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ABSTRACT

The dynamic behavior of the class of periodic waveguides whose unit cells are generated through a quasicrystalline sequence can be
interpreted geometrically in terms of a trace map that embodies the recursive rule obeyed by traces of the transmission matrices. We
introduce the concept of canonical quasicrystalline waveguides, for which the orbits predicted by the trace map at specific frequencies, called
canonical frequencies, are periodic. In particular, there exist three families of canonical waveguides. The theory reveals that for those (i) the
frequency spectra are periodic and the periodicity depends on the canonical frequencies, (ii) a set of multiple periodic orbits exists at
frequencies that differ from the canonical ones, and (iii) perturbation of the periodic orbit and linearization of the trace map define a scaling
parameter, linked to the golden ratio, which governs the self-similar structure of the spectra. The periodicity of the waveguide responses is
experimentally verified on finite specimens composed of selected canonical unit cells.
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The band structure of phononic spectra of periodic mechanical
metamaterials has been extensively investigated in the last 40 years.1–4

Theoretical and experimental studies have shown how to take advan-
tage of its properties to control several dynamical phenomena such as
negative refraction of elastic waves,5–7 topological edge modes,8–10

wave focusing,11,12 mode conversion,13 and gap tunability.14,15

Recently, these analyses have been extended to inspect the dispersive
properties of quasiperiodic and quasicrystalline phononic media.16–19

These are characterized by distinctive self-similarity features which
can be explored to extend the range of capabilities of metamaterials. A
powerful tool to examine the properties of dynamic spectra of uniaxial
quasicrystalline-generated periodic waveguides is the trace map which
defines, at each frequency, a discrete orbit on the corresponding
invariant surface.20–25 For the class of quasicrystalline sequences coin-
ciding with the Fibonacci chain, we show in this Letter that some con-
figurations of the waveguide allow the orbit to be periodic at some
particular frequencies and the periodicity is reflected on the whole
spectra. Moreover, additional periodic orbits exist at frequencies where
the invariant vanishes and the scaling of the self-similar structure of
the spectra in the neighborhood of those frequencies can be quantita-
tively defined in terms of the golden ratio by linearizing the trace map.

We investigate a set of infinite two-phase structured rod whose
elementary cells are generated by adopting the standard Fibonacci
sequence. This is a particular case of the class of generalized Fibonacci

sequences that follow the recursion rule26 F i ¼ Fm
i�1F i�2 ði � 2Þ;

with F 0 ¼ S; F 1 ¼ L setting the initial conditions in terms of the two
basic constituents L and S (the natural exponent m implies repetition
of the base m times). All waveguides designed from elements of this
class share the same properties that are, therefore, illustrated with refer-
ence to the standard sequence that corresponds to m¼ 1.27 Figure 1
shows two configurations where the lengths of the two segments L and
S are indicated with lL and lS, while aj and qj (j 2 fL; Sg) denote axial
stiffness and mass density per unit length of each element, respectively.
For any cellF i,

28 the Floquet–Bloch dispersion diagram for axial waves
is governed uniquely by the trace of the transmission matrix TiðxÞ, i.e.,
xiðxÞ ¼ trTiðxÞ, through the equation KðxÞ ¼ arccosðxiðxÞ=2Þ,29
where KðxÞ, the dimensionless Bloch number, is a real quantity if

FIG. 1. Schematic of infinite quasicrystalline-generated canonical waveguides;
sequences F 3 and F 4 are displayed.
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jxiðxÞj � 2.30,35 Due to the unimodularity of TiðxÞ, i.e.,
detTiðxÞ ¼ 1, traces satisfy the recursive rule31

xiþ1 ¼ xi�1xi � xi�2 ði � 2Þ; (1)

with initial conditions given by

x0 ¼ 2 cos ðcSxÞ; x1 ¼ 2 cos ðcLxÞ;
x2 ¼ 2 cos ðcSxÞ cos ðcLxÞ � b sin ðcSxÞ sin ðcLxÞ:

(2)

The impedance mismatch b corresponds to b ¼ ða2LQL þ a2SQSÞ=
aSaL

ffiffiffiffiffiffiffiffiffiffiffi
QSQL
p� �

, with Qj ¼ qj=aj and cj ¼
ffiffiffiffiffi
Qj

p
lj. For b¼ 2, the wave-

guide behaves as a homogeneous medium.
A new set of variables ~xi ¼ xiþ2; ~yi ¼ xiþ1; ~zi ¼ xi may be

defined singling out the triplet Ri ¼ ð~xi;~yi;~ziÞ. Exploitation of (1)
leads to the definition to the following trace map T determining the
evolution of Ri:

Riþ1 ¼ T ðRiÞ ¼ ð~xi~yi � ~zi; ~xi; ~yiÞ; (3)

through which it is shown that the quantity

IðxÞ ¼ ~x2i þ ~y2i þ ~z2i � ~xi~yi~zi � 4 ¼ ðb2 � 4Þ sin2ðcSxÞ sin2ðcLxÞ
(4)

is an invariant. In the three-dimensional space spanned by the orthog-
onal co-ordinate system O~x~y~z ,

~x2 þ ~y2 þ ~z2 � ~x~y~z � 4 ¼ IðxÞ (5)

represents the invariant surface which possesses six saddle points
Pk ðk ¼ 1;…; 6Þ, opposite in pairs.32,33 Points Ri obtained by iterating
map (3) are all confined to this surface. Consequently, for any given
frequency x, all points of the orbit generated through (3) can be
mapped onto the surface defined by Eq. (5). According to the property
of T and to the initial point taken as its argument, orbits can be either
p-point periodic or non-periodic. In the former case, the discrete tra-
jectory repeats itself after p applications of T , i.e., T pðRiÞ ¼ Ri.

A close inspection shows that saddle points Pk
34 are all part of a

6-Point Periodic Orbit (PPO), namely, T 6ðPkÞ ¼ Pk; therefore, the
question naturally arises: which type of elementary cell can be repre-
sented by such a close orbit on the surface (5)? The answer is that at a
certain frequency, one of the following three conditions must be
satisfied:

ð1Þ~y0 ¼ ~z0 ¼ 0; ð2Þ ~x0 ¼ ~z0 ¼ 0; ð3Þ ~x0 ¼ ~y0 ¼ 0: (6)

These requirements can be observed only for a particular set of config-
urations, called here the class of canonical sequences, and at particular
values of the frequency, denoted as canonical frequencies. The three
conditions (6) imply that two of the traces (2) vanish, and then,
substituting them into (6), the following relationships are derived:

Cð1Þ ¼ 1þ 2j
1þ 2k

; Cð2Þ ¼ 1þ 2j
2q

; Cð3Þ ¼ 2q
1þ 2k

; (7)

respectively, where C ¼ cS=cL and j; k; q 2N. The superscript simply
indicates the number of the condition concerned in (6) that will define
the corresponding rth family (r¼ 1, 2, 3) of canonical configurations.
In formulas (7), it is important to remark that indices j, k, and q are
such that fractions on the right-hand sides are in lowest terms. We
note that family no. 1 encompasses odd/odd ratios, while odd/even

and even/odd ratios are associated with family nos. 2 and 3, respec-
tively. The canonical frequencies for each family can be written as xðrÞcn
¼ xðrÞc ð1þ 2nÞ ðn 2NÞ, where

xð1Þc ¼ xð3Þc ¼
p
2cL
ð1þ 2kÞ; xð2Þc ¼

p
cL

q: (8)

All conditions (6) force the functions xiðxÞ for canonical rods to
be periodic, a property that leads to periodic stop- and pass-band
(SPB) layouts. By defining as period of traces the least frequency range
½0;xt � such that xiðxtÞ ¼ 2, it turns out that xt ¼ 4xc. However, as
ImðKÞ ¼ 0() jxij � 2, the period of both the frequency spectra
and the invariant IðxÞ is 2xc.

FIG. 2. Stop- (white)/pass- (blue) band (SPB) diagrams and function IðxÞ for the
first eight sequences of three representative canonical rods within the dimension-
less period of traces ½0; cLxt �. (a) SPB diagrams for C¼ 1 and (b) for C¼ 3, (c)
functions IðxÞ for C¼ 1, 3, (d) SPB diagram, and (e) function IðxÞ for C¼ 3/2. xc

and xc1 denote canonical frequencies, highlighted with red arrows. Frequencies at
which periodic orbits occur are indicated in (c) and (e).
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The periodic SPB layout up to F 8 and the plot of IðxÞ of three
representative canonical waveguides in the dimensionless range
½0; cLxt �, namely, Cð1Þ ¼ 1; 3 andCð2Þ ¼ 3=2, are reported in Fig. 2
where canonical frequencies are indicated by red arrows. The SPB
spectra appear at a first glance periodic with a period of xt=2; how-
ever, a close inspection of transformation (3), performed in the ensu-
ing paragraph, shows that the period is still xt and the diagrams are
symmetric with respect to xt=2.

In addition to that singled out by the saddle points, a variety of
periodic orbits on the invariant surface are present, located at frequen-
cies x̂ for which Iðx̂Þ ¼ 0. To help illustrate some of the cases, in Fig.
3(a) the invariant surface (5) for Iðx̂Þ ¼ 0 (C¼ 3) is sketched.
Inspection of the expression of the invariant shows that 8C a fixed point
Ri ¼ ð2; 2; 2Þ (i.e., T ðRiÞ ¼ Ri) exists at xt [black point in Fig. 3(a)],
whereas a 3-PPO is achieved at xt=2 [the three points are marked in
red in Fig. 3(a)]. Additional possibilities arise depending on C. As an
example, in Figs. 2(b) and 2(d), a 4-PPO is detected at both xt=3 and
2xt=3 and two out of the four points of the orbit are depicted in green
in Fig. 3(a) for the former frequency. Other cases displayed in Fig. 2 and
a general method to establish the existence of periodic orbits is
described in the supplementary material.

The SPB diagram in the neighborhood of a frequency at which a
periodic orbit takes place displays a self-similar pattern controlled by a
scaling factor that is revealed by perturbing the corresponding periodic
orbit and linearizing map (3).32 An example of perturbation is illus-
trated in Fig. 3(c) (C¼ 3), where the 4-PPO at xt=3 is slightly changed
by studying the open trajectory at �x ¼ xt=3þ dx composed of points
�Ri ¼ Rið�xÞ, with cLdx ¼ 0:001. In summary (see the supplementary
material), by denoting dri ¼ �Ri � Ri, it turns out that driþpv
� jvng ðv 2NÞ, where j is the maximum eigenvalue of the matrix
governing the linearized problem and ng is the component of dr along
the normalized eigenvector g associated with j.25 The golden ratio / is
the key parameter for scaling at x̂ as j corresponds to /3; /;�/4 for
the 3-PPO, the fixed point, and the 4-PPO, respectively.

In Fig. 3(c), red points mark the exact position of �R0; �R4; �R8,
while black points ~R0; ~R4; ~R8 represent the corresponding placements
provided by the linearization. The former are, by construction, aligned
and belong to the tangent plane at R0, whose equation is ~z ¼ 2. In

particular, with d~r0 ¼ ng; ~R0 ¼ R0 þ d~r0; ~R4 ¼ R0 � /4d~r0; ~R8

¼ R0 þ /8d~r0.
Figure 4 illustrates some representative cases of scaling of self-

similar SPB diagrams in the neighborhood of frequencies where

FIG. 3. Plots of the invariant surface for C¼ 3 (a) for frequencies x̂: a 4-PPO (x ¼ xt=3) (green points), a 3-PPO (x ¼ xt=2) (red points), and a fixed point (x ¼ xt )
(black) are displayed; (b) for canonical frequencies xcn where three points of the 6-PPO are displayed. (c) Close-up view of the neighborhood of R0 of the 4-PPO shown in (a)
where the corresponding points �R0; �R4; �R8 at the perturbed frequency �x ¼ xt=3þ dx (with cLdx ¼ 0:001) are reported. �R4 and ~R8 are the predictions of the linearization
of the trace map. g represents the normalized unit eigenvector associated with the maximum eigenvalues j.

FIG. 4. Scaling of the self-similar structure of the SPB layout about frequencies
where periodic orbits take place. (a) Plot of traces x11ðxÞ and x12ðxÞ, scaled
traces x5ðjxÞ and x6ðjxÞ, and local SPB layout in the neighborhood of xc for
C¼ 1. (b) Plot of trace x11ðxÞ, scaled trace x5ðjxÞ, and local SPB layout for
C¼ 3 in the neighborhood of xc.
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periodic orbits occur. Figure 4(a) is related to the canonical frequency
cLxc ¼ p=2 for C¼ 1, where the orbit is composed of six points and
the scaling factor is j ¼ 41:038. It is shown that the scaled traces
x5ðjxÞ and x6ðjxÞ are almost coincident with x11ðxÞ and x12ðxÞ,
respectively, and the corresponding scaled SPB layouts match almost
exactly. Similar observations apply, at the same dimensionless fre-
quency, to Fig. 4(b) to the pair x5ðjxÞ and x11ðxÞ for C¼ 3. Here,
j ¼ 6:854.

The periodicity of the dynamic spectra and the scaling of the SPB
diagram can be also observed in canonical waveguides composed of an
arbitrary finite number N of elementary cells F i. The transmission
coefficient for a finite specimen is proven to be T ¼ T�1G22, where TG22

represents the second diagonal term of the N th power of Ti (see sup-
plementary material). To experimentally prove the properties of the
frequency spectra, finite canonical nylon rods with C¼ 1 were manu-
factured, where the elements L and S possess circular cross sections of
diameter 40mm and 20mm, respectively. The transmissibility of the
rods, defined as T ¼ 20 log10ðar=alÞ, was obtained from experiments
in which the accelerations of the excited end, ar, and the free end, al, of
the rod were measured. Details of the experimental setup can be found
in the supplementary material.

Figure 5 shows the measured transmissibility T of four finite
canonical waveguides in excellent agreement with analytical predic-
tions for both the natural frequencies and the regions where wave
propagation is significantly attenuated (numerical simulations con-
firming the agreement are described in the supplementary material).
Three configurations, namely, three-cell F 2 (a), three-cell F 3 (c), and
two-cell F 5 (d), present a phase length of 70mm and their dynamic
spectra, plotted over the first period, result symmetric with respect to
the canonical frequency xc. The three-cell F l

2 canonical rod (b),
designed with a 140mm phase length, shows the periodic response of
the frequency spectrum with a period 2xl

c and the symmetry of the
graph of T with respect to the first two canonical frequencies xl

c and
xl

c1. It should be noted that xc ¼ 2xl
c as the length of each phase for

F 2; F 3, and F 5 is half of that of F l
2. On each plot, the stop bands

characterizing the infinite periodic waveguides are shown as shaded
areas, thus well approximating the regions of negligible wave propaga-
tion even for a small number of cellsN . Exceptions are represented by
limited extension stop bands, Fig. 5(d), which can be detected only
with a greater number of unit cells. Finally, the mismatch between the
measured and predicted response at high frequencies for F 5 is attrib-
uted to the large number of interfaces and the viscoelastic behavior of

FIG. 5. Comparison between experimental measurements (red line) and analytical predictions (black line) for the transmissibility T of finite canonical waveguides. The response
of (a) three-cell F 2, (b) three-cell F l

2, (c) three-cell F 3 and (d) two-cell F 5 configurations for C¼ 1 is reported as a function of the frequency x. The stop bands characteriz-
ing the infinite periodic waveguides are represented by the underlaid shaded areas. The insets show the geometry of the finite rods, where the red assemblies represent the
elementary cells F i .
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the constituent material, also testified by the decrease in the height of
the spikes as the frequency increases.

We have shown that there are three families of periodic phononic
canonical quasicrystalline-generated waveguides whose Floquet–Bloch
spectra are periodic. The period is set by canonical frequencies which
geometrically correspond to saddle-point periodic orbits on the invari-
ant manifold. A close inspection of the associated trace map has
revealed that there could be multiple periodic orbits at frequencies that
differ from the canonical ones. The SPB layout in the neighborhoods
of those frequencies is governed by scaling parameters that are
expressed in terms of the golden ratio. An experimental verification
carried out on finite-size canonical specimens has confirmed the peri-
odicity of the spectra and the extension of stop- and pass-bands. Our
research provides new analytical tools for controlling the filtering
properties of periodic metamaterials and sets out a methodology that
can be extended to waveguides composed of periodic beams, plates,
and microarchitected materials.

See the supplementary material for further details on the theory
and description of experimental and numerical methods.
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