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ABSTRACT

This thesis describes the evolution of control architectures and network intelligence towards
next generation telecommunications networks. Network intelligence is a term given to the group
of architectures that provide enhanced control services. Network intelligence is provided
through the control plane, which is responsible for the establishment, operation and termination

of calls and connections.

The work focuses on examining the way in which network intelligence has been provided in the
traditional telecommunications environment and in a converging environment. In the case of the
traditional telecommunications environment, the thesis examines the Intelligent Network (IN)
architecture as a case scenario. In the case of the converging telecommunications environment,
the work focuses on examining the relation and impact of emerging architectures and protocols
and the ways in which these can inter-work with the IN. The discussion is presented using a
taxonomy reference model of network intelligence architectures and their relation to the IN. For
example, a protocol based on existing IN capabilities is presented that allows end users to

engage in electronic commerce without the need for credit cards.

The control plane architecture in the Public Switched Telephony Network (PSTN) is heavily
based on state machines. The role of state models and the reliance of IP-based protocols on state
models are also examined. For this, IP-based architectures are examined and the extent of state
utilisation is presented. This enables a classification of IP-based architectures and protocols to

be drawn with regard to state utilisation.

The role of existing network intelligence within the context of open programmable networks
and application servers is also examined. The work identifies the need for a common
communications framework between third-party service providers. This is the focus of the API

server architecture, which draws from IN concepts and from approaches in the IP domain.
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CHAPTER 1

INTRODUCTION

Changes in telecommunications technology and the telecommunications environment
provide sufficient ground for the proliferation of open service provisioning by third-
party service providers. Such advances give rise to a number of issues relating to the
control plane of telecommunications networks.

1.1 MOTIVATION

Historically, telecommunications services were designed, developed and implemented with the
traditional telecommunications network as the target environment. This is an environment with
strictly standardised functional entities that are owned and maintained by the incumbent

operator.

The telecommunications environment is changing: market dynamics, regulatory initiatives and
technological advances are necessitating changes [Melo97] [EC00] [P1110] [Haya98] [Ishi98].
Such technological and market-related [Walk97] changes have an impact on the way in which
control is provided. The control plane can be thought of as a collection of hierarchically
distributed functional entities whose aim is to establish, monitor and terminate the calls and
connections. In the traditional environment, control and network intelligence is provided
primarily by the Intelligent Network architecture. In the new telecommunications environment it
is crucial for traditional telecommunications networks and services to inter-work with IP-based
networks and services [Stro99]. The inter-operability and, therefore, the convergence process is
driven by the demand of end users for seamless service access, regardless of the transport
network. Such a level of inter-operability requires a re-think in the way network intelligence is

provided.

IP-based networks have shown explosive growth [Asat01][ITU97][ITUOO][ECO00]. Unlike in
the telecommunications domain, the drive for new protocols, services, and capabilities has come
from open groups, rather than from standardisation bodies. The IP approach does not require the
presence of an explicit control plane architecture that standardises external and internal state
models; rather, the client-server architectures of the IP world are sufficient. This is supported by

the way standardisation bodies such as the Internet Engineering Task Force (IETF) operate.
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1.2 AIMS AND OBJECTIVES

The thesis examines and identifies the control plane mechanisms that enable network
intelligence in both telecommunication and data networks. In telecommunication networks,
specifically the public switched telephony network (PSTN), a major architecture contributing
towards control and intelligence is that of the Intelligent Network (IN). The thesis examines the
IN architecture as a case scenario in order to pinpoint the mechanisms through which it enables
services and therefore intelligence to be provided in a complex and distributed network such as
the PSTN.

The work also aims at examining how the traditional view of network intelligence is affected in
the converging environment of telecommunication and data networks. To achieve this, the
thesis examines current and evolving IP-based architectures and suggests ways in which inter-
operability with network intelligent architectures in the PSTN can be achieved. By doing this,
the author presents a taxonomy that classifies numerous packet-switched protocols and their

relation to the IN architecture.

The thesis also puts forward a classification of existing IP-based protocols according to their
utilisation of state and state-dependent actions. The work shows the way in which state can be
implemented and discusses the need for state-utilisation. More importantly, the author identifies

some of the complexities that necessitate state-utilisation.

Finally, the thesis looks at the issues relating to the control plane within the framework of open
programmable networks and initiatives for service provisioning by third-parties. The aim is to
present an architecture for third-party service providers that draws from IN principles for

providing control and intelligence.

1.2 THE PROBLEM FIELD AND THE APPROACH

The problem field that this research work focuses on is that of the control plane in next
generation telecommunications networks. The control plane is of crucial importance in the
converging environment of telecommunication and data networks. Unless there is a clear
understanding of the way in which network intelligence can be offered — through the control
plane — the inter-working of telecommunications services will be problematic. The problem
statement can be summarised as: “What is the role of network intelligence and the control plane

in next generation telecommunications networks?”’
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The approach the author has adopted is one that represents a mixture of practical and theoretical
work. The theoretical work focuses on the role of the control plane in traditional and evolving
telecommunications networks and services. The practical work involves the implementation and
simulation of three systems, the aims of which were to: examine the role of existing intelligent
network infrastructure; analyse the role of the control plane in a distributed system in an IP-
based environment; and to propose an application server architecture that is based on concepts

from the IN world, but also draws from the flexibility and openness of the IP domain.

1.3 SUMMARY OF MAIN CONTRIBUTIONS

The thesis presents both traditional and emerging network intelligence architectures within the
converging telecommunications environment. By doing this it provides a unique view of the
current state of convergence. This is a useful and important contribution. The classification
presented in chapter 3, provides the reader with a chronological snapshot of the convergence
between telecommunication and computer science practices, principles and approaches. Such a
classification has not been published before, and it is the author’s view that the taxonomy is
useful for the categorisation of nmew computer science and telecommunication-based
architectures and their relation to the Intelligent Network. At the same time, such a
classification is important as it enables a reader with little background in either of the two fields
(telecommunications or computer science), to quickly understand the relation of existing

network intelligent architectures to the Intelligent Network.

The author also presents an application for e-commerce, based on the Intelligent Network
architecture, with support for micro-transactions without the need of credit cards. The
application was designed, implemented and simulated by the author. Furthermore, a patent
application was also filed [IEPSPat]. The application is entirely based on existing IN

capabilities, and requires no change in the telecommunications environment.

Another important contribution is the classification of IP-based architectures with respect to
their utilisation of state. The author scrutinises numerous IP-based protocols and frameworks
and shows that although some systems may be characterised as “stateless”, the complexity of
their operating environment may impose the introduction of “state” and/or “state dependent
actions and events”. Specifically, the author argues that in certain systems, the utilisation of
state is imposed by the concurrency complexities of the system and not the complexities of the

system per-se.
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The thesis also puts forward an architectural framework for the communication of third-
party service providers within an open network service provisioning environment. The
framework, proposed by the author, conforms to the Parlay API’s framework interfaces for
allowing the interconnection of third-party service providers. The architectural framework is
based on the principles of the IN control architecture and also on the flexibility exhibited by IP-
based architectures. Incorporated within the framework are state machines that aim and achieve
to simplify the billing and management of services in an open network environment. The

framework is necessary as new third-party service providers are

The work presented in this thesis is supported by the following publications of the author:

1. C. Solomonides and M. Searle, “IN and the INternet”, University College London,
London Telecommunications Research Symposium, London, July, 1998.

2. C. Solomonides and M. Searle, “Relevance of Existing Intelligent Network
Infrastructure to the Internet”, University College London, Lecture Notes in Computer
Science, Springer-Verlag, Sth International Conference on Intelligence and Services in
Networks, IS&N'99, Barcelona, Spain, April 1999.

3. C. Solomonides and M. Searle, “4n Intelligent Network E-Commerce Protocol”,
University College London, 38th European Telecommunications Congress, Utrecht,
The Netherlands, August 1999.

4. C. Solomonides and M. Searle, “Evolution Towards the TINA Service Architecture
Through PINT and Parlay”, 6th International Conference on Intelligence in Networks,
17-20 January 2000, Palais Des Congres D'Archachon, Bordeaux, France, 2000.

5. C. Solomonides and M. Searle, “Intelligent Network Application Programming
Interface Server Architecture”, University College London, IEEE IN 2000 Workshop,
Cape Town, South Africa, May 2000.

6. C. Solomonides and M. Searle, “Network Intelligence, APIs and Service Creation”,
University College London, 39th European Telecommunications Congress, Limerick,
Ireland, August 2000.

7. C. Solomonides and M. Searle, “Application Server Architecture for Open Networks”,
University College London, London Telecommunications Symposium, London,

September 2000.
1.4 THESIS OUTLINE

Chapter 2 provides a short background to telecommunications concepts that are relevant to this

thesis and discusses the traditional approach to network intelligence. The Intelligent Network is
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presented and the mechanisms through which it provides the control plane for

telecommunications networks are analysed.

Chapter 3 aims at examining current research activities in network intelligence and presents
these in relation to the Intelligent Network architecture. It also examines the new role of the
Intelligent Network: that is, the IN as a control architecture that provides ways to initiate
services on the PSTN. Within this context, the chapter discusses ways of using the IN as it
currently is but also identifies the additional functionality that is needed within a converging

environment.

One of the areas in which the existing IN control architecture can be used unchanged is for
providing authentication, certification and electronic commerce capabilities. This is examined in
chapter 4, where a specific application area uses legacy IN to provide a desirable, secure and
trusted platform for IP-based payments. The strength of the protocol that is described lies in its
ability to handle micro-transactions on behalf of the end users, without the need for credit cards.

The implementation and simulation of the protocol is presented in chapter 5.

Chapter 6 examines the notion of “state” in IP-based protocols and architectures. The chapter
presents the ways in which state can be maintained and implemented. Following this the chapter
provides a classification of various IP-based architectures with respect to their reliance on state-
dependent actions. The work presented in chapter 6 is applied in chapter 7 by presenting a
network management system which aims at examining the control aspects in a distributed
system. The network management system presented in chapter 7 draws from traditional
telecommunication principles, but also from techniques traditionally found in the data networks

environment.

Chapter 8 presents an application-server architecture based on principles from the IN
environment, but also from computer-science practices. The application server that is presented
in aimed towards third-party service providers. The chapter examines the need for such an

architecture within the overall framework of open network service provisioning.

Finally, chapter 9 gives the conclusions regarding the research work presented and provides

suggestions for further work that may be undertaken as a result of the author’s work.
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CHAPTER 2

TRADITIONAL APPROACH TO
NETWORK INTELLIGENCE

The aim of this chapter is to develop an understanding of the traditional role of
network intelligence in telecommunications. This is done by outlining some key
concepts such as switching, the role of signalling and their relation to control
architectures such as the Intelligent Network. In doing this, the chapter presents a useful
background to the new research conducted.

2.1 INTRODUCTION

In chapter 1 it was mentioned that one of the aims of the work is to examine the role of the
control plane in traditional telecommunication networks. Chapter 2 supports this aim by
examining the way in which control has been achieved in traditional telecommunications
networks. Hence, a large section of this chapter deals with the control mechanisms and

architectures that form part of today’s telecommunications networks.

Network Intelligence is a term given to the group of architectures that provide enhanced
control services. A number of these will be examined in this thesis. One important example of
network intelligence is called the Intelligent Network (IN) [Q.1200-Q.1205], discussed in this
chapter. The IN is implemented as an overlay to the voice network and facilitates advanced call

control services through its capability sets (CSs).

Telecommunications networks have been developed to support voice services. The basic
services of such networks are discussed in section 2.1.1, while section 2.1.2 discusses the way

service logic is distributed in an IN and non-IN environment.

Section 2.1.3 gives a brief history of the development of the telecommunications network. The
motivation for providing a historical walkthrough is to understand that the evolution of a
telecommunications network has been driven by the need to provide voice services with an

extremely high quality of service. This basic requirement has also driven the characteristics of
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the traditional telecommunications network. The fundamental characteristics of a

telecommunications network are at odds with the features of an Internet Protocol network.

A telecommunications network typically comprises a number of planes. From the point of view
of this thesis, the main ones are the transport and control plane. The transport plane provides the
bearer connections on which voice channels are transported and the control plane supports the
bearer channels through the signalling services. Section 2.2 examines the control plane and, in
particular, the switching and signalling aspects of a telecommunications network. The key

signalling protocol is Signalling System No. 7, which is discussed in section 2.3.

The IN control architecture is presented in detail in section 2.4, where the focus is to identify the
major characteristics of any network intelligent architecture. An essential element of the IN is

its reliance on state models, which will become apparent through the discussions in this chapter.

While architectures such as the IN focused on standardising the technical issues, others such as
the Telecommunications Information Network Architecture (TINA) [TINA-GA] had a wider
scope, attempting to address and standardise less technical issues such as the business and
managerial structures [TINA-BM]. The TINA model is presented in section 2.5. However, the
focus is on the relation of IN to TINA, rather than the TINA architecture per se. Finally, section

2.6 focuses on the use of state models in telecommunications networks.

2.1.1 Introduction to Telecommunications Networks
The aim of any communications network is to provide channels for the exchange of

information.” In the traditional telecommunications world, the aim of the communications
network has been to provide for the transfer of speech. This has driven the structure and

characteristics of the network.

Telecommunications networks have evolved significantly since their original conception even
though, to a certain extent, the basic service offering has remained unchanged throughout this
time. This is because the design requirements of the telephone network were set by the

characteristics of human voice, which have not changed.

The telecommunications network is referred to as the “Public Switched Telephony Network”

(PSTN). This has evolved from the traditional “plain old telephony service” (POTS) and adds

" In traditional telecommunications involving voice, these “channels” can be thought of as physical

connections between the two subscribers.
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new services such as freephone, credit card calling, etc. The rest of this section presents the

basic concepts of the PSTN.

A network involves the interconnection of resources. The network topology dictates the number
of links that are required, the cost of the deployment, and possibly, the robustness of the
network. As the network becomes distributed across geographical regions, there is a need for

this interconnection if two or more networks are to communicate.

A subscriber in the PSTN can place a call from any geographical location to another subscriber
who might be located thousands of miles away. This can be achieved using a hierarchical
architecture of interconnected network components (see figure 2.1) between any two parties
involved in a conversation. Having achieved the interconnection of these geographically
distributed networks, there is a requirement to notify network components (residing in the core
of the network) so that one subscriber can initiate a call to another. This is achieved using
switching and signalling. The process of switching and signalling results in resources (channels)
being allocated between the calling (originating) and the called (terminating) parties. This pre-
allocation of resources for the duration of a call’ is a fundamental principle in
telecommunications networks. The PSTN approach is in stark contrast to the approach of data
networks such as the Internet, where no pre-allocation of resources takes place. The details

involved in switching and signalling are the focus of the work presented in section 2.2.

Making a connection and allocating the resources requires a call to proceed through the
following phases:
1. Pre-selection: where a new call request is recognised and decisions on how to deal with
the call are made.
2. Call completion: the originating and terminating parties are connected and the charging
process is initiated.
Conversation
4. Release: the call is disconnected, releasing the allocated resources, the billing record is

completed, and the network returns to the normal (idle) state.

" When channel-associated signalling is used (section 2.2.3), the resources are allocated when the

subscriber’s handset goes off hook and the “Setup” signal is received by the local exchange.
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International Exchange

Tertiary Exchange

Secondary Exchange

Local Exchange

Local Loop

Figure 2.1: The hierarchy ofthe PSTN network

2.1.2 Distribution of Service Logic

This section discusses the way in which service logic is distributed in two environments. Figure
2.2 illustrates the implementation of a service without an IN eontrol architecture; figure 2.3
illustrates the way a service is implemented with an IN architecture. The section discusses the
two approaches to service distribution and implementation and puts forward the principles,

advantages and basic operation of the IN.

Operations Administration

and Management .
services 1..n

(0 AM)

Switch A Switch B Switch C
Service Logic Service Logic Service Logic
Service Data Service Data Service Data

Basic Call Processing Basic Call Processing Basic Call Processing

Figure 2.2: Switch-based service provisioning in the traditional POTS
environment adoptedfrom [Mage96]

Figure 2.2 depicts the components of the switches and the way service logic is distributed
without the IN control architecture. The switches enable the connection of subscribers located at
the edges of the network. Its components are the service logic, service data and basic call-

processing functionality.
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The implementation of services without an IN control architecture has a number of
disadvantages [Ambr89][Eple90][Z01z92][Filk00]. The switches may be from different vendors
and, as a result, the service logic and data have to be customised for the vendor-specific
platform. To introduce new services, the service logic has to be implemented on all the switches
and this task is costly due to the geographical distribution of the switches. Subscribers can only
access services implemented by the local switch, unless the service logic is identical throughout

the network.

To achieve homogeneity at the switch-level means that a substantial proportion ofthe operator’s
revenue and time is spent in updating the service logic at the switches. This is costly, time-
consuming, and inefficient and, unfortunately, it was the only approach available until the

introduction of the Intelligent Network architecture.

With the introduction of the Intelligent Network, it became possible to implement a service in a

more efficient manner, as shown in figure 2.3.

SOopP

Service Logic

Service Data

Switch A (SSP) Switch B (SSP) Switch C (SSP)

Basic Call Processing Basic Call Processing Basic Call Processing

Figure 2.3: Service provisioning in an IN environment

The service logic now resides in a central node, called the Service Control Point (SCP). When
the individual switches require additional service functionality, that may not present in the

switch, it is provided by the SCP.

The separation of basic call-processing from enhanced service logic enables the rapid
provisioning of new services [Kun97]. This is because service logic is now centrally located,
and there is no need to individually update every single switch; a single update on the SCP is

sufficient.
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To illustrate the operation of an IN service, the freephone service* is presented in figure 2.4. The
following communication channels are used: communication between the Service Switching
Point (SSP) and the SCP/Service Data Point (SDP) is achieved via the signalling network, while
communication across the SSPs (switches) is over the bearer connection. The signalling links
are shown in figure 2.4 using dashed lines while the bearer connection is represented using the

solid line.

The process begins with the initiating party dialling “0800192192”. The local exchange (switch
A) recognises that this is a specific service access number as it begins with “0800”. It therefore
queries the SCP for call handling support. The SCP then queries the SDP, which contains a
database, in order to translate the “0800192192” logical number to the specific destination
number, for example “02073342123”. This translated number is passed back to switch A and
call handling resumes. Switch A now has sufficient information to be able to set up the call, i.e.
to establish the corresponding bearer connection to the appropriate final destination. When
either of the two subscribers hangs up, the call is terminated in the usual manner (i.e. by moving

to the Release phase).

scp 0800-192192 sop

Service Logic

Data
Service Data 02073342123
0800-192192
<3 02073342123
Switch A (SSP) Switch B (SSP)
Basic Call Processing 6 Basic Call Processing
- 0800-192192
02073342123

Figure 2.4: IN implementation o ffreephone service

The freephone service proved to be a desirable service with network operators and customers

alike. Indeed, British Telecom’s reason for adopting the IN architecture was to enable freephone

*Freephone enables a calling party to dial a number without incurring charges. The call is charged to the

terminating party.
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and call-stream services [OBri89]. NTT in Japan, introduced an IN-like architecture in 1985,

and the first service that was made available was freephone [Suzu93].

This introductory section provided a short description of the various elements that are involved
in a modern telecommunications network. In summary, the main concepts that were introduced
include the hierarchical and distributed nature of the network, the presence of a separate
signalling network to that of the bearer connections, the fundamental requirement of the
sharing of resources and their explicit allocation, service provisioning with and without the
Intelligent Network, and some of the advantages of the Intelligent Network. These concepts

are further discussed in the following sections in this chapter.

Firstly, however, there is a short chronological walkthrough of the telecommunications
developments up to the point of the introduction of the Intelligent Network to show that, at the
initial conception of the telecommunications network, there was intelligence at the core, which

was then removed.

2.1.3 Historical Switching and Signalling
The aim of the POTS network was to provide the capability for voice communication among

subscribers. At the time (late 1870s), the approach adopted was to interconnect subscribers
through local offices. Within these offices, human operators were responsible for physically
connecting the circuit between the caller and the destination subscriber using a switchboard.”

This process is now known as circuit switching.

The presence of the human operator provided the “network” with a very significant capability —
that of intelligence. Operators were in a position to know that the doctor was not at home, but at
a friend’s house — and in this way could re-direct the call. In today’s environment, this is call
forwarding. Furthermore, unwanted calls were filtered (call-screening) and messages could be
left with the operator (voice-mail). When either of the two parties ended the conversation, the
operator would terminate the connection. This would release the bearer channels and resources
were no longer explicitly allocated to the two parties. It can be deduced that the explicit

allocation of resources has had its roots in the original conception of the network.

While the services described above were provided by the human operator, other services, for
example, call queuing and call waiting were more difficult (if not impossible) to achieve,

because of the limitation in the number of resources (bearer connections) and not due to lack of

* At the time, subscribers were important people in the community, such as doctors, policemen, etc.
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intelligence. What is more, as the number of subscribers grew, operators struggled to keep up
with the demand for switching [Russ98]. It then became evident that if the switching and
connection process could be automated, it would provide lower running costs and therefore
increased profits. Increasing the speed of the connection process also meant subscribers would

spend more time talking rather than waiting to be connected.

The automation of the connection process required a component that could automatically switch
and connect the originating and terminating parties. Unfortunately, the introduction of

automated switches also removed the intelligence that was present.

2.1.4 The Strowger Switch
The first automated switch came from an unexpected source. Almon B. Strowger was an

undertaker in Kansas City, USA in the late 1890s. The story says [AGCS] [Lesh98] [TeRe00]
that there was a competing undertaker locally, whose wife was an operator at the local telephone
exchange. Whenever a caller asked to be put through to Strowger, calls were deliberately put
through to his competitor. This obviously frustrated Strowger greatly and he set about devising
a system that would reduce the reliance on the human part of the equation. Strowger developed
a system of automatic switching using an electromechanical switch based around
electromagnets and pawls [AGCS]. With the help of his nephew, Walter S. Strowger, he
produced a working model in 1888 under US Patent No. 447918 dated 6/10/1891.

There was now however a need to re-introduce the network intelligence and the “advanced
services” that were removed. Of course, the electromechanical switch developed by Strowger
did not provide the necessary “environment” to be “software-controlled”. Software within

switches was introduced with the development of Stored Program Control (SPC).

By the early 1960s, advances in computer science” made it possible to develop software which
could control devices. In May 1965, the No. 1 Electronic Switching System was put into
commercial service in Succasunna, New Jersey. The switch utilised technology with a relatively
slow central control, very expensive memory (Ferrite sheet and Twister), and slow peripherals
[Memm90]. These factors adversely affected the development of SPC-type switches — the

competing crossbar systems were cheaper to manufacture.

In the early 1980s, digital switching began to appear and distributed control was more widely

adopted — together with its overheads [Memm90]. Multiple control programs were accompanied

* Such as the introduction of the silicon transistor by Texas Instruments.
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by multiple distributed databases and interactions among distributed programs and databases
were a challenge. The software development practices in the 1980s did not exactly follow the
software engineering principles of abstraction, coherence or decoupling [SommO1]. Instead,

software was characterised by the “spaghetti approach” and endless use of the “goto” keyword.

The rest of this chapter focuses on discussing the role of switching and signalling, followed by a

detailed description of the IN control architecture.

2.2 SWITCHING AND THE ROLE OF SIGNALLING

In an ideal world, communicating parties would be physically interconnected across a medium
with no loss, delay or bandwidth limitations. In practice it is impossible to physically
interconnect all the communicating parties in a mesh arrangement due to scalability, practicality

and logistics.

Figure 2.5: A fully interconnected mesh topology

Equation (1) presents the total number of links that are required if » nodes are to be connected in

a fully-meshed arrangement, as shown in figure 2.5.

n*—n
2

(M

This is expensive if the number of nodes is large, as in the case of the PSTN where the number
of nodes is in the order of millions. For this reason, from its infancy the telecommunications

network has adopted a hierarchical approach (see figure 2.1).

In order to enable the network to interconnect two subscribers in a hierarchical topology,
switches (that are controlled through signalling) must be placed along the transmission path to
direct the bearer connections from the caller to the person being called. The process of
switching allows the physical interconnection of subscribers by directing a call path in a way
that enables the caller to establish a bearer connection to the party being called [Russ98]. The
size and position of the switches are carefully chosen using network planning and performance

measurements, as their cost is very high.
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The signalling network is used to control the switches and its aim is to establish and maintain
control connection paths through the link-by-link setting up of a path [Russ98]. In doing so,
valuable resources are allocated by the switches to establish the connection. To maintain the
signalling network in an operational state and increase robustness, some of the links at the

various levels are interconnected (see figure 2.1).

The interconnection increases robustness in the case of link failure at the physical and transport
planes. However, due to the importance of the signalling network it is also vital that the

signalling protocol maintain mechanisms that provide resilience and robustness.

Signalling protocols such as Signalling System Number 7 (discussed in section 2.3) define
ubiquitous state models to assist in ensuring the robustness and reliability of the signalling
network. The concept of state models is a central issue to the work presented in this thesis (see

particularly sections 2.6, 3.5, 6.6 and 7.3).

The signalling network is divided into two parts: the access network and the core network.

2.2.1 Access Network
The access network is defined as the part of the network between the end terminal and the local

exchange. Access network signalling in the POTS network utilises a very simple analogue
signalling scheme called Dual Tone Multiple Frequency (DTMF) [ETSI TS 101 235]. DTMF
signalling uses a set of audible frequency tones in response to buttons being pushed on the

telephone. The goal is for the telephone device to signal to the exchange across the user channel.

In the case of private businesses, the customer premises do not have a single telephone line but
a large number of telephones in a private network. In such cases, a business often possesses a
Private Branch Exchange (PBX). PBXs control the routing of calls within the business
organisation and provide customised services between offices of the same company. These
services include the allocation of personal number extensions across multiple office sites. The
Digital Private Network Signalling System (DPNSS) is a scheme that interfaces the PBX with

the local exchange. Access signalling has differing requirements from the trunk (core) network.

2.2.2 Core Network
The core network is the part from the local exchange to internal signalling points, such as

Signal Transfer Points (STPs). Core (inter-exchange) signalling between exchanges or switches

establishes the resources for a call and optionally communicates supplementary service

30



requirements to an intelligent network platform, such as the Intelligent Network. The core
network uses core signalling schemes and protocols. SS7, the ubiquitous inter-exchange
signalling scheme, has evolved from a previous version named Common Channel Signalling
System No. 6, developed by the ITU-TS (formerly CCITT) in the mid-1960s. SS7 employs

digital signalling.

Early signalling methods were limited because they used the same circuit for both signalling
and voice. The circuit would be busy from the time the caller started dialling until the caller
went “on-hook”. A solution to this was to separate the signalling and the bearer connections.
This way, the call setup and teardown procedures required with every call could be faster. Voice
and data circuits could be reserved for use when a connection was possible, instead of

maintaining the connection even when the destination was busy.

Channel-Associated Signalling Common-Channel signalling

Bearer channel

Switch Switch
Signalling for
bearer channel 1
Control Control Switch Switch
System System
Bearer channel 3
Control Control
System System

Common Signalling

Signalling for Channel

bearer channel 3

Figure 2.6: Channel-associated and common-channel signalling

2.2.3 Channel-Associated Signalling

In channel-associated signalling (figure 2.6, left), the signalling messages are sent across
logical signalling channels that are dedicated to each speech channel. In other words, although
the signalling channel may be a separate physical channel from the voice (bearer) channel, a
dedicated channel is allocated to support the voice call. The disadvantage of this technique is
that signalling resources are provided regardless of whether the voice channel needs it. There
are times in a call, such as the mid-call period, when less signalling information is required. At
such times it would be useful if the signalling channel could be used for another signalling

circuit.

2.2.4 Common-Channel Signalling

In common-channel signalling (figure 2.6, right), signalling for a number of voice channels is
aggregated into a single shared (common) signalling channel. The introduction of separate
signalling links means that a bearer (voice) connection is only utilised if a connection can be

established. As a result, the availability of voice circuits is higher and the need for additional
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circuits decreases. Common-channel signalling schemes include SS6 and SS7, as well as the

DPNSS and its successor QSig [ECMA-143],

2.3 COMMON-CHANNEL SIGNALLING SYSTEM NO.7

Figure 2.7 depicts the Common-Channei Signalling System No. 7 (SS7) protocol stack in
relation to the OSI reference model [ISO-IS7498-1]. In contrast to IP networks, SS7 networks
do not adhere to the full seven-layer OSI reference model. This is because SS7 was developed

before the OSI reference model. SS7 adheres to a four-level model.

OSI layers 857 levels

Mobile Application Intelligent Network
Part Application Part

Application layer Transaction Capabilities

Application Part (TCAP)

Presentation layer
Session layer

Transport layer

Signalling Connection Control Part
(sccp)

Network layer

Message Transfer Part (MTP)

Data link 1
ata fink fayer Levels 1-3

Physical layer

Figure 2.7: The SS7 protocol stack in relation to the OSI reference model

The Message Transfer Part Levels 1-3 [Q.701] define the physical transport, the data link
layer and the network layer. As in the OSI model, each layer is responsible for delivering a
service to the layer above it. In the case of call-connection, MTP-3 provides an end-to-end
packet-based transfer that routes signalling packets based on a unique element address
called a Point Code (PC).

The User Parts are shown as the shaded areas on the right. The Telephony User Part
(TUP) [Q.721-Q.725] is a set of well-defined messages for the establishment,
conversation and termination phases of a call. Many national variants of TUP exist
including the BTUP in the UK and SSUTR2 in France. In the USA, the ISDN User Part
(ISUP) [Q.761-Q.767] is used and supports ISDN services including the establishment

and control of data channels.
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The Signalling Connection Control Part (SCCP) [Q.711-Q.716] provides connection-
oriented and connectionless services.* A significant feature provided by the SCCP layer is
global title translation™ [Q.711]. Through global title translation, it is possible for any
signalling node to communicate with any other signalling node, even if the address of the
destination node is not known by the originating node. For instance, there may be cases
when Service Switching Points (SSPs) need to communicate with Service Control Points
(SCPs). If the SSP does not know the address of the destination SCP, the Signal Transfer
Point (STP) provides the address, through global title translation.

The Transaction Capabilities Application Part (TCAP) [Q.771-Q.775] is designed for
non-circuit related messages. TCAP messages are destined for database entities as well as
actual end-office switches. TCAP therefore allows end-to-end client-server invocation of a
service. The first usage of the TCAP protocol was for freephone number translation (see
section 2.1.1).

The Intelligent Network Application Part (INAP) [Q. 1208] is the application layer. It

provides the information flows between IN elements.

The physical elements of the SS7 network are named Signal Points. As in IP-based networks,

the SS7 network uses packet-switching for transferring messages across the network. Signal

points can also perform message discrimination and route messages to another signal point.

SCP

sSSP

STP STP

SSP

SSP

SSP
STP STP

ssp SSP

Figure 2.8: Signalling points within the SS7 network

*Connectionless services use parameters to emulate a connection-oriented service.

" Arguably, global title translation is similar to the service provided by Domain Name Servers (DNS) and

the Address Resolution Protocol (ARP) in the IP domain. A domain name server in one zone initiates a

request to a domain name server in a different zone, while global title translation requires a “number

translation service” for a specific point-code. A network node makes an ARP request to a logical IP

address which is matched to a physical Ethernet (hardware) address, while an STP refers a point-code

request to a higher-level STP; and this is similar to a referral in the DNS.
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There are three different types of signalling points (as illustrated in figure 2.8). These are the:
» Service Switching Points (SSPs) represent the local exchange in the telephone network by
converting signalling from the voice switch into SS7 messages.
» Signal Transfer Points (STPs) serve as routers and are responsible for directing requests to
and from the SSPs.

= Service Control Points (SCPs) serve as an interface to databases.

Figure 2.8 illustrates a key functional requirement of the SS7 network, which may be apparent
from the links. This is to remain operational at all times and, as far as the physical layer is
concerned, it is achieved by using alternative links to some destinations. For instance, for SSP-B
to be completely isolated, all links to STP-4 must fail. This redundancy means that all signalling

points can be accessed even if some of the links fail.

2.4 THE INTELLIGENT NETWORK

This section provides a detailed description of the Intelligent Network architecture. The
Intelligent Network architecture is of importance to the overall work presented in this thesis
because it shows how control and network intelligence has been achieved in a complex network,

such as the PSTN, through the extensive use of state models.

One of the aims of this section is to provide the reader with the technical details and an
appreciation of the architectural complexities within it. Arguably, the complexities of the IN
architecture have been both its strength and its weakness. In the former case, the rigid, clear and
concise definition of the architecture in ITU Recommendations in Series Q.1200 that span
thousands of pages have enabled the IN to provide a common architecture (in theory) for the
robust control of the PSTN network. However, at the same time a “limiting” or “failing” factor
has been the time delay that is inherently present if a body such as the ITU" tries to standardise

on such a huge and ambitious architecture as the Intelligent Network. This is in stark contrast to

* Standards produced by standards organisations such as the ITU-T and ISO are called de jure standards.
These are stable and easily socialised in the global sense. In the past, de jure standards usually took a long
time to set. For example, CCITT (ITU-T’s predecessor) Recommendations were approved by the Plenary
Assembly held once every four years [Asat01]. Furthermore, according to the same reference, “one of the
biggest challenges ITU-T faces is to cope with market demands in competitive areas.” As a result, the
ITU-T is aiming to shorten the approval time for new standards from 4 years (1998) to between 4 weeks
to 9 months in 2001 [Asat01].

' For an appreciation of the standards process, refer to [Jako01].
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the IP domain and the work from the IETF, where the approach is to standardise on protocols

and the architecture of the functional entities is left to each proprietary implementation.

According to [Q.1201], the Intelligent Network (IN) is a:

“telecommunications network service control architecture that is a generic platform for open,
distributed, service-independent communication. Its goal is to provide an open platform supporting
the uniform creation, introduction, control, and management of services beyond the basic
telephony services in the telecommunications environment.”

This definition of the IN is far more complex than what the IN architecture offered at the time of
its conception. Initial versions of the IN infrastructure aimed simply to enable services such as
freephone and local-call. This initial aim was desirable, and indeed British Telecom’s initial
reason for deploying IN infrastructure was to enable services such as Freephone and Callstream
Services. Furthermore, BT realised that the IN “simplified service administration and data could
now be centralised — rather than replicated at various locations in the network, thereby avoiding

unnecessary use of valuable computing resources” [OBri89].

The IN has developed from the “single database™ application, such as freephone, it offered at
the time of its conception. This section describes the present capabilities of the IN, as defined by
the ITU Q.12xx series of Recommendations [Q.1200].

Today’s IN is a service-oriented network architecture that separates service control functions
from service switching functions, with typically both types of functions being implemented in

different physical equipment.

It is as a direct result of this separation that it is possible to introduce new services rapidly
without the need to change the functionality of the switches [Veni00]. Through this separation,
the intelligence required for the provision of a service is now placed in dedicated IN servers
instead of every switch of the network. The switch functionality is restricted to basic call-
processing, to the identification of IN service calls and to the routing of these calls to the IN

SCrvers.

What is more, through the adoption of re-usable components, the IN can achieve service
independence. Service components (i.e. Service Independent Building Blocks, or SIBs), such as

“authentication”, “number translation”, and “charge” [Q.1201], can be re-used. The principle is

to be able to introduce new services by combining basic SIBs where appropriate.
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The creation of new services requires a Service Creation Environment (SCE). Service creation
is defined as “an activity whereby supplementary services are brought into being through the
specification phase, development phase and verification phase” [Q.1201]. Essentially this is the
process of transforming service descriptions into service logic. The IN does not standardise on
the approach that must be followed in order to create a new service but rather provides the
capabilities and tools for rapid service creation and provisioning. For this reason, service

creation and SCEs attracted numerous interests from the research community.

For example, the work of the TINA Open Service Creation Architecture (TOSCA) [TOSCA-IS]
aims at incorporating TINA [TINA-GA] principles (see section 2.5) to further the capabilities of
the traditional SCE. Further work on SCEs can be found in [Lodg97][Ku94][Gill94][Niits95].

2.4.1 The Intelligent Network Conceptual Model
The Intelligent Network Conceptual Model [Q.1201] provides a set of viewpoints” for looking

at the IN architecture. It reduces the complexity of the IN service modelling, analysing the
problem from four different points of view, called planes (refer to figure 2.9). Each plane
provides an abstraction of a problem that can be studied independently from the other points of
view. The four planes derive from a top down analysis of the IN architecture, starting from the
service point of view down to the physical point of view [Q.1201]. The four planes address

= Service aspects (the service plane),

= Global functionality (the global functional plane),

= Distributed functionality (the distributed functional plane), and the

= Physical aspects (the physical plane), of an Intelligent Network.

The service plane describes the services from the user point of view without any reference to an
IN based implementation. Services are described in terms of service features. A service is “a
stand-alone commercial offering, characterised by one or more core service features, and [it]

can be optionally enhanced by other service features” [Q.1201].

A service feature is defined as “a specific aspect of a service that can also be used in
conjunction with other services and service features as part of [a] commercial offering. It is
either a core part of a service or an optional part offered as an enhancement to a service”

[Q.1201].

* The viewpoint here is based on the Open Distributed Processing terminology defined by the

International Organisation for Standardisation (ISO).
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The global functional plane (GFP) models the network from a global perspective, hiding the
details related to the distribution of functional entities. The GFP expresses a service in terms of
Service Independent Building Blocks (SIBs). “A SIB is a standard reusable network-wide

capability residing in the Global Functional Plane used to create service features” [Q.1203].

In [Q.1201] the Basic Call Process (BCP) is defined. The BCP is responsible for providing
basic call connectivity between parties in the network. The BCP can be viewed as a specialised
SIB which provides basic call capabilities including connecting and disconnecting the call and

retaining the Caller Instance Data [Q.1203].

An IN service can be represented as a chain of SIBs connected to the BCP. A Point of Initiation
(POI) is the BCP functionality needed to launch a chain of SIBs, while a Point of Return (POR)
is the functionality needed to terminate the chain. The POI, POR and the BCP are further

discussed in section 2.4.2.

The distributed functional plane (DFP) models the distributed view of an IN structured
network in terms of computational objects called functional entities (FEs). ITU [Q.1204]

defines a functional entity as

“a unique group of functions in a single location and a subset of the total set of functions required
to provide a service. One or more functional entities can be located in the same physical entity.
Different functional entities contain different functions, and may also contain one or more of the
same functions. In addition, one functional entity cannot be split between two physical entities; the
functional entity is mapped entirely within a single physical entity. Finally, duplicate instances of a
functional entity can be mapped to different physical entities, though not the same physical entity.”

The FEs may perform atomic functional entity actions (FEAs) and, as a result of the FEAs,

exchange messages called information flows (IFs).

The physical plane models the physical aspects of an IN structured network, including the
detailed design of physical network elements, Physical Entities (PEs) (i.e. switches, general-
purpose computers that contain databases, etc.). The FEs of the DFP are assigned to PEs and the

IFs between the communicating FEs in different PEs are mapped into the protocol messages.
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Figure 2.9: Thefourplanes ofthe IN conceptual model

Figure 2.9 depicts the result of the IN service decomposition through the four IN conceptual
model planes. Examples of FEs in figure 2.9 are the SSF, SCE and SDF; examples of PEs are
the SSP, SCP, and SDP.

2.4.2 The IN Service Processing Model and the Basic Call Process

In a non-IN world, the switching nodes deliver service to the parties involved in a call. Services
are programmed within the switching nodes (SSP) and may be basic or supplementary.

Essentially, the service logic is contained within the switching nodes.

In the IN world, the service logic for the supplementary services may be developed and
executed outside the switching nodes. Figure 2.10 illustrates the IN service processing model,

with the switching nodes represented by circles.

Fast service Implementation
IN Service Logic

Basic and
supplementary "Hooks" "Hooks" mHooks'

services offered
to customers

Basic Call Basic Call Basic Call
Processing Processing Processing
Node A Node B Node C

Figure 2.10: The Intelligent Network service processing model [Q.1201]
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Supplementary services, when requested, trigger the execution ofthe IN service logic by means
of software “hooks”. One of the aims of IN is to standardise these “hooks” and the messages

between them.

The Basic Call Process (BCP) [Q.1203] represents the well-defined call control process. It is
related to the basic call state model in that the trigger points of the BCP correspond to the entry
points, Points Of Initiation (POI), into the Global Service Logic, that is an entry point into an IN

service.

The Global Service Logic (GSL) [Q.1203] can be characterised as the “glue” that defines the
order in which SIBs will be chained to accomplish services. Each instance of GSL (figure 2.11)
is (potentially) unique to each individual call, but uses common elements:

m BCP interaction points (POI and POR).

m SIBs.

m Logical connections between SIBs and between SIBs and BCP interaction points.

m Input and output data parameters, service support data and call instance data defined for

each SIB.

GSL

SIB SIB

POI POR

Basic Call Process

Figure 2.11: The BCP in the globalfunctionalplane

Since the BCP is based on a state-dependent process, IN services can only be created within the
boundaries set by the BCP. There are many consequences for the creation of services within
these boundaries in terms of service control. For example, at one extreme, invoking the service
logic only when the call has been completed does not leave the service logic much to do. At the
other extreme, the ability of a service logic programmer to activate a trigger anywhere in the

BCP may easily lead the system to a chaotic state.

2.4.3 IN Capability Sets
Capability Sets (CS) [Q.1202] are the phases of IN evolution that give rise to particular service

capabilities. Each IN CS is defined by the hardware and software elements described in the

standards. Each new IN CS adds functionality and thereby increases the scope for services. At
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the top level, each CS introduces benchmark services. A benchmark service is not standardised
but is “a stand-alone commercial offering, characterised by one or more core service features,

and it can be optionally enhanced by other service features” [Q.1202].

2.4.3.1 IN Capability Set 1 (CS-1)

IN CS-1 [Q.1211] capabilities are intended to support services and service features that fall into
the category of “single ended” or “single point of control” services referred to as Type-A, while

all other services are placed in a category called Type-B. Single-ended is defined as [Q.1211]:

“A single-ended service feature applies to one and only one party in a call and is orthogonal
(independent) of both the service and topology levels to any other parties that may be participating
in the call. Orthogonality allows another instance of the same or a different single-ended service
feature to apply to another party in the same call as long as the service feature instances do not
have feature interaction problems with each other.”

Single point of control is defined as “a control relationship where the same aspects of a call are
influenced by one and only one service control function at any point in time” [Q.1211]. The
single point of control characteristic of IN CS-1 services restricted a service process to only
one call party (single-ended). This was a limiting factor and has changed with the introduction

of IN CS-2 which supports both Type-A and Type-B services (see section 2.4.3.2).

The IN CS-1 benchmark services identified in [Q.1211] are:

Abbreviated Dialling (ABD) Security Screening (SEC)
Account Card Calling (ACO) Selective Call Forward on

Call Distribution (CD) Busy/Don’t Answer (SCF)
Call Forwarding (CF) Split Charging (SPL)
Call Rerouting Distribution (CRD) Tele-voting (VOoT)
Credit Card Calling (CCO) Terminating Call Screening (TCS)
Destination Call Routing (DCR) Universal Access Number  (UAN)
Follow-me Diversion (FMD) Universal Personal

Malicious Call Identification (MCI) Telecommunications (UPT)
Mass Calling (MAS) User-defined Routing (UDR)
Originating Call Screening  (OCS) Virtual Private Network (VPN)
Premium Rate (PRM)

Figure 2.12 depicts the DFP for IN CS-1. The functions that have been defined as a first subset
of a target IN architecture are related to traditional call handling (service switching and

triggering), service execution (service control) and service management.
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Figure 2.12: Distributedfunctionalplanefor IN CS-1 [Q.1211]

The IN CS-1 DFP functions can be grouped into the following categories [Q.1211]:

m Basic call-handling functions

The Call Control Agent Function (CCAF) [Q. 1214] represents the user terminal function
and hence provides access to the network. The CCAF accesses a call control function (CCF)
that provides basic call-processing functionality and can thus be considered as a traditional
“switch”. Central to the operation of the CCF is the basic call model that is discussed in
section 2.4.4.

Service execution functions

These functions provide supplementary services. A Service Switching Function (SSF)
[Q.1214] represents additional functionality for controlling switch resources and provides a
well-defined, service-independent interface to the service control function (SCF) that
controls resources in a switch or peripherals, based on an appropriate service logic program.
A Service Data Function (SDF) contains the service data and provides standardised real-
time access for SCFs to service data. Finally, the Specialised Resource Function (SRF) is

used for controlling resources such as speech synthesisers and voice recognition systems.
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= Service management functions
The Service Management Function (SMF) [Q.1214] supports service introduction and
maintenance; it is accessed by a Service Management Agent Function (SMAF) that
provides the man-machine interface to the SMF. Also, an additional Service Creation
Environment Function (SCEF) allows for the specification, testing and introduction of

services in the IN.

As discussed in section 2.4.1, IN Services, i.e. service features, are composed of SIBs in the
GFP. The monolithic view of a SIB in the GFP has to be decomposed in the DFP into an
interacting set of capabilities. Each functional entity in the DFP may perform specific
operations, referred to as Functional Entity Actions (FEAs). Thus each SIB is decomposed in
the DFP into a set of “client—server” relationships between one or more functional entities, with
the client being the SCF and the server being one of the other FEs, such as the SDF, SRF, or
SSF [Q.1211].

Consequently, different functional entities in the DFP must exchange messages to perform a
desired SIB functionality. These client-server information exchanges between the functional
entities are called Information Flows (IFs). The total set of IFs between any two functional
entities in the DFP will be a number of such client—server information flows. Some examples of
functional IFs are the following:

= Initial detection point — the SSF starts a dialogue with the SCF and requests further

instructions (based on the occurrence of a specific trigger event).
= Play announcement — the SCF instructs the SRF to send an announcement to a user.
= Prompt and collect user information — the SCF instructs the SRF to collect some dialled

information from the user.

2.4.3.2 IN Capability Set 2 (CS-2)
IN CS-2 is defined in the ITU Recommendation of series Q.122x. IN CS-2 consolidates and

enhances the features of IN CS-1 by the addition of functional entities and information flows
and by specifying a number of additional services and service features that include mobility
services and B-ISDN services [Feyn97]. More importantly however, IN CS-2 includes services

that allow the end user to control the services to which they are subscribed [Feyn97].

IN CS-2 also acknowledges a situation that may be desirable or undesirable. This is called
feature interaction and is defined as the interaction of features that could be desirable or not
[Q.1221]. A desirable interaction is defined as feature cooperation, while an undesirable one is

termed feature interference [Lin98]. However, feature interaction has come to be synonymous
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with feature interference. The issue of feature interactions has attracted considerable research

activities [Peng98][Ever97][Cape96][Naka95][Kell94][Brot93].

The increased capabilities of IN CS-2 are reflected by comparing the DFP for IN CS-1 (see
figure 2.12) with that of IN CS-2 (shown in figure 2.13).

SCEF

Network

SMAF Boundary
SMF to SMFS'
SRF SCF SDF to SDFs'
to SCFs,
CUSF
/SCUAF"™ SSF SSF
CCAF CCF CCF CCF
Management Service Control Bearer Channel

Figure 2.13: Distributedfunctional planefor IN CS-2 [Q.1221]

IN CS-2 defines two additional functional entities: the Service Control User Agent Function
(SCUAF) and the Call Un-Related Service Function (CUSF). The SCUAF provides the user
access to the network CUSF [Q.1221]. The CUSF allows the specific triggering of services
outside the basic call process, and only supports connection-oriented communication between a
user and the network. This is a significant capability as it can be used for billing applications on

different networks, such as IP.

The IN CS-2 also defines the Basic Call Unrelated Process (BCUP), which is the counterpart
of the BCP for modelling the capabilities implemented through actions that are not performed
on behalf of a particular call, even though they are necessary for supporting calls. The BCUP is
defined as “a specialized SIB which provides the call unrelated capabilities. These capabilities
enable the use of GSL as well as other SIBs to completely describe IN CS-2 services and

service features” [Q.1223].
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Figure 2.14 shows a possible mapping of the IN CS-2 DFP onto the physical plane. The figure
is included for completeness to provide an appreciation of the number of protocols and

functional entities that are involved in a simplified IN implementation.
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Figure 2.14: Example ofapossible mapping ofIN functional entities into IN
physical entities supported by IN CS-2 [Veni98]

The protocols that are depicted in figure 2.14 include parts of the SS7 core signalling protocol.
Examples of these are TCAP, SCCP and MTP. Also shown are access signalling protocols such
as DSSI [Q.931].

2.4.3.3 Inter-working Functions in Future Capability Sets

A particular area of research and development in IN CS-2 is in the enhanced
telecommunications Inter-working functions. Inter-working functions enable service features
to be made available outside the home network and reflect the converging telecommunications
environment. The interest shown in inter-working functions as part of the convergence process
is supported by a number of publications [Scho98][Zhen98][Deci97][ETSI EG 201-722]. The
IN must be in a position to provide inter-working capabilities. Inter-working is the process by
which several networks (potentially of different types such as IN-structured and non-IN-

structured, public and private) work together to provide a service.

The DFP sees the introduction of standardised interfaces for the inter-working of inter-domain
SCFs and SDFs. Additionally internetwork management interactions and distributed data

handling processes are supported.
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Specifically, IN CS-2 allows SDF-SDF, SDF-SCF and SCF-SCF communication across
network boundaries. For example, the SDF-SDF inter-working interface can serve two
purposes: it provides a mechanism to copy data between networks and it provides transparent
data access. Similarly, the SCF—SCF interface (across network boundaries) allows two service
logics to communicate; for example, a network can handle a call without having full knowledge

of the service logic, as long as it can find another network that can help.

IN Network A IN Network B non-IN Network
SMF & SMF
SDF o SDF

@A)

SCF

D

Figure 2.15: IN and inter-working functional relationships

Figure 2.15 depicts the possible IN network inter-working functional relationships. Although
the functional relationship SCF—SSF is outside the scope of IN CS-2, the SCF—SCF relation is
new. However, it is not possible for the SCF to interact with a remote SCF that is directly
interacting with the call. This is a limitation, or the absence of a requirement, for multiple point-
of-control capabilities in IN CS-2. The top interface defined in figure 2.15 is the SMF-SMF
interface. This protocol follows the Telecommunications Management Network (TMN) generic
protocols and the TMN X-interface [M.3320].

A different inter-working capability is emerging. This is the need to inter-work with non-IN
structured networks. Such a form of inter-working requires the introduction of additional
functional entities, such as the Intelligent Access Function (IAF) [Q.1224]. The IAF is
responsible for providing access to and from the SCF of the IN-structured network, and for

mapping the information between the internal and external representations.

Comparing the DFP of IN CS-1 and the DFP of IN CS-2, one notices that the IN has been

incrementally adding functionality to reflect the changing telecommunications environment
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conditions. Of course, this is a natural step in any developing system. As a result, the role that
IN is asked to play in the future may be far from the initial aims and objectives of
Recommendation Q.1201. The area of inter-working and the new role of the intelligent network

within the wider scope of network intelligence is examined in chapter 3.

2.4.4 The Basic Call Model

The primary goal of IN services is to enhance the basic call process, thereby creating new
services such as premium rate. To achieve this, IN services have to control network resources in

a flexible and efficient way through a standard resource control interface, the SSF-SCF.

This approach requires the switches, i.e. the connection control function/service switching
function, to be capable of providing visibility and control on detailed call events. Hence, a
corresponding model is required within the DFP that identifies all possible points in basic call-
processing, as seen in a switch, from which IN services can be invoked, i.e. when interactions

between the SSF and SCF can take place.

This model is called the Basic Call Model (BCM). The BCM represents a standardised view of
call-processing functions to external service logic and provides the framework for IFs between
the SSF and SCF. This means that IN service logic located in the SCF “sees” a call only by
means of the information it receives from the SSF, i.e. the received IFs, based on the states

identified in the BCM (figure 2.16).

Entry event x

DP 1
PIC a

Exit event y

Entry event y
1
DP 2

PICH
Figure 2.16: The BCM, detection points and points in call
The Basic Call State Model (BCSM) identifies the logical points in basic call-processing where
the IN service logic located in the SCF is permitted to interact with basic call control

capabilities provided by the switch [Q.1204]. The states that need to be visible to the IN service

logic are identified by the BCSM.
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The BCSM is built from three fundamental components, discussed below;

m Points in Call (PIC) provide an external view of a call-processing state or event to IN
service logic. PICs are vendor independent, providing a standardised view of call-processing
behaviour. A PIC is characterised by means of entry events, exit events, actions performed
within the PIC, and information available at the end of the PIC.

m Detection Points (DPs) are placed between the PICs. A DP (also referred to as a trigger
check point) is associated with a particular PIC. DPs indicate states in the basic
call/connection processing where the control can be transferred to the IN service logic with
or without the CCF suspending processing. If the CCF processing is suspended, the DP is
called a Request DP, otherwise it is a Notification DP. A DP can be armed, i.e. the
monitoring of a CCF processing state can be requested, statically on a configuration base (in
which case the DP is referred to as a Trigger DP) or dynamically on IN service logic request
base (in which case the DP is referred to as an Event DP).

m Transitions indicate the normal flow of basic call/connection processing from one PIC to

another.

Any IN service involves two separate sets of basic call-processing logic in the switching

network [Feyn97]. These are closely related, as illustrated in figure 2.17.

0_BCSM T _BCSM 0_BCSM T_BCSM
Switch A Switch B
SSP-A SSP-B
Calling Called
Party Party

Figure 2.17: Separation ofthe BCSM into an O/TBCSM

An originating call model supports the call’s originating side (i.e. the calling party). This is
modelled by the originating basic call state model (0_BCSM). On the terminating side, there is
a terminating call model for the call’s terminating basic call state model (T_BCSM). Both
sides of the call state model are active within an IN SSF; even an intra-switch call requires both

call state models.

2.4.4.1 The Basic Call State Modelfor CS-1

The O BCSM (figure 2.18) specifies six PICs and ten DPs. One non-IN event, Route Busy, is
considered. The event is caused by either a corresponding indication from the T BCSM (if this
is a local switch) or a reception of the call “rejected” message (indicating the selected route is
busy) from another switch. Depending on the switch application, this event may result in either

a transition to PIC 2 (in order to select another route) or exception processing.
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Figure 2.18: The 0_BCSM for IN CS-1 [Q. 1214]

The T_BCSM (figure 2.19) speeifies five PICs and seven DPs. Note that a transition from PIC 8
to PIC 9 has no DP associated with it. The event that causes this transition (i.e., the start of the
alerting process) is the only strictly non-IN event visible to T BCSM.
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T_Busy
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T_No-Answer
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T_Disconnect
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Figure 2.19: The T_BCSMfor IN CS-1 [Q.1214]

2.4.4.2 The Basic Call State Modelfor CS-2

The BCSM for IN CS-2 (figure 2.20) is visibly richer than its IN CS-I counterpart. This section
points out the main differences between the two models. A complete description can be found in

the ITU Recommendations Q.122.x and Q.I21Ix.
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Figure 2.20: The 0_BCSMfor IN CS-2 [Q.1224]

Non-functional modifications include the removal of numbers from DPs in IN CS-2. More
substantial modifications are manifested in the new functions of the PICs and DPs, and their

applications to services.

For example, the 0_Disconnect and T Disconnect PICs have been replaced in the originating
and terminating models by the 0_Suspended and T Suspended PICs. The justification for this
change is dictated by a special way in which many services are set up; unless the called party
explicitly wishes to disconnect the call, it should not be immediately disconnected. This allows
for the called party to hang up momentarily and pick up the phone again (reanswering). In
order to reanswer the call, it cannot be disconnected even though the called party hangs up. The
state of the call is captured in the model as suspended and it is treated differently. While the
call is suspended, both the calling and called parties are placed in the O Suspended and
T Suspended PICs. On the terminating side, the physical resources associated with the call

remain connected and the appropriate timer is started. If the terminating side reanswers before
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the timer has run out, T BCSM sends the reanswer indication to the O_BCSM and the call

becomes active again, otherwise the T BCSM sends the disconnect notification.

2.4.5 The IN Switching State Model (IN-SSM)
The IN-SSM is defined in [Q.1204] as a means of providing the “finite state machine

description of SSF/CCF IN call/connection processing in terms of call/connection states”. The

IN-SSM is a class of objects that corresponds to the SCF view of call and connection processing
within the SSF/CCF.

The call segments defined in [Q.1204] are expanded to include the new types of objects called
Legs and Connection Points as well as the BCSM objects (i.e. O_BCSM or T_BCSM)
associated with them.
= A leg represents a connection with an “addressable entity”, that is, an end user, the SRF, or
another SSF/CCF [Q.1204]. Any leg may be either active or passive. In IN CS-1, only a leg
that represents an access interface may be active.
* A connection point is the object that associates two legs so that the information entering the
SSF/CCF through one leg is carried out (via that object) on the other leg and vice versa
[Q.1204].

According to [Fayn97] in IN CS-1, the role of the IN-SM has not been emphasised and,
consequently, neither has that of the IN-SSM, though the technical case for their future
exploitation was given. IN CS-2 defines a more powerful IN-SSM that focuses on connection
control issues. It therefore contains objects that are abstractions of switching and transmission

resources.

The CS-2 IN-SSM uses the Call Configuration (CC) model as a tool to represent the CCF
activities. The CC is a model that categorises the status of one or more network connections. It
is based on the Connection View (CV), in the sense that CV objects provide the SCF with a

generic view of call-processing and each Call Configuration models a CV state in an SSF.
The purpose of defining call configurations is to produce a set of examples used to describe IN

call manipulation services. Figure 2.21 illustrates the notation and the objects used in describing

the call configurations.
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Figure 2.21: Representation used in a call configuration

Attached to a connection point (CP) are one or more legs, with the leg to the left being the
controlling (or local) leg. The legs to the right are defined as passive (or remote) legs, of which

there can be one or more. Associated with each of the passive legs is a BCSM.

Figure 2.22 depicts the Call Association Object (CAO) that is used for the representation of
multiple calls associated with a particular user as perceived by the serving node associated with
that user. The CAO allows the graphical representation of the condition when a user is engaged
in more than one call.

Call Association Object

Figiire 2.22: Representation ofa call association object

This approach has been developed to provide IN multiparty handling capability, and it can be

used as a tool for associating different calls.

2.4.6 IN CS-2 Call Party Handling

IN CS-1 was limited to Type-A services. This meant that it could only manipulate specific
aspects of a single leg of a call. As a result, for instance, capabilities to alter the Calling or
Called number were provided, but it was not possible to alter how one leg of a call related to

another leg of the same call.

The introduction of Call Party Handling (CPH) [Q.1224] service features in IN CS-2 is
arguably the most important addition [Hink98][ORei98][Haze98]. CPH allows multiple bearer
connections to be split, merged and manipulated more flexibly during the course of a telephone
conversation. Therefore, CPH provides the capability to manage and control individual parties

in a call involving two or more parties. The current call topology is maintained by the SCF,



while atomic commands from the SSF can alter this topology. Typically, instructions from the

SSF add, delete, join or separate bearer channels from other parties in the call.

At the highest level, the SSF consists of a Call Segment Association (CSA). A CSA represents
half a call. The CSAs communicate with each other using the SSF—SCF INAP operations
defined in IN CS-2 [Q.1228]. Communication events among the CSAs consist of inter-BCSM

events (e.g. Setup, Answer).

A CSA consists of one or more Call Segments. The call segments communicate with either the
O_BCSM or the T_BCSM, and the SSF Finite State Model (FSM).

The Call Segment can be in four possible states [Q.1228]:
» Joined - indicating that a path is joined to the connection point which enables the user to
communicate with other users in the call segment
* Pending - indicating that a path is in the process of being set up
= Surrogate — indicating that a leg supports a communication path towards a virtual party in
the network, rather than towards an external end party
= Shared - indicating that a controlling leg is absent from a call segment and is present in the

associated call segment.

The CPH finite state model (see figure 2.23) is examined here using an example of the

transitions involved in setting up a two-party call.

A call begins from the “Null” call segment that indicates that no Call Segment Connection View
(CSCV) instance exists and one can be created. The state represents the condition where no call-
processing is active and there is no controlling or passive leg connected to the connection point.
When the SSF detects a Setuplnd signal, the CSCV is represented by the “Originating Setup”
CSCV. The SetupReqind finally causes the CSCV to move to the “Stable 2-Party” CSCV. The
“Stable 2-Party” CS represents a stable two-party call, and is either an originating or a
terminating call from the perspective of the controlling user with a “joined” controlling leg and

a “joined” passive leg with either an O_BCSM or T_BCSM associated with it.
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Figure 2.23: Finite state model for CPH of IN CS-2 [Kumm98]

2.4.7 IN Summary
In this section a summary of the IN architecture is presented. The discussion on the IN control

architecture presented and examined issues such as:

» The advantages of the IN architecture are the result of the separation of basic call-processing
from additional service logic. This separation also provides the ability to introduce new
services rapidly.

» The BCM provides a standardised representation of call-processing functions to external
service logic. As a result the only view provided to an external IN service is based on the
states identified by the BCP.
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= Through DPs, control can be transferred to the IN service logic with or without the CCF
suspension.

= IN CS-2 provides a much richer and more complete set of service features than IN CS-1, in
particular the introduction of Type-B services. Type-B services in IN CS-2 were examined
by analysing the Call Party Handling service feature.

» The IN architecture relies on distributed state models. These form an integral part both of
the signalling protocol (SS7) and of the IN architecture itself.

» Traditional network intelligence was focused on providing advanced services by enhancing

the basic call state model.

2.5 THE IN, THE TINA REFERENCE ARCHITECTURE AND
NEW TECHNOLOGIES

The Telecommunications Information Networking Architecture (TINA) defines a framework
for the development of service and network management applications [TINA-GA]J[TINA-GU].
TINA defines four architectures:

* The computing architecture [TINA-CA] defines a set of concepts and principles for
designing and building distributed software and the software support environment, based on
object-oriented principles.

» The service architecture [TINA-SA] defines a set of concepts and principles for design,
specification, implementation and management of telecommunication services. It identifies
three main concepts: session, management and access.

» The network architecture [TINA-NA] defines a set of concepts and principles for design,
specification, implementation and management of transport networks.

* The management architecture [TINA-MA] deals with software systems that are used to

manage services, resources, software and underlying technology.

The TINA approach foresees that service components are deployed on a Distributed
Processing Environment (DPE), which may in turn be implemented on top of different
network infrastructures [TINA-DPE]. The DPE is used for both the transmission of control
information and the multimedia streams that may flow between user applications. Therefore, the
network has to satisfy the connectivity requirements of different types of services, such as

multimedia, multiparty, or multicasting services.
From the computational point of view, TINA considers that the service and network

management and control facilities are deployed on a distributed, object-oriented processing
environment, such as the Common Object Request Broker Architecture (CORBA) [CORBASY5].
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Figure 2.24: The TINA service architecture [TINA-SA]

The TINA Service Architecture (figure 2.24) identifies four major types of sessions as follows:

1. The Access Session models the user actions for accessing a service

2. The Service Session represents the control and management actions needed for the support
of a specific service from the system point of view

3. The Communication Session encompasses the set of control and management procedures
from the network’s resource point of view in order to support the needs of services making
active use of the underlying network infrastructure

4. The User Session reflects the activities performed and the resources allocated by one user

for one specific service session.

The TINA architecture employs an object-oriented view [TINA-GA]; as such, it is
fundamentally different to the function-oriented IN architecture. For instance, rather than
defining functional network elements for the distributed implementation of SIBs, as is done in
the IN architecture, the DPE supports the arbitrary distribution of TINA service components, i.e.
the computational objects. Hence, there is no need for specific network nodes with dedicated
functionality within TINA. Furthermore, the information flows between IN functional entities
(via the signalling network) are replaced by TINA computational object interactions, through

operational interfaces (supported by the DPE).

While most of the efforts surrounding TINA pertain to how an existing architecture could
migrate towards TINA, such as [P508], it has been argued [SoloOOa] that the TINA architecture

can be used as a reference model for viewing new technologies. This role is examined next.

It has been argued that the communications session of the TINA service architecture reflects the
traditional role of the telecommunications network operators [SoloOOa]. The service session
distinguishes the growing role of the provider of application services as a separate entity apart

from the communication session. The access session co-ordinates the access of users towards a
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set of services, by providing services such as password authentication, or terminal capability

negotiation.

The author takes the view that the TINA service architecture is a useful and desirable way of
understanding the roles of the players in the future communication environment. Of course, this
does not imply that the underlying technology is that specified by TINA [Solo00a], for instance

that one has to develop a Distributed Processing Environment (DPE) approach.

The IN CS-2 increases the importance of the SCF over IN CS-1 for establishing connections.
One of the most significant developments in CS-2 is that of call party handling where fine-
grained manipulations of multiple-associated call paths is possible. Services such as
multicasting or multimedia rely on these services. In future capability sets, such as IN CS-3/4
there will be enhanced support for connection control. The SCP will be able to establish a
communication session independently without the intervention of the end user. This is a very
significant development because it will allow greater control of the TINA Service Session
through the SCP [Solo00a].

Mobile networks and specifically Global System Mobile (GSM), provide a set of IN services
without the explicit use of an IN architecture. Services such as mobility are much sought after in
the PSTN but are seen as basic services in the GSM. However, to achieve service differentiation
in GSM and support customers while they are roaming in other operator’s networks,
Customised Applications for Mobile Enhanced Logic (CAMEL) [ETSI TS 101-285], was
developed. The CAMEL architecture is outlined in figure 2.25.

In CAMEL, the Home Location Register (HLR) bears similarities to the SCP but does not allow
customised service logic that interacts with the basic call process. CAMEL is necessary to allow
operator specific services. A CAMEL Service Environment (CSE) allows the customisation of

services and is equivalent to an SCP in the PTSN.
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Figure 2.25: The CAMEL architecture

Section 3.6 follows the discussion of this role by mapping IP-based technologies onto the TINA

Service Architecture and putting forward the conclusions of this part of the work.

2.6 STATE MACHINES IN TELECOMMUNICATIONS
NETWORKS

The extent to which the state machine model is used to describe the behaviour of network
intelligent architectures has been identified. The state models explicitly describe in a
standardised manner the way in which the functional entities interact. This section identifies the

importance ofthe state models within the control plane of the PSTN network.

The PSTN network is based on the principle of providing controlled access to a limited bearer
channel resource which, arguably, represents the main source of revenue for a network
operator.* Therefore it is crucial for the network operator to use the bearer connections in a way
that allows the greatest return on investment. After all, without an operational bearer
connection”™ no utilisation of the network can take place, leading to loss of revenue. The
importance of the bearer connection is reflected by the fact that the network is performance

engineered, with design focused on limiting down-time and ensuring that network load does not

> This is within the context of fixed networks, i.e. PSTN. In the GSM case, text messaging has proved to
be an additional significant source ofrevenue that does not require the use of a bearer channel.

~ Recent examples of network failure include the brownout of the AT&T American network
[McDo092][Hatt97] with a financial loss amounting to 1 billion dollars, the 1998 integrity breach in the
AT&T Chicago frame relay network [Meht98], and the latest example is the brownout in the BT network

in February 2000, which blocked millions of calls [BBCOO].
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hinder performance. To achieve this, it is vital that a resilient control-plane architecture be in

place.

Furthermore, it was put forward that the PSTN network is a huge distributed network with
components from different vendors. Each of these components may potentially have different
capabilities but nevertheless it is essential that they interact to form the network. It is critical
that a common underlying capability enables the interconnection’ of these vendor-specific

components and, again, this is provided by the control-plane architecture.

A control-plane architecture can be characterised by two key features: firstly, it provides the
robust foundations for the communication of the components and, secondly, it provides a
resilient environment for the execution of advanced services. The common controlling
element in both of these features is the state machine. While the communication part is
handled by the signalling network, through the SS7 protocol, the resilient environment is
provided by a network intelligence architecture, such as the standardised architecture of the

Intelligent Network.

Having provided a control-plane architecture, there is now a need to allow communication with
the end users based on their activities. These activities are unpredictable but, nevertheless, it is
the responsibility of the network to implement measures that capture this changeable behaviour
of the users in a formal manner. This must be done in a way that does not severely limit the user
experience. By definition, an unpredictable behaviour cannot be captured in a model and, as a
result, there needs to be a trade-off between the capabilities available to end users against the
complexities involved in capturing parts of this unpredictable behaviour. The IN CS-1 has
provided sufficient benchmark services that enable a wide range of service capabilities; through
the IN CS-2 these services have been enhanced and widened to include capabilities such as

multi-party calls.

The state-machine approach in the PSTN has proved to be a technique that is capable of

providing resilience for the IN architecture and also robustness for the signalling layer.

In the case of the IN architecture, the state machine is the fundamental controlling component
from which services can be triggered, and in the IN architecture the state machine is manifested
in the form of the O/T_BCSMs.

* The regulatory framework relating to inter-connection and inter-operability is addressed in [Oftel99].
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Although there are significant differences between various IN implementations a number of key
features apply to each of them. These key features enable the network-of-networks to be
controlled through similar actions, and hence provide a common denominator in the
convergence of these architectures. The presence of fully defined state machines on all the

interacting FEs and the BCM provide for the resilience needed in the PSTN environment.

Controlling the bearer connections is achieved in the PSTN through the
= extensive use of state machines
» ubiquitous description of the BCM
= complete encapsulation of the call process in the BCSM

* robust nature of the signalling network and its protocols.

The IN mandates the use of FSMs for the description of protocol-related behaviour of the FEs.

All possible actions by the FEs are rigorously tested before any attempt is made to deploy a new
service. The specification of the FEs is done using the Specification and Description Language
(SDL) [Z.100], which is a standardised language for describing systems that are reactive,

concurrent, real-time, distributed and heterogeneous” [Haug95].

If a scenario arises that may result in an invalid transition in the BCP, the IN is able to achieve

graceful degradation of service, which ensures that the network remains operational.

The features provided by timers aid in maintaining the network in an operational state: for
example, the user dialling an insufficient number of digits and replacing the handset should not
leave the system with resources permanently reserved — the timers ensure this. If a single state
machine view can represent the complex call setup within a switch then small controlled
changes in the state machine can create new services. Therefore, a resilient network demands

that operators and vendors develop a complete understanding of the BCP.

The traditional approach to providing network intelligence was by providing enhancements to
the basic call state model. This is supported by looking at the development of the capability sets
of the IN. For instance, the introduction of Call Party Handling (section 2.4.6) in IN CS-2,
allowed further call manipulation by the end user, even though the service offering was still that
of telephony. It must be kept in mind, however, that the additional functionality still operated
within the “constrained environment” of the BCSM and the BCP.

* A complete description of SDL can be found in [El1s97].
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Chapter 3 examines the changes to the IN architecture in a converging environment where, for
instance, telephone calls can be initiated on an IP-network and terminated on the PSTN
network. Specifically, section 3.5 discusses the use of state models within a converging

environment.

2.7 CHAPTER SUMMARY

This chapter provided the background needed for the discussion of the new research work that is
presented in the rest of this thesis. Initially, the reader was introduced to the area of
telecommunications, with later sections focusing on specific architectures of the control plane,

such as the signalling network and the Intelligent Network architecture.

The IN architecture is a PSTN control-plane architecture that is transparent to the PSTN’s
switching procedures, and has minimal impact on existing equipment. The main points
regarding the IN architecture are summarised below.

= The IN, through separation of service logic from the call-processing logic, provides for a
service-oriented view of the network. This separation and the adoption of re-usable
components (SIBs) allows the fast deployment of new services (section 2.4).

» The IN Service Processing Model highlights the IN approach for service execution: basic
call-processing is carried out in the switches, whereas the supplementary service logic
resides on a higher level. The communication between the two planes is achieved through
detection points and triggers (section 2.4.5).

» IN CS-2 enhances IN CS-1 by allowing communication across network boundaries.

» The basic call model (section 2.4.4) represents a standardised view of call-processing
functions to external service logic and, as such, provides the framework for IFs between the
SSF and SCF. This means that IN service logic located in the SCF “sees” a call only by
means of the information it receives from the SSF, i.e. the received IFs, based on the states
identified in the BCM.

This chapter has focused on the traditional role of IN: to provide the means of enhancing the

basic call process, by providing a control plane for the PSTN network. This control is heavily

based on finite state models, with the robust architecture of the underlying SS7 protocol.
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CHAPTER 3

TOWARDS A NEW ROLE FOR
NETWORK INTELLIGENCE IN THE
CONVERGING ENVIRONMENT

! I Yhe aim of this chapter is to look at the ways the IN architecture can inter-work with
IP-based protocols and architectures — in the current state of convergence — in order
to present how network intelligence architectures can fit together.

3.1 INTRODUCTION

The traditional PSTN network is converging with IP-based networks. This has necessitated a re-
think of the traditional role of the PSTN and the way services are to be implemented in the IP
domain. In order to appreciate this change, this chapter looks at the role of the various layers in
the traditional PSTN domain, including the control plane and the Intelligent Network (IN)

architecture.

Within the converging environment, PSTN services have to be re-evaluated because the IP
domain is adopting PSTN services and making them available. Therefore, as part of the
convergence process, the PSTN is being more integrated in the IP domain rather than the other
way round. Part of this re-evaluation concerns the analysis of the new role of the IN in a

converging environment.

Examining the way in which the IN environment can be used in the converging environment is
complex not because the IN and IP architectures are complex per se, but because such a
proposition gives rise to a large number of new architectural offerings. The complexity in
examining these architectures is increased further as there is a large number of basic
components that contribute towards a single architecture. For example, the PSTN and Internet
Inter-working framework (PINT) [RFC2995] architecture (which is discussed in section 3.3.2.1)
is based on the SIP [RFC2543] and SDP [RFC2327] protocols. The inter-dependence exhibited
by the majority of the architectures requires that key complementary protocols also be

discussed.
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Section 3.2 presents IP-based networks and highlights the various characteristics of the network,
architectural details, and the IP-approach towards service provisioning. The taxonomy reference
model is then presented in section 3.3. The taxonomy presents the various ways the inter-
working propositions come together. The network intelligence architectures (i.e., the protocols
and the architectures) that populate the taxonomy represent ongoing research activities by

various organisations, working groups and industry bodies.

In chapter 2, the TINA model was presented with the focus being on the relation of TINA to IN.
Section 3.4 extends the work already presented by examining a role of the TINA service
architecture in the converging environment. As in chapter 2, the work presented is not focused
on the TINA architecture, but rather on where TINA could be positioned within a converging

environment.

Section 3.5 provides a discussion on network intelligence, state models and the role of IN in a
converging environment. Finally, section 3.6 presents a summary of the chapter and identifies

research contributions from the work discussed.

3.2 INTERNET-PROTOCOL BASED NETWORKS

In recent years, the Internet has developed to become a global data network, which attracts
numerous user types (home users and business users; young and old) with the variety of

information and multimedia applications offered online [USDOC][ITU97].

It is important to note that the primary access to the Internet is the PSTN [ITU97]. The PSTN,
the largest telecommunications network worldwide, represents an immense investment in

infrastructure, and carries all channel-switched public, and substantial corporate, voice and data
traffic’ [ITU98a][ITU98b].

The Internet was developed mainly for the data networks environment [ISOC] where a very
different set of service requirements exist.” The Internet is characterised by the interconnection
of heterogeneous transport networks and other layer-two technologies. These networks are
viewed by users as a single, unified-network architecture, through the use of the IP protocol
[RFC760] in association with the User Datagram Protocol (UDP) [RFC768] and the

" This enables the PSTN (through its control plane) to provide some revolutionary services (see section
3.3.3.2 and the specific application presented in chapters 4 and 5).
T Recall that section 2.1.1 highlights the fact that the design requirements of the PSTN were provided by

the characteristics of human voice.
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Transmission Control Protocol (TCP) [RFC793]. What is important is that there is very little
control within the core of the Internet; intelligence is placed at the edges of the network

. *
instead.

By contrast, telecommunications networks are performance engineered [McMil96][Scer97] and
rest on the tradition of services that are essential to the economic well-being of the country
[Cout97][Davi97]. Therefore, IP networks present a challenge to the accepted views of
telecommunications developers who are rooted in the performance and reliability requirements

of the classic telecommunications sector.

The acceptance of IP-based networks by the business community is a fact, as is the increased
use of IP to support PSTN services such as telephony [ITU0O]. This presents a number of
significant challenges, especially in the short to medium term. Regardless of the level of the
dominance of IP in the long term and the effect this may or may not have on the role of ATM,
in the short term, there is a need to support the inter-working of widely heterogeneous networks
[Deci97][Solo99b]. A call may now originate on a mobile network, be transported across the
PSTN, and terminate on a business IP phone. Quite apart from the problems of billing for such
services, a voice user has come to expect a range of call control services. A business caller
dialling a freephone number from an IP phone should not have to pay for the call regardless of
the network type or the chain of network operators through which the call is routed. A corporate
Virtual Private Network (VPN) is a business offering that may still be demanded by a company
making use of IP calls. These services are traditionally supported by IN platforms but they must

now be introduced on IP-based networks.

The confidence of data network providers has become almost unbounded as new markets open
up for such services. It is therefore a natural next step for data network operators to look
towards the core markets of telecommunications operators [Stro99]. One compelling argument
is that the bandwidth of data services is very large in comparison to the voice service [ITU0O].
Corporations are being shown that they can make use of spare bandwidth in the data network to

support voice [ITU97][Wong99), implying that voice services will almost be free’. Whether one

ot Although some routers may offer packet-discrimination services, these are not “intelligent” services
according to the definition of network intelligence in section 2.7.

" In [Wong99], analyst B. Kasrel of Forrester Research believes that “the U.S. Federal Communications
Commission will further erode Internet telephony's price advantage in 2001 by imposing long distance
access charges to Internet calls.” As a result, “telecommunications companies will have to invent unique

services to better compete and stave off a perpetual price war.”
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believes that it is possible to support voice over IP with a universal-carrier class of service is

still the subject of debate and trial. The business case alone is very compelling.

In such a consolidated environment, the business and technical case for the widespread use of
IP-based networks to support telecommunication services is now very strong. This view is
supported by a number of highly publicised announcements [QOSNet][BTPr01][FT01a]
[FTO1b][FTO1c][Poncin98] by traditional telecommunications vendors pledging their
commitment to the development of IP-based products and services. In most cases, this requires
more than an expansion of the company’s product portfolio. It also necessitates a complete
change in business practice. What is driving companies to such a drastic change in policy is a
combination of factors [ITUO0O0]:

* [P-based networks are demonstrating their ability to support services, such as voice, that
were previously seen to be firmly in the province of traditional telecommunications
operators.

* The market for fixed voice telephony is growing at a modestly linear pace and is not
demonstrating the exponential demand for equipment and bandwidth that is seen in the case

of the Internet or, more generally, IP-based applications [Moha99].

It is projected that the IP market will continue to grow at an even higher rate for several years to
come and, in July 2000, the ITU Council selected IP Telephony as the topic of the third World
Telecommunication Policy Forum [ITU00]. This emphasises the importance of IP Telephony,

which is driving the convergence of circuit-switched and packet-switched networks.

Regardless of the growth and expansion of IP-based networks, the architectural differences
between IP-based and telecommunication-based networks still remain. These differences are
clearly rooted in their origins (section 2.1.1). Telephone networks have been carefully
engineered to provide extremely reliable, high-quality voice transmission, making real-time
conversations possible. IP communications are typically connectionless and stateless
[Stev94][RFC768][Veer99].

Current IP Telephony developments seek to imitate the more connection-oriented, state-based,
PSTN-like circuits [Q.1224][Q.701]. As a result, current IP telephony standards activities
attempt to replicate long-established technical practices in the PSTN, such as call set-up and
tear-down, IN services and guaranteed QoS. For example, inter-connectivity between the PSTN
network and IP Telephony networks has been accomplished by utilising a gateway. The
gateway is state-based and converts and forwards calls in one direction or the other [H.323]

[H.245][Haer99][Databeam98].
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3.3 ATAXONOMY REFERENCE MODEL FOR THE IN
ARCHITECTURE

This taxonomy reference model presents the various ways current research in network

intelligent architectures can inter-work with the Intelligent Network. The model is a “snapshot”

of the various technologies that utilise the IN control architecture at the point in time when the

taxonomy was developed.

Intelligent Network

Support of PSTN Support of IN witti IP Support of IP with IN Support of Layer 2 Support of Convergence
CS-1 CS-2 CS-3/4  Overlay Replacement Legacy IN IPIN CS-3/4 CPH ATM PSTN 1P Mobile Private
I
CPH
Internet Call .
L Mobility QoS Control MEGACO TIPHON GSM  UMTS GPRS
Waiting
Number Screening
Translation Customer
Billing Service Authentication
Systems
PINT CTI APIs
SIP SDP Poyuw
Service Service Service
JCAT JCC Control Mngmnt  Provisioning

Figure 3.1: IN controlplane taxonomy reference model

The five areas depicted at the top of the taxonomy classify the network intelligent architectures

from the perspective of how they can inter-work with the IN.

m Support of PSTN: Essentially, this is the area encapsulated by the original concepts of the
IN architecture.

m Support of IN with IP: This is the area where IP architectures can be used in order to
support the traditional capabilities of the IN model. PINT (discussed in section 3.3.2.1.3)
provides services in the IP domain that initiate requests on the control plane of the IN;
through PINT, the control plane ofthe IN can be accessed from the IP domain.

m Support of [P with IN This is further divided into two areas, those that involve legacy IN
components and those that require new functional entities on the IN side, e.g. IPIN. For
example, databases included in legacy IN can be used to provide authentication
functionality. IPIN, on the other hand, requires enhancements to the IN architecture.

m Support of Layer 2
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m Support of Convergence

3.3.1 Support of PSTN: The IN as the Control Architecture

Intelligent Network
Support of PSTN

CS-1 CS-2 CS-3/4
1
CPH

Number  Screening
Translation

Figure 3.2: The Intelligent Networkproviding support to the PSTN

This branch (represented in bold in figure 3.2) represents the area captured by the traditional
role of the IN architecture. Example services include billing, number translation, and call
screening. Some of these (e.g. number translation) were discussed in section 2.1.2; this section
focuses on new functionality that may be provided by future capability sets such as IN CS-3 and

IN CS-4.

The IN and IN CS-1 and IN CS-2 were described in chapter 2. This section focuses on
capability sets that are under development (i.e. IN CS-3 and IN CS-4) and highlights the service
features that are being considered by standards bodies [ETSI EG 20I-766][ETSI ETR 199]
[ETSI TR 101-779].

One area being considered is that of voice recognition. In this area, a class of services require
complex voice processing and little or no additional call routing. Such services are currently
provided by interactive voice response (IVR) systems.* Such functionality is now being
considered for incorporation in the core of the network. If services such as these are to be
implemented in the core network, there is a need for a broadband intelligent peripheral (B-IP) .
The Specialised Resource Function (SRF) would provide the interaction functionality with the
subscribers, while the service control function (SCF) would manage database functions and

perform the “traditional” tasks, such as call routing.

* An IVR unit would be located outside the core network of the operator. Therefore, it would be limited to

voice processing, without offering any routing capabilities.
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3.3.1.1 Broadband Multimedia Services

An additional area of interest is that involving broadband multimedia services. Multimedia
services are characterised by a multimedia session, which is generally defined as being
composed of three entities:
* The Multimedia Controller is the entity responsible for the control of the session.
» The Control Connection is established between each user and the Multimedia Controller to
exchange session control information.
» The Media Connection is the connection between the users which allows them to exchange

media information.

Broadband multimedia services can be implemented using an enhanced SRF that interacts with
image and voice signals [ETSI ETR 101-799]. Such an SRF can provide services including the
following:
* Video on Demand — the SRF acts as the communication partner to the set-top-box during
user-interactive dialogues.
» Video Conference — the SRF acts as a server to merge and to distribute flows to the users in

the conference.

For such functionality, the SRF should contain commands to control a media stream, for
instance to go backwards and forwards, pause, and skip [ETSI EG 201-766]. The SRF could
implement these procedures in the form of User Interaction scripts (Ul-scripts). According to
[ETSI ETR 199] Ul-scripts are advantageous because they:

= allow the grouping of the user interaction parts of the service into functional blocks which
use SRF resources in the most efficient way.

» lead to a substantial decrease of network traffic over the SCF-SRF interface since only
message exchanges related to the triggering and reporting of script execution actions are
necessary.

» represent a generic action which may be parameterised, thereby reducing implementation

complexity.

3.3.1.2 Internet (IP)-Based Services

¢

Services in this category include for example, “click-to-fax”, “click-to-fax-back” and “voice
access to content.” For these services, the SRF requires protocol conversion capabilities in order

to convert text-to-fax content or text-to-speech synthesis as well as voice recognition.
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This group of services is described in section 3.3.2. In the case of PINT (section 3.3.2.1.3), the
services are implemented using PINT servers in the IP domain. From the IN perspective, they

are mentioned here to illustrate that such services are possible with an enhanced SRF function.

3.3.1.3 Other Multimedia Services

The SRF could be used to implement a Voice Calling Card service, whereby the user is

identified based on a speaker verification function rather than personal identification numbers.

3.3.2 Using IP-Based Architectures to Support the IN Model

This branch of the taxonomy (represented in bold in figure 3.3) represents the areas where open
standards, framework models and other industry initiatives have proposed protocols which can

be used to support the existing IN architecture.

Intelligent Network

Support of IN with IP [

— 1

Overlay  Replacement

internet Call
W aiting

PINT CTI

Parlay JAIN

Figure 3.3: The Intelligent Network is supported by new IP technologies

This set of initiatives can be further divided into two areas:
m Overlay initiatives, which enhance the IN capabilities and are discussed in sections 3.3.2.1
through to 3.3.2.4.
m Replacement initiatives, which propose a different solution to an already implemented IN

service, discussed in section 3.3.2.5.

3.3.2.1 PINT and IETF Protocols and Architectures Requiring IN Inter-operability

In order to discuss inter-operability issues between PINT and IN, the protocols on which PINT
is based must first be presented. Therefore, this section presents protocols defined by Working
Groups of'the Internet Engineering Task Force (IETF) [IETF]:

m The Session Initiation Protocol (SIP), presented in section 3.3.2.1.1,

m The Session Description Protocol (SDP), presented in section 3.3.2.1.2,

m The PSTN and Internet Inter-working Framework (PINT), presented in section 3.3.2.1.3,
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= IN CS-4 developments in relation to PINT are discussed in section 3.3.2.1.4.

3.3.2.1.1 The Session Initiation Protocol

The Session Initiation Protocol (SIP) is an application layer protocol that “is used to establish,
modify, and terminate multimedia sessions” [RFC2543]. SIP is a text-based client—server
protocol that relies on HTTP-type requests and can run over TCP or UDP’; however the

message format is independent of the transport protocol.

An SIP server can operate in two modes: proxy mode and redirect mode [RFC2543]. In proxy
mode, the proxy server returns responses on behalf of the user; the server takes care of the
location of the user and in this way the process is transparent to both clients. In redirect mode,
the SIP server locates the user and returns this information to the initiating client, who then
contacts the terminating client directly. The media to be exchanged in a SIP session is described

by the Session Description Protocol.

3.3.2.1.2 The Session Description Protocol

The purpose of the Session Description Protocol (SDP) is to “convey information about media
streams in multimedia sessions to allow the recipients of a session description to participate in
the session” [RFC2327]. A multimedia session, for these purposes, is defined as “a set of media
streams that exist for some duration of time” [RFC2327]. SDP includes information about the
type of media (video, audio, etc.), the transport protocol (RTP'/UDP/IP, H.320) and the format
of the media (H.261 video, MPEG video).

3.3.2.1.3 The PINT Architecture

The PSTN and Internet Inter-networking Working Group of the IETF (PINT WG) defined
the PINT reference architecture, depicted in figure 3.4 [RFC2995]. PINT aims to study the
architecture and protocols needed to support services in which a user of the Internet requests

initiation of a telephone (i.e., PSTN-carried) call to a PSTN terminal.

The PINT WG has examined services that are initiated in the Internet domain and carried out in
the PSTN domain. Examples of the initial proposed PINT services [RFC2995] are:

* Request to call (Click-to-dial): a request is sent from an IP host to initiate a phone call.

* If UDP is used as a transport layer protocol, the application layer must implement mechanisms to
provide reliability such as re-transmissions and loss detection mechanisms.
! This is the Real-Time Transport Protocol, defined in [RFC1889]
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m Request to fax (Click-to-fax): a request is sent from an IP host to deliver a fax to a fax
machine. The request must contain a pointer to the fax data (which could reside in the IP
network or on the PSTN).

m Request to hear content (Click-hear-content): a request is sent from an IP host to make a
phone call to a user and dictate some sort of content. The request must either contain a URL

pointing to the content or the content itself.

A PINT system consists of the following functional elements (figure 3.4):
m PINT Client: An IP host that sends requests for invocation ofa PINT service.
m PINT Gateway: An IP host that accepts requests for PINT services and dispatches them to a
PSTN network.
m Executive System: A system that interfaces the IP network to a PSTN network that is

executing the PINT service.

yy
PINT Server a
Protocol Cloud some other PSTN
PINT Client protocol
PINT Gateway Executive System

Figure 3.4: PINT architecture

It is important to emphasise that PINT services always involve two networks: the PSTN and the
Internet. As a result, the control of a PINT service resides in both the IP and IN domains and

communication between the two networks is required. This is the role ofthe PINT gateway.

The system of PINT servers in figure 3.4 is represented as a cloud to emphasise that a single
PINT request might traverse a series of location servers, proxy servers and redirect servers
before finally reaching the PINT gateway that can actually process the request by passing it to

the executive system on the PSTN network.

The PINT gateway might have a physical PSTN network interface, or it might be connected via
some other protocol or Application Programmers Interface (API) to an Executive System that is
capable of invoking services within the PSTN network cloud. The relation between PINT, the

IN and the role ofthe Executive System is discussed further in section 3.4.

j-j-2.y.4 aW/A (E-4
The interfaces between PINT and the IN are under development by the ITU-T Study Group 11

whose area of responsibility includes, amongst others, signalling requirements and protocols for
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IP-related functions and enhancements to the existing recommendations on access and

“internetwork” signalling protocols of ATM, N-ISDN and PSTN.

The distributed functional plane (DFP) for IN CS-4 as defined in [ETSI ETR 199][Q.1244] is an
extension to the IN CS-2 functional model (section 2.4.4.2) and is intended to be included in the
IN CS-4 standards. IN CS-4 will include a new component, a service control gateway function
(SCGF), that transmits service requests and responses between the two networks. Figure 3.5

shows the proposed functional architecture.

Intelligent Network IP Network

.Management
Layer

Service
Control
Layer

Call/
Bearer
Layer

Management Control Bearer

Figure 3.5: Enhanced functional architecture for IN support of

IP networks [Q.1244]
MGF Management Gateway Function
SC GF Service Control Gateway Function
C/B GF Call/Bearer Control Gateway Function

H.323GKF H.323 Gatekeeper Function

The proposed functional model (figure 3.5) is an extension of the IN CS-2 functional model. It
is intended to support IN CS-3/4 benchmark services, Internet-based service customisation and
termination of VoIP to reach users in the telephone domain, as well as general IN management

capabilities.

The functional entities introduced by the model include:
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» The SCGF, which allows the inter-working between the service control plane in the IN and
IP networks
» The H.323 GKF, which can be seen as a logical switch (CCF) that deals with
o call control signalling [H.225], [Q.931] and
o connection control signalling H.245 for VoIP (transferred via the Gatekeeper which
makes the network routing decisions)
*» The C/B GF, which is equivalent to a composite function combining both the Media
Gateway and the Media GW controller as defined in [ETSI TS 101-313].

In order to provide full inter-operability and inter-working of PINT services, a number of
additions need to be made to the existing IN functional entities. For example, the SRF has to be
extended with capabilities:
» that exchange data with gateway functions to IP networks,
» that support the specialised resources it needs for some of the services, with media
transformation functions” such as Text-to-fax and Text-to-speech, and
» that enable the SCF to access a database-like entity with service-related information to be

shared between the IN and the IP network.

A similar approach that aims to provide inter-operability across the two networks is proposed in
[Lebo00]. The Soft-Switch [SOFTSWITCH] acts as an overlay between the IP telephony call
control and the IN layer provided by the SSF and the SCF. The soft-switch provides the
necessary mapping between the SIP protocol state machine and the IN BCSM. This is similar to
the functionality of the SCGF described by [Q.1244].

The soft-switch approach defines a Call Manager Function (CMF), which acts as a mediation
node and is responsible for passing service related information to and from the IN service plane
[Lebo00]. This approach is under consideration by the ITU SG-11 and there is ongoing work to
define such a CMF.

The CMF is a functional entity responsible for handling call signalling on either network and
appears, to the CCF on the IN side, as another CCF. The CMF is responsible for passing
service-related information to and from the IN service plane, namely the SCF, and managing the

service control relationship [Lebo00].

* This is covered in section 3.3.5.2 of [Q.1244] as the TTS function.
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The CMF also contains a Session Manager responsible for managing the IP network services.
The Session Manager is responsible for Security and Authentication, real-time data collection
and triggering of services in the IN or IP domains [LeboOO]. To implement such functionality,
the session manager may contain SSF-like functionality or a subset, to model the pre- and post-

conditions that are required to interact with an SCF.

Also introduced in [Q.1244] is a Soft Service Switching Function (Soft-SSF). The Soft-SSF
interacts with the IN SCF and IP representation of the CMF, mapping the Call Control protocol
into the INAP events, trigger points and procedures. The Soft-SSF differs from the classical
SSF as follows:

m Processes such as call control, database and billing are retained or enhanced,

m SIP-server inter-working functions are introduced and

m circuit-switching and ancillary processes are removed.

In order to provide such inter-operability, it is essential for the interface between the SIP-ser\er
and the Soft-SSF to carry sufficient call data for the SSF to function correctly, and to deliver the

necessary information to the SCF so that service logic decisions can be made.

3.3.2.2 Computer Telephony Integration Call Model

Computer Telephony Integration (CTI) enables a private enterprise to route calls within the
organisation and to manage caller information that is stored within databases, for example in
customer management systems. Devices in a CTI environment are application-specific,
predominantly proprietary such as Interactive Voice Response Systems (IVR), Voice Mail
Systems, E-mail Voice Gateways, Fax Servers, Switches (PBX), Automatic Call Distributors

(ACDs) and Predictive Diallers. Figure 3.6 shows a possible CTI network configuration.

Figure 3.6: Possible CTI network configuration
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In [ECTF97] the definition of connection state as applied to CTI is that the “connection has an
associated connection state, an attribute that characterises the relationship of a call and a
particular device to each other. Connection states must transition in conformance with the

following diagram.” The connection state model that CTI is based on is presented in figure 3.7.

The CTI Connection state model re-enforces the different approaches that are adopted by the IN
world and the IP world. Comparing the model with that of IN CS-2, it can be seen that it is more

“flexible”, with numerous transitions.

Null

Initiated Alerting

Queued Fail

Connected F * Hold

Figure 3.7: Connection state modelfor CTI [ECTF97]

Within the CTI space, Java Telephony API (JTAPI) [JTAPI] is an example protocol that is used
for controlling PBXs. Although it does not communicate directly with any IN control elements,
it is discussed here because, as will become apparent, the state models ofthe JCC API (which is

used for communicating with the IN) are identical to those of JTAPI.

S.3.2.3 Java Telephony API

The Java Telephony API (JTAPI) focuses on call processing and applications for a private
branch exchange (PBX) or call centre environment [Dawk97]. In such an environment,

processing and control tend to be centralised in comparison to the distributed nature of the IN.

A call within the context of JTAPI refers to a communication session among two or more
parties. Each party (as in the IN world) is said to be participating in one leg of the call.
Moreover, a call has as many call legs (connections) as the number of parties in the call.*

[JTAPI].

This is very similar to the O/T BCSM discussed in section 2.4.4.
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The telephony classes that are included in the core model and their relationships are shown in

figure 3.8. This section provides a brief discussion ofthe objects within the model.

Applications
JTAPI
Provider
Call
Physical Logical Logical Physical
Connection Connection
Terminal Terminal
Connection , Connection
Address Address )
Terminal Terminal

Figure 3.8: Objects within the JTAPI model [JTAPI]

The Provider object represents an abstraction of the telephony service provider. The Call object,
which is managed by the Provider object, represents a telephone call. A telephone call
comprises a Call object and zero or more connections.* For instance, in the case of a three-party
call there would be three Connection objects associated with the Call object. A Connection
object models the (logical) communication link between a Call object and an Address object.
An Address object is therefore a logical endpoint. The Terminal object represents a physical
device (such as a telephone) and its associated properties. Multiple Terminal objects can be

mapped onto the same Address object.

Idle Disconnected

In Progress

Alerting

Connected

Unknown
Failed

Figure 3.9: State modelfor Connection object

As is the case for CSAs in IN CS-2 discussed in section 2.4.5.
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A Connection object is responsible for modelling the state that reflects the relationship between
a Call and an Address object. The state transition diagram for the Connection object is depicted

in figure 3.9.

The states are described in table 3.1.

IDLE The initial state for all Connection objects. An idle connection indicates that the
party has just joined the telephone call.

IN PROGRESS Indicates that a telephone call is currently being placed to this destination
endpoint.

ALERTING Indicates that the destination party of a telephone call is being alerted to an
incoming telephone call.

CONNECTED Indicates that a party is actively part of a telephone call.

DISCONNECTED Indicates that a party is no longer a part of a telephone call. No methods are
valid for Connection objects in this state.

FAILED Indicates that a telephone call placed to the endpoint has failed.

UNKNOWN Indicates that the Provider object cannot determine the state of the Connection
object. A connection may transition in and out of the UNKNOWN state at any
time, unless it is in the DISCONNECTED or FAILED states.

Table 3.1: Description ofstatesfor a Connection object

Similarly, figure 3.10 depicts the state model for the Terminal Connection object.

Idle
Unknown Ringing
Active Passive
Dropped

Figure 3.10: State modelfor Terminal Connection object

The states are described in table 3.2.

IDLE The initial state for all new Terminal Connection objects.

ACTIVE Indicates that a Terminal is actively part of a telephone call. This often implies
that the terminal handset is off-hook.

PASSIVE Indicates that a Terminal is part of a telephone call, but not actively so.

Indicates that a resource on the Terminal is being used by this telephone call.

RINGING Indicates that a Terminal is signalling to a user that an incoming telephone call
is present at the Terminal.

DROPPED Indicates that a Terminal was once part of a telephone call, but has since
dropped off from that telephone call. This is the final state for all Terminal
Connection objects.

UNKNOWN Indicates that the Provider cannot determine the state of the Terminal
Connection object.

"able 3.2: Description o fstatesfor a Terminal Connection object

A point of interest in the above state models is the UNKNOWN state. As shown in table 3.2, the

UNKNOWN state indicates that the Provider cannot determine the state of the Terminal
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Connection object. In IN, no such case exists and invalid transitions have graceful degradation

by moving to an exception state. This indicates the different approaches adopted in call control.

The IN control architecture is characterised by robustness and strict control, while the CTI
approach is more relaxed. For the two approaches to inter-work, there needs to be a way to map

the robust transitions of the one side to the less demanding approach of the other.

It has been argued [Jain00] that JTAPI overcomes several of the limitations of the IN.
According to the same reference, in the IN world “there is no explicit abstraction offered to
allow the programmer to manipulate entire calls, or legs of a call, or the principal logical entities
in the call (e.g. the calling or called party’s address), and certainly not in any object-oriented
fashion.” It is the author’s view that the reasons for this are to do with the fact that the
telecommunications network was never open to third-party service providers. It is easier to
provide an API-type interface to a CTI environment, where the equipment and the network are

owned by the organisation that may be developing the services.

The author agrees that JTAPI offers the programmer clear and explicit abstractions for
manipulating calls and the logical entities in a call in an object-oriented [Jaco92] manner.
However, it must also be kept in mind:
» that JTAPI is mainly applicable to PBXs or large-scale VPNs. Such systems are much
smaller rather than the average IN implementation,
» JTAPI systems are centralised (e.g. a PBX), and that
* a Provider object is assumed to be in control of all the legs of a call, which is clearly

impractical in integrated next-generation networks.

Moreover, comparing the JTAPI models with the BCSMs of IN CS-1 and CS-2 (section 2.4.4),
one can quickly realise the simplicity of the FSMs employed by JTAPI in comparison to the IN
BCSMs:
= JTAPI does not currently capture all the states that the IN model does (refer to section
2.4.3).
= JTAPI has no concept of triggers or detection points [JTAPI].
= it is impossible to suspend call processing at a defined state in the FSM, invoke an
application (supplementary service logic), and return results.
» JTAPI includes a number of unknown states and “a connection may transition in and out of
the UNKNOWN state at any time, unless it is either in the DISCONNECTED or FAILED
states” [JTAPI].
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In order to enhance the capabilities provided by JTAPI, the JCC/JCAT API is attempting to
incorporate the “powerful aspects” of JTAPI (such as object-orientation) and the flexibility and
robustness of the IN models. This is discussed in section 3.3.2.4.3.

3.3.2.4 Open Inter-working Standards

Within telecommunications networks, the desire for new business growth has been a major
driving force towards the development of open network APIs, such as the Parlay API
[ParlSpec00]. The Parlay API enables network operators and third parties (external companies,
operating outside the secure domain of the network operator) to build new applications that rely

on real-time control of network resources.

A second community, driven mainly by Sun Microsystems, is developing the Java APIs for
Integrated Networks (JAIN) [JAIN]. JAIN defines a Java implementation of the Parlay API to
bring the benefits of the Java language to the Parlay API. This section looks at the background
and rationale behind the work of Parlay and JAIN.

Traditionally the network operator, in conjunction with network equipment providers, has
designed, developed, deployed, and administered applications that run above switched voice
and data networks. These applications typically suit mass-market demand for services such as

virtual private networks (VPNs), inbound services, and unified messaging [ParlBuss99].

According to [ParlBuss99] the potential for innovation that lies outside the network operator’s
domain has remained unexploited until now. By enabling third-parties (such as service
providers) to build and deploy new applications on their network, the network operator can reap
the benefits of increased network revenues while not enduring the overhead costs of deploying
specialist applications. APIs provide increased network traffic through greater exploitation of
network intelligence capabilities by a much wider development community, and the opportunity
to charge” for access to these via the API. Moreover, from the service provider’s perspective
there is significant market opportunity for new services and the ability to address niche market
requirements. Furthermore, end users can benefit from the vastly reduced time from identifying
a requirement for a new service to that application solution being developed. A further

discusston of the issues surrounding open network access can be found in chapter 8.

* There are issues with charging for such services. These are identified in chapter 8.
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3.3.2.4.1 The Parlay Group
The Parlay group was formed in March 1988, by BT, Microsoft, Nortel, Siemens and Ulticom
[PARLAY]. The initial set of APIs was published in December 1998 as the Parlay API 1.0

specification. The latest specification ofthe API is version 2.1 dated March 2001.

The Parlay API defines a set of technology-independent interfaces that specify methods, events,
parameters and their semantics to allow external (untrusted third-parties) and internal
(traditional network operators) application developers the control over core network resources

and capabilities [ParlSpecOO].

The applications execute on the enterprise domain utilising the network capabilities offered via
the API. The latter defines object-oriented interfaces on both the network and client application
sides of the API in the form of network interfaces (e.g., IparlayCall) and client application
callback interfaces (e.g., IparlayAppCall). The third-party application vendor implements
callbacks as part of the application to handle remote methods that are called from the network to

the client application during a Parlay session.

Third-Party Applications

Parlay API
Framework Interfaces Service Interfaces
Mobility Call Control
Management Security
Conn.Mngmnt Messaging
Resource Resource
Interface 1 Interface n

Figure 3.11: Architecture ofthe Parlay API

As shown in figure 3.11, the Parlay API is composed oftwo sets of interfaces:
m Framework interfaces provide the capabilities necessary for the Service Interfaces to be
open, secure, resilient and manageable [ParlSpecOO]. The framework can be considered as
a number of functional building blocks and is independent of any of the Parlay services. In
order to access the Parlay framework, the network must authenticate itself because
ultimately the client application shares private data with the network. Similarly, the

network must prove its identity to the client for repudiation reasons.
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= Service interfaces provide the mechanism by which applications can access underlying
network capabilities. Parlay has defined five services: Call Control, Mobility, User
Interaction, Messaging and Connectivity Management [ParlSpec00]. The service
interfaces, such as the generic messaging service (GMS), provide access to the capabilities
necessary to support intelligent network, integrated services digital network user part
(ISUP), H.323 and unified messaging applications. The high level of abstraction of these
services ensures that both existing voice networks and VoIP networks can be controlled in
the same way, giving independence of the technology. Each service has a service manager

responsible for control, object creation and event notification.

The Parlay Group’s prime focus is to define a computing and distributed technology-
independent API for controlling voice and data networks. The Parlay API has utilised
distributed computing technology specifications in order to make it applicable to the real world.
Such examples include the definition of the Parlay API using the Distributed Component Object
Model (DCOM) [DCOM] and CORBA [CORBA9S]. This approach enjoys the flexibility of
being able to map to multiple programming languages such as C++, C, Java and Visual Basic.
Advocates of Parlay have argued that the application developer must be skilled in three areas:
the Parlay API, distributed computing techniques, and programming languages [Bedd00]. The
specification of a language-dependent API on the client side removes the distributed computing
element and even more so if the API is platform-independent. One such API is the JAIN

initiative from Sun Microsystems.

3.3.2.4.2 JAIN: Integrated Network APIs for the Java Platform

The objective of the JAIN initiative is “to create an open value chain from third-party service
providers, telecom providers, and network equipment providers to telecom, consumer and
computer equipment manufacturers” [Bhat00]. JAIN builds on Java portability by standardising
the signalling layer of the communications networks into the Java language, and defines a
communications framework for services to be created, tested, and deployed. According to
[Keiz00] the strengths of JAIN are in service portability, network convergence, and secure
network access. Firstly, the uniform use of Java interfaces is utilised to deliver portable
applications. Secondly, the JAIN call model [JAIN] includes facilities for observing, initiating,
answering, processing and manipulating calls irrespective of the underlying multi-network path
of the call. Finally, through the use of the JAIN Parlay interface it is possible to enable untrusted
services, residing outside the operator’s trusted network, to access network resources directly

and carry out specific actions or functions inside the integrated network.
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The JAIN architecture comprises a JAIN Application Server and the JAIN Softswitch
Platform [BeddOO]. The Application server is responsible for implementing the JAIN Service
Provider APIs. These allow secure access to network resources. The JAIN Softswitch Platform
ensures that there is a mapping between the JAIN Call Control elements to the network and
signalling layers. The network layer includes the IN functional entities, as well as SS7 including
ISUP, INAP, TCAP protocols, wireless networks with access to the MAP layer, as well as the
Internet with access to SIP, the Media Gateway Control Protocol (MGCP) and H.323. The
Signalling layer includes access to functional entities such as SSPs, MSCs, and also H.323

gatekeepers in the IP domain.

Figure 3.12 depicts the position of JAIN APIs within a communications platform. It shows the

hierarchical use of APIs at various levels: the protocol APIs, call control APIs and service APIs.

JAIN Service
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third-party third-party

Environment

applications (JSCE)
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Service APIs

JAIN Service

Security Interface:
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JAIN Service Logic Execution Environment
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Ccll Control/Session APIs JAIN Call Control Elem< nts

JAIN Call Control (JCC)
&
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tocol/Connection API

TCAP MGCP

Figure 3.12: Location ofJAIN within a communications network [JAIN]

3.3.2.4.3 Integrating Control Elementsfrom JCC, JCAT and JTAPI

Presented here are the details relating specifically to the finite state model representation of the
call model within JCC and JCAT. JCC is responsible for the basic call-processing and control.
The JCAT extension package is responsible for providing coordination and transaction-related
methods. According to [JainOO], the call model within JCC is identical to that of JTAPI Release
1.2 (section 3.3.2.3).
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JCAT additions include an extension of the Connection object FSM to become a richer FSM
similar to that for IN. There is also a proposal to provide a version which includes both the
O_BCSM and T_BCSM of the IN model in a single FSM. Furthermore, IN-style triggers will be
added. These could be implemented by:

* requiring applications to register with the Address object; in this way, the application would
be invoked when a particular trigger in the Connection object FSM fires.

* treating each transition as a trigger; an application registered with that transition would
execute, while call processing would be halted until the application returns and call
processing can resume.

* implementing callback objects and interfaces; this however, needs to deal with the problem

of feature interaction — which is beyond the scope of the JCC/JCAT API.

It remains to be proved if JCAT can capture the richness, completeness and robustness provided

by the IN state models.

Having briefly introduced the architecture of the JAIN APIs, the next section discusses the work
that is currently under development by the JAIN Parlay Edit Group in order to provide a Java
implementation of the Parlay APIL

3.3.2.4.4 JAIN and Parlay

JAIN set up what is known as the JAIN Service Provider API (SPA) Group to look into the
development of a Java technology API for Parlay. The goal of the SPA group is to “provide the
industry with a standard Java technology version of the Parlay APIs” [JAIN]. To achieve this,
the group looked initially at how a JAIN/Parlay implementation client can interact with a

JAIN/Parlay implementation server, and how that maps onto the existing JAIN standards.

Figure 3.13 shows the JAIN Parlay Edit Group API operating on a third-party client’s machine.
The client’s machine is connected to the network operator across, for instance, an IP network.
The transfer mechanism for the messages between the JAIN/Parlay implementation client and
the JAIN/Parlay implementation server is implementation-dependent. The JAIN/Parlay
implementation server interacts with the JSLEE, JCC and JCAT APIs to use the JAIN

community service plane and control plane capabilities.
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Figure 3.13: JAIN/Parlay Interactions

3.3.2.5 Internet Call Waiting: Replacement Initiative to IN Call Waiting

Internet Cali Waiting (ICW) is a service that enables a subscriber engaged in an Internet dial-up
session to be notified of an incoming call to the same telephone line, to specify the desirable

treatment of the call and to have the call handled as specified [Brus98],

In [RFC2995] the desirable features of ICW are identified. Here is a summary:
m Incoming call notification - The subscriber is notified of an incoming call over the Internet,
without having any effect on the telephone line that is being used by the modem.

m Online Incoming Call Disposition - Once informed of the incoming call, the subscriber has
various options for handling the call.

m Automatic Incoming Call Disposition - Incoming calls are automatically handled based on
dispositions pre-defined by the subscriber without real-time intervention.

m Multiple Call Handling - Multiple calls arrive during call disposition processing. With multiple
call handling, the subscriber is notified of the multiple calls one by one.

m Call Logging - A detailed log of the incoming calls processed during the ICW service is kept.

In order to highlight the inter-operability and inter-working issues that arise from the ICW
service, this section presents the implementation adopted by Korea Telecom [RFC2995]; the

network architecture of the Korea Telecom ICW service is presented in figure 3.14.
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Figure 3.14: ICW based on existing IN CS-1 FEs [RFC2995]

The SSP is a standardised IN CS-1 SSP. On detecting that the called party is busy, it sends a
query to the SCP and processes the call under the control ofthe SCP.
The SCP processes the call based on the logic associated with that service. In the case of the
ICW service, the service logic includes the notification of a waiting call to an online ICW
subscriber and the disposition of the call. The service logic requires that the SCP inter-
works with the ICW proxy server.
The SCP-ICW protocol is PINT. The translation between INAP and PINT is performed by
the SCGF. For this, a proprietary protocol is used between the SCP and the SCGF, whilst on
the other end the SCGF is an IP-endpoint.
The IP is a standardised SRF. When necessary, it utilises the Play Announcement IF to
inform the caller according to the settings of the ICW subscriber.
The ICW server is a SIP proxy or redirect server for message routing between the ICW
client and the SCGF. The ICW server is also responsible for:

* managing the ICW clients that are connected to it,

* monitoring the connection status of the registered ICW client and

* managing profiles for each ICW subscriber.
The ICW client is an application program running on the subscriber’s PC. The application
monitors the Internet connection status ofthe PC and, upon connection, sends a registration

request to the SCGF via the ICW Server, which is eventually passed to the SCP.
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From the above architecture, it can be observed that:
m the implementation depends on a proprietary function - the SCGF - and therefore a
proprietary interface between the SCGF and the SCP
m the implementation of the IP-side of the SCGF is specific to the version of SIP that is being
used and

m the implementation ofthe ICW client application is specific to the version of PINT.

In order to resolve some of these limitations, the “Service in the PSTN/IN Requesting InTemet
Services” SPIRITS IETF WG [RFC2995] has proposed a standardised architecture for future
SPIRITS services [Fayn99]. The SPIRITS architecture proposed in [RFC3136] aims at
providing inter-operability between existing commercially available systems, such as the one

discussed here.

The SPIRITS WG [SPIRITS] would resolve the last two issues associated with the above
architecture, but it would still not tackle the issue ofthe proprietary interface between the SCGF
and the SCP. This could either be resolved using the architecture presented in section 3.3.2.1.4
of the proposed IN CS-4 SCGF or by adopting a Parlay-based approach that would enable third-
party service providers to directly access the SCP through a Parlay-compliant API and thus

overcome the limitations of the proprietary interface.

3.3.3 Supporting [P-Based Services using the IN Model

Intelligent Network
Support of IP with IN

Legacy IN  IPIN

L

Mobility QoS Control MEGACO TIPHON

1 Customer
Billing Service Authentication
Systems

ECommerce Certification
Billing

Service  Service  Service
Control ~ Mngmnt  Provisioning

Figure 3.15: Support ofIP with IN

This section identifies IP services that can be implemented using the functionality provided by
existing (i.e. legacy) IN architecture, as well as by introducing new (i.e. IPIN) components on

the IN-side. Figure 3.15 illustrates the branch (in bold) of the taxonomy this section focuses on.
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3.3.3.1 Customer Service Systems

The IP architecture could be used in conjunction with IN for Customer Service Systems. This
includes web-based customer service control and management. Users could in this way

subscribe and unsubscribe to services “on-the-fly” via a secure web-based interface.

3.3.3.2 Authentication, Certification, Billing and E-Commerce Services

Such service capabilities use information which is already contained within the IN environment.
The IN model and its billing capabilities can be used in order to utilise the important
information and “trust” set within the traditional telecommunications network and enhance this

by promoting the IN billing capabilities over an IP platform [Solo98].

In this respect, the SCP is treated as a general certification authority’. The SCP can provide
access for all manner of secure information (such as passwords) that could be used in Internet

applications. Chapter 4 discusses in detail an example application for this role.

3.3.3.3 DNS for Mobility

This involves utilising the IN infrastructure in order to allow outside control to IN and
intelligent use of information within the IN network for services such as mobility. DNS
[RFC1591] offers a one-to-many mapping from a globally unique, hierarchical identifier to one
or more host names or IP addresses. Therefore, the DNS server provides a means to access
location information for servers. This key element in the IP network could be used in

conjunction with IN, in order to provide mobility through DNS.

In such a scenario, the SCP can treat the DNS as an SDF. Hence, since IN CS-2 provides
enhanced support for user interaction and service profile customisation the user could register a
binding between the IP address and URL through the IN. Number translation services are
relevant to the Internet. The DNS currently serves as a resolution protocol allowing the
translation of fully-qualified domain names to IP addresses. In this sense, the DNS can be
viewed as an IN platform [Solo99b]. The difference is that the end terminal (rather than SSP)
interrogates the DNS.

* A certification authority is an independent party that verifies the credentials of a public key. A complete

description can be found in [Ganl01].
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3.3.3.4 MEGACO and H.248
Before the protocols of MEGACO, H.248 and the ETSI Project TIPHON are introduced, a brief

background to the origins of these protocols is given. Table 3.3 presents an overview of the

protocols developed by two of the major standardisation bodies.

Standards Body URL Major Standards | Notes

T.120 Real Time Data Conferencing

H.248 Gateway control protocol (same as IETF
International MEGACO)
Telecommunications | www.itu.int | H.320 Narrow-band visual telephone systems and
Union (ITU) terminal equipment

H.323 Packet-based multimedia communications

systems

SIP Session Initiation Protocol

I L RSVP Resource Reservation Protocol (prioritises
nternet  Engineering .

Task Force (IETF) s ipilorg - P a:cket tra}fﬁc by usg)

Diffserv Differentiated Services

MEGACO Same as ITU H.248

Table 3.3: Standards for inter-working among IP Telephony and the PSTN

Two major components of the H.323 architecture [H.323] are the Media Gateway (MG) and the
Media Gateway Controller (MGC). The MG performs simple encoding and decoding of
analogue voice signals, compression and conversion to/from IP packets. The MGC contains all
control intelligence, analyses how calls are to be handled and performs functions similar to the
SS7 network in the PSTN environment. The MGC needs to understand various signalling

systems such as SS7 and GSM in order to ensure PSTN inter-connectivity.

Competing with H.323 is the IETF-developed standard SIP (discussed in section 3.3.2.1.1). A
number of papers have been published that make this comparison (either directly or indirectly),
such as [Henn], [Liu00] and [SIP].

Although the ITU Recommendations of series H.323 intended to standardise both the media
gateway and the media gateway controller, an industry initiative called Media Gateway Control
Protocol (MGCP) gained momentum in further decomposing media gateway controllers from
media gateways. A result of this initiative was the formation of a working group, named
MEGACO [MEGACO], by the IETF. The resulting H.248/MEGACO protocol defines a client—
server protocol to control media gateways that can pass voice, video, facsimile, and data traffic
between PSTN and IP-based networks [RFC2705]. H.248/MEGACO supports various
“packages” that interface with conventional PSTN switches and IN services, with plans to
support a range of existing signalling protocols including ISUP, and MAP. The MEGACO
architecture is presented in figure 3.16.
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Signalling
MGC AAA

NAS IP Network
Bearer

Figure 3.16: MEGACO NAS reference architecture

In figure 3.17, depicting the approach adopted by H.248/MEGACO, the IP, signalling and
bearer connections are physical, whilst the interface between the MGC and the Network Access
Server (NAS) is logical. The signalling path between the MGC and the NAS server is through
the IP network. The NAS is an access gateway, or MG, which terminates modem signals from a

network (e.g. switched-circuit network or xXDSL network) and provides data access to the packet

network.
Telephony Media GW H.323,
Signalling Controller SIP
1 1
Control
Interface
1 1
Bearer P
Connection Media GW Network

Figure 3.17: H 248/MEGAGO

One of the technical challenges raised by the ever-closer integration between circuit-switched
and packet-switched networks concerns how to address calls that pass from one to the other.
Generally, it is assumed to be desirable that a single integrated global addressing system exists.
For example, the same ITU E.164 telephone number would reach a subscriber regardless of
whether IP-based or PSTN network technologies are used. Indeed the concept of being
“technologically independent” suggests that any global numbering or addressing plan should be
abstracted as much as possible from the underlying lower-layer technologies. These issues are
addressed by the ETSI Project TIPHON. The following section highlights the work of TIPHON

that is related to the control plane.

3.3.3.8 ETSI Project TIPHON

The Telecommunications and Internet Protocol Harmonisation over Networks Project
(TIPHON) by ETSI aims at “specifying the inter-operability mechanisms and related parameters
to enable multimedia communications to take place, to a defined quality of service, between

switched-circuit networks (SCNs) and IP-based networks and their associated terminal



equipment” [TIPHON]. TIPHON also supports mobility and roaming within IP-based networks

as well as with other networks [ETSI TR 101-300].

[ETSI TR 101-300] identifies five scenarios for different cases of traditional and IP Telephony:
0. IP-phone to IP-phone over an IP network
1. Source on IP network to destination on SCN network
2. Source on SCN network to destination on IP network
3. Source and destination on SCN network using an IP transit network

4. Source and destination on IP network using an SCN transit network.

TIPHON Release 1 defines the architecture presented in figure 3.18.

Back End
GK GK
Server
Media GW Signalling E.b
Controller Gateway
H.323
Media GW
Terminal
E.a

Figure 3.18: TIPHON release 1 architecture with
reference points [ETSI TS 101-312]

Note the Back End Server (BES) represents services provided by third parties. The BES is

further examined in section 3.4.

In order to provide a structured analysis of the requirements, the concept of “functional planes”
is adopted by TIPHON (see figure 3.19). Each functional plane contains a high level grouping

of functionality.

IP Telephony Application Plane

IP Transport Plane SCN Plane

Figure 3.19: TIPHON release 2functional planes

89



The IP Telephony Application plane is further decomposed into the functional layers depicted in
figure 3.20.

— — Service

Service
Control

1

Call
Controf

L 31

Bearer
Control

Media
Control

Figure 3.20: Functional layers in the IP Telephony
Application plane [ETSI TS 101-314]

The services functional layer supports a range of services (e.g. authentication). The service
control functional layer contains the functionality that is needed for the calls but may have a life
span that is longer or shorter than the duration of the call (examples are terminal registration,
call routing). Additionally, the service control functional layer provides number portability,
called user location, name-to-name translation, name to address translation, and call access

authorisation.

The call control functional layer is responsible for maintaining a call context, which allows the
services offered by the bearer control functional layer to provide the connections and
capabilities requested by the customer. More importantly, it maintains the call state, as well as
providing services that change the call state, for instance call hold, suspend, three way, and

conferencing.

A mapping between the IN functional planes and TIPHON’s functional planes is given in figure
3.21.
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Bearer Control SSF
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Figure 3.21: Mapping ofINfunctions onto TIPHONfunctional architecture

As previously mentioned, the original protocols of IP Telephony have limited the inter-
operability of IN and IP services. It is vital that IP users also benefit from services in the IN
network if a means is found to permit IN service access from IP endpoints. This arises from the
fundamental issue of allowing full inter-operability as a natural step to the convergence process

[Cian99].

The next section discusses a fundamental issue of providing inter-operability in the context of
call models. As call models and their respective FSMs represent building blocks for IN
architectures and IP-based services, it is essential that the inter-working among them is achieved

without compromising robustness in either domain.

The inter-working of two different call models is a problem of Call Model Integration (CMI).
A fundamental requirement for CMI is to have a unified view on the two call models (i.e., the

IN BCSM and the IP-based FSM, e.g. H.323 or JTAPI).

A call model, in its most general form, consists of three basic components [Vemu99]:
m the Call Control Element, which handles call processing related functions,
m the Service Switching Element, which handles all service access related functions, and
m the Feature Interaction Manager Element, which resolves conflicts in feature access and

execution.
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Every entity that processes calls possesses these elements in some form. “The CMI issue arises
because the base domain has its own FSM representation of these elements, as does the external

domain of interest” [Vemu99].

As different services are triggered at different states within the context of a given call, it is
essential to be able to maintain a unified view of call state across the two domains. In order to
achieve this, the two state models must operate in lock-step (i.e., state changes in one FSM are

accompanied by corresponding state changes in the other) [ETSI TS 101-314].

Aforeign service”

base domain

foreign Service A base service
Switching Element

foreign Call Control base Service
Element Switching Element

Base Call Control Element

Figure 3.22: Call model integration framework

However, this lock-step behaviour is sometimes difficult to implement, especially since, in most
cases, two call model FSMs do not have the same number of states and there may be a one-to-
many relationship across the two call models. The concept of state models and their
implementations is discussed further in chapter 6. The next section focuses on open inter-

working standards using APIs.

3.3.4 Using the IN Architecture for Layer 2 Operations and to Support
the Convergence Process

Intelligent Network
Support of Layer 2 Support of Convergence

ImT 1 I I T 1

CS-3/4  CPH ATM PSTN IP Mobile Private

GSM  UMTS  GPRS

Figure 3.23: ICW based on existing IN CS-1 FEs
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The last two parts of the taxonomy (see figure 3.23) identify areas where the IN may provide

additional support as a control architecture.

Firstly, to support layer-2" operations, the IN could provide additional QoS control over the
ATM AAL2 using additional functionality that may be provided in future IN capability sets.

Secondly, the IN could be viewed as a control architecture that is supporting the convergence
process. The number of architectures that need to inter-work in order to provide transparent
services are increasing. For example, the following architectures are currently available for
mobile telephony: GSM, GPRS and the slow evolution towards UMTS. Similarly, there are IP
networks over ATM, as well as the traditional PSTN networks. The PSTN network still is the
primary access network for home users, therefore the primary gateway (from the viewpoint of

control) to home users is through the IN control architecture.

It is the author’s view that the IN has a role to play in supporting this convergence process. Of
course, it remains to be seen whether the name “Intelligent Network” will withstand the test of
time. What is important however is that the concepts, capabilities and architecture of the IN are

contributing and impacting the design of IP-based technologies.

The next section moves on to re-examine the TINA service architecture (section 2.5) within the
context of the converging environment and the various protocols and architectures that have

been presented in this chapter.

3.4 THE ROLE OF THE TINA SERVICE ARCHITECTURE IN A
CONVERGING ENVIRONMENT

Section 3.3.3.5 presented the ETSI Project TIPHON and its architecture. As already mentioned,

TIPHON aims at “standardising the interfaces between SCN networks and IP-networks to

enable their inter-operability for voice and multimedia applications” [ETSI TR 101-300]. The

TIPHON architectural configuration defines, among other entities, a Gatekeeper (GK), whose

main function is number translation, and a BES (section 3.3.3.5, figure 3.18).

This section examines TIPHON, PINT [RFC2995] and the new role of IN within the context of
the TINA service architecture (section 2.5).

* Layer 2 here refers to the ATM Adaptation Layer
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In a converged environment QoS guarantees must be made between homogeneous network
types as well as heterogeneous network types. For example, one may wish to establish a call
between three parties, each originating from a different network type. It has been argued
[SoloOOa] that the IN architecture provides an existing and evolving set of standards that will
facilitate the migration towards these types of scenarios. Hence, IN should be viewed as an
important architecture for the communication session as illustrated in figure 3.24. The figure
shows the view of the communication session controlled by the SCPs. The service session is

seen as a distinct entity.

Service Provider
Service Session

API Interface 2 Access
Session
Gateway
scp scp scP
CAMEL CS-1 BES
CAMEL PSTN/ATM IP Network

Communications Session

Figure 3.24: SCPs responsiblefor the communication session

The two API interfaces represent the work discussed in section 3.3.2.4. Specifically, the two
interfaces are the subject of the work of PINT, Parlay, and JAIN. Figure 3.24 shows the

relationship between PINT, Parlay, and JAIN.

Although it is not very clear at this point the direction PINT will follow, it seems to be one of
functional decomposition of the required blocks in order to achieve the initiation of PSTN
services from the IP domain. It is the author’s view that taking an object-oriented approach to
the development of PINT services can result in an easier integration between these and the
TINA architecture, specifically the DPE. By placing the DPE as a means of allowing access to
the PINT gateway it provides a number of enhancements to the basic PINT services [SoloOOa].
This for example could allow a number of service providers to make use of the gateway and
provide customised solutions. PINT provides an interface with the SCP that can be controlled
by a service provider. It provides a connection between the service session and the

communication session.
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Figure 3.25: The TINA service architecture, PINT, Parlay, and JAIN

Furthermore, the use of APIs to open up the interface between the communication session and
the service session (chapter 8) is an important step forward. It allows a service provider to write
applications that can incorporate features as necessary [Solo0OOa][ParlBuss99]. In the case of
Parlay, the service creator need only implement the required software interface for the
underlying capability to be made available. This opens up important possibilities for service
development. Firstly, by making network resources available as required, service creation may
be viewed as a Network Capabilities Service Creation Environment [SoloOOb]. As new network
capabilities become available, they can be made available as class libraries. As such, it is not
necessary to standardise on information flows as in the case of IN CS-1 and IN CS-2. It is

necessary only to standardise on the description of the API, as is the case for Parlay.

Convergence requires the inter-working of services across the different network types or
different operator domains. It is not yet clear whether the API approach will provide a solution
to the problem or even scale across multiple domains. However the work presented in [SoloOODb]
[SoloOOc] and [SoloOOd] points to an approach where a second set of APIs or even overlaid
state models be made available to provide service providers with a higher levelof service

interaction. This issue is further examined in chapter 8.
The following section discusses the role of state machines ina converging environment, and

builds upon the views presented in section 2.6 where the role of state machines intraditional

telecommunication networks was discussed.
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3.5 STATE MACHINES IN CONVERGING NETWORKS AND
THE ROLE OF IN

Chapter 2 examined the state models and control plane of the PSTN. As part of the convergence
process, the state models on the IP side need to inter-work with the less well-structured models

of the IP network.”

IP as a connectionless service apparently has no need for a basic call state model. In fact, there
is no state information stored in traditional IP routers.! In general, IP routers are designed to
achieve high packet throughput with little or no attention to the service the packet is
transferring*. This makes it unnecessary for an SCP-like architecture to support the connection
process. In addition, many of the CS-1 services (e.g. call screening) supported by the SCP are
better placed on the edge of the IP network and handled by intelligent terminals.

However, through the discussion of the taxonomy, it was suggested (section 3.3.2) that the state
models that are available in the IP world need to inter-work with the IN. Section 3.3.2.4.3
identified that there are limitations to this. It is the author’s view that the well-defined state
models of the IN world are unlikely to be relaxed in any way to support the convergence
process. Certainly, there has not been an indication that this may be the case as such a move
could compromise the integrity of the PSTN, the major carrier [ITU97][ITUO0O0] for a large
proportion of IP networks.

The approach that is adopted to provide such inter-operability is one whereby additional
functional entities (such as gateways) are introduced in the IN domain to support the translation

functions. Such functions were discussed in section 3.3.2.

Within the context of the converging environment, there may be reluctance to adopt IN
principles in the IP domain. Contrary to this, there are a number of areas where IN is likely to

play a role. Although such services may be provided with architectures that do not adhere to the

* The arguments presented in sections 3.2 and 3.3.2.2 indicate that this is the case.

 Some routers offer packet discrimination services that involve maintaining state information. Such
routers are generally deployed in dedicated networks that are designed with QoS in mind [Adis98].

! In fact the datapath functions of the router that are performed on every datagram that passes through the
router, are often implemented in special purpose hardware. In trying to improve the per-packet
performance of a router [Part96], the datapath functions are optimised using parallel processing and

special-purpose hardware [McKe00][Wang01]
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IN standards the author’s viewpoint is that there are good reasons why IN should be adopted in

the IP environment.

The first of these is to do with the support of QoS sensitive services. For example, RSVP
[RFC2205] and Diffserv [RFC2475] define state machines for the establishment of resources on
behalf of the user. If a service session is being defined and the streams for the session have to be
controlled within the communication session then there is a role for an SCP [Solo00a]. In
addition, in section 3.4, it was argued that a combination of the Gateway and the BES
effectively performs the function of the SCP and that other services may be established on
behalf of the end user through the “SCP.”

The second issue is to do with the requirements for Universal Personal Telecommunications
(UPT) [UPT]. UPT requires that a service should be made available to any user anywhere
within the network [ETSI ETR 055-1]. In the short term, this means allowing registration of the
user at any terminal on any network and allowing the user’s portfolio of services to be made
available subject to the terminal capabilities or other specialised resources. For example, a
registered user may be contacted from and connected to any of the other networks for which the
user has a subscription. This will require the interchange of user data between networks of the
same type (i.e. PTSN-PSTN) and different types (PSTN-IP). The requirement for the IP case is
that the same rules apply. Whether one calls the device a BES or an SCP, it still needs to exist in
the IP [Solo00a].

What can be extracted from this section is that the traditional role of IN is undergoing an
evolutionary change as a result of the convergence process. The new role of IN is one where it
should be viewed as a control architecture that enables the convergence of PSTN and IP

networks.

3.6 CHAPTER SUMMARY AND RESEARCH CONTRIBUTIONS

As noted in the introduction to this chapter, there is a clear transition from single service
networks to integrated service networks. This entails the inter-working of networks to achieve a
level of inter-operability which a few years ago was unheard of, as it did not fit within the

regulatory telecommunications environment.

The inter-operability and inter-working of these networks is a requirement imposed by the
service characteristics. Different services have different transport requirements. The transport

capabilities of networks and available network resources have advanced over the last decades

¢
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allowing a convergence of fixed telephony, data transmission, multimedia and mobile services.
One of the driving forces behind this integrated network has been the market deregulation,
technological advances and of course the availability of funds within the telecommunications

environment (such as the well-publicised funds spent towards acquiring 3G licences).

Within this framework, an aggregation of the technological, market and evolutionary issues

surrounding the convergence process and its impact on the control plane has been provided.

A large part of the work presented focused on the new role of the IN control architecture. This
was presented using the taxonomy reference model. The author believes the model is a useful
way to understand the interactions of the architectures participating in the convergence process.
At a high level, the model can be viewed as presenting the two extremes towards network
intelligence. On the one side control is provided to the PSTN through the IN and, on the other,
through the more relaxed approach of the IP domain. These two architectures must inter-work in
order to provide the services end users have come to expect regardless of the underlying
network. For this reason, architectures such as PINT are emerging to support such hybrid

services. To achieve this the inter-operability requires inter-working of the state models.

The state models for JTAPI, CTI and JCC have been discussed and it has been determined that
although JTAPI offers the programmer clear and explicit abstractions for manipulating calls and
the logical entities in a call in an object-oriented manner, it lacks certain desirable functionality,

such as the single association of call legs.

In section 3.3.2.3, the JTAPI Call model was presented. It has been argued [Jain00] that JTAPI
overcomes several of the limitations of the IN. According to the same reference, in the IN world
“there is no explicit abstraction offered to allow the programmer to manipulate entire calls, or
legs of a call, or the principal logical entities in the call (e.g. the calling or called party’s
address), and certainly not in any object-oriented fashion.” But the author has pointed out that
JTAPI does not currently capture all states that the IN model does and in JTAPI there is no
concept of triggers or detection points [JTAPI]. Moreover, it is impossible to suspend call
processing at a defined state in the FSM, invoke an application (supplementary service logic),

and return results, although some improvements are suggested by JCC (section 3.3.2.2).

Another application that was discussed within the context of the taxonomy is the utilisation of
IN infrastructure to support billing, authentication, and payment systems within the area of
electronic commerce. This application is the focus of the work that is presented in chapter 4 and

chapter 5.
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CHAPTER 4

UTILISING EXISTING IN INFRASTRUCTURE
FOR IP-INITIATED BILLING &
ELECTRONIC PAYMENT SYSTEMS

The previous chapter identified that legacy IN control elements can be used to
provide authentication, billing and certification services for electronic commerce.
This chapter discusses the design of a system for electronic payments that is based on the
capabilities of IN CS-1.

4.1 INTRODUCTION

The system that is described in this chapter utilises existing IN CS-1 infrastructure and
capabilities to enable home users to engage in electronic commerce. At a functional level, the
Intelligent Electronic Payment System (IEPS) provides two important capabilities. Firstly, it
provides authentication capabilities for both end users and shops and, secondly, it performs the
billing through the existing PSTN connection of the user. Through the IEPS, users can charge
for micro-payments on their telephone bills [Solo98][Solo99a][IEPSPat].

The operation of the IEPS is based, for the most part, on existing IN CS-1 functional entities
and information flows. The additional component that is required to provide the interface

between the IN and IP worlds is a gateway.

Section 4.2 looks at existing electronic payment systems, and identifies some of their
limitations. Section 4.3 provides an overview of their desirable characteristics of electronic
payment systems. Following this, section 4.4 provides a description of the proposed system and
section 4.5 describes the operation of the protocol. Section 4.6 briefly describes the security
features of the IEPS. Section 4.7 evaluates the system as an electronic payment system by
comparing its operation to the desirable characteristics of electronic payment systems presented
in section 4.2. Finally sections 4.8 and 4.9 examine the inter-operability between the IEPS and
the capabilities provided by the IN CS-1. Section 4.10 provides a summary of the chapter.
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4.2 EXISTING ELECTRONIC PAYMENT SYSTEMS

In the past, most European and US operators have invested heavily in IN platforms to support
key bearer-type services such as Freephone and Premium rate. Such systems have complex
structures for interfacing with existing billing systems that are resilient and trusted” by the end
users. In contrast, there is still much mistrust over the security of the Internet. This is indicated
by market research and polls regarding online shopping as well as by the Bank of International
Settlements in the 1996 report [BIS96].

In the past decade, rapid advances in communications, electronic service networks, multimedia
and interactivity have been opening up new opportunities for business. They are contributing to
new and effective ways of disseminating information, promoting products and services and,
more recently, carrying out electronic business transactions, both in the business-to-business

and business-to-consumer sectors [KaprQ1].

The Internet is one example of a communications network that is transitioning from an
inexpensive medium for advertising, marketing, and customer support to a common platform
for transactions and business applications [ITU0O]. At the same time, technological and
commercial developments are melding together information, communications, commerce, and
entertainment into one large, consolidated industry. Part of the reason for this evolution is that
more consumers are accessing the Intemet using multiple devices and over multiple

communications networks [Amar01].

Electronic payment systems, first introduced in the late 1990s, such as ecash™, cybercash™
and barclayCoin™ require the use of a credit card.! At the same time however, there is a
reluctance by individuals to divulge their credit card details online, despite the efforts made to
promote such usage [WResInc98).} In any case, this framework is limiting, both for end users

and for businesses. The reasons for this are discussed in the following section.

* Not many people are known to individually check an itemised phone bill.

! While ecash and cybercash have now evolved into a more mature system, barclayCoin has been
completely dropped by Barclays. At the time of its development, only 12 retailers signed up to accept it as
a form of online payment.

! In cases where fraud is reported, the issuing bank for the credit card provides refunds quickly, thus
encouraging confidence among end users. An analysis of the legal aspects of electronic commerce and

security can be found in [Baum92].
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4.2.1 Limitations with Traditional Payment Systems
The term “traditional” in the context of this section refers to payment systems that were not

designed for use on the Internet or for electronic payments. Examples of these include cheques
and credit cards. To the lay person, credit cards may appear to be quite efficient for online
commerce. It is however, a misconception to accept credit cards as a system designed
specifically for online payments — after all, credit cards’ were in existence long before online

commerce.

These traditional payment methods are inadequate for real-time payment interaction [Furc96].
Here, “real-time” means a transaction is triggered and committed when the consumer hits the
“proceed” button on a Web page. Even with credit cards, a number of systems require the
intervention of personnel to authorise the transaction. This incurs overhead costs as well as
inconvenience to the end user. Furthermore, a large number of traditional payment methods
generally require that the consumer leaves the online platform and uses the telephone or sends a
cheque in order to make a payment. This is particularly true with small companies, which may
not accept payment by credit card, or where the transaction value is too small to use one. It may
also be expensive in terms of time to enter the credit card numbers [Furc96][Kala97]. Some
companies continue to require users to send information offline and arguably, these companies

have not been very successful.

One of the reasons for requiring the user to submit his payment details offline is the lack of
security of the system. It is widely accepted that most users do not feel safe when submitting
their credit card information over the Intermet [DOCO00] and, furthermore, that the most

important factor in promoting electronic commerce is trust [OECD97b].

In [OECD97a], the Organisation for Economic Co-operation and Development identifies that
“trust is central to any commercial transaction” and that “typically it is generated through
relationships between transacting parties” and “familiarity with procedures.” The report
furthermore identifies that “some observers fear that unless actton is taken very soon to bolster
trust in electronic commerce, it will never assume its place as an important channel for
commerce.” However [OECD97b] continues by saying that “such fears [of fraud] are
exaggerated and that in time as consumers become more familiar with the technologies, [they]

will gain confidence in electronic commerce.” The author agrees that, for non-technical users,

* According to Encyclopaedia Britannica, the first universal credit card, one that could be used at a variety

of stores and businesses, was introduced by Diners Club, Inc., in 1950.

101



familiarisation with procedures will overcome a large obstacle in the growth of electronic

commerce.

However, the author takes the view that there is a different notion to trust. Trust can be viewed
as a trade-off between actions (desire), consequences, and risk. For instance, if an end user is
potentially risking fraudulent use of their credit card account by shopping online for a service of

low intrinsic value, then that is a very high risk.

A further characteristic that adds to the limitations of any payment system is its coverage. This
is defined as the ability of a store to accept credit cards as a form of payment. This makes credit
cards applicable only with signed-up shops. Furthermore, this form of payment does not
generally support consumer-to-consumer or direct business-to-business payment transactions.

Therefore, the payment method is limited in its acceptability.

The coverage and acceptability characteristics are also compounded by the eligibility of end
users to qualify for a credit card. Not all potential buyers have suitable credit ratings to allow
them access to credit cards. It therefore follows that both acceptability and coverage are

hindered in these groups.

A major disadvantage of credit-card-based payment methods is the lack of support for micro-
transactions. Micro-transactions are defined as transactions that are of low intrinsic value. Many
payments made over the Internet are of lower value than the cost of a phone call or even a letter
(for sending payment information). What is more, the time it takes to type the required
information may be too high an overhead. The cost of handling these payment methods is often
too high for the seller to break even. This is a very important limitation. Credit card companies
usually charge commission for every transaction they process — and very often impose a
minimum transaction charge. This automatically rules out the use of credit cards for micro-
transactions. Even if credit-card fees are brushed aside, it is still impractical for the user to enter
all the credit-card information for such small transactions. For example, single database-type
applications could charge the user 10 pence for every successful match in the lookup process, a
pay-per-click approach. The Internet (both fixed and wireless) presents a convenient platform
for micro-payments and the IN infrastructure (with billing systems in place) is strategically

positioned to provide support for such transactions.
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4.3 DESIRABLE CHARACTERISTICS OF ELECTRONIC
PAYMENT SYSTEMS

Having identified the limitations of traditional payment systems, the characteristics that are
desirable for Electronic Payment Systems (EPS) are next presented. A complete discussion of
these can be found in [Maho01][Kala97][Furc96][Okam93][Essi92].

4.3.1 Security and Data Transmission
One of the most important requirements is to maintain the security of the system. Protection

against various forms of fraud, the generation of non-existent funds or the malicious use of lost
or stolen cards, are central issues in making payment systems viable. Different infrastructures
behind payment schemes require different kinds of protection mechanism. Most systems need a
user authentication mechanism or access control system. This is often implemented using a

personal identification number (PIN).

The security aspect extends to the data transmission [BIS96]. This is extremely important as, in
most cases (particularly for Internet transactions), a transaction is transmitted for remote
processing. Such transactions can be intercepted, which can lead to unauthorised use of the
payment system [Baum92][Basle99]. At a high level, there are two approaches which could be

used for dealing with this problem.

The first involves the isolation of the transmission infrastructure. This concept requires the
setting up of isolated networks to be used for financial transactions processing. The scheme is
secure but expensive, as it requires setting up a complete network infrastructure, as well as

protecting it from intruders (which can prove to be the most costly part).

A second approach is the use of encryption in order to secure transactions (data transmitted as
part of a transaction record). This scheme allows the use of public communication networks to
transmit financial transaction data. A number of techniques can be applied to encrypt data
transmitted over public networks. One of the most commonly used is that of public-key
encryption and is implemented by the RSA” algorithm [Rive83][RSA98].

4.3.2 Authentication
The second important characteristic deals with authentication and proof of identities [Furc96].

In electronic payment schemes, it is often necessary to restrict user access, for example, to the

* RSA is named after its inventors, R. Rivest, A. Shamir, L. Adleman.
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owner of an electronic wallet™ and to verify the identity of a particular user, to ensure that the
person to whom a payment is made is, in fact, who they identify themselves as. Different
schemes of identification exist, the most popular of which are PIN numbers, passwords and
personal hand-written signatures. Hand-written signatures, although not really an electronic
authentication scheme, are included as they are used to secure credit card transactions as well as
being the original model for authentication schemes. There is a problem however with personal
signatures — that of verification. It takes an expert to tell a forged signature from an authentic
one and therefore it does not offer protection to the credit card user from the misuse of a stolen
card; however, people have come to accept this authentication mechanism. Similarly, digital
signatures allow parties transmitting information over an insecure channel to sign the
transmission digitally so that these signatures can be used in the same way as hand-written

signatures are used in paper documents [Curr0O1].

Digital signatures are used for authentication of the sender, as well as maintaining the integrity
(here meaning that the data has not been altered by a third party) of the data throughout the
transmission [Kala97]. This also means that the originator cannot falsely deny having signed the
data. In addition, a digital signature enables the computer to “counter-sign” the message,

assuring the recipient that the message has not been forged in transit.

Digital signatures ensure authentication by combining the data to be transmitted with a private
key. The user’s private key is combined with the document and performs a computation on the
composite (key + document) in order to generate a unique number called the digital signature.
Digital signatures must exhibit the following characteristics [ABAQ1][Furc96]:
= Verifiable — Anybody should be able to validate a signature.
= Unforgeable — It should be impossible for anybody but the issuer to attach the issuer’s
signature to a document.
» Non-reusable — It should be impossible to “lift” a signature off one document and attach it
to another.
= Unalterable — It should be impossible for anybody to change the document after it has been
signed.

= Non-deniable — The person signing the signature cannot deny having done so.

The process involved in digitally signing a message requires the sender to apply his private key

to the data to be transmitted. To increase the speed of the process, the private key is applied to a

* “Electronic wallet” here refers to a collection of data that is stored on the user’s machine and contains

information regarding bank details.
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shorter form of the data, called a “message digest” rather than to the entire set of data. The
resulting digital signature can be stored or transmitted along with the data. The signature can be
verified by any party using the public key of the signer. This feature is very useful, for example,
when distributing signed copies of virus-free software. Any recipient can verify that the
program remains virus-free. If the signature verifies properly, then the verifier has confidence
that the data was not modified after being signed and that the owner of the public key was the

signer.

For example, when an electronic document, such as an order form with a credit card number, is
run through the digital signature process, the output is a unique “fingerprint” of the document.
This “fingerprint” is attached to the original message and further encrypted with the signer’s
private key. If a user is communicating with her bank, she sends the result of the second
encryption to her bank. The bank then decrypts the document using her public key and checks to
see if the enclosed message was tampered with by a third party. To verify the signature, the
bank performs a computation involving the original document, the purported digital signature
and the customer’s public key. If the results of the computation generate a matching
“fingerprint” of the document, the digital signature is verified as genuine; otherwise, the

signature may be fraudulent or the message may have been altered.

4.3.3 Transaction Cost and Use of Additional Hardware
Transaction cost can be defined as both the time required for a transaction and the financial

expense associated with processing overheads, hardware costs and other financial expenses
[Essi92). Transaction cost determines the amount of money the user of a system is effectively
charged for a purchase on top of the actual sale price. For instance, high financial transaction
costs make it uneconomical to use a system for small financial transactions (e.g., the writing of
a cheque for the amount of five pence) and long processing times of transactions can make it

inconvenient to use on a particular system.

Transaction cost and the use of additional hardware are linked”. In most cases, an EPS requires
that every payment is cleared online with a central database located at the authorisation
organisation (e.g. a bank or a credit-card company). If a decision about the validity of a payment
can be made locally without the need for online clearance by a central authority, then both the
transaction cost and processing time decrease. Such systems however require additional
tamperproof hardware [Bran93]. Prepaid smart card payment systems usually do not perform

online verification, as the hardware is assumed to protect the information stored on the cards.

* For example, in [VISA] there are minimum specifications for VISA card readers.

105



Requiring online verification on the Internet is less of a problem, as the communication
infrastructure is already in place. An offline verification system would be advantageous only if
no online connection to the central authority can be established. Thus, the online verification

requirements of an EPS could produce an unwanted overhead.

Transaction cost can be divided into three categories — high, medium, and low [Essi92]. An EPS
is said to have a high transaction cost if any part of the transaction has to be processed
manually. Automated transactions that cause a substantial overhead are not quite as expensive
as those involving manual transactions and they are also faster. For example, SWIFT [SWIFT]
is an example of this level of transaction cost. These systems are cheaper and faster to use, but
still involve substantially higher costs than the use of cash. Finally, a system with low
transaction cost eliminates the need for online clearance and (by definition) reduces the
hardware and communication expenses. An example of this level of transaction cost are pre-
paid phone card systems. There is no online clearance (from a financial authority) as they are

prepaid.

4.3.4 Traceability of Payments
Traceability of payments involves tracking a transaction without compromising or revealing the

details of a user. Common electronic payment systems, such as credit cards, generate a record
for every payment made. This is needed to ensure that all payments can be verified. It is now
possible to devise payment systems that do not allow payments to be traced without
compromising the system’s security standards. This permits the implementation of systems that
are cash-like in that they ensure some limited anonymity of payments. At the other extreme, an

anonymous credit card system was proposed by [Okam89].

In general, payment systems can be grouped into four categories. These are Unconditional,
Conditional, Untraceable, and User-controlled:
= Unconditionally Traceable
Payments in a system are unconditionally traceable if a transaction generates a record that
identifies buyer, seller, amount, date and time, and optionally some additional information.
This allows the bank, or another party obtaining the bank’s records, to trace all payments
made within the system. This is the way in which today’s credit-card payment system
operates. There are however a number of other alternatives which provide some form of
anonymity.
* Conditionally Traceable
A conditionally traceable system is one in which payments are generally anonymous but

allow for the identification of transaction details by obtaining what is referred to as a
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“reference transaction”. According to [Furc96] “conditional traceability provides for a
somewhat higher level of privacy and anonymity than unconditional traceability, as it
requires some action to ‘de-anonymise’ the transactions, and this will not always be done
(i.e. these systems will not be used to obtain marketing data or for personalised loyalty
schemes).”

® Untraceable Payment Systems
These allow the payer to remain completely anonymous. These systems have to mimic the
properties of cash as far as possible. In [Chau82], [Chau83] and [Chau92] the author
demonstrates that, by using blind signatures, such systems can be implemented.

= User-Controlled Traceability
In such systems, every payment generates its own receipt together with the payment in
encrypted form. Only the user making the payment owns the key to the encrypted receipt
(and can selectively make that known). Commercially implemented systems which provide
user-controlled traceability include DigiCash’s ecash system. It could be argued that these
systems from the payer’s perspective are the most powerful. This is because in terms of

privacy the payer decides on who can access his identity.

4.3.5 Acceptability and Transferability
This is the property of a payment system to be accepted universally, that is, its acceptance is not

limited to one bank or organisation issuing the system [MahoO1]. The acceptability property is
easy to add to any system. Upon receiving a payment of some form that was issued by another
bank, the bank processing the payment clears it with the issuing bank. Acceptability is therefore
achieved at the expense of higher communication overhead and therefore higher transaction

cost. It is more difficult to achieve acceptability in pre-paid services.

Transferability is concerned with the ability of users of the system to transfer funds to each
other without the need to contact the bank for clearance of the transaction. Transferability is

difficult to implement without compromising the system’s security [Furc96].

4.3.6 Implementation Issues
The final characteristic of an EPS is the trade-off between providing a software-only solution

for its implementation versus tamperproof hardware. Systems use a software-only solution
when they can be implemented in such a way that all data and communication on the user side

is accessible by the user. In such a system, the user must not be able to obtain any benefits from

* Blind signatures are a variation of digital signatures, where the sender multiplies the digital signature by

a random number [Chau92].
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tampering with data or communication. Systems employing tamperproof hardware use
additional hardware that is assumed to be designed in such a way that it protects the information
it contains from the user of the device. For example, not even the holder of a smart card can
access or modify directly the information stored on the smart card. Generally, according to
[Furc96], a software-only solution that does not require additional hardware is considered

superior to a solution that requires additional specific hardware to be employed.

4.4 THE IEPS IN-BASED BILLING SYSTEM

This section discusses how an existing IN infrastructure can enable support for online secure
transactions. It focuses on the design and operation of the Intelligent Electronic Payment

System (IEPS). It also identifies inter-operability issues with existing IN CS-I infrastructure.

4.4.1 Overview of the IEPS Model
Figure 4.1 depicts the parties involved in the IEPS. These are the Customer (user), the Internet

Shop (IS), and the Network Operator.

In figure 4.1, the Service Provider is a public or private company that develops and provides IN
services commercially over the common IN-structured network and underlying basic (bearer)
services. A Network Operator who utilises an IN CS-1/2 compliant infrastructure can become a
service provider of the IEPS. The software required for this is defined as the Network

Operator’s Agent Software, NO Agent.

Service
Provider

IN Service

IS Agent User Agent

IN Platform
(SSP + SCP)

Bearer Network

User

Operator
NO Agent

Figure 4.1: Parties involved in IEPSframework

The Service Subscriber is an organisation that obtains an IN service from a service provider on a

contractual basis and has to pay the charges to that service provider. In the context of this
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protocol, the service subscriber is the Internet Shop (IS). The software that is running on the

1S’s equipment is defined as the IS Agent.

Similarly, the person who has access to and makes use of a service, i.e. represents the called or
calling party depending on the type of IN service, will not necessarily be the service subscriber.
This person must belong to the subscribed users of the service provider. The software that is

running on the user’s machine is defined as the UA.

As previously discussed, the proposed IEPS protocol makes use of the fact that large sections of
the Internet user community rely on home access to the Internet using modems. As a result,
access to Internet Service Providers (ISPs) for most homes involves the use of dial-up services
via connections through the PSTN. ISPs for the most part rely on leased line services that are

part of a core public telecommunications infrastructure.

The proposed system provides the subscriber with a secure link through which transactions can
be made. The Network Operator can be viewed as both a credit-card authority and a telecom
operator. This fits nicely with the expectation of users for a “one-stop shopping” solution. The

following section analyses the network elements ofthe IEPS.

4.4.2 Elements ofthe IEPS
This section provides a brief overview of the proposed IEPS. Figure 4.2 depicts physical

interconnections between the parties involved in the IEPS.

SDP
Signalling
Bearer Network

Internet

User ISP Shop

m
SSp

Internet &5&,,

Modem/CCAF

Figure 4.2: IEPS network elements

There are three distinct classes of connection. Firstly, there is the bearer connection between the
User and the Intelligent Peripheral (IP) through the local exchange and the Service Switching
Point (SSP). Secondly, there are the signalling connections between the various functional
entities of the IN CS-1/2 infrastructure. An important point here is that the interconnection

between the Gateway (G) and the Service Control Point (SCP) is also treated as a standardised
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signalling connection. Finally, there are two connections which are based on IP: one is from
the ISP to the Internet and the other is from the Internet Shop (IS) to the Internet. To clarify a
point, the IS, in most cases, will have to go through an ISP but this is not depicted, since it does

not interfere with the operation of the protocol.

4.5 THE IEPS PROTOCOL

This section discusses the protocol for the IEPS. Before discussing the technical details of the
protocol, a description of the operation of the protocol is given, in a concise manner, avoiding

many of the implementation details.

The protocol is divided into three phases. Firstly, the user connects to the ISP; then the user
exchanges IP packets with the Intemet Shop and the Gateway; finally, the Gateway completes

the transaction using the SCP.

The User connects to the Internet using a PC and, in the large majority of cases, a modem, by
connecting to an ISP. To the IN model, the modem represents a Call Control Agent Function
(CCAF). The Switching Exchange, where the SSP usually resides, is a switching centre of the
Network Operator. It routes the call of the Internet Connection from the customer (user) to the
ISP. The IP is the physical entity responsible for the implementation of the SRF and is
controlled by the SCP. The SCP is responsible for payment-related processing. It includes
database access, information validation and verification as well as any transaction-processing
related procedures. Attached to the SCP is an SDP, which is a database containing information
about customers who are registered as service users. Information stored includes access
passwords, credit limits and customer preferences. This information is made available to the
SCP for payment-related processing. Finally, the Gateway provides the connectivity as well as
the translation functions for the inter-operability between the IP and IN worlds. The Gateway is

discussed in detail in section 4.9.

The following sections provide a detailed description of the operation of the protocol.
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4.5.1 Phase 1: User Connects to ISP

Figure 4.3 depicts the initial phase of the protocol, which takes place while the user is

connecting to the ISP.

SDP

SSP
CCAF ISP Internet

Modem
User Internet Shop (IS)

Figure 4.3: Registration phase ofIEPS

This phase of the protocol is initiated when the user requests a dial-up connection from the PC
to the ISP (stage 1). One convenient feature of the protocol arises from the access numbers the
vast majority of ISPs assign to their Points of Presence (PoP). Usually, they provide local-call
numbers (or increasingly freephone), which will trigger an IN transaction to interpret the
number (stage 2). At this point, the service logic for the protocol will be associated with the
standard number translation logic within the SCP. As a result, the SCF will also request from
the SRF/IP (stage 3) to ask the user to enter a password or PIN associated with the physical
connection (telephone line) the user is connecting from (stage 4). The SRF will collect the

user’s PIN and return it to the SCF for further processing (stage 5).

A point that needs to be addressed is the security of the PIN. Specifically, the PIN is not
encrypted; however it is not possible for an intruder to pick up the information transmitted
either from the SCF to the Specialised Resource Function (SRF) or from the SRF to the SCF,
unless the line is physically tapped. Even if an intruder does collect a user’s PIN the only way it
can be used is if the intruder connects to the SCP from the telephone number associated with
that PIN. It would be irrational for someone to physically tap a telephone line to collect a PIN
and then break into the house in order to use a PC for e-commerce, and even more illogical to

do so for micro-payments!

Following stage 5, the SCF must now match the PIN received with the PIN stored in the Service

Data Point (SDP) and the telephone number of that user. On a successful match, the SCF
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generates a ConnectionNumber and passes it to the SRF using the AuthorisationCode
information flow. If the match fails, the following options are available:
m The user is asked by the SRF to re-enter the PIN, or
m The user is not issued with a unique ConnectionNumber, which is required to make any
purchases (further discussed later), or

m The SCF asks the SSF to terminate the connection.

These options can easily be re-configured in the SCF. An important parameter to the protocol is
the ConnectionNumber. This is a unique number generated by the SCF, which ties the user’s
PIN and user details with the active connection. It is required by the protocol in the final phase
(billing), where the information is cross-checked for validity. To avoid the likelihood of the
same ConnectionNumber being assigned to two distinct users, the connection number is made
a function ofthree parameters as follows:

ConnectionNumber =f (userPIN, telephoneNumber, random Number)

At this point, the user has connected to the ISP and, most importantly, the UA holds a valid

ConnectionNumber. The next section discusses the exchange of IP packets.

4.5.2 Phase 2: User Exchanges IP Packets

Figure 4.4 shows the packets that are exchanged after a user has visited a web page and selected

to make a purchase.

Proceed to bill?

reply

D CCAF ISp
Modem B
User Internet Shop (IS)

14'4:
Enc(T( TNJg, Conn.Number), IP, Enc(T( TNu .TN®) T iii:

PKey,

Enc(T,

Receipt Information

Figure 4.4: The IP packets ofthe IEPS

The IS sends a request to the user for his public key. The User Agent (UA) replies by sending

the user’s public key.
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In stage 8, the IS Agent sends the following packet to the User Agent.
Enc (Tcost-1s, TNi1s) , PKEYis

The packet contains the following information:

Name Teost-1s

Ent.:rypted Description | Transaction cost as calculated by the IS Agent.
using the

User’s public

key obtained Name TNy

from stage 5. Description | Transaction number generated by the IS Agent.

No encryption Name PKEY;s
Description | The public key of the IS.

Table 4.1: Packet structure for message 8

The User Agent must accept the packet. This can be achieved in the following ways:
» The UA can wait while it is polling the incoming data for a special message, after which it
saves the incoming data for decryption, or

» The UA can use Java Servlets [JAVA] to accept the incoming packet and write it to disk.

Whichever way is chosen, the data to be sent must be encrypted as it is sent over an insecure
network such as the Internet. The encryption that is chosen is public key encryption.

Authentication is achieved using digital signatures.

The IS Agent creates a record in a database, with the following record structure:

Field Name Type
TransNumber Numeric
TransCost Numeric

TransDate Date

Table 4.2: Record structure for IS agent

In stage 9, the UA sends to the IS Agent the packet:

Enc (TCost-User ' TNuser)

Name Tcost-user
Egﬁgfl)ts‘?g Description | The Transaction cost reported by the IS Agent at
public key stage 6.
Obtzggg f6rom Name TNUser
Description | Transaction number generated by the UA

Table 4.3: Packet structure for message 9
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The UA uses the IS’s public key to encrypt the TNuser and the TNcost as initially reported by
the IS Agent. It then uses the IPg, received at stage 5, to send the information to the IS Agent.

The IS Agent accepts the packet and sends it to the Gateway, so that the necessary validation

and verification can be performed.

In stage 10, the User Agent sends to the Gateway the following packet:
Enc (Tcost-1s, TN1s, TNuser, Conn.Number) , IPis

Name Teost-1s
Description | Transaction Cost calculated by the IS Agent.

Name TNis
Encrypted Description | Transaction Number generated by the IS Agent.
using the

Network Name TNyger

Operator's Description | Transaction Number generated by the UA.
Public Key

Name Conn.Number

Description | The unique connection number assigned to the User
by the NO Agent.

Not Encrypted Name IPs
Description | The IP of the IS.
Table 4.4: Packet structure for message 10

The User Agent also sends the IPjs, in an unencrypted form as it is required by the gateway to

contact the IS Agent.

In stage 11, the IS agent sends to the gateway the following packet:
Enc (TCost -User, TNuser, TNIS)

Name TCost-User
Description | Transaction Cost returned to the IS by the User
agent at stage 7.

Encrypted
using the Name TNyser
Network Descrioti -
Operator's escription | Transaction Number returned by the IS Agent at
Public Key stage 7.
Name TNis

Description | Transaction Number generated by the IS Agent
Table 4.5: Packet structure for message 11

In stage 12, the gateway sends a final confirmation to the IS Agent in the form of an “ok to bill

message” which contains the TransactionNumber and Cost.
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In stage 13, the IS Agent processes the transaction number and the cost. If there is a pending
transaction in its database that matches that transaction number and cost, it returns a true

response, otherwise false.

4.5.3 Phase 3: Charging using the IN Gateway
This packet (stage 14) is sent independently of the Charge request to the SCP from the gateway.

The IS Agent will confirm to the User the transaction number, receipt number (generated by the
IS) and method of dispatch or delivery. This part of the protocol does not need to be defined, as
different Internet Shops may choose different ways to send the Receipt Information, depending
on the type of service/product that was purchased. However, the way in which the gateway can

be implemented in discussed in section 4.8.

4.6 SECURITY WITHIN THE IEPS SYSTEM

The implications of security in a payment platform are of paramount importance. The IEPS
Protocol is in an advantageous position because it utilises an existing billing system that,
through time, has come to be accepted by end users as relatively secure. The basis for this is that
few people individually check telephone bills in case of over-charging. However, since it is
utilising an insecure network for Phase 2 of the protocol, security is still an essential ingredient

in enabling electronic transactions.

Public-key technology is widely accepted as a qualified technology to meet the necessary
security requirements for electronic business and it has become the preferred means for
providing these capabilities [DOC94]. The benefits of public-key cryptography in relation to
secure transactions are that it uses encryption to keep the information confidential and, through
digital signatures, it provides for authentication, data integrity, and non-repudiation [Kali93a]
[Hale98][Baum94]. These techniques are combined to effectively “sign and seal” any electronic
transaction and the signing can be done in such a way that the user who signed the information

cannot later successfully deny signing that information.

The elements of a public-key infrastructure (PKI) are presented here. Further the section
identifies how these relate to the IEPS System. The aim is not to give a detailed analysis of the
workings of public key encryption, but rather to identify how it relates to the IEPS System. A
detailed explanation of PKI can be found in [Aust00][Kali93a][Kali93b][RSA98].

4.6.1 Elements of a Public Key Infrastructure
The public-key infrastructure (PKI) is used to manage keys and certificates on behalf of users

and applications. An important requirement of the PKI is to do this in a way that is transparent

115



to end users. If it is not easy to use, people will not take advantage of its features. In addition to
user transparency, the following are some of the key elements for a PKI:
= (Certification Authority
The certification authority (CA) is the trust centre of a PKI as it manages public key
certificates for their whole life cycle. The CA is responsible for issuing certificates by
binding the identity of the user to a public key with a digital signature and for scheduling
the expiry date for these certificates.
= Registration Authority
The Registration Authority (RA) provides the interface between the user and the CA. It
captures and authenticates the identity of the users and submits the certificate request to the
CA. The quality of this authentication process determines the level of trust that can be
placed in the certificates.
= Certificate Distribution System
Certificates can be distributed in a number of ways depending on the structure of the PKI

environment, for example, by the users themselves, or through a directory service.

Other features include support for key backup and recovery. More essential is the support for
non-repudiation of digital signatures. The automatic update of key pairs and certificates and the

management of key histories are also desirable.

4.6.2 PKI and the IEPS System
As mentioned above, public key encryption requires two keys. The two keys are mathematically

related so that data encrypted with one key can only be decrypted using the other.

Unlike secret key encryption, which uses a single key shared by two (or more) parties, public
key encryption uses a pair of keys for each party. One of the two keys is public and the other is
private. The public key can be made known to other parties; the private key must be kept
confidential and must be known only to its owner. The parties involved in the IEPS will have
their own public keys. These are denoted as follows:

* Network operator’s public key denoted as Pkeywo

= Internet shop’s public key denoted as Pkeys

= Consumer’s public key denoted as PKeyco.

4.7 EVALUATION OF THE IEPS PROTOCOL AS AN EPS

Section 4.3 presented key desirable characteristics of electronic payment systems. This section

evaluates the IEPS against those characteristics.
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4.7.1 Software-only versus Tamperproof Hardware
The IEPS provides a software-only solution. This is true except for the IN/Internet Gateway that

is an essential component to the IEPS. However, once the gateway is implemented it can be

used to provide a wide number of integrated services.

4.7.2 System Security and Data Transmission
In terms of system security, the IEPS is classified as one that utilises an isolated infrastructure

for the registration phase, as well as an unsecured transmission network for the second phase.
Clearly, the registration phase of the protocol is in isolation from the Internet. However, unlike
most systems utilising a network that is in isolation, it does not require the setting up of a
complete network infrastructure (except from the SCP—Gateway link). Therefore, it makes use
of existing links. Of course, these links must be maintained in order to protect them from

intruders. For the second phase, encryption and security are clearly of paramount importance.

For the first phase, the system achieves authentication by means of a PIN, which is bound to the
specific physical link of the isolated network. In order for the system to enhance the
identification of Internet Shops in the second phase, the network operator could provide users
with a customised browser that limits access to Internet Shops that are in agreement with the
operator. This would provide the user with a more secure feel for the system than if a standard
“open” browser is used. In any case, PKI is an essential component for ensuring the security of

the second phase.

4.7.3 Transaction Cost
The system is classified as having a low transaction cost. This is because the online clearance is

obtained by the Gateway after it requests an authorisation from the SCP. The SCP makes a
database enquiry in the SDP to check, for example, the credit limit of the customer before it
authorises the transaction. The protocol could also be enhanced to operate as a form of prepaid
service, where the subscriber buys credit from the operator in advance and therefore further

limits the need for online clearance.

4.7.4 Traceability of Payments
The protocol can be adapted to provide conditional traceability or user-controlled traceability.

Obviously from the user’s perspective to the Network Operator, the first phase of the protocol is
classified as being unconditionally traceable. This is because the PIN number is associated with
the physical connection. However, from the Internet Shop’s perspective the system could be
classified as offering a user-controlled traceability. If the user is buying a service, then the

system is user-controlled. However, if the user is buying goods then the Internet Shop needs to
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know the delivery address of the user. Currently the protocol offers unconditional traceability in
this respect (i.e. payer and payee are always identified). This can be changed and instead of the
user providing the information to the Internet Shop, the information could be sent to the
gateway and submitted to the Network Operator, who in turn arranges for the delivery of the
goods.

4.7.5 Acceptability and Transferability
The acceptability of the system is limited only to Internet Shops that have signed an agreement

with the Network Operator. However, different Network Operators can reach agreements
amongst themselves therefore allowing a wider choice to the subscriber. Of course, this would
require a higher communication overhead between the involved network operators and thus
slightly increase the transaction cost of the system. At present, the system does not offer

transferability of funds and there should be no need to do so.”

4.7.6 Comparison with Currently Available Systems
This system, unlike most currently available systems, does not require the user to open an

account with the organisation providing the service. It plainly uses the account that is already in
place (i.e. the phone bill). Unlike other systems, it does require the providing organisation (the
network operator) to form alliances and reach an agreement with the shops. This could be a
problem but, depending on the size of the organisation, it can be solved relatively easily.
Because the organisation providing this system would almost certainly be the network operator,
it should not be a major problem to reach agreements with Internet Shops. The bargaining

power of the network operator would easily convince a smaller company to try their system.

A major advantage of this system in comparison with existing ones is that it does not use credit
cards and hence completely avoids the existing public controversy about whether submitting
credit card information over the Internet is safe or not. It could easily be marketed as a system

that does not require credit cards because those systems are not secure.

4.8 IN CS-1 INFORMATION FLOWS FOR IEPS

REGISTRATION
This section describes the capabilities of IN CS-1 (discussed in section 2.4.3.1) that can be used,
unchanged, for the implementation of the IEPS. As previously identified, IN CS-1 capabilities
are utilised in two phases: the registration phase and the billing phase. The IN CS-1 flows that

* Transferability is a desirable characteristic for electronic payment systems that are targeted at the

business-to-business sector, rather than the business-to-consumer.
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are needed for the registration phase are discussed in this section. The second phase requires a

gateway for translation between IN and IP and this is discussed in section 4.9.

Figure 4.5 presents the information flows (IPs, refer to section 2.4.3.1) that are utilised by the
protocol. It is important to make the distinction here that the IPs are physical connections. For
example, at the point where the PIN number is collected from the user, the SSP is connected to

the SRF (as indicated by the dashed grey line).

IN CS-1
SRF
Initla IDP
IN CS-1 IN CS-1 IN CS-1
SSF SCF SDF

Figure 4.5: IN CS-I IFsfor the registration phase ofthe IEPS protocol

4.8.1 The SCF-SSF Interface
In IN CS-1 the SCF-SSF relationship is established either as a result of the SSF sending a

request for instruction to the SCF, or at the request of the SCF for initiation of a call for some
non-call related reason [Q.1214]. As previously discussed in section 2.4.1, information flows

(IF) are used for the communication between IN functional entities.

One such IF is the InitialDP IF. This IF is generated by the SSF, when a trigger is detected at
any DP in the BCSM, to request instructions from the SCF. One of the information elements of
this IF is Dialled digits, which contains the actual digits received by the SSF from the calling
party. It is used by the SCF to perform the number translation. When the number is translated,

the call is re-directed to the ISP.

One of'the IFs between the SCF and the SSF is the Analyse Information IF. This IF requests the
SSF to perform the originating basic call-processing actions to analyse destination information,
which is either collected from a calling party or provided by the SCF (e.g. for number
translation). This includes actions to validate the destination information according to a
specified dialling plan, and if valid, to determine call setup information (e.g. called party

address, nature of address, and route index to a list of one or more outgoing trunk groups).
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Although the Connect to Resource IF is depicted in figure 4.5 between the SCF and SSF, it is
discussed in the next section because it is essentially a request to instruct the SSF to connect the

user to the SRF.

4.8.2 The SCF-SREF Interface
This interface provides capabilities to authenticate the user using a Personal Identification

Number (PIN).

In order for the SRF to be accessible to the user, the SCF must request the SSF to perform this
connection. This is done by using the Connect to Resource IF, at the SCF-SSF interface. The
information elements of the Connect to Resource IF include the Call ID, which identifies a

specific instance of a relationship between an SCF and SSF.

After the SSF is connected to the SRF, the user is prompted with a welcome message. This is
done using the Play Announcement IF. One of the information elements of the Play
Announcement IF contains the Inbandinfo structure, which allows the SCF to specify an
elementary message or text, the number of repetitions as well as the duration and the interval of
the announcement. Play announcement can be used to welcome the user with an introductory

message.

Following that, the Prompt and Collect user information IF is used to collect the information
from the user. The information collected from the user is stored in the Collected Info information
element that can contain either Digits or IAS information (for collection of text from the user).
The structure of Digits enables the definition of the minimum and maximum number of digits to
be collected, timeouts and the way errors should be treated. In the case where an error (e.g.
timeout) does occur, it can be handled in a number of ways including playing to the user a
“help” message, repeating the prompting message, or sending the information collected to the
SCF for further processing. An additional element of the Digits record is Voicelnfo, which

indicates that digits may be collected using voice recognition.

Once the data is collected from the user, the SCF needs to match the entered PIN with the PIN
of the user stored in the SDF. For this the SCF—SDF Interface is used.

4.8.3 The SCF-SDF Interface
The Query IF is used by the SCF to collect information from the SDF. The Query IF allows the

collection of data from the SDF and is widely used in applications such as number translation

and freephone numbers. Its information elements include DatabaselD, RequestedinfoType and
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Information key. In the IEPS, the Information Key allows data to be retrieved from the database
based on the calling line ID. More specifically, any data that is contained within the InitialDP
can be used as an Information key. The response to the Query IF is the Query Result IF. The

returned information element, Result, may contain either data or simply a true or false value.

4.8.4 Resuming Processing at the SSF
An important point is that throughout the time that the processes of translating the dialled

number, connecting the user with the SRF, then collecting the user’s PIN and matching the
information entered with the information in the SDP are being carried out, the call is on hold at
the SSF. Once these procedures are completed, the SSF is connected to the terminating

exchange and the user has access to an IP connection — provided by the ISP.

Having discussed the IFs that are available for implementing the registration phase of the IEPS
protocol, the next section moves on to introduce two potential architectures for the
implementation of the gateway function, which allows the inter-connectivity between IN

functional entities (FE) and the IP end-points of the IEPS.

4.9 THE GATEWAY BETWEEN IN AND IP

An important functional entity of the protocol is the gateway. It provides seamless inter-
operability across two fundamentally different networks. On the one side, the gateway must be
treated as a standardised IN functional entity and, on the other, the gateway must be able to
process IP packets according to the design of the protocol. Therefore, the gateway is essential in
providing the interconnection between a circuit and a packet-switched network. At the same
time there are some fundamental non-functional requirements imposed on the gateway.

Essentially these are the capabilities of the underlying IN infrastructure; in this case IN CS-1.

The gateway device must be in a position to communicate interactively with the proposed
application. This communication should minimise any potential changes that may be needed on
the IN-side because a new system, or protocol, is being introduced into an already extremely
well defined and standardised environment. It would not be feasible to expect already
standardised systems to adapt to newly-developed systems. To achieve this, two potential
functional entities that could be used to allow this interaction are examined: the Intelligent
Peripheral and the SCF. To these, the gateway would appear as another standardised element of

the existing IN infrastructure.

This section describes two possible options for implementing the gateway between the IN and

IP worlds. The section focuses on the specific way in which it can be implemented for the IEPS
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protocol. The two proposed implementation options are to treat the gateway as an Intelligent
Peripheral (SRF) or as an SSF. The difference between these cases is in the communication

primitives which are used between the elements, which in turn extend or limit its capabilities.

49.1 The Gateway as an SRF
Under this approach, the SCP views the gateway as an Intelligent Peripheral. As a result, the

gateway must adhere to the standard composition of an IN CS-1 SRF, whose main components
include the Functional Entity Access Manager (FEAM) and the SRF Resource Manager (RM)

[Q.1214].

SCF
A
SRF-SCF ASEs

IN CS-1 SRF
FEAM RM

Translation Function

IP Node Internet

Figure 4.6: The gateway as an SRF

Figure 4.6 illustrates the SRF approach. The top part consists of a standardised IN CS-1 SRF.
The translation function is responsible for converting IP packets to SRF-SCF IFs. While this
approach can provide the necessary functionality, the second, where the gateway is treated as an

SSF, is more powerful as it allows the triggering of SCP-based IN services.

4.9.2 The Gateway as an SSF

SCF
SSF-SCF ASEs
IN CS-1 SSF
FIM IN-SM

Translation Function

IP Node Internet

Figure 4.7: The gateway as an SSF
Figure 4.7 depicts the second approach, where the gateway is treated as an SSF from the point
of view of the SCP whilst the IP side could be an application or even a router function. If the

router QoS mechanism can be described as a state machine then this can potentially be used for

triggering services in the same way that the BCSM can in the call control function. The CCF
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then effectively becomes an IP Control Function (IPCF). The SSF/Gateway now allows the
triggering of SCP-based IN services and is much more powerful than the intelligent peripheral
case where the IN standards would not allow the intelligent peripheral to be the instigator of

services.

The question remains as to whether it is a good thing to apply the IN concept to routers within
the network. It could be argued that one of the reasons why IP networks are so successful is

because there is little operator control of the core of the IP network.

The IP router case draws out the fundamental difference between the telecommunications
paradigm and the Internet. A connectionless Internet Service does not have a basic call state
model because there is no network layer connection. This makes it difficult to work with the
equivalent of the detection point mechanism of the SSF/CCF. On the other hand, the concept of
a basic call routing function is not seen to be impossible if one considers the possibility of

connection-oriented IP mechanisms such as cell tagging.

4.10 CHAPTER SUMMARY AND RESEARCH CONTRIBUTIONS

This chapter presented a protocol that was developed to demonstrate one of the ways in which
existing IN CS-1/2 infrastructure can be utilised to support new and innovative IP-based
services. The proposal has the following innovative features:

» It is advantageous over existing electronic payment systems as it does not require the use of

credit cards.

» Existing IN capabilities are sufficient to implement the system.

= Two distinct options for implementing the gateway were put forward.
The proposed system is based on the principle that the large majority of consumers are reluctant
to engage in electronic commerce activities due to lack of trust [OECD97a]. This lack of trust is
a result of the insecurities of the transmission protocols used in the Internet, as well as the large
publicity that Internet break-ins receive versus the millions of transactions that are completed

successfully.

The IEPS is innovative and secure. It allows end users to engage in electronic commerce
without the controversy surrounding credit cards. It utilises existing billing platforms that,
through time, have been accepted by users as secure and have gained their trust. The system
design utilises models from the IN world to create a robust system. This is discussed in the next

chapter, which deals with the implementation of the IEPS.

123



The work involved designing the protocol for both the IP domain and the IN domain. For this,
the work put forward two possible designs in which a gateway function can be implemented in
order to allow inter-operability across two dissimilar network architectures. It was also noted
that the existing IN capability sets provide sufficient functionality to be utilised in new service

implementations.

The IEPS utilises existing architectures, protocols and billing systems in a way that allows
network operators to further enhance their position by engaging in electronic commerce
activities as an authentication authority. This is clearly a desirable situation for the operator
because of the revenue streams it offers. It is also desirable for the end user, because the
payment is carried out without the need for credit cards, but rather on an existing billing system

that is trusted by the majority of end users.
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CHAPTER 5

IMPLEMENTATION & SIMULATION
OF THE IEPS SYSTEM

! I ‘he utilisation of existing IN infrastructure as a means of authentication and billing
was described in the previous chapter, through the description of the IEPS. This
chapter describes the implementation of the IEPS.

5.1 INTRODUCTION

This chapter presents the design of the protocol and the implementation and simulation of the
system. The implementation presented in this chapter covers Phase 2 of the protocol (section

4.5.2) and the interface between the gateway and the SCP (phase 3, section 4.5.3).

The reasons for implementing the system were threefold: firstly to identify potential limitations
of the protocol; secondly, to examine the interactions of the functional entities in order to
appreciate where the complexities of such a system lie; and, finally, to gain a better

understanding of Java in a concurrent client-server environment

Section 5.2 describes the implementation of the protocol and provides a walk-through by
describing the packets that are exchanged by the parties involved. Section 5.3 presents the Java
classes and the state transition diagrams that implement the system and section 5.4 provides
output from the simulation of the system. Finally, section 5.5 provides a chapter summary and

outlines research contributions.

5.2 IMPLEMENTATION OF THE IEPS PROTOCOL

The IEPS consists of three parties: the User, the Internet Shop and the Gateway. For each of the
three, a separate server is used. These are, respectively, the uServer, the isServer and the
gServer. Additionally, in order for the protocol to be fully simulated, an scpServer (simulating
the SCP and the G-SCF interface) and a servletServer (simulating servlets) are also

implemented.
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The system is distributed as follows: The uServer runs on the user’s machine as part of the
software that may be provided by the Network Operator. The gServer runs on the gateway and
the isServer may either run on the machine that hosts the Internet Shop’s web page or on a

dedicated system.

Figure 5.1 shows the architecture of the implementation. It consists of five servers and an
applet. One of the servers is used to simulate the servlet connection. The name in italics below
each server identifies the workstation the server is running on. The servletSimulator and

isServer are running on the same workstation.

A point to note here are the multiple instances of userver, which represent multiple users, and
the multiple instances of isServer, representing multiple Internet shops. The implementation

can cope with multiple users and Internet shops.
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Figure 5.1: Deployment of IEPS

As mentioned earlier, the initiating action for the protocol is the user submitting an order on a
web page. This is the trigger for the elements to begin exchanging IP packets. The isServer
needs to be made aware of the items the user has selected. This requires the applet to
communicate the information to the isServer, which can be achieved using a Java Servlet
[Voss97a][Voss97b][Cowal1]. Servlets require the presence of a web server that is capable of
providing the required underlying functionality. The use of such a platform for the simulation

would not have provided additional results, as the focus was on the core part of the protocol
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rather than the edges (i.e. web-browser to internet shop). As a result, a server was used to

achieve this communication.

In what follows, the structure of the packets that make up the IEPS is presented.

5.2.0 WRITE ORDER DETAILS*
When the wuser clicks the “proceed” button on the applet, the applet sends a

write order details packet to the servlietsimulator. In the case where a servlet is used
with an application server, such as Tomcat Jakarta, an http request would initiate the servlet on
the Internet shop. The servietsimulator receives the packet, extracts the individual tokens
from the string and writes the information to disk. The packet that is received by the

servletsimulator has the following structure.

SourcelP java.net.InetAddress 4 User's IP
OrderTotal Float 4 Order total reported by applet
ItemsOrdered Stringfl Variable List with ordered items and quantity

Table 5.0: WRITE ORDER DETAILSpacket structure

BufferedReader in = newBufferedReader (newInputStreamReader (data.getlnputstream()))
theStr = in.readLine0 ;
StringTokenizer st = new StringTokenizer (theStr,
System.out.printlnC'Servlet received:");
while (st.hasMoreTokens0) {
theToken = st.nextToken();
if (count == 1) {

// this is the IP of the user.

theFile = new File ("IS-SERVLET-" + theToken + " .dat");

os = new FileOutputStream(theFile) ;

out = new PrintWriter (os);

The code extract above shows the process of extracting the individual tokens by using the
stringTokenizer class. The conditional if-statement checks for the first token, which contains
the IP, and creates a file called "is-SERVLET-a.b.c.d.dat", Where a.b.c.d represents the IP
address of the user. The user’s IP address represents a unique way of identifying the user and it

is therefore treated as a primary key” throughout the protocol.

* Note that the section and table numbers are intentionally numbered from 0, as they correspond to the
packets that are exchanged, as depicted in figure 5.1.

~ For simulation purposes this is satisfactory; however a real implementation needs to use a user id,
possibly with a session identifier. This is because the user’s IP address may not be static and also IP

addresses are easy to spoof.
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5.2.1 TRANSACTION_START_ REQUEST (TSReq)
At the same time, the applet sends a TSReq packet to the isServer. The packet structure is

shown in table 5.1.

Field Type Bytes Obtained from

MessagelD Int 4 Protocol Message identifier
SourceAddress Java.net.InetAddress | 4 User's IP

DestAddress Java.net.InetAddress | 4 Is.ip file

Table 5.1: TRANSACTION_START REQUEST packet structure

The SourceAddress is obtained by the applet after it makes an InetAddress.getLocalHost ()
call. The DestAddress is read from a text file. This is the “is.ip” file. Two similar files exist:
the “gateway.ip” and the “scp.ip” contain the IP addresses of the gServer and the scpServer

respectively.”

5.2.2 PUBLIC_KEY_ REQUEST (PKReq)
The table below shows the packet structure.

Field Type Bytes Obtained from

MessagelD Int 4 Protocol Message identifier
SourceAddress Java.net.InetAddress | 4 Internet Shop's IP
DestAddress Java.net.InetAddress | 4 TSReq Source Address

Table 5.2: PUBLIC KEY REQUEST packet structure

When the isServer receives the TSReq packet, it sends a PKReq to the IP of the party that

initiated the TSReq. This is simply the SourceAddress of the TSReq packet.

5.2.3 PUBLIC_KEY_RESPONSE (PKRes)
Table 5.4 shows the packet structure.

Field Type Bytes Obtained from

MessagelD Int 4 Protocol Message identifier
SourceAddress Java.net.InetAddress | 4 User's |IP

DestAddress Java.net.inetAddress | 4 PKReq Source Address
Pkey Int 4 User’s Public Key

Table 5.3: PUBLIC_KEY RESPONSE packet structure

At this point the uServer has received a PKReq to which it replies by sending its public key. The
DestAddress of the packet will be the SourceAddress of the PKReq packet. Now the isServer
knows the public key of the user. The next step is to submit to the user a packet that contains all

the items the user has ordered, in encrypted form, using the user’s public key.

* In a real implementation, this would be configured on a database to allow easy management.
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5.2.4 TRANSACTION_DETAILS_TO_USER (TDUser)
The packet structure is shown below.

Field Type Bytes Obtained from

MessagelD Int 4 Protocol Message identifier
SourceAddress Java.net.InetAddress | 4 Internet Shop’s IP
DestAddress Java.net.InetAddress | 4 PKRes Source Address
TrnsCost Float 4 Applet saved info
TrnsNumber Int 4 Assigned by IS

Table 5.4: TRANSACTION DETAILS TO USER packet structure

Once the isServer has received the PKRes, it has to send to the isServer of the corresponding
user a TDUser packet. The isServer opens the “IS-SERVLET-a.b.c.d.dat" file with the IP of

the user, which is the SourceAddress of the PKRes packet.

‘ // Delete the Public Key>ké§uést datafile.

dbManagement . PKRequestDelete (inPacket .getSourceAddress()) ;

// first get the transaction information from the applet datafile.
theCost = dbManagement.retrieveAppletInfo (inPacket.getSourceAddress()};

*// Send a TransactionDetails packet.
outPacket .TDUser (java.net.InetAddress.getLocalHost () .getHostAddress () ,
inPacket .getSourceAddress (),

theCost,

dbManagement .getTransactionNumber (),
isPublicKey) ;

5 // increment the transaction number
' dbMngmnt .writeTransactionNumber (dbManagement .getTransactionNumber () +1) ;

j mySocket userSocket =

userSocket . sendPacket (outPacket .getPacket () ) ;
userSocket .killConnection() ;

The isServer reads the transaction number and the transaction cost reported to it by the applet,
using the dbManagement . retrieveAppletInfo call. This is shown in the code extract above.

Also shown above is that the isServer sends its public key to the user so that the user can

encrypt the next packet.

5.2.5 TRANSACTION_DETAILS_TO_IS (TDIs)
Once the user receives the TDUser packet from the IS, it forwards the information to the

gServer. The packet structure is shown below.

Field Type Bytes Obtained from

new mySocket ("USR", inPacket.getSourceAddress());

MessagelD Int 4 Protocol Message identifier
SourceAddress Java.net.InetAddress 4 User's IP

DestAddress Java.net.InetAddress 4 TDUser Source Address
TrnsCost Float 4 TDUser

TrnsNumber Int 4 TDUser

Table 5.5: TRANSACTION_DETAILS TO_IS packet structure
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At this point, the IS and User have exchanged information and each holds the information
reported to them by the other party. They must now both send the information to the gateway,

using the IS_TO_GATEWAY and the USER_TO_GATEWAY packets respectively.

5.2.6 USER_TO_GATEWAY (UtoG)

Field Type Bytes Obtained from

MessagelD Int 4 Protocol Message identifier
SourceAddress Java.net.InetAddress 4 User's IP

DestAddress Java.net.InetAddress 4 Gateway.ip file

TrnsCost Float 4 TDUser message
TrnsNumber Int 4 TDUser message
ConnectionNumber Int 4 SCP (not simulated)

Table 5.6: USER_TO_GATEWAY packet structure

5.2.71S_TO_GATEWAY (IStoG)

MessagelD Int 4 Protocol Message identifier
SourceAddress Java.net.InetAddress 4 Internet Shop's IP
DestAddress Java.net.InetAddress 4 Gateway.ip file

TrnsCost Float 4 TDis message
TrnsNumber Int 4 TDis message

Table 5.7: IS TO GATEWAY packet structure

In order for the gServer to send the ATReq message, both the UtoG and 1StoG messages must

have been received by the gateway and the information in them must match.

Different delays are introduced by the parties involved at various points in the protocol. For
instance, there may be delays in the network, or delays by the shop in processing the order, or
even by the user due to lost transmissions. As a result, these two messages can arrive at the

gateway in any order (and may be amongst messages received from different Internet Shops).

The gServer must therefore have a mechanism for identifying matching pairs. Here, the
primary key is chosen to be the transaction number. As a result, this imposes a requirement that
each Internet Shop is allocated a special range of transaction numbers or has a uniquely

identifiable flag within the transaction number.

523612 956874 4000315

true false true
false true / \ true
next E— next next

Figure 5.2: Data as a linked list
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The local data could be implemented using a linked list, as indicated in figure 5.2. Starting from
the top, the first field represents the transaction number. The next two fields are Boolean flags
that indicate whether the 1stoc and utoc messages have been received. When the
communications threads receive istoc and utoG requests, these are passed to the control
process, which in turn creates a new entry in the data store and notifies the control process that a

new packet has arrived.

G-SCP Interface

Gateway

Monitoring Thread

Data

notification

Local Data
Control
Process

Communications Threads
USER_TO_GATEWAY IS_.TO_GATEWAY

Figure 5.3: Monitoringfor matching pairs using shared local data

The monitoring thread (figure 5.3) scans the local data for matching packet pairs and when two
packets are identified as referring to the same transaction, further processing of the transaction

can take place.

The purpose of the simulation was to focus on the robustness and operational issues of the
protocol rather than to implement a “real-world” system. If a linked-list approach was adopted,
a monitoring thread such as the one depicted in figure 5.3 would be needed. What is more,
additional functionality would have to be implemented and simulated to ensure that the
monitoring thread and the notification mechanisms operated correctly. Furthermore, the
additional threads and the presence of the control processes would impose a requirement for an
internal communication mechanism for the notifications. As a result, the approach adopted for
the implementation uses a temporary file on disk. The gserver creates the file whenever it

receives either an istoG Or a utoG message.

Because each type of incoming packet is handled by a different thread (of the gserver) the
method that creates the file must be synchronised. This is done in order to avoid the case where
both threads are trying to access the same file concurrently. The code extract below shows the

operation of handling either an istoc or a utoc message.
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switch (inPacket.getID())

{ |

case 6: ) i
// User to gateway transaction |
rvalue = dbManagement.createGWtransaction(inPacket.getTNis(), !

inPacket .getTCOSTis()) ; 1

// Need to save the transaction number and the IP of the internet shop, :
// as it is needed later to match a transaction number to the IP of

: // the Internet shop to send the final Proceed to bill message.

: dbManagement . saveTNumber (inPacket .getTNis (), inPacket.getSourceAddress()) ;

|
|
\
f
!
{ if (rvalue == 1) { E
' outPacket.AuthoriseTransactionRequest (inPacket.getConnectionNumber (), |
inPacket.getTCOSTis (), |

inPacket.getTNis());
mySocket scpSocket = new mySocket ("SCP", settings.scpIP()); |

scpSocket . sendPacket (outPacket .getPacket () ) ; )
scpSocket .killConnection () ; )

}

break;

Another point which needs to be addressed is that the gateway must save the IP of the IS in
order to subsequently send the PROCEED TO BILL message. This is achieved by making a
dbmanagement . saveTNumber call. The first parameter is the transaction number and the second

is the IP of the Internet Shop.

At this stage the gServer needs to get authorisation from the SCP. This is achieved by using the
following three packets.

5.2.8 AUTHORISE_TRANSACTION_REQUEST (ATReq)
An ATReq message is sent by the gServer to the SCP. For simulation purposes, once the

scpServer receives an ATReq message, it simply replies with the ATReply message.

Field Type Bytes Obtained from

MessagelD Int 4 Protocol Message identifier
SourceAddress Java.net.InetAddress 4 The gateway’s IP
DestAddress Java.net.InetAddress 4 scp.ip file

TrnsCost Float 4 1StoG or UtoG Packet
TrnsNumber Int 4 1StoG or UtoGPacket

Table 5.8: AUTHORISE _TRANSACTION _REQUEST packet structure

5.2.9 AUTHORISE_TRANSACTION_REPLY (ATReply)
The scpServer sends an ATReply to an incoming ATReq request.

Field Type Bytes Obtained from
MessagelD Int 4 Message identifier
AuthoriseFlag Boolean 4 Boolean flag
TrnsNumber Int 4 The transaction number

Table 5.9: AUTHORISE_TRANSACTION_REPLY packet structure
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5.2.10 PROCEED _TO_BILL (PTB)
The gServer has confirmation from the scpServer and at this stage performs a last double-

check with the isServer. The gServer knows the IP of the corresponding IS to send the pTB

message by reading the file created previously and by calling the dbmanagement . saveTNumber

method.
Field Type Bytes Obtained from
MessagelD Int 4 Protocol Message identifier
SourceAddress Java.net.inetAddress 4 Gateway's IP
DestAddress Java.net.InetAddress 4 SCP's IP from scp.ip file
TrnsNumberiS Int 4 UtoG or IStoG message

Table 5.10: PROCEED_TO_BILL packet structure

5.2.11 BILL
The isServer performs various checks, some of which are related to stock-levels, before

sending a BILL message. The flag of the message is set accordingly.

Field Type Bytes Obtained from

MessagelD Int 4 Protocol Message identifier

SourceAddress Java.net.InetAddress 4 The Internet Shop’s IP

DestAddress Java.net.InetAddress 4 Gateway.ip file

TrnsNumber Int 4 PTB message

Flag Boolean 4 When set to true, indicates
that the gateway can
proceed to the charging
phase.

Table 5.11: BILL packet structure

5.2.12 CHARGE
The gServer receives the BILL message, checks the flag and sends the final CHARGE message

to the scpServer.

Field Type Bytes Obtained from
MessagelD Int 4 Message identifier.
ConnectionNumber Int 4 The connection number.
TrnsCost Float 4 The transaction cost
TrnsNumber Int 4 The transaction number

Table 5.12: CHARGE packet structure

Having discussed the various packets of the protocol, the next section focuses on presenting the
Java classes and the state transition diagrams that make up the system. These were developed
using the Unified Modelling Language (UML) [UML99].

5.3 THE IEPS CLASSES

Having given a walkthrough of the protocol and an outline of the implementation decisions, the
next sections identify three of the major base classes of the system. These were designed using
UML, a modelling language that has a broad spectrum of usage. It can be used for business

modelling, software modelling in all phases of development and for all types of systems, and
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general modelling of any construction that has both a static structure and a dynamic behaviour
[UML99].

The initial aim for the development of UML was to bring together the various design
methodologies, such as Booch [Booc99], OMT [Rumb91], and Yourdon [Cons79]. As the name
suggests, UML incorporates ideas from these methods, thus “unifying” the disparate attempts
that existed at the time. Some of the goals of UML include [UML99]:

= To model systems (and not just software) using object-oriented concepts,
= To establish an explicit coupling to conceptual and executable artefacts and
» To address the issues of scale inherent in complex, mission-critical systems.

One of the advantages of UML is its acceptance. To establish UML, the developers and
Rational Software Inc. [Rational] realised that the language had to be made available to

everyone at no charge. Therefore, the language is non-proprietary and open to all. The UML
specification can be found in [UML99].

5.3.1 The dbManagement Class

File PrintWriter F-‘ileOutputStream
7((Ern_lg)__ (from io) ‘(from o)
1 I ]
AN N | /
/
. N\ v b [
dbManagement

&PKRegFileName : String = " IS-PKreq-"

& PKReqFileExt : String = .dat’

& TransactionFilename : String = *IS-TRNS-"
& TransactionFileExt : String = ".dat”

& AppletFilename : String = "IS-APPLET-"

& ApplefFileExt : String = " dat”

ScreatePKRequestEntry(userlP : String) : void
OPKRequestExists(useriP : String) : boolean
$PKRequestDelete(userlP : String) : void
@saweAppletinfo(thePacketCSV : String) : void

“retireveAppletinfo(thelP : String) : float
QcreateTransaction(thePacketCSV : String) : void
®matchTransaction(TNumber : int, TCost : float, thelP : String) : boolean

Figure 5.4: Class diagram for dbManagement

The dbManagement class provides the database functionality required by the system.
Throughout the operation of the protocol, the servers need to save a number of parameters as

previously discussed.
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5.3.2 The myPacket Class

L mpacket
| &thePacket : String i
| &sourceAddress : String |
|
|
|
i

EQ;des!Address : String
&>pKey: int

1 @tms CostiS : float

' & tmsCostUser : float

! &+tmsNumberlS : int

' &trnsNUmberUser ; int

i %connecﬁonNum ber:int
1 @&theMessage : String

i

; SmyPacket(...) : void

i ®myPacket(theStr : String) : void

! SdisplayAl() : void

! %getPackel() : thePacket

' %getSourceAddress() : sourceAddress
®getDestinationAddress() : destAddress

. ®gefTmsCostiS() : tmsCostiS

. %getlTmsCostUser(): tmsCostUser !

‘ %gefTmsNumberS() : tnsNumberiS !

i %getTmsNumberUser() : tnsNumberUser J
‘ﬂﬁ'{‘ ;. N, h :): 0 N, B 1
$getTheMessage() : TheMessage ‘

Figure 5.5: Class diagram for myPacket

The myPacket class provides the encapsulation for containing the IEPS packets. It has two
overloaded constructors. It also contains a number of selector methods, which allow the users

of this class to gain access to the private attributes of the class.

5.3.3 The mySocket Class

Socket PrintWriter
(from net) (from io)
/
N /
| i
mySocket

& gatewayPort : int = 4000
&isPort : int = 5000

&userPort: int= 3000

B theSocket : java.net.Socket = null
& theStream : PrintWriter = null

$killConnection() : void
®mySocket(dest : String, IP_String : String) : void
®sendPacket(theString : String) : void

Figure 5.6: Class diagram for mySocket

This class provides the basic socket functionality for the system. It comprises three methods.
The constructor, mySocket, takes two arguments: The first is a string that denotes where the
user of the class wants to connect. This is used to determine the port to be used for the
connection. The second argument, the IP String, denotes the IP address of the target

connection.
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In Java, when information needs to be transmitted using sockets, a socket needs to be created.
Information is then printed onto the stream of the socket and the stream is closed, as follows:
theSocket = new Socket (dest_éd'dre's's, poft),; - -
theStream = new PrintWriter (theSocket.getOutputStream(), true);
* theStream.println(*this will be sent”);

_ theStream.close() ; !
theSocket.close() ; l

The first call creates the socket, the second creates an output stream to that socket, the third
sends the string to the stream, and the final two close the stream and the socket respectively. To
avoid the above repetition, the mySocket class encapsulates the stream and the socket in the
class, and the above call can now be made using the following code.

' mySocket scpSocket = new mySocket ("SCP", settings.scpIP());

scpSocket .sendPacket (“this will be sent”); f
scpSocket.killConnection() ; |

The next section discusses the implementation of the parent class, TCPServer, which all servers

inherit.

5.3.4 The TCPServer Class

The TCPServer class creates a ServerSocket and accepts connection requests from clients.
This is done in a separate thread. Once a connection is made, the server clones itself so that it

may handle the new client connection in a new thread.

<<Interface>> <<Interface>>
Cloneable Runnable
(from lang) (from lang)
\ /
\ /
\ /
\| /2
TCPServer

&runner : Thread = null
& server : ServerSocket = null
&data : Socket = null

®startSenver(port : int) : void
$stopServer() : void

$run() : void

“run(data : Socket)

Figure 5.7: Class Diagram for TCPServer

The TCPServer implements the Runnable interface (this is because new threads will be created,
which will be executed by this class). The class is Cloneable, so that a copy of this class can be

created for each connection. As a result, since the copy of the class is also Runnable, another
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copy for each client connection can also be created. The startServer and stopServer

methods are synchronised.

5.3.5 The UServer Class

TCPServer
&runner : Thread = null

& server : ServerSocket = null

@data : Socket = null userTCP uServer
®startServer(port : int) : void Srun() ®main()
®stopServer() : void
®run() : void

®run(data : Socket)

Figure 5.8: Class diagram for UServer

!

—_—

Waitfor packets | o
ext theStr = in.readline() J<

data arrived( theStr = null ]

Extract Packet Info
entry: AiepsPacket.extractPacket(inPacket)
l Check messagelD
| entry. AinPacketgetiD(inPacket)

PUBLIC_KEY_REQUEST[ messagelD==21} TRANSACTION_DETAILS_FROM_IS{ messagelD ==4 ]
v
Sending Public KeyResponse

entry: “outPacket.PKResponsePacket
do: AisSockel SendPacket
exit AisSocketKillConnection

Send Transaction Details to IS
entry: foutPacket. TransactionDetailstolS
do: %is SocketsendPacket
ext MsSocket.KillConnection

Send Transaction Details to Gateway

entry: “outPacket. TransactionDetailstolS

do: mySocket gSocket = new mySocket("GTW")
do: AgSocket.sendPacket

ext: \gSocket.KillConnection

Figure 5.9: State transition diagram for UServer class

In figure 5.9 the state transition diagram for the UServer class is shown. The initial state is the
state depicted at the top of the transition diagram. The exit condition from the state is specified
in the lower part of the state, i.e. theStr=in.readline(). When this occurs and the condition set by

the transition (i.e. theStr != null) the class moves to the ExtractPacketInfo state. In this state,
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the entry condition is verified to ensure that the received packet has not been corrected in

transit.

When the class moves to the CheckMessagelD state, a valid packet has been received, and this
state therefore contains the actions that extract the packet identifier. Depending on the type of
packet that was received, the class moves either to the sending PublicKeyResponse or send
TransactionDetailstoIS states. Following this transition, the class eventually returns to the

idle state, where it waits for further incoming packets.

5.3.6 The GServer Class

TCPServer

Arunner :Thread = null

Aserver :ServerSocket = null

Adata :Socket= null gatewaylICP gServer

s¢startServer(port :int) ; void % un() emain()
AstopServerO :void

Arun() :void

¢run(data :Socket)

Figure 5.10: Class diagram for GServer

The state transition diagram for the GServer class (figure 5.11) is similar to that of the UServer

class (figure 5.9).

data amvedj iheStr I= null J

v

entry: *iepsPaclui.extr8ctPactet(inPac*Sei)

j PKRequeslEwsls*» false]
extractPactet suceeds

v

entry: “inPactel.getiOCmPactet)

USER_TO_GATEWAY || IS_ TO_GATEWAY( messagelD = 6.7 ) BILL RE£PtY MESSAGE( messagelD *= 9 j

\Y%

AUTHORISE_RHPLY_MESSAGE( measegelD *» 11 )

v v
Finding IP of
entry. "inPacHet.getBiMFlag
on 8ilt( getBillFlag »» 1}; outPa<*et.Charge
on 8ill( getBillFlag I> 1): outPaclet CancelTransaciion

entry: “dbManagemeni.createGW Transaction entry: *lhelPoflS =dbManagement.getINumber

v

IthelPofiS »=null )

entry *dbManagement.aaveTNumt>er
v

Sending
v entry. *outPaclet.ProceedToBill

do: *isSodet.new MySodetfINS*)

entry, "outPactet AuthoriacTrBnsactionRequeat
do; *ouiPaci*t sendPacMei
exit *outPac*et kliConnection

Figure 5.11: State transition diagramfor GServer class
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The class waits for an incoming packet, when it is received, it is checked for validity and the

class moves to the appropriate internal state, depending on which packet was received.

5.3.7 The ISServer Class

TCPServer

A“runner :Thread = null

~server :ServerSocket = null

Adata :Socket = null isTCP isServer
AstartSer\er(port ;int) : void
~stopServerO :void

Arun() ;void

“run(data :Socket)

% un()

>main()

Figure 5.12: Class diagram for ISServer

I
Walt for packets

data arnved[ ttieStr I=null ]

Extract Packet Info Processing Bill Request
entry "outPacket Bill

do: ~Socket new MySocket("GTW)
do: 'gSockelsendPackel

exit: “Socket.killConnection

entry '4epsPacket.e% fraclPacket(inPacket)

extractPacket suceeds [PKRequestExists false | |

PROCEED_TO_BILL[ messagelD — 8 ]
Cticck messagelD

entry 'SepsPacket.getlD (inPacket)

TRANSACTION_STPRT_REQUESTI messagelD == 1)

PUBLIC_KEY_RESPONSE[ messagelD 3) TRANSACTION_DETAILS_TO_IS[ messagelD ==5 |

Save Cost received in packet

entry 'y)bManagement.sateAppietinfo(inPacket)

(saw -- successfull ]

Create a PKRequest entry
entry 'dbManagementcreatePK Request(inPacket)
do: \)utPacket.killConnection
e«t 'YrutPacket.PKRequest(outPacket.getPacketO)

Ctieck a PKReq exists

entry 'dbtvlanagement.PKRequestExists (inPacket)
exit: MbManagement.PKRequestDelete(inPacket)

PKReq Matctied

Send transaction details
entry 'dbfvlanagement.retriew A ppletinfb(inPacket)
entry "outPacket TransactionDetailstoUser(Tinfo)
exit: userSocket.killConnectionO

Create Transaction

entry'kjbM anagement.createTransaction(inPacket)

i
Sending Packet to Gateway

entry "outPacketlStoGateway

do: VSockelnew fVlySocketCGTW)

do: "gSockelsendPacket(outPacket)

exit: "gSocketkillConnection

Figure 5.13: State transition diagram for ISServer class

In figure 5.13, note the transition from the checking PKReq details state back to the idle state

(wait for packets), and the associated failure event, i.e. PKRequestExists=false. This indicates

that a public key request was received prior to the IS sending a request for a public key.
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5.3.8 The SCPServer Class

TCPServer

&runner : Thread = null

&yserver : ServerSocket = null
&data : Socket = null scpTCP scpServer

@run() ®main()

VstartServer(port : int) : void
YstopServer() : wid

Qrun() : void

Qrun(data : Socket)

Figure 5.14: Class diagram for SCPServer

A

[ wait for packet
i ext: theStr = in.readline() ‘
!

| v
{ Processing Packet
‘ entry: AinPacket.exractPacket(inPacket)

|
|
v
Check Message ldentifier ]
entry: YinPacketgetiD

AUTHORISE_TRANSACTION_REQUEST[messagelD ==10] CHARGE_MESSAGE[messagelD == 12 ]

Sending Authorisation Sending Charge to SDP

entry: “outPacket AuthoriseTransactionReply|
77771 do: AgSocket.new MySocket("GTW")

do: AgSocket.sendPacket

exit: AgSocket killConnection

Figure 5.15: State transition diagram for SCPServer class

For simulation purposes the state transition diagram for the SCPServer class (figure 5.15) is

simplified. In a real implementation INAP [Q.1208] states would have to be incorporated within

the state diagram.
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5.4 RESULTS OF THE IEPS SIMULATION

In this section, the results of the simulation are presented in the form of output from each of the
servers. The simulation can be followed by referring to figure 5.1 and cross-referencing the

MessageID of each packet.

5.4.1 Output from the isServer
The simulation starts when the user submits the order through the applet. The applet sends the

TSRes message to the isServer, which is the first packet below. The isServer then sends the

PKReq and receives the PKRes. It then sends a TDUser message and receives a TDIs message.

Started IS-Server, Port 5000
Message received on Sat Aug 29 20:17:07 GMT+00:00 1998

MESSAGE ID =1

Source IP = 212.228.179.77

Dest. 1IP = 128.40.38.119

Tr. Cost = 916.5

The Packet =1,212.228.179.77,128.40.38.119,916.5

MESSAGE 1D =3
Source IP = 212.228.179.77

Dest. 1IP = 128.40.38.119

Enc. Key = 9999

The Packet = 3,212.228.179.77,128.40.38.119,9999

MESSAGE ID =5

Source IP = 212.228.179.77

Dest. IP = 128.40.38.119

Tr. Cost = 916.5

Tr. Number = 44

The Packet = 5,212.228.179.77,128.40.38.119,916.5,44

MESSAGE ID =8

Source IP = 128.40.38.129

Dest. 1IP = 128.,40.38.119

Tr. Number = 44

The Packet = 8,128.40.38.129,128.40.38.119,44

Figure 5.16: Simulation output from the IS Server
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5.4.2 Output from the gServer

Started Gateway-Server 4000

MESSAGE ID =6

Source IP = 212.228.179.717

Dest. IP = 128.40.38.129

Tr. Cost = 916.5

Tr. Number = 44

Conn.Number = 333

The Packet = 6,212.228.179.77,128.40.38.129,916.5,44,333

MESSAGE ID =7

Source IP = 128.40.38.119

Dest. IP = zardoz

Tr. Cost = 916.5

Tr. Number = 44

The Packet = 7,128.40.38.119,zardoz,916.5,44

MESSAGE ID = 11

Tr. Number = 44
Authorised Flag= 1

The Packet = 11,1,44

MESSAGE ID =9

Source IP = 128.40.38.119

Dest. IP = zardoz

Tr. Number = 44

Bill Flag =1

The Packet = 9,128.40.38.119, zardoz, 44,1

Figure 5.17: Simulation output from the Gateway Server

The gServer receives the IStoG and the UtoG message and, after a successful match, it sends an

ATReq, to which it receives the ATRes message.

5.4.3 Output from the userServer

Message received on Sat Aug 29 20:16:34 GMT+00:00 1998

MESSAGE ID =2

Source IP = 128.40.38.119

Dest. IP = 212.228.179.77

The Packet = 2,128.40.38.119,212.228.179.77

Figure 5.18: Simulation output from the User Server
(continues on next page)
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Message received on Sat Aug 29 20:16:38 GMT+00:00 1998

MESSAGE ID = 4

Source IP = 128.40.38.119

Dest. IP = 212.228.179.77

Tr. Cost = 916.5

Tr. Number = 44

The Packet = 4,128.40.38.119,212.228.179.77,916.5,44

Figure 5.18: Simulation output from the User Server (continued.)

Depicted in figure 5.18 are the two messages the uServer deals with. Firstly, the PKReq

message from the isServer and, secondly, the TDUser message.

5.4.4 Output from the scpServer
Shown below is the scpServerreceiving an ATReq.

Started SCP-Server 4001

MESSAGE ID =10

Tr. Cost = 916.5

Tr. Number = 44

The Packet = 10,-1,916.5,44

Figure 5.19: Simulation output from the SCP Server

5.4.5 Output from the IS Servlet Server

Started IS-Servlet/CGI Simulator 123

Servlet received:

count = 1 token = 212.228.179.77
count = 2 token = 916.5

count = 3 token = Joe

count = 4 token = Bloggs

count = 5 token = Sir Matt Busby Way
count = 6 token = Trafford

count = 7 token = Manchester

count = 8 token = n/a

count = 9 token = M4 4DX

count = 10 token = 4

count = 11 token = This is item:8
count = 12 token = 2

count = 13 token = 251.45

count = 14 token = This is item:30
count = 15 token = 3

count = 16 token = 454.72

count = 17 token = This is item:80
count = 18 token =1

count = 19 token = 210.32
Figure 5.20: Output from the Servlet simulator

Figure 5.20 shows the isServletSimulator. The output is the information entered by the user
when completing the applet. All the information is written onto a file, as discussed in section

5.2.0.
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5.4.6 The Applet Output
Shown here is the output from the applet. It provides information to the user pertaining to the

progress and status of the order.

C:\My Stuff\IEPS>appletviewer testnew.html

Symantec Java! JustInTime Compiler Version 3.00.029(i) for JDK 1.1.x
Copyright (C) 1996-98 Symantec Corporation

*** New order processing BEGIN ***

User address = 212.228.179.77

IS address = metropolis.ee.ucl.ac.uk/128.40.38.119

Order total was:916.5

System is now processing order.. beginning to send packets.

*** New order processing END

Figure 5.21: Simulation output from the applet

5.5 CHAPTER SUMMARY AND RESEARCH CONTRIBUTIONS

This chapter dealt with the implementation and the simulation of the IEPS. To achieve this, the
following tasks were undertaken:

» Analysis of the communication mechanisms of Java

= Gaining a clear understanding of the communication capabilities of the IN

= Identification of potential limitations and complexities within the designed protocol.

One of the important requirements of the protocol was that it needed to operate in an already
well-established and, more importantly, standardised environment. This meant that the protocol
must be designed in such a way that it operated without requiring any change to the registration
and billing phases. Such changes would weaken its position considerably, indeed to the extent
that they could render the system unusable. As a result, existing information flows that provide
sufficient functionality to perform the authentication, authorisation and billing were identified
from the IN CS-1. Therefore, through this chapter it was shown that it is possible within the

“new role of IN” to utilise existing infrastructure in a way that was never conceived before.

The simulation has also identified some of the potential limitations of the existing system. For
example, there is a requirement for the protocol to support session identifiers and user
identifiers, rather than IP addresses. Session identifiers, for instance, would enable the system to
cope with lost connections from the user side. An additional desirable feature that needs to be

looked at is the behaviour of the servers as the number of incoming requests increases.

Java was chosen as the implementation language for the simulation. If such a system is to be
implemented commercially, the way that the Internet shop handles incoming requests must be
optimised and functionality to support load-balancing, robustness, and scalability must be

mcorporated.
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One of the most important components of the system is the gateway that provides the translation
between the IP and IN worlds. The previous chapter showed that the gateway can be
implemented in two different ways. The simulation of the system in this chapter provided a
better understanding of the complexities involved in the design of such a network element. For
instance, the gateway needs to maintain the robustness of the IN world at all costs, so that it
does not degrade the integrity of the IN network. Further work is needed in this area in order to
ensure that any gateway function that interfaces to the IN world does not hinder the robustness,

integrity and reliability of the underlying network.

In implementing the system, the servers maintained state to track the progress of individual
transactions. State transitions within these servers are caused explicitly by external events (for
example when the servers receive a valid incoming request). One limitation of the existing
implementation is that it does not maintain internal state. This means that an individual server

does not keep track of “active” sessions.
Chapter 6 continues to examine state utilisation in IP-based architectures, by presenting ways to

implement and maintain state. Furthermore, the chapter identifies the extent to which state is

utilised in existing IP protocols.
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CHAPTER 6

USE OF STATE IN ARCHITECTURES &
PROTOCOLS IN THE IP DOMAIN

So far the work presented has focused on the general view of “state”. This is
particularly true when IP architectures were presented. This chapter examines in
detail the concept and use of “state”. IP-based protocols, architectures and frameworks
are presented with the aim of examining the control elements — and therefore the control

plane — within such systems.

6.1 INTRODUCTION

Firstly, section 6.2 provides an overview of concurrency concepts and describes how these are
implemented in Java. Section 6.3 presents traditional client—server architectures and examines
the use of state within them, while section 6.4 examines distributed object technologies. Section
6.5 provides a classification of the IP architectures according to their use of state. Finally,

section 6.6 provides a summary of the work presented in this chapter.

6.2 CONTROLLING STATE-DEPENDENT BEHAVIOUR

State-dependent actions are implemented in software using policies that may be optimistic or
pessimistic. This section examines the ways in which state-dependent actions can be configured
using appropriate policies and highlights the complexities involved in deciding on the adoption
of a specific policy. A complete discussion on concurrent systems and state-dependent policies
can be found in [Rosc97][Baet99][ Thom00][Pala00].

The discussion first focuses on the types of trigger that cause state-transitions. Actions
performed by mutable objects” generally have two kinds of triggering conditions, external and
internal. An external trigger is caused when the object receives a message from another object
requesting that an action is performed [Lea99]. An internal trigger is caused when the object is

in an appropriate state to perform the action [Lea99]. Each of these triggers has associated pre-

* A mutable object is one that can change behaviour depending on its internal state [Alex93].
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and post-conditions. If a trigger is to be allowed and a transition to occur, these conditions must

be satisfied.

The way in which a system deals with triggers is described by its policy on state-dependent
behaviour. Policies may be optimistic or pessimistic. A protocol is called optimistic if it
optimistically assumes that failures are rare events, so optimizing failure-free performance is
more important than achieving good recovery performance. In contrast, a pessimistic protocol
always pessimistically prepares for failures, so it is willing to pay higher failure-free overhead

in order to recover faster should a failure occur [Huan95].

Table 6.1 classifies policies into these two categories. According to [Lea99], in general

pessimistic policies lead to simpler and more reliable designs in most concurrent settings.

Pessimistic Policies
Inaction A request is ignored if it cannot be fulfilled
. Failure indications are returned to the client if the action cannot
Balking
be performed
Guarded suspension Execution is suspended until preconditions become true
Optimistic Policies
An action is performed but its effects are not committed until
success is assured
The by-products of partially completed actions are undone.
Rollback/recovery Rollback refers to reverting back to the initial state and recovery
refers to attaining an comparable valid state
Retry F aile.d actions are attempted repeatedly after recovering from
previous attempts
Table 6.1: Pessimistic and optimistic policies for state-dependent actions

Provisional action

The following section discusses the issues affecting the choice of policy.

6.2.1 Deciding on an Adoption Policy for State-Dependent Behaviour
In deciding which of the policies listed in table 6.1 a system is to adopt, a number of

considerations need to be looked at. This section provides a concise discussion regarding these

considerations.

The following issues are important when regarding the adoption of a specific policy:
= The internal and external computability: internal computability refers to the ability of the
host object to detect state-based pre-conditions; external computability refers to the ability
of clients or other objects to know if the host object is in a state that allows the action.
= The ability for a client to ensure that an object that was in an appropriate state remains so
when a subsequent message is issued.
= The cost of computing the above preconditions [Lea99]. Determining the preconditions can

be computationally more expensive than just trying the action and then coping with any
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failures. The computation of the preconditions must also be balanced against the probability

of failure and the cost of recovery.

Further considerations are about resource contention. This pertains to whether the action
requires exclusive access to a resource [Lea99]. Associated with this is the acceptability of
indefinite suspension, which refers to whether the activity that invoked the method is allowed to

suspend while waiting for preconditions to become true [Lea99].

The ability to “undo” internal by-products of failure is important because, otherwise, the host
may enter inconsistent states, after which nothing can be guaranteed about the future behaviour
of the object or other objects that depend on it. This capability is termed recoverability
[Lea99]. In association with recoverability, clients need to take special action upon failure and

there needs to be provisions for doing so.

The next section discusses ways in which state can be represented in a system implementation.

6.2.2 Representation of State
When a system is designed and a policy on state-based behaviour (i.e. optimistic or pessimistic)

is adopted, there needs to be a formal way of representing state information for the objects that
make up the system. The representation of the state must be explicit, in sufficient detail to
prevent actions from occurring when they are not wanted and to ensure evasive action when
they fail [Lea99]. This section presents three approaches for representing state: interfaces,

logical definition within variables, and history and execution states.

6.2.2.1 Interfaces

Interfaces [SommO1] provide tools for defining abstract state and implementing the required
state representations. This means that since interfaces provide a particular abstraction of an
object’s behaviour, and interfaces cannot reference code or instance variables, they force the
designer to describe monitor invariant properties and functionality in ways that help avoid the

need for other designers to have to read implementation source code to discover intent.

6.2.2.2 Logical State

Logical states are usually defined in terms of predicates [Kali80] that distinguish particular
ranges, values or other computable properties of instance variables. These predicates can be
coded either as free-standing internal Boolean methods or as Boolean conditions written inside

the methods that rely on them [Aror98].
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Logical state can also be represented explicitly” in a variable, with each distinct state labelled as
an integer or any other discrete data type. The instance variable representing state is then re-

evaluated upon each update so that it is always accurate.

A different approach, rather than coding state as a value, is for the state to be coded as a
reference to a state-object. For each state, a class describing the behaviour of the object when it
is in that state is written. In the main class, a reference instance variable is created that is always

bound to the appropriate state-object.

If state is represented as a state-object, then state-specific behaviour is localised as well as
partitioned for different states [Gamm95]. All behaviour associated with a particular state is put
into one object and, because all state-specific code lives in a State subclass, new states and
transitions can be added easily by defining new subclasses. However, there is a drawback to this
approach. This has to do with the distributed behaviour of different states across several State
subclasses — there is an increase in the number of classes and it is less compact than a single
class. Regardless of this, E. Gamma in [Gamm95] makes the point that “encapsulating each
state transition and action in a class elevates the idea of an execution state to full object status.

This imposes structure on the code and makes its intent clearer.”

A further advantage of this approach according to [Cham93] is that “state transitions are
explicit.” When internal variables are used to define state, the state transitions have no explicit

representation but rather “only show up as assignments to some variables” [Gamm95].

The implementation of state-objects could be achieved using lookup tables [Carg92]. However,
according to [Gamm95] “the State pattern models state-specific behaviour, whereas the table-

driven approach focuses on defining state transitions.”

6.2.2.3 History and Execution States

It is desirable in some situations to maintain a complete history log that records all messages
received and sent, along with all corresponding internal actions that are initiated or completed
[Lea99]. As this can lead to inefficient representations of state as well as possibly uneconomical
use of resources, a compromise method is to define execution state variables that are particular

forms of meta-variables [Marc00].

* The disadvantage of this approach is that similar conditional statements would be scattered throughout
the implementation and, as a result, the addition of a new state could require the changing of several

operations, which complicates maintenance.
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Execution state variables can represent the fact that a given message was received, whether the
corresponding action was initiated, whether the action has terminated, and whether a reply to the

message was issued.

The introductory sections presented the wvarious policies for state-dependent actions and
discussed the ways in which “state” can be represented. The following section describes the
implementation of two specific approaches, one for a pessimistic policy and one for an

optimistic policy.

6.2.3 Implementation of Guarded Suspension

Guarded methods are those that block if the object is not in a state in which the associated
actions can be executed. “In concurrent programming, a guarded method may be thought ofas a
customisable extension of synchronised methods, with the ‘guard’ for a plain synchronised
method being that the object is in the Ready execution state” [Lea99]. Correspondingly, in
sequential programming, guards may be eonsidered to be special forms of conditionals: an if-

statement can check whether a condition holds upon entry to a method [Magee99].

aMessage
j inRightState

v . ~

>

Figure 6.1: Guarded suspension

6.2.3.1 Walts and Busy-Waits

In Java, the standard coding method for expressing guarded waits is by using a simple loop,
while invoking the Object.wait method. The code extract below identifies how this can be
achieved:
public class GuardedClass {
protected Boolean cond_ = false;
protected synchronised void awaitCondO {

while ('cond) {try (wait();}
catch (InterruptedException ex) {}
}

public synchronised void guardedAction( {
awaitCond(); //actions
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Busy-waits, on the other hand, are implemented using:
: Protected void spinw'ait'Un‘t;iJléohtri() { B B
While (!cond )
Thread.currentThread () .yield() ;

According to [Lea99], the implementation of busy-waits has the following drawbacks:
= They can waste an unbounded amount of CPU time spinning without success [Thom95]. In
contrast, waits recheck conditions only when another thread sends notification that the
object’s state has changed, thus possibly affecting the guard condition.
» The yield in the spin-loop is not guaranteed to be effective in allowing other threads to
execute so that they can change the condition.”

In addition, both implementations suffer from fairness.

A comprehensive description of the issues surrounding the advantages and disadvantages of

various implementation mechanisms of guarded suspension can be found in [Boge01][Coli91].

6.2.3.2 Interrupts

A guarded wait can be viewed as if it were an undirected call to objects running in other threads
asking them to take any action that makes the condition true. A notification serves as a signal

that the desired condition may have been attained.

In Java, this analogy is made stronger by the fact that a wait can also be broken by an
InterruptedException caused by some object invoking Thread.interrupt. Interruptions can serve
as notifications indicating that the required state changes can never occur, for example due to

the termination of certain threads.

6.2.3.3 Notifications

Wait-based constructions make up the bulk of the safety side of guard translation. The first step
to ensure liveness' is to insert code that wakes up waiting threads when the conditions they are
waiting for change value. Every time the value of any variable or object mentioned in a guard

changes in a way that might affect the true value of the condition, waiting tasks should be

* This occurs for example in the case where the busy-wait is running at a high priority, therefore not
allowing other processes to change the condition that would take it out of the loop.
' A liveness specification is a set of state sequences that meets the following condition: for each finite

state sequence ¢, there exists a state sequence 3 such that of3 is in that set [Aror98].
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woken up so they can recheck guard conditions. The simplest way to do this is to insert

notifyAll in methods that cause state changes.

6.2.4 Tracking State
One of the problems associated with using the NotifyAll method has to do with the possibility

that some of these notifications cannot possibly affect the guard conditions of any waiting
thread. These are ineffective notifications and can be eliminated by using logical state analysis.
So, rather than generating notifications for all changes in instance variables, notifications are
issued only upon transitions out of the logical states in which threads can wait. The
disadvantage of this approach is that any changes in the implementation of the class may require
different partitioning of logical state, which alters both the guard and the notification conditions

for the base methods, which in turn leads to a total rewrite of the class.

Another way to monitor state is by tracking state variables. State variables represent the entire
logical state of an object, usually in a single instance variable. According to [Lea99] the most
extensible way to implement state-variable designs is to isolate state re-evaluation in a single

method that is called after each update method.

6.2.5 Optimistic Policies
In pessimistic designs objects refuse to engage in actions unless they are known to be in states

that allow the action to succeed [Stro85]. In optimistic, try-and-see designs, objects proceed
with actions without necessarily checking to see if all preconditions are met. However, they also
possess strategies and mechanisms for detecting failures and, when necessary, undoing the

effects of any of the actions that led to failure.

Optimistic control techniques share three basic features: a way of detecting failure, for example
by assessing the logical state; a way of dealing with failure; and a way of dealing with the

consequences of actions leading to failure.

Dealing with the consequences that lead to the failure can be achieved in a forward or backward
direction. One approach to dealing with the consequences is by provisionally performing the
operations in a dry-run way. When this is successful and the possibility of failure has been ruled
out, the operations are re-performed only this time their actions are not running in a dry-run

mode. A second approach is to use rollback and recovery for every action.

It can be argued that optimistic policies are computationally expensive. This is because of the

large number of variables that need to be maintained to control operations in a dry-run manner.
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Also to implement rollback and recovery, every internal system message would need its counter
message to undo the effect of the original message, although in some cases it is possible to
implement optimistic systems without the need of additional messages [Venk97]. An additional
method to implement rollback and recovery is through message logging [Alvi98]; the cost of

recovery using message logging is discussed in [Rao00].

However, regardless of the computational expense, if a system’s functional requirements
include real-time characteristics or some safety-critical issues, then the computational
complexity is a minor concern. A performance-oriented comparison of optimistic and

pessimistic policies can be found in [Song95].

The following section builds on the theory presented in the previous sections and moves on to
examine [P-based protocols in order to highlight their reliance on state-dependent actions as

well as internal and external triggers.

6.3 USE OF STATE IN CLIENT-SERVER ARCHITECTURES

A client-server architecture is a network architecture in which each host or process on the
network is either a client or a server. Some of the characteristics of client—server architecture
include [Orfa991]:
= Service: Client-server is primarily a relationship between processes running on separate
machines. The server process is a provider of services and the client is a consumer of
services.
= Shared resources: A server can service many clients at the same time and regulate their
access to shared resources.
= Asymmetrical protocols: There is a many-to-one relationship between clients and server.
Clients always initiate the dialogue by requesting a service. Servers passively await requests
from the clients.
» Transparency of location: The server is a process that can reside on the same machine as the
client or on a different machine across a network.
= Message-based exchanges: Clients and servers are loosely coupled systems that interact
through a message-passing mechanism. The message is the delivery mechanism for the

service requests and replies.
Irrespective of the transport layer protocol that is used or the type of server, there exists a

general categorisation of client-server architectures that is included in this section for

completeness. These are the “fat clients” and “fat servers.”
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Client-server architectures often require the client to act as a server at some point during the
execution of a service. For instance, in the system described in section 6.2, the web server is a
server from the applet’s point of view but it is also a client when the requests are forwarded to

the NMS command processor.

For this reason, client—server applications can also be differentiated by how the distributed
application is split between the client and the server [Orfa99]. A fat server model places more
functionality on the server, whereas a fat client model places more functionality on the client.
Fat clients are the more traditional form of client-server architectures, where the bulk of the
application runs on the client side. For example in a database server, the client knows how the

data is organised and stored on the server side.

It may be apparent from this initial discussion of client—server architectures that in most cases
there is no clear-cut line that separates a host from being a “pure client” or a “pure server.” This

grey-scale representation holds true in a discussion of state-based versus stateless architectures.

Traditional IP-based protocols and architectures are overwhelmingly based on the client—server
model. Edge components (clients) require services from the core of the network (servers). Some
of these architectures are defined as stateless, claiming that “no state information” is maintained
thereby making it “easy to cope with failures” of servers [Schu98]." The following sections
present IP-based client—server architectures, beginning by looking at the RADIUS protocol, and

analyse the use of state in them.

6.3.1 Remote Authentication and Dial-In User Service
The Remote Authentication and Dial-In User Service (RADIUS) is an IETF protocol “for

carrying authentication, authorisation and configuration information between a Network Access

Server that desires to authenticate its links and a shared authentication server.” [RFC2138].

A RADIUS server is usually deployed (as the name suggests) to authenticate remote access to

resources. For instance, organisations that allow employees to gain access to corporate intranets

* There are “opposing” views as to whether state should be maintained in a system. In the author’s view,
state is useful because it provides the system designer with a powerful tool to control the behaviour of the
system. State-dependent information can also be used in systems that are more general, in order to collect
information pertaining to the status of the system, as will be shown in chapter 8. Furthermore a conclusive

view on state is presented in chapter 9.
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utilise RADIUS components to achieve this. This section focuses on the presence of state

behind a RADIUS server, rather than the operation of the protocol.

timeout

accessRequest
accessAccept

awaiting

authentication authenticated

accessReject

accessChallenge
replyMsg

processing

challenge

Figure 6.2: State transition diagram for RADIUS client

From [RFC2138], the state model presented in figure 6.2 can be derived for a RADIUS client.
The state transition diagram comprises four states and six transitions. More importantly, the
timeout transition implies that the RADIUS client needs to maintain information about the time

elapsed since the accessRequest message was sent to the server.

accessRequest
q accessAccept

authenticating
client

client
authenticated

accessReject

accessChallenge

replyMsg

issuing

challenge

Figure 6.3: State transition diagram for RADIUS server

This is not the case for the RADIUS server, as depicted in figure 6.3. It can be seen that there
are no timers associated with the transitions’. Essentially, it is the responsibility of the client to

initiate any re-transmissions.

In [RFC2138], the authors also note that “the stateless nature of this protocol simplifies the use

of UDP” and that “UDP simplifies the server implementation.” The initial approach' towards

* This is true because the state transitions are generated from external messages rather than internal

timers.
' An enhanced version of RADIUS is currently under development by the DIAMETER project [Calh01]
of the IETF; the DIAMETER API is presented in [KempO1]. The specification [Calh01] and the API
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RADIUS was one that assumed a single process with a single request. The request is received,
processed and returned — therefore the complexities associated with multiple threads do not

apply and, as a result, there is no need for state management.

6.3.2 Authentication, Authorisation and Accounting
The Authentication, Authorisation and Accounting (AAA) Architecture of the IETF, aims at

“providing a generic framework that allows complex authorisations to be realised through a

network of interconnected AAA servers” [Laat00].

This section examines the work presented in [Laat00], [Voll00a], and [Voll00b] by looking at
the protocols and the architectures from the perspective of state utilisation and the extent of its

use.

[Voll00a] presents the requirements for Authorisation of Internet Resources and Services. The
generic framework identifies the following conceptual entities that may be participants in an
authorisation:
= A user who wants access to a service or resource
= A user home organisation that has an agreement with the user and checks whether the user
is allowed to obtain the requested service or resource
= A service provider’s AAA server, which authorises a service based on an agreement with

the user home organisation without specific knowledge about the individual user.

Figure 6.4 depicts these conceptual entities as well as the service agreements (thick dashed
lines) between the parties involved.” The figure also identifies the sequences of accessing the
resources for a single-domain scenario. In sequence 1, the agent sequence, the user
communicates with the resources (service equipment) through the AAA server. In sequence 2,
the pull sequence, the user communicates directly with the resources. In sequence 3, the push
sequence, the user must first contact the AAA server but direct access to the resource equipment
is permitted following the authentication and authorisation by the server. A detailed explanation

of these procedures can be found in [Voll00a] and [Laat00].

[KempO01] explicitly define two state machines: there is a peer state machine, section 8.0 of [Calh01], and
a session state machine, section 11.1 of [CalhO1]. Furthermore, the client session manager is expected to
maintain both the peer state machine and the session state machine [KempO01].

* These service agreements can take the form of formal contracts or service level agreements. However,
an important element in any agreement is trust. The authors in [Laat00] say that “trust is necessary to
allow each entity to ‘know’ that the policy it is authorising is correct. This is a business issue as well as a

protocol issue.” The issue of trust was also highlighted in section 4.2.1.
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Figure 6.4: Basic authorisation entities, service agreements, and access
methods

The emerging open standards through APIs (such as the ones discussed in section 3.4.2.3)
enable the provisioning of service components, with the final service offering being a
combination of service components from distributed service providers. For this reason, the
AAA authorisation framework also considers the scenario where services are combined across
administrative domains. Figure 6.5 shows the agreements present in a distributed service

hierarchy.

Organisation 1 Organisation 2

User |— — — — — —
Service Service
Equipment Equipment

Figure 6.5: Distributed services and agreements

The agreements in the distributed services scenario imply that “the request from the User will be
authenticated and authorised by the first organisation, then forwarded to the second

organisation” [Voll00a].

As the authorisation requests may be chained (e.g. by forwarding from organisation 1 to
organisation 2 etc.) there is a requirement for resource management. Furthermore, in many
applications, the authorisation results in establishing an ongoing service, i.e. a session. “Each of
the servers involved in the authorisation may also want to keep track of the state of the session,
and be able to effect changes to the session if required” [Voll00a]. The framework proposes the
use of a resource manager that is responsible for tracking the session as well as being able to

initiate changes to the session and inform other resource managers when changes occur.
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The Resource Manager (RM) is defined as “the anchor point in the AAA server from which a
session can be controlled, monitored, and coordinated even if that session is consuming network
resources or services across multiple Service Provider administrative domains” [Voll00a].
Numerous requirements for the RM are identified in the specification, however one that is of
importance for the discussion is that an RM cooperates with “policy servers” or policy decision
points [Stev99, section 7.3.3]. The RM “maintains internal state information, possibly complex
cross-administrative domain information, supported by dialogues with its peer Resource

Managers” [Voll00a].

Some of the issues that are identified by [Voll00a] include the capability of service equipment
to notify its resource manager when a session terminates or changes state; the RM must inform
other RMs that keep state for this session. The RM must also set a time limit for each session,
which must be refreshed by having the resource manager query for authorative status or by
having the authorative source send periodic keep alive messages that are forwarded to all RMs
in the authorisation chain. Finally, any RM in the chain must have the ability to terminate a
session. This requires the RM to have knowledge of at least the adjacent AAA servers in the

authorisation chain.

In order to provide the above functionality, the RM must maintain session state information in
order to make decisions about new sessions based on the state of existing ones and to allow
monitoring of sessions by all interested AAA Servers. Furthermore, session identifiers are
required to identify sessions; these must be unique within each AAA Server and, according to
[Voll00a], it is desirable that the session identifier for a specific session be the same across all

AAA servers.

The requirements for maintaining session information in AAA servers increase the complexity

of the server, especially if session state must be maintained across administrative boundaries.

The RM must be able to track the state of sessions and allocate resources to a session that is
associated with an AAA server. Furthermore, it may track use of resources allocated by peer
resource managers to a session. All session-specific AAA state information required by the
AAA server is also maintained by the RM. Session information includes pointers to peer RMs
in other administrative domains that possess additional AAA state information that refers to the

same session.
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6.3.3 Common Open Policy Service Protocol
The Common Open Policy Service protocol (COPS) [RFC2748] is a simple query and response

protocol that is used to exchange policy information between a policy server, i.e. a policy

decision point, and its clients, i.e. policy enforcement points.

Figure 6.6 depicts a simple configuration for a framework for policy-based admission control,
defined in [RFC2753]. The two main architectural elements for policy control are the policy
enforcement point (PEP) and the policy decision point (PDP). The PEP is a component at a

network node and the PDP is a remote entity that may reside at a policy server.

Policy Server
Network Node >
PDP Policy Server may
PEP COPS use LDAP, SNMP,
etc. for accessing
policy database,

authentication etc.

Figure 6.6: The primary policy control architecture components

The PDP may make use of additional mechanisms and protocols to achieve additional

functionality such as user authentication, accounting and policy information storage.

The interaction between the components begins with the PEP receiving a notification that
requires a policy decision. The PEP then generates a request for a policy decision and sends it to
the PDP. The PDP returns the policy decision and the PEP enforces it by appropriately

accepting or denying the request.

The COPS protocol maintains state information in the following ways.

» The request/response state is shared between the client and server. This means that requests
from the client PEP are remembered by the remote PDP until they are explicitly deleted by
the PEP. Furthermore, responses by the remote PDP can be generated asynchronously at
any time for a currently installed request state.

= The state from various events may be associated. This means that the server may respond to
new queries differently because of previously installed request/decision states that are
related.

= The protocol is stateful in that it allows the server to push configuration information to the
client and allows the server to remove such state from the client when it is no longer

applicable.
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As the protocol maintains state information, it must be able to deal with broken connections as
well as provide synchronisation methods. When a TCP connection is lost, the PDP is expected
to clean up any outstanding request related to request/decision exchanges with the PEP. Once a
connection is re-established, the “PEP is expected to notify the PDP of any events that have
passed local admission control. Additionally, the remote PDP may request that all the PEP's
internal state be re-synchronized (all previously installed requests are to be reissued) by sending

a Synchronize State message” [RFC2748].

6.3.4 Web Servers
Arguably, the capabilities of the HTTP protocol with regard to complex manipulation of state-

dependent actions are limited. In fact, the HTTP protocol is stateless and a web server forgets all

information about a particular client after it has responded to a specific HTTP GET request.

Often there is a requirement to maintain information for a session in a web browser. For
instance, when a CGI form is filled, and the user moves to the next page, the information
submitted by the user on the first page needs to be transferred onto the next page. This can be
achieved using hidden fields within the CGI form. Hidden fields are invisible fields that store
the information a user enters and resubmit that information in subsequent forms without any
need for the user to re-enter it or even be aware that the information is being passed around.
Arguably, hidden fields act as variables that maintain “state” between form submissions; here,
the term “state” is used very lightly, since holding the value of a variable across HTTP

transactions in the same session is regarded by the author as a very weak form of “state.”

An alternative way to maintain session information is by using cookies. A cookie
[Javal31][Laur98] is a small piece of data that is stored in the client on behalf of a server.
Typically, servers use a cookie to store the user identifier or basic configuration information.

The cookie is sent back to the server in subsequent page requests from this client.

Session persistence generally means that a client has reserved some form of session state on a
server and that state is maintained even if connections are destroyed and re-established. Cookies
enable HTTP sessions to be persistent and the state information to be maintained even when the

session has ended.
Arguably, cookies are a new approach towards managing state. Until now, all the architectures

presented have maintained state throughout the execution lifecycle of the specific process

requiring state. Cookies however, enable state to be maintained even after a process has
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terminated. The term persistence is re-defined in section 6.4 where persistence for CORBA and

Enterprise Java Beans (EJB) is defined.

6.3.5 The Session Initiation Protocol Revisited
As discussed in section 3.3.2.1.1, the operation of the SIP protocol caters for two modes of

operation: proxy server and redirect.

When SIP is used in a proxy mode, the proxy server may be either stateless or stateful. A proxy
server operating in stateful mode tracks incoming requests that generate outgoing requests and
the outgoing requests. Furthermore, a stateful proxy acts as a virtual user agent client-server
(UAC, UAS) by implementing the server state machine, when receiving requests, and the client

state machine for outgoing requests.”

A stateful proxy needs to maintain internal tables to store previously processed requests
(including acknowledgements and responses), in order to decide how to deal with further
incoming messages. When an incoming request is received, the server must check a number of
fields in the incoming packet (for instance, the To, From and Call-ID fields) against existing
requests to determine how to deal with it. Furthermore, acknowledgements and responses must
also be examined against the table that contains previously processed messages to determine

how to respond.

A stateless proxy on the other hand, forgets all information once an outgoing request is
generated. As a result, a stateless proxy does not behave as a virtual UAC/UAS but forwards
incoming requests downstream and all responses received upstream. Furthermore, “proxies that
accept TCP connections must be stateful otherwise if the proxy were to lose a request, the TCP

client would never retransmit it” [RFC2543].

" The exception to this is when receiving a 2xx response to an INVITE [RFC2543].
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Figure 6.7: SIP server state transition diagram

The state within a SIP proxy server is explicitly defined in the case of stateful SIP proxy
servers. However, even in the case where a stateful SIP proxy server is not used, its behaviour
can still be characterised by a state transition diagram. This does not mean that internal state is
maintained. The events and movement from one state to the next are based on an ordered set of

client—server transactions, as depicted in figure 6.7 [Schu98].

6.3.6 Integrated Services Architecture
The Resource ReserVation Protocol (RSVP) provides resource reservations for multicast or

unicast data flows [RFC2205]. In terms of state maintenance, RSVP opts for the soft state
approach. The state is maintained within the routers and periodically refreshed by incoming

packets.

6.3.7 Use of State in Client-Server Architectures: A Summary
This section provides a summary and identifies whether the systems discussed maintain state

and support sessions. It also identifies whether transitions are triggered exclusively by external

events or whether internal triggers are automatically generated.

The RADIUS protocol is simple as it comprises a small number of transitions and states, and is
based on simple message-passing. State transitions are triggered by both external and internal
events, such as requests. In the case of the RADIUS client, there are also internal triggers
arising from the timer that is maintained to detect timeouts and issue re-transmissions. However,
it could be argued that the simplicity of the protocol arises from the fact that the initial approach
taken for its design assumed a single process with a single request. This removed any

concurrency issues such as the ones discussed in section 6.2.
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The next architecture that was presented was that of the AAA. This architecture is arguably
simple until the complexities of open service provisioning through APIs and third-party service
providers are introduced. These require the AAA architecture to be able to provide resource

management (for the reasons identified in section 6.3.2).

The introduction of the resource manager considerably complicates the implementation of the
AAA architecture. The RM is a complex functional entity with compounded requirements. It is
responsible for maintaining state information across administrative boundaries, tracking
sessions by keeping a time limit for each of them and for communicating with peers in order to
terminate sessions across domains. Furthermore, state and session information must be
replicated and kept up-to-date along the chain of AAA servers; this means that resources need to

inform the RM when an event occurs that may affect the state.

State Information
includes session
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Identifiers and session

Server

Resource
Matter

PEP

Administrative Domain 1
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State information must i
includes all previously
be consistent across all

resource managers COPS auttiorised requests
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AAA Policy Resource
Server AAA Server Manager
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Resource PDP RADIUS PEP
Manager Resource Server
PEP
PEP Atdministrative Domain
Resources RADIUS
Administrative Domain
RADIUS
Internal State only Client

includes a timer for

detecting timeouts Iministrative Domaii

Figure 6.8: Communication between resource managers across
administrative domains

A further specific requirement that was presented is that “any resource manager in the chain
must have the ability to terminate a session” [VollOOa]. For instance, in figure 6.8, the resource
manager in administrative domain 2 must be able to terminate the session of a user who lies

within domain 1and is accessing resources in domain 3 through domain 2.

The capabilities for an entity such as the resource manager point towards an architecture that

resembles more the control plane of the PSTN rather than an IP network. The RM is responsible
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for controlling peer sessions across domains and terminating sessions that are in the path. To
provide this, state is maintained at the heart of the IP network in the case of RSVP. This
approach is similar to that provided by SSPs and SCPs in the IN architecture. The author has
argued in [Solo0Oa] that such state information could be used to describe a BCSM-like state

machine.

Figure 6.8 also depicts a PEP, a PDP and a policy server communicating using the COPS
protocol. The protocol relies on storing state information for all previously processed requests.
This is because previous requests may alter the behaviour of the RADIUS server for new

requests.

The following section moves on to discuss the presence of state in distributed object

technologies.

6.4 USE OF STATE IN DISTRIBUTED OBJECT
TECHNOLOGIES & ARCHITECTURES

The focus of the work presented in this section is to identify the use and presence of state in
Distributed Object Technologies (DOT). A comprehensive introduction to distributed
computing can be found in [Orfa99]. All DOTs include the characteristics and mechanisms that
are given below [Veni00]:

= Remote Method Invocation (RMI) is an evolution of the Remote Procedure Call [RMI]
method for object-based distributed scenarios. While classical RPC [RFC1831] foresees the
invocation of a function that is naturally separate from the data it handles, in an object-
based distributed environment, RMI invokes operations (methods) on specific object
instances.

* Implementation-independent Interface Definition Language (IDL) defines the interfaces
between objects. An object is characterised by a contractual interface that describes the
methods and attributes that are available to clients [CORBA95][Quantitative97]. In a
distributed environment, objects need to communicate even though they may have been
implemented in different programming languages and the contractual interface defined in
IDL enables this communication.

* Location transparency allows objects that participate in interactions to do so without
conveying location information or being aware of the actual transport mechanism that is

used for this communication [Orfa99].
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The next sections discuss the distributed object architectures of CORBA and DCOM and

Enterprise Java Beans.

6.4.1 Common Object Request Broker Architecture
The Common Object Request Broker Architecture (CORBA) is the product of the Object

Management Group (OMG) consortium. CORBA is an architecture based on the concept of a
common software or object bus allowing for distributed object inter-operability and providing a
wide set of services to interacting objects [CORBA95]. The OMG has also defined the Object
Management Group Architecture (OMA) with the goal of “providing a high level specification
of the functionality needed for object oriented distributed processing” [OMA97].

CORBA provides a description of the interfaces and services that an OMA-compliant Object
Request Broker (ORB) must implement in order to conform with the OMG standards
[CORBA95]. In addition, it defines a software infrastructure to facilitate the development of
reusable and portable applications in a distributed environment [CORBA95].

One of the services provided by the CORBA Services Specifications is that of Persistent State
Service (PSS) [PSS99]. The PSS “presents persistent information as storage objects stored in
storage homes. Storage homes are themselves datastores; a datastore is an entity that manages

data” [PSS99].

A full description of the capabilities provided by the PSS can be found in [PSS99]. The focus

here is on a small subset that is of interest to illustrate the use of state models within CORBA.

6.4.2 Enterprise Java Beans
This section discusses the Enterprise Java Beans (EJB) architecture and focuses on the specific

issues regarding state management, presence of state and persistence. A complete and
comprehensive coverage of the architecture can be found in [EJB99]. However, for the purpose
of completeness a short introduction to the constituents of the architecture is provided before the

issues regarding state are examined.
EJB is an architecture for component-based distributed computing [EJB99]. It defines a state-
management protocol that, according to [EJB99], is simple but “provides an enterprise Bean

developer great flexibility in managing a Bean’s state.”

An Enterprise Bean is a body of code with fields and methods to implement modules of

business logic. Client programs interact with one or more Beans and an Enterprise Bean can be

165



implemented to interact with other Beans. An Enterprise Bean is a building block that can be
used alone or with other Beans to build a complete and robust thin-client multi-tiered

application.

There are two types of Enterprise Beans: session Beans, which implement business tasks, and

entity Beans, which implement business entities.

Table 6.2 provides a high level view of the comparison between session and entity Beans.

Session Beans Entity Beans

Contains conversation state Represents data in a database

Handles database access for the client | Shares access for multiple users
Persists for the life of the client Persists as long as data in the database
Can be transaction-aware Is transaction-based

Does not survive server crashes Survives server crashes

Table 6.2: Session and entity beans

Figure 6.9 presents the state diagram for a stateful session Bean. Note the presence of time-

dependent transitions, such as timeouts. These imply internally generated messages.

Instance throws system

does not exist exception from any method

A

create Remove() . )
or timeout timeout

/

~

method ready passive

rollback

method

ready in TX ERROR

Figure 6.9: Stateful session bean state diagram based on EJB

The presence of state for session and entity beans is related more to “transactional” state rather
than “control” state. Transactional state information is used to decide the validity of a
transaction on a database; control state information is used to decide, for instance, the

availability of resources as in the other architectures discussed.
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6.5 A STATE-BASED CLASSIFICATION OF IP-BASED
PROTOCOLS

The work presented up to this point showed that the majority of the systems examined rely on
state to some extent. This section provides a classification of the systems using metrics such as
whether:

= state is critical to the operation of the system, i.e. the system cannot function if the state
information is lost.

» the system is stateless or state plays a supplementary role to the operation of the system.
Systems that maintain no state information appear in this category, as do systems where
state is maintained but is not critical for the operation of the system.

* maintaining session information is a requirement. This classification includes systems that
need state information to be maintained in the form of a session, such as a system that
maintains a history of all processed requests during a single lifecycle.

» the use of persistent sessions is mandatory. Systems that maintain state information which

can be retrieved across subsequent lifecycles fall into this category.

With the above metrics in mind, the Venn diagram depicted in figure 6.10 can be constructed.

Web clients without hidden fields or cookies ‘

(Stateless SIP Proxy Server

Stateful SIP Proxy Server ‘

CORBA/EJB

AAA Framework

COPS Protocol

session
information

Persistent
sessions

Web clients with cookies enabled

Figure 6.10: Classification of state-dependent architectures

Figure 6.10 represents the interactions of the various architectures. It shows that the CORBA
and EJB architectures rely extensively on maintaining state information for their execution. Of
course, this is not surprising as the state information that is maintained for these DOTs is

required to provide transactional capabilities.

167



The RADIUS protocol can be characterised as having a low dependence on state. This means
that although external messages result in state transitions, there is not heavy reliance or
communication between the states. Furthermore, the fact that RADIUS can operate over UDP
implies that the protocol is connectionless. By design the protocol does not exhibit a high

degree of state-dependent behaviour, otherwise it would have been designed over TCP.

Importantly, RADIUS does not support multiple requests. This implies a single-instance view of
the protocol that partly accounts for its simplicity. If RADIUS could support multiple requests
concurrently, it would need to provide mechanisms such as threading, queue management and
resource management (as the AAA framework does). To provide these, a manager would be
needed. Furthermore, the manager would have to be aware of the status of these sub-systems.
This can be phrased in a statement that says that the complexities and overheads that arise in
maintaining state in any form may be partly attributed to the underlying complexities imposed

by the concurrent behaviour of such a system.

In a concurrent or real-time system, a limited pool of resources may need to be allocated to
processes requesting these resources. Such a system needs to control access to these resources
and to ensure that they are allocated to the requesting processes in a manner that is determined
by a scheduling algorithm. In order for the control process to maintain a view on the status of
the resources, there must be a way for it to keep track of the status of the resources that are
available. Such systems explicitly impose the requirement for state-dependent actions and the

need to maintain internal state.

The PSTN is one such system with a limited pool of resources and a large number of processes
(individual users) making requests. The IN architecture and the SS7 protocol play a major role
in maintaining the robustness of the PSTN. Deeply embedded within both the IN architecture

and the SS7 protocols are state models that form an integral part of the control plane.

The AAA architecture that was presented in section 6.3.2 identified the need for the resource
manager and its requirements. Some of the requirements that were presented include:

= Sending of notifications from service equipment to the RM,

* Maintaining time limits for sessions,

= Refreshing the time limits and

= Terminating sessions anywhere in the authorisation chain.
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Such capabilities reflect closely the functionality provided traditionally by the IN control

architecture rather than the control plane of the IP domain. The functionality provided by AAA

servers must exhibit the robustness usually associated with the control plane of the PSTN.

The capability of an AAA RM to terminate sessions anywhere in the authorisation chain as

identified by [Voll00a] requires that each RM maintain state information such as active sessions

and timers for each session. Figure 6.11 shows a graphical representation of one way that an

AAA server could maintain a list of the active sessions and the participants in that session.

Resource Manager in
Administrative Domain 1

Session

Participant G
Participant E
Participant A

RW;M API for remote manageX\ent

/

\

Resource Manager in
Administrative Domain 2

Session

Participant F
Participant B
Participant A

Resource Manager in
Administrative Domain 3

Session

Figure 6.11: Distributed control with RMs residing across administrative

boundaries

The association of participants with a unique session is similar to the mechanism of the IN CS-2

CPH that was discussed in section 2.4.6.
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Association Association

Figure 6.12: Application entity structure adoptedfrom [Q.1208]

Furthermore, the controlling RM can be viewed as a multiple association control function
(MACF) [Q.1208]. The associations represent the communication pipes through which one
AAA RM communicates with another. In the case of AAA, since an RM needs to be aware of
all participants in an authorisation chain, this relationship can be implemented using a Single

Association Object (SAO).

Management Platform

Figure 6.13: The management layer interface

There is a further point that needs to be examined - the effect on the system if a management
platform needs to have a view on the state of multiple RADIUS servers. This problem is
represented graphically in figure 6.13, which shows a management platform communicating

with various RADIUS servers. Potentially such a platform could collect information regarding

170



the state of the underlying resources (in this case RADIUS servers), either by requesting the

information or by having the RADIUS servers send status information to the management layer.

If such a mechanism is incorporated into the existing RADIUS architecture, it adds complexity
to the implementation of the protocol. This problem is further aggregated in the case where the
resources may not be in the same administrative domain. For such a scenario a common API
must exist that allows vendor-specific resources to communicate with the management layer, or

any overlaid layer.

This issue is further discussed in chapter 8, where the architecture for an application server is

presented based on the concepts of both the IN architecture and the IP-domain.

6.6 CHAPTER SUMMARY AND RESEARCH CONTRIBUTIONS

This chapter presented the control constructs for implementing state behaviour, the
representation of state and the policies on state-dependent actions. A number of client-server
architectures and protocols were then presented and examined with respect to their reliance on
state. This was followed by a discussion on the presence of state in distributed object
technologies, such as CORBA and EJB. The last section provided a view on state models by

incorporating ideas that were presented in the previous chapters.

Through the work that was presented in this chapter, the presence or absence of state in various
IP-based technologies was demonstrated in a Venn diagram. A discussion on state models
incorporated both ideas from the work presented in this chapter regarding state-dependent

actions and principles from the IN control architecture.

Another important issue that can be drawn through the work presented in this chapter is the
issue regarding the classification of whether a system is state-based or stateless; this depends on
the level at which the system is looked at. As discussed in section 6.3.1, when a single-instance
view of a system is examined, it may lead to the system being characterised as stateless.
However, once the system becomes distributed through middleware technologies, the system

may then be viewed as maintaining state at the middleware layer.
In the following chapter, the implementation of a network management system is presented. The

system was implemented by utilising the approaches to state-management that were presented

in this chapter as well as from state models present in the IN-domain.
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CHAPTER 7

INVESTIGATING STATE MODELS IN THE
IP-DOMAIN THROUGH A WEB-BASED
NETWORK MANAGEMENT SYSTEM

The work presented in this chapter aims to investigate the notion of state in
distributed IP-based systems. For this, a web-based Network Management system is
presented. The system was developed for use in the department of Electronic and
Electrical Engineering at UCL.

7.1 INTRODUCTION

The Network Management System (NMS) allows administrators to monitor the status of the
various devices on their network. The system makes use of the Simple Network Management
Protocol (SNMP) [RFC1098] and standard Management Information Bases (MIBs) [RFC1155]
[RFC1212].

In this chapter, section 7.1.1 provides the motivation for this work. Following this, section 7.1.2
gives a brief overview of the operation of the SNMP protocol. Section 7.2 then presents the
Network Management System and section 7.3 examines the distributed behaviour of the NMS.

Finally, section 7.4 provides a chapter summary.

7.1.1 Motivation and Approach
The motivation for the work presented in this chapter was to gain a clear understanding of the

issues surrounding “state” and the notion of “state” in IP-based systems. Chapters 2 and 3
examined telecommunications control architectures, such as those of the IN, and signalling
protocols, such as SS7. In chapter 6 state-management and the existence of state in IP-based

systems was presented.

Therefore, chapters 2, 3 and 6 provided a clear understanding of the use of state models within
IN-based as well as IP-based systems. For instance, chapters 2 and 3 demonstrated that state-
dependent actions are deeply embedded within the core of the control plane of the PSTN,

whereas chapter 6 showed that IP-based systems can be classified both as “stateless” and “state-
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dependent”, depending on the specific viewpoint. To fully examine the role of the control plane
and the role in which network intelligence is provided, it is essential to study the notion of

“state” by adopting the state-management techniques discussed in chapter 6.

In order to investigate the communication of distributed systems while focusing on the specific
issue of state-based and stateless transactions in IP-based architectures and systems the author
took the view that a useful way to examine the behaviour of such systems was to design and
implement a relatively complex system that is used in a real-time environment, such as the
NMS.

In the implementation of the system, the author also believed that a useful way to understand the
state-based and stateless behaviour of such systems at the application layer was by excluding
middleware technologies that could have taken care of the communication layer. For instance,
middleware technologies such as CORBA [CORBA95], DCOM [DCOM][Will94] and
Enterprise Java Beans [EJB01] could have been used.

Moreover, a slightly similar approach was to utilise existing software patterns [Gamm95] (see
section 6.2.1) to represent state. However, this again would involve some overheads of driving

the state models and may have obstructed a clear view of the underlying system.

The approach that was adopted was to implement the system using message-passing to simulate
the effects of internal state using external trigger conditions (section 6.2). These messages
effectively make up transactions that are used to drive the distributed system from one state to
another according to the internal state transition tables. The internal state transition tables are
therefore explicitly defined using language-dependent constructs, such as “case” and “if-

statements”.

The message-passing approach does not maintain persistent session state. This means that
requests are received, processed and replied to using a request identifier that is not maintained
across sessions. For example, if an incoming request is received and the server processing the
request does not respond, the client will not re-issue that request, as it does not maintain a list of

the sent requests and, therefore, does not maintain persistent state information.
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The reason for this lies in the environment of the system. Since this is a Network Management
System, if a request is lost and the NMS server responds with a time lapse, the results of the

request may not be reliable.*

Having introduced the motivation and approach of the work that is presented in this chapter, the

next section provides a brief background to the SNMP protocol.

7.1.2 Introduction to the Simple Network Management Protocol
The Simple Network Management Protocol [RFC1098][RFC2570] is an application layer

protocol for the management of network devices. These network elements are called managed
objects. Associated with each managed object is a defined set of management-related
information. This includes variables, also known as attributes, that can be read or written to by
the network manager via the network. Figure 7.1 depicts the components of a Network

Management System.

workstation
Plotter

Ethernet-

Agent:
Agent D
Bridge PC I l

Network IVIanagement Station (NMS)

Agent

Printer
Bus

Figure 7.1: Example ofthe components ofa Network Management System

The management information associated with a network is kept at the network manager station
in a Management Information Base (MIB) [RFCI1155][RFC1212]. The MIB specifies the
variables that the network elements contain. The variables have unique object identifiers
(objectID) and use a hierarchical numbering system. For example, [RFC1213] defines the

ipInReceives attribute as:

* This occurs in the case where the client sends a request which is received by the server, which then
issues an SNMP request to the SNMP agent. The server obtains the result but, for some reason, does not
respond. If the client re-issues the same request with the same request identifier and the data is returned

by the server from the cache, it may not reflect the real-time view ofthe managed device.
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“ipInReceives OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of input datagrams received from
interfaces, including those received in error.”

w={ip3Y}
This identifies the attribute as a counter, with read-only access (i.e. the network manager cannot
change this value), and a mandatory attribute. The hierarchical name for ipInReceives is:

.iso.org.dod.internet.mgmt.mib-2.ip.ipInReceives

while the numerical value corresponding to the same object identifier is:
1.3.6.1.2.14.3

A network management station is used to query this information for each device in figure 7.1.
Such queries are handled by agents located on each of the managed objects. SNMPvl
[RFC1098] defines five message types whereas SNMPv2 [RFC1441] defines an additional two
requests, as well as two new MIBs: the SNMPv2 MIB [RFC1213] and the SNMPv2-M2M MIB
(Manager-to-Manager). A full description of the SNMP protocol can be found in [Stal99].

7.2 THE NETWORK MANAGEMENT SYSTEM

The Network Management System (NMS) is composed of the following main subsystems:
= Web Server Manager,
= Applet,
= Network Management System,
= SNMP Agents and
= Database Agents.

At a high level, the aim is to allow an applet to access the managed objects.
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Figure 7.2: Interfaces of the NMS

The web server provides the communication between the applet and the NMS. When the
administrator logs onto the system, the applet presents a floor-view™ of the requested floor. The
floor maps represent a top-down view of all managed objects for that floor. This includes

devices from printers to workstations, ports, hubs, routers and PCs.

The NMS controls the interface between the information that the web server requires and the
information that the agents can provide. It controls the agents and updates the web server so that
the web pages reflect the underlying status of the managed objects. It does this by polling the
agents at regular intervals so that the data is updated automatically. Furthermore, the NMS is
responsible for controlling the SNMP agents and their polling intervals, as well as setting

SNMP traps when such requests are received from the web server.

The database agent provides an interface to the database containing information about all the
managed objects. For each object, information in the database includes its location (i.e. room),

the IP address (if appropriate), as well as the MIB file that corresponds to that device.

* A floor-view represents a literal top-down view of a specific floor, and the colours of the devices on that

floor represent the status of the devices.
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The SNMP agent is responsible for collecting the information from the managed object. When
an object is constructed, it accesses the SNMP daemon for that device. The object then uses the
object!D to query the DB agent, which loads the appropriate MIB for that managed object. For
example, if the SNMP agent is responsible for a router, then the router MIB provided by the
manufacturer will automatically be loaded. The SNMP agents are threaded objects that are
controlled by the NMS system and which can access the specific attribute from the managed

object by using the AdventNet SNMP API [Advent].

7.2.1 Communication across the Components

Communication between the web server and the NMS is implemented using pipes, as illustrated
in figure 7.3. Communication between the applet and the web server uses sockets, with the web

server creating a Server socket.

The applet and the NMS are therefore responsible for controlling separate threads for incoming
and outgoing messages; the web server establishes a connection with both the applet and the

NMS and hence requires four threads (two for incoming and two for outgoing).

Having given a brief description of the communication between the system’s components, the

individual interfaces (figure 7.2) are discussed next.
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Network Management
System

Figure 7.3: Communication between the applet, web server and NMS

7.2.2 The DB Interface and the DB Agent

The database interface provides access to the database through the agent. Figure 7.4 shows the

class diagram for the DB Agent.
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The methods made available by the class allow access to the relational SQL database, which
contains all managed objects. Two methods whose function may not be apparent are getX and
getY. These provide the x-coordinate and y-coordinate to the applet. Essentially the applet
generates an image of the floor based on these coordinates, which are entered by the
administrator.

| <<Interface>>

' dbminterface 1

®getDevice Type(int devicelD) : int

$getDevicelP(int devicelD) : String ‘
%getDeviceFloor(int devicelD) : int

$getFloorDevices(int floor) : Vector i
%getDeviceList(int deviceType) : Vector |
®getPortDevices (int devicelD) : Vector
$getX(int device!D) : int

$getY(int device!D) : int i
$geticonLocation(int devicelD) : String
$getAdditionalinfo(int devicelD) : String

$getMibFile(int devicelD) : String

Figure 7.4: The DB Agent class

7.2.3 The SNMP Agent and the SNMP Interface
The SNMP agent class uses the SnmpTarget class from the AdventNet API [Advent]. The

public methods of the class essentially allow the NMS to assign a new agent to a specific device

using its devID. The getStatus method informs the NMS of the status of the device.

. com.adventnetsnmp.beans.SnmpTarget

o, _K N ——

instaqﬁates

SnmpAgent
&ptheAgent: SnmpTarget = null
& dbAgent : DBAgent

| —

4SnmpAgent()
%assignToDevice(deviD)

andeFile() \
! ¥getStatus() : int i

£»overTriggerTime(last, current) ‘
ePoverTriggerLevel(currValue, maxValue, trigger){
e¥findHardDiskCapacity() : int ‘
enfindNode() : String :
s etHost(theHost) i
ePloadMibFile(theFile) i
£¥setEnquiryTable() : Vector

Figure 7.5: The SNMP Agent class

A detailed explanation of the AdventNet API and MIB Browser tool can be found in [Advent].
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7.2.4 The NMS Components
It can be seen from figure 7.6 that five of the classes that make up the NMS extend the
java.lang.Thread class. This enables the NMS to deal with multiple requests from the applet; it

also monitors the managed objects at the requested polling intervals.

A second point to note is that the outgoing messages from the NMS are sent by the
ResultSender class. This works as follows. When the concurrent threads of the NMS need to
send messages to the web server, the ResultBuffer.put() method is called by the thread and
places the message in a buffer. The ResultSender’s run() method invokes the ResultBuffer.getQ
method at intervals. When a message is returned by the ResultBuffer.get() method, it is sent

using the communication pipes discussed in section 7.2.1.
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Figure 7.6: The NMS

7.2.5 The Web Server and the Applet

The structure of the web server closely resembles the structure of the NMS, i.e. there is a
CommandProcessor (in both the web server and the applet) that is responsible for handling
incoming and outgoing requests. Where a response is sent from the NMS and needs to be
directed to the applet (without the intervention of the web server) the web server simply passes

the incoming message onto the outgoing thread towards the applet.
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The earlier sections described the network management system, the communication among the
components, the internal details of the NMS components, as well as more “lightweight” parts
such as the database agent. The next section looks at the implementation of the system from the
point of view of the communication mechanisms adopted as well as state behaviour of the key

controlling parts.

7.3 DISTRIBUTED STATE-BASED BEHAVIOUR OF THE NMS

The objectives behind implementing the NMS system can be summarised as follows:
* To design a robust system by using extensive state models,
= To define well-structured and clear interfaces between the individual components and

» To understand how a classical three-tier architecture operates in the IP domain.

One of the architectural characteristics of the NMS is the fact that the sources of information are
distributed. The system queries distributed SNMP agents to obtain the status of various devices
scattered across the network. The NMS must be able to collect the information, examine the
configuration under which it is running, and return the results in a meaningful manner to the

applet that is making the request.

To achieve this, the request must go through a web server (figure 7.2), reach the managed object
and return the result. In this system, the initial constraints were imposed by the capabilities (and
limitations) of existing protocols and architectures. For instance, the information collected from
the devices was limited to what the MIB could provide, as well as by the capabilities of the
SNMP protocol. Also, there are the security considerations in the communication between an
applet, its host, and the web server. As a result, the information returned by the web server to
the applet had to be in a format that the applet could process without requiring any additional

resources that would break the limitations imposed by the security model of applets.

The core part of the system had to allow the transfer of information from the applet to the
SNMP agent and back. The internal functional modules had to be designed in a way that would
enable them to communicate internally and externally. The external communication of the
system is defined by the interfaces identified in figure 7.2. The following interfaces were
developed for external communication between the systems:

» The WS Interface, between the applet and the web server,

» The NMS Interface, between the web server and the NMS core manager and

» The DB Interface, between the NMS core manager and the SQL database.
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The internal interfaces that were developed allowed the Message Processors and Schedulers of
each of the components to send internal requests. These requests are powerful and vary from
requests that initiate queries to the SNMP agent to management requests that query the status of
existing requests. As a result, through this interface, it is possible for the existing core NMS to
be deployed in a distributed manner. For example, while on one host there would be the

command and message processor, another would handle the management-type requests.

The modularised approach utilises well-defined messages for the internal communication of the
system. Therefore, it is possible for the overall architecture of the system to be re-used and
implemented in a completely different environment. For instance, the SNMP interface can now

be replaced with a GSM interface for obtaining information relating to GSM subscribers.

The internal message-passing mechanism can also be further extended to include ideas from the
IN world. For instance, when an external request is received, the internal status of the system is
examined before passing it to the appropriate sub-system that deals with the implementation of
the request. To achieve this, internal state within the system must be maintained. This internal
state would then be examined by the sub-system once a request is received and, if the internal
state is satisfactory, the request is executed otherwise it is returned. For the implementation of
internal state, a similar approach to the IN model would be utilised using detection points and

points in call (section 2.4.4).

Management Platform

Service Instance
with FSM

esu t Sender Processor

interna internal
state internal State
Machine Machine
Message .
Processor Outgoing
Responses

Service Execution Environment

Figure 7.7: Extensions to the NMS architecture

Figure 7.7 depicts an extension to the basic architecture of the NMS system. Shown are the

processors for the incoming and outgoing requests, the internal message processor, and the
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results sender. On the top, there is the management platform, which communicates with the

service execution environment.

The extensions are introduced by the state models that are present in the incoming, the outgoing
and the result sender components. These state models are introduced in order to maintain the

internal state of the system, in a similar manner to the Basic Call state model in the IN.

Chapter 8 examines in detail the applicability and extensibility of this architecture as a generic
application server that draws from IN principles, but also from the state-dependent discussions

of chapter 6.

7.4 CHAPTER SUMMARY AND RESEARCH CONTRIBUTIONS

This chapter examined the notion of “state” by implementing a distributed IP-based network
management system. The approach that was used excluded additional complexity or possible
overheads of distributed middleware technologies. The distributed communication utilised

message-passing.

One of the initial design decisions that had to be made was to decide how to distribute the
system, to examine the communication between the various individual parts, but also to make
sure that the system maintained its robustness throughout its execution. As a result, ideas from
the IN world, which enabled distributed parts to communicate in a clearly defined manner, were

incorporated.

The implementation of the system provided the opportunity to realise in practice the effort that
is required in maintaining a system in a valid state that is capable of processing incoming

requests but also supports basic fail-safe techniques.
Chapter 8 examines in detail the need for a generic application-server in an open service

creation environment. The chapter also discusses the architecture for such as an application-

server, based both on telecommunication and computer-science principles.
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CHAPTER 8

OPEN PROGRAMMABLE NETWORKS,
APPLICATION SERVERS AND
NETWORK INTELLIGENCE

This chapter looks at service provisioning in an environment where third parties can
access core network components through specially designed interfaces and identifies
issues that need to be resolved. One specific problem is the interconnection of service
providers. The chapter proposes a solution to this in the form of an application server for
third-party service providers.

8.1 INTRODUCTION

The interest in open programmable networks is gaining momentum. This can be seen by the
increase in the number of members of groups such as Parlay and also from the increase in the

number of conferences and publications in the field.

The traditional telecommunications environment has been one where the network has been
under the exclusive and strict control of the incumbent operator and revenue was generated by
services that were conceived, designed, implemented and managed by the operator. There is
now a move towards providing open access to network components through APIs [Moye01]
[Bisw98]. This necessitates the investigation of new functional entities, such as gateways, that
enable this interconnection. These issues are the focus of the work presented in section 8.2,

where this change in the telecommunications environment is described.

Section 8.3 presents an API Server architecture and describes its functional layers, its interfaces
and its state models. The work presented in the section has already been presented by the author

at major international conferences.
The API Server, after initial work, was specified in the Specification Description Language

(SDL) [Z.100] and simulated using Message Sequence Charts (MSC) [Z.100] [Ekka95]. The

aim of this was to investigate whether it was feasible to incorporate the proposed state models
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of the API Server within the Parlay framework. This work is presented in section 8.4. Section

8.5 provides a chapter summary and research contributions.

8.2 OPEN NETWORKS

This section provides the reasoning behind allowing core network functionality to support
independent software vendors and third-party service providers. It complements section 3.3.2.4,

which presents two main approaches for providing APIs that open up the network.

8.2.1 Traditional View on Service Implementation
The traditional approach to telecommunications has been that the incumbent network operator

has total and exclusive control over the network. This is illustrated in figure 8.1.

The figure shows a number of network operators and describes in detail the business domain of
a single network operator. In this single-instance view, the network resides at the core and
consists of control-plane architectures, such as the IN, and signalling networks, such as SS7.
The network resources represent the components that are needed by many applications. The
external circle represents the traditional view of the business domain for a network operator, one
where the focus was the network. All three tiers are owned, maintained and operated exclusively

by network operators.

Well-defined
interfaces owned
Well-defined Network Operator s and maintained
interfaces d Business Domain
interfaces owne by the network
and maintained operator
by the network
operator Applications

Network Resources

End-users

Third-party
service providers
cannot access
network
resources

Network Resources

Applications

Network Operators

Network Operator s
Business Domain

Third-party
service providers

Figure 8.1: Traditional approach to service provisioning
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A number of network operators exist within the network operator cloud and network
interconnection enables communication between different subscribers rather than the
development of services that span multiple network boundaries. Such services are developed by
third-party service providers; the wall in figure 8.1 represents the fact that third-party service

providers cannot access network components within the network operator’s boundary.

This approach has resulted in network-centric communications for service delivery. The
monolithic, network-centric approach does not allow services to access data in the enterprise
domain for decision-making [ParlBuss99]. This is because the implementations of IN services
run in the network domain, at the core of the network, and as a result, any third-party
involvement in service programming is limited to customising only a small set of operational
parameters [Laza97]. The network-centric approach is sufficient for mass-market applications
[ParlBuss99] where there is a business case for wide appeal, such as the Freephone service, but
unfortunately it is not sufficient for smaller applications. Furthermore, in the network-centric
approach, the services are relatively easy to manage and can be built in a very robust fashion.

There are also fewer security considerations to deal with [ParlBuss99].

However, there are significant disadvantages to the traditional approach. Today’s converging
telecommunications environment requires a new approach; end users are slowly demanding an
interoperable environment regardless of the transport network being used for a service [Tarj97]
[Solo00b]. In the traditional approach, the network operator is responsible for the creation,
operation and management of all applications and, as a result, it is difficult to achieve the
necessary flexibility to deploy many customised versions of services to different customer
groups. This leads to a long time-to-market for new applications [Chen00] [ParlBuss99]
[Laza97].

The move towards an open network environment can be described as an evolutionary step. The
network operators have established a resilient core network infrastructure and it is in their
interest to generate further revenue from core network components by enabling open access to
elements such as SCPs, HLRs and location servers. It is the author’s view that no network
operator would consider allowing open access unless it were deemed to be profitable, although

regulatory pressure has also acted to direct operators in this way [ECD98/10/EC].
Consequently a new approach that combines the benefits of the network-centric approach with

the flexibility of the edge of the network approach is desirable. Of course, in enabling such open
access, the integrity of the network must not be hindered [Alex98].
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8.2.2 Open Network Access through APIs
The approach taken by advocates of Application Programming Interfaces (API) such as Parlay

is to open up access to the various protected functional entities (FE) of operators to third-party

service providers using carefully defined class libraries.

The concept of APIs is in essence very simple and requires very little group agreement or
standardisation. This is in stark contrast to the traditional telecommunications approach, which
is to standardise almost every aspect of the hardware, software and protocol development.
Regardless of this, the case in support of opening up core network components has been
accepted by incumbents, such as BT and AT&T. This is supported by the fact that BT is a
founder member of the Parlay Group. Although APIs significantly simplify and open up access
to the telecommunications equipment of operators to third-party service providers, some

significant problems still remain:

Firstly, the operator needs to ensure that the access offered to third-party service providers is
used in a manner that does not in any way hinder the integrity of the network [Alex98]. To
emphasise this, the work presented in [Ward95] identifies issues relating to degradation of
network integrity from the simple interconnection of networks, which does not enable open
access to key network components. If interconnecting networks may have an impact on network
integrity, then open access to network components must use architectures that can guarantee the

robustness and operation of the network.

This leads to the second issue of maintaining the integrity of the interface. This means that the
interface is used in a manner that conforms to its description. For example, if a service offering
requires that certain calls are made in a manner described by a sequence diagram, the operator
must ensure that requests that do not conform to the sequence diagram are dropped.
Furthermore, in order to preserve the integrity of the network the third-party service providers in
the enterprise domain must use the interface in a manner that is compliant both with the
capabilities of the interface and the service level agreement with the operator. More importantly,
the network operator must ensure that third-party service providers make use of the API in a
foreseeable manner and, even more so, within the proper sequencing invocations which are

acceptable to the API.

A third issue deals with billing for the services [SoloO0b]. Apart from the business issues
regarding the billing of services, there is the question of how the billing information is conveyed
to the operator’s platform. Moreover, mechanisms may need to be provided that allow the

service providers to inform other service providers if a certain service is not available.
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A key element to API technologies is the gateway. This is a server architecture that provides the
interface between client requests and the network services. Whilst it is in the interests of
simplicity and ease of implementation for the client—server interface to be as simple as possible,
special consideration must be given to the interface to maintain security, integrity, scalability

and general manageability of what is essentially a fragile access to precious network resources.

Equally important is the problem of maintaining session state [Solo00b]. Services that make use
of network functionality are likely to be much more complex than simple client—server-type
transactions. Within a session, services are requested by a client through code written using the
operator-supplied APIs. The interactions between the client and the server may be hidden by the
software interface, however the interaction cannot be ignored. There needs to be supporting

structures that maintain the session state for a service with little or no user involvement.

Another important consideration is the scalability of service provider interactions [Solo00c]
[Solo00d]. One client of a service provider may be the service provider for another client. This
creates a hierarchy of service provider—client interactions that could get quite complex. Creating

services and managing them is a complex task that requires new tools.

8.2.3 Hierarchical Third-Party Service Provisioning
In a hierarchical inter-working scenario an architectural framework that allows third-party

service providers to share their APIs, without any loss of security, efficiency and integrity, is
desirable. This framework could be extended to whatever degree of the hierarchy is thought

relevant to the business case.
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Figure 8.2: Hierarchy o fthird-party service providers

Figure 8.2 provides a graphical view of such a hierarchical scenario. Two third-party service
providers (3SP) are using the Parlay API to access core network resources. In turn, proprietary
functionality is introduced and offered in the form of new services to other 3SPs. The fact that
the 3SP space is likely to be populated by a number of service providers is represented by the
cloud in which the service providers are placed. Under this hierarchical scenario, mechanisms to
maintain a unifomi interface across service providers need to be implemented [SoloOOb]. This is

the application server architecture (API Server) that is presented in section 8.3.

The API Server consists of two parts: the API Server and the management platform. The API
Server provides controlled access to the services whilst the management platform monitors the
service lifecycle. The management platform communicates with another management platform
of clients and servers interacting with the APl Server. The aim is to provide a platform that is
resilient to the problems inherent in the services on offer as they are developed and put through
early deployment. The management platform allows other 3SPs to send requests that deal with

service availability and cost and to change QoS parameters.

In figure 8.2 interface A allows service requests to be sent across API Servers. Requests across
this interface are likely to be sent using CORBA [CORBA95] or EJB [EJBOI]. Interface B
allows the management platforms of different 3SPs to communicate and exchange management-
type information. The management interface allows managers to inform each other of problems

detected in the service. For example, if a deadlock situation occurs that is not detected by the
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service program, timers in the management platforms inform each side of the deadlock and
trigger an exception. The management platforms can also trigger on other criteria such as
frequency of requests and requests that are inappropriate. Interface C represents the service-
specific requests received from end users. In most cases, the functionality offered across

Interface C is likely to be a subset of the functionality provided by Interface A.

8.3 IN-BASED APPLICATION SERVER

Traditionally, an application server is a platform that provides an environment where services
can be executed. It may also provide a management layer for the manipulation of the services
that are executing. Commercially available application servers include WebSphere by IBM and

the Borland Application Server by Borland.

The proposed application server is not aimed at providing functionality that is already present in
existing application servers. The aim of this IN-based application server is to provide features
that in the author’s view are desirable for such a platform and indeed within the operating
environment. As such, existing application servers may decide to incorporate functionality that

is proposed here.

The API Server architecture draws from the control plane of the IN and also from the flexibility

and advantages that have arisen from the IP community.

8.3.1 Why IN-Based?
The concept of state models and state model behaviour in telecommunications has already

proven essential to management and network intelligence applications of the core network. The
IN control architecture and, in particular, the basic-call process and its state model, the BCSM,
is possibly the most important state model in telephony, upon which the majority of IN services

are based.

Call party handling (CPH) was discussed in section 2.4.6. The capabilities provided by CPH
(such as the merging and splitting of call segments) are achieved at the expense of very complex
and well-defined interactions between the switches involved. The concept of Connection View
States in CS-2 (section 2.4.5) provides a way to capture all the possible configurations under

which call parties can be connected to each other in a single state machine.

It is the author’s view that the CPH capabilities of IN CS-2 provide a powerful way to describe
the behaviour of complex multi-party and multi-service interactions. These ideas are

incorporated into the definition of a similar mechanism in the API Server. One of the main
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advantages of such a state model is the resilience and the proven track record of the IN model.
Of course a state-model approach imposes overheads in terms of managing the model; however,

it is critical to maintain a guaranteed level of service for such an API Server.

To enable the API Server to have a view of the state of the services that are executing, a number
of initial service segments have been identified. Service segments are grouped in a similar
manner to the IN CPH operation (section 2.4.6): the API Server maintains a service segment
association that contains service segments that describe the state of each instance of the service.
The following initial service segments were identified as potentially useful states:
m Null State: This is the initial state for any new service.
m Stable Service Execution: A call segment association containing a service segment in this
state indicates that the service is executing.
m Service Request: This state indicates that a new service request is received by the API
Server.
m Ordered Request: This state indicates that certain actions need to be executed in a specific

order.

8.3.2 API Server Logical Interfaces

APl Server 1 APl Server 2
Service Management Service Management
and Control Platform and Control Platform

Service Execution Service Execution

Platform Platform
Services r Services ]

Figure 8.3: Logical interfaces ofthe API Server

The logical interfaces across two API servers are shown in figure 8.3. The A and B interfaces,
introduced in section 8.2.3, are included here for completeness. The logical interfaces are as
follows:
m Interface A enables one service provider to provide service functionality to another.
m Interface B is the interface between the service management platforms of two API servers.
This interface provides advanced functionality such as the remote simulation of services.
m Interface C provides for internal communication between the service execution platform and

the service control and management platform. It allows the service execution platform to
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inform the service management platform of status information, such as the number of
executing services, authentication violations and service agreement violations.

Interface D allows local service implementations to inform the service execution platform of
important events. For example, it enables a service to interrogate the service control
platform for information pertaining to the status of the API Server.

Interface E is the application server access API that is responsible for authentication and

service discovery.

8.3.3 API Server Functional View

Service Management and Control Platform (SMCP)

o
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Service Instance =
with FSM W)
Service FSM Manager
DCOM DCOM c
RMI RMI ®
CORBA API CORBA
State State
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Server Side State Client Side State
Machine Machine
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Service Execution Platform (SEP) Parlay or Proprietary
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Figure 8.4: The API Server architecture

Figure 8.4 presents the functional composition of the API Server [SoloOOb], which can be
divided into the service execution platform (SEP) and the service management and control
platform (SCMP). Access to the server is made possible through distributed technologies such
as DCOM, CORBA or EJB.

The service execution platform contains all the functional elements necessary for the execution
of service logic [SoloOOc]. There are two state models, one for server requests (received from
other service providers) and one for client requests (forwarded to other service providers). The
server-side state machine manager (S_SSM) is responsible for handling incoming requests.
These cause instances of services to be created and are managed using the CPH approach
adopted by IN CS-2. Where requests need to be forwarded to other service providers, a client-
side state machine (C_SSM) is created. Both the server and client SSMs are based on the IN

BCSM.
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The Terminating Service Interface allows access to proprietary requests. These are incoming
service requests that can be served without a supplementary request to another service provider

and are handled by the Terminating Services Manager.

In addition to the server and client SSMs, the API Server requires IN-type FSMs in order to
achieve CPH-based behaviour [SoloOOd]. These are depicted in figure 8.5, which is an
extension of figure 8.4 and also shows the S/C FEAMs and the IN S/C FEAMs.

from client to server

Service Management and Control Platform

ISI Interface

Server Side Client Side
Manager Manager
S_SSM) (C_SSM)

Terminating
Service
Interfaces

Service Execution Platform

Figure 8.5: Details ofthe API Server architecture

There are two instances of the server and client SSMs. When a new service request is received a
service instance is created, together with the service policies. The server-side state machine
monitors the activities of the server in the execution of a service: it goes through the lifecycle of
instantiation, message passing, and termination and billing. The state model also implements
points in call to allow the triggering of other services. The state machine is thus given some
flexibility for manipulation similar to IN event and trigger detection points, although the
supplementary services that this might facilitate are as yet undefined. The client-side state
machine represents the client in the instantiation and message-passing phase of a service. The
client-side is not essential in all cases. A client-side may not be implemented if end user
applications choose not to implement it (although this is not recommended) or if a service

request is a terminating service.

192



Information held as part of a Service Policy includes supporting and conflicting services (which
provide information on feature interaction), service order execution (necessary in situations
where services must be executed in a specific order) and service timeout policies (required if the
reply from a service may be needed for further processing). The service policies also contain
information that indicates whether the particular service needs to initiate supplementary (i.e.

dependent) services.

The IN_FSMs contain service segments and service segment associations (section 2.4.6). The
S FEAM creates new service segments (SS) and service segment associations (SSA) in a
similar manner to the CPH model. The Inter-SSM Interface (ISI) allows communication
between originating and terminating BCSM-type models. A direct link from the API Server to
an IN CS-2 compliant node can be achieved by direct access to the IN S FEAMs and
IN_C FEAMs.

8.3.4 API Server State Model
The state model that describes the overall behaviour of the API Server is presented in figure 8.6.

The state models that describe the behaviour of the API Server for each individual service

request (incoming and outgoing) are described in the following sections.

null

I

initiateSessionAuthentication

authentication EDP
I
authenticationSuccess
terminateStateModel waiting service request EDP
I
serviceRequestReceived
authorise and load service » EDP
I h
servicel.oadOK, features ok
terminateSession billing EDP

Figure 8.6: The API Server state model

A third-party service provider must be authenticated and authorised prior to issuing any service
requests. In figure 8.6, following the null/idle state when the initiateSessionAuthentication
request is received, the API Server moves to the authentication state. Here, the requesting third
party is authenticated. A failed authentication results in an exception detection point (EDP). A
successful authentication is followed by an authorisation check (which is part of the

authentication state) and the authenticationSuccess event is generated internally.
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When the authenticationSuccess message is received internally, the API Server moves to the
waitingServiceRequest state. Here, the API Server awaits incoming service requests; when one
is received, it moves to the authoriseAndLoadService state. Here, the service level agreements
are checked from the management platform, to ensure that the requesting party is authorised to

initiate the specific service requests.

The API Server then moves to the billing state and applies the billing is applied according to the
service level agreement between the third-party service providers. Billing is an important
element of the proposed state models. Existing application servers do not model this state and
cannot, therefore, have a clear view (from a billing perspective) on the underlying services that

are executing on the platform.

8.3.5 Server State Model
The server state model, presented in figure 8.7, is set up when the API Server receives an

incoming service request from a third-party service provider.

serviceReqReceived

billingSuccess

5 billing |

servicelL.oadSuccess

4.send messages error-4
—

service Termination

|
Figure 8.7: The Server state model (S_SSM)

The first state, authenticate, models the condition that an incoming request is authenticated. The
issuing service-provider must have an agreement with the API Server prior to issuing any
service requests. An authentication failure leads to the state model moving to the error-1 state. A
successful authentication causes the loadPolicies transition and the state moves to the

loadPolicies state.

Within the loadPolicies state, several metrics pertaining to the specific service are loaded.

Service policy metrics include the following:
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timeOutValue — the timeout values for the specific service

= processingPowerQuantifier — a value denoting the processing power needed for the service
= conflictingServices — used for detecting possible feature interference (section 2.4.3.2)

» supportingServices — services required for the service (during the load procedure of the

policy, the supporting services must be available)

billingFramework — information regarding the billing policy of the service.

Additional service policy metrics that were identified include ResponseTimes, ServiceGapping

and numberOfConnections.

The state model then moves to the loadService state, where the service implementation is
loaded. This transition causes further state changes in the service segment association for the
specific service. For example, the service segment association may move from the

serviceRequest to the stableServiceExecution service segment.

The following state (sendMessages) indicates that the service was loaded and is now in a stable
condition (represented by the stableServiceExecution service segment). When in this state, the

service is able to execute within the service execution environment of the API Server.

Prior to the termination of the service, indicated by the serviceTermination transition, the model
moves to the billing state. Here, the customer data record is charged by the service control and

management platform according to the billing policy of the service.

8.3.6 Client State Model
The client state model, depicted in figure 8.8, is set up when a third-party service provider

initiates a service request to the API Server.
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Figure 8.8: The Client state model (C_SSM)

The state model is used to monitor the progress of the outgoing service requests. For such
requests, it is of interest to maintain the status of the requests, but at the same time not to
overload the API Server with what may be pointless states. Therefore, the states that are

maintained for the client-side state model are kept to a minimum.

Once a service request is received, the state model enters the createNewService state. Here, the
internal state variables (section 7.2.4) are initialised. The service segment associations and the
service segments are also instantiated. When the management platform receives the necessary
internally-generated messages from the client-side control module, it issues a
transmitServiceReq message that triggers the sending of the request and thus the starting of the

service.

8.4 USING SDL TO SIMULATE THE API SERVER

This section presents a simulation involving the Parlay WakeUp application example. The
simulation was carried out using the Telelogic Tau tool, SDT. A complete description of the
application example can be found in [ParlaySeq99]. In order to present the simulation of the

Parlay WakeUp application example it is necessary to describe the WakeUp application.

8.4.1 UML Sequence Diagrams
This section presents two UML [Z.100] sequence diagrams. The first describes the sequence of

events for any application to access a Parlay server. The second describes the operation of the

Parlay WakeUp application example.
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8.4.1.1 Accessing the Parlay Framework

The sequence diagram in figure 8.9 [ParlaySeq99] shows an application accessing the Parlay
framework for the first time. In order for the application to use the Parlay services, it must first

authenticate itself with the framework and then discover an appropriate service [ParlayFw99].

logic Authentication  ControlManager  Authentication Management Discovery

1: initiateClientAuthenticationO

2: authenticateFrameworkO *
3: authenticateClientO

4: 'forward event'

5: obtainFrameworklnterfaceO

6: new()

7: obtainFrameworklInterfaceO
8: new()

9: discoverServlceO A

10: selectServlceO n

11: signAppServiceAgreement ()
<

12: 'forward event'

13: sIgnServiceAgreementO
14: new()

15: new() A

16: setCallbackO

Figure 8.9: UML sequence diagram showing an application accessing a
Parlay Server adoptedfrom [ParlaySeq99]

The messages, identified by their sequence numbers in figure 8.9, are described below:

1 Determines the authentication mechanism to be used between objects
implementing the IpariayAppLogic interface and the IparlayAuthentication
interface

2 Used by the client to authenticate the framework

3 Used by the framework to authenticate the client

4 Forwards message 3 to the IpariayAppLogic

5 Receives a reference to the object implementing the
IparlaylntegrityManagement interface

6 Creates an object that implements the IpariaylntegrityManagement interface

7 Receives a reference to the object implementing the IparlayDiscovery
interface

8 Creates an object implementing the IparlayDiscovery interface

9 Requests the object implementing the IparlayDiscovery interface to pass an

appropriate service identifier back to the application (version 1.0.1 ofthe
Parlay API specification supports only call control, messaging and user
interaction)
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10 Informs the object implementing the IparlayAuthentication interface ofthe
service it requires

The application is returned information relating to the service level
agreement, which should be signed by both parties.

11 Used by the framework to ask the application to sign the service level
agreement

12 Forwards message 11 to the IparlayAppLogic

13 Used by the application to ask the framework to sign the service level
agreement

14 Creates an object implementing the IparlayCallControlManager interface.
This only happens once the service level agreement is signed and before
returning the signature and the reference to the service manager back to the
application via the return parameter of message 13.

15 Creates the application service manager.

16 Passes the application service manager's callback reference to the object
implementing the IpariayCallControlManager

Table 8.1: Messages used by an application accessing a Parlay Server

8.4.1.2 The Alarm Call (WakeUp) Application Example

Figure 8.10 depicts the UML sequence diagram for an alarm service that shows a reminder
message. The message is delivered to a customer as a result of a trigger from an application.
Typically, the application would be set to trigger at a certain time, however, it can also trigger
on events. This sequence assumes that an IparlayUICall service interface [ParlaySeq99] has

already been obtained.

:loarlavApp  :loarlavApp  :lIparlavApp :IparlavApp :lIparlavCall  :IpariavCall :barlay
Logic Call CallLeo UCall Lea UCall

1: new(”

2: createCallO

3: new()*

4: setCallbackO

5: routeCallToOrigin ation ReqO

6: new

7: routeCallToOrigination_Res()

8: 'forward event'
<

9; setCallbackO

10; sendInfcCall_Req()

Figure 8.10: UML sequence diagram for an Alarm Call Service adopted
from [FarlaySeqCC]J
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The messages, identified by their sequence numbers in figure 8.10, are described below:

1 Creates an object implementing the IparlayAppCall interface

2 Requests the object implementing the IpariayCallControlManager interface
to create an object implementing the IparlayCall interface

3 Creates an object implementing the IparlayCall interface if the criteria (e.g.
load control values not exceeded) are met

4 Passes the reference of the object implementing the IparlayAppCall interface
to the object implementing the IparlayCall interface

5 Instructs the object implementing the IpariayCall interface to route the call
to the customer destined to receive the 'reminder message’'

6 Used by the object implementing the IpariayCall interface, if the call is
answered, to create an object implementing the IparlayCallLeg interface,
which models the call leg of the customer to receive the alarm

Passes the result of the call being answered to its callback object

Forwards message 7 to the IparlayAppLogic

Forwards the address of the callback object

0 | Instructs the object implementing the IparlayUICall interface to send the
alarm to the customer's call leg

Table 8.2: Messages used by an alarm call service

— [\O 00|

8.4.2 Simulation Overview
The UML specification corresponds to a one-to-one mapping of the objects that are described in

the Parlay framework access interfaces [ParlayFw99].

The following objects were included in the SDL design for the purposes of the simulation:
IparlayAppLogic, IparlayAppAuthentication, IparlayAppCall, IparlayCall, IparlayDiscovery,
IparlayAuthentication and IparlayCallControlManager. The objects IpariayCallLeg, and
IparlayUICall and IparlaylntegrityManagement were not included because these objects do not

play a major part in the exchange of messages between the Parlay server and the application.

The following sections give a description of the system specification.” The simulation of the
system in SDL was accomplished by specifying first the client side of the Parlay API and then

the server side.

8.4.2.1 Client-Side Specification of Parlay API

The first phase in developing the specification of the WakeUp Application was to design a
system containing only the signals sent and received by the client side. In this case, client side

means the service application which offers the service and sits on one side of the interface.

" Note that “system specification” in this chapter refers to the specification of the system in SDL terms.
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Figure 8.11 shows the system Wakeupapplication, containing the following blocks and signals:

The ParlayAccess block represents the sequence diagram of figure 8.9, grouping together
the objects and processes responsible for the messages that establish access to the
framework interface.

The AlarmCall block represents the sequence diagram of figure 8.10, grouping together the
objects and processes responsible for the messages that offer the alarm call service. In the
case of AlarmCall this encapsulates only process IparlayAppCall.

The TimeOut block represents timeouts generated by all processes. This block generates the
following signals: AccTimeQOutl, AccTimeOut2, AlarmTimeOut, AlarmTimeQutl and
AlarmTimeQut2.

Channels C1, C2, C3 and C6 are the paths which carry a number of signals between the
environment and the system. During the simulation, incoming signals are under the control
of the specification developer and timeouts are needed to simulate the timeout of specific
responses. In this phase of the specification, inputs that are expected from the developer and
cause timeouts include: userReqForServ, signAppServiceAggremen, authenticateClient and
routeCallToOrigination_Res (via channels C1, C3 and C6).

Channels C4, C5, C7 and C8 carry any signals which are internal to the system and
therefore act as the interfaces between the system’s blocks.

A SIGNAL list is needed in the specification in which most of the signals are declared.
Signals that have only local significance are declared internally within a block, and not in

this list.
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system Wakeupapplication

SIGNAL f
userHeqrorSefyv oontaaol irvlateClieritAulnenlicalot’,authenticalef-ramewecrk,
obtainFniTievAjrKinlertace. di*>ovefS»vce. selsDIService.

signSefv,ce Agreement rew. selCaltoackl, selCollbackZ crealeCal!
rojleCailToOriginalion_ Req. oulhenticaieCiient.signAopServiceAgreemert, acc limecjl 1
acctimeoutz. alarmT|meoul.aiarmlimeoutl alarm firreoulZ, forwaraEvenls.
roale'CallloOriginalion.Res.tiggerl IriggerZ. InggerA. IriggerB, Irigger.

C2
ParlayAccess
raJhet'tlcaleCictM 1 c3
signAppSorviceA greerretn
C5 Ccs8 C4
TimeOut c7 AlarmCall

Figure 8.11: Specification ofthe Wakeupapplication system

The simulation begins as follows: the ParlayAccess block encapsulates the processes
IparlayAppLogic and IparlayAppAuthentication. IparlayAppLogic receives the userReqForServ
signal via Cl and initiates the system behaviour by outputting the first of the signals needed to
access the Parlay framework interface to the environment. The userReqForServ signal must be
sent initially by the user, in order to initiate the state diagram of process IparlayAppLogic. The

process thus begins exhibiting the system behaviour.

C wait_RtQ

userReqForServ

iriiliateClienlA'jlhenlicalioJ;*

[___

oulrierUicpleFrarnev.vjr'<

Figure 8.12: Part ofthe IparlayAppLogic state diagram
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Figure 8.12 shows part of the state diagram for the IparlayAppLogic process. The process
diagram begins with the start symbol and then enters the wait REQ state until receiving the first
signal from the user. When userReqForServ is received and consumed by the process, the first
outputs are sent to the environment: initiateClientAuthentication and authenticateFramework.
In addition to the above signals, the IparlayAppLogic process also outputs trigger! and trigger2
to the TimeOQut block via channel CS. Process IparlayAppLogic sends these signals to trigger
processes AccTimeOutl and AlarmTimeOutl into generating the timeouts that indicate that the
corresponding responses to signals initiateClientAuthentication and authenticateFramework
have not arrived within the expected time limits. Two timeouts were needed because process
IpariayAppLogic was not expecting the response from the environment. Process
IparlayAppAuthentication gets the response from the environment (signal authenticateClient)
and then reports back to process IparlayAppLogic (signal forwardEvent4). Under normal
operation, the two responses arrive on time and the timeout signals are not taken into account by

the processes. Instead they are discarded and a transition to the next state takes place.

Figure 8.13 shows the IparlayAppAuthentication process. Signal authenticateClient should
arrive by signal route R3. If timeout alarmTimeoutl arrives first, from signal route R7, the

process terminates, as shown in figure 8.14.

initialeClientAuthentication,authenlicateFramawork,
obtainFrameworkinterfacs, discoverService, sefectSarvice,
signServiceAgreement, setCallbacki, seiCallback2,
createCall, routeCallToOrigination_Req

[conEstabl] R1

C1

IparlayAppLogic i c2

R2

[userFleqForSarv]

forwardEventd,
forwardEvent12

[lon\ardEvama]

R6 rIpa rlayAppAuthentication

accTimasoull,
accTimeout2

R4

alarmTimeout2

R3
R5 [alarmTimeouH ] R7 C3

authenticateClient,
skjnAppServiceAgreement

trigger1, frigger2,
triggerA, lriggerB,
[rev] trigger

C4 C5 cs

Figure 8.13: Part of the ParlayAccess block showing process
IparlayAppAuthentication receiving signal authenticateClient from the
environment via channel C3
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The major sub-blocks and signals of block ParlayAdccess (figure 8.13) arc as follows:

m The IparlayAppLogic process can be regarded as the central process which initiates and
offers the service. Of course, the process cannot function on its own; instead, the
collaboration of all the processes defines the complete system behaviour.

m The IparlayAppCall process establishes the service in this specification.

m The IparlayAppLogic process sends the final message (signal conEstabl) indicating to the

user that a service has been granted.

A number of timeout signals are generated throughout the simulation. The names of the
processes generating timeouts were chosen according to which block was expecting a response

from the environment, e.g. the ParlayAccess ov Alarm Call block.

%

A wait_ AUTHE ~

autbenlicaleClis aigrmTirrejull
fe-rwarJE>/enl4

/ nr — VvV

f  wait aAcree J

' 1_ _______

Figure 8.14: Part o fprocess IparlayAppAuthentication.

If process IparlayAppAuthentication teceives input alarmTimeoutl before signal
authenticateClient, the process terminates. Figure 8.15 shows process “ccT/m"Owt/generating
output accTimeoutl. Timer T is set to one unit of time from the moment the process receives

signal trigger2.

The rest of the timers are generated in the same fashion in their corresponding processes. All
timers have a duration of one unit since this is only a theoretical model which does not take into
account any real parametersof a network (for example,delay) and therefore it is notimportant

to have some specificduration of time in which togeneratea timeout. Of course, in practice the

timers would take network characteristics into account.

203



=) (=) [

(Ncii‘1 7 IaccT imamb

=

Figure 8.15: Process AccTimeOutl generating output signal accTimeoutl

8.4.2.2 Server-Side Specification of Parlay API

These processes define the behaviour of the server side of the API. Block ParlayServer
encapsulates processes IparlayAuthentication, IparlayDiscovery, IparlayCallControlManager,

and IparlayCall.

These processes are responsible for sending the various responses from the Parlay Server back
to the client application Wake Up (alarm call) and, of course, forwarding the service to the
customer. The forwarding of the service, by the server, is not shown in this specification since

this was not implemented in the application.
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Figure 8.16: Sequence diagram of alarm call service, adopted from

Figure 8.16 shows the Wakeupapplication system, modified to incorporate the ParlayServer
block. The ParlayServer block was introduced in the design for the specification to be able to
show the complete behaviour of the Parlay API in an automated way. That is, the system
simulation should run without interference from the user, except of course from the initial input
userReqForServ. This exchange of messages between the client and server blocks needs to be
automatic as the next phase of the specification specifies a management plane and illustrates
how this plane could be used to monitor the application messages without interfering. The

management plane’s function is independent from the Parlay API and runs in parallel with the

application.

[ParlaySeq99]
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initiateClientAuthentication,
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obtainFramaworkinterface,
sslectService,
signServiceAgreement
R2
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IparlayAuthentication
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[auhenticateCliem, ] \

signAppServiceAgreament

Figure 8.17: Part of block ParlayServer showing the implementation of
process IparlayAuthentication interfacing to the system via R2 and R3

Figure 8.17 shows process IparlayAuthentication receiving some of the messages destined for
block ParlayServer. It replies with the necessary outputs via signal route R3 interfaced to the

system via channel C3.

8.4.3 Simulation
The Telelogic Tau [Tau3.5] tool with which the system was specified is supported by the

Telelogic MSC simulation tool [Ekka95]. The MSC tool provides a way of executing the system
under the user’s control. Any signals arriving from the environment, therefore, were triggered
by the developer, who can observe a visual display of the generation of signals, exchanged
between instances in the form of an MSC. Timers within the system are displayed, as well as the

states into which the system has entered at a given point during the execution cycle.

During the various stages of development of the system Wakeupapplication, a number of
simulations were tried out as a verification of system behaviour in order to test if the design was
created according to the UML sequence diagrams of the Parlay specifications. The simulations
showed that the proposed state models for the API Server architecture can function within the

Parlay framework.

8.5 SUMMARY AND CONCLUSIONS

This chapter presented the issues relating to open programmable networks and the way such a
change will impact on service provisioning. Industry initiatives, such as that of Parlay, have

generated a large interest in opening up core network resources through APIs.

However, as identified in this chapter, it is crucial that a framework exists that allows the
communication of third-party service providers. The framework manifested in the form of the
API Server enables third-party service providers to communicate using a common framework.

This allows the management interfaces to access remote features of other API servers and, in
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doing so, they may even request that a service be simulated before it is released in the real

network environment, thus reducing any effects of failure.

The API Server that was presented in this chapter is based on the proven principles of the IN
control architecture, but also incorporates the flexibility of the IP domain. The service execution
platform is supported by a number of robust state models that enable the local and remote

management platforms to have a complete view of the status of the executing services.
Furthermore, the work presented here was simulated using a real Parlay example, the WakeUp
service. The sequence diagrams of the WakeUp service were used and implemented in UML.

The UML simulation also incorporated the proposed state models of the API Server.

The following chapter contains the conclusions and suggestions for further work that is needed

as a result of the work undertaken by the author.
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CHAPTER 9

CONCLUSIONS AND FURTHER WORK

f I Yhis chapter provides a summary of the main conclusions that can be extracted as a
result of the work presented in this thesis. It also puts forward suggestions for
further work in the field.

9.1 DISCUSSION

The thesis provided an examination of network intelligence architectures within the converging
telecommunications environment. Network intelligence is provided through the control plane,
which is responsible for the establishment, operation and termination of calls and connections.
The control plane provides a robust foundation for the communication of the functional

components (e.g. switches) and a resilient environment for the execution of advanced services.

One of the aims of the thesis was to understand the traditional approach to network intelligence
in the PSTN. This was achieved through the discussion of the Intelligent Network architecture,
which is a dedicated control plane architecture. The IN defines the BCP that is encapsulated in
the BCSM. The BCSM identifies the logical points in basic call-processing where the IN service
logic located in the switch is permitted to interact with basic call capabilities provided by the
switch. Service initiations can only take place within the boundaries set by the BCSM.
Furthermore, the IN capability sets were presented and it was noted that an important and

significant addition to the capabilities of the IN CS-2 is that of CPH (see section 2.4.6).

In the PSTN, control of the bearer connections is achieved through:
= the extensive use of state machines
= the ubiquitous description of the BCM
= the complete encapsulation of the call process in the BCSM and
= the robust nature of the signalling network and its protocols.
The state models in the PSTN control plane offer sufficient capabilities to capture the

unpredictable behaviour of end users.

To understand the evolution of network intelligent architectures, the work examined the role of

traditional network intelligence architectures in the converging environment. Within the
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converging telecommunications environment it is essential to enable the IN architecture to inter-
work with IP-based architectures. The ways in which the IN architecture can be used with new
network intelligence architectures were presented in the form of a taxonomy reference model.
The model provided a classification of network intelligence architectures and protocols in
relation to the Intelligent Network. Within the taxonomy, a number of areas of inter-working
were identified. One such area examined the utilisation of existing IN capabilities to support IP-

based services.

The IEPS application was presented within the context of utilising existing IN capabilities to
support IP-based services. This approach utilises the existing IN CS-1 architecture to allow
charging of electronic transactions on telephone bills. The IEPS does not require users to be
holders of credit cards and therefore avoids the controversy surrounding the privacy and
security issues associated with credit cards. The IEPS was designed, implemented, simulated

and a patent application has been filed in the UK [IEPSPat].

Following this, the thesis examined the role of state models in IP-based systems. The work
presented a literature review of the ways that state-driven behaviour can be implemented; using
optimistic or pessimistic policies. More importantly the work examined IP-based protocols and
provided a classification of these with regard to their utilisation of state information. To the
author’s knowledge such a classification has not been provided in the existing literature. The
work provided a classification of IP-based systems using metrics such as whether:

= state is critical

= state plays a supplementary role or the system is stateless

= state between sessions is a requirement

= persistent session management is mandatory.

However, following the work in this area, it is concluded that there is no clear line between a
state-dependent and stateless system. A system may exhibit a state-driven behaviour but may
not be state-based. State-driven behaviours are the actions performed in a system as a result of
the occurrence of certain events. Such a system could be characterised as state-based even if it
does not track the point (i.e. state) in the behaviour model of the system. Furthermore, in a
distributed system, a heavily state-based design would track the state of all the distributed sub-
systems with which it interacts. Therefore, the reliance on state models for any system is not
defined in a formally quantified manner. It is further concluded that the classification of a
protocol as state-based or stateless depends on the viewpoint, level of abstraction and specific

instance in time one takes on the protocol (sections 6.3.7 and 6.5).
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To examine the interactions in distributed, IP-based, state-dependent systems the work
presented the design and implementation of a Network Management System (NMS). The NMS
provided the foundations for examining the issues involved in implementing a distributed

system that was state-driven.

A separate concept that was presented and is supported by a number of publications by the
author is the role of the TINA service architecture in relation to the converging
telecommunications environment (sections 2.5 and 3.4). It was put forward that the TINA
service architecture provides a useful reference model for viewing new technologies,

irrespective of whether a complete TINA architecture is deployed.

Through the discussions of the IN CS-2, it was put forward that the SCF in the IN CS-2 (over
IN CS-1) is of higher importance for establishing connections. This translates to allowing
greater control of the TINA Service Session through the SCP that is located in the
communications session. Furthermore, in the converging environment, the work presented the
need for two APIs: one between the service and communications sessions and one between a

gateway (in the service session) and service providers (in the service session).

Finally, the more general case of inter-working is one in which quality of service guarantees can
be made between homogeneous network types as well as heterogeneous network types. For
example, one may wish to establish a call between three parties, each originating from a
different network type. In the author’s view, the IN architecture provides an existing and
evolving set of standards that will facilitate the migration towards these types of scenarios.
Hence, the IN should be viewed as an important architecture for the TINA communication

session.

Within the open service provisioning framework, the thesis identified a framework for the
communication of third-party service providers. Such a framework is necessary as, in the
author’s view, it will provide a solution to problems (refer to section 8.2 for discussion) that
may arise as a result of open third-party service provisioning. The work presented an API server
architecture that complements the Parlay API. The API server architecture draws from the
advantages and proven track record of state machines, in the PSTN, but also incorporates

features and the flexibility of the IP domain.
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9.2 SUMMARY OF CONTRIBUTIONS

In chapter 1 the problem field and the approach were put forward. The chapter identified the
aims of the work and detailed the approach that was followed in achieving the aims of the

thesis.

Chapter 2 provided a historical background to telecommunications and examined the
traditional approach to network intelligence in the PSTN. Network intelligence in the PSTN is
provided in the form of the IN architecture, which was examined as a case scenario. The chapter
provided an in-depth analysis of the IN architecture and showed that the control plane of the
PSTN is heavily based on ubiquitous state models that inter-work closely. The main
contribution from the chapter, presented in section 2.5, proposed a different role for the TINA
architecture, one in which the TINA architecture can be used as a reference model for viewing

new technologies.

The main contribution in chapter 3 is the work from the taxonomy reference model (section
3.3). The model provided a unique view of network intelligence architectures in the current state
of convergence and their relation to the IN. This unique view provides a clearer understanding
of the issues involved in providing network intelligence in a converging environment.
Developing the taxonomy model was a complex task because of the large number of
propositions that arise in such an environment; however, the taxonomy reference model

manages to overcome the complexities and provides a useful contribution.

Chapter 4 described the IEPS application. The importance of the system is that it enables the
utilisation of existing IN architecture to support IP-based services. The system is based on
existing IN CS-1 information flows and, therefore, does not necessitate any changes in the
telecommunications environment. Furthermore, the IEPS is unique in that it provides support
for micro-transactions. This is advantageous because it overcomes the limitations of existing
payment systems (refer to section 4.2). The implementation and simulation of the system were

presented in chapter S.

The main research contribution from chapter 6 is the examination of IP-based protocols and
architectures with regard to their utilisation of state. The work provided an overview of
numerous protocols and architectural frameworks from the viewpoint of state utilisation. The
importance of this is the conclusion that in some systems, the utilisation of state is imposed by

the concurrency complexities of the system.
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To understand the complexities in implementing state in a distributed system, chapter 7
examined presented the design and implementation of the network management system. The
NMS is a useful contribution as it can be used as a platform for further research in determining

the overheads involved in maintaining state-based information.

The contributions in chapter 8 are many-fold. These include the development of an
architectural framework for the communication of third-party service providers within an open
network environment. Furthermore, the chapter identified an API Server architecture that draws
from the robust foundations of the IN, but also incorporates the flexibility of the IP-domain. A
further contribution of this chapter is the definition of state machines that comply with the
Parlay API. The state machines provide the foundations for easily providing a framework for

the billing of services within the open service provisioning environment.

9.3 FURTHER WORK

As a result of the work undertaken in this thesis, the following areas have been identified as

requiring further research activities.

Firstly, there is a need to examine distributed state-based systems. The work presented in this
thesis provided the foundations for the classification of IP-based systems using metrics that
were identified. These metrics are not formally defined or quantified. There needs to be a formal
definition of metrics that enable the classification of systems on a scale from state-full to
stateless. Such work could result in the definition of a state-based coefficient, which could be

used in software engineering practices.

Secondly, the existing NMS system could be modified so that the modules are aware of the state
the other modules are in. This would enable the quantification of the overheads involved in
maintaining state information and such quantification is desirable. In the author’s view, when
reading journals and publications relating to state models and concurrency, one gets the feeling
that the overheads and complexity imposed in controlling concurrency and multi-threading are
generally accepted whereas state models for management or billing are generally viewed as

creating unnecessary overheads.

Thirdly, work could be undertaken to provide a quantified and fully-defined metric of network
intelligence. Such work is desirable as there is currently no means to measure the intelligence of
a network. However, at the same time it would be difficult to perform such measurements,

especially in networks such as the Internet, where the topologies are not visible.
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Finally, further work is necessary to fully evaluate the work presented in chapter 8. The API
server architecture presented has provided the foundations for a framework that enables a
unified communication between third-party service providers. Further work in this area should
initially focus on identifying the view of open standards groups of this architecture, although
informal discussions by the author have shown that such a framework is desirable. Then there
needs to be extended simulation of the existing state models with newer versions of the Parlay
API and cooperation with existing research activities that focus on the specification of policies
within the open network framework. Finally, the incorporation of mobile agent technologies

within the architectural framework should be evaluated.
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APPENDIX A

LIST OF ACRONYMS & ABBREVIATIONS

AAA
API

ATM
BCM
BCP
BCSM
BCUP
BES
B-IP
BRI
C/B GF
CA
CAMEL
CAO
CcC
CCAF
CCF
CCF
CCS7
CaGI
CMF
CMI
COPS
CORBA
CP
CPE
CPH
CS
CSA
CSCV
CSE
CT
CTI
CUSF
Ccv
DCOM
DFP
DNS
DOT
DP
DPE
DPNSS
DSS1

Authentication Authorisation Accounting
Application Programmer Interface
Address Resolution Protocol
Asynchronous Transfer Mode

Basic Call Model

Basic Call Process

Basic Call State Model

Basic Call Unrelated Process

Back End Server

Broadband Intelligent Peripheral

Basic Rate Interface

Call/Bearer Control Gateway Function
Certification Authority

Customised Applications for Mobile Enhanced Logic
Call Association Object

Call Configuration

Call Control Agent Function

Connection Control Function

Call Control Function

Common Channel Signalling System No. 7
Common Gateway Interface

Call Manager Function

Call Model Integration

Common Open Policy Service Protocol
Common Object Request Broker Architecture
Connection Point

Customer Premises Equipment

Call Party Handling

Capability Set

Call Segment Association

Call Segment Connection View

CAMEL Service Environment

Computer Telephony

Computer Telephony Integration

Call Un-Related Service Function
Connection View

Distributed Component Object Model
Distributed Functional Plane

Domain Name Server

Distributed Object Technologies
Detection Point

Distributed Processing Environment
Digital Private Network Signalling System
Digital Subscriber Signalling No.1
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DTMF
EJB
EPS
ETSI
FE
FEA
FEAM
FSM
FTP
GFP
GK
GMS
GMSC
GPRS
G-SCF
GSL
GSM
GW
H.323 GKF
HLR
HTTP
IAF
ICW
IDL
IEPS
IETF
IF

IN
INAP
INCM
IN-SSM
IP
IPCF
IS
ISDN
ISO
ISP
ISUP
ITU
IVR
JAIN
JCAT
JCC
JSLEE
JTAPI
MACF
MAP
MG
MGC
MGCP
MGF
MIB
MSC
MTP
NAP

Dual Tone Multiple Frequency
Enterprise Java Beans

Electronic Payment System

European Telecommunications Standardisation Institute
Functional Entity

Functional Entity Action

Functional Entity Access Manager
Finite State Machine

File Transfer Protocol

Global Functional Plane

Gatekeeper

Generic Messaging Service

Gateway Mobile Switching Centre
General Packet Radio Service
Gateway-Service Control Function
Global Service Logic

Global System Mobile

Gateway

H.323 Gatekeeper Function

Home Location Register

Hyper-text transfer protocol
Intelligent Access Function

Internet Call Waiting

Interface Definition Language
Intelligent Electronic Payment System
Internet Engineering Task Force
Information Flow

Intelligent Network

Intelligent Network Application Part
Intelligent Network Conceptual Model
IN-Switching State Model

Internet Protocol

IP Control Function

Internet Shop

Integrated Services Digital Network
International Organisation for Standardisation
Internet Service Provider

ISDN User Part

International Telecommunication Union
Interactive Voice Response

Java APIs for Integrated Networks
JAIN Coordination and Transactions
JAIN Call Control

JAIN Service Logic Execution Environment
Java Telephony API

Multiple Association Control Function
Mobile Application Part

Media Gateway

Media Gateway Controller

Media Gateway Control Protocol
Management Gateway Function
Management Information Base
Message Sequence Chart

Message Transfer Part

Network Access Point
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N-ISDN
NMS
NNI
NO

O _BCSM
OAM
OMA
ORB
OSI
PBX
PDP
PE
PEP
PIC
PIN
PINT
PKI
PLMN
PNNI
POI
PoP
POR
POTS
PP
PRI
PSS
PSTN

QoS
RADIUS

RMI
RSVP
SAO
SCCP
SCE
SCEF
SCF
SCGF
SCN
SCP
SCUF
SDF
SDL
SDP
SDP
SE
SIB
SIP
SLA
SMAF
SMF
SMP
SN

Network Access Server
Narrowband-ISDN

Network Management System
Network Node Interface

Network Operator

Originating Basic Call State Model
Operations Administration and Management
Object Management Group Architecture
Object Request Broker

Open Systems Interconnection
Private Branch Exchange

Policy Decision Point

Physical Entity

Policy Enforcement Point

Points in Call

Personal Identification Number
PSTN and Internet Internetworking
Public-Key Infrastructure

Public Land Mobile Network

Private network-network interface
Point of Initiation

Point of Presence

Point of Return

Plain Old Telephone Service
Physical Plane

Primary Rate Interface

Persistent State Service

Public Switched Telephony Network
Quality of Service

Registration Authority

Remote Authentication and Dial-In User Service
Resource Manager

Remote Method Invocation

Resource ReserVation Protocol
Single Association Object

Signalling Connection Control Part
Service Creation Environment
Service Creation Environment Function
Service Control Function

Service Control Gateway Function
Switched-circuit Network

Service Control Point

Service Control User Agent Function
Service Data Function

Specification and Description Language
Service Data Point

Session Description Protocol

Service Environment

Service Independent Building Block
Session Initiation Protocol

Service Level Agreement

Service Management Agent Function
System Management Function
Service Management Platform
Service Node
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SP

SPC
SPIRITS
SQL
SRF

SS7

SSF
SSM
SSP
SCUF
STP
T_BCSM
TC
TCAP
TCP
TINA
TINA-C
TIPHON

TMN
TMN X
TN
TUP
UA
UAC
UAS
UDP
Ul
UML
UMTS
UPT
VoIP
VPN

Simple Network Management Protocol
Service Plane

Stored Program Control

Service in the PSTN/IN Requesting InTernet Services
Structured Query Language

Specialised Resource Function

Signalling System No. 7

Service Switching Function

Switching State Model

Service Switching Point

Service Control User Agent Function
Signalling Transfer Point

Terminating Basic Call State Model
Transaction Capability

Transaction Capabilities Application Part
Transmission Control Protocol
Telecommunications Information Network Architecture
TINA Consortium

Telecommunications and Internet Protocols Harmonisation
over Networks

Telecommunication Management Network
The TMN X-Interface

Transaction Number

Telephony User Part

User Agent

User Agent Client

User Agent Server

User Datagram Protocol

User Interaction

Unified Modelling Language

Universal Mobile Telephony Service
Universal Personal Telecommunication
Voice-over-IP

Virtual Private Network
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