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Abstract 

Bi1-xSmxFeO3 (x = 0.15-0.18) ceramics with high density were produced using spark plasma 

sintering. The effects of composition, synthesis conditions and temperature on the phase 

evolution were studied, using XRD, TEM and dielectric spectroscopy. The coexistence of the 

ferroelectric R3c, antiferroelectric Pnam and paraelectric Pnma phases was revealed, with 

relative phase fractions affected by both calcination conditions and Sm concentration. 

Experiments on powdered samples calcined at different temperatures up to 950 C suggest 

higher calcination temperatures promote Sm diffusion, allowing samples to reach 

compositional homogeneity. The structural transitions from the Pnam and R3c phases to the 

Pnma phase were comprehensively investigated, with phase transition temperatures clearly 

identified. The dielectric permittivity, electrical resistivity and breakdown strength were 

increased upon Sm-substitution, while ferroelectric switching was suppressed. The polarization-

electric field loop became increasingly narrow with increasing Sm-content, but double 

hysteresis loops, which may reflect a reversible antiferroelectric to ferroelectric transformation, 

were not observed.  
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1. Introduction 

BiFeO3 (BFO) is a room-temperature multiferroic material with a rhombohedrally 

distorted R3c perovskite structure [1]. It shows a high ferroelectric (FE) polarization of ca. 90-

100 µC cm-2 along the [111] direction, with a ferroelectric Curie point of 825 C and an 

antiferromagnetic Néel temperature of 370 C [1, 2]. However, the synthesis of pure BFO is 

difficult due to the narrow temperature window of compound formation, with secondary 

phases such as Bi2Fe4O9 and Bi25FeO40 often formed [3, 4]. Additionally, the BFO system always 

exhibits significant electrical conductivity, due to the reduction of Fe3+ to Fe2+ and evaporation 

of volatile bismuth oxide [5]. It is reported that A-site substitution by rare-earth cations could 

compensate for the volatilization of bismuth oxide and suppress the formation of oxygen 

vacancies to reduce the electrical conductivity [6, 7]. Meanwhile, rare-earth substitution can 

enhance the dielectric and electromechanical properties [8-10], making the material a potential 

candidate for advanced piezoelectric, ferroelectric and multiferroic applications [1, 11, 12]. 

A large number of studies have focused on the structural evolution in the phase diagrams 

of binary BiFeO3-REFeO3 systems (where RE=La, Sm, Nd etc.) [13-18]. The isovalent substitution 

of bismuth by rare-earth elements leads to a structure transformation from the rhombohedral 

FE R3c phase to an orthorhombic paraelectric Pnma phase, with the formation of a 

morphotropic phase boundary (MPB) [7, 16, 19]. An orthorhombic antiferroelectric (AFE) Pbam 

phase is reported to be formed in rare-earth-substituted BFO across the MPB region, where it 

coexists with the R3c and Pnma phases [8, 20]. However, there is an ongoing debate on the 

details of the structure-composition relationships in BiFeO3-REFeO3 systems [9, 13, 21]. 
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In thin films, Kan et al. found that the structural behaviour of BiFeO3-REFeO3 systems is 

dictated by the average ionic radius of the A-site cations [21, 22]. However, this relationship is 

less clear in bulk ceramics, with different rare-earth systems exhibiting different phase 

behaviour irrespective of the average size of the A-site cation. This is further complicated by the 

effect of synthesis conditions and the level of substitution, which have also been shown to 

influence the phase distribution [15, 23]. 

The origin of the double polarization-electric (P-E) hysteresis loops observed in thin films 

is also controversial. It was initially considered as a result of an electric field-induced AFE to FE 

phase transition [8, 20]. However, Kan et al. suggested that the double hysteresis loops were 

linked to an electric field-induced paraelectric (PE) to FE phase transition [21]. Using first 

principles calculations, these authors found that the energy of the PE Pnma phase was closer to 

that of the ground state R3c phase, compared to that of the AFE Pbam phase [21]. Thus, it is 

easier for the Pnma phase rather than the Pbam phase to transform into the R3c phase under 

an external electric field. To date, it is still difficult to obtain saturated polarization-electric field 

(P-E) hysteresis loops in rare-earth doped BiFeO3 ceramic samples, due to their low breakdown 

field and high leakage current [24-27]. Double hysteresis loops have never been observed in 

BiFeO3-based ceramic samples. 

The focus of the current work is on Sm-substituted BiFeO3, where double P-E loops have 

been observed in thin films. It is agreed that Bi1-xSmxFeO3 exhibits an R3c structure at x < 0.1 [16, 

28, 29]. However, the structure of compositions at and above x = 0.1 differs between thin films 

and ceramics. The MPB region is suggested to be located at x = 0.14 in Bi1-xSmxFeO3 thin films 

[8]. Substitution by samarium in Bi1-xSmxFeO3 (at x  0.1) thin films destabilizes the long-range 
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FE state to form localized AFE clusters within the FE matrix in the compositional range 0.10 ≤ x ≤ 

0.14, with a Pnma phase observed in compositions with x > 0.14 [30]. In bulk samples, 

Khomchenko et al. reported that Bi0.85Sm0.15FeO3 was a mixture of Pbam and Pnma phases, 

while a pure Pnma structure was found at x = 0.2 [28]. Troyanchuk et al. reported that Bi1-

xSmxFeO3 ceramics consisted of a mixture of polar and antipolar phases, in the range x = 0.11-

0.13, while the antipolar phase was dominant at x = 0.13 [29]. In particular, the antipolar phase 

was reported to have Pnam symmetry (2ac  22ac  4ac, where ac is the pseudo-cubic 

perovskite cell dimension), with double the unit cell volume of the antipolar phase reported in 

other studies (2ac  22ac  2ac in space group Pbam) [13]. The pure antipolar state was only 

obtained at x = 0.14, while traces of the Pnma phase were detected at x = 0.15 and the pure 

Pnma phase was obtained at x = 0.18 [29]. 

The calcination temperature has also been found to influence the phase distribution in 

the Bi1-xSmxFeO3 system [23, 31]. Khomchenko et al. found that a low calcination temperature 

of 850 C led to the coexistence of the Pbam, R3c and Pnma phases in the x = 0.15 ceramic [23]. 

The phase separation was attributed to an inhomogeneous distribution of Bi3+ and Sm3+ cations 

caused by the low calcination temperature. The R3c phase was absent after calcining at a 

higher temperature of 950 C. Even though preliminary phase diagrams of rare-earth doped 

BiFeO3 have been proposed, details of the transitions from the Pbam and R3c phases to the 

high temperature Pnma phase remain vague. The identification of the characteristic 

temperatures associated with these transitions is complicated by the coexistence of several 

phases in the MPB region [13, 21]. 
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In this work, the phase evolution in Bi1-xSmxFeO3 ceramics has been studied, including the 

effect of composition and temperature. X-ray diffraction and transmission electron microscopy 

were carried out to investigate the presence of an antiferroelectric structure. The temperature 

dependence of the X-ray diffraction patterns and dielectric properties were used to identify the 

temperatures associated with the different phase transitions. Polarization-electric field 

measurements were performed, searching for the possible presence of double hysteresis which 

could be related to an antiferroelectric to ferroelectric field-induced transition. 

 

2. Experimental Methods 

2.1 Preparations 

The Bi1-xSmxFeO3 compositions (0.15 ≤ x ≤ 0.18) were selected as they are expected to 

show an MPB region, characterized by the possible presence of an AFE structure [8]. The 

starting materials Bi2O3 (Alfa Aesar, UK, 99.975%), Sm2O3 (Alfa Aesar, UK, 99.9%) and Fe2O3 

(Alfa Aesar, UK, 99.9%) were mixed and milled in ethanol using a planetary ball mill (Nanjing 

machine factory, China) for 4 h. The dried powders were calcined at selected temperatures (810 

C, 830 C, 850 C, 910 C or 950 C) for 4 h to identify the optimum calcination conditions. In 

each case, the synthesized powder was further milled in ethanol for 4 h to obtain fine 

homogenous particles. The Bi1-xSmxFeO3 ceramics (x = 0.150, 0.160, 0.165, denoted as BSF15, 

BSF16 and BSF16.5, respectively) were sintered at 800 C from powder calcined at 910 C, using 

spark plasma sintering (SPS) (HPD-25/1 FCT systeme GmbH) at a pressure of 80 MPa, with a 

heating rate of 100 C min-1 and a dwell time of 5 min. The Bi0.82Sm0.18FeO3 (denoted as BSF18) 
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ceramic was sintered at 800 C from powder calcined at 950 C using the same sintering 

procedures. The SPS sintered samples were subsequently annealed in a muffle furnace 

(Carbolite HTF 1800, UK) at 700 C in air for 15 h to remove the diffused carbon from the 

graphite during the SPS processing [32, 33]. 

 

2.2 Structure analysis 

The structures of the calcined powders and sintered ceramics were analysed by X-ray 

powder diffraction (XRD, X’pert Pro, PANalytical, Almelo, The Netherlands) at room 

temperature over the 2 range 5 to 120, in steps of 0.0167, with an effective count rate of 

200 s per step, using Ni filtered Cu-K (1.5418 Å) radiation. Elevated temperature 

measurements were carried out on BSF15 and BSF18 calcined powders using an Anton-Paar 

HTK-16 high-temperature camera. The data were collected at 25 C and at 50 C intervals from 

100 C to 950 C. The sample was held at each temperature for ca. 45 min during data 

collection. Diffraction patterns were acquired over the 2 range 5 to 120, in steps of 0.0167, 

with an effective count rate of 50 s per step. The temperature calibration was carried out by 

measuring the phase transition of KNO3 and melting points of high purity KNO3, KI, NaCl and 

K2SO4 standards. All the XRD patterns were modelled by the Rietveld method using the General 

Structure Analysis System (GSAS) software [34]. The initial structural models were based on 

those reported by Khomchenko et al. for the AFE phase with space group Pnam and the PE 

phase with space group Pnma [35] and by Moreau et al. for the FE phase with space group R3c 

[36]. The microstructure was studied using scanning electron microscopy (SEM, FEI Inspect F). 
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Selected area electron diffraction (SAED) patterns were recorded on BSF15 calcined powder 

using a JEOL 2010 transmission electron microscope. For this measurement, the powder was 

crushed and dispersed in ethanol and a drop of this suspension was placed on a copper grid 

covered with a holey carbon film. 

2.3 Electrical characterization 

For the electrical measurements, the electrodes were deposited on the sintered pellets 

with fired-on silver paste (Johnson Matthey, E1100). Frequency-dependent dielectric 

permittivity and loss were measured using an Agilent 4294 precision impedance analyser. The 

temperature dependence of dielectric permittivity and loss was measured from 25 C to 450 C, 

with a heating rate of 5 C min-1, at selected frequencies (50 kHz, 100 kHz, 500 kHz and 1 MHz), 

using an Agilent 4284A LCR meter connected to a furnace (Lenton, LTF). The P-E hysteresis 

loops were measured by a ferroelectric hysteresis measurement tester (NPL, UK), at a 

frequency of 10 Hz [37]. 

 

3. Results and Discussion 

The XRD patterns of the calcined powders (supporting information Figure S1) indicate 

that a small amount of Bi2Fe4O9 (JCPDS No. 25-0090) is formed as a secondary phase in powders 

calcined at low temperatures, but is absent at 910 C and above. Selected area electron 

diffraction (SAED) patterns of BSF15 powder calcined at 910 C are shown in Figure 1 (a-f). The 

analysis of the reflection conditions (0kl: k + l = 2n; h0l: h = 2n; h00: h = 2n; 0k0: k = 2n; 00l: l = 

2n) on the SAED patterns points towards the Pnam (No. 62) space group, which differs from the 
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previous studies reporting the presence of an AFE structure with space group Pbam (No. 55) [13, 

18]. The unit cell based on the Pnam space group has the following relation to the pseudo-cubic 

perovskite cell: a = 2ac, b = 22ac, c = 4ac, where ac is the unit cell parameter of the pseudo-

cubic perovskite, and is illustrated diagrammatically in Figure S2. Thus, the 0k0 reflection 

corresponds to ¼ (hh0) in the cubic sub-cell (Figure 1a), while the 00l reflection in the Pnam 

space group corresponds to ¼ (00l) in the cubic sub-cell (Figure 1c). The appearance of the 

forbidden reflections 00l (l ≠ 2n) on the [210] and the [110] patterns, as well as h00 (h ≠ 2n) and 

0k0 (k ≠ 2n) on the [001] and the [011] patterns, are due to double diffraction; this follows from 

the fact that the reflections disappear when rotating the crystal away from the perfect 

orientation around the corresponding axis. Figure 1f shows the diffraction pattern of a crystal 

with 60-rotation twins, oriented along the [401] direction in the structure. 
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Figure 1. SAED patterns of BSF15 taken along main zone axis (a) [001], (b) [100], (c) [210], (d) 

[011], (e) [110] and (f) [401] from 60°-rotation twins; white arrows mark ¼ (hh0) and ¼ (00l) in 

the cubic sub-cell in patterns (a) and (c), respectively. Red, blue and white rectangles mark unit 

cells of three rotational twins. 

 

The fitted diffraction profile of the BSF15 powder calcined at 910 C is shown in Figure S3. 

Gil-González et al. reported a Pbam single phase in BSF15 ceramics prepared by 

mechanochemical synthesis [18], while Levin et al showed that the differences between the 

Pbam and Pnam structures could not be identified through Rietveld refinement, as both phases 

produced comparable fitting quality [38]. However, the best fit achieved here was obtained 

using a three-phase structural model with FE R3c, AFE Pnam and PE Pnma phases. The refined 

parameters are summarized in Table S1. Figure S4 shows the refined weight fractions of the R3c, 

Pnam and Pnma phases as a function of the calcination temperature for BSF15 powder. The 

weight fractions confirm that the calcination conditions affect the phase separation and 

homogeneity of the samples, as proposed by Khomchenko et al. [23] and Walker et al. [39]. The 

weight fraction of the R3c phase generally decreases, while that of the Pnam phase increases 

with increasing calcination temperature. The weight fraction of the Pnma phase does not show 

significant variations over the calcination temperature range studied. It is suggested that the 

Pnma phase corresponds to a samarium-rich phase with a similar structure to that of SmFeO3. 

Indeed, the cell dimensions of this phase (Table S1) are very similar to those of SmFeO3 [40]. An 

increase of the calcination temperature is seen to favour the Pnam phase over the R3c phase. 

Since the R3c phase is stable within the Sm-deficient side of the morphotropic phase boundary, 
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its presence in the samples calcined at lower temperatures suggests that these temperatures 

are insufficient for significant samarium diffusion. This would result in an inhomogeneous 

samarium distribution, with samarium-rich areas of the Pnam and/or Pnma symmetry and 

samarium-deficient regions with the rhombohedral R3c symmetry.  

In order to achieve both high weight fraction of the Pnam phase and low dielectric loss, 

the powders x = 0.150, 0.160, 0.165 were calcined at 910 C and that for x = 0.180 at 950 C. 

The ceramics were sintered at 800 C to avoid Bi2O3 evaporation and achieved relative densities 

above 95% in all cases. The XRD patterns of the Bi1-xSmxFeO3 powders and ceramics are shown 

in Figure S5a and Figure S5b, respectively. All the patterns were fitted using a multi-phase 

structural model considering the coexistence of the R3c, Pnam and Pnma phases. The variation 

of the weight fractions of the three phases as a function of Sm concentration for Bi1-xSmxFeO3 

powder is shown in Figure 2a. The weight fraction of the R3c phase decreases with increasing 

Sm concentration and in BSF18 the rhombohedral phase is absent. The fraction of the Pnam 

phase decreases and that of the Pnma phase increases with increasing Sm concentration. This 

indicates that in the compositional range studied, Sm substitution favours the formation of the 

Pnma phase at the expense of the R3c and Pnam phases. The variation of the weight fraction in 

each phase as a function of the Sm substitution level for the ceramics (Figure 2b) showed 

similar trends to those in powder samples, but with a larger fraction of the Pnma phase and a 

lower fraction of the Pnam phase. It is suggested that SPS sintering further promotes the 

formation of the Pnma phase. 
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Figure 2. Weight fractions of the R3c, Pnam and Pnma phases as a function of Sm content in 

(a) Bi1-xSmxFeO3 powders; (b) Bi1-xSmxFeO3 ceramics (x = 0.150, 0.160, 0.165 and 0.180). Error 

bars are smaller than the symbols used. 

 

SEM images of the BSF15 and BSF18 ceramics are shown in Figure 3 as a representative 

example, with images for other compositions given in the supporting information as Figure S6. 

The Bi25FeO40 phase is mainly present at the grain boundaries, while Bi2Fe4O9 is evidenced 

within the grains, in agreement with previous studies [3]. It has been reported that in the 
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temperature range 447 C – 767 C, Bi25FeO40 is thermodynamically more stable than BiFeO3 [3]. 

While the SPS sintering temperature was 800 C, the post-sintering annealing temperature was 

lower (700 C) and may account for the presence of the Bi25FeO40 secondary phase. 

 

Figure 3 SEM image of (a) BSF15 and (b) BSF18 ceramics. The Bi2Fe4O9 (dark grey) and Bi25FeO40 

(bright) phases are highlighted by circles. 

 

Figure 4 shows the frequency dependent dielectric behaviour of the Bi1-xSmxFeO3 (x = 

0.150, 0.160, 0.165 and 0.180) ceramics at room temperature. In general, the measured 
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permittivity values εr (Figure 4a) are larger than those of pure BiFeO3 [41]. This can be 

attributed to the enhanced polarizability of the MPB compositions [42]. The low values of 

dielectric loss factor tanδ (Figure 4b) suggest a low concentration of oxygen vacancies, i.e. iron 

likely remains in the 3+ oxidation state [6]. The permittivity increases with increasing Sm 

concentration. The dependence of the dielectric loss on the Sm content varies somewhat with 

frequency and does not show a clear compositional trend at higher frequencies. Nevertheless, 

the composition with the highest level of Sm-substitution shows the lowest dielectric loss over 

the entire studied frequency range. Additionally, all the Sm-substituted compositions show 

significantly lower dielectric loss than unsubstituted BiFeO3, consistent with the reports of Sun 

et al. [19] and Uchida et al. [43]. For Sm-substituted BiFeO3 thin films, the maximum 

permittivity has been reported to occur at x = 0.14 [16]. In the present study, the maximum 

permittivity of the bulk ceramics is observed at x = 0.180. 
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Figure 4. Frequency dependence of (a) relative permittivity εr and (b) dielectric loss factor 

tanδ for Bi1-xSmxFeO3 ceramics at room temperature. 

 

Phase transitions in the Bi1-xSmxFeO3 system were investigated by variable temperature 

XRD. Figure 5 shows detail of the XRD patterns of the BSF15 calcined powder, at selected 

temperatures over the temperature range 25 C - 300 C, on heating and cooling. The intensity 

of the peaks of the PE Pnma phase (at about 25.4, 41.2, 47.7 and 52.8 2) increases with 

increasing temperature, while the reflections associated with the AFE Pnam phase (at about 

29.2, 45.8, 49.5, 51.6 and 55.3 2) show decreasing intensity with increasing temperature. 



16 
 

For the BSF18 calcined powder (Figure S7), the peaks at about 45.8 and 51.6 correspond to 

the AFE Pnam phase and gradually disappear with increasing temperature. 

 

Figure 5. Detail of X-ray diffraction patterns for BSF15 powder (calcined at 910 C) on heating 

(red) and cooling (blue) at selected temperatures over the range 25 C to 300 C. The peaks 

belonging exclusively to the Pnma phase are marked by asterisks and those of the Pnam phase 

are marked by diamonds. 

 

Figure 6a shows the weight fractions of the R3c, Pnam and Pnma phases as functions of 

temperature for the BSF15 powder. Both the Pnam and R3c phases gradually transform to the 

Pnma phase with increasing temperature, confirming that the Pnma phase is the high-
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temperature stable phase. The Pnam phase completely disappears at 450 C. Figure 6b shows 

the refined weight fractions of the Pnam and Pnma phases as functions of temperature for the 

BSF18 powder. The Pnam phase gradually transforms to the Pnma phase upon heating; the 

transition is completed at about 300 C, which is lower than the transition temperature for 

BSF15. The weight fraction of each phase before and after the experiment showed some 

differences, which are associated with the thermal hysteresis around the phase transition.  

 

Figure 6. Refined weight fractions of the R3c, Pnam and Pnma phases as functions of 

temperature for (a) BSF15 powder and (b) BSF18 powder. 
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Figure 7a shows the temperature dependence of dielectric permittivity εr and loss factor 

tanδ of the BSF15 ceramic during heating. At around 200 C, the permittivity shows a peak 

accompanied by a minimum in dielectric loss, which correlates with the temperature where the 

highest rate of decrease in the Pnam phase content was observed in the X-ray data (Figure 6a).  

Thus, the peak at 200 C can be attributed to the transition from the AFE Pnam phase to the PE 

Pnma phase. This is mostly likely the same event identified by Gil-González and co-workers at 

175 C by differential scanning calorimetry and X-ray diffraction, which they attributed to a 

Pbam-Pnma transition [18]. As the samarium content increases, the permittivity peak shifts to 

lower temperatures (the thermal dependencies of dielectric behaviour for BSF16 and BSF16.5 

ceramics are shown in Figures S8a and S8b, respectively). In BSF18, this peak is observed at 100 

C (Figure 7b), where the largest drop in the Pnam phase fraction was detected (Figure 6b). This 

temperature is close to the phase transition temperature detected in BSF17.5 by Gil-González 

et al. at 150 C and attributed to the Pbam+Pnma/Pnma transformation [18]. The stabilization 

of the Pnma phase might be attributed to the effect of the substitution of Bi3+ ions by smaller 

Sm3+ ions (r = 1.36 Å and 1.28 Å, respectively for the ions in 12 coordinate geometry [44]), 

resulting in a lattice distortion and unit cell volume reduction [45, 46]. The peak at about 400 C, 

visible in the high frequency curves in all compositions, is probably related to the 

antiferromagnetic Néel temperature, in agreement with Gil-González et al. [18].  
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Figure 7. Temperature dependence of relative permittivity εr and dielectric loss factor tanδ at 

selected frequencies for (a) BSF15 and (b) BSF18 ceramics on heating, with detail shown inset. 

 

The room temperature current-electric field (I-E) and the polarization-electric field (P-E) 

hysteresis loops of the BSF15 and BSF18 ceramics are shown in Figure 8 and those of the BSF16 

and BSF16.5 ceramics are shown in Figure S9. According to the I-E curves, the electrical 

conductivity of Sm-substituted ceramics is significantly lower than that of pure BiFeO3 (see 

Ref.1). The current peak (labelled “A”) observed in the I-E loop of BSF15 is indicative of domain 
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switching in the FE phase, which is consistent with the presence of the R3c structure at room 

temperature (Figure 2). The lower P-E loop hysteresis and the suppression of the peak in the I-E 

loops in ceramics with higher Sm content indicates the reduction of the electrical conductivity 

and the suppression of FE behaviour. Additionally, the breakdown strength of the ceramics has 

been greatly improved in compositions with higher Sm content, compared to those previously 

reported [27, 47, 48]. However, double P-E hysteresis loops characteristic of reversible AFE  

FE transitions were not observed, despite the presence of the AFE Pnam phase observed in the 

TEM images (Figure 1).  
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Figure 8. Current-electric field (I-E) and polarization-electric field (P-E) hysteresis loops of (a) 

BSF15 and (b) BSF18 ceramics.  

 

4. Conclusions 

Through a detailed diffraction investigation, the existence of an antiferroelectric phase 

with Pnam symmetry in Bi1-xSmxFeO3 ceramics, with compositions close to the morphotropic 

phase boundary (0.15  x  0.18) has been confirmed. The antiferroelectric Pnam phase 

coexists with the ferroelectric R3c and paraelectric Pnma phases, whose relative fractions vary 

with the level of Sm substitution and the calcination conditions. In particular, the fractions of 

both the R3c phase and the Pnam phases decrease with increasing Sm concentration. The 

fraction of the Pnam phase increases and that of the R3c phase decreases with increasing 

calcination temperature. The fractions of R3c and the Pnam phases progressively reduce with 

increasing temperature in favour of the Pnma phase, with a rate that strongly depends on the 

Sm concentration. Sm-substitution increases the dielectric permittivity, reduces electrical 

conductivity, increases breakdown strength and suppresses ferroelectric switching. The results 

indicate that it is possible to tailor phase composition and the consequent dielectric properties 

through careful selection of composition and calcination conditions.   
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