The ResultSender’s run() method invokes the ResultBuffer.getQ

method at intervals. When a message is returned by the ResultBuffer.get() method, it is sent

using the communication pipes discussed in section 7.2.1.

r

extends

I

NMSCPtoPipe
(O u tg o in g : M essage

: ObjeclOulputStream

♦NM SCPtoPipeO
- ♦addOulGoingO

♦run()

PipetoNMSCP
i n c o m i n g : M essage
^ Æ o m m a n d P : N M SC om m andProcessor
S ^ b j ln : ObjecMnputStream

♦PipeloNM SCP{lnStream , NMScp)
♦run()

G etGenSlatus
^po llln te rv a l : ini
d ^ e sB u tle r : ResuitBuller
4 o u t t * g : NM SM essage
3^1 oor: ini
f i^ n m p A g e n l: SnmpAgenI
S ^ o o rO eu ce lD s V ectir
^ e v S l a l u s : ini
^ e \ ^ ;inl
^ e v Y :inl

/ ♦G eG enS talus(lloor. imer\al, ResBufler)
/ ♦runO

GelSpec Status
(^ e s Butter : ResullBulter
^ d b f g e n t : DbAgenI
^ n m p A g e n l : SnmpAgenI
l^outV eclor : Vector
l ^ u lM s g ; N M S t^ ssa g e
^ p o l l ln te n a l ; int

♦G etSpecS ta tus(deu cel D, into r\a I. R esBu tier)
♦runO

' N M S C om m andProcessor
^ e s B u t f e r : R esu lB u tter
f l ^ s : R e su iS e n d e r
% »ggs G etG enSlatus
^ ^ s s G etSpecSta lus

instantiates 4 s c p : S e nreiC om m andProcessor
^ p i n l : P iped inpu lS ream
f i ^ in 2 : P iped lnpu lS team

 ̂ f i ^ o u t l : P ipedOulputStream
â ^ o u C : P ipedOutputStream
^ m s C o m m ThreadPipeO ut : NkBCPtoPipe
S ^ m sC o m m T b re a d P ip e ln : PipetoNMSCP

instantiates i ♦N M SC om m andProcessoi<m ySC P, p h , pout)
♦N M SC om m s(cp)

1 (^ e n e ra le S e s s io n lD O
♦ m akeP ipe(p in)

^ G e n e ra le A jltiR e sp o n se (tlo o r)
♦ C om m andS chedu ler(com m and , in S c p t^ g)

(trom lang)

R esu ltS ender
^ e s B u t t e r : ResullButter
f i^ u t t rb g : M essage
S ^ m s M s g : NMStylessage

♦ R esullS ender{rb : ResullButter)
♦runO

R esult Bufer
<%>msg : NM SM essage
^ « a ta la b le bo o lean = ta lse

♦R esuiB utferO
♦getO : NM SM essage
♦put(m : N M S t^ ssa g e) : w)id

Figure 7.6: The NMS

7.2.5 The W eb Server and the Applet
The structure of the web server closely resembles the structure o f the NMS, i.e. there is a

CommandProcessor (in both the web server and the applet) that is responsible for handling

incoming and outgoing requests. Where a response is sent from the NMS and needs to be

directed to the applet (without the intervention o f the web server) the web server simply passes

the incoming message onto the outgoing thread towards the applet.

179

The earlier sections described the network management system, the communication among the

components, the internal details of the NMS components, as well as more “lightweight” parts

such as the database agent. The next section looks at the implementation of the system from the

point of view of the communication mechanisms adopted as well as state behaviour of the key

controlling parts.

7.3 D is t r ib u t e d St a t e -B a s e d B e h a v io u r o f t h e N M S
The objectives behind implementing the NMS system can be summarised as follows:

■ To design a robust system by using extensive state models,

■ To define well-structured and clear interfaces between the individual components and

■ To understand how a classical three-tier architecture operates in the IP domain.

One of the architectural characteristics of the NMS is the fact that the sources of information are

distributed. The system queries distributed SNMP agents to obtain the status of various devices

scattered across the network. The NMS must be able to collect the information, examine the

configuration under which it is running, and return the results in a meaningful manner to the

applet that is making the request.

To achieve this, the request must go through a web server (figure 7.2), reach the managed object

and return the result. In this system, the initial constraints were imposed by the capabilities (and

limitations) of existing protocols and architectures. For instance, the information collected from

the devices was limited to what the MIB could provide, as well as by the capabilities of the

SNMP protocol. Also, there are the security considerations in the communication between an

applet, its host, and the web server. As a result, the information returned by the web server to

the applet had to be in a format that the applet could process without requiring any additional

resources that would break the limitations imposed by the security model of applets.

The core part of the system had to allow the transfer of information from the applet to the

SNMP agent and back. The internal functional modules had to be designed in a way that would

enable them to communicate internally and externally. The external communication of the

system is defined by the interfaces identified in figure 7.2. The following interfaces were

developed for external communication between the systems:

■ The WS Interface, between the applet and the web server,

■ The NMS Interface, between the web server and the NMS core manager and

■ The DB Interface, between the NMS core manager and the SQL database.

180

The internal interfaces that were developed allowed the Message Processors and Schedulers o f

each o f the components to send internal requests. These requests are powerful and vary from

requests that initiate queries to the SNMP agent to management requests that query the status o f

existing requests. As a result, through this interface, it is possible for the existing core NMS to

be deployed in a distributed manner. For example, while on one host there would be the

command and message processor, another would handle the management-type requests.

The modularised approach utilises well-defined messages for the internal communication o f the

system. Therefore, it is possible for the overall architecture o f the system to be re-used and

implemented in a completely different environment. For instance, the SNMP interface can now

be replaced with a GSM interface for obtaining information relating to GSM subscribers.

The internal message-passing mechanism can also be further extended to include ideas from the

IN world. For instance, when an external request is received, the internal status o f the system is

examined before passing it to the appropriate sub-system that deals with the implementation o f

the request. To achieve this, internal state within the system must be maintained. This internal

state would then be examined by the sub-system once a request is received and, if the internal

state is satisfactory, the request is executed otherwise it is returned. For the implementation o f

internal state, a similar approach to the IN model would be utilised using detection points and

points in call (section 2.4.4).

M anagem ent Platform

[Service Instance
with FSM

Resu t Sender Processor

internalinterna

internalstate
Machine

State
Machine

Message
Processor Outgoing

Responses

Service Execution Environm ent

Figure 7.7: Extensions to the NMS architecture

Figure 7.7 depicts an extension to the basic architecture o f the NMS system. Shown are the

processors for the incoming and outgoing requests, the internal message processor, and the

181

results sender. On the top, there is the management platform, which communicates with the

service execution environment.

The extensions are introduced by the state models that are present in the incoming, the outgoing

and the result sender components. These state models are introduced in order to maintain the

internal state of the system, in a similar manner to the Basic Call state model in the IN.

Chapter 8 examines in detail the applicability and extensibility of this architecture as a generic

application server that draws from IN principles, but also from the state-dependent discussions

of chapter 6.

7.4 C h a p t e r S u m m a r y a n d R e s e a r c h C o n t r ib u t io n s

This chapter examined the notion of “state” by implementing a distributed IP-based network

management system. The approach that was used excluded additional complexity or possible

overheads of distributed middleware technologies. The distributed communication utilised

message-passing.

One of the initial design decisions that had to be made was to decide how to distribute the

system, to examine the communication between the various individual parts, but also to make

sure that the system maintained its robustness throughout its execution. As a result, ideas from

the IN world, which enabled distributed parts to communicate in a clearly defined manner, were

incorporated.

The implementation of the system provided the opportunity to realise in practice the effort that

is required in maintaining a system in a valid state that is capable of processing incoming

requests but also supports basic fail-safe techniques.

Chapter 8 examines in detail the need for a generic application-server in an open service

creation environment. The chapter also discusses the architecture for such as an application-

server, based both on telecommunication and eomputer-science principles.

182

C h a p t e r 8

O p e n Pr o g r a m m a b l e N e t w o r k s ,

A p p l ic a t io n S e r v e r s a n d

N e t w o r k In t e l l ig e n c e

This chapter looks at service provisioning in an environment where third parties can
access core network components through specially designed interfaces and identifies

issues that need to be resolved. One specific problem is the interconnection of service
providers. The chapter proposes a solution to this in the form of an application server for
third-party service providers.

8.1 I n t r o d u c t i o n
The interest in open programmable networks is gaining momentum. This can be seen by the

increase in the number of members of groups such as Parlay and also from the increase in the

number of conferences and publications in the field.

The traditional telecommunications environment has been one where the network has been

under the exclusive and strict control of the incumbent operator and revenue was generated by

services that were conceived, designed, implemented and managed by the operator. There is

now a move towards providing open access to network components through APIs [MoyeOl]

[Bisw98]. This necessitates the investigation of new functional entities, such as gateways, that

enable this interconnection. These issues are the focus of the work presented in section 8.2,

where this change in the telecommunications environment is described.

Section 8.3 presents an API Server architecture and describes its functional layers, its interfaces

and its state models. The work presented in the section has already been presented by the author

at major international conferences.

The API Server, after initial work, was specified in the Specification Description Language

(SDL) [Z.lOO] and simulated using Message Sequence Charts (MSG) [Z.lOO] [Ekka95]. The

aim of this was to investigate whether it was feasible to incorporate the proposed state models

183

of the API Server within the Parlay framework. This work is presented in section 8.4. Section

8.5 provides a chapter summary and research contributions.

8.2 O pen N e t w o r k s

This section provides the reasoning behind allowing core network functionality to support

independent software vendors and third-party service providers. It complements section 3.3.2.4,

which presents two main approaches for providing APIs that open up the network.

8.2.1 Traditional View on Service Implementation
The traditional approach to telecommunications has been that the incumbent network operator

has total and exclusive control over the network. This is illustrated in figure 8.1.

The figure shows a number of network operators and describes in detail the business domain of

a single network operator. In this single-instance view, the network resides at the core and

consists of control-plane architectures, such as the IN, and signalling networks, such as SS7.

The network resources represent the components that are needed by many applications. The

external circle represents the traditional view of the business domain for a network operator, one

where the focus was the network. All three tiers are owned, maintained and operated exclusively

by network operators.

Well-defined
interfaces owned

and maintained
by the network

operator

End-users

Network Operatorsoo

Network Operator s
Business Domain

Applications

Network Resources

Network Resources

Applications

Network Operator s
Business Domain

Well-defined
interfaces owned
and maintained
by the network
operator

Third-party
service providers
cannot access
network
resources

Third-party
service providers

Figure 8.1: Traditional approach to service provisioning

184

A number of network operators exist within the network operator cloud and network

interconnection enables communication between different subscribers rather than the

development of services that span multiple network boundaries. Such services are developed by

third-party service providers; the wall in figure 8.1 represents the fact that third-party service

providers cannot access network components within the network operator’s boundary.

This approach has resulted in network-centric communications for service delivery. The

monolithic, network-centric approach does not allow services to access data in the enterprise

domain for decision-making [ParlBuss99]. This is because the implementations of IN services

run in the network domain, at the core of the network, and as a result, any third-party

involvement in service programming is limited to customising only a small set of operational

parameters [Laza97]. The network-centric approach is sufficient for mass-market applications

[ParlBuss99] where there is a business case for wide appeal, such as the Freephone service, but

unfortunately it is not sufficient for smaller applications. Furthermore, in the network-centric

approach, the services are relatively easy to manage and can be built in a very robust fashion.

There are also fewer security considerations to deal with [ParlBuss99].

However, there are significant disadvantages to the traditional approach. Today’s converging

telecommunications environment requires a new approach; end users are slowly demanding an

interoperable environment regardless of the transport network being used for a service [Taij97]

[SoloOOb]. In the traditional approach, the network operator is responsible for the creation,

operation and management of all applications and, as a result, it is difficult to achieve the

necessary flexibility to deploy many customised versions of services to different customer

groups. This leads to a long time-to-market for new applications [ChenOO] [ParlBuss99]

[Laza97].

The move towards an open network environment can be described as an evolutionary step. The

network operators have established a resilient core network infrastructure and it is in their

interest to generate further revenue from core network components by enabling open access to

elements such as SCPs, HLRs and location servers. It is the author’s view that no network

operator would consider allowing open access unless it were deemed to be profitable, although

regulatory pressure has also acted to direct operators in this way [ECD98/10/EC].

Consequently a new approach that combines the benefits of the network-centric approach with

the flexibility of the edge of the network approach is desirable. Of course, in enabling such open

access, the integrity of the network must not be hindered [Alex98].

185

8.2.2 Open Network Access through APIs
The approach taken by advocates of Application Programming Interfaces (API) such as Parlay

is to open up access to the various protected functional entities (FE) of operators to third-party

service providers using carefully defined class libraries.

The concept of APIs is in essence very simple and requires very little group agreement or

standardisation. This is in stark contrast to the traditional telecommunications approach, which

is to standardise almost every aspect of the hardware, software and protocol development.

Regardless of this, the case in support of opening up core network components has been

accepted by incumbents, such as BT and AT&T. This is supported by the fact that BT is a

founder member of the Parlay Group. Although APIs significantly simplify and open up access

to the telecommunications equipment of operators to third-party service providers, some

significant problems still remain:

Firstly, the operator needs to ensure that the access offered to third-party service providers is

used in a manner that does not in any way hinder the integrity of the network [Alex98]. To

emphasise this, the work presented in [Ward95] identifies issues relating to degradation of

network integrity from the simple interconnection of networks, which does not enable open

access to key network components. If interconnecting networks may have an impact on network

integrity, then open access to network components must use architectures that can guarantee the

robustness and operation of the network.

This leads to the second issue of maintaining the integrity of the interface. This means that the

interface is used in a manner that conforms to its description. For example, if a service offering

requires that certain calls are made in a manner described by a sequence diagram, the operator

must ensure that requests that do not conform to the sequence diagram are dropped.

Furthermore, in order to preserve the integrity of the network the third-party service providers in

the enterprise domain must use the interface in a manner that is compliant both with the

capabilities of the interface and the service level agreement with the operator. More importantly,

the network operator must ensure that third-party service providers make use of the API in a

foreseeable manner and, even more so, within the proper sequencing invocations which are

acceptable to the API.

A third issue deals with billing for the services [SoloOOb]. Apart from the business issues

regarding the billing of services, there is the question of how the billing information is conveyed

to the operator’s platform. Moreover, mechanisms may need to be provided that allow the

service providers to inform other service providers if a certain service is not available.

186

A key element to API technologies is the gateway. This is a server architecture that provides the

interface between client requests and the network services. Whilst it is in the interests of

simplicity and ease of implementation for the client-server interface to be as simple as possible,

special consideration must be given to the interface to maintain security, integrity, scalability

and general manageability of what is essentially a fragile access to precious network resources.

Equally important is the problem of maintaining session state [SoloOOb]. Services that make use

of network functionality are likely to be much more complex than simple client-server-type

transactions. Within a session, services are requested by a client through code written using the

operator-supplied APIs. The interactions between the client and the server may be hidden by the

software interface, however the interaction cannot be ignored. There needs to be supporting

structures that maintain the session state for a service with little or no user involvement.

Another important consideration is the scalability of service provider interactions [SoloOOc]

[SoloOOd]. One client of a service provider may be the service provider for another client. This

creates a hierarchy of service provider-client interactions that could get quite complex. Creating

services and managing them is a complex task that requires new tools.

8.2.3 Hierarchical Third-Party Service Provisioning
In a hierarchical inter-working scenario an architectural framework that allows third-party

service providers to share their APIs, without any loss of security, efficiency and integrity, is

desirable. This framework could be extended to whatever degree of the hierarchy is thought

relevant to the business case.

187

M ngmnt
Platform

3rd-Party Serv ice
Providers

API S erver

/

M ngmnt
Platform

M ngm nt
Platform

E nd-users E n d -u sers1 ^ ^ --------! API Server API S erver

Parlay

Network R e so u r c e s

Figure 8.2: Hierarchy o f third-party service providers

Figure 8.2 provides a graphical view of such a hierarchical scenario. Two third-party service

providers (3SP) are using the Parlay API to access core network resources. In turn, proprietary

functionality is introduced and offered in the form of new services to other 3SPs. The fact that

the 3SP space is likely to be populated by a number of service providers is represented by the

cloud in which the service providers are placed. Under this hierarchical scenario, mechanisms to

maintain a unifomi interface across service providers need to be implemented [SoloOOb]. This is

the application server architecture (API Server) that is presented in section 8.3.

The API Server consists of two parts: the API Server and the management platform. The API

Server provides controlled access to the services whilst the management platform monitors the

service lifecycle. The management platform communicates with another management platform

of clients and servers interacting with the API Server. The aim is to provide a platform that is

resilient to the problems inherent in the services on offer as they are developed and put through

early deployment. The management platform allows other 3SPs to send requests that deal with

service availability and cost and to change QoS parameters.

In figure 8.2 interface A allows service requests to be sent across API Servers. Requests across

this interface are likely to be sent using CORBA [CORBA95] or EJB [EJBOl]. Interface B

allows the management platforms of different 3SPs to communicate and exchange management-

type information. The management interface allows managers to inform each other of problems

detected in the service. For example, if a deadlock situation occurs that is not detected by the

188

service program, timers in the management platforms inform each side of the deadlock and

trigger an exception. The management platforms can also trigger on other criteria such as

frequency of requests and requests that are inappropriate. Interface C represents the service-

specific requests received from end users. In most cases, the functionality offered across

Interface C is likely to be a subset of the functionality provided by Interface A.

8.3 IN-BASED A p p l ic a t io n Se r v e r

Traditionally, an application server is a platform that provides an environment where services

can be executed. It may also provide a management layer for the manipulation of the services

that are executing. Commercially available application servers include WebSphere by IBM and

the Borland Application Server by Borland.

The proposed application server is not aimed at providing functionality that is already present in

existing application servers. The aim of this IN-based application server is to provide features

that in the author’s view are desirable for such a platform and indeed within the operating

environment. As such, existing application servers may decide to incorporate functionality that

is proposed here.

The API Server architecture draws from the control plane of the IN and also from the flexibility

and advantages that have arisen from the IP community.

8.3.1 W hy IN-Based?
The concept of state models and state model behaviour in telecommunications has already

proven essential to management and network intelligence applications of the core network. The

IN control architecture and, in particular, the basie-call process and its state model, the BCSM,

is possibly the most important state model in telephony, upon which the majority of IN services

are based.

Call party handling (CPH) was discussed in section 2.4.6. The capabilities provided by CPH

(such as the merging and splitting of call segments) are achieved at the expense of very complex

and well-defined interactions between the switches involved. The concept of Connection View

States in CS-2 (section 2.4.5) provides a way to capture all the possible configurations under

which call parties can be connected to each other in a single state machine.

It is the author’s view that the CPH capabilities of IN CS-2 provide a powerful way to describe

the behaviour of complex multi-party and multi-service interactions. These ideas are

incorporated into the definition of a similar mechanism in the API Server. One of the main

189

advantages of such a state model is the resilience and the proven track record of the IN model.

Of course a state-model approach imposes overheads in terms of managing the model; however,

it is critical to maintain a guaranteed level of service for such an API Server.

To enable the API Server to have a view of the state of the services that are executing, a number

of initial service segments have been identified. Service segments are grouped in a similar

manner to the IN CPH operation (section 2.4.6): the API Server maintains a service segment

association that contains service segments that describe the state of each instance of the service.

The following initial service segments were identified as potentially useful states:

■ Null State: This is the initial state for any new service.

■ Stable Service Execution: A call segment association containing a service segment in this

state indicates that the service is executing.

■ Service Request: This state indicates that a new service request is received by the API

Server.

■ Ordered Request: This state indicates that certain actions need to be executed in a specific

order.

8.3.2 API Server Logical Interfaces
A P I S erver 2A PI Server 1

r Services jServices

Service Management
and Control Platform

Service Management
and Control Platform

Service Execution
Platform

Service Execution
Platform

Figure 8.3: Logical interfaces o f the A P I Server

The logical interfaces across two API servers are shown in figure 8.3. The A and B interfaces,

introduced in section 8.2.3, are included here for completeness. The logical interfaces are as

follows:

■ Interface A enables one service provider to provide service functionality to another.

■ Interface B is the interface between the service management platforms of two API servers.

This interface provides advanced functionality such as the remote simulation of services.

■ Interface C provides for internal communication between the service execution platform and

the service control and management platform. It allows the service execution platform to

190

inform the service management platform of status information, such as the number of

executing services, authentication violations and service agreement violations.

Interface D allows local service implementations to inform the service execution platform of

important events. For example, it enables a service to interrogate the service control

platform for information pertaining to the status of the API Server.

Interface E is the application server access API that is responsible for authentication and

service discovery.

8.3.3 API Server Functional View

Service M anagem ent and Control Platform (SMCP)

DCOM
RMI

CORBA

Service Instance
with FSM

Service FSM Manager

State
Machine

State
Machine

API

Server Side State
Machine

Management

Service Execution Platform (SEP)

Client Side State
Machine

Management

To switches

Parlay or Proprietary

DCOM
RMI

CORBA

o

ê
o

cE'
>■0

c
(D

databases, SC Ps etc.

Figure 8.4: The API Server architecture

Figure 8.4 presents the functional composition of the API Server [SoloOOb], which can be

divided into the service execution platform (SEP) and the service management and control

platform (SCMP). Access to the server is made possible through distributed technologies such

as DCOM, CORBA or EJB.

The service execution platform contains all the functional elements necessary for the execution

of service logic [SoloOOc]. There are two state models, one for server requests (received from

other service providers) and one for client requests (forwarded to other service providers). The

server-side state machine manager (S_SSM) is responsible for handling incoming requests.

These cause instances of services to be created and are managed using the CPH approach

adopted by IN CS-2. Where requests need to be forwarded to other service providers, a client-

side state machine (C_SSM) is created. Both the server and client SSMs are based on the IN

BCSM.

191

The Terminating Service Interface allows access to proprietary requests. These are incoming

service requests that can be served without a supplementary request to another service provider

and are handled by the Terminating Services Manager.

In addition to the server and client SSMs, the API Server requires IN-type FSMs in order to

achieve CPH-based behaviour [SoloOOd]. These are depicted in figure 8.5, which is an

extension of figure 8.4 and also shows the S/C FEAMs and the IN S/C FEAMs.

from client

Service M anagem ent and Control Platform

ISI Interface

S erver S ide Client S ide
M anager
(C_SSM)

M anager
S_SSM)

Terminating
Service

In terfaces

Service Execution Platform

to server

Figure 8.5: Details o f the A P I Server architecture

There are two instances of the server and client SSMs. When a new service request is received a

service instance is created, together with the service policies. The server-side state machine

monitors the activities of the server in the execution of a service: it goes through the lifecycle of

instantiation, message passing, and termination and billing. The state model also implements

points in call to allow the triggering of other services. The state machine is thus given some

flexibility for manipulation similar to IN event and trigger detection points, although the

supplementary services that this might facilitate are as yet undefined. The client-side state

machine represents the client in the instantiation and message-passing phase of a service. The

client-side is not essential in all cases. A client-side may not be implemented if end user

applications choose not to implement it (although this is not recommended) or if a service

request is a terminating service.

192

Information held as part of a Service Policy includes supporting and conflicting services (which

provide information on feature interaction), service order execution (necessary in situations

where services must be executed in a specific order) and service timeout policies (required if the

reply from a service may be needed for further processing). The service policies also contain

information that indicates whether the particular service needs to initiate supplementary (i.e.

dependent) services.

The IN_FSMs contain service segments and service segment associations (section 2.4.6). The

S_FEAM creates new service segments (SS) and service segment associations (SSA) in a

similar manner to the CPH model. The Inter-SSM Interface (ISI) allows communication

between originating and terminating BCSM-type models. A direct link from the API Server to

an IN CS-2 compliant node can be achieved by direct access to the IN S FEAMs and

I NC FE AM s .

8.3.4 API Server State Model
The state model that describes the overall behaviour of the API Server is presented in figure 8.6.

The state models that describe the behaviour of the API Server for each individual service

request (incoming and outgoing) are described in the following sections.

initiateSessionAuthentication

authenticationSuccess

serviceRequestReceived

serviceLoadOK, features ok

terminateSession

null

EDP

EDP

EDP

EDPbilling

authentication

terminateStateModel waiting service request

authorise and load service

Figure 8.6: The API Server state model

A third-party service provider must be authenticated and authorised prior to issuing any service

requests. In figure 8.6, following the null/idle state when the initiateSessionAuthentication

request is received, the API Server moves to the authentication state. Here, the requesting third

party is authenticated. A failed authentication results in an exception detection point (EDP). A

successful authentication is followed by an authorisation check (which is part of the

authentication state) and the authenticationSuccess event is generated internally.

193

When the authenticationSuccess message is received internally, the API Server moves to the

waitingServiceRequest state. Here, the API Server awaits incoming service requests; when one

is received, it moves to the authoriseAndLoadService state. Here, the service level agreements

are checked from the management platform, to ensure that the requesting party is authorised to

initiate the specific service requests.

The API Server then moves to the billing state and applies the billing is applied according to the

service level agreement between the third-party service providers. Billing is an important

element of the proposed state models. Existing application servers do not model this state and

cannot, therefore, have a clear view (from a billing perspective) on the underlying services that

are executing on the platform.

8.3.5 Server State Model
The server state model, presented in figure 8.7, is set up when the API Server receives an

incoming service request from a third-party service provider.

O.null

billingSuccess
serviceReqReceived

1 .authenticate

S.bllling
loadPolicies

i
2. load policies

-error-1-

- error-2-

policyLoadSuccess
__

3.load service

serviceLoadSuccess
i

4.send messages

service Teiwination

Figure 8.7: The Server state model (S_SSM)

The first state, authenticate, models the condition that an incoming request is authenticated. The

issuing service-provider must have an agreement with the API Server prior to issuing any

service requests. An authentication failure leads to the state model moving to the error-1 state. A

successful authentication causes the loadPolicies transition and the state moves to the

loadPolicies state.

Within the loadPolicies state, several metrics pertaining to the specific service are loaded.

Service policy metrics include the following:

194

■ timeOutValue - the timeout values for the spécifié service

■ processingPowerQuantifier - a value denoting the processing power needed for the service

■ conflictingServices - used for detecting possible feature interference (section 2.4.3.2)

■ supportingServices - services required for the service (during the load procedure of the

policy, the supporting services must be available)

■ billingFramework - information regarding the billing policy of the service.

Additional service policy metrics that were identified include ResponseTimes, ServiceGapping

and numberOfConnections.

The state model then moves to the loadService state, where the service implementation is

loaded. This transition causes further state changes in the service segment association for the

specific service. For example, the service segment association may move from the

serviceRequest to the stableServiceExecution service segment.

The following state (sendMessages) indicates that the service was loaded and is now in a stable

condition (represented by the stableServiceExecution service segment). When in this state, the

service is able to execute within the service execution environment of the API Server.

Prior to the termination of the service, indicated by the serviceTermination transition, the model

moves to the billing state. Here, the customer data record is charged by the service control and

management platform according to the billing policy of the service.

8.3.6 Client State Model
The client state model, depicted in figure 8.8, is set up when a third-party service provider

initiates a service request to the API Server.

195

serviceReq Issued

serviceTermination
transmitServiceReq

O.null

2.start service

3.send m essages

1 .create new service

Figure 8.8: The Client state model (C_SSM)

The state model is used to monitor the progress of the outgoing service requests. For such

requests, it is of interest to maintain the status of the requests, but at the same time not to

overload the API Server with what may be pointless states. Therefore, the states that are

maintained for the client-side state model are kept to a minimum.

Once a service request is received, the state model enters the createNewService state. Here, the

internal state variables (section 7.2.4) are initialised. The service segment associations and the

service segments are also instantiated. When the management platform receives the necessary

internally-generated messages from the client-side control module, it issues a

transmitServiceReq message that triggers the sending of the request and thus the starting of the

service.

8.4 U s i n g SDL t o S i m u l a t e t h e API S e r v e r

This section presents a simulation involving the Parlay WakeUp application example. The

simulation was carried out using the Telelogic Tau tool, SDT. A complete description of the

application example can be found in [ParlaySeq99]. In order to present the simulation of the

Parlay WakeUp application example it is necessary to describe the WakeUp application.

8.4.1 UML Sequence Diagrams
This section presents two UML [Z.lOO] sequence diagrams. The first describes the sequence of

events for any application to access a Parlay server. The second describes the operation of the

Parlay WakeUp application example.

196

8.4.1.1 Accessing the Parlay Framework

The sequence diagram in figure 8.9 [ParlaySeq99] shows an application accessing the Parlay

framework for the first time. In order for the application to use the Parlay services, it must first

authenticate itself with the framework and then discover an appropriate service [ParlayFw99].

lo g ic A uthentication C ontrolM anager A uthentication M anagem en t D iscovery

1 : initiateClientAuthenticationO

2: authenticateFram ew orkO ^

3: authenticateC lientO

4: 'forward event'

5: obtainFram eworklnterfaceO

7: obtainFram eworklnterfaceO

6: new ()

8: new ()

9: discoverServlceO ^

10: selectS erv lceO ^

11: signA ppS erv iceA greem ent ()
<

12: 'forward event'

13: sIgnServiceA greem entO

14: new ()

15: new () ^

16: setCallbackO

Figure 8.9: UML sequence diagram showing an application accessing a
Parlay Server adopted from [ParlaySeq99]

The messages, identified by their sequence numbers in figure 8.9, are described below:

1 Determines the authentication mechanism to be used between objects
implementing the IparlayAppLogic interface and the IparlayAuthentication
interface

2 Used by the client to authenticate the framework
3 Used by the framework to authenticate the client
4 Forwards message 3 to the IparlayAppLogic
5 Receives a reference to the object implementing the

IparlaylntegrityManagement interface
6 Creates an object that implements the IparlaylntegrityManagement interface
7 Receives a reference to the object implementing the IparlayDiscovery

interface
8 Creates an object implementing the IparlayDiscovery interface
9 Requests the object implementing the IparlayDiscovery interface to pass an

appropriate service identifier back to the application (version 1.0.1 of the
Parlay API specification supports only call control, messaging and user
interaction)

197

10 Informs the object implementing the IparlayAuthentication interface of the
service it requires

The application is returned information relating to the service level
agreement, which should be signed by both parties.

11 Used by the framework to ask the application to sign the service level
agreement

12 Forwards message 11 to the IparlayAppLogic
13 Used by the application to ask the framework to sign the service level

agreement
14 Creates an object implementing the IparlayCallControlManager interface.

This only happens once the service level agreement is signed and before
returning the signature and the reference to the service manager back to the
application via the return parameter of message 13.

15 Creates the application service manager.
16 Passes the application service manager's callback reference to the object

implementing the IparlayCallControlManager
Table 8.1: Messages used by an application accessing a Parlay Server

8.4.1.2 The Alarm Call (WakeUp) Application Example

Figure 8.10 depicts the UML sequence diagram for an alarm service that shows a reminder

message. The message is delivered to a customer as a result of a trigger from an application.

Typically, the application would be set to trigger at a certain time, however, it can also trigger

on events. This sequence assumes that an IparlayUICall service interface [ParlaySeq99] has

already been obtained.
: loarlavA pp : loarlavA pp : IparlavA pp : IparlavA pp

L og ic C all C a llL eo U C all
: IparlavC all : IpariavC all

Lea
: b a r la v
U C a ll

1: new (^

2: crea teC a llO
3: new()^

4: setC a llb a ck O

5: rou teCaIIToOrigin ation R eq O

7: ro u teC a llT o O rig in a tio n _ R es()

6: n e w a

8: 'forward ev en t'
<

9; setC a llb a ck O

10; s e n d ln fc C a ll_ R e q ()

Figure 8.10: UML sequence diagram fo r an Alarm Call Service adopted
from [FarlaySeqÇÇ]

198

The messages, identified by their sequence numbers in figure 8.10, are described below:

1 Creates an object implementing the IparlayAppCall interface
2 Requests the object implementing the IparlayCallControlManager interface

to create an object implementing the IparlayCall interface
3 Creates an object implementing the IparlayCall interface if the criteria (e.g.

load control values not exceeded) are met
4 Passes the reference of the object implementing the IparlayAppCall interface

to the object implementing the IparlayCall interface
5 Instructs the object implementing the IparlayCall interface to route the call

to the customer destined to receive the 'reminder message'
6 Used by the object implementing the IparlayCall interface, if the call is

answered, to create an object implementing the IparlayCallLeg interface,
which models the call leg of the customer to receive the alarm

7 Passes the result of the call being answered to its callback object
8 Forwards message 7 to the IparlayAppLogic
9 Forwards the address of the callback object
10 Instructs the object implementing the IparlayUICall interface to send the

alarm to the customer's call leg
Table 8.2: Messages used by an alarm call service

8.4.2 Simulation Overview
The UML specification corresponds to a one-to-one mapping of the objects that are described in

the Parlay framework access interfaces [ParlayFw99].

The following objects were included in the SDL design for the purposes of the simulation:

IparlayAppLogic, IparlayAppAuthentication, IparlayAppCall, IparlayCall, IparlayDiscovery,

IparlayAuthentication and IparlayCallControlManager. The objects IparlayCallLeg, and

IparlayUICall and IparlaylntegrityManagement were not included because these objects do not

play a major part in the exchange of messages between the Parlay server and the application.

The following sections give a description of the system specification.* The simulation of the

system in SDL was accomplished by specifying first the client side of the Parlay API and then

the server side.

8.4.2.1 Client-Side Specification o f Parlay A P I

The first phase in developing the specification of the WakeUp Application was to design a

system containing only the signals sent and received by the client side. In this case, client side

means the service application which offers the service and sits on one side of the interface.

N ote that “system specification” in this chapter refers to the specification o f the system in SDL terms.

199

Figure 8.11 shows the system Wakeupapplication, containing the following blocks and signals:

■ The ParlayAccess block represents the sequence diagram of figure 8.9, grouping together

the objects and processes responsible for the messages that establish access to the

framework interface.

■ The AlarmCall block represents the sequence diagram of figure 8.10, grouping together the

objects and processes responsible for the messages that offer the alarm call service. In the

case of AlarmCall this encapsulates only process IparlayAppCall.

■ The TimeOut block represents timeouts generated by all processes. This block generates the

following signals: AccTimeOutl, AccTimeOutl, AlarmTimeOut, AlarmTimeOutl and

AlarmTimeOutl.

■ Channels C l, C2, C3 and C6 are the paths which carry a number of signals between the

environment and the system. During the simulation, incoming signals are under the control

of the specification developer and timeouts are needed to simulate the timeout of specific

responses. In this phase of the specification, inputs that are expected from the developer and

cause timeouts include: userReqForServ, signAppServiceAggremen, authenticateClient and

routeCallToOrigination_Res (via channels C l, C3 and C6).

■ Channels C4, C5, C7 and C8 carry any signals which are internal to the system and

therefore act as the interfaces between the system’s blocks.

■ A SIGNAL list is needed in the specification in which most of the signals are declared.

Signals that have only local significance are declared internally within a block, and not in

this list.

2 0 0

system Wakeupapplication

C2

C3ra Jh e t'tlc a leC ie tM 1
signA ppSorv iceA greerretn

C5 C8 C4

C7 AlarmCallTimeOut

ParlayAccess

SIGNAL f
use rH e q ro rS e fv o o n ta a o l irv lateC lieritA ulnenlica!o t’.,authenticalef-ram ew crk ,
obtainFniTievAjrKinlertace. d i* > o v e fS » v ce . selsD lService.
signSefv,c e A greem ent rew . se lC a lto a c k I , selCollbackZ crealeC al!
rojIeCailToO riginalion_ Req. ou lhen ticaieC iien t.signA opS erv iceA greem ert. a c c I im e c jl 1
a c c tim e o u tz . alarm T |m eou1.aiarm Iim eout1 a la rm î irreoulZ, forw araEvenlS .
roa le 'C a lllo O rig in a lio n .R es .t 'ig g e rl IriggerZ. InggerA. IriggerB, I rigger.

Figure 8.11: Specification o f the Wakeupapplication system

The simulation begins as follows: the ParlayAccess block encapsulates the processes

IparlayAppLogic and IparlayAppAuthentication. IparlayAppLogic receives the userReqForServ

signal via Cl and initiates the system behaviour by outputting the first of the signals needed to

access the Parlay framework interface to the environment. The userReqForServ signal must be

sent initially by the user, in order to initiate the state diagram of process IparlayAppLogic. The

process thus begins exhibiting the system behaviour.

c
c w ait_R tQ

userReqForServ

iriiliateClienlA'jIhenlicalioJ;^

[----
□ulrierUicpleFrarnev.vjr'<

Figure 8.12: Part o f the IparlayAppLogic state diagram

201

Figure 8.12 shows part of the state diagram for the IparlayAppLogic process. The process

diagram begins with the start symbol and then enters the wait_REQ state until receiving the first

signal from the user. When userReqForServ is received and consumed by the process, the first

outputs are sent to the environment: initiateClientAuthentication and authenticateFramework.

In addition to the above signals, the IparlayAppLogic process also outputs trigger 1 and trigger!

to the TimeOut block via channel C5. Process IparlayAppLogic sends these signals to trigger

processes AccTimeOutl and AlarmTimeOutl into generating the timeouts that indicate that the

corresponding responses to signals initiateClientAuthentication and authenticateFramework

have not arrived within the expected time limits. Two timeouts were needed because process

IparlayAppLogic was not expecting the response from the environment. Process

IparlayAppAuthentication gets the response from the environment (signal authenticateClient)

and then reports back to process IparlayAppLogic (signal forwardEvent4). Under normal

operation, the two responses arrive on time and the timeout signals are not taken into account by

the processes. Instead they are discarded and a transition to the next state takes place.

Figure 8.13 shows the IparlayAppAuthentication process. Signal authenticateClient should

arrive by signal route R3. If timeout alarmTimeoutl arrives first, from signal route R7, the

process terminates, as shown in figure 8.14.

InitlateClientAuthenticalîon.aLrthsnljcâteFfcimâwork,
obtajnFrameworklnterfaos, discoverServica, selectService.
signServiceAgraament, salCallbackI, selCallback2 ,
crealaCaQ, routeCaUToOngination_Req

Cl
^userfleqForSarvJ

lonvardEvertS

IparlayAppLogic
R2

R4

[newj

[{orwardEven14, j
forwardEvefTl12 j

R6 IparlayAppAuthentication

[accTim soull.l
accTimeouG I

R5
[alarmTimeoutl .1
alarmTlmeout2 I

triggerl, lrigger2,
trigger A. IriggerB.
trigger

R7 R3

[aiilhertlicateC3ient, j
signAppSenôceAgreement I

02

03

04 05 08

Figure 8.13: Part o f the ParlayAccess block showing process
IparlayAppAuthentication receiving signal authenticateClient from the

environment via channel C3

202

The major sub-blocks and signals of block ParlayAccess (figure 8.13) arc as follows:

■ The IparlayAppLogic process can be regarded as the central process which initiates and

offers the service. Of course, the process cannot function on its own; instead, the

collaboration of all the processes defines the complete system behaviour.

■ The IparlayAppCall process establishes the service in this specification.

■ The IparlayAppLogic process sends the final message (signal conEstabl) indicating to the

user that a service has been granted.

A number of timeout signals are generated throughout the simulation. The names of the

processes generating timeouts were chosen according to which block was expecting a response

from the environment, e.g. the ParlayAccess ov AlarmCall block.

%
^ wait_AUTH£ ^

autbenlicaleClis aigrm Tirrejull

fc-rwarJE>/enl4

/ ■ ^ — Vf wai1_ AGREE J
' 1--------

Figure 8.14: Part o f process IparlayAppAuthentication.

If process IparlayAppAuthentication receives input alarmTimeoutl before signal

authenticateClient, the process terminates. Figure 8.15 shows process ^ccT/m^Owt/generating

output accTim eoutI. Timer T is set to one unit of time from the moment the process receives

signal trigger2.

The rest of the timers are generated in the same fashion in their corresponding processes. All

timers have a duration of one unit since this is only a theoretical model which does not take into

account any real parameters of a network (for example, delay) and therefore it is not important

to have some specific duration of time in which to generate a timeout. Of course, in practice the

timers would take network characteristics into account.

203

o
^ wail_TR2 j f \G sn era le 1

L /
1 1

Inggôi2 ^
' <

1 1
Set

(Now+1 ,T)
a ccT im a o i^ ^

Timer T;

Generate

Figure 8.15: Process AccTimeOutl generating output signal accTimeoutl

8.4.2.2 Server-Side Specification o f Parlay A P I

These processes define the behaviour of the server side of the API. Block ParlayServer

encapsulates processes IparlayAuthentication, IparlayDiscovery, IparlayCallControlManager,

and IparlayCall.

These processes are responsible for sending the various responses from the Parlay Server back

to the client application Wake Up (alarm call) and, of course, forwarding the service to the

customer. The forwarding of the service, by the server, is not shown in this specification since

this was not implemented in the application.

204

s^'stem Wakeupapplication

r—

1(1)
SIGNAL ^
userReqForServ, grant Serv, in il iateC lientAuthentica don .aulhen Ucate Framework.
obtainFramevyorklnlerfôce, discoverService, selectService,
signServiceAgreement. new. setCallbackl. setCallback2. createCail.
rou teCa ilT oOrigina don_Req. au IhenlicateC lient.signAppServiceAgreement. accTimeou t1.
accTlmeouG. alamiTimeout. alarm Timeout! alarmTlmeout2. fbrwarxjEventÔ.
rouleCailToOriginadon_Res.trigger! triggerZ. triggerA. triggers, trigger.
initMgntSM. closeMgntSM, sendKlessages. transmitServioeReq. servIœLoadSuccess;

[inilMgntSM] ClientStateModel

ParlayAccess

forward Events

[aiarmlimeoutt 1
alarm! imeout2 I

[iransmilServiceReqj

»-
M gntPlaneCI

MgntPlaneC2

[serviceLoadSuccess.1
send Messages I

ServerStateMode [doseMgntSMj

4 -
C12

C2

[grantServ] C1

— i ------------) -
[userReqForServJ

InillateClienlAulhenlication.
a lit tien dcateFramework.
oblai nFrameworklnlerfaoe.
discoverService. selectService.
SignServiceAgreement. setCaliback!
setCallback2.createCali.
rou teCal IT oOriglnatlon_Req

[accTimeouttl
accTimeout2 I

triggerl. trigger2.
triggerA. triggers,
trigger

TimeOut

[auttienlicateC lient, 1
signAppServiceAgreementJ

C3

C7 AlarmCall

fapplication Wakeup call
'consists of bbcks ParlayAccess
nand AlarmCall ttie first representing

/ 1 Itie Framework Interface and ttie
/ I second ttie Service tnlerface to

j Itie Parlay API Server

[rout eC allToOriginatioo. Res]

C6

ParlayServer

ralarmTlmeout

Figure 8.16: Sequence diagram o f alarm call service, adopted from
[ParlaySeq99]

Figure 8.16 shows the Wakeupapplication system, modified to incorporate the ParlayServer

block. The ParlayServer block was introduced in the design for the specification to be able to

show the complete behaviour of the Parlay API in an automated way. That is, the system

simulation should run without interference from the user, except of course from the initial input

userReqForServ. This exchange of messages between the client and server blocks needs to be

automatic as the next phase of the specification specifies a management plane and illustrates

how this plane could be used to monitor the application messages without interfering. The

management plane’s function is independent from the Parlay API and runs in parallel with the

application.

205

C2

C3

R2

iniüateClientAuthentication,
authanticateFramQWork,
obtain Fra mevkorkl ntarface,
selectService,
SignServiceAgreement

R3
I pa li a yAut h enti cation

[authenticateClient, 1
signAppServiceAg reement I

Figure 8.17: Part o f block ParlayServer showing the implementation o f
process IparlayAuthentication interfacing to the system via R2 and R3

Figure 8.17 shows process IparlayAuthentication receiving some of the messages destined for

block ParlayServer. It replies with the necessary outputs via signal route R3 interfaced to the

system via channel C3.

8.4.3 Simulation
The Telelogic Tau [Tau3.5] tool with which the system was specified is supported by the

Telelogic MSC simulation tool [Ekka95]. The MSC tool provides a way of executing the system

under the user’s control. Any signals arriving from the environment, therefore, were triggered

by the developer, who can observe a visual display of the generation of signals, exchanged

between instances in the form of an MSC. Timers within the system are displayed, as well as the

states into which the system has entered at a given point during the execution cycle.

During the various stages of development of the system Wakeupapplication, a number of

simulations were tried out as a verification of system behaviour in order to test if the design was

created according to the UML sequence diagrams of the Parlay specifications. The simulations

showed that the proposed state models for the API Server architecture can function within the

Parlay framework.

8.5 Su m m a r y a n d C o n c l u s io n s

This chapter presented the issues relating to open programmable networks and the way such a

change will impact on service provisioning. Industry initiatives, such as that of Parlay, have

generated a large interest in opening up core network resources through APIs.

However, as identified in this chapter, it is crucial that a framework exists that allows the

communication of third-party service providers. The framework manifested in the form of the

API Server enables third-party service providers to communicate using a common framework.

This allows the management interfaces to access remote features of other API servers and, in

206

doing so, they may even request that a service be simulated before it is released in the real

network environment, thus reducing any effects of failure.

The API Server that was presented in this chapter is based on the proven principles of the IN

control architecture, but also incorporates the flexibility of the IP domain. The service execution

platform is supported by a number of robust state models that enable the local and remote

management platforms to have a complete view of the status of the executing services.

Furthermore, the work presented here was simulated using a real Parlay example, the WakeUp

service. The sequence diagrams of the WakeUp service were used and implemented in UML.

The UML simulation also incorporated the proposed state models of the API Server.

The following chapter contains the conclusions and suggestions for further work that is needed

as a result of the work undertaken by the author.

207

C h a p t e r 9

C o n c l u s io n s a n d Fu r t h e r W o r k

This chapter provides a summary of the main conclusions that can be extracted as a
result of the work presented in this thesis. It also puts forward suggestions for

further work in the field.

9.1 D is c u s s io n

The thesis provided an examination of network intelligence architectures within the converging

telecommunications environment. Network intelligence is provided through the control plane,

which is responsible for the establishment, operation and termination of calls and connections.

The control plane provides a robust foundation for the communication of the functional

components (e.g. switches) and a resilient environment for the execution of advanced services.

One of the aims of the thesis was to understand the traditional approach to network intelligence

in the PSTN. This was achieved through the discussion of the Intelligent Network architecture,

which is a dedicated control plane architecture. The IN defines the BCP that is encapsulated in

the BCSM. The BCSM identifies the logical points in basic call-processing where the IN service

logic located in the switch is permitted to interact with basic call capabilities provided by the

switch. Service initiations can only take place within the boundaries set by the BCSM.

Furthermore, the IN capability sets were presented and it was noted that an important and

significant addition to the capabilities of the IN CS-2 is that of CPH (see section 2.4.6).

In the PSTN, control of the bearer connections is achieved through:

■ the extensive use of state machines

■ the ubiquitous description of the BCM

■ the complete encapsulation of the call process in the BCSM and

■ the robust nature of the signalling network and its protocols.

The state models in the PSTN control plane offer sufficient capabilities to capture the

unpredictable behaviour of end users.

To understand the evolution of network intelligent architectures, the work examined the role of

traditional network intelligence architectures in the converging environment. Within the

208

converging telecommunications environment it is essential to enable the IN architecture to inter­

work with IP-based architectures. The ways in which the IN architecture can be used with new

network intelligence architectures were presented in the form of a taxonomy reference model.

The model provided a classification of network intelligence architectures and protocols in

relation to the Intelligent Network. Within the taxonomy, a number of areas of inter-working

were identified. One such area examined the utilisation of existing IN capabilities to support IP-

based services.

The lEPS application was presented within the context of utilising existing IN capabilities to

support IP-based services. This approach utilises the existing IN CS-I architecture to allow

charging of electronic transactions on telephone bills. The lEPS does not require users to be

holders of credit cards and therefore avoids the controversy surrounding the privacy and

security issues associated with credit cards. The lEPS was designed, implemented, simulated

and a patent application has been filed in the UK [lEPSPat].

Following this, the thesis examined the role of state models in IP-based systems. The work

presented a literature review of the ways that state-driven behaviour can be implemented; using

optimistic or pessimistic policies. More importantly the work examined IP-based protocols and

provided a classification of these with regard to their utilisation of state information. To the

author’s knowledge such a classification has not been provided in the existing literature. The

work provided a classification of IP-based systems using metrics such as whether:

■ state is critical

■ state plays a supplementary role or the system is stateless

■ state between sessions is a requirement

■ persistent session management is mandatory.

However, following the work in this area, it is concluded that there is no clear line between a

state-dependent and stateless system. A system may exhibit a state-driven behaviour but may

not be state-based. State-driven behaviours are the actions performed in a system as a result of

the occurrence of certain events. Such a system could be characterised as state-based even if it

does not track the point (i.e. state) in the behaviour model of the system. Furthermore, in a

distributed system, a heavily state-based design would track the state of all the distributed sub­

systems with which it interacts. Therefore, the reliance on state models for any system is not

defined in a formally quantified manner. It is further concluded that the classification of a

protocol as state-based or stateless depends on the viewpoint, level of abstraction and specific

instance in time one takes on the protocol (sections 6.3.7 and 6.5).

209

To examine the interactions in distributed, IP-based, state-dependent systems the work

presented the design and implementation of a Network Management System (NMS). The NMS

provided the foundations for examining the issues involved in implementing a distributed

system that was state-driven.

A separate concept that was presented and is supported by a number of publications by the

author is the role of the TINA service architecture in relation to the converging

telecommunications environment (sections 2.5 and 3.4). It was put forward that the TINA

service architecture provides a useful reference model for viewing new technologies,

irrespective of whether a complete TINA architecture is deployed.

Through the discussions of the IN CS-2, it was put forward that the SCF in the IN CS-2 (over

IN CS-1) is of higher importance for establishing connections. This translates to allowing

greater control of the TINA Service Session through the SCF that is located in the

communications session. Furthermore, in the converging environment, the work presented the

need for two APIs: one between the service and communications sessions and one between a

gateway (in the service session) and service providers (in the service session).

Finally, the more general case of inter-working is one in which quality of service guarantees can

be made between homogeneous network types as well as heterogeneous network types. For

example, one may wish to establish a call between three parties, each originating from a

different network type. In the author’s view, the IN architecture provides an existing and

evolving set of standards that will facilitate the migration towards these types of scenarios.

Hence, the IN should be viewed as an important architecture for the TINA communication

session.

Within the open service provisioning framework, the thesis identified a framework for the

communication of third-party service providers. Such a framework is necessary as, in the

author’s view, it will provide a solution to problems (refer to section 8.2 for discussion) that

may arise as a result of open third-party service provisioning. The work presented an API server

architecture that complements the Parlay API. The API server architecture draws from the

advantages and proven track record of state machines, in the PSTN, but also incorporates

features and the flexibility of the IP domain.

2 1 0

9.2 S u m m a r y o f C o n t r i b u t i o n s

In chapter 1 the problem field and the approach were put forward. The chapter identified the

aims of the work and detailed the approach that was followed in achieving the aims of the

thesis.

Chapter 2 provided a historical background to telecommunications and examined the

traditional approach to network intelligence in the PSTN. Network intelligence in the PSTN is

provided in the form of the IN architecture, which was examined as a case scenario. The chapter

provided an in-depth analysis of the IN architecture and showed that the control plane of the

PSTN is heavily based on ubiquitous state models that inter-work closely. The main

contribution from the chapter, presented in section 2.5, proposed a different role for the TINA

architecture, one in which the TINA architecture can be used as a reference model for viewing

new technologies.

The main contribution in chapter 3 is the work from the taxonomy reference model (section

3.3). The model provided a unique view of network intelligence architectures in the current state

of convergence and their relation to the IN. This unique view provides a clearer understanding

of the issues involved in providing network intelligence in a converging environment.

Developing the taxonomy model was a complex task because of the large number of

propositions that arise in such an environment; however, the taxonomy reference model

manages to overcome the complexities and provides a useful contribution.

Chapter 4 described the lEPS application. The importance of the system is that it enables the

utilisation of existing IN architecture to support IP-based services. The system is based on

existing IN CS-1 information flows and, therefore, does not necessitate any changes in the

telecommunications environment. Furthermore, the lEPS is unique in that it provides support

for micro-transactions. This is advantageous because it overcomes the limitations of existing

payment systems (refer to section 4.2). The implementation and simulation of the system were

presented in chapter 5.

The main research contribution from chapter 6 is the examination of IP-based protocols and

architectures with regard to their utilisation of state. The work provided an overview of

numerous protocols and architectural frameworks from the viewpoint of state utilisation. The

importance of this is the conclusion that in some systems, the utilisation of state is imposed by

the concurrency complexities of the system.

211

To understand the complexities in implementing state in a distributed system, chapter 7

examined presented the design and implementation of the network management system. The

NMS is a useful contribution as it can be used as a platform for further research in determining

the overheads involved in maintaining state-based information.

The contributions in chapter 8 are many-fold. These include the development of an

architectural framework for the communication of third-party service providers within an open

network environment. Furthermore, the chapter identified an API Server architecture that draws

from the robust foundations of the IN, but also incorporates the flexibility of the IP-domain. A

further contribution of this chapter is the definition of state machines that comply with the

Parlay API. The state machines provide the foundations for easily providing a framework for

the billing of services within the open service provisioning environment.

9.3 F u r t h e r W o r k

As a result of the work undertaken in this thesis, the following areas have been identified as

requiring further research activities.

Firstly, there is a need to examine distributed state-based systems. The work presented in this

thesis provided the foundations for the classification of IP-based systems using metrics that

were identified. These metrics are not formally defined or quantified. There needs to be a formal

definition of metrics that enable the classification of systems on a scale from state-full to

stateless. Such work could result in the definition of a state-based coefficient, which could be

used in software engineering practices.

Secondly, the existing NMS system could be modified so that the modules are aware of the state

the other modules are in. This would enable the quantification of the overheads involved in

maintaining state information and such quantification is desirable. In the author’s view, when

reading journals and publications relating to state models and concurrency, one gets the feeling

that the overheads and complexity imposed in controlling concurrency and multi-threading are

generally accepted whereas state models for management or billing are generally viewed as

creating unnecessary overheads.

Thirdly, work could be undertaken to provide a quantified and fully-defined metric of network

intelligence. Such work is desirable as there is currently no means to measure the intelligence of

a network. However, at the same time it would be difficult to perform such measurements,

especially in networks such as the Internet, where the topologies are not visible.

212

Finally, further work is necessary to fully evaluate the work presented in chapter 8. The API

server architecture presented has provided the foundations for a framework that enables a

unified communication between third-party service providers. Further work in this area should

initially focus on identifying the view of open standards groups of this architecture, although

informal discussions by the author have shown that such a framework is desirable. Then there

needs to be extended simulation of the existing state models with newer versions of the Parlay

API and cooperation with existing research activities that focus on the specification of policies

within the open network framework. Finally, the incorporation of mobile agent technologies

within the architectural framework should be evaluated.

213

C h a p t e r 1 0

R e f e r e n c e s

[ABAOl] American Bar Association, “Digital Signature Guidelines: Legal Infrastructure for

Certification Authorities and Secure Electronic Commerce ”, American Bar Association,

August 1996, ISBN 1-57073-250-7, Available online at:

http://www.abanet.org/ftp/pub/scitech/ds-ms.zip

[Adis98] H. Adiseshu, G. Parulkar, R. Yavatkar, “A state management protocol fo r IntServ,

DiffServ and label switching”, Applied Research Laboratories, Washington Univ., St. Louis,

USA, Network Protocols, 1998. Sixth International Conference on Network Protocols,

13-16 October 1998.

[Advent] AdventNet, “SNMP API Release 3.2”, AdventNet Inc.

Available online at: http://www.adventnet.com

[AGCS] AGCS, “History of AG Communication Systems”, AGCS Web Page.

Available online at: http://www.agcs.com

[Alex93] V. Alexiev, “Mutable Object State fo r Object-Oriented Logic Programming: A

Survey, Technical Report”, TR 93-15, Department of Computing Science, University of

Alberta, 1993.

[Alex98] Alexander, “Safety and security o f programmable network infrastructures ”,

Pennsylvania Univ., Philadelphia, PA, USA, IEEE Communications Magazine, pp. 84-92,

October 1998.

[Alvi98] L. Alvisi and K.Marzullo, “Message Logging: Pessimistic, Optimistic, Causal, and

OptimaC, IEEE Transactions on Software Engineering, Vol. 24 No. 2, pp. 149-159, February

1998.

2 1 4

http://www.abanet.org/ftp/pub/scitech/ds-ms.zip
http://www.adventnet.com
http://www.agcs.com

[AmarOl] Amarach Consulting, "Eir-Commerce 2001 Ireland's Consumer Internet Economy:

Gloom or Boom? ”, June 2001. Available online at:

http://www.amarach.com/study rep downloads/eir-commerce2001.pdf

[Ambr89] W. D. Ambrosch, A. Maher, B. Sasscer, “The Intelligent Network: A joint study by

Bell Atlantic, IBM and Siemens”, Springer-Verlag, ISBN 3-540-50897-X, 1986.

[Aror98] A. Arora and S. Kulkami, ''Component Based Design o f Multi-tolerant Systems”,

IEEE Transactions on Software Engineering, Vol. 24, No. 1, pp. 63-78. January 1998.

[AsatOl] K. Asatani, F. Bigi, and Pierre-Andre Probst, ''Telecommunications Standardization

fo r the New Millennium: ITU-T's Strategies ”, IEEE Communications Magazine,

pp. 124-130, April 2001.

[AustOO] T. Austin, “PKI: A Wiley Tech B r ie f, John Wiley & Sons, Inc., ISBN: 471353809,

December 2000.

[Baet99] C M. Baeten (Editor), S. Mauw (Editor), “Concurrency Theory”, Springer-Verlag

Berlin and Heidelberg GmbH & Co. KG; ISBN: 3540664254, 1999.

[Basle99] Basle Committee on Banking Supervision, “Risk Management fo r Electronic

Banking and Electronic Money Activities ”, March 1999.

[Baum92] S. Baum, “Linking Security and the Law o f Computer-based Commerce”, National

Institute of Standards Technology, Workshop on Security Procedures for the Inter-exchange

of Electronic Documents, Maryland, 1992.

[Baum94] S. Baum, “Federal Certification Authority; Liability and Policy”, US Department

of Commerce, National Institute of Standards and Technology, Maryland, 1994.

[BBCOO] BBC News, “BTNetwork Fault Fixed”, BBC, 26"̂ February 2000,

Available online at: http://news.bbc.co.uk

[BeddOO] Beddus, G. Bruce, S. Davis, “Opening Up Networks with JAIN Parlay”,

IEEE Communications Magazine, pp. 136-143, April 2000.

215

http://www.amarach.com/study
http://news.bbc.co.uk

[BhatOO] R. Bhat and R. Gupta, ”JAIN Protocol APIs”, Trillium Digital Systems, Inc.,

IEEE Communications Magazine, pp. 100-107, January 2000.

[BIS96] Bank for International Settlements, ”The Security o f Electronic Money ”, Report by

the Committee on Payment and Settlement Systems and the Group of Computer Experts of

the Central Banks of the Group of Ten countries, Basle, August 1996, ISBN 92-9131-119-7.

[Bisw98] J. Biswas, "The IEEE P I520 standards initiative fo r programmable network

interfaces”, Kent Ridge Digital Labs., Singapore, IEEE Communications Magazine,

pp. 64-70, October 1998.

[BogeOl] M. Boger, “Java in Distributed Systems: Concurrency, Distribution and

Persistence”, John Wiley & Sons Inc., ISBN 04-7149-838-6, 2001.

[Booc99] G. Booch, B. Cummings, “Object-Oriented Analysis and Design with Applications”,

Addison Wesley; ISBN: 02018955IX, November 1999.

[Bran93] S. Brands, “Untraceable off-line cash in wallet with Observers”, Advances in

Cryptology, Crypto 1993, pp. 302-0318, 1993.

[Brot93] R. Brothers, “Feature interaction detection ”, Bellcore, USA, IEEE International

Conference on Communications, 1993, ICC’93 Geneva 23-26 May 1993.

[Brus98] A. Brusilovsky, “A Proposal fo r Internet Call Waiting Service using SIP: An

Implementation Report”, IETF PINT Working Group, Internet Draft, November 1998.

[BTPrOl] British Telecom, “BT to Extend Reach o f UK Broadband ADSL Service”, BT Press

Release NR0140, 25* June 2001.

[CalhOl] P. R. Calhoun, “Diameter Framework Document”, IETF AAA Working Group,

Internet Draft, March 2001.

[Cape96] C. Capellmann, K. Kimbler, “Towards efficient feature interaction handling”,

Deutsche Telekom, Darmstadt, Germany, IEEE Intelligent Network Workshop, 1996. IN '96.

21-24 April 1996.

[Carg92] T. Cargill, "C++ Programming Style”, Addison-Wesley, MONTH 1992.

21 6

[Cham93] D. de Champeaux, D. Lean, P. Faure, "Object-Oriented System Development”,

Addison-Wesley, ISBN 020156355X, 1993.

[Chau82] D. Chaum, "Blind Signatures for untraceable payments ”, Lecture Notes in

Computer Science, Advances in Cryptology, Crypto 82, Springer-Verlag, pp. 199-203,1982.

[Chau83] D. Chaum, "Security without identification: Transaction Systems to make Big

Brother Obsolete”, Communications of the ACM, Vol. 28, pp. 1030-1044, 1985.

[Chau92] D. Chaum, "Achieving electronic privacy”. Scientific American, August 1992.

[ChenOO] M. Chen, "Evolution to the Programmable Internet”, IEEE Communications

Magazine, pp. 124-128, March 2000.

[Cian99] M. C. Ciancetta, G.Colombo, R.Lavagnolo, D.Grillo, "Convergence Trends for

Fixed and Mobile Services”, IEEE Personal Communications Interactive, pp. 14-21,

April 1999.

[Coli91] A. Colin, "Object-Oriented Reuse, Concurrency and Distribution”, Addison-Wesley,

1991.

[Cons79] L. Constantine, E. Yourdon, "Structured Design : Fundamentals o f a Discipline o f

Computer Program and Systems Design ”, Prentice-Hall, 1979.

[CORBA95] Object Management Group, "The Common Object Request Broker: Architecture

and Specification (CORBA), Version 2.0”, Object Management Group, 1995.

[Cout97] L. Couto, R. Guimaraes, "Information Technology and Its Social-Economic Impact

in a Modern Society”, Washington DC, 1997. Available online at:

http://www.gwu.edu/~ibi/minerva/Springl997/Luciano.Guimaraes/Luciano.Guimaraes.html

[CowaOl] D. Coward, "JavaTMServlet 2.3 and JavaServer PagesTM 1.2 Specifications”,

JSR-000053, (Proposed Final Draft 2), Sun Microsystems, April 2001.

[CurrOl] 1. Curry, "An Introduction to Cryptography and Digital Signatures”, Entrust

Corporation, White Paper, March 2001.

217

http://www.gwu.edu/~ibi/minerva/Springl997/Luciano.Guimaraes/Luciano.Guimaraes.html

[Databeam98] Databeam, “A Primer on the H.323 Series Standard”̂ Databeam Corporation,

White Paper, 1998.

[Davi97] G. Davidson, ‘'Telecommunications and the Rural Economy”, The 1997 Economic

& Technology Development Journal of Canada, 1997. Available online at:

http ://www.edco.on.ca/i oumal/storv5.htm

[Dawk97] S. Dawkins, "An Introduction to JTAPI (Java Telephony API) Release 1.2 Rev.

0.7”, Enterprise Computer Telephony Forum JTAPI White Paper, November 1997.

Available online at: http://iava.sun.com/products/itapi/itapi-l .2/JTAPIWhitePaper 0 7.html

[DCOM] M. Horstmann and M. Kirtland, "DCOMArchitecture”, Microsoft Developer

Network, July 1997.

[Deci97] M. Decina, V. Trecordi, "Convergence o f telecommunications and computing to

networking models fo r integrated services and applications ”, CEFRIEL, Politecnico di

Milano, Italy, Proceedings of the IEEE, Vol 85. No. 12, December 1997.

[DOCOO] US Department of Commerce, "Digital Economy 2000”, Economics and Statistics

Administration, Office of Policy Development, 2000.

[DOC94] US Department of Commerce, "Policy o f Certificate-Based Public Key and Digital

Signatures”, Michael S. Baum, National Institute of Standards and Technology, 1994.

[ECOO] Fischer & Lorenz, "Internet and the Future Policy Framework fo r

Telecommunications Study on the development o f new telecommunications services, in

particular those exploiting Internet, and their impact (economic and otherwise) on the

European Union regulatory and policy framework fo r telecommunications ”, Fischer &

Lorenz European Telecommunication Consultants, A Report for the European Commission,

January 2000. Available online at:

http://europa.eu.int/ISPO/infosoc/telecompolicv/en/Fischer31a.pdf

[ECD98/10/EC] European Commission, "Directive 98/10/EC o f the European Parliament and

the Council o f 26 February 1998 on the application o f open network provision (ONP) to

voice telephony and on universal service fo r telecommunications in a competitive

218

http://www.edco.on.ca/i
http://iava.sun.com/products/itapi/itapi-l
http://europa.eu.int/ISPO/infosoc/telecompolicv/en/Fischer31a.pdf

environment”, The European Parliament and the Council of the European Union, February

1998.

[ECMA-143] ECMA, “Private Integrated Services Network (PISN) - Circuit Mode Bearer

Services - Inter-exchange Signalling Procedures and Protocol”, ECMA QSIG-BC,

June 1997.

[ECTF97] ECTF, “C.OOl Call Control Model, Revision 1.0”, Enterprise Computer Telephony

Forum, 1997.

[EJB99] Sun Microsystems, “Enterprise JavaBeans Specification Version L I ”, Sun

Microsystems, December 1999. Available online at:

http://iava.sun.com/products/eib/docs.html

[Ekka95] Ekkart et a l, “Tutorial on Message Sequence Charts”, in O. Haugen (Ed.), SDL 95

with MSC in CASE, September 1995.

[Ells97] J. Ellsberger, D. Hogrefe, A. Sarma, “SDL: Formal Object-oriented Language for

Communicating Systems”, Prentice Hall, ISBN: 0136213847, 1997.

[Eple90] R. Epley, B.A. Polonsky, S. Yeh, M. Hill, “Advanced intelligent network services

evolution ”, AT&T Bell Lab., Murray Hill, NJ, USA, IEEE International Conference on

Communications, ICC’90, Including Supercomm Technical Sessions, SUPERCOMM/ICC

'90, 16-19 April 1990.

[Essi92] J. Essinger, “Electronic Payment Systems”, Chapman and Hall, ISBN: 0412462907,

August 1992.

[ETSI EG 201-722] ETSI, “Intelligent Network (IN); Service provider access requirements;

Enhanced telephony services - Version 1.1.1”, ETSI, France 1999.

[ETSI EG 201-766] ETSI, “Intelligent Network (IN); Benchmark services features and

network capabilities for the support o f IN CS-3 and IN CS-4 - Version 1.1.1”, ETSI,

France, 2001.

[ETSI ETR 055-1] ETSI, “Universal Personal Telecommunication (UPT); The Service

Concept, Part 1: Principles and Objectives”, ETSI Technical Report, March 1993.

219

http://iava.sun.com/products/eib/docs.html

[ETSI ETR 199] ETSI, ‘‘Network Aspects (NA); Enhancement to the modelling and

capabilities o f the Specialised Resource Function ”, ETSI Technical Report 199,

France, June 1995.

[ETSI TR 101-300] ETSI, “Telecommunications and Internet Protocol Harmonization Over

Networks (TIPHON); Description o f Technical Issues”, ETSI Technical Report

101-300 (V2.1.1), ETSI France, October 2000.

[ETSI TR 101-779] ETSI, “Enhanced SRFphase 2; Enhancement to the modelling and

capabilities o f the SRF phase 2 ”, ETSI Technical Report 101-799 (VI. 1.1), France, 2000.

[ETSI TS 101-235] ETSI, “Specification o f Dual Tone Multi-Frequency (DTMF)

Transmitters and Receivers; Part 1: General”, ETSI Technical Specification 101-235,

May 2000.

[ETSI TS 101-285] ETSI, “CAMEL Service Definition - Stage 1 ”, ETSI Technical

Specification 101-285, August 1999.

[ETSI TS 101-312] ETSI, “Telecommunications and Internet Protocol Harmonization Over

Networks (TIPHON); Network architecture and reference configurations; Scenario 1 ”,

ETSI Technical Specification 101-312, France, 1998.

[ETSI TS 101-313] ETSI, “Telecommunications and Internet Protocol Harmonization Over

Networks (TIPHON); Network architecture and reference configurations; Phase II: Scenario

1 + Scenario 2 ”, ETSI Technical Specification 101-313 (VO.4.2), France, September 2000.

[ETSI TS 101-314] ETSI, “Telecommunications and Internet Protocol Harmonization Over

Networks (TIPHON): Network architecture and reference configurations; TIPHON Release

2 ”, ETSI Technical Specification 101 314 (VI. 1.1), France September 2000.

[Evcr97] K. Evers, W. Lanowski, L. Kersting, I. Mokry, H. Wagner, “An algorithmic

approach fo r feature interaction detection ”, Siemens AG, Berlin, Germany, IEEE Intelligent

Network Workshop, IEEE IN’97, 4-7 May 1997.

22 0

[Fayn99] I. Faynberg et a l, ‘‘Toward Definition o f the Protocol fo r PSTN-initiated Services

Supported by PSTN/Internet Inter-working”, IETF Internet Draft, draft-faynberg-spirits-

protocol-OO.txt, October 1999.

[Feyn97] I. Feynberg, L R. Gabuzda, M. P. Kaplan andN. J. Shan, ‘‘The Intelligent Network

Standards: Their Application to Services”, McGraw Hill Series on Telecommunications,

ISBN 0-07-021422-0, 1997.

[FilkOO] M. Filkenstein, J. Garrahan, D. Shrader and G. Webber, ‘‘The future o f the Intelligent

Network”, Telcordia Technologies, IEEE Communications Magazine, pp. 100-106,

June 2000.

[FTOla] FT.com, ‘‘Bell Mobility and Nortel Networks Announce CDN$180 Million Contract to

Expand Bell Mobility network into Western Canada ”, Business Wire, FT News Archives.

Available online at; http://globalarchive.ft.com/globalarchive/articles.html?id=

01080700593 l&querv=invest+in+lP+network# docAnchorO 10807005931

[FTOlb] FT.com, ‘‘NetNumber andMIP Telecom Team to Deliver Simplified VoIP”, Business

Wire, FT News Archives. Available online at:

http;//globalarchive.ft.com/globalarchive/articles.html?id=010827004318&querv=lP+networ

k#docAnchorO 10827004318

[FTOlc] FT.com, ‘‘NEC Unveils New IP Gateway fo r Remote Office Connectivity”, Business

Wire, FT News Archives. Available online at:

http://globalarchive.ft.com/globalarchive/articles.html?id=010821005919&querv=lP+networ

k#docAnchorO 10821005919

[Furc96] A. Furche and G. Wrightson, ‘‘Computer Money: A Systematic Overview o f

Electronic Payment Systems”, Die Deutsche Bibliothek, ISBN 3-920993-54-3, 1996.

[Gamm95] E. Gamma, R. Helm, R. Johnson and J. Vlissides, ‘‘Design Patterns”, Addison-

Wesley Pub Co, ISBN: 0201633612, 1995.

[GanlOl] M. Ganley, ‘‘Certification Authorities”, Thales e-Security White Paper, Available

online at: http://thales-esecuritv.com/CMS/docs/certification authories3.pdf

221

http://globalarchive.ft.com/globalarchive/articles.html?id=
http://globalarchive.ft.com/globalarchive/articles.html?id=010821005919&querv=lP+networ
http://thales-esecuritv.com/CMS/docs/certification

[GÜ194] S. Gill, “AINservice creation and issues’’, NEC America Inc., Irving, TX, USA,

Third Annual International Conference on Universal Personal Communications,

27 Sept.-l Oct. 1994.

[H.225] ITU-T, “Call Signalling Protocols and Media Stream Packetization fo r Packet-Based

Multimedia Communications Systems”, International Telecommunication Union Draft

Recommendation H.225, Geneva, May 1996.

[H.245] ITU-T, “Control protocol fo r multimedia communication ”, International

Telecommunication Union Recommandation H.245 (V3), Geneva, January 1998.

[H.323] ITU-T, “Infrastructure o f audiovisual services - Systems and terminal equipment for

audiovisual services”. International Telecommunication Union Recommendation H.323,

September 1997.

[Haer99] F. Haerens, “UsingIntelligent Net^vorks in an H.323 Environment”, ETSI TIPHON

12 TD 27 Philadelphia, March 1999.

[Hale98] S. Halevi, H. Krawczyk, “Public-Key Cryptography and Password Protocols”,

Proceedings of the Fifth ACM Conference on Computer and Communications Security,

1998.

[Hatt97] L. Hatton, “Software Failures: Follies and Fallacies ”, lEE Review, pp. 49-52,

March 1997.

[Haug95] O. Haugen, “SDL '95 with MSC in CASE”, Tutorials 95.09.25, 1995.

[Huan95] Y. Huang and Yi-Min Wang, “Why optimistic message logging has not been used in

telecommunications systems”. Proceedings of the Twenty-Fifth International Symposium on

Fault-Tolerant Computing (FTCS '95), pp. 459-463.

[Haya98] K. Hayashi, “Changes and Deregulation in the Japanese Telecommunications

Market”, IEEE Communications Magazine, pp. 46-53, November 1998.

[Haze98] R. Hazem, “Call party handling aspects evolution from IN CS-2 to IN CS-3 ”,

CNET, Bagneux, France, Proceedings of 6* IEEE Intelligent Network Workshop, IN’98.

10-13 May 1998.

222

[Henn] H. Schulzrinne, J. Rosenberg, ”A Comparison o f SIP and H.323for Internet

Telephony ”, Online Tutorials.

[Hink98] J.G. Hinkelmann, P.K. Tollkuehm, “IN service improvement by call party

handling”, Proceedings of International Conference on Communication Technology

Proceedings, ICCT’98. 22-24 Oct. 1998.

[lEPSPat] Patent application reference number GB9811877.1, 2"*̂ June 1998.

[IETF] IETF Internet Engineering Task Force Web Site, http://www.ietf.org

[Ishi98] H. Ishikawa, ‘‘Impact and Preliminary Results o f Telecommunications Deregulation

in Japan ”, IEEE Communications Magazine, pp. 100-104, July 1998.

[ISOC] B. M. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn, L. Kleinrock, D. C. Lynch,

J. Postel, L. G. Roberts, S. Wolff, ‘‘A Brief History o f the Internet”, Internet Society Web

Site. Available online at: http://www.isoc.org

[ISO-IS7498-1] ISO, ‘‘Information technology — Open Systems Interconnection — Basic

Reference Model: The Basic Model”, International Standardization Organisation, 1994.

[ITU97] ITU-T, ‘‘Challenges to the Network - Telecoms and the Internet ”, International

Telecommunication Union, Geneva, September 1997.

[ITUOO] ITU-T, ‘‘IP Telephony Report”, International Telecommunication Union, Geneva,

ISBN 92-61-08621-7, December 2000.

[ITU98a] ITU-T, ‘‘World Telecommunication Development Report 1998; Universal Access”,

International Telecommunication Union, Geneva, March 1998.

[ITU98b] ITU-T, ‘‘General Trends in Telecommunication Reform; World Telecommunication

Development Report 1998”, International Telecommunication Union, Geneva, June 1998.

[Jaco92] I. Jacobson, ‘‘Object-Oriented Software Engineering”, Addison-Wesley Pub Co;

ISBN: 0201544350, 1992.

223

http://www.ietf.org
http://www.isoc.org

[JAIN] Sun Microsystems, ‘‘The JAIN APIs: Integrated Network APIs fo r the Java Platform ”,

Sun Microsystems, White Paper, June 2001.

Available online at: http://iava.sun.eom/products/iainAVP2001.pdf

[JainOO] A. Jain, Farooq M. Anjum, Paolo Missier, and S. Shastry, ‘‘Java Call Control,

Coordination, and Transactions”, IEEE Communications Magazine, pp. 108-114,

January 2000.

[JakoOl] K. Jakobs, ‘‘The Making o f Standards: Looking Inside the Work Groups”, IEEE

Communications Magazine, pp. 102-107, April 2001.

[JAVA] J. Gosling, B. Joy, G. Steele, ‘‘The JAVA'^^Language Specification; Version 1.0”,

Addison-Wesley, 1996.

[JAVA131] Sun Microsystems, ‘‘Java'^^2 SDK, Standard Edition Documentation”, Sun

Microsystems, 2001. Available online at: http://iava.sun.eom/i2se/l.3/docs/

[JTAPI] Sun Microsystems, ‘‘The Java Telephony API (JTAPI) Overview”, Sun Microsystems

JTAPI Specification V I.3, June 1999.

Available online at: http://iava.sun.com/products/itapi/download3.html

[Kala97] R. Kalakota, A. B. Whinston, ‘‘Electronic Commerce, A Manager's Guide”,

Addison-Wesley 1997, ISBN 0-201-88067-9, 1997.

[Kali80] D. Kalish, R. Montague, G. R. Mar, ‘‘Logic: Techniques o f Formal Reasoning”,

ISBN: 0155511815, 1980.

[Kali93a] B. S. Kaliski Jr., ‘‘An Overview o f the PKCS Standards”, RSA Laboratories

Technical Note, November 1993.

Available online at: ftp://ftp.rsasecuritv.com/pub/pkcs/doc/overview.doc

[Kali93b] B. S. Kaliski Jr., ‘‘Some Examples o f the PKCS Standards ”, RSA Laboratories,

November 1993, Available online at: ftp://ftp.rsasecuritv.com/pub/pkcs/doc/examples.doc

[KaprOl] R Kaprinski, ‘‘E-Retailers Bounce Back”, Internet Weekly, August 2001.

Available online at: http://www.intemetweek.eom/transtodav01/ttodav080301.htm

2 2 4

http://iava.sun.eom/products/iainAVP2001.pdf
http://iava.sun.eom/i2se/l.3/docs/
http://iava.sun.com/products/itapi/download3.html
ftp://ftp.rsasecuritv.com/pub/pkcs/doc/overview.doc
ftp://ftp.rsasecuritv.com/pub/pkcs/doc/examples.doc
http://www.intemetweek.eom/transtodav01/ttodav080301.htm

[KeizOO] J. de Keijzer, D. Tait, R. Goedman, "JAIN: A New Approach to Services in

Communication Networks ”, Sun Microsystems, Inc.,

IEEE Communications Magazine, pp. 94-99, January 2000.

[Kell94] Kelly, ‘‘Feature interaction detection using SDL models ”, Network Intelligence

Engineering Centre, British Telecom Research Laboratories, Ipswich, UK,

IEEE Global Telecommunications Conference, 1994. GLOBECOM '94,

28 Nov.- 2 Dec. 1994.

[Ku94] B.S. Ku, “A reuse-driven approach for rapid telephone service creation”, MCI

Telecommun. Corp., Richardson, TX, USA, Third International Conference on Software

Reuse: Advances in Software Reusability, pp. 64-72, 1-4 November 1994.

[Kumm98] N. Kummer, “INSSFModelling: User's Guide”, Nortel Telecommunications,

1998.

[KempOl] J. Kempf et a l, “The DIAMETER API”, IETF Internet Draft, July 2001.

[Kun97] K. S. Kun, T. M. Han, P. D. Cho, “Performance evaluation o f communications

processing module in PSTN access subsystem for interworking with PSDN”, IEEE

International Conference on Communications, ICC’97, 8-12 June 1997.

[LaatOO] C. de Laat, et al., “Generic AAA Architecture”, IETF Internet Draft, January 2000.

[Laur98] S. St. Laurent, “Java Cookies”, McGraw-Hill, ISBN:0070504989, 1998.

[Laza97] A. Lazar, “Programming Telecommunication Networks ”, Columbia University, New

York, IEEE Network, pp.2-12, October 1997.

[Lea99] D. Lea, “Concurrent Programming in Java ”, Addison Wesley,

ISBN: 0201310090, 1999.

[LeboOO] D. Lebovits, “SIP/INInterworking”, IETF Internet Draft, December 2000.

[Lesh98] S. Lesher, “CUSTOMER: Almon Stroger: Dialing fo r Dollars”, Siemens Customer

Magazine, Volume VIII, No. 1, May 1998.

Available online at: http://www.siemenscom.eom/customer/9801/l 1 .html

225

http://www.siemenscom.eom/customer/9801/l

[Lin98] Yow-Jian Lin, “Managing Feature Interactions Telecommunications Software

Systems - Guest Editorial”, University of California,

IEEE Transactions on Software Engineering, Vol. 24, No. 10, October 1998.

[LiuGG] Liu and P.Mouchtaris, “Voice over IP Signaling: H.323 and Beyond”, Telcordia

Technologies, IEEE Communications Magazine, pp. 142-148, October 2GGG.

[Lodg97] F. Lodge, J. Mitchener, B. Strulo, “Rapid, User-friendly Open Service Creation ”,

TOSCA Deliverable 1, October 1997.

[M.332G] ITU, “Management requirements framework fo r the TMN X-interface”,

International Telecommunication Union Recommendation M.332G, April 1997.

[Mage96] T. Magedanz and R. Popescu-Zeletin, “Intelligent Networks: Basic Technology,

Standards and Evolution”, ISBN 1-85G32-293-7, 1996.

[Magee99] J. Magee, J. Kramer, “Concurrency: State Models & Java Programs ”, John Wiley

and Sons, ISBN: G471987107, March 1999.

[MahoGl] D. O'Mahony, H. Tewari, M. Peirce, H. Tewari, “Electronic Payment Systems for

E-commerce”, Artech House; ISBN: 1580532683, July 2001.

[MarcoOO] D. Marco, “Building and Managing the Meta Data Repository: A Full Lifecycle

Guide”, John Wiley & Sons; ISBN: 0471355232, 2000.

[McDo92] C. McDonald, “Public Networks - Dependable? ”, IEEE Communications

Magazine, April 1992.

[McKeOO] N. McKeown, “A Fast Switched Backplane for a Gigabit Switched Router”,

Business Communications Review, White Paper, 2000.

[McMil96] Millan, R.U.Telstra, “Analysis o f congestion control fo r SCCP traffic and the

impact on intelligent network services”, IEEE Intelligent Network Workshop,

IN’96, 21-24 April 1996.

226

[MEGACO] IETF Media Gateway Control Protocol Home Page,

http://www.ietf.org/html.charters/megaco-charter.html

[Meht98] S. N. Mehta, "AT&T is Seeking Cause o f a Big Outage in Data Network Used by

Corporations”, The Wall Street Journal, p B15., 15‘̂ April 1998.

[Melo97] W. Melody (editor), "Telecom Reform: Principles, Policies and Regulatory

Practices”, Center for Tele-Information, Technical University of Denmark, ISBN 87-7381-

071-1, Lyngby, 1997.

[Memm90] W.H. Memmer, "Telephone switching systems software architecture, where have

we been-where are we going”, IEEE International Conference on Communications,

Including Supercomm Technical Sessions. SUPERCOMM/ICC '90. 16-19 , pp. 852-856,

April 1990.

[Mi98] Z.Mi and Y.Ying, "An enhanced DFP Architecture to support IN/Internet Inter­

working”, Delayed Contribution D.657-GEN/1 IR l, ITU SG-11, May 98, in Mi Zhengkun,

"Architecture and Protocols fo r IN/INTERNET Inter-working”, International Conference on

Communication Technology, October 1998.

[Moha99] E. A. Mohammed, "The Growth o f Internet Telephony: Legal and Policy Issues ”,

First Monday, 1999.

[MoyeOl] S. Moyer and A. Umar, "The Impact o f Network Convergence on

Telecommunications Software”, Telcordia Technologies, Inc., IEEE Communications

Magazine, pp. 78-84, January 2001.

[Naka95] M. Nakamura, "A method for detecting and eliminating feature interactions using a

frame model”, Fujitsu Labs. Ltd., Kawasaki, Japan, IEEE International Conference on

Communications, ICC’95 Seattle, 18-22 June 1995.

[Niits95] Y. Niitsu, O. Mizuno, S. Oyamada, "Design o f an integrated service creation

environment fo r the advanced intelligent network”, NTT Network Service Syst. Labs.,

Tokyo, Japan, IEEE Global Telecommunications Conference, GLOBECOM’ 95,

13-17 Nov. 1995.

227

http://www.ietf.org/html.charters/megaco-charter.html

[OBri89] O. J. O’Brien and S. G. Webster, “IntelligentNetworks: British Telecom’s First

Realisation ”, Second lEE National Conference on Telecommunications, pp.407-410, 1989.

[OECD97a] OECD, “Dismantling the Barriers to Global Electronic Commerce”,

Organisation for Economic Co-operation and Development, Background paper, Paris, 1997.

Available online at: http://www.oecd.org

[OECD97b] OECD, “Electronic Commerce: Opportunities and Challenges for Government”,

Organisation for Economic Co-operation and Development, Paris, 1997.

Available online from http://www.oecd.org

[Oftel99] Oftel, “Guidelines on Interconnection and Inter-operability ”, Issued by the Director

General of Telecommunications, UK Office of Telecommunications, July 1999.

Available online at: http://www.oftel.gov.uk/publications/1999/competition/gii799.htm

[Okam89] T. Okamoto, K. Ohta, “Disposable zero-knowledge authentication and their

applications to untraceable electronic cash ”, Advances in Cryptography - Crypto 1989.

[Okam93] T. Okamoto, E. Fujisaki, “On Comparison o f Practical Digital Signature

Schemes”, NTT Review 5, No.l, January 1993.

[OMA97] OMA, “A discussion o f the Object Management Architecture”, Object Management

Group, January 1997.

[ORei98] O'Reilly-Roche, “Callparty handling using the connection view state approach, a

foundation for intelligent control o f multiparty calls”, Annapolis, MD, USA, IEEE

Communications Magazine, pp. 60-66, June 1998.

[Orfa99] R. Orfali, D. Harkey, J. Edwards, “Client/Server Survival Guide ”, 3"̂ ̂Edition, John

Wiley & Sons; ISBN: 0471316156, 1999.

[P508] EURESCOM Project P508, “Evolution, Migration Paths and Interworking to TINA ”,

EURESCOM Project P508 Deliverable 3, EURESCOM Web Site. December 1997.

[PI 110] EURESCOM Project PI 110, “Open Service Access: Advantages and opportunities in

service provisioning on 3G Mobile Networks ”, EURESCOM Web Site, Available online at:

228

http://www.oecd.org
http://www.oecd.org
http://www.oftel.gov.uk/publications/1999/competition/gii799.htm

http://www.eurescom.de/public/proiects/Pl 100-series/Pl 110/default.asp# Project %20

Information

[PalaOO] C. Palamidessi (editor), “CONCUR 2000. Concurrency Theory”, Springer-Verlag

Berlin and Heidelberg GmbH & Co. KG, ISBN: 3540678972, 2000.

[PARLAY] The Parlay Group Web Site, http://www.parlav.org

[ParlBuss99] The Parlay Group, “Parlay API, Business Benefits White Paper”, The Parlay

Group, June 1999.

[ParlPR] The Parlay Group, “Parlay Group Triples Membership since June ”, Parlay Group

Press Release, November 2"*̂ 2000.

[ParlSeq99] The Parlay Group, “Parlay API Specification V I.2: Sequence Diagrams”, The

Parlay Group, September 1999.

[ParlFw99] The Parlay Group, “Parlay API Specification V I.2: Framework Interfaces”, The

Parlay Group, September 1999.

[ParlUg99] The Parlay Group, “Parlay API Specification V I.2: User Guide”, The Parlay

Group, September 1999.

[ParlSpecOO] The Parlay Group, “The Parlay API Specifications Version 2.1 ”, The Parlay

Group, June 2000. Available online at: http://www.narlav.org.

[Part96] C. Partridge, et a l, “A Fifty-Gigabit per second IP Router”, Submitted to lEEE/ACM

Transaetions on Networking, 1996.

[Peng98] Y. Peng, “Detectingfeature interactions at specification stage”, Concordia Univ.,

Montreal, Que., Canada, Proceedings of 7* IEEE Intelligent Network Workshop, IN’98, 10-

13 May 1998.

[Ponc98] O. Poncin, “Examining How Operators Are Developing Strategies fo r Successfully

Delivering Converged Services to Increase Acquisition and Reduce Churn ”, Proceedings of

7* International Forum on Fixed-Mobile Convergenee, London, September 1998.

229

http://www.eurescom.de/public/proiects/Pl
http://www.parlav.org
http://www.narlav.org

[PSS99] Fujitsu, INPRISE et a l, “Persistent State Service V 2.0”, Joint Revised Submission

from Fujitsu Limited, INPRISE Coopération et a l, August 1999.

[Q.70I] ITU, “Functional description o f the message transfer part (MTP) o f Signalling System

No. 7”, ITU-T Recommendation Q.701 Geneva, March 1993.

[Q.711] ITU, “Signalling System No. 7 - Functional Description o f the Signalling Connection

Control Part”, International Telecommunication Union Recommendation Q.711, Geneva,

March 1993.

[Q.712] ITU, “Signalling System No. 7 -Definition and Function o f SCCP Messages”,

International Telecommunication Union Recommendation Q.712, Geneva, March 1993.

[Q.7I3] ITU, “Signalling System No. 7 - SCCP Formats and Codes”, International

Telecommunication Union Recommendation Q.713, Geneva, March 1993.

[Q.714] ITU, “Signalling System No. 7 - Signalling Connection Control Part Procedures”,

International Telecommunication Union Recommendation Q.714, Geneva, March 1993.

[Q.716] ITU, “Signalling System No. 7 - Signalling Connection Control Part (SCCP)

Performance”, International Telecommunication Union Recommendation Q.716, Geneva,

March 1993.

[Q.721] ITU, “Fm w c/zow u/ Description o f the Signalling System No. 7 Telephone User

Part (TUP)”, International Telecommunication Union Recommendation Q.721, Geneva,

March 1993.

[Q.722] ITU, “General Function o f Telephone Messages and Signals”, International

Telecommunication Union Recommendation Q.722, Geneva, March 1993.

[Q.725] ITU, “Signalling System No. 7 - Signalling Performance in the Telephone

Application”, International Telecommunication Union Recommendation Q.725, Geneva,

March 1993.

[Q.762] ITU, “General Function o f Messages and signals o f the IDN User Part o f Signalling

System No. 7”, International Telecommunication Union Recommendation Q.725, Geneva,

March 1993.

23 0

[Q.763] ITU, ’''‘Formats and Codes o f the ISDN User Part O f Signalling System No. T \

International Telecommunication Union Recommendation Q.725, Geneva, March 1993.

[Q.764] ITU, “Signalling System No. 7 - ISDN User Part Signalling Procedures'',

International Telecommunication Union Recommendation Q.725, Geneva, March 1993.

[Q.766] ITU, ’’"Performance Objectives in the Integrated Services Digital Network

Application", International Telecommunication Union Recommendation Q.766, Geneva,

March 1993.

[Q.767] ITU, “Application o f the ISDN User Part o f CCITT Signalling System No. 7 or

International ISDN Interconnections", International Telecommunication Union

Recommendation Q.725, Geneva, February 1991.

[Q.771] ITU, “Signalling System No. 7 - Functional Description o f Transaction Capabilities",

International Telecommunication Union Recommendation Q.725, Geneva, March 1993.

[Q.775] ITU, “Signalling System No. 7 - Guidelines fo r using Transaction Capabilities",

International Telecommunication Union Recommendation Q.725, Geneva, March 1993.

[Q.931] ITU, “Digital Subscriber Signalling System No. 1 (D SS1) - ISDN User-Network

Interface Layer 3 Specification for Basic Call Control', International

Telecommunication Union Recommendation Q.93I, Geneva, March 1993.

[Q.1200] ITU, “Q-SERIES Intelligent Network Recommendation Structure”, International

Telecommunication Union, Recommendation Q.1200, March 1993.

[Q.1201] ITU, ’’Principles o f the Intelligent Network Architecture”, International

Telecommunication Union Recommendation Q.1201, Geneva, October 1992.

[Q. 1202] ITU, ’’Intelligent Network Service Plane Architecture ”, International

Telecommunication Union Recommendation Q.1202, Geneva, October 1992.

[Q.1203] ITU, “Intelligent Network Global Functional Plane Architecture”, International

Telecommunication Union Recommendation Q.1203, Geneva, October 1992.

231

[Q.1204] ITU, ''Intelligent Network Distributed Functional Architecture”, International

Telecommunication Union Recommendation, Q.1204, Geneva, March 1993.

[Q. 1205] ITU, ''Intelligent Network Physical Plane Architecture ”, International

Telecommunication Union Recommendation Q.1205, Geneva, March 1993.

[Q.1208] ITU, ''General Aspects o f the Intelligent Network Application Protocol”,

International Telecommunication Union Recommendation Q.1208, Geneva, March 1993.

[Q. 1211] ITU, ''Introduction to the Intelligent Network Capability Set 1 ”, International

Telecommunication Union Recommendation Q.1211, Geneva, March 1993.

[Q.1213] ITU, ''Global Functional Plane Architecture fo r Intelligent Network CS-1 ”,

International Telecommunication Union Recommendation Q.1213, Geneva, March 1993.

[Q. 1214] ITU, ''Distributed Functional Plane fo r Intelligent Network CS-1 ”, International

Telecommunication Union Recommendation Q.1214, Geneva, March 1993.

[Q.1221] ITU, ''Introduction to the Intelligent Network Capability Set 2 ”, International

Telecommunication Union Recommendation Q.1221, Geneva, September 1997.

[Q. 1223] ITU, ''Global Functional Plane Architecture fo r Intelligent Network CS-2 ”,

International Telecommunication Union Draft Recommendation Q.1223, Geneva, September

1997.

[Q. 1224] ITU, ''Distributed Functional Plane fo r Intelligent Network CS-2 ”, International

Telecommunication Union Draft Recommendation Q.1224, Geneva, September 1997.

[Q.1228] ITU, ''General Aspects o f the Intelligent Network Application Protocol Capability

Set 2 ”, International Telecommunication Union Draft Recommendation Q.1228, Geneva,

September 1997.

[Q. 1244] ITU, ''Distributed functional plane for Intelligent Network Capability Set 4 ”,

International Telecommunication Union Recommendation Q.1244, July 2001.

232

[QOSNet] Qos Networks, “QoS Networks Completes Initial Funding o f $100 Million and

Launches Global Content Delivery Network”, QoS Networks Press Release, 6 September

2000.

[Quantitative97] Quantitative Data Systems, “The Object: CORBA Basics ”, Quantitative Data

Systems, Tutorial, December 1997.

[Rational] Rational Software Corporation, “Unified Modelling Language ".

Available online at: http://www.rational.com/

[RaoOO] S. Rao, L. Alvisi and H. M. Vin, “The Cost o f Recovery in Message Logging

Protocols”, IEEE Transactions on Knowledge and Data Engineering, Vol. 12, No. 2; pp.

160-173, March/April 2000.

[RFC760] Postel, J., “Internet Protocol”, RFC 760, USC/Information, Sciences Institute,

January 1980.

[RFC768] IETF, “User Datagram Protocol”, J. Postel, IETF, August 1980.

[RFC793] IETF, “Transmission Control Protocol - Protocol Specification”, IETF, 1981.

[RFC1098] IETF, “A Simple Network Management Protocol (SNMP) ”, J. Case et a l,

STD 16, RFC 1098, April 1989.

[RFC 1155] IETF, “Structure and Identification o f Management Information fo r TCP/IP-based

internets”. Rose, M. and K. McCloghrie, STD 16, RFC 1155, May 1990.

[RFCI212] IETF, “ConciseMIB Definitions”, Rose, M. and K. McCloghrie, STD 16, RFC

1212, March 1991.

[RF C1213] IETF, “Management Information Base for Network Management o f TCP/IP-

based internets: MIB-II”, K. McCloghrie, RFC 1213, March 1991.

[RFC 1441] IETF, “Introduction to version 2 o f the Internet-standard Network Management

Framework”, J. Case, RFC 1441, April 1993.

[RFC 1591] J. Postel, “Domain Name System Structure and Delegation ”, IETF, March 1994.

233

http://www.rational.com/

[RFC1831] IETF, “RPC: Remote Procedure Call Protocol Specification Version 2 ”,

R. Srinivasan, Sun Microsystems, August 1995.

[RFC1889] IETF, “RTP: A Transport Protocol fo r Real-Time Applications”, H. Schulzrinne,

January 1996.

[RFC2138] IETF, “Remote Authentication Dial In User Service (RADIUS) ”, C. Rigney, April

1997.

[RFC2205] IETF, “Resource ReSerVation Protocol (RSVP) — Version 1 Functional

Specification ”, R. Braden, Ed., et a i, IETF Network Working Group, September 1997.

[RFC2327] IETF, “SDP: Session Description Protocol”, M. Handley, et a i. Network

Working Group, IETF RFC 2327, April 98.

[RFC2475] IETF, “An Architecture for Differentiated Services”, S. Blake, IETF Network

Working Group, December 1998.

[RFC2543] IETF, “SIP: Session Initiation Protocol”, M. Handley et.al, IETF, Network

Working Group, March 1999.

[RFC2570] IETF, “Introduction to Version 3 o f the Internet-standard Network Management

Framework”, J. Case, et al., RFC 2570, April 99

[RFC2705] M. Arango, A. Dugan, I. Elliott, C. Huitema, S. Pickett, “Media Gateway Control

Protocol (MGCP) Version 1.0”, Network Working Group, IETF RFC 2705, October 1999.

[RFC2748] IETF, “The COPS (Common Open Policy Service) Protocol”, D. Durham, Ed., et

a l, IETF RFC 2748, January 2000.

[RFC2753] IETF, “A Framework for Policy-based Admission Control”, R. Yavatkar, et a l,

IETF RFC2753, January 2000.

[RFC2995] IETF, “Pre-SPIRITS Implementations o f PSTN-initiated Services”, I. Faynberg, et

a l. Network Working Group, IETF RFC 2995, November 2000.

234

[RFC3136] IETF, “The SPIRITS Architecture”, L. Slutsman, et a l. Network Working Group,

IETF RFC 3136, June 2001.

[Rive83] R. Rivest, A. Shamir, L. Adleman, “A method fo r obtaining digital signatures and

public-key cryptosystems”, Communications of the ACM 21/2, pg. 120-126, 1978,

[RMl] Sun Microsystems, “Java Remote Method Invocation Specification ”, Sun

Microsystems, Available online at: ftp://ftp.iava.sun.eom/docs/i2sel.3/rmi-spec-l.3.pdf

[Rosc97] A.W. Roscoe, “The Theory and Practice o f Concurrency”, Prentice Hall; ISBN:

0136744095, October 1997.

[RSA98] RSA Laboratories, “PKCS #7 v2.0: RSA Cryptography Standard”, RSA

Laboratories, October 1998. Available online at:

ftp://ftp.rsasecuritv.com/pub/pkcs/doc/pkcs-1 v2.doc

[Rumb91] J. Rumbaugh et a l., “Object-Oriented Modelling and Design ”, Prentice-Hall, 1991.

[Russ98] T. Russel, “Signalling System #7, Second Edition ”, McGraw-Hill

Telecommunications, ISBN 0-07-058032-4, 1998.

[Scer97] L.J. Scerbo, “The US Telecom Reform Act o f 1996-, Will too many cooks ruin the

stew”, 19**’ International Telecommunications Energy Conference, 1997. INTELEC 97,

19-23 Oct. 1997.

[Scho98] U. Schoen, J. Hamann, A. Ugel, H. Kurzawa, C. Schmidt, “Convergence between

public switching and the Internet ”, Siemens AG, Germany,

IEEE Communications Magazine, pp. 50-65, January 1998.

[Schu98] H. Schulzrinne, “The Session Initiation Protocol (SIP) - Tutorial on SIP”, Columbia

University, New York, 1998.

[SIP] The SlPCenter.com Home page, http://www.sipcenter.com

[SOFTSWITCH] SoftSwitch Consortium Web Site, http : //^vww.so ftswitch.org/

235

ftp://ftp.iava.sun.eom/docs/i2sel.3/rmi-spec-l.3.pdf
ftp://ftp.rsasecuritv.com/pub/pkcs/doc/pkcs-1
http://www.sipcenter.com

[Solo98] C. Solomonides, M. Searle, "IN and the INternet”, University College London,

London Telecommunications Research Symposium, London, July, 1998.

[Solo99a] C. Solomonides, M. Searle, "An Intelligent Network E-Commerce Protocol”,

University College London, Utrecht, Netherlands, 38* European Telecommunications

Congress, Utrecht, The Netherlands, August 1999.

[Solo99b] C. Solomonides, M. Searle, "Relevance o f Existing Intelligent Network

Infrastructure to the Internet”, University College London, Lecture Notes in Computer

Science, Springer-Verlag, 6* International Conference on Intelligence and Services in

Networks, IS&N'99, Barcelona, Spain, 1999

[SoloOOa] C. Solomonides, M. Searle, "Evolution Towards the TINA Service Architecture

Through PINT and Parlay”, 6th International Conference on Intelligence in Networks, 17-20

January 2000, Palais Des Congres D'Archachon, Bordeaux, France, 2000.

[SoloOOb] C. Solomonides, M. Searle, "Network Intelligence, APIs and Service Creation ”,

University College London, 39* European Telecommunications Congress, Limerick -

Ireland, August 2000.

[SoloOOc] C. Solomonides, M. Searle, "Intelligent Network Application Programming

Interface Server Architecture ”, University College London, IEEE Intelligent Network

Workshop, IN’OO, Cape Town, South Africa, May 2000.

[SoloOOd] C. Solomonides, M. Searle, "Application Server Architecture fo r Open Networks ”,

University College London, London Telecommunications Symposium, London, September

2000.

[SommOl] I. Sommerville, “Software Engineering”, 6* Edition, Addison-Wesley Pub Co;

ISBN: 020139815X, 2001.

[Song95] X. (Carol) Song, Jane W.S. Liu, "Maintaining Temporal Consistency: Pessimistic

vj. Optimistic Concurrency Control”, IEEE Transactions on Knowledge and Data

Engineering 1041-4347, Vol. 7, No. 5; pp. 786-796, October 1995.

[SPIRITS] IETF SPIRITS Working Group Home Page,

http://www.ietf.0r2/html.charters/snirits-charter.html

236

http://www.ietf.0r2/html.charters/snirits-charter.html

[Stal99] W. Stallings, ‘‘Snmp, SnmpV2, SnmpV3, andRmon 1 and 2 ”, Addison-Wesley Pub

Co, ISBN: 0201485346, January 1999.

[Stev94] W. R. Stevens, “TCP/IP Illustrated, Volume 1, The Protocols ”, Addison-Wesley

Professional Computing Series, 1994.

[Stev99] M. Stevens, “Policy Framework”, lETD Internet Draft, draft-ietf-policy-ffamework-

OO.txt, September 1999.

[StroSS] R. E. Strom and S. Yemini, “Optimistic recovery in distributed systems ”,

ACM Transactions on Computer Systems, Vol. 3, No. 3; pp. 204-226, August 1985.

[Stro99] K.G. Strouse, “Marketing Telecommunications Services: New Approaches for a

Changing Environment”, Artech House Telecommunications Library, Artech House; ISBN:

158053015X, June 1999.

[Suzu93] S. Suzuki, “IN rollout in Japan ”, NTT, Tokyo, Japan, IEEE Communications

Magazine, p. 48-55, March 1993.

[SWIFT] SWIFT Web Site, http://www.swift.com

[Tarj97] P. Tarjanne, “Telecoms and the Internet: Convergence or Collision? ”, Secretary-

General, International Telecommunication Union, ISS 1997, Toronto, 1997.

[Tau3.5] Telelogic Tau 3.5, SDT and ITEX Tools, http://www.telelogic.se

[TeReOO] Technology Review Magazine, “TrailingEdge: No Operator, Please”, Trailing

Edge Technology Review, January/February 2000, Available online at:

http://www.techreview.eom/magazine/ianOO/trail edge.asp

[Thom95] A. Thomasian, “Checkpointing fo r Optimistic Concurrency Control Methods”,

IEEE Transactions on Knowledge and Data Engineering 1041-4347, Vol. 7, No. 2,

pp. 332-339, April 1995.

[ThomOO] W. C. Thomas, G. Thiruvathukal, “High Performance Java Computing”, Prentice

Hall; ISBN: 0130161640, June 2000.

2 3 7

http://www.swift.com
http://www.telelogic.se
http://www.techreview.eom/magazine/ianOO/trail

[TINA-BM] TINA-C, “TINA-C Business Model and Reference Points Version 4.0”, H.

Mulder (editor), May 1997.

[TINA-CA] TINA-C, “ComputingArchitecture Version”, TINA Consortium, December 1994.

[TINA-DPE] TINA-C, “Engineering Modelling Concepts (DPR Architecture) ”, Version 2.0,

TINA Consortium, December 1994.

[TINA-GA] TINA-C, “Overall Concepts and Principles o f TINA ”, TINA Consortium,

February 1995.

[TINA-GU] TINA-C, “Guidelines to TINA: Overall Concepts and Principles to TINA ”, TINA

Consortium, Version 1.0, February 1995.

[TINA-MA] TINA-C, “Management Architecture”, TINA Consortium, December 1994.

[TINA-NA] TINA-C, “Network Architecture”, TINA Consortium, December 1994.

[TINA-SA] TINA-C, “Service Architecture Version: 5.0”, L. Kristiansen (editor), June 1997.

[TIPHON] ETSI, “Telecommunications and Internet Protocol Harmonization over Networks

(TIPHON) ”, TIPHON Web Site, http://www.etsi.org/tiphon/

[TOSCA-IS] TOSCA, “TOSCA: Initial Specification of Process Architecture”, F. Costello,

February 1997.

[UML99] OMG, “Unified Modelling Language Specification Version 1.3”, Object

Management Group, June 1999.

[UPT] ETSI UPT Web Site, http://www.etsi.org/user/archives/universal.htm

[USDOC] US Department of Commerce, “The Emerging Digital Economy”, August 1998.

[Veer99] M. Veeraraghavan, M. Karol, “Internetworking Connectionless and Connection-

Oriented Networks ”, Polytechnic University, Lucent Technologies,

IEEE Communications Magazine, pp. 130-138, December 1999.

238

http://www.etsi.org/tiphon/
http://www.etsi.org/user/archives/universal.htm

[Vemu99] K.Vemuri, “Call Model Integration Framework”, Lucent Technologies, Inc, IETF

Internet Draft, I-D <draft-vemuri-cmi-framework-OO.txt>, IETF, January 1999.

[Veni98] I. Venieris and H, Hussmann, “Intelligent Broadband Networks”, John Wiley &

Sons Ltd, ISBN 0-471-98094-3, 1998.

[VeniOO] I. Venieris (editor), F.Zizza, T. Magedanz, F. Zizza, “Object Oriented Software

Technologies in Telecommunications: From Theory to Practice”, John Wiley & Sons; ISBN:

0471623792, June 2000.

[Venk97] S. S. Venkatesan, T. Tong-Ying Juang and Sridhar Alagar, “Fault

Tolerance/Reliability Optimistic Crash Recovery Without Changing Application Messages ”,

IEEE Transactions on Parallel and Distributed Systems, IEEE Vol. 8, No. 3; pp. 263-271,

March 1997.

[VISA] VISA, “Emerging Acceptance: Overview”, Available online at:

http://www.visa.com/nt/suppliers/vendor/accept/main.html

[VollOOa] J. Vollbrecht, et a l, “AAA Authorization Framework”, IETF Internet Draft, draft-

irtf-aaaarch-authorization-framework-OO.txt, January 2000.

[VollOOb] J. Vollbrecht, et a l, “AAA Authorization Application Examples”, IETF Internet

Draft, draft-irtf-aaaarch-authorization-apps-OO.txt, January 2000.

[Voss97a] G. Voss, “JavaServer Technologies: Part I ”, JavaSoft, April 1997. Available

online at: http://developer.iava.sun.com/developer/technicalArticles/Servlets/

JavaServerT ech 1 /index.html

[Voss97b] G. Voss, “JavaServer Technologies: Part I I ”, JavaSoft, May 1997. Available

online at: http://developer.iava.sun.com/developer/technicalArticles/Servlets/

JavaServerTech2/index.html

[Walk97] P. Walker, “How to Compete and Connect: Setting the Business and Regulatory

Context ”, lEE Colloquium on "How to Compete and Connect: Understanding the

Engineering of Telecommunications Network Interconnection", Digest No: 1997/179, 1997.

239

http://www.visa.com/nt/suppliers/vendor/accept/main.html
http://developer.iava.sun.com/developer/technicalArticles/Servlets/
http://developer.iava.sun.com/developer/technicalArticles/Servlets/

[WangOl] Pi-Chung Wang, et al. “A Fast IP Routing Lookup Scheme ”, IEEE

Communications Magazine Letters Vol. 5 No. 3, p. 125, March 2001.

[Ward95] K. Ward, “Impact o f Network Interconnection on Network Integrity ”, British

Telecommunications Engineering, Vol. 13, pp. 296-303, January 1995.

[Will94] S. Willliams, C. Kindel, “The Component Object Model: A Technical Overview”,

Microsoft Corporation, October 1994.

[Wong99] W. Wong, “Telcos to push IP telephony in 1999”, CNetNews.com, January 1999.

Available online at: http://news.cnet.eom/news/0-1004-200-336979.html

[WResInc98] World Research Inc., “The Internet Transaction Survey Results”, 1998.

Available online at: http://www.survev.com/transresults.html

[Z.lOO] ITU, “Specification and description language (SDL) ”, International

Telecommunication Union Recommendation Z.lOO, November 1999.

[Zhen98] M. Zhengkun, “Architecture and protocols for IN,Internet interworking”, Nanjing

Univ. of Posts & Telecommun., China, International Conference on Communication

Technology Proceedings, ICCT '98, 22-24 Oct. 1998.

[Zolz92] P. Zolzettich, A.R. Ephrath, “Customized service creation, a new order for

telecommunication services ”, IEEE 1 Annual Joint Conference of the IEEE Computer and

Communications Societies, INFOCOM’92, 4-8 May 1992.

240

http://news.cnet.eom/news/0-1004-200-336979.html
http://www.survev.com/transresults.html

A p p e n d i x A

L ist o f A c r o n y m s & A b b r e v ia t io n s

AAA Authentication Authorisation Accounting
API Application Programmer Interface
ARP Address Resolution Protocol
ATM Asynchronous Transfer Mode
BCM Basic Call Model
BCP Basic Call Process
BCSM Basic Call State Model
BCUP Basic Call Unrelated Process
BBS Back End Server
B-IP Broadband Intelligent Peripheral
BRI Basic Rate Interface
C/B GF Call/Bearer Control Gateway Function
CA Certification Authority
CAMEL Customised Applications for Mobile Enhanced Logic
CAO Call Association Object
CC Call Configuration
CCAF Call Control Agent Function
CCF Connection Control Function
CCF Call Control Function
CCS7 Common Channel Signalling System No. 7
CGI Common Gateway Interface
CMF Call Manager Function
CMI Call Model Integration
COPS Common Open Policy Service Protocol
CORBA Common Object Request Broker Architecture
CP Connection Point
CPE Customer Premises Equipment
CPH Call Party Handling
CS Capability Set
CSA Call Segment Association
CSCV Call Segment Connection View
CSE CAMEL Service Environment
CT Computer Telephony
CTI Computer Telephony Integration
CUSF Call Un-Related Service Function
CV Connection View
DCOM Distributed Component Object Model
DFP Distributed Functional Plane
DNS Domain Name Server
DOT Distributed Object Technologies
DP Detection Point
DPE Distributed Processing Environment
DPNSS Digital Private Network Signalling System
DSS I Digital Subscriber Signalling No. 1

241

DTMF Dual Tone Multiple Frequency
EJB Enterprise Java Beans
EPS Electronic Payment System
ETSI European Telecommunications Standardisation Institute
FE Functional Entity
FEA Functional Entity Action
FEAM Functional Entity Access Manager
FSM Finite State Machine
FTP File Transfer Protocol
GFP Global Functional Plane
GK Gatekeeper
GMS Generic Messaging Service
GMSC Gateway Mobile Switching Centre
GPRS General Packet Radio Service
G-SCF Gateway-Service Control Function
GSL Global Service Eogic
GSM Global System Mobile
GW Gateway
H.323 GKF H.323 Gatekeeper Function
HER Home Eocation Register
HTTP Hyper-text transfer protocol
lAF Intelligent Access Function
ICW Internet Call Waiting
IDE Interface Definition Eanguage
lEPS Intelligent Electronic Payment System
IETF Internet Engineering Task Force
IF Information Flow
IN Intelligent Network
INAP Intelligent Network Application Part
INCM Intelligent Network Conceptual Model
IN-SSM IN-Switching State Model
IP Internet Protocol
IPCF IP Control Function
IS Internet Shop
ISDN Integrated Services Digital Network
ISO International Organisation for Standardisation
ISP Internet Service Provider
ISUP ISDN User Part
ITU International Telecommunication Union
IVR Interactive Voice Response
JAIN Java APIs for Integrated Networks
JCAT JAIN Coordination and Transactions
JCC JAIN Call Control
JSEEE JAIN Service Eogic Execution Environment
JTAPI Java Telephony API
MACF Multiple Association Control Function
MAP Mobile Application Part
MG Media Gateway
MGC Media Gateway Controller
MGCP Media Gateway Control Protocol
MGF Management Gateway Function
MIB Management Information Base
MSG Message Sequence Chart
MTP Message Transfer Part
NAP Network Access Point

242

NAS Network Access Server
N-ISDN Narrowband-ISDN
NMS Network Management System
NNI Network Node Interface
NO Network Operator
0 BCSM Originating Basic Call State Model
GAM Operations Administration and Management
OMA Object Management Group Architecture
ORB Object Request Broker
OSI Open Systems Interconnection
PBX Private Branch Exchange
PDP Policy Decision Point
PE Physical Entity
PEP Policy Enforcement Point
PIC Points in Call
PIN Personal Identification Number
PINT PSTN and Internet Internetworking
PKI Public-Key Infrastructure
PLMN Public Land Mobile Network
PNNI Private network-network interface
POI Point of Initiation
PoP Point of Presence
POR Point of Return
POTS Plain Old Telephone Service
PP Physical Plane
PRI Primary Rate Interface
PSS Persistent State Service
PSTN Public Switched Telephony Network
QoS Quality of Service
RA Registration Authority
RADIUS Remote Authentication and Dial-In User Service
RM Resource Manager
RMI Remote Method Invocation
RSVP Resource Reservation Protocol
SAG Single Association Object
SCCP Signalling Connection Control Part
SCE Service Creation Environment
SCEF Service Creation Environment Function
SCF Service Control Function
SCGF Service Control Gateway Function
SCN Switched-circuit Network
SCP Service Control Point
SCUF Service Control User Agent Function
SDF Service Data Function
SDL Specification and Description Language
SDP Service Data Point
SDP Session Description Protocol
SE Service Environment
SIB Service Independent Building Block
SIP Session Initiation Protocol
SLA Service Level Agreement
SMAF Service Management Agent Function
SMF System Management Function
SMP Service Management Platform
SN Service Node

243

SNMP Simple Network Management Protocol
SP Service Plane
SPC Stored Program Control
SPIRITS Service in the PSTN/IN Requesting InTemet Services
SQL Structured Query Language
SRF Specialised Resource Function
SS7 Signalling System No. 7
SSF Service Switching Function
SSM Switching State Model
SSP Service Switching Point
SCUF Service Control User Agent Function
STP Signalling Transfer Point
T BCSM Terminating Basic Call State Model
TC Transaction Capability
TCAP Transaction Capabilities Application Part
TCP Transmission Control Protocol
TINA Telecommunications Information Network Architecture
TINA-C TINA Consortium
TIPHON Telecommunications and Internet Protocols Harmonisation

over Networks
TMN Telecommunication Management Network
TMN X The TMN X-Interface
TN Transaction Number
TUP Telephony User Part
UA User Agent
UAC User Agent Client
UAS User Agent Server
UDP User Datagram Protocol
UI User Interaction
UML Unified Modelling Language
UMTS Universal Mobile Telephony Service
UPT Universal Personal Telecommunication
VoIP Voice-over-IP
VPN Virtual Private Network

244

