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A b s t r a c t

This thesis describes the evolution of control architectures and network intelligence towards 

next generation telecommunications networks. Network intelligence is a term given to the group 

of architectures that provide enhanced control services. Network intelligence is provided 

through the control plane, which is responsible for the establishment, operation and termination 

of calls and connections.

The work focuses on examining the way in which network intelligence has been provided in the 

traditional telecommunications environment and in a converging environment. In the case of the 

traditional telecommunications environment, the thesis examines the Intelligent Network (IN) 

architecture as a case scenario. In the case of the converging telecommunications environment, 

the work focuses on examining the relation and impact of emerging architectures and protocols 

and the ways in which these can inter-work with the IN. The discussion is presented using a 

taxonomy reference model of network intelligence architectures and their relation to the IN. For 

example, a protocol based on existing IN capabilities is presented that allows end users to 

engage in electronic commerce without the need for credit cards.

The control plane architecture in the Public Switched Telephony Network (PSTN) is heavily 

based on state machines. The role of state models and the reliance of IP-based protocols on state 

models are also examined. For this, IP-based architectures are examined and the extent of state 

utilisation is presented. This enables a classification of IP-based architectures and protocols to 

be drawn with regard to state utilisation.

The role of existing network intelligence within the context of open programmable networks 

and application servers is also examined. The work identifies the need for a common 

communications framework between third-party service providers. This is the focus of the API 

server architecture, which draws from IN concepts and from approaches in the IP domain.
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Ch a pte r  1

In t r o d u c t io n

Changes in telecommunications technology and the telecommunications environment 
provide sufficient ground for the proliferation of open service provisioning by third- 

party service providers. Such advances give rise to a number of issues relating to the 
control plane of telecommunications networks.

1.1 M o t iv a t io n

Historically, telecommunications services were designed, developed and implemented with the 

traditional telecommunications network as the target environment. This is an environment with 

strictly standardised functional entities that are owned and maintained by the incumbent 

operator.

The telecommunications environment is changing: market dynamics, regulatory initiatives and 

technological advances are necessitating changes [Melo97] [ECOO] [PI 110] [Haya98] [Ishi98]. 

Such technological and market-related [Walk97] changes have an impact on the way in which 

control is provided. The control plane can be thought of as a collection of hierarchically 

distributed functional entities whose aim is to establish, monitor and terminate the calls and 

connections. In the traditional environment, control and network intelligence is provided 

primarily by the Intelligent Network architecture. In the new telecommunications environment it 

is crucial for traditional telecommunications networks and services to inter-work with IP-based 

networks and services [Stro99]. The inter-operability and, therefore, the convergence process is 

driven by the demand of end users for seamless service access, regardless of the transport 

network. Such a level of inter-operability requires a re-think in the way network intelligence is 

provided.

IP-based networks have shown explosive growth [AsatO 1 ] [ITU97] [ITUOO][ECOO]. Unlike in 

the telecommunications domain, the drive for new protocols, services, and capabilities has come 

from open groups, rather than from standardisation bodies. The IP approach does not require the 

presence of an explicit control plane architecture that standardises external and internal state 

models; rather, the client-server architectures of the IP world are sufficient. This is supported by 

the way standardisation bodies such as the Internet Engineering Task Force (IETF) operate.
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1.2 A im s  a n d  O b je c t iv e s

The thesis examines and identifies the control plane mechanisms that enable network 

intelligence in both telecommunication and data networks. In telecommunication networks, 

specifically the public switched telephony network (PSTN), a major architecture contributing 

towards control and intelligence is that of the Intelligent Network (IN). The thesis examines the 

IN architecture as a case scenario in order to pinpoint the mechanisms through which it enables 

services and therefore intelligence to be provided in a complex and distributed network such as 

the PSTN.

The work also aims at examining how the traditional view of network intelligence is affected in 

the converging environment of telecommunication and data networks. To achieve this, the 

thesis examines current and evolving IP-based architectures and suggests ways in which inter­

operability with network intelligent architectures in the PSTN can be achieved. By doing this, 

the author presents a taxonomy that classifies numerous packet-switched protocols and their 

relation to the IN architecture.

The thesis also puts forward a classification of existing IP-based protocols according to their 

utilisation of state and state-dependent actions. The work shows the way in which state can be 

implemented and discusses the need for state-utilisation. More importantly, the author identifies 

some of the complexities that necessitate state-utilisation.

Finally, the thesis looks at the issues relating to the control plane within the framework of open 

programmable networks and initiatives for service provisioning by third-parties. The aim is to 

present an architecture for third-party service providers that draws from IN principles for 

providing control and intelligence.

1.2 T h e  Pr o b l e m  F ie l d  a n d  t h e  A p p r o a c h

The problem field that this research work focuses on is that of the control plane in next 

generation telecommunications networks. The control plane is of crucial importance in the 

converging environment of telecommunication and data networks. Unless there is a clear 

understanding of the way in which network intelligence can be offered -  through the control 

plane -  the inter-working of telecommunications services will be problematic. The problem 

statement can be summarised as: "What is the role o f  network intelligence and the control plane 

in next generation telecommunications networks?”
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The approach the author has adopted is one that represents a mixture of practical and theoretical 

work. The theoretical work focuses on the role of the control plane in traditional and evolving 

telecommunications networks and services. The practical work involves the implementation and 

simulation of three systems, the aims of which were to: examine the role of existing intelligent 

network infrastructure; analyse the role of the control plane in a distributed system in an IP- 

based environment; and to propose an application server architecture that is based on concepts 

from the IN world, but also draws from the flexibility and openness of the IP domain.

1.3 Su m m a r y  o f  M a in  C o n t r ib u t io n s

The thesis presents both traditional and emerging network intelligence architectures within the 

converging telecommunications environment. By doing this it provides a unique view of the 

current state of convergence. This is a useful and important contribution. The classification 

presented in chapter 3, provides the reader with a chronological snapshot of the convergence 

between telecommunication and computer science practices, principles and approaches. Such a 

classification has not been published before, and it is the author’s view that the taxonomy is 

useful for the categorisation of new computer science and telecommunication-based 

architectures and their relation to the Intelligent Network. At the same time, such a 

classification is important as it enables a reader with little background in either of the two fields 

(telecommunications or computer science), to quickly understand the relation of existing 

network intelligent architectures to the Intelligent Network.

The author also presents an application for e-commerce, based on the Intelligent Network 

architecture, with support for micro-transactions without the need of credit cards. The 

application was designed, implemented and simulated by the author. Furthermore, a patent 

application was also filed [lEPSPat]. The application is entirely based on existing IN 

capabilities, and requires no change in the telecommunications environment.

Another important contribution is the classification of IP-based architectures with respect to 

their utilisation of state. The author scrutinises numerous IP-based protocols and frameworks 

and shows that although some systems may be characterised as “stateless”, the complexity of 

their operating environment may impose the introduction of “state” and/or “state dependent 

actions and events”. Specifically, the author argues that in certain systems, the utilisation of 

state is imposed by the concurrency complexities of the system and not the complexities of the 

system perse.
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The thesis also puts forward an architectural framework for the communication of third- 

party service providers within an open network service provisioning environment. The 

framework, proposed by the author, conforms to the Parlay API’s framework interfaces for 

allowing the interconnection of third-party service providers. The architectural framework is 

based on the principles of the IN control architecture and also on the flexibility exhibited by IP- 

based architectures. Incorporated within the framework are state machines that aim and achieve 

to simplify the billing and management of services in an open network environment. The 

framework is necessary as new third-party service providers are

The work presented in this thesis is supported by the following publications of the author:

1. C. Solomonides and M. Searle, “/A  and the INternet”, University College London, 

London Telecommunications Research Symposium, London, July, 1998.

2. C. Solomonides and M. Searle, ''''Relevance o f Existing Intelligent Network 

Infrastructure to the Internet, University College London, Lecture Notes in Computer 

Science, Springer-Verlag, 5th International Conference on Intelligence and Services in 

Networks, IS&N'99, Barcelona, Spain, April 1999.

3. C. Solomonides and M. Searle, "An Intelligent Network E-Commerce ProtocoN, 

University College London, 38th European Telecommunications Congress, Utrecht, 

The Netherlands, August 1999.

4. C. Solomonides and M. Searle, "Evolution Towards the TINA Service Architecture 

Through PINT and Parlay”, 6th International Conference on Intelligence in Networks, 

17-20 January 2000, Palais Des Congres D'Archachon, Bordeaux, France, 2000.

5. C. Solomonides and M. Searle, "Intelligent Network Application Programming 

Interface Server Architecture”, University College London, IEEE IN 2000 Workshop, 

Cape Town, South Africa, May 2000.

6. C. Solomonides and M. Searle, "Network Intelligence, APIs and Service Creation”, 

University College London, 39th European Telecommunications Congress, Limerick, 

Ireland, August 2000.

7. C. Solomonides and M. Searle, "Application Server Architecture for Open Networks”, 

University College London, London Telecommunications Symposium, London, 

September 2000.

1.4 T h e sis  O u t l in e

Chapter 2 provides a short background to telecommunications concepts that are relevant to this 

thesis and discusses the traditional approach to network intelligence. The Intelligent Network is
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presented and the mechanisms through which it provides the control plane for 

telecommunications networks are analysed.

Chapter 3 aims at examining current research activities in network intelligence and presents 

these in relation to the Intelligent Network architecture. It also examines the new role of the 

Intelligent Network: that is, the IN as a control architecture that provides ways to initiate 

services on the PSTN. Within this context, the chapter discusses ways of using the IN as it 

currently is but also identifies the additional functionality that is needed within a converging 

environment.

One of the areas in which the existing IN control architecture can be used unchanged is for 

providing authentication, certification and electronic commerce capabilities. This is examined in 

chapter 4, where a specific application area uses legacy IN to provide a desirable, secure and 

trusted platform for IP-based payments. The strength of the protocol that is described lies in its 

ability to handle micro-transactions on behalf of the end users, without the need for credit cards. 

The implementation and simulation of the protocol is presented in chapter 5.

Chapter 6 examines the notion of “state” in IP-based protocols and architectures. The chapter 

presents the ways in which state can be maintained and implemented. Following this the chapter 

provides a classification of various IP-based architectures with respect to their reliance on state- 

dependent actions. The work presented in chapter 6 is applied in chapter 7 by presenting a 

network management system which aims at examining the control aspects in a distributed 

system. The network management system presented in chapter 7 draws from traditional 

telecommunication principles, but also from techniques traditionally found in the data networks 

environment.

Chapter 8 presents an application-server architecture based on principles from the IN 

environment, but also from computer-science practices. The application server that is presented 

in aimed towards third-party service providers. The chapter examines the need for such an 

architecture within the overall framework of open network service provisioning.

Finally, chapter 9 gives the conclusions regarding the research work presented and provides 

suggestions for further work that may be undertaken as a result of the author’s work.
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C h a p t e r  2  

T r a d i t i o n a l  A p p r o a c h  t o  

N e t w o r k  I n t e l l i g e n c e

The aim of this chapter is to develop an understanding of the traditional role of 
network intelligence in telecommunications. This is done by outlining some key 

concepts such as switching, the role of signalling and their relation to control 
architectures such as the Intelligent Network. In doing this, the chapter presents a useful 
background to the new research conducted.

2.1 In t r o d u c t io n

In chapter 1 it was mentioned that one of the aims of the work is to examine the role of the 

control plane in traditional telecommunication networks. Chapter 2 supports this aim by 

examining the way in which control has been achieved in traditional telecommunications 

networks. Hence, a large section of this chapter deals with the control mechanisms and 

architectures that form part of today’s telecommunications networks.

Network Intelligence is a term given to the group of architectures that provide enhanced 

control services. A number of these will be examined in this thesis. One important example of 

network intelligence is called the Intelligent Network (IN) [Q.1200-Q.1205], discussed in this 

chapter. The IN is implemented as an overlay to the voice network and facilitates advanced call 

control services through its capability sets (CSs).

Telecommunications networks have been developed to support voice services. The basic 

services of such networks are discussed in section 2.1.1, while section 2.1.2 discusses the way 

service logic is distributed in an IN and non-IN environment.

Section 2.1.3 gives a brief history of the development of the telecommunications network. The 

motivation for providing a historical walkthrough is to understand that the evolution of a 

telecommunications network has been driven by the need to provide voice services with an 

extremely high quality of service. This basic requirement has also driven the characteristics of
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the traditional telecommunications network. The fundamental characteristics of a 

telecommunications network are at odds with the features of an Internet Protocol network.

A telecommunications network typically comprises a number of planes. From the point of view 

of this thesis, the main ones are the transport and control plane. The transport plane provides the 

bearer connections on which voice channels are transported and the control plane supports the 

bearer channels through the signalling services. Section 2.2 examines the control plane and, in 

particular, the switching and signalling aspects of a telecommunications network. The key 

signalling protocol is Signalling System No. 7, which is discussed in section 2.3.

The IN control architecture is presented in detail in section 2.4, where the focus is to identify the 

major characteristics of any network intelligent architecture. An essential element of the IN is 

its reliance on state models, which will become apparent through the discussions in this chapter.

While architectures such as the IN focused on standardising the technical issues, others such as 

the Telecommunications Information Network Architecture (TINA) [TINA-GA] had a wider 

scope, attempting to address and standardise less technical issues such as the business and 

managerial structures [TINA-BM]. The TINA model is presented in section 2.5. However, the 

focus is on the relation of IN to TINA, rather than the TINA architecture per se. Finally, section 

2.6 focuses on the use of state models in telecommunications networks.

2.1.1 Introduction to Telecommunications Networks
The aim of any communications network is to provide channels for the exchange of 

information.* In the traditional telecommunications world, the aim of the communications 

network has been to provide for the transfer of speech. This has driven the structure and 

characteristics of the network.

Telecommunications networks have evolved significantly since their original conception even 

though, to a certain extent, the basic service offering has remained unchanged throughout this 

time. This is because the design requirements of the telephone network were set by the 

characteristics of human voice, which have not changed.

The telecommunications network is referred to as the “Public Switched Telephony Network” 

(PSTN). This has evolved from the traditional “plain old telephony service” (POTS) and adds

In traditional telecommunications involving voice, these “channels” can be thought of as physical 

connections between the two subscribers.
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new services such as freephone, credit card calling, etc. The rest of this section presents the 

basic concepts of the PSTN.

A network involves the interconnection of resources. The network topology dictates the number 

of links that are required, the cost of the deployment, and possibly, the robustness of the 

network. As the network becomes distributed across geographical regions, there is a need for 

this interconnection if two or more networks are to communicate.

A subscriber in the PSTN can place a call from any geographical location to another subscriber 

who might be located thousands of miles away. This can be achieved using a hierarchical 

architecture of interconnected network components (see figure 2.1) between any two parties 

involved in a conversation. Having achieved the interconnection of these geographically 

distributed networks, there is a requirement to notify network components (residing in the core 

of the network) so that one subscriber can initiate a call to another. This is achieved using 

switching and signalling. The process of switching and signalling results in resources (channels) 

being allocated between the calling (originating) and the called (terminating) parties. This pre­

allocation of resources for the duration of a call* is a fundamental principle in 

telecommunications networks. The PSTN approach is in stark contrast to the approach of data 

networks such as the Internet, where no pre-allocation of resources takes place. The details 

involved in switching and signalling are the focus of the work presented in section 2.2.

Making a connection and allocating the resources requires a call to proceed through the 

following phases:

1. Pre-selection", where a new call request is recognised and decisions on how to deal with 

the call are made.

2. Call completion: the originating and terminating parties are connected and the charging 

process is initiated.

3. Conversation

4. Release: the call is disconnected, releasing the allocated resources, the billing record is 

completed, and the network returns to the normal (idle) state.

When channel-associated signalling is used (section 2.2.3), the resources are allocated when the 

subscriber’s handset goes off hook and the signal is received by the local exchange.
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Figure 2.1: The hierarchy o f  the PSTN network

2.1.2 Distribution of Service Logic
This section discusses the way in which service logic is distributed in two environments. Figure

2.2 illustrates the implementation o f a service without an IN eontrol architecture; figure 2.3 

illustrates the way a service is implemented with an IN architecture. The section discusses the 

two approaches to service distribution and implementation and puts forward the principles, 

advantages and basic operation o f the IN.

Operations Administration 
and Management 

(0  AM)
services 1..n

Switch A

Service Logic

Service Data

Basic Call Processing

Switch B

Service Logic

Service Data

Basic Call Processing

Switch C

Service Logic

Service Data

Basic Call Processing

Figure 2.2: Switch-based service provisioning in the traditional POTS  
environment adopted from  [Mage96]

Figure 2.2 depicts the components o f the switches and the way service logic is distributed 

without the IN control architecture. The switches enable the connection o f subscribers located at 

the edges o f the network. Its components are the service logic, service data and basic call- 

processing functionality.
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The implementation of services without an IN control architecture has a number of 

disadvantages [Ambr89][Eple90][Zolz92][Filk00]. The switches may be from different vendors 

and, as a result, the service logic and data have to be customised for the vendor-specific 

platform. To introduce new services, the service logic has to be implemented on all the switches 

and this task is costly due to the geographical distribution o f the switches. Subscribers can only 

access services implemented by the local switch, unless the service logic is identical throughout 

the network.

To achieve homogeneity at the switch-level means that a substantial proportion o f  the operator’s 

revenue and time is spent in updating the service logic at the switches. This is costly, time- 

consuming, and inefficient and, unfortunately, it was the only approach available until the 

introduction o f the Intelligent Network architecture.

With the introduction o f the Intelligent Network, it became possible to implement a service in a 

more efficient manner, as shown in figure 2.3.

SOP

Service Logic

Service Data

Switch A (SSP)

Basic Call Processing

Switch B (SSP)

Basic Call Processing

Switch C (SSP)

Basic Call Processing

Figure 2.3: Service provisioning in an IN  environment

The service logic now resides in a central node, called the Service Control Point (SCP). When 

the individual switches require additional service functionality, that may not present in the 

switch, it is provided by the SCP.

The separation o f basic call-processing from enhanced service logic enables the rapid 

provisioning of new services [Kun97]. This is because service logic is now centrally located, 

and there is no need to individually update every single switch; a single update on the SCP is 

sufficient.
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To illustrate the operation o f an IN service, the freephone service* is presented in figure 2.4. The 

following communication channels are used: communication between the Service Switching 

Point (SSP) and the SCP/Service Data Point (SDP) is achieved via the signalling network, while 

communication across the SSPs (switches) is over the bearer connection. The signalling links 

are shown in figure 2.4 using dashed lines while the bearer connection is represented using the 

solid line.

The process begins with the initiating party dialling “0800192192”. The local exchange (switch 

A) recognises that this is a specific service access number as it begins with “0800”. It therefore 

queries the SCP for call handling support. The SCP then queries the SDP, which contains a 

database, in order to translate the “0800192192” logical number to the specific destination 

number, for example “02073342123” . This translated number is passed back to switch A and 

call handling resumes. Switch A now has sufficient information to be able to set up the call, i.e. 

to establish the corresponding bearer connection to the appropriate final destination. When 

either o f the two subscribers hangs up, the call is terminated in the usual manner (i.e. by moving 

to the Release phase).

0800-192192

02073342123

Service Logic

Service Data

SCP SDP

Data

0800-192192
<3 02073342123

-  0800-192192

Switch A (SSP)

6

Switch B (SSP)

Basic Call Processing Basic Call Processing

02073342123

Figure 2.4: IN implementation o f  freephone service

The freephone service proved to be a desirable service with network operators and customers 

alike. Indeed, British Telecom’s reason for adopting the IN architecture was to enable freephone

* Freephone enables a calling party to dial a number without incurring charges. The call is charged to the 

terminating party.
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and call-stream services [OBri89]. NTT in Japan, introduced an IN-like architecture in 1985, 

and the first service that was made available was freephone [Suzu93].

This introductory section provided a short description of the various elements that are involved 

in a modem telecommunications network. In summary, the main concepts that were introduced 

include the hierarchical and distributed nature of the network, the presence of a separate 

signalling network to that of the bearer connections, the fundamental requirement of the 

sharing of resources and their explicit allocation, service provisioning with and without the 

Intelligent Network, and some of the advantages of the Intelligent Network. These concepts 

are further discussed in the following sections in this chapter.

Firstly, however, there is a short chronological walkthrough of the telecommunications 

developments up to the point of the introduction of the Intelligent Network to show that, at the 

initial conception of the telecommunications network, there was intelligence at the core, which 

was then removed.

2.1.3 Historical Switching and Signalling
The aim of the POTS network was to provide the capability for voice communication among 

subscribers. At the time (late 1870s), the approach adopted was to interconnect subscribers 

through local offices. Within these offices, human operators were responsible for physically 

connecting the circuit between the caller and the destination subscriber using a switchboard.* 

This process is now known as circuit switching.

The presence of the human operator provided the “network” with a very significant capability -  

that of intelligence. Operators were in a position to know that the doctor was not at home, but at 

a friend’s house -  and in this way could re-direct the call. In today’s environment, this is call 

forwarding. Furthermore, unwanted calls were filtered (call-screening) and messages could be 

left with the operator (voice-mail). When either of the two parties ended the conversation, the 

operator would terminate the connection. This would release the bearer channels and resources 

were no longer explicitly allocated to the two parties. It can be deduced that the explicit 

allocation of resources has had its roots in the original conception of the network.

While the services described above were provided by the human operator, other services, for 

example, call queuing and call waiting were more difficult (if not impossible) to achieve, 

because of the limitation in the number of resources (bearer connections) and not due to lack of

* At the time, subscribers were important people in the community, such as doctors, policemen, etc.
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intelligence. What is more, as the number of subscribers grew, operators struggled to keep up 

with the demand for switching [Russ98]. It then became evident that if the switching and 

connection process could be automated, it would provide lower running costs and therefore 

increased profits. Increasing the speed of the connection process also meant subscribers would 

spend more time talking rather than waiting to be connected.

The automation of the connection process required a component that could automatically switch 

and connect the originating and terminating parties. Unfortunately, the introduction of 

automated switches also removed the intelligence that was present.

2.1.4 The Strowger Switch
The first automated switch came from an unexpected source. Almon B. Strowger was an 

undertaker in Kansas City, USA in the late 1890s. The story says [AGCS] [Lesh98] [TeReOO] 

that there was a competing undertaker locally, whose wife was an operator at the local telephone 

exchange. Whenever a caller asked to be put through to Strowger, calls were deliberately put 

through to his competitor. This obviously frustrated Strowger greatly and he set about devising 

a system that would reduce the reliance on the human part of the equation. Strowger developed 

a system of automatic switching using an electromechanical switch based around 

electromagnets and pawls [AGCS]. With the help of his nephew, Walter S. Strowger, he 

produced a working model in 1888 under US Patent No. 447918 dated 6/I0/189I.

There was now however a need to re-introduce the network intelligence and the “advanced 

services” that were removed. Of course, the electromechanical switch developed by Strowger 

did not provide the necessary “environment” to be “software-controlled”. Software within 

switches was introduced with the development of Stored Program Control (SPC).

By the early 1960s, advances in computer science* made it possible to develop software which 

could control devices. In May 1965, the No. 1 Electronic Switching System was put into 

commercial service in Succasunna, New Jersey. The switch utilised technology with a relatively 

slow central control, very expensive memory (Ferrite sheet and Twister), and slow peripherals 

[Memm90]. These factors adversely affected the development of SPC-type switches -  the 

competing crossbar systems were cheaper to manufacture.

In the early 1980s, digital switching began to appear and distributed control was more widely 

adopted -  together with its overheads [Memm90]. Multiple control programs were accompanied

* Such as the introduction of the silicon transistor by Texas Instruments.
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by multiple distributed databases and interactions among distributed programs and databases 

were a challenge. The software development practices in the 1980s did not exactly follow the 

software engineering principles of abstraction, coherence or decoupling [SommOl]. Instead, 

software was characterised by the “spaghetti approach” and endless use of the “goto” keyword.

The rest of this chapter focuses on discussing the role of switching and signalling, followed by a 

detailed description of the IN control architecture.

2.2 Sw it c h in g  a n d  t h e  R o l e  o f  S ig n a l l in g

In an ideal world, communicating parties would be physically interconnected across a medium 

with no loss, delay or bandwidth limitations. In practice it is impossible to physically 

interconnect all the communicating parties in a mesh arrangement due to scalability, practicality 

and logistics.

Figure 2.5: A fully interconnected mesh topology

Equation (1) presents the total number of links that are required if n nodes are to be connected in 

a fully-meshed arrangement, as shown in figure 2.5.

n - n
( 1)

This is expensive if the number of nodes is large, as in the case of the PSTN where the number 

of nodes is in the order of millions. For this reason, from its infancy the telecommunications 

network has adopted a hierarchical approach (see figure 2.1).

In order to enable the network to interconnect two subscribers in a hierarchical topology, 

switches (that are controlled through signalling) must be placed along the transmission path to 

direct the bearer connections from the caller to the person being called. The process of 

switching allows the physical interconnection of subscribers by directing a call path in a way 

that enables the caller to establish a bearer connection to the party being called [Russ98]. The 

size and position of the switches are carefully chosen using network planning and performance 

measurements, as their cost is very high.
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The signalling network is used to control the switches and its aim is to establish and maintain 

control connection paths through the link-by-link setting up of a path [Russ98]. In doing so, 

valuable resources are allocated by the switches to establish the connection. To maintain the 

signalling network in an operational state and increase robustness, some of the links at the 

various levels are interconnected (see figure 2.1).

The interconnection increases robustness in the case of link failure at the physical and transport 

planes. However, due to the importance of the signalling network it is also vital that the 

signalling protocol maintain mechanisms that provide resilience and robustness.

Signalling protocols such as Signalling System Number 7 (discussed in section 2.3) define 

ubiquitous state models to assist in ensuring the robustness and reliability of the signalling 

network. The concept of state models is a central issue to the work presented in this thesis (see 

particularly sections 2.6, 3.5, 6.6 and 7.3).

The signalling network is divided into two parts: the access network and the core network.

2.2.1 Access Network
The access network is defined as the part of the network between the end terminal and the local 

exchange. Access network signalling in the POTS network utilises a very simple analogue 

signalling scheme called Dual Tone Multiple Frequency (DTMF) [ETSI TS 101 235]. DTMF 

signalling uses a set of audible frequency tones in response to buttons being pushed on the 

telephone. The goal is for the telephone device to signal to the exchange across the user channel.

In the case of private businesses, the customer premises do not have a single telephone line but 

a large number of telephones in a private network. In such cases, a business often possesses a 

Private Branch Exchange (PBX). PBXs control the routing of calls within the business 

organisation and provide customised services between offices of the same company. These 

services include the allocation of personal number extensions across multiple office sites. The 

Digital Private Network Signalling System (DPNSS) is a scheme that interfaces the PBX with 

the local exchange. Access signalling has differing requirements from the trunk (core) network.

2.2.2 Core Network
The core network is the part from the local exchange to internal signalling points, such as 

Signal Transfer Points (STPs). Core (inter-exchange) signalling between exchanges or switches 

establishes the resources for a call and optionally communicates supplementary service
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requirements to an intelligent network platform, such as the Intelligent Network. The core 

network uses core signalling schemes and protocols. SS7, the ubiquitous inter-exchange 

signalling scheme, has evolved from a previous version named Common Channel Signalling 

System No. 6, developed by the ITU-TS (formerly CCITT) in the mid-1960s. SS7 employs 

digital signalling.

Early signalling methods were limited because they used the same circuit for both signalling 

and voice. The circuit would be busy from the time the caller started dialling until the caller 

went “on-hook”. A solution to this was to separate the signalling and the bearer connections. 

This way, the call setup and teardown procedures required with every call could be faster. Voice 

and data circuits could be reserved for use when a connection was possible, instead of 

maintaining the connection even when the destination was busy.

C h a n n e l - A s s o c i a t e d  S ig nal ling C o m m o n - C h a n n e l  s igna l l ing

Bearer channel 1
Switch Switch

Signalling for 
bearer channel 1

Control
System

Bearer channel 3

Signalling for

Control
System Switch Switch

Common Signalling

Control
System

Control
System

Channel
bearer channel 3

Figure 2.6: Channel-associated and common-channel signalling

2.2.3 Channel-Associated Signalling
In channel-associated signalling (figure 2.6, left), the signalling messages are sent across 

logical signalling channels that are dedicated to each speech channel. In other words, although 

the signalling channel may be a separate physical channel from the voice (bearer) channel, a 

dedicated channel is allocated to support the voice call. The disadvantage o f this technique is 

that signalling resources are provided regardless o f whether the voice channel needs it. There 

are times in a call, such as the mid-call period, when less signalling information is required. At 

such times it would be useful if the signalling channel could be used for another signalling 

circuit.

2.2.4 Com m on-Channel Signalling
In common-channel signalling (figure 2.6, right), signalling for a number o f voice channels is 

aggregated into a single shared (common) signalling channel. The introduction o f separate 

signalling links means that a bearer (voice) connection is only utilised if a connection can be 

established. As a result, the availability o f voice circuits is higher and the need for additional
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circuits decreases. Common-channel signalling schemes include SS6 and SS7, as well as the 

DPNSS and its successor QSig [ECMA-143],

2.3 C o m m o n -C h a n n e l  S ig n a l l in g  Sy st e m  N o . 7
Figure 2.7 depicts the Common-Channei Signalling System No. 7 (SS7) protocol stack in 

relation to the OSI reference model [ISO-IS7498-1]. In contrast to IP networks, SS7 networks 

do not adhere to the full seven-layer OSI reference model. This is because SS7 was developed 

before the OSI reference model. SS7 adheres to a four-level model.

OSI lay e rs 8 5 7  levels

Application layer

P resentation layer 

S ession  layer 

T ransport layer

Network layer 

Data link layer 

Physical layer

Mobile Application 
Part

Intelligent Network 
Application Part

Transaction Capabilities 
Application Part (TCAP)

Signalling Connection Control Part 
(SCCP)

M essage  Transfer Part (MTP) 
Levels 1-3

Figure 2.7: The SS7 protocol stack in relation to the OSI reference model

The Message Transfer Part Levels 1-3 [Q.701] define the physical transport, the data link 

layer and the network layer. As in the OSI model, each layer is responsible for delivering a 

service to the layer above it. In the case o f  call-connection, MTP-3 provides an end-to-end 

packet-based transfer that routes signalling packets based on a unique element address 

called a Point Code (PC).

The User Parts are shown as the shaded areas on the right. The Telephony User Part 

(TUP) [Q.721-Q.725] is a set o f well-defined messages for the establishment, 

conversation and termination phases o f a call. Many national variants o f TUP exist 

including the BTUP in the UK and SSUTR2 in France. In the USA, the ISDN User Part 

(ISUP) [Q.761-Q.767] is used and supports ISDN services including the establishment 

and control o f data channels.
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■ The Signalling Connection Control Part (SCCP) [Q.711-Q.716] provides connection- 

oriented and connectionless services.* A significant feature provided by the SCCP layer is 

global title translation^ [Q .711]. Through global title translation, it is possible for any 

signalling node to communicate with any other signalling node, even if  the address o f the 

destination node is not known by the originating node. For instance, there may be cases 

when Service Switching Points (SSPs) need to communicate with Service Control Points 

(SCPs). If the SSP does not know the address o f the destination SCP, the Signal Transfer 

Point (STP) provides the address, through global title translation.

■ The Transaction Capabilities Application Part (TCAP) [Q.771-Q.775] is designed for 

non-circuit related messages. TCAP messages are destined for database entities as well as 

actual end-office switches. TCAP therefore allows end-to-end client-server invocation o f a 

service. The first usage o f the TCAP protocol was for freephone number translation (see 

section 2.1.1).

■ The Intelligent Network Application Part (INAP) [Q. 1208] is the application layer. It 

provides the information flows between IN elements.

The physical elements o f the SS7 network are named Signal Points. As in IP-based networks, 

the SS7 network uses packet-switching for transferring messages across the network. Signal 

points can also perform message discrimination and route messages to another signal point.

S C P

S S P S S P

S S P

S S P

S S P

S S P

ST P STP

STP STP

S S P

Figure 2.8: Signalling points within the SS7 network

* Connectionless services use parameters to emulate a connection-oriented service.

 ̂Arguably, global title translation is similar to the service provided by Domain Name Servers (DNS) and 

the Address Resolution Protocol (ARP) in the IP domain. A domain name server in one zone initiates a 

request to a domain name server in a different zone, while global title translation requires a “number 

translation service” for a specific point-code. A network node makes an ARP request to a logical IP 

address which is matched to a physical Ethernet (hardware) address, while an STP refers a point-code 

request to a higher-level STP; and this is similar to a referral in the DNS.
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There are three different types of signalling points (as illustrated in figure 2.8). These are the:

■ Service Switching Points (SSPs) represent the local exchange in the telephone network by 

converting signalling from the voice switch into SS7 messages.

■ Signal Transfer Points (STPs) serve as routers and are responsible for directing requests to 

and from the SSPs.

■ Service Control Points (SCPs) serve as an interface to databases.

Figure 2.8 illustrates a key functional requirement of the SS7 network, which may be apparent 

from the links. This is to remain operational at all times and, as far as the physical layer is 

concerned, it is achieved by using alternative links to some destinations. For instance, for SSP-B 

to be completely isolated, all links to STP-4 must fail. This redundancy means that all signalling 

points can be accessed even if some of the links fail.

2.4 T h e  In t e l l ig e n t  N e t w o r k

This section provides a detailed description of the Intelligent Network architecture. The 

Intelligent Network architecture is of importance to the overall work presented in this thesis 

because it shows how control and network intelligence has been achieved in a complex network, 

such as the PSTN, through the extensive use of state models.

One of the aims of this section is to provide the reader with the technical details and an 

appreciation of the architectural complexities within it. Arguably, the complexities of the IN 

architecture have been both its strength and its weakness. In the former case, the rigid, clear and 

concise definition of the architecture in ITU Recommendations in Series Q.1200 that span 

thousands of pages have enabled the IN to provide a common architecture (in theory) for the 

robust control of the PSTN network. However, at the same time a “limiting” or “failing” factor 

has been the time delay that is inherently present if a body such as the ITU* tries to standardise^ 

on such a huge and ambitious architecture as the Intelligent Network. This is in stark contrast to

* Standards produced by standards organisations such as the ITU-T and ISO are called de jure  standards. 

These are stable and easily socialised in the global sense. In the past, de jure  standards usually took a long 

time to set. For example, CCITT (ITU-T’s predecessor) Recommendations were approved by the Plenary 

Assembly held once every four years [AsatOl]. Furthermore, according to the same reference, “one of the 

biggest challenges ITU-T faces is to cope with market demands in competitive areas.” As a result, the 

ITU-T is aiming to shorten the approval time for new standards from 4 years (1998) to between 4 weeks 

to 9 months in 2001 [AsatOl].

 ̂For an appreciation of the standards process, refer to [JakoOl].
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the IP domain and the work from the IETF, where the approach is to standardise on protocols 

and the architecture of the functional entities is left to each proprietary implementation.

According to [Q.120I], the Intelligent Network (IN) is a:

“telecommunications network service control architecture that is a generic platform for open, 
distributed, service-independent communication. Its goal is to provide an open platform supporting 
the uniform creation, introduction, control, and management of services beyond the basic 
telephony services in the telecommunications environment.”

This definition of the IN is far more complex than what the IN architecture offered at the time of 

its conception. Initial versions of the IN infrastructure aimed simply to enable services such as 

freephone and local-call. This initial aim was desirable, and indeed British Telecom’s initial 

reason for deploying IN infrastructure was to enable services such as Freephone and Callstream 

Services. Furthermore, BT realised that the IN “simplified service administration and data could 

now be centralised -  rather than replicated at various locations in the network, thereby avoiding 

unnecessary use of valuable computing resources” [OBri89].

The IN has developed from the “single database” application, such as freephone, it offered at 

the time of its conception. This section describes the present capabilities of the IN, as defined by 

the ITU Q.12xc series of Recommendations [Q.1200].

Today’s IN is a service-oriented network architecture that separates service control functions 

from service switching functions, with typically both types of functions being implemented in 

different physical equipment.

It is as a direct result of this separation that it is possible to introduce new services rapidly 

without the need to change the functionality of the switches [VeniOOj. Through this separation, 

the intelligence required for the provision of a service is now placed in dedicated IN servers 

instead of every switch of the network. The switch functionality is restricted to basic call- 

processing, to the identification of IN service calls and to the routing of these calls to the IN 

servers.

What is more, through the adoption of re-usable components, the IN can achieve service 

independence. Service components (i.e. Service Independent Building Blocks, or SIBs), such as 

“authentication”, “number translation”, and “charge” [Q.I201], can be re-used. The principle is 

to be able to introduce new services by combining basic SIBs where appropriate.
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The creation of new services requires a Service Creation Environment (SCE). Service creation 

is defined as “an activity whereby supplementary services are brought into being through the 

specification phase, development phase and verification phase” [Q.1201]. Essentially this is the 

process of transforming service descriptions into service logic. The IN does not standardise on 

the approach that must be followed in order to create a new service but rather provides the 

capabilities and tools for rapid service creation and provisioning. For this reason, service 

creation and SCEs attracted numerous interests from the research community.

For example, the work of the TINA Open Service Creation Architecture (TOSCA) [TOSCA-IS] 

aims at incorporating TINA [TINA-GA] principles (see section 2.5) to further the capabilities of 

the traditional SCE. Further work on SCEs can be found in [Lodg97][Ku94][Gill94][Niits95].

2.4.1 The Intelligent Network Conceptual Model
The Intelligent Network Conceptual Model [Q.1201] provides a set of viewpoints* for looking 

at the IN architecture. It reduces the complexity of the IN service modelling, analysing the 

problem from four different points of view, called planes (refer to figure 2.9). Each plane 

provides an abstraction of a problem that can be studied independently from the other points of 

view. The four planes derive from a top down analysis of the IN architecture, starting from the 

service point of view down to the physical point of view [Q.1201]. The four planes address

■ Service aspects (the service plane),

■ Global functionality (the global functional plane),

■ Distributed functionality (the distributed functional plane), and the

■ Physical aspects (the physical plane), of an Intelligent Network.

The service plane describes the services from the user point of view without any reference to an 

IN based implementation. Services are described in terms of service features. A service is “a 

stand-alone commercial offering, characterised by one or more core service features, and [it] 

can be optionally enhanced by other service features” [Q.1201].

A service feature is defined as “a specific aspect of a service that can also be used in 

conjunction with other services and service features as part of [a] commercial offering. It is 

either a core part of a service or an optional part offered as an enhancement to a service” 

[Q.1201].

The viewpoint here is based on the Open Distributed Processing terminology defined by the 
International Organisation for Standardisation (ISO).

36



The global functional plane (GFP) models the network from a global perspective, hiding the 

details related to the distribution of functional entities. The GFP expresses a service in terms of 

Service Independent Building Blocks (SIBs). “A SIB is a standard reusable network-wide 

capability residing in the Global Functional Plane used to create service features” [Q.1203].

In [Q.1201] the Basic Call Process (BCP) is defined. The BCP is responsible for providing 

basic call connectivity between parties in the network. The BCP can be viewed as a specialised 

SIB which provides basic call capabilities including connecting and disconnecting the call and 

retaining the Caller Instance Data [Q.1203].

An IN service can be represented as a chain of SIBs connected to the BCP. A Point of Initiation 

(POI) is the BCP functionality needed to launch a chain of SIBs, while a Point of Return (POR) 

is the functionality needed to terminate the chain. The POI, POR and the BCP are further 

discussed in section 2.4.2.

The distributed functional plane (DFP) models the distributed view of an IN structured 

network in terms of computational objects called functional entities (FEs). ITU [Q.1204] 

defines a functional entity as

“a unique group of functions in a single location and a subset of the total set of functions required 
to provide a service. One or more functional entities can be located in the same physical entity. 
Different functional entities contain different functions, and may also contain one or more of the 
same functions. In addition, one functional entity cannot be split between two physical entities; the 
functional entity is mapped entirely within a single physical entity. Finally, duplicate instances of a 
functional entity can be mapped to different physical entities, though not the same physical entity.”

The FEs may perform atomic functional entity actions (FEAs) and, as a result of the FEAs, 

exchange messages called information flows (IFs).

The physical plane models the physical aspects of an IN structured network, including the 

detailed design of physical network elements. Physical Entities (PEs) (i.e. switches, general- 

purpose computers that contain databases, etc.). The FEs of the DFP are assigned to PEs and the 

IFs between the communicating FEs in different PEs are mapped into the protocol messages.
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Figure 2.9: The fo u r  planes o f  the IN  conceptual model

Figure 2.9 depicts the result o f the IN service decomposition through the four IN conceptual 

model planes. Examples o f FEs in figure 2.9 are the SSF, SCE and SDF; examples o f PEs are 

the SSP, SCP, and SDP.

2.4.2 The IN Service Processing Model and the Basic Call Process
In a non-IN world, the switching nodes deliver service to the parties involved in a call. Services

are programmed within the switching nodes (SSP) and may be basic or supplementary. 

Essentially, the service logic is contained within the switching nodes.

In the IN world, the service logic for the supplementary services may be developed and 

executed outside the switching nodes. Figure 2.10 illustrates the IN service processing model, 

with the switching nodes represented by circles.
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Figure 2.10: The Intelligent Network service processing model [Q.1201]
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Supplementary services, when requested, trigger the execution o f the IN service logic by means 

o f software “hooks”. One o f the aims o f IN is to standardise these “hooks” and the messages 

between them.

The Basic Call Process (BCP) [Q.1203] represents the well-defined call control process. It is 

related to the basic call state model in that the trigger points o f the BCP correspond to the entry 

points, Points O f Initiation (POI), into the Global Service Logic, that is an entry point into an IN 

service.

The Global Service Logic (GSL) [Q.1203] can be characterised as the “glue” that defines the 

order in which SIBs will be chained to accomplish services. Each instance o f GSL (figure 2.11) 

is (potentially) unique to each individual call, but uses common elements:

■ BCP interaction points (POI and POR).

■ SIBs.

■ Logical connections between SIBs and between SIBs and BCP interaction points.

■ Input and output data parameters, service support data and call instance data defined for 

each SIB.

G S L

SIB SIB

POI POR

B asic C a ll P ro cess

Figure 2.11: The BCP in the global functional plane

Since the BCP is based on a state-dependent process, IN services can only be created within the 

boundaries set by the BCP. There are many consequences for the creation o f services within 

these boundaries in terms o f service control. For example, at one extreme, invoking the service 

logic only when the call has been completed does not leave the service logic much to do. At the 

other extreme, the ability o f a service logic programmer to activate a trigger anywhere in the 

BCP may easily lead the system to a chaotic state.

2.4.3 IN Capability Sets
Capability Sets (CS) [Q.1202] are the phases o f IN evolution that give rise to particular service 

capabilities. Each IN CS is defined by the hardware and software elements described in the 

standards. Each new IN CS adds functionality and thereby increases the scope for services. At
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the top level, each CS introduces benchmark services. A benchmark service is not standardised 

but is “a stand-alone commercial offering, characterised by one or more core service features, 

and it can be optionally enhanced by other service features” [Q.1202],

2.4.3.1 IN  Capability Set 1 (CS-1)

IN CS-1 [Q.1211] capabilities are intended to support services and service features that fall into 

the category of “single ended” or “single point of control” services referred to as Type-A, while 

all other services are placed in a category called Type-B. Single-ended is defined as [Q.1211]:

“A single-ended service feature applies to one and only one party in a call and is orthogonal 
(independent) of both the service and topology levels to any other parties that may be participating 
in the call. Orthogonality allows another instance of the same or a different single-ended service 
feature to apply to another party in the same call as long as the service feature instances do not 
have feature interaction problems with each other.”

Single point of control is defined as “a control relationship where the same aspects of a call are 

influenced by one and only one service control function at any point in time” [Q.1211]. The 

single point of control characteristic of IN CS-1 services restricted a service process to only 

one call party (single-ended). This was a limiting factor and has changed with the introduction 

of IN CS-2 which supports both Type-A and Type-B services (see section 2.4.3.2).

The IN CS-1 benchmark services identified in [Q.1211] are:

Abbreviated Dialling (ABD) Security Screening (SEC)
Account Card Calling (ACC) Selective Call Forward on
Call Distribution (CD) Busy/Don’t Answer (SCF)
Call Forwarding (CF) Split Charging (SPL)
Call Rerouting Distribution (CRD) Tele-voting (VOT)
Credit Card Calling (CCC) Terminating Call Screening (TCS)
Destination Call Routing (DCR) Universal Access Number (UAN)
Folio w-me Diversion (FMD) Universal Personal
Malicious Call Identification (MCI) T elecommunications (UPT)
Mass Calling (MAS) User-defined Routing (UDR)
Originating Call Screening (CCS) Virtual Private Network (VPN)
Premium Rate (PRM)

Figure 2.12 depicts the DFP for IN CS-1. The functions that have been defined as a first subset 

of a target IN architecture are related to traditional call handling (service switching and 

triggering), service execution (service control) and service management.
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Figure 2.12: Distributed functional plane fo r  IN  CS-1 [Q.1211]

The IN CS-1 DFP functions can be grouped into the following categories [Q.1211]:

■ Basic call-handling functions

The Call Control Agent Function (CCAF) [Q. 1214] represents the user terminal function 

and hence provides access to the network. The CCAF accesses a call control function (CCF) 

that provides basic call-processing functionality and can thus be considered as a traditional 

“switch” . Central to the operation o f the CCF is the basic call model that is discussed in 

section 2.4.4.

■ Service execution functions

These functions provide supplementary services. A Service Switching Function (SSF) 

[Q.1214] represents additional functionality for controlling switch resources and provides a 

well-defined, service-independent interface to the service control function (SCF) that 

controls resources in a switch or peripherals, based on an appropriate service logic program. 

A Service Data Function (SDF) contains the service data and provides standardised real­

time access for SCFs to service data. Finally, the Specialised Resource Function (SRF) is 

used for controlling resources such as speech synthesisers and voice recognition systems.
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■ Service management functions

The Service Management Function (SMF) [Q.1214] supports service introduction and 

maintenance; it is accessed by a Service Management Agent Function (SMAF) that 

provides the man-machine interface to the SMF, Also, an additional Service Creation 

Environment Function (SCEF) allows for the specification, testing and introduction of 

services in the IN.

As discussed in section 2.4.1, IN Services, i.e. service features, are composed of SIBs in the 

GFP. The monolithic view of a SIB in the GFP has to be decomposed in the DFP into an 

interacting set of capabilities. Each functional entity in the DFP may perform specific 

operations, referred to as Functional Entity Actions (FEAs). Thus each SIB is decomposed in 

the DFP into a set of “client-server” relationships between one or more functional entities, with 

the client being the SCF and the server being one of the other FEs, such as the SDF, SRF, or 

SSF [Q.1211].

Consequently, different functional entities in the DFP must exchange messages to perform a 

desired SIB functionality. These client-server information exchanges between the functional 

entities are called Information Flows (IFs). The total set of IFs between any two functional 

entities in the DFP will be a number of such client-server information flows. Some examples of 

functional IFs are the following:

■ Initial detection point -  the SSF starts a dialogue with the SCF and requests further 

instructions (based on the occurrence of a specific trigger event).

■ Play announcement -  the SCF instructs the SRF to send an announcement to a user.

■ Prompt and collect user information -  the SCF instructs the SRF to collect some dialled 

information from the user.

2J.3.2 IN  Capability Set 2 (CS-2)

IN CS-2 is defined in the ITU Recommendation of series Q.122%. IN CS-2 consolidates and 

enhances the features of IN CS-1 by the addition of functional entities and information flows 

and by specifying a number of additional services and service features that include mobility 

services and B-ISDN services [Feyn97]. More importantly however, IN CS-2 includes services 

that allow the end user to control the services to which they are subscribed [Feyn97].

IN CS-2 also acknowledges a situation that may be desirable or undesirable. This is called 

feature interaction and is defined as the interaction of features that could be desirable or not 

[Q. 1221]. A desirable interaction is defined as feature cooperation, while an undesirable one is 

termed feature interference [Lin98]. However, feature interaction has come to be synonymous
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with feature interference. The issue o f feature interactions has attracted considerable research 

activities [Peng98][Ever97][Cape96][Naka95][Kell94][Brot93].

The increased capabilities o f IN CS-2 are reflected by comparing the DFP for IN CS-1 (see 

figure 2.12) with that o f IN CS-2 (shown in figure 2.13).
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Figure 2.13: Distributed functional plane fo r  IN  CS-2 [Q.1221]

IN CS-2 defines two additional functional entities: the Service Control User Agent Function 

(SCUAF) and the Call Un-Related Service Function (CUSF). The SCUAF provides the user 

access to the network CUSF [Q.1221]. The CUSF allows the specific triggering o f services 

outside the basic call process, and only supports connection-oriented communication between a 

user and the network. This is a significant capability as it can be used for billing applications on 

different networks, such as IP.

The IN CS-2 also defines the Basic Call Unrelated Process (BCUP), which is the counterpart 

o f the BCP for modelling the capabilities implemented through actions that are not performed 

on behalf o f a particular call, even though they are necessary for supporting calls. The BCUP is 

defined as “a specialized SIB which provides the call unrelated capabilities. These capabilities 

enable the use o f GSL as well as other SIBs to completely describe IN CS-2 services and 

service features” [Q.1223].
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Figure 2.14 shows a possible mapping o f the IN CS-2 DFP onto the physical plane. The figure 

is included for completeness to provide an appreciation o f the number o f protocols and 

functional entities that are involved in a simplified IN implementation.
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Figure 2.14: Example o f  a possible mapping o f  IN  functional entities into IN  
physical entities supported by IN  CS-2 [Veni98]

The protocols that are depicted in figure 2.14 include parts o f the SS7 core signalling protocol. 

Examples o f these are TCAP, SCCP and MTP. Also shown are access signalling protocols such 

as DSSl [Q.931].

2.4.3.3 Inter-working Functions in Future Capability Sets

A particular area o f research and development in IN CS-2 is in the enhanced 

telecommunications Inter-working functions. Inter-working functions enable service features 

to be made available outside the home network and reflect the converging telecommunications 

environment. The interest shown in inter-working functions as part o f the convergence process 

is supported by a number o f publications [Scho98][Zhen98][Deci97][ETSI EG 201-722]. The 

IN must be in a position to provide inter-working capabilities. Inter-working is the process by 

which several networks (potentially o f different types such as IN-structured and non-IN- 

structured, public and private) work together to provide a service.

The DFP sees the introduction o f standardised interfaces for the inter-working o f inter-domain 

SCFs and SDFs. Additionally internetwork management interactions and distributed data 

handling processes are supported.
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Specifically, IN CS-2 allows SDF-SDF, SDF-SCF and SCF-SCF communication across 

network boundaries. For example, the SDF-SDF inter-working interface can serve two 

purposes: it provides a mechanism to copy data between networks and it provides transparent 

data access. Similarly, the SCF-SCF interface (across network boundaries) allows two service 

logics to communicate; for example, a network can handle a call without having full knowledge 

of the service logic, as long as it can find another network that can help.

IN Network A IN Network B non-IN Network

SM F SM F

SD F SD F

S CF lAFSCF

SSF SSF

Figure 2.15: IN and inter-working functional relationships

Figure 2.15 depicts the possible IN network inter-working functional relationships. Although 

the functional relationship SCF-SSF is outside the scope of IN CS-2, the SCF-SCF relation is 

new. However, it is not possible for the SCF to interact with a remote SCF that is directly 

interacting with the call. This is a limitation, or the absence of a requirement, for multiple point- 

of-control capabilities in IN CS-2. The top interface defined in figure 2.15 is the SMF-SMF 

interface. This protocol follows the Telecommunications Management Network (TMN) generic 

protocols and the TMN X-interface [M.3320].

A different inter-working capability is emerging. This is the need to inter-work with non-IN 

structured networks. Such a form of inter-working requires the introduction of additional 

functional entities, such as the Intelligent Access Function (lAF) [Q.1224]. The lAF is 

responsible for providing access to and from the SCF of the IN-structured network, and for 

mapping the information between the internal and external representations.

Comparing the DFP of IN CS-1 and the DFP of IN CS-2, one notices that the IN has been 

incrementally adding functionality to reflect the changing telecommunications environment
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conditions. O f course, this is a natural step in any developing system. As a result, the role that 

IN is asked to play in the future may be far from the initial aims and objectives of 

Recommendation Q.1201. The area o f inter-working and the new role o f the intelligent network 

within the wider scope o f network intelligence is examined in chapter 3.

2.4.4 The Basic Call Model
The primary goal o f IN services is to enhance the basic call process, thereby creating new 

services such as premium rate. To achieve this, IN services have to control network resources in 

a flexible and efficient way through a standard resource control interface, the SSF-SCF.

This approach requires the switches, i.e. the connection control function/service switching 

function, to be capable o f providing visibility and control on detailed call events. Hence, a 

corresponding model is required within the DFP that identifies all possible points in basic call- 

processing, as seen in a switch, from which IN services can be invoked, i.e. when interactions 

between the SSF and SCF can take place.

This model is called the Basic Call Model (BCM). The BCM represents a standardised view of 

call-processing functions to external service logic and provides the framework for IFs between 

the SSF and SCF. This means that IN service logic located in the SCF “sees” a call only by 

means o f the information it receives from the SSF, i.e. the received IFs, based on the states 

identified in the BCM (figure 2.16).

Entry ev en t x

D P 1

PIC  a

1

Exit ev e n t y 

Entry ev en t y

D P 2

P IC b

Figure 2.16: The BCM, detection points and points in call

The Basic Call State Model (BCSM) identifies the logical points in basic call-processing where 

the IN service logic located in the SCF is permitted to interact with basic call control 

capabilities provided by the switch [Q.1204]. The states that need to be visible to the IN service 

logic are identified by the BCSM.
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The BCSM is built from three fundamental components, discussed below;

■ Points in Call (PIC) provide an external view o f a call-processing state or event to IN 

service logic. PICs are vendor independent, providing a standardised view o f  call-processing 

behaviour. A PIC is characterised by means o f entry events, exit events, actions performed 

within the PIC, and information available at the end o f the PIC.

■ Detection Points (DPs) are placed between the PICs. A DP (also referred to as a trigger 

check point) is associated with a particular PIC. DPs indicate states in the basic 

call/connection processing where the control can be transferred to the IN service logic with 

or without the CCF suspending processing. If the CCF processing is suspended, the DP is 

called a Request DP, otherwise it is a Notification DP. A DP can be armed, i.e. the 

monitoring o f a CCF processing state can be requested, statically on a configuration base (in 

which case the DP is referred to as a Trigger DP) or dynamically on IN service logic request 

base (in which case the DP is referred to as an Event DP).

■ Transitions indicate the normal flow of basic call/connection processing from one PIC to 

another.

Any IN service involves two separate sets o f basic call-processing logic in the switching 

network [Feyn97]. These are closely related, as illustrated in figure 2.17.

0_BCSM T_BCSM 0_BCSM T_BCSM

Switch A 
SSP-A

Switch B 
SSP-B

Calling Called
Party Party

Figure 2.17: Separation o f  the BCSM  into an O /T B C S M

An originating call model supports the call’s originating side (i.e. the calling party). This is 

modelled by the originating basic call state model (0_BCSM ). On the terminating side, there is 

a terminating call model for the call’s terminating basic call state model (T_BCSM). Both 

sides o f the call state model are active within an IN SSF; even an intra-switch call requires both 

call state models.

2.4.4.1 The Basic Call State Model for CS-1

The O BCSM (figure 2.18) specifies six PICs and ten DPs. One non-IN event, Route_Busy, is 

considered. The event is caused by either a corresponding indication from the T BCSM (if this 

is a local switch) or a reception o f the call “rejected” message (indicating the selected route is 

busy) from another switch. Depending on the switch application, this event may result in either 

a transition to PIC 2 (in order to select another route) or exception processing.
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Figure 2.18: The 0_BCSM for IN CS-1 [Q. 1214]

The T_BCSM (figure 2.19) speeifies five PICs and seven DPs. Note that a transition from PIC 8 

to PIC 9 has no DP associated with it. The event that causes this transition (i.e., the start o f the 

alerting process) is the only strictly non-IN event visible to T BCSM.

T A b a n d o n

7.T_Null & A uthorise_Term ination_Attem pt11 ,T_Exception

T erm_A ttempt_A uthorised

I. Select_Facility & P rese n t Call
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T_No-Answer

T_Answer

10. T_Active

T_D isconnect

9. T_Aler1ing

T_Mid_Call

Figure 2.19: The T_BCSMfor IN CS-1 [Q.1214]

2.4.4.2 The Basic Call State Model for CS-2

The BCSM for IN CS-2 (figure 2.20) is visibly richer than its IN CS-I counterpart. This section 

points out the main differences between the two models. A complete description can be found in 

the ITU Recommendations Q.122.x and Q .I2Ix.
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Figure 2.20: The 0_B C SM for IN  CS-2 [Q.1224]

Non-functional modifications include the removal o f numbers from DPs in IN CS-2. More 

substantial modifications are manifested in the new functions o f the PICs and DPs, and their 

applications to services.

For example, the 0_Disconnect and T_Disconnect PICs have been replaced in the originating 

and terminating models by the 0_Suspended  and T_Suspended PICs. The justification for this 

change is dictated by a special way in which many services are set up; unless the called party 

explicitly wishes to disconnect the call, it should not be immediately disconnected. This allows 

for the called party to hang up momentarily and pick up the phone again (reanswering). In 

order to reanswer the call, it cannot be disconnected even though the called party hangs up. The 

state o f  the call is captured in the model as suspended and it is treated differently. While the 

call is suspended, both the calling and called parties are placed in the O Suspended and 

T_Suspended PICs. On the terminating side, the physical resources associated with the call 

remain connected and the appropriate timer is started. If the terminating side reanswers before
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the timer has run out, T_BCSM sends the reanswer indication to the 0_BCSM and the call 

becomes active again, otherwise the T_BCSM sends the disconnect notification.

2.4.5 The IN Switching State Model (IN-SSM)
The IN-SSM is defined in [Q.1204] as a means of providing the “finite state machine 

description of SSF/CCF IN call/connection processing in terms of call/connection states”. The 

IN-SSM is a class of objects that corresponds to the SCF view of call and connection processing 

within the SSF/CCF.

The call segments defined in [Q.1204] are expanded to include the new types of objects called 

Legs and Connection Points as well as the BCSM objects (i.e. O BCSM or T BCSM) 

associated with them.

■ A leg represents a connection with an “addressable entity”, that is, an end user, the SRF, or 

another SSF/CCF [Q.1204]. Any leg may be either active or passive. In IN CS-1, only a leg 

that represents an access interface may be active.

■ A connection point is the object that associates two legs so that the information entering the 

SSF/CCF through one leg is carried out (via that object) on the other leg and vice versa 

[Q.1204].

According to [Fayn97] in IN CS-1, the role of the IN-SM has not been emphasised and, 

consequently, neither has that of the IN-SSM, though the technical case for their future 

exploitation was given. IN CS-2 defines a more powerful IN-SSM that focuses on connection 

control issues. It therefore contains objects that are abstractions of switching and transmission 

resources.

The CS-2 IN-SSM uses the Call Configuration (CC) model as a tool to represent the CCF 

activities. The CC is a model that categorises the status of one or more network connections. It 

is based on the Connection View (CV), in the sense that CV objects provide the SCF with a 

generic view of call-processing and each Call Configuration models a CV state in an SSF.

The purpose of defining call configurations is to produce a set of examples used to describe IN 

call manipulation services. Figure 2.21 illustrates the notation and the objects used in describing 

the call configurations.
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Figure 2.21: Representation used in a call configuration

Attached to a connection point (CP) are one or more legs, with the leg to the left being the 

controlling (or local) leg. The legs to the right are defined as passive (or remote) legs, o f which 

there can be one or more. Associated with each o f the passive legs is a BCSM.

Figure 2.22 depicts the Call Association Object (CAO) that is used for the representation of 

multiple calls associated with a particular user as perceived by the serving node associated with 

that user. The CAO allows the graphical representation o f the condition when a user is engaged 

in more than one call.

Call Association Object

o

o

Figiire 2.22: Representation o f  a call association object

This approach has been developed to provide IN multiparty handling capability, and it can be 

used as a tool for associating different calls.

2.4.6 IN CS-2 Call Party Handling
IN CS-1 was limited to Type-A services. This meant that it could only manipulate specific 

aspects o f  a single leg o f a call. As a result, for instance, capabilities to alter the Calling or 

Called number were provided, but it was not possible to alter how one leg o f a call related to 

another leg o f the same call.

The introduction o f Call Party Handling (CPH) [Q.1224] service features in IN CS-2 is 

arguably the most important addition [Hink98][ORei98][Haze98]. CPH allows multiple bearer 

connections to be split, merged and manipulated more flexibly during the course o f a telephone 

conversation. Therefore, CPH provides the capability to manage and control individual parties 

in a call involving two or more parties. The current call topology is maintained by the SCF,



while atomic commands from the SSF can alter this topology. Typically, instructions from the 

SSF add, delete, join or separate bearer channels from other parties in the call.

At the highest level, the SSF consists of a Call Segment Association (CSA). A CSA represents 

half a call. The CSAs communicate with each other using the SSF-SCF INAP operations 

defined in IN CS-2 [Q.1228]. Communication events among the CSAs consist of inter-BCSM 

events (e.g. Setup, Answer).

A  CSA consists of one or more Call Segments. The call segments communicate with either the 

0_BCSM or the T_BCSM, and the SSF Finite State Model (FSM).

The Call Segment can be in four possible states [Q.1228]:

■ Joined -  indicating that a path is joined to the connection point which enables the user to 

communicate with other users in the call segment

■ Pending -  indicating that a path is in the process of being set up

■ Surrogate -  indicating that a leg supports a communication path towards a virtual party in 

the network, rather than towards an external end party

■ Shared -  indicating that a controlling leg is absent from a call segment and is present in the 

associated call segment.

The CPH finite state model (see figure 2.23) is examined here using an example of the 

transitions involved in setting up a two-party call.

A call begins from the “Null” call segment that indicates that no Call Segment Connection View 

(CSCV) instance exists and one can be created. The state represents the condition where no call- 

processing is active and there is no controlling or passive leg connected to the connection point. 

When the SSF detects a Setupind signal, the CSCV is represented by the “Originating Setup” 

CSCV. The SetupReqInd finally causes the CSCV to move to the “Stable 2-Party” CSCV. The 

“Stable 2-Party” CS represents a stable two-party call, and is either an originating or a 

terminating call from the perspective of the controlling user with a “joined” controlling leg and 

a “joined” passive leg with either an O BCSM or T BCSM associated with it.
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Figure 2.23: Finite state model for CPH o f IN  CS-2 [Kumm98]

2.4.7 IN Summary
In this section a summary of the IN architecture is presented. The discussion on the IN control 

architecture presented and examined issues such as:

■ The advantages of the IN architecture are the result of the separation of basic call-processing 

from additional service logic. This separation also provides the ability to introduce new 

services rapidly.

■ The BCM provides a standardised representation of call-processing functions to external 

service logic. As a result the only view provided to an external IN service is based on the 

states identified by the BCP.
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■ Through DPs, control can be transferred to the IN service logic with or without the CCF 

suspension.

■ IN CS-2 provides a much richer and more complete set of service features than IN CS-1, in 

particular the introduction of Type-B services. Type-B services in IN CS-2 were examined 

by analysing the Call Party Handling service feature.

■ The IN architecture relies on distributed state models. These form an integral part both of 

the signalling protocol (SS7) and of the IN architecture itself.

■ Traditional network intelligence was focused on providing advanced services by enhancing 

the basic call state model.

2.5 T h e  i n , t h e  T IN A  REFERENCE ARCHITECTURE AND 
N e w  T e c h n o l o g ie s

The Telecommunications Information Networking Architecture (TINA) defines a framework 

for the development of service and network management applications [TINA-GA] [TINA-GU]. 

TINA defines four architectures:

■ The computing architecture [TINA-CA] defines a set of concepts and principles for 

designing and building distributed software and the software support environment, based on 

object-oriented principles.

■ The service architecture [TINA-SA] defines a set of concepts and principles for design, 

specification, implementation and management of telecommunication services. It identifies 

three main concepts: session, management and access.

■ The network architecture [TINA-NA] defines a set of concepts and principles for design, 

specification, implementation and management of transport networks.

■ The management architecture [TINA-MA] deals with software systems that are used to 

manage services, resources, software and underlying technology.

The TINA approach foresees that service components are deployed on a Distributed 

Processing Environment (DPE), which may in turn be implemented on top of different 

network infrastructures [TINA-DPE]. The DPE is used for both the transmission of control 

information and the multimedia streams that may flow between user applications. Therefore, the 

network has to satisfy the connectivity requirements of different types of services, such as 

multimedia, multiparty, or multicasting services.

From the computational point of view, TINA considers that the service and network 

management and control facilities are deployed on a distributed, object-oriented processing 

environment, such as the Common Object Request Broker Architecture (CORBA) [CORBA95].
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Figure 2.24: The TINA service architecture [TINA-SA]

The TINA Service Architecture (figure 2.24) identifies four major types o f sessions as follows:

1. The Access Session models the user actions for accessing a service

2. The Service Session represents the control and management actions needed for the support 

o f a specific service from the system point o f view

3. The Communication Session encompasses the set o f control and management procedures 

from the network’s resource point o f view in order to support the needs o f services making 

active use o f the underlying network infrastructure

4. The User Session reflects the activities performed and the resources allocated by one user 

for one specific service session.

The TINA architecture employs an object-oriented view [TINA-GA]; as such, it is 

fundamentally different to the function-oriented IN architecture. For instance, rather than 

defining functional network elements for the distributed implementation o f SIBs, as is done in 

the IN architecture, the DPE supports the arbitrary distribution o f TINA service components, i.e. 

the computational objects. Hence, there is no need for specific network nodes with dedicated 

functionality within TINA. Furthermore, the information flows between IN functional entities 

(via the signalling network) are replaced by TINA computational object interactions, through 

operational interfaces (supported by the DPE).

While most o f the efforts surrounding TINA pertain to how an existing architecture could 

migrate towards TINA, such as [P508], it has been argued [SoloOOa] that the TINA architecture 

can be used as a reference model for viewing new technologies. This role is examined next.

It has been argued that the communications session o f the TINA service architecture reflects the 

traditional role o f the telecommunications network operators [SoloOOa]. The service session 

distinguishes the growing role o f the provider o f application services as a separate entity apart 

from the communication session. The access session co-ordinates the access o f users towards a
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set of services, by providing services such as password authentication, or terminal capability 

negotiation.

The author takes the view that the TINA service architecture is a useful and desirable way of 

understanding the roles of the players in the future communication environment. Of course, this 

does not imply that the underlying technology is that specified by TINA [SoloOOa], for instance 

that one has to develop a Distributed Processing Environment (DPE) approach.

The IN CS-2 increases the importance of the SCF over IN CS-1 for establishing connections. 

One of the most significant developments in CS-2 is that of call party handling where fine­

grained manipulations of multiple-associated call paths is possible. Services such as 

multicasting or multimedia rely on these services. In future capability sets, such as IN CS-3/4 

there will be enhanced support for connection control. The SCP will be able to establish a 

communication session independently without the intervention of the end user. This is a very 

significant development because it will allow greater control of the TINA Service Session 

through the SCP [SoloOOa].

Mobile networks and specifically Global System Mobile (GSM), provide a set of IN services 

without the explicit use of an IN architecture. Services such as mobility are much sought after in 

the PSTN but are seen as basic services in the GSM. However, to achieve service differentiation 

in GSM and support customers while they are roaming in other operator’s networks, 

Customised Applications for Mobile Enhanced Logic (CAMEL) [ETSI TS 101-285], was 

developed. The CAMEL architecture is outlined in figure 2.25.

In CAMEL, the Home Location Register (HLR) bears similarities to the SCP but does not allow 

customised service logic that interacts with the basic call process. CAMEL is necessary to allow 

operator specific services. A CAMEL Service Environment (CSE) allows the customisation of 

services and is equivalent to an SCP in the PTSN.
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Figure 2.25: The CAMEL architecture

Section 3.6 follows the discussion o f this role by mapping IP-based technologies onto the TINA 

Service Architecture and putting forward the conclusions o f this part o f the work.

2.6 St a t e  M a c h in e s  in T e l e c o m m u n ic a t io n s  
N e t w o r k s

The extent to which the state machine model is used to describe the behaviour of network 

intelligent architectures has been identified. The state models explicitly describe in a 

standardised manner the way in which the functional entities interact. This section identifies the 

importance o f the state models within the control plane o f the PSTN network.

The PSTN network is based on the principle o f providing controlled access to a limited bearer 

channel resource which, arguably, represents the main source of revenue for a network 

operator.* Therefore it is crucial for the network operator to use the bearer connections in a way 

that allows the greatest return on investment. After all, without an operational bearer 

connection^ no utilisation o f the network can take place, leading to loss o f revenue. The 

importance o f the bearer connection is reflected by the fact that the network is performance 

engineered, with design focused on limiting down-time and ensuring that network load does not

’ This is within the context o f fixed networks, i.e. PSTN. In the GSM case, text messaging has proved to 

be an additional significant source o f revenue that does not require the use o f a bearer channel.

 ̂ Recent examples o f network failure include the brownout o f  the AT&T American network 

[M cDo92][Hatt97] with a financial loss amounting to 1 billion dollars, the 1998 integrity breach in the 

AT&T Chicago frame relay network [Meht98], and the latest example is the brownout in the BT network 

in February 2000, which blocked millions o f calls [BBCOO].
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hinder performance. To achieve this, it is vital that a resilient control-plane architecture be in 

place.

Furthermore, it was put forward that the PSTN network is a huge distributed network with 

components from different vendors. Each of these components may potentially have different 

capabilities but nevertheless it is essential that they interact to form the network. It is critical 

that a common underlying capability enables the interconnection* of these vendor-specific 

components and, again, this is provided by the control-plane architecture.

A control-plane architecture can be characterised by two key features: firstly, it provides the 

robust foundations for the communication of the components and, secondly, it provides a 

resilient environment for the execution of advanced services. The common controlling 

element in both of these features is the state machine. While the communication part is 

handled by the signalling network, through the SS7 protocol, the resilient environment is 

provided by a network intelligence architecture, such as the standardised architecture of the 

Intelligent Network.

Having provided a control-plane architecture, there is now a need to allow communication with 

the end users based on their activities. These activities are unpredictable but, nevertheless, it is 

the responsibility of the network to implement measures that capture this changeable behaviour 

of the users in a formal manner. This must be done in a way that does not severely limit the user 

experience. By definition, an unpredictable behaviour cannot be captured in a model and, as a 

result, there needs to be a trade-off between the capabilities available to end users against the 

complexities involved in capturing parts of this unpredictable behaviour. The IN CS-1 has 

provided sufficient benchmark services that enable a wide range of service capabilities; through 

the IN CS-2 these services have been enhanced and widened to include capabilities such as 

multi-party calls.

The state-machine approach in the PSTN has proved to be a technique that is capable of 

providing resilience for the IN architecture and also robustness for the signalling layer.

In the case of the IN architecture, the state machine is the fundamental controlling component 

from which services can be triggered, and in the IN architecture the state machine is manifested 

in the form of the 0/T  BCSMs.

* The regulatory framework relating to inter-connection and inter-operability is addressed in [OfteI99].
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Although there are significant differences between various IN implementations a number of key 

features apply to each of them. These key features enable the network-of-networks to be 

controlled through similar actions, and hence provide a common denominator in the 

convergence of these architectures. The presence of fully defined state machines on all the 

interacting FEs and the BCM provide for the resilience needed in the PSTN environment.

Controlling the bearer connections is achieved in the PSTN through the

■ extensive use of state machines

■ ubiquitous description of the BCM

■ complete encapsulation of the call process in the BCSM

■ robust nature of the signalling network and its protocols.

The IN mandates the use of FSMs for the description of protocol-related behaviour of the FEs.

All possible actions by the FEs are rigorously tested before any attempt is made to deploy a new 

service. The specification of the FEs is done using the Specification and Description Language 

(SDL) [Z.lOO], which is a standardised language for describing systems that are reactive, 

concurrent, real-time, distributed and heterogeneous* [Haug95].

If a scenario arises that may result in an invalid transition in the BCP, the IN is able to achieve 

graceful degradation of service, which ensures that the network remains operational.

The features provided by timers aid in maintaining the network in an operational state: for 

example, the user dialling an insufficient number of digits and replacing the handset should not 

leave the system with resources permanently reserved -  the timers ensure this. If a single state 

machine view can represent the complex call setup within a switch then small controlled 

changes in the state machine can create new services. Therefore, a resilient network demands 

that operators and vendors develop a complete understanding of the BCP.

The traditional approach to providing network intelligence was by providing enhancements to 

the basic call state model. This is supported by looking at the development of the capability sets 

of the IN. For instance, the introduction of Call Party Handling (section 2.4.6) in IN CS-2, 

allowed further call manipulation by the end user, even though the service offering was still that 

of telephony. It must be kept in mind, however, that the additional functionality still operated 

within the “constrained environment” of the BCSM and the BCP.

* A complete description of SDL can be found in [Ells97].
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Chapter 3 examines the changes to the IN architecture in a converging environment where, for 

instance, telephone calls can be initiated on an IP-network and terminated on the PSTN 

network. Specifically, section 3.5 discusses the use of state models within a converging 

environment.

2.7  C h a p t e r  Su m m a r y

This chapter provided the background needed for the discussion of the new research work that is 

presented in the rest of this thesis. Initially, the reader was introduced to the area of 

telecommunications, with later sections focusing on specific architectures of the control plane, 

such as the signalling network and the Intelligent Network architecture.

The IN architecture is a PSTN control-plane architecture that is transparent to the PSTN’s 

switching procedures, and has minimal impact on existing equipment. The main points 

regarding the IN architecture are summarised below.

■ The IN, through separation of service logic from the call-processing logic, provides for a 

service-oriented view of the network. This separation and the adoption of re-usable 

components (SIBs) allows the fast deployment of new services (section 2.4).

■ The IN Service Processing Model highlights the IN approach for service execution: basic 

call-processing is carried out in the switches, whereas the supplementary service logic 

resides on a higher level. The communication between the two planes is achieved through 

detection points and triggers (section 2.4.5).

■ IN CS-2 enhances IN CS-1 by allowing communication across network boundaries.

■ The basic call model (section 2.4.4) represents a standardised view of call-processing 

functions to external service logic and, as such, provides the framework for IPs between the 

SSF and SCF. This means that IN service logic located in the SCF “sees” a call only by 

means of the information it receives from the SSF, i.e. the received IPs, based on the states 

identified in the BCM.

This chapter has focused on the traditional role of IN: to provide the means of enhancing the 

basic call process, by providing a control plane for the PSTN network. This control is heavily 

based on finite state models, with the robust architecture of the underlying SS7 protocol.
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Ch a pte r  3

T o w a r d s  a  n e w  R o le  f o r  

N e t w o r k  In t e l l ig e n c e  in  th e  

C o n v e r g in g  E n v ir o n m e n t

The aim of this chapter is to look at the ways the IN architecture can inter-work with 
IP-based protocols and architectures -  in the current state of convergence -  in order 

to present how network intelligence architectures can fit together.

3.1 In t r o d u c t io n

The traditional PSTN network is converging with IP-based networks. This has necessitated a re­

think of the traditional role of the PSTN and the way services are to be implemented in the IP 

domain. In order to appreciate this change, this chapter looks at the role of the various layers in 

the traditional PSTN domain, including the control plane and the Intelligent Network (IN) 

architecture.

Within the converging environment, PSTN services have to be re-evaluated because the IP 

domain is adopting PSTN services and making them available. Therefore, as part of the 

convergence process, the PSTN is being more integrated in the IP domain rather than the other 

way round. Part of this re-evaluation concerns the analysis of the new role of the IN in a 

converging environment.

Examining the way in which the IN environment can be used in the converging environment is 

complex not because the IN and IP architectures are complex per se, but because such a 

proposition gives rise to a large number of new architectural offerings. The complexity in 

examining these architectures is increased further as there is a large number of basic 

components that contribute towards a single architecture. For example, the PSTN and Internet 

Inter-working framework (PINT) [RFC2995] architecture (which is discussed in section 3.3.2.1) 

is based on the SIP [RFC2543] and SDP [RFC2327] protocols. The inter-dependence exhibited 

by the majority of the architectures requires that key complementary protocols also be 

discussed.
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Section 3.2 presents IP-based networks and highlights the various characteristics of the network, 

architectural details, and the IP-approach towards service provisioning. The taxonomy reference 

model is then presented in section 3.3. The taxonomy presents the various ways the inter­

working propositions come together. The network intelligence architectures (i.e., the protocols 

and the architectures) that populate the taxonomy represent ongoing research activities by 

various organisations, working groups and industry bodies.

In chapter 2, the TINA model was presented with the focus being on the relation of TINA to IN. 

Section 3.4 extends the work already presented by examining a role of the TINA service 

architecture in the converging environment. As in chapter 2, the work presented is not focused 

on the TINA architecture, but rather on where TINA could be positioned within a converging 

environment.

Section 3.5 provides a discussion on network intelligence, state models and the role of IN in a 

converging environment. Finally, section 3.6 presents a summary of the chapter and identifies 

research contributions from the work discussed.

3.2 In t e r n e t -P r o t o c o l  B a s e d  N e t w o r k s

In recent years, the Internet has developed to become a global data network, which attracts 

numerous user types (home users and business users; young and old) with the variety of 

information and multimedia applications offered online [USDOC][ITU97].

It is important to note that the primary access to the Internet is the PSTN [ITU97]. The PSTN, 

the largest telecommunications network worldwide, represents an immense investment in 

infrastructure, and carries all channel-switched public, and substantial corporate, voice and data 

traffic* [ITU98a][ITU98b].

The Internet was developed mainly for the data networks environment [ISOC] where a very 

different set of service requirements exist.^ The Internet is characterised by the interconnection 

of heterogeneous transport networks and other layer-two technologies. These networks are 

viewed by users as a single, unified-network architecture, through the use of the IP protocol 

[RFC760] in association with the User Datagram Protocol (UDP) [RFC768] and the

* This enables the PSTN (through its control plane) to provide some revolutionary services (see section

3.3.3.2 and the specific application presented in chapters 4 and 5).

 ̂Recall that section 2.1.1 highlights the fact that the design requirements of the PSTN were provided by 

the characteristics of human voice.
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Transmission Control Protocol (TCP) [RFC793]. What is important is that there is very little 

control within the core of the Internet; intelligence is placed at the edges of the network 

instead.*

By contrast, telecommunications networks are performance engineered [McMil96][Scer97] and 

rest on the tradition of services that are essential to the economic well-being of the country 

[Cout97][Davi97]. Therefore, IP networks present a challenge to the accepted views of 

telecommunications developers who are rooted in the performance and reliability requirements 

of the classic telecommunications sector.

The acceptance of IP-based networks by the business community is a fact, as is the increased 

use of IP to support PSTN services such as telephony [ITUOO]. This presents a number of 

significant challenges, especially in the short to medium term. Regardless of the level of the 

dominance of IP in the long term and the effect this may or may not have on the role of ATM, 

in the short term, there is a need to support the inter-working of widely heterogeneous networks 

[Deci97][Solo99b]. A call may now originate on a mobile network, be transported across the 

PSTN, and terminate on a business IP phone. Quite apart from the problems of billing for such 

services, a voice user has come to expect a range of call control services. A business caller 

dialling a freephone number from an IP phone should not have to pay for the call regardless of 

the network type or the chain of network operators through which the call is routed. A corporate 

Virtual Private Network (VPN) is a business offering that may still be demanded by a company 

making use of IP calls. These services are traditionally supported by IN platforms but they must 

now be introduced on IP-based networks.

The confidence of data network providers has become almost unbounded as new markets open 

up for such services. It is therefore a natural next step for data network operators to look 

towards the core markets of telecommunications operators [Stro99]. One compelling argument 

is that the bandwidth of data services is very large in comparison to the voice service [ITUOO]. 

Corporations are being shown that they can make use of spare bandwidth in the data network to 

support voice [ITU97][Wong99], implying that voice services will almost be ffee\ Whether one

* Although some routers may offer packet-discrimination services, these are not “intelligent” services 

according to the definition of network intelligence in section 2.7.
 ̂ In [Wong99], analyst B. Kasrel of Forrester Research believes that “the U.S. Federal Communications 

Commission will further erode Internet telephony's price advantage in 2001 by imposing long distance 

access charges to Internet calls.” As a result, “telecommunications companies will have to invent unique 

services to better compete and stave off a perpetual price war.”
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believes that it is possible to support voice over IP with a universal-carrier class of service is 

still the subject of debate and trial. The business case alone is very compelling.

In such a consolidated environment, the business and technical case for the widespread use of 

IP-based networks to support telecommunication services is now very strong. This view is 

supported by a number of highly publicised announcements [QOSNet][BTPr01][FT01a] 

[FT01b][FT01c][Poncin98] by traditional telecommunications vendors pledging their 

commitment to the development of IP-based products and services. In most cases, this requires 

more than an expansion of the company’s product portfolio. It also necessitates a complete 

change in business practice. What is driving companies to such a drastic change in policy is a 

combination of factors [ITUOO]:

■ IP-based networks are demonstrating their ability to support services, such as voice, that 

were previously seen to be firmly in the province of traditional telecommunications 

operators.

■ The market for fixed voice telephony is growing at a modestly linear pace and is not 

demonstrating the exponential demand for equipment and bandwidth that is seen in the case 

of the Internet or, more generally, IP-based applications [Moha99].

It is projected that the IP market will continue to grow at an even higher rate for several years to 

come and, in July 2000, the ITU Council selected IP Telephony as the topic of the third World 

Telecommunication Policy Forum [ITUOO]. This emphasises the importance of IP Telephony, 

which is driving the convergence of circuit-switched and packet-switched networks.

Regardless of the growth and expansion of IP-based networks, the architectural differences 

between IP-based and telecommunication-based networks still remain. These differences are 

clearly rooted in their origins (section 2.1.1). Telephone networks have been carefully 

engineered to provide extremely reliable, high-quality voice transmission, making real-time 

conversations possible. IP communications are typically connectionless and stateless 

[Stev94] [RFC768] [ Veer99].

Current IP Telephony developments seek to imitate the more connection-oriented, state-based, 

PSTN-like circuits [Q.1224][Q.701]. As a result, current IP telephony standards activities 

attempt to replicate long-established technical practices in the PSTN, such as call set-up and 

tear-down, IN services and guaranteed QoS. For example, inter-connectivity between the PSTN 

network and IP Telephony networks has been accomplished by utilising a gateway. The 

gateway is state-based and converts and forwards calls in one direction or the other [H.323] 

[H.245] [Haer99] [Databeam98].
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3.3 A T a x o n o m y  R e fe r e n c e  M o d e l  f o r  t h e  IN
ARCHITECTURE

This taxonomy reference model presents the various ways current research in network 

intelligent architectures can inter-work with the Intelligent Network. The model is a “snapshot” 

o f the various technologies that utilise the IN control architecture at the point in time when the 

taxonomy was developed.
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Figure 3.1: IN  control plane taxonomy reference model

The five areas depicted at the top o f the taxonomy classify the network intelligent architectures 

from the perspective o f how they can inter-work with the IN.

■ Support of PSTN: Essentially, this is the area encapsulated by the original concepts o f the 

IN architecture.

■ Support of IN with IP: This is the area where IP architectures can be used in order to 

support the traditional capabilities o f the IN model. PINT (discussed in section 3.3.2.1.3) 

provides services in the IP domain that initiate requests on the control plane o f the IN; 

through PINT, the control plane o f the IN can be accessed from the IP domain.

■ Support of IP with IN This is further divided into two areas, those that involve legacy IN 

components and those that require new functional entities on the IN side, e.g. IPIN. For 

example, databases included in legacy IN can be used to provide authentication 

functionality. IPIN, on the other hand, requires enhancements to the IN architecture.

■ Support of Layer 2
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■ Support of Convergence

3.3.1 Support of PSTN: The IN as the Control Architecture
Intelligent Network

Support of PSTN

CS-1 CS-2 CS-3/4 

I
CPH

Number Screening 
Translation

Figure 3.2: The Intelligent Network providing support to the PSTN

This branch (represented in bold in figure 3.2) represents the area captured by the traditional 

role of the IN architecture. Example services include billing, number translation, and call 

screening. Some o f these (e.g. number translation) were discussed in section 2.1.2; this section 

focuses on new functionality that may be provided by future capability sets such as IN CS-3 and 

IN CS-4.

The IN and IN CS-1 and IN CS-2 were described in chapter 2. This section focuses on 

capability sets that are under development (i.e. IN CS-3 and IN CS-4) and highlights the service 

features that are being considered by standards bodies [ETSI EG 20I-766][ETSI ETR 199] 

[ETSI TR 101-779].

One area being considered is that o f voice recognition. In this area, a class o f services require 

complex voice processing and little or no additional call routing. Such services are currently 

provided by interactive voice response (IVR) systems.* Such functionality is now being 

considered for incorporation in the core o f the network. If services such as these are to be 

implemented in the core network, there is a need for a broadband intelligent peripheral (B-IP) . 

The Specialised Resource Function (SRF) would provide the interaction functionality with the 

subscribers, while the service control function (SCF) would manage database functions and 

perform the “traditional” tasks, such as call routing.

* An IVR unit would be located outside the core network o f the operator. Therefore, it would be limited to 

voice processing, without offering any routing capabilities.
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3.3.1.1 Broadband Multimedia Services

An additional area of interest is that involving broadband multimedia services. Multimedia 

services are characterised by a multimedia session, which is generally defined as being 

composed of three entities:

■ The Multimedia Controller is the entity responsible for the control of the session.

■ The Control Connection is established between each user and the Multimedia Controller to 

exchange session control information.

■ The Media Connection is the connection between the users which allows them to exchange 

media information.

Broadband multimedia services can be implemented using an enhanced SRF that interacts with 

image and voice signals [ETSI ETR 101-799]. Such an SRF can provide services including the 

following:

■ Video on Demand -  the SRF acts as the communication partner to the set-top-box during 

user-interactive dialogues.

■ Video Conference -  the SRF acts as a server to merge and to distribute flows to the users in 

the conference.

For such functionality, the SRF should contain commands to control a media stream, for 

instance to go backwards and forwards, pause, and skip [ETSI EG 201-766]. The SRF could 

implement these procedures in the form of User Interaction scripts (Ul-scripts). According to 

[ETSI ETR 199] Ul-scripts are advantageous because they:

■ allow the grouping of the user interaction parts of the service into functional blocks which 

use SRF resources in the most efficient way.

■ lead to a substantial decrease of network traffic over the SCF-SRF interface since only 

message exchanges related to the triggering and reporting of script execution actions are 

necessary.

■ represent a generic action which may be parameterised, thereby reducing implementation 

complexity.

3.3.1.2 Internet (IP)-Based Services

Services in this category include for example, “click-to-fax”, “click-to-fax-back” and “voice 

access to content.” For these services, the SRF requires protocol conversion capabilities in order 

to convert text-to-fax content or text-to-speech synthesis as well as voice recognition.
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This group o f services is described in section 3.3.2. In the case o f PINT (section 3.3.2.1.3), the 

services are implemented using PINT servers in the IP domain. From the IN perspective, they 

are mentioned here to illustrate that such services are possible with an enhanced SRF function.

3.3.1.3 Other Multimedia Services

The SRF could be used to implement a Voice Calling Card service, whereby the user is 

identified based on a speaker verification function rather than personal identification numbers.

3.3.2 Using IP-Based Architectures to Support the IN Model
This branch o f the taxonomy (represented in bold in figure 3.3) represents the areas where open 

standards, framework models and other industry initiatives have proposed protocols which can 

be used to support the existing IN architecture.

Intelligent Network

Support of IN with IP [

— I
Overlay Replacem ent

in te r n e t  C all 
W aitin g

PIN T CTI

P a r la y  JAIN

Figure 3.3: The Intelligent Network is supported by new IP technologies

This set o f  initiatives can be further divided into two areas:

■ Overlay initiatives, which enhance the IN capabilities and are discussed in sections 3.3.2.1 

through to 3.3.2.4.

■ Replacement initiatives, which propose a different solution to an already implemented IN 

service, discussed in section 3.3.2.5.

3.3.2.1 PINT and IETF Protocols and Architectures Requiring IN  Inter-operability

In order to discuss inter-operability issues between PINT and IN, the protocols on which PINT 

is based must first be presented. Therefore, this section presents protocols defined by Working 

Groups o f the Internet Engineering Task Force (IETF) [IETF]:

■ The Session Initiation Protocol (SIP), presented in section 3.3.2.1.1,

■ The Session Description Protocol (SDP), presented in section 3.3.2.1.2,

■ The PSTN and Internet Inter-working Framework (PINT), presented in section 3.3.2.1.3,
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■ IN CS-4 developments in relation to PINT are discussed in section 3.3.2.1.4.

3.3.2.1.1 The Session Initiation Protocol

The Session Initiation Protocol (SIP) is an application layer protocol that “is used to establish, 

modify, and terminate multimedia sessions” [RFC2543]. SIP is a text-based client-server 

protocol that relies on HTTP-type requests and can run over TCP or UDP*; however the 

message format is independent of the transport protocol.

An SIP server can operate in two modes: proxy mode and redirect mode [RFC2543]. In proxy 

mode, the proxy server returns responses on behalf of the user; the server takes care of the 

location of the user and in this way the process is transparent to both clients. In redirect mode, 

the SIP server locates the user and returns this information to the initiating client, who then 

contacts the terminating client directly. The media to be exchanged in a SIP session is described 

by the Session Description Protocol.

3.3.2.1.2 The Session Description Protocol

The purpose of the Session Description Protocol (SDP) is to “convey information about media 

streams in multimedia sessions to allow the recipients of a session description to participate in 

the session” [RFC2327]. A multimedia session, for these purposes, is defined as “a set of media 

streams that exist for some duration of time” [RFC2327]. SDP includes information about the 

type of media (video, audio, etc.), the transport protocol (RTP^/UDP/IP, H.320) and the format 

of the media (H.261 video, MPEG video).

3.3.2.1.3 The PINT Architecture

The PSTN and Internet Inter networking Working Group of the IETF (PINT WG) defined 

the PINT reference architecture, depicted in figure 3.4 [RFC2995]. PINT aims to study the 

architecture and protocols needed to support services in which a user of the Internet requests 

initiation of a telephone (i.e., PSTN-carried) call to a PSTN terminal.

The PINT WG has examined services that are initiated in the Internet domain and carried out in 

the PSTN domain. Examples of the initial proposed PINT services [RFC2995] are:

■ Request to call (Click-to-dial): a request is sent from an IP host to initiate a phone call.

If UDP is used as a transport layer protocol, the application layer must implement mechanisms to 

provide reliability such as re-transmissions and loss detection mechanisms.

 ̂This is the Real-Time Transport Protocol, defined in [RFC 1889]
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■ Request to fax (Click-to-fax): a request is sent from an IP host to deliver a fax to a fax 

machine. The request must contain a pointer to the fax data (which could reside in the IP 

network or on the PSTN).

■ Request to hear content (Click-hear-content): a request is sent from an IP host to make a 

phone call to a user and dictate some sort o f content. The request must either contain a URL 

pointing to the content or the content itself.

A PINT system consists o f the following functional elements (figure 3.4):

■ PINT Client: An IP host that sends requests for invocation o f a PINT service.

■ PINT Gateway: An IP host that accepts requests for PINT services and dispatches them to a 

PSTN network.

■ Executive System: A system that interfaces the IP network to a PSTN network that is 

executing the PINT service.

PINT S erver  
CloudProtocol s o m e  other

PINT C lient protocol

PINT G atew ay  

Figure 3.4: PINT architecture

y y
a

PSTN

E xecutive S y stem

It is important to emphasise that PINT services always involve two networks: the PSTN and the 

Internet. As a result, the control of a PINT service resides in both the IP and IN domains and 

communication between the two networks is required. This is the role o f  the PINT gateway.

The system o f PINT servers in figure 3.4 is represented as a cloud to emphasise that a single 

PINT request might traverse a series o f location servers, proxy servers and redirect servers 

before finally reaching the PINT gateway that can actually process the request by passing it to 

the executive system on the PSTN network.

The PINT gateway might have a physical PSTN network interface, or it might be connected via 

some other protocol or Application Programmers Interface (API) to an Executive System that is 

capable o f invoking services within the PSTN network cloud. The relation between PINT, the 

IN and the role o f the Executive System is discussed further in section 3.4.

j. j.2.y.4 aW /A Œ-4
The interfaces between PINT and the IN are under development by the ITU-T Study Group 11 

whose area o f responsibility includes, amongst others, signalling requirements and protocols for
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IP-related functions and enhancements to the existing recommendations on access and 

“internetwork” signalling protocols of ATM, N-ISDN and PSTN.

The distributed functional plane (DFP) for IN CS-4 as defined in [ETSI ETR 199] [Q. 1244] is an 

extension to the IN CS-2 functional model (section 2.4.4.2) and is intended to be included in the 

IN CS-4 standards. IN CS-4 will include a new component, a service control gateway function 

(SCGF), that transmits service requests and responses between the two networks. Figure 3.5 

shows the proposed functional architecture.
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Figure 3.5: Enhanced functional architecture fo r  IN  support o f  
IP networks [Q. 1244]

MGF Management Gateway Funetion
SC GF Service Control Gateway Function
C/B GF Call/Bearer Control Gateway Function
H.323GKF H.323 Gatekeeper Function

The proposed functional model (figure 3.5) is an extension of the IN CS-2 functional model. It 

is intended to support IN CS-3/4 benchmark services. Internet-based service customisation and 

termination of VoIP to reach users in the telephone domain, as well as general IN management 

capabilities.

The functional entities introduced by the model include:
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■ The SCGF, which allows the inter-working between the service control plane in the IN and 

IP networks

■ The H.323 GKF, which can be seen as a logical switch (CCF) that deals with

o call control signalling [H.225], [Q.931] and

o connection control signalling H.245 for VoIP (transferred via the Gatekeeper which 

makes the network routing decisions)

■ The C/B GF, which is equivalent to a composite function combining both the Media 

Gateway and the Media GW controller as defined in [ETSI TS 101-313].

In order to provide full inter-operability and inter-working of PINT services, a number of 

additions need to be made to the existing IN functional entities. For example, the SRF has to be 

extended with capabilities:

■ that exchange data with gateway functions to IP networks,

■ that support the specialised resources it needs for some of the services, with media 

transformation functions* such as Text-to-fax and Text-to-speech, and

■ that enable the SCF to access a database-like entity with service-related information to be 

shared between the IN and the IP network.

A similar approach that aims to provide inter-operability across the two networks is proposed in 

[LeboOO]. The Soft-Switch [SOFTSWITCH] acts as an overlay between the IP telephony call 

control and the IN layer provided by the SSF and the SCF. The soft-switch provides the 

necessary mapping between the SIP protocol state machine and the IN BCSM. This is similar to 

the functionality of the SCGF described by [Q.1244].

The soft-switch approach defines a Call Manager Function (CMF), which acts as a mediation 

node and is responsible for passing service related information to and from the IN service plane 

[LeboOO]. This approach is under consideration by the ITU SG-11 and there is ongoing work to 

define such a CMF.

The CMF is a functional entity responsible for handling call signalling on either network and 

appears, to the CCF on the IN side, as another CCF. The CMF is responsible for passing 

service-related information to and from the IN service plane, namely the SCF, and managing the 

service control relationship [LeboOO].

* This is covered in section 3.3.5.2 of [Q.1244] as the TTS function.
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The CMF also contains a Session Manager responsible for managing the IP network services. 

The Session Manager is responsible for Security and Authentication, real-time data collection 

and triggering of services in the IN or IP domains [LeboOO]. To implement such functionality, 

the session manager may contain SSF-like functionality or a subset, to model the pre- and post­

conditions that are required to interact with an SCF.

Also introduced in [Q.1244] is a Soft Service Switching Function (Soft-SSF). The Soft-SSF 

interacts with the IN SCF and IP representation o f the CMF, mapping the Call Control protocol 

into the INAP events, trigger points and procedures. The Soft-SSF differs from the classical 

SSF as follows:

■ Processes such as call control, database and billing are retained or enhanced,

■ SIP-server inter-working functions are introduced and

■ circuit-switching and ancillary processes are removed.

In order to provide such inter-operability, it is essential for the interface between the SIP-ser\er 

and the Soft-SSF to carry sufficient call data for the SSF to function correctly, and to deliver the 

necessary information to the SCF so that service logic decisions can be made.

3.3.2.2 Computer Telephony Integration Call Model

Computer Telephony Integration (CTI) enables a private enterprise to route calls within the 

organisation and to manage caller information that is stored within databases, for example in 

customer management systems. Devices in a CTI environment are application-specific, 

predominantly proprietary such as Interactive Voice Response Systems (IVR), Voice Mail 

Systems, E-mail Voice Gateways, Fax Servers, Switches (PBX), Automatic Call Distributors 

(ACDs) and Predictive Diallers. Figure 3.6 shows a possible CTI network configuration.

o } -

_h

Figure 3.6: Possible CTI network configuration

73



In [ECTF97] the definition o f connection state as applied to CTI is that the “connection has an 

associated connection state, an attribute that characterises the relationship o f a call and a 

particular device to each other. Connection states must transition in conformance with the 

following diagram.” The connection state model that CTI is based on is presented in figure 3.7.

The CTI Connection state model re-enforces the different approaches that are adopted by the IN 

world and the IP world. Comparing the model with that o f  IN CS-2, it can be seen that it is more 

“flexible”, with numerous transitions.

Null

Initiated Alerting

Q ueued Fail

Connected F * Hold

Figure 3.7: Connection state model fo r  CTI [ECTF97]

Within the CTI space, Java Telephony API (JTAPI) [JTAPI] is an example protocol that is used 

for controlling PBXs. Although it does not communicate directly with any IN control elements, 

it is discussed here because, as will become apparent, the state models o f the JCC API (which is 

used for communicating with the IN) are identical to those o f JTAPI.

S.3.2.3 Java Telephony API

The Java Telephony API (JTAPI) focuses on call processing and applications for a private 

branch exchange (PBX) or call centre environment [Dawk97]. In such an environment, 

processing and control tend to be centralised in comparison to the distributed nature o f the IN.

A call within the context o f JTAPI refers to a communication session among two or more 

parties. Each party (as in the IN world) is said to be participating in one leg o f the call. 

Moreover, a call has as many call legs (connections) as the number o f  parties in the call.* 

[JTAPI].

This is very similar to the O/T BCSM discussed in section 2.4.4.
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The telephony classes that are included in the core model and their relationships are shown in 

figure 3.8. This section provides a brief discussion o f the objects within the model.

Applications

JTAPI
Provider

Call

Physical Logical Logical Physical

Connection Connection

Terminal 
Connection ,

Terminal
Connection

Address )Address

Terminal Terminal

Figure 3.8: Objects within the JTAPI model [JTAPI]

The Provider object represents an abstraction o f the telephony service provider. The Call object, 

which is managed by the Provider object, represents a telephone call. A telephone call 

comprises a Call object and zero or more connections.* For instance, in the case o f a three-party 

call there would be three Connection objects associated with the Call object. A  Connection 

object models the (logical) communication link between a Call object and an Address object. 

An Address object is therefore a logical endpoint. The Terminal object represents a physical 

device (such as a telephone) and its associated properties. Multiple Terminal objects can be 

mapped onto the same Address object.

D is c o n n e c te dIdle

In P ro g re s s

A lerting

C o n n e c te d

U n k n o w n

F ailed

Figure 3.9: State model fo r  Connection object

As is the case for CSAs in IN CS-2 discussed in section 2.4.5.
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A Connection object is responsible for modelling the state that reflects the relationship between 

a Call and an Address object. The state transition diagram for the Connection object is depicted 

in figure 3.9.

The states are described in table 3.1.

IDLE The initial state for all Connection ob jec ts . An idle connection  indicates that the 
party has just jo ined  the telephone call.

IN PRO GR ESS Indicates that a telephone call is currently being placed to this destination  
endpoint.

ALER TIN G Indicates that the destination party o f  a telephone call is being alerted to an 
incom ing telephone call.

C O N N E C T E D Indicates that a party is actively part o f  a telephone call.
D ISC O N N E C T E D Indicates that a party is no longer a part o f  a telephone call. N o  m ethods are 

valid for C onnection ob jects  in this state.
FAILED Indicates that a telephone call placed to the endpoint has failed.
U N K N O W N Indicates that the P ro v id er ob jec t  cannot determ ine the state o f  the C onnection  

ob ject. A  connection  may transition in and out o f  the U N K N O W N  state at any 
tim e, unless it is in the D ISC O N N E C T E D  or FAILED states.

Table 3.1: Description o f  states fo r  a Connection object 

Similarly, figure 3.10 depicts the state model for the Terminal Connection object.

Idle

Unknown Ringing

Active P assive

Dropped

Figure 3.10: State model fo r  Terminal Connection object 

The states are described in table 3.2.

IDLE The initial state for all new Term inal Connection ob jects.
AC T IV E Indicates that a Term inal is actively part o f  a telephone call. This often im plies 

that the terminal handset is off-hook.
PA SSIV E Indicates that a Term inal is part o f  a telephone call, but not actively  so. 

Indicates that a resource on the Term inal is being used by this telephone call.
RING ING Indicates that a Term inal is signalling to a user that an incom ing telephone call 

is present at the Terminal.
D R O PPE D Indicates that a Term inal was once part o f  a telephone call, but has since  

dropped o f f  from that telephone call. This is the final state for all Term inal 
C onnection  objects.

U N K N O W N Indicates that the P ro v id er  cannot determ ine the state o f  the Term inal 
C onnection  object.

"'able 3.2: Description o f  states fo r  a Terminal Connection object

A point o f interest in the above state models is the U N K N O W N  state. As shown in table 3.2, the 

U N K N O W N  state indicates that the Provider cannot determine the state o f the Terminal
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Connection object. In IN, no such case exists and invalid transitions have graceful degradation 

by moving to an exception state. This indicates the different approaches adopted in call control.

The IN control architecture is characterised by robustness and strict control, while the CTI 

approach is more relaxed. For the two approaches to inter-work, there needs to be a way to map 

the robust transitions of the one side to the less demanding approach of the other.

It has been argued [JainOO] that JTAPI overcomes several of the limitations of the IN. 

According to the same reference, in the IN world “there is no explicit abstraction offered to 

allow the programmer to manipulate entire calls, or legs of a call, or the principal logical entities 

in the call (e.g. the calling or called party’s address), and certainly not in any object-oriented 

fashion.” It is the author’s view that the reasons for this are to do with the fact that the 

telecommunications network was never open to third-party service providers. It is easier to 

provide an API-type interface to a CTI environment, where the equipment and the network are 

owned by the organisation that may be developing the services.

The author agrees that JTAPI offers the programmer clear and explicit abstractions for 

manipulating calls and the logical entities in a call in an object-oriented [Jaco92] manner. 

However, it must also be kept in mind;

■ that JTAPI is mainly applicable to PBXs or large-scale VPNs. Such systems are much 

smaller rather than the average IN implementation,

■ JTAPI systems are centralised (e.g. a PBX), and that

■ a Provider object is assumed to be in control of all the legs of a call, which is clearly 

impractical in integrated next-generation networks.

Moreover, comparing the JTAPI models with the BCSMs of IN CS-1 and CS-2 (section 2.4.4), 

one can quickly realise the simplicity of the FSMs employed by JTAPI in comparison to the IN 

BCSMs:

■ JTAPI does not currently capture all the states that the IN model does (refer to section 

2.4.3).

■ JTAPI has no concept of triggers or detection points [JTAPI].

■ it is impossible to suspend call processing at a defined state in the FSM, invoke an 

application (supplementary service logic), and return results.

■ JTAPI includes a number of unknown states and “a connection may transition in and out of 

the UNKNOWN state at any time, unless it is either in the DISCONNECTED or FAILED 

states” [JTAPI].
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In order to enhance the capabilities provided by JTAPI, the JCC/JCAT API is attempting to 

incorporate the “powerful aspects” of JTAPI (such as object-orientation) and the flexibility and 

robustness of the IN models. This is discussed in section 3.3.2.4.3.

3.3.2.4 Open Inter-working Standards

Within telecommunications networks, the desire for new business growth has been a major 

driving force towards the development of open network APIs, such as the Parlay API 

[ParlSpecOO]. The Parlay API enables network operators and third parties (external companies, 

operating outside the secure domain of the network operator) to build new applications that rely 

on real-time control of network resources.

A second community, driven mainly by Sun Microsystems, is developing the Java APIs for 

Integrated Networks (JAIN) [JAIN]. JAIN defines a Java implementation of the Parlay API to 

bring the benefits of the Java language to the Parlay API. This section looks at the background 

and rationale behind the work of Parlay and JAIN.

Traditionally the network operator, in conjunction with network equipment providers, has 

designed, developed, deployed, and administered applications that run above switched voice 

and data networks. These applications typically suit mass-market demand for services such as 

virtual private networks (VPNs), inbound services, and unified messaging [ParlBuss99].

According to [ParlBuss99] the potential for innovation that lies outside the network operator’s 

domain has remained unexploited until now. By enabling third-parties (such as service 

providers) to build and deploy new applications on their network, the network operator can reap 

the benefits of increased network revenues while not enduring the overhead costs of deploying 

specialist applications. APIs provide increased network traffic through greater exploitation of 

network intelligence capabilities by a much wider development community, and the opportunity 

to charge* for access to these via the API. Moreover, from the service provider’s perspective 

there is significant market opportunity for new services and the ability to address niche market 

requirements. Furthermore, end users can benefit from the vastly reduced time from identifying 

a requirement for a new service to that application solution being developed. A further 

discussion of the issues surrounding open network access can be found in chapter 8.

There are issues with charging for such services. These are identified in chapter 8.
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3.3.2.4.1 The Parlay Group

The Parlay group was formed in March 1988, by BT, Microsoft, Nortel, Siemens and Ulticom 

[PARLAY]. The initial set o f APIs was published in December 1998 as the Parlay API 1.0 

specification. The latest specification o f the API is version 2.1 dated March 2001.

The Parlay API defines a set o f technology-independent interfaces that specify methods, events, 

parameters and their semantics to allow external (untrusted third-parties) and internal 

(traditional network operators) application developers the control over core network resources 

and capabilities [ParlSpecOO].

The applications execute on the enterprise domain utilising the network capabilities offered via 

the API. The latter defines object-oriented interfaces on both the network and client application 

sides o f the API in the form of network interfaces (e.g., IparlayCall) and client application 

callback interfaces (e.g., IparlayAppCall). The third-party application vendor implements 

callbacks as part o f the application to handle remote methods that are called from the network to 

the client application during a Parlay session.

Third-Party A pplications

Parlay API

Fram ew ork Interfaces S erv ice  Interfaces

Mobility Call Control
SecurityM a n a g em en t

C onn.M ngm nt M essa g in g

R e so u r c e  
Interface n

R e so u rce  
Interface 1

Figure 3.11: Architecture o f  the Parlay API

As shown in figure 3.11, the Parlay API is composed o f two sets o f  interfaces:

■ Framework interfaces provide the capabilities necessary for the Service Interfaces to be 

open, secure, resilient and manageable [ParlSpecOO]. The framework can be considered as 

a number of functional building blocks and is independent o f any o f the Parlay services. In 

order to access the Parlay framework, the network must authenticate itself because 

ultimately the client application shares private data with the network. Similarly, the 

network must prove its identity to the client for repudiation reasons.
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■ Service interfaces provide the mechanism by which applications can access underlying 

network capabilities. Parlay has defined five services: Call Control, Mobility, User 

Interaction, Messaging and Connectivity Management [ParlSpecOO]. The service 

interfaces, such as the generic messaging service (GMS), provide access to the capabilities 

necessary to support intelligent network, integrated services digital network user part 

(ISUP), H.323 and unified messaging applications. The high level of abstraction of these 

services ensures that both existing voice networks and VoIP networks can be controlled in 

the same way, giving independence of the technology. Each service has a service manager 

responsible for control, object creation and event notification.

The Parlay Group’s prime focus is to define a computing and distributed technology- 

independent API for controlling voice and data networks. The Parlay API has utilised 

distributed computing technology specifications in order to make it applicable to the real world. 

Such examples include the definition of the Parlay API using the Distributed Component Object 

Model (DCOM) [DCOM] and CORBA [CORBA95]. This approach enjoys the flexibility of 

being able to map to multiple programming languages such as C+-f, C, Java and Visual Basic. 

Advocates of Parlay have argued that the application developer must be skilled in three areas: 

the Parlay API, distributed computing techniques, and programming languages [BeddOO]. The 

specification of a language-dependent API on the client side removes the distributed computing 

element and even more so if the API is platform-independent. One such API is the JAIN 

initiative from Sun Microsystems.

3.3.2.4.2 JAIN: Integrated Network APIs fo r  the Java Platform

The objective of the JAIN initiative is “to create an open value chain from third-party service 

providers, telecom providers, and network equipment providers to telecom, consumer and 

computer equipment manufacturers” [BhatOO]. JAIN builds on Java portability by standardising 

the signalling layer of the communications networks into the Java language, and defines a 

communications framework for services to be created, tested, and deployed. According to 

[KeizOO] the strengths of JAIN are in service portability, network convergence, and secure 

network access. Firstly, the uniform use of Java interfaces is utilised to deliver portable 

applications. Secondly, the JAIN call model [JAIN] includes facilities for observing, initiating, 

answering, processing and manipulating calls irrespective of the underlying multi-network path 

of the call. Finally, through the use of the JAIN Parlay interface it is possible to enable untrusted 

services, residing outside the operator’s trusted network, to access network resources directly 

and carry out specific actions or functions inside the integrated network.
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The JAIN architecture comprises a JAIN Application Server and the JAIN Softswitch 

Platform [BeddOO]. The Application server is responsible for implementing the JAIN Service 

Provider APIs. These allow secure access to network resources. The JAIN Softswitch Platform 

ensures that there is a mapping between the JAIN Call Control elements to the network and 

signalling layers. The network layer includes the IN functional entities, as well as SS7 including 

ISUP, INAP, TCAP protocols, wireless networks with access to the MAP layer, as well as the 

Internet with access to SIP, the Media Gateway Control Protocol (MGCP) and H.323. The 

Signalling layer includes access to functional entities such as SSPs, MSCs, and also H.323 

gatekeepers in the IP domain.

Figure 3.12 depicts the position o f JAIN APIs within a communications platform. It shows the 

hierarchical use o f APIs at various levels: the protocol APIs, call control APIs and service APIs.
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Figure 3.12: Location o f  JA IN  within a communications network [JAIN]

3.3.2.4.3 Integrating Control Elements from  JCC, JC AT and JTAPI

Presented here are the details relating specifically to the finite state model representation o f the 

call model within JCC and JCAT. JCC is responsible for the basic call-processing and control. 

The JCAT extension package is responsible for providing coordination and transaction-related 

methods. According to [JainOO], the call model within JCC is identical to that o f  JTAPI Release

1.2 (section 3.3.2.3).
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JCAT additions include an extension of the Connection object FSM to become a richer FSM 

similar to that for IN. There is also a proposal to provide a version which includes both the 

O BCSM and T BCSM of the IN model in a single FSM. Furthermore, IN-style triggers will be 

added. These could be implemented by:

■ requiring applications to register with the Address object; in this way, the application would 

be invoked when a particular trigger in the Connection object FSM fires.

■ treating each transition as a trigger; an application registered with that transition would 

execute, while call processing would be halted until the application returns and call 

processing can resume.

■ implementing callback objects and interfaces; this however, needs to deal with the problem 

of feature interaction -  which is beyond the scope of the JCC/JCAT API.

It remains to be proved if JCAT can capture the richness, completeness and robustness provided 

by the IN state models.

Having briefly introduced the architecture of the JAIN APIs, the next section discusses the work 

that is currently under development by the JAIN Parlay Edit Group in order to provide a Java 

implementation of the Parlay API.

3.3.2.4.4 JAIN and Parlay

JAIN set up what is known as the JAIN Service Provider API (SPA) Group to look into the 

development of a Java technology API for Parlay. The goal of the SPA group is to “provide the 

industry with a standard Java technology version of the Parlay APIs” [JAIN]. To achieve this, 

the group looked initially at how a JAIN/Parlay implementation client can interact with a 

JAIN/Parlay implementation server, and how that maps onto the existing JAIN standards.

Figure 3.13 shows the JAIN Parlay Edit Group API operating on a third-party client’s machine. 

The client’s machine is connected to the network operator across, for instance, an IP network. 

The transfer mechanism for the messages between the JAIN/Parlay implementation client and 

the JAIN/Parlay implementation server is implementation-dependent. The JAIN/Parlay 

implementation server interacts with the JSLEE, JCC and JCAT APIs to use the JAIN 

community service plane and control plane capabilities.
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Figure 3.13: JAIN/Parlay Interactions

3.3.2.5 Internet Call Waiting: Replacement Initiative to IN  Call Waiting

Internet Cali Waiting (ICW) is a service that enables a subscriber engaged in an Internet dial-up 

session to be notified o f an incoming call to the same telephone line, to specify the desirable 

treatment o f the call and to have the call handled as specified [Brus98],

In [RFC2995] the desirable features o f ICW are identified. Here is a summary:

■ Incoming call notification -  The subscriber is notified of an incoming call over the Internet, 
without having any effect on the telephone line that is being used by the modem.

■ Online Incoming Call Disposition -  Once informed of the incoming call, the subscriber has 
various options for handling the call.

■ Automatic Incoming Call Disposition -  Incoming calls are automatically handled based on 
dispositions pre-defined by the subscriber without real-time intervention.

■ Multiple Call Handling -  Multiple calls arrive during call disposition processing. With multiple 
call handling, the subscriber is notified of the multiple calls one by one.

■ Call Logging -  A detailed log of the incoming calls processed during the ICW service is kept.

In order to highlight the inter-operability and inter-working issues that arise from the ICW 

service, this section presents the implementation adopted by Korea Telecom [RFC2995]; the 

network architecture o f the Korea Telecom ICW service is presented in figure 3.14.
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Figure 3.14: IC W  based on existing IN  CS-1 FEs [RFC2995]

The SSP is a standardised IN CS-1 SSP. On detecting that the called party is busy, it sends a 

query to the SCP and processes the call under the control o f the SCP.

The SCP processes the call based on the logic associated with that service. In the case o f the 

ICW service, the service logic includes the notification o f a waiting call to an online ICW 

subscriber and the disposition o f the call. The service logic requires that the SCP inter­

works with the ICW proxy server.

The SCP-ICW protocol is PINT. The translation between INAP and PINT is performed by 

the SCGF. For this, a proprietary protocol is used between the SCP and the SCGF, whilst on 

the other end the SCGF is an IP-endpoint.

The IP is a standardised SRF. When necessary, it utilises the Play Announcement IF to 

inform the caller according to the settings of the ICW subscriber.

The ICW server is a SIP proxy or redirect server for message routing between the ICW 

client and the SCGF. The ICW server is also responsible for:

• managing the ICW clients that are connected to it,

• monitoring the connection status o f the registered ICW client and

• managing profiles for each ICW subscriber.

The ICW client is an application program running on the subscriber’s PC. The application 

monitors the Internet connection status o f the PC and, upon connection, sends a registration 

request to the SCGF via the ICW Server, which is eventually passed to the SCP.
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From the above architecture, it can be observed that:

■ the implementation depends on a proprietary function -  the SCGF -  and therefore a 

proprietary interface between the SCGF and the SCP

■ the implementation o f the IP-side o f the SCGF is specific to the version o f SIP that is being 

used and

■ the implementation o f the ICW client application is specific to the version o f  PINT.

In order to resolve some o f these limitations, the “Service in the PSTN/IN Requesting InTemet 

Services” SPIRITS IETF WG [RFC2995] has proposed a standardised architecture for future 

SPIRITS services [Fayn99]. The SPIRITS architecture proposed in [RFC3136] aims at 

providing inter-operability between existing commercially available systems, such as the one 

discussed here.

The SPIRITS WG [SPIRITS] would resolve the last two issues associated with the above 

architecture, but it would still not tackle the issue o f the proprietary interface between the SCGF 

and the SCP. This could either be resolved using the architecture presented in section 3.3.2.1.4 

o f the proposed IN CS-4 SCGF or by adopting a Parlay-based approach that would enable third- 

party service providers to directly access the SCP through a Parlay-compliant API and thus 

overcome the limitations o f the proprietary interface.

3.3.3 Supporting IP-Based Services using the IN M odel
Intelligent Network
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I C u sto m er '
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Figure 3.15: Support o f  IP with IN

This section identifies IP services that can be implemented using the functionality provided by 

existing (i.e. legacy) IN architecture, as well as by introducing new (i.e. IPIN) components on 

the IN-side. Figure 3.15 illustrates the branch (in bold) o f the taxonomy this section focuses on.
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3.3.3.1 Customer Service Systems

The IP architecture could be used in conjunction with IN for Customer Service Systems. This 

includes web-based customer service control and management. Users could in this way 

subscribe and unsubscribe to services “on-the-fly” via a secure web-based interface.

3.3.3.2 Authentication, Certification, Billing and E-Commerce Services

Such service capabilities use information which is already contained within the IN environment. 

The IN model and its billing capabilities can be used in order to utilise the important 

information and “trust” set within the traditional telecommunications network and enhance this 

by promoting the IN billing capabilities over an IP platform [Solo98].

In this respect, the SCP is treated as a general certification authority*. The SCP can provide 

access for all manner of secure information (such as passwords) that could be used in Internet 

applications. Chapter 4 discusses in detail an example application for this role.

3.3.3.3 DNS for Mobility

This involves utilising the IN infrastructure in order to allow outside control to IN and 

intelligent use of information within the IN network for services such as mobility. DNS 

[RFC 1591] offers a one-to-many mapping from a globally unique, hierarchical identifier to one 

or more host names or IP addresses. Therefore, the DNS server provides a means to access 

location information for servers. This key element in the IP network could be used in 

conjunction with IN, in order to provide mobility through DNS.

In such a scenario, the SCP can treat the DNS as an SDF. Hence, since IN CS-2 provides 

enhanced support for user interaction and service profile customisation the user could register a 

binding between the IP address and URL through the IN. Number translation services are 

relevant to the Internet. The DNS currently serves as a resolution protocol allowing the 

translation of fully-qualified domain names to IP addresses. In this sense, the DNS can be 

viewed as an IN platform [Solo99b]. The difference is that the end terminal (rather than SSP) 

interrogates the DNS.

A certification authority is an independent party that verifies the credentials of a public key. A complete 
description can be found in [GanlOl].
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3.3.3.4 MEGACO andH.248

Before the protocols of MEGACO, H.248 and the ETSI Project TIPHON are introduced, a brief 

background to the origins of these protocols is given. Table 3.3 presents an overview of the 

protocols developed by two of the major standardisation bodies.

Standards Body URL M ajor Standards N otes

International 
Telecommunications 
Union (ITU)

www.itu.int

T.120 Real Time Data Conferencing
H.248 Gateway control protocol (same as IETF 

MEGACO)
H.320 Narrow-band visual telephone systems and 

terminal equipment
H.323 Packet-based multimedia communications 

systems

Internet Engineering 
Task Force (IETF)

www.ietf.ore

SIP Session Initiation Protocol
RSVP Resource Reservation Protocol (prioritises 

packet traffic by use)
Diffserv Differentiated Services
MEGACO Same as ITU H.248

Table 3.3: Standards for inter-working among IP Telephony and the PSTN

Two major components of the H.323 architecture [H.323] are the Media Gateway (MG) and the 

Media Gateway Controller (MGC). The MG performs simple encoding and decoding of 

analogue voice signals, compression and conversion to/from IP packets. The MGC contains all 

control intelligence, analyses how calls are to be handled and performs functions similar to the 

SS7 network in the PSTN environment. The MGC needs to understand various signalling 

systems such as SS7 and GSM in order to ensure PSTN inter-connectivity.

Competing with H.323 is the IETF-developed standard SIP (discussed in section 3.3.2.1.1). A 

number of papers have been published that make this comparison (either directly or indirectly), 

such as [Henn], [LiuOO] and [SIP].

Although the ITU Recommendations of series H.323 intended to standardise both the media 

gateway and the media gateway controller, an industry initiative called Media Gateway Control 

Protocol (MGCP) gained momentum in further decomposing media gateway controllers from 

media gateways. A result of this initiative was the formation of a working group, named 

MEGACO [MEGACO], by the IETF. The resulting H.248/MEGACO protocol defines a client- 

server protocol to control media gateways that can pass voice, video, facsimile, and data traffic 

between PSTN and IP-based networks [RFC2705]. H.248/MEGACO supports various 

“packages” that interface with conventional PSTN switches and IN services, with plans to 

support a range of existing signalling protocols including ISUP, and MAP. The MEGACO 

architecture is presented in figure 3.16.
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Figure 3.16: MEGACO NAS reference architecture

In figure 3.17, depicting the approach adopted by H.248/MEGACO, the IP, signalling and 

bearer connections are physical, whilst the interface between the MGC and the Network Access 

Server (NAS) is logical. The signalling path between the MGC and the NAS server is through 

the IP network. The NAS is an access gateway, or MG, which terminates modem signals from a 

network (e.g. switched-circuit network or xDSL network) and provides data access to the packet 

network.

T elep h o n y M edia G W H .323 ,
S ign alling C ontroller

1 1
SIP

Control
Interface

B earer
1 1

IP
C on n ection M edia G W N etw ork

Figure 3.17: H. 248/MEG AGO

One of the technical challenges raised by the ever-closer integration between circuit-switched 

and packet-switched networks concerns how to address calls that pass from one to the other. 

Generally, it is assumed to be desirable that a single integrated global addressing system exists. 

For example, the same ITU E.164 telephone number would reach a subscriber regardless o f 

whether IP-based or PSTN network technologies are used. Indeed the concept o f being 

“technologically independent” suggests that any global numbering or addressing plan should be 

abstracted as much as possible from the underlying lower-layer technologies. These issues are 

addressed by the ETSI Project TIPHON. The following section highlights the work o f TIPHON 

that is related to the control plane.

3.3.3.S ETSI Project TIPHON

The Telecommunications and Internet Protocol Harmonisation over Networks Project 

(TIPHON) by ETSI aims at “specifying the inter-operability mechanisms and related parameters 

to enable multimedia communications to take place, to a defined quality o f service, between 

switched-circuit networks (SCNs) and IP-based networks and their associated terminal



equipment” [TIPHON]. TIPHON also supports mobility and roaming within IP-based networks 

as well as with other networks [ETSI TR 101-300].

[ETSI TR 101-300] identifies five scenarios for different cases o f traditional and IP Telephony:

0. IP-phone to IP-phone over an IP network

1. Source on IP network to destination on SCN network

2. Source on SCN network to destination on IP network

3. Source and destination on SCN network using an IP transit network

4. Source and destination on IP network using an SCN transit network.

TIPHON Release 1 defines the architecture presented in figure 3.18.

E.b

E.a
M edia GW

M edia GW  
Controller

Signalling
G atew ay

H .323
Terminal

GK GK
B ack End 

Server

Figure 3.18: TIPHON release 1 architecture with 
reference points [ETSI TS 101-312]

Note the Back End Server (BES) represents services provided by third parties. The BES is 

further examined in section 3.4.

In order to provide a structured analysis o f the requirements, the concept o f  “functional planes” 

is adopted by TIPHON (see figure 3.19). Each functional plane contains a high level grouping 

of functionality.

IP Transport P lan e SC N  P lan e

IP T elep h on y  A pplication P lan e

Figure 3.19: TIPHON release 2 functional planes
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The IP Telephony Application plane is further decomposed into the functional layers depicted in 

figure 3.20.

Service

Service
Centrai

Caii
Control

Bearer
Control

Media
Controi

Figure 3.20: Functional layers in the IP Telephony 
Application plane [ETSI TS 101-314]

The services functional layer supports a range of services (e.g. authentication). The service 

control functional layer contains the functionality that is needed for the calls but may have a life 

span that is longer or shorter than the duration of the call (examples are terminal registration, 

call routing). Additionally, the service control functional layer provides number portability, 

called user location, name-to-name translation, name to address translation, and call access 

authorisation.

The call control functional layer is responsible for maintaining a call context, which allows the 

services offered by the bearer control functional layer to provide the connections and 

capabilities requested by the customer. More importantly, it maintains the call state, as well as 

providing services that change the call state, for instance call hold, suspend, three way, and 

conferencing.

A mapping between the IN functional planes and TIPHON's functional planes is given in figure 

3.21.
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SM AF

S S FB earer Control

Media Control CCF

Figure 3.21: Mapping o f  IN  functions onto TIPHON functional architecture

As previously mentioned, the original protocols o f IP Telephony have limited the inter­

operability o f IN and IP services. It is vital that IP users also benefit from services in the IN 

network if a means is found to permit IN service access from IP endpoints. This arises from the 

fundamental issue o f allowing full inter-operability as a natural step to the convergence process 

[Cian99].

The next section discusses a fundamental issue o f providing inter-operability in the context o f 

call models. As call models and their respective FSMs represent building blocks for IN 

architectures and IP-based services, it is essential that the inter-working among them is achieved 

without compromising robustness in either domain.

The inter-working o f two different call models is a problem o f Call Model Integration (CMI). 

A fundamental requirement for CMI is to have a unified view on the two call models (i.e., the 

IN BCSM and the IP-based FSM, e.g. H.323 or JTAPI).

A call model, in its most general form, consists o f three basic components [Vemu99]:

■ the Call Control Element, which handles call processing related functions,

■ the Service Switching Element, which handles all service access related functions, and

■ the Feature Interaction Manager Element, which resolves conflicts in feature access and 

execution.
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Every entity that processes calls possesses these elements in some form. “The CMI issue arises 

because the base domain has its own FSM representation o f these elements, as does the external 

domain o f interest” [Vemu99].

As different services are triggered at different states within the context o f a given call, it is 

essential to be able to maintain a unified view o f call state across the two domains. In order to 

achieve this, the two state models must operate in lock-step (i.e., state changes in one FSM are 

accompanied by corresponding state changes in the other) [ETSI TS 101-314].

^ fo r e ig n  s e r v ic e ^

b a se  domain

foreign S erv ice  
Sw itching E lem ent

foreign Call Control 
E lem ent

^  b a s e  serv ice  ^

b a s e  S erv ice  
Sw itching E lem ent

B a se  Call Control E lem ent

Figure 3.22: Call model integration fram ework

However, this lock-step behaviour is sometimes difficult to implement, especially since, in most 

cases, two call model FSMs do not have the same number o f states and there may be a one-to- 

many relationship across the two call models. The concept o f state models and their 

implementations is discussed further in chapter 6. The next section focuses on open inter­

working standards using APIs.

3.3.4 Using the IN A rchitecture for Layer 2 O perations and to Support 
the Convergence Process

Intelligent Network

Support of Layer 2  Support of C onvergence

I I I I I I I
CS-3/4 CPH ATM PSTN IP Mobile Private

GSM UMTS GPRS

Figure 3.23: IC W  based on existing IN  CS-1 FEs
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The last two parts of the taxonomy (see figure 3.23) identify areas where the IN may provide 

additional support as a control architecture.

Firstly, to support layer-2* operations, the IN could provide additional QoS control over the 

ATM AAL2 using additional functionality that may be provided in future IN capability sets.

Secondly, the IN could be viewed as a control architecture that is supporting the convergence 

process. The number of architectures that need to inter-work in order to provide transparent 

services are increasing. For example, the following architectures are currently available for 

mobile telephony: GSM, GPRS and the slow evolution towards UMTS. Similarly, there are IP 

networks over ATM, as well as the traditional PSTN networks. The PSTN network still is the 

primary access network for home users, therefore the primary gateway (from the viewpoint of 

control) to home users is through the IN control architecture.

It is the author’s view that the IN has a role to play in supporting this convergence process. Of 

course, it remains to be seen whether the name “Intelligent Network” will withstand the test of 

time. What is important however is that the concepts, capabilities and architecture of the IN are 

contributing and impacting the design of IP-based technologies.

The next section moves on to re-examine the TINA service architecture (section 2.5) within the 

context of the converging environment and the various protocols and architectures that have 

been presented in this chapter.

3.4  T h e  R o l e  o f  t h e  T IN A  Se r v ic e  A r c h it e c t u r e  in  a  
C o n v e r g in g  E n v ir o n m e n t

Section 3.3.3.5 presented the ETSI Project TIPHON and its architecture. As already mentioned, 

TIPHON aims at “standardising the interfaces between SCN networks and IP-networks to 

enable their inter-operability for voice and multimedia applications” [ETSI TR 101-300]. The 

TIPHON architectural configuration defines, among other entities, a Gatekeeper (GK), whose 

main function is number translation, and a BES (section 3.3.3.5, figure 3.18).

This section examines TIPHON, PINT [RFC2995] and the new role of IN within the context of 

the TINA service architecture (section 2.5).

Layer 2 here refers to the ATM Adaptation Layer
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In a converged environment QoS guarantees must be made between homogeneous network 

types as well as heterogeneous network types. For example, one may wish to establish a call 

between three parties, each originating from a different network type. It has been argued 

[SoloOOa] that the IN architecture provides an existing and evolving set o f  standards that will 

facilitate the migration towards these types o f scenarios. Hence, IN should be viewed as an 

important architecture for the communication session as illustrated in figure 3.24. The figure 

shows the view of the communication session controlled by the SCPs. The service session is 

seen as a distinct entity.

Service Provider
S erv ice  S e ss io n

Access
S ession

API In te rface  2

Gatew ay

SC P
CS-1

SC P
BES

SCP
CAMEL

CAMEL PSTN/ATM IP Network

C o m m u n ica tio n s  S ess io n

Figure 3.24: SCPs responsible fo r  the communication session

The two API interfaces represent the work discussed in section 3.3.2.4. Specifically, the two 

interfaces are the subject o f the work o f PINT, Parlay, and JAIN. Figure 3.24 shows the 

relationship between PINT, Parlay, and JAIN.

Although it is not very clear at this point the direction PINT will follow, it seems to be one of 

functional decomposition o f the required blocks in order to achieve the initiation o f PSTN 

services from the IP domain. It is the author’s view that taking an object-oriented approach to 

the development o f PINT services can result in an easier integration between these and the 

TINA architecture, specifically the DPE. By placing the DPE as a means o f allowing access to 

the PINT gateway it provides a number o f enhancements to the basic PINT services [SoloOOa]. 

This for example could allow a number o f service providers to make use o f the gateway and 

provide customised solutions. PINT provides an interface with the SCP that can be controlled 

by a service provider. It provides a connection between the service session and the 

communication session.
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User Session 
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Gateway

Parlay/JA
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C om m unications S ess io n

Figure 3.25: The TINA service architecture, PINT, Parlay, and JAIN

Furthermore, the use o f  APIs to open up the interface between the communication session and 

the service session (chapter 8) is an important step forward. It allows a service provider to write 

applications that can incorporate features as necessary [Solo00a][ParlBuss99]. In the case o f 

Parlay, the service creator need only implement the required software interface for the 

underlying capability to be made available. This opens up important possibilities for service 

development. Firstly, by making network resources available as required, service creation may 

be viewed as a Network Capabilities Service Creation Environment [SoloOOb]. As new network 

capabilities become available, they can be made available as class libraries. As such, it is not 

necessary to standardise on information flows as in the case o f IN CS-1 and IN CS-2. It is 

necessary only to standardise on the description o f the API, as is the case for Parlay.

Convergence requires the inter-working o f services across the different network types or 

different operator domains. It is not yet clear whether the API approach will provide a solution 

to the problem or even scale across multiple domains. However the work presented in [SoloOOb] 

[SoloOOc] and [SoloOOd] points to an approach where a second set o f  APIs or even overlaid 

state models be made available to provide service providers with a higher level o f service

interaction. This issue is further examined in chapter 8.

The following section discusses the role o f state machines in a converging environment, and

builds upon the views presented in section 2.6 where the role o f state machines in traditional

telecommunication networks was discussed.
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3.5  St a t e  M a c h in e s  in  C o n v e r g in g  N e t w o r k s  a n d  
THE R o l e  o f  IN

Chapter 2 examined the state models and control plane of the PSTN. As part of the convergence 

process, the state models on the IP side need to inter-work with the less well-structured models 

of the IP network.*

IP as a connectionless service apparently has no need for a basic call state model. In fact, there 

is no state information stored in traditional IP routers.^ In general, IP routers are designed to 

achieve high packet throughput with little or no attention to the service the packet is 

transferring^ This makes it unnecessary for an SCP-like architecture to support the connection 

process. In addition, many of the CS-1 services (e.g. call screening) supported by the SCP are 

better placed on the edge of the IP network and handled by intelligent terminals.

However, through the discussion of the taxonomy, it was suggested (section 3.3.2) that the state 

models that are available in the IP world need to inter-work with the IN. Section 3.3.2.4.3 

identified that there are limitations to this. It is the author’s view that the well-defined state 

models of the IN world are unlikely to be relaxed in any way to support the convergence 

process. Certainly, there has not been an indication that this may be the case as such a move 

could compromise the integrity of the PSTN, the major carrier [ITU97][ITU00] for a large 

proportion of IP networks.

The approach that is adopted to provide such inter-operability is one whereby additional 

functional entities (such as gateways) are introduced in the IN domain to support the translation 

functions. Such functions were discussed in section 3.3.2.

Within the context of the converging environment, there may be reluctance to adopt IN 

principles in the IP domain. Contrary to this, there are a number of areas where IN is likely to 

play a role. Although such services may be provided with architectures that do not adhere to the

* The arguments presented in sections 3.2 and 3.3.2.2 indicate that this is the case.
 ̂ Some routers offer packet discrimination services that involve maintaining state information. Such 

routers are generally deployed in dedicated networks that are designed with QoS in mind [Adis98].
 ̂In fact the datapath functions of the router that are performed on every datagram that passes through the 

router, are often implemented in special purpose hardware. In trying to improve the per-packet 
performance of a router [Part96], the datapath functions are optimised using parallel processing and 

special-purpose hardware [McKe00][Wang01]
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IN standards the author’s viewpoint is that there are good reasons why IN should be adopted in 

the IP environment.

The first of these is to do with the support of QoS sensitive services. For example, RSVP 

[RFC2205] and Diffserv [RFC2475] define state machines for the establishment of resources on 

behalf of the user. If a service session is being defined and the streams for the session have to be 

controlled within the communication session then there is a role for an SCP [SoloOOa]. In 

addition, in section 3.4, it was argued that a combination of the Gateway and the BES 

effectively performs the function of the SCP and that other services may be established on 

behalf of the end user through the “SCP.”

The second issue is to do with the requirements for Universal Personal Telecommunications 

(UPT) [UPT]. UPT requires that a service should be made available to any user anywhere 

within the network [ETSI ETR 055-1]. In the short term, this means allowing registration of the 

user at any terminal on any network and allowing the user’s portfolio of services to be made 

available subject to the terminal capabilities or other specialised resources. For example, a 

registered user may be contacted from and connected to any of the other networks for which the 

user has a subscription. This will require the interchange of user data between networks of the 

same type (i.e. PTSN-PSTN) and different types (PSTN-IP). The requirement for the IP case is 

that the same rules apply. Whether one calls the device a BES or an SCP, it still needs to exist in 

the IP [SoloOOa].

What can be extracted from this section is that the traditional role of IN is undergoing an 

evolutionary change as a result of the convergence process. The new role of IN is one where it 

should be viewed as a control architecture that enables the convergence of PSTN and IP 

networks.

3.6  C h a p t e r  Su m m a r y  a n d  R e s e a r c h  C o n t r ib u t io n s

As noted in the introduction to this chapter, there is a clear transition from single service 

networks to integrated service networks. This entails the inter-working of networks to achieve a 

level of inter-operability which a few years ago was unheard of, as it did not fit within the 

regulatory telecommunications environment.

The inter-operability and inter-working of these networks is a requirement imposed by the 

service characteristics. Different services have different transport requirements. The transport 

capabilities of networks and available network resources have advanced over the last decades
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allowing a convergence of fixed telephony, data transmission, multimedia and mobile services. 

One of the driving forces behind this integrated network has been the market deregulation, 

technological advances and of course the availability of funds within the telecommunications 

environment (such as the well-publicised funds spent towards acquiring 3G licences).

Within this framework, an aggregation of the technological, market and evolutionary issues 

surrounding the convergence process and its impact on the control plane has been provided.

A large part of the work presented focused on the new role of the IN control architecture. This 

was presented using the taxonomy reference model. The author believes the model is a useful 

way to understand the interactions of the architectures participating in the convergence process. 

At a high level, the model can be viewed as presenting the two extremes towards network 

intelligence. On the one side control is provided to the PSTN through the IN and, on the other, 

through the more relaxed approach of the IP domain. These two architectures must inter-work in 

order to provide the services end users have come to expect regardless of the underlying 

network. For this reason, architectures such as PINT are emerging to support such hybrid 

services. To achieve this the inter-operability requires inter-working of the state models.

The state models for JTAPI, CTI and JCC have been discussed and it has been determined that 

although JTAPI offers the programmer clear and explicit abstractions for manipulating calls and 

the logical entities in a call in an object-oriented manner, it lacks certain desirable functionality, 

such as the single association of call legs.

In section 3.3.2.3, the JTAPI Call model was presented. It has been argued [JainOO] that JTAPI 

overcomes several of the limitations of the IN. According to the same reference, in the IN world 

“there is no explicit abstraction offered to allow the programmer to manipulate entire calls, or 

legs of a call, or the principal logical entities in the call (e.g. the calling or called party’s 

address), and certainly not in any object-oriented fashion.” But the author has pointed out that 

JTAPI does not currently capture all states that the IN model does and in JTAPI there is no 

concept of triggers or detection points [JTAPI]. Moreover, it is impossible to suspend call 

processing at a defined state in the FSM, invoke an application (supplementary service logic), 

and return results, although some improvements are suggested by JCC (section 3.3.2.2).

Another application that was discussed within the context of the taxonomy is the utilisation of 

IN infrastructure to support billing, authentication, and payment systems within the area of 

electronic commerce. This application is the focus of the work that is presented in chapter 4 and 

chapter 5.
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C h a pte r  4

U t il isin g  E x is t in g  IN  In f r a s t r u c t u r e  

F o r  IP-In it ia t e d  B il l in g  &  

E l e c t r o n ic  P a y m e n t  S y s t e m s

The previous chapter identified that legacy IN control elements can be used to 
provide authentication, billing and certification services for electronic commerce. 

This chapter discusses the design of a system for electronic payments that is based on the 
capabilities of IN CS-1.

4.1 In t r o d u c t io n

The system that is described in this chapter utilises existing IN CS-1 infrastructure and 

capabilities to enable home users to engage in electronic commerce. At a functional level, the 

Intelligent Electronic Payment System (lEPS) provides two important capabilities. Firstly, it 

provides authentication capabilities for both end users and shops and, secondly, it performs the 

billing through the existing PSTN connection of the user. Through the lEPS, users can charge 

for micro-payments on their telephone bills [Solo98][Solo99a][IEPSPat].

The operation of the lEPS is based, for the most part, on existing IN CS-1 functional entities 

and information flows. The additional component that is required to provide the interface 

between the IN and IP worlds is a gateway.

Section 4.2 looks at existing electronic payment systems, and identifies some of their 

limitations. Section 4.3 provides an overview of their desirable characteristics of electronic 

payment systems. Following this, section 4.4 provides a description of the proposed system and 

section 4.5 describes the operation of the protocol. Section 4.6 briefly describes the security 

features of the lEPS. Section 4.7 evaluates the system as an electronic payment system by 

comparing its operation to the desirable characteristics of electronic payment systems presented 

in section 4.2. Finally sections 4.8 and 4.9 examine the inter-operability between the lEPS and 

the capabilities provided by the IN CS-1. Section 4.10 provides a summary of the chapter.
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4.2 Existing  Electronic  Paym ent  System s

In the past, most European and US operators have invested heavily in IN platforms to support 

key bearer-type services such as Freephone and Premium rate. Such systems have complex 

structures for interfacing with existing billing systems that are resilient and trusted* by the end 

users. In contrast, there is still much mistrust over the security of the Internet. This is indicated 

by market research and polls regarding online shopping as well as by the Bank of International 

Settlements in the 1996 report [BIS96].

In the past decade, rapid advances in communications, electronic service networks, multimedia 

and interactivity have been opening up new opportunities for business. They are contributing to 

new and effective ways of disseminating information, promoting products and services and, 

more recently, carrying out electronic business transactions, both in the business-to-business 

and business-to-consumer sectors [KaprOl].

The Internet is one example of a communications network that is transitioning from an 

inexpensive medium for advertising, marketing, and customer support to a common platform 

for transactions and business applications [ITUOO]. At the same time, technological and 

commercial developments are melding together information, communications, commerce, and 

entertainment into one large, consolidated industry. Part of the reason for this evolution is that 

more consumers are accessing the Internet using multiple devices and over multiple 

communications networks [AmarOl].

Electronic payment systems, first introduced in the late 1990s, such as ecash™, cybercash™ 

and barclayCoin™ require the use of a credit card.^ At the same time however, there is a 

reluctance by individuals to divulge their credit card details online, despite the efforts made to 

promote such usage [WResInc98].^ In any case, this framework is limiting, both for end users 

and for businesses. The reasons for this are discussed in the following section.

Not many people are known to individually check an itemised phone bill.

 ̂ While ecash and cybercash have now evolved into a more mature system, barclayCoin has been 

completely dropped by Barclays. At the time of its development, only 12 retailers signed up to accept it as 

a form of online payment.

 ̂ In cases where fraud is reported, the issuing bank for the credit card provides refunds quickly, thus 

encouraging confidence among end users. An analysis of the legal aspects of electronic commerce and 
security can be found in [Baum92].
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4.2.1 Limitations with Traditional Payment Systems
The term “traditional” in the context of this section refers to payment systems that were not 

designed for use on the Internet or for electronic payments. Examples of these include cheques 

and credit cards. To the lay person, credit cards may appear to be quite efficient for online 

commerce. It is however, a misconception to accept credit cards as a system designed 

specifically for online payments -  after all, credit cards* were in existence long before online 

commerce.

These traditional payment methods are inadequate for real-time payment interaction [Furc96]. 

Here, “real-time” means a transaction is triggered and committed when the consumer hits the 

“proceed” button on a Web page. Even with credit cards, a number of systems require the 

intervention of personnel to authorise the transaction. This incurs overhead costs as well as 

inconvenience to the end user. Furthermore, a large number of traditional payment methods 

generally require that the consumer leaves the online platform and uses the telephone or sends a 

cheque in order to make a payment. This is particularly true with small companies, which may 

not accept payment by credit card, or where the transaction value is too small to use one. It may 

also be expensive in terms of time to enter the credit card numbers [Furc96][Kala97]. Some 

companies continue to require users to send information offline and arguably, these companies 

have not been very successful.

One of the reasons for requiring the user to submit his payment details offline is the lack of 

security of the system. It is widely accepted that most users do not feel safe when submitting 

their credit card information over the Internet [DOCOO] and, furthermore, that the most 

important factor in promoting electronic commerce is trust [OECD97b].

In [OECD97a], the Organisation for Economic Co-operation and Development identifies that 

“trust is central to any commercial transaction” and that “typically it is generated through 

relationships between transacting parties” and “familiarity with procedures.” The report 

furthermore identifies that “some observers fear that unless action is taken very soon to bolster 

trust in electronic commerce, it will never assume its place as an important channel for 

commerce.” However [OECD97b] continues by saying that “such fears [of fraud] are 

exaggerated and that in time as consumers become more familiar with the technologies, [they] 

will gain confidence in electronic commerce.” The author agrees that, for non-technical users.

* According to Encyclopaedia Britannica, the first universal credit card, one that could be used at a variety 

of stores and businesses, was introduced by Diners Club, Inc., in 1950.
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familiarisation with procedures will overcome a large obstacle in the growth of electronic 

commerce.

However, the author takes the view that there is a different notion to trust. Trust can be viewed 

as a trade-off between actions (desire), consequences, and risk. For instance, if an end user is 

potentially risking fraudulent use of their credit card account by shopping online for a service of 

low intrinsic value, then that is a very high risk.

A further characteristic that adds to the limitations of any payment system is its coverage. This 

is defined as the ability of a store to accept credit cards as a form of payment. This makes credit 

cards applicable only with signed-up shops. Furthermore, this form of payment does not 

generally support consumer-to-consumer or direct business-to-business payment transactions. 

Therefore, the payment method is limited in its acceptability.

The coverage and acceptability characteristics are also compounded by the eligibility of end 

users to qualify for a credit card. Not all potential buyers have suitable credit ratings to allow 

them access to credit cards. It therefore follows that both acceptability and coverage are 

hindered in these groups.

A major disadvantage of credit-card-based payment methods is the lack of support for micro­

transactions. Micro-transactions are defined as transactions that are of low intrinsic value. Many 

payments made over the Internet are of lower value than the cost of a phone call or even a letter 

(for sending payment information). What is more, the time it takes to type the required 

information may be too high an overhead. The cost of handling these payment methods is often 

too high for the seller to break even. This is a very important limitation. Credit card companies 

usually charge commission for every transaction they process -  and very often impose a 

minimum transaction charge. This automatically rules out the use of credit cards for micro­

transactions. Even if credit-card fees are brushed aside, it is still impractical for the user to enter 

all the credit-card information for such small transactions. For example, single database-type 

applications could charge the user 10 pence for every successful match in the lookup process, a 

pay-per-click approach. The Internet (both fixed and wireless) presents a convenient platform 

for micro-payments and the IN infrastructure (with billing systems in place) is strategically 

positioned to provide support for such transactions.
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4.3 D e s ir a b l e  C h a r a c t e r is t ic s  o f  E l e c t r o n ic  
Pa y m e n t  Sy s t e m s

Having identified the limitations of traditional payment systems, the characteristics that are 

desirable for Electronic Payment Systems (EPS) are next presented. A complete discussion of 

these can be found in [Maho01][Kala97][Furc96][Okam93][Essi92].

4.3.1 Security and Data Transmission
One of the most important requirements is to maintain the security of the system. Protection 

against various forms of fraud, the generation of non-existent funds or the malicious use of lost 

or stolen cards, are central issues in making payment systems viable. Different infrastructures 

behind payment schemes require different kinds of protection mechanism. Most systems need a 

user authentication mechanism or access control system. This is often implemented using a 

personal identification number (PIN).

The security aspect extends to the data transmission [BIS96]. This is extremely important as, in 

most cases (particularly for Internet transactions), a transaction is transmitted for remote 

processing. Such transactions can be intercepted, which can lead to unauthorised use of the 

payment system [Baum92][Basle99]. At a high level, there are two approaches which could be 

used for dealing with this problem.

The first involves the isolation of the transmission infrastructure. This concept requires the 

setting up of isolated networks to be used for financial transactions processing. The scheme is 

secure but expensive, as it requires setting up a complete network infrastmcture, as well as 

protecting it from intruders (which can prove to be the most costly part).

A second approach is the use of encryption in order to secure transactions (data transmitted as 

part of a transaction record). This scheme allows the use of public communication networks to 

transmit financial transaction data. A number of techniques can be applied to encrypt data 

transmitted over public networks. One of the most commonly used is that of public-key 

encryption and is implemented by the RSA* algorithm [Rive83][RSA98].

4.3.2 Authentication
The second important characteristic deals with authentication and proof of identities [Furc96]. 

In electronic payment schemes, it is often necessary to restrict user access, for example, to the

* RSA is named after its inventors, R. Rivest, A. Shamir, L. Adleman.
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owner of an electronic wallet* and to verify the identity of a particular user, to ensure that the 

person to whom a payment is made is, in fact, who they identify themselves as. Different 

schemes of identification exist, the most popular of which are PIN numbers, passwords and 

personal hand-written signatures. Hand-written signatures, although not really an electronic 

authentication scheme, are included as they are used to secure credit card transactions as well as 

being the original model for authentication schemes. There is a problem however with personal 

signatures -  that of verification. It takes an expert to tell a forged signature from an authentic 

one and therefore it does not offer protection to the credit card user from the misuse of a stolen 

card; however, people have come to accept this authentication mechanism. Similarly, digital 

signatures allow parties transmitting information over an insecure channel to sign the 

transmission digitally so that these signatures can be used in the same way as hand-written 

signatures are used in paper documents [CurrOl].

Digital signatures are used for authentication of the sender, as well as maintaining the integrity 

(here meaning that the data has not been altered by a third party) of the data throughout the 

transmission [Kala97]. This also means that the originator cannot falsely deny having signed the 

data. In addition, a digital signature enables the computer to “counter-sign” the message, 

assuring the recipient that the message has not been forged in transit.

Digital signatures ensure authentication by combining the data to be transmitted with a private 

key. The user’s private key is combined with the document and performs a computation on the 

composite (key + document) in order to generate a unique number called the digital signature. 

Digital signatures must exhibit the following characteristics [ABA01][Furc96]:

■ Verifiable -  Anybody should be able to validate a signature.

■ Unforgeable -  It should be impossible for anybody but the issuer to attach the issuer’s 

signature to a document.

■ Non-reusable -  It should be impossible to “lift” a signature off one document and attach it 

to another.

■ Unalterable -  It should be impossible for anybody to change the document after it has been 

signed.

■ Non-deniable -  The person signing the signature cannot deny having done so.

The process involved in digitally signing a message requires the sender to apply his private key 

to the data to be transmitted. To increase the speed of the process, the private key is applied to a

* “Electronic wallet” here refers to a collection of data that is stored on the user’s machine and contains 

information regarding bank details.
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shorter form of the data, called a “message digest” rather than to the entire set of data. The 

resulting digital signature can be stored or transmitted along with the data. The signature can be 

verified by any party using the public key of the signer. This feature is very useful, for example, 

when distributing signed copies of virus-free software. Any recipient can verify that the 

program remains virus-free. If the signature verifies properly, then the verifier has confidence 

that the data was not modified after being signed and that the owner of the public key was the 

signer.

For example, when an electronic document, such as an order form with a credit card number, is 

run through the digital signature process, the output is a unique “fingerprint” of the document. 

This “fingerprint” is attached to the original message and further encrypted with the signer’s 

private key. If a user is communicating with her bank, she sends the result of the second 

encryption to her bank. The bank then decrypts the document using her public key and checks to 

see if the enclosed message was tampered with by a third party. To verify the signature, the 

bank performs a computation involving the original document, the purported digital signature 

and the customer’s public key. If the results of the computation generate a matching 

“fingerprint” of the document, the digital signature is verified as genuine; otherwise, the 

signature may be fraudulent or the message may have been altered.

4.3.3 Transaction Cost and Use of Additional Hardware
Transaction cost can be defined as both the time required for a transaction and the financial 

expense associated with processing overheads, hardware costs and other financial expenses 

[Essi92]. Transaction cost determines the amount of money the user of a system is effectively 

charged for a purchase on top of the actual sale price. For instance, high financial transaction 

costs make it uneconomical to use a system for small financial transactions (e.g., the writing of 

a cheque for the amount of five pence) and long processing times of transactions can make it 

inconvenient to use on a particular system.

Transaction cost and the use of additional hardware are linked*. In most cases, an EPS requires 

that every payment is cleared online with a central database located at the authorisation 

organisation (e.g. a bank or a credit-card company). If a decision about the validity of a payment 

can be made locally without the need for online clearance by a central authority, then both the 

transaction cost and processing time decrease. Such systems however require additional 

tamperproof hardware [Bran93]. Prepaid smart card payment systems usually do not perform 

online verification, as the hardware is assumed to protect the information stored on the cards.

For example, in [VISA] there are minimum specifications for VISA card readers.
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Requiring online verification on the Internet is less of a problem, as the communication 

infrastructure is already in place. An offline verification system would be advantageous only if 

no online connection to the central authority can be established. Thus, the online verification 

requirements of an EPS could produce an unwanted overhead.

Transaction cost can be divided into three categories -  high, medium, and low [Essi92]. An EPS 

is said to have a high transaction cost if any part o f the transaction has to be processed 

manually. Automated transactions that cause a substantial overhead are not quite as expensive 

as those involving manual transactions and they are also faster. For example, SWIFT [SWIFT] 

is an example of this level of transaction cost. These systems are cheaper and faster to use, but 

still involve substantially higher costs than the use of cash. Finally, a system with low 

transaction cost eliminates the need for online clearance and (by definition) reduces the 

hardware and communication expenses. An example of this level of transaction cost are pre­

paid phone card systems. There is no online clearance (from a financial authority) as they are 

prepaid.

4.3.4 Traceability o f Payments
Traceability of payments involves tracking a transaction without compromising or revealing the 

details of a user. Common electronic payment systems, such as credit cards, generate a record 

for every payment made. This is needed to ensure that all payments can be verified. It is now 

possible to devise payment systems that do not allow payments to be traced without 

compromising the system’s security standards. This permits the implementation of systems that 

are cash-like in that they ensure some limited anonymity of payments. At the other extreme, an 

anonymous credit card system was proposed by [Okam89].

In general, payment systems can be grouped into four categories. These are Unconditional, 

Conditional, Untraceable, and User-controlled:

■ Unconditionally Traceable

Payments in a system are unconditionally traceable if a transaction generates a record that 

identifies buyer, seller, amount, date and time, and optionally some additional information. 

This allows the bank, or another party obtaining the bank’s records, to trace all payments 

made within the system. This is the way in which today’s credit-card payment system 

operates. There are however a number of other alternatives which provide some form of 

anonymity.

■ Conditionally Traceable

A conditionally traceable system is one in which payments are generally anonymous but 

allow for the identification of transaction details by obtaining what is referred to as a
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“reference transaction”. According to [Furc96] “conditional traceability provides for a 

somewhat higher level of privacy and anonymity than unconditional traceability, as it 

requires some action to ‘de-anonymise’ the transactions, and this will not always be done 

(i.e. these systems will not be used to obtain marketing data or for personalised loyalty 

schemes).”

■ Untraceable Payment Systems

These allow the payer to remain completely anonymous. These systems have to mimic the 

properties of cash as far as possible. In [Chau82], [Chau83] and [Chau92] the author 

demonstrates that, by using blind signatures*, such systems can be implemented.

■ User-Controlled Traceability

In such systems, every payment generates its own receipt together with the payment in 

encrypted form. Only the user making the payment owns the key to the encrypted receipt 

(and can selectively make that known). Commercially implemented systems which provide 

user-controlled traceability include DigiCash’s ecash system. It could be argued that these 

systems from the payer’s perspective are the most powerful. This is because in terms of 

privacy the payer decides on who can access his identity.

4.3.5 Acceptability and Transferability
This is the property of a payment system to be accepted universally, that is, its acceptance is not 

limited to one bank or organisation issuing the system [MahoOl]. The acceptability property is 

easy to add to any system. Upon receiving a payment of some form that was issued by another 

bank, the bank processing the payment clears it with the issuing bank. Acceptability is therefore 

achieved at the expense of higher communication overhead and therefore higher transaction 

cost. It is more difficult to achieve acceptability in pre-paid services.

Transferability is concerned with the ability of users of the system to transfer funds to each 

other without the need to contact the bank for clearance of the transaction. Transferability is 

difficult to implement without compromising the system’s security [Furc96].

4.3.6 Implementation Issues
The final characteristic of an EPS is the trade-off between providing a software-only solution 

for its implementation versus tamperproof hardware. Systems use a software-only solution 

when they can be implemented in such a way that all data and communication on the user side 

is accessible by the user. In such a system, the user must not be able to obtain any benefits from

* Blind signatures are a variation of digital signatures, where the sender multiplies the digital signature by 

a random number [Chau92].
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tampering with data or communication. Systems employing tamperproof hardware use 

additional hardware that is assumed to be designed in such a way that it protects the information 

it contains from the user o f the device. For example, not even the holder o f a smart card can 

access or modify directly the information stored on the smart card. Generally, according to 

[Furc96], a software-only solution that does not require additional hardware is considered 

superior to a solution that requires additional specific hardware to be employed.

4.4 T he IEPS IN-BASED B il l in g  Sy st e m

This section discusses how an existing IN infrastructure can enable support for online secure 

transactions. It focuses on the design and operation o f the Intelligent Electronic Payment 

System (IEPS). It also identifies inter-operability issues with existing IN CS-I infrastructure.

4.4.1 Overview of the IEPS Model
Figure 4.1 depicts the parties involved in the IEPS. These are the Customer (user), the Internet 

Shop (IS), and the Network Operator.

In figure 4.1, the Service Provider is a public or private company that develops and provides IN 
services commercially over the common IN-structured network and underlying basic (bearer) 
services. A Network Operator who utilises an IN CS-1/2 compliant infrastructure can become a 
service provider o f the IEPS. The software required for this is defined as the Network 
Operator’s Agent Software, NO Agent.

S e r v i c e
P r o v id e r

IN S e r v ic e

IS Agent User Agent

IN P la t f o r m  
( S S P  +  S C P )

B e a r e r  N e tw o r k

U ser

O p e r a t o r

NO Agent

Figure 4.1: Parties involved in IEPS fram ework

The Service Subscriber is an organisation that obtains an IN service from a service provider on a 

contractual basis and has to pay the charges to that service provider. In the context o f this
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protocol, the service subscriber is the Internet Shop (IS). The software that is running on the 

IS’s equipment is defined as the IS Agent.

Similarly, the person who has access to and makes use o f a service, i.e. represents the called or 

calling party depending on the type of IN service, will not necessarily be the service subscriber. 

This person must belong to the subscribed users o f the service provider. The software that is 

running on the user’s machine is defined as the UA.

As previously discussed, the proposed IEPS protocol makes use o f the fact that large sections o f 

the Internet user community rely on home access to the Internet using modems. As a result, 

access to Internet Service Providers (ISPs) for most homes involves the use o f dial-up services 

via connections through the PSTN. ISPs for the most part rely on leased line services that are 

part o f a core public telecommunications infrastructure.

The proposed system provides the subscriber with a secure link through which transactions can 

be made. The Network Operator can be viewed as both a credit-card authority and a telecom 

operator. This fits nicely with the expectation o f users for a “one-stop shopping” solution. The 

following section analyses the network elements o f the IEPS.

4.4.2 Elements of the IEPS
This section provides a brief overview o f the proposed IEPS. Figure 4.2 depicts physical 

interconnections between the parties involved in the IEPS.

SDP

Signalling

B earer Network
Internet
Shop

m
& 5 & ,,

ISPUser

SSP
Internet

Modem/CCAF

Figure 4.2: IEPS network elements

There are three distinct classes o f connection. Firstly, there is the bearer connection between the 

User and the Intelligent Peripheral (IP) through the local exchange and the Service Switching 

Point (SSP). Secondly, there are the signalling connections between the various functional 

entities o f the IN CS-1/2 infrastructure. An important point here is that the interconnection 

between the Gateway (G) and the Service Control Point (SCP) is also treated as a standardised
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signalling connection. Finally, there are two connections which are based on IP: one is from 

the ISP to the Internet and the other is from the Internet Shop (IS) to the Internet. To clarify a 

point, the IS, in most cases, will have to go through an ISP but this is not depicted, since it does 

not interfere with the operation of the protocol.

4.5 The IEPS Proto co l

This section discusses the protocol for the IEPS. Before discussing the technical details of the 

protocol, a description of the operation of the protocol is given, in a concise manner, avoiding 

many of the implementation details.

The protocol is divided into three phases. Firstly, the user connects to the ISP; then the user 

exchanges IP packets with the Internet Shop and the Gateway; finally, the Gateway completes 

the transaction using the SCP.

The User connects to the Internet using a PC and, in the large majority of cases, a modem, by 

connecting to an ISP. To the IN model, the modem represents a Call Control Agent Function 

(CCAF). The Switching Exchange, where the SSP usually resides, is a switching centre of the 

Network Operator. It routes the call of the Internet Connection from the customer (user) to the 

ISP. The IP is the physical entity responsible for the implementation of the SRF and is 

controlled by the SCP. The SCP is responsible for payment-related processing. It includes 

database access, information validation and verification as well as any transaction-processing 

related procedures. Attached to the SCP is an SDP, which is a database containing information 

about customers who are registered as service users. Information stored includes access 

passwords, credit limits and customer preferences. This information is made available to the 

SCP for payment-related processing. Finally, the Gateway provides the connectivity as well as 

the translation functions for the inter-operability between the IP and IN worlds. The Gateway is 

discussed in detail in section 4.9.

The following sections provide a detailed description of the operation of the protocol.
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4.5.1 Phase 1: User Connects to ISP
Figure 4.3 depicts the initial phase o f the protocol, which takes place while the user is 

connecting to the ISP.

SDP

B
User

S S P
ISP InternetCCAF

Modem

Internet Shop (IS)

Figure 4.3: Registration phase o f  IEPS

This phase o f the protocol is initiated when the user requests a dial-up connection from the PC 

to the ISP (stage 1). One convenient feature o f the protocol arises from the access numbers the 

vast majority o f ISPs assign to their Points o f Presence (PoP). Usually, they provide local-call 

numbers (or increasingly freephone), which will trigger an IN transaction to interpret the 

number (stage 2). At this point, the service logic for the protocol will be associated with the 

standard number translation logic within the SCP. As a result, the SCF will also request from 

the SRF/IP (stage 3) to ask the user to enter a password or PIN associated with the physical 

connection (telephone line) the user is connecting from (stage 4). The SRF will collect the 

user’s PIN and return it to the SCF for further processing (stage 5).

A point that needs to be addressed is the security o f the PIN. Specifically, the PIN is not 

encrypted; however it is not possible for an intruder to pick up the information transmitted 

either from the SCF to the Specialised Resource Function (SRF) or from the SRF to the SCF, 

unless the line is physically tapped. Even if an intruder does collect a user’s PIN the only way it 

can be used is if the intruder connects to the SCP from the telephone number associated with 

that PIN. It would be irrational for someone to physically tap a telephone line to collect a PIN 

and then break into the house in order to use a PC for e-commerce, and even more illogical to 

do so for micro-payments!

Following stage 5, the SCF must now match the PIN received with the PIN stored in the Service 

Data Point (SDP) and the telephone number o f that user. On a successful match, the SCF
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generates a ConnectionNumber and passes it to the SRF using the A u thorisationC ode  

information flow. If the match fails, the following options are available:

■ The user is asked by the SRF to re-enter the PIN, or

■ The user is not issued with a unique Connect ionNumber, which is required to make any 

purchases (further discussed later), or

■ The SCF asks the SSF to terminate the connection.

These options can easily be re-configured in the SCF. An important parameter to the protocol is 

the Connect ionNumber. This is a unique number generated by the SCF, which ties the user’s 

PIN and user details with the active connection. It is required by the protocol in the final phase 

(billing), where the information is cross-checked for validity. To avoid the likelihood o f the 

same Connect ionNumber being assigned to two distinct users, the connection number is made 

a function o f three parameters as follows:

ConnectionNumber = f  (userPIN, telephoneNumber, randomNumber)

At this point, the user has connected to the ISP and, most importantly, the UA holds a valid 

ConnectionNumber. The next section discusses the exchange o f IP packets.

4.5.2 Phase 2: User Exchanges IP Packets
Figure 4.4 shows the packets that are exchanged after a user has visited a web page and selected 

to make a purchase.

Proceed to bill?

reply□
User

ISP  CCAF

Modem --------
In ternet S hop  (IS)

i4!4:
TNu_.TN^) I i i i :Enc(T(TN|g, Conn.Number), IP,Enc(T(

PKey,

Enc(T,

Receipt Information

Figure 4.4: The IP packets o f  the IEPS

The IS sends a request to the user for his public key. The User Agent (UA) replies by sending 

the user’s public key.
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In stage 8, the IS Agent sends the following packet to the User Agent.

Enc (T co st-is , T N is) , PKEYis

The packet contains the following information:

Encrypted 
using the 

User’s public 
key obtained 
from stage 5.

Name Tcost-is
Description Transaction cost as calculated by the IS Agent.

Name TNis
Description Transaction number generated by the IS Agent.

No encryption Name PKEYis
Description The public key of the IS.

Table 4.1: Packet structure for message 8

The User Agent must accept the packet. This can be achieved in the following ways:

■ The UA can wait while it is polling the incoming data for a special message, after which it 

saves the incoming data for decryption, or

■ The UA can use Java Servlets [JAVA] to accept the incoming packet and write it to disk.

Whichever way is chosen, the data to be sent must be encrypted as it is sent over an insecure 

network such as the Internet. The encryption that is chosen is public key encryption. 

Authentication is achieved using digital signatures.

The IS Agent creates a record in a database, with the following record structure:

Field Name Type
TransNumber Numeric

TransCost Numeric
TransDate Date

Table 4.2: Record structure fo r  IS agent 

In stage 9, the UA sends to the IS Agent the packet:

E n c  (Tcost-Uaer, TNuser)

Encrypted 
using IS’s 
public key 

otitained from 
stage 6

Name Tcost-User
Description The Transaction cost reported by the IS Agent at 

stage 6.

Name TNuser
Description Transaction number generated by the UA

Table 4.3: Packet structure fo r message 9
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The UA uses the IS’s public key to encrypt the TNuser and the TNcost as initially reported by 

the IS Agent. It then uses the IPis, received at stage 5, to send the information to the IS Agent.

The IS Agent accepts the packet and sends it to the Gateway, so that the necessary validation 

and verification can be performed.

In stage 10, the User Agent sends to the Gateway the following packet:

Enc (T cost-is , TNis, TNuser, Conn. Number) , I  P is

Encrypted 
using the 
Network 

Operator’s 
Public Key

Name Tcost-is
Description Transaction Cost calculated by the IS Agent.

Name TNis

Description Transaction Number generated by the IS Agent.

Name TNugei-

Description Transaction Number generated by the UA.

Name Conn.Number
Description The unique connection number assigned to the User 

by the NO Agent.

Not Encrypted Name IPiS
Description The IP of the IS.

Table 4.4: Packet structure for message 10

The User Agent also sends the IPis, in an unencrypted form as it is required by the gateway to 

contact the IS Agent.

In stage 11, the IS agent sends to the gateway the following packet:

E n c  (Tcost-User, TNuser, T N is)

Name Tcost-User

Encrypted 
using the 
Network 

Operator’s 
Public Key

Description Transaction Cost returned to the IS by the User 
agent at stage 7.

Name TNuser
Description Transaction Number returned by the IS Agent at 

stage 7.

Name TNis
Description Transaction Number generated by the IS Agent

Table 4.5: Packet structure fo r  message 11

In stage 12, the gateway sends a final confirmation to the IS Agent in the form of an “ok to bill 

message” which contains the T r a n s a c t  ionN um ber and C o st.
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In stage 13, the IS Agent processes the transaction number and the cost. If there is a pending 

transaction in its database that matches that transaction number and cost, it returns a true 

response, otherwise false.

4.5.3 Phase 3: Charging using the IN Gateway
This packet (stage 14) is sent independently of the Charge request to the SCP from the gateway. 

The IS Agent will confirm to the User the transaction number, receipt number (generated by the 

IS) and method of dispatch or delivery. This part of the protocol does not need to be defined, as 

different Internet Shops may choose different ways to send the Receipt Information, depending 

on the type of service/product that was purchased. However, the way in which the gateway can 

be implemented in discussed in section 4.8.

4.6 Se c u r it y  w it h in  t h e  IEPS Sy s t e m

The implications of security in a payment platform are of paramount importance. The IEPS 

Protocol is in an advantageous position because it utilises an existing billing system that, 

through time, has come to be accepted by end users as relatively secure. The basis for this is that 

few people individually check telephone bills in case of over-charging. However, since it is 

utilising an insecure network for Phase 2 of the protocol, security is still an essential ingredient 

in enabling electronic transactions.

Public-key technology is widely accepted as a qualified technology to meet the necessary 

security requirements for electronic business and it has become the preferred means for 

providing these capabilities [DOC94]. The benefits of public-key cryptography in relation to 

secure transactions are that it uses encryption to keep the information confidential and, through 

digital signatures, it provides for authentication, data integrity, and non-repudiation [Kali93a] 

[Hale98][Baum94]. These techniques are combined to effectively “sign and seal” any electronic 

transaction and the signing can be done in such a way that the user who signed the information 

cannot later successfully deny signing that information.

The elements of a public-key infrastructure (PKl) are presented here. Further the section 

identifies how these relate to the IEPS System. The aim is not to give a detailed analysis of the 

workings of public key encryption, but rather to identify how it relates to the IEPS System. A 

detailed explanation of PKl can be found in [Aust00][Kali93a][Kali93b][RSA98].

4.6.1 Elements o f a Public Key Infrastructure
The public-key infrastructure (PKl) is used to manage keys and certificates on behalf of users 

and applications. An important requirement of the PKl is to do this in a way that is transparent
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to end users. If it is not easy to use, people will not take advantage of its features. In addition to 

user transparency, the following are some of the key elements for a PKl:

■ Certification Authority

The certification authority (CA) is the trust centre of a PKl as it manages public key 

certificates for their whole life cycle. The CA is responsible for issuing certificates by 

binding the identity of the user to a public key with a digital signature and for scheduling 

the expiry date for these certificates.

■ Registration Authority

The Registration Authority (RA) provides the interface between the user and the CA. It 

captures and authenticates the identity of the users and submits the certificate request to the 

CA. The quality of this authentication process determines the level of trust that can be 

placed in the certificates.

■ Certificate Distribution System

Certificates can be distributed in a number of ways depending on the structure of the PKl 

environment, for example, by the users themselves, or through a directory service.

Other features include support for key backup and recovery. More essential is the support for 

non-repudiation of digital signatures. The automatic update of key pairs and certificates and the 

management of key histories are also desirable.

4.6.2 PK l and the IEPS System
As mentioned above, public key encryption requires two keys. The two keys are mathematically 

related so that data encrypted with one key can only be decrypted using the other.

Unlike secret key encryption, which uses a single key shared by two (or more) parties, public 

key encryption uses a pair of keys for each party. One of the two keys is public and the other is 

private. The public key can be made known to other parties; the private key must be kept 

confidential and must be known only to its owner. The parties involved in the IEPS will have 

their own public keys. These are denoted as follows:

■ Network operator’s public key denoted as Pkeywo

■ Internet shop’s public key denoted as Pkeyis

■ Consumer’s public key denoted as PKeyco.

4.7 E v a l u a t io n  o f  t h e  IEPS P r o t o c o l  a s  a n  EPS
Section 4.3 presented key desirable characteristics of electronic payment systems. This section 

evaluates the IEPS against those characteristics.
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4.7.1 Software-only versus Tam perproof Hardware
The IEPS provides a software-only solution. This is true except for the IN/lntemet Gateway that 

is an essential component to the IEPS. However, once the gateway is implemented it can be 

used to provide a wide number of integrated services.

4.7.2 System Security and Data Transmission
In terms of system security, the IEPS is classified as one that utilises an isolated infrastructure 

for the registration phase, as well as an unsecured transmission network for the second phase. 

Clearly, the registration phase of the protocol is in isolation from the Internet. However, unlike 

most systems utilising a network that is in isolation, it does not require the setting up of a 

complete network infrastructure (except from the SCP-Gateway link). Therefore, it makes use 

of existing links. Of course, these links must be maintained in order to protect them from 

intruders. For the second phase, encryption and security are clearly of paramount importance.

For the first phase, the system achieves authentication by means of a PIN, which is bound to the 

specific physical link of the isolated network. In order for the system to enhance the 

identification of Internet Shops in the second phase, the network operator could provide users 

with a customised browser that limits access to Internet Shops that are in agreement with the 

operator. This would provide the user with a more secure feel for the system than if a standard 

“open” browser is used. In any case, PKl is an essential component for ensuring the security of 

the second phase.

4.7.3 Transaction Cost
The system is classified as having a low transaction cost. This is because the online clearance is 

obtained by the Gateway after it requests an authorisation from the SCP. The SCP makes a 

database enquiry in the SDP to check, for example, the credit limit of the customer before it 

authorises the transaction. The protocol could also be enhanced to operate as a form of prepaid 

service, where the subscriber buys credit from the operator in advance and therefore further 

limits the need for online clearance.

4.7.4 Traceability of Payments
The protocol can be adapted to provide conditional traceability or user-controlled traceability. 

Obviously from the user’s perspective to the Network Operator, the first phase of the protocol is 

classified as being unconditionally traceable. This is because the PIN number is associated with 

the physical connection. However, from the Internet Shop’s perspective the system could be 

classified as offering a user-controlled traceability. If the user is buying a service, then the 

system is user-controlled. However, if the user is buying goods then the Internet Shop needs to
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know the delivery address of the user. Currently the protocol offers unconditional traceability in 

this respect (i.e. payer and payee are always identified). This can be changed and instead of the 

user providing the information to the Internet Shop, the information could be sent to the 

gateway and submitted to the Network Operator, who in turn arranges for the delivery of the 

goods.

4.7.5 Acceptability and Transferability
The acceptability of the system is limited only to Internet Shops that have signed an agreement 

with the Network Operator. However, different Network Operators can reach agreements 

amongst themselves therefore allowing a wider choice to the subscriber. Of course, this would 

require a higher communication overhead between the involved network operators and thus 

slightly increase the transaction cost of the system. At present, the system does not offer 

transferability of funds and there should be no need to do so.*

4.7.6 Comparison with Currently Available Systems
This system, unlike most currently available systems, does not require the user to open an 

account with the organisation providing the service. It plainly uses the account that is already in 

place (i.e. the phone bill). Unlike other systems, it does require the providing organisation (the 

network operator) to form alliances and reach an agreement with the shops. This could be a 

problem but, depending on the size of the organisation, it can be solved relatively easily. 

Because the organisation providing this system would almost certainly be the network operator, 

it should not be a major problem to reach agreements with Internet Shops. The bargaining 

power of the network operator would easily convince a smaller company to try their system.

A major advantage of this system in comparison with existing ones is that it does not use credit 

cards and hence completely avoids the existing public controversy about whether submitting 

credit card information over the Internet is safe or not. It could easily be marketed as a system 

that does not require credit cards because those systems are not secure.

4.8 IN CS-1 In f o r m a t io n  F l o w s  f o r  IEPS 
R e g is t r a t io n

This section describes the capabilities of IN CS-I (discussed in section 2.4.3.1) that can be used, 

unchanged, for the implementation of the IEPS. As previously identified, IN CS-1 capabilities 

are utilised in two phases: the registration phase and the billing phase. The IN CS-1 flows that

Transferability is a desirable characteristic for electronic payment systems that are targeted at the 

business-to-business sector, rather than the business-to-consumer.
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are needed for the registration phase are discussed in this section. The second phase requires a 

gateway for translation between IN and IP and this is discussed in section 4.9.

Figure 4.5 presents the information flows (IPs, refer to section 2.4.3.1) that are utilised by the 

protocol. It is important to make the distinction here that the IPs are physical connections. For 

example, at the point where the PIN number is collected from the user, the SSP is connected to 

the SRF (as indicated by the dashed grey line).

IN CS-1 
SRF

Initla IDP
IN CS-1 

SCF
IN CS-1 

SDF
IN CS-1 

SSF

Figure 4.5: IN  CS-I IFs fo r  the registration phase o f  the IEPS protocol

4.8.1 The SCF-SSF Interface
In IN CS-1 the SCF-SSF relationship is established either as a result o f  the SSF sending a 

request for instruction to the SCF, or at the request o f the SCF for initiation o f a call for some 

non-call related reason [Q.1214]. As previously discussed in section 2.4.1, information flows 

(IF) are used for the communication between IN functional entities.

One such IF is the InitiaIDP IF. This IF is generated by the SSF, when a trigger is detected at 

any DP in the BCSM, to request instructions from the SCF. One o f the information elements o f 

this IF is Dialled digits, which contains the actual digits received by the SSF from the calling 

party. It is used by the SCF to perform the number translation. When the number is translated, 

the call is re-directed to the ISP.

One o f the IFs between the SCF and the SSF is the Analyse Information IF. This IF requests the 

SSF to perform the originating basic call-processing actions to analyse destination information, 

which is either collected from a calling party or provided by the SCF (e.g. for number 

translation). This includes actions to validate the destination information according to a 

specified dialling plan, and if valid, to determine call setup information (e.g. called party 

address, nature of address, and route index to a list o f one or more outgoing trunk groups).
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Although the Connect to Resource IF is depicted in figure 4.5 between the SCF and SSF, it is 

discussed in the next section because it is essentially a request to instruct the SSF to connect the 

user to the SRF.

4.8.2 The SCF-SR F Interface
This interface provides capabilities to authenticate the user using a Personal Identification 

Number (PIN).

In order for the SRF to be accessible to the user, the SCF must request the SSF to perform this 

connection. This is done by using the Connect to Resource IF, at the SCF-SSF interface. The 

information elements of the Connect to Resource IF include the Call ID, which identifies a 

specific instance of a relationship between an SCF and SSF.

After the SSF is connected to the SRF, the user is prompted with a welcome message. This is 

done using the Play Announcement IF. One of the information elements of the Play 

Announcement IF contains the Inbandinfo structure, which allows the SCF to specify an 

elementary message or text, the number of repetitions as well as the duration and the interval of 

the announcement. Play announcement can be used to welcome the user with an introductory 

message.

Following that, the Prompt and Collect user information IF is used to collect the information 

from the user. The information collected from the user is stored in the Collected Info information 

element that can contain either Digits or IA5 information (for collection of text from the user). 

The structure of Digits enables the definition of the minimum and maximum number of digits to 

be collected, timeouts and the way errors should be treated. In the case where an error (e.g. 

timeout) does occur, it can be handled in a number of ways including playing to the user a 

“help” message, repeating the prompting message, or sending the information collected to the 

SCF for further processing. An additional element of the Digits record is Voicelnfo, which 

indicates that digits may be collected using voice recognition.

Once the data is collected from the user, the SCF needs to match the entered PIN with the PIN 

of the user stored in the SDF. For this the SCF-SDF Interface is used.

4.8.3 The SCF-SDF Interface
The Query IF is used by the SCF to collect information from the SDF. The Query IF allows the 

collection of data from the SDF and is widely used in applications such as number translation 

and freephone numbers. Its information elements include DatabaselD, RequestedlnfoType and
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Information key. In the IEPS, the Information Key allows data to be retrieved from the database 

based on the calling line ID. More specifically, any data that is contained within the InitiaIDP 

can be used as an Information key. The response to the Query IF is the Query Result IF The 

returned information element. Result, may contain either data or simply a true or false value.

4.8.4 Resuming Processing at the SSF
An important point is that throughout the time that the processes of translating the dialled 

number, connecting the user with the SRF, then collecting the user’s PIN and matching the 

information entered with the information in the SDP are being carried out, the call is on hold at 

the SSF. Once these procedures are completed, the SSF is connected to the terminating 

exchange and the user has access to an IP connection -  provided by the ISP.

Having discussed the IFs that are available for implementing the registration phase of the IEPS 

protocol, the next section moves on to introduce two potential architectures for the 

implementation of the gateway function, which allows the inter-connectivity between IN 

functional entities (FE) and the IP end-points of the IEPS.

4.9 T h e  G a t e w a y  b e t w e e n  IN a n d  IP
An important functional entity of the protocol is the gateway. It provides seamless inter­

operability across two fundamentally different networks. On the one side, the gateway must be 

treated as a standardised IN functional entity and, on the other, the gateway must be able to 

process IP packets according to the design of the protocol. Therefore, the gateway is essential in 

providing the interconnection between a circuit and a packet-switched network. At the same 

time there are some fundamental non-functional requirements imposed on the gateway. 

Essentially these are the capabilities of the underlying IN infrastructure; in this case IN CS-1.

The gateway device must be in a position to communicate interactively with the proposed 

application. This communication should minimise any potential changes that may be needed on 

the IN-side because a new system, or protocol, is being introduced into an already extremely 

well defined and standardised environment. It would not be feasible to expect already 

standardised systems to adapt to newly-developed systems. To achieve this, two potential 

functional entities that could be used to allow this interaction are examined: the Intelligent 

Peripheral and the SCF. To these, the gateway would appear as another standardised element of 

the existing IN infrastructure.

This section describes two possible options for implementing the gateway between the IN and 

IP worlds. The section focuses on the specific way in which it can be implemented for the IEPS
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protocol. The two proposed implementation options are to treat the gateway as an Intelligent 

Peripheral (SRF) or as an SSF. The difference between these cases is in the communication 

primitives which are used between the elements, which in turn extend or limit its capabilities.

4.9.1 The Gateway as an SRF
Under this approach, the SCP views the gateway as an Intelligent Peripheral. As a result, the 

gateway must adhere to the standard composition o f an IN CS-1 SRF, whose main components 

include the Functional Entity Access Manager (FEAM) and the SRF Resource Manager (RM) 

[Q.1214].

SCF

À

SRF-SCF AS Es 

IN CS-1 SRF

FEAM RM

Translation Function

IP Node Internet

Figure 4.6: The gateway as an SRF

Figure 4.6 illustrates the SRF approach. The top part consists o f a standardised IN CS-1 SRF. 

The translation function is responsible for converting IP packets to SRF-SCF IFs. While this 

approach can provide the necessary functionality, the second, where the gateway is treated as an 

SSF, is more powerful as it allows the triggering o f SCP-based IN services.

4.9.2 The G ateway as an SSF
SCF

SSF -SC F  ASEs

IN CS-1 SS F

FIM IN-SM

Translation Function

IP Node Internet

Figure 4.7: The gateway as an SSF

Figure 4.7 depicts the second approach, where the gateway is treated as an SSF from the point 

o f view of the SCP whilst the IP side could be an application or even a router function. If the 

router QoS mechanism can be described as a state machine then this can potentially be used for 

triggering services in the same way that the BCSM can in the call control function. The CCF
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then effectively becomes an IP Control Function (IPCF). The SSF/Gateway now allows the 

triggering of SCP-based IN services and is much more powerful than the intelligent peripheral 

case where the IN standards would not allow the intelligent peripheral to be the instigator of 

services.

The question remains as to whether it is a good thing to apply the IN concept to routers within 

the network. It could be argued that one of the reasons why IP networks are so successful is 

because there is little operator control of the core of the IP network.

The IP router case draws out the fundamental difference between the telecommunications 

paradigm and the Internet. A connectionless Internet Service does not have a basic call state 

model because there is no network layer connection. This makes it difficult to work with the 

equivalent of the detection point mechanism of the SSF/CCF. On the other hand, the concept of 

a basic call routing function is not seen to be impossible if one considers the possibility of 

connection-oriented IP mechanisms such as cell tagging.

4.10 C h a p t e r  S u m m a r y  a n d  R e s e a r c h  C o n t r ib u t io n s

This chapter presented a protocol that was developed to demonstrate one of the ways in which 

existing IN CS-1/2 infrastructure can be utilised to support new and innovative IP-based 

services. The proposal has the following innovative features:

■ It is advantageous over existing electronic payment systems as it does not require the use of 

credit cards.

■ Existing IN capabilities are sufficient to implement the system.

■ Two distinct options for implementing the gateway were put forward.

The proposed system is based on the principle that the large majority of consumers are reluctant 

to engage in electronic commerce activities due to lack of trust [OECD97a]. This lack of trust is 

a result of the insecurities of the transmission protocols used in the Internet, as well as the large 

publicity that Internet break-ins receive versus the millions of transactions that are completed 

successfully.

The IEPS is innovative and secure. It allows end users to engage in electronic commerce 

without the controversy surrounding credit cards. It utilises existing billing platforms that, 

through time, have been accepted by users as secure and have gained their trust. The system 

design utilises models from the IN world to create a robust system. This is discussed in the next 

chapter, which deals with the implementation of the IEPS.
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The work involved designing the protocol for both the IP domain and the IN domain. For this, 

the work put forward two possible designs in which a gateway function can be implemented in 

order to allow inter-operability across two dissimilar network architectures. It was also noted 

that the existing IN capability sets provide sufficient functionality to be utilised in new service 

implementations.

The IEPS utilises existing architectures, protocols and billing systems in a way that allows 

network operators to further enhance their position by engaging in electronic commerce 

activities as an authentication authority. This is clearly a desirable situation for the operator 

because of the revenue streams it offers. It is also desirable for the end user, because the 

payment is carried out without the need for credit cards, but rather on an existing billing system 

that is trusted by the majority of end users.
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Ch a pte r  5

Im p l e m e n t a t io n  &  S im u l a t io n  

OF THE lE P S  S y s t e m

The utilisation of existing IN infrastructure as a means of authentication and billing 
was described in the previous chapter, through the description of the lEPS. This 

chapter describes the implementation of the lEPS.

5.1 In t r o d u c t io n

This chapter presents the design of the protocol and the implementation and simulation of the 

system. The implementation presented in this chapter covers Phase 2 of the protocol (section 

4.5.2) and the interface between the gateway and the SCP (phase 3, section 4.5.3).

The reasons for implementing the system were threefold: firstly to identify potential limitations 

of the protocol; secondly, to examine the interactions of the functional entities in order to 

appreciate where the complexities of such a system lie; and, finally, to gain a better 

understanding of Java in a concurrent client-server environment

Section 5.2 describes the implementation of the protocol and provides a walk-through by 

describing the packets that are exchanged by the parties involved. Section 5.3 presents the Java 

classes and the state transition diagrams that implement the system and section 5.4 provides 

output from the simulation of the system. Finally, section 5.5 provides a chapter summary and 

outlines research contributions.

5.2 Im p l e m e n t a t io n  o f  t h e  IE P S  Pr o t o c o l

The IEPS consists of three parties: the User, the Internet Shop and the Gateway. For each of the 

three, a separate server is used. These are, respectively, the uServer, the isServer and the 

gServer. Additionally, in order for the protocol to be fully simulated, an scpServer (simulating 

the SCP and the G-SCF interface) and a serv i e t  Server (simulating servlets) are also 

implemented.
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The system is distributed as follows: The uServer runs on the user’s machine as part of the 

software that may be provided by the Network Operator. The gServer runs on the gateway and 

the isServer may either run on the machine that hosts the Internet Shop’s web page or on a 

dedicated system.

Figure 5.1 shows the architecture of the implementation. It consists of five servers and an 

applet. One of the servers is used to simulate the servlet connection. The name in italics below 

each server identifies the workstation the server is running on. The serv letsim u lator  and 

isServer are running on the same workstation.

A point to note here are the multiple instances of uServer, which represent multiple users, and 

the multiple instances of isServer, representing multiple Internet shops. The implementation 

can cope with multiple users and Internet shops.

ISApplet

I 1 1 -AUTHORISE, 
10 - AUTHORISE_TRANS_REQUESl{ TRANS_

I RESPONSE 1 - TRANSACTION_START_ REQUEST

8 - PROCEED_TO_BILL

9 - BILL (FLAG)

metropolis
7 - IS_TO_GATEWAY- USER_TO_GATEWAY

2 - PUBLIC_KEY_REQUEST

3 - PUBLIC_KEY_RESPONSE

4 - TRANSACTION_DETAILS_TO_USER

5 - TRANSACTION_DETAILS_TO_IS

IsServer
(metropolis)

Figure 5.1: Deployment o f IEPS

As mentioned earlier, the initiating action for the protocol is the user submitting an order on a 

web page. This is the trigger for the elements to begin exchanging IP packets. The isServer  

needs to be made aware of the items the user has selected. This requires the applet to 

communicate the information to the isS erver, which can be achieved using a Java Servlet 

[Voss97a][Voss97b][Cowa01]. Servlets require the presence of a web server that is capable of 

providing the required underlying functionality. The use of such a platform for the simulation 

would not have provided additional results, as the focus was on the core part of the protocol
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rather than the edges (i.e. web-browser to internet shop). As a result, a server was used to 

achieve this communication.

In what follows, the structure of the packets that make up the IEPS is presented.

5.2.0 WRITE ORDER DETAILS*
When the user clicks the “proceed” button on the applet, the applet sends a 

write_order_details packet to the servletsimulator. In the case where a servlet is used 

with an application server, such as Tomcat Jakarta, an http request would initiate the servlet on 

the Internet shop. The servletsimulator receives the packet, extracts the individual tokens 

from the string and writes the information to disk. The packet that is received by the 

servletsimulator has the following structure.

S o u rce lP jav a .n e t.In e tA d d re s s 4 U ser's  IP
O rd erT o ta l F loat 4 O rd e r total repo rted  by ap p le t
Ite m s O rd ered Strlngfl V a ria b le List with o rd ered  item s and quantity

Table 5.0: WRITE_ORDER_DETAILS packet structure

BufferedReader in = newBufferedReader(newInputStreamReader(data.getlnputstream())) 
theStr = in.readLine0 ;
StringTokenizer st = new StringTokenizer(theStr,

System.out.printlnC'Servlet received:"); 
while (st.hasMoreTokens0) { 
theToken = st.nextToken();

if (count == 1) {
// this is the IP of the user.
theFile = new File("IS-SERVLET-" + theToken + ".dat"); 
os = new FileOutputStream(theFile); 
out = new PrintWriter(os);

The code extract above shows the process of extracting the individual tokens by using the 

StringTokenizer class. The conditional if-statement checks for the first token, which contains 

the IP, and creates a file called "is-SERVLET-a.b.c.d.dat", where a.b.c.d represents the IP 

address of the user. The user’s IP address represents a unique way of identifying the user and it 

is therefore treated as a primary key^ throughout the protocol.

* N ote that the section and table numbers are intentionally numbered from 0, as they correspond to the 

packets that are exchanged, as depicted in figure 5.1.

 ̂ For simulation purposes this is satisfactory; however a real implementation needs to use a user id, 

possibly with a session identifier. This is because the user’s IP address may not be static and also IP 

addresses are easy to spoof.
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5.2.1 TRANSACTION_START_REQUEST (TSReq)
At the same time, the applet sends a TSReq packet to the isServer. The packet structure is 

shown in table 5.1.

MessagelD Int 4 Protocol M essage identifier
SourceAddress Java.net.InetAddress 4 User’s  IP
DestAddress Java.net.InetAddress 4 Is.ip file

Table 5.1: TRANS ACTION_START_REQUEST packet structure

The SourceAddress is obtained by the applet after it makes an inetAddress .getLocalHost ( ) 

call. The DestAddress is read from a text file. This is the “is.ip” file. Two similar files exist: 

the “gateway.ip” and the “scp.ip” contain the IP addresses of the gServer and the scpServer 

respectively.*

5.2.2 PUBLIC_KEY_REQUEST (PKReq)
The table below shows the packet structure.

M essagelD Int 4 Protocol M essage identifier
SourceAddress Java.net.InetAddress 4 Internet Shop’s IP
DestAddress Java.net.InetAddress 4 TSReg Source Address

Table 5.2: PUBLICKEY REQUEST packet structure

When the isServer receives the TSReq packet, it sends a PKReq to the IP of the party that 

initiated the TSReq. This is simply the SourceAddress of the TSReq packet.

5.2.3 PUBLIC_KEY_RESPONSE (PKRes)
Table 5.4 shows the packet structure.

MessagelD Int 4 Protocol M essage identifier
SourceAddress Java.net.InetAddress 4 User’s  IP
DestAddress Java.net.InetAddress 4 PKReq Source Address
Pkey Int 4 User’s  Public Key

Table 5.3: PUBLIC KEY RESPONSEpacket structure

At this point the uServer has received a PKReq to which it replies by sending its public key. The 

DestAddress of the packet will be the SourceAddress of the PKReq packet. Now the isServer  

knows the public key of the user. The next step is to submit to the user a packet that contains all 

the items the user has ordered, in encrypted form, using the user’s public key.

In a real implementation, this would be configured on a database to allow easy management.
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5.2.4 TRANSACTION_DETAILS_TO_USER (TDUser)
The packet structure is shown below.

M essagelD Int 4 Protocol M essage identifier
SourceAddress Java.net.InetAddress 4 Internet Shop’s  IP
DestAddress Java.net.InetAddress 4 PKRes Source Address
T rnsCost Float 4 Applet saved info
TrnsNumber Int 4 Assigned by IS

Table 5.4: TRANSACTION_DETAILS_TO USER packet structure

Once the isServer has received the PKRes, it has to send to the isServer of the corresponding 

user a TDUser packet. The isServer opens the "iS-SERVLET-a.b.c.d.dat" file with the IP of 

the user, which is the SourceAddress of the PKRes packet.

// Delete the Public Key Request datafile.
dbManagement.PKRequestDelete(inPacket.getSourceAddress{));

// first get the transaction information from the applet datafile. 
theCost = dbManagement.retrieveAppletInfo (inPacket.getSourceAddress())

// Send a TransactionDetaiIs packet.
outPacket.TDUser(java.net.InetAddress.getLocalHost().getHostAddress(), 

inPacket.getSourceAddress(), 
theCost,
dbManagement.getTransactionNumber(), 
isPublicKey);

// increment the transaction number
dbMngmnt.writeTransactionNumber(dbManagement.getTransactionNumber 0 + 1 ) ;

mySocket userSocket = new mySocket("USR", inPacket.getSourceAddress()); 
userSocket.sendPacket(outPacket.getPacket()); 
userSocket.killConnection();

The isServer reads the transaction number and the transaction cost reported to it by the applet, 

using the dbManagement. retrieveA pplet Info call. This is shown in the code extract above. 

Also shown above is that the isS erver sends its public key to the user so that the user can 

encrypt the next packet.

5.2.5 TRANSACTION_DETAILS_TO_IS (TDIs)
Once the user receives the TDUser packet from the IS, it forwards the information to the 

gServer. The packet structure is shown below.

M essagelD Int 4 Protocol M essage identifier
SourceAddress Java.net.InetAddress 4 User’s  IP
DestAddress Java.net.InetAddress 4 TDUser Source Address
TrnsCost Float 4 TDUser
TrnsNumber Int 4 TDUser

Table 5.5: TRANSACTION_DETAILS_TO_ISpacket structure
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At this point, the IS and User have exchanged information and each holds the information 

reported to them by the other party. They must now both send the information to the gateway, 

using the is_to_gateway and the user_to_gateway packets respectively.

5.2.6 USER_TO_GATEW AY (UtoG)

M essagelD Int 4 Protocol M essage identifier
SourceAddress Java.net.InetAddress 4 User’s  IP
DestAddress Java.net.InetAddress 4 Gateway.ip file
TrnsCost Float 4 TDUser m essage
TrnsNumber Int 4 TDUser m essage
ConnectionNumber Int 4 SCP (not simulated)

Table 5.6: USER_TO_GATEWAYpacket structure 

5.2.7 IS_TO_GATEW AY (IStoG)

M essagelD Int 4 Protocol M essage Identifier
SourceAddress Java.net.InetAddress 4 Internet Shop’s  IP
DestAddress Java.net.InetAddress 4 Gateway.ip file
T rnsCost Float 4 TDis m essage
TrnsNumber Int 4 TDis m essage

Table 5.7; IS_TO_GATEWAYpacket structure

In order for the gServer to send the ATReq message, both the UtoG and iStoG messages must 

have been received by the gateway and the information in them must match.

Different delays are introduced by the parties involved at various points in the protocol. For 

instance, there may be delays in the network, or delays by the shop in processing the order, or 

even by the user due to lost transmissions. As a result, these two messages can arrive at the 

gateway in any order (and may be amongst messages received from different Internet Shops).

The gServer must therefore have a mechanism for identifying matching pairs. Here, the 

primary key is chosen to be the transaction number. As a result, this imposes a requirement that 

each Internet Shop is allocated a special range of transaction numbers or has a uniquely 

identifiable flag within the transaction number.
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956874

false

next

true

Figure 5.2: Data as a linked list
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The local data could be implemented using a linked list, as indicated in figure 5.2. Starting from 

the top, the first field represents the transaction number. The next two fields are Boolean flags 

that indicate whether the IStoG and UtoG messages have been received. When the 

communications threads receive iStoG and UtoG requests, these are passed to the control 

process, which in turn creates a new entry in the data store and notifies the control process that a 

new packet has arrived.

G -S C P  Interface

Gateway

Monitoring Thread

Data

notification

Local Data  
Control 
P r o c e ss

C om m u nication s T hread s
IS_TO _G ATEW AYU SE R_TO _G ATEW AY

Figure 5.3: Monitoring fo r  matching pairs using shared local data

The monitoring thread (figure 5.3) scans the local data for matching packet pairs and when two 

packets are identified as referring to the same transaction, further processing of the transaction 

can take place.

The purpose of the simulation was to focus on the robustness and operational issues of the 

protocol rather than to implement a “real-world” system. If a linked-list approach was adopted, 

a monitoring thread such as the one depicted in figure 5.3 would be needed. What is more, 

additional functionality would have to be implemented and simulated to ensure that the 

monitoring thread and the notification mechanisms operated correctly. Furthermore, the 

additional threads and the presence of the control processes would impose a requirement for an 

internal communication mechanism for the notifications. As a result, the approach adopted for 

the implementation uses a temporary file on disk. The gServer creates the file whenever it 

receives either an iStoG or a UtoG message.

Because each type of incoming packet is handled by a different thread (of the gServer) the 

method that creates the file must be synchronised. This is done in order to avoid the case where 

both threads are trying to access the same file concurrently. The code extract below shows the 

operation of handling either an istoG or a UtoG message.
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switch (inPacket.getID0)
{
case 6:

// User to gateway transaction
rvalue = dbManagement.createGWtransaction(inPacket.getTNis(),

inPacket.getTCOSTis());
// Need to save the transaction number and the IP of the internet shop, 
// as it is needed later to match a transaction number to the IP of 
// the Internet shop to send the final Proceed to bill message. 
dbManagement.saveTNumber(inPacket.getTNis(),inPacket.getSourceAddress())

if (rvalue == 1) {
outPacket.AuthoriseTransactionRequest(inPacket.getConnectionNumber()

inPacket.getTCOSTis(), 
inPacket.getTNis0); 

mySocket scpSocket = new mySocket("SCP", settings.scpIP()); 
scpSocket.sendPacket(outPacket.getPacket0); 
scpSocket.killConnection();

}
b r e a k  ;

}

Another point which needs to be addressed is that the gateway must save the IP of the IS in 

order to subsequently send the proceed_to_bill message. This is achieved by making a 

dbmanagement. saveTNumber call. The first parameter is the transaction number and the second 

is the IP of the Internet Shop.

At this stage the gServer needs to get authorisation from the SCP. This is achieved by using the 

following three packets.

5.2.8 AUTHORISE TRANSACTION REQUEST (ATReq)
An ATReq message is sent by the gServer to the SCP. For simulation purposes, once the 

scpServer receives an ATReq message, it simply replies with the ATReply message.

M essagelD Int 4 Protocol M essage identifier
SourceAddress Java.net.InetAddress 4 The gateway’s  IP
DestAddress Java.net.InetAddress 4 scp.ip file
TrnsCost Float 4 IStoG or UtoG Packet
TrnsNumber Int 4 IStoG or UtoGPacket

Table 5,8: AUTHORISE_TRANSACTION REQUEST packet structure

5.2.9 A U T H O R ISE T R A N SA C T IO N R E PL Y  (ATReply)
The scpServer sends an ATReply to an incoming ATReq request.

MessagelD Int 4 M essage identifier
AuthoriseFlag Boolean 4 Boolean flag
TrnsNumber Int 4 The transaction number

Table 5.9: AUTHORISE_TRANSACTION REPLY packet structure
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5.2.10 PROCEED_TO_BILL (PTB)
The gServer has confirmation from the scpServer and at this stage performs a last double­

check with the isServer. The gServer knows the IP of the corresponding IS to send the PTB 

message by reading the file created previously and by calling the dbmanagement. saveTNumber 

method.

M essagelD Int 4 Protocol M essage identifier
SourceAddress Java.net.InetAddress 4 Gateway’s IP
DestAddress Java.net.InetAddress 4 SCP’s IP from scp.ip file
TrnsNumberlS Int 4 UtoG or IStoG m essage

Table 5.10: PROCEED_TO_BILL packet structure 

5.2.11 BILL
The isServer performs various checks, some of which are related to stock-levels, before 

sending a b i l l  message. The flag of the message is set accordingly.

M essagelD Int 4 Protocol M essage identifier
SourceAddress Java.net.InetAddress 4 The Internet Shop’s  IP
DestAddress Java.net.InetAddress 4 Gateway.ip file
TrnsNumber Int 4 PTB m essage
Flag Boolean 4 When set to true, indicates 

that the gateway can 
proceed to the charging 
phase.

Table 5.11: BILL packet structure 

5.2.12 CHARGE
The gServer receives the BILL message, checks the flag and sends the final CHARGE message 

to the scpServer.

M essagelD Int 4 M essage identifier.
ConnectionNumber Int 4 The connection number.
TrnsCost Float 4 The transaction cost
TrnsNumber Int 4 The transaction number

Table 5.12: CHARGE packet structure

Having discussed the various packets of the protocol, the next section focuses on presenting the 

Java classes and the state transition diagrams that make up the system. These were developed 

using the Unified Modelling Language (UML) [UML99].

5.3 T h e  IEPS C l a s se s

Having given a walkthrough of the protocol and an outline of the implementation decisions, the 

next sections identify three of the major base classes of the system. These were designed using 

UML, a modelling language that has a broad spectrum of usage. It can be used for business 

modelling, software modelling in all phases of development and for all types of systems, and
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general modelling of any construction that has both a static structure and a dynamic behaviour 

[UML99].

The initial aim for the development of UML was to bring together the various design 

methodologies, such as Booch [Booc99], OMT [Rumb91], and Yourdon [Cons79]. As the name 

suggests, UML incorporates ideas from these methods, thus “unifying” the disparate attempts 

that existed at the time. Some of the goals of UML include [UML99]:

■ To model systems (and not just software) using object-oriented concepts,
■ To establish an explicit coupling to conceptual and executable artefacts and
■ To address the issues of scale inherent in complex, mission-critical systems.

One of the advantages of UML is its acceptance. To establish UML, the developers and 

Rational Software Inc. [Rational] realised that the language had to be made available to 

everyone at no charge. Therefore, the language is non-proprietary and open to all. The UML 

specification can be found in [UML99].

5.3.1 The dbManagement Class

File 
(from io )

PrintWriter 
(from io)

FileOutputStream 
(from io )

{^PKReqFileNam e : String = " IS-PKreq-" 
{^PKReqFileExt : String = "-.dat" 
Ü^TransactionFilename ; String = "IS-TRNS-" 
Ü^TransactionFileExt : String = ".dat" 
(^AppletFilename : String = "IS-APPLET-" 
t^AppietFileExt : String = " dat"

4createPKRequestEntry(userlP : String) : void 
♦PKRequestExists(userlP : String) : boolean  
♦PKRequestDelete(userlP : String) : void 
4savBAppletlnfb(thePacketCSV : String) : void 
♦retireveAppletlnfo(thelP : String) : float 
4createTransaction(thePacketCSV : String) : void 
♦matchTransaction(TNumber : int, TCost : float, thelP : String) : boolean

dbManagement

Figure 5.4: Class diagram fo r dbManagement

The dbManagement class provides the database functionality required by the system. 

Throughout the operation of the protocol, the servers need to save a number of parameters as 

previously discussed.
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5.3.2 The myPacket Class

myPacket
^ > th eP ac k e t : String 

! l^ o u r c e A d d r e s s  : String 
I ^ d e s tA d d r e s s  : String 
I ^ K e y i i n t  
I i^ iim sC o sttS  : float 
% * n s C o s tU s e r  : float 

' d ^ n s N u m b e r iS  : int 
I ^> trnsN U m berU ser : int 
I  i^xxtnnectionN um  bar : int 
\ ^ th e M e s s a g e  : String

! ♦m yPacket(...) : void 
' ♦m yPacket(theStr : String) ; void 
! ♦displayAliO : void 
' ♦ getP acketO  : ttiePacket 
' ^ e tS o u rc e A d d re s s O  : sou rceA ddress 

^ e tO e s tin a tio n A td re s s O  : destA ddress  
I ♦getT m sC ostlS O  : tm sC ostiS  
, ♦ g etT m sC o stU serO  : tm sC o stU ser 
' ♦ g e tT m sN um berlS ():tm sN um borlS  
1 ♦ g etT m sN u m b erU ser():tm sN u m b e rU se r | 

♦getC onnectionN um berO  : connectionN um berj 
♦ getT lieM essageO  : T heM essage

Figure 5.5: Class diagram fo r  myPacket

The myPacket class provides the encapsulation for containing the IEPS packets. It has two 

overloaded constructors. It also contains a number of selector methods, which allow the users 

of this class to gain access to the private attributes of the class.

5.3.3 The mySocket Class

Socket 
(from net)

PrintWriter 
(from io )

i%>gatewayPort : int = 4000  
i^ isP ort: int = 5000  
i%»userPort : Int = 3000  
i^ theSocket : java.net.Socket = null 
i^theStream  : PrintWriter = null

^killConnectionO : void
^m ySocket(dest : String, IP_String : String) : void 
♦sendPacket(theString : String) : void

mySocket

Figure 5.6: Class diagram fo r  mySocket

This class provides the basic socket functionality for the system. It comprises three methods. 

The constructor, mySocket, takes two arguments: The first is a string that denotes where the 

user of the class wants to connect. This is used to determine the port to be used for the 

connection. The second argument, the lP _string , denotes the IP address of the target 

connection.
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In Java, when information needs to be transmitted using soekets, a soeket needs to be created. 

Information is then printed onto the stream of the socket and the stream is closed, as follows:

theSocket = new Socket (dest_address, port); '
theStream = new PrintWriter(theSocket.getOutputStream(), true); j
theStream.println("this will be sent"); |
theStream.close 0 ; I
theSocket.close();

The first call creates the socket, the second creates an output stream to that socket, the third 

sends the string to the stream, and the final two close the stream and the socket respectively. To 

avoid the above repetition, the mySocket class encapsulates the stream and the socket in the 

class, and the above call can now be made using the following code.

mySocket scpSocket = new mySocket("SCP", settings.scpIP());
scpSocket.sendPacket{"this will be sent"); I

scpSocket.killConnection(); ;

The next section discusses the implementation of the parent class, TCPServer, which all servers 

inherit.

5.3.4 The TCPServer Class
The TCPServer class creates a ServerSocket and accepts connection requests from clients. 

This is done in a separate thread. Once a connection is made, the server clones itself so that it 

may handle the new client connection in a new thread.

«In terface»  
Cloneable 

(from lang)

\

« In terfa ce»  
Runnable 

(from lang)

/

A
TCPServer 

l^runner : Thread = null 
^>server : ServerSocket = null 
i%>data : Socket = null

♦startServer(port : int) : void 
♦stopServerO : void 
^run() : void 
♦run(data : Socket)

Figure 5.7: Class Diagram for TCPServer

The TCPServer implements the Runnable interface (this is because new threads will be created, 

which will be executed by this class). The class is Cloneable, so that a copy of this class can be 

created for each connection. As a result, since the copy of the class is also Runnable, another
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copy for each client connection can also be created. The startS erver and stopServer 

methods are synchronised.

5.3.5 The UServer Class

uServer

^mainQ

userTCP

^run()

^ ru n n er  : Thread = null 
^ s e r v e r  : ServerSocket = null 
^>data : Socket = null

♦startServer(port : int) ; void 
^stopServerO : void 
^run() : void 
^run(data ; Socket)

TCPServer

Figure 5.8: Class diagram fo r  UServer

Wait for packets
ext: theStr = in.readline()

data arrived[ theStr != null ]

 i/_____
E)dract Packet Into

entry 'HepsPacket.extractPacket(lnPacket)

Check messagelD
entry 'HnPackeLgetlD(lnPacket)

PUBLIC_KEY_REQUEST[ messagelD == 2 ]

_________ V___________.
TRANSACTION_DETAILS_FROMJS[ messagelD == 4 ]

Sending Public Key Response Send Transaction Details to IS
entry \)utPacket.PKResponsePacket 
do: ^sSockeLSendPacket 
ex t 'SsSocket.KIIIConnectlon

entry 'YrutPacket.TransactionDetallstolS 
do: ^s Sockets e nd Packet 
ex t 'SsSocket. KillConnection

Send Transaction Details to Gateway
entry \)utPacket.TransactlonDetalistolS 
do: mySocket gSocket= new mySocket("GTW") 
do: *gSocketsendPacket 
exit: *gSocket.KIIIConnectlon________________

Figure 5.9: State transition diagram fo r  UServer class

In figure 5.9 the state transition diagram for the UServer class is shown. The initial state is the 

state depicted at the top of the transition diagram. The exit condition from the state is specified 

in the lower part of the state, i.e. theStr=in.readline(). When this occurs and the condition set by 

the transition (i.e. theStr != null) the class moves to the ExtractPacketlnfo state. In this state,
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the entry condition is verified to ensure that the received packet has not been corrected in 

transit.

When the class moves to the CheckMessagelD state, a valid packet has been received, and this 

state therefore contains the actions that extract the packet identifier. Depending on the type of 

packet that was received, the class moves either to the sending PublicKeyResponse or send 

TransactionDetailstoIS states. Following this transition, the class eventually returns to the 

idle state, where it waits for further incoming packets.

5.3.6 The GServer Class

T C P S e rv e r

^ r u n n e r  : T h re a d  = null 
^ s e r v e r  : S e rv e rS o c k e t =  null 
^ d a t a  : S o c k e t = null

♦ s ta r tS e rv e r(p o rt : int) ; void 

^ s to p S e rv e rO  : void 

^ r u n ( )  : void 
♦ r u n (d a ta  : S o cket)

g a te w a y lC P g S e rv e r

>
% u n ( )

-  >
♦ m a in ( )

Figure 5.10: Class diagram fo r  GServer

The state transition diagram for the GServer class (figure 5.11) is similar to that of the UServer 

class (figure 5.9).

V

data  amvedj iheStr l= null J

V
entry: *iepsPacl«i.extr8ctPactet(inPac*5ei)

extractPactet suceeds

V
entry: '‘inPactel.getiOCmPactet)

j PKRequeslEwsls*» false]

AUTH0RISE_RHPLY_MESSAGE( measegelD *» 11 )

V
entry: '‘dbManagemeni.createGW Transaction

V
entry *dbManagement,aaveTNumt>er

V
entry, ''outPactet.AuthoriaeTrBnsactionRequeat 
do; *ouiPaci*t sendPacMei 
exit *outPac*et kllConnection

USER_TO_GATEWAY || IS_TO_GATEWAY( messagelD == 6.7 )

V
Finding IP of 

entry; *lhelPoflS = dbM anagem ent.getlNum ber

1 thelPofiS »= null )

V
Sending 

entry. *outPaclet.ProceedToBill 
do: *isSodet.new  MySodetflNS*)

BILL_R£PtY_MESSAGE( messagelD •=  9 j

V
entry. ''inPacHet.getBiMFlag
on 8ilt( getBillFlag »» 1}; outPa<*et.Charge
on 8ill( getBillFlag l> 1 ): ou tP aclet CancelTransacüon

Figure 5.11: State transition diagram fo r  GServer class
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The class waits for an incoming packet, when it is received, it is checked for validity and the 

class moves to the appropriate internal state, depending on which packet was received.

5.3.7 The ISServer Class

_________TCPServer_________
^ru n n er : Thread = null 
^ se r v e r  : ServerSocket = null 
^ d a ta  : Socket = null

^startSer\er(port ; int) : void 
^stopServerO : void 
^run() ; void 
^run(data : Socket)

>
isTCP isServer

%un()
-  >

>main()

Figure 5.12: Class diagram fo r  ISServer

V
W alt for packets

TRANSACT10N_STPRT_REQUEST1 m e ssa g e lD  == 1 )

S ave C o s t received in packet 

en try  'y )bM anagem ent.sateA ppietlnfo(inPacket)

d a ta  arnved[ ttieStr 1= null ]

Extract P acke t Info 

en try  '4epsPacket.e% fraclPacket(inPacket)

ex tractPacket su c e e d s [ PK R equestE x ists == fa lse  |

C tieck m e ssa g e lD  

en try  'SepsPacket.getlD (inPacket)

PUBLIC_KEY_RESPONSE[ m e ssa g e lD  == 3 )

V
C tieck a  PK R eq ex ists 

en try  'db tv lanagem en t.P K R eques tE x is ts  (inPacket) 
exit: M bM anagem en t.P K R equestD ele te (inP acke t)

P ro c e s s in g  Bill R e q u e s t 

en try  "ou tP acket Bill 
do: ^ S o c k e t  new  MySocket("GTW) 
do: 'g S o c k e ls e n d P a c k e l  
exit: '^S ocket.k illC onnection

A

PROCEED_TO_BILL[ m e ssa g e lD  == 8 ]

TRANSACTION_DETAILS_TO_IS[ m e ssa g e lD  == 5 |

C rea te  T ransaction

en try 'k jb M an ag em en t.c rea teT ran sac tio n (in P ack e t)

( s a w  - -  successfu l!  ]

C rea te  a  P K R eq u est entry 

en try  'dbM an ag em en tc rea teP K R eq u est(in P ack e t) 
do: \)utPacket.k illC onnection  
e « t  'Y rutPacket.PK R equest(outPacket.getPacketO )

PK R eq Matctied

S e n d  tran sac tio n  details

en try  'dbfvlanagem ent.re triew A ppletlnfb(inPacket) 
en try  "ou tP acke t T ransactionD etailstoU ser(T info) 
exit: userSocket.killC onnectionO

V
S en d in g  P ack e t to G atew ay 

en try  "o u tP acke tlS toG atew ay  
do: V S o c k e ln e w  fVlySocketCGTW) 
do: "g S o ck e lsen d P ack e t(o u tP ack e t) 
exit: "gSocketk illC onnection

Figure 5.13: State transition diagram fo r  ISServer class

In figure 5.13, note the transition from the checking PKReq details state back to the idle state 

(wait for packets), and the associated failure event, i.e. PKRequestExists=false. This indicates 

that a public key request was received prior to the IS sending a request for a public key.
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5.3.8 The SCPServer Class

TCPServer 

^ ru n n er  : Thread = null 
^ s e r v e r  : ServerSocket = null 
^>data : Socket = null

^startServer(port : int) : void 
^stopServsrQ : void 
^run() : void 
^run(data : Socket)

scpTCP scpServer

^run()
>

^mainQ

Figure 5.14: Class diagram fo r  SCPServer

wait for packet
— ^ exit: theStr = in.readline() < -------------

_V_
Processing Packet

entry '4nPacket.extractPacket(inPacket)

Check M essage  Identifier

entry ''inPacket.getlD

AUTHORISE_TRANSACTION REQUEST[ m essa g e lD  -=  10 ] CHARGE_MESSAGE[ m essa g e lD  = = 1 2 ]

Sending Authorisation

entry ^)utPacket.AuthoriseTransactionReply 
do: ^ S o c k e tn e w  MySocketfGTW') 
do: '^ S o ck ets  end Packet 
exit: '^Socket.killConnection

Sending Charge to SDP

Figure 5.15: State transition diagram fo r SCP Server class

For simulation purposes the state transition diagram for the SCPServer class (figure 5.15) is 

simplified. In a real implementation INAP [Q.1208] states would have to be incorporated within 

the state diagram.
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5.4 R e s u l t s  o f  t h e  IEPS Sim u l a t io n

In this section, the results of the simulation are presented in the form of output from each of the 

servers. The simulation can be followed by referring to figure 5.1 and cross-referencing the 

MessagelD of each packet.

5.4.1 Output from the isServer
The simulation starts when the user submits the order through the applet. The applet sends the 

TSRes message to the isServer, which is the first packet below. The isServer then sends the 

PKReq and receives the PKRes. It then sends a TDUser message and receives a TDis message.
started IS-Server, Port 5000
Message received on Sat Aug 29 20:17:07 GMT+00:00 1998

*** TRANSACTION START REQUEST ***

MESSAGE ID 1
Source IP = 212.228.179.77
Dest. IP = 128.40.38.119
Tr. Cost = 916.5
The Packet = 1,212.228.179.77,128.40.38.119,916.5

Message received on Sat Aug 29 20:17:10 GMT+00:00 1998

*** PU BLIC KEY RESPONSE ***

MESSAGE ID = 3
Source IP = 212.228.179.77
Dest. IP = 128.40.38.119
Enc. Key = 9999
The Packet = 3,212.228.179.77,128.4 0.38.119,9999

Message received on Sat Aug 29 20:17:15 GMT+00:00 1998

*** TRNS D ETAILS TO I S  ** *

MESSAGE ID = 5
Source IP = 212.228.179.77
Dest. IP = 128.40.38.119
Tr. Cost = 916.5
Tr. Number = 44
The Packet = 5,212.228.179.77,128.40.38.119,916.5,44

Message received on Sat Aug 29 20:17:21 GMT+00:00 1998

*** PROCEED TO B IL L  ( f r o m  G a te w a y ) ***

MESSAGE ID = 8
Source IP = 128.40.38.129
Dest. IP = 128.40.38.119
Tr. Number = 44
The Packet = 8,128.40.38.129,128.40.38.119,44

Figure 5.16: Simulation output from the IS Server
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5.4.2 Output from the gServer
started Gateway-Server 4000

Message received on Sat Aug 29 20:17:16 GMT+00:00 1998

*** USER TO GATEWAY ***

MESSAGE ID = 6
Source IP = 212.228.179.77
Dest. IP = 128.40.38.129
Tr. Cost = 916.5
Tr. Number = 44
Conn.Number = 333
The Packet = 6,212.228.179.77,128.40.38.129,916.5,44,333 

Message received on Sat Aug 29 20:17:18 GMT+00:00 1998 

*** I S  TO GATEWAY ** *

MESSAGE ID 
Source IP = 
Dest. IP 
Tr. Cost
Tr. Number = 
The Packet =

7
128.40.38.119
zardoz
916.5
44
7,128.40.38.119,zardoz,916.5,44

Message received on Sat Aug 29 20:17:20 GMT+00:00 1998

*** AUTHORISE TRANSACTION RESPONSE ***

MESSAGE ID 11
Tr. Number = 44
Authorised Flag= 1
The Packet = 11,1,44

Message received on Sat Aug 29 20:17:21 GMT+00:00 1998

*** BILL ***

MESSAGE ID 9
Source IP = 128.40.38.119
Dest. IP = zardoz
Tr. Number = 44
Bill Flag 1
The Packet = 9,128.40.38.119,zardoz,44,1

Figure 5.17: Simulation output from the Gateway Server

The gServer receives the iStoG and the UtoG message and, after a successftil match, it sends an 

ATReq, to which it receives the ATRes message.

5.4.3 Output from the userServer
Message received on Sat Aug 29 20:16:34 GMT+00:00 1998

*** PU BLIC KEY REQUEST * * *

MESSAGE ID = 2
Source IP = 128.40.38.119
Dest. IP = 212.228.179.77
The Packet = 2,128.40.38.119,212.228.179.77

Figure 5.18: Simulation output from the User Server 
(continues on next page)
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Message received on Sat Aug 29 20:16:38 GMT+00:GO 1998

*** TRNS D ETAILS TO USER ***

MESSAGE ID = 4
Source IP = 128.40.38.119
Dest. IP = 212.228.179.77
Tr. Cost = 916.5
Tr. Number = 44
The Packet = 4,128.40.38.119,212.228.179.77,916.5,44

Figure 5.18: Simulation output from the User Server (continued.)

Depicted in figure 5.18 are the two messages the uServer deals with. Firstly, the PKReq 

message from the is S e r v e r  and, secondly, the TDUser message.

5.4.4 Output from the scpServer
Shown below is the scpServer receiving an ATReq.

started SCP-Server 4001

Message received on Sat Aug 29 20:17:19 GMT+00:00 1998

*** AUTHORISE TRANSACTION REQUEST ** *

MESSAGE ID = 10
Tr. Cost = 916.5
Tr. Number = 44
The Packet = 10,-1,916.5,44

Figure 5.19: Simulation output from the SCP Server

5.4.5 Output from the IS Servlet Server
started IS-Servlet/CGI Simulator 123

Servlet received:
count = 1 token = 212.228. 179.77
count = 2 token = 916.5
count = 3 token = Joe
count = 4 token = Bloggs
count = 5 token = Sir Matt Busby Way
count = 6 token = Trafford
count = 7 token = Manchester
count = 8 token = n/a
count = 9 token = M4 4DX
count = 10 token = 4
count = 11 token = This is item:8
count = 12 token = 2
count = 13 token = 251.45
count = 14 token = This is item:30
count = 15 token = 3
count = 16 token = 454.72
count = 17 token = This is item:80
count = 18 token = 1
count = 19 token = 210.32

Figure 5.20: Output from the Servlet simulator

Figure 5.20 shows the isServletS im ulator. The output is the information entered by the user 

when completing the applet. All the information is written onto a file, as discussed in section 

5.2.0.
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5.4.6 The Applet Output
Shown here is the output from the applet. It provides infonnation to the user pertaining to the 

progress and status of the order.

C:\My Stuff\IEPS>appletviewer testnew.html
Symantec Java! JustlnTime Compiler Version 3.00.029 (i) for JDK 1.1.x 
Copyright (C) 1996-98 Symantec Corporation

*** New order processing BEGIN ***
User address = 212.228.179.77
IS address = metropolis.ee.ucl.ac.uk/128.40.38.119 
Order total was:916.5
System is now processing order., beginning to send packets.
*** New order processing END

Figure 5.21: Simulation output from the applet

5.5 C h a p t e r  Su m m a r y  a n d  R e s e a r c h  C o n t r ib u t io n s

This chapter dealt with the implementation and the simulation of the IEPS. To achieve this, the 

following tasks were undertaken:

■ Analysis of the communication mechanisms of Java

■ Gaining a clear understanding of the communication capabilities of the IN

■ Identification of potential limitations and complexities within the designed protocol.

One of the important requirements of the protocol was that it needed to operate in an already 

well-established and, more importantly, standardised environment. This meant that the protocol 

must be designed in such a way that it operated without requiring any change to the registration 

and billing phases. Such changes would weaken its position considerably, indeed to the extent 

that they could render the system unusable. As a result, existing information flows that provide 

sufficient functionality to perform the authentication, authorisation and billing were identified 

from the IN CS-I. Therefore, through this chapter it was shown that it is possible within the 

“new role of IN” to utilise existing infrastructure in a way that was never conceived before.

The simulation has also identified some of the potential limitations of the existing system. For 

example, there is a requirement for the protocol to support session identifiers and user 

identifiers, rather than IP addresses. Session identifiers, for instance, would enable the system to 

cope with lost connections from the user side. An additional desirable feature that needs to be 

looked at is the behaviour of the servers as the number of incoming requests increases.

Java was chosen as the implementation language for the simulation. If such a system is to be 

implemented commercially, the way that the Internet shop handles incoming requests must be 

optimised and functionality to support load-balancing, robustness, and scalability must be 

incorporated.
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One of the most important components of the system is the gateway that provides the translation 

between the IP and IN worlds. The previous chapter showed that the gateway can be 

implemented in two different ways. The simulation of the system in this chapter provided a 

better understanding of the complexities involved in the design of such a network element. For 

instance, the gateway needs to maintain the robustness of the IN world at all costs, so that it 

does not degrade the integrity of the IN network. Further work is needed in this area in order to 

ensure that any gateway function that interfaces to the IN world does not hinder the robustness, 

integrity and reliability of the underlying network.

In implementing the system, the servers maintained state to track the progress of individual 

transactions. State transitions within these servers are caused explicitly by external events (for 

example when the servers receive a valid incoming request). One limitation of the existing 

implementation is that it does not maintain internal state. This means that an individual server 

does not keep track of “active” sessions.

Chapter 6 continues to examine state utilisation in IP-based architectures, by presenting ways to 

implement and maintain state. Furthermore, the chapter identifies the extent to which state is 

utilised in existing IP protocols.
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C h a p t e r  6

U se  of  S t a t e  in  A r c h it e c t u r e s  &  

Pr o t o c o l s  in  t h e  IP D o m a in

So far the work presented has focused on the general view of “state”. This is 
particularly true when IP architectures were presented. This chapter examines in 

detail the concept and use of “state”. IP-based protocols, architectures and frameworks 
are presented with the aim of examining the control elements -  and therefore the control 
plane -  within such systems.

6.1 In t r o d u c t io n

Firstly, section 6.2 provides an overview of concurrency concepts and describes how these are 

implemented in Java. Section 6.3 presents traditional client-server architectures and examines 

the use of state within them, while section 6.4 examines distributed object technologies. Section

6.5 provides a classification of the IP architectures according to their use of state. Finally, 

section 6.6 provides a summary of the work presented in this chapter.

6.2 C o n t r o l l in g  St a t e -D e p e n d e n t  B e h a v io u r

State-dependent actions are implemented in software using policies that may be optimistic or 

pessimistic. This section examines the ways in which state-dependent actions can be configured 

using appropriate policies and highlights the complexities involved in deciding on the adoption 

of a specific policy. A complete discussion on concurrent systems and state-dependent policies 

can be found in [Rosc97][Baet99][Thom00][Pala00].

The discussion first focuses on the types of trigger that cause state-transitions. Actions 

performed by mutable objects* generally have two kinds of triggering conditions, external and 

internal. An external trigger is caused when the object receives a message from another object 

requesting that an action is performed [Lea99]. An internal trigger is caused when the object is 

in an appropriate state to perform the action [Lea99]. Each of these triggers has associated pre-

A mutable object is one that can change behaviour depending on its internal state [Alex93].
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and post-conditions. If a trigger is to be allowed and a transition to occur, these conditions must 

be satisfied.

The way in which a system deals with triggers is described by its policy on state-dependent 

behaviour. Policies may be optimistic or pessimistic. A protocol is called optimistic if it 

optimistically assumes that failures are rare events, so optimizing failure-free performance is 

more important than achieving good recovery performance. In contrast, a pessimistic protocol 

always pessimistically prepares for failures, so it is willing to pay higher failure-free overhead 

in order to recover faster should a failure occur [Huan95].

Table 6.1 classifies policies into these two categories. According to [Lea99], in general 

pessimistic policies lead to simpler and more reliable designs in most concurrent settings.

Pessimistic Policies
Inaction A request is ignored if  it cannot be fulfilled

Balking
Failure indications are returned to the client if  the action cannot 
be perform ed

Guarded suspension Execution is suspended until preconditions becom e true
Optimistic Policies

Provisional action
A n action is perform ed but its effects are not com m itted until 
success is assured

Rollback/recovery
The by-products o f  partially com pleted actions are undone. 
Rollback refers to reverting back to the initial state and recovery 
refers to attaining an com parable valid state

Retry
Failed actions are attem pted repeatedly after recovering from 
previous attempts

Table 6.1: Pessimistic and optimistic policies fo r  state-dependent actions

The following section discusses the issues affecting the choice of policy.

6.2.1 Deciding on an Adoption Policy for State-Dependent Behaviour
In deciding which of the policies listed in table 6.1 a system is to adopt, a number of

considerations need to be looked at. This section provides a concise discussion regarding these

considerations.

The following issues are important when regarding the adoption of a specific policy:

■ The internal and external computability: internal computability refers to the ability of the 

host object to detect state-based pre-conditions; external computability refers to the ability 

of clients or other objects to know if the host object is in a state that allows the action.

■ The ability for a client to ensure that an object that was in an appropriate state remains so 

when a subsequent message is issued.

■ The cost of computing the above preconditions [Lea99]. Determining the preconditions can 

be computationally more expensive than just trying the action and then coping with any
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failures. The computation of the preconditions must also be balanced against the probability 

of failure and the cost of recovery.

Further considerations are about resource contention. This pertains to whether the action 

requires exclusive access to a resource [Lea99]. Associated with this is the acceptability of 

indefinite suspension, which refers to whether the activity that invoked the method is allowed to 

suspend while waiting for preconditions to become true [Lea99].

The ability to “undo” internal by-products of failure is important because, otherwise, the host 

may enter inconsistent states, after which nothing can be guaranteed about the future behaviour 

of the object or other objects that depend on it. This capability is termed recoverability 

[Lea99]. In association with recoverability, clients need to take special action upon failure and 

there needs to be provisions for doing so.

The next section discusses ways in which state can be represented in a system implementation. 

6.2.2 Representation of State
When a system is designed and a policy on state-based behaviour (i.e. optimistic or pessimistic) 

is adopted, there needs to be a formal way of representing state information for the objects that 

make up the system. The representation of the state must be explicit, in sufficient detail to 

prevent actions from occurring when they are not wanted and to ensure evasive action when 

they fail [Lea99]. This section presents three approaches for representing state: interfaces, 

logical definition within variables, and history and execution states.

6.2.2.1 Interfaces

Interfaces [SommOl] provide tools for defining abstract state and implementing the required 

state representations. This means that since interfaces provide a particular abstraction of an 

object’s behaviour, and interfaces cannot reference code or instance variables, they force the 

designer to describe monitor invariant properties and functionality in ways that help avoid the 

need for other designers to have to read implementation source code to discover intent.

6.2.2.2 Logical State

Logical states are usually defined in terms of predicates [KaliSO] that distinguish particular 

ranges, values or other computable properties of instance variables. These predicates can be 

coded either as free-standing internal Boolean methods or as Boolean conditions written inside 

the methods that rely on them [Aror98].
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Logical state can also be represented explicitly* in a variable, with each distinct state labelled as 

an integer or any other discrete data type. The instance variable representing state is then re­

evaluated upon each update so that it is always accurate.

A different approach, rather than coding state as a value, is for the state to be coded as a 

reference to a state-object. For each state, a class describing the behaviour of the object when it 

is in that state is written. In the main class, a reference instance variable is created that is always 

bound to the appropriate state-object.

If state is represented as a state-object, then state-specific behaviour is localised as well as 

partitioned for different states [Gamm95]. All behaviour associated with a particular state is put 

into one object and, because all state-specific code lives in a State subclass, new states and 

transitions can be added easily by defining new subclasses. However, there is a drawback to this 

approach. This has to do with the distributed behaviour of different states across several State 

subclasses -  there is an increase in the number of classes and it is less compact than a single 

class. Regardless of this, E. Gamma in [Gamm95] makes the point that “encapsulating each 

state transition and action in a class elevates the idea of an execution state to full object status. 

This imposes structure on the code and makes its intent clearer.”

A further advantage of this approach according to [Cham93] is that “state transitions are 

explicit.” When internal variables are used to define state, the state transitions have no explicit 

representation but rather “only show up as assignments to some variables” [Gamm95].

The implementation of state-objects could be achieved using lookup tables [Carg92]. However, 

according to [Gamm95] “the State pattern models state-specific behaviour, whereas the table- 

driven approach focuses on defining state transitions.”

6.2.2.3 History and Execution States

It is desirable in some situations to maintain a complete history log that records all messages 

received and sent, along with all corresponding internal actions that are initiated or completed 

[Lea99]. As this can lead to inefficient representations of state as well as possibly uneconomical 

use of resources, a compromise method is to define execution state variables that are particular 

forms of meta-variables [MarcOO].

* The disadvantage o f  this approach is that sim ilar conditional statem ents w ould be scattered throughout 

the implementation and, as a result, the addition o f  a new  state could require the changing o f  several 

operations, which com plicates maintenance.
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E xecu tion  sta te  variab les can rep resen t the  fact tha t a g iven  m essag e  w as rece iv ed , w h eth er the 

co rresp o n d in g  action  w as in itiated , w h e th e r the ac tio n  has te rm in ated , and  w h e th e r a rep ly  to the 

m essag e  w as issued.

T he in troduc to ry  sections p resen ted  the  vario u s p o lic ie s  fo r s ta te -d ep en d en t ac tions and 

d iscu ssed  the w ays in w h ich  “ sta te” can be  rep resen ted . T he fo llow ing  sec tion  describes the 

im p lem en ta tio n  o f  tw o specific  ap p roaches , one fo r a p essim is tic  p o licy  an d  one for an 

op tim istic  po licy .

6.2.3 Im plem entation of G uarded  Suspension
G uarded  m ethods are those  tha t b lock  i f  the  o b jec t is no t in a sta te  in w h ich  the associa ted  

ac tions can be  executed . “ In co ncu rren t p ro g ram m in g , a guarded  m eth o d  m ay be th o u g h t o f  as a 

cu s to m isab le  ex tension  o f  synch ron ised  m ethods, w ith  the ‘g u a rd ’ fo r a p la in  synch ron ised  

m ethod  b e in g  that the ob jec t is in the R ead y  ex ecu tio n  s ta te” [L ea99]. C o rresp o n d in g ly , in 

sequen tia l p rog ram m ing , g uards m ay be eo n s id ered  to  be  specia l fo rm s o f  co nd itiona ls : an if- 

s ta tem en t can  check  w hether a cond ition  ho ld s upon  en try  to a m ethod  [M agee99].

aM e ssa g e
j  inR ightS tate

V  . ^

>
Figure 6.1: Guarded suspension

6.2.3.1 Walts and Busy-Waits

In Java, the standard  cod ing  m ethod  for ex p ressin g  g u ard ed  w aits  is b y  u sing  a sim ple  loop, 

w h ile  invok ing  the O b jec t.w a it m ethod. T he code ex trac t b e lo w  iden tifies h o w  th is can  be 

ach ieved:

public class GuardedClass {
protected Boolean cond_ = false; 
protected synchronised void awaitCondO { 

while (!cond) {try (wait();}
catch (InterruptedException ex) {}

}
}
public synchronised void guardedAction() { 

awaitCond(); //actions
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Busy-waits, on the other hand, are implemented using:

Protected void spinWaitUntilCondO {
While (!cond_)

Thread.currentThreadO .yield() ;
}

According to [Lea99], the implementation of busy-waits has the following drawbacks:

■ They can waste an unbounded amount of CPU time spinning without success [Thom95]. In 

contrast, waits recheck conditions only when another thread sends notification that the 

object’s state has changed, thus possibly affecting the guard condition.

■ The yield in the spin-loop is not guaranteed to be effective in allowing other threads to 

execute so that they can change the condition.*

In addition, both implementations suffer from fairness.

A comprehensive description of the issues surrounding the advantages and disadvantages of 

various implementation mechanisms of guarded suspension can be found in [Boge01][Coli91],

6.2.3.2 Interrupts

A guarded wait can be viewed as if it were an undirected call to objects running in other threads 

asking them to take any action that makes the condition true. A notification serves as a signal 

that the desired condition may have been attained.

In Java, this analogy is made stronger by the fact that a wait can also be broken by an 

InterruptedException caused by some object invoking Thread.interrupt. Interruptions can serve 

as notifications indicating that the required state changes can never occur, for example due to 

the termination of certain threads.

6.2.3.3 Notifications

Wait-based constructions make up the bulk of the safety side of guard translation. The first step 

to ensure liveness^ is to insert code that wakes up waiting threads when the conditions they are 

waiting for change value. Every time the value of any variable or object mentioned in a guard 

changes in a way that might affect the true value of the condition, waiting tasks should be

* This occurs for example in the case where the busy-wait is running at a high priority, therefore not 

allowing other processes to change the condition that would take it out of the loop.

 ̂A liveness specification is a set of state sequences that meets the following condition: for each finite 

state sequence a, there exists a state sequence /3 such that 00 is in that set [Aror98].
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woken up so they can recheck guard conditions. The simplest way to do this is to insert 

notify All in methods that cause state changes.

6.2.4 Tracking State
One of the problems associated with using the Notify All method has to do with the possibility 

that some of these notifications cannot possibly affect the guard conditions of any waiting 

thread. These are ineffective notifications and can be eliminated by using logical state analysis. 

So, rather than generating notifications for all changes in instance variables, notifications are 

issued only upon transitions out of the logical states in which threads can wait. The 

disadvantage of this approach is that any changes in the implementation of the class may require 

different partitioning of logical state, which alters both the guard and the notification conditions 

for the base methods, which in turn leads to a total rewrite of the class.

Another way to monitor state is by tracking state variables. State variables represent the entire 

logical state of an object, usually in a single instance variable. According to [Lea99] the most 

extensible way to implement state-variable designs is to isolate state re-evaluation in a single 

method that is called after each update method.

6.2.5 Optimistic Policies
In pessimistic designs objects refuse to engage in actions unless they are known to be in states 

that allow the action to succeed [Stro85]. In optimistic, try-and-see designs, objects proceed 

with actions without necessarily checking to see if all preconditions are met. However, they also 

possess strategies and mechanisms for detecting failures and, when necessary, undoing the 

effects of any of the actions that led to failure.

Optimistic control techniques share three basic features: a way of detecting failure, for example 

by assessing the logical state; a way of dealing with failure; and a way of dealing with the 

consequences of actions leading to failure.

Dealing with the consequences that lead to the failure can be achieved in a forward or backward 

direction. One approach to dealing with the consequences is by provisionally performing the 

operations in a dry-run way. When this is successful and the possibility of failure has been ruled 

out, the operations are re-performed only this time their actions are not running in a dry-run 

mode. A second approach is to use rollback and recovery for every action.

It can be argued that optimistic policies are computationally expensive. This is because of the 

large number of variables that need to be maintained to control operations in a dry-run manner.
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Also to implement rollback and recovery, every internal system message would need its counter 

message to undo the effect of the original message, although in some cases it is possible to 

implement optimistic systems without the need of additional messages [Venk97], An additional 

method to implement rollback and recovery is through message logging [Alvi98]; the cost of 

recovery using message logging is discussed in [RaoOO].

However, regardless of the computational expense, if a system’s functional requirements 

include real-time characteristics or some safety-critical issues, then the computational 

complexity is a minor concern. A performance-oriented comparison of optimistic and 

pessimistic policies can be found in [Song95].

The following section builds on the theory presented in the previous sections and moves on to 

examine IP-based protocols in order to highlight their reliance on state-dependent actions as 

well as internal and external triggers.

6.3 U se of State in  Client- S erver  Architectures

A client-server architecture is a network architecture in which each host or process on the 

network is either a client or a server. Some of the characteristics of client-server architecture 

include [Orfa99]:

■ Service; Client-server is primarily a relationship between processes running on separate 

machines. The server process is a provider of services and the client is a consumer of 

services.

■ Shared resources: A server can service many clients at the same time and regulate their 

access to shared resources.

■ Asymmetrical protocols: There is a many-to-one relationship between clients and server. 

Clients always initiate the dialogue by requesting a service. Servers passively await requests 

from the clients.

■ Transparency of location: The server is a process that can reside on the same machine as the 

client or on a different machine across a network.

■ Message-based exchanges: Clients and servers are loosely coupled systems that interact 

through a message-passing mechanism. The message is the delivery mechanism for the 

service requests and replies.

Irrespective of the transport layer protocol that is used or the type of server, there exists a 

general categorisation of client-server architectures that is included in this section for 

completeness. These are the “fat clients” and “fat servers.”
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Client-server architectures often require the client to act as a server at some point during the 

execution of a service. For instance, in the system described in section 6.2, the web server is a 

server from the applet’s point of view but it is also a client when the requests are forwarded to 

the NMS command processor.

For this reason, client-server applications can also be differentiated by how the distributed 

application is split between the client and the server [Orfa99]. A fat server model places more 

functionality on the server, whereas a fat client model places more functionality on the client. 

Fat clients are the more traditional form of client-server architectures, where the bulk of the 

application runs on the client side. For example in a database server, the client knows how the 

data is organised and stored on the server side.

It may be apparent from this initial discussion of client-server architectures that in most cases 

there is no clear-cut line that separates a host from being a “pure client” or a “pure server.” This 

grey-scale representation holds true in a discussion of state-based versus stateless architectures.

Traditional IP-based protocols and architectures are overwhelmingly based on the client-server 

model. Edge components (clients) require services from the core of the network (servers). Some 

of these architectures are defined as stateless, claiming that “no state information” is maintained 

thereby making it “easy to cope with failures” of servers [Schu98].* The following sections 

present IP-based client-server architectures, beginning by looking at the RADIUS protocol, and 

analyse the use of state in them.

6.3.1 Remote Authentication and Dial-In User Service
The Remote Authentication and Dial-In User Service (RADIUS) is an IETF protocol “for 

carrying authentication, authorisation and configuration information between a Network Access 

Server that desires to authenticate its links and a shared authentication server.” [RFC2138].

A RADIUS server is usually deployed (as the name suggests) to authenticate remote access to 

resources. For instance, organisations that allow employees to gain access to corporate intranets

* There are “opposing” views as to whether state should be maintained in a system. In the author’s view, 

state is useful because it provides the system designer with a powerful tool to control the behaviour of the 

system. State-dependent information can also be used in systems that are more general, in order to collect 

information pertaining to the status of the system, as will be shown in chapter 8. Furthermore a conclusive 

view on state is presented in chapter 9.
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utilise RADIUS components to achieve this. This section focuses on the presence of state 

behind a RADIUS server, rather than the operation of the protocol.
timeout

accessR eq u est
accessA ccept

awaitingidle

accessR ejec t

accessC hallenge
replyMsg

processing
challenge

Figure 6.2: State transition diagram fo r RADIUS client

From [RFC2138], the state model presented in figure 6.2 can be derived for a RADIUS client. 

The state transition diagram comprises four states and six transitions. More importantly, the 

timeout transition implies that the RADIUS client needs to maintain information about the time 

elapsed since the accessRequest message was sent to the server.

accessR equest
accessA ccept

clientauthenticating

clientidle

accessR eject

accessC hallenge
replyMsg

issuing
challenge

Figure 6.3: State transition diagram fo r  RADIUS server

This is not the case for the RADIUS server, as depicted in figure 6.3. It can be seen that there 

are no timers associated with the transitions*. Essentially, it is the responsibility of the client to 

initiate any re-transmissions.

In [RFC2138], the authors also note that “the stateless nature of this protocol simplifies the use 

of UDP” and that “UDP simplifies the server implementation.” The initial approach^ towards

This is true because the state transitions are generated from external messages rather than internal 

timers.

 ̂An enhanced version of RADIUS is currently under development by the DIAMETER project [CalhOl] 

of the IETF; the DIAMETER API is presented in [KempOl]. The specification [CalhOl] and the API
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RADIUS was one that assumed a single process with a single request. The request is received, 

processed and returned -  therefore the complexities associated with multiple threads do not 

apply and, as a result, there is no need for state management.

6.3.2 Authentication, Authorisation and Accounting
The Authentication, Authorisation and Accounting (AAA) Architecture of the IETF, aims at 

“providing a generic framework that allows complex authorisations to be realised through a 

network of interconnected AAA servers” [LaatOO].

This section examines the work presented in [LaatOO], [VollOOa], and [VollOOb] by looking at 

the protocols and the architectures from the perspective of state utilisation and the extent of its 

use.

[VollOOa] presents the requirements for Authorisation of Internet Resources and Services. The 

generic framework identifies the following conceptual entities that may be participants in an 

authorisation:

■ A user who wants access to a service or resource

■ A user home organisation that has an agreement with the user and checks whether the user 

is allowed to obtain the requested service or resource

■ A service provider’s AAA server, which authorises a service based on an agreement with 

the user home organisation without specific knowledge about the individual user.

Figure 6.4 depicts these conceptual entities as well as the service agreements (thick dashed 

lines) between the parties involved.* The figure also identifies the sequences of accessing the 

resources for a single-domain scenario. In sequence 1, the agent sequence, the user 

communicates with the resources (service equipment) through the AAA server. In sequence 2, 

the pull sequence, the user communicates directly with the resources. In sequence 3, the push 

sequence, the user must first contact the AAA server but direct access to the resource equipment 

is permitted following the authentication and authorisation by the server. A detailed explanation 

of these procedures can be found in [VollOOa] and [LaatOO].

[KempOl] explicitly define two state machines: there is a peer state machine, section 8.0 of [CalhOl], and 

a session state machine, section 11.1 of [CalhOl]. Furthermore, the client session manager is expected to 

maintain both the peer state machine and the session state machine [KempOl].
* These service agreements can take the form of formal contracts or service level agreements. However, 

an important element in any agreement is trust. The authors in [LaatOO] say that “trust is necessary to 

allow each entity to ‘know’ that the policy it is authorising is correct. This is a business issue as well as a 

protocol issue.” The issue of trust was also highlighted in section 4.2.1.
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Figure 6.4: Basic authorisation entities, service agreements, and access
methods

The emerging open standards through APIs (such as the ones discussed in section 3.4.2.3) 

enable the provisioning of service components, with the final service offering being a 

combination of service components from distributed service providers. For this reason, the 

AAA authorisation framework also considers the scenario where services are combined across 

administrative domains. Figure 6.5 shows the agreements present in a distributed service 

hierarchy.

User

Organisation 1

AAA Server

Service
Equipment

Organisation 2

AAA Server

Service
Equipment

Figure 6.5: Distributed services and agreements

The agreements in the distributed services scenario imply that “the request from the User will be 

authenticated and authorised by the first organisation, then forwarded to the second 

organisation” [VollOOa].

As the authorisation requests may be chained (e.g. by forwarding from organisation 1 to 

organisation 2 etc.) there is a requirement for resource management. Furthermore, in many 

applications, the authorisation results in establishing an ongoing service, i.e. a session. “Each of 

the servers involved in the authorisation may also want to keep track of the state of the session, 

and be able to effect changes to the session if required” [VollOOa]. The framework proposes the 

use of a resource manager that is responsible for tracking the session as well as being able to 

initiate changes to the session and inform other resource managers when changes occur.
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The Resource Manager (RM) is defined as “the anchor point in the AAA server from which a 

session can be controlled, monitored, and coordinated even if that session is consuming network 

resources or services across multiple Service Provider administrative domains” [VollOOa]. 

Numerous requirements for the RM are identified in the specification, however one that is of 

importance for the discussion is that an RM cooperates with “policy servers” or policy decision 

points [Stev99, section 7.3.3]. The RM “maintains internal state information, possibly complex 

cross-administrative domain information, supported by dialogues with its peer Resource 

Managers” [VollOOa].

Some of the issues that are identified by [VollOOa] include the capability of service equipment 

to notify its resource manager when a session terminates or changes state; the RM must inform 

other RMs that keep state for this session. The RM must also set a time limit for each session, 

which must be refreshed by having the resource manager query for authorative status or by 

having the authorative source send periodic keep alive messages that are forwarded to all RMs 

in the authorisation chain. Finally, any RM in the chain must have the ability to terminate a 

session. This requires the RM to have knowledge of at least the adjacent AAA servers in the 

authorisation chain.

In order to provide the above functionality, the RM must maintain session state information in 

order to make decisions about new sessions based on the state of existing ones and to allow 

monitoring of sessions by all interested AAA Servers. Furthermore, session identifiers are 

required to identify sessions; these must be unique within each AAA Server and, according to 

[VollOOa], it is desirable that the session identifier for a specific session be the same across all 

AAA servers.

The requirements for maintaining session information in AAA servers increase the complexity 

of the server, especially if session state must be maintained across administrative boundaries.

The RM must be able to track the state of sessions and allocate resources to a session that is 

associated with an AAA server. Furthermore, it may track use of resources allocated by peer 

resource managers to a session. All session-specific AAA state information required by the 

AAA server is also maintained by the RM. Session information includes pointers to peer RMs 

in other administrative domains that possess additional AAA state information that refers to the 

same session.
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6.3.3 Common Open Policy Service Protocol
The Common Open Policy Service protocol (COPS) [RFC2748] is a simple query and response 

protocol that is used to exchange policy information between a policy server, i.e. a policy 

decision point, and its clients, i.e. policy enforcement points.

Figure 6.6 depicts a simple configuration for a framework for policy-based admission control, 

defined in [RFC2753]. The two main architectural elements for policy control are the policy 

enforcement point (PEP) and the policy decision point (PDP). The PEP is a component at a 

network node and the PDP is a remote entity that may reside at a policy server.

Policy Server

Policy Server may 
use LDAP, S N M P, 
etc. for accessing 
policy database.

CO PS
PDP

PEP

Network Node

autfientication etc.

Figure 6,6: The primary policy control architecture components

The PDP may make use of additional mechanisms and protocols to achieve additional 

functionality such as user authentication, accounting and policy information storage.

The interaction between the components begins with the PEP receiving a notification that 

requires a policy decision. The PEP then generates a request for a policy decision and sends it to 

the PDP. The PDP returns the policy decision and the PEP enforces it by appropriately 

accepting or denying the request.

The COPS protocol maintains state information in the following ways.

■ The request/response state is shared between the client and server. This means that requests 

from the client PEP are remembered by the remote PDP until they are explicitly deleted by 

the PEP. Furthermore, responses by the remote PDP can be generated asynchronously at 

any time for a currently installed request state.

■ The state from various events may be associated. This means that the server may respond to 

new queries differently because of previously installed request/decision states that are 

related.

■ The protocol is stateful in that it allows the server to push configuration information to the 

client and allows the server to remove such state from the client when it is no longer 

applicable.
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As the protocol maintains state information, it must be able to deal with broken connections as 

well as provide synchronisation methods. When a TCP connection is lost, the PDP is expected 

to clean up any outstanding request related to request/decision exchanges with the PEP. Once a 

connection is re-established, the “PEP is expected to notify the PDP of any events that have 

passed local admission control. Additionally, the remote PDP may request that all the PEP's 

internal state be re-synchronized (all previously installed requests are to be reissued) by sending 

a Synchronize State message” [RFC2748].

6.3.4 Web Servers
Arguably, the capabilities of the HTTP protocol with regard to complex manipulation of state- 

dependent actions are limited. In fact, the HTTP protocol is stateless and a web server forgets all 

information about a particular client after it has responded to a specific HTTP GET request.

Often there is a requirement to maintain information for a session in a web browser. For 

instance, when a CGI form is filled, and the user moves to the next page, the information 

submitted by the user on the first page needs to be transferred onto the next page. This can be 

achieved using hidden fields within the CGI form. Hidden fields are invisible fields that store 

the information a user enters and resubmit that information in subsequent forms without any 

need for the user to re-enter it or even be aware that the information is being passed around. 

Arguably, hidden fields act as variables that maintain “state” between form submissions; here, 

the term “state” is used very lightly, since holding the value of a variable across HTTP 

transactions in the same session is regarded by the author as a very weak form of “state.”

An alternative way to maintain session information is by using cookies. A cookie 

[Javal31][Laur98] is a small piece of data that is stored in the client on behalf of a server. 

Typically, servers use a cookie to store the user identifier or basic configuration information. 

The cookie is sent back to the server in subsequent page requests from this client.

Session persistence generally means that a client has reserved some form of session state on a 

server and that state is maintained even if connections are destroyed and re-established. Cookies 

enable HTTP sessions to be persistent and the state information to be maintained even when the 

session has ended.

Arguably, cookies are a new approach towards managing state. Until now, all the architectures 

presented have maintained state throughout the execution lifecycle of the specific process 

requiring state. Cookies however, enable state to be maintained even after a process has
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terminated. The term persistence is re-defined in section 6.4 where persistence for CORBA and 

Enterprise Java Beans (EJB) is defined.

6.3.5 The Session Initiation Protocol Revisited
As discussed in section 3.3.2.1.1, the operation of the SIP protocol caters for two modes of 

operation: proxy server and redirect.

When SIP is used in a proxy mode, the proxy server may be either stateless or stateful. A proxy 

server operating in stateful mode tracks incoming requests that generate outgoing requests and 

the outgoing requests. Furthermore, a stateful proxy acts as a virtual user agent client-server 

(UAC, UAS) by implementing the server state machine, when receiving requests, and the client 

state machine for outgoing requests.*

A stateful proxy needs to maintain internal tables to store previously processed requests 

(including acknowledgements and responses), in order to decide how to deal with further 

incoming messages. When an incoming request is received, the server must check a number of 

fields in the incoming packet (for instance, the To, From and Call-ID fields) against existing 

requests to determine how to deal with it. Furthermore, acknowledgements and responses must 

also be examined against the table that contains previously processed messages to determine 

how to respond.

A stateless proxy on the other hand, forgets all information once an outgoing request is 

generated. As a result, a stateless proxy does not behave as a virtual UAC/UAS but forwards 

incoming requests downstream and all responses received upstream. Furthermore, “proxies that 

accept TCP connections must be stateful otherwise if the proxy were to lose a request, the TCP 

client would never retransmit it” [RFC2543].

* The exception to this is when receiving a 2xx response to an INVITE [RFC2543].
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Figure 6.7: SIP server state transition diagram

The state within a SIP proxy server is explicitly defined in the case of stateful SIP proxy 

servers. However, even in the case where a stateful SIP proxy server is not used, its behaviour 

can still be characterised by a state transition diagram. This does not mean that internal state is 

maintained. The events and movement from one state to the next are based on an ordered set of 

client-server transactions, as depicted in figure 6.7 [Schu98].

6.3.6 Integrated Services Architecture
The Resource Reservation Protocol (RSVP) provides resource reservations for multicast or 

unicast data flows [RFC2205]. In terms of state maintenance, RSVP opts for the soft state 

approach. The state is maintained within the routers and periodically refreshed by incoming 

packets.

6.3.7 Use of State in C lient-Server Architectures: A Summary
This section provides a summary and identifies whether the systems discussed maintain state

and support sessions. It also identifies whether transitions are triggered exclusively by external 

events or whether internal triggers are automatically generated.

The RADIUS protocol is simple as it comprises a small number of transitions and states, and is 

based on simple message-passing. State transitions are triggered by both external and internal 

events, such as requests. In the case of the RADIUS client, there are also internal triggers 

arising from the timer that is maintained to detect timeouts and issue re-transmissions. However, 

it could be argued that the simplicity of the protocol arises from the fact that the initial approach 

taken for its design assumed a single process with a single request. This removed any 

concurrency issues such as the ones discussed in section 6.2.
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The next architecture that was presented was that of the AAA. This architecture is arguably 

simple until the complexities of open service provisioning through APIs and third-party service 

providers are introduced. These require the AAA architecture to be able to provide resource 

management (for the reasons identified in section 6.3.2).

The introduction of the resource manager considerably complicates the implementation of the 

AAA architecture. The RM is a complex functional entity with compounded requirements. It is 

responsible for maintaining state information across administrative boundaries, tracking 

sessions by keeping a time limit for each of them and for communicating with peers in order to 

terminate sessions across domains. Furthermore, state and session information must be 

replicated and kept up-to-date along the chain of AAA servers; this means that resources need to 

inform the RM when an event occurs that may affect the state.
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Figure 6.8: Communication between resource managers across 
administrative domains

A further specific requirement that was presented is that “any resource manager in the chain 

must have the ability to terminate a session” [VollOOa]. For instance, in figure 6.8, the resource 

manager in administrative domain 2 must be able to terminate the session of a user who lies 

within domain 1 and is accessing resources in domain 3 through domain 2.

The capabilities for an entity such as the resource manager point towards an architecture that 

resembles more the control plane of the PSTN rather than an IP network. The RM is responsible
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for controlling peer sessions across domains and terminating sessions that are in the path. To 

provide this, state is maintained at the heart of the IP network in the case of RSVP. This 

approach is similar to that provided by SSPs and SCPs in the IN architecture. The author has 

argued in [SoloOOa] that such state information could be used to describe a BCSM-like state 

machine.

Figure 6.8 also depicts a PEP, a PDP and a policy server communicating using the COPS 

protocol. The protocol relies on storing state information for all previously processed requests. 

This is because previous requests may alter the behaviour of the RADIUS server for new 

requests.

The following section moves on to discuss the presence of state in distributed object 

technologies.

6.4 U se  o f  St a t e  in  D is t r ib u t e d  O b je c t  
T e c h n o l o g ie s  &  A r c h it e c t u r e s

The focus of the work presented in this section is to identify the use and presence of state in 

Distributed Object Technologies (DOT). A comprehensive introduction to distributed 

computing can be found in [Orfa99]. All DOTs include the characteristics and mechanisms that 

are given below [VeniOO]:

■ Remote Method Invocation (RMI) is an evolution of the Remote Procedure Call [RMI] 

method for object-based distributed scenarios. While classical RPC [RFC1831] foresees the 

invocation of a function that is naturally separate from the data it handles, in an object- 

based distributed environment, RMI invokes operations (methods) on specific object 

instances.

■ Implementation-independent Interface Definition Language (IDL) defines the interfaces 

between objects. An object is characterised by a contractual interface that describes the 

methods and attributes that are available to clients [COREA95] [Quantitative97]. In a 

distributed environment, objects need to communicate even though they may have been 

implemented in different programming languages and the contractual interface defined in 

IDL enables this communication.

■ Location transparency allows objects that participate in interactions to do so without 

conveying location information or being aware of the actual transport mechanism that is 

used for this communication [Orfa99].
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The next sections discuss the distributed object architectures of CORBA and DCOM and 

Enterprise Java Beans.

6.4.1 Common Object Request Broker Architecture
The Common Object Request Broker Architecture (CORBA) is the product of the Object 

Management Group (OMG) consortium. CORBA is an architecture based on the concept of a 

common software or object bus allowing for distributed object inter-operability and providing a 

wide set of services to interacting objects [CORBA95]. The OMG has also defined the Object 

Management Group Architecture (OMA) with the goal of “providing a high level specification 

of the functionality needed for object oriented distributed processing” [OMA97].

CORBA provides a description of the interfaces and services that an OMA-compliant Object 

Request Broker (ORB) must implement in order to conform with the OMG standards 

[CORBA95]. In addition, it defines a software infrastructure to facilitate the development of 

reusable and portable applications in a distributed environment [CORBA95].

One of the services provided by the CORBA Services Specifications is that of Persistent State 

Service (PSS) [PSS99]. The PSS “presents persistent information as storage objects stored in 

storage homes. Storage homes are themselves datastores; a datastore is an entity that manages 

data” [PSS99].

A full description of the capabilities provided by the PSS can be found in [PSS99]. The focus 

here is on a small subset that is of interest to illustrate the use of state models within CORBA.

6.4.2 Enterprise Java Beans
This section discusses the Enterprise Java Beans (EJB) architecture and focuses on the specific 

issues regarding state management, presence of state and persistence. A complete and 

comprehensive coverage of the architecture can be found in [EJB99]. However, for the purpose 

of completeness a short introduction to the constituents of the architecture is provided before the 

issues regarding state are examined.

EJB is an architecture for component-based distributed computing [EJB99]. It defines a state- 

management protocol that, according to [EJB99], is simple but “provides an enterprise Bean 

developer great flexibility in managing a Bean’s state.”

An Enterprise Bean is a body of code with fields and methods to implement modules of 

business logic. Client programs interact with one or more Beans and an Enterprise Bean can be
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implemented to interact with other Beans. An Enterprise Bean is a building block that can be 

used alone or with other Beans to build a complete and robust thin-client multi-tiered 

application.

There are two types of Enterprise Beans: session Beans, which implement business tasks, and 

entity Beans, which implement business entities.

Table 6.2 provides a high level view of the comparison between session and entity Beans.

Contains conversation state Represents data in a database
Handles database access for the client Shares access for multiple users
Persists for the life of the client Persists as long as data in the database
Can be transaction-aware Is transaction-based
Does not survive server crashes Survives server crashes

Table 6.2: Session and entity beans

Figure 6.9 presents the state diagram for a stateful session Bean. Note the presence of time- 

dependent transitions, such as timeouts. These imply internally generated messages.

Instance throws system 
exception from any methoddoes not exist

create RemoveO 
or timeout timeout

method ready passive

commit ro llb a c k

method 
ready in TX

ERROR

Figure 6.9: Stateful session bean state diagram based on EJB

The presence of state for session and entity beans is related more to “transactional” state rather 

than “control” state. Transactional state information is used to decide the validity of a 

transaction on a database; control state information is used to decide, for instance, the 

availability of resources as in the other architectures discussed.
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6.5 A  St a t e -B a s e d  C l a s s if ic a t io n  o f  IP -B a s e d  
P r o t o c o l s

The work presented up to this point showed that the majority of the systems examined rely on 

state to some extent. This section provides a classification of the systems using metrics such as 

whether:

■ state is critical to the operation of the system, i.e. the system cannot function if the state 

information is lost.

■ the system is stateless or state plays a supplementary role to the operation of the system. 

Systems that maintain no state information appear in this category, as do systems where 

state is maintained but is not critical for the operation of the system.

■ maintaining session information is a requirement. This classification includes systems that 

need state information to be maintained in the form of a session, such as a system that 

maintains a history of all processed requests during a single lifecycle.

■ the use of persistent sessions is mandatory. Systems that maintain state information which 

can be retrieved across subsequent lifecycles fall into this category.

With the above metrics in mind, the Venn diagram depicted in figure 6.10 can be constructed.

Web clients without hidden fields or cookies

Stateless SIP Proxy Server
Stateful SIP Proxy Serverstateless

session
Information CORBA/EJB

AAA Framework
RADIUS

COPS Protocol

Web clients with cookies enabled Persistent
sessions

RSVP

stateful

Figure 6.10: Classification o f state-dependent architectures

Figure 6.10 represents the interactions of the various architectures. It shows that the CORBA 

and EJB architectures rely extensively on maintaining state information for their execution. Of 

course, this is not surprising as the state information that is maintained for these DOTs is 

required to provide transactional capabilities.
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The RADIUS protocol can be characterised as having a low dependence on state. This means 

that although external messages result in state transitions, there is not heavy reliance or 

communication between the states. Furthermore, the fact that RADIUS can operate over UDP 

implies that the protocol is connectionless. By design the protocol does not exhibit a high 

degree of state-dependent behaviour, otherwise it would have been designed over TCP.

Importantly, RADIUS does not support multiple requests. This implies a single-instance view of 

the protocol that partly accounts for its simplicity. If RADIUS could support multiple requests 

concurrently, it would need to provide mechanisms such as threading, queue management and 

resource management (as the AAA framework does). To provide these, a manager would be 

needed. Furthermore, the manager would have to be aware of the status of these sub-systems. 

This can be phrased in a statement that says that the complexities and overheads that arise in 

maintaining state in any form may be partly attributed to the underlying complexities imposed 

by the concurrent behaviour of such a system.

In a concurrent or real-time system, a limited pool of resources may need to be allocated to 

processes requesting these resources. Such a system needs to control access to these resources 

and to ensure that they are allocated to the requesting processes in a manner that is determined 

by a scheduling algorithm. In order for the control process to maintain a view on the status of 

the resources, there must be a way for it to keep track of the status of the resources that are 

available. Such systems explicitly impose the requirement for state-dependent actions and the 

need to maintain internal state.

The PSTN is one such system with a limited pool of resources and a large number of processes 

(individual users) making requests. The IN architecture and the SS7 protocol play a major role 

in maintaining the robustness of the PSTN. Deeply embedded within both the IN architecture 

and the SS7 protocols are state models that form an integral part of the control plane.

The AAA architecture that was presented in section 6.3.2 identified the need for the resource 

manager and its requirements. Some of the requirements that were presented include:

■ Sending of notifications from service equipment to the RM,

■ Maintaining time limits for sessions,

■ Refreshing the time limits and

■ Terminating sessions anywhere in the authorisation chain.
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Such capabilities reflect closely the functionality provided traditionally by the IN control 

architecture rather than the control plane of the IP domain. The functionality provided by AAA 

servers must exhibit the robustness usually associated with the control plane of the PSTN.

The capability of an AAA RM to terminate sessions anywhere in the authorisation chain as 

identified by [VollOOa] requires that each RM maintain state information such as active sessions 

and timers for each session. Figure 6.11 shows a graphical representation of one way that an 

AAA server could maintain a list of the active sessions and the participants in that session.
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Participant G
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Resource Manager in 
Administrative Domain 2

Session 

Participant F

Participant B
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Resource Manager in 
Administrative Domain 3

Session  

Participant E

Participant A

Figure 6.11: Distributed control with RMs residing across administrative
boundaries

The association of participants with a unique session is similar to the mechanism of the IN CS-2 

CPH that was discussed in section 2.4.6.
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Figure 6.12: Application entity structure adopted from  [Q.1208]

Furthermore, the controlling RM can be viewed as a multiple association control function 

(MACF) [Q.1208]. The associations represent the communication pipes through which one 

AAA RM communicates with another. In the case o f AAA, since an RM needs to be aware of 

all participants in an authorisation chain, this relationship can be implemented using a Single 

Association Object (SAO).

M an agem en t Platform

Figure 6.13: The management layer interface

There is a further point that needs to be examined -  the effect on the system if a management 

platform needs to have a view on the state o f multiple RADIUS servers. This problem is 

represented graphically in figure 6.13, which shows a management platform communicating 

with various RADIUS servers. Potentially such a platform could collect information regarding
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the state of the underlying resources (in this case RADIUS servers), either by requesting the 

information or by having the RADIUS servers send status information to the management layer.

If such a mechanism is incorporated into the existing RADIUS architecture, it adds complexity 

to the implementation of the protocol. This problem is further aggregated in the case where the 

resources may not be in the same administrative domain. For such a scenario a common API 

must exist that allows vendor-specific resources to communicate with the management layer, or 

any overlaid layer.

This issue is further discussed in chapter 8, where the architecture for an application server is 

presented based on the concepts of both the IN architecture and the IP-domain.

6.6 Chapter  Sum m ary  and  Research  Contributions

This chapter presented the control constructs for implementing state behaviour, the 

representation of state and the policies on state-dependent actions. A number of client-server 

architectures and protocols were then presented and examined with respect to their reliance on 

state. This was followed by a discussion on the presence of state in distributed object 

technologies, such as CORBA and EJB. The last section provided a view on state models by 

incorporating ideas that were presented in the previous chapters.

Through the work that was presented in this chapter, the presence or absence of state in various 

IP-based technologies was demonstrated in a Venn diagram. A discussion on state models 

incorporated both ideas from the work presented in this chapter regarding state-dependent 

actions and principles from the IN control architecture.

Another important issue that can be drawn through the work presented in this chapter is the 

issue regarding the classification of whether a system is state-based or stateless; this depends on 

the level at which the system is looked at. As discussed in section 6.3.1, when a single-instance 

view of a system is examined, it may lead to the system being characterised as stateless. 

However, once the system becomes distributed through middleware technologies, the system 

may then be viewed as maintaining state at the middleware layer.

In the following chapter, the implementation of a network management system is presented. The 

system was implemented by utilising the approaches to state-management that were presented 

in this chapter as well as from state models present in the IN-domain.
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C h a p t e r  7

In v e s t ig a t in g  St a t e  M o d e l s  in  t h e  

IP -D o m a in  t h r o u g h  a  W e b -B a s e d  

N e t w o r k  M a n a g e m e n t  S y s t e m

The work presented in this chapter aims to investigate the notion of state in 
distributed IP-based systems. For this, a web-based Network Management system is 

presented. The system was developed for use in the department of Electronic and 
Electrical Engineering at UCL.

7.1 Introduction

The Network Management System (NMS) allows administrators to monitor the status of the 

various devices on their network. The system makes use of the Simple Network Management 

Protocol (SNMP) [RFC1098] and standard Management Information Bases (MIBs) [RFC1155] 

[RFC1212].

In this chapter, section 7.1.1 provides the motivation for this work. Following this, section 7.1.2 

gives a brief overview of the operation of the SNMP protocol. Section 7.2 then presents the 

Network Management System and section 7.3 examines the distributed behaviour of the NMS. 

Finally, section 7.4 provides a chapter summary.

7.1.1 Motivation and Approach
The motivation for the work presented in this chapter was to gain a clear understanding of the 

issues surrounding “state” and the notion of “state” in IP-based systems. Chapters 2 and 3 

examined telecommunications control architectures, such as those of the IN, and signalling 

protocols, such as SS7. In chapter 6 state-management and the existence of state in IP-based 

systems was presented.

Therefore, chapters 2, 3 and 6 provided a clear understanding of the use of state models within 

IN-based as well as IP-based systems. For instance, chapters 2 and 3 demonstrated that state- 

dependent actions are deeply embedded within the core of the control plane of the PSTN, 

whereas chapter 6 showed that IP-based systems can be classified both as “stateless” and “state-
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dependent”, depending on the specific viewpoint. To fully examine the role of the control plane 

and the role in which network intelligence is provided, it is essential to study the notion of 

“state” by adopting the state-management techniques discussed in chapter 6.

In order to investigate the communication of distributed systems while focusing on the specific 

issue of state-based and stateless transactions in IP-based architectures and systems the author 

took the view that a useful way to examine the behaviour of such systems was to design and 

implement a relatively complex system that is used in a real-time environment, such as the 

NMS.

In the implementation of the system, the author also believed that a useful way to understand the 

state-based and stateless behaviour of such systems at the application layer was by excluding 

middleware technologies that could have taken care of the communication layer. For instance, 

middleware technologies such as CORBA [CORBA95], DCOM [DCOM][Will94] and 

Enterprise Java Beans [EJBOl] could have been used.

Moreover, a slightly similar approach was to utilise existing software patterns [Gamm95] (see 

section 6.2.1) to represent state. However, this again would involve some overheads of driving 

the state models and may have obstructed a clear view of the underlying system.

The approach that was adopted was to implement the system using message-passing to simulate 

the effects of internal state using external trigger conditions (section 6.2). These messages 

effectively make up transactions that are used to drive the distributed system from one state to 

another according to the internal state transition tables. The internal state transition tables are 

therefore explicitly defined using language-dependent constructs, such as “case” and “if- 

statements”.

The message-passing approach does not maintain persistent session state. This means that 

requests are received, processed and replied to using a request identifier that is not maintained 

across sessions. For example, if an incoming request is received and the server processing the 

request does not respond, the client will not re-issue that request, as it does not maintain a list of 

the sent requests and, therefore, does not maintain persistent state information.
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The reason for this lies in the environment of the system. Since this is a Network Management 

System, if a request is lost and the NMS server responds with a time lapse, the results of the 

request may not be reliable.*

Having introduced the motivation and approach of the work that is presented in this chapter, the 

next section provides a brief background to the SNMP protocol.

7.1.2 Introduction to the Simple Network Management Protocol
The Simple Network Management Protocol [RFC1098][RFC2570] is an application layer

protocol for the management of network devices. These network elements are called managed 

objects. Associated with each managed object is a defined set of management-related 

information. This includes variables, also known as attributes, that can be read or written to by 

the network manager via the network. Figure 7.1 depicts the components of a Network 

Management System.

workstation
Plotter

Ethernet-

A gentDA gent

nBridge PC
A gent

Network IVIanagement Station (NMS)

Printer Bus

Figure 7.1: Example o f  the components o f  a Network Management System

The management information associated with a network is kept at the network manager station 

in a Management Information Base (MIB) [RFC1155][RFC1212]. The MIB specifies the 

variables that the network elements contain. The variables have unique object identifiers 

(objectID) and use a hierarchical numbering system. For example, [RFC1213] defines the 

ipInReceives attribute as:

* This occurs in the case where the client sends a request which is received by the server, which then 

issues an SNMP request to the SNMP agent. The server obtains the result but, for some reason, does not 

respond. If the client re-issues the same request with the same request identifier and the data is returned 

by the server from the cache, it may not reflect the real-time view o f the managed device.
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“iplnReceives OBJECT-TYPE 
SYNTAX Counter 
ACCESS read-only 
STATUS mandatory 
DESCRIPTION 

"The total number of input datagrams received from 
interfaces, including those received in error."

: : = { i p 3 } ”

This identifies the attribute as a counter, with read-only access (i.e. the network manager cannot 

change this value), and a mandatory attribute. The hierarchical name for iplnReceives is: 

.iso.org.dod.internet.mgmt.mib-2.ip.iplnReceives

while the numerical value corresponding to the same object identifier is:

.1.3.6.1.2.1.4.3

A network management station is used to query this information for each device in figure 7.1. 

Such queries are handled by agents located on each of the managed objects. SNMPvl 

[RFC 1098] defines five message types whereas SNMPv2 [RFC1441] defines an additional two 

requests, as well as two new MIBs: the SNMPv2 MIB [RFC1213] and the SNMPv2-M2M MIB 

(Manager-to-Manager). A full description of the SNMP protocol can be found in [Stal99].

7.2 The Netw ork  M anagem ent  System

The Network Management System (NMS) is composed of the following main subsystems:

■ Web Server Manager,

■ Applet,

■ Network Management System,

■ SNMP Agents and

■ Database Agents.

At a high level, the aim is to allow an applet to access the managed objects.
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Figure 7.2: Interfaces o f the NMS

The web server provides the communication between the applet and the NMS. When the 

administrator logs onto the system, the applet presents a floor-view* of the requested floor. The 

floor maps represent a top-down view of all managed objects for that floor. This includes 

devices from printers to workstations, ports, hubs, routers and PCs.

The NMS controls the interface between the information that the web server requires and the 

information that the agents can provide. It controls the agents and updates the web server so that 

the web pages reflect the underlying status of the managed objects. It does this by polling the 

agents at regular intervals so that the data is updated automatically. Furthermore, the NMS is 

responsible for controlling the SNMP agents and their polling intervals, as well as setting 

SNMP traps when such requests are received from the web server.

The database agent provides an interface to the database containing information about all the 

managed objects. For each object, information in the database includes its location (i.e. room), 

the IP address (if appropriate), as well as the MIB file that corresponds to that device.

* A floor-view represents a literal top-down view of a specific floor, and the colours of the devices on that 

floor represent the status of the devices.
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The SNMP agent is responsible for collecting the information from the managed object. When 

an object is constructed, it accesses the SNMP daemon for that device. The object then uses the 

object!D to query the DB agent, which loads the appropriate MIB for that managed object. For 

example, if the SNMP agent is responsible for a router, then the router MIB provided by the 

manufacturer will automatically be loaded. The SNMP agents are threaded objects that are 

controlled by the NMS system and which can access the specific attribute from the managed 

object by using the AdventNet SNMP API [Advent].

7.2.1 Communication across the Components
Communication between the web server and the NMS is implemented using pipes, as illustrated 

in figure 7.3. Communication between the applet and the web server uses sockets, with the web 

server creating a Server socket.

The applet and the NMS are therefore responsible for controlling separate threads for incoming 

and outgoing messages; the web server establishes a connection with both the applet and the 

NMS and hence requires four threads (two for incoming and two for outgoing).

Having given a brief description o f the communication between the system’s components, the 

individual interfaces (figure 7.2) are discussed next.

AppletCommThreadNetOut

NettoServerCP■c^

ServerCPtoPipe

NMStoPipeIn thread33 d  I

S4

S2

S3

P3

P2

P4

Applet

Web Server

Network Management 
System

I AppletCommThreadNetin 

&ServerCPtoNet

NettoServerCPI Netto!

I NMStoPipeOut thread

Figure 7.3: Communication between the applet, web server and NM S

7.2.2 The DB Interface and the DB Agent
The database interface provides access to the database through the agent. Figure 7.4 shows the 

class diagram for the DB Agent.
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The methods made available by the class allow access to the relational SQL database, which 

contains all managed objects. Two methods whose function may not be apparent are getX and 

getY. These provide the x-coordinate and y-coordinate to the applet. Essentially the applet 

generates an image of the floor based on these coordinates, which are entered by the 

administrator.

« In t e r f a c e »  
dbm Interface

♦getD eviceType(int devicelD) : int | 
♦getD evice lP (int devicelD) : String | 
♦getD eviceFloor(int devicelD) : int 
♦getF loorD evices(in t floor) : Vector | 
♦getDeviceList(intdeviceType) : Vector j 
♦getPortDevices(in t devicelD) : Vector j  

^ e t X ( in t  devicelD) : int 
♦getYOnt devicelD) : Int j
♦getlconLocation(int devicelD) : String 
♦getAdditionallnfo(int devicelD) : String 
♦getM ibFile(int devicelD) : String i

Figure 7.4: The DB Agent class

7.2.3 The SNMP Agent and the SNMP Interface
The SNMP agent class uses the SnmpTarget class from the AdventNet API [Advent]. The 

public methods of the class essentially allow the NMS to assign a new agent to a specific device 

using its devID. The getStatus method informs the NMS of the status of the device.

com.adventnet.snmp.beans.SnmpTarget

" 7̂
InstanHates

_____  _ _ J_ _
SnmpAgent

(%,tfieAgent : SnmpTarget = null
ü ^ b A g e n t ; DBAgent

♦SnmpAgentQ
♦assignToDevice(devlD)

^ In d M ib F ile O

5verTriggerTime(last, current) *
►overTriggerLeveijcurrValue, maxValue, trigger) j 
findHardDiskCapacityO : int 
findNodeO : String
îetHost(ttieHost) j

HoadMibnie(theFile) 
jetEnquiryTableO : Vector

Figure 7.5: The SNMP Agent class 

A detailed explanation of the AdventNet API and MIB Browser tool can be found in [Advent].
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7.2.4 The NMS Com ponents
It can be seen from figure 7.6 that five o f the classes that make up the NMS extend the 

java.lang.Thread class. This enables the NMS to deal with multiple requests from the applet; it 

also monitors the managed objects at the requested polling intervals.

A second point to note is that the outgoing messages from the NMS are sent by the 

ResultSender class. This works as follows. When the concurrent threads o f the NMS need to 

send messages to the web server, the ResultBuffer.put() method is called by the thread and 

places the message in a buffer. The ResultSender’s run() method invokes the ResultBuffer.getQ 

method at intervals. When a message is returned by the ResultBuffer.get() method, it is sent 

using the communication pipes discussed in section 7.2.1.
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Figure 7.6: The NMS

7.2.5 The W eb Server and the Applet
The structure of the web server closely resembles the structure o f the NMS, i.e. there is a 

CommandProcessor (in both the web server and the applet) that is responsible for handling 

incoming and outgoing requests. Where a response is sent from the NMS and needs to be 

directed to the applet (without the intervention o f the web server) the web server simply passes 

the incoming message onto the outgoing thread towards the applet.
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The earlier sections described the network management system, the communication among the 

components, the internal details of the NMS components, as well as more “lightweight” parts 

such as the database agent. The next section looks at the implementation of the system from the 

point of view of the communication mechanisms adopted as well as state behaviour of the key 

controlling parts.

7.3 D is t r ib u t e d  St a t e -B a s e d  B e h a v io u r  o f  t h e  N M S
The objectives behind implementing the NMS system can be summarised as follows:

■ To design a robust system by using extensive state models,

■ To define well-structured and clear interfaces between the individual components and

■ To understand how a classical three-tier architecture operates in the IP domain.

One of the architectural characteristics of the NMS is the fact that the sources of information are 

distributed. The system queries distributed SNMP agents to obtain the status of various devices 

scattered across the network. The NMS must be able to collect the information, examine the 

configuration under which it is running, and return the results in a meaningful manner to the 

applet that is making the request.

To achieve this, the request must go through a web server (figure 7.2), reach the managed object 

and return the result. In this system, the initial constraints were imposed by the capabilities (and 

limitations) of existing protocols and architectures. For instance, the information collected from 

the devices was limited to what the MIB could provide, as well as by the capabilities of the 

SNMP protocol. Also, there are the security considerations in the communication between an 

applet, its host, and the web server. As a result, the information returned by the web server to 

the applet had to be in a format that the applet could process without requiring any additional 

resources that would break the limitations imposed by the security model of applets.

The core part of the system had to allow the transfer of information from the applet to the 

SNMP agent and back. The internal functional modules had to be designed in a way that would 

enable them to communicate internally and externally. The external communication of the 

system is defined by the interfaces identified in figure 7.2. The following interfaces were 

developed for external communication between the systems:

■ The WS Interface, between the applet and the web server,

■ The NMS Interface, between the web server and the NMS core manager and

■ The DB Interface, between the NMS core manager and the SQL database.
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The internal interfaces that were developed allowed the Message Processors and Schedulers o f 

each o f the components to send internal requests. These requests are powerful and vary from 

requests that initiate queries to the SNMP agent to management requests that query the status o f 

existing requests. As a result, through this interface, it is possible for the existing core NMS to 

be deployed in a distributed manner. For example, while on one host there would be the 

command and message processor, another would handle the management-type requests.

The modularised approach utilises well-defined messages for the internal communication o f the 

system. Therefore, it is possible for the overall architecture o f the system to be re-used and 

implemented in a completely different environment. For instance, the SNMP interface can now 

be replaced with a GSM interface for obtaining information relating to GSM subscribers.

The internal message-passing mechanism can also be further extended to include ideas from the 

IN world. For instance, when an external request is received, the internal status o f  the system is 

examined before passing it to the appropriate sub-system that deals with the implementation o f 

the request. To achieve this, internal state within the system must be maintained. This internal 

state would then be examined by the sub-system once a request is received and, if the internal 

state is satisfactory, the request is executed otherwise it is returned. For the implementation o f 

internal state, a similar approach to the IN model would be utilised using detection points and 

points in call (section 2.4.4).

M anagem ent Platform

[ Service Instance 
with FSM

Resu t Sender Processor

internalinterna

internalstate
Machine

State
Machine
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Processor Outgoing

Responses

Service Execution Environm ent

Figure 7.7: Extensions to the NMS architecture

Figure 7.7 depicts an extension to the basic architecture o f  the NMS system. Shown are the 

processors for the incoming and outgoing requests, the internal message processor, and the
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results sender. On the top, there is the management platform, which communicates with the 

service execution environment.

The extensions are introduced by the state models that are present in the incoming, the outgoing 

and the result sender components. These state models are introduced in order to maintain the 

internal state of the system, in a similar manner to the Basic Call state model in the IN.

Chapter 8 examines in detail the applicability and extensibility of this architecture as a generic 

application server that draws from IN principles, but also from the state-dependent discussions 

of chapter 6.

7.4  C h a p t e r  S u m m a r y  a n d  R e s e a r c h  C o n t r ib u t io n s

This chapter examined the notion of “state” by implementing a distributed IP-based network 

management system. The approach that was used excluded additional complexity or possible 

overheads of distributed middleware technologies. The distributed communication utilised 

message-passing.

One of the initial design decisions that had to be made was to decide how to distribute the 

system, to examine the communication between the various individual parts, but also to make 

sure that the system maintained its robustness throughout its execution. As a result, ideas from 

the IN world, which enabled distributed parts to communicate in a clearly defined manner, were 

incorporated.

The implementation of the system provided the opportunity to realise in practice the effort that 

is required in maintaining a system in a valid state that is capable of processing incoming 

requests but also supports basic fail-safe techniques.

Chapter 8 examines in detail the need for a generic application-server in an open service 

creation environment. The chapter also discusses the architecture for such as an application- 

server, based both on telecommunication and eomputer-science principles.
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C h a p t e r  8

O p e n  Pr o g r a m m a b l e  N e t w o r k s , 

A p p l ic a t io n  S e r v e r s  a n d  

N e t w o r k  In t e l l ig e n c e

This chapter looks at service provisioning in an environment where third parties can 
access core network components through specially designed interfaces and identifies 

issues that need to be resolved. One specific problem is the interconnection of service 
providers. The chapter proposes a solution to this in the form of an application server for 
third-party service providers.

8.1 I n t r o d u c t i o n
The interest in open programmable networks is gaining momentum. This can be seen by the 

increase in the number of members of groups such as Parlay and also from the increase in the 

number of conferences and publications in the field.

The traditional telecommunications environment has been one where the network has been 

under the exclusive and strict control of the incumbent operator and revenue was generated by 

services that were conceived, designed, implemented and managed by the operator. There is 

now a move towards providing open access to network components through APIs [MoyeOl] 

[Bisw98]. This necessitates the investigation of new functional entities, such as gateways, that 

enable this interconnection. These issues are the focus of the work presented in section 8.2, 

where this change in the telecommunications environment is described.

Section 8.3 presents an API Server architecture and describes its functional layers, its interfaces 

and its state models. The work presented in the section has already been presented by the author 

at major international conferences.

The API Server, after initial work, was specified in the Specification Description Language 

(SDL) [Z.lOO] and simulated using Message Sequence Charts (MSG) [Z.lOO] [Ekka95]. The 

aim of this was to investigate whether it was feasible to incorporate the proposed state models
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of the API Server within the Parlay framework. This work is presented in section 8.4. Section 

8.5 provides a chapter summary and research contributions.

8.2 O pen  N e t w o r k s

This section provides the reasoning behind allowing core network functionality to support 

independent software vendors and third-party service providers. It complements section 3.3.2.4, 

which presents two main approaches for providing APIs that open up the network.

8.2.1 Traditional View on Service Implementation
The traditional approach to telecommunications has been that the incumbent network operator 

has total and exclusive control over the network. This is illustrated in figure 8.1.

The figure shows a number of network operators and describes in detail the business domain of 

a single network operator. In this single-instance view, the network resides at the core and 

consists of control-plane architectures, such as the IN, and signalling networks, such as SS7. 

The network resources represent the components that are needed by many applications. The 

external circle represents the traditional view of the business domain for a network operator, one 

where the focus was the network. All three tiers are owned, maintained and operated exclusively 

by network operators.
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operator

End-users
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Network Operator s 
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Applications

Network Operator s 
Business Domain

Well-defined 
interfaces owned 
and maintained 
by the network 
operator

Third-party
service providers 
cannot access 
network 
resources

Third-party 
service providers

Figure 8.1: Traditional approach to service provisioning
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A number of network operators exist within the network operator cloud and network 

interconnection enables communication between different subscribers rather than the 

development of services that span multiple network boundaries. Such services are developed by 

third-party service providers; the wall in figure 8.1 represents the fact that third-party service 

providers cannot access network components within the network operator’s boundary.

This approach has resulted in network-centric communications for service delivery. The 

monolithic, network-centric approach does not allow services to access data in the enterprise 

domain for decision-making [ParlBuss99]. This is because the implementations of IN services 

run in the network domain, at the core of the network, and as a result, any third-party 

involvement in service programming is limited to customising only a small set of operational 

parameters [Laza97]. The network-centric approach is sufficient for mass-market applications 

[ParlBuss99] where there is a business case for wide appeal, such as the Freephone service, but 

unfortunately it is not sufficient for smaller applications. Furthermore, in the network-centric 

approach, the services are relatively easy to manage and can be built in a very robust fashion. 

There are also fewer security considerations to deal with [ParlBuss99].

However, there are significant disadvantages to the traditional approach. Today’s converging 

telecommunications environment requires a new approach; end users are slowly demanding an 

interoperable environment regardless of the transport network being used for a service [Taij97] 

[SoloOOb]. In the traditional approach, the network operator is responsible for the creation, 

operation and management of all applications and, as a result, it is difficult to achieve the 

necessary flexibility to deploy many customised versions of services to different customer 

groups. This leads to a long time-to-market for new applications [ChenOO] [ParlBuss99] 

[Laza97].

The move towards an open network environment can be described as an evolutionary step. The 

network operators have established a resilient core network infrastructure and it is in their 

interest to generate further revenue from core network components by enabling open access to 

elements such as SCPs, HLRs and location servers. It is the author’s view that no network 

operator would consider allowing open access unless it were deemed to be profitable, although 

regulatory pressure has also acted to direct operators in this way [ECD98/10/EC].

Consequently a new approach that combines the benefits of the network-centric approach with 

the flexibility of the edge of the network approach is desirable. Of course, in enabling such open 

access, the integrity of the network must not be hindered [Alex98].
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8.2.2 Open Network Access through APIs
The approach taken by advocates of Application Programming Interfaces (API) such as Parlay 

is to open up access to the various protected functional entities (FE) of operators to third-party 

service providers using carefully defined class libraries.

The concept of APIs is in essence very simple and requires very little group agreement or 

standardisation. This is in stark contrast to the traditional telecommunications approach, which 

is to standardise almost every aspect of the hardware, software and protocol development. 

Regardless of this, the case in support of opening up core network components has been 

accepted by incumbents, such as BT and AT&T. This is supported by the fact that BT is a 

founder member of the Parlay Group. Although APIs significantly simplify and open up access 

to the telecommunications equipment of operators to third-party service providers, some 

significant problems still remain:

Firstly, the operator needs to ensure that the access offered to third-party service providers is 

used in a manner that does not in any way hinder the integrity of the network [Alex98]. To 

emphasise this, the work presented in [Ward95] identifies issues relating to degradation of 

network integrity from the simple interconnection of networks, which does not enable open 

access to key network components. If interconnecting networks may have an impact on network 

integrity, then open access to network components must use architectures that can guarantee the 

robustness and operation of the network.

This leads to the second issue of maintaining the integrity of the interface. This means that the 

interface is used in a manner that conforms to its description. For example, if a service offering 

requires that certain calls are made in a manner described by a sequence diagram, the operator 

must ensure that requests that do not conform to the sequence diagram are dropped. 

Furthermore, in order to preserve the integrity of the network the third-party service providers in 

the enterprise domain must use the interface in a manner that is compliant both with the 

capabilities of the interface and the service level agreement with the operator. More importantly, 

the network operator must ensure that third-party service providers make use of the API in a 

foreseeable manner and, even more so, within the proper sequencing invocations which are 

acceptable to the API.

A third issue deals with billing for the services [SoloOOb]. Apart from the business issues 

regarding the billing of services, there is the question of how the billing information is conveyed 

to the operator’s platform. Moreover, mechanisms may need to be provided that allow the 

service providers to inform other service providers if a certain service is not available.
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A key element to API technologies is the gateway. This is a server architecture that provides the 

interface between client requests and the network services. Whilst it is in the interests of 

simplicity and ease of implementation for the client-server interface to be as simple as possible, 

special consideration must be given to the interface to maintain security, integrity, scalability 

and general manageability of what is essentially a fragile access to precious network resources.

Equally important is the problem of maintaining session state [SoloOOb]. Services that make use 

of network functionality are likely to be much more complex than simple client-server-type 

transactions. Within a session, services are requested by a client through code written using the 

operator-supplied APIs. The interactions between the client and the server may be hidden by the 

software interface, however the interaction cannot be ignored. There needs to be supporting 

structures that maintain the session state for a service with little or no user involvement.

Another important consideration is the scalability of service provider interactions [SoloOOc] 

[SoloOOd]. One client of a service provider may be the service provider for another client. This 

creates a hierarchy of service provider-client interactions that could get quite complex. Creating 

services and managing them is a complex task that requires new tools.

8.2.3 Hierarchical Third-Party Service Provisioning
In a hierarchical inter-working scenario an architectural framework that allows third-party 

service providers to share their APIs, without any loss of security, efficiency and integrity, is 

desirable. This framework could be extended to whatever degree of the hierarchy is thought 

relevant to the business case.
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Figure 8.2: Hierarchy o f  third-party service providers

Figure 8.2 provides a graphical view of such a hierarchical scenario. Two third-party service 

providers (3SP) are using the Parlay API to access core network resources. In turn, proprietary 

functionality is introduced and offered in the form of new services to other 3SPs. The fact that 

the 3SP space is likely to be populated by a number of service providers is represented by the 

cloud in which the service providers are placed. Under this hierarchical scenario, mechanisms to 

maintain a unifomi interface across service providers need to be implemented [SoloOOb]. This is 

the application server architecture (API Server) that is presented in section 8.3.

The API Server consists of two parts: the API Server and the management platform. The API 

Server provides controlled access to the services whilst the management platform monitors the 

service lifecycle. The management platform communicates with another management platform 

of clients and servers interacting with the API Server. The aim is to provide a platform that is 

resilient to the problems inherent in the services on offer as they are developed and put through 

early deployment. The management platform allows other 3SPs to send requests that deal with 

service availability and cost and to change QoS parameters.

In figure 8.2 interface A allows service requests to be sent across API Servers. Requests across 

this interface are likely to be sent using CORBA [CORBA95] or EJB [EJBOl]. Interface B 

allows the management platforms of different 3SPs to communicate and exchange management- 

type information. The management interface allows managers to inform each other of problems 

detected in the service. For example, if a deadlock situation occurs that is not detected by the
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service program, timers in the management platforms inform each side of the deadlock and 

trigger an exception. The management platforms can also trigger on other criteria such as 

frequency of requests and requests that are inappropriate. Interface C represents the service- 

specific requests received from end users. In most cases, the functionality offered across 

Interface C is likely to be a subset of the functionality provided by Interface A.

8.3 IN-BASED A p p l ic a t io n  Se r v e r

Traditionally, an application server is a platform that provides an environment where services 

can be executed. It may also provide a management layer for the manipulation of the services 

that are executing. Commercially available application servers include WebSphere by IBM and 

the Borland Application Server by Borland.

The proposed application server is not aimed at providing functionality that is already present in 

existing application servers. The aim of this IN-based application server is to provide features 

that in the author’s view are desirable for such a platform and indeed within the operating 

environment. As such, existing application servers may decide to incorporate functionality that 

is proposed here.

The API Server architecture draws from the control plane of the IN and also from the flexibility 

and advantages that have arisen from the IP community.

8.3.1 W hy IN-Based?
The concept of state models and state model behaviour in telecommunications has already 

proven essential to management and network intelligence applications of the core network. The 

IN control architecture and, in particular, the basie-call process and its state model, the BCSM, 

is possibly the most important state model in telephony, upon which the majority of IN services 

are based.

Call party handling (CPH) was discussed in section 2.4.6. The capabilities provided by CPH 

(such as the merging and splitting of call segments) are achieved at the expense of very complex 

and well-defined interactions between the switches involved. The concept of Connection View 

States in CS-2 (section 2.4.5) provides a way to capture all the possible configurations under 

which call parties can be connected to each other in a single state machine.

It is the author’s view that the CPH capabilities of IN CS-2 provide a powerful way to describe 

the behaviour of complex multi-party and multi-service interactions. These ideas are 

incorporated into the definition of a similar mechanism in the API Server. One of the main
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advantages of such a state model is the resilience and the proven track record of the IN model. 

Of course a state-model approach imposes overheads in terms of managing the model; however, 

it is critical to maintain a guaranteed level of service for such an API Server.

To enable the API Server to have a view of the state of the services that are executing, a number 

of initial service segments have been identified. Service segments are grouped in a similar 

manner to the IN CPH operation (section 2.4.6): the API Server maintains a service segment 

association that contains service segments that describe the state of each instance of the service. 

The following initial service segments were identified as potentially useful states:

■ Null State: This is the initial state for any new service.

■ Stable Service Execution: A call segment association containing a service segment in this 

state indicates that the service is executing.

■ Service Request: This state indicates that a new service request is received by the API 

Server.

■ Ordered Request: This state indicates that certain actions need to be executed in a specific 

order.

8.3.2 API Server Logical Interfaces
A P I S erver 2A PI Server 1

r Services jServices

Service Management 
and Control Platform

Service Management 
and Control Platform

Service Execution 
Platform

Service Execution 
Platform

Figure 8.3: Logical interfaces o f  the A P I Server

The logical interfaces across two API servers are shown in figure 8.3. The A and B interfaces, 

introduced in section 8.2.3, are included here for completeness. The logical interfaces are as 

follows:

■ Interface A enables one service provider to provide service functionality to another.

■ Interface B is the interface between the service management platforms of two API servers. 

This interface provides advanced functionality such as the remote simulation of services.

■ Interface C provides for internal communication between the service execution platform and 

the service control and management platform. It allows the service execution platform to
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inform the service management platform of status information, such as the number of 

executing services, authentication violations and service agreement violations.

Interface D allows local service implementations to inform the service execution platform of 

important events. For example, it enables a service to interrogate the service control 

platform for information pertaining to the status of the API Server.

Interface E is the application server access API that is responsible for authentication and 

service discovery.

8.3.3 API Server Functional View
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Figure 8.4: The API Server architecture

Figure 8.4 presents the functional composition of the API Server [SoloOOb], which can be 

divided into the service execution platform (SEP) and the service management and control 

platform (SCMP). Access to the server is made possible through distributed technologies such 

as DCOM, CORBA or EJB.

The service execution platform contains all the functional elements necessary for the execution 

of service logic [SoloOOc]. There are two state models, one for server requests (received from 

other service providers) and one for client requests (forwarded to other service providers). The 

server-side state machine manager (S_SSM) is responsible for handling incoming requests. 

These cause instances of services to be created and are managed using the CPH approach 

adopted by IN CS-2. Where requests need to be forwarded to other service providers, a client- 

side state machine (C_SSM) is created. Both the server and client SSMs are based on the IN 

BCSM.
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The Terminating Service Interface allows access to proprietary requests. These are incoming 

service requests that can be served without a supplementary request to another service provider 

and are handled by the Terminating Services Manager.

In addition to the server and client SSMs, the API Server requires IN-type FSMs in order to 

achieve CPH-based behaviour [SoloOOd]. These are depicted in figure 8.5, which is an 

extension of figure 8.4 and also shows the S/C FEAMs and the IN S/C FEAMs.

from client

Service M anagem ent and  Control Platform

ISI Interface

S erver S ide Client S ide 
M anager 
(C_SSM)

M anager
S_SSM)

Terminating
Service

In terfaces

Service Execution Platform

to server

Figure 8.5: Details o f  the A P I Server architecture

There are two instances of the server and client SSMs. When a new service request is received a 

service instance is created, together with the service policies. The server-side state machine 

monitors the activities of the server in the execution of a service: it goes through the lifecycle of 

instantiation, message passing, and termination and billing. The state model also implements 

points in call to allow the triggering of other services. The state machine is thus given some 

flexibility for manipulation similar to IN event and trigger detection points, although the 

supplementary services that this might facilitate are as yet undefined. The client-side state 

machine represents the client in the instantiation and message-passing phase of a service. The 

client-side is not essential in all cases. A client-side may not be implemented if end user 

applications choose not to implement it (although this is not recommended) or if a service 

request is a terminating service.
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Information held as part of a Service Policy includes supporting and conflicting services (which 

provide information on feature interaction), service order execution (necessary in situations 

where services must be executed in a specific order) and service timeout policies (required if the 

reply from a service may be needed for further processing). The service policies also contain 

information that indicates whether the particular service needs to initiate supplementary (i.e. 

dependent) services.

The IN_FSMs contain service segments and service segment associations (section 2.4.6). The 

S_FEAM creates new service segments (SS) and service segment associations (SSA) in a 

similar manner to the CPH model. The Inter-SSM Interface (ISI) allows communication 

between originating and terminating BCSM-type models. A direct link from the API Server to 

an IN CS-2 compliant node can be achieved by direct access to the IN S FEAMs and 

I NC FE AM s .

8.3.4 API Server State Model
The state model that describes the overall behaviour of the API Server is presented in figure 8.6. 

The state models that describe the behaviour of the API Server for each individual service 

request (incoming and outgoing) are described in the following sections.

initiateSessionAuthentication

authenticationSuccess

serviceRequestReceived

serviceLoadOK, features ok

terminateSession

null

EDP

EDP

EDP

EDPbilling

authentication

terminateStateModel waiting service request

authorise and load service

Figure 8.6: The API Server state model

A third-party service provider must be authenticated and authorised prior to issuing any service 

requests. In figure 8.6, following the null/idle state when the initiateSessionAuthentication 

request is received, the API Server moves to the authentication state. Here, the requesting third 

party is authenticated. A failed authentication results in an exception detection point (EDP). A 

successful authentication is followed by an authorisation check (which is part of the 

authentication state) and the authenticationSuccess event is generated internally.
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When the authenticationSuccess message is received internally, the API Server moves to the 

waitingServiceRequest state. Here, the API Server awaits incoming service requests; when one 

is received, it moves to the authoriseAndLoadService state. Here, the service level agreements 

are checked from the management platform, to ensure that the requesting party is authorised to 

initiate the specific service requests.

The API Server then moves to the billing state and applies the billing is applied according to the 

service level agreement between the third-party service providers. Billing is an important 

element of the proposed state models. Existing application servers do not model this state and 

cannot, therefore, have a clear view (from a billing perspective) on the underlying services that 

are executing on the platform.

8.3.5 Server State Model
The server state model, presented in figure 8.7, is set up when the API Server receives an 

incoming service request from a third-party service provider.

O.null

billingSuccess
serviceReqReceived

1 .authenticate

S.bllling
loadPolicies

i
2. load policies

-error-1-

- error-2-

policyLoadSuccess
__

3.load service

serviceLoadSuccess
i

4.send messages

service Teiwination

Figure 8.7: The Server state model (S_SSM)

The first state, authenticate, models the condition that an incoming request is authenticated. The 

issuing service-provider must have an agreement with the API Server prior to issuing any 

service requests. An authentication failure leads to the state model moving to the error-1 state. A 

successful authentication causes the loadPolicies transition and the state moves to the 

loadPolicies state.

Within the loadPolicies state, several metrics pertaining to the specific service are loaded. 

Service policy metrics include the following:
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■ timeOutValue -  the timeout values for the spécifié service

■ processingPowerQuantifier -  a value denoting the processing power needed for the service

■ conflictingServices -  used for detecting possible feature interference (section 2.4.3.2)

■ supportingServices -  services required for the service (during the load procedure of the 

policy, the supporting services must be available)

■ billingFramework -  information regarding the billing policy of the service.

Additional service policy metrics that were identified include ResponseTimes, ServiceGapping 

and numberOfConnections.

The state model then moves to the loadService state, where the service implementation is 

loaded. This transition causes further state changes in the service segment association for the 

specific service. For example, the service segment association may move from the 

serviceRequest to the stableServiceExecution service segment.

The following state (sendMessages) indicates that the service was loaded and is now in a stable 

condition (represented by the stableServiceExecution service segment). When in this state, the 

service is able to execute within the service execution environment of the API Server.

Prior to the termination of the service, indicated by the serviceTermination transition, the model 

moves to the billing state. Here, the customer data record is charged by the service control and 

management platform according to the billing policy of the service.

8.3.6 Client State Model
The client state model, depicted in figure 8.8, is set up when a third-party service provider 

initiates a service request to the API Server.
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3.send m essages

1 .create new service

Figure 8.8: The Client state model (C_SSM)

The state model is used to monitor the progress of the outgoing service requests. For such 

requests, it is of interest to maintain the status of the requests, but at the same time not to 

overload the API Server with what may be pointless states. Therefore, the states that are 

maintained for the client-side state model are kept to a minimum.

Once a service request is received, the state model enters the createNewService state. Here, the 

internal state variables (section 7.2.4) are initialised. The service segment associations and the 

service segments are also instantiated. When the management platform receives the necessary 

internally-generated messages from the client-side control module, it issues a 

transmitServiceReq message that triggers the sending of the request and thus the starting of the 

service.

8.4 U s i n g  SDL t o  S i m u l a t e  t h e  API S e r v e r

This section presents a simulation involving the Parlay WakeUp application example. The 

simulation was carried out using the Telelogic Tau tool, SDT. A complete description of the 

application example can be found in [ParlaySeq99]. In order to present the simulation of the 

Parlay WakeUp application example it is necessary to describe the WakeUp application.

8.4.1 UML Sequence Diagrams
This section presents two UML [Z.lOO] sequence diagrams. The first describes the sequence of 

events for any application to access a Parlay server. The second describes the operation of the 

Parlay WakeUp application example.
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8.4.1.1 Accessing the Parlay Framework

The sequence diagram in figure 8.9 [ParlaySeq99] shows an application accessing the Parlay 

framework for the first time. In order for the application to use the Parlay services, it must first 

authenticate itself with the framework and then discover an appropriate service [ParlayFw99].

lo g ic  A uthentication C ontrolM anager A uthentication M anagem en t D iscovery

1 : initiateClientAuthenticationO

2: authenticateFram ew orkO  ^

3: authenticateC lientO  

4: 'forward event'

5: obtainFram eworklnterfaceO

7: obtainFram eworklnterfaceO

6: new ()

8: new ()

9: discoverServlceO  ^

10: selectS erv lceO  ^

11: signA ppS erv iceA greem ent ()
<

12: 'forward event'

13: sIgnServiceA greem entO

14: new ()

15: new () ^

16: setCallbackO

Figure 8.9: UML sequence diagram showing an application accessing a 
Parlay Server adopted from  [ParlaySeq99]

The messages, identified by their sequence numbers in figure 8.9, are described below:

1 Determines the authentication mechanism to be used between objects 
implementing the IparlayAppLogic interface and the IparlayAuthentication 
interface

2 Used by the client to authenticate the framework
3 Used by the framework to authenticate the client
4 Forwards message 3 to the IparlayAppLogic
5 Receives a reference to the object implementing the 

IparlaylntegrityManagement interface
6 Creates an object that implements the IparlaylntegrityManagement interface
7 Receives a reference to the object implementing the IparlayDiscovery 

interface
8 Creates an object implementing the IparlayDiscovery interface
9 Requests the object implementing the IparlayDiscovery interface to pass an 

appropriate service identifier back to the application (version 1.0.1 of the 
Parlay API specification supports only call control, messaging and user 
interaction)
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10 Informs the object implementing the IparlayAuthentication interface of the 
service it requires

The application is returned information relating to the service level 
agreement, which should be signed by both parties.

11 Used by the framework to ask the application to sign the service level 
agreement

12 Forwards message 11 to the IparlayAppLogic
13 Used by the application to ask the framework to sign the service level 

agreement
14 Creates an object implementing the IparlayCallControlManager interface. 

This only happens once the service level agreement is signed and before 
returning the signature and the reference to the service manager back to the 
application via the return parameter of message 13.

15 Creates the application service manager.
16 Passes the application service manager's callback reference to the object 

implementing the IparlayCallControlManager
Table 8.1: Messages used by an application accessing a Parlay Server 

8.4.1.2 The Alarm Call (WakeUp) Application Example

Figure 8.10 depicts the UML sequence diagram for an alarm service that shows a reminder 

message. The message is delivered to a customer as a result of a trigger from an application. 

Typically, the application would be set to trigger at a certain time, however, it can also trigger 

on events. This sequence assumes that an IparlayUICall service interface [ParlaySeq99] has 

already been obtained.
: loarlavA pp : loarlavA pp : IparlavA pp : IparlavA pp 

L og ic  C all C a llL eo  U C all
: IparlavC all : IpariavC all 

Lea
: b a r la v  
U C a ll

1: new (^

2: crea teC a llO
3: new()^

4: setC a llb a ck O  

5: rou teCaIIToOrigin ation R eq O

7: ro u teC a llT o O rig in a tio n _ R es()

6: n e w a

8: 'forward ev en t'
<

9; setC a llb a ck O

10; s e n d ln fc C a ll_ R e q ()

Figure 8.10: UML sequence diagram fo r  an Alarm Call Service adopted
from  [FarlaySeqÇÇ]
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The messages, identified by their sequence numbers in figure 8.10, are described below:

1 Creates an object implementing the IparlayAppCall interface
2 Requests the object implementing the IparlayCallControlManager interface 

to create an object implementing the IparlayCall interface
3 Creates an object implementing the IparlayCall interface if the criteria (e.g. 

load control values not exceeded) are met
4 Passes the reference of the object implementing the IparlayAppCall interface 

to the object implementing the IparlayCall interface
5 Instructs the object implementing the IparlayCall interface to route the call 

to the customer destined to receive the 'reminder message'
6 Used by the object implementing the IparlayCall interface, if the call is 

answered, to create an object implementing the IparlayCallLeg interface, 
which models the call leg of the customer to receive the alarm

7 Passes the result of the call being answered to its callback object
8 Forwards message 7 to the IparlayAppLogic
9 Forwards the address of the callback object
10 Instructs the object implementing the IparlayUICall interface to send the 

alarm to the customer's call leg
Table 8.2: Messages used by an alarm call service

8.4.2 Simulation Overview
The UML specification corresponds to a one-to-one mapping of the objects that are described in 

the Parlay framework access interfaces [ParlayFw99].

The following objects were included in the SDL design for the purposes of the simulation: 

IparlayAppLogic, IparlayAppAuthentication, IparlayAppCall, IparlayCall, IparlayDiscovery, 

IparlayAuthentication and IparlayCallControlManager. The objects IparlayCallLeg, and 

IparlayUICall and IparlaylntegrityManagement were not included because these objects do not 

play a major part in the exchange of messages between the Parlay server and the application.

The following sections give a description of the system specification.* The simulation of the 

system in SDL was accomplished by specifying first the client side of the Parlay API and then 

the server side.

8.4.2.1 Client-Side Specification o f  Parlay A P I

The first phase in developing the specification of the WakeUp Application was to design a 

system containing only the signals sent and received by the client side. In this case, client side 

means the service application which offers the service and sits on one side of the interface.

N ote that “system specification” in this chapter refers to the specification o f  the system  in SDL terms.
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Figure 8.11 shows the system Wakeupapplication, containing the following blocks and signals:

■ The ParlayAccess block represents the sequence diagram of figure 8.9, grouping together 

the objects and processes responsible for the messages that establish access to the 

framework interface.

■ The AlarmCall block represents the sequence diagram of figure 8.10, grouping together the 

objects and processes responsible for the messages that offer the alarm call service. In the 

case of AlarmCall this encapsulates only process IparlayAppCall.

■ The TimeOut block represents timeouts generated by all processes. This block generates the 

following signals: AccTimeOutl, AccTimeOutl, AlarmTimeOut, AlarmTimeOutl and 

AlarmTimeOutl.

■ Channels C l, C2, C3 and C6 are the paths which carry a number of signals between the 

environment and the system. During the simulation, incoming signals are under the control 

of the specification developer and timeouts are needed to simulate the timeout of specific 

responses. In this phase of the specification, inputs that are expected from the developer and 

cause timeouts include: userReqForServ, signAppServiceAggremen, authenticateClient and 

routeCallToOrigination_Res (via channels C l, C3 and C6).

■ Channels C4, C5, C7 and C8 carry any signals which are internal to the system and 

therefore act as the interfaces between the system’s blocks.

■ A SIGNAL list is needed in the specification in which most of the signals are declared. 

Signals that have only local significance are declared internally within a block, and not in 

this list.
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Figure 8.11: Specification o f  the Wakeupapplication system

The simulation begins as follows: the ParlayAccess block encapsulates the processes 

IparlayAppLogic and IparlayAppAuthentication. IparlayAppLogic receives the userReqForServ 

signal via Cl and initiates the system behaviour by outputting the first of the signals needed to 

access the Parlay framework interface to the environment. The userReqForServ signal must be 

sent initially by the user, in order to initiate the state diagram of process IparlayAppLogic. The 

process thus begins exhibiting the system behaviour.

c
c w ait_R tQ

userReqForServ

iriiliateClienlA'jIhenlicalioJ;^ 

[----
□ulrierUicpleFrarnev.vjr'<

Figure 8.12: Part o f  the IparlayAppLogic state diagram
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Figure 8.12 shows part of the state diagram for the IparlayAppLogic process. The process 

diagram begins with the start symbol and then enters the wait_REQ state until receiving the first 

signal from the user. When userReqForServ is received and consumed by the process, the first 

outputs are sent to the environment: initiateClientAuthentication and authenticateFramework. 

In addition to the above signals, the IparlayAppLogic process also outputs trigger 1 and trigger! 

to the TimeOut block via channel C5. Process IparlayAppLogic sends these signals to trigger 

processes AccTimeOutl and AlarmTimeOutl into generating the timeouts that indicate that the 

corresponding responses to signals initiateClientAuthentication and authenticateFramework 

have not arrived within the expected time limits. Two timeouts were needed because process 

IparlayAppLogic was not expecting the response from the environment. Process 

IparlayAppAuthentication gets the response from the environment (signal authenticateClient) 

and then reports back to process IparlayAppLogic (signal forwardEvent4). Under normal 

operation, the two responses arrive on time and the timeout signals are not taken into account by 

the processes. Instead they are discarded and a transition to the next state takes place.

Figure 8.13 shows the IparlayAppAuthentication process. Signal authenticateClient should 

arrive by signal route R3. If timeout alarmTimeoutl arrives first, from signal route R7, the 

process terminates, as shown in figure 8.14.

InitlateClientAuthenticalîon.aLrthsnljcâteFfcimâwork, 
obtajnFrameworklnterfaos, discoverServica, selectService. 
signServiceAgraament, salCallbackI, selCallback2 , 
crealaCaQ, routeCaUToOngination_Req

Cl
^userfleqForSarvJ

lonvardEvertS

IparlayAppLogic
R2

R4

[newj

[{orwardEven14, j 
forwardEvefTl12 j

R6 IparlayAppAuthentication

[accTim soull.l 
accTimeouG I

R5
[alarmTimeoutl .1 
alarmTlmeout2 I

triggerl, lrigger2, 
trigger A. IriggerB. 
trigger

R7 R3

[aiilhertlicateC3ient, j
signAppSenôceAgreement I

02
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Figure 8.13: Part o f the ParlayAccess block showing process 
IparlayAppAuthentication receiving signal authenticateClient from the 

environment via channel C3
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The major sub-blocks and signals of block ParlayAccess (figure 8.13) arc as follows:

■ The IparlayAppLogic process can be regarded as the central process which initiates and 

offers the service. Of course, the process cannot function on its own; instead, the 

collaboration of all the processes defines the complete system behaviour.

■ The IparlayAppCall process establishes the service in this specification.

■ The IparlayAppLogic process sends the final message (signal conEstabl) indicating to the 

user that a service has been granted.

A number of timeout signals are generated throughout the simulation. The names of the 

processes generating timeouts were chosen according to which block was expecting a response 

from the environment, e.g. the ParlayAccess ov AlarmCall block.

%
^  wait_AUTH£ ^

autbenlicaleClis aigrm Tirrejull

fc-rwarJE>/enl4

/  ■ ^  — Vf wai1_ AGREE J
'  1--------

Figure 8.14: Part o f  process IparlayAppAuthentication.

If process IparlayAppAuthentication receives input alarmTimeoutl before signal 

authenticateClient, the process terminates. Figure 8.15 shows process ^ccT/m^Owt/generating 

output accTim eoutI. Timer T is set to one unit of time from the moment the process receives 

signal trigger2.

The rest of the timers are generated in the same fashion in their corresponding processes. All 

timers have a duration of one unit since this is only a theoretical model which does not take into 

account any real parameters of a network (for example, delay) and therefore it is not important

to have some specific duration of time in which to generate a timeout. Of course, in practice the

timers would take network characteristics into account.
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Figure 8.15: Process AccTimeOutl generating output signal accTimeoutl

8.4.2.2 Server-Side Specification o f  Parlay A P I

These processes define the behaviour of the server side of the API. Block ParlayServer 

encapsulates processes IparlayAuthentication, IparlayDiscovery, IparlayCallControlManager, 

and IparlayCall.

These processes are responsible for sending the various responses from the Parlay Server back 

to the client application Wake Up (alarm call) and, of course, forwarding the service to the 

customer. The forwarding of the service, by the server, is not shown in this specification since 

this was not implemented in the application.
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Figure 8.16: Sequence diagram o f alarm call service, adopted from
[ParlaySeq99]

Figure 8.16 shows the Wakeupapplication system, modified to incorporate the ParlayServer 

block. The ParlayServer block was introduced in the design for the specification to be able to 

show the complete behaviour of the Parlay API in an automated way. That is, the system 

simulation should run without interference from the user, except of course from the initial input 

userReqForServ. This exchange of messages between the client and server blocks needs to be 

automatic as the next phase of the specification specifies a management plane and illustrates 

how this plane could be used to monitor the application messages without interfering. The 

management plane’s function is independent from the Parlay API and runs in parallel with the 

application.

205



C2

C3

R2

iniüateClientAuthentication, 
authanticateFramQWork, 
obtain Fra mevkorkl ntarface, 
selectService, 
SignServiceAgreement

R3
I pa li a yAut h enti cation

[authenticateClient, 1
signAppServiceAg reement I

Figure 8.17: Part o f block ParlayServer showing the implementation o f  
process IparlayAuthentication interfacing to the system via R2 and R3

Figure 8.17 shows process IparlayAuthentication receiving some of the messages destined for 

block ParlayServer. It replies with the necessary outputs via signal route R3 interfaced to the 

system via channel C3.

8.4.3 Simulation
The Telelogic Tau [Tau3.5] tool with which the system was specified is supported by the 

Telelogic MSC simulation tool [Ekka95]. The MSC tool provides a way of executing the system 

under the user’s control. Any signals arriving from the environment, therefore, were triggered 

by the developer, who can observe a visual display of the generation of signals, exchanged 

between instances in the form of an MSC. Timers within the system are displayed, as well as the 

states into which the system has entered at a given point during the execution cycle.

During the various stages of development of the system Wakeupapplication, a number of 

simulations were tried out as a verification of system behaviour in order to test if the design was 

created according to the UML sequence diagrams of the Parlay specifications. The simulations 

showed that the proposed state models for the API Server architecture can function within the 

Parlay framework.

8.5 Su m m a r y  a n d  C o n c l u s io n s

This chapter presented the issues relating to open programmable networks and the way such a 

change will impact on service provisioning. Industry initiatives, such as that of Parlay, have 

generated a large interest in opening up core network resources through APIs.

However, as identified in this chapter, it is crucial that a framework exists that allows the 

communication of third-party service providers. The framework manifested in the form of the 

API Server enables third-party service providers to communicate using a common framework. 

This allows the management interfaces to access remote features of other API servers and, in
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doing so, they may even request that a service be simulated before it is released in the real 

network environment, thus reducing any effects of failure.

The API Server that was presented in this chapter is based on the proven principles of the IN 

control architecture, but also incorporates the flexibility of the IP domain. The service execution 

platform is supported by a number of robust state models that enable the local and remote 

management platforms to have a complete view of the status of the executing services.

Furthermore, the work presented here was simulated using a real Parlay example, the WakeUp 

service. The sequence diagrams of the WakeUp service were used and implemented in UML. 

The UML simulation also incorporated the proposed state models of the API Server.

The following chapter contains the conclusions and suggestions for further work that is needed 

as a result of the work undertaken by the author.
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C h a p t e r  9

C o n c l u s io n s  a n d  Fu r t h e r  W o r k

This chapter provides a summary of the main conclusions that can be extracted as a 
result of the work presented in this thesis. It also puts forward suggestions for 

further work in the field.

9.1 D is c u s s io n

The thesis provided an examination of network intelligence architectures within the converging 

telecommunications environment. Network intelligence is provided through the control plane, 

which is responsible for the establishment, operation and termination of calls and connections. 

The control plane provides a robust foundation for the communication of the functional 

components (e.g. switches) and a resilient environment for the execution of advanced services.

One of the aims of the thesis was to understand the traditional approach to network intelligence 

in the PSTN. This was achieved through the discussion of the Intelligent Network architecture, 

which is a dedicated control plane architecture. The IN defines the BCP that is encapsulated in 

the BCSM. The BCSM identifies the logical points in basic call-processing where the IN service 

logic located in the switch is permitted to interact with basic call capabilities provided by the 

switch. Service initiations can only take place within the boundaries set by the BCSM. 

Furthermore, the IN capability sets were presented and it was noted that an important and 

significant addition to the capabilities of the IN CS-2 is that of CPH (see section 2.4.6).

In the PSTN, control of the bearer connections is achieved through:

■ the extensive use of state machines

■ the ubiquitous description of the BCM

■ the complete encapsulation of the call process in the BCSM and

■ the robust nature of the signalling network and its protocols.

The state models in the PSTN control plane offer sufficient capabilities to capture the 

unpredictable behaviour of end users.

To understand the evolution of network intelligent architectures, the work examined the role of 

traditional network intelligence architectures in the converging environment. Within the
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converging telecommunications environment it is essential to enable the IN architecture to inter­

work with IP-based architectures. The ways in which the IN architecture can be used with new 

network intelligence architectures were presented in the form of a taxonomy reference model. 

The model provided a classification of network intelligence architectures and protocols in 

relation to the Intelligent Network. Within the taxonomy, a number of areas of inter-working 

were identified. One such area examined the utilisation of existing IN capabilities to support IP- 

based services.

The lEPS application was presented within the context of utilising existing IN capabilities to 

support IP-based services. This approach utilises the existing IN CS-I architecture to allow 

charging of electronic transactions on telephone bills. The lEPS does not require users to be 

holders of credit cards and therefore avoids the controversy surrounding the privacy and 

security issues associated with credit cards. The lEPS was designed, implemented, simulated 

and a patent application has been filed in the UK [lEPSPat].

Following this, the thesis examined the role of state models in IP-based systems. The work 

presented a literature review of the ways that state-driven behaviour can be implemented; using 

optimistic or pessimistic policies. More importantly the work examined IP-based protocols and 

provided a classification of these with regard to their utilisation of state information. To the 

author’s knowledge such a classification has not been provided in the existing literature. The 

work provided a classification of IP-based systems using metrics such as whether:

■ state is critical

■ state plays a supplementary role or the system is stateless

■ state between sessions is a requirement

■ persistent session management is mandatory.

However, following the work in this area, it is concluded that there is no clear line between a 

state-dependent and stateless system. A system may exhibit a state-driven behaviour but may 

not be state-based. State-driven behaviours are the actions performed in a system as a result of 

the occurrence of certain events. Such a system could be characterised as state-based even if it 

does not track the point (i.e. state) in the behaviour model of the system. Furthermore, in a 

distributed system, a heavily state-based design would track the state of all the distributed sub­

systems with which it interacts. Therefore, the reliance on state models for any system is not 

defined in a formally quantified manner. It is further concluded that the classification of a 

protocol as state-based or stateless depends on the viewpoint, level of abstraction and specific 

instance in time one takes on the protocol (sections 6.3.7 and 6.5).
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To examine the interactions in distributed, IP-based, state-dependent systems the work 

presented the design and implementation of a Network Management System (NMS). The NMS 

provided the foundations for examining the issues involved in implementing a distributed 

system that was state-driven.

A separate concept that was presented and is supported by a number of publications by the 

author is the role of the TINA service architecture in relation to the converging 

telecommunications environment (sections 2.5 and 3.4). It was put forward that the TINA 

service architecture provides a useful reference model for viewing new technologies, 

irrespective of whether a complete TINA architecture is deployed.

Through the discussions of the IN CS-2, it was put forward that the SCF in the IN CS-2 (over 

IN CS-1) is of higher importance for establishing connections. This translates to allowing 

greater control of the TINA Service Session through the SCF that is located in the 

communications session. Furthermore, in the converging environment, the work presented the 

need for two APIs: one between the service and communications sessions and one between a 

gateway (in the service session) and service providers (in the service session).

Finally, the more general case of inter-working is one in which quality of service guarantees can 

be made between homogeneous network types as well as heterogeneous network types. For 

example, one may wish to establish a call between three parties, each originating from a 

different network type. In the author’s view, the IN architecture provides an existing and 

evolving set of standards that will facilitate the migration towards these types of scenarios. 

Hence, the IN should be viewed as an important architecture for the TINA communication 

session.

Within the open service provisioning framework, the thesis identified a framework for the 

communication of third-party service providers. Such a framework is necessary as, in the 

author’s view, it will provide a solution to problems (refer to section 8.2 for discussion) that 

may arise as a result of open third-party service provisioning. The work presented an API server 

architecture that complements the Parlay API. The API server architecture draws from the 

advantages and proven track record of state machines, in the PSTN, but also incorporates 

features and the flexibility of the IP domain.
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9.2  S u m m a r y  o f  C o n t r i b u t i o n s

In chapter 1 the problem field and the approach were put forward. The chapter identified the 

aims of the work and detailed the approach that was followed in achieving the aims of the 

thesis.

Chapter 2 provided a historical background to telecommunications and examined the 

traditional approach to network intelligence in the PSTN. Network intelligence in the PSTN is 

provided in the form of the IN architecture, which was examined as a case scenario. The chapter 

provided an in-depth analysis of the IN architecture and showed that the control plane of the 

PSTN is heavily based on ubiquitous state models that inter-work closely. The main 

contribution from the chapter, presented in section 2.5, proposed a different role for the TINA 

architecture, one in which the TINA architecture can be used as a reference model for viewing 

new technologies.

The main contribution in chapter 3 is the work from the taxonomy reference model (section 

3.3). The model provided a unique view of network intelligence architectures in the current state 

of convergence and their relation to the IN. This unique view provides a clearer understanding 

of the issues involved in providing network intelligence in a converging environment. 

Developing the taxonomy model was a complex task because of the large number of 

propositions that arise in such an environment; however, the taxonomy reference model 

manages to overcome the complexities and provides a useful contribution.

Chapter 4 described the lEPS application. The importance of the system is that it enables the 

utilisation of existing IN architecture to support IP-based services. The system is based on 

existing IN CS-1 information flows and, therefore, does not necessitate any changes in the 

telecommunications environment. Furthermore, the lEPS is unique in that it provides support 

for micro-transactions. This is advantageous because it overcomes the limitations of existing 

payment systems (refer to section 4.2). The implementation and simulation of the system were 

presented in chapter 5.

The main research contribution from chapter 6 is the examination of IP-based protocols and 

architectures with regard to their utilisation of state. The work provided an overview of 

numerous protocols and architectural frameworks from the viewpoint of state utilisation. The 

importance of this is the conclusion that in some systems, the utilisation of state is imposed by 

the concurrency complexities of the system.
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To understand the complexities in implementing state in a distributed system, chapter 7 

examined presented the design and implementation of the network management system. The 

NMS is a useful contribution as it can be used as a platform for further research in determining 

the overheads involved in maintaining state-based information.

The contributions in chapter 8 are many-fold. These include the development of an 

architectural framework for the communication of third-party service providers within an open 

network environment. Furthermore, the chapter identified an API Server architecture that draws 

from the robust foundations of the IN, but also incorporates the flexibility of the IP-domain. A 

further contribution of this chapter is the definition of state machines that comply with the 

Parlay API. The state machines provide the foundations for easily providing a framework for 

the billing of services within the open service provisioning environment.

9.3 F u r t h e r  W o r k

As a result of the work undertaken in this thesis, the following areas have been identified as 

requiring further research activities.

Firstly, there is a need to examine distributed state-based systems. The work presented in this 

thesis provided the foundations for the classification of IP-based systems using metrics that 

were identified. These metrics are not formally defined or quantified. There needs to be a formal 

definition of metrics that enable the classification of systems on a scale from state-full to 

stateless. Such work could result in the definition of a state-based coefficient, which could be 

used in software engineering practices.

Secondly, the existing NMS system could be modified so that the modules are aware of the state 

the other modules are in. This would enable the quantification of the overheads involved in 

maintaining state information and such quantification is desirable. In the author’s view, when 

reading journals and publications relating to state models and concurrency, one gets the feeling 

that the overheads and complexity imposed in controlling concurrency and multi-threading are 

generally accepted whereas state models for management or billing are generally viewed as 

creating unnecessary overheads.

Thirdly, work could be undertaken to provide a quantified and fully-defined metric of network 

intelligence. Such work is desirable as there is currently no means to measure the intelligence of 

a network. However, at the same time it would be difficult to perform such measurements, 

especially in networks such as the Internet, where the topologies are not visible.
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Finally, further work is necessary to fully evaluate the work presented in chapter 8. The API 

server architecture presented has provided the foundations for a framework that enables a 

unified communication between third-party service providers. Further work in this area should 

initially focus on identifying the view of open standards groups of this architecture, although 

informal discussions by the author have shown that such a framework is desirable. Then there 

needs to be extended simulation of the existing state models with newer versions of the Parlay 

API and cooperation with existing research activities that focus on the specification of policies 

within the open network framework. Finally, the incorporation of mobile agent technologies 

within the architectural framework should be evaluated.
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