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Abstract
We propose a versatile joint regression framework for count responses. The method is implemented in the R add-on package
GJRM and allows formodelling linear and non-linear dependence through the use of several copulae.Moreover, the parameters
of the marginal distributions of the count responses and of the copula can be specified as flexible functions of covariates.
Motivated by competitive settings, we also discuss an extension which forces the regression coefficients of the marginal
(linear) predictors to be equal via a suitable penalisation. Model fitting is based on a trust region algorithm which estimates
simultaneously all the parameters of the joint models. We investigate the proposal’s empirical performance in two simulation
studies, the first one designed for arbitrary count data, the other one reflecting competitive settings. Finally, the method is
applied to football data, showing its benefits compared to the standard approach with regard to predictive performance.

Keywords Count data regression · Joint modelling · Competitive Settings · Regularisation · Football

1 Introduction

There are many data situations where bivariate (or even
multivariate) counts are the end point of interest and a pri-
ori assuming independence between such variables may be
questionable. In particular, this is relevant in competitive
settings. For example, in many team sports such as foot-
ball, handball or ice hockey, one usually jointly observes the
number of goals (or, more generally, the number of points
as, for instance, in basket ball or Baseball) of both compet-
ing teams. These are certainly associated as the final scores
are the outcome of many single game situations where the
players of both teams are involved in. A second example
could be the number of sales of competing products in a local
store. Exemplarily, consider two competing luxury brands of
cars. Each bivariate observation corresponds to the sales in
a single region or store, which certainly depend on the cars’
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characteristics (selling price, equipment, extras, etc.) and are
correlated.

The use of copulae in this context and its historical devel-
opment is portrayed in the example of modelling football
scores. In this context, Poisson distribution approaches are
well established and have been widely used, see e.g., Lee
(1997) or Dyte and Clarke (2000), whomodelled the number
of the teams’ goals with independent Poisson distributions.
Dixon and Coles (1997) were among the first to investi-
gate dependency between scores of competing teams. They
expanded the independent Poisson approach by an additional
dependence parameter to adjust for certain under- and over-
represented match results.

In this article, we present a flexible generalised joint
regression framework for count responses. The linear or non-
linear dependence between the outcomes is modelled via
means of copulae. Moreover, all the parameters of the joint
distribution can be specified as flexible functions of covari-
ates. To account for competitive settings, we also provide an
extension of the method which enforces the linear regression
coefficients of the marginal predictors to be equal by intro-
ducing a penalty on the pairwise differences of the relevant
effects. This is indeed particularly useful for modelling team
sports data where the predictors of both competing teams are
usually based on the same set of covariates whose effects
are often assumed to be equal (e.g., Groll et al. 2018). The

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11222-020-09953-7&domain=pdf
http://orcid.org/0000-0002-1044-417X


1420 Statistics and Computing (2020) 30:1419–1432

proposed method is incorporated in the R package GJRM
(Generalized Joint Regression Modelling, Marra and Radice
2019).

A first approach for explicitly accounting for depen-
dencies in football using the bivariate Poisson distribution
was proposed by Karlis and Ntzoufras (2003). McHale and
Scarf (2007) employed instead copula models with Pois-
son margins to model shots-for and shots-against. Copula
models have already been considered in the context of
count responses (see, for example, Nikoloulopoulos and
Karlis (2010) and Trivedi and Zimmer (2017) and references
therein). Here, we elected to extend the modelling and com-
putational framework ofMarra and Radice (2017) to the case
of discrete margins because it allows for several types of
covariate effects, for a rich variety of copula functions, and
for any type of quadratic penalty which was a crucial aspect
in our case study.

We investigate the proposed method’s empirical perfor-
mance in two simulation studies, the first one which does
not assume equal regression coefficients and the other one
which does, hence reflecting competitive settings. Finally,
the method is applied to FIFAWorld Cup football data which
shows that assuming equal coefficients yields a superior pre-
dictive performance when compared to the approach that
does not impose such equality. Bookmakers are used as a
natural benchmark for our model, and profits derived from
adopting a given betting strategy are calculated.

The rest of the manuscript is structured as follows. The
methodological background of the joint regression frame-
work for count responses and the penalty extension specif-
ically designed for competitive settings are introduced in
Sect. 2. In Sect. 3, we present two simulation studies which
analyse the proposedmethod’s predictive performance in dif-
ferent data settings. The data employed in our application,
covering all matches of the five preceding FIFA Football
World Cups 2002 – 2018, are described in Sect. 4.1. Using
these data, we then compare the predictive performance of
the copulamodelswhose parameters of themarginal distribu-
tions are assumed to be equal and not (Sect. 4.2). Assuming
equal regression coefficients yields a superior performance,
as elaborated in Sect. 4.3. We conclude in Sect. 5.

2 Methodology

This section provides the most salient details of the pro-
posed generalised joint regression modelling framework for
count data. In particular, to account for competitive settings,
we will focus on the methodological aspects that are rele-
vant to the model specification adopted in Sect. 4. Note that
we have considered single-parameter copulae and marginal
distributions with up to two parameters since they were
deemed appropriate for our empirical application. However,

the computational framework can be conceptually easily
extended to copulae and marginal distributions with more
parameters.

2.1 Model structure and estimation approach

For notational convenience, we drop the conditioning on
parameters (of the marginal distributions and of the copula
function) and observation index i . It is clear, however, from
the context of the paper that bivariate count data with integer
realisations yi = (yi1, yi2)T , i = 1, . . . , n, for a sample of
size n, are available (e.g. football scores or sales numbers)
for modelling purposes and that covariate effects have to be
accounted for.

We assume that the joint cumulative distribution function
(cdf) F(·, ·) of two discrete outcome variables, Y1 ∈ N0 and
Y2 ∈ N0 can be expressed as

P(Y1 ≤ y1, Y2 ≤ y2) = Cθ (P(Y1 ≤ y1), P(Y2 ≤ y2))

= Cθ (F1(y1), F2(y2)) ,

where F1(·) and F2(·) are the marginal cdfs of Y1 and
Y2 taking values in (0, 1), Cθ : (0, 1)2 → (0, 1) is a
two-place copula function which does not depend on the
marginals, and θ denotes the copula parameter measuring
the dependence between the two random variables. The
adopted dependence structure relies onCθ (·, ·) and its param-
eter θ ; the copulae implemented in GJRM are reported, for
instance, in Table 1 of Marra and Radice (2019a). It should
be pointed out that in a setting with discrete marginal distri-
butions the copula function Cθ is not unique (see Schweizer
and Sklar, 1983; Chapter 6 or Faugeras, 2017). However,
as elaborated by several authors including Nikoloulopou-
los and Karlis (2010) and Trivedi and Zimmer (2017), this
is not an issue of practical concern in regression settings.
Potentially, another copula function C∗ exists that can cre-
ate the same probabilities on the grid implied by discrete
marginal distributions. As the marginal distributions and
their respective predictors are not influenced by this, we
retain interpretability on corresponding estimated regression
coefficients.

Following Trivedi and Zimmer (2017), the joint probabil-
ity mass function (pmf) cθ (·, ·) for a given copula Cθ on the
two-dimensional integer grid can be obtained as

cθ (F1(y1), F2(y2)) = Cθ (F1(y1), F2(y2))

− Cθ (F1(y1 − 1), F2(y2))

− Cθ (F1(y1), F2(y2 − 1))

+ Cθ (F1(y1 − 1), F2(y2 − 1)). (1)

For the outcome variables Y1 and Y2, we have considered
(and implemented in GJRM) four main discrete distribu-
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tions, namely Poisson, negative binomial type I, negative
binomial type II and Poisson inverse Gaussian; these have
been parametrised according to Rigby and Stasinopoulos
(2005). In the following,we focus onPoissonmarginals since
they were found to be appropriate for modelling our count
responses (see Sect. 4).

Let now the parameters of the two marginal distributions
as well as of the copula parameter θ be connected with sets
of covariates of sizes p1, p2 and pθ , respectively. Moreover,
let the corresponding covariate vectors be denoted by x1, x2
and xθ , including entries for intercepts and/or dummy vari-
ables for categorical variables. For two Poisson-distributed
margins with rate parameters λ1 and λ2 and a copula function
characterised by one parameter, we may have

log(λ1) = η1 = β
(1)
0 + x (1)

1 β
(1)
1 + . . . + x (1)

p1 β(1)
p1

= (x(1))Tβ(1) ,

log(λ2) = η2 = β
(2)
0 + x (2)

1 β
(2)
1 + . . . + x (2)

p2 β(2)
p2

= (x(2))Tβ(2) ,

g(θ) = ηθ = β
(θ)
0 + x (θ)

1 β
(θ)
1 + . . . + x (θ)

pθ
β(θ)
pθ

= (x(θ))Tβ(θ) , (2)

where β(1),β(2) and β(θ) are p1-, p2- and pθ -dimensional
vectors of regression effects, respectively. The logarithmic
link function guarantees positivity of the two Poisson param-
eters λ1 and λ2. Other distributionsmay require different link
functions. The vectors x(1), x(2) and x(θ) are subsets of a
complete set of covariates x of size d, with p1 + p2 + pθ =
k ≥ d. Finally, g(·) is a link function whose choice will
depend on the employed copula (see Marra and Radice,
2019a).

We would like to stress that the equations in (2) repre-
sent a substantial simplification of the possibilities allowed
for in the proposed modelling framework. In particular, our
implementation allows to include non-linear functions of
continuous covariates, smooth interactions between contin-
uous and/or discrete variables and spatial effects, to name
but a few. For this purpose, the penalised regression spline
approach was adopted and the reader is referred to, e.g.,
Marra and Radice (2017) for some examples. Due to the spe-
cific type of penalisation employed in this paper (see the next
section), in this work we focus on linear effects as presented
in (2).

The model’s log-likelihood for the k-dimensional vector

βT =
(
(β(1))T , (β(2))T , (β(θ))T

)
is

�(β) =
n∑

i=1

log {cθ (F1(yi1), F2(yi2))} , (3)

where, for j = 1, 2,

Fj (yi j ) = exp(− exp(ηi j ))

yi j∑
m=0

exp(ηi j )m

m! .

If spline terms appear in the model specification then (3)
has to be augmented by a quadratic penalty term whose role
would be to enforce specific properties on the respective func-
tions, such as smoothness.

Simultaneous estimation of all the parameters is based
on maximising �(β) with respect to β. To this end, we
extended the estimation approach of the R package GJRM
(Marra and Radice 2019) to accommodate discrete mar-
gins. The fitting algorithm is based on iterative calls of a
trust region algorithm, which requires first and second order
analytical derivatives, which have been tediously derived
and verified numerically. In R, the algorithm is realised
in the trust() function from the trust package by
Geyer (2015). The modularity of the implementation means
that, in principle, it will be easy to extend our modelling
framework to parametric copulae and discrete marginal dis-
tributions not included in the package. To facilitate the com-
putational developments, when evaluating (1), we replaced
Fj (y j − 1) with Fj (y j ) − f j (y j ) for j = 1, 2, where f j (·)
denotes the j th marginal pmf. This is especially relevant for
the case y j = 0 where Fj (−1) needs to be set to 0.

As hinted above, the GJRM infrastructure allows one to
incorporate any quadratic penalty of the form
1
2β

T Sβ , where S is a penalty matrix. The next section dis-
cusses a penalty specification which is particularly useful for
competitive settings.

2.2 A penalty approach for competitive settings

The model adopted in Sect. 4 is based on F(y1, y2|ϑϑϑ) =
C (F1(y1|λ1), F2(y2|λ2); θ) , where Y1 ∼ Poi(λ1), Y2 ∼
Poi(λ2) and ϑϑϑ = (λ1, λ2, θ)T . Each Poisson marginal
models the counts of competitor j ∈ {1, 2}, e.g. goals
of football team j , and is characterised by parameter λ j .
The expected number of goals for team j in a match i is

given by λi j = exp
(
β

( j)
0 + xi1β

( j)
1 + . . . + xipβ

( j)
p

)
with

i = 1, . . . , n, j = 1, 2 . Although including covariate
information into θ is possible and allowed for by GJRM, for
simplicity, the copula parameter θ is specified as function of
an intercept β

(θ)
0 only. This way, we achieve explicit com-

parability of dependence strengths in terms of Kendall’s τ

among different copula functions.
In contrast to the setting of the equations in (2), in com-

petitive settings it is often sensible to consider the same set of
covariates for both competitors (i.e., p1 = p2 =: p). Also,
one needs to impose the same covariate effects across the
predictors of the marginal distributions. Specifically, assum-
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ing covariates that are ordered such that x (1)
ir and x (2)

ir , r =
1, . . . , p, correspond to the same regressors (e.g., the aver-
age age of football team 1 and 2, respectively or the price
tag of car 1 and 2, respectively), we would like to achieve
β

(1)
r = β

(2)
r for all r ∈ 0, . . . , p. Without this restriction,

being first- or second-named competitor could affect the
estimation of β

( j)
k and thus make the interpretation of the

coefficients questionable, as stressed in Groll et al. (2018).
Equal (or virtually equal) coefficients for both margins

can be achieved using a properly defined penalty. To this
end, we propose to use the following penalised version of
log-likelihood (3), i.e.

�p(β) = �(β) − 1

2
ξ

p∑
j=0

w j

(
β

(1)
j − β

(2)
j

)2
, (4)

where the ridge-type penalty acts on the differences of the
pair of intercepts as well as the pairs of coefficients cor-
responding to the same covariates, with suitably chosen
weightsw j and penalty parameter ξ . This penalty can be eas-
ily incorporated into GJRM via a suitably designed penalty
matrix S, which in this case is equal to

S = ξ · W ◦

β
(1)
0 β

(1)
1 . . . β

(1)
p β

(2)
0 β

(2)
1 . . . β

(2)
p β

(θ)
0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 0 . . . 0 −1 0 . . . 0 0

0 1 . . . 0 0 −1 . . . 0 0

.

.

.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.

.

.

.

.

.
0 0 . . . 1 0 0 . . . −1 0

−1 0 . . . 0 1 0 . . . 0 0
0 −1 . . . 0 0 1 . . . 0 0

.

.

.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.

.

.

.

.

.
0 0 . . . −1 0 0 . . . 1 0
0 0 0 0 0 0 0 0 0

,

(5)

where ‘◦’ denotes the Hadamard matrix product. Moreover,
ξ is a tuning parameter controlling the strength of the penalty,
and W a weight matrix of the form

W =

⎛
⎜⎜⎜⎝

wT wT 0
...

...
...

wT wT 0
0 . . . 0

⎞
⎟⎟⎟⎠ ,

which is of the same dimension as the other matrix from
the Hadamard product in (5). The vectors of weights w =
(w0, w1, . . . , wp)

T depend on the current fit β̂ββ
[k]
, which is

obtained at iteration k of the algorithm. In order to shrink all

paired differences jointly to zero, we usew j =
∣∣∣β̂(1)

j − β̂
(2)
j

∣∣∣
(here suppressing the iteration index for notational conve-
nience). If the penalty parameter ξ is chosen sufficiently
large, we obtain (virtually) equal parameter estimates. In our
case study ξ was set to 109.

2.3 Prediction

After fitting a model with equal or unequal coefficients, we
can calculate probabilities for each possible pair of outcomes.
We will sketch this modus operandi for our football applica-
tion, but it could be easily generalised to different competitive
data situations and marginal distributions. First, based on the

two teams’ estimated coefficients β̂
( j)

, j = 1, 2, for an arbi-
trary match i , we estimate the marginal Poisson parameters
λ1 and λ2 using

λ̂i1 = exp(̂η(1)
i ) = exp

(
(x(1)

i )T β̂
(1))

,

λ̂i2 = exp(̂η(2)
i ) = exp

(
(x(2)

i )T β̂
(2))

.

We then use the copula package (Hofert et al. 2017) to
obtain the joint function for a specific chosen copula with
Poisson margins and parameters λ̂i1, λ̂i2 and θ̂ . The proba-
bility for a specific match outcome (y1, y2) can be calculated
using the joint pmf described in Sect. 2.1. That is,

P((Y1,Y2) = (y1, y2)) = c(F1(y1), F2(y2); θ̂ )

= C(F1(y1), F2(y2); θ̂ ) − C(F1(y1 − 1), F2(y2); θ̂ )

− C(F1(y1), F2(y2 − 1); θ̂ )

+ C(F1(y1 − 1), F2(y2 − 1); θ̂ ) , (6)

where F1(·) and F2(·) are the Poisson cdfs with correspond-
ing parameters λ̂i1 and λ̂i2.

In football it is typically also of high interest to obtain esti-
mates of the three coarser match resultswin, draw and defeat
(from the perspective of the first-named team); these are col-
lected in the categorical (ordinal) outcomes ỹi ∈ {1, 2, 3}.
For each of these categories, the probabilities of all relevant
precise match results (y1, y2) are simply added up. Because
the calculation of the pmf for all possible results may quickly
become computationally infeasible, for practical purposes,
in the football application of Sect. 4.2, we only consider
y1, y2 ≤ 20. The results π̂i1, π̂i2 and π̂i3 are estimates for
the true probabilities

P(win) = P(Ỹi = 1) = πi1 ,

P(draw) = P(Ỹi = 2) = πi2 ,

P(defeat) = P(Ỹi = 3) = πi3 ,

which can then be used, e.g., for comparison with bookmak-
ers’ odds.
“Appendix A” provides a short operational description of the
software.
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3 Simulation study

In this section, we present two sets of simulations for pairs
of (marginally) Poisson-distributed outcomes. The first one
shows that the proposed estimation approach is able to (a)
select the correct copula and (b) deliver estimates that are
close to the true coefficients β. The second set shows that
when the true underlying coefficients are equal across mar-
gins, a penalisation, as presented in Sect. 2.2, considerably
improves the goodness-of-fit.

For both simulations, we draw covariates x1, . . . , x6
from independent uniform distributions on the interval
[0, 1], i.e. xr ∼ U[0, 1], for n = 250 observations and
r = 1, . . . , 6. For each observation, the Poisson param-
eters λi j (i = 1, . . . , 250, j = 1, 2) are determined with

given coefficient vectors β(1) = (β
(1)
0 , β

(1)
1 , β

(1)
2 , β

(1)
3 )T and

β(2) = (β
(2)
0 , β

(2)
1 , β

(2)
2 , β

(2)
3 )T via

λi1 = exp
(
β

(1)
0 + xi1β

(1)
1 + xi2β

(1)
2 + xi3β

(1)
3

)
, (7)

λi2 = exp
(
β

(2)
0 + xi4β

(2)
1 + xi5β

(2)
2 + xi6β

(2)
3

)
. (8)

Each pair of outcomes (yi1, yi2) is sampled from a set
of different copulae with marginal Poisson parameters λi1
and λi2. For each copula, the respective parameter θ is
determined by specifying fixed values for Kendall’s τ ∈
{−0.8,−0.6,−0.4,−0.2, 0.1, 0.3, . . . , 0.9} (although exact
τ values are to be taken with caution due to identifiabil-
ity issues on the copula class in our discrete setting, see
Sect. 2.1). This is done to account for fundamentally different
dependency scenarios. For Gumbel and Clayton this can be
done analytically via direct transformation of the respective
inverse functions, i.e.

θGumbel0 = 1

1 − τ
, τ > 0,

θClayton0 = 2
τ

1 − τ
, τ > 0,

θClayton90 = −2
−τ

1 + τ
, τ < 0,

while for Frank, Joe and Gaussian this needs to be done
numerically solving the following equations:

τ = 1 − 4

θFrank
(1 − d1(θFrank)) , (9)

τ = 1 − 4
∞∑
k=1

1

k(θJoe0 k + 2)(θJoe0(k − 1) + 2)
, (10)

τ = 2

π
arcsin(θGaussian). (11)

Term d1 denotes the first Debye function. Formulae (9) and
(10) are from Hofert et al. (2012) and formula (11) from

Lindskog et al. (2003). To each pair of outcomes (Yi1, Yi2)
a bivariate distribution function is assigned, from which we
sample a single (bivariate) realisation.

Goodness-of-fit is measured by calculating the mean
squared errors for the regression coefficients βββ via

MSE = 1

8

(
3∑

r=0

(
β(1)
r − β̂(1)

r

)2 +
(
β(2)
r − β̂(2)

r

)2)
. (12)

3.1 Classical count data set up

This section shows that the proposed estimation framework
with unequal coefficients is able to detect the true cop-
ula and estimate the parameters reliably. We define two
sets of coefficients, namely βββ(1) = (0.5, 0.2,−0.2, 0)T and
βββ(2) = (0.2,−0.3, 0.1, 0.5)T , determining the linear predic-
tors in equation (7) and (8), respectively, and a chosen copula
from the pre-defined set {C0, C90, F, G0, independence, J0,
N}, containing seven different copulae (here C0 denotes the
classical Clayton, C90 its 90 degree rotated version, F stands
for Frank, G0 for Gumbel, J0 for Joe and N for Gaussian).
Similarly to our case study, we fix the sample size to n = 250
and, as stated in Sect. 3, covariates xi1, . . . , xi6 are generated
from a uniform U[0, 1] distribution.

Each copula from the aforementioned list is combined
with suitable values forKendall’s τ from the set {−0.8,−0.6,
. . . , 0.7, 0.9} and each setting is repeated 100 times. For pos-
itive τ , five copulae (N, F, G0, C0, J0) are used, which leads
to 100 × 5 × 5 = 2500 samples with n = 250 bivariate
observations each. The three copulae N, F and C90, which
can depict negative correlation, are also combined with the
four negative τ values, hence leading to 100× 3× 4 = 1200
data sets. The penalisation approach to force equal coeffi-
cients in both marginal distributions from Sect. 2.2 is not
yet applied here. The use of other copulae and respective
rotations, implemented in GJRM, led to similar conclusions.

Figure 1 displays boxplots of the resulting MSEs of the
regression coefficients from equation (12) for different true
copulae and a selection of fitted ones in a scenario of weak
positive correlation (τ = 0.1). Due to the weak correlation,
the resulting copula structures are similar to an independence
approach and, hence, no visible differences in goodness-of-
fit occur. When simulating from a setup with a considerably
stronger dependence structure, e.g., τ = 0.7, the results show
substantial differences regarding the selection of the copula
function (see Fig. 2). Stronger association implies a better
ability to select the appropriate copula; increasing τ empha-
sises each copula’s individual shape.

The results for C90 are numerically identical to those of
the independence copula for most samples. Due to the cop-
ula’s inability to account for positive correlation (τ > 0), the
fitting process results in θ̂ ≈ 0, which practically implies an
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Fig. 1 Results for MSE of the regression coefficients for different true
copulae with each copula parameter θ derived from τ = 0.1
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Fig. 2 Results for MSE of the regression coefficients for different true
copulae with each copula parameter θ derived from τ = 0.7

independence copula. This occurs in both directions; if data
are sampled from copulae with τ < 0 (see Fig. 3) the copulae
C0, G0 and J0 will lead to fits reflecting (approximately) the
independence copula as they can only account for positive
association.

Apart from the direction of the association being an impor-
tant factor, we found that the proposed approach is able to
select the true copula in terms of the regression coefficients’
MSEs. Moreover, some copulae lead to results of similar
quality. For example, Fig. 2 shows that when the data were
sampled from a G0 and J0 structure, both copulae deliver
satisfying results. In fact, given our setting, these copulae are
rather similar in terms of implied dependence structure. Note
also that employing the incorrect copula might still lead to
good results as long as the general association ‘direction’, be
it a positive or negative value ofKendall’s τ , can be accounted
for. To this end, it is often useful to fit a selection of copulae

0.00
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0.02

0.03

09CFN
true copula class

M
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E

fit

C0

C90

F

G0

indep

J0

N

Fig. 3 Results for MSE of the regression coefficients for different true
copulae with each copula parameter θ derived from τ = −0.6

Table 1 Absolute number of times each copula is chosen by AIC as
compared to the true function, for τ = 0.1 (correct in bold)

fitted class

indep N F G0 J0 C0 C90

true class N 20 35 12 13 5 15 0

F 12 13 31 7 4 32 1

G0 10 10 9 23 43 5 0

J0 3 4 2 21 70 0 0

C0 20 9 8 6 1 55 1

capturing different types of dependence and then choose a
model based on cross-validation or information criteria. Pre-
vious research by Fang et al. (2014) and Marra and Radice
(2017) suggests that theAkaike’s information criterion (AIC;
Akaike, 1973) is able to detect the true underlying copula
function. In the following, we investigate the AIC’s ability
to identify the correct copula structure.

For a weak dependence structure (τ = 0.1) AIC delivers
mixed results (see Table 1). Due to our setting with a small
sample size and a rather small range for the response values
(the specified covariate distributions and coefficient values
yield maximal values for λ j of about exp(1.1) ≈ 3 for the
Poisson marginals), some of the copula functions will lead
to very similar bivariate structures. This is supported by the
results displayed in Fig. 2, where the G0 and J0 yield sim-
ilar results in terms of MSE. Nevertheless, the true copula
is mostly the one that is more frequently selected (see bold
numbers on the diagonal). When increasing the strength of
dependence to τ = 0.7, Table 2 shows that copula selection
improves, although on a somewhat questionable level. Over-
all, in 334 out of 500 data sets the AIC was able to detect the
true underlying copula. Again, the considered small sample
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Table 2 Absolute number of times each copula is chosen by AIC as
compared to the true function, for τ = 0.7 (maximum in bold)

fitted class

indep N F G0 J0 C0 C90

true class N 0 62 0 27 10 1 0

F 0 2 59 0 0 39 0

G0 0 24 0 47 29 0 0

J0 0 6 0 15 79 0 0

C0 0 0 13 0 0 87 0

size and a small range for the response values play a role
here.

3.2 Count data in competitive settings

If both coefficient vectors β(1) and β(2) are equal or expected
to be, our approach from Sect. 2.2 can be used. This is partic-
ularly relevant for competitive settings (e.g. sports data). As
compared to the previous simulation set up, coefficients are
now chosen as βββ(1) = βββ(2) = (0.25, 0.2,−0.35, 0)T , hence
leading to

λi1 = exp(0.25 + 0.2xi1 − 0.35xi2 + 0xi3) ,

λi2 = exp(0.25 + 0.2xi4 − 0.35xi5 + 0xi6) .

This setup depicts the same influence of the corresponding
covariates in both marginal distributions. Note that choosing
β

( j)
3 = 0 creates a noise variable. This time, the model is

always fitted using the true underlying copula structure only,
but we now distinguish between the unpenalised estimation
approach and the penalised approach proposed in Sect. 2.2.
The results from 100 simulation runs per copula are visu-
alised in Fig. 4. They clearly show the superior performance
of the penalised approach as compared to the unpenalised
one. In the latter, unequal coefficient estimates occur over
the replicates.

4 FIFA football world cup application

Wewill now apply the proposed penalised approach to a real
world data set containing FIFA Football World Cup matches
and then compare the method’s predictive performance to
that of the unpenalised technique (Sect. 2.1).

4.1 Data

Model building was based on a data set constructed from the
five past FIFA World Cups 2002 – 2018 with 64 matches
each. The basic data set (without the World Cup 2018 data)
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true and fitted copula class
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version
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Fig. 4 Results for the MSE of the regression coefficients obtained
using the penalised (left boxes) and unpenalised (right boxes) estima-
tion approaches for a set of different copulae and associations; τ = 0.25
for copulae N, F, G0, C0, J0 and τ = −0.25 for copulae N, F, C90

was introduced and described in detail in Groll et al. (2015)
and Schauberger and Groll (2018). It was then used in Groll
et al. (2019) to make predictions for the World Cup 2018.
We extended the data set by including two more variables,
namely Knockout and Titleholder, which together with all
the other covariates, are described below.

(a) GDP per capita. This is used as ratio of the GDP per
capita for each respective country and the worldwide
average GDP per capita (source: https://unstats.un.org/
unsd/snaama/Index).

(b) Population. The population size of each country is
used as ratio of the global population to take global
population growth into account (source: https://data.
worldbank.org/indicator/SP.POP.TOTL).

(c) ODDSETprobability. The odds (taken from theGerman
state betting agency ODDSET) are converted into win-
ning probabilities. Therefore, the variable reflects the
probabilities for each team to win the respective World
Cup; these odds were calculated before the start of each
tournament.

(d) FIFA ranking. The FIFA ranking provides a ranking sys-
tem for all national teams measuring the performance
of the team over the last four years (source: https://de.
fifa.com/fifa-world-ranking/).

(e) Host. A dummy variable indicating if a national team is
the hosting country.

(f) Continent. A dummy variable indicating if a national
team is from the same continent as the host of theWorld
Cup (including the host itself).

(g) Confederation. This categorical variable comprises the
confederation of the respective team with (in princi-
ple) six possible values: Africa (CAF); Asia (AFC);
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Table 3 Exemplary table
showing the results of four
matches (a) and a subset of the
covariates of the involved teams
(b). The matched data sets for
each game are shown in (c)

(a) Table of results

FRA 0:1 SEN

URU 1:2 DEN

DEN 1:1 SEN

FRA 0:0 URU

.

.

.
.
.
.

.

.

.

Year Team Age Rank Oddset . . .

(b) Table of covariates

2002 France 28.3 1 0.149 . . .

2002 Senegal 24.3 42 0.006 . . .

2002 Uruguay 25.3 24 0.009 . . .

2002 Denmark 27.4 20 0.012 . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

y1 y2 Team1 Team2 Year Age1 Age2 . . .

(c) Matched data set

0 1 FRA SEN 2002 28.3 24.3 . . .

1 2 URU DEN 2002 25.3 27.4 . . .

1 1 DEN SEN 2002 27.4 24.3 . . .

0 0 FRA URU 2002 28.3 25.3 . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

Europe (UEFA); North, Central America andCaribbean
(CONCACAF); Oceania (OFC); SouthAmerica (CON-
MEBOL). The confederations OFC and AFC had to be
merged because in the data set only one team (New
Zealand, 2006) from OFC participated in one of the
considered World Cups.

(h) (Second) maximum number of teammates. For each
squad, both the maximum and second maximum num-
ber of teammates playing together in the same national
club.

(i) Average age. The average age of each squad.
(j) Number of Champions League (Europa League) play-

ers. As a measurement of the success of the players at
the club level, the number of players in the semi finals
(taking place only a few weeks before the respective
World Cup) of the UEFA Champions League (CL) and
UEFA Europa League.

(k) Number of players abroad. For each squad, the num-
ber of players playing in clubs abroad (in the season
previous to the respective World Cup).

(l) Factors describing the team’s coach: For the coach of
each national team, age and duration of his tenure are
observed. Furthermore, a dummy variable is included,
whether the coach has the same nationality as his team
or not.

(m) Knockout. A dummy variable indicating if a match is a
knockout one.

(n) Titleholder. A dummy variable indicating if a team is
the current World Championship title holder.

There are, therefore, 18 variables which were collected
separately for each World Cup and each participating team.
In our data set each bivariate response (y1, y2), representing
the number of goals each respective team scored in a certain
match, is combined with the respective covariates of both
teams. For both teams the same set of covariates is used. A
shortened example of the overall data is given in Table 3. Our
final data set (Table 3c) was created by matching the teams’
covariates (Table 3b) with the match result data (Table 3a).

Next, we will fit the unpenalised and penalised versions
of the proposed estimation method to the FIFA World Cup
data from Table 3c, and use a cross-validation-type strategy
to compare their performance.

4.2 Comparison of predictive performance

With prediction ability being our main objective, we have
to validate all possible models with out-of-sample data. To
do so, we fit the models (with different copulae) on four
out of five World Cups and predict the marginal parame-
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ters λ1, λ2 for the matches of the left-out tournament in a
cross-validation-type strategy, cycling through all five tour-
naments. Using the estimate for θ of each copula, we can
obtain probabilities for each possible match result (y1, y2)
via equation (6) from Sect. 2.3.

Probabilities for the three-way results win, draw and loss
are computed by aggregating all corresponding results; for
example, for a drawwe sumup the probabilities for the results
(0, 0), (1, 1), . . . , (20, 20), cutting of at a reasonable maxi-
mum number of goals. We settled at 20 as cut-off, due to the
maximal estimates of λ̂ j ≈ 3. The same strategy is applied
for all the match results that lead to a win or a loss. Note
that our estimated three-way probabilities practically always
added up to one, which indicates that limiting the analysis to
all results up to 20 goals was sufficient. The resulting three-
way probabilities are denoted as π̂il for the i-th match and
l = 1, 2, 3 indicates win, draw and loss. Such three-way-
outcomes could also have been modelled directly by using
models for categorical responses. However, our approach to
model the exact number of goals exploits more information,
which is why ordinal/multinomial models were not consid-
ered.

For the estimation approaches considered, we employed
several measures to compare their predictive performance.
Similar to Schauberger and Groll (2018), we use the rank
probability score (RPS), the multinomial likelihood and the
classification rate as goodness-of-prediction measures, and
average the results over all matches of all cross-validation
cycles. In our setting, for a single game the RPS is defined
via

RPSi = 1

2

2∑
r=1

(
r∑

l=1

π̂il − δil

)2

.

The true result is a dummy coding for win, draw, loss and
denoted by Kronecker’s delta δli . The mutinomial likelihood
for a single match is defined as

LLHi = π̂
δi1
i1 π̂

δi2
i2 π̂

δi3
i3 ,

which is essentially the predicted probability π̂il for the true
outcome. Additionally, the classification rate is given as

CRi = I(ỹi = arg max
l∈{1,2,3}

(π̂il)) ,

indicating whether match i was correctly classified. All mea-
sures are calculated for the unpenalised and penalisedmodels
and for each match prediction, and are then averaged over all
n = 320 FIFA World Cup matches.

Beside focusing on three-way-outcomes,we can also anal-
yse the performance in predicting the exact number of goals
each team scored. Hence, we include the Euclidean distance

between observation and prediction. With the bivariate mean
λλλi = (λi1, λi2)

T of the bivariate distribution for a single
match corresponding to a given copula model, we have

MSE = 1

n

n∑
i=1

∥∥∥yi − λ̂λλi

∥∥∥
2

= 1

n

n∑
i=1

√
(yi1 − λ̂i1)2 + (yi2 − λ̂i2)2,

which is indeed calculated over n observed and predicted
match results.

As predictive ability is our main aim, we also investi-
gate the betting outcome for the most recent FIFA World
Cup 2018 as another measure of performance. Using the
(average) betting odds of the 64 matches (obtained from
oddsportal.com, which provides averaged three-way-
odds from a selection of bookmaker companies) as well as
the corresponding predicted probabilities fromour respective
models, different betting strategies can be applied (see, e.g.
Groll et al., 2018). For every match i and each of the possible
three outcomes l ∈ {1, 2, 3}, one can calculate the expected
return as follows: E[returnil ] = π̂il · oddsil − 1. Then, one
could choose the outcome with the highest expected return,
but only place the bet if the expected maximum return is
positive, i.e. if max

l∈{1,2,3} E[returnil ] > ε holds, with ε = 0.

Koopman and Lit (2015) used different values of the thresh-
old ε > 0 and showed that this way the overall average return
could be increased.While they used constant stake sizes (one
arbitrary unit) for each bet, alternative betting strategies with
varying stake sizes based on Kelly’s criterion (Kelly 1956)
can be applied; see for example Boshnakov et al. (2017).
With this criterion the optimal stake for single bets can be
determined in order to maximize the return by considering
the size of the odds and the winning probability. We will use
the simple strategy with constant betting stakes and τ = 0
in our copula selection process and provide a more detailed
look into results afterwards (Table 4).

4.3 Results

The assumption of Poisson-distributed margins can be
checked using randomised normalised quantile residuals (see
Marra and Radice, Marra and Radice 2017, and references
therein). In this case, using for instance a Gaussian copula
model with Poisson margins fitted to data from all World
Cups, the choice of marginal distributions seems appropriate
(see Figure 5).

The results for all the performance measures described in
the previous section can be found in Table 5 in “Appendix A”.
For each copula, the predictive performance of the penalised
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Table 4 Ranks according to selectedmeasures for fits based ondifferent
copulae

Copula RPS LLH CR bets MSE �

F 6 3 14 5 10 38

FGM 8 6 14 2 8 38

N 9 9 10 1 12 41

J90 15 15 2 9 1 42

G270 14 14 2 9 3 42

C180 11 11 9 3 9 43

indep 13 13 1 9 7 43

C0 3 7 14 5 16 45

G90 16 16 2 9 2 45

J0 12 12 2 9 11 46

G180 7 5 12 5 17 46

J180 5 8 12 5 18 48

J270 17 17 2 9 4 49

G0 10 10 11 4 15 50

AMH 2 4 14 17 14 51

C270 18 18 2 9 5 52

PL 4 2 18 17 13 54

C90 19 19 2 9 6 55

T 1 1 19 17 19 57
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Fig. 5 Histograms and normal Q–Q plots of randomised normalized
quantile residuals for the margins produced after fitting a Gaussian
copula model with Poisson-distributed marginals to data from allWorld
Cups

estimation approach is substantially better than that of the
unpenalised method.

In our setup, the selected measures yield their bests val-
ues (highlighted in bold font) for different copulae, namely T
(Student’s T copula with 3 degrees of freedom), N (Gaussian
copula), J90 (Joe copula rotated by 90 degrees), and even an
independence model fitted outside of the GJRM framework.
To aid comparability one could aggregate for each copula the
corresponding ranks of all the considered measures (taking

the different layouts of the selected measures into account).
The respective results can be found in Table 4 where we see
that F (Frank copula), followed by FGM (Farlie-Gumbel-
Morgenstern copula) and N are the best for this specific
scenario. Interestingly, these are symmetrical copulae.

Compared to the results of the models with no depen-
dence structure (independence copula model obtained via a
univariate Poisson regression approachon the single numbers
of goals with three-way probabilities estimated via the Skel-
lam distribution), we can see that the copula models improve
the values for the chosen measures by a small margin or not
at all. This was expected since a relatively weak dependence
structure in the scores of international football matches was
shown in previous work (see, e.g., Groll et al. 2018 who
found that no additional dependence modelling was needed
in a bivariate Poisson model when suitably structured pre-
dictors are employed). The estimated parameter θ̂ = 0.904
and its corresponding value of Kendall’s τ̂ = 0.100 indicate
a rather weak dependence structure for the F copula (how-
ever, keeping in mind the identifiability issues discussed in
Sect. 2.1). The second and third ranked copula models with
estimated values of θ̂ = 0.405 leading to τ̂ = 0.09 for FGM
and θ̂ = 0.116 leading to τ̂ = 0.0738 for N (fitted on all
World Cups) support the presence of a rather weak depen-
dence structure. Table 6 in “AppendixB” shows the estimated
regression coefficients for the F copula model.

Using the AIC for copula selection did not confirm the
previous results: PL (Plackett copula) – which achieved the
17th place with respect to our five prediction measures (RPS,
likelihood, classification, betting results, MSE) – provided
the best fit. The F and FGM copulae, however, are ranked
3rd and 7th according to the AIC, and performed the best
among our measures. It is important to stress that when using
information criteria (but not only) the selection of the copula
function is expected to improve as the sample grows large.
Because predictive ability is our main goal, we rely more on
the aforementioned measures over the AIC. The next para-
graph shows that it can be advantageous to use the proposed
copula models for betting strategies.

Betting
Fictional betting results can be calculated by predicting the
World Cup 2018 outcomes from the F copula model fitted on
World Cups 2002 – 2014. Figure 6 (top) depicts the average
return percentage (i.e., the ratio between profit and invest-
ment) of two strategies for varying threshold sizes ε ≥ 0.
Note that with increasing values of ε the number of matches
on which bets are placed decreases (see bottom of Fig. 6).
For the FIFA World Cup 2018, solid positive returns can be
achieved for values of ε > 0.25 with a simple betting strat-
egy of constant stakes. Expanding this strategy with flexible
stakes via Kelly’s approach leads to positive returns for all ε.
Overall, Kelly’s strategy is clearly superior to placing con-
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Fig. 6 Top: Return ratios for different betting strategies vs. threshold
ε; Bottom: Number of bets placed vs. threshold ε

stant stakes indicated by higher (or equal) returns for smaller
values of ε. An investment of 100 units of an arbitrary cur-
rency with a betting strategy of a fixed ε = 0.4 would yield a
profit of about 50 units with constant stakes and 60 units with
flexible stakes via Kelly’s approach. Though remarkable at a
first glance, these results have to be analysed cautiously. Due
to the rather small sample size, the betting results very much
depend on single match results and are probably very vari-
able, especially for higher values of ε and therefore a smaller
number of placed bets. Note, in fact, that the model is prone
to extreme betting odds. For example, the bookmaker’s odds
for South Korea’s victory against Germany were on average
19.52. Ourmodelwould recommend to bet on such outcomes
- thus the betting results are likely to suffer from high vari-
ability. Despite these limitations, the results of the betting
strategies are in favour of copula-structured models.

5 Conclusion

In this work, we have proposed a generalised joint regres-
sion framework for count responses. The method allows for
linear and non-linear dependence structures through the use
of different copulae, and for each parameter of the model to
be specified as function of flexible covariate effects. We have
also provided an extension which forces the regression coef-
ficients of the marginal (linear) predictors to be equal via the
use of a suitable penalisation. This is relevant for modelling
competitive settings (e.g., sports data or competing product
sales), because otherwise being first- or second-named com-
petitor could affect the regression coefficients’ estimates and
their interpretation. The proposed method is available via the
R add-on package GJRM.

We investigated the method’s performance in two simu-
lation studies, the first one designed for arbitrary count data,
the other one reflecting competitive settings. In the first study,
when the outcomes are weakly associated, copula structures
are similar to an independence model and, hence, no tangi-
ble differences in goodness-of-fit are observed.With stronger
dependence between the outcomes, results show substantial
gains when using copula models. Generally, we found that
the proposed method is able to select the true copula in terms
of evaluating the regression coefficients’ MSE. In the sec-
ond simulation study, we assumed equal coefficients for the
twomarginal distributions. Under this scenario, the penalised
method delivers an improved performance as compared to the
unpenalised technique.

Themethodwas applied to FIFAFootballWorldCup data;
by using a cross-validation-type strategy based on several
prediction measures, the penalised version of the method
clearly outperformed the unpenalised approach. Moreover,
the penalised approach performed better with regard to cer-
tain betting strategies.

Future research will address several extensions. Firstly,
although not yet considered in our case study, we would like
to extend the penalty discussed in this paper to the context of
more complexpredictor structures (allowing, for instance, for
non-linear effects via P-splines). Moreover, we believe that
themethod’s predictive performance can be further improved
by penalising covariate effects via LASSO-type penalties
(Tibshirani 1996; Friedman et al. 2010) or via boosting (e.g.,
Bühlmann and Hothorn 2007; Hothorn et al. 2010), a tech-
nique that stems from machine learning. These methods
already proved to be effective in the context of predicting
football matches (e.g., Groll et al. 2015, 2018).
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Appendix

A Software

Copulamodelswith discretemargins (but not only) can be fit-
ted using the GJRM package by Marra and Radice (2019) for
theR environment (RCoreTeam, 2019). The syntax is similar
to that of established methods and packages for generalised
linear and additive models. In the following, we provide an
example. The model’s formulae are provided, for instance,
as

eq1 <- Goals ˜ CL.players + UEFA.players +
Nation.Coach + Age.Coach +
Tenure.Coach + Legionaires + max.teammates +
sec.max.teammates + age + Rank + GDP + host +
confed + continent + odds + Population + Knockout +
titleholder

eq2 <- Goals.oppo ˜ CL.players.oppo +
UEFA.players.oppo + Nation.Coach.oppo +
Age.Coach.oppo + Tenure.Coach.oppo +
Legionaires.oppo + max.teammates.oppo +
sec.max.teammates.oppo +age.oppo + Rank.oppo +
GDP.oppo + host.oppo + confed.oppo +
continent.oppo + odds.oppo + Population.oppo +
Knockout + titleholder.oppo

eq3 <- ˜ 1
eqlist <- list(eq1, eq2, eq3)

where Goals, Goals.oppo are the discrete responses
and the variables on the right hand side represent the covari-
ates (regressors can either have or not the suffix oppo,
depending on the margin considered). The same covariate
can be used in more than one equation if desired (e.g.,
Knockout). The model is fitted by the call

fit <- gjrm(eqlist, data = WorldCup, BivD = "N",
Model = "B", margins = c("PO", "PO"))

with BivD denotes the chosen copula (here, N for Gaussian),
and the margins are Poisson distributed. Flexible covariate
effects can be accounted for via splines by using for example
s(covariate).

Convenience functions such assummary() andplot()
are used in the same fashion as those for generalised linear
and additive models. Residual diagnostics such as those dis-
played in Fig. 5 can be obtained via post.check().

More details, options, and extensive examples are given
in the documentation of the GJRM package.

For this work the function gjrm() was adapted to allow
for a new boolean argument linear.equal. For future
work flexible penalisation utilities (including the proposed
one in this paper) are planned to be implemented into the
GJRM package.

B Tables

See Tables 5 and 6.
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Table 5 Results of selected
measures for model fits based on
different copulae obtained using
the unpenalised and penalised
approaches

Cop- RPS likelihood class. rate betting MSEGoals
ula pen unp pen unp pen unp pen unp pen unp

N 0.196 0.210 0.403 0.395 0.522 0.506 0.199 −0.225 1.421 1.490

C0 0.196 0.210 0.404 0.396 0.512 0.484 0.035 −0.154 1.424 1.496

C90 0.198 0.211 0.398 0.390 0.528 0.509 −0.012 −0.240 1.418 1.486

C180 0.198 0.212 0.400 0.392 0.525 0.506 0.040 −0.240 1.421 1.490

C270 0.198 0.212 0.398 0.390 0.528 0.506 −0.012 −0.240 1.418 1.486

J0 0.198 0.211 0.400 0.392 0.528 0.500 −0.012 −0.240 1.421 1.490

J90 0.198 0.212 0.398 0.390 0.528 0.506 −0.012 −0.240 1.418 1.486

J180 0.196 0.210 0.404 0.396 0.516 0.478 0.035 −0.225 1.425 1.500

J270 0.198 0.211 0.398 0.390 0.528 0.509 −0.012 −0.240 1.418 1.486

G0 0.197 0.212 0.402 0.394 0.519 0.503 0.038 −0.278 1.422 1.492

G90 0.198 0.211 0.398 0.390 0.528 0.509 −0.012 −0.240 1.418 1.486

G180 0.196 0.210 0.404 0.396 0.516 0.484 0.035 −0.236 1.424 1.495

G270 0.198 0.211 0.398 0.390 0.528 0.509 −0.012 −0.240 1.418 1.486

F 0.196 0.210 0.405 0.396 0.512 0.494 0.035 −0.284 1.421 1.487

AMH 0.196 0.210 0.405 0.396 0.512 0.491 −0.049 −0.110 1.421 1.489

FGM 0.196 0.210 0.404 0.396 0.512 0.491 0.117 −0.223 1.420 1.486

T 0.195 0.212 0.407 0.398 0.506 0.469 −0.049 −0.219 1.430 1.500

PL 0.196 0.210 0.405 0.396 0.509 0.484 −0.049 −0.284 1.421 1.487

indep 0.198 0.211 0.398 0.390 0.531 0.509 −0.012 −0.240 1.419 1.486

Table 6 Estimated coefficients
and standard errors for the F
model fitted on all World Cups

Covariate β̂ se(β̂) Covariate β̂ se(β̂)

Intercept 2.226 1.078 GDP 0.042 0.026

CL Players 0.038 0.025 Host 0.369 0.186

EL Players 0.048 0.027 conf. CAF 0.094 0.206

Nationality Coach 0.097 0.098 conf. CONCACAF 0.109 0.211

Age Coach −0.008 0.005 conf. CONMEBOL 0.622 0.217

Tenure Coach −0.043 0.022 conf. UEFA 0.395 0.184

Players Abroad 0.005 0.011 Continent −0.023 0.088

Max. Teammates −0.011 0.043 Odds −0.593 1.521

2nd Max. Teammates 0.004 0.064 Population 0.069 0.042

Age −0.054 0.038 Knockout −0.443 0.096

Rank −0.007 0.004 Titleholder −0.274 0.262
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