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A bstract

The structural and electronic properties of several candidate atomic scale wires are anal­

ysed. Three candidates are studied; the trans-polyacetylene molecule, the silicon line 

on the (001) face of cubic silicon carbide (the (n x 2) series of reconstructions) and the 

indium chain on the (111) face of silicon carbide (the (4x1) reconstruction). We use the 

polyacetylene molecule as a test-bed for the techniques that we use to calculate transport 

properties in an empirically based tight-binding Hamiltonian (the SSH Hamiltonian). We 

calculate the transport properties of wires that show evidence of a strong coupling of the 

electronic degrees of freedom to the phonon degrees of freedom (Peierls distorted wires).

The structure of the (nx2) series of silicon lines (composed of the (3x2) reconstruction 

which forms the line and the c(4x2) reconstruction which forms the surface the line 

resides on) are modelled in a supercell geometry using ab initio plane-wave calculations 

in the Local-Density-Approximation and an ab initio Density Functional Theory based 

tight-binding technique. We found that the thermodynamically favoured model for the 

(3x2) reconstruction was the Two-Adlayer-Asymmetric-Dimer Model (with IML of Si 

adatoms) and the favoured model for the c(4x2) reconstruction is the Additional-Dimer- 

Row-Model (with 0.5ML of Si adatoms). In the tight-binding approximation the line was 

found to undergo a Peierls-like transition and holes are observed to form polaron-like 

defects. The transport properties of the line are also calculated.

Finally we find which of the two models of the S i(lll)-(4x  1)-In reconstruction is ther­

modynamically favoured in a supercell geometry. We use ab initio plane wave techniques 

in the Local-Density-Approximation, and calculate and compare the electronic structure 

of the two models with respect to the characteristic energies for electron dispersion along 

and across the chain structures. We also consider the effects of electronic structure on 

the in-plane transport properties of the indium lines.
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Chapter 1

Introduction: The nanoscale:

Basic physics and devices

1.1 An Introduction to the nanoworld

1.1.1 M otivation: W hy are people interested in this?

On writing a diary:

“I do not intend to publish it; I am merely going to record the facts for the

information of God” .

“Don’t  you think God knows the facts?”

“Yes, He knows the facts, but he does not know this version of the facts”

Leo Szilard in conversation with Hans Bethe.

In the world of the late nineties/early noughts, it is becoming increasingly obvious 

to the layman that electronic devices are becoming smaller and smaller. The logical 

endpoint of this trend of miniaturisation is the development, fabrication, and use of 

electronic devices that function on the atomic scale, that is at a length scale of the order 

of or less than a nanometre (10~® of a metre).

Current manufacturing and fabrication processes (at an industrial scale) have still not 

reached this length scale. But, we can estimate when these processes will reach this level, 

and start manufacturing individual elements (wires, transistors and capacitors) at the

11



atomic scale. In 1965 Gordon Moore of Intel made an analysis of the variation of device 

size with time, and found that there was an exponential decrease in device size (or re­

spectively an exponential increase in device performance for a fixed size) with a doubling 

time of two years (this has since changed to a doubling time of eighteen months). This 

means that we can predict that by, approximately, the year 2017 electronic devices will 

be fabricated at the atomic scale [1]. It is thus extremely important from a technological 

viewpoint to understand how electronic devices will perform at the atomic scale. It is 

also important to devise new types of devices that can function at an economical price at 

this length scale. The current CMOS technologies cannot be scaled all the way down to 

the atomic scale for two reasons: firstly that at a critical thickness of semiconductor film 

electrons can tunnel through the film thus destroying device functionality, and secondly 

even if it were possible to work around this limitation the cost of constructing a fabri­

cation plant to manufacture these devices with the desired purity from defects would be 

prohibitively expensive, on the order of the Gross Domestic Product of a large country 

(see the SIA roadmap for more information [1]).

The behaviour of devices which can function at the atomic scale was first discussed 

about forty years ago, by the physicist Richard Feynman, in his seminal lecture “There’s 

Plenty of Room at the Bottom” [2]. In this seminar he mentions the capability of electron 

beam lithography to etch material at the atomic scale [3], the possibilities of writing and 

manipulating information at the molecular level (we ourselves are living proof that this 

is possible, as DNA and mRNA molecules store and manipulate information respectively 

[4]), the possibility of creating atomic scale computers [5] and the possibility that we 

can engineer the properties of materials by altering their structure at the atomic scale 

[6, 7, 8],

One other possibility that Feynman mentioned was that at this length scale, the 

properties of devices can be radically different from devices at larger length scales. There 

can be several reasons for this. Firstly, that at the atomic length scale, the atomic 

structure of the device is of critical importance. Defects in the device can dominate 

device performance, which means that the manufacture of these atomic scale devices 

must be to a very high tolerance (of course, devices could be designed that use these 

defects to their advantage, but one would still have to make certain that one had the 

correct number and type of defects one required). The electrons may couple to other

12



physical phenomena, for instance to a magnetic field (the Aharonov-Bohm effect) [9], 

or to phonons (lattice vibrations) [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] or 

electron-electron interactions may be important [23].

Finally, if one were performing logic operations, in theory it is possible to utilize 

entanglement at this length scale to massively increase the efficiency of certain computa­

tions [24]. It should be obvious therefore that not only is there a pressing technological 

need to understand the physics of device performance at the atomic scale, but also that 

the physics of device performance at the atomic scale are intrinsically interesting.

At this length scale quantum mechanical effects can affect the performance of the 

device. For instance, due to tunnelling of an electron through an atomic scale intercon­

nect, the effective resistance of the interconnect could be less than one would expect from 

purely classical arguments [25]. On the atomic scale, we cannot treat electrons by the 

semi-classical approximation, but instead we have to treat electrons as discrete entities. 

This means that we cannot treat the electronic structure within the confines of band the­

ory, but rather that we must explicitly include quantized states [25]. Finally, depending 

on the length scale of the device the electronic properties can alter (see next section for 

more information). These effects mean that there exists a scientific reason for studying 

atomic scale devices in addition to the technological imperative that has already been 

stated.

1.1.2 Im portant length scales

As we shrink our device from our everyday Im to the atomic length scale of 10“ ^°m, 

the properties of the electrons that are present in the device can change. One can define 

a variety of different length scales that can lead to different quantum phenomena, such 

as the De Broglie wavelength, the mean free path and the phase-relaxation length [26]. 

Note that for all of the examples in this section we are talking about 2D electrons, as the 

origin of this classification scheme lies in discussions of thin semiconductor films.

We can write the Fermi wavelength as A/ =  27r/A:/ =  where n« is the electron

density of the material. For an electron density of 5xl0^^cm“ ^, the Fermi wavelength 

is about 35 nm. The current at low temperatures is mainly carried by electrons near 

the Fermi energy, and thus the Fermi wavelength is the relevant length scale. Electrons 

with different energies (or longer wavelengths) do not contribute to the conductance of

13



an atomic scale interconnect.

Electrons moving through a perfect crystal behave as though they are moving through 

a perfect vacuum but with a different mass (the effective mass) [25, 23, 27, 28, 29]. Any 

resistance to the electron motion is due to imperfections in the lattice, i.e., intrinsic 

defects or thermal phonons. This resistance causes the momentum of the electron to 

change in a random way. The momentum relaxation time Tm is related to the collision 

time Tc by

 >• — am  ( 1.1)

where am (which can vary from 0 to 1) denotes the effectiveness of a single collision 

in destroying the original momentum. The mean free path Lm, the length travelled 

before the electron has lost the momentum it originally possessed, is the product of the 

momentum relaxation time and the Fermi velocity, Lm = VfTm-  The Fermi velocity is 

given by

_  _  — y/2Trna (1.2)
m m

which is 3x10^ cms“  ̂ if n« =  5xl0^^cm“ .̂ If we assume that the mean relaxation time 

is 100 ps then this gives us a Lm equal to 30 ^m. Electrons that travel through a device 

without scattering are often called ballistic electrons. If a device is smaller than the mean 

free path, then the electrical conductance of the device displays stepwise behaviour where 

the conductance is quantized in unit of e^/h  [30].

To calculate the phase-relaxation length we can make use of an analogy with the 

mean free path. We can write the phase-relaxation time as

 > —a^ (1.3)
T<f> T~c

where a^ represents the effectiveness of a collision in destroying phase. However, we 

need to think about the destruction of phase, as this is a complicated problem, and
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Path 1

Out

Path 2

Figure 1.1: Interference patterns around a mesoscopic ring in a zero magnetic field.

requires a lot of attention. Consider a mesoscopic ring into which electrons are injected. 

In zero magnetic field the beam of electrons will split and interfere constructively at the 

recombination point (see Figure 1.1). If we now apply a magnetic field perpendicular to 

the ring, we will interfere with the phase of the electrons. We can change the interference 

from constructive to destructive, and back again [9] (see Figure 1.2).

Path 1

Out

Path 2

Figure 1.2: Interference patterns around a mesoscopic ring in a non-zero magnetic field.

Consider that we add static impurities to the ring in a random fashion. The two 

arms of the ring are no longer identical. In zero magnetic field the interference at the 

recombination point will no longer be constructive. However, if we now apply a magnetic 

field to the ring, we can once again recover the constructive/destructive interference. We 

can thus conclude that for static impurities, the phase-destructive time tends to -¥ oo, 

that is that -> oo. This means that the electronic states in the ring are well defined.

To destroy phase, we require the presence of dynamic scatterers like phonons or 

electron-electron interactions [31], which mix states. As the phase interference is now 

not stationary, there is no stationary interference pattern and consequently the phase is
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destroyed (as the constructive and destructive interference time-averages to zero). We 

can also destroy phase if the static impurities have an internal degree of freedom, because 

if an electron changes the internal state of an impurity as it travels along one of the two 

rings, then we can measure its path, thus destroying any quantum mechanical properties 

of the electron, such as interference, or phase [32].

So what is the associated phase-relaxation time r^? It is not necessarily equal to the 

collision time T̂ . For instance, if we consider the mesoscopic ring above, long wavelength 

phonons would affect both arms of the ring equally, and thus would not be effective in 

destroying phase. For a phonon with energy hu, the mean squared energy spread of an 

electron after a time is the product of the square of the energy change per collision 

and the number of collisions [33] (assuming uncorrelated random energy transfer)

{ A E f  =  (hujf{T^/Tc). (1.4)

The phase relaxation time is defined as the time at which the mean squared spread in 

the phase is of order one, i.e..

A0 {AE)T(i,/h ~  1 ->■ (1.5)

As we are interested in high mobility semiconductors and metals, we can thus define the 

phase-relaxation length to be the product of the phase-relaxation time with the Fermi 

velocity

L(f, — (1.6)

If the size of the device is less than the phase-relaxation length, then transport through 

the device can be described as coherent.

If electrons are confined to length scales of the order of nanometres, then the elec­

trons can possess low dimensional behaviour, or as we will use from now on quasi-\ow 

dimensional behaviour (as in our four dimensional spacetime no material can be one-
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dimensional). This means that if we consider the full 3D Schrodinger equation and the 

potentials that act on the electrons, an electron is considered to possess quasi-low dimen­

sional behaviour if in one or more dimensions the potential is a): extremely large thus 

confining the electrons in that direction and b): the separation of potential barriers in 

this direction is less than all three characteristic length scales. If condition b): is not 

fulfilled then the electrons are only semi-classically trapped by the potential barrier and 

the one-electron states are not quantized, instead forming a continuum of states (see the 

next section for more information).

Electrons can be confined in the interface between two separate semiconductors, and 

can be regarded as quasi-two-dimensional. The electrons that are strongly confined in 

an atomic wire can be regarded as quasi-one-dimensional, and may possess properties 

different from the Fermi liquid model, such as the electrons acting as a Luttinger liquid 

[23]. And if electrons are confined to a  quantum dot (or “artificial atom”), then they can 

be treated as quasi-zero-dimensional.

There are many devices that one can build at the atomic scale [34]. However, the 

MOSFET (Metal-Oxide Semiconductor Field Effect Transistor), which is the most com­

mon type of transistor used in the electronics industry, cannot be scaled down to the 

atomic length scale without major modifications. As the MOSFET reaches the atomic 

length scale, the high electric fields due to a bias field can cause ‘avalanche breakdown’ 

which can damage the MOSFET by causing the silicon oxide film which forms the di­

electric to fall apart, heat disruption becomes a problem and the above mentioned defect 

problem becomes an issue. Therefore industry has to look for alternative electronic 

devices. These can be divided into two broad classes [35], the solid-state quantum- 

effect/single electron devices, and molecular electronic devices. These device operations 

depend on quantum mechanical effects.

1.2 D evices that can be manufactured at the nanoscale

The solid-state quantum-effect/single electron devices all share one thing in common, 

they all possess a small ‘island’ of some metallic or semiconducting material in which 

electrons can be confined. This island has a role similar to that of a channel in a FET. 

These devices can in turn be divided into two broad classes
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1. Resonant Tunnelling Devices. Island confines electrons with one or two classical 

degrees of freedom [36].

2. Single-Electron-Transistors. Island confines electrons with three classical degrees 

of freedom [37].

These devices can also be manufactured from components such as quantum dots which are 

islands which confine electrons with zero classical degrees of freedom, although quantum 

dots can also be used as the components of many different types of devices.

The type of device formed depends on the size, shape and composition of the island 

that is present in the device. The smallest dimension of the island that is formed ranges 

from 5 to 100 nm, and the island can either be formed from a material different from the 

rest of the device, or be defined by an electric field generated from a series of electrodes.

First excited state (N+1)

Ground state (N+1)

unoccupied levels

Band Edge

Lowest energy for N electrons

Figure 1.3: Quantization of states in a narrow potential well.

Whatever the case, there exists a potential barrier between the island and the material 

that surrounds the island (for the following discussion we will be assuming a purely one 

dimensional case, see Figure 1.3). Any electrons that are trapped on the island exhibit two 

quantum mechanical effects, firstly that the states the electron can inhabit are quantized 

and differ from one another by an energy Ac, and secondly that if the extent of the 

barriers confining the electrons is small enough, then the electrons can tunnel through 

the barrier, either to tunnel into the island or to tunnel off the island.

These quantum effects influence the transport properties of the device. When a 

voltage is applied across the device, this induces the electrons in the source to attempt 

to move across the barrier into the island. The only way an electron can travel to the 

island is to tunnel through the barrier, but only if there is an empty state available at the
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same energy (or at most one phonon energy away) in the island (as the Pauli principle 

prevents two electrons from occupying the same state).

First excited state (N+1)

unoccupied levels 

Band Edge

Conduction
Band

Ground state (N+1)

Lowest energy for N electrons

First excited state (N+1)

unoccupied levels

Ground state (N+1)

Transmissited
electron

Band Edge 

Conduction 
Band '

Figure 1.4: Change in height of a barrier under the influence of an electric field.

We will use Resonant Tunnelling Devices (RTDs) to illustrate the operation of various 

solid-state devices. Under the influence of a bias, the energy of the states in the island 

can be changed. As we increase the bias, the energy of all the states in the island is 

lowered (see Figure 1.4). When the bias potential is sufficient to lower the energy of an 

unoccupied state inside the well to below the valence band, then we can say that the 

device is in resonance or on, as it is now possible for source electrons to tunnel through 

the device. As there are many unoccupied states inside the island, then the RTD can 

have multiple on/off states, depending on the bias voltage (that is as the voltage changes, 

source electrons can access multiple unoccupied states as they are brought down to the 

conduction band). This means that as we vary the bias, the conductivity changes, but 

because of the discrete energy levels the conductivity can only change in discrete steps. 

This notion tfiat the conductivity of an atomic scale object depends on the number of 

states that an electron can access is in important one, and will be discussed later in this 

thesis.

Let us now generalise our arguments for electrons travelling through an atomic scale 

device, by considering the three dimensionality of the device and the Coulomb force. For 

a three dimensional island, with different dimensions along each axis x, y, and z, an 

electron’s energy is quantized separately in each direction (but only if the Schrodinger
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equation is separable), i.e., Ae^, Acy and Ae^. These Ae are calculated for an isolated 

electron. If we consider N  electrons in the island, then the energy for the (A^+1) electron 

to enter the island has to overcome the Coulomb potential of the N  electrons in the 

island U. Therefore for an electron to tunnel through the barrier into an island it has 

to possess an energy of Aex,y,z plus U. The magnitude of U and Ae are sensitive to the 

size and shape of the island. Ac is inversely proportional to the square of the size of the 

island (generally, it is the shortest dimension of the island that affects the quantization 

the strongest). U varies as the inverse of the size of the island (the longest dimension 

most strongly affects U). Thus we can engineer our island to either minimise, maximise, 

or some combination of the two, Aex,y,z and/or U. This is why there exist two categories 

of solid-state devices.

Using these arguments, we see that the conductivity of an RTD (which usually has one 

‘short’ and two ‘long’ wire-like directions) is solely determined by Ac. The conductivity 

of a Quantum Dot (which has three ‘short’ dimensions) is determined by both Ac and U. 

Single-Electron Transistors (SETs) possess a metal island which contains ~  10® mobile 

electrons. Although the size of a SET is often approximately the same as a QD, the 

length scales depend on the materials used. Ac is small for SET’s, while U is large. Thus 

the conductivity of an SET is determined by U alone. This limit is called ‘Coulomb 

blockade’, as at low voltages electrons cannot tunnel into the island.

Although these devices have been fabricated in the laboratory, there are several dis­

advantages that may render them unfit for use in industry. They are

1. For multistate confinement devices, there is a residual current when the device is 

off-resonant. We could thus confuse on and off states.

2. Switching in RTD’s can be very sensitive to fluctuations in voltage [38].

3. An exponential sensitivity of tunnelling current on the width of the potential bar­

riers. Devices would have to be fabricated to extremely high standards.

Devices made from individual molecules could oflÊer solutions to these problems, espe­

cially the fabrication problem. It is exceptionally difficult to fabricate solid-state struc­

tures at the nanoscale by the billion. However it is exceptionally easy to fabricate in­

dividual molecules by the billion [39]. (Note: We define molecular electronics to mean 

electronics involving covalently bonded molecular structures electrically isolated from a
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substrate).

There are at least four broad classes of molecular electronic switching devices that 

are found in the literature.

1. Electric-field controlled molecular electronic switching devices: Molecular version of 

quantum-effect devices [40].

2. Electromechanical molecular electronic devices: These employ electrically or me­

chanically applied forces to change the conformation or to move a switch atom or 

molecule [41, 42, 43, 44].

3. Photoactive/photochromie molecular switching devices: Use light to change the elec­

tron conformation, or shape to switch a current [45].

4. Electrochemical mechanical devices: Uses electrochemical reactions to change con­

formation or electron configuration to switch a current [46].

The first two categories of molecular electronic devices can be laid down on a solid sub­

strate and so are applicable to atomic scale computers. The latter two types of device are 

not applicable, as they either cannot be packed in a dense network (photoactive devices 

would have to exist in volumes of length ~  500 nm), or would require wet chemistry (the 

electrochemical devices would need to be placed in a solvent).

Unoccupied

Occupied

Figure 1.5: quantum well embedded in a molecule with top of valence band and bottom 
of conduction band shown. The CHg groups represent the potential barriers, and the 
benzene groups in the middle represent the quantum well.

It may be possible to use molecular structures for quantum confinement, as proposed 

above (the QD’s detailed above). One could either embed metal nanoclusters in a super- 

molecular framework, as such QD’s could be uniformly fabricated and then assembled in 

a very regular structure. Alternatively a quantum well could be embedded in a molecule, 

one which functions as a molecular wire (see below). This device would function as a two 

lead RTD (see Figure 1.5).
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Unlike the quantum effect molecular devices, we cannot make an easy comparison 

between transistors and electromechanical molecular devices. It is has already been 

shown that it is possible to make a switch consisting of only a few molecules. One 

can use an STM tip to press down on a Ceo molecule (or buckyball) on a substrate 

[44, 47, 48]. The force imparted by the STM causes the buckyball to deform. This 

changes the conductivity properties to change, forcing the buckyball to shift from on- 

resonance to off-resonance. Off-resonant buckyballs suffer a reduction of 50% in current, 

thus leading to identifiable on/off states. However, it would be extremely impractical to 

use an STM tip to operate a switch in an industrial product. Another proposal for a 

molecular transistor is the deposition of a molecular wire on a substrate that has been 

structured at the atomic scale to act as a series of gates [49]. Some rectifying properties 

have been found. However this idea is at the moment entirely theoretical.

ON OFF

Switching gate 

I i Atom wire

oooooeooooo OOOOO (DOOOO

R e s e t '^ P  Switching
Gate Q atom

Figure 1.6: Schematic of an atomic relay (obtained from Goldhaber et al, Proc. IEEE 
85, 521, (1997)).

Several theoretical schemes have been proposed to make molecular-scale switches that 

do not reply on the presence of a STM. Wada [42] proposed a scheme known as the atomic 

relay (see Figure 1.6). A mobile atom that is not firmly attached to the substrate is 

present in the junction between four terminals. When the switch is ‘on’, the mobile atom 

lies between two terminals, allowing a current to flow between the two terminals. When 

the switch is turned ‘off’, an electric field that passes through the other two terminals 

forces the atom to move to one side, thus breaking the connection. Unfortunately, this 

switch would require a low operating temperature, as it would be quite easy to evaporate 

mobile atoms off the substrate, for instance by electro-migration induced by the electric 

field.
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Rather than using the movement of a single atom as a switch, Goldhaber et al [35] 

suggested that a molecule with a rotational group can act as a switch (see Figure 1.7). 

When an electric field is applied to the molecule, the switching group would rotate. When 

the switch is ‘on’, the functional group that exists in the gap between the two terminals 

has a high conductivity, but when the switch is turned ‘off’ the switching group is rotated 

away from the terminals, and a replacement group with a lower conductivity takes its 

place.

Gate

Apooco
Rotating

group^**^  ̂ ^ ^ B U U U U U  Molecular support

ooooo ooooo
Atom wire Atom wire 

Figure 1.7: An example of a molecular switch.

We have mentioned the need for nanoscale devices, the physics of these devices and the 

various designs that currently exist for these devices. However, for any of these devices 

to work we require a method to transmit a net current into and out of these devices. The 

obvious solution would seem to be a set of atomic scale interconnects or wires. However 

it is an open question whether these wires and/or devices need even be fabricated. There 

have been theoretical studies that have outlined the possibility that one can structure a 

material at the atomic scale so that any switches and wires can be activated or deactivated 

by manipulating the dynamical properties of the system as a whole [50, 51, 52, 53]. These 

studies use the atomic scale (subnanometre) structuring of the material so that when the 

initial one-electron states of the system are acted upon by some outside driving system 

(such as a laser), they are driven into final stationary ‘attractor’ states in such a way 

that a net current has been driven through the material and/or the electrical properties 

of the material have changed in a measurable way analogous to a set of switches being 

thrown. However these studies have (so far) been completely hypothetical.

Another approach that has been suggested is the quantum cellular autom ata (QCA) 

approach. There are two basic approaches, the SET approach [54] and the magnetic
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approach [55], in which we have a series of quantum dots which can flip sign (either 

adding or subtracting electrons, or changing the sign of the internal magnetic field) 

under the influence of an input electric or magnetic field. The SET approach has (at 

the moment) limited applications as the operating temperature is in the range of a  few 

millikelvins. The magnetic approach operates at room temperature. However we are 

interested in electronic transport at a useful operating temperature. Therefore we wish 

to concentrate on the seemingly more concrete applications of atomic scale wires. What 

are our options?

1.3 Candidate atom ic scale wires

There are several different designs for prospective atomic scale wires. These vary from 

using molecules, to fabrication using an STM or AFM tip.

1. Molecular wires: These are wires which are formed from molecules. Examples of 

such wires would include trans-polyacetylene [18, 20, 21, 22, 56, 57, 58, 59], p- 

phenylene sulfides [60], fused rigid porphyrin-oligomers [61], the alkanethiols [62], 

phthalocyanines [63], the thiophene polyenes [13, 64] and fullerene nanotubes of 

carbon [65, 66, 67] and silicon [68].

2. Atomic Nanobridges: These are formed by either an STM tip crashing into the 

surface and then withdrawing [69, 70], or by electron-beam irradiation [71]. A 

short-lived atomic bridge is formed, through which current can flow. However 

stress effects tend to destroy these bridges.

3. Dangling Bond Wires: These are formed by using an STM to desorb hydrogen from 

a silicon surface [72, 73, 74]. The resulting line of dangling bonds are metallic and 

can act as wires [75, 76, 77].

4. Zeolitic Chains: These chains are formed by using the cavities of zeolites to con­

struct atomic scale chains of metals [78, 79], or to construct interlinking chains of 

polymers [80].

5. Self Assembled Lines: These lines are formed from the inherent surface properties 

of the substrate. A material is either deposited on the substrate and self-assembles, 

such as indium on silicon(lll) [81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93,
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94, 95], gallium on silicon [96] or gold on silicon(lll) [97, 98, 99, 100, 101, 102]. 

Alternatively, these structures can be formed by desorbing excess material from 

a substrate, such as bismuth from silicon(OOl) [103, 104] or silicon from silicon 

carbide(OOl) [105, 106, 107, 108, 109]. Note: The indium and silicon lines can be 

formed by either absorption or desorbtion.

As one can see from the above discussion of length scales, one has to be careful about 

the nomenclature one uses to describe devices. For example, a nanowire, a quantum 

wire and an atomic wire can all mean different things. A nanowire is a wire that has 

an extent of the order of nanometres (in the literature this can mean anything from one 

nanometre to several thousand nanometres). A quantum wire is a wire in which the 

electrons display quantum behaviour. Quantum wires can (depending on the material 

and the temperature) be several micrometres in extent. An atomic wire is a wire that 

has an extent of the order of the atomic length scale, i.e. several Â’s. These atomic wires 

are necessarily quantum wires, at any accessible temperature.

Molecular wires are characterised by a sequence of extended repeating structures, or 

monomers. The monomers are linked together by tt orbitals. These tt orbitals conjugate 

with each other to form a single large tt orbital which is delocalised throughout the 

molecule. It is this delocalised tt orbital that permits electrons to tunnel through the 

molecule for a range of electron energy. We can make an analogy with carbon nanotubes, 

although in this case the analysis is complicated by the consideration that a nanotube can 

have multiple walls and it is possible to have a series of nanotubes, with each nanotube 

surrounded by a larger nanotube (like a Russian Matreski doll). Interactions between 

the various nanotubes cause the nanotube to undergo a transition from a metallic to a 

semiconducting or insulating phase, and depending on the way a single-walled nanotube is 

‘wrapped up’ a single walled nanotube is either metallic or semiconducting [110, 111, 112].

Undim erised 
m etallic chain 

a a bond length =  a

Dim erised 
m etallic chain

bond length = b 
bond length = c

Figure 1.8: Dimérisation of a molecule.
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Some molecules (such as trans-polyacetylene) can undergo a structural transition such 

that a structure where C-C bond lengths are all even transforms to a case where there are 

two separate C-C bond lengths, a long one and a short one [18, 59] (see Figure 1.8). This 

dimérisation is intimately related to the trans-polyacetylene molecule acting as a one­

dimensional metal. Although we will not detail the mechanism for such a transition until 

the next section, we will define a dimérisation parameter that represents the magnitude 

of this alternation in bond length

dj -  { - i y ( b j j +i  -  b j j - i )  (1.7)

where 6j,j+i is the length of the bond between atoms j  and j  + 1. This parameter is far 

more useful than it would appear, as it enables one to analyze the effect of defects in 

an atomic wire in a simple and understandable manner, as a dimerised atomic wire that 

contains no defects has a completely fiat dimérisation curve, and the presence of defects 

perturbs this fiat dimérisation curve.

A dangling bond (DB) wire is fabricated by STM desorption of hydrogen on the 

hydrogen-terminated surface of silicon, in a Ultra-High-Vacuum system (UHV) (see Fig­

ure 1.9). This means that these systems are not usable in practical atomic-scale devices, 

but they can serve as a useful testbed for interesting physical phenomena (such as the 

effects of inelastic coupling, see next section). As the hydrogen-silicon bonds are bro­

ken by current injection [72] and/or field effect [74] (although probably the former), the 

hydrogen atoms evaporate into the vacuum, leaving empty bonds behind. If we depas- 

sivate a line either parallel or perpendicular to the (2x 1) reconstruction of Si (100), the 

empty bonds that are left are able to overlap. The properties of the specific DB wire 

depend on the direction the DB wire runs in, and whether the wire is formed from a row 

of single DB’s or a row of pairs of DB’s. However, in all cases the DB wires initially 

(before reconstruction occurs) have a finite density of states at the band gap, while the 

surrounding hydrogen-terminated surface has a wide band gap [75]. This suggests that 

the DB wire is conductive, and that any electrons that are injected into the DB wire will 

be well confined.

This is an important point that must be considered in any study of atomic scale wires, 

the isolation of the atomic wire from the substrate. For the case of a molecular wire
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Figure 1.9: A dangling bond wire (image taken from Hitosugi et al, Phys. Rev. Lett. 
82, 4034, (1999)).

deposited on a substrate, it depends on the type of force that is holding the molecule 

to the substrate. If the molecule is physisorbed (that is there are only weak Van der 

Waals type forces holding the molecule in place) then any electrons that are injected into 

the molecule will be electronically isolated from the substrate. This is due to the long 

residence time of an electron in the bond due to the small bonding energy, as found from 

A E A t  ~  h. Assuming that forming a Van der Waals bond costs 0.01 eV, an electron 

resides in the molecule for ~  10“ ^̂ s. However, if the molecule is chemisorbed to the 

substrate, that is that it is held in place by chemical bonding, then the confinement of 

any electrons that are injected into the wire is far from assured. Using the same estimation 

approach as before, and assuming that forming a chemical bond costs 1 eV, then a typical 

residence time for an electron in the molecule would be of order ~  10“ ̂ ®s, two orders of 

magnitude smaller than the physisorbed case. This also seems to be a potential problem 

for self-assembled wires, which are often strongly bonded to the surface and can be stable 

at room temperature. One has to look at the charge distribution of states that are close 

to the Fermi level and are strongly associated with the wire to see whether they are 

constrained to the wire or are free to disperse into the bulk.

We have discussed in general terms how at the nanoscale the behaviour of electrons 

can differ from ordinary experience and how we can fabricate devices that can function 

at the atomic scale. We have discussed prospective atomic scale wires that could feed 

current in and out of these devices (atomic scale electronics). We now need to consider 

in more detail what theoretical concepts are useful to study the conductivity of atomic 

scale wires and what methods we can use to simulate prospective atomic scale wires.
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1.4 Theoretical concepts

At the atomic scale, the properties of materials can differ from their bulk properties. 

For instance, it has been reported that a one atomic layer thick film of gold on the 

titanium(llO) surface is not metallic but a semiconductor. Another example is a Peierls 

distortion [113], an effect which can change the electronic structure of one-dimensional 

structures and so is of obvious relevance to atomic scale wires [18, 59, 95].

Let us start off by considering a linear chain of atoms, all equally spaced apart by a 

distance a. This means that all multiples of a are lattice vectors, and that the unit cell 

in reciprocal space is

( 1.8 )

and that the energy as a function of k would be a smooth cosine function if a simple 

tight-binding model is appropriate (see Figure 1.10).

s

Figure 1.10: Plot of energy as a function of wavevector for a regular undimerised atomic 
chain.

Now suppose that we displace an atom slightly, with the pattern of each displacement 

repeating every rth atom (i.e., every ith atom out of r atoms is moved slightly in the 

same direction). The translational symmetry of the linear chain is immediately reduced, 

and that instead of having a unit cell containing one atom and having a lattice vector 

of a, each unit cell now contains r atoms and has a lattice vector of ra. The cell in 

reciprocal space is now

< k <  —ra ra (1.9)

The effect of such a perturbation is to change the function E{k). For the specific case of
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r=2 this has the effect of causing vertical breaks to occur at the Fermi surface, caused 

by the coupling between the filled and empty states. This separates any two eigenvalues 

at the Fermi surface which are close to each other (see Figure 1.11). If the pair of 

states at the Fermi level are partially occupied in the ideal case (a metal), then following 

any distortion one of the states will be displaced downwards in energy and will become 

occupied and the state which is displaced upwards in energy will become unoccupied. 

The metal will become a semiconductor.

Figure 1.11: Plot of energy as a function of wavevector for a dimerised semimetallic chain.

It follows that for a one-dimensional metal with a partly filled band a regular chain 

structure will never become stable, as it is always possible to find a distortion with a 

suitable value of r for which a band gap will open up at or near the edge of the Fermi 

distribution. To maximise the gain of energy, and hence the distortion, r has to be small 

number, unless there are other metallic bands or strong correlation effects. Neglecting 

these factors the favourable case is that in which the Fermi distribution ends at A: = 

7r /2a. This means that there is one electron per atom, including spin. This means that 

r = 2, and that there is a regular bond alternation, or dimérisation, which is observed to 

occur in (for example) polyacetylene. The Peierls distortion is an electronic effect that is 

associated with the top of the valence band/bottom of the conduction band, and which 

can be represented as a sum of different phonon modes. Thus if we inject an electron 

(or hole) into the system we would change the physical structure of the system as this 

would change the electronic structure at the bottom of the conduction band (top of the 

valence band). We can thus say that the Peierls distortion increases the magnitude of 

electron-phonon coupling.

If we just included electronic effects, then it would seem that the way to maximise 

the gain in energy would be to have two vastly different bonds, one with a very long 

(or infinite) bond length, the other with a very small (or zero) bond length. We need to 

balance the gain in electronic energy with the loss in elastic energy, so that the equilibrium
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deformation u q  is given by the roots of

, (-^ /e lectron ic  "b ^ e la s t i c )  — 0 -duo ( 1 .10)

There are two values of uq. Thus there are in extremis two cases [114].

i

Figure 1.12: Twofold degeneracy of energy.

s

u_0 (i*«orton from •«»)

Figure 1.13: Near-twofold degeneracy of energy.

I

Figure 1.14: Near-onefold degeneracy of energy.

Firstly if the two values are exactly equal then the ground state of the one-dimensional 

metal is twofold degenerate (see Figure 1.12). That is that we can have two identical 

bond alternation patterns, 1=2-3=4-5=6-7=8-9=10, and 1-2=3-4=5-6=7-8=9-10, where 

- signifies a long bond and a = a signifies a short bond. This doubly degenerate ground 

state supports nonlinear excitations which can act as moving domain walls separating 

different phases. That is, in the chain it is possible to have two phases A (-l-uo) and B(- 

uo). These phases are shape-preserving excitations, thus they are called solitons [115].
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Each phase has its own dimérisation parameter, one positive, the other negative. Where 

the two phases meet, the dimérisation will change sign (see Figure 1.15). This can be 

represented as a-a=a-a=a-X-b=b-b=b-b, where X is the discontinuity (see Figure 1.16).

:

Figure 1.15: The dimérisation profile of a soliton. 

Perfectly Dimerised chain

Chain with Soliton defect

Figure 1.16: Structure of a soliton in a chain.

In the limit of a long chain, a soliton corresponds to a phonon field configuration that 

approaches the B phase as N-> oo, approaches the A phase as N—> —oo, and minimises 

the total energy. The width of a soliton ( depends on the competition of two effects, the 

electronic energy and the elastic energy per site. If the soliton is very narrow, then the 

sudden change in dn from the - u q  to +uq state (at n=0 say) will cause the electronic 

energy to be large because of the uncertainty principle. If however, dn changes very 

slowly from the - u q  state to the +uo state, there will be a large region surrounding n=0 

where the elastic energy is greatly reduced again raising the energy [18]. (  is the width 

of the soliton that minimises the the total energy. If (  is large compared to the average 

lattice spacing a, then as the soliton moves relative to the lattice the variation of the 

energy is small. This large soliton width also means that the soliton has an extremely 

small effective mass, of the order of an electron mass rather than an ionic mass. This 

means that if an electron (or hole) is injected into the chain then it would be energetically 

preferable for the charge to be transported along the chain as a soliton rather than as
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a free electron as the effective mass is so much smaller. Note that as a moving soliton 

changes A-phase material to B-phase material and vice versa, that injected solitons can 

only be created or destroyed in pairs.

The presence of a soliton in the chain also affects the electronic spectrum. For each 

widely separated soliton there exists a normalised single-electron state of zero energy in 

the gap centre which can accommodate zero, one or two electrons and that has an extent 

of order (. For a neutral soliton this state is singly occupied by an electron. Therefore 

we have a case where the neutral soliton has a spin of We would expect a spin ^ 

particle to have a charge of ±e. Conversely when the soliton is charged the occupancy 

of the band gap state is 0 or 2 electrons, which means that it is carrying ±e and has a 

spin of zero. This means that the soliton has reversed spin-charge relations.

Solitons have been observed to form in two ways, either by doping or by initial chain 

conditions. It has been observed that doping trans-polyacetylene with sodium ions leads 

to the spontaneous creations of solitons in the chain. Solitons are also formed naturally if 

the polyaoetylene chain consists of an odd number of monomers. This would mean that 

one end of the chain would end in a single bond and the other end of the chain would 

end in a double bond. Polyacetylene would rather have a double bond at both ends of 

the chain, so a soliton is formed at one end of the chain and travels to the centre. Thus 

for odd numbered chains a soliton is formed in the ground state. It is possible to form a 

soliton-antisoliton pair S S  from an electron-hole pair. Functionally this pair resembles a 

polaron which is explained below.

For the more general case that the two values of uq are nondegenerate (see Figures 

1.13 and 1.14), the dominant charge carriers and excitations are polarons. A polaron 

is an electron-phonon excitation, in which the interaction of the electron with phonons 

allows the electron to be surrounded by a strain field and the movement of the electron 

is matched by the movement of the strain field. This has the effect of increasing the 

apparent mass of the electron [116]. Compared to the solitons considered previously, 

the formation of a polaron in the chain does not change the value of the dimérisation 

far away from the defect. The presence of a polaron merely induces a reduction in the 

local dimérisation (see Figure 1.17). There thus exist the following symmetries for the 

dimérisation d of the chain as a function of x  when the defect (polaron or soliton) is at

Xo
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d p { - [ x  -  Xo]) =  d p { x  -  Xo) (1 .11)

d s { - [ x  -  Xo]) =  - d s { x  -  Xo). (1 .12)

A polaron has two bound states associated with it and separated from the valence

5

Figure 1.17: Dimérisation profile of a polaron.

band and the conduction band. This means that the formation of a polaron leads to a 

suppression of the band gap. A neutral polaron has two electrons in the lower state and 

none in the upper state. Conversely a hole polaron has only one state in the lower state 

and an electron polaron has two electrons in the lower state and a single electron in the 

upper state.

Polarons are also capable of being formed in metallic chains with exact ground state 

degeneracy. However, only one polaron at a time can exist in these chains, as the injection 

of a second electron/hole causes the breakup of the polarons and the formation of two 

solitons [18]. More generally if there is no exact degeneracy then it is possible for the 

two polarons to form an ordered pair known as a bipolaron.

The formation of either a polaron or a soliton will cause a deformation in the metallic 

chain as mentioned above, which can be represented as the action of a set of phonon 

modes. Not all phonon modes contribute an equal amount of energy to the distortion of 

the chain however. What is needed is a measure of how much a particular phonon modes 

contributes to the distortion. The strength of this phonon coupling is measured by the 

dimensionless Huang-Rhys constant [116, 117, 118]
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c, _  deformation energy _  |Mo;J((5aO -  Qbo)^ _  (Qao -  Qbo)^
~  h u ,  ~  2{h fMujg)   ̂  ̂ ^

where u)g is the frequency of the phonon mode and (QaO — Qbo) is the change in displace­

ment of lattice and q is the phonon mode. The stronger the value of the Huang-Rhys 

constant the stronger that phonon mode couples to the distortion (it is in a sense a mea­

sure of the electron-phonon coupling). The sum over all phonon modes should give an 

energy that is equal to the distortion energy caused by the soliton or polaron.

1.5 Concluding remarks

We have discussed the theoretical concepts that apply to devices that function at the 

nanoscale, including such ideas as mean free path, phase relaxation length, Peierls dis­

tortion and soliton/polaron formation. However we have not yet discussed how we would 

model the structure of atomic scale devices, or how once we have found the structure we 

would calculate the transport properties of such a device. An overview of the methods 

used to find the structural and electronic properties is given in the next chapter.

After we discuss the various theoretical methods used in this thesis, we then discuss 

three candidate atomic scale wires; the polyacetylene molecule, the silicon line on the 

y5-SiC(001) surface and the (4x l)-S i(lll)-In  reconstruction. We do not calculate the 

conductivity characteristics of the polyacetylene molecule, rather we use the example of 

polyacetylene to sketch how we can calculate information that is used to calculate the 

conductivity for the other two candidate atomic scale wires and provide only a sketch of 

the conductivity characteristics of the polyacetylene molecule. For the other two atomic 

scale lines we show how we find the correct atomic and electronic structure, and then 

find the transport properties (although for the case of the indium-based reconstruction 

we can provide only a brief overview of the transport properties). We will then conclude 

this thesis with a discussion of further work that can be performed on the two systems.
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Chapter 2

Theory

In this Chapter we detail the various theoretical methods used in this study, the tech­

niques we used to find the physical and electronic structure of the candidate atomic scale 

wires and the methodology of calculating the conductivity of these atomic scale wires.

2.1 M odelling systems: D ensity Functional Theory

2.1.1 Introduction

The description of many-particle systems is an important goal in contemporary condensed 

matter physics. Although analytic solutions of the Schrodinger equation are possible for 

a few simplified systems such as isolated atoms and simple molecules, it is not possible 

to find the exact analytic solution for complex systems due to the complicated electron- 

electron interactions. Instead, one is forced to rely on numerical schemes that can solve 

the Schrodinger equations for such systems. Although it is possible to use a Hartree-Fock 

scheme to find the ground state of a system, using Slater determinants to account for 

Fermi statistics [119, 120, 121] and configuration-interaction for the correlation effects 

[122], the large increase in the number of configurations with increasing electron number 

means that systems with a large number of electrons are unable to be modelled to a high 

degree of accuracy. For instance using a modem workstation it is only possible to model a 

cluster of approximately twenty atoms as storage of the various orbitals and permutations 

of orbitals requires orders of magnitude more CPU memory than any of the other tech­

niques mentioned below. Although Hartree-Fock with Configuration-Interaction (HF-CI)
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is computationally very expensive it does possess an advantage that none of the other 

methods discussed below possess, HF-CI can accurately calculate the electronic struc­

ture of excited states as well as ground states. No other electronic structure method can 

accurately calculate all excited states, although Density Functional Theory (also known 

as DFT, see below) can calculate some of these states [123, 124].

No other numerical technique (apart from HF-CI) models the ground state electronic 

structure of solids from first principles as accurately as Density Functional theory (DFT) 

(also known as ab initio DFT). This theory maps the ground state of an interacting 

electron gas onto the ground state of a noninteracting electron gas which experience an 

effective potential.

The Hamiltonian that describes the electrons is

N
=  f +  + (2.1)

t=l

where T  and Ke are the kinetic and electron-electron interaction operators respectively 

and Vext is the external potential the electrons move in.

The two basic theorems of DFT are

1. That there exists a functional F[n] of the electronic density n that represents the 

ground state energy E q s  ̂ That is that E q s  is a functional of n  (jP[nj =  (T -H Ke))> 
This is the existence theorem [125, 126].

2. That the only density which gives an energy equal to the energy of the ground state 

is the electronic density of the ground state nos

/ dr Kxt(r)’̂ Gs(r) +  F[nGg] =  Egg. (2.2)

All other densities give ground state energies with a higher energy than the true 

ground state energy. The true electronic ground state can be found by a Levy- 

constrained search

F’[n] =\ÿ^n (^ |T  4- (2.3)

This is the uniqueness theorem [125, 127].

36



E[n\ thus satisfies a variational principle.

We can use a separation of the Hamiltonian first devised by Kohn and Sham [120, 127], 

wherein we can write the energy as a sum of a set of functionals that depend on electron 

density

E[n] =  To[n] + J  dr *^(r)[Kxt(r) +  ^$(r)] +  E^c[n] (2.4)

where To is the kinetic energy of a system with density n  if there is no electron-electron 

interaction, $  is the classical Coulomb potential and E^c is the exchange and correlation 

energy. There is no simple expression for the exchange and correlation energy. The 

exchange energy is the contribution to the energy that results from the Pauli principle, 

that no two electrons can have the same energy and have the same state (only electrons 

with opposite spins can fully occupy a state). This can be written analytically. The 

correlation energy cannot be written analytically. It is defined to be the difference in 

energy between the true ground state energy and the Hartree-Fock ground state energy.

The exchange and correlation energies thus depend on the electronic density n, which 

means that the energy as a functional of density depends in a nonlinear way on the 

density n, and what is worse is that we have no idea how Exc[n] behaves. We are in 

the position of not knowing how to solve such complicated equations with so little data. 

The common way of solving the variational equations (2.4) is to make an approximation, 

the Local Density approximation (LDA) [128]. This approximation assumes that the 

exchange-correlation potential that an electron in a  system experiences is equal to the 

exchange-correlation potential of an electron in a uniform gas of interacting electrons and 

can be inserted into the above equation as

= y  (fr n(r)€a:c[n(r)] (2.5)

where exc[n\ is the exchange-correlation energy density of a homogeneous electron gas of 

density n. As the real world consists of a gas of electrons which are non-homogeneous, 

this would not seem to be a reasonable approximation. It is thus required that this 

approximation is used only when the electronic density varies only slowly with distance.
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And yet it has been used on a large variety of systems and seems to work surprisingly 

well. Why is this?

2.1.2 The validity o f the LDA

The exchange-correlation energy density can be written as [122]

^xcW =  y  y  ^ L (r'). (2.6)

The function ^ (r ,r ')  is obtained by replacing the electron-electron interaction constant 

by e^A and integrating over A

Jo
dXg{T,r':X). (2.7)

The function p(r, r ' : A) is the pair correlation function of the system with density n(r) 

and Coulomb interaction XVee, i.e., it describes the response of the electron gas at r  due 

to a perturbation at r '. The function n(r')[^(r, r ') — 1] describes the depletion in density 

due to the exchange-correlation hole around an electron at position r. The quantity 

n(r')[ÿ(r, r ') — 1] does the same with respect to A. (2.6) is appealing as it allows us 

to formulate all approximations for Exc[n] as ones for g{r,r'). The LDA can thus be 

represented as

n(r')[^ (r,r ')  -  1] ->■ n(r)[p/,(r -  r '; n(r')) -  1]. (2.8)

This lets us see that the density depletion due to the exchange-correlation hole around an 

electron corresponds to exactly one particle, and this is independent of electron-electron 

coupling. This rule holds even for the LDA as n(r)[gk(r — r') — 1] satisfies it. Equation 

(2.6) also shows that only a particular angular average of the pair-distribution function 

is involved with the calculation of Thus if we introduce the relative coordinate

R  =  r  — r  then (2.6) can be written as

38



g2 n roo
-E'xcH =  Y  J  (frn{T) J  dRRTi^c{T,R) (2.9)

where

:(r, R) = j  M(r +  R)[g(r, r  +  R) -  1]. (2.10)

The only part of the exchange-correlation hole that enters into the calculation of jBxcW 

is the spherically symmetric part. This is the key to the question of why should the LDA 

work as well as it does? The answer is that although the correct exchange-correlation 

energy density is non-symmetric, E^c is only sensitive to the angular average of energy 

density. The average of the true exchange correlation energy density is symmetric and 

the LDA gives an energy density which is spherically symmetric as well and thus gives a 

very good agreement with the true non-symmetric exchange-correlation energy.

Finally when can we expect the LDA to work well? If we look at (2.9) and consider 

the integral

/ = (2.11)

This describes the inverse extension of the exchange correlation hole. If this is approx­

imated correctly then one would expect the LDA to work well. As a condition on the 

use of the LDA this is much less stringent than a requirement that the electronic density 

vary slowly.

2.1.3 Varieties o f D F T  m ethod

There are various methodologies that have been developed to solve the one-particle 

Schrodinger equation of the LDA. There are three main classes: (i) the linear methods 

[129] developed by Andersen from the augmented-plane-wave (APW) method [130, 131], 

(ii) the pseudopotential method based on norm-conserving ah initio pseudopotentials in­

vented by Hamann, Schliiter and Chiang [132] and (iii) the Gaussian basis set method, 

where Gausssians are used to expand the full-wavefunctions (the Gaussian methods are
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mostly used by chemists, and although they embody the chemistry of the system, they 

do not describe surface states quite as well). The Gaussian method will not be expanded 

upon.

The linear methods deal with the full wavefunctions and can treat all elements in the 

periodic table, i.e. s-,p-,d- and /-electron systems equally. They range from the Linear 

Augmented-Plane-Wave method (LAPW) as the most accurate, to the Linear Muffin- 

Tin Orbital (LMTO) method as the most simplistic (in a simplified version, the LMTO 

method can be performed on paped, allegedly).

The pseudopotential approach is based upon the realisation that the only part of 

the wavefunction that is important in the binding of atoms is the part of ip that is 

far away from the core of the atom. Near the core of the atom, the potential is strong 

enough to have bound ‘core’ levels. If we chose to expand p̂ in terms of plane waves 

then the higher wavefunctions must be orthogonal to the lower wavefunctions, and the 

higher wavefunctions cannot have correctly converged energy eigenvalues until the lower 

wavefunctions are converged [133]. Thus if we are interested in the properties of the 

wavefunctions of the 2p  set of orbitals we also have to converge the wavefunctions for 

the Is and 2s set of orbitals. As the Is state is so highly localised it requires a large 

number of plane waves to represent it. This is computationally very expensive. Can we 

avoid making such detailed calculations? The answer is yes as there does exist such a 

technique: the pseudopotential approach.

Instead of trying to solve the full Schrodinger equation

(T + Vtrue)^ =  E^P (2.12)

over all energies we can try  and solve a Schrodinger equation accurately for a range of 

energies that are in the region of interest

{ f  + ypseudo)^’ =  Erange^- (2.13)

V̂ seudo is the pseudopotential that for the energy range of interest gives energy eigenvalues 

that are identical with those of the true potential Vtrue- As the bands of interest (ones
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involved with bonding) are quite low in energy then the potential that is needed to 

describe them is quite weak. The pseudopotential is created that gives the right scattering 

properties at low energies but gives the wrong scattering properties at high energies. The 

complicated potential at the core region is ‘smoothed off’ to give a pseudopotential which 

is much more amenable to analysis.

When the pseudopotential is used in combination with a plane-wave basis set it has 

the advantage of formal simplicity. However, if applied to systems with d- of /- electrons, 

pseudopotentials can become ‘hard’, so that either very large plane wave basis sets or very 

complicated basis sets have to be used which are not easily transferable. This is because of 

the norm-conservation condition [132, 134] that is required in order to make the obtained 

pseudo wavefunctions identical to the true wavefunctions. This requires that the total 

pseudocharge that is inside the core match that of the true wavefunction. This makes 

the core strongly repulsive, or “hard core” which means that it becomes impossible to 

construct a pseudowavefunction that is much smoother than the true wavefunction (i.e., 

such as O 2p or Ni 3d orbitals). If one relaxes the norm-conservation rule, then one 

can create ultra-soft pseudopotentials [135] that significantly improve the situation by 

increasing the size of the core region.

The ultrasoft pseudopotentials are created in the following way. We start with some 

all electron (AE) wavefunction that is found for a free atom. Cutoff radii Vd and are 

chosen for the wavefunction and the local potential respectively and a radius R  is chosen 

beyond which pseudo- and AE wavefunctions agree. AE wavefunctions \f)i can solve the 

Schrodinger equation

i T + V A E - e i ) ^  (2.14)

and a pseudowavefunction is constructed that smoothly joins onto ipi outside rd and 

satisfies the norm conserving property {(f>i\<f>i)R = {ipi\'4’i)R. A local wavefunction is also 

constructed

IXi) =  (€i -  r  -  Vîoc) |0i). (2.15)
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The set of pseudowavefunctions |0i) can be generated from the AE wavefunctions |^,) 

with the condition that they obey the generalized norm-conserving condition Q jj= 0, 

where

Qij =  {fpi\tpi)R -  {(f>i\<f>i)R̂ (2.16)

If we form the matrix B{j =  {(j>i\(l)j) we can define a set of local wavefunctions

|ft> =  (2.17)
j

Using this set of local wavefunctions we can remove the condition on Qij by creating a 

nonlocal overlap operator

S  =  l  + ^ Q i , | f t ) ( f t |  (2.18)
ij

which makes

{(l>i\S\<f>j)R = {ipi\i’j)R- (2.19)

This means that the only constraint on and <j)i is for the matching of the two wave­

functions at the cutoff radius. We thus have the freedom of taking the cutoff radius to 

be well beyond the radial wavefunction maximum which means that it is now possible 

to perform computationally cheap simulations on atomic systems that would normally 

require a “hard core” pseudopotential, that is first-row and transition metal systems.

Another method that has been developed that bridges the divide between the LAPW 

methods and the pseudopotential methods (that combines the versatility of LAPW with 

the formal simplicity of pseudopotentials) is the Projector Augmented Wave method (or 

PAW method) [136]. In fact it has been shown that the LAPW method is a special case 

of the PAW method, and that the pseudopotential method is obtained by a well-defined 

approximation[136]. We have used the PAW method to perform the various ab initio
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DFT calculations we have performed, and will provide the details of the PAW method in 

the next section.

2.1.4 The PAW method: Wavefunctions

Equals i
|T>

Minus ;

l(p>

|(p>

Core region

Figure 2.1: Schematic of the PAW scheme.

The main idea of the PAW method [136] is to split the all-electron (AE) wavefunction 

into three parts;

l®> =  !«'> + (2.20)

1^) is the AE wavefunction and |^) is a pseudo (PS) wavefunction analogous to the 

wavefunctions of the pseudopotential method, or the envelope functions of the linear 

method. |0j) are a set of AE partial waves within some core region, while |0i) are a set 

of smooth partial waves which coincide with the corresponding AE partial waves outside 

the core region. |pi) are projector functions localised within the core region which obey 

the relation = ôij. As has been demonstrated previously there is thus a close

connection to the ultrasoft pseudopotentials of Vanderbilt [135].

The AE wavefunction above is obtained by applying a transformation T  to the PS 

wavefunction. This transformation is defined to act only on a region Ür which encloses 

a volume around an atom. The transformation is

43



f  =  i  +  ^ r R .  (2 .21)
R

Within the augmentation region, every PS wavefunction can be expanded into a set of 

partial waves

=  (2 .22)

As \(f)i) = T\^i), the corresponding AE wavefunction is of the form

| $ > = f |$ )  =  Ç | « C i  (2.23)

with identical coefficients c*. This means that the linear transformation T  is defined as

f  = l  +  Ç ( |0 i > - |* ) ) < P i | -  (2.24)

Thence the full AE wavefunction can be expressed as

I») =  1$) + Ç  -  \À)ci) (2.25)

As T  is linear, the coefficients are scalar products

Q =  {pi\^) (2.26)

of the PS wavefunctions with some fixed functions {pi\ which are called projector func­

tions. We can then use this relation to obtain the full AE wavefunction as shown above.
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2.1.5 The PAW  m ethod; Operators and energies

As the PS wavefunctions play the role of the variational parameters (instead of the AE 

wavefunctions) we need to be able to obtain observable quantities as the expectation 

values of the PS wavefunctions. Our representations of the wavefunctions have been 

changed, so we need to transform our operators into new ‘PS operators’. If we have 

some operator A  that has an expectation value (A) =  where n is

the band index and /„  is the occupation of the state, then the PS operator is (A) = 

/n (^n |Â |^n)- For Quasilocal operators such as -V ^ /2  and |r)(r|, which are needed 

to calculate the total energy and charge density, the PS operator has the form

Â  = T U T  =  ^  +  Ç  lA) <Pi|. (2.27)
ij

To arrive at this expand f  using (2.24) and delete terms that cancel as \^i){pi\ = 1 

within ÜR and \^i) =  \<f)i) outside the augmentation region, remembering that the only 

terms which contribute are the on-site ones.

To then find the charge density we use a similar approach as to describe (2.27). The 

charge density at a point r  is the expectation value of the real space projection operator 

|r)(r|. We can divide the charge density like so

n(r) =  n(r) 4- n^(r) -  n^(r) (2.28)

where

and

M^r) =  fn{^n\Pi){(/>i\r){r\(f>j){pj\^n), (2.30)
n,{i,j)
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and

^  /n{^n|p*)(0i|r)(r|0j)(pj|^n>. (2.31)

Note that contains the contribution of the core states that

and n contain the contribution of the PS states (0^ and respectively). We do not 

construct a PS core state for each state separately, but rather construct a PS core density. 

The total energy functional

E  =  -  iv ^ |5 „ )  + ^ j d r j d r ‘ + 1 d r n e ^ A n )  (2.32)

can also be divided in a similar way to the charge density: E  — É+E^ —É^. È  is evaluated 

in regular grids in Fourier (or real space) and E^ and are one-centre contributions 

which are evaluated in radial grids in an angular momentum representation. The charge 

density of the nucleus is denoted by and the exchange and correlation energy by Cxc- 

The three contributions are

+ y  dr I  dr’ + J  dr m  + f  dr ne., (n)

, (n^ 4- n){n^ -f n)

(2.33)

(2.34)

(2.35)

+ \  j  dr j  dr' + j  dr n^v + j  drnU ..(n^).

The potential v is an arbitrary potential located in the augmentation region. It has no
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contribution to the total energy as n = within the region. The n is the compensation 

charge density and is introduced so that the difference in the AE and PS one-centre 

contributions {n^+n^) — {n+n) to the charge density has vanishing electrostatic multipole 

moments and thus no longer interacts with charges outside the augmentation region.

This compensation charge density is of the form n =  ur with

nR{r) = ' ^ 9 RL{r)QRL (2.36)
L

and is expressed as a sum of generalised Gaussians

9 r l ( R )  =  C ,|r -  R\‘Y l{ t  -  (2.37)

each of which is normalised so that its multipole moment is unity.

We finally need to evaluate the exchange-correlation energy for a one-centre expansion. 

We expand the energy density in the deviation of the one-centre charge density from its 

spherical part

J  d r njcj€xc(^iî) ~ J  ^iî,f=o^xc(^iî,i=o)

where fixc{n) = d[nexc(»^)]/dn. A Taylor expansion up to second order is usually sufficient 

[137]. The PS charge density is treated identically.

To find the forces that are acting on each atom we use the Hellman-Feynman theorem

[138, 139, 140], where the force on each atom can be reduced to

§ - < •
dH
dX

/($!$> +
d ^ \  / d ^

If the eigenstates are exact, the Bom-Oppenheimer approximation is in use or a plane 

wave basis set is used then only the first term in (2.39) is used (the Hellman-Feynmann 

force). Otherwise all of the terms in (2.39) are used (the Hellman-Feynmann force and
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the Pulay force corrections).

We have mentioned that DPT is an accurate ab initio numerical method which is 

available for finding the electronic structure of a solid. However, with accuracy comes 

complexity. In full ab initio DPT one needs to calculate the potentials and energies self- 

consistently, and if this includes exchange and correlation terms this can become quite 

time consuming. Is there a method available which gives results which are almost as 

accurate as the results given by DPT but which is far less expensive in terms of time and 

computer power? The answer is yes, the tight-binding methodology.

2.2 M odelling systems: Tight-Binding

In the tight-binding formalism, we can expand the eigenstates of the Hamiltonian in terms 

of an atomic-like basis set, and we can replace the exact Kohn-Sham Hamiltonian 

with a parameterised Hamiltonian matrix [141]. In general the basis set is not constructed 

explicitly, but possesses the same symmetry properties as atomic orbitals, and only the 

atomic orbitals in the range of energies we are interested in are considered. Por instance, 

when modelling silicon we can neglect the Is, 2s and 2p  orbitals and consider only the 

3s and 3p orbitals. We start by taking the historical overview of how the tight-binding 

method was developed and then later on discuss the modern concept of the tight-binding 

approximation.

Consider the electronic structure of an extended system. Take an atomic orbital 

<f>ia{T — Ri) located at Ri, and take the Bloch sum [142] over all periodic images of the 

orbital

N   ̂ exp[ik.Ri]<l)ia{r -  Rj) (2.40)
Ri

where N  is the number of periodic images. The atomic orbitals are not suitable for 

analysis purposes as they are not orthogonal to each other. It is possible to perform a 

transformation to these atomic orbitals that would create an orthogonal set, the Lowdin 

functions
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V’ia — (2-41)
t ‘ a ‘

where S  is the overlap matrix. Compared to the atomic orbitals, the Lowdin functions 

ipiair — Ri) have a greater extent in space. These sums are then used to create the 

Hamiltonian matrix elements

Hiaj0 = N   ̂ ^  e x p [ i f c . ( i 2 i X f  -  Ri)Hil)j^{r -  Rj)dT. (2.42)
Ri,Ri ''

This can be simplified (by noting that one of the two sums cancels the N~^ factor) to

Hiajfi = ^  exp[ik.{Rj -  E^)] x /  ^*^,(r -  Ri)Hil)j^{v -  Rj)dr. (2.43) 
Ri

What Slater and Koster did [143] is to replace this integral with a parameter which 

depends only on the internuclear distance [.R, — R^ j and the symmetry of the orbitals. It 

is common at this point to use the two-centre approximation, wherein the potential part 

of the Hamiltonian is replaced by the potential acting only on the two atoms i and j .  

The Lowdin functions are then replaced with a set of functions with well-defined angular 

momentum. This means that the Hamiltonian can be written as

Hiajfi =  ^  exp[ifc.(Rj -  Ri)]Ki3j{\Rj -  Ri\)Ga^j{k,l,m)  (2.44)
Rj,J

where J  represents the angular momentum of the bond which can have either value zero if 

the bond is an s orbital or zero or one if a p orbital. The direction cosines are represented 

by k ,l  or m. The tabulated function is ha,i3,j- We have thus replaced an integral with 

Lowdin functions that extend out to a large distance with a tabulated function that 

terminates much closer to the atom. Hence tight-binding.
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The eigenstates of the Hamiltonian matrix are then obtained by solving

(2 .45)

To then turn the electronic structure method into an atomistic method we need to be 

able to calculate the total energy and the forces acting on each atom. The band structure 

of a crystal is found by integrating the density of states n{E)

r^f
-Ê band =  I En{e)dE  (2.46)

where E f  is the Fermi level. All other contributions to the energy are described by a 

pairwise function

■E'rep — Ujj ' (2.47)

The total energy is thus the sum of these two terms [144, 145]. But why can we write 

the total energy as a pair of simple to evaluate terms? To see why we can do this we 

need to study the relationship between tight-binding and DPT.

Let us start with an approximate charge density pf  [141, 146,147], and then construct 

the single-particle Kohn-Sham potential

V  =  v { t )  -f V^{r) + (2.48)

where u(r) is the ionic potential, V^{r) is the Hartree potential and /x̂ c(**) is the exchange 

and correlation potential (the last two terms are due to p^). You can then add the kinetic 

energy operator and you will form the Kohn-Sham Hamiltonian which can then be solved 

self-consistently. The total energy Eks can be written in a variational form

This can then be rewritten as (in basis-independent form)
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E ks w 'n-[p°“*iî] -  T r / (y / /2  +  + & c [ /]  + Eu. (2.50)

We can expand and manipulate (2.50) to obtain the energy in the tight-binding bond 

form (see Appendix A)

Eb «  (p°"' - p ‘ ) H  +  A £e, [ / ]  +  ABxo [ / ]  (2.51)

where the energy is written in terms of the electrostatic energy, the exchange and corre­

lation energy and the band energy.

So, can we make the approximation that any terms in the binding energy which are 

not in the sum of occupied eigenstates be approximated by a sum of pair terms? The 

change in electrostatic energy is already in that form. Thus the only term we need to 

consider is the exchange and correlation term. It is surprising that we could approximate 

this to a sum of pair terms as the exchange-correlation energy functional is nonlinear. 

Starting with the correlation energy, we can write this as [141, 148]

=  J d r d r ' (2.52)

where he is related to the pair correlation function, but only weakly [148], so we can

make the approximation that change in correlation energy upon forming the bulk is

AEc =  i  ^  ^  /  /  drdr' (2.53)
i J I I

which is a sum of pair terms.

The exchange energy can be written in the Hartree-Fock approximation (there is an 

external potential which gives rise to a Hartree-Fock density with p^^(r) =  p-^(r)) as
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(2.54)

As is equal to p^{r) we can substitute for p^^  in the above expression which

leads to a sum of pair terms in the exchange energy.

We can thus explicitly write the total energy of the system as

Etot {{Rk}) = E b s  {{Rk }) + Erep ({ |^ t ~ Ri\}) (2.55)

=  Y i "ifi (l^ ‘ -  '■‘ I) (2.56)
t k <l

where n* is the occupation number of orbital i and c* is the eigenvalue of orbital i. The 

force on each atom can then be calculated by using the Hellman-Feynman theorem (2.39).

However, before any work is performed on solving the Hamiltonian and finding the 

total energy and thus the forces acting on each atom, we need to input information into 

the Hamiltonian, so that we can accurately represent the system we are modelling. In 

other words, the Hamiltonian needs to be parameterised, values need to be found for onsite 

and off-diagonal elements. In practice there are two ways this parameterisation can be 

performed, empirically or from ab initio techniques (the density-functional-tight-binding 

method first discussed by Porezag and Prauenheim [141, 149,150,151,152,153,154]). An 

example of an empirically based tight-binding scheme is the SSH Hamiltonian [18, 57, 59], 

which shall be discussed in more detail in the next chapter, where values are given for 

the onsite energy, hopping parameter and electron-phonon coupling parameters. The ah 

initio DFTB (Density-Functional-Tight-Binding) technique is discussed in Chapter 5.

Before we can talk about how we calculate the conductivity of atomic scale wires 

we need a general overview of the problem so as to clarify a few issues, including the 

methodology of calculating conductance, the origin of resistance, measurement issues 

that in the real world could affect conductivity measurements, the details of how we 

calculate the transmission probability from the Green’s function of an electron scattering 

through the wire and how we deal with size effects. For a more detailed review the
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reader is advised to look at Datta [26] if they desire more information about the topic of 

calculating the conductivity characteristics of mesoscopic structures.

2.3 Transport in atomic scale wires: An overview

2.3.1 Introduction

We start with what is the most easy to visualise method of calculating the transport 

properties of the atomic scale wires, the Landauer approach [26]. This is to illustrate some 

of the basic concepts that are used in the calculation of transport properties, although 

we will stress that this is not how we calculated the transport properties of the various 

atomic scale wires themselves, as we work with wavefunctions.

In this approach the current through a conductor is expressed in terms of the proba­

bility that an electron is transmitted through the conductor. This is proportional to the 

number of modes that can be accessed by electrons in the valence band (or if holes, in the 

conduction band). And the number of modes is proportional to the size of the conductor. 

For a wide conductor there are many modes that can be accessed and the change in the 

number of modes available compared to the total number of modes is small, and thus the 

conductivity seems to go down smoothly. However as W  (the width of the conductor) 

decreases the number of available modes decreases and the ratio of the change in number 

of modes to the total number becomes large and so the conductivity goes down in discrete 

steps.

It is not a trivial problem to calculate the transmission probability. For instance, 

one would think naively that if a device is smaller than the mean-free path, then the 

probability of an electron to travel through the device is unity, which would mean that 

the resistance of the device is zero. However, experimentally the current that is measured 

passing through the device is finite which indicates that the resistance of this device is 

nonzero. Where does this resistance come from? Note that in all of the examples that 

follow the transport properties are calculated at zero temperature, that is that current 

only flows in the energy range < E  < 112 (where /zi is the chemical potential of contact 

1 and fi2 is the chemical potential of contact 2), and that the net current only flows from 

lead 1 to lead 2 and not vice versa (this is only true for zero temperature). Current flows 

in both directions but all terms cancel except in the energy range jUi < E  < fi2 -
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Contact 1 Contact 2

Lead 2Lead 1

Conductor

Figure 2.2: Typical experimental setup (top) involving an atomic scale conductor. Also 
shown is energy range (bottom) in which net current can flow. For definition of what F+ 
is see text.

How many electrons are involved in conduction between the terminals? We assume 

that the contacts are ‘reflectionless’. This is a simple situation, +k states in the conductor 

are only occupied by electrons in the left terminal, and -k states are occupied by electrons 

originating in the right terminal {k denotes wavenumber in the x direction). The quasi- 

Fermi level F+ (if the entire system is not in equilibrium as tends to be the case for 

transport problems, then there is not an uniform Fermi level across the system, so we 

have to use a local quasi-level which can vary in space F+) for the +k states is always 

equal to /ii. If both conductors are at the same chemical potential /ii then the potential 

of the electrons in the right lead (the -k electrons) is equal to F+. Now suppose we change 

the potential at the right contact to /Z2- The potential of the electrons F+ is unchanged, 

as electrons that are in the +k states originate in the left terminal, and no electrons from 

the right lead can access these states. Similarly, the quasi-Fermi level F “ for the -k states 

is solely determined by fi2 - Therefore at low temperature the electrons that are involved 

with transport are all those electrons with 4-A: wavevectors lying between /ii and fi2 (see 

Figure 2.2).

Assuming zero temperature and assuming that the number of modes M  is constant 

over the range (/ii — /i2), the influx of electrons from lead 1 is given by
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I t  = {2e/h)M[pi -  ^2] (2 .57)

The outflux from lead 2 is given by multiplying the influx from lead 1 by the transmission 

probability T

1+ =  {2e/h)MT[fii -  /is] (2.58)

with the rest of the current reflected back into lead 1

J f  =  (2e/h)M (l -  T)[fii -  /is]. (2.59)

The net current I  is thus the difference between and / f .  The conductance is

I  2e^
G =  ----------^  =  — MT. (2.60)

(Afi -  m )/e  h

This term can be written as

This gives us an intuitively pleasing result as the resistance of a conductor is related to 

the ease in which electrons can travel through the conductor, but there is also a constant 

term C. The physical meaning of this term is that this is the ‘contact’ resistance, that 

is the resistance due to the interface between the conductor and the contact of the 

leads. Experimentally it has been observed that even for the case of a ballistic conductor 

L < L m  (see Chapter 1), there is a finite resistance (the conductance saturates at some 

value Gc). In the leads there are many modes that are accessible to the electrons, but in 

the atomic scale conductor there are only a few modes. To get from a mode in the lead 

to a mode in the conductor requires a redistribution of current in the modes in the lead.
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We thus have a contact resistance ^. The more modes there are in the conductor the 

less redistribution of current is required in the leads and the lower the contact resistance.

2.3.2 W here does resistance come from?

So we have an expression of the resistance that is related to the ease with which electrons 

can travel through a conductor. But where does the resistance come from? Is it associated 

with the scatterer that is in the conductor that prevents electrons from travelling through 

the conductor? Is the potential drop across the scatterer?

Normalised chemical potential 1 
1

1-T

Near scatterer 

Far from scatterer

Figure 2.3: Illustration of the energy distribution of -k and +k states in a conductor with 
one scatterer X and a probability of transmission from left to right of T.

We need to consider the energy distribution of the carriers in the positive and negative 

fc-states to the left and the right of the scatterer (see Figure 2.3). We will assume that 

we can treat the electrons as semiclassical particles, thus ignoring interference effects. 

The +k states to the left of the scatterer are occupied only by electrons coming in from 

the left contact. Thus these states have the same electrochemical potential as the left 

contact, that is /ii. At low temperatures we can write the distribution function as

(2.62)

Equivalently the -k states to the right of the scatterer have the same electrochemical 

potential as the right contact and the distribution function for f~{E)  for the -k states
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IS

f - { E ) ^ 0 ( t i 2 - E ) .  (2.63)

Now if we consider the -k states to the left of the scatterer or the +k  states to the right 

of the scatterer the situation is more complicated. All states below ^2 are fully occupied 

but the states in the energy range between ^2  and /xi may only be partially filled. The 

distribution function of +k states to the right of the scatterer is (remembering that there 

is a probability T  that the electrons propagate through the scatterer)

f+{E)  «  0(/%2 - E ) + T  {6 (1̂ 1 - E ) -  e{fi2 -  E ) ) . (2.64)

And for the -k states to the left of the scatterer

/  {E) % — E) + {1 — T) — E) — d{fj>2 — E ) ) . (2.65)

Further away from the scatterer these distributions are not valid as the electrons are free 

to establish a Fermi type distribution

f - { E ) ^ 9 { F '  - E )  (2.66)

f + { E ) ^ 9 { F "  - E ) .  (2.67)

The electrochemical potentials F ’ and F ” are determined using the conservation of elec­

tron number

F ‘ = fi2 + — /12] (2.68)
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F"  — /X2 +  F[fii — fi2] (2.69)

where we assume that there are relaxation processes that establish equilibrium for the +k 

states and among the -k states but that there is no energy transfer amongst the groups.

So how does the electrochemical potential vary with distance? To the left of the 

scatterer the potential is equal to fii and to the far right it is equal to F".  But to the 

near right of the scatterer the potential is strongly distorted away from a Fermi function 

In fact the electrochemical potential is not strictly well defined. We can define a potential 

such that integrating over energy would give us the total number of electrons, so that the 

potential to the near right of the scatterer is the same as the potential to the far right 

(but this will not tell us the energy distribution of the electrons). For the +k  states this 

is

F+ = m  (left) =  F" = ii2 + F[fii -  H2] (right). (2.70)

For convenience we can define normalised potentials and fi~ which are obtained from 

F+ and F~  by setting //2= 0 and fii =1 which gives us

/i+ =  1 (left) (2.71)

= T  (right) (2.72)

and for -k states

fi- = 1 - T  (left) (2.73)

= 0  (right). (2.74)

Thus we can see that there is a sharp drop across the scatterer (as expected for a
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localised resistance) with the normalised potential drop equal to (1 — T). The actual 

potential drop is the normalised potential drop multiplied by the applied potential (/zi — 

/i2). The rest of the applied bias T{ni -  ^ 2 ) is dropped at the interface between the 

contacts and the leads (the contact resistance see (2.61)).

2.3.3 M easurement issues

1 - T

Figure 2.4; Schematic of an idealised system (top) and a more realistic situation (bottom).

It is standard procedure to measure the voltage drop across a conductor with a four 

terminal device. But measuring the voltage across an atomic scale device is not a simple 

matter. For macroscopic devices, the presence of these probes is a minor perturbation 

to the current, that is the presence of the probes does not change the properties of the 

device. However when we get to the atomic scale the presence of the probes represents a 

major perturbation, and they could be the dominant source of scattering or resistance. 

Another factor is that atomic scale probes are rarely identical. For instance, a probe P I 

that is bent strongly to the left will couple far more easily to electrons coming from the 

right {-k states), than it would to electrons coming from the left (see Figure 2.4). The 

probe would thus measure a voltage close to that of a -k state //pi ~  (1 — T)Afji, where 

A/i = fii — fi2 . Similarly a probe P2 that that is bent strongly to the right would couple 

strongly to +k states and would measure a potential fipi ~  TAfx.

The measured resistance would then be
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( m p i  - / ^ P 2 ) / e  _  h  1 - 2 T  (0 7<\
I  2e2M T   ̂  ̂ ^

which for T  greater than 0.5 gives negative resistance. The measured resistance will in 

actuality lie in the range

^  ̂ (2.76)2e2M T  -  -  2e^M T

which, if the conductor is very long (and thus T  is very small) is of no relevance as 1 and 

1 - 2T are approximately identical.

We have thus seen that it is difficult even to measure the voltage drop across an 

atomic scale device. The interpretation of four terminal voltage measurements was for a 

long time in dispute. The methodology that was eventually used to solve this problem 

was to realise that there was no qualitative difference between the current and voltage 

measurements (it was Biittiker who first noted this [155]). We start with the simple 

two terminal linear response (or low bias regime where current is proportional to applied 

bias)

I  — —T[/zi — 112] (2.77)

where T  is the product of number of modes M  and the transmission probability per mode 

T  at the Fermi energy, assumed to be constant over the range (/zi — /zg)- One can then 

treat all probes probes equally and extend (2.77) to include all terminals

ip — ^ ^^[Tg<_p/Zp Tp^q^p] (2.78)

which can be rewritten (using V  = fi/e)
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Ip — ^pq^q\ (2.79)

where

h

The various coefficients of G  must obey the sum rule

2g2_
^PQ =  (2.80)

^ ^ G q p  — Gpq (2.81)
9

SO that when all of the potentials are equal no current flows through the device. We can 

use this sum rule to rewrite (2.81) as

Ip = 'E<^p.,[Vp-y,]-  (2.82)
q

The conductance coefficients also obey the relation (in a magnetic field B )

\Gqj -̂\-B — \Gpq\-B- (2.83)

If the magnetic field is zero then the coefficients are zero and (2.82) is what we would 

get if we applied Kirchoff’s loop law to a network of conductors that connected every 

terminal p  to every other terminal q. If a magnetic field is present then this relation does 

not follow, as in general Gqp ^  Gpq.

2.3.4 C alculating the transm ission probability

How does one actually calculate the transmission function T? In coherent transport 

(which we assume is the case, see Appendix B for more information on the validity of 

approximations we make) this is usually calculated from the scattering matrix S . This
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relates the outgoing wave amplitudes to the incoming wave amplitudes at the different 

leads. The transmission probability Tmn is the square of the magnitude of the corre­

sponding element in the 5-matrix

Tm^n — (2.84)

where m denotes a mode in lead q and n denotes a mode in lead p. The 5-matrix is 

defined in terms of the ‘current amplitude’, which is equal to a wave amplitude times the 

square root of the velocity.

To conserve physical properties, the 5-matrix must obey certain constraints. In order 

to conserve current, the 5-matrix must be unitary. This makes sure that the sum rule for 

the conductance matrix is satisfied (for coherent transport). Also, for coherent transport 

the 5-matrix must obey the reciprocity equation, i.e., [5]+g =  [5^]_g.

The 5-matrix tells us the response at one lead due to the excitation at another lead. 

This is similar to the Green’s function, which can tell us what the response is at any 

point in the conductor, due to an excitation at any other point. The Green’s function 

approach is extremely useful when we try to include the effect of interactions (such as 

electron-electron or electron-phonon interactions).

Whenever the response R  is related to an excitation 5  by a differential operator Dop 

such that DopR =  5, we can define a Green’s function such that

R  = D~^S = GS. (2.85)

The problems that we will want to solve are of the form

[E — ifop]^ =  5  (2.86)

where ^  is the wavefunction and 5  is an equivalent excitation due to an incident wave. 

The Green’s function corresponding to this problem would be
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c? =  [B -  (2.87)

Depending on the boundary condition, the Green’s function can either be retarded or 

advanced. A retarded Green’s function is one in which the response progresses outwards 

from the point of excitation. An advanced Green’s function is one in which the response 

progresses inwards to the point of excitation.

One can incorporate the boundary conditions into the equation itself, by adding 

an infinitesimal imaginary part. That is that instead of the above equation, we have 

G{S + iT]) = R  for the retarded function, where f} >0.  This has the effect of making the 

retarded function grow exponentially as we move away from the point of excitation, which 

means that that solution is unphysical. Similarly, for the advanced function G{S—iT}) = R  

where rj > 0 .

To directly relate the s-matrix to the Green’s function we make use of the Fisher-Lee 

relation [156]. We consider a conductor attached to a set of leads as shown in Figure 

2.5. The interface between lead p  and the conductor is defined by X p = 0 .  denotes 

the Green’s function between a point lying on the plane Xp=0 and another point lying

a t  X q — 0

( 2/ 9 ) 2 /p ) — G  { x q  —  0 , î / g j X p  —  0 , 2 /p ) ' ( 2 . 8 8 )

Assuming that the leads are one dimensional and that they are single moded, we know 

that the unit excitation at Xp=0 gives rise to a wave of amplitude A~  away firom the 

conductor and a wave of amplitude towards the conductor. A wave travelling toward 

the conductor is scattered by the conductor into different leads. We can thus write

(2-89)

We then use the properties of one dimensional Green’s functions that the function is 

continuous and the first derivative is discontinuous by 2 m / W e  can rewrite this to
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obtain

S q p  — 6 q p  +  i f l y J V q V p G  qp (2.90)

which thus relates the s-matrix to the Green’s function. It is easy to generalise this 

argument to include multiple modes.

a ;

Ycyp
A

Lead p

X =  0
p

Figure 2.5; Unit impulse in lead p leads to an incident wave which is partially transmitted 
to the other leads.

2.3.5 Size effects

Now that we have detailed how to construct the Green’s function from the Hamiltonian, 

how to obtain the S-rnatrix from the Green’s function, and how to obtain the transmission 

function from the 5-matrix, it would seem simple to setup the matrix [(F7 -t- irf) — H] 

and invert this to construct the Green’s function = [(E -I- ir}) — H]~^. The problem 

is that this matrix is infinitely dimensional as it includes the effects of the leads (which 

are infinitely long). If the matrix is just truncated at some point, then we get boundary 

conditions which reflect waves.

The Green’s function can be partitioned into submatrices as follows

Gp Gpc {E -f- ir])I — Hp Tp

Gcp Gc t;  e i  -  He

- 1

(2.91)

where the matrix [{E+ir])I—Hp] represents the isolated lead and [ E I - H q] represents the 

isolated conductor. The coupling matrix is non-zero only for points which are adjacent
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to each other rp(pi,i) = t .

Solving the linear equations for the submatrix Gc  we find that we can write the 

Green’s function for the isolated semi-conductor as

Gc =  [EI - H e -  (2.92)

where =  [(£? 4- irf)I — All of the matrices in this expression are of finite size

C X C, with C the number of points inside the conductor. However, the effects of the

infinite lead are taken into account exactly through the term r+GpTp. As is the

Green’s function of an isolated lead it can be determined analytically.

We can thus write the Green’s function as

where

=  =  (2.94)

Thus the effect of the leads is taken into account through the term 2 ^  which is referred 

to as the self-energy of the leads.

2.4 Calculating the conductivity

To solve the problem of finding the conductivity of a long atomic scale wire including 

electron-phonon coupling, we used the method of Bonca et al [17], where we map the 

many-body problem in a large variational space exactly onto a one-body problem (see 

Figure 2.6), albeit for the case of one electron injected into the atomic scale wire at 

a time and assuming that the electron undergoes coherent and not diffusive transport. 

The real-space Schrodinger equation is then solved for the one-body problem. We assume 

that the Hamiltonian that needs to be solved consists of a kinetic energy term, a phonon 

creation/ annihilation term (phonon energy term), and an electron-phonon coupling term
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2 phonons

1 phonon

o — o — o — o — o — c >
0 phonons

SiteO)

Electron motion

Figure 2.6: Schematic diagram showing model of mapping of many body system to one 
body system. Various energy channels shown, some of which can only be accessed by 
phonon scattering. For simplicity we only show the channels associated with one phonon 
mode.

[21, 157]. As an atomic wire is effectively one-dimensional, the Hamiltonian can be 

written as one-dimensional and so is dependent on one coordinate only, j .  For a one­

dimensional wire we are only concerned with the nearest neighbours, so we can replace 

an arbitrary index K  by & term j  + I and j  — I. The interaction with the harmonic 

modes should be localised in the atomic wire. The Hamiltonian is thus generally (in 

eigenvector-space n)

(2.95)
q ,n ,m

where a+ and a , {c^ and Cn) are the creation and annihilation terms of the phonon mode 

q with frequency Ug (of the electron in state n with eigenenergy €„) and 7g„m represents 

the coupling of phonon mode q from state n to state m. Nonlinear phonon modes or 

nonlinear phonon-phonon coupling can be added to the Hamiltonian by adding terms of 

higher than quadratic order, such as (o* )̂  ̂ + H.c.. Similarly nonlinear electron-phonon 

coupling can be added by adding terms such as c^c{a'^)^ + H.c. (by nonlinear we mean 

that there are terms which are not proportional to the quadratic).

We will generally use the following setup, that the atomic scale wire (containing Na 

sites) described by (2.95) is embedded in a heterojunction and is connected to idealised
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one-dimensional metallic leads (labelled L for left and R for right) whose Hamiltonians 

are

+00 . .

H k =  ^  ^Kd]dj 4- Pk  [d ]d j - i  -t- (2.96)
J=JVa + l

and

Hl =  ^  Chd^dj +  I3l (d^jdj-i (2.97)
j=—oo

via the coupling matrices

Tr — Ï/R +  \̂jadNa + l^ (2.98)

and

Tl =  VL (dlci  -f cjdo) • (2.99)

We define the operators d] (dj) to create (annihilate) an electron on a site j  inside the 

leads, with on-site energy c l .r  and nearest neighbour hopping integral /?l , r . The hopping 

matrix elements between the ends of the molecule and the right and left leads are denoted 

by v l,r . Inside the atomic scale wire it is easy to transform from a site representation 

to an eigenstate representation by the operation where Zn{j) are the

components of the nth eigenstate on site j .

We perform the procedure to map the many-body problem onto a single-body problem 

with many channels by writing the total scattering wavefunction |^ (^ ) )  for the total 

energy E  of the system as

= E  (2-100)
hi^q)
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and the basis set used to expand the scattering waves is

i j , K ) ) = 4 n ^ ^ i “> (2.101)
q V ^ 9 -

where |0) is the ground state of the neutral molecule and (n,) is the set of phonon 

occupation (how many phonons are occupying each phonon mode). This means that we 

have not explicitly separated the electron and phonon degrees of freedom. For hole (or 

electron) propagation through the atomic scale wire each channel has a different set of 

phonon occupation numbers (n^). To find the total wavefunction |$(F7)) we have to solve 

the Schrodinger equation with the total Hamiltonian

H\^{E))  = {Hw + T l + H l + T r + Hr ) |^ (E )) =  E\^{E)) .  (2.102)

The total energy E  of the system (including electron injection energy) is conserved during 

the scattering process (this is only true for dissipationless systems)

E  = E \ n  + ^  T lqhu!q  = E o u t  + ^  TU qhuJq  (2.103)
9 9

where Ein and (n^) axe the initial energy and set of phonon occupation numbers and 

Eout and (m,) are the final energy and set of phonon occupation numbers. Only if the 

process is elastic will (n,) =  (m^). We do not assume that this is the case.

The form of the wavefunction coefficients inside the leads is asymptotic, and corre­

sponds to Bloch waves propagating inside the leads whose amplitudes are the reflection 

and transmission coefficients (r(,n,) and t^mg) respectively) of the electron in different 

channels. For the left lead (where we inject an electron) the coefficients are (for j  < —1)

" j .K )  = +  r-(m,)e (2.104)

For the right electrode j  > Na + 2 the wavefunctions are described by

68



(2.105)

The are the wavevectors of the Bloch waves in different channels. To find the 

dispersion relations for these wavevectors we have to solve the Schrodinger equation 

(j\H\'9{E)) = E{j\'^{E)).  We find that for the incoming wave the wavevectors are

^ i n  =  Cl  +  2 ^ l  c o s  , (2.106)

for the outgoing reflected wave the wavevectors are

E o n t  = €L  +  2 /9 l  c o s  (2.107)

and for the transmitted wave the wavevectors are

- E o u t  =  C R  + 2 / ? r  COS . (2.108)

All our transport calculations take place in the limit of low temperature. This means 

that we can take the initial set of phonon occupation numbers (n^)=0. If the injected 

electron’s energy lies outside the channels defined above, that channel is not propagating 

and an electron has to tunnel through the gap between leads without any propagation 

through the wire.

We can relate the reflection or transmission coefficients to the wavefunction coefficients 

by solving {j \H\^{E)) = E{j \^{E))  at site j  = 0 and j  = Na + 1. The relations would 

be

and
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^(m,) -  (2.110)

where (0) is the elastic channel and (m,) 7̂  0 are the inelastic channels.

Finally one needs to find the wavefunctions on sites j  = 1. .  .Na. As we have de­

fined the wavefunctions in terms of a series of channels and as we are allowing electrons 

to propagate only via nearest neighbour sites, finding the wavefunctions thus becomes 

equivalent to solving the complex linear system of the form M-g =  where g  are the 

otj,{riq) and d is imaginary. The matrix M  is by definition sparse, but if there is a large 

number of phonon modes with a lot of different occupations solving this linear system 

becomes unfeasible. One method of avoiding this numerical problem is to use the prop­

agation matrix method (where we can use simpler tight-binding matrix equations), but 

as explained above, this can be rewritten as a Green’s function method.

Using a Green’s function method allows us to remove the leads by introducing em­

bedding potentials. To then find the solution of the full scattering problem we want to 

propagate a source term |s(F?)) (which is an injected plane wave at energy E)  through 

the wire

|a(£)> =  G,ff{£)|s{£)> (2,111)

where

|a (S ) ) =  a„,(„,,(B )|n.(n,)>  (2.112)
n , ( n , )

is the wavefunction of the scattering state and

Geff(£) = [ E - H w -  E ^(£) -  E '‘(B )]-‘ (2.113)

is the effective Green’s function of the wire connected to the leads. H w  is the Hamiltonian 

of the wire in eigenvector-space (2.95): E l and E r  are the complex embedding potentials

70



of the two electrodes. These embedding potentials are diagonal matrices in the |n, (n^)) 

basis set with components

(2.114)

and

(2.115)

where pf.R is the ‘surface’ Green’s function of the isolated leads (see also (2.94)). This 

is analytically given by g}%j(^) =  exp(*A;^^(E))//)L,R.

We also need a form for the source term |s (£?)). This has components given by

(2.116)

E  — S(J5) Qfm 2(E) a{E) s(E)

T>{E) —E  +  Hyi/ +  %e 2(E) Qm a{E) — s(E)

We can simplify the solution of the system (2.113) by explicitly separating the real 

and imaginary parts of the vectors and matrices as follows

(2,117)

where S =  +  S^. This renders the matrix above real and symmetric and thus

amenable to standard computational methods of solution (such as the conjugate gradients 

technique).

To find |a(E)) we solve G ^ |a )  =  |s). The asymptotic outgoing waves on the right 

lead can be written as

The transmission coefficients are related to the value of \a{E)) at the last atomic site
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of the wire connected to the right lead. We can relate these coefficients to the inelastic 

transmission amplitude t {E ,E ‘) where E ‘ is the energy of an electron in an outgoing 

channel after it has been inelastically scattered. This is given by

*(£,£;') =  (2.119)
(m ,) q

The effective total transmission probability is then

T(E)  =  Y .  (2.120)
( m , )  / l L S m » , 0 )

To find the current which is leaving through the outgoing channels in the right electrode, 

(or reflected from the incoming channels in the left electrode) we use

(2.121)

As we are only considering hopping between adjacent sites, the current in each channel 

of the right electrode is found to be proportional to the transmission amplitudes.

(2 .122)

We have now discussed how we can find the structure of candidate atomic scale wires, 

and then having found the structure and obtained various pieces of physical information, 

how we can find the conductivity characteristics of these atomic scale wires, including 

electron-phonon effects. However we have not yet explained how to obtain such physical 

information such as the electron-phonon coupling 7^nm or the phonon spectra. An illus­

tration of how this information can be calculated shall be provided in the next chapter.
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Chapter 3

The Polyacetylene molecule: 

An ideal testbed  for studies of 

atom ic scale wires

In this chapter we discuss the physical and transport properties of the polyacetylene 

molecule. This molecule is an ideal testbed for experimental and theoretical studies 

of molecular wires as it is such a simple molecule to study, both experimentally and 

theoretically. Experimentally it is quite easy to prepare a crystal of polyacetylene with 

the polymers in a highly anisotropic orientation [158], with a small number of crosslinks 

between polyacetylene molecules (meaning that these molecules are essentially isolated 

[18]). Thus if any electrons are injected into the crystal they it is likely would travel 

through a single molecule before leaving the crystal. This means that these polyaeetylene 

molecules can be treated as isolated molecular wires at the atomic scale (and in fact we 

consider only a single polyacetylene molecule bridging the gap between two leads in our 

calculations). Prom a theoretical viewpoint these molecules are also easy to study as 

they can be modelled with a quite simple one-dimensional Hamiltonian such as the Su- 

Schrieffer-Heeger (SSH) Hamiltonian [57]. This chapter is structured in the following way. 

Firstly we provide more information on the experimental properties of the polyacetylene 

molecule and the different structural isomers of the molecule. We then detail the SSH 

Hamiltonian that can be used to model these molecules, how to solve the Schrodinger
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equation using this Hamiltonian and what the various intrinsic defects that are formed 

in the chain under various boundary conditions look like. Next we discuss how we can 

calculate the classical phonon modes of the molecule and determine which of these phonon 

modes couple strongly to the defects that axe formed when charge is injected. We then 

detail how to calculate the electron-phonon coupling constants that are required in order 

to calculate the transport properties of this molecule (2.95) and the transformation from 

‘classical’ phonons to ‘quantum’ phonons (these are required so that we perform the 

transport calculation on a fully quantum mechanical level). We conclude this section by 

briefly discussing the transport properties of a polyacetylene molecule when a polaron is 

formed upon hole (or electron) injection into the chain.

3.1 Background Information

Polymers can be divided into two types; saturated polymers in which all four carbon 

valence electrons are tied up in covalent bonds and are thus insulators, and conjugated 

polymers where three of the electrons are in sp^ hybridized orbitals (two of the a-type 

bonds connect neighbouring carbons while the third bonds to the neighbouring hydrogen 

side group) and the fourth electron is in a sp^p^ hybridized orbital. This means that 

conjugated polymers can be expected to display semiconducting or metallic properties. 

As polyacetylene ((CH)x) is such a conjugated polymer it does not behave as a  insulator, 

rather, because the tt band is half filled and as there is strong intra-chain bonding (~ 3.0 

eV) and weak inter-chain interactions (~ 0.1 eV) it behaves as a one dimensional metal. 

Such a one-dimensional metal is thus susceptible to a  Peierls distortion (see Chapter 

One) [113, 159], and so polyacetylene molecules are dimerised, with an equilibrium bond 

modulation of the order of 0.03-0.04 Â [18]. This renders polyacetylene a semiconductor, 

and due to the Peierls distortion there is a strong coupling between electrons and phonons. 

(This may not be strictly true as there is some debate in the literature whether the 

majority of the dimérisation that is observed in polyacetylene molecules is due to electron 

correlation effects [122,160]. We choose to use the simple model of the SSH Hamiltonian 

to perform our calculations neglecting electron correlation effects which are in more 

sophisticated models such as the PPP Hamiltonian [161, 162], which is simply the SSH 

Hamiltonian but with an additional electron-electron interaction term describing the 

Coulomb repulsion between the tt electrons occupying two different sites.
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Figure 3.1: An illustration of the difference in chemical structure between trans­
polyacetylene and cis-polyacetylene.

Polyacetylene also possesses a degenerate ground state whereas most other conjugated 

polymers do not (polyacetylene is the simplest degenerate conjugated polymer, other 

degenerate conjugated polymers have longer repeat distances). This means that solitons 

(as opposed to polarons) are the dominant charge storage species. This comes with 

a qualification however. As can be seen in Figure 3.1, there are two arrangements in 

which the polyacetylene molecule can form, with either two (irons-PA) or four (cis-PA) 

monomers per unit cell (where PA is shorthand for polyacetylene). Although you can 

easily have twofold degeneracy for irons-PA, in cis-PA no such symmetry exists. Hence 

the ground state of cis-PA is nondegenerate which means that the dominant charge 

species are polarons and not solitons.. Therefore it would be correct to say that only 

irons-PA has a degenerate ground state. Further discussion of PA will only detail trans- 

PA.

There is plenty of evidence that PA can be accurately modelled by one-dimensional 

tight-binding theory. The ratio of strong intra-chain coupling to weak inter-chain cou­

pling has been confirmed by band calculations [163, 164]. The one dimensional band 

structure has been experimentally confirmed by resonance Raman scattering [165, 166, 

167, 168, 169] and electron energy-loss spectroscopy [170]. Doping of the molecule with 

(for instance Na+ ions for n-type doping and NO+PF^ for p-type doping [18]) will tend 

to introduce transient charge species such as polarons and bipolarons into the molecule. 

For a more detailed review of the properties of polyacetylene and other conjugated poly­

mers, the reader is advised to refer to the review by Heeger et al. [18]. Our calculations 

only deal with neutral polyacetylene molecules that are undoped.

Our discussion of the polyacetylene molecule is limited by the extent to which we
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can model the structure using a tight-binding method, and then using this tight-binding 

method to calculate the phonon spectrum and then transform these ‘classical’ phonons 

into ‘quantum’ phonons. We also delineate how we can then calculate electron-phonon 

coupling constants for the injection of a single electron or hole. However we do not then 

use this information to calculate the conductivity characteristics, as this work was per­

formed in collaboration with Hervé Ness and the calculation of the transport properties 

of this molecule was performed by him. We thus briefly sketch the methods we could use 

to flnd the conductivity for the other two candidate atomic scale wires. For more infor­

mation regarding the conductivity characteristics of polyacetylene molecules, the reader 

is advised to read the following papers [20, 21, 171]. However we first need to discuss how 

to model the structure of polyacetylene, with the commonly used Su-Schrieffer-Heeger 

Hamiltonian [57].

3.2 The Su-SchriefFer-Heeger (SSH) H am iltonian

The SSH Hamiltonian is explicitly one-dimensional, and only the Pz or tt orbitals are 

considered, as the a  and a* bands lie outside the region of interest. It explicitly possesses 

charge conjugation parity (that is the properties of particles with a positive charge and 

the properties of particles with a  negative charge are identical). The only energy terms 

that are considered are a simple quadratic term in the bond lengths which represents the 

elastic energy stored when the <r-bond backbone is distorted, and the hopping integral 

between adjacent carbon atoms which is expanded linearly around its equilibrium value 

to- The SSH Hamiltonian is thus

H  =  -  ^  Y^{to -  a{uj+i -  Uj))[c]^Cj+i,, -k 
j «

+ - i f  y i (« ,+ i  -11; + c)^ +  M j
(3.1)

where {cjg) are creation (annihilation) operators that act on the pz electrons on site 

j  with spin s and Uj is the lattice position of atom j  of the polyacetylene molecule. 

The electron-phonon coupling part of the Hamiltonian is in the term that contains a , 

with the phonons that are modelled are classical. C is a constant that is added to 

the bond length (uj+i — U j )  so that the chain is not unstable with respect to overall
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contraction. We also included the kinetic energy of the atoms so that we can later 

transform from real space j  to classical space n (however throughout the rest of this 

section this term is neglected). From now on the spin part of the suffix is suppressed. As 

mentioned above we explicitly ignore electron-electron interaction (which are included in 

the PPP Hamiltonian [161, 162]). An optional term may be added which is proportional 

to Uj =  {—l y u j ,  but for a trans-polyacetylene molecule this evaluates to zero. This is to 

make the trans-polyacetylene molecule exactly doubly degenerate.

The parameters that need to be determined are a, K  and to. K  is chosen to be 42 

eV Â“ ^, a value that has been adopted as the standard from Schugerl et al. [172]. The 

hopping parameter to is chosen so as to fix the total bandwidth 4to at its experimental 

value of 10 eV [163], which gives a value for to of 2.5 eV. The average magnitude of 

dimérisation in the polyacetylene molecule is denoted by uo and is chosen to be 0.025 

Â. The parameter a  is chosen so that the bandgap &auo is equal to the equal to the 

observed value of 1.4 eV. This gives a value of a  of 6.1 eV Â“ .̂

To then solve the Hamiltonian we need to use a two step recursive method. This 

is based on the explanation given by Wallace [59]. For a given starting geometry the 

Hamiltonian matrix is diagonalised, then the condition that dE/du j  = 0 for all j  is used 

to generate new displacements. Note that we do not use periodic boundary conditions, 

instead choosing a finite length chain. A finite chain is used as we are interested in 

charge transport across the molecule, it is meaningless to consider charge transfer across 

a molecule if periodic boundary conditions are in place.

We start by expanding the eigenfunctions over the atomic pz orbitals

4  =  (3.2)
j

where the matrix Z  is assumed to be real (i.e., there is no external B-field), n  represents 

the occupied states of the system and we neglect spin suffiixes. The total energy of the 

system can then be written as
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E  — — 2 ^  ^ (^ 0  — Oi{Uj+i — Uj))Zn{j  +  l)Zn(j)

 ̂ ” (3.3)

3 3

although of course for the atomic sites j  =  1 and j  = Na where Na is the number of atomic 

sites in the chain, the total energy contribution is different as this site is only onefold 

coupled instead of twofold coupled. This can be minimised with respect to {uj+i —Uj). 

We find that the self consistent equation we need to solve is

2a ^2 i^n{ j )Z n{ j  — 1) — Zn{j + l)Zn{j))  +  K{2Uj — Uj- i  — Ujf-f-l) — 0, (3.4)

which can be recast in terms of the one-electron eigenstates

2a ^ 2  ^n(J){Zn{j  — 1) — Zn{j + 1)) +  K{2Uj — Uj- I  — Uj+i) = 0, (3.5)

where Zn{j) are the components of the one-electron eigenstates with energy e„ of (3.1) 

for a given atomic configuration {uj }.

(3.5) can be expressed in matrix form, and so we find that we have M-M =  £? where

Mij = —20ij + 4- S i j - i  (3.6)

and

Fj = (2ajK)  2  Zn(j) (ZM  -  1) -  ZnU + 1)). (3.7)

For a finite length chain the matrix M  is tridiagonal. It can thus be easily solved with 

standard matrix solution techniques as found in [173]. For finite chains the boundary 

conditions are Zn{j) =  0 and Uj — 0 when j  < 1 or j  > Na- In practice we also keep 

one of the two ends fixed in space so as to avoid uniform translation of the chain (ui or
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=  0 ) .

We now show the various dimérisation curves (see 1.7) that can be produced when 

solving (3.6) for an isolated polyacetylene molecule for various initial conditions, such as 

chain length Na being an odd or even number, or whether any electrons or holes have 

been injected into the molecule. Firstly however we show the dimérisation curve of a 

neutral chain composed of a hundred atomic sites, see Figure 3.2. Note that for the 

majority of the chain interior the dimérisation curve is flat indicating that no defects are 

present. The dimérisation curve at the ends of the chain diverges from this uniformity 

however. This is a sign of edge effects, as near the edges the atoms are free to expand 

into space and thus increase their bond lengths. As the SSH Hamiltonian (3.1) possesses 

charge conjugation symmetry we get the same structure for hole or electron injection.

0.16

0.14

S  0 12

0.1

0.08

0 0 6
10020 40

Atom index (j)
60

Figure 3.2: Dimérisation pattern of a neutral polyacetylene molecule with one hundred 
carbon atoms.

When an electron is injected into this chain we flnd that the electron localises in the 

middle of the chain and forms a polaron with a width of 28 atomic sites at FWHM, as 

shown in Figure 3.3.

The injection of (for instance) four electrons into the chain results in the formation of 

two bipolarons, spaced apart by a distance of approximately 28 atomic sites as shown in 

Figure 3.4. The reason why bipolarons form is that the SSH Hamiltonian does not include 

electron-electron effects. Therefore the SSH Hamiltonian cannot accurately model the 

structure of the polyacetylene molecule when multiple electrons are injected the chain.

For a neutral chain with an odd number of atoms the fact that the polyacetylene 

molecule prefers to have both ends terminated with a double bond results in the formation 

of a soliton as shown in Figure 3.5, where the dimérisation changes sign in the middle of 

the chain. The soliton forms in the middle of the chain as this minimises the total energy
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Figure 3.3: Dimérisation pattern of a singly charged (hole or electron) polyacetylene 
molecule with one hundred carbon atoms.
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Figure 3.4: Dimérisation pattern of a multiply charged (four electrons or four holes) 
polyacetylene molecule with one hundred carbon atoms.

of the molecule.

When an electron is injected into the chain the dimérisation curve that is created 

is the same as for the neutral soliton case. This is because the formation of a soliton 

creates a state in the mid-gap that is (when the polyacetylene molecule is neutral) only 

half filled. As the SSH Hamiltonian possesses charge conjugation parity the injection of a 

single electron or a hole into the molecule must produce the same defect. Thus the filling 

or emptying of the state does not affect the structure of the chain as shown in Figure 3.6.

The injection of four electrons results in the creation of a soliton and a pair of bipo­

larons as shown in Figure 3.7.

Now that we have a formalism for calculating the forces that act on each atom and 

a method of finding the equilibrium structure for a set of starting conditions, it is now 

feasible to calculate the phonon modes that are present in the chain and determine which 

phonon modes are strongly involved in the distortion of the chain. Note that strictly
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Figure 3.5: Dimérisation pattern of a neutral polyacetylene molecule with ninety nine 
carbon atoms.
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Figure 3.6: Dimérisation pattern of a singly charged (hole or electron) polyacetylene 
molecule with ninety nine carbon atoms.

speaking we are not calculating phonon modes as these are only defined for the case of 

an infinite molecule, but we use phonon as a shorthand for molecular vibration.

3.3 Calculating phonon modes, which ones are impor­

tant?

We can find the phonon modes of the polyacetylene molecule by using a finite difference 

method or by using perturbation theory. In general we can use a finite difference technique 

to calculate the dynamic matrix, where we displace one atom by a small amount, calculate 

the forces induced on all the atoms by this displacement and then input all of these 

forces into the dynamical matrix (the forces so calculated are forces in the harmonic 

approximation). That is that the displacement of atom j  by an amount x  causes a force 

on atom i of amount F̂  which means that the dynamical matrix is
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Figure 3.7: Dimérisation pattern of a multiply charged (four electrons or four hole) 
polyacetylene molecule with ninety nine carbon atoms.

= # ' (3.8)

This then needs to be diagonalised which can easily be done by any number of routines 

[173]. The eigenstates V,(j) of (3.8) are the phonon modes of the finite molecular chain 

while the eigenvalues Muj^ of (3.8) are related to the phonon frequency Uq {M is the 

mass of the CH group). We are neglecting the fact that the end groups are CHg not CH.

There are several subtleties involved in the calculation of (3.8). One involves the size 

of the displacement xj and one involves the fact that this is a finite difference method. 

The first problem is that (3.1) is a linear Hamiltonian (which means that the change in 

energy with distance is for large distances linear in distance), so to find terms proportional 

to the quadratic in Xj one needs to make small displacements. However if one makes the 

displacement Xj too small then the signal of the elastic force is drowned out by the 

noise. The dynamical matrix (3.8) should also be symmetric, however in practice it is 

not. This is due to the finite difference error in calculating the second derivative of 

energy with respect to distance. We assume that we can write (3.8) as the coefficient 

of d‘̂ E/dx^ which is not strictly true for a finite difference method. This error can 

be minimised by using a very small displacement Xj and then explicitly symmeterising 

the dynamical matrix. For the polyacetylene molecule discussed in this chapter, the 

equilibrium structure is found when the forces on every atom was less than 10“  ̂Hartrees 

per Bohr and using a displacement Xj of order 5 x 10~® Bohr.

However it is also possible to find the dynamical matrix analytically using perturba­
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tion theory, which is what we do to find (3.8) for the case of (3.1). This is based on the 

method of Chao et al. [174] and the discussion of Wallace [59]. It is possible to write 

a time-dependent version of the SSH Hamiltonian as H  = H st +  Hpn +  H ep where 

HsT,Hpn  and JÏep are the static, phonon and electron-phonon coupling terms in the 

SSH Hamiltonian and are as written as follows

Hst — -  ^ ( ( o  -  Q:(w°+i -  u°))[c]+i(^j + -H C)^ (3.9)

H ep =  {xj+i -  Xj)[c]^^Cj + c]Cj+i] (3.10)

H ph = K  5^(x j+ i -  ^j)(w?+i -  4- C)
3

+ - K  y^(rgj+i -  Xj)^ + - M
3 3

(3.11)

where we neglect all spin suffixes. The atomic displacements in the above equation 

have been written in terms of their equilibrium value Uj and their displacements from 

equilibrium xj.

H ep is treated as a  perturbation on the original electronic Hamiltonian. The condition 

that the chain is in equilibrium at uj = allows the cancellation of the first order term 

(of the expansion of E in powers of a) by the linear term in Hpu and the second order 

term gives the changes we must make to the calculated phonon frequencies. This second 

order correction is given by:

( - )

where ^  is the ground state.

We can write H e p  in (3.12) in terms of one-electron eigenstates |n) for occupied states 

(or |m) for unoccupied states)
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o cc  u n o c c

n m  J

Orthogonality means that we can ignore all |$ ) except those with one electron promoted 

to a different one-electron eigenstate. Thus

($|ffEp|®> =  a  +  1)Z„Ü) +  Z:„U)Zn{j + D) (3.14)
3

which means that (3.12) is

OCC u n o c c

AB =  a" ^  E ;  E  ( fe + i -  +  1)Z„Ü) + Z'^(i )Z^( j  +  1)))
n  m  j , i

X ((xi+1 -  X i){Z '„ { i + l ) Z „ ( i )  + Z '„ { i)Z „ ( i  +  1))') X

(3.15)

c(n) — e(m)

where e(m) and e{n) are one-electron energies. The above equation can then be rewritten 

as

o c c  u n o c c  A 4 *

n m  j , t

where both Aj^n,m and ^t,n,m are of the form

=  iZ*^{j)ZnU -  1) +  -  l )ZnU) ~  Z*^{j -f- l)Z n(j) -  +  1)).

(3.17)

ù̂aE  can then be used to find the dynamical matrix in terms of d^E/{dxjdxi),  that is 

that a second order perturbation in Hep gives a quadratic term in Xj . This is equivalent 

to (3.8) but without any finite difference errors.

This can then be rewritten in terms of the one-electron eigenstates of the system 

[171]. The dynamical matrix is written as
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K , j = Kj ,  = 2a  ,

(3.18)

where F {j ,m ,n )  = Zm{j)Zn{j -  1) +  Zn{j)Zm{j -  1)*

To solve (2.111) using all of the phonon modes of the molecule would be prohibitively 

expensive. To demonstrate, assume a truncated phonon space up to a finite number of 

excitations the size of the basis set is given by Ns\ze =  iVg x (n™^ +  with Ne 

(iVph) being the number of electronic states (phonon modes). Even for relatively short 

wires, the size (Assize) of the basis set quickly becomes too large for tractable numerical 

calculations and/or reasonable computing times (as we have to diagonalise (2.111)). For 

example for Na =  20 atomic sites {Nph = 19 acoustic and optic phonon modes) with only 

^occ* =  2, we obtain N^ixe 10®.

Obviously we need to make sensible approximations that reduce the size of the basis 

set size. For the case of the SSH Hamiltonian (3.1) we can reduce the basis set by 

considering only the valence band or conduction band states only (this is because the 

SSH Hamiltonian has charge conjugation parity). This way we remove some of the 

complexity of the full basis set, and as we consider only the transport of one electron 

or hole in the molecule at a  time we do not need the full complicated basis set anyway. 

There are also two other approximations that we can make to reduce the basis set size, 

both of which are quite general. These are (i) considering a limited but sufficient set 

of phonon modes and (ii) using only a few excitations in each phonon mode (truncated 

harmonic oscillator approximation).

In order to determine which phonon modes strongly contribute to the charge-induced 

deformation of the chain, we calculate the ground state atomic configurations for a neutral 

chain Uj and for a chain charged with one additional electron Uj. The lattice distortion 

is then projected onto the harmonic modes of vibration Vq of the neutral chain and the 

corresponding Huang-Rhys factor Sq (1.13) is calculated.

=  ( 3  1 9 )

85



where A, = — w°). These factors give the averaged number of phonons

that would be needed to achieve the corresponding elastic energy of the lattice distortion 

(the lattice distortion can be expanded onto the harmonic phonon modes as uj = +

12q^qU)^q)- f'or the polyacetylene molecule the largest values for these factors are 

obtained for the lowest energy (longest wavelength) optical phonon modes. In fact, the 

phonon mode that dominates the lattice distortion is the lowest optical phonon mode, 

which has a Huang-Rhys factor Sq > 0.8. For a one hundred atom chain the largest 

Sq is 0.825 and the next highest is 3.66 x 10“ .̂ We can thus reduce the basis set size 

by just considering the lowest wavelength optical phonon modes to describe the lattice 

deformation induced by the injection of an electron. The acoustic phonon modes do not 

couple to the polaron at all. To see what these phonon modes would look like for a 

hundred atom chain, see Figure 3.8.
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Figure 3.8: Lowest energy optical phonons Vq for a polyacetylene molecule containing 
one hundred carbon atoms. The indices are ordered so that as q increases the frequency 
of the phonon mode q increases.

We can check to see if the harmonic approximation is valid by comparing the en­

ergy gain of the chain with a polaron with the energy of the phonon modes that are 

needed to form the defect, that is comparing A E  = -  Eo[u°] with Eharmonic =

^MüüqA^ = Y^q^q^q- We use as the non-self consistent total energy of the

chain with the polaron and is the self consistent energy of the neutral chain.

Although the deformation of the lattice is not purely harmonic, we can use this check 

to see whether the energies are in the same order of magnitude. For short chains the
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values of A E  and Eharmonic are almost identical (to within 5%) and for longer chains the 

discrepancy between A E  and Eharmonic increase but do not exceed 15%. Our phonons 

seem to be in the harmonic limit.

3.4 Calculation of electron-phonon coupling

So, once we set up our reference system (which is chosen to be a neutral polyacetylene 

chain with either an even or odd number of carbon atoms), we can write the Hamiltonians 

for the non-interacting electronic and quantum phonon degrees of freedom as

He  = ^  €nclcn (3.20)

where Zn{j)c^j creates (or Cn annihilates) an electron in the nth electronic state

with energy €„. Neglecting the zero-point energy, the harmonic phonon Hamiltonian can 

be written as

Hpji — ^  ] UJqOĵ Ĉlq (3.21)
q

where oj creates a phonon in mode q with frequency u)q (and aq annihilates a  phonon). 

The basis set associated with a single added electron or hole H e  4- H ph  is formed by 

the eigenstates |n, (n,)) =  with eigenvalues =€„-!- Y^qfiqUjq and

where |0) is the original neutral state of the polyacetylene molecule and (n,) the set of 

phonon occupation numbers.

To then find the electron-phonon coupling constants we expand the lattice deforma­

tions 6uj induced by an additional charge injected into the chain onto the phonon modes 

of the neutral chain: 8uj =  ^ ( j ) ^ g -  The new lattice structure displaced from the

original equilibrium structure is 6uj. Then the electron-phonon coupling terms 

of the SSH Hamiltonian (3.1) (assumed to be linear) are written in a quantum form by 

quantising the phonon field displacements
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Therefore the electron-phonon coupling Hamiltonian is

H e —PH — ^  ] 'Jqnm  “h  f lg )  C^Cm  , (3.23)
q ,n ,m

where

7,nm =  Y .  [Zn(3)Z,.(j ~  1) +  Zn ij  ~  D^mÜ)] . (3.24)
J=2

and

\ U )  = a[F,(j) -  V,(J -  1)1 X . (3.25)

The total Hamiltonian for the molecular wire with quantum phonons and linear 

electron-phonon coupling inspired by the SSH model is given by the sum Hw = He + 

Hpii -(- He - ph as in (2.95).

For the particular case of the polyacetylene molecule modelled using the SSH Hamil­

tonian (3.1) the calculation of (3.24) can be greatly simplified by the use of selection 

rules. Zn and Vq are even or odd functions with respect to the centre of the molecule. 

The quantity Zn{j)Zm{j — 1) + Zn{j -  l)Zm{j) is even (odd) when n -t- m is an even 

(odd) integer (indexing the eigenvectors by increasing eigenvalues and Zn=i being 

even). Whenever the quantity under the site j  summation in (3.24) is odd, jgnm = 0 

(this is equivalent to the property that the integration of an odd variable from -x to 

-t-z is zero). This can greatly reduce computational time when trying to calculate the 

transport properties of the polyacetylene molecule, as discussed in the next section.

Why do we perform the transformation from classical phonons to quantum phonons 

in the first place? It is because we are dealing with the full wavefunction of the electron. 

If we consider the wavepacket picture of an electron travelling through the molecule then 

when an electron meets the junction between the leads and the wire then part of the 

wavepacket is reflected away from the wire and part of the wavepacket is transmitted 

into the wire. The part of the wavepacket that is in the wire is treated as the full



electron, and it can only be treated as the full electron if we can include the vibrational 

part of the wavefunction. This requires us to use quantum phonons.

3.5 Transport properties: A brief discussion

We now provide a brief discussion of the transport properties of the chain when an 

electron or hole is injected into a chain with an even number of CH units and thus forms 

a polaron. For a more detailed review the reader is invited to read the papers of Ness et 

al. [20, 21, 171].

A major difference between our transport calculations and others, is that in our 

calculations the molecule responds to injection of charge by distorting. In the transport 

calculations of, for instance, Joachim et al. [13, 14, 15, 47, 77] the molecule is rigid while 

the charge carrier travels through the molecule. In order to represent this distortion 

we sum over the phonon modes However as stated previously the basis set

grows exponentially with the number of phonon modes that are present in the system. 

We used the Huang-Rhys factor to show that the dominant phonon mode is the lowest 

optical mode. However to describe the translation of the polaron through the molecule 

we need more phonons than the lowest optical mode, so in practice we use a set of the 

lowest optical phonon modes.

As stated in the last Chapter the current that is flowing through outgoing modes of 

the wire is given by (2.121), that is

^̂ j>Na ~  (3.26)

for sites j > iVo that exist in the right lead (as we adopt the convention that the net 

current only flows from left to right). The total transmission probability is then given by 

(2.120).

We present results for the injection of an electron into the gap (transport by tun­

nelling effect) and also by resonant transport through the levels of the system above the 

gap (that is in the conduction band). We deflne the electron injection energy as positive 

with respect to the reference energy E=0 for all lengths of molecule. The Fermi energy 

is assumed to be pinned at mid-gap in absence of any bias. We show typical results for
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the effective total transmission T{E) showing the contribution from the elastic channel 

and one inelastic channel in Figure 3.9. As expected the transmission probabilities have 

an exponential behaviour in the tunnelling regime (which is below the first reso­

nance peak). The main contribution is from the elastic channel and there are resonances 

throughout the system at higher energies. Note that the transmission probability at res­

onance does not equal one. This is because the interaction of many resonance levels in 

the molecule brings down the transmission probability [47].
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Figure 3.9: Effective transmission probability T{E) on a logarithmic scale vs electron 
injection energy E  for two molecules with different lengths (one has 40 CH units with 
six phonon modes and a maximum phonon occupation of two phonons per mode, and 
one has 100 CH units with four phonon modes and a maximum phonon occupation of 
three phonons per mode). Total transmission probability is shown as the solid line, 
transmission from the elastic channel |t(o)(-^^)P are the dotted lines and transmission 
from the first inelastic channel nq-i=l  and ng>i=0 are shown as the dashed lines.

As can be seen below the first resonance, the contribution of the inelastic channels is 

negligible. Above the first resonance the inelastic contributions become as important as 

the contribution from the elastic channel. It should be noted that although the elastic 

channel dominates the transmission probability, the transport properties of our system 

are quite different from the calculated transmission probability of a molecule using just 

the elastic channel by itself. This is because as the coherent quantum electron-phonon 

coupling has a strong effect on the effective bandgap. This is due to the formation of 

the virtual polaron which reduces this effective bandgap [20, 171]. This is one of two 

effects that can reduce the effective bandgap. The other is that as the length of the 

molecule increases the effective bandgap reduces. This reaches an asymptotic limit when
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the molecule becomes longer than a hundred CH units. Conversely this means that when 

a molecule is quite short {Na < 10) then the effective bandgap is quite large because of 

the variation of bandgap with length as mentioned above. If the molecule is shorter than 

this size then the injection of the electron into the chain cannot result in the formation of 

the polaron or the reduction of the bandgap that then results from the electron-phonon 

coupling. We do not discuss further the effects of the coherent electron-phonon coupling 

here, rather we refer the reader to the cited papers above.

3.6 Conclusion

In this chapter we have discussed the theoretical testbed molecular wire trans-polyacetylene 

and how we can use the simple SSH Hamiltonian to find the structure of a polyacetylene 

molecule under various conditions such as charge state or parity. We then detailed how to 

find the classical phonon modes of the molecule and which phonon modes couple strongly 

to the polaronic or solitonic defects that form in the molecule, and how to calculate the 

electron-phonon coupling constants that can strongly affect electron transport through 

the molecule. Finally we provided a small amount of detail about the transport proper­

ties of a molecule which has a virtual polaron injected into it and found that the coherent 

electron-phonon coupling strongly affected the transport properties.

However what other prospective atomic scale wires could demonstrate properties sim­

ilar to the polyacetylene molecule such as a Peierls distortion, polaron formation etc.? 

In the next chapter we detail one such prospective atomic scale wire, the atomic silicon 

line on the ^-SiC(OOl) surface. We discuss how this atomic line is formed, the various 

structural components that are believed to form this line and the surface it resides upon, 

the models of these components, the structure of these models, the electronic properties 

of these models and which model is thermodynamically favoured.
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Chapter 4

Silicon carbide: Ab initio

studies o f the (3x2) and 

c(4x2 ) surfaces

This chapter describes the silicon atomic lines that form on the (001) face of cubic 

silicon carbide. We discuss the basic physical properties of the binary compound silicon 

carbide, and how these properties differ for various different polytypes. We then discuss 

the physical characteristics of the silicon atomic lines and how they are believed to form. 

This will then necessitate a discussion of the various models of the reconstructions which 

are believed to form the structural components of the line and the surface the line resides 

upon.

We will then discuss the work that we have performed using the PAW approach [136], 

starting off with various tests that we have performed on the utility of projectors in simu­

lating the silicon carbide crystal, tests of our supercell and tests to see how well converged 

our calculations are with respect to plane wave cutoff, fc-point sampling and vacuum gap 

spacing. We then start with the results of our ab initio simulations on the (3x2) surface 

for various models, and our analysis of the structural properties, the electronic proper­

ties and which of the various candidate models is thermodynamically preferred. After we 

have determined which is the preferred model for the structural components of the line 

we then turn to the analysis of our simulations of the c(4x2) reconstruction and again
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analyse the structural, electronic and thermodynamic properties of the various models of 

the surface. We then finish this chapter with our general conclusions about the line and 

the surface it resides upon.

4.1 Review  of silicon carbide

4.1.1 Background inform ation on silicon carbide

Silicon carbide (SiC) is a binary compound consisting of two group-IV elements, silicon 

and carbon (it is in fact the only naturally stable group-IV compound [175]). It was first 

synthesised in 1891 by Eugene G. Acheson following the work of Jons Jakob Berzelius on 

the possibility of a silicon-carbon bond [176]. Soon after its formation the phenomenon 

of polytypism (which will be discussed later) was discovered along with semiconducting 

electrical characteristics. However the Acheson method of preparation did not lend itself 

to industrial scale applications and so the use of silicon carbide as an industrial material 

was delayed until 1955 when Jan Antony Lely at Phillips perfected a new class of high 

temperature crystal furnace [177, 178]. Recently the development of such materials pro­

cessing technologies as molecular beam epitaxy (MBE) and chemical vapour deposition 

(CVD) have enabled the fabrication of high quality device structures and increased re­

search activity on the material (of which this thesis is one example). However we (as a 

species) should not feel pride in our ability to synthesise SiC crystals as microcrystals of 

the material have been found in meteorites which have been dated to before the formation 

of our Solar System.

The wide bandgap, high thermal conductivity, robust mechanical properties and re­

sistance to radiation damage have made SiC an attractive material for such applications 

as high temperature, high power devices and nuclear power applications. SiC may also 

be a useful material for various optical applications such as blue and ultraviolet light 

emitting devices and detectors [178] (although GaN devices are more successful in this 

area). As a ceramic SiC has a very high hardness surpassed only by diamond and boron 

nitride. Finally SiC is one of the best bio-compatible materials, especially in regard to 

compatibility with human blood [109].

SiC is a tetrahedral compound with each silicon atom bonding to four surrounding 

carbon atoms (and vice versa, see Figure 4.1). Depending on the stacking of atoms in one
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Figure 4.1: The bonding scheme of cubic silicon carbide. Each carbon atom (black) is 
bonded to four silicon atoms (yellow) in a tetrahedral arrangement. The bond angle is 
109.47°.

direction SiC can possess more than one type of crystal structure (this polytypism is the 

one-dimensional variant of polymorphism [118]), ranging from purely cubic (zinc-blende) 

to the purely hexagonal (wurtzite) with more than two hundred polytypes in between

[173].

We shall use the Ramsdell notation [179] to denote different types of crystal structure, 

using 3C for purely cubic crystals and 2H for purely hexagonal. The number refers to 

the number of atomic bilayers one has to stack perpendicular to the trigonal axis before 

recovering the original atomic position (so for cubic crystals the number of atomic layers is 

three in the (111) direction and for purely hexagonal crystals the number of atomic layers 

is two in the (0001) direction). This polytypism is due to the fact that successive planes 

along a trigonal axis can be displaced, and that there are three equivalent possibilities 

[118] (see Figure 4.2). These possibilities can be combined in any order, which results in 

the wide range of different polytypes that are available. Except for the cubic structure, 

all other polytypes represent hexagonal (H) or rhombohedral (R) combinations of these 

stacking sequences with n Si-C bilayers in the primitive cell. Examples would include 4H 

and 6H with four (six) double layers and eight (twelve) atoms in the primitive unit cell. 

It is possible to change the crystal structure from one polytype to another [180], but in 

our simulations we use one polytype only.

The three polytypes that have received the most attention are 6H-SiC, 3C-SiC and 

4H-SiC. The first polytype to be manufactured at the industrial scale was 6H-SiC. 3C-SiC 

can be fabricated in bulk but is usually replete with defects. To minimise the number of 

defects in 3C-SiC it is a common practice to grow 3C-SiC epitaxially on a Si substrate.
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3C-SiC (cubic) 2H-SiC (hexagonal)

Figure 4.2: Illustration of polytypism based upon close packing of spheres (the spheres 
must be all of the same type: for silicon carbide they must all be silicon or carbon atoms 
only). Displaced initial layer contains spheres in A-type positions surrounded by six voids 
(top). Spheres of the next layer are situated either in the voids 1, 3 and 5 (B type) or in 
voids 2, 4 and 6 (C type positions). Spheres of any polytype have their centres located in 
parallel vertical planes whose interactions with the ground plane are represented by par­
allel lines (dashed lines). Taken from Defects and Defect Processes in Nonmetallic Solids, 
by W. Hayes and A. M. Stoneham, (1985). Other diagram shows bond orientation of the 
cubic (stacking sequence ABCA) and hexagonal (stacking sequence ABA) polytypes.

All polytypes of silicon carbide are wide bandgap semiconductors, with the gap indi­

rect. However the bandgap is not the same for each poly type, rather there is a strong 

variation of bandgap with respect to polytype (in contrast to other semiconductors which 

possess polytypism, such as ZnS). The bandgap varies from 2.4 eV for 3C-SiC to 3.3 eV 

for 4H-SiC, with the increase in bandgap depending in a linear manner on the degree 

of ‘hexagonality’ involved (although this is only true up to a factor of 50% after which 

the variation with hexagonality is much less strong [181]). The degree of hexagonality is 

defined as the proportion of the unit cell which does not have a cubic stacking sequence 

[181].

In this thesis we are only interested in the specific polytype 3C-SiC, as the surface we 

want to study exists for this polytype. Experimentally the lattice parameter of the unit 

cell is found to be 4.36 Â with a surface lattice parameter of 3.08 Â [178]. The Young’s 

modulus in the literature is found to be in the region of 392-448 GPa [176]. The length 

of the silicon-carbon bond is 1.89 Â. The lattice parameter of 3C-SiC possesses a lattice 

mismatch of ~ 20% when compared with the lattice parameters of silicon or diamond 

(the carbon-silicon bond is ~ 20% longer than a carbon-carbon bond and ~ 20% shorter
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than a silicon-silicon bond). This has several consequences: firstly that when 3C-SiC is 

grown as a film on a Si substrate, the interface between the two materials possesses an 

associated strain field. This strain is relieved by the formation of anti-phase boundaries 

that typically extend throughout a silicon carbide film for a /xm [182]. Secondly, an 

unreconstructed Si or C-terminated SiC surface is under compressive or tensile stress. 

This stress is a driving force for significant reconstructions on both surfaces.

In the next section we detail one possible result of this stress on the silicon-rich 

surface of 3C-SiC, the formation of the (n x 2) series of reconstructions. (A note on 

notation: throughout the following three chapters we will use the terms silicon carbide 

and SiC interchangeably, as well as /3, 3C and cubic.)

4.1.2 The (n x 2 ) series o f reconstructions (silicon atom ic lines): 

Physical characteristics and m ethod o f form ation

As mentioned above the specific polytype of silicon carbide that we study is the cubic 

or zinc-blende polytype. To minimise the high defect density that is present in bulk 

cubic silicon carbide it is common to grow thin (% l/^m) SiC films by the chemical 

vapour deposition (CVD) of (for instance) acetylene (CgHg) and silane (SiH4) molecules 

on vicinal (4°) Si(lOO) wafers [109, 183, 184]. This means that as we move along the 

[100] direction we encounter alternating atomic planes of carbon and silicon. The growth 

of these thin films on Si (100) leads to a high quality crystal with a much lower defect 

density [109], and as the film has a thickness of order micrometers the majority of the 

film can be treated as bulk silicon carbide rather than as a strained crystal.

This method of formation of cubic silicon carbide results in the surface of the crystal 

being initially covered by oxides, primarily silica (SiÛ2), and various graphitic carbon 

species [109]. To remove these contaminants it is common to anneal the surface at a 

temperature of 1300 K (that is heat the film to remove part of the surface and then cool 

down again). Removal of the contaminants results in the formation of the silicon-rich 

(3x2) reconstruction [108, 109, 185, 186, 187, 188, 189], which is the most silicon-rich 

stable reconstruction of the (001) face of cubic silicon carbide [185, 190, 191]. This 

surface can itself be annealed to remove the (3x2) reconstruction and form the less- 

silicon-rich c(4x2) [106, 192, 193, 194, 195] (or the (2x1) reconstruction [196, 197]). 

(The (3x2) reconstruction can also be formed by Si deposition on the c(4x2) surface at
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Figure 4.3: Schematic of alternating levels of silicon and carbon atoms (in the [001] direc­
tion) of the cubic polytype of silicon carbide. Different surface reconstructions correspond 
to various surface stoichiometries of silicon or carbon.

1200 K). Continued annealing of the (001) face results in the removal of the entire top 

silicon atomic layer and the formation of the carbon-rich c(2x2) reconstruction [198, 199]. 

Annealing this surface results in the formation of the ideal (1x 1) reconstruction for the 

carbon-terminated surface [196, 200, 201]. The carbon atomic layer can once again be 

annealed to recover the (3x2) reconstruction which is formed from the silicon atomic 

layer below (see Figure 4.3).

It has been found by STM that annealing the highly silicon-rich (3x2) surface at 

1300 K for several minutes leads to the formation of a grating of very long (~1000 A), 
very straight, very stable (at 900 K) lines at the transition from the (3x2) to c(4x2) 

surface [108, 109, 188, 202, 203], with the separation between the lines of magnitude ~6 

A. Additional heat treatment leads to the removal of this grating and the formation of 

widely separated atomic lines [105, 107, 108]. We refer to this sequence of structures 

as the (nx2) series of reconstructions where n is an odd number, thus we get the se­

ries (5x2), (7x2) etc.. These complex (nx2) reconstructions consist of two subunits: 

the structural elements corresponding to the area between the lines, and the structural 

elements corresponding to the lines themselves.

In STM images of these lines [107, 109] (see Figure 4.4) the bright regions appear 

to be ~9 A wide and the separation of these bright features along the line appears to 

be ~  6 A. As stated before the surface lattice vector of the /3-SiC (001) surface is 3.08
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Figure 4.4: Formation of atomic-scale silicon lines on the (001) face of cubic silicon 
carbide. The top image is a STM scan of the surface after annealing at % 1300 K and 
covers an area 320 Â by 320 Â. Bottom image shows a 200 Â by 200 Â topograph of the 
surface after annealing at a temperature of 1350 K. The next nearest silicon line is 400 
Â away. These STM scans are taken from Soukiassian et al Phys. Rev. Lett. 79, 2498, 
(1997).

Â. The dimensions of the repeat unit cell are very close to three by two lattice vectors, 

and so it is believed that these lines are formed from the same structural components 

as the silicon-rich (3x2) reconstruction. The surface that is present between the silicon 

lines is believed to be the c(4x2) reconstruction from inspection of the STM scans of the 

surface between the lines [109]. The silicon lines are straight and long (several hundred 

Â in extent). The silicon line induces an antiphase relationship between the two c(4x2) 

domains, that is that the periodicity of the c(4x2) domain on one side of the line is 

shifted by ~  3 Â compared to the c(4x2) domain on the other side of the line. It is 

believed that the silicon lines are an intrinsic feature of the surface, they are not formed 

by spare silicon atoms decorating preexisting domain boundaries between two c(4x2) 

domains.

We therefore use the following paradigm in our modelling of the silicon lines (see
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Figure 4.5): that the structural components of the lines are identical to the (3x2) re­

construction, and that the surface between the lines is composed of c(4x2) unit cells (or 

parts thereof) (see Kitamura et al. [203] ), however we first of all need suitable models 

for the (3x2) reconstruction and the c(4x2) reconstruction.

xn

■  (3x2) reconstruction 
□  c(4x2) reconstruction

Figure 4.5: Paradigm of how we model the silicon lines (the (nx2)) reconstruction. The 
line is composed of a single (3x2) unit cell and the surface is composed of several c(4x2) 
unit cells.

4.1.3 M odels of the (3x2) reconstruction and relevant experi­

mental evidence

There are several different models of the (3x2) surface, with a different silicon stoi­

chiometry for each model. All of the models that have been proposed assume that the 

(3x2) reconstruction consists of the surface atomic layer of the silicon carbide crystal 

proper (the terminating layer) consisting of silicon and that on the surface several silicon 

adatoms are present. When we quote the stoichiometry of a particular model of the 

surface reconstruction we will be quoting the stoichiometry of the Si adlayer. Several 

experiments have been performed that have tried to measure the stoichiometry of the 

(3x2) surface and other (n x 2) reconstructions (n = 5,7). MEIS results [185] confirm 

that as n increases the silicon content of the reconstruction falls and that the (3x2) and 

(5x2) reconstructions have % 0.36 ML and % 0.16 ML more silicon than the (2x 1) recon­

struction. However there is a lack of experimental agreement on the actual stoichiometry 

of Si adatoms on the (3x2) reconstruction [185, 191, 204].

The various models that have been proposed in the literature possess surface sto­

ichiometries ranging from 1/3 ML to 1 ML of silicon. In order of increasing silicon 

content the models that we studied are the Additional Dimer Row Model (ADRM) [107,

99



109, 188, 191, 205, 206], the Double Dimer Row Model (DDRM) [183, 186, 187, 191, 207] 

and the Two Adlayer Asymmetric Dimer Model (TAADM) [208, 209]. In this section we 

detail the experimental evidence for each of the models. In all models we define the [TlO] 

direction to refer to the x 2 direction and the [110] direction to refer to the x3 direction.^

-C C JQ -'-Q

I

o
o
o

O Surface Si atoms 

O Si adlayer

x3

Y
x2

Figure 4.6: The Additional Dimer Row Model proposed by Yan et ai, Surf. Sci. 316, 
181, (1994) and Semond et ai, Phys. Rev. Lett. 77, 2013, (1996). It consists of one 
silicon addimer per unit cell.

The ADRM possesses a silicon stoichiometry of 1 /3 ML (0gf = 1 /3) with one silicon 

addimer per unit cell (see Figure 4.6). The Si atoms of the terminating layer are dimerised 

in the x2 direction. The Si addimer is oriented perpendicular to the terminating layer 

Si dimers (or surface dimers). The model was first proposed by the theoretical work 

of Yan et al. [205, 206]; firstly by a Tersoff potential calculation [205] and then by an 

ab initio Carr-Parrinello DFT calculation [206]. This model has been used to analyse 

the STM data on high quality single domain surfaces obtained by Semond et al. [188]. 

Using an STM (and making sure that the results were reproducible and tip independent) 

Semond et al. imaged one oval spot per (3x2) unit cell in filled states images and two 

oval spots per (3x2) unit cell in empty states images (see Figure 4.7). If we are to 

apply the interpretation of the silicon (001) surface to the (3x2) reconstruction of the 

(001) surface of cubic silicon carbide (the silicon rich reconstruction) then it would seem 

that Semond et al. are imaging a single addimer per unit cell with the filled states scan 

imaging the addimer and the empty states scan imaging the two silicon adatoms of the 

addimer. Scans along and across the (3x2) unit cells seem to show that this addimer

is asymmetric or buckled. The ADRM also matches the silicon stoichiometry data of
^This is consistent with the literature. We consistently use the [TlO] direction to refer to the x2  

direction, no matter the orientation of the unit cell. This means that the [110] directions of the (3x2) and 
c(4x2) unit cells are parallel and the [TlO] directions of the (2x3) and c(4x2) unit cells are perpendicular.
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Hara et al. [185] by giving a silicon adlayer stoichiometry of % 1/3 ML for the (3x2) 

reconstruction and % 1/5 ML for the (5x2) reconstruction. This apparent agreement 

depends upon the exact stoichiometry of the c(4x2) reconstruction, of which there are 

several models (see the next section).

Figure 4.7: STM scan of the (3x2) surface using both filled (top) and empty (bottom) 
states. Taken from Semond et a/., Phys. Rev. Lett. 77, 2013, (1996).

However, strictly speaking the ADRM is not a model of the (3x2) reconstruction but 

a model of the (2x3) reconstruction. LEED data [204] shows that the “x2” direction is 

parallel to the “x2” direction of the c(4x2) surface that is formed when the top silicon 

atomic layer reconstructs upon the removal of the (3x2) reconstruction. The ADRM has 

a “x2” direction that would be perpendicular to the “x2” direction of the c(4x2) re­

construction. The other two models that have been proposed do not share this problem. 

Another problem with the ADRM is the lack of agreement with the hydrogenated (3x1)- 

H reconstruction. In these experiments [186, 207, 210] the (3x2) surface is exposed to a 

hydrogen flux which breaks all dimer bonds and forms (reversibly) a (3xl)-H reconstruc­

tion and then a (1x 1) reconstruction as found by LEED [186, 207, 210]. If the dimer 

bonds were broken in the ADRM then we would expect to get a (2x3)-H reconstruction, 

which is not observed to occur.

The DDRM possesses a silicon stoichiometry of 2/3 ML = 2/3) with two silicon 

addirners per unit cell. The Si atoms of the terminating layer are dimerised in the x3 

direction, with the Si atoms between the Si addimers remaining undimerised. The Si 

addimers are oriented perpendicular to the direction of dimérisation on the surface and 

may be asymmetric, even buckled in different directions. This model was first proposed 

by Hara et al. [186] as set forth by Dayan et al. [207]. In this model the Si adatoms 

chemisorb as bridges between the atoms in the (2x1) or c(4x2) terminating layer (see
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Figure 4.8: The Double Dimer Row Model proposed by Hara et al, Phys. Rev. B 50, 
4548, (1994), and Dayan, J. Vac. Sci. Technol. A 4, 38, (1985). It consists of two Si 
addimers per unit cell.

Figure 4.8). Every third adatom row is missing. As we increase n we simply increase the 

number of missing rows, so for instance the (7x2) reconstruction has five missing rows, 

with the silicon atoms of the terminated layer becoming dimerised. This means that as 

we increase n the dangling bond density goes up as [184], meaning that the order of 

stability decreases as n increases in agreement wdth experiment [186].

The DDRM gives a very natural explanation of the (3x1) reconstruction that is ob­

served when the (3x2) surface is exposed to hydrogen. However it does not provide an 

explanation of the reversible transition to a (1x 1) reconstruction upon further exposure 

of the (3xl)-H reconstruction to an additional hydrogen flux [210], as for a (1x 1) recon­

struction to exist there must be at least 1 ML of Si adatoms. And it has been found that 

the total Si coverage is conserved in the transition (3 x 2) <=> (3 x 1) — H <=> ( 1x1)  

[210]. It is also quite difficult to reconcile the DDRM with the STM scan data as we 

would have to assume that the STM filled states scans are imaging the pair of addimers 

and the empty states scans are imaging the individual addimers, in contradiction to the 

result that is expected from a comparison with the Si(lOO) surface.

The TAADM possesses a silicon stoichiometry of 1 ML = 1) with three silicon ad­

dimers per unit cell (see Figure 4.9). The Si atoms of the terminating layer are dimerised 

in the x3 direction with the middle Si atoms between the Si addimers non-dimerised. 

The addimers are arranged into two layers, with two silicon addimers chemisorbed as 

bridges between the atoms of the top silicon terminating layer and the top Si addimer 

above the two other Si addimers. The Si addimers of the lower layer are oriented per­

pendicular to the dimers of the terminated layer, while the addimer of the top adlayer is
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Figure 4.9: The Two Adlayer Asymmetric Dimer Model proposed by Lu et al, Phys. 
Rev. B 60, 2495, (1999). It consists of three addimers per unit cell.

oriented perpendicular to the addimers of the lower layer and parallel to the dimers of 

the terminating layer. Any or all of the addimers may in principle be asymmetric. This 

model was devised by Lu et al. [208] to bridge the experimental gap between the ADRM 

and DDRM models and seems to explain most of the experimental data. The LEED pe­

riodicity it gives is the same as the one obtained by Kaplan et al. [204] (and is identical 

to the DDRM). The simulated STM scans it would give are identical to the STM scan 

images of the ADRM. Reflectance Anisotropy Spectra (RAS) experiments have recently 

been performed on the (3x2) surface [211]. These RAS curves are positive with a strong 

spectral feature at 4.2 eV. Only the TAADM model gives a positive RAS curve with 

a feature at 4.2 eV: both the ADRM and DDRM give RAS curves with positive and 

negative contributions [212].

However it is hard to explain the transition from the (3x2) reconstruction to the 

(3xl)-H reconstruction upon the imposition of a hydrogen flux. If we break all of the 

dimer bonds in the TAADM then we would expect the surface to maintain a (3x2) 

periodicity which is in contradiction to the LEED data. This assumes that the orientation 

of the top addimer is unchanged following exposure to hydrogen. The TAADM provides 

an explanation of why the (3xl)-H reconstruction can reversibly transform to a (1x 1) 

reconstruction upon further exposure to a hydrogen flux.

Several high quality photoemission studies have recently been performed on the (3x2) 

[213, 214, 215] and (3xl)-H [210] surface reconstructions. It is found that the (3x2) re­

construction possesses four surface state bands which disappear upon hydrogen adsorp­

tion or silicon desorption [214]. All of the surface state bands have a small dispersion 

throughout the surface Brillouin zone, of magnitude % 0.2 eV, with only two surface
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States showing a measurable dispersion of 0.2 eV along the [îlO] direction and no disper­

sion along the [110] direction. Yeom et al. found that the only model which matches this 

data was the DDRM, however at the time the TAADM had not yet been proposed. Lu et 

al. found that the TAADM also matches the angular resolved photoemission (ARPES) 

data. It has been proposed that the small electronic dispersion is due to “unicellular 

disorder” [187, 216]. STM scans at room temperature have shown that there is no cor­

relation between the buckle in one unit cell and the next unit cell in the x3 or x 2 

direction for a well covered surface. When vacancies are introduced onto the surface the 

disorder disappears and the addimers become “ferromagnetically” ordered. The ARPES 

experiments were performed on a fully covered surface.

Core level photoemission [215] finds that there are three surface Si 2p components, 

in a ratio of 2:2:1. This can be fitted to either the DDRM or the TAADM. To fit to the 

DDRM the various components are assigned to the terminating Si layer atoms bonded 

to one Si adatom (4), the Si adatoms (4) and the terminating Si layer atoms bonded to 

two Si adatoms(2). To fit to the TAADM the components are assigned to Si atoms with 

four Si-Si bonds (4), Si atoms with two Si-Si bonds (4) and Si atoms with three Si-Si 

bonds (2). The Si atoms are in different electrostatic environments.

There have been many experiments performed on the (3x2) surface reconstruction 

and the interpretations of these experiments vary. For a summary of which experiments 

provide evidence for a particular model or refute a particular model see Table 4.1.

Table 4.1: Summary of the ability of different models to match experiments. +  indicates 
agreement with the experiment, - indicates disagreement with experiment and o indicates 
ambivalent agreement with experiment.

Experimental Technique ADRM DDRM TAADM
LEED [204] - + +

STM [188, 186] + o +
Photoemission [214] o + +

RAS [211] - - +
H adsorption [210] - o o

In the interests of completeness we also mention the single dimer row model (SDRM) 

which is a unit cell which is a 90° rotation of the ADRM and which we found had a total 

energy 2.67 eV higher than the ADRM, and so is thermodynamically unfavourable com­

pared to the ADRM; and the two-adlayer-asymmetric rotated dimer model (TAARDM) 

which is a unit cell which resembles the TAADM, but with the top addimer rotated so
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that it is parallel to the second level addimers, and which we found had a total energy 0.68 

eV higher than the TAADM and so is thermodynamically unfavourable when compared 

with the TAADM. We will not consider the SDRM or the TAARDM further.

What is unequivocally accepted by the experimental community is that the (3x2) 

surface reconstruction is more silicon rich than the c(4x2) or (2x 1) surface reconstruc­

tions. Unfortunately there is disagreement about the exact silicon stoichiometry of these 

surfaces. Therefore it is important to find which model of the c(4x2) reconstruction is 

favoured as this model would provide a strong constraint on which model of the (3x2) 

surface reconstruction is favoured.

4.1.4 M odels o f th e c (4 x 2 ) reconstruction and relevant experi­

m ental evidence

All AES (Auger Electron Spectroscopy) studies suggest that the (2x 1) surface recon­

struction (or alternatively, the c(4x2) reconstruction) has a lower silicon content than 

the (3x2) reconstruction [191]. The (2x 1) reconstruction has been observed by LEED 

when the (3x2) reconstruction is annealed at high temperature (~ 1300 K) [196]. The 

LEED intensities have been fitted to several candidate structures but the one which fits 

the data best is a model that is very similar to the (2x 1) reconstruction of the (001) face 

of silicon, where the terminating layer is silicon and the silicon surface reconstructs to 

form dimers which are buckled.

However there is also evidence for a c(4x2) reconstruction at the same silicon coverage 

levels [185, 195]. Soukiassian et al. performed STM scans on a well ordered c(4x2) 

surface and found that they could recover the (2 x 1) reconstruction by increasing the 

density of defects on the surface (missing dimers, steps etc.) [192]. Heating the surface 

to a temperature of «  650 K causes a reversible phase transition between the c(4x2) 

reconstruction and the (2x1) surface reconstruction [217]. Aristov et al. assert that 

associated with this structural transition is a change in the electronic properties of the 

system, with the c(4x2) semiconducting surface becoming metallic in the (2x1) regime, 

according to STM spectroscopy and valence band emission [217, 218]. Angle resolved 

photoemission seems to show that the (2x 1) reconstruction is semiconducting however 

[197, 219, 220].

Regardless of the electronic properties of the (2x 1) surface it seems that the true
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ground state of a well ordered surface is the c(4x2) reconstruction, and so we use this 

reconstruction to model the surface between the silicon lines. Two models have been 

proposed for the c(4x2) reconstruction, the Alternate Up Down Dimer (AUDD) model 

[192, 193, 202, 221] and the Missing Row Asymmetric Dimer (MRAD) model [194].

The AUDD model has a silicon stoichiometry of 0 ML = 0). The Si atoms of 

the terminating layer form dimers in the x4 ([110]) direction and are aligned in rows 

along the x2 ([TlO]) direction (see Figure 4.10). The silicon dimers are symmetric but 

are displaced vertically, with one dimer in the unit cell in an up configuration and the 

other dimer down. The height difference is of order 0.1 Â. The lengths of the up and 

down dimers may also differ [106]. The LEED pattern is caused by the dimers of the 

terminating silicon layer differing in height and length. To recover the (2x 1) structure 

the up and down dimers have to be brought to the same height. This leads to a couple 

of problems however. Firstly that such a small change in the physical structure leads to 

such a large change in the electronic properties of the system. And secondly that when 

modelled using ab initio methods and a periodic supercell the (2x 1) unit cell, not the 

c(4x2) unit cell is the thermodynamically preferred unit cell [222, 223, 224, 225]. The 

c(4x2) surface only becomes favourable when the unit cell is subjected to a tensile stress 

[225], and even then it is only lower than the ideal surface by 0.1 eV per unit cell which 

is within the error bar of ab initio calculations.

0 - 0 CH-OI

0 —0 0 - 0 :

O r O 0 - 0 :
1

O ^ c A o :
x2

x4

Figure 4.10: The Alternate Up Down Dimer model proposed by Soukiassian et al., Phys. 
Rev. Lett. 78, 907, (1997). There are no Si adatoms.

The MRAD model has a surface silicon stoichiometry of 0.5 ML {9gf = 1/2). The 

silicon atoms of the terminating layer form dimers in the x4 direction and the adatoms 

are adsorbed between the dimer rows (see Figure 4.11). These adatoms form addimers 

which can be either flat or buckled. The (2x 1) reconstruction can be recovered simply
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by breaking the addimer bonds, which would have the effect of making the (2x 1) recon­

struction substantially different from this model of the c(4x2) reconstruction. However 

core-level photoemission shows that the (2x 1) reconstruction is Si-terminated with no Si 

adatoms present [215]. And although the calculated filled states images of the MRAD 

model match experiment the calculated empty state STM images do not. The STM can­

not resolve in empty states imaging the upper adatoms of the MRAD model whereas Lu 

et al. present theoretical images (in the Tersoff-Haman approximation) which indicate 

that the upper adatom should be resolvable [221].

I ^  0 - 0 0 — 0

I 0 - 0  1̂  0 - 0

i !̂ ■ .o A d

x4

O  Surface Si atoms 

O  Si adlayer

x2

Figure 4.11: The Missing Row Asymmetric Dimer model proposed by Lu et ai, Phys. 
Rev. Lett 81, 2292, (1998). The Si atoms in the terminating layer form dimers and the 
adatoms form addimers.

Both core level [226] and angle resolved valence-band photoemission [220] experiments 

have been performed on the c(4x2) reconstruction. The core level photoemission results 

found that there were only two different core level shifts, a result which favours the AUDD 

model (one shift for the up dimers, and one shift for the down dimers). The valence band 

photoemission data finds that there is a prominent surface state with a dispersion of 0.2 

eV along the [110] direction and no dispersion in the [TlO] direction. An overview of how 

the two models match experiment and theory is shown in Table 4.2.

Table 4.2: Summary of the ability of different models to match experiments and theory 
considerations. -I- indicates agreement with the experiment, - indicates disagreement 
with experiment and o indicates ambivalent agreement with experiment.

Technique AUDD MRAD
STM [192, 221] + 0

Photoemission [226, 220] o o

DFT [222] -
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4.2 Ab initio simulations of the (3x2) reconstruction

4.2.1 G eneral points

The calculations were performed using ab initio density functional theory with the Pro­

jector Augmented Wave method (PAW) to handle the atomic cores [136] (see Chapter 2). 

We used the Perdew-Zunger parameterisation [227] of the Ceperley-Alder [228] treatment 

of the uniform electron gas. We solved the Kohn-Sham equations using the Car-Parrinello 

algorithm [229] (see Appendix C).

To check whether the PAW program accurately reproduced the physical properties of 

silicon carbide we calculated the variation of the total energy of a (1x 1x 1) unit cell of 

cubic silicon carbide with respect to the bulk lattice vector. The minimum of this curve 

corresponded to the bulk lattice vector of silicon carbide as found by PAW. These total 

energy differences are not accurate for unit cells with different volumes, unless the total 

energies are themselves converged [230]. A term can be added to the total energy which 

corrects for this error, the Francis-Payne correction [230]. This term is

( c ,  E m a x )  \  { c ,  E j n & x ) \

3 \  dEmax )  c \ 9'n  ̂ )

where c represents the lattice vector, k represents a particular Ar-point, is the total 

energy, Emsx is the plane wave cutoff, is the number of plane waves and p,,c is a 

variable dependent on the plane wave cutoff. The rate of change of total energy with 

respect to plane wave cutoff (the first term) was found to be -0.03255 Hartrees for a cutoff 

of 30 Rydbergs. The second term was calculated internally by PAW. The bulk lattice 

vector of SiC was found to be 8.30197 Bohrs which is within 0.7 % of the experimental 

bulk lattice vector of SiC (see Figure 4.12). The bulk modulus was found to be 456.77 

GPa which compares favourably with the experimental value. In our PAW simulations 

we used the experimental lattice vector of SiC.

All models of both reconstructions were modelled using the surface slab technique with 

periodic boundary conditions. The simulation cells were six or ten atomic layers deep (six 

layers were used for preliminary checks, ten layers for the results quoted here); the bottom 

two layers were held in their bulk configuration while the other layers were allowed to 

relax, with the bottom carbon layer passivated with hydrogen atoms. If the bottom layer
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Figure 4.12; Plot of the corrected total energy of bulk cubic silicon carbide as a function 
of lattice vector in the PAW formalism for a (1x 1x 1) unit cell. The minimum is at 
8.30197 Bohrs.

consists of silicon atoms that are passivated with hydrogen we found that, as the silicon 

layer is under compression, the hydrogen-hydrogen distance is smaller than the silicon- 

hydrogen distance with the consequence that the hydrogen is unstable and dissociates 

from the surface with an artificial charge transfer takes place across the vacuum gap. 

With the bottom atomic layer consisting of carbon we found that the electronic charge 

density is confined to the slab with a negligible leakage across the vacuum gap (see Figure 

4.13).

0.01

0
10

Figure 4.13: Plot of the total charge density as a function of cell height for the ADRM. 
The left side of the plot is the hydrogen terminated surface, the right side corresponds 
to the vacuum gap. Dashed line indicates the position of the top adatom.

In our calculations we sample four A:-points of the surface Brillouin zone, correspond­

ing to the F-point, the J'-point (in the [TlO] direction in real space), the J-point (in 

the [110] direction in real space) and the iT-point (see Figure 4.14). For the (3x2) unit 

cell these points are at the zone boundaries. We used a non-primitive rectangular cell to 

simulate the c(4x2) reconstruction, which means that what we call the J  point is halfway 

between the F and A-points of the surface Brillouin zone, the J'-point is 80% of the
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way between the F and (7-points and the iF-point maps to the X-point of the primitive 

Brillouin zone. As the PAW program only uses pairs of real wavefunctions we can only 

sample four A:-points.

[110]

Figure 4.14: Schematic of the surface Brillouin zone and the four fc-points that we sample 
for both reconstructions (not to scale). The left figure is the Brillouin zone of the (3x2) 
reconstruction, right for the c(4x2) reconstruction.

For our structural calculations we used a plane-wave cutoff of 20 Rydbergs, but for our 

electronic structure and total energy calculations we increased the cutoff to 30 Rydbergs. 

The vacuum spacing between slabs was set to 6.08 Â, and this thickness is defined as 

the distance from the top adlayer of one unit cell to the bottom hydrogen atoms of the 

next unit cell. This means that the vacuum spacing is different for different unit cells, 

dependent upon the number of adlayers (we return to this point later in this section). 

We set the criteria for convergence of relaxation such that the change in total energy per 

step is less than 5 x 10“® Ha per iteration. The convergence of relaxed structures with 

respect to the number of atomic layers held in bulk position, plane wave cutoff, fc-point 

sampling and vacuum spacing was checked.

To test whether the majority of the simulation slab acted as bulk silicon carbide we 

varied the number of atomic layers which are held in a bulk-like position. Decreasing the 

number of atomic layers which are held in bulk position (from two to one) has a major 

effect on the addimer bond length and asymmetries. Compared to the two atomic layer 

case the addimer bond lengths are increased by % 0.2 Â and the asymmetries of buckled 

addimers are decreased by % 0.45 Â. If we increase the number of atomic layers which are 

held in a bulk-like position (from two atomic layers to four) we found that there are only 

minor differences in the bond lengths and asymmetries of addimers (of at most % 0.1 A
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difference). We can therefore conclude that our relaxed geometries are well converged 

with respect to the number of atomic layers which are held in a bulk-like position.

The difference between a relaxed unit cell with a plane wave cutoff of 20 Rydbergs 

and a relaxed unit cell of 30 Rydbergs was analysed and found to be negligible. There 

were minor differences in surface dimer length (« 0.10 Â at most) and almost identical 

addimer length («  0.01 Â difference). Dimer buckling was found to be slightly increased 

for the higher cutoff compared to the case with the lower cutoff («  0.06 Â increase).

It was found that the relaxed structure of most of the models was accurately found by 

F-point sampling alone, with the differences in surface structure between F-point relaxed 

and multi A;-point relaxed unit cells being of magnitude ^  0.1 Â at the most. However it 

was found that the structural and electronic properties of the TAADM were not properly 

represented by F-point sampling alone with differences in surface structure of order «  

0.3 Â. Consequently all relaxed structures that are presented here were found using four 

fc-point sampling. Although we were not able to check for changes in the TAADM results 

with more than four t-points, we have also studied the Ar-point convergence of the tight- 

binding calculations (see next Chapter) and there we found that 4 Ar-points are sufficient. 

All total energies that are quoted were found at 30 Rydbergs and four Ar-point sampling 

unless otherwise stated.

The effects of the vacuum thickness on the structure of relaxed unit cells was checked 

by performing a relaxation calculation on two identical unit cells, one with our standard 

vacuum thickness of 6.08 Â and one with a vacuum thickness of 7.88 Â. Comparison of the 

two relaxed unit cell structures revealed that the changes in structure were negligible, with 

surface and addimer bond lengths changing by at most 0.08 Â. Our relaxed structures 

are therefore well converged with respect to vacuum spacing.

Finally we consider the effects of vacuum spacing on the total energy of the unit cell. 

As stated previously the vacuum gap in our initial relaxation calculations was set to 6.08 

Â from the top adlayer of the unit cell to the bottom hydrogen layer of the next cell. This 

means that the height of the ADRM and DDRM unit cells are different from the height of 

the TAADM unit cell (and similarly the height of the AUDD unit cell was different from 

the height of the MRAD unit cell). If we increase the height of the ADRM or DDRM 

unit cells so that it matches the height of the TAADM unit cell the total energy changes. 

We found that the total energy changes by only 0.05 eV which is less than the error of
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LDA DFT. The effect of the slightly different vacuum spacing is negligible.

4.2.2 Simulations of the ADRM  model: Physical properties

The initial structure of the ADRM unit cell before relaxation was based upon the final 

structure proposed by Pizzagalli et al. [231], with a buckled addimer. It was found that 

unless the addimer was placed in this initially buckled state, the top addimer would relax 

into a metastable state wherein it would be flat and have a bond length of approximately 

2.6 Â. This metastable state is 1.03 eV higher in energy than the final structure. Similar 

flat and weakly bound addimers have been found by Pizzagalli et al. [231] on the (3x2) 

surface and by Kackell [232] on the (2x 1) surface. The silicon surface was initially in an 

undimerised state, but after relaxation the surface Si atoms were found to be dimerised. 

The final structure is shown in Figure 4.15.

Figure 4.15: Relaxed structure of the ADRM model. Yellow represents silicon atoms, 
black represents carbon atoms and white represents hydrogen atoms. The top left picture 
is the view from above, the top right view is the view across the silicon line and the bottom 
view is along the silicon line.

The structure obtained for the ADRM is in agreement with previous ab initio [206, 

208, 231], and tight-binding work [233], with a strongly bound and asymmetric addimer. 

The Si atoms of the first Si layer of the SiC crystal proper were also found to be dimerised 

(this is true for all (3x2) unit cells) in agreement with previous work [183, 184, 208,
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231, 233]. The details of the surface structure of this model (and all other models) are 

presented in Table 4.3.

Table 4.3: Equilibrium bond lengths for the addimers and buckling of addimers (magni­
tude) in our total energy calculations and length of dimers in the terminating or surface 
layer. All distances are in Â. See Figures 4.6 4.9 for information on the nomenclature.

Model Addimer bond length Buckling of addimer Surface dimer length
ADRM 2.30 (ai) 0.50 2.59 (di), 2.47 (^2), 2.49 (ds)
DDRM 2.35 (oi), 2.34 (02) 0.51, 0.53 2.40 (di), 2.41 (d2)

TAADM 2.31 (01), 2.44 (02), 2.42 (03) 0.58, 0.01, 0.00 2.41 (di), 2.41 (d2)

4.2.3 Sim ulations o f the D D R M  model: Physical properties

The initial structure of the DDRM unit cell before relaxation was based upon the final 

structure proposed by Pizzagalli et al. [231], with two buckled addimers. It was found 

that unless the addimers were placed in initially buckled states, the addimers would relax 

into a metastable state wherein the addimers would be fiat and have a bond length of 

approximately 2.6 Â. This metastable state is 0.99 eV higher in energy than the final 

structure. The silicon surface was initially in an undimerised state, but after relaxation 

the surface Si atoms were found to be dimerised.

As mentioned previously there are four separate configurations of the DDRM model, 

two where the addimers are aligned in the [110] direction (L) and have either identical 

(FM) or opposite (AFM) addimer buckling, and two configurations where the addimers 

are not aligned in the [110] direction (Z) and again have identical (FM) or opposite (AFM) 

addimer buckling directions. We studied all configurations and found that the model with 

lowest total energy at a plane wave cutoff of 20 Rydbergs and F-point sampling only was 

the LAFM-DDRM. If the initial unit cell was arranged in the LFM arrangement it was 

found that the unit cell would relax into the LAFM configuration. If the unit cell was 

placed into the ZAFM arrangement it was found that the unit cell would relax into 

the ZFM arrangement. The difference in total energy between the LAFM and ZFM 

arrangements was 0.17 eV. The relaxed structure of the LAFM-DDRM is presented in 

Figure 4.16.

The structure obtained for the DDRM is in disagreement with both previous ab 

initio [231], and tight-binding [233] results, as we found that both addimers are buckled 

and quite strongly bound. Our result corresponds to the LAFM-DDRM model studied
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Figure 4.16: Relaxed structure of the DDRM model. See Figure 4.15 for colour coding. 
The top left picture is the view from above, the top right view is the view along the 
silicon line and the bottom view is across the silicon line.

previously using ab initio methods by Lu et al. [208] but unlike this work we found 

that the LAFM model is energetically preferred, rather than all arrangements having 

approximately the same energy. For the details of our surface structure see Table 4.3.

4.2.4 Simulations of the TAADM  model: Physical properties

The initial structure before relaxation corresponded to the initial structure of the TAADM 

as set forth by Lu et al. [208], but with one difference; the second level addimers were 

placed below the top addimer. After relaxation these addimer bonds were broken and 

new addimer bonds were formed. The relaxed structure of the unit cell is shown in Figure 

4.17. This structure was in agreement with previous work [208]. There is an alternating 

arrangement of first layer and second layer addimers as we look along [TlO], with the top 

layer addimer strongly bound and asymmetric, and the second level addimers strongly 

bound and fiat. For the details of the surface structure see Table 4.3.
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Figure 4.17: Relaxed structure of the TAADM model. See Figure 4.15 for colour coding. 
The top left picture is the view from above, the top right view is the view along the 
silicon line and the bottom view is across the silicon line.

Table 4.4: ‘Dispersion’ of HOMO state along [110] (F -  J') and [110] (F -  J) directions, 
for various models. Also shown are values found in the literature. All values are in eV.

Author ADRM DDRM TAADM
This work 0.18 (FT ), 0.00 (FJ) 0.01 (F J '), 0.34 (FJ) 0.13 (F J '), 0.21 (FJ)

Pizza, et o/.[231] < 0.10 (F J '), < 0.10 (FJ) 1.00 (F J '), < 0.10 (FJ)
Lu et o/.[208] 0.20 (F J '), -  0.00 (FJ) ~  0.00 (F J '), ~  0.50 (FJ) 0.37 (F J '), ~  0.00 (F.

4.2.5 Simulations of the ADRM  model: Electronic properties

We cannot comment in detail on the electronic structure of the ADRM (or any other 

model) as we are limited to sampling only four A:-points in the surface Brillouin zone (this 

is because our PAW implementation is limited to FFT ’s of pairs of real wavefunctions). 

We found that at the F-point the gap between the highest occupied state and the lowest 

unoccupied state is 0.53 eV. For the fiat addimer case this gap was 0.07 eV, which 

indicates that the buckling of the addimer is a Jahn-Teller-like distortion which lowers 

the energy by buckling the addimer and increasing the bandgap at at least the F-point. 

We found that there is one well defined occupied state above the valence band, and that 

there were three other states that are partially separated from the valence band. We 

define this to mean that in part of fc-space these states are ciose in energy to the vaience
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band states (maximum 0.1 eV difference) and in other regions of A:-space these states are 

well separated in energy (minimum 0.5 eV difference) from the valence band.

Cell he*ght {Bohrs)

Figure 4.18: Plot of the charge density of the highest occupied state as a function of cell 
height for the ADRM. See Figure 4.13 for layout.

The top adatom of the addimer was found to have a large overlap with two of these 

states, the highest occupied state (or HOMO) and the third highest occupied state, with 

overlaps of 0.1425 and 0.1901 respectively (these numbers are actually the sum of the 

squares of the projectors p, for the s,px,Py and p^ orbitals used in (2.20), they provide a 

measure of the overlap). The distribution of the highest occupied state as a function of 

cell height (from the bottom of one hydrogen covered surface to the bottom of the next 

hydrogen covered surface) is shown in Figure 4.18. As can be seen the largest component 

of the HOMO state is localised in the middle of the slab, so it is not a surface state. 

This implies that the ADRM would not make a good atomic wire, as any holes that are 

injected into the HOMO state would quickly disperse into the bulk. This is because the 

HOMO state which is present on the up adatom is coupled into the bulk by the addimer, 

with a large component on the surface dimer. We can see this in our charge density plots 

of the HOMO state shown in Figure 4.19. The third HOMO state has a very similar 

distribution of charge density throughout the slab (see Figure 4.20), so if any holes are 

injected into this state and into the line then they would quickly disperse into the bulk.

We can calculate the differences (the ‘dispersion’) between the Kohn-Sham eigenval­

ues calculated at different points of the Brillouin zone, and compare these with recent 

photoemission experiments performed on the (3x2) surface [200, 213, 214, 234]. Our 

results, and equivalent results in the literature are presented in Table 4.4. The magni­

tude of dispersion is approximately equal to the magnitude of dispersion measured [214] 

(~  0.2eV). The measured dispersion of the surface state bands is ~0.2 eV along F -  J ',  

with no measured dispersion along J  [214]. The ADRM agrees with these photoemission
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Figure 4.19: Three two-dimensional charge density plots of the ADRM. The top plot: 
a) is a plot of the charge density parallel to the surface at the height of the top adatom 
of the addimer. The second plot: b) is a plot of the charge density perpendicular to 
the surface and parallel to the x2 direction of the unit cell, at the position of the top 
ad-atom. The third plot: c) is a plot of the charge density perpendicular to the surface 
and parallel to the x3 direction at the position of the addimer.

results.

4.2.6 Simulations of the DDRM  model: Electronic properties

We found that at the F-point the gap between the HOMO and LUMO states is 0.79 eV. 

For the metastable flat addimer case this gap was 0.34 eV which again indicates that the 

buckling of the addimers is a kind of Jahn-Teller distortion which lowers the energy by 

buckling the addimers and increasing the bandgap, at at least the F-point. We found 

that there are two occupied states separated from the valence band, with another state 

partially separated from the valence band (see ADRM section on electronic properties
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Ceil height (Bohrs)

Figure 4.20: Plot of the charge density of the third highest occupied state as a function 
of cell height perpendicular to the surface for the ADRM. See Figure 4.13 for layout.

for definition).

Figure 4.21: Plot of the charge density of the highest occupied state as a function of cell 
height perpendicular to the surface for the DDRM. See Figure 4.13 for layout.

We found that the top adatom of each addimer has an overlap with the HOMO 

state and the third HOMO state (with overlaps of 0.0882 and 0.1446 for the HOMO 

state, and 0.1429 and 0.1114 for the third HOMO state). The distribution of the highest 

occupied state as a function of height is shown in Figure 4.21. The largest component 

of the HOMO state is localised at one side of the slab, but this state is located on the 

side of the slab which is hydrogen terminated. The HOMO state is not associated with 

the adatoms. Thus if we attempted to inject a hole into the line then we would find 

that the hole disperses into the bulk. We can also see this in our charge density plots 

of the HOMO state as shown in Figure 4.22, where we see that the charge density is 

distributed throughout the unit cell and that this state is therefore not oriented along 

the x2 direction, i.e., it is not “line-like”. The third HOMO state has a significant 

addimer component on the surface, although there is a large bulk component as well, as 

shown in Figure 4.23. This state is very isotropic and so is also not “line-like” .

Looking at the “dispersion” values for the HOMO state for the DDRM (see Table 

4.4) we found that there is a large dispersion along F — J. We attribute this to our
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Figure 4.22: Three two-dimensional charge density plots of the DDRM. The top plot: a) 
is a plot of the charge density parallel to the surface at the height of the top adatom of an 
addimer. The second plot: b) is a plot of the charge density perpendicular to the surface 
and parallel to the x3 direction of the unit cell, at the position of the top ad-atom of an 
addimer. The third plot: c) is a plot of the charge density perpendicular to the surface 
and parallel to the x2 direction at the position of the addimer.

modelling of a perfectly ordered periodic (3x2) surface, whereas the (3x2) surface has 

been observed to be almost perfectly disordered [187, 216], in the sense that there is no 

observable correlation between the addimer tilt in one (3x2) unit cell, and the next (in 

either the x3 or x2 direction). Our results suggest that the DDRM possesses a larger 

dispersion along T — J  than along F — T', which is contrary to the photoemission results 

(see above).
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Figure 4.23: Plot of the charge density of the third highest occupied state as a function 
of cell height perpendicular to the surface for the DDRM. See Figure 4.13 for layout.

4.2.7 Simulations o f the TAADM  model: Electronic properties

We found that the gap between the HOMO and LUMO states at the F-point is 1.00 eV. 

There are three occupied states separated from the valence band with one other state 

partially separated from the valence band (see ADRM section on electronic properties 

for definition).

I

Figure 4.24: Plot of the charge density of the highest occupied state as a function of cell 
height for the TAADM. See Figure 4.13 for layout.

Of these states, only the HOMO state has a significant overlap with any of the 

adatoms, with an overlap of 0.3284. The distribution of the highest occupied state as a 

function of height in the unit cell is shown in Figure 4.24. The largest component of the 

HOMO state is localised above the top adatom and is confined to the top few atomic 

layers of the slab, so the HOMO state is a surface state. This is also shown in Figure 

4.25 where we see that the HOMO state is mainly localised on the top adatom with very 

little dispersion into the bulk. We also see that part of the HOMO state is confined to 

the surface and has a “line-like” profile aligned along the x2 direction, as can be seen in 

Figure 4.26, so the HOMO state is confined to the addimer part of the (3x2) unit cell 

and is delocalised along the line. Thus if a hole was injected into the line it would be

1 2 0



confined to the line and could disperse along it.

a)

b)

c)

x2

Cell height

Cell height

x2

Figure 4.25: Three two-dimensional charge density plots of the TAADM. The top plot: 
a) is a plot of the charge density parallel to the surface at the height of the top adatom 
of the top addimer. The second plot: b) is a plot of the charge density perpendicular to 
the surface and parallel to the x3 direction of the unit cell, at the position of the top 
adatom of the addimer. The third plot: c) is a plot of the charge density perpendicular 
to the surface and parallel to the x2 direction at the position of the top addimer.

The dispersion of the HOMO state of the TAADM is shown in Table 4.4. Our results 

do not agree with the results of Lu et al. [208] who found that there is a greater magnitude 

of dispersion along the [ÎlO] direction than along the [110] direction, whereas we found 

that the HOMO state has a slightly greater dispersion along the [110] direction than 

along the [110] direction. We found that the HOMO state for the TAADM exists mostly 

in the vacuum of the simulation slab, and suggest that as we use plane waves to describe 

our electron wavefunction, as opposed to the localised Gaussian orbitals used by Lu et al. 

[208], our dispersion results may more accurately describe the dispersion of the surface
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Figure 4.26: Charge density plot of the HOMO state of the TAADM. This is a slice which 
is parallel to the surface and is at the height of the bottom adatom of the top addimer. 
It clearly shows that the HOMO state is mediated from one unit cell to the other in the 
x2 direction via the second level addimers.

state. Our results are of the same magnitude as the photoemission experiments [215] 

although the anisotropy of the dispersion is different, with our results showing a bigger 

dispersion along [110] than [Ï10].

4.2.8 Thermodynamic results: W hich (3x2) model is favoured?

We wish to use the total energies we calculated to discover which of the three candidate 

models is most stable. We assume that the formation of the different structures is de­

termined by thermodynamic factors, but we cannot compare directly the total energies 

of models with different stoichiometries. A common method of comparing structures in 

these circumstances is to find the chemical potential fisi for the silicon adatoms and then 

compare the grand potentials [235, 236]

(4.2)

In this formula we neglect the finite temperature (entropie) contributions to the free 

energy. However, because of the experimental conditions that produce the (3x2) surface
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and because SiC is a two component system, it is nontrivial to calculate /ig,. Nevertheless 

we can estimate a value for the range of chemical potential that the silicon adatoms 

experience. We take the zero of chemical potential to correspond to the total energy of 

an isolated silicon atom. This varies depending on the formalism we use, and in the PAW 

formalism this corresponds to -3.808 Hartrees.

We must decide what physical/chemical process determines the value of //gj in our 

system. We can make several choices. We choose to consider the incorporation of Si atoms 

into bulk SiC. The chemical potential //gi would then become the chemical potential for 

a Si atom in SiC. However this cannot be calculated directly, because it is impossible to 

insert a single Si into SiC without creating a structural defect of some kind. We can, 

though, estimate the maximum range of fis\ that the Si adatoms experience [237]. We 

can write the chemical potential per unit cell of an ideal bulk system of SiC as

/^Sic' =  /̂ Si 4- /ic> (4.3)

where usi and fic are the (unknown) contributions from the Si and C atoms. In extremely 

Si-rich conditions, /zgi approaches the value of bulk Si. We can consider deviations from 

this bulk value A/igj=//gj — (with a corresponding definition for A ^ ) .  The allowed 

range is determined by the heat of formation of the SiC compound

A H f  = =  {usi — +  (/^c — =  A/igi 4- A fic  (4.4)

The experimental value of A H f  is 0.72 eV [238]. In a Si-rich environment A^gj =  0, and 

therefore A/zc =  A H f .  Similarly, in a C-rich environment A/ic =  0 and A/zgj =  A H f .  

This means that furthest deviation the chemical potential of Si can make from the value 

for bulk Si is 0.72 eV. We show our results as a function of fisi over the range from its 

value for bulk Si, /igi(Si), to the value obtained by assuming that the chemical potential 

of SiC can be equally divided between the carbon and silicon atoms; we call this latter 

value /igi(C). In the present case, /^gi(C) < /zgi(Si) — A H f  < /igj(Si).

We use calculated ab initio total energies, to find Cl from equation (4.2) for the various 

models. The results presented (see Figure 4.27) are for our most converged simulations 

(30 Rydberg cutoff, 4 ifc-points sampled). We first of all start off with the assumption 

that the Si adatoms are in equilibrium with the bulk. As can be seen, all crossover points
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(that is the values of /xsi for which Ü is equal for two separate models) are outside the 

maximum allowable range of /isi as determined by A H f .  We can thus unambiguously 

apply our calculations of Q. to determine which model is thermodynamically preferred. 

Over the entire range of allowable chemical potentials, the TAADM model is favoured.

(1x1)

ADRM
S ^  - c(4x2) 

P  DDRM

TAADM

A H ,

- 1 5
-7 p (S iC )-6  -5  p (S i) -4

Chemical potential of Si a d -a tom s (eV) per atom

Figure 4.27: Plot comparing the grand canonical potentials per (3x2) unit cell for the 
three (3x2) candidate models, the ideal (1x1) surface and a (3x2) slice of the c(4x2) 
reconstruction, as a function of chemical potential per Si atom /isi- The zero of the 
grand canonical potential corresponds to the grand canonical potential of the ideal (1x1) 
surface. Arrows pointing downwards indicate the critical value /igj where Cl is equal for 
a pair of (3x2) models. Also indicated are the chemical potentials per atom of silicon 
and silicon carbide and the range of A H f ,  to illustrate the maximum range of allowable 
cohesive energies for the case where the Si atoms are assumed to be in equilibrium with 
the bulk.

Our results are in agreement with the previous work of Lu et al. [208], where it is 

found that the TAADM is the thermodynamically preferred model throughout the entire 

allowable range of /isi- Regarding the relative stability of the ADRM and DDRM, we 

agree with other work [231, 233] where it is suggested that the ADRM is the favoured 

model (although the TAADM is not considered). We found that the ADRM is only 

favoured over the TAADM for values of //g; which are close to /ugi(SiC) (i.e., for extremely 

Si-poor conditions).

We have therefore found from our ab initio calculations of the grand potential that 

the TAADM is preferred over a large range of chemical potential and that the other two 

models can be discounted: with the DDRM never preferred and the ADRM only valid 

for a range of chemical potential which is non-physical.
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4.3 Ab initio simulations of the c (4x2 ) reconstruction

4.3.1 Sim ulations o f the A U D D  model: Physical properties

The initial structure of the AUDD unit cell before relaxation was based upon the AUDD 

model proposed by Soukiassian et al. [192], with the atomic coordinates based on the 

specific structure of Pizzagalli et al. [193]. We found that this surface was locally stable 

with the surface dimers remaining strongly dimerised and flat. The presence of strong 

surface dimers is in contradiction to the results obtained on the related (2x1) surface by 

Kackell et al. [232], who found that the dimers are weakly bound with a length of 2.75 

Â. The difference in height between the upper and lower surface dimers was found to be 

0.21 Â, in agreement with Douillard et al. [202]; this difference is twice that found by 

Pizzagalli et al. [193]. The details of the structure of the relaxed unit cell are shown in 

Table 4.5. The relaxed structure is shown in Figure 4.28.

Table 4.5: Equilibrium bond lengths for the addimers and dimers in the terminating or 
surface layer and amount of buckling (magnitude) found in our total energy calculations. 
All distances are in Â. See Figures 4.10 and 4.11 for more.

Model Dimer (or Ad-dimer) bond length Amount of buckle
AUDD 2.40 (di, ^4), 2.67 (dg, dg) 0.00 (di, d4), 0.00 (dg, ds)
MRAD 2.50 (di), 2.50 (dg), 2.50 (dg), 2.50 (d4) 

2.36 (ds), 2.36 (dg)
0.00 (di, dg, da, d^) 
0.19 (ds), 0.18 (dg)

4.3.2 Sim ulations o f the M R A D  model: Physical properties

The initial structure of the MRAD unit cell before relaxation was based on the structure 

proposed by Lu et al. [194]. We found that the surface was locally stable with the silicon 

atoms of the surface layer dimerising into short dimers and the addimers strongly bound 

and asymmetric. We found that the two addimers are only weakly buckled by 0.19 A  ( d g ) ,  

and 0.18 A  ( d g )  respectively, whereas Lu et al. [194] found that the addimers are buckled 

by ~  0.54 A .  For more structural information see Table 4.5. The relaxed structure is 

shown in Figure 4.29.

4.3.3 Sim ulations o f the A U D D  model: E lectronic properties

As for the (3x2) reconstruction we do not possess a large amount of information on the 

electronic structure of the various models as we only sample four fc-points of the surface
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Figure 4.28: Relaxed structure of the AUDD model. See Figure 4.15 for colour coding. 
The top left picture is the view from above, the top right view is the view along the [ÎIO] 
direction and the bottom view is the view along the [110] direction.

Brillouin zone. There are two occupied states separated from the valence band. The 

bottom surface dimers have a significant overlap with the HOMO states (0.1064) while 

the top surface dimers have a significant overlap with the second HOMO state (0.1538). 

This implies that for such a small difference in physical structure the top and bottom 

surface dimers have different electronic characteristics. Both states have a significant 

surface component, as can be seen in Figures 4.30-4.31.

We found that the highest occupied state disperses by 0.04 eV as we move along 

both the [110] and [Î10] directions; this is in contradiction with recent photoemission 

work [220], wherein it was found that a prominent surface state shows a dispersion of 0.2 

eV along the [110] direction, and no noticeable dispersion along the [110] direction. We 

found that at all four of the A:-points we sample in the surface Brillouin zone, the HOMO 

and second HOMO states are degenerate, which is in agreement with photoemission 

data [220], where it is found that there is only one surface state (called Si in the cited 

reference) from M  — T — X . Finally, as there are only two types of dimer on the surface 

(the top surface dimer and the bottom surface dimer), we would expect there to be only 

two core-level shifts, which is in agreement with the core-level photoemission results of
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Figure 4.29: Relaxed structure of the MRAD model. See Figure 4.15 for colour coding. 
The top left picture is the view from above, the top right view is the view along the [TlO] 
direction and the bottom view is the view along the [110] direction.

Aristov et al. [226].

4.3.4 Simulations of the M RAD model: Electronic properties

We found that one state is separated from the valence band and one state is partially 

separated from the valence band (for our definition of how we decide which states are 

separated from the valence band and which states are not, see the ADRM subsection on 

electronic properties). We found that there is a significant overlap between the adatoms

0.0012

0.001

0 10 40

Figure 4.30: Plot of the charge density of the highest occupied state as a function of 
cell height perpendicular to the surface for the AUDD. See Figure 4.13 for layout. The 
dashed line indicates the position of the top surface dimer.
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Figure 4.31: Plot of the charge density of the second highest occupied state as a function 
of cell height perpendicular to the surface for the AUDD. See Figure 4.13 for layout. The 
dashed line indicates the position of the top surface dirner.

and the highest occupied state (0.1006) and that there is a strong overlap between the 

second highest occupied state and the adatoms (0.1651). There is surprisingly little 

difference between the overlaps for up adatoms and down adatoms. As can be seen in 

Figure 4.32 the HOMO state does have a large surface component but there is also a 

significant bulk component. The second HOMO state (as shown in Figure 4.33) does not 

have a large surface component but is does instead have a large component in the bulk.

Figure 4.32: Plot of the charge density of the highest occupied state as a function of cell 
height perpendicular to the surface for the MRAD. See Figure 4.13 for layout.

Cell height (Bohr#)

Figure 4.33: Plot of the charge density of the highest occupied state as a function of cell 
height perpendicular to the surface for the MRAD. See Figure 4.13 for layout.
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We found that for the MRAD model the highest occupied state disperses by 0.05 

eV along the [110] direction, and by 0.40 eV along the [îlO] direction. The dispersion 

found for the MRAD model is in contradiction with photoemission experiments [220], 

wherein it was found that a prominent surface state shows a dispersion of 0.2 eV along 

the [110] direction, and no noticeable dispersion along the [TlO] direction. However we 

also found that at the J  and J' points in the Brillouin zone, the HOMO and second 

highest occupied states are degenerate which does match photoemission data [220]. As 

we found a weakly buckled ad-dimer, the surface possesses only two essentially different 

electrostatic environments for Si, in agreement with the experimental results of Aristov 

et al. [226].

4.3.5 Therm odynam ic results: W hich c(4x2) m odel is favoured?

A comparison of O over the entire range of allowed chemical potential A H f  for both 

models is presented in Figure 4.34. As can be seen, the MRAD model is the thermo­

dynamically preferred model over the entire allowable range of chemical potential. Our 

results thus agree with those of Lu et al. [194], who also found that the asymmetric 

MRAD model was energetically preferred. We also found that the ideal (1x1) recon­

struction is energetically preferred over the reconstructed c(4x2) reconstruction. This is 

in agreement with Catellani et al. [225], who found that for an unstressed clean surface, 

c(4x2) reconstructions would always reconstruct into a w eakp(2xl) reconstruction with 

a total energy a few meV per atom less than the ideal surface. We therefore conclude 

that the MRAD is the preferred model for the c(4x2) surface reconstruction.

4.4 Conclusions

Prom analysis of our plots of grand canonical potential (see Figures 4.27 and 4.34) as a 

function of chemical potential of the Si atoms involved, we found that the favoured model 

for the (3x2) reconstruction is the TAADM and the favoured model for the c(4x2) model 

is the MRAD model. For the (3x2) reconstruction we can comprehensively rule out the 

other models. The DDRM is not stable over the range of physically valid chemical 

potentials. The ADRM is only favoured over the TAADM for values of /xsi which are 

close to ^si(SiC) (i.e., for extremely Si-poor conditions). But there is no evidence for 

a (2x3) reconstruction, such as the ADRM, which is less silicon-rich than the c(4x2)
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Figure 4.34: Plot comparing the grand canonical potentials ft per (4x2) unit cell for the 
two models as a function of the chemical potential of Si atoms, with an arbitrary zero. 
Also indicated are the cohesive energies per atom of silicon and silicon carbide and the 
range of size A H f  within which fis[ is constrained to lie.

reconstruction. We found that (contrary to observations) the c(4x2) reconstruction is 

only preferred over a very narrow range of /i when the ADRM is included. This indicates 

that the formation of the ADRM reconstruction must be inhibited by kinematic effects.

However, how adequate are our thermodynamical calculations in determining the 

favoured model for both the (3x2) and c(4x2) reconstructions? The adequacy of our 

thermodynamic calculations is determined by two factors: firstly the accuracy of LDA 

DPT calculations of the total energy and secondly the suitability of our zero temperature 

calculations for modelling the energetics of the growth process. The error in LDA DPT 

is composed of three terms: an error in the density functional, an error in the plane wave 

cutoff and an error in A:-point sampling. We have previously shown that our calculations 

are well converged with respect to plane wave cutoff and A:-point sampling. The error in 

our density functional is difficult to quantify but we believe this error to be small (% 0.1 

eV).

The formation of this polytype of SiC takes place at a high temperature and con­

sequently the chemical potential of the silicon adatoms may be determined by entropie 

factors instead of energetic factors. We neglect any entropie effects. The contribution 

of any entropie effects would be of magnitude ksT . A temperature of approximately 

1000 K would lead to entropie effects of order 0.1 eV. By inspection, the grand canonical
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curves of the TAADM and ADRM that we plot in Figure 4.27 differ from each other 

by a much greater amount than this within the region of chemical potential usi that is 

determined by the heat of formation (and similarly for the AUDD and MRAD models).

It is also possible that the structure of the (3 x 2) reconstruction is determined by kine­

matic factors instead of energetic factors. High temperature STM scans [105] show that 

the Si adatoms are quite mobile but are also ordered. Therefore the structure of the low 

temperature (3x2) reconstruction is identical to the high-temperature (3x2) reconstruc­

tion and at such high temperatures it is unlikely that the individual Si adatoms would 

be kinematically trapped in any specific configuration. This suggests that the chemical 

potential of the surface reconstruction is determined by energetic factors. Therefore, 

thermodynamic considerations should be the determining factor in the formation of this 

surface.

A problem with both of our thermodynamically favoured models is that it remains to 

reconcile the dispersion of our Kohn-Sham eigenvalues with the experimentally observed 

photoemission data [214, 220]. The photoemission curves are not generated from one- 

electron states however, but are generated from many-electron quasiparticle states. Our 

dispersion results for the TAADM are within the experimental error bars of photoemission 

results (± 0 .1  eV), so it is conceivable that our dispersion results do match the real 

dispersion values. The dispersions of the MRAD model are more problematic, as they do 

not match photoemission data, but as they are generated from single-particle eigenstates 

which are compared to many-particle eigenstates the comparison is not ideal. Also the 

grand canonical potential of the MRAD model is lower than the AUDD model over the 

entire range of allowable chemical potential and has a higher chemical potential than the 

ideal (1x1) surface.

Therefore when we consider the formation of the (nx2) reconstruction in the next 

Chapter, we take as the structural component of the line (the (3x2) reconstruction) the 

TAADM model and the structural component of the surface (the c(4x2) reconstruction) 

the MRAD model. We have shown that the TAADM model possesses a highest occupied 

state that is confined to the line and is “wire-like” . The TAADM possesses a larger 

dispersion along the x3 direction than the x2 direction, which means it is easier for an 

injected electron (or hole) to disperse across the line than along it (by making a simple 

analogy to tight-binding where the dispersion relation \s E  = E —2t cos(fco) where t is the
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hopping integral). The (3x2) reconstruction corresponds to the case where the silicon 

lines are next to each other. In order to separate the silicon lines we need to add part of 

the c(4x2) surface to the unit cell, in order to form a (nx2) unit cell. This (nx2) unit 

cell requires the use of a larger unit cell. To perform these calculations using DFT would 

be computationally expensive, instead we use a tight-binding method. This is the subject 

of our next chapter, the tight-binding study of the (nx2) series of reconstructions.
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Chapter 5

Silicon carbide: Tight-binding  

analysis of the structure of the  

(n x2) series of reconstructions

We have found that the favoured model for the (3x2) reconstruction is the TAADM 

model (see Figure 4.27) and that the favoured model for the c(4x2) reconstruction is the 

MRAD model (see Figure 4.34). We now want to model widely separated silicon lines, 

which means that we want to construct a (nx2) unit cell by combining the two sets of 

reconstructions (see Figure 4.5). To model such large unit cells necessitates the use of 

a less accurate formalism than the DFT method we used for the last chapter. We use 

a non-self-consistent-charge tight-binding methodology for the simulation of such large 

unit cells.

In this chapter we first of all introduce the tight-binding method (using the TRO- 

CADERO code) that we use, the tests we performed to check whether this method 

accurately simulated silicon carbide and the convergence of our simulations with respect 

to fc-point sampling. We then compare our tight-binding simulations of the (3x2) recon­

struction with the DFT simulations of the (3x2) reconstruction to check whether they 

agree. We then construct and simulate (nx2) unit cells (where n  varies in odd numbers 

from 3 to 11). We present the details of two structures, a  ground-state structure and a 

metastable structure. We study the effects of the increase in separation of the lines on the
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structural and electronic properties of the lines, and present details of a structural tran­

sition that occurs for the metastable state when n > 7. Finally we show what happens 

if we increase the size of the unit cells we are studying by performing calculations on the 

(7x4) unit cell, which corresponds to a larger slice of the line and allows distortions with 

a x4 periodicity to occur. This allows the ‘metastable’ structure to relax to a structure 

with a lower total energy than the ground-state structure. We analyse the structural and 

electronic properties of such a large unit cell. We then present our conclusions.

5.1 Tight-binding: Formalism

5.1.1 Tight-binding: Param eterisation

As discussed in Chapter 2, the tight-binding method can be recovered from standard DFT 

methods by neglecting second order corrections to the total energy [146]. We can thus 

write the Hamiltonian as H =  T  + where we can write the one-electron potential

as a sum of spherical atomic contributions:

Kff(r) = ^ y o ‘ (l'---Rt|) (5.1)
k

where Vo is the Kohn-Sham potential of a neutral pseudoatom. We can write the wave- 

functions of an extended system as

V'n(r) = ^Ca,k{n)<j)a{r -  Rk), (5.2)
a,k

where <l>a{‘f'—Rk) are the atomic-like valence orbitals (a) of a single pseudo-atom (located 

at site k) within DFT. They are found explicitly by solving the Kohn-Sham equation with 

the Hamiltonian

2m.
(5.3)
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In this Hamiltonian, Vpa{r) corresponds to a pseudo-atom potential which has the same 

scattering properties as the atomic DFT potential. The Kohn-Sham equations can then 

be transformed into a set of algebraic equations

5 3  (^) -  ^nSap) =  0, (5.4)
a,k

where = (0al-ff 10/3) and Sa^ =  (0a|0/3)- We can then find the single particle energies 

e„ by solving the generalised eigenvalue problem, and thus find the total energy and 

thence the force acting on each atom. In practice we use the non-self-consistent-charge 

parameterisation first utilised by Gutierrez et al [151], with the Hamiltonian matrix 

and the overlap matrix parameters fitted to DFT calculations on diatomic molecules, 

specifically the C-C, Si-Si, Si-H, Si-C, C-H and H-H diatomic molecules (this is known as 

Density-Functional-Tight-Binding, DFTB). We use four basis functions corresponding to 

the four valence orbitals s,Px,Py and pz of silicon and carbon. Hydrogen of course only 

uses the s-orbitals. For more information about the various tight-binding methods that 

are available, the reader is invited to read the following review articles [141, 153, 154].

5.1.2 Tight-binding: Tests

We need to check whether our tight-binding parameterisation gives us an accurate value 

of the lattice parameter of silicon carbide. The lattice parameter is calculated by finding 

the minimum of binding energy with respect to lattice parameter. We find that the 

binding energy is converged when we model a  bulk SiC unit cell with 64 atoms, that is 

that proceeding from 64 to 128 atoms produces a negligible change in the binding energy 

per atom. We sampled the F-point only, as with Brillouin zone folding we are sampling 

a large part of Ar-space. We found that our tight-binding formalism gives a bulk lattice 

vector of 4.384 Â (see Figure 5.1) which is 0.55% greater than the experimental value. 

The bulk modulus was found to be 693.82 Gpa. In all of our simulations, we use this 

theoretical lattice parameter.

We also want to check how many A:-points we need to sample in the surface Brillouin 

zone in order to make certain that our relaxed structures are well converged. We use 

a Monkhorst-Pack net [239] to sample the surface Brillouin zone in our tight-binding
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Figure 5.1: Plot of binding energy of bulk cubic silicon carbide as a function of lattice 
vector for the tight-binding formalism. This is for a simulation of a (2x2 x 2) unit cell. 
The minimum is at 16.56562 Bohrs.

simulations. We found that as we increase the fc-point sampling from a (221) net to a 

(441) net and relax the unit cell, that there is a negligible difference in surface structure. 

The largest change in addimer bond length is 0.016 Â and the largest change in addimer 

buckling is 0.0056 Â. We conclude that our surface structures are well converged with 

respect to fc-point sampling using a (221) net. This also implies that our DFT calculations 

of the TAADM in the last chapter should be well converged with respect to A: point 

sampling as they too sampled four fc-points. We use a (221) fc-point net for all of our 

tight-binding simulations.

5.1.3 Tight-binding: Correspondence with DFT results

All simulation results we present here use simulation cells which are ten atomic layers 

thick, with the bottom carbon atomic layer passivated with hydrogen. We want to 

check whether our tight-binding code successfully reproduces the gross structural and 

thermodynamic results of DFT. We present the details of the structure and deviation 

from DFT results in Table 5.1 for the (3x2) models.

Analysing our structural results model by model we see that TROCADERO accu­

rately finds the structure of the ADRM model, with a strongly bound and asymmetric 

addimer. Our tight-binding formalism does tend to overestimate the amount of buckling. 

TROCADERO finds a different structure to our DFT results for the DDRM model, with 

one short and strongly buckled addimer and one longer and flatter addimer. Interestingly 

our DDRM structure is similar to the structures obtained by Pizzagalli et al. [231], who 

used ab initio molecular dynamics, and Gutierrez et al. [233], who used a self-consistent-
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Table 5.1: Structure of the various (3x2) models as found in our tight-binding scheme 
and how they compare to DFT simulations. See Figures 4.6-4.9 for the meaning of 
labels. Az refers to the buckle of an addimer. All distances are in Â.

Model Tight-binding results Deviation from DFT
ADRM 2.3320 (ai), 0.6295 (Az) 

2.6015 (di), 2.5710 (dg), 2.6620 (dg)
0.0307 (oi), 0.127 (Az), 

0.0000 (di), 0.0961 (dg), 0.1658 (dg)
DDRM 2.6380 (oi), 0.2441 (Az) 

2.3239 (ag), 0.6645 (Az) 
2.3417 (di), 2.6323 (dg)

0.2882 (oi), 0.2654 (Az) 
0.0259 (og), 0.1318 (Az), 
0.0587 (di), 0.2319 (dg)

TAADM 2.6199 (oi), 0.6473 (Az) 
2.6132 (og), 0.0000 (Az) 
2.5904 (ag), 0.1252 (Az) 
2.3409 (di), 2.3367 (dg)

0.3008 (ai), 0.0558 (Az) 
0.1619 (og), 0.0000 (Az) 
0.1693 (og), 0.1252 (Az) 
0.0640 (di), 0.0678 (dg)

charge DFTB code. For the TAADM model we find that the gross structure agrees with 

our DFT results with the similar addimer buckling (0.59 Â and 0.65 Â ), although the 

addimer bond lengths are longer. The largest difference is for the top addimer o i .

One possible source for the difference in calculated addimer bond lengths is the charge 

transfer that occurs when the addimer tilts. In a system which is charge self-consistent, 

the addimer atoms become oppositely charged and attract one another, reducing the 

addimer bond length. We posit that this is why in our DFT calculations the flat ad­

dimer length is 2.60 Â while the buckled addimer bond length is «  2.35 Â. Our non-self 

consistent code cannot accurately reproduce this eflFect and so overestimates the addimer 

bond length. However it does capture the tilt. This is not surprising as the tilt is a 

kind of Jahn-Teller (JT) distortion which depends upon the symmetry of the highest 

occupied states, and the near degeneracy of these states is not strongly dependent on the 

charge distribution of the system. In other words, if the system fulfils the conditions for 

a JT  distortion, it will distort and lower its energy both according to DFT and DFTB, 

although the structural details of the distortion will be slightly different in each case.

Does TROCADERO reproduce the thermodynamic results that were obtained from 

our DFT simulations? We used the same thermodynamic arguments as were used in our 

last chapter, although as the total energy of an isolated silicon atom in TROCADERO 

is different from PAW we set the zero of silicon chemical potential to -1.0782 Hartrees. 

Our results are presented in Figure 5.2. As for our DFT calculations, we found that the 

preferred model for the (3x2) reconstruction over the entire range of allowable silicon 

chemical potential is the TAADM model. We found that the DDRM model is never 

thermodynamically preferred. The ADRM model is only allowed for values of chemical
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potential that correspond to a silicon-poor (3x2) unit cell. We also found that the MRAD 

model is favourable for most regions of the allowable chemical potential.

I (1x1)

I
S
8 ADRM

DDRM
c(4x2)

§
TAADM

A H ,

-10
-7 M(Si)

Chemical potential of Si adatom s (eV) per adatom
p (S iC )-6  

Chemical potential

Figure 5.2: Plot comparing the grand canonical potentials Ü per (3x2) unit cell for the 
three (3x2) candidate models, the ideal (1x1) surface and a (3x2) slice of the c(4x2) 
reconstruction, as a function of chemical potential per Si atom /isi- The zero of the 
grand canonical potential corresponds to the grand canonical potential of the ideal (1x1) 
surface. Arrows pointing downwards indicate the critical value /ig; where ft is equal for 
a pair of (3x2) models. Also indicated are the chemical potential per atom of silicon 
and silicon carbide and the range of AJT/, to illustrate the maximum range of allowable 
cohesive energies, for the case where the Si atoms are assumed to be in equilibrium with 
the bulk. This is calculated with TROCADERO, and is in agreement with Figure 4.27.

We have therefore found that our tight-binding formalism reproduces the gross struc­

ture of the favoured TAADM model of the (3x2) reconstruction, by reproducing the 

magnitude of the top addimer buckling. We have also found that TROCADERO re­

produces the thermodynamic results of our DFT simulations. We therefore feel that 

TROCADERO does reproduce the essential physics of this face of silicon carbide.

5.2 Structural properties of the (nx2) series

In our relaxations of the (nx2) series of unit cells we used the same initial conditions as 

for the TAADM and MRAD models. When the difference in total energy per relaxation 

step is less than 10“  ̂ Ha we then say that the structure is fully relaxed.
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(3x2) c(4x2)

Figure 5.3: Illustration of the two different states of the (nx2) series of reconstructions 
(this reconstruction corresponds to the (7x2) reconstruction). We show only the adatoms 
of the surface. The top diagram shows the ground-state system, while the bottom diagram 
shows the metastable system. Note that the length and asymmetry of one of the two 
surface dimers is different in the two schematics (indicated by the red rings).

5.2.1 Variation of line structure with n

We modelled unit cells with n ranging in odd steps from 3 to 11, with all odd n in 

between. We found two stable states, a ground-state and a metastable state (see Figure 

5.3). The true ground-state was not obtainable directly from our initial structure, but 

was obtained by a process of perturbing one of the addimers of the c(4x2) part of the 

surface, by placing the two adatoms of the flat addimer of the surface into the position 

of the buckled addimer of the surface. We first detail the structure of the ground-state 

of the (nx2) series of reconstructions. The structure of the ground-state of the entire 

series of (nx2) reconstructions is essentially identical for all n. The top addimer of the 

line was buckled, the second-level addimers of the line are flat and all the addimers of 

the surface (the MRAD addimers) were buckled. This motif is maintained for all the 

values of n we modelled. The structure of the (5x2) reconstruction was in agreement 

with previous theoretical work [209].
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(3x2) ab initio

(3x2) DFTB

(7x2) DFTB

Figure 5.4: Illustration of the different addimer structures we obtain for different unit 
cells and different, methods of calculation {ah initio and DFTB). Note that the addimer 
for the (7x2) unit cell is flat, compared to the (3x2) unit cell (obtained by both methods). 
The arrow indicates where the electron localises, see Section 5.3.2.

In contrast, the metastable state that we initially find upon relaxation exhibits a 

structural transition of the line and the surface when n >7. For n <5 the addimer of the 

line is buckled, in agreement with the ground-state structure and Lu et al. [208, 209]. 

However, we found that for ri >7 the top addimer becomes symmetric and the addimer 

bond length becomes shorter, with a bond length of 2.35Â (see Figure 5.4). This matches 

STM topographs of the lines, which show that the lines are composed of symmetric units 

[106, 240]. The bond angles between the top addimer and the top-ad-layer-to-second-ad- 

layer bonds all become ~  109.5°, compared to ~  85° and 125° for the buckled addimer 

case. We present the details of the structure of the ground-state (7x2) and metastable 

(7x2) unit cells in Table 5.2. The two major differences in the metastable structure are 

that 1) the top addimer of the line is fiat and much shorter in the metastable state, and 

2) that one of the addimers of the surface is flat and longer (this addimer is the closest 

MRAD addimer to the up adatom of the line). This configuration of the surface addimer 

roughly corresponds to the configuration of the (2x1) surface found in previous work 

[194]. We also found that there is a higher-energy structure of the metastable state that 

had a buckled addimer. This had a total energy 0.3 eV higher than the fiat addimer 

structure of the metastable state.

The ground-state structure (which has a buckled addimer) had a total energy % 0.3 

eV lower in energy than the metastable structure. The total energy difference between
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Table 5.2: The addimer structure of our two structures of the (7x2) unit cell; the 
ground-state (GS) and metastable state (MS). We also show the buckling of the 
addimers. See Figure 5.3 for the definition of a\ — 0 5 .

State Addimer bond lengths Buckling of addimers (Az)
GS 2.6201 (0 1 ), 2.6153 (0 2 ), 2.6065 (0 3 ) 

2.3413 (0 4 ), 2.3409 (0 5 )
0.6507 (oi), 0.0000 (o2 )0 . 0 0 0 0  (0 3 ) 

0.6383 (0 4 ), 0.6399 (0 5 )
MS 2.3490 (0 1 ), 2.5981 (og), 2.4156 (0 3 ) 

2.3406 (0 4 ), 2.6448 (0 5 )
0.0000 (ai), 0.0000 (0 2 ), 0.1114 (0 3 ) 

0.6400 (0 4 ), 0.0000 (0 5 )

the two structures is less than the total thermal energy of the surface silicon atoms at 

room temperature. Both states could be accessible to the surface.

5.2.2 Therm odynam ic results

We plotted the grand canonical potential of the (nx2) series of reconstructions as a func­

tion of chemical potential in a similar manner to our plot for the candidate models of 

the (3x2) and c(4x2) reconstructions, by using (4.2). These plots are shown in Figure

5.5 for the ground-state system. We found that the (3x2) reconstruction is the ther­

modynamically preferred model for chemical potentials that are silicon rich, and that 

otherwise the c(4x2) reconstruction is preferred. The (nx2) series of reconstructions is 

favoured for a very narrow range of chemical potential and over the range of interest of 

silicon chemical potential, the grand canonical potentials (for (1 x 1 ) unit cells) are very 

similar. Therefore once the silicon lines are formed then it is relatively easy to increase 

their separation. However we do not take into account entropie effécts, which as the 

grand canonical potentials are so similar could make a significant difference to moving 

the crossover points.

5.3 Electronic properties of the (n x2) series

5.3.1 Variation o f bandgap and HOM O state w ith  n

We analysed the variation in electronic structure as n was increased, which corresponds to 

increasing the separation of the lines. The analysis of the unit cell was performed using a 

(771) fc-point Monkhorst-Pack net. We were interested in finding if the semiconducting 

nature of the surface changed with n and whether the dispersion of the HOMO state 

changed (remember that the dispersion of the HOMO state is important if we consider
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Figure 5.5: Plot comparing the calculated grand canonical potentials Q per (1x1) cell for 
the (nx2) series of lines (where n varies in odd numbers from 3 to 11) with the ideal (1x1) 
surface and a (1x1) slice of the c(4x2) reconstruction, as a function of /xsi- The zero of 
the grand canonical potential corresponds to the grand canonical potential of the ideal 
(1x1) surface. Also indicated are the experimental cohesive energies per atom of silicon 
and silicon carbide and the range of A H f ,  to illustrate the maximum range of allowable 
cohesive energies, for the case where the Si atoms are assumed to be in equilibrium with 
the bulk. All (nx2) reconstructions have an identical grand canonical potential at ^si % 
-5.24 eV.

Table 5.3: The variation of electronic structure with n for the ground-state system. We 
show the dispersion of the HOMO state along the xn and x2 directions and the range 
of band gap. All units are in eV.

Value of n Dispersion (xn) Dispersion (x2) Variation of bandgap
5 0.14 0.02 0.99-1.27
7 0.07 0.04 1.06-1.24
9 0.03 0.01 0.98-1.18
11 0.02 0.02 0.84-1.15

hole injection into the lines, similarly the LUMO state is important for electron injection 

into the lines).

We found for the (3x2) unit cell the HOMO state has a dispersion of 0.44 eV along 

the [110] (or x3) direction and a dispersion of 0.07 eV along the [TlO] (or x2) direction. 

This dispersion was in qualitative agreement with our DFT results for the dispersion 

on the HOMO state. The HOMO-LUMO (highest-occupied-molecular-orbital lowest- 

unoccupied-molecular-orbital) gap varies from 1.04 eV at the zone boundary to 1.48 eV 

at the zone centre. We show how the HOMO dispersion and the bandgap vary with n 

for the ground-state system (see Table 5.3) and the metastable state (see Table 5.4).
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Table 5.4: The variation of electronic structure with n  for the metastable state system. 
We show the dispersion of the HOMO state along the xn  and x2 directions and the 
range of band gap. All units are in eV.

Value of n Dispersion (xn) Dispersion (x2) Variation of bandgap
5 0.06 0.45 0.03-0.84
7 0.05 0.48 0.23-0.87
9 0.03 0.42 0.33-0.82
11 0.01 0.48 0.22-0.84

Table 5.5: Dispersion of the LUMO state for the metastable structure in eV.
Value of n Dispersion (xn) Dispersion (x2)

5 0.22 0.51
7 0.00 0.14
9 0.00 0.04
11 0.00 0.07

Inspection of Table 5.3 shows that as we increase n for the ground-state system, the 

HOMO-LUMO gap of the surface (which is approximately «  1 eV for all unit cells) is 

unaffected. The dispersion of the HOMO state becomes smaller and more isotropic as n 

increases, although there is still a larger dispersion along the [110] direction than along 

the [TlO] direction. The ground-state system does not make a good atomic scale wire.

For the metastable state we found that as we separate the lines there is a change in 

the HOMO-LUMO gap (see Table 5.4). The minimum HOMO-LUMO gap narrows and 

the unit cell becomes a narrow-band-gap semiconductor, although the maximum value 

of the HOMO-LUMO gap is approximately the same as for the ground-state. This is 

because the surface has a mostly c(4x2) character. We also found that the anisotropy of 

dispersion of the HOMO state changes; as we separate the silicon lines the HOMO state 

became quasi-one-dimensional and was aligned along the x 2 direction of the unit cell 

and its dispersion became predominantly along the same direction. This implied that 

the HOMO state is confined along the line and has become “wire-like” for the metastable 

system. It seemed as if the metastable system could make a good candidate atomic scale 

wire for hole injection.

We found that the (3x2) unit cell has a larger LUMO dispersion along the x3 direction 

(0.03 eV) than the x2 direction. How does increasing the separation of the silicon lines 

affect the LUMO dispersions? A comparison of the LUMO dispersions for the metastable 

and ground-state structures is shown in Tables 5.5-5.6. We found that for both structures 

as we increased the silicon lines the LUMO state becomes more anisotropic with a large
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Table 5.6: Dispersion of the LUMO state for the ground-state structure in eV.
Value of n Dispersion (xn) Dispersion (x2)

5 0.01 0.15
7 0.00 0.15
9 0.00 0.16
11 0.00 0.31

dispersion along the line. For the metastable structure the dispersion along the line 

decreased with n. Conversely the dispersion along the line for the ground-state structure 

increased with n  (for the range of n we consider). Both ground-state and metastable 

structures would make good atomic scale wires for electron injection.

5.3.2 D ensity m atrix analysis

We need to know how the electronic properties of the system are related to the the 

structural changes we observed. One way of studying the local bonding is to calculate 

the bond order between two atoms in the unit cell, so as to explain the difference in bond 

length for the flat and buckled addimers of the line. This is derived from the density 

matrix. The density matrix also lets us calculate the charge density of a particular atom 

(the charge on an atom) and find the overlap of any state with the atoms of the unit cell. 

The density matrix is found by evaluating the integral [241]

(5.5)

where |^n) is the normalised eigenstate and |x) is a position eigenstate. We can write 

l^n) as

(5.6)
ja

where cja (n) is the expansion coefficient of the nth state in the atomic orbital a  on atom 

j .  This means that we can write the density matrix as
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PpPja — 2̂ 53 53 (̂ ) l^ ĵa) I (^"^)
n  ja p0

The density matrix consists of two terms, a diagonal term {p = j)  that corresponds to 

the charge density on an atom j  (the occupation) and an off-diagonal term {p ^  j )  that 

corresponds to the charge density between a pair of atoms j ,p  (the bond order). This 

derivation of the density matrix is for orthogonal states, however as our tight-binding 

formalism is based on DFT calculations we use non-orthogonal states (atomic orbitals) 

along with a second reciprocal basis set which uses a mixed tensors basis set [242].

To construct the full wavefunction |^„) we expand in terms of the linearly independent 

basis vectors \(f>ja) to get

1^„) =  ^C ja(n)|<^ja). (5.8)

We define an overlap matrix that has elements

Sjap^ — {<Pja\<Ppp) — (5-9)

We can also construct a dual set from the original basis set vectors

= (5.10)
P/3

which are orthogonal to the original basis set vectors

where is a dummy index. The use of the contravariant index notation is extremely 

useful for analysis. For instance the mixed-basis element Hp^ is simply
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(4>°‘\H\4,fe) =  (5.12)
r7

For the case of our DFTB scheme the density matrix is calculated as

=  ' £ ‘̂ “ [n )c" -'{n)Sr^p». (5.13)
n  T 7 n

If we do not perform the sum over states in equation (5.13) we obtain the crystal orbital 

overlap population (or COOP) [243, 244]. We can then evaluate the bond order and 

charge density terms by summing the COOP (5.13) for all occupied states. To evaluate 

the bond order terms we need to rotate the off-diagonal elements from their original 

coordinate frame where the contributions to the a and tt bonds are mixed to a coordinate 

frame where these contributions are not mixed and where the cr bonds are aligned along 

the addimer direction (along the x  direction which is equivalent to the x7 direction). This 

is accomplished by the unitary transformation where t/  is a unitary matrix

transformation through the three orthogonal Euler axes [245].

We started by investigating the bond order of the top addimer of the line, summing 

over all occupied eigenvalues. Why is this addimer shorter when the addimer becomes 

flat? We find that the flat addimer of the (7x2) unit cell (the smallest unit cell with a 

flat addimer) has a shorter bond length than the buckled addimer of the (3x2) or (5x2) 

unit cells because there is a stronger a bond and a much stronger tt bond. There are

much stronger ss (0.218 for the (7x2) vs -0.062 for the (3x2)), spx (-0.302 vs 0.004) and

PxPx (-0.521 vs 0.005) overlaps for the (7x2) unit cell. Representative COOP are shown 

in Figures 5.6-5.7.

We have also compared the bond order between the top adatom of the line and one of 

the adatoms of the second adlayer for the buckled addimer case (for the flat addimer case 

this corresponds to one of the level adatoms). This analysis shows that as the addimer 

becomes flat this bond becomes much stronger, with larger a  and t t  components. There 

are much stronger ss (0.200 for the (7x2) unit cell vs 0.076 for the (3x2) unit cell) and 

PzPz (0.450 vs 0.253) overlaps for the (7x2) unit cell (see Figures 5.S-5.9). Evaluating 

the diagonal terms of the density matrix we find that associated with this stronger bond
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Figure 5.6: Plot of the COOP for all occupied states as a function of eigenvalue n for 
the overlap of the s orbitals on the top pair of adatoms of the line. Black indicates the 
(3x2) unit cell and red the (7x2) unit cell.

Eigenvalue (n) (m Hanrees)

Figure 5.7: Plot of the COOP for all occupied states as a function of eigenvalue n for 
the overlap of the orbitals on the top pair of adatoms of the line. See Figure 5.6 for 
layout.

between top ad-layer and second ad-layer is the loss of an electron from the top addimer. 

This electron is transferred to the surface silicon atoms directly below the ad-dimer as 

shown in Figure 5.4.

Using the density matrix we can also evaluate the overlap of various states on atoms 

of the unit cell. We calculated the overlap of the HOMO state on all atoms of the surface 

of the unit cell. We found that for the (3x2) unit cell the HOMO state is quite diffuse, 

with the largest component on the second-level addimers, and large components on the 

top adatom of the top adlayer and the silicon atoms on the surface between the second 

layer addimers.

When we look at the overlap of the HOMO state on the ground-state (nx2) series of 

reconstructions (see Figure 5.3), we find that the highest overlap is on the top adatom of 

the top addimer of the line structure (ui). There is a large overlap of the HOMO state 

with the other adatoms (02, 03) of the line and the two silicon atoms of the surface that 

are in the middle of the line. The HOMO state for this structure is localised on the line 

part of the (nx2) reconstruction.

147



- 0.8 - 0 .6  - 0.4 -02
Eigenvalue (n) (Hartrees)

Figure 5.8: Plot of the COOP for all occupied states as a function of eigenvalue n for the 
overlap of the s orbitals between the top adatom of the line and a second-level adatom. 
See Figure 5.6 for layout.
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Figure 5.9: Plot of the COOP for all occupied states as a function of eigenvalue n for the 
overlap of the orbitals between the top adatom of the line and a second-level adatom.
See Figure 5.6 for layout.

For the metastable structures we find that the HOMO state is strongly localised 

on two of the adatoms, the surface addimer that is flat and weakly bound (see the 

encircled addimer 05 in Figure 5.3) and the second-level addimer that is nearest this 

surface addimer (02). The overlap of the HOMO state on other surface and adlayer Si 

atoms is negligible. The HOMO state resides upon the flat surface addimer. It appears 

that this surface addimer is responsible for the unit cell acting as a narrow bandgap 

semiconductor. This (2x 1) part of the surface (from now on called the silicon string) 

may also act as an atomic scale wire.

5.3.3 Proposed mechanism of structural transition for the m etastable 

reconstruction

We observe three changes that happen together for the metastable state: the HOMO state 

becomes quasi-one-dimensional in character, the top adatom of the buckled addimer of 

the line moves down, and there is a transfer of an electron from the top adlayer to the
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top layer of the silicon carbide crystal proper. We offer one possible rationalisation for 

this structural transition: that as we increase the separation of the lines, the HOMO 

state associated with the (2 x 1) part of the surface becomes quasi-one-dimensional. The 

HOMO state in one unit cell ceases to interact with the HOMO state in the next unit 

cell along the (xn) direction. This makes the HOMO state interact more strongly with 

the line, which means that there is an extra contribution to the second adlayer to top 

adlayer bonds of the line. This forces the top adatom closer to the surface, and flattens 

the buckle of the top addimer. As the dangling bond state rises in energy as the addimer 

becomes flat, a state of the top adatom becomes depopulated, and an electron leaves the 

top addimer to reside in the silicon atoms of the top layer of the silicon carbide crystal 

directly below the addimer (as indicated in Figure 5.4). However we are aware that 

the charge transfer which is involved in this structural transition could be inaccurately 

treated, as the tight-binding method we use is a non-charge-self-consistent scheme.

5.4 D iscussion on the ground-state and m etastable 

structures

We have shown that the (nx2) series of reconstructions is a complex series of reconstruc­

tions which exhibit a rich variety of behaviour. There exists a ground-state which pos­

sesses an insulating character and a metastable state that exhibits a quasi-one-dimensional 

near-metallic behaviour. For the ground-state structures all silicon addimers on the sur­

face are strongly bound and asymmetric. The metastable structure on the other hand 

has a weakly bound, flat, silicon addimer (the silicon string) on the surface, as well as 

several strongly bound and buckled addimers. This silicon string roughly corresponds to 

the configuration of the (2x 1) surface in previous work [194].

Our treatment of the (n x 2) series of reconstructions relies on treating the surface 

between the lines as composed of c(4x2) structural components. However the c(4x2) 

reconstruction is only stable for surfaces which have a very low defect density and which 

exists at low (< 600 K) temperature. Our (nx2) series of reconstructions does not 

correspond to a  well ordered c(4x2) surface, as defects are present. These defects are 

the silicon lines. It is questionable whether we should assume that the local structure of 

the surface is that of a well-ordered c(4 x 2) surface. We posit that the formation of the
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metastable state is caused by the influence of the silicon lines on the surface. Evidence 

for such a metastable state is provided by the STM topographs of Douillard et al. who 

found that the silicon lines of the (8x2) unit cell (composed of a (5x2) and a (3x2) unit 

cell) were flat. These are the only STM topographs of the silicon lines which have been 

published.

Also, we do impose the constraint that the basic surface reconstruction of the surface 

and line has a repeat lattice vector of x2 along the [Î10] direction. This means that 

the near-metallic and quasi-one-dimensional silicon string-like surface cannot reduce its 

energy via a Peierls-like transition. The “stable” structure is only more stable than the 

“metastable” structure if it is constrained to a x2 periodicity. This is not necessarily the 

case for larger unit cells, as we show in the next section.

5.5 Larger unit cells: (7x4) unit cell

5.5.1 Structural properties o f th e  (7 x 4 ) unit cell

We use the relaxed structures obtained from our simulations of the (7x2) unit cell and 

place two unit cells next to each other to form a larger unit cell with dimension (7x4). 

We found that our ground-state structure did not undergo any signiflcant structural 

relaxation in this new unit cell. A structure derived from the metastable structure did 

undergo a signiflcant structural transition however. The silicon addimer of the surface 

string of one (7x2) unit cell bonds to the silicon string of the other (7x2) unit cell to 

form a structure which is «  8Â long. The previously flat surface silicon strings become 

asymmetric, with the atoms at the ends of the string 0.5 Â higher than the atoms in the 

middle of the string (see Figure 5.10).

We also found that the addimers of the second adlayer of the line become dimerised, 

(see (1.7)) with a repeat lattice vector of x4 surface lattice vectors, (we have tested this 

for a x8 unit cell and found that the basic structural motif still has a repeat lattice vector 

of x4 lattice vectors, see Figure 5.10). The long addimers have a bond length of 2.60 Â 

while the short addimers have a bond length of 2.38 Â , the magnitude of change in bond 

length is of order 0.22 Â. We also found that there is a height difference between the 

short and long addimers, the long addimers are w 0.05 Â higher than the short addimers 

(see Figure 5.11). This relaxation of the metastable structure is 0.53 eV lower in total

150



energy than the relaxed ground-state structure.

Figure 5.10; Structure of the Si adlayer for the (7x8) unit cell constructed from the the 
flat addimer case for the metastable structure. We indicate the differing bond lengths of 
the second-level addimers with the black arrows. The structure of the (7x8) unit cell is 
composed of two (7x4) unit cells. The blue ellipses indicate atoms on the surface where 
there is a large overlap with the HOMO state, the red ones atoms on the surface where 
there is a large overlap with the LUMO state.

0=0

o o
0=0

o o

Figure 5.11: Asymmetry of height for the short and long addimers of the line for the 
(7x8) unit cell. This asymmetry has been exagerated.

If we took the buckled addimer structure of the metastable state of the (7x2) unit cell 

and construct a (7x4) unit cell, we found that this too undergoes a structural transition 

which is similar to the flat addimer structure. The second-level addimers of the line 

became dimerised. The flat silicon addimer of the silicon string reconstructs in a similar 

way to the silicon string for the flat addimer case, with the end adatoms of the string 0.5 

Â higher than the middle adatoms of the string. The structure is shown in Figure 5.12.
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This structure is 0.09 eV lower in energy than the ground-state structure but is 0.42 eV 

higher in energy than the flat addimer structure of the metastable structure.

DOWN

Figure 5.12: Structure of the Si adlayer for the (7x8) unit cell constructed from the 
buckled addimer case for the metastable state. We indicate the differing bond lengths of 
the second-level addimers with the black arrows. The structure of the (7x8) unit cell is 
essentially composed of two (7x4) unit cells. See Figure 5.10 for colour coding.

This structural transition with a doubling of the basic repeat lattice vector is indica­

tive of a Peierls transition (see chapter 1), and is the reason why the relaxed “metastable” 

(7x4) unit cell has a lower total energy than the relaxed “ground” (7x4) unit cell. How 

does this affect the electronic structure?

5.5.2 Electronic properties of the (7x4) unit cell

We compared the electronic properties of a dimerised (7x4) unit cell to an undimerised 

(7x4) unit cell using a (771) Monkhorst-Pack net. Our results are shown in Table 5.7 

for the flat addimer and buckled addimer structures of the metastable structure. The 

HOMO state is still quasi one-dimensional and aligned along the direction of the line 

after dimérisation for the flat addimer structure. For the buckled addimer structure the 

anisotropy of the HOMO state changed direction and was aligned across rather than along 

the line. After dimérisation the LUMO state of the flat addimer structure is quasi-one- 

dimensional and more dispersive along the silicon line than before dimérisation. Before 

dimérisation the LUMO state of the buckled addimer structure is more dispersive along 

the x7 than the x4 direction although the magnitude of dispersion along both directions
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Table 5.7: Dispersion for the HOMO (and LUMO in brackets) states for the “metastable” 
structures before and after dimérisation along the x7 and x4 directions and the range 
of the HOMO-LUMO gap in eV. We present results for the flat addimer (top pair) and 
buckled addimer structures (bottom pair).

Dimérisation? Dispersion (x7) Dispersion (x4) Variation in bandgap
No 0.03 (0.00) 0.14 (0.07) 0.03-0.28
Yes 0.00 (0.00) 0.02 (0.10) 0.64-0.77
No 0.07 (0.07) 0.15 (0.03) 0.02-0.05
Yes 0.04 (0.07) 0.00 (0.00) 0.34-0.38

is of the same magnitude. After dimérisation the LUMO state is quasi-one-dimensional 

with a much larger dispersion across the silicon line (the x7 direction) than along the 

silicon line (the x4 direction).

We flnd in both cases that the dimérisation increases the gap between the HOMO 

and LUMO states. It seems as if we can treat the dimérisation (in at least the flat 

addimer system) as a  Peierls-like transition. We use Peierls-like rather than simply 

Peierls transition, as the surface is a narrow bandgap semiconductor not metallic. A 

Peierls transition is only valid for metallic systems.

5.5.3 D ensity  m atrix analysis

We analysed the off-diagonal density matrix elements to flnd the bond order for the 

long and short addimers for our flat and buckled addimer dimerised structures. We do 

not present results for the undimerised structure that is obtained from the ground-state 

(7x4) system as its electronic properties are essentially identical to those of the (7x2) 

unit cell. We found that there are much stronger a  bonds and tt bonds for the short 

addimer of the line than for the long addimer. The ss overlap in particular (0.388 for 

the short addimer vs 0.282 for the long addimer) is much stronger for the short addimer 

case (see Figure 5.13), and there is also a larger tt {jpxPx) overlap (0.214 vs 0.145) for the 

short addimer (see Figure 5.14).

We have also evaluated the occupation of the electronic states on the short and long 

addimers of the line to see if there is a charge density wave present in the second-level 

addimers. We found that there is a différence in the occupation of states on atoms in 

the long addimer when compared with atoms of the short addimer. We found that the 

for the flat addimer system of the metastable structure the long addimers have «  0.1 

more of an electron than the short addimers; for the buckled addimer system of the
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Figure 5.13; Plot of the COOP for all occupied states as a function of eigenvalue n for the 
overlap of the s orbitals for the second-level addimers of the line for a (7x8) dimerised 
unit cell.
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Figure 5.14: Plot of the COOP for all occupied states as a function of eigenvalue n for the 
overlap of the Px orbitals for the second-level addimers of the line for a (7x8) dimerised 
unit cell. See Figure 5.13 for colour coding.

metastable structure there is % 0.4 more of an electron on the long addimers than on the 

short addimers. In both cases this additional contribution for the long addimers fills the 

antibonding part of the ss and pxPx orbitals. We think that the reason there appears to 

be more charge difference between the long and short addimers for the buckled addimer of 

the metastable case is that the flat top addimer case involves a lot of charge transfer, with 

the electron transferred from the top addimer localising on the second-level addimers. 

This extra charge is found predominantly on the shorter second level addimers.

When we looked at which atoms of the surface of the unit cell had a large overlap 

with the HOMO state for the flat addimer system, we found that the largest overlap is 

on the adatoms that form the silicon string. The up adatoms of the silicon string have a 

larger overlap with the HOMO than the down atoms of the silicon string. There is also 

a large overlap of the HOMO state with the short (% 2.38 Â ) addimers of the line (see 

Figure 5.10). The HOMO state is tightly bound to structures that are oriented along 

the x4 direction as it was in the (7x2) structure, this is why the HOMO state is still 

quasi-one-dimensional. The LUMO state is tightly bound to the top addimers of the line
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for the flat addimer structure. Any electrons or holes that are injected into this system 

would propagate along the string (or line).

For the buckled addimer case we find that the HOMO state has a strong overlap 

with the long (% 2.60 Â ) second level addimers of the line, the silicon atoms of the 

surface that are between these addimers, one of the top level addimers of the line and the 

flat silicon string of the surface (see Figure 5.12). Similarly the LUMO state has strong 

overlaps with the surface addimers. This HOMO (or LUMO) state is much more diffuse 

than the tightly localised HOMO (or LUMO) state of the flat addimer system, with a 

very large overlap across the line. This is why the HOMO (or LUMO) state has a much 

larger dispersion in the x7 direction than across the x4 direction. Any charges that are 

injected into this system would disperse across the string or the line.

5.6 Conclusions

We have tested our tight-binding parameterisation against DFT results and found that 

our relaxed structures are in general agreement with the DFT structures. We have 

used the thermodynamically favoured models of the (3x2) and c(4x2) unit cells as the 

structural components of the (nx2) series of reconstructions. We have found that we 

could obtain two classes of structure, a ground-state structure with a well defined and 

buckled c(4x2) surface, and a metastable structure where the surface has a partial (2x1) 

character. The ground-state structures were found to be wide bandgap semiconductors 

with a nearly isotropic and weakly dispersive HOMO state which had a slightly larger 

dispersion along the xn  than the x2 direction. The LUMO state was found to have a 

strong dispersion along the x2 direction and a weak dispersion along the xn  direction. 

The metastable structures are narrow bandgap semiconductors with an anisotropic and 

more strongly dispersive HOMO state. For these metastable states a structural transition 

occurs when n > 7; the top addimer of the line becomes flat. The HOMO state then has a 

large dispersion along the x2 direction and a small dispersion along the x7 direction and 

so is quasi-one-dimensional. Similarly the LUMO state has a weak dispersion along the 

xn  direction and a stronger dispersion along the x2 direction. A tentative explanation 

of the structural transition is proposed on the basis that, as we increase n, we increase 

the separation between the HOMO states of neighbouring unit cells that are localised on 

the silicon string. This makes this state interact more strongly with the nearest silicon
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line, and makes it energetically possible for the top addimer to flatten.

We then use our ground-state and metastable structures to construct and relax a 

(7x4) unit cell. The results depend on whether the ground-state or metastable (7x2) 

structure is used. We found that the ground-state (7x2) unit cell does not dimerise and 

the (7x4) unit cell has a structure composed of two (7x2) unit cells. We also found that 

the metastable structure does dimerise to form a (7x4) unit cell. This dimerised unit cell 

has a lower total energy than the (7x4) unit cell derived from the (7x2) ground-state. 

Thus the dimerised (7x4) unit cell is thermodynamically favoured. This dimérisation 

also increases the bandgap, implying that it is a Peierls-like transition. The HOMO state 

is still quasi-one-dimensional and is confined to the silicon string and the silicon line.

Clearly the (nx2) series of reconstructions is a complex series with a rich variety of 

behaviours depending upon the details of the surface structure. However are we modelling 

the surface accurately? We are aware that the charge transfer which is involved in the 

metastable surface structure could be inaccurately treated, as the tight-binding method 

we use is a non-charge-self-consistent scheme. Currently we have been unable to test our 

structures using a more accurate ab initio formalism.

The silicon string (the surface addimer) and the silicon line (the line addimers) are 

codependent in the metastable system. The presence of the line causes a silicon string 

to form which then causes the structural transition in the silicon line. If we strongly 

buckle the silicon string then we buckle the top addimer of the line. Is it reasonable that 

the string-like structure forms in the first place on the c(4x2) part of the surface? As 

stated in the last chapter, the c(4x2) surface is only formed in defect-poor regions of 

the silicon rich (001) face of cubic silicon carbide. The silicon lines do constitute defects 

on this surface. As n  increases the surface between the lines does become more c(4x2)- 

like. However the surface near the silicon lines should not be c(4x2)-like but (2xl)-like 

(as shown in section 4.1.4 of Chapter 4). We found this is what happens. Therefore 

we propose that the silicon string formation, which makes the silicon line symmetric, 

may occur on the surface. There is some experimental evidence that the silicon lines 

are symmetric [106, 240, 216]; STM scans along and across the lines show that the line 

is composed of symmetric units. However compared to the various surfaces we have 

modelled there is a paucity of experimental evidence on the silicon lines. There is no 

experimental evidence that the surface near the lines has a (2xl)-like character, but STM
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scans near the line may be strongly affected by the presence of the line.

We have found a (7x4) unit cell with two line-like features (the silicon string and 

the silicon line) which appears to have undergone a Peierls-like transition and has a 

quasi-one-dimensional electronic character with a narrow bandgap. Is this system a good 

candidate atomic scale wire? To find out we need to calculate the transport properties of 

this system. This is the subject of the next chapter, which concerns polaron formation 

and the effects on the electronic structure of the system.
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Chapter 6

Transport properties of the  

silicon lines

We have found that there exists a metastable state for the (nx2) unit cell on the (001) 

face of cubic silicon carbide which possesses a quasi-one-dimensional HOMO state. This 

state is localised on a silicon atomic string with a significant overlap with the second level 

addimers of the line. This surface reconstruction is found to be unstable with respect to 

a Peierls-like transition which doubles the length of the repeat lattice vector along the 

line direction, increases the bandgap and which is thermodynamically favoured over the 

ground-state. This seems to indicate that we can treat the silicon atomic string and/or 

the silicon atomic line as a Peierls distorted atomic scale wire. What are the transport 

properties of such a system?

In this chapter we inject charge into the (7x8) unit cell to investigate whether the 

charge localises to form a polaron. We find that this is indeed the case. We investigate 

how the formation of this polaron affects the physical and electronic structure of the 

system. We calculate the dynamical matrix of the system and see which phonon modes 

couple strongly to the system. We then use the information we obtained from our cal­

culation of the dynamical matrix to calculate the electron-phonon coupling constants of 

the system in real space, and transform these constants into eigenvector-space. We also 

transform the original long ranged atomic orbitals of the system into tightly localised 

Wannier functions. We then assess the effective mass of the polaron defect to determine 

whether the defect would undergo coherent or diffusive transport. Finally we analyse
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these results and discuss whether this system  is a good atomic scale wire.

6.1 Effects of charge injection into system

In this section we discuss the effects of injecting an electron or a hole into a large slice of 

the line (using the TROCADERO code). We used a (7x8) unit cell to make certain that 

if any polaron-like defect is formed, then each polaron in the line is well separated from 

its image in the neighbouring unit cells. The use of such a large unit cell requires us to 

use a six atomic layer thick unit cell to make our calculations tractable on a DEC-Alpha 

EV6 workstation. The bottom two layers were constrained in bulk atomic positions. The 

initial structure of this (7x8) unit cell is the relaxed structure in a neutral charge state. 

This is identical to two dimerised (7x4) unit cells stacked upon each other in the x4 

direction. We call this structure the reference structure (in which we denote the vector 

of atomic positions by u°).

In order to make certain that the polaron localises on the surface we distorted one 

of the atoms of the silicon line (see the last chapter for which atoms these are). The 

atom that is distorted has a large overlap with the HOMO state (for hole injection) or 

the LUMO state (electron injection), the magnitude of distortion is given in the next 

subsection. Charge is then injected into the system. All structural relaxations were 

performed using a (221) Monkhorst-Pack mesh [239]. Analysis of the electronic structure 

of the relaxed unit cell was performed using a (771) M-P mesh.

6.1.1 Structural effects o f charge injection: Polaron form ation

We have performed relaxation calculations using our ground-state (7x4) unit cell as the 

basis for a  (7x8) unit cell (the reference structure). The reference structure is one where 

the top addimer of the line is flat and the unit cell is dimerised.

For the hole polaron defect we distort an atom which has a strong overlap with the 

HOMO state so as to distort the symmetry. This is either an atom of the silicon line 

or of the silicon string, in both cases making the Si-Si bond length shorter by 0.21 Â. 

In both cases we flnd that if we allow a (7x8) unit cell to relax when a hole is injected 

into the system, a small polaron-like defect is formed. The addimer structure is shown 

in Figure 6.1. The polaron defect is confined to the silicon line.

We found that the hole polaron defect has a small structural effect on the (7x8) unit
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Figure 6.1: Structure of the Si adlayer for the (7x8) unit cell when a hole is injected 
into the system (top view). The light green ellipse indicates the structural defect where 
a polaron is formed. The red ellipse indicates where we initially inject a hole.

cell. When compared to the initial reference structure the two (short) addimers that 

are affected by the polaron are shorter by % 0.04 Â each. One of the short addimers 

is asymmetric by 0.03 Â. These two short addimers are 0.04 Â higher than the short 

addimers of the reference structure, which means that they are higher than the long 

addimers (see Figure 5.11). When compared with the charged reference system, the 

system with the polaron defect has a lower total energy with the difference in total 

energies of order 0.05 eV. As the polaron defect is localised on the second level addimers 

of the silicon line it seems likely that the defect would not be directly observable by STM 

scans.

We can distort an adatom which has a strong overlap with the LUMO state and inject 

an electron into the system to observe whether electron polaron formation occurs. We 

distort a flat adatom of the line by moving it up by 0.3 Bohrs. We found that if an 

electron is injected into the system that it localises on the line. The polaron is tightly 

localised on an adatom of the top addimer of the line and a second level addimer of the 

line (see Figure 6.2). Unlike the hole polaron, the structural deformation induced by the 

polaron is large. The top addimer of a slice of the line becomes buckled by 0.30 A with
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Figure 6.2: Structure of the Si adlayer for the (7x8) unit cell when an electron is injected 
into the system (top view). The light green ellipse indicates the structural defect where 
a polaron is formed. The red ellipse indicates where we initially inject an electron.

the top addimer becoming 0.02 Â longer. The second level addimer that was distorted 

is 0.03 Â longer. The difference in total energy between this charged polaron structure 

and the charged reference structure was 0.07 eV, with the polaron structure possessing 

a lower total energy. As this defect had a large component on the top arldimer of the 

line with a large distortion, it seems likely that this defect would be observable to STM 

scans if it remains localised for long enough.

However our calculation of the electron polaron system is less accurate than our cal­

culation of the hole polaron system. The electron polaron system is a negatively charged 

ground-state. The tight-binding parameterisation that we use is based upon LDA-DFT 

calculations of diatomic molecules. The LDA accurately reproduces the behaviour of 

ground-state systems regardless of charge, but our tight-binding parameterisation is fit­

ted to occupied-state properties such as the bond length. Injection of an electron involves 

occupying conduction band states that may well be less well described.
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6.1.2 Effect of polaron formation on electronic structure

Does the formation of the structural defect localise the hole or electron that has been 

injected into the system? This was checked by performing a charge analysis (see equation

(5.13)) using the structure of the polaron system and the structure of the reference 

system, when both systems are neutral and then when they are charged. If we compare 

the occupation of atoms for the two different unit cells in the two different charge states 

we can see whether the formation of the defect localises charge or not.

For the hole polaron system we found that the hole is strongly localised on six atoms 

associated with the line, the four silicon adatoms of the line and the two silicon atoms 

of the terminating layer between these silicon addimers (see Figure 6.3). Before the 

formation of the polaron defect (in the reference system) only 0.09 of the hole was localised 

on these six atoms. After the formation of this polaron defect, 0.42 of the hole was 

localised on these six atoms. This indicates that the formation of this polaron localises 

the hole. We get a large amount of charge localisation for a small amount of deformation.

Figure 6.3: Structure of the Si adlayer for the (7x8) unit cell when a hole is injected into 
the system (top view). The magenta ellipse indicates the six atoms of the unit cell where 
the hole is localised.

For the electron polaron we found that the electron was strongly localised on the 

three adatoms that are deformed from the reference structure when the polaron was 

formed (see Figure 6.2). Before the formation of the polaron only 0.11 of the electron 

was localised on these three adatoms. After the formation of the polaron 0.58 of the 

electron was localised on these three adatoms. Unlike the hole polaron there is both a
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large amount of charge localisation and a large amount of deformation on a few adatoms 

of the line.
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Figure 6.4: Band structure of the reference system (left diagram) and the hole polaron 
system (right diagram) along the F — J  (or [110]) direction. We also indicate the HOMO 
state.

How does the formation of the hole polaron affect the electronic structure of the (7x8) 

unit cell? We compare the electronic structures of the polaron system and the reference 

system along the x7 and x8 directions, see Figures 6.4 and 6.5. As can be seen in these 

two figures the formation of the polaron reduces the HOMO-LUMO gap by pushing the 

HOMO state into the gap. This is a defining characteristic of a polaron state, as stated 

in Chapter 1. The magnitude of dispersion of the HOMO state along the x7 direction 

or across the silicon line is 0.080 eV, while along the line the HOMO dispersion is 0.001 

eV. The HOMO state is quasi-one-dimensional, but is more dispersive across than along 

the line.

The formation of the electron polaron structure also had an effect on the electronic 

structure. The LUMO state is pushed away from the conduction band and into the 

gap (see Figures 6.6 and 6.7). This significantly reduces the HOMO-LUMO gap. The 

magnitude of dispersion along the line (the x8 direction) is 0.003 eV while the magnitude 

of dispersion across the line (the x7 direction) is 0.00008 eV. The HOMO state is quasi- 

one-dimensional and is more dispersive along the line than across the line.

We found that the dispersion characteristics of the hole polaron structure and the 

electron polaron structure differ from each other, with the hole polaron structure having
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Figure 6.5: Band structure of the reference system (left diagram) and the hole polaron 
system (right diagram) along the F -  J ' (or [Î10]) direction. We also indicate the HOMO 
state.

a stronger dispersion across the line than along it and the electron polaron having a 

stronger dispersion along the line than across it. We attribute this to the distribution of 

the HOMO and LUMO states in the (7x8) unit cell. The HOMO state is localised on 

the silicon strings of the surface and the short second level addimers of the line. If we 

inject a hole into the line it forms a polaron that is localised on the second level addimers 

(see Figure 6.1). It is easier for this polaron to move across the line than along the line 

as the distance from a set of short second level addimers to a neighbouring silicon string 

is less than the distance from one set of short second level addimers to the next set of 

short second level addimers ( x 2 surface lattice vectors vs x 4 surface lattice vectors). In 

contrast, the electron polaron is localised on the top addimer of the line and a second 

level addimer next to this addimer (see Figure 6.2). For this polaron to move from one 

such site to the next equivalent site along the line is a shorter distance than to move 

from one equivalent site to another across the line (x4 vs x7 surface lattice vectors). It 

seems as if the electron polaron is confined to the line and acts quasi-one-dimensionally 

while the hole polaron can spread across the surface.
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LUMO state

Figure 6.6: Band structure of the reference system (left diagram) and the electron polaron 
system (right diagram) along the F -  J  (or [110]) direction. We also indicate the LUMO 
state.

6.2 Which phonon modes couple strongly to the po­

laron?

We have found that when we inject charge into the silicon line that a polaron forms, a 

defect which localises charge. Polarons which form in a Peierls-like distorted chain couple 

strongly to phonon modes. How well does the polaron couple to the phonon modes of 

the equilibrium system?

6.2.1 Calculation of phonon modes: Formalism and tests

In order to calculate the phonon modes of the reference system we need to find the 

eigenvectors of the dynamical matrix (equation (3.8)). We calculated the elements of the 

dynamical matrix numerically, using

(6 .1)

where i labels any atom in the unit cell and j  labels the particular atom that is displaced 

by a distance Ax. We displace each atom first one way along one direction (1 in (6.1)) 

then in the opposite direction (2) (i.e., positive and negative displacements). This lets us
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Figure 6.7: Band structure of the reference system (left diagram) and the electron polaron 
system (right diagram) along the F — J' (or [TlO]) direction. We also indicate the LUMO 
state.

calculate the differential of force with respect to displacement using a centered-difference 

method. As our unit cell is three dimensional we have 3N  phonon modes in our dynamical 

matrix; we thus use the indices k and I to label direction of the induced force on atom i and 

the displacement of atom j  respectively. To then find the phonon modes and frequencies 

we diagonalise the resulting dynamical matrix. The eigenvalues Vg we calculate are not 

the phonon mode frequencies, rather they are MjUj^ where Mj is the mass of the atom 

we are displacing.

Firstly we needed to determine how small a displacement we can make to any indi­

vidual atom and remain within the harmonic limit, while also producing a restoring force 

on the atom which was larger than the numerical noise. We found that a distortion of 

0.01 Bohrs is within the harmonic limit (see Figure 6.8) and yet gave a force which is 20 

times larger than the numerical noise. As we use numerical differentiation there will be 

a small asymmetry in the dynamical matrix. Diagonalisation of this dynamical matrix 

(6.1) will result in eigenvectors which are complex and eigenvalues which are imaginary. 

This is obviously unphysical. We explicitly symmeterise the dynamical matrix to obtain 

real eigenvectors.

As we have 488 atoms in our unit cell any program that calculates the phonon modes 

of the entire system will take an extremely long amount of time. We therefore needed 

to make an approximation to make this calculation tractable in a reasonable amount of
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Figure 6.8: Plot of force against displacement for an equilibrium structure. The force is 
approximately linear for displacements within 0.01 Bohrs.

time. We assume that the only atoms which are coupled to the polaron defect are the 

silicon adatoms of the line (from four (3x2) unit cells, 24) and the silicon atoms of the 

surface under the line (as above, 24). We tested whether this approximation reproduces 

the polaron structure by performing the same relaxation calculation as were performed 

in the last section for the hole polaron system, but this time constraining all atoms apart 

from the 48 atoms mentioned above. We found that the gross physical structure of the 

polaron defect is retained in this approximation but that the differences from the reference 

structure are smaller: the two addimers are 0.03 Â shorter than the same addimers in 

the reference structure, the buckle of one of the addimers is only 0.01 Â and the two 

addimers are only 0.02 Â higher than the equivalent addimers of the reference structure. 

As the gross structure of the defect is reproduced by this approximation we assume that 

this limited (or minimal) phonon calculation is a valid approximation.

6.2.2 Huang-Rhys factor analysis

After we calculated the phonon modes and frequencies for our reference unit cell using a 

minimal number of phonons, we calculated how strongly each (reference) phonon mode 

couples to the polaron. This was accomplished by calculating the Huang-Rhys factor

(1.13) [117]

(6 .2)
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Table 6.1: Significant Huang-Rhys factors for hole polaron system. Phonon modes are
arranged in increasing frequency (there are 144 phonon modes in total).

Phonon mode {q) Huang-Rhys Factor (Sq)
12 0.1535
39 0.4654
42 0.2708
54 0.2249
58 0.1886
61 0.2780
62 0.2672
63 0.1041
66 0.2036
67 0.4029
69 0.2347
70 0.2397
77 0.4203
103 0.1390

where A , =  Ylj — u°), which is the projection onto mode q of the difference in

atomic positions j  between the reference system (u°) and the polaron system (u^). As 

we only calculated phonon modes for a specific set of atoms in the unit cell, all of the 

same species, we drop the index j  on M. Sq represents the number of phonons that are 

needed to produce the polaron defect. As we are using atomic units we have set h to 

unity.

The most significant Huang-Rhys factors (Sg > 0.1) for the hole polaron are shown in 

Table 6.1. The vast majority of the phonon modes which have a large Huang-Rhys factor 

are phonon modes which are in the middle of the frequency range. The total number of 

phonons (3.8) needed to recreate the polaron distortion is > >  1, which means that this 

system is quite strongly coupled [118]. No phonon mode contributes a full phonon to the 

deformation, which reduces the parameter space needed if we are to perform a coherent 

transport calculation (see Chapter 3). There are three significant modes with Sq > 0.3, 

these are the phonon modes q = 39,77 and 67 in decreasing order. We need only three 

phonon modes to reproduce the polaron.

Similarly we have calculated the Huang-Rhys factors for the electron polaron struc­

ture. The Huang-Rhys factors > 0.1 are shown in Table 6.2. Unlike the hole polaron sys­

tem the phonon modes which have a large Huang-Rhys factor are low frequency acoustic 

phonon modes. As these phonon modes are low firequency, in order to obtain the polaron 

structure more phonons are needed. Like the hole polaron system the electron polaron 

structure is strongly coupled, with the total number of phonons (7.4) needed to recreate
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Table 6.2: Significant Huang-Rhys factors for electron polaron system. Phonon modes
are arranged in increasing frequency (there are 144 phonon modes in total).

Phonon mode {q) Huang-Rhys Factor (Sq)
4 0.2654
5 0.4726
7 0.1282
8 0.4542
9 0.1752
10 0.8034
11 0.1502
13 1.1990
15 0.1961
19 0.1020
21 0.4265
22 0.1936
23 0.4181
25 0.1876
26 0.1159
30 0.1004
31 0.9604
32 0.9847
75 0.1154

the distortion > >  1. The electron polaron structure is more strongly coupled to the 

phonon modes than the hole polaron structure. There are four significant phonon modes 

that couple strongly to the phonon, in order of decreasing Sq these are q = 13,32,31 

and 10. All of these phonon modes contribute approximately one phonon mode to the 

deformation. Four other phonon modes also have strong Huang-Rhys factors {Sq > 0.3), 

in order of decreasing Sq these are the phonon modes q = 5,8,21 and 23. Thus, as a 

bare minimum we need eight phonon modes to reproduce the polaron defect

How well can the hole polaron defect be modelled by the harmonic phonon modes 

that we have calculated? This was checked by comparing the deformation energy A E  

to the harmonic distortion energy F?harm =  Ylq =  J2q ^qSq (all units are in

atomic units). The true (anharmonic) deformation energy A E  — E{uj) — E{u^), where 

E{u^) is the total energy of the reference system and E{Uj) is the total energy of a 

neutral system which has the same structure as the hole polaron. If the two energies 

are approximately equal then the polaron defect can be represented by a set of harmonic 

phonon modes. We found that for the hole polaron system the harmonic energy is 218% of 

the deformation energy. The overestimate is due to the hole polaron residing outside the 

harmonic regime. This can be seen if we make an interpolation between the reference and
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hole polaron structures, calculating the harmonic and distortion energies for each step 

(see Figure 6.9). The harmonic and true distortion energies converge only for structures 

which are less than 20% of the way to the hole polaron structure.

We think that hole polaron is outside the harmonic limit because the hole polaron 

resides near to the surface of the silicon carbide crystal. We do not include phonon 

modes that result from the displacement of other atoms on the surface or deeper in the 

slab. However, as our minimal phonon set reproduced the gross structural properties of 

the polaron deformation and gave us a harmonic energy which was of the same order of 

magnitude as the deformation energy we consider that our phonon modes do reflect the 

essential physics of polaron formation.

0 .015

s 0.01

$
S '

0  005

0  0 .2  0 .4  0 .6  0 .8  1
L am bda  (0 is re fe ren ce  s tructure , 1 Is po laron  structure; Interpolation)

Figure 6.9: Comparison of harmonic (black) and deformation (red) energies for structures 
which are interpolations between the reference structure (A=0) and the polaron structure 
(A=l). The two energies converge for A < 0.2. Also shown (blue cross) is the difference 
in energy between the dimer structure and a structure where the atoms that we use to 
create the phonon modes use the hole polaron positions and all other atoms are in the 
reference cell positions.

In contrast we found that the electron polaron structure is well reproduced by the 

harmonic phonon modes that we calculate. Comparing the harmonic and deformation 

energies for the electron polaron system we find that the two energies are in close agree­

ment; they differ by only only 3%. This is because the electron polaron is localised on 

the addimers of the line, and our dynamical matrix calculation includes all the adatoms 

of the line.
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6.3 Electron-phonon coupling

As the electron polaron system shows signs of strong coupling to phonon modes and 

is quasi-one-dimensional, it may be desirable to perform transport calculations on the 

silicon lines. In order to perform transport calculations that include inelastic effects we 

needed to evaluate the electron-phonon coupling constants 7gnm (see equation (2.95)). 

We use an atomic-like basis set in real space, so firstly we had to evaluate yiaj^q and 

then transform to eigenvector space.

The electron-phonon coupling is related to the displacement of phonons in phonon 

space [246]. This can be written as the displacement of the Hamiltonian matrix Hiajp in 

phonon space A, where i labels an atomic site on which orbital a  is located and j  labels 

an atomic site where orbital is located. The parameter A is found by the relation

A =  V'^y (6.3)

where V  is the phonon mode matrix and y is a scaled version (y. =  xi) of the actual

phonon displacements x,. The displacement of phonons in phonon space is related to the

displacements of atoms in real space by the formula

^  dRkC

where U is the transformation matrix, R is the real atomic displacement that we use 

to calculate the phonon modes, k  denotes the atomic site that is been displaced and C 

labels the coordinate in which the atom is been displaced.

If we use the relation (6.3) and consider that V  is orthogonal, we found that the 

transformation matrix can be derived by using

This means that if we compare (6.5) to (6.4), that the transformation matrix is Uij =  

Individual coupling elements are given by
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“  ( i)  {'-  I —  I (

as we use atomic units h is equal to unity.

For a (7x8) unit cell the entity 'iiajpq is extremely large. If we included electrostatic, 

exchange and correlation terms then the number of matrix elements that are affected 

by the displacement of one atom is very large. However as we used the tight-binding 

approximation then these terms are represented by sums of pair terms (see the section 

in Chapter 2 regarding tight-binding). This means that the only nonzero elements of the 

entity jiajpq are those elements which involve the atom k which is been displaced {i or 

j  = k). This massively reduced the number of elements we need store in our workstation.

Once we calculated the electron-phonon coupling constants in real space we needed 

to transform these constants into eigenvector space. This is done simply by performing 

an overlap with the wavefunctions of the system

7 q n m ,k  = i'^n{k)\% \^m{k)) (6.7)

where k is the A:-point sampled and % represents the real space electron-phonon coupling.

The nonorthogonal wavefunctions (j>na that are used in our tight-binding method 

are long ranged in extent. Thus if we are to model the transport of charge through 

the silicon atomic line using these wavefunctions then we would need to include phase 

factors when charge flows from one (7x8) unit cell to another, as the (^na on one site 

are not orthogonal to the <f>na on another site. This complication can be removed by 

transforming these wavefunctions into Wannier functions which are much more localised 

in nature [25]. As our calculations sample a limited number of A:-points in the surface 

Brillouin zone we simply use the following transformation

Wn,ia{Ri) =  ^ e x p  X Weighting (6.8)

where Ri is the unit cell lattice vector. As we calculate the Wannier functions for each
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unit cell separately the exp term is equal to unity. It is then easy to calculate onsite and 

hopping terms for the Wannier functions by finding the overlaps of the Wannier functions 

for functions on the same site (onsite) and on two neighbouring sites (hopping).

6.4 Transport properties

With the formation of the electron polaron and the calculation of the electron-phonon 

coupling and Wannier functions completed, the transport properties of the silicon atomic 

line were considered. Firstly, we should consider whether the polaron can travel through 

the silicon atomic line coherently or whether transport can occur diffusively. Effective 

mass can be checked by calculating the effective mass of the polaron; if the effective mass 

is small then polaron transport will be coherent at low temperatures, but if it is large 

then coherent polaron transport will not occur.

The effective mass of the polaron is the product of two factors, a factor dependent 

on the bandwidth of the bands the polaron can interact with, and a factor dependent 

on the reduction factor which measures the contribution of the phonons to the effective 

mass [247]. The bandwidth dependent factor m l^  can be derived from the relation [116]

d^E
dk^

= 2aH, (6.9)

where t is the hopping integral between two sites for any Wannier band and a is the 

lattice parameter. This relation can be rearranged to obtain the bandwidth dependent 

part rribw The total bandwidth available to the polaron defect is 4t. This means that 

the bandwidth dependent part of the effective mass is

(6-10)

The phonon dependent part of the effective mass is inversely proportional to the reduction 

factor of the electron matrix element in the Condon approximation. This is the Ham effect 

[247]. The reduction factor is expressed as
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m*f  ̂ = exp( 2ft Qbo)) (6.11)

where (Qao — Qbo) is the displacement in the lattice. This can be related to the Huang- 

Rhys factor (1.13), so that the the phonon field contribution to the effective mass of the 

polaron is

m * h  =  exp(^9 . (6.12)

Within the Condon approximation the final effective mass of the polaron is approximately 

the product of (6.10) and (6.12) (although the Condon approximation is not that good 

as the polaron bandwidth drops).

Evaluating both contributions to the effective mass of the polaron we found that 

the effective mass of the polaron is large. The bandwidth of the polaron is the sum of 

the bandwidths of all states that are available to the polaron. The bandwidth of any 

particular band is equal to the hopping element between one site and the neighbouring 

site. The bandwidth is simply the dispersion in the x8 direction. The hopping element 

can be derived from the Wannier functions as

t =  {Wn{a)\H\Wn(a +  R))  (6.13)

This can be expanded in terms of atomic orbitals as

t  = ̂ e x p ‘i “ ($ „(i)|fl'|$ „(i')>  exp-'t'(.+«) = ^  exp'i" exp-‘i'<“+^)

“  (6.14)

k

This is a Fourier transform, and as we only sample two t-points in our relaxation and 

phonon calculations we find that this is equal to the dispersion along the x8 direction. 

We found that the total bandwidth is 1.35234x10“  ̂ Hartrees. This means that the

174



bandwidth fraction of the polaron effective mass is evaluated to be 0.6729 times the mass 

of an electron.

The phonon contribution to the effective mass is large. The total Huang-Rhys factor 

for the electron polaron defect is 7.4. This means that the phonon contribution to the 

effective mass is exp^ x the mass of the electron, or «  1600 times the mass of the 

electron. This is approximately equal to the mass of an atom, which is much larger 

than the mass of a an electron. The phonon fraction of the effective mass dominates the 

effective mass of the polaron. The total effective mass of the polaron is «  1100 electron 

masses.

As the effective mass of the polaron is so much larger than the effective mass of 

an electron we conclude that if polaron transport occurs it will not be coherent. This 

means that we will not be able to use the methodology outlined in Chapter 2, section 

4 concerning the transport of polarons in coherent systems. However the energy of 

relaxation of the polaron is quite small, of order 0.07 eV (0.00257 Hartrees). Might 

it be possible that polaron transport along the line be possible by thermally activated 

diffusion?

Dimensional analysis indicates that a good expression for the diffusion constant to 

within an order of magnitude is

Dc =  Wg exp (6.15)

where Er is the energy of relaxation for the electron polaron defect and k s T  is the 

thermal energy (we assume room temperature transport). The distance is the lattice 

parameter of the unit cell in Bohrs along the x4 direction of the unit cell, this is the 

minimal distance the polaron can travel before it localises on an equivalent site. We pick 

the frequency with the strongest Huang-Rhys factor, this is q = 13, giving a frequency 

of 8.2865x10“  ̂ atomic units. We find that the diffusion constant is «  0.02993 Bohr^ 

per atomic unit of time. In S.I. derived units the diffusion constant is 0.03467 cm^ per 

second.

We can compare this to the diffusion constant for electrons in bulk-like 3C-SiC. The 

carrier mobility has been measured by electron cyclotron resonance experiments on 10 

//m thick films [248]. The carrier mobility /i was found to be 300 cm^/Vs. The diffusion
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constant can be calculated from the carrier mobility by the Einstein relation [249]

Oc = — , (6.16)

where q is the charge of the carrier, for polarons this is equal to one. Using this data 

we found that the electron diffusion constant in bulk 3C-S1C is 7.714 cm^ per second. 

This is approximately 300 times greater than the diffusion constant of polarons along 

the silicon line. This suggests that thermally activated polaron diffusion along the silicon 

line is much harder than electron diffusion in the bulk. The silicon line would be the slow 

link in any electronic device constructed on SiC.

We can also use (6.16) to calculate the mobility of the silicon line and compare it with 

typical mobilities of other materials. We find that the polaron mobility is 1.3483 cm^/Vs 

for the silicon line. This is quite close to the mobility of copper, where the mobility is of 

order 20 cm^/Vs [250]. When compared with conducting polymer mobilities however this 

mobility is quite small, as experiments performed on partially oriented and doped (with 

iodine or AsFg) polyacetylene films have found that these films possess a high mobility 

of order 60 cm^/Vs [251]. Conducting polymers are another class of prospective atomic 

scale wires, and for other prospective atomic scale wires to compete with them they 

would need equivalent electron mobilities. This is not the case for the silicon atomic line. 

We have ignored such aspects as easy integration with silicon, but as any silicon based 

atomic scale electronic device would have to have an interface with the silicon carbide 

surface in order to utilize the atomic lines such devices would be under a large surface 

stress. This could be detrimental to the performance of such devices.

6.5 Conclusions

We have performed calculations on the (7x8) reconstruction of the (001) face of cubic 

silicon carbide when charge is injected into the line. We find that for both electron and 

hole injection a polaron forms on the silicon line which is energetically favoured compared 

to the original reference structure and which localises charge. The hole polaron structure 

is more diffuse than the electron polaron structure and possesses a HOMO state which 

disperses more across the silicon line than along the silicon line. This implies that the
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hole polaron is not strongly confined to the silicon line, which is not a desirable property 

for an atomic scale wire. In contrast the electron polaron does have an anisotropic state 

associated with it which has a quasi-one-dimensional dispersion along the line. This 

implies that the electron polarons are strongly coupled to the silicon line.

The phonon modes of the reference system were then calculated for a limited number 

of silicon atoms of the line and the surface. We found that the hole polaron distor­

tion was not well described by the resulting set of phonon modes but that the electron 

polaron distortion was. Both kinds of polaron are strongly coupled to phonon modes. 

The electron-phonon coupling constants for the reference system were also calculated in 

preparation for making a coherent transport calculation on the silicon line for the electron 

polaron system.

In order to check whether it is practical to make a fully quantum mechanical transport 

calculation on the silicon line system we calculated the effective mass of the electron po­

laron. Although the contribution to the effective mass from bandwidth effects is relatively 

small (of order 0.7 electron masses), as the polaron is strongly coupled to the phonon 

modes of the system we found that the total effective mass of the polaron is of the order 

of an atomic mass (w 1100 electron masses). Therefore if there is any polaron transport 

along the silicon line it will not be coherent, except at extremely low temperatures.

The energy of trapping for the electron polaron is quite small (of order 0.07 eV). It 

may be possible for the electron polaron to diffuse along the line by thermal activation. 

We evaluated the diffusion constant for the electron polaron and found that it was 0.03467 

cm^ per second, and compared it to the diffusion constant for electrons in bulk 3C-SiC. 

The polaron diffusion constant was found to be much smaller than the diffusion constant 

for electrons in bulk 3C-SiC. A polaron would diffuse more slowly along the silicon line 

than an electron would diffuse throughout the bulk silicon carbide crystal, as also illus­

trated by a comparison of mobility. This would have the effect of making the silicon line 

the slow component in any electronic device manufactured from silicon carbide. This 

is not a desirable feature for an atomic scale wire. The mobility of the silicon atomic 

line is also much less than the mobility of a crystal of doped and ordered polyacetylene 

molecules, which are another class of prospective atomic scale wires. We therefore con­

clude that the transport properties of the silicon atomic line are not conducive for atomic 

scale transport.
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Chapter 7

Ab initio study of the In 

atom ic chain on the (111) face 

of silicon

In this chapter we discuss the indium atomic chain reconstruction on the (111) face 

of silicon, the (4x l)-S i(lll)-In  reconstruction. This atomic scale chain structure is a 

promising atomic scale wire candidate. We provide background experimental information 

on this system, the electronic structure of the system, indium and silicon stoichiometries, 

structural information and hydrogenation data. We discuss several models that have been 

proposed by experimentalists for this reconstruction and narrow the selection models 

down to two models which fit the largest set of experimental data. We then provide the 

details of the two competing models that we will study, showing which experimental data 

each model is in agreement or disagreement with.

We then test our projectors of silicon and indium to discover whether they are ac­

curate. These projectors are used to model the well understood (^/3 x >/3)-Si(lll)-In 

reconstruction to check whether our results match those in the literature. After these 

tests we perform ab initio simulations on the two competing models for the (4x l)-S i(lll)-  

In reconstruction and present our structural, electronic and thermodynamic results. We 

then conclude with our findings on whether this would make a good atomic scale wire.
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7.1 Background information

7.1.1 The S i(4 x l)-In  reconstruction

The electronic and physical properties of metal adsorbates on silicon surfaces have been 

the object of studies for over thirty years [252, 253, 254]. These studies are useful as 

they provide a valuable insight into the interface formation of silicon with the simple 

(Group III) metals Al, Ga and In. This is a problem of interest as the evolution of the 

metal-induced semiconductor surface structures from a semiconducting to metallic regime 

with increasing adatom coverage is an important tool in understanding the formation of 

the Schottky barrier; the Schottky barrier of a metal-semiconductor system reaches its 

macroscopic value at adatom coverages at which the surface becomes metallic [88]. Thus 

the surface reconstructions of a metal-semiconductor system at approximately monolayer 

coverage (the typical coverage for a semiconducting to metallic transition) determine the 

electrical properties of a metal-semiconductor interface, which are used extensively in 

electronic systems. The In-Si interface in particular is often used as a test interface to 

study these complex phenomena of coverage-driven reconstructions, as the In-Si interface 

is nonreactive [255], but with sufficient adatom-substrate coupling to support a large 

number of structures [88].

Depending on the surfsice stoichiometry of indium there exists a large variety of sur­

face reconstructions, ranging firom a (7x7) reconstruction at sub-monolayer coverages to 

a combination of (1x1), {y/7 x y/3) and (4x4) reconstructions at supermonolayer cover­

ages. A surface phase diagram of In on S i(lll)  is shown in Figure 7.1. Several surface 

reconstructions share the same indium stoichiometry (hence the overlap), this may be 

because one surface is a defect induced reconstruction of another ground state surface. 

The Si(4xl)-In reconstruction in particular has a wide range of measured In stoichiome­

try, ranging from 0.5 to 1 ML. There are two different routes available to form the (4x1) 

reconstruction by indium deposition. Firstly there is a “low temperature” irreversible 

route (% 500 K) in which there is a transition from a (\/3 x y/3) reconstruction to the 

(4x1) reconstruction. Secondly there is a “high temperature” reversible route («  700 K) 

in which there is the transition (\/3  x y/S) -<=> (-\/3T x \/3Ï) <=> (4x1) upon indium 

deposition [256]. Upon further deposition of indium upon the (4x1) reconstruction the 

surface forms a (\/7 x y/S) reconstruction [88, 255, 256, 257, 258, 259, 260].

As the (4x1) reconstruction may have an indium surface stoichiometry of 1 ML
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Figure 7.1: Diagram of experimental uncertainty of indium coverage for the In-Si(lll) 
system taken at a temperature of 700 K. This diagram is taken from Kraft et al, Phys. 
Rev. B 55, 5384, (1997).

and thus be of use in analysing the Schottky barrier problem, considerable experimental 

attention has focused on it. STM imaging of the surface revealed that the indium adatoms 

form atomic chains [88, 90, 92, 93, 94, 95] that are aligned along the [Oil] direction and 

are separated by 13.3 Â along the [2ÏÎ] direction, see Figure 7.2^. The difference in 

height between the rows and the trench between rows has been measured by STM to be 

1.5 Â ±  0.2 Â [261] and X-ray diffraction also finds that there is a height difference of 

order 1 Â [262].

As indium is a metal and silicon is a semiconductor, a naive assumption would be 

that these indium atomic scale chains act as atomic scale wires which confine states near 

the Fermi level to the chains. This assumption depends on two factors; firstly whether 

the (4x1) reconstruction is metallic and secondly whether the surface possesses states 

which are quasi-one-dimensional.

Figure 7.2: STM image of the filled states of the (4x1) reconstruction of the S i(lll) 
reconstruction. An individual (4x1) unit cell is delineated. This image is taken from H. 
W. Yeom et al, Phys. Rev. Lett. 82, 4898, (1998).
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Analysis of the electronic structure of the (4x1) reconstruction is complicated by the 

problem of deconvolving information about the electronic structure of the one-domain 

surface from the electronic structure of the three-domain surface. An incorrect inter­

pretation of the electronic structure of the three domain (111) surface can lead to a 

misinterpretation of experiments that investigate the surface structure of the (4x1) re­

construction.

STM spectrosocopy has been performed on a three domain (4x1) surface [261]. Anal­

ysis of the {d I/dV ){I/V )  curves shows that the surface is semiconducting with a bandgap 

of 0.8 eV. This is in agreement with the angular resolved photoemission and inverse pho­

toemission experiments which have been performed on a three domain S i( ll l)  surface by 

Ofner et al. [263], who found that there was one empty interface state in the bandgap and 

that there were three filled surface bands. The surface was found to be semiconducting. 

Hill et al. [86] suggested that this was because the experimental setup did not probe all 

of the reciprocal space of the (4x1) unit cell. Inverse photoemission of a three domain 

[86] surface does indeed find that there is a Fermi level crossing in the Brillouin zone 

meaning that the surface is metallic. This is in agreement with the STS curves of the 

three domain surface obtained by Kraft et al., who found that the (4x1) surface has a 

finite density of states at the Fermi level [88].

Experiments performed on the single-domain surface are fax more conclusive. Inverse 

photoemission experiments by Hill et al. show that the surface is metallic with a Fermi 

level crossing at 0.6 F — % (see Figure 7.10). Core level photoemission experiments by 

Abukawa et al. [264] also show that the surface is metallic and that the In adatoms 

are metallic in nature while the Si atoms are semiconducting. This implies that if any 

charge is injected into the indium atomic chains then the charge would be confined to the 

chains and would find it easier to disperse along the chain than across the chain. How 

one dimensional are the electronic states associated with these indium atomic chains?

RAS curves obtained from single-domain samples show that there is a significant 

optical anisotropy of 1.65 % at a photon energy of 1.9 eV [91]. This anisotropy is 

uncharacteristic of semiconductor systems and is indicative of strong electron confinement 

in the [2ÏÏ] direction, i.e., perpendicular to the indium atomic chains. Additional support

for this is provided by detailed angle-resolved photoemission spectroscopy performed on
^The (4x1) reconstruction is rectangular. Therefore on the S i( l l l )  surface it is threefold degenerate. 

If the Si (111) surface is miscut by a couple of degrees towards the [Oil] direction (for instance) then 
terraces form that break this threefold symmetry and form single-domain surfaces [257, 261].
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the single-domain (4x1) surface [95, 265]. Three surface state bands are observed which 

cross the Fermi level and all three surface states have quasi-one-dimensional dispersions 

which are aligned along the x l  direction. The magnitude of dispersion along the x l  

direction is % 0.2 eV for the highest occupied state, % 0.4 eV for the second highest state 

and «  0.7 eV for the third highest state. The dispersions along the x4 direction are «  

0.1 eV for the HOMO state, «  0.0 eV for the second highest state and «  0.2 eV for the 

third highest state [265]. Inverse photoemission found that the unoccupied states also 

have the same quasi-one-dimensionality of dispersion with the unoccupied states confined 

to the indium atomic chains [87].

If the atomic wire is quasi-one-dimensional and metallic then it is susceptible to a 

Peierls-like transition which doubles the repeat spacing along the wire and makes the sur­

face semiconducting. STM and RHEED observations show that below room temperature 

the (4x1) metallic structure becomes a (4x2) semiconducting structure [95]. However 

this result is in dispute, as there are angle-resolved electron-energy-loss spectra which 

indicate that the transition at low temperature is from a metallic (4x1) surface to a 

(8x2) semi-metallic surface [266]. There is also evidence for this in the X-ray diffraction 

results of Kumpf et al. [267], although this experiment was performed on a three domain 

surface. There have been suggestions that this this is an indication of a Fermi liquid to 

Luttinger liquid transition, although it may be a less exotic ground state transition.

In summary it seems as if the (4x1) surface reconstruction acts in many respects as 

an atomic scale wire. In order to estimate what its transport properties are we need to 

know the structure of the indium atomic chain. What models of the (4x1) reconstruction 

exist, and for what indium stoichiometries?

7.1.2 M odels

As has been shown in Figure 7.1 the uncertainty in the indium surface stoichiometry 

is quite large for the (4x1) surface. As the (4x1) is not a surface solution, i.e., its 

indium surface stoichiometry is fixed [268], the indium stoichiometry of the (4x1) unit 

cell must consist of an integer number of In adatoms. The lower limit for the number of 

In adatoms per unit cell is 2, as the less indium-rich (>/3 x \/3) unit cell is an extremely 

well characterised surface with a surface indium stoichiometry of one indium atom per 

unit cell (1/3ML In) [88, 93, 258, 269, 270, 271]. The upper limit is four indium adatoms
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per unit cell (IML In) [88]. The range of indium stoichiometry is therefore 0.5 to 1 

ML. Unfortunately there is a lot of conflicting experimental evidence on the indium 

stoichiometry of the (4x1) surface.

Experimental support for a 1/2 ML indium coverage is provided by the impact- 

collision ion-scattering spectrometry (ICISS) results of Cornelison et al. [83], who found 

that the best fit with experiment was a model with two In adatoms occupying two 

inequivalent sites on the (111) face, the Hs and sites. There was no evidence for 

substitutional In atoms in the top atomic layer of the silicon crystal. Additional ICISS 

experiments were performed by Stevens et al. [261] on the single-domain surface, who 

also found that the best fit to experimental data was the mixed-site model with 0.5 ML 

of indium (see Figure 7.3, a)).

0.5 ML 1.0 ML

c) d)

Poo

1.0 ML 0.75 ML

Figure 7.3: Comparison of various models that have been proposed for the (4x1) surface. 
Structures proposed a) Stevens et ai, Phys. Rev. B 47, 1453, (1993), b) Abukawa et 
al, J. Elec. Spec. Rel. Phen. 80, 233, (1996), c) Bunk et ai, Phys. Rev. B 59, 12228, 
(1999) and d) Saranin et al, Phys. Rev. B 60, 14372, (1999). Open circles are silicon 
atoms, light blue circles are indium adatoms.

A one monolayer model has been proposed by Abukawa et a/.[264] (see Figure 7.3, 

b)), who found that core level photoemission spectra show that the Si 2p components are 

symmetric with no significant core level shift. This is interpreted as evidence for an almost 

ideal one-to-one bonding of the top layer of silicon with indium. The core-level shifts also
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show that there are two kinds of In bonding, metallic In-In bonding and covalent In-Si 

bonding. This model is consistent with angle resolved photoemission data [265]. This 

ARPES data is interpreted to rule out models with 3/4 or 5/4 ML indium coverages, 

although this interpretation does not include any excess silicon atoms on the surface. 

The model proposed by Abukawa is in agreement with X-ray diffraction data obtained 

by Finney et al. on three domain surfaces [262, 272]. The model proposed by Finney (see 

Figure 7.3b)) also assumes an unreconstructed substrate. Micro-probe Auger electron 

spectroscopy and RHEED also found that the indium coverage is 1 ML with no excess 

silicon. An In coverage of 3/4 ML was ruled out by symmetry considerations (although 

the observed indium stoichiometry is 0.8 ML which is a lot closer to a stoichiometry of 

0.75 ML than to 1 ML [89]).

The assumption that the silicon substrate is unreconstructed and that there is no 

excess silicon present on the surface is, however, wrong. Exposure of the (4x1) surface 

to hydrogen results in the desorption of indium adatoms and the adsorption of hydrogen 

atoms [92]. Since this occurs without any change in the periodicity as measured by 

LEED, it is reasonable to assume that the hydrogen atoms replace the indium adatoms 

without significantly disturbing the silicon atoms. It was found by STM, AES and LEED 

that upon hydrogen adsorption the (4xl)-In reconstruction is replaced by a (4xl)-H  

reconstruction [92, 94]. This indicates that the silicon substrate is itself reconstructed. 

Saranin et al. proposed that the substrate reconstruction is similar to the S i(lll)-(3 x l)-  

Me reconstructions (where Me is a metal like Al, Ge or Li) that have been observed. Erwin 

proposed that these (3x1) reconstructions are composed of units that are extensions of 

the Pandey model that is accepted as the atomic geometry of the clean S i(lll)-(2 x l)  

surface [273]. A clean unreconstructed S i(lll)  surface consists of six-member rings of 

silicon. The (2x1) Pandey model replaces these six membered rings with alternating 

seven- and five-membered rings (7575... ). The Erwin model for the (3x1) reconstruction 

inserts a six-membered ring (765765...). The Saranin model (see Figure 7.3, d)) simply 

inserts another six membered ring into the sequence (76567656...) [94]. This is referred 

to as a TT-bonded-chain-stacking-fault model (tt-SF).

The original Saranin model proposed that this tt- S F  substrate reconstruction has an 

indium overlayer with an indium stoichiometry of 0.75 ML [94]. Experimental evidence 

for this indium stoichiometry is provided by Auger spectroscopy [94], STM imaging of the
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unit cell [256] and determination of the stoichiometry of the (4x1) surface by STM [274]. 

Two of the indium adatoms form the indium rows that are observed by STM (see Figure 

7.2) and are covalently bound to the silicon substrate. The third indium atom resides in 

the trough between the rows [256] and has only metallic bonds with neighbouring indium 

adatoms. Protrusions which correspond to these fully metallic indium adatoms have been 

imaged by empty state STM scans of the (4x1) surface [256]. It has been suggested that 

displacements of these middle adatoms are what is responsible for the possible Peierls 

transition that has been observed.

So far we have assumed that the silicon stoichiometry is ideal, only In varies. But 

in principle silicon stoichiometry may change too. Surface X-ray diffraction experiments 

have been performed on the (4x1) reconstruction by Bunk et al [82]. They found that 

the reconstruction was quasi-one-dimensional but with chains of silicon atoms alternating 

with zig-zag chains of indium adatoms on an unreconstructed silicon substrate. There is 

an excess silicon stoichiometry of 0.5 ML relative to the ideally terminated surface. There 

are three In-In interatomic distance vectors in the Patterson function (a measure of the 

pair-correlation function of the electron density) which means that there must be three 

different indium sites involved in the reconstruction. This rules out any models which 

have a surface indium stoichiometry of 0.5 ML. The original model proposed by Saranin 

also shows a poor fit to the data. The model which best fits the experimental data is 

a model with four indium adatoms and two silicon atoms on the surface per unit cell 

(see Figure 7.3, c)). The silicon atoms are arranged in a 7r-bonded chain and the indium 

adatoms are arranged in two rows, each row containing two adatoms, one of which is 

higher than the other. There are thus two inequivalent types of indium adatoms which is 

in agreement with core-level photoemission results [89]. This model is also in agreement 

with inverse photoemission results [275].

Additional STM experiments by Saranin et al have confirmed the presence of these 

silicon atomic lines [274] in the S i(lll)-(4x l)-H  reconstruction. Scans along the x4 

direction show that there is a  protuberance in filled states imaging with a x4 repeat 

spacing. Therefore Saranin et al have proposed the modified Saranin model in which 

there are three indium adatoms and two silicon atoms on the surface per unit cell (this is 

the structure shown in Figure 7.3, d)). The silicon atoms are placed above the sevenfold 

ring. It is expected that this model would better fit X-ray diffraction data.
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Table 7.1; Summary of the ability of different models to match experiments. +  indicate 
agreement with the experiment, - indicates disagreement with experiment and o indicates 
ambivalent agreement with experiment.

Experimental Technique Bunk model Saranin model (modified)
STM [256, 259, 90, 261, 274] + +

ICISS [261, 83] - -
PES [264] + o

XRD [262, 82, 272] + o
hydrogenation [92, 94, 274] + +

RHEED [89] + -
AES [94, 262, 89] - +

AED [89] - +
IPES [275] + -

The experimental evidence suggests that the indium coverage of the (4x1) surface 

reconstruction is either 0.75 ML or 1.0 ML with no substitutional indium in the silicon 

substrate. There is also a surface silicon stoichiometry of 0.5 ML. Of all the structural 

models proposed only two models fit the majority of the experimental data, the Bunk 

model (1.0 ML In) and the modified Saranin model (0.75 ML In). A summary of how 

each model matches experimental data is shown in Table 7.1 and a comparison of the 

adatom structure of both models is shown in Figure 7.4. As the only difference in 

surface stoichiometry is that one model has one more indium adatom than the other we 

can easily calculate the difference in grand canonical potentials. Therefore we perform ab 

initio calculations on these two models in order to determine the geometric and electronic 

structure and find which model is thermodynamically favoured. We first of all need to 

determine whether the PAW formulation we use can accurately model the indium-silicon 

system.

7.2 PAW simulations: Tests

7.2.1 Projector test: Lattice param eters o f Si and InAs

We have to check whether our PAW formalism accurately models both silicon and indium 

correctly. As a first test we determine whether PAW correctly calculates the bulk lattice 

vectors of solids containing silicon and indium. This was tested in the same way that 

we calculated the bulk lattice vectors of silicon carbide in Chapter 4, by varying the 

bulk lattice vectors a  (1x1x1) of the crystal, applying the Prancis-Payne plane wave 

correction to the total energy (4.1) and finding the lattice vector which corresponds to
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a)

b)

Figure 7.4: Comparison of the surface structure of the two most likely models. See Figure 
7.3 for colour coding, a) is the Saranin model, b) is the Bunk model.

the minimum of total energy. The plot of total energy at a plane wave cutoff of 30 

Rydbergs with respect to the bulk lattice vector for silicon is shown in Figure 7.5. We 

found that the PAW lattice vector for bulk silicon is within 0.3 % of the experimental 

value. We also found that the bulk modulus of silicon was 85.59 GPa, which is within 

15% of the experimental value. Our PAW formalism thus accurately represents silicon. 

In our simulations we use the experimental values for the surface lattice vectors of silicon.
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Figure 7.5: Plot of corrected total energy vs bulk lattice vector for silicon in PAW.

Our PAW formalism is much less suited for modelling pure indium as we can only 

sample a limited number of Ar-points in the Brillouin zone (4). Unfortunately the ground
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State properties of metals cannot be accurately converged for such a small number of 

Ar-points. In order to accurately determine the bulk lattice vectors of indium we would 

therefore have to use a large number of primitive unit cells and sample a large portion of 

the Brillouin zone by backfolding. The memory requirements for such a calculation are 

beyond the capacity of current workstations. We therefore chose to find the bulk lattice 

vectors of the semiconductor compound indium arsenide, using a well tested arsenide 

projector. The indium projector uses the s and p states, placing the d states in the core. 

Our plot of corrected total energy for a plane wave cutoff of 30 Rydbergs as a function 

of bulk lattice vector for a (1x 1x 1) unit cell is shown in Figure 7.6. We found that the 

theoretical value for the bulk lattice vector is 14% less than the experimental value. This 

is a large error.
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Figure 7.6: Plot of corrected total energy vs bulk lattice vector for indium arsenide in 
PAW.

How well can we trust our indium projectors? We can test our indium projector on 

another reconstruction on the (111) face of silicon, the (\/3 x \/3)R30° reconstruction.

7.2.2 Simulation of the (>/3 x \ /3 )S i( l l l) - I n  reconstruction

The ( a/3  X \/3)R30° reconstruction is a well characterised and uncontroversial recon­

struction. The surface indium stoichiometry is 0.33 ML: there is one In adatom per unit 

cell. No excess silicon has been observed. The indium adatom is located in the T4 site 

above a second layer Si atom [88, 269]; an alternative geometry with the indium atom 

located in the H3 site has a total energy 0.2 eV higher than the T4 site when modelled 

using pseudopotentials in the LDA [269].

This well known unit cell was modelled in the PAW formalism using a plane wave 

cutoff of 30 Rydbergs and sampling four A:-points in the surface Brillouin zone. We use
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Figure 7.7: Plot of total charge density as a function of cell height for a (\/3 x \/3)R30° 
unit cell. Space between dashed lines is the vacuum.

a surface slab which is eleven atomic layers thick, with the bottom silicon atomic layer 

passivated by hydrogen. The vacuum gap is 17.00621 Bohrs in thickness. The charge 

density is confined to the slab as shown in Figure 7.7.

Figure 7.8: Surface structure (top two layers, several unit cells) of the relaxed (\/3 x 
\/3)R30° with the In atom in the T4 position. Yellow circles are surface silicon atoms, 
purple circles are indium adatoms.

We performed ab initio DFT calculations on the T4 and H3 reconstructions. The 

relaxed structures are shown in Figures 7.8 and 7.9. We found that our results are 

in close agreement with the previous literature. For the T4 model we found that the 

average In-Si distance between the In atom and the three surrounding Si atoms of the 

top layer is 2.48 Â, whereas previous theoretical results indicate that this distance is 

2.63 Â [269]. The distance between the In atom and the Si atom directly beneath it is 

2.43 Â, whereas the literature result is 2.59 Â [269]. For the H3 model the average In-Si 

distance between the In atom and the three surrounding Si atoms is 2.45 Â, the literature 

result is 2.62 Â [269]. We found that the T4 site has a lower total energy than the i/3
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site, with the difference in total energies 0.22 eV. We emphasize that as these previous 

literature results are 12 years old that their density functionals are much cruder than the 

density functionals that we use. Our energetic results are in excellent agreement with 

the literature.

Figure 7.9: Surface structure (top two layers, several unit cells) of the relaxed (\/3 x 
v/3)R30° with the In atom in the H3 position. See Figure 7.8 for colour coding.

As our simulations agree so well with previous results in the literature, in particular 

with regard to the total energy difference in excellent agreement, we conclude that our 

simulations of the indium-silicon systems will probably be accurate. We posit that the 

reason why our indium projector does not accurately model the indium arsenide system 

is because the indium projector does not include contributions from the d-electrons. In 

contrast the indium on silicon systems are well modelled by the indium projector because 

these systems do not display evidence that d-electrons are involved. Only s and p orbitals 

are involved in the bonding [95, 265].

7.3 Ab initio simulations of the (4x1) unit cell: Gen­

eral points

Our simulations of the Bunk and Saranin models were performed on single (4x1) unit 

cells with a plane wave cutoff of 30 Rydbergs and sampling four A:-points in the surface 

Brillouin zone, the T ,K ,X  and X ' (see Figure 7.10). The surface slab is eleven atomic 

layers thick with the bottom silicon layer passivated by hydrogen to avoid artificial charge 

transfer. The vacuum part of the simulation cell is 19.18715 Bohrs thick.

The convergence of our simulations with respect to plane wave cutoff was checked by
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Figure 7.10: Surface Brillouin zone of the (4x1) surface and the four fc-points sampled.

calculating the forces on the ions for the relaxed structure at 30 Rydbergs and comparing 

with ionic forces calculated for the same structure at a plane wave cutoff of 35 Rydbergs. 

We found that the largest difference in forces was for the indium atoms on the surface. 

This difference in forces was of order 0.00025 Hartrees per Bohr, which is a small difference 

in forces. We therefore conclude that our calculations are well converged with respect to 

plane wave cutoff.

7.4 Simulation of the Bunk model

7.4.1 Physical structure

The relaxed structure of the Bunk model is shown in Figure 7.11. The surface is locally 

stable. The indium atomic chains are 0.3285 Â higher than the silicon atomic chain. 

The silicon atomic chain is buckled by 0.0622 Â. The indium atomic chains are strongly 

buckled, with the average buckle distance 0.2648 Â. The indium adatoms which are close 

to the silicon atomic chain are higher than the indium adatoms which are in the ‘inside 

edge’ of the atomic chains. The separation between the two indium atomic chains is 

4.1186 Â, this is in good agreement with the inferred separation between the atomic rows 

[275]. The details of the structure are shown in Table 7.2.

Table 7.2: Equilibrium bond lengths for the indium and silicon addimers. All distances 
are in Â. See Figure 7.4 for nomenclature.

Model Bond length
Bunk 2.2555 (A), 2.2465 (B), 2.6761 (C), 2.6823 (D), 2.6868 (E), 2.6854 (F)

Saranin 2.3666 (A), 2.4638 (B), 3.4160 (C), 3.1320 (D), 2.6127 (E)
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Figure 7.11: Relaxed structure of the Bunk model. Left diagram is view from above the 
surface, right diagram is view along the x l  direction. See Figure 7.8 for colour coding.

We can compare our structural results with the work of Miwa et al. [276] and the 

work of Nakamura et al. [277]. Both of their calculations were performed with density 

functional theory and used pseudopotentials to treat the electron-ion interaction. In both 

cases the Brillouin zone sampling is much better than the fc-point sampling scheme we 

use, with Miwa et al. sampling 16 A:-points in the surface Brillouin zone and Nakamura 

et al. sampling 25 fc-points in the Brillouin zone. The plane wave cutoff used by Miwa 

et al. was 16 Rydbergs, while the plane wave cutoff used by Nakamura et al. was 25 

Rydbergs. In both cases this is less than the plane wave cutoff we use.

We found that our structural results compare well with the results of both Miwa et al. 

and Nakamura et al.. The spacing we found between indium chains (4.12 Â) is less than 

that found by Miwa (4.4 A). Our indium to silicon bond lengths were found to be shorter 

than the indium to silicon bond lengths found in the literature, with our indium-silicon 

bond lengths of order 2.45 A and the indium-silicon bond lengths in the literature of 

order 2.65 A. We think this underestimate of the bond length is due our smaller A:-point 

sampling set.

7.4.2 Electronic structure

As has already been mentioned we cannot comment in detail on the electronic structure 

of the Bunk model as our implementation of PAW is limited to sampling only four k-  

points in the surface Brillouin zone. There is also the problem that we cannot accurately
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calculate the properties of excited states because of the LDA. At the four A:-points sam­

pled we found that the gap (defined as the difference in K-S eigenvalues) at select parts 

of the Brillouin zone varies from 0.18 eV at the AT-point to 0.96 eV at the A'-point. This 

indicates that the Bunk model has a narrow bandgap with a large range and may be 

metallic.
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Figure 7.12: Plot of the charge density of the HOMO state as a function of cell height. 
Left side is bottom of the unit cell. Dashed line is position of the top of the unit cell.

Our simulations of the Bunk model show that there are two surface state bands 

separated from the valence band, with another band which is partially separated from the 

valence band; this is in agreement with angle-resolved photoemission experiments [263, 

265]. The distribution of these states in the unit cell as a function of cell height is shown 

in Figures 7.12-7.14. The three highest occupied states all have quasi-one-dimensional 

dispersions with large dispersions along the x l direction (1.16 eV, 1.18 eV and 1.23 eV 

from HOMO to 3rd HOMO state) and much smaller dispersions along the x4 direction 

(0.4 eV, 0.23 eV and 0.21 eV from HOMO to 3rd HOMO state). These dispersions are 

the differences in Kohn-Sham eigenvalues at different points of the Brillouin zone.

We found that the highest occupied state has a large overlap (we define the overlap by 

the sum of the squares of the projectors pi for the s,px,Py and p^ orbitals used in (2.20)) 

with the indium adatoms (see Figure 7.4 for layout). The HOMO state has a very strong 

overlap with the middle pair of indium adatoms (0.8909 for the left middle In adatom, 

0.4806 for the right middle In adatom) and the indium adatom on the left (0.2355). The 

third HOMO state also has a large overlap with these three indium adatoms, with an 

overlap of 0.3294 on the left middle indium adatom, 0.1820 on the right middle indium 

adatom and an overlap of 0.1569 on the top left indium adatom. The second highest 

state does not have a strong overlap with any of the adatoms on the surface. The silicon
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Figure 7.13: Plot of the charge density of the second HOMO state as a function of cell 
height. See Figure 7.12 for layout.

chain does not have a strong overlap with any of these states.
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Figure 7.14: Plot of the charge density of the third HOMO state as a function of cell 
height. See Figure 7.12 for layout.

A plot of the charge density of the HOMO and 3rd HOMO states also shows that they 

are strongly associated with the middle pair of indium adatoms and that there is a very 

strong connection from one (4x1) unit cell to the next along the x l  direction. These 

charge density plots are shown in Figure 7.15. Along with the dispersion characteristics 

of these states and the large surface components these states possess this strongly implies 

that if a hole is injected into these indium adatoms it would diffuse easily along the x 1 

direction and would be confined to the indium atomic chain. The Bunk model would 

make a good atomic scale wire.

We cannot compare in detail our electronic structure with the theoretical electronic 

structural results that have been published in the literature because we sample only a 

small set of A:-points, whereas other theoretical studies have used a large set of A;-points 

[276, 277]. Our electronic structure results agree in general with the results published
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Figure 7.15: Plot of the charge density of the HOMO state (top) and 3rd HOMO state 
(bottom). This is a slice parallel to the surface at a point 3 Â above the surface.

in the literature, where both Miwa et al. and Nakamura et al. finding that the three 

highest occupied states possess quasi-one-dimensional behaviour and are confined to the 

indium atomic chains.

7.5 Simulation of the Saranin model

7.5.1 Physical structure

The relaxed structure of the Saranin model is shown in Figure 7.16. The surface is 

locally stable. We found that the silicon atomic chain is 0.5081 Â higher than the indium 

atomic chains. The silicon atomic chain is strongly buckled by 0.4501 Â. The indium 

atomic chain is also strongly buckled with the average buckle distance 0.6045 Â, with 

the two outer indium adatoms higher than the inside indium adatom. The separation 

between the two outer indium adatoms is 6.2715 Â, which is not in good agreement with 

the inferred separation between the atomic rows [275]. The indium atomic chain is not
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equidistant between two silicon atomic chains with the separation from one side 2.5632 

Â and from the other side the separation is 4.9649 Â. This asymmetry is not observed 

in STM images. The silicon substrate is in a (7665... ) arrangement. The details of 

the structure are shown in Table 7.2. Unlike the Bunk model, we cannot compare our 

atomic and electronic structures with results published in the literature as no simulations 

of the Saranin model have been presented. This also means that this work features the 

first analysis of the relative thermodynamic stability of the two competing models of the 

(4x1) surface reconstruction.

Figure 7.16: Relaxed structure of the Saranin model. See Figure 7.11 for layout.

7.5.2 Electronic structure

Although we cannot comment in detail on the electronic structure of the Saranin model 

we found that this system has a very small bandgap at all four A;-points in the Brillouin 

zone. The bandgap varies from 0.14 eV at the F-point to 0.32 eV at the X '  point. This 

indicates that the bandgap for the Saranin model is small and that the unit cell may be 

metallic.

Our simulations of the Saranin model show that there are four surface state bands sep­

arated from the valence band and there is another band which is partially separated from 

the valence band. This is in disagreement with angle-resolved photoemission experiments 

[263, 265], which shows that there are only three surface state bands. The distribution 

of the three highest states in the unit cell as a function of cell height is shown in Figures

196



0.0003

0.0002

0.0001

Ce» height (Bohrs)

Figure 7.17: Plot of the charge density of the HOMO state as a function of cell height. 
See Figure 7.12 for layout.

7.17-7.19. The five highest occupied states all have quasi-one-dirnensional dispersions 

with large dispersions along the x l  direction (0.68 eV, 0.97 eV, 1.18 eV, 1.24 eV and 

1.25 eV from HOMO to 5th HOMO state) and much smaller dispersions along the x4 

direction (0.39 eV, 0.17 eV, 0.22 eV, 0.23 eV and 0.20 eV from HOMO to 5rd HOMO 

state).
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Figure 7.18: Plot of the charge density of the second HOMO state as a function of cell 
height. See Figure 7.12 for layout.

We found that the highest occupied state has a large overlap on all three indium 

adatoms (see Figure 7.4 for layout). The HOMO state has a very strong overlap with 

the middle indium adatom (0.9137), and weaker overlaps with the other two indium 

adatoms (0.6391 for the right In adatom and 0.1887 for the left In adatom). The second 

HOMO state has a very large surface component, with very large overlaps on the two 

outer indium adatoms (1.1054 on the left In adatom and 0.7455 on the right In adatom). 

There is also a large overlap of this state with the middle In adatom (0.5067) and on the 

silicon atomic chain, with overlaps of 0.1515 on the higher Si atom and 0.1882 on the
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lower In atom. There is a negligible overlap between the surface atoms and the 3rd and 

4th HOMO states, but there is a large overlap with the 5th HOMO state and several 

other high energy states.
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Figure 7.19: Plot of the charge density of the third HOMO state as a function of cell 
height. See Figure 7.12 for layout.

A plot of the HOMO and second HOMO states is shown in Figure 7.20. The HOMO 

state shows a strong connection along the x 1 direction mediated by the right atom of 

the indium chain. Similarly the second HOMO state shows a strong connection along the 

x l  direction mediated by the indium atomic chain. We have therefore found that the 

two highest energy states have very large surface components and are strongly associated 

with the indium atomic chain. These states possess quasi-one-dimensional dispersions 

and, along with charge density plots, these seem to indicate that if a hole is injected into 

the line it would find it easy to disperse along the x 1 direction and would be confined to 

the indium atomic chain. The Saranin model would make a good atomic wire.

7.6 Thermodynamic results: Which model is favoured?

We can use our calculated total energies to calculate which model of the (4x1) reconstruc­

tion is thermodynamically favoured, i.e., possesses the lower grand canonical potential 

[235, 236] over a range of chemical potential of the indium adatom (as the total sur­

face stoichiometries differ by one indium atom, see equation (4.2)). We assume that 

the formation of the (4x1) reconstruction is constrained by thermodynamic factors. Our 

calculation of the canonical potential of indium adatoms takes place at zero temperature, 

we neglect entropie factors. We take the zero of chemical potential to correspond to the 

total energy of an isolated In atom in the PAW formalism, this is -1.98918 Hartrees.
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Figure 7.20: Plot of the charge density of the HOMO state (top) and 3rd HOMO state 
(bottom). This is a slice parallel to the surface 3 Â above the surface.

The chemical potential of the indium adatoms could either be in equilibrium with each 

other (the chemical potential of the indium adatoms is equal to the chemical potential 

of indium adatoms in bulk indium), or the indium adatoms could be in equilibrium with 

the indium gas phase. One of these bounds is already determined by the cohesive energy 

per atom of indium in bulk indium (-2.6 eV) [116, 278], the other bound is determined 

by the chemical potential of an ideal gas (as a first approximation) [279]. This is equal 

to

(7.1)

where is the chemical potential of an atom in bulk indium, kB is Boltzmann’s

constant, T  is the temperature at which indium is deposited (550° C), F  is the average 

volume each indium atom occupies when in the process of been deposited on the surface
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and Vd b  is the De Broglie volume.

We can calculate the average volume each In atom occupies during the process of 

forming the (4x1) reconstruction by looking at the deposition rate at which the indium 

is deposited. The average deposition rate is 0.2 ML per minute (where 1 ML is the 

ideal Si density on the (111) plane, 7.8xl0^®m“  ̂ [93]). This means that per second of 

time (and assuming that when indium is deposited it sticks) the average spacing between 

atoms is 6 .2x l0“ ®m from which we can determine the average volume each indium atom 

occupies. The De Broglie wavelength is given by [279]

= (f ) ' (2^^)
which corresponds to 8 .22xl0“ ^^m and from which we can determine the De Broglie 

volume. Substituting these two volumes into (7.1) we find that the correction to the 

chemical potential of indium is -1.41 eV. The range of chemical potential that the indium 

adatoms could inhabit ranges (to a first approximation) from -2.6 to -4.01 eV.

The plot of fï as a function of ^in is shown in Figure 7.21. This is compared with 

the total energy of an ideal (4x1) unit cell with two silicon atoms in a chain structure, 

shifted down by 1.6 eV so as to match the relaxation energy of the (7 x 7) unit cell (0.4 

eV per (1x1) unit cell [280, 281]), which is the ground state structure of the silicon (111) 

surface.

For the range of chemical potential that lies between bulk indium and the indium 

as an ideal gas we found that the Bunk model is thermodynamically preferred. The 

difference in grand canonical potentials in this range of chemical potential is 3-5 eV. This 

is much larger than any contributions to the grand canonical potential fi*om entropie 

factors. We found that the Saranin model only becomes thermodynamically favoured 

when the chemical potential is equal to -7.89 eV. At this chemical potential the (7x7) 

surface with the silicon atomic chain positions that are used as the starting point for both 

models is thermodynamically favoured. We thus conclude that the Bunk model is the 

thermodynamically favoured model over the entire range of allowable chemical potential.
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Figure 7.21: Plot comparing the grand canonical potentials Ü per (4x1) unit cell for the 
two (4x1) candidate models and a (4x1) component of the (7x7) surface, as a function of 
chemical potential per In atom /zin- The zero of the grand canonical potential corresponds 
to the grand canonical potential of the ideal (7x7) surface.

7.7 Conclusions

We have performed detailed ab initio calculations on the (4x1) indium rich reconstruction 

on the (111) face of silicon. We have performed calculations on the Bunk and Saranin 

models of this (4x1) reconstruction and have found that the Bunk model is thermody­

namically preferred. The Bunk model also matches experimental photoemission data 

that shows that there are three occupied surface states while the Saranin model has five 

occupied surface states. We also found that in the Saranin model the silicon atomic line 

is higher than the indium atomic chain, but STM topographs of the In-rich (4x1) recon­

struction do not show a repeating feature along the x4 direction with a repeat distance of 

4 lattice vectors, rather it shows two features separated by % 4 À with a repeat distance 

of 4 lattice vectors. The Bunk model matches the majority of the experimental evidence. 

We therefore conclude that the Bunk model is the favoured model for the (4x1) surface.

How good an atomic scale wire is the Bunk model? We have found that the bandgap 

(at four points in the Brillouin zone) is enormously variable with a large bandgap at 

the /('-point and a narrow bandgap at the X-point. The surface at least behaves as 

a narrow bandgap semiconductor and due to our limited A:-point sampling we cannot 

confirm whether it is or is not metallic. The HOMO and third HOMO states have quasi- 

one-dimensional dispersions and are strongly associated with the indium atoms of the
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indium atomic chain, specifically the two middle indium atoms. We conclude that the 

combination of a small bandgap, quasi-one-dimensional electronic states associated with 

the indium atomic chain and strong surface confinement indicate that the (4x1) recon­

struction is an extremely good candidate for an atomic scale wire. As presented in the 

literature review there is a lot of experimental evidence for this conclusion. Suggestions 

for further work will be presented in the conclusions chapter.

202



Chapter 8

Conclusions and suggestions 

for further work

We have presented the results of detailed calculations on the physical and electronic struc­

ture of three prospective atomic scale wire systems, the trans-polyacetylene molecule, the 

silicon lines on the (001) face of cubic silicon carbide (the (nx2) series of reconstructions) 

and the indium atomic chains on the (111) face of cubic silicon carbide (the (4xl)-In 

reconstruction). In this final chapter we present our conclusions on the utility of these 

systems as atomic scale wires and suggest further work that can be performed on these 

systems.

8.1 The polyacetylene molecule

8.1.1 Conclusions

The polyacetylene molecule was modelled (at zero temperature) using the empirically 

based SSH Hamiltonian. The structure of the molecule under various boundary condi­

tions (number of charges present and number of CH units) was calculated, and, depending 

on the initial boundary conditions polaron and/or soliton defects were observed to form. 

Harmonic phonon modes and frequencies were calculated for an equilibrium system using 

perturbation theory and the Huang-Rhys factors were calculated for a molecule with a 

single polaron present. The polaron structure is well represented by using the six low­

est optical branch phonons. The electron-phonon coupling constants for the equiUbrium
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system were calculated in real space and were transformed into eigenvector space. Using 

these coupling constants and the phonon modes which strongly couple to the electron, a 

fully quantum mechanical transport calculation was made. It was found that although 

the elastic channel dominates the transmission probability (for the tunnelling regime), 

the coherent electron-phonon coupling has a strong effect on the effective bandgap. This 

is due to the creation of the virtual polaron that propagates through the molecule. The 

formation of this virtual polaron increases the tunnelling transport probability.

Transport in one-dimensional molecular wires is not the same as transport in three- 

dimensional semiconducting molecular crystals, as the propagating particles are not 

electron-like but are polaron-like (an electron strongly coupled to the phonon modes 

of the molecule). The electron-phonon coupling for this system increases the tunnelling 

transport probability. The methods used to find the transport properties of the poly­

acetylene molecule are of general applicability to other one-dimensional systems which 

have undergone a Peierls distortion and generate polarons when charge is injected into 

the system. This work is the first work which calculates (fully quantum mechanically) 

the effects of polaron formation on the transport properties of atomic scale wires.

8.1.2 Suggestions for further work

How can we take our study of the polyacetylene molecule further? There are several 

things that we can do; investigate the transport properties of soliton defects in a poly­

acetylene molecule, investigate the effects of finite temperature on the transport proper­

ties, investigate the properties of polyacetylene molecules when they are coupled to more 

realistic contacts, consider the real dynamics of charge injection and consider how we 

may experimentally measure the transport properties of the molecule.

A polyacetylene molecule at a finite temperature would change the initial set of 

phonon occupation numbers. In our zero temperature calculation the only phonon modes 

which are initially occupied are those phonon modes which are needed to form the po­

laron. The phonon modes which would be excited at room temperature would be acoustic 

phonon modes (thermal energy is % 1 /40 eV, optical phonon energies are approximately 

200 meV). Although these acoustic phonon modes do not couple to the electron they 

would deform the molecule, thus altering the electron states. The effects of finite tem­

perature would also affect the statistical averages that we use to calculate the transport
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properties of the polyacetylene molecule.

Charge injected into a polyacetylene molecule with an odd number of CH units is 

expected to interact with the soliton defect which is already present. The formation of 

soliton defects improves the transport properties of the polyacetylene molecule, as the 

soliton creates a state in the middle of the bandgap [282], and for very long molecules 

is even mobile. Charge injection into a polyacetylene molecule with an even number of 

CH units may also result in the formation of a charged soliton which would increase the 

conductivity of the polyacetylene molecule.

We can consider the effects of more accurate modelling of the coupling between the 

contacts and the polyacetylene molecule. We include the effects of these contacts by 

including a self energy term into the Hamiltonian. We could model more realistic 3D 

contacts by using clusters (for instance gold [283]). These clusters would need to be 

relaxed using a tight-binding or DFT method. These contacts are not allowed to exchange 

particles with the polyacetylene molecule, it is assumed that before charge injection into 

the molecule the polyacetylene molecule and the contacts are both electrically neutral. 

In a real system this is almost certainly not the case as the chemical bonding between 

the end groups of the polyacetylene molecule and the contacts will result in some charge 

transfer, resulting in a charged molecule. This charging of the molecule will alter the 

transport properties. To a first approximation we can consider the effects of charging 

by calculating the amount of charging that particular chemical bonds (such as C-S-Au) 

would cause to the polyacetylene molecule. Then for this particular charge state we can 

find the relaxed structure using the method outlined in Chapter 3. The phonon modes 

and electron-phonon coupling constants would then be calculated for this structure and 

the transport properties would be calculated.

We have also completely neglected many body electron-electron effects in our trans­

port calculations. There are two main areas where many body effects can manifest. 

Firstly, these effects can manifest themselves in the polyacetylene molecule itself. The 

strong coupling between electrons induced by the quasi-one-dimensionality of the line 

can make the excitations of the electronic system act as if they were bosons, that is they 

behave as a Luttinger liquid rather than as a Fermi liquid. Currently there is no infor­

mation on how a Luttinger liquid coupled to a surface behaves, so we assume that the 

eigenstates of the polyacetylene molecule are Fermi states. The other many body effect
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that is neglected is for the case where the chemical bonding between the polyacetylene 

molecule and the contacts leads to the molecule becoming charged by an odd number of 

electrons. If a molecule with an odd number of electrons is able to exchange electrons 

with the contacts, then a Kondo resonance would be able to bring the molecule into reso­

nance. This would change the transport properties of the molecule, making the molecule 

a better conductor of charge (and a good atomic scale wire).

Currently in our injection of charge into the molecule we have assumed that the 

wavefunction is a plane wave. This is an approximation to the real dynamics of the 

system. Instead of the plane wave we could model the injected electron as a wavepacket 

instead.

How can experimentalists measure the transport properties of polyacetylene molecules 

(and other conducting polymers)? Transport measurements have been performed on 

molecules which have been suspended between two contacts [284, 285, 286]. However 

there is doubt whether these transport experiments measure only the transport properties 

of the molecule or include a bulk contribution. Recently Langlais et al. [287] have used 

an STM to image the penetration of metallic electronic states through a molecular wire. 

Although the polaron propagates through the molecule extremely quickly (much quicker 

than the STM could image the carrier) it may be possible to use the STM tip to trap 

the polaron and analyse the effects of polaron formation on a conjugated molecule. This 

would be a major theoretical and experimental undertaking.

There is a lot of additional work that can be performed on the polyacetylene molecule.

8.2 The silicon lines on silicon carbide

8.2.1 Conclusions

The (nx2) series of reconstructions were studied a t zero temperature using both DFT 

and DFTB codes. This series of reconstructions corresponds to silicon atomic lines that 

have been observed on the (001) face of cubic siUcon carbide. The component parts of the 

(nx2) series of reconstructions (the (3x2) reconstruction which is the structural parent of 

the line and the c(4x2) reconstruction which is the structural parent of the surface) were 

modelled using the PAW method. We found that the unambiguously thermodynamically 

favoured model for the (3x2) surface reconstruction is the TAADM model, which has
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an excess surface silicon stoichiometry of 1 ML. The unambiguously thermodynamically 

favoured model for the c(4x2) surface reconstruction is the MRAD model, which has an 

excess surface silicon stoichiometry of 0.5 ML.

The favoured models for the line and the surface were then used in tight-binding 

simulations of the large (nx2) unit cells (where n varied from 3 to 11). We present in 

this thesis the first simulations of these widely separated silicon atomic lines, as well 

as considering the effects of modelling larger unit cells. Two types of structure were 

observed, a “ground”-state structure where all of the addimers of the surface and the top 

addimer of the line were strongly buckled and flat and a “metastable” structure where one 

of the addimers of the surface is flat and less strongly bound (this addimer is referred to as 

the silicon string). A structural transition was also observed for the metastable structure, 

as n is increased the top addimer of the silicon line flattens. With the flattening of this 

silicon line the HOMO state of the metastable structure becomes quasi-one-dimensional 

and dispersive in the x2 direction (along the line). The dispersion of the HOMO state of 

the ground state structure become smaller in magnitude and anisotropic with increasing 

n. The LUMO states of both structures becomes quasi-one-dimensional with increasing 

n, with a large dispersion along the x2 direction. The metastable structures also have 

a much smaller bandgap than the ground-state structures, with a bandgap varying from 

0.23 to 0.86 eV.

(7x4) unit cells composed of ground-state and metastable (7x2) unit cells were also 

studied using tight-binding techniques. It was found that the (7x4) unit cell made from 

the metastable (7x2) unit cell undergoes a Peierls-like transition where the repeat lattice 

vector along the line increases to x4 surface lattice vectors. This Peierls-like transition 

also increases the bandgap of the (7x4) unit cell, the range varying from 0.64 to 0.77 eV. 

The HOMO state of this Peierls-like distorted system is still quasi-one-dimensional and 

aligned along the line direction.

The effects of hole and electron injection into the line were investigated by relaxing 

a charged (7x8) unit cell. It was found that both the hole and the electron localised 

on the line and formed polarons. The hole polaron was locaUsed on the second level 

addimers of the line with a small structural deformation. The electron polaron locaUsed 

on the top addimer of the line with a large structural deformation. The formation of 

hole and electron polarons decreases the bandgap by pushing the HOMO (or LUMO for
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electron polaron systems) state into the bandgap. The formation of the hole polaron 

system altered the anisotropy of the HOMO state, with a larger dispersion in the x7 

direction (across the line) than along the x8 direction (along the line). The electron 

polaron defect does not alter the anisotropy of the LUMO state; it is still more dispersive 

along than across the line. The energy of relaxation for both polaron systems is quite 

small (of order 0.05 eV).

The phonon modes (a minimal set) and electron-phonon coupling constants of the 

equilibrium system (before charge injection) were calculated. It was found that both 

polaron deformations were strongly coupled to the system, with the hole polaron requiring 

four phonons to recreate the structural defect and the electron polaron requiring eight 

phonons to recreate the defect. A consequence of this is that the effective mass of 

both polaron systems is quite large, with the effective mass of the electron polaron (the 

polaron which disperses along the line) of order 1100 electron masses. This means that 

if transport is to occur along the line then it will not be coherent. The techniques that 

were used to find the transport properties of the polyacetylene molecule are not valid 

for this system. The mobility and diffusion constants for thermally activated diffusion 

of the electron polaron were calculated and were found to be 300 times smaller than the 

diffusion constants for bulk cubic silicon carbide. The calculated mobility was also found 

to approximately 60 times smaller than the mobility of polyacetylene, the testbed atomic 

scale wire.

Our final conclusions are that the silicon line on silicon carbide is not a good candidate 

for use as an atomic scale wire. If electronic devices are manufactured using silicon carbide 

then the silicon atomic wire would be a slow link in the process, as it would be easier 

for electrons to propagate through the bulk SiC crystal than through the silicon line. 

This silicon line also possesses a lower mobility than a competing atomic wire, iodine 

and AsFg doped polyacetylene. Therefore the silicon atomic line is not a good candidate 

atomic scale wire. However it may be useful as a template for a conducting molecule. 

This, and other possible applications are discussed in the next section.

8.2.2 Suggestions for further work

W hat additional tests can be performed on the (nx2) series of unit cells? Our calcu­

lations of the large (nx2) unit cells was performed using a non-self-consistent Density-
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Functional-Based-Tight-Binding implementation. Some of the structures that we found 

have involve a large amount of charge transfer. To check the results of this calculation 

we could perform a test calculation using a charge self-consistent-code, such as PAW. 

However, as these systems are so large it is computationally intractable using current 

workstations. With Moore’s law in operation however, this calculation will be possible in 

a couple of years. And we could use 0{N ) ab initio codes to perform these calculations 

on these large unit cells using a parallel machine.

The results we present for the electron polaron system are less accurate than the 

results we present for the hole polaron system. The electron polaron system is the ground 

state of a charged system. The tight-binding parameterisation that we use is based upon 

LDA-DFT calculations of diatomic molecules. The LDA does not accurately reproduce 

excited states, and so our calculation of the electron polaron structure is less accurate 

than our calculation of the hole polaron structure. Until a more accurate method of 

dealing with the exchange and correlation terms is invented we cannot improve on these 

results (and even then the one-particle Kohn-Sham eigenstates that are used in DFT do 

not give the correct eigenvalues for excited states).

We calculated only a minimal set of the phonon modes of the reference system. This 

approximation did not have a major effect on the electron polaron system, but it did 

have a major effect on the hole polaron system. This is because the only atoms that are 

perturbed in order to calculate phonon modes are atoms of the silicon line. The hole 

polaron resides close to the surface, and so may couple strongly to phonon modes of the 

entire surface, not just phonon modes of the line. The only constraint that prevents us 

from calculating more phonon modes is the limit imposed by the CPU time that it takes 

to calculate the dynamical matrix that we use to calculate the phonon modes of the 

system. Increasing the number of atoms that are perturbed would increase the number 

of phonon modes we sample and would more accurately model the hole-polaron coupling 

and thus provide a better estimation of the effective mass. However as the hole polaron 

system has a stronger dispersion across the silicon line than along the silicon line, the 

hole polaron transport is not confined to the line, meaning that for hole polaron injection 

the silicon line is not an effective atomic scale wire. We conclude that additional phonon 

mode calculation is not needed.

The electron polaron system results show that although the polaron that forms has
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a large spatial deformation and is localised on the silicon line, it is not very mobile (as 

indicated by calculations of the effective mass and mobility). The silicon line is not 

an effective atomic scale wire. What applications can the silicon line be used for? We 

suggest two applications, using the silicon lines as a template for the growth of conducting 

polymers or other structures on silicon carbide and using the polaron defects which occur 

under electron injection to store information.

There have been several recent experiments that have studied the assembly of atomic 

scale lines on a silicon substrate. For instance Lopinski et al. [288] have used an STM 

tip to manipulate the (100) surface of silicon to induce the self-directed growth of lines of 

styrene molecules. The silicon atomic lines that are observed on the (001) face of silicon 

carbide can be manufactured macroscopically for a well defined annealing temperature 

and time. They could be used as templates for the growth of conducting polymers. Cur­

rently no experiments have been performed to check whether conducting polymers would 

have strong bonds to the silicon line. We expect that as there are two dangling bonds 

per unit cell (associated with the top addimer) these line components are chemically 

reactive, and the electronic states associated with the lines are aligned along the line. 

DFT simulations of the reaction of a small monomer unit to a (3x2) unit cell could be 

performed to calculate the adhesion energy, and to determine whether the bonding of 

the molecule to the silicon carbide surface significantly affects the electronic properties 

of the conducting molecule.

The formation of (relatively) immobile polarons on the silicon lines of the (nx2) 

surface raises an intriguing possibility for the use of injected polarons as a one-time-only 

means of storing information. The formation of the electron polarons causes a large 

buckle of magnitude 0.3 Â in the silicon line where no buckle previously existed. There 

are two easily distinguishable states for the top addimer to be in; the buckled state and 

the Hat state. These can be treated as a 0 and 1 state respectively. Once the addimer has 

been placed in a buckled state it does not spontaneously relax back to a flat addimer state 

(see Chapter 6). We can envisage using an STM tip as a read/write head operating on 

a (7x4) surface. The STM tip scans along and across the silicon line injecting electrons 

into the silicon line to write data into the surface (with each sector well separated from 

the next along the line). The STM tip then later reads the data by measuring the buckle 

of each sector. The effective mass of the polaron is approximately equal to that of an
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atom, but unlike the atoms of the silicon carbide crystal the polaron is mobile. At room 

temperature we estimate that each polaron diffuses 1.86xl0“^m up and down the line 

in a second. The diffusion distance per second is much longer than the average length of 

a silicon atomic line. To reduce the amount of silicon line that a polaron diffuses along 

per second it is necessary to reduce the operating temperature. For a diffusion length of 

the order of nanometres per second an operating temperature of magnitude 50 K would 

be needed. This operating temperature is not suitable for mass consumer technological 

applications.

A final possibility for further work that suggests itself is the study of the possible 

formation of a soliton on the silicon line. A soliton will be supported if the Peierls-like 

transition produces two degenerate ground states, the distortion is degenerate. As we are 

using periodic boundary conditions to model this surface this means that the (nx4) series 

of reconstructions must possess translational invariance. This implies that the ground 

state is degenerate. Considering our experience with the polarons on this line, we suspect 

that the solitons would also possess a large effective mass and be unsuitable for atomic 

scale transport.

8.3 Indium atom ic chains on silicon

8.3.1 Conclusions

The intriguing indium-rich (4x1) surface on the (111) face of silicon was simulated using 

DFT, This is the first time that this surface has been simulated. This surface reconstruc­

tion has been observed by STM to possess indium atomic chains that axe evenly spaced 

apart. This surface is metallic, with a very strong quasi-one-dimensional character and 

electronic states that are strongly confined to the indium atomic chains. Out of two 

competing models the Bunk model (with a 1 ML indium surface stoichiometry and a 

0.5 ML silicon surface stoichiometry) was found to be the thermodynamically favourable 

model over the entire range of indium chemical potential. The Bunk model was also 

found to possess a narrow bandgap, with the indium atomic chain possessing very strong 

overlaps with the highest-occupied-states that are quasi-one-dimensional in nature (and 

are localised on the surface). The (4x1) surface seems to be a very promising candidate 

atomic scale wire.
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8.3.2 Suggestions for further work

Of all the systems that we have studied the (4x1) reconstruction is the system which 

has the most potential for additional work. This further work can be divided into two 

parts; checks of the results that we have obtained and suggestions for further work. In 

our calculations of the (4x1) surface we have sampled only a limited part of the surface 

Brillouin zone. The (4x1) surface has been observed to be metallic, therefore in order to 

fully explore the electronic structure we would need to sample many more fc-points than 

we have already used (% 50). Our implementation of the PAW formalism is however only 

limited to sampling only four fc-points of the surface Brillouin zone, in order to check the 

convergence of our fc-point sampling scheme we would have to use a different DFT code 

(such as VAS?) or modify the fc-point sampling scheme of our PAW implementation. 

We could also further check our projectors by including the d-electron states. However 

as the (4x1) surface does not show any evidence of d-electron bonding [265], we suspect 

that the addition of d-electron states to the projector will not make a large difference to 

the atomic structure of the two competitive models.

After our calculations of the (4x1) surface have been fully tested we can then fully 

evaluate the potential of the indium atomic chain to act as an atomic scale wire. That 

is; firstly whether the indium atomic chains undergo a Peierls transition and secondly 

whether the injection of charge into the lines results in the formation of a polaron.

First of all we need to find out whether a Peierls transition occurs, as this will deter­

mine the route which further research will take (and is in itself an extremely controversial 

topic). Experimentally there is disagreement whether a (4x1) <=> (4x2) transition oc­

curs, or whether a (4x1) <<=> (8x2) transition occurs. To account for the possibility of 

there being a structural transition to an (8x2) surface we have to model an (8x2) unit 

cell composed of four (4x1) unit cells. If the metallic (4x1) surface reconstructs to a 

semiconducting (4x2) surface then the surface would have undergone a Peierls transition. 

On the other hand if there is a transition from a metallic (4x1) surface to a less metallic 

(8x2) surface then the surface may have undergone another kind of structural transi­

tion. This may be a Fermi liquid to Luttinger liquid transition, which would mean that 

we would not be able to perform transport calculations using the transport techniques 

outlined in Chapter 2 (a Luttinger liquid system is very different from a Fermi liquid 

system), or could be another type of structural transition. Regardless of the possible
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structural transitions that may occur, the relaxation of an (8x2) unit cell would be an 

extremely large computational calculation to perform, as this unit cell is very large (248 

atoms). In order to perform ab initio calculations on a simulation cell of this size we 

would need to use a parallel machine.

If the indium atomic chains do become dimerised then we can use the formalism we 

have presented in Chapter 2 to calculate the transport properties of the indium atomic 

chain. This requires that when charge is injected into the chain that it localises on the 

atomic chain and that it forms a polaron. To check whether this occurs we need to perform 

relaxation calculations on the relaxed (4x2) structure that may have previously been 

obtained, but with the addition/removal of one charge. If a polaron does form then we 

can check how many phonons couple to the polaron defect by calculating the dynamical 

matrix of the initial Peierls distorted system by the displacement of individual atoms 

(aa shown in Chapter 6) and calculating the Huang-Rhys factors. If the Huang-Rhys 

factors are small (all phonon modes contribute less than one phonon) then the size of the 

Hamiltonian that needs to be solved will also be quite small, and a transport calculation 

will be possible. Alternatively if a large number of phonon modes possess Huang-Rhys 

factors which are large (some phonon modes contribute more than one phonon) then 

a transport calculation will not be feasible (as the Hamiltonian size increases as the 

exponent of the number of phonons per phonon mode). If the polaron is strongly coupled 

to the phonon modes of the system then the phonon contribution to the effective mass 

will be large (although the bandwidth contribution to the effective mass could be small). 

If the effective mass of the polaron is small then the polaron will be mobile enough for a 

transport calculation to be viable.

If it appears practicable to perform a transport calculation then the next step that 

we should perform is to find the electron-phonon coupling constants in real space and 

transform these constants into fe-space. In order to reduce the size of the arrays that 

would store these constants we would use the tight-binding approximation as set out 

in Chapter 6, where the only nonzero elements of the electron-phonon coupling are the 

elements that involve the atom that is been displaced. The final step we would have 

to perform to obtain all the elements that we need to perform a transport calculation 

would be to transform the long ranged atomic basis set orbitals into short ranged Wan- 

nier functions. Once all of these calculations have been performed then we will have
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enough information to perform coherent quantum mechanical transport calculations on 

the indium atomic chain. We could then perform transport calculations for systems with 

hole polarons, electron polarons (assuming that the structural defect is different from the 

structural defect of the hole polaron) and solitons (as the unit cell is periodic there does 

not seem to be any problem in forming a soliton defect).

The indium-rich (4x1) reconstruction is an extremely promising candidate atomic 

scale wire. We have outlined a programme of work in which we determine whether the 

indium atomic chains relax due to a Peierls transition or whether there is a complicated 

Fermi liquid to Luttinger liquid transition. If a Peierls transition does occur then a 

detailed program of work is presented. If the structural transition is the result of a Fermi 

to Luttinger liquid transition then our options for further work are limited in the short 

term. This is because the study of possible Luttinger liquid formation in realistic quasi- 

one-dimensional structures is still in its infancy as the many-body Hamiltonian used is 

difficult to solve (although of course this also means that the prospects for interesting 

physics are good in the long term). The possible formation of a Luttinger liquid could 

be useful for the fitting of parameters to models of how quasi-one-dimensional structures 

couple to substrates [289].

A final possibility that suggests itself is the possible use of these indium atomic 

chains as the foundation for a quantum computer. An atomic wire which facilitates 

coherent transport may possess states which have a very low coupling to the substrate. 

These states could have a very long decoherence time. Long decoherent states could be 

manipulated into performing quantum logic operations. Compared to other proposals for 

quantum computers the indium atomic chains can be easily incorporated into solid state 

architectures. However we have not yet proposed any method of constructing quantum 

logic gates. The design of these quantum logic gates is another possibility for long term 

research.

8.4 Final remarks

We have presented the results of simulations on three different prospective atomic scale 

wires. Although the conclusions regarding the three systems are different we can draw 

general conclusions. One, that a Peierls distorted semiconducting system which supports 

polaron formation will be a better conductor than a semiconducting system which does
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not support polaron formation. Two, that the lower the coupling of the polaron to the 

phonon modes (and consequently the lower the effective mass) the better. And three, 

that the most promising atomic scale wires (to this writer at least) are those wires which 

are metallic and form large scale surface reconstructions (this minimises the effort that 

is needed to form the atomic wire).

Atomic scale wires are fascinating physical systems. The problem of determining the 

transport properties of such systems is not a trivial problem and requires the collaboration 

of both theorists and experimentalists, so that the synergistic effects of collaboration are 

fully utilized. Part of the intention of this thesis is to provoke debate and lead to renewed 

study (both experimental for the case of the silicon lines and theoretical for the case of 

the indium atomic chains) on the systems that we study here. If this thesis accomplishes 

only this and nothing else, then it will have succeeded in its aims.
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Appendix A

Binding energy in the  

tight-binding bond form

This appendix details how to formulate the binding energy in the tight-binding bond 

form so as to illustrate the connection between the tight-binding method and DFT. As 

this is quite involved we have placed this part of the discussion here rather than in the 

main part of the thesis. We start with the energy in the basis-independent form (2.50) 

which is

E  «  -  T r /  (V> 12 +  piQ + % . [ / ]  +  Eu. (A.l)

Now if we take the assumed charge density to be the superposition of the free-atom charge 

densities [146] pi then we can write the above equation as the sum of four terms

(A.2)

where

A = Tr -  pf) H  (A.3)
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and

B =  T r ^ P i  ( E ^ V 2  +  %- I +Eii  (A.4)
M i

and

C =  B«o[ / ! - 2 B xcN  (A.5)

and finally

-^ =  Ç  (Trp% +  ^ / / 2  +  Vi) +  -Exc[p*]) . (A.6)

If we look at this complex expression term by term we see that the first term is the sum 

of occupied eigenstates in the system (£?band) minus the sum of occupied eigenstates in 

the free atoms This means that it is the promotion energy, that is the increase

in energy due to promotion of electrons from the lowest energy orbitals in isolation to 

form hybrid orbitals in the bulk, plus the bonding energy (the reduction of energy due 

to the mixing of hybridised states to form bonding and antibonding orbitals).

The second term is the change in the total electrostatic energy due to the condensta- 

tion from isolated atoms to the bulk. The third term is the change in the total exchange 

and correlation energy, and the fourth term is the total energy of the isolated atoms. If 

we subtract this total energy from the both sides of (A.6) we can find the binding energy 

in the tight-binding bond form

Bb «  Ti - p > ) H  + AE„\pf] + AKc[p^l. (A.7)

We can then use this expression to show explicitly that the tight-binding formulation is 

an approximation to DFT (see Chapter 2).
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Appendix B

Validity o f approxim ations 

used in calculation of 

transport?

How badly does our approximation that the system is at zero temperature affect our 

derivation of the Landauer formula? We have also implicitly assumed that the current 

is only carried by a single energy channel at the Fermi level in our explanation of the 

Biittiker formula (although in practice we consider the effects of electron-phonon coupling 

that can scatter electrons from one channel to another). This allowed us to write the 

current as a linear response function (2.77) (this is the preferred expression to use as it 

is much more difficult to apply (2.78) to conductors with floating probes).

To model the more realistic situation of transport at finite temperature, we simply 

need to include injection from both contacts. The influx of electrons from lead 1 per unit 

energy is

i t ( E )  =  (2e lh )M h(E ),  (B.l)

where M  is the number of modes in lead 1, and the influx from lead 2 is
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q { E )  =  (2e/h)M'h(E)  (B.2)

where M '  is the number of modes in lead 2. The outflux from lead 2 is

i t {E )  = Ti+(E) + { \ - T ' ) i ^ { E ) ,  (B.3)

where T  is the probability of transmission from lead 1 to lead 2, and similarly the outflux 

from lead 1 is

iZ{E) =  (1 -  T)i+(B) +  rq{E), (B.4)

where T' is the probability of transmission from lead 2 to lead 1. The net current i{E) 

in any point in the device is

i{E) = i+ - i ~  = - i ~  (B.5)

=  Ti+ -  T ' l ^  (B.6)

=  j [ M { E )T { E ) f i { E )  -  M '{E )T '(E )M E )]  (B.7)

which can be simplifled by defining the transmission function as T(E)  =  M{E)T{E). 

The total current in the device is thus

1 = 1  i(E)dE = j  ^ T { E ) l h i E )  -  M E )]  (B.8)

assuming that T{E) =  t '{E). This approximation is valid (even in the presence of 

magnetic fields) so long as there is no inelastic scattering from one energy to another. If 

there are multiple terminals, then we can modify this expression to get
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4  =  /  ip{E)dE =  y  I  Y i ^ T M E )  -  T^,f,{E)]. (B.9)

which can be written as

4 =  /  ip(E)dE  =  y  I  Ç t „ [ 4 ( E )  -  / ,(£ )] . (B.IO)

which is only true if =  Ylq'^pq^ that is that there is no net inelastic scattering

from one energy to another. Note that the transmission function Tp^-g is found by 

summing all the transmission probabilities for all modes m in lead q and all modes n in 

lead p.

'^ p * - q  —  ^ 2  • (B.H)
a l lm  a l ln

Is it valid to ignore inelastic scattering? A constraint that prevents electrons from arbi­

trarily scattering from one state to another is the Pauli exclusion principle, wherein no 

two electrons cannot be in the same state (neglecting spin factors). Thus if we include 

inelastic scattering then we would need to take into account the Pauli exclusion principle. 

The answer to the question depends on how strong the coupling is between the conductor 

and the leads. If the coupling is weak, so that we have a state in lead 1 and another state 

with the same energy in lead 2, then the exclusion principle does affect transport, as the 

state in lead 2 needs to be unoccupied so that the electron in lead 1 can travel through 

the conductor [26]

However, if the coupling between the leads and the conductor is strong, that is if we 

can define a single wavefunction that extends from one lead to another, then the above 

expression is valid. This means that if transport is coherent throughout the conductor 

then the exclusion principle has no effect on transport.

If transport throughout the conductor is incoherent, what effect does this have on the 

transport properties? We can imagine dividing the current into two parts, a coherent 

and an incoherent part. This can be described by
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(B.12)

where q denotes all real terminals and (f) denotes an imaginary phase-breaking terminal 

(see Chapter 1 for more information on phase-breaking). The current at the fictitious 

terminal is

U{E) = j ' £ t m e )IME) -  /,(£)]

and can be either positive or negative. However, this phase-breaking terminal cannot 

extract or inject current. The net current over all energies sums to zero /  itp{E)dE = 0.

This current denotes ‘vertical’ flow, i.e., the flow of current from on energy level to 

another. The actual distribution of vertical flow is quite complicated (see Figure B.l).

X

Figure B.l: How vertical flow occurs in a real system (top diagram), and how we neglect 
it (bottom diagram)

Thus, if the transport through a conductor is coherent, then the current through a 

conductor per unit energy is rigourously given by

=  ^ ^ T ME) l f p { E)  -  ME)].

2 2 1



We assume that transport occurs through a series of independent energy channels.
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Appendix C

The Car-Parrinello algorithm

The Car-Parrinello (CP) algorithm was devised in 1985 and was a great step forward in 

the development and use of density functional techniques and molecular dynamics as it 

is a scheme that unifies the two concepts. The effect that it had on density functional 

calculations is that it allowed the application of DFT techniques to much larger systems 

than could previously be studied, and it let DFT be appUed to the computation of 

interatomic forces in molecular dynamics which were previously limited to empirical 

interatomic potentials. In this appendix we describe the formulation of the CP algorithm 

and how it is used.

We start by writing the electron density in terms of the single electron orthonormal 

orbitals (the Kohn-Sham (KS) equations [127]) n(r) =  |^*(r)p. To then find the

minimum of the potential energy surface (for a specific geometry) the functional

E  [ipi, R i, a;„] =  V  f  ( f r  V»*(r)
i Jçi

ipiir) (C.l)

must be minimised with respect to «/»t(r). Here R i  are the set of nuclear coordinates 

and au are all possible external constraints imposed on the system (volume strain 

etc.). The functional U contains the Coulomb repulsion of the atomic nuclei, and the 

effective potential of the electrons, thus including the Hartree, nuclear and exchange and 

correlation terms.

If we minimise (C.l) with respect to the orbitals ipi (subject to orthonormality) we 

get the self-consistent KS equations
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This matrix then needs to be diagonalised which scales as 0{N^). Also, this procedure 

has to be repeated for each new geometry and this means that it is extremely difficult 

to find computationally the equilibrium geometry of the system if this is not known 

experimentally. However, we can take a different approach to this problem (as Car and 

Parrinello showed).

We can regard the minimization of the KS functional as an optimisation problem 

which can be solved by a simulated annealing algorithm [290]. An objective function 

0(/?) is minimised with respect to the set of parameters /3, by generation of a set of /? 

with a Boltzmann-type probability distribution which is proportional to exp(—0(/?)/T) 

via a Monte Carlo procedure. As T —► 0 the state of the lowest 0(/3) is reached (unless 

there is some metastable system).

For our case the objective function is (C.l) and the variational parameters are the 

coefficients of the KS orbitals in some convenient basis set (and, depending on whether we 

are using the Born-Oppenheimer approximation or not, R i  and a^). The most efficient 

method of minimising (C.l) is a strategy based on molecular dynamics rather than the 

example outlined above (this is known as ‘dynamical simulated annealing’). This also 

allows us to perform calculations at a finite temperature if we so desire.

We construct (C.l) to be time-dependent and introduce the Lagrangian

i  = E  ?  /  1*1' + E  + E  (C.3)

where has to satisfy the constraint

f  ( f r  <  (r, t)i)j(r, t) =  ôij (C.4)
JQ

and /Â and Hu are arbitrary parameters. All derivatives are with respect to time.

The Lagrangian (C.3) generates the dynamics for the parameters ipi,Ri and a ,̂
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through the equations of motion

M j R i  =  —V r j E  (C.6)

where are Lagrange multipliers which are need in order to satisfy (C.4). The dynamics 

of the three equations of motion are fictitious and are only used as tools to perform the 

dynamical simulated annealing. The classical kinetic energy is given by

^=E f ̂  +E +E (C8)
The equilibrium value {K) of the kinetic energy is calculated as the temporal average 

over the trajectories generated by the equations of motion and can be related to the 

temperature of the system by a suitable normalization. As we vary the velocities ipi, R j  

and ài,, the temperature of the system can be slowly reduced and as T  —y 0 the ground 

state of energy E  is reached. At equilibrium ipi — 0 and (C.5) is within a unitary 

transformation of the KS equations (C.2) and the eigenvalues of A**; are coincident with 

the occupied KS equations. It is only at this point that the Lagrangian (C.3) describes 

a real physical system.

The advantages of this algorithm over a standard diagonalization approach are the 

following. One, that for large systems this scheme is more efficient than the standard 

diagonalization techniques [229]. And two, that diagonalization, self-consistency, ionic 

relaxation, and volume and strain relaxation are performed simultaneously. It is this that 

allows us to perform structural calculations that relax the geometry towards a minimum 

state of energy, and thus let us present the results that we present in this thesis.
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