
Copyright © 2020 Bhagat et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution
4.0 International license, which permits unrestricted use, distribution and reproduction in any
medium provided that the original work is properly attributed.

Research Article: Open Source Tools and Methods | Novel Tools and Methods

Rigbox: An Open-Source Toolbox for Probing
Neurons and Behavior

https://doi.org/10.1523/ENEURO.0406-19.2020

Cite as: eNeuro 2020; 10.1523/ENEURO.0406-19.2020

Received: 10 April 2020
Revised: 18 May 2020
Accepted: 25 May 2020

This Early Release article has been peer-reviewed and accepted, but has not been through
the composition and copyediting processes. The final version may differ slightly in style or
formatting and will contain links to any extended data.

Alerts: Sign up at www.eneuro.org/alerts to receive customized email alerts when the fully
formatted version of this article is published.



 

 

1) Rigbox: An Open-Source Toolbox for Probing Neurons and Behavior 1 
2) Rigbox 2 
3)   3 

a) Jai Bhagat*1  4 
b) Miles J. Wells*1,2 5 
c) Kenneth D. Harris1 6 
d) Matteo Carandini2 7 
e) Christopher P. Burgess2^ 8 

f) 1UCL Queen Square Institute of Neurology, University College London, London, UK 9 
g) 2UCL Institute of Ophthalmology, University College London, London, UK 10 
h) *These authors contributed equally 11 
i) ^Present address: DeepMind, London, UK. 12 

4)   13 
a) Performed research, Analyzed data, Wrote the paper 14 
b) Performed research, Analyzed data, Wrote the paper 15 
c) Designed research 16 
d) Designed research 17 
e) Designed research, Performed research, Contributed unpublished reagents/ analytic 18 

tools 19 
5) a. : j.bhagat@ucl.ac.uk 23 St Pauls Mews, London, UK NW1 9TZ 20 
6) 13 21 
7) 1 22 
8) 0 23 
9) 137 24 
10) 113 25 
11) 260 26 
12) 1084 27 
13) We thank Nick Steinmetz, Max Hunter, Peter Zatka-Haas, Kevin Miller, Hamish Forrest, and 28 

other members of the lab for troubleshooting, feedback, inspiration, and code contribution. This 29 
work was funded by the Medical Research Council (Doctoral Training Award  to CPB), the Royal 30 
Society (Newton International Fellowship to AJP), EMBO (fellowship to AJP), the Human Frontier 31 
Science Program (fellowship to AJP), and by the Wellcome Trust (grant 205093 to MC and KDH). 32 
MC holds the GlaxoSmithKline / Fight for Sight Chair in Visual Neuroscience. 33 

14) No. 34 
15)   35 

a) Medical Research Council 36 
b) Wellcome Trust 37 

 38 



 

2 

Rigbox: An Open-Source Toolbox for Probing 39 

Neurons and Behavior 40 

Jai Bhagat1*, Miles J. Wells1,2*, Kenneth D Harris1, Matteo Carandini2, Christopher P Burgess2+ 41 
 42 
1UCL Queen Square Institute of Neurology, University College London, London, UK 43 
2UCL Institute of Ophthalmology, University College London, London, UK 44 

*These authors contributed equally to writing the manuscript 45 

+Present address: DeepMind, London, UK. 46 

 47 

Setting up an experiment in behavioral neuroscience is a complex process that is often managed with 48 
ad hoc solutions. To streamline this process we developed Rigbox, a high-performance, open-source 49 
software toolbox that facilitates a modular approach to designing experiments (github.com/cortex-50 
lab/Rigbox). Rigbox simplifies hardware I/O, time-aligns datastreams from multiple sources, 51 
communicates with remote databases, and implements visual and auditory stimuli presentation. Its 52 
main submodule, Signals, allows intuitive programming of behavioral tasks. Here we illustrate its 53 
function with two interactive examples: a human psychophysics experiment, and the game of Pong. 54 
We give an overview of running experiments in Rigbox, provide benchmarks, and conclude with a 55 
discussion on the extensibility of the software and comparisons with similar toolboxes. Rigbox runs in 56 
MATLAB, with Java components to handle network communication, and a C library to boost 57 
performance. 58 

Significance Statement 59 

Configuring the hardware and software components required to run a behavioral neuroscience 60 
experiment and manage experiment-related data is a complex process. In a typical experiment, software 61 
is required to design a behavioral task, present stimuli, read hardware input sensors, trigger hardware 62 
outputs, record subject behavior and neural activity, and transfer data between local and remote 63 
servers. Here we introduce Rigbox, which to the best of our knowledge is the only software toolbox that 64 
integrates all the aforementioned software requirements necessary to run an experiment. This MATLAB-65 
based package provides a platform to rapidly prototype experiments. Multiple laboratories have 66 
adopted this package to run experiments in cognitive, behavioral, systems, and circuit neuroscience. 67 



 

3 

Introduction 68 

In behavioral neuroscience, much time is spent setting up hardware and software and ensuring 69 
compatibility between them. Experiments often require configuring disparate software to interface with 70 
distinct hardware, and integrating these components is no trivial task. Furthermore, there are often 71 
separate software components for designing a behavioral task, running the task, and acquiring, 72 
processing, and logging the data. This requires learning the fundamentals of different software packages 73 
and how to make them communicate appropriately. 74 

Consider a typical experiment focused on decision-making, in which a subject chooses a stimulus 75 
amongst a set of possibilities and obtains a reward if the choice was correct (Carandini and Churchland, 76 
2013). The software set-up for this experiment may seem simple: ostensibly, all that is required is 77 
software to run the behavioral task, and software to handle experiment data. However, when 78 
considering implementation details for these two types of software, the set-up can grow quite complex. 79 
Running the behavioral task requires software for starting, stopping, and transitioning between task 80 
states, presenting stimuli, reading input devices, and triggering output devices. Handling experiment 81 
data requires software for acquiring, processing, and logging stimulus history, response history, and 82 
subject physiology, and transferring data between servers and databases.  83 

To address this variety of needs in a single software toolbox, we designed Rigbox (github.com/cortex-84 
lab/Rigbox). Rigbox is modular, high-performance, open-source software for running behavioral 85 
neuroscience experiments and acquiring experiment-related data. Rigbox facilitates acquiring, time-86 
aligning, and managing data from a variety of sources. Furthermore, Rigbox allows users to 87 
programmatically and intuitively design and parametrize behavioral tasks via a framework called Signals. 88 

We begin by giving a general overview of Signals, the core package of Rigbox. We illustrate two simple 89 
interactive examples of its use: an experiment in visual psychophysics, and the game of Pong. Next, we 90 
describe how Rigbox runs Signals experiments and manages experiment data. We then discuss Rigbox’s 91 
design considerations and the various types of experiments that have been implemented using Rigbox. 92 
Lastly, we detail Rigbox’s requirements and provide benchmarking results. 93 

Code Accessibility 94 

Rigbox is currently under active, test-driven development. All our code is open source, distributed under 95 
the Apache 2.0 license at github.com/cortex-lab/Rigbox, and we encourage users to contribute. Please 96 
see the contributing section of the README for information on contributing code and reporting issues. 97 
When using Rigbox to run behavioral tasks and/or acquire data, please cite this publication. 98 



 

4 

Signals 99 

Signals is a framework designed for building bespoke behavioral tasks. In Signals, an experiment is built 100 
from a reactive network whose nodes (“signals”) represent experiment parameters. This simplifies 101 
problems that deal with how experiment parameters change over time by representing relationships 102 
between these parameters with straightforward, self-documenting operations. For example, to define a 103 
drifting grating, a user could create a signal which changes a grating’s phase as a function of time (Figure 104 
1). This is shown in the code below: 105 
 106 
theta = 2*pi; % angle of phase in radians 107 
freq = 3; % frequency of phase in Hz 108 
stimulus.phase = theta*freq*t; % phase that cycles at 3 Hz for given stimulus 109 

 110 

Figure 1: A representation of the time-dependent phase of a visual stimulus in Signals using a clock signal, t.  t represents time in seconds since 111 
experiment start (its value therefore constantly increases).  An unfilled circle represents a constant value - it becomes a node in the network 112 
when combined with another signal in an operation (in this instance, via multiplication, represented by the MATLAB function, times). The 113 
bottom right shows how the grating’s phase changes over time - the white arrow indicates the phase shift direction. 114 

Whenever the clock signal, t, is updated (e.g. by a MATLAB timer callback function), the values of all its 115 
dependent signals are then recalculated asynchronously via callbacks. This paradigm is known as 116 
functional reactive programming (Lew, 2017). 117 

The operations that can be performed on signals are not just limited to basic arithmetic. Many built-in 118 
MATLAB functions (including logical, trigonometric, casting, and array operations) have been overloaded 119 
to work on signals as they would on basic numeric or char types. Furthermore, a number of classical 120 
functional programming functions (e.g. “map” and “scan”) can be used on signals (Figure 2). These allow 121 
signals to gate, trigger, filter, and accumulate other signals in order to define a complete experiment. 122 



 

5 

 123 
Figure 2: The creation of new signals via example signals methods. Each panel, in which the x-axis represents time and the y-axis represents 124 
value, contains a signal. Each column depicts a set of related transformations. The top row contains four arbitrary signals. The second row 125 
depicts a signal which results from applying an operation on the signal in the panel above. The third row depicts a signal which results from 126 
applying an operation on the signals in the two panels above. Conceptually, each signal can be thought of as both a continuous stream of 127 
discrete values, and as a discrete representation whose value changes over time. 128 

Example 1: A Psychophysics Experiment 129 

Our first example of a human-interactive Signals experiment is a script that recreates a psychophysics 130 
experiment to study the mechanisms that underlie the discrimination of a visual stimulus  (Ringach 131 
1998). In this experiment, the observer looks at visual gratings (Figure 3a) that change rapidly and 132 
randomly in orientation and phase. The gratings change so rapidly that they summate in the visual 133 
system, and the observer tends to perceive two or three of them as superimposed. The task of the 134 
observer is to hit the “ctrl” key whenever the grating’s orientation is vertical. At key press, the 135 
probability of detection is plotted as a function of stimulus orientation in the recent past. Typically, this 136 
exposes a center-surround type of organization, with orientations near vertical eliciting responses, but 137 
orientations further away suppressing responses (Figure 3b). The Signals network representation of this 138 
experiment is shown in Figure 4.     139 



 

6 

 140 

Figure 3: Output shown when running `ringach98.m` a) A sample grating which the subject is required to respond to via a “ctrl” key press. b) A 141 
heatmap showing the grating orientations for the ten frames immediately preceding the key press, summed over all the key presses for the 142 
duration of the experiment. After a few minutes, the distribution of orientations that were presented at each key press resembles a 2D Mexican 143 
Hat wavelet, centered on the orientation the subject was reporting at the subject’s average reaction time. In this example, the subject was 144 
reporting a vertical grating orientation (90 degrees) with an average reaction time of roughly 600ms.145 

146 

Figure 4: A simplified Signals network diagram of the Ringach experiment. Each circle represents a node in the network that carries out an 147 
operation on its direct input. The left-most nodes are inputs to the network, and the values from the right-most layer are used to update the 148 
stimulus and the histogram plot. An unfilled circle represents a constant value.149 

To run this experiment, simply run the signals/docs/examples/scripts/ringach98.m file in the 150 
Rigbox repository and press the “Play” button. Below is a breakdown of the thirty-odd lines of code: 151 

First, some constants are defined: 152 
oris = 0:18:162; % set of orientations, deg 153 
phases = 90:90:360; % set of phases, deg 154 
presentationRate = 10; % Hz 155 



 

7 

winlen = 10; % length of histogram window, frames 156 
 157 
Next, we create a figure: 158 
figh = figure('Name', 'Press “ctrl” key on vertical grating',... 159 
  'Position', [680 250 560 700], 'NumberTitle', 'off'); 160 
vbox = uix.VBox('Parent', figh); % container for the play/pause button and axes 161 
% Create axes for the histogram plot. 162 
axh = axes('Parent', vbox, 'NextPlot', 'replacechildren', 'XTick', oris); 163 
xlabel(axh, 'Orientation'); 164 
ylabel(axh, 'Time (frames)'); 165 
ylim([0 winlen] + 0.5); 166 
vbox.Heights = [30 -1]; % 30 px for the button, the rest for the plot 167 
 168 
Next, we create our Signals network. The function playgroundPTB creates a new Signals network and 169 
one input signal, t. It creates a start button which when pressed starts a MATLAB timer that periodically 170 
updates t with the time. Finally, it returns an anonymous function, setElemsFn, that when called with 171 
a visual stimulus object adds the textures to a stimulus renderer: 172 
% Create a new Psychtoolbox stimulus window and renderer, returning a timing 173 
% signal, `t`, and function, `setElemsFn`, to load the visual elements. 174 
[t, setElemsFn] = sig.test.playgroundPTB(vbox); 175 
net = t.Node.Net; % handle to the network 176 
 177 
Now, we derive some new signals from UI key press events and the clock signal: 178 
% Create a signal from the keyboard presses. 179 
keyPresses = net.fromUIEvent(figh, 'WindowKeyPressFcn'); 180 
% Filter it, keeping only ‘ctrl’ key presses. Turn into logical signal. 181 
reports = strcmp(keyPresses.Key, 'ctrl'); 182 
% Sample the current time at `presentationRate`. 183 
sampler = skipRepeats(floor(presentationRate*t)); 184 
 185 
To change the orientation and phase at a given frequency, we derive some indexing signals that will 186 
select a value from the orientation and phase sets. The map method calls a function with a signal’s value 187 
each time it changes.  @(~) foo is the MATLAB syntax for creating an anonymous function. Each time 188 
the sampler signal changes, a new random integer is generated. 189 
% Randomly sample orientations and phases by generating new indices for selecting 190 
values from `oris` and `phases` each time `sampler` updates. 191 
oriIdx = sampler.map(@(~) randi(numel(oris))); % index for `oris` array 192 
phaseIdx = sampler.map(@(~) randi(numel(phases))); % index for `phases` array 193 
currPhase = phaseIdx.map(@(idx) phases(idx)); % get current phase 194 
currOri = oriIdx.map(@(idx) oris(idx)); % get current ori 195 
 196 
Next we derive some signals for updating our plot of reaction times. First, a boolean array the size of our 197 
orientation set is created, then we derive a matrix from these vectors, storing the last 10 orientations 198 
presented.   199 
% Create a signal to indicate the current orientation (a boolean column vector) 200 
oriMask = oris' == currOri;  201 



 

8 

% Record the last few orientations presented (i.e. `buffer` the last few values that 202 
`oriMask` has taken.) as a MxN matrix where M is the number of orientations (the 203 
length of `oris`) and N is the number of frames (`winlen`) 204 
oriHistory = oriMask.buffer(winlen);  205 
 206 
Each time the user presses the “ctrl” key (represented by the reports signal), the values in the 207 
oriHistory matrix are added to the histogram via the scan method, which initializes the histogram 208 
with zeros. 209 
% After each keypress, add the `oriHistory` snapshot to an accumulating histogram. 210 
histogram = oriHistory.at(reports).scan(@plus, zeros(numel(oris), winlen)); 211 
 212 
Now, each time the histogram updates, we call imagesc with its value, updating the plot axes. 213 
% Plot histogram surface each time it changes. 214 
histogram.onValue(@(data) imagesc(oris, 1:winlen, flipud(data'), 'Parent', axh)); 215 
 216 
Finally, we create the visual stimulus signal and send it to the renderer.  The vis.grating function 217 
returns a subscriptable signal, which has parameter fields related to visual grating properties. When the 218 
values of these signal fields are updated, the underlying textures are rerendered by setElemsFn. 219 
% Create a Gabor with changing orientations and phases. 220 
grating = vis.grating(t, 'sinusoid', 'gaussian'); 221 
grating.show = true; % set grating to be always visible 222 
grating.orientation = currOri; % assign orientation  223 
grating.phase = currPhase; % assign phase 224 
grating.spatialFreq = 0.2; % cyc/deg 225 
% Add the grating to the renderer. 226 
setElemsFn(struct('grating', grating));227 

With this powerful framework, a user can easily define complex relationships between stimuli, actions, 228 
and outcomes in order to create a complete experiment protocol. This protocol takes the form of a user-229 
written MATLAB function, which we refer to as an “experiment definition” (“exp def”).  230 

When Rigbox initializes an experiment, a new Signals network is created with input layer signals 231 
representing time, experiment epochs (such as new trials), and hardware input devices (such as position 232 
sensors). These input signals are passed into the exp def function, and the code in the exp def operates 233 
on these signals to create new signals that are added to the network (Figure 5). The exp def is called just 234 
once to set up this network. 235 



 

9 

 236 

Figure 5: A Signals representation of an experiment. There are three types of input signals in the network, representing a clock, experiment 237 
epochs (such as new trials and experiment start and end conditions), and hardware input devices (such as an optical mouse, keyboard, rotary 238 
encoder, lever, etc.) In an exp def, the user defines transformations that create new signals (not shown) from these input signals, which 239 
ultimately drive outputs (such as a screen, speaker, and external hardware - such as a reward valve). The exp def is called once in order to 240 
create these experimenter-defined signals, which are updated during experiment runtime as the input signals they depend on are updated. 241 

At experiment start, values are posted to the network’s input signals. During experiment runtime, these 242 
input signals are continuously updated within the experiment’s main while loop or through UI and timer 243 
callbacks. For example, a position sensor input device may be read from continuously in a while loop in 244 
order to update the signal representing this device. These input signal updates asynchronously 245 
propagate to the dependent signals that were created in the exp def. The experiment ends when the 246 
“experiment stop” signal is updated (e.g. when all trial conditions have occurred or after a specified 247 
duration of time). 248 

The following is a brief overview of the structure of an exp def. An exp def takes up to seven input 249 
arguments:  250 

function expDef(t, events, params, visStim, inputs, outputs, audio) 251 

In order, these are 1) the clock signal; 2) an events structure containing signals which define experiment 252 
epochs, and signals -- from those created within the exp def -- which the experimenter wishes to log; 3) 253 
a signal parameters structure that defines session- or trial-specific signals whose values can be changed 254 
directly within a GUI before starting an experiment -- signal parameter defaults are set within the exp 255 
def and parameter sets can be saved and loaded across subjects and experiments; 4) the visual stimuli 256 
handler which contains as fields all signals which parametrize the display of visual stimuli -- any visual 257 
stimulus signal can be assigned various elements, which the viewing model allows to be defined in visual 258 
degrees, for being rendered to a screen, and a visual stimulus can be loaded directly from a saved image 259 
file; 5) an inputs structure containing signals which map to hardware input devices; 6) an outputs 260 
structure containing signals which map to external hardware output devices; 7) the audio stimuli 261 
handler which can contain as fields signals which map to available audio devices.  262 



 

10 

Tutorials on creating an exp def, examples of exp defs and standalone scripts (including those 263 
mentioned in this paper), and an in-depth overview of Signals can be found in the signals/docs 264 
folder within the Rigbox repository.265 

Example 2: Pong  266 

A second human-interactive Signals experiment contained in the Rigbox repository is an exp def which 267 
runs the classic computer game, Pong (Figure 6). The signal which sets the player’s paddle position is 268 
mapped to the optical mouse. The epoch structure is set so that a trial ends on a score, and the 269 
experiment ends when either the player or cpu reaches a target score. The code is divided into three 270 
sections: 1) initializing the game, 2) updating the game, 3) creating visual elements and defining exp def 271 
signal parameters. To run this exp def, follow the directions in the header of the 272 
docs/examples/expDefs/signalsPong.m file in the Rigbox repository. Because the file itself 273 
(including copious documentation) is over 300 lines, we will share only an overview here; however, 274 
readers are encouraged to look through the full file at their leisure.275 

276 
function signalsPong(t, events, p, visStim, inputs, outputs, audio) 277 
In this first section, we define constants for the game, arena, ball, and paddles:    278 
%% Initialize the game 279 
% how often to update the game in secs  280 
[...] 281 
% initial scores and target score 282 
[...] 283 
% size of arena, ball, and paddle: [w h] in visual degrees 284 
[...] 285 
% ball angle, and ball velocity in visual degrees per second  286 
[...] 287 
% cpu and player paddle X axis positions in visual degrees 288 
[...] 289 
 290 
The helper function, getYPos, returns the y-position of the cursor, which will be used to set the player 291 
paddle: 292 
  function yPos = getYPos() 293 
    [...] 294 
  end 295 
% get cursor's initial y-position 296 
cursorInitialY = events.expStart.map(@(~) getYPos); 297 
 298 
In the second section, we define how the ball and paddle interactions update the game: 299 
%% Update game 300 



 

11 

% create a signal that will update the y-position of the player's paddle using 301 
`getYPos` 302 
playerPaddleYUpdateVal = (cursor.map(@(~)getYPos)-cursorInitialY)*cursorGain  303 
% make sure the y-value of the player's paddle is within the screen bounds, 304 
playerPaddleBounds = cond(... 305 
  playerPaddleYUpdateVal > arenaSz(2)/2, arenaSz(2)/2, ... 306 
  playerPaddleYUpdateVal < -arenaSz(2)/2, -arenaSz(2)/2, ... 307 
  true,playerPaddleYUpdateVal); 308 
% and only updates every `tUpdate` secs 309 
playerPaddleY = playerPaddleBounds.at(tUpdate); 310 
% Create a struct, `gameDataInit`, holding the initial game state 311 
gameDataInit = struct; 312 
… 313 
% Create a subscriptable signal, `gameData`, whose fields represent the current  314 
% game state (total scores, etc.), and which will be updated every `tUpdate` secs 315 
gameData = playerPaddleY.scan(@updateGame, gameDataInit).subscriptable; 316 
 317 
The helper function, updateGame, updates gameData. Specifically, it updates the data structure with 318 
ball angle, velocity, position, cpu paddle position, and player and cpu scores, based on the current ball 319 
position, which is updated at each sampled timestep: 320 
  function gameData = updateGame(gameData, playerPaddleY) 321 
    [...] 322 
  end 323 
% define trial end (when a score occurs) 324 
anyScored = playerScore | cpuScore; 325 
events.endTrial = anyScored.then(true); 326 
% define game end (when player or cpu score reaches target score) 327 
endGame = (playerScore == targetScore) | (cpuScore == targetScore); 328 
events.expStop = endGame.then(true); 329 
[...] 330 
 331 
In the final section, we create the visual elements representing the arena, ball, and paddles, and define 332 
the exp def signal parameters: 333 
%% Define the visual elements and the experiment signal parameters 334 
% create the arena, ball, and paddles as ‘vis.patch' subscriptable signals 335 
arena = vis.patch(t, 'rectangle'); 336 
ball = vis.patch(t, 'circle'); 337 
ball.colour = p.ballColor; 338 
playerPaddle = vis.patch(t, 'rectangle'); 339 
cpuPaddle = vis.patch(t, 'rectangle'); 340 
% assign the arena, ball, and paddles to the 'visStim' subscriptable signal handler 341 



 

12 

visStim.arena = arena; 342 
visStim.ball = ball; 343 
visStim.playerPaddle = playerPaddle; 344 
visStim.cpuPaddle = cpuPaddle; 345 
% define parameters that will be displayed in the GUI 346 
try 347 
  % `p.ballColor` is a conditional signal parameter: on any given trial, the ball 348 
  % color will be chosen at random among three colors: white, red, blue 349 
  p.ballColor = [1 1 1; 1 0 0; 0 0 1]’; % RGB color vector array 350 
  % `p.targetScore` is a global signal parameter: it can be changed via the GUI used 351 
  % to run this exp def before starting the game 352 
  p.targetScore = 5; 353 
catch 354 
end355 



 

13 

356 
Figure 6: A screenshot of Pong run in Signals. The top shows the paddles and ball during gameplay. The bottom shows the GUI used to launch 357 
the game. The paddle colors (represented by an RGB vector) and target score are examples of global signal parameters that can be set once 358 
before starting the game. The ball color is an example of a conditional signal parameter that changes randomly after every trial (in this case, 359 
after a score) between the arrays indicated in each row (which in this case specify the colors white, red, and blue). 360 
Running Experiments and Managing Data in Rigbox 361 



 

14 

Rigbox contains a suite of packages for interfacing with hardware, acquiring and managing data, 362 
communicating with a remote database, time-aligning events from a variety of sources, and 363 
implementing a user interface for managing experiments. 364 

Rigbox simplifies experiments by providing an abstract interface for hardware interactions. All hardware 365 
devices, including screens and speakers, are represented by abstract classes that provide a basic set of 366 
interface methods. Methods for initializing, configuring and communicating with a particular device are 367 
handled by specific subclasses. This design choice avoids the creation of device-specific dependencies 368 
within the toolbox and the user’s experiment code. In this way, hardware devices can be swapped 369 
without modifying code or affecting the experiment workflow, and adding support for new devices is 370 
straightforward. For example, to support a new multifunction i/o device (such as an Arduino or other 371 
microcontroller), one could simply extend the +hw/DaqController class, and to support a new 372 
hardware input sensor (such as a lever or joystick), one could simply subclass the 373 
+hw/PositionSensor class. 374 

Intuitive and robust data management is another essential feature of Rigbox. Simple function wrappers 375 
save and locate data via human-readable experiment reference strings that reflect straightforward 376 
experiment directory structures: (subject/date/session). Data can be saved both locally and 377 
remotely, and even distributed across multiple servers. Rigbox uses a single paths config file, making it 378 
simple to change the location of data and configuration files. Furthermore, this code can be easily 379 
integrated with a user’s personal code to generate read and write paths for arbitrary datasets. A 380 
Parameters class, which sets, validates, and assorts experiment conditions for each experiment, 381 
simplifies data analysis across experiments by standardizing parameterization. Rigbox can also 382 
communicate with an Alyx database in order to query and post data related to a subject or session. Alyx 383 
is a lightweight meta-database that can be hosted on an internal server, or in the cloud (e.g. via Amazon 384 
Web Services). Alyx allows users to organize experiment sessions and their associated files, and keep 385 
track of subject information, such as diet, breeding, and surgeries (International Brain Laboratory, et al.). 386 

Experiments typically involve recording simultaneously from many devices, and temporal alignment of 387 
these recordings can be challenging. Rigbox contains a class called Timeline which manages the 388 
acquisition and generation of clocking pulses via a National Instruments multifunction i/o data 389 
acquisition device (NI-DAQ) (Figure 7). Timeline’s main clocking pulse, “chrono”, is a digital square 390 
wave sent out from the NI-DAQ that can flip each time a new chunk of data is available to the NI-DAQ. A 391 
callback function to this flip event collects the NI-DAQ timestamp of the scan where the flip occured. 392 
The difference between this timestamp and the system time recorded when the flip command was sent 393 
is recorded as an offset time. This offset time can be used to unify all event timestamps across 394 
computers: all event timestamps are recorded in time relative to chrono. A Timeline object can 395 
acquire any number of hardware or software events (e.g. from hardware inputs directly wired to the NI-396 



 

15 

DAQ, or UDP messages sent from another computer) and record their values with respect to this offset. 397 
For example, a Timeline object can record when a reward valve or laser shutter is opened, a sensor is 398 
interacted with, a screen displaying visual stimuli is updated, etc. In addition to chrono, a Timeline 399 
object can also output TTL and clock pulses for triggering external devices (e.g. to acquire frames at a 400 
specific rate). 401 

 402 

Figure 7: A representation of a Timeline object. The topmost signal is the main timing signal, “chrono”, which is used to unify all timestamps 403 
across computers during an experiment. The “inputs” represent different hardware and software input signals read by a NI-DAQ, and the 404 
“triggers” represent different hardware output signals, triggered by a NI-DAQ. 405 

Lastly, Rigbox provides an intuitive yet powerful user interface for running experiments. For this, two 406 
computers are required. An experiment is started from a GUI on one computer, referred to as the 407 
“Master Computer” (MC), which runs the experiment on a recording rig, referred to as the “Stimulus 408 
Computer” (SC) (Figure 8). A SC is responsible for stimuli presentation, rig hardware interaction, and 409 
data acquisition. The MC GUI is used to select, parameterize, and start experiments (Figure 9). 410 
Customizable experiment panels can also be displayed within a different tab in the MC GUI to monitor 411 
experiments (Figure 10). MC and SC communicate during runtime via TCP/IP (using WebSockets), and 412 
MC can communicate with multiple SCs simultaneously in order to run multiple experiments in parallel. 413 

 414 

Figure 8: A simplified chronology of events that occur when starting an experiment via the MC GUI. Pushing the “Start” button on the MC GUI 415 
sends a message to SC to initialize a Signals network, then call the user’s Signals exp def to create new signals within the network, then post to 416 
the `expStart` signal to start the experiment. After starting the experiment, the network’s input signals are continuously updated via callbacks 417 
(e.g. via a MATLAB timer callback, or by reading from hardware input devices), which update the rest of the signals in the network (i.e. those 418 
signals defined in the user’s exp def). These updates can then be displayed back to the user on the MC GUI. This continues until the experiment 419 
is either ended from the MC GUI, or a condition is met within the user’s exp def that updates the `expStop` signal. After the experiment is 420 



 

16 

ended, experiment data is saved. 421 

 422 

Figure 9: The new experiments tab within the MC GUI. This tab allows a user to select a subject, experiment type, and rig on which to run an 423 
experiment. Additionally, rig-specific options can be set via the “Options” button, and signal parameters for the behavioral task can be set via 424 
the editable parameter fields. 425 



 

17 

 426 

Figure 10: Experiment panels with live updates for two experiments. The top text fields in each panel display experiment information such as 427 
elapsed time, trial number, and the current running total of delivered reward. Below the text fields is a psychometric plot showing task 428 
performance for specific types of trials, and below this is a plot showing the real-time trace of a hardware input device (the panel on the left 429 
shows a two-alternative unforced choice task for which the green bar indicates the direction of the action the subject must make in order to 430 
receive a reward). There is also a text field for logging comments which can be immediately posted to an Alyx database. These experiment 431 
panels are highly customizable. 432 

Instructions for installation and configuration can be found in the README file and the docs/setup 433 
folder of the GitHub repository. This includes information on required dependencies, setting data 434 
repository locations, configuring hardware devices, and enabling communication between the MC and 435 
SC computers. Hardware and software requirements can also be found in the repository README and 436 
this paper’s “Requirements and Benchmarking” section.437 

 438 

Discussion 439 

In our laboratory, Rigbox is at the core of our operant, passive, and conditioning experiments. The 440 



 

18 

principal behavioral task we use is a two-alternative forced choice visual stimulus discrimination task 441 
(Burgess et al., 2017). Using Rigbox, we have been able to rapidly prototype multiple variants of this 442 
task, including unforced choice, multisensory choice, behavior matching, and bandit tasks, using wheels, 443 
levers, balls, and lick detectors. The Signals exp defs for each variant act as a concise and intuitive record 444 
of the task design. In addition, Rigbox has made it easy to combine these tasks with a variety of 445 
recording techniques, including electrode recordings, 2-Photon imaging, and fiber photometry, and 446 
neural perturbations, such as scanning laser inactivation and dopaminergic stimulation (Jun et al., 2017; 447 
Jacobs et al., 2018; Lak et al., 2018; Steinmetz et al., 2018; Shimaoka et al., 2018; Zatka-Haas et al., 448 
2018). Rigbox has also enabled us to scale our behavioral training: because one MC can control multiple 449 
SCs, we run and manage many experiments simultaneously. 450 

Often, experiments are iterative: task parameters are added or modified many times over, and finding 451 
an ideal parameter set can be an arduous process. Rigbox allows a user to develop and test an 452 
experiment without having to worry about boilerplate code and UI modifications, as these are handled 453 
by Rigbox packages in a modular fashion. Much of the code is object-oriented with most aspects of the 454 
system represented as configurable objects. Given the modular nature of Rigbox, new features and 455 
hardware support may be easily added, provided there is driver support in MATLAB.  456 

To the best of our knowledge, Rigbox is the most complete behavioral control software toolbox 457 
currently available in the neuroscience community; however, several other toolboxes implement similar 458 
features in different ways (Bcontrol 2014; Sanders 2019; Akam 2019; Aronov and Tank, 2014) (Table 1). 459 
Some of these toolboxes also include some features not currently available in Rigbox, for example, 460 
microsecond precision triggering of within-trial events, and creating 3D virtual environments. Indeed, 461 
the features employed by a particular toolbox have advantages (and disadvantages) depending on the 462 
user’s desired experiment. 463 

There are pros and cons to following different programming paradigms for software developers who 464 
decide how users will design behavioral tasks. Generally, three main paradigms exist: procedural, object-465 
oriented, and functional reactive. Here, in the context of programmatic task design, we briefly discuss 466 
the differences between these paradigms and in which scenarios one may be favored over the others. 467 
Note: here we only discuss the aspect of a toolbox that deals with behavioral task design, not the overall 468 
structure of a toolbox (e.g. Rigbox is built on an object-oriented paradigm, but Signals provides a 469 
functional reactive paradigm in which to implement a behavioral task). 470 

 471 

 BControl pyBpod pyControl VirMEn Rigbox 

Behavioral task design Procedural  Procedural Procedural Object- Functional 



 

19 

paradigm Oriented Reactive 

Presents visual 
stimuli? 3D/VR 
environments? 

no no no yes, yes yes, no 

Interfaces with 
hardware? 

yes yes yes yes yes 

Time-aligns multiple 
datastreams? 

yes yes yes no yes 

Communicates with a 
remote database? 

yes yes no no yes 

Contains unit and 
integration tests? 

? ? yes ? yes 

Table 1: Comparison of major features across behavioral control system toolboxes. The top row contains the toolbox names, and the first 472 
column contains information on a feature’s implementation. Note: the toolboxes and features mentioned in this table are not exhaustive. 473 

A procedural approach to task design is probably the most familiar to behavioral neuroscientists. This 474 
approach focuses on “how to execute” a task by explicitly defining a control flow that moves a task from 475 
one state to the next. The Bcontrol, pyBpod, and pyControl toolboxes follow this paradigm by using real-476 
time finite state machines (RTFSMs) which control a task’s state (e.g. initial state, reward, punishment, 477 
etc.) during each trial. Some advantages of this approach are that it’s simple, intuitive, and guarantees 478 
event timing precision down to the minimum cycle of the state machine (e.g. Bcontrol RTFSMs run at a 479 
minimum cycle of 6 KHz). Some disadvantages of this approach are that the memory for task parameters 480 
are limited by the RTFSM’s number of states, and that the discrete implementation of states isn’t 481 
amenable to experiments which seek to control parameters continuously (e.g. a task which uses 482 
continuous hardware input signals). 483 

Like the procedural approach to task design, an object-oriented approach also tends to be intuitive: 484 
objects can neatly represent an experiment’s state via datafields. Objects representing experimental 485 
parameters can easily pass information to each other and trigger experimental states via event 486 
callbacks. The VirMEn toolbox implements this approach by treating everything in the virtual 487 
environment as an object and having a runtime function update the environment by performing method 488 
calls on the objects based on input sensor signals from a subject performing a task. Some disadvantages 489 
of this approach are that the speed of experimental parameter updates are limited by the speed at 490 
which the programming language performs dynamic binding (which is often much slower than the 491 



 

20 

RTFSM approach discussed above), and that operation “side effects” (which can alter an experiment’s 492 
state in unintended ways) are more likely to occur due to the emphasis on mutability, when compared 493 
to a pure procedural or functional reactive approach.  494 

By contrast, Signals follows a functional reactive approach to task design. As we have seen, some 495 
advantages of this approach include simplifying the process of updating experiment parameters over 496 
time, endowing parameters with memory, and facilitating discrete and continuous event updates with 497 
equal ease. In general, a task specification in this paradigm is declarative, which can often make it 498 
clearer and more concise than in other paradigms, where control flow and event handling code can 499 
obscure the semantics of the task. Some disadvantages are that it suffers from similar speed limitations 500 
as in an object-oriented approach, and programmatically designing a task in a functional reactive 501 
paradigm is probably unfamiliar to most behavioral neuroscientists. When initially thinking about how a 502 
functional reactive network runs a behavioral task, it may be helpful to think of experiment parameters 503 
as nodes in the network that get updated via callbacks; there are no procedural calls to the network 504 
during experiment runtime. 505 

When considering the entire set of behavioral tasks, no single programming paradigm is perfect, and it is 506 
therefore important for a user to consider the goals for their task’s implementation accordingly.507 

 508 

 509 

Requirements and Benchmarking 510 

Hardware Requirements 511 

For most experiments, typical, contemporary, factory-built desktops running Windows 10 with 512 
dedicated graphics cards should suffice. Specific requirements of a SC will depend on the complexity of 513 
the experiment. For example, running an audio-visual integration task on three screens requires quality 514 
graphics and sound cards. SCs may additionally require a multifunction i/o device to communicate with 515 
external rig hardware, of which only NI-DAQs (e.g. NI-DAQ USB 6211) are currently supported. 516 

Below are some minimum hardware specs required for computers that run Rigbox: 517 

● CPU: 4 logical processors @ 3.0 GHz base speed (e.g. Intel Core i5-6500) 518 
● RAM: DDR4 16 GB @ 2133 MHz (e.g. Corsair Vengeance 16 GB) 519 



 

21 

● GPU: 2 GB @ 1000 MHz base and memory speed (e.g. NVIDIA Quadro P400) 520 

Software Requirements 521 

Similar to the hardware requirements, software requirements for a SC will depend on the experiment. 522 
For example, if acquiring data through a NI-DAQ, the SC will require the MATLAB NI-DAQmx support 523 
package in addition to the following minimum requirements: 524 

● OS: 64 Bit Windows 7 (or later) 525 
● Libraries: Visual C++ Redistributable Packages for Visual Studio 2013 & 2015 526 
● MATLAB: 2018b or later, including the Data Acquisition Toolbox 527 
● Community MATLAB toolboxes: 528 

○ GUI Layout Toolbox (v2 or later) 529 
○ Psychophysics Toolbox (v3 or later) 530 

Benchmarking 531 

Fast execution of experiment runtime code is crucial for performing and accurately analyzing results 532 
from a behavioral experiment. Here we provide benchmarking results for the Signals framework. We 533 
include results for individual operations on a signal and for operations which propagate through each 534 
signal in a network. Single built-in MATLAB operations and Signals-specific methods are consistently 535 
executed in the microsecond range (Figure 11). The network used in a typical 2-alternative unforced 536 
stimulus discrimination task (signals/docs/examples/advancedChoiceWorld.m) contains 338 537 
signals spread over 10 layers; a similar network of 350 signals spread over 20 layers can update all 538 
signals in under 5 milliseconds, and a network of 120 signals spread over 20 layers can update all signals 539 
with sub-millisecond precision (Figure 12). Lastly, we include results for reading from and triggering 540 
hardware devices in the above mentioned stimulus discrimination task.541 



 

22 

542 

Figure 11: Benchmarking results for operations (specified by the x-axis) on a single signal. The black “x” shows the mean value per group.543 

544 
Figure 12: Benchmarking results for updating every signal in a network, for networks of various number of signals (nodes) spread over various 545 
number of layers (depth). The black “x” shows the mean value per group.546 



 

23 

 547 

Figure 13: Delay times for specific updates when running a 2AFC visual contrast descrimination task. The number next to each violin plot 548 
indicates the number of samples in the group. “Rotary Encoder delay” is the time between polling consecutive position values from a rotary 549 
encoder. “Stim Window Delay” is the time between triggering a display to be rendered, and it’s complete render on a screen. “Reward Delay”  550 
the time between triggering and opening a reward valve. 99th percentile outliers were not included in the plot for “Rotary Encoder delay”: 551 
there were 98 instances in which the delay took between 200-600 ms, due to execution time of the NI-DAQmx MATLAB package when sending 552 
analog output (reward delivery) via the USB-6211 DAQ. 553 

Updates of the position of a rotary encoder used to indicate choice typically took less than 2 554 
milliseconds, the time between rendering and displaying the visual stimulus typically took less than 15 555 
milliseconds, and the delay between triggering and delivering a reward was typically under 0.2 556 
milliseconds (Figure 13). 557 

All results in the Benchmarking section were obtained from running MATLAB 2018b on a Windows 10 558 
64-bit OS with an Intel core i7 8700 processor and 16 GB DDR4 dual channel RAM clocking at a double 559 
data rate of 2133 MHz. Because single executions of signals operations were too quick for MATLAB to 560 
measure precisely, we repeated operations 1,000 times and divided MATLAB’s returned measured time 561 
by 1,000. MATLAB 2018b’s Performance Testing Framework was used to obtain these results. 562 
signals/tests/Signals_perftest.m contains the code used to generate the results shown in 563 
Figures 11 and 12,  signals/tests/results/2019-06-14_Signals_perftest.mat contains a 564 
table of this data, and signals/tests/results/2019-06-565 
04_advancedChoiceWorld_Block.mat contains the data used to generate the results shown in 566 
Figure 13. A National Instruments USB-6211 was used as the data acquisition i/o device. 567 

 568 

 569 

Extended Data 1: We recommend looking at and downloading the code directly from the github repository, at 570 
https://github.com/cortex-lab/Rigbox571 



 

24 

Acknowledgments 572 

We thank Andy Peters, Nick Steinmetz, Max Hunter, Peter Zatka-Haas, Kevin Miller, Hamish Forrest, and 573 
other members of the lab for troubleshooting, feedback, inspiration, and code contribution. This work 574 
was funded by the Medical Research Council (Doctoral Training Award  to CPB), and by the Wellcome 575 
Trust (grant 205093 to MC and KDH). 576 

References 577 

Abbott, L. F., Angelaki, D. E., Carandini, M., Churchland, A. K., Dan, Y., Dayan, P., … Zador, A. M. (2017). 578 
An International Laboratory for Systems and Computational Neuroscience. Neuron, 96(6), 1213–1218. 579 

Akam, T. pyControl. (2019). Retrieved June 7, 2019, from https://pycontrol.readthedocs.io/en/latest/ 580 

Aronov, D. and Tank, D. W. (2014) Engagement of Neural Circuits Underlying 2D Spatial Navigation in a 581 
Rodent Virtual Reality System. Neuron 84(2): 442-56.  582 

Bcontrol. (2014). Retrieved May 11, 2019, from 583 
https://brodywiki.princeton.edu/bcontrol/index.php?title=Main_Page 584 

Burgess, C. P., Lak, A., Steinmetz, N., Zatka-Haas, P., Bai Reddy, C., Jacobs, E. A. K., … Carandini, M. 585 
(2017). High-yield methods for accurate two-alternative visual psychophysics in head-fixed mice. Cell 586 
Reports, 20(10), 2513-2524. 587 

Carandini, M., and Churchland, A.K. (2013). Probing perceptual decisions in rodents. Nat Neurosci 16, 588 
824-831. 589 

International Brain Laboratory, Niccolò Bonacchi, Gaelle Chapuis, Anne K. Churchland, Kenneth D. Harris, 590 
Max Hunter, Cyrille Rossant, et al. (2020). Data Architecture for a Large-Scale Neuroscience 591 
Collaboration. BioRxiv, 827873. 592 

Jacobs, E. A. K., Steinmetz, N. A., Carandini, M., & Harris, K. D. (2018). Cortical state fluctuations during 593 
sensory decision making. BioRxiv, 348193. 594 

Jun, J. J., Steinmetz, N. A., Siegle, J. H., Denman, D. J., Bauza, M., Barbarits, B., … Harris, T. D. (2017). Fully 595 
integrated silicon probes for high-density recording of neural activity. Nature, 551(7679), 232–236. 596 

Lak, A., Okun, M., Moss, M., Gurnani, H., Wells, M. J., Reddy, C. B., … Carandini, M. (2018). Dopaminergic 597 
and frontal signals for decisions guided by sensory evidence and reward value. BioRxiv, 411413.  598 

Lew, D. An Introduction to Functional Reactive Programming. (2017). Retrieved May 23, 2019, from Dan 599 
Lew Codes website: https://blog.danlew.net/2017/07/27/an-introduction-to-functional-reactive-600 
programming/ 601 



 

25 

Lee D., Conroy M.L., McGreevy B.P., Barraclough D.J. (2004) Reinforcement learning and decision 602 
making in monkeys during a competitive game. Cog Brain Res 22(1) 603 

Ringach, D.L. (1998). Tuning of orientation detectors in human vision. Vision Res 38, 963-972. 604 

Sanders, J. Bpod Wiki. (2019). Retrieved May 11, 2019, from 605 
https://sites.google.com/site/bpoddocumentation/home 606 

Shimaoka, D., Steinmetz, N. A., Harris, K. D., & Carandini, M. (2018). The impact of bilateral ongoing 607 
activity on evoked responses in mouse cortex. BioRxiv, 476333.  608 

Steinmetz, N. A., Zatka-Haas, P., Carandini, M., & Harris, K. D. (2018). Distributed correlates of visually-609 
guided behavior across the mouse brain. BioRxiv, 474437.  610 

Zatka-Haas, P., Steinmetz, N. A., Carandini, M. Harris, K.D. (2018). Distinct contributions of mouse 611 
cortical areas to visual discrimination. BioRxiv, 501627. 612 



t

2π 3

   x = 
f(2π, t)

    stimulus.phase = 
           f(x, 3)

f = @times
Tim

e



0

1

0

1

y = x.delay(1)

0

1

x.to(y)

0

0.5

1

-0.2

-0.1

0

0.1

0.2

0

0.5

1
x.keepWhen(y > 0)

-2

-1

0

1

2

-2

-1

0

1

2

y = x.skipRepeats()

0

1

y.then(5)

0

1

0

0.5

1

1.5

y = x.map(true)

0

3

6
y = x.scan(@plus, 0)

x

f(x)

f(x, y)





inputs

t

keyboard

strcmp

‘ctrl’

sampler

stimulus

orientation

orientation:
buffer(10)

orientation
set

selection history



Clock

Hardware 
inputs

        External 
hardware outputs

Experiment 
epochs

Experimenter-defined
transformations

Screen

Speaker





triggers

DAQ
Device

inputs

clock pulse

offset



Start exp Update GUI End exp

Initialize
network

Call exp def Post to expStart Post to expStop Save dataUpdate input 
signals

MC

SC Update exp def
signals












