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Uncertainty assessment in river flow projections for Ethiopia’s Upper 1 

Awash Basin using multiple GCMs and hydrological models 2 

Uncertainty in climate change impacts on river discharge in Ethiopia’s Upper 3 
Awash Basin is assessed using five MIKE SHE hydrological models, six CMIP5 4 
GCMs, and two RCP scenarios for the period 2071–2100. Hydrological models 5 
vary in their spatial distribution and process representations of unsaturated and 6 
saturated zones. Very good performance is achieved for 1975–1999 (NSE: 0.65–7 
0.8; r: 0.79–0.93). GCM-related uncertainty dominates variability in projections 8 
of high and mean discharges (mean: -34% to +55% for RCP4.5, -42% to +195% 9 
for RCP8.5). Although GCMs dominate uncertainty in projected low flows, inter-10 
hydrological model uncertainty is considerable (RCP4.5: -60% to +228%, RCP8.5: 11 
-86% to +337%). ANOVA uncertainty attribution reveals that GCM-related 12 
uncertainty occupies an average 68% of total uncertainty for median and high 13 
flows and hydrological models no more than 1%. For low flows, hydrological 14 
model uncertainty occupies an average 18% of total uncertainty; GCM-related 15 
uncertainty remains substantial (average 28%). 16 

Keywords: Upper Awash Basin; hydrological modelling; climate change; 17 
uncertainty 18 

1. Introduction 19 

Climate change is expected to alter the quantity, quality and timing of river flow, 20 

groundwater recharge and other hydrological processes (Jiménez Cisneros et al. 2014). 21 

In turn, modifications to the distribution of freshwater resources have the potential to 22 

significantly impact global water and food security (Betts et al. 2018). Quantifying the 23 

hydrological impacts of climate change is critical to informing strategies designed to 24 

sustain water security and maintain aquatic environments and the ecosystem services they 25 

provide (Thompson et al. 2014a). The hydrological impacts of climate change are 26 

commonly evaluated by perturbing meteorological inputs to hydrological models with 27 

climate projections derived from General Circulation Model (GCM) simulations of 28 

alternative radiative forcing scenarios (e.g. Todd et al. 2011; Thompson et al. 2013). 29 

However, these climate change impact assessments are subject to multiple sources of 30 

uncertainty that cascade down through each step of the impact modelling chain (Wilby 31 

and Dessai 2010). 32 



 
 

 33 

The cascade of uncertainty in hydrological climate change impact assessments typically 34 

consists of uncertainties related to emission scenarios, GCMs and hydrological models. 35 

The first source of uncertainty relates to diverging trajectories of greenhouse gas 36 

concentrations (and other radiative drivers) that arising from uncertainty in economic 37 

development, technological change and climate mitigation policies. Current projections 38 

are expressed through a range of Representative Concentration Pathways (RCPs) (IPCC 39 

2014). GCM-related uncertainty is the next, and most frequently studied, source of 40 

uncertainty. It arises from differences in spatial resolution, parameterization and process 41 

descriptions between GCMs (e.g. Todd et al. 2011; Hattermann et al. 2018). Integrated 42 

multi-scale analyses have shown that at a global scale GCM-related uncertainty 43 

dominates uncertainty in hydrological projections (e.g. Todd et al. 2011; Vetter et al. 44 

2015; Krysanova et al. 2017). 45 

 46 

Uncertainty related to the structure of hydrological models is often neglected despite the 47 

wide range of hydrological model codes applied in climate change impact studies. While 48 

previous studies agree that hydrological model uncertianty is generally smaller than 49 

GCM-related uncertainty, it cannot be ignored (e.g. Thompson et al. 2013). Hydrological 50 

model uncertainty is epistemic and mainly arises from a lack of knowledge in the 51 

representation of natural hydrological processes within models (Beven 2016). 52 

Hydrological model structures can differ according to 1) parameterization, 2) process 53 

coupling, 3) model domain discretization, and 4) classification of spatially-distributed 54 

catchment characteristics including land use, geology, soil, and hydrological processes 55 

(Butts et al. 2004). Acceptable and similar performance can be achieved using different 56 

model structures (i.e. model equifinality; Beven 1993). Whilst different hydrological 57 

models may perform similarly for a baseline period, they can produce different responses 58 

when forced with the same climate change projections (e.g. Poulin et al. 2011; Thompson 59 

et al. 2013).  60 

 61 

This study investigates the cascade of uncertainty for projections of river discharge under 62 

climate change within Ethiopia’s Upper Awash Basin with a particular focus on 63 

hydrological model structure uncertainty. Uncertainty associated with model parameters 64 

during calibration can also lead to model equifinality but are not explicitly addressed in 65 



 
 

this study. Hydrological model structure uncertainty is assessed by developing five 66 

individual hydrological models of varying complexity using the same model code, MIKE 67 

SHE. While previous studies (such as QUEST-GSI; Todd et al. 2011 and ISI-MIP; 68 

Hattermann et al. 2018) have investigated hydrological model structural uncertainty using 69 

a number of different model codes, this study assesses structural uncertainty by varying 70 

the representation of spatial variability and the complexity of process descriptions within 71 

a single hydrological model code. This study is the first time the MIKE SHE modelling 72 

system has been applied to the Upper Awash Basin and is likely the first study that has 73 

undertaken sensitivity analyses for alternative combinations of process representations 74 

within MIKE SHE for an African catchment. 75 

1.1 The Upper Awash Basin 76 

The Awash River Basin (Fig. 1) is Ethiopia’s most developed and economically important 77 

river basin and the first in which modern agriculture and large-scale irrigation were 78 

established (Berhe et al. 2013). It has an area of ~113,709 km2 and is bordered to the west 79 

by the Abbay Basin (Blue Nile). The main river runs for 1200 km from the central 80 

Ethiopian highlands at ~3000 mamsl (metres above mean sea level) within the East 81 

African Rift Valley in a northeastern direction to the endorheic Lake Abe at ~250 mamsl 82 

(Fig.1b). Based on topography, climate and elevation it can be divided in to three zones: 83 

Upper Awash, Middle Awash and Lower Awash (Taddese et al. 2003).  84 

 85 

The Upper Awash Basin (UAB) is home to at least 15.7 million people (~17% of 86 

Ethiopia’s population) and includes Ethiopia’s capital, Addis Ababa. The UAB 87 

terminates at the Koka Dam and Reservoir, 75 km southeast of Addis Ababa. It has an 88 

area of 11,500 km2 and accounts for 7% of the Awash River Basin. The UAB has 89 

frequently been the sole focus of hydrological research given the significantly altered 90 

river regime downstream of the Koka Dam (Berhe et al. 2013; Müller et al. 2016). 91 

Precipitation within the UAB is substantially modulated by the seasonal migration of the 92 

Inter-tropical Convergence Zone. Mean annual rainfall varies from 1400 mm in the 93 

headwaters of the Ethiopian highlands to 800 mm near Koka Dam. The climate is 94 

characterized by a short rainy season in spring (February to March) and a main summer 95 

wet season (June to September). Potential evapotranspiration (PET) is inversely 96 

correlated to altitude (Berhe et al. 2013) and varies from 1810 mm in the humid Ethiopian 97 



 
 

highlands to over 2300 mm in the arid lower valley. Sandy clay loam (42%) and clay 98 

(39%) are the dominant soil types. The hydrostratigraphy of the UAB is dominated by 99 

three main units (Kebede, 2013; Jira 2019): an upper or shallow (80 to 150 m depth) 100 

aquifer of Quaternary alluvium as well as weathered and fractured basalt; an intermediary 101 

(~100 m thick) pyroclastic confining bed; and a confined aquifer (>300 m thick) of 102 

Tertiary volcanics. 103 

 104 

Precipitation over the Ethiopian highlands is strongly influenced by large-scale controls 105 

on climate variability such as the El Niño Southern Oscillation (ENSO). El Niño phases 106 

are associated with below-average summer rainfall and are considered to be a major 107 

driver of past drought episodes (e.g. Seleshi and Zanke 2004; Philip et al. 2018). Despite 108 

its importance, previous research has shown that the GCMs of the Coupled Model 109 

Intercomparison Project Phase 5 (CMIP5) are limited in their ability to simulate ENSO 110 

behaviour in the observed record and show little consensus over how its behaviour may 111 

change in the future (Kociuba and Power 2014; Chen et al. 2016). Projections for East 112 

Africa over the 21st Century generally point towards increasing temperature (and hence 113 

PET), in response to enhanced global mean temperatures, and precipitation, linked to 114 

enhanced wet seasons under both RCP4.5 and RCP8.5 greenhouse-gas concentration 115 

trajectories (Niang et al. 2014). 116 

 117 

The scarcity of high quality and complete hydro-meteorological data has been a particular 118 

challenge in the Awash Basin and neighbouring East African catchments (Mekonnen et 119 

al. 2009). Sparse hydrologgcal monitoring below Koka Dam imposes further restrictions, 120 

beyond the dam’s regulation of discharge, on the spatial extent of hydrological 121 

investigations. In this study, discharge data from two gauging stations in the UAB (Fig. 122 

1) were selected on the basis on the duration, continuity and integrity of their records. 123 

Gauging stations at Melka and Hombole have drainage areas of 4456 km2 and 7656 km2, 124 

respectively. These stations were used for model calibration / validation. Models were 125 

forced with daily precipitation data from 11 rain gauges (Fig. 1), which were selected 126 

based on a review of data quality including initial double mass analysis. Temperature 127 

records are limited and only available at an elevation of 2354 m. This record was adjusted 128 

for four 500 m elevation ranges between 1500 m and 3500 m to account for spatially 129 

varying PET, the other meteorological parameter forcing the models which was 130 



 
 

calculated using the adjusted temperature records and the Hargreaves method 131 

(Hargreaves and Samani 1985). 132 

 133 
[FIGURE 1] 134 

 135 

2. Methods 136 

2.1 Model development, calibration and validation 137 

Each of the five hydrological models of the UAB was developed using the MIKE SHE 138 

modelling system which is capable of simulating the major processes of the land phase 139 

of the hydrological cycle (e.g. Graham and Butts 2005). MIKE SHE is commonly 140 

described as being deterministic, fully-distributed and physically-based but its modular 141 

structure is flexible and includes process descriptions of varying levels of complexity, 142 

some of which are conceptual and semi-distributed in nature (Refsgaard et al. 2010). The 143 

spatial distribution of model inputs across the MIKE SHE model grid can also be readily 144 

modified and these inputs can either be uniformly or spatially distributed. By altering the 145 

complexity of process descriptions and spatial distribution, MIKE SHE can be used to 146 

explore the impacts of hydrological model structural uncertainty by developing models 147 

of alternative process descriptions and spatial distributions (e.g. Rochester 2010; 148 

Robinson 2018; Vansteenkiste et al. 2014a, b). The development of models of the UAB 149 

adheres to the approaches used by MIKE SHE modelling of other large river systems (e.g. 150 

Anderson et al. 2001; Thompson et al. 2013; Hudson and Thompson 2019). MIKE 11, a 151 

1D hydraulic model, is dynamically coupled to MIKE SHE and simulates channel flow 152 

(Thompson et al. 2004). Table 1 summarises the data requirements and sources of data 153 

for each component of the five alternative MIKE SHE / MIKE 11 models of the UAB. 154 

 155 
[TABLE 1] 156 

 157 

The five models span a range of commonly used hydrological model structures. They 158 

were developed using existing process representations available within the MIKE SHE 159 

modelling system, which include relatively simple spatially uniform, conceptual 160 

approaches through to spatially-distributed, physically-based process descriptions as well 161 

as a combination of the two. Whilst each model employs the same 1 km × 1 km grid size 162 



 
 

and a maximum time step of 1 day, they vary according to the computational approaches 163 

used to represent the unsaturated (UZ) and saturated zones (SZ) (Table 2). The models 164 

also employed two alternative approaches to the spatial distribution of surface soil 165 

parameters in the UZ. The first assumes uniform distribution of soil types; the second 166 

spatially varies soil classes based on the FAO Digital Soil Map of the World (FAO 1998). 167 

Each hydrological model is given a name according to the following three criteria: 1) 168 

whether the model has a uniformly distributed (U) or spatially distributed (D) unsaturated 169 

zone, 2) whether the model has conceptual (C) or physically-based (P) representation of 170 

unsaturated and saturated flow, and 3) whether it used Gravity Flow (G) or Richards 171 

equation (R) to describe unsaturated flow.  172 

 173 
[TABLE 2] 174 

 175 

A split-sample calibration/validation approach (Klemeš 1986) was adopted for all five 176 

hydrological models. In each case, the periods 1975–1987 and 1988–1999, for which the 177 

most complete hydro-meteorological datasets are available, were used for calibration and 178 

validation, respectively. Calibration/validation was based on comparison of observed and 179 

simulated discharge at the two gauging stations with model performance being assessed 180 

using multiple statistical measures; Nash-Sutcliffe Efficiency (NSE; Nash and Sutcliffe 181 

1970), percentage deviation (Dv; Henriksen et al. 2003) and Pearson product moment 182 

correlation (r). Model performance using these statistics was assessed based on the 183 

scheme proposed by Henriksen et al. (2003). This scheme has previously been used in a 184 

number of modelling studies (e.g. Thompson et al. 2013; Ho et al. 2016; Hudson and 185 

Thompson 2019). Previous research has suggested that NSE tend to be more sensitive to 186 

high and extreme flows (Pushpalatha et al. 2012; Krause et al. 2005). As the hydrology 187 

at the UAB is relatively flashy and the difference between high and low flows can exceed 188 

150 m3s-1 in a single year, model performance was also assessed through the calculation 189 

of daily and monthly logNSE using the logarithmic values of river discharge to give more 190 

weight to low flows (Krause et al. 2005). In order to minimize the risks of over-191 

parameterization, the number of parameters subject to calibration was kept as low as 192 

possible according to the framework outlined by Refsgaard (1997). Horizontal and 193 

vertical hydraulic conductivity was varied during calibration for all hydrological models 194 

with the exception of Model 5, which employed the conceptual linear reservoir 195 

representation of the SZ. The time constants for the interflow and baseflow reservoirs 196 



 
 

were varied in the calibration of Model 5 instead. Hydraulic conductivity within the UZ 197 

was varied in models 1 and 2, which both employed a conceptual representation of the 198 

unsaturated zone. Bypass fraction for the dominant soil type was varied in all models. 199 

 200 

2.2 Climate change scenarios 201 

Each of the five calibrated and validated MIKE SHE/MIKE 11 models was perturbed 202 

with projected changes in precipitation and PET from six CMIP5 GCMs (Table 3) for the 203 

RCP4.5 and RCP8.5 scenarios. Changes in mean annual precipitation and temperature 204 

over the UAB for these six GCMs broadly represent the range of change across the 205 

complete CMIP5 ensemble with the exception of a few notable outliers (Supplementary 206 

Fig.1). In this way, the range of projected climate change across the CMIP5 ensemble is 207 

represented by a similar number of GCMs to the hydrological models that were developed 208 

for the UAB. The delta-factor approach was used to establish future precipitation and 209 

PET time series. Initially monthly change factors for precipitation (%) and mean, 210 

maximum and minimum temperatures (°C) were derived by comparing basin-wide 211 

projections from each GCM for the baseline (1975-1999) and future periods (2071-2100). 212 

Daily baseline observed precipitation and temperature data were perturbed by these 213 

monthly delta factors (e.g. Anandhi et al. 2011). PET was then recalculated using the new 214 

temperature series and the Hargreaves method (Hargreaves and Samani 1985). The delta-215 

factor approach is widely used in hydrological climate change impact assessments (e.g. 216 

Arnell 2003; Poulin et al. 2011; Ho et al. 2016; Hudson and Thompson 2019). It should 217 

be noted that this approach retains the climate variability of the baseline period but does 218 

not consider modifications to rainfall intensity (Fowler et al. 2007). Additional 219 

simulations employed perturbed precipitation whilst using baseline PET and vice versa. 220 

This enabled assessment of the relative importance of inter-GCM uncertainty in 221 

precipitation and PET to overall uncertainty (Gosling et al. 2011; Thompson et al. 2013). 222 

 223 
[TABLE 3] 224 

 225 
2.3 Uncertainty analysis 226 

Systematic analysis of multiple sources of uncertainty enables quantification of the 227 

relative magnitude of each source to overall uncertainty. For example, Bosshard et al. 228 

(2013) used three-way ANOVA to quantify the relative dominance of different sources 229 



 
 

of uncertainty along the entire impact modelling chain. ANOVA has since been employed 230 

to quantify uncertainties in multi-catchment global investigations (Karlsson et al. 2016; 231 

Vetter 2015, 2017; Krysanova et al. 2017; Hatterman et al. 2018). It enables variance 232 

decomposition where overall impact assessment uncertainty is decomposed into elements 233 

(i.e. individual sources of uncertainty) and interactions among them.  234 

 235 

Following the approach of Bosshard et al. (2013), overall uncertainty (YQ) is defined in 236 

terms of annual Q10, Q50 and Q90 river discharges (i.e. discharges equalled or exceeded 237 

for 10, 50 and 90 percent of the time in each year, respectively) for the climate change 238 

signal for each of the impact modelling chain combinations comprising five hydrological 239 

models, six GCMs, and two RCP scenarios (eq. 1). The river discharge quantiles selected 240 

match those of recent multi-site impact assessments (Vetter et al. 2015; Krysanova et al. 241 

2017; Hattermann et al. 2018) and characterise high, median and low flows, respectively. 242 

Each source of uncertainty that is considered is an ‘effect’ that is hypothesized to 243 

influence overall climate change signal variability. ANOVA, conducted using SPSS 22, 244 

splits the total sum of squares into sum of squares for each effect and their interactions 245 

(eq. 2). The variance fraction (n2) (between 0 and 1) is then calculated for each effect and 246 

represents the percentage contribution of each effect and interactions (eq. 3).  247 

 248 

 𝑌! = 𝑄!"" − 𝑄!#$ (1) 249 

Q = monthly river discharge quantiles (Q10, Q50, Q90) 250 

CC = scenario 251 

BL = baseline 252 

Y = overall uncertainty 253 

 254 

𝑆𝑆𝑇 = 	𝑆𝑆%& + 𝑆𝑆'"& + 𝑆𝑆(") + 𝑆𝑆%&∗'"& + 𝑆𝑆%&∗(") 255 

 +𝑆𝑆'"&∗(") + 𝑆𝑆%&∗'"&∗(") (2) 256 

 257 

SST = total sum of squares 258 

SSHM, SSGCM and SSRCP correspond to SST partitioned into sum of squares of the effects 259 

(hydrological model, GCM, RCP) 260 
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I is the number of subsamples and 𝜂+is the variance fraction for each effect. 264 

 265 

3. Results 266 

3.1 Model calibration and performance 267 

 268 

Table 4 summarises the final values of the main calibration parameters for each of the 269 

five hydrological models. As described above, the alternative process representations 270 

means that not all of these parameters are relevant to each model and the parameters 271 

modified during calibration varied between models. The values of horizontal and vertical 272 

hydraulic conductivity within the SZ, representing the upper aquifer unit of Quaternary 273 

alluvium and weathered/fractured volcanics, are up to an order of magnitude larger in 274 

models 3 and 4 that use physically-based conceptualizations of the UZ, compared with 275 

Model 1 with a simpler representation of the UZ. It is probable that the higher hydraulic 276 

conductivities for the former are required to compensate for the longer transit times 277 

through the UZ as simulated by the Gravity Flow and Richard’s equation approaches. 278 

Indeed, the calibrated hydraulic conductivity values are more than an order of magnitude 279 

lower than those employed by Jira (2019) in SZ models using MODFLOW. The bypass 280 

fraction, which determines the proportion of precipitation that under certain conditions is 281 

routed directly to the water table, was similar across all models. Similarly, the same 282 

values were established for the UZ hydraulic conductivity for the two models (1 and 2) 283 

employing the conceptual 2-layer water balance approach. 284 

 285 
[TABLE 4] 286 

 287 



 
 

Fig. 2a&b shows observed and simulated mean monthly discharge at both gauging 288 

stations for the calibration and validation periods. Monthly mean discharges are shown 289 

in the interests of clarity since simulation results are provided for each of the five 290 

hydrological models. Statistical measures of model performance and their classification 291 

using the scheme of Henriksen et al. (2003) using both daily and monthly mean 292 

discharges at each station for both periods and all five models are presented in Table 5. 293 

Simulated and observed low flows in the dry season (DJF) and logNSE values for both 294 

daily and monthly mean discharges are shown in Table 6.  295 

 296 

According to the performance scheme, monthly NSE values indicate at least ‘very good’ 297 

model performance (NSE > 0.7) for all models at both stations for the calibration period. 298 

NSE values for this period suggest improvement in performance between models 1 and 299 

2 that is associated with the introduction of spatial distributed soil parameters within the 300 

UZ. Model performance according to NSE is more variable in the validation period 301 

although it is at least ‘fair’ across all models with the exception of Model 3 at Melka. 302 

NSE values indicate weaker performance at a daily time-steps compared to monthly 303 

metrics (see also Thompson et al. 2014b) with Model 5 providing the best performance 304 

at this shorter time step. In most cases r values are above 0.9 in the calibration period and 305 

are all above 0.8 with some exceeding 0.9 in the validation period.  306 

  307 

[TABLE 5] 308 

 309 

According to the values of Dv, all models provide at least ‘fair’ performance during the 310 

calibration period and indicate an overall underestimation of river flow at Melka and an 311 

overestimation at Hombole. Dv values are poorer for the validation period with 312 

classifications ranging from ‘very poor’ to ‘fair’. All models tend to overestimate peak 313 

discharges in the validation period, albeit to varying degrees. This is particularly notable 314 

for models 4 and 5. Given the flashy nature of river flow in the UAB, Dv values are likely 315 

skewed by the inability of all of the models to fully capture the range of flow extremes. 316 

This is supported by the daily and monthly logNSE values which are generally lower than 317 

the NSE values across both the calibration and validation periods. In common with the 318 

NSE values, logNSE values are weaker at a daily time-step compared to monthly. 319 

Monthly logNSE values range from 0.22-0.58 in the calibration period and -0.21 to 0.68 320 



 
 

in the validation period across both stations, suggesting a large disparity among the 321 

hydrological models in their ability to simulate low flows.  The logNSE values at 322 

Hombole are generally better than at Melka across all hydrological models. The ability to 323 

reproduce low flows is notably poor in the validation period for models 4 and 5 with 324 

negative logNSE values.  325 

 326 
 [TABLE 6] 327 

 328 

Fig. 2c-f show observed and simulated river regimes (monthly mean discharge) for all 329 

hydrological models in the calibration and validation periods. Although timing of the 330 

observed seasonal peak is reproduced very well for the calibration period, all models 331 

underestimate wet season July-August-September (JAS) discharges at Melka. This 332 

underestimation ranges from, on average, 14% for Model 4 to 35% for Model 3. 333 

Underestimation of wet season discharges also dominates at Hombole (three models) with 334 

a range of 6-15% (models 2 and 3, respectively). Models 4 and 5 overestimate discharge 335 

at this time by, on average, 10% and 17%, respectively. All of the models except Model 336 

3 overestimate the low dry season (DJF) flows. This overestimation is more pronounced 337 

at Melka. The largest overestimates are for Model 4 (375% for Melka, 210% for 338 

Hombole) whereas the smallest are for Model 2 (74% at Melka, 1% at Hombole). The 339 

average absolute differences in DJF flows across all hydrological models are, however, 340 

relatively small (4.1 m3s-1 and 4.9 m3s-1 at Melka and Hombole, respectively). 341 

 342 

Inter-hydrological model ranges in simulated discharge, indicated by the river regimes, 343 

are larger for the validation period. At Melka, mean overestimation of JAS discharge 344 

ranges from 16% (Model 5) to 52% (Model 3) whereas at Hombole different models are 345 

responsible for the smallest (16%, Model 2) and largest (32%, Model 5) overestimates. 346 

Underestimates in mean JAS discharges are restricted to Model 1 and are by comparison 347 

relatively small (2% at Melka and 4% at Hombole). The representation of dry season 348 

(DJF) river discharge remains an area of significant inter-hydrological model variability. 349 

Model 3 is, as for the calibration period, the only model to underestimate low flows (12% 350 

at Melka, 36% at Hombole). The remaining models all overestimate low flows by at least 351 

100% at both stations. Overestimates at Melka range from a mean of 280% (Model 2) to 352 

750% (Model 4) and at Hombole from 100% (Model 2) to 430% (Model 4). 353 



 
 

 354 

[FIGURE 2] 355 

 356 

A comparison of annual observed and simulated Q10 discharges (i.e. discharges equalled 357 

or exceeded for 10 percent of the year) at the two gauging stations for both the calibration 358 

and validation periods and each hydrological model demonstrates relatively good 359 

replication of high flow with reasonable r values cross the calibration (0.49-0.79) and 360 

validation (0.77-0.91) periods. The spread of model results (lowest r values) is larger for 361 

Model 3, which produces a notably higher bias at Melka. The r values for comparisons 362 

between annual observed and simulated Q90 discharges (discharges equalled or exceeded 363 

for 90 percent of the year) are less favourable for both the calibration (0.16-0.69) and 364 

validation (0.14-0.69) periods. Models 1, 4 and 5 produce particularly large differences 365 

between observed and simulated low flows. As demonstrated by the logNSE values, 366 

Models 2 and 3 are comparatively superior in simulating annual Q90 discharges and 367 

Model 3 is the only model to underestimate low flows. Inadequate low-flow performance 368 

likely stems from a relatively small weighting given to low flows in the calibration 369 

process and the dominant reliance on NSE and r that favour the replication of peak flows. 370 

 371 

3.2 Projected changes in precipitation and PET 372 

Catchment-averaged baseline and projected mean monthly precipitation and PET under 373 

the RCP4.5 and RCP8.5 scenarios for each of the six GCMs are shown in Fig. 3a-d. 374 

Percentage changes in mean annual precipitation and PET for each GCM and both 375 

scenarios are shown in Fig. 4e-h. 376 

 377 

The magnitude of precipitation and PET changes, as well as inter-GCM variability, is 378 

considerably larger for RCP8.5 compared to RCP4.5. All but one GCM project increases 379 

in mean annual precipitation for both RCP scenarios. The exception is CSIRO-Mk3 that 380 

projects a decline of 7% for RCP8.5. This same GCM projects only very modest (0.5%) 381 

increases under RCP4.5. In both cases, increases are concentrated in the dry season and 382 

precipitation declines in most wet season months. The remaining five GCMs project 383 

increases at this time of year and consequentially higher annual precipitation totals. The 384 

GCM responsible for the largest increase varies between RCP scenarios. MPI-ESM-MR 385 



 
 

accounts for the largest increase for RCP4.5 (+31%) and CanESM2 (58%) for RCP8.5. 386 

It is also notable that a number of GCMs project a change in the temporal distribution of 387 

rainfall with an enhanced bimodal distribution developing in the form of a second, but 388 

smaller, rainy season between January and April. This is most notable for CSIRO-389 

Mk3.6.0, IPSL-CM5A-MR and MPI-ESM-MR (RCP4.5) and CanESM2 and IPSL-390 

CM5A-MR (RCP8.5). 391 

 392 

All six GCMs project increases in annual PET for both RCP scenarios although the 393 

magnitude of the changes varies. For RCP4.5 increases in annual PET range from 2% 394 

(CanESM2) to 10% (CSIRO-Mk3). In most cases the magnitude of gains in PET increase 395 

under the RCP8.5 scenario although at the lowest extreme the 2% increase for CanESM2 396 

is repeated. The largest increase of 17% is again for CSIRO-Mk3 and there is an 397 

approximate consistency in the relative order of magnitude of change for different GCMs 398 

between the two scenarios. CanESM2 is the only GCM that projects decline in any of the 399 

mean monthly PET totals. In most cases these declines occur in months when baseline 400 

PET is relatively low. 401 

 402 

 [FIGURE 3] 403 

 404 

3.3 Projected changes in river discharge 405 
Fig. 4 shows percentage changes in mean discharge from the baseline at both Melka and 406 

Hombole as simulated by the five hydrological models for each GCM and the two RCP 407 

scenarios. Near-consistent increases in mean catchment precipitation for the six GCMs 408 

are not repeated for mean discharge. A larger proportion, albeit still a minority of the 409 

GCM-hydrological model results, projects declines in mean discharge. This contrast 410 

reflects consistent increases in PET. For RCP4.5 declines in mean discharge at both 411 

stations for all five hydrological models are projected for CCSM4 and CSIRO-Mk3 412 

whereas all but one hydrological model (Model 1) projects declines for HadGEM2-ES. 413 

The largest declines are projected for CSIRO-Mk3 with a mean across the five models of 414 

35% at Melka and 32% at Hombole. At the other extreme, consistent increases across the 415 

five hydrological models are projected for CanESM2, IPSL-CM5A-MR and MPI-ESM-416 

MR with the last projecting the largest mean increase across the hydrological models of 417 

55% at both Melka and Hombole. 418 



 
 

 419 

Under RCP8.5 fewer GGM-hydrological model results are associated with declines in 420 

mean discharge. The GCM responsible for the largest increases (mean 169% and 193% 421 

for Melka and Hombole, respectively) is CanESM2. At Melka all hydrological models 422 

project declines for CCSM4 and CSIRO-Mk3 whereas at Hombole one model (Model 1) 423 

projects an increase for the first of these GCMs. As with RCP4.5, CSIRO-Mk3 projects 424 

the largest declines (on average 47% and 37% for Melka and Hombole, respectively and 425 

larger than those for RCP4.5). For CCSM4, mean discharge is projected to decline by an 426 

average of 7% at Melka and Hombole excluding Model 1. In general, where increases in 427 

discharges are projected they are larger than those for RCP4.5 with the exception of MPI-428 

ESM-MR (a smaller increase relative to RCP4.5). HadGEM2-ES projects an average 429 

increase of 28.5% at both stations compared to the mean decline of 5% for RCP4.5.  430 

 431 

[FIGURE 4] 432 

 433 

Following the approach of Gosling et al. (2011) and Thompson et al. (2013), 434 

Supplementary Fig. 3 and 4 show percentage change in mean annual discharge from the 435 

alternative application of scenario precipitation and PET for RCP4.5 and RCP8.5. For 436 

each GCM and hydrological model, projected changes in mean annual discharge are 437 

obtained from the alternative application of either scenario PET and scenario precipitation 438 

whilst retaining baseline time series for the other model input. The results confirm that 439 

inter-GCM uncertainty in projected river discharge mainly arises from uncertainty in 440 

precipitation projections. Where gains in precipitation are relatively small, enhanced PET 441 

results in reductions in discharge whereas higher PET magnifies drying under a projected 442 

reduction in precipitation. Mean discharge decreases in the majority of cases regardless 443 

of hydrological model if only perturbed PET is applied. Comparing the range of projected 444 

changes in mean annual discharge if only scenario precipitation is applied with the 445 

equivalent value if only scenario PET is applied shows that projected changes in mean 446 

annual discharge due to the application of perturbed precipitation alone is on average 7 447 

times (15 times) larger than the corresponding range due to the application of perturbed 448 

PET alone under RCP4.5 (RCP8.5).  449 

 450 



 
 

Fig. 4 shows that the direction of change in mean discharge remains the same regardless 451 

of hydrological model used with the few exceptions involving Model 1 described above. 452 

In contrast, and as also described above, different GCMs produce both increases and 453 

decreases in mean discharge. The range of change between hydrological models for an 454 

individual GCM is indicative of inter-hydrological model uncertainty. Similarly, the 455 

range of changes in projected discharges for different GCMs simulated by a single 456 

hydrological model provides an assessment of inter-GCM uncertainty (Dams et al. 2015). 457 

Table 7 reports the percentage changes in projected mean discharge for inter-hydrological 458 

model and inter-GCM uncertainty. These results demonstrate that inter-GCM uncertainty 459 

is larger than the uncertainty associated with the use of different hydrological models. 460 

For example, for the RCP4.5 scenario the percentage range in mean discharge at Melka 461 

simulated for a given GCM by the different hydrological models ranges between 7% and 462 

25% (mean: 17%). The corresponding range for Hombole is 7–26% (mean: 14%). This 463 

contrasts with the average inter-GCM percentage for mean discharge of 91% (73–119%) 464 

and 87% (70–111%) for the two gauging stations, respectively. A similar pattern is 465 

evident for RCP8.5 albeit with an increase in both sets of ranges. For example, at Melka 466 

the mean inter-hydrological model range for mean discharge is 25% (8–51%) compared 467 

to 216% (195–259%) for the inter-GCM range. At Hombole, inter-hydrological model 468 

range is larger (mean: 79%, 56–140%) than at Melka but still smaller than the inter-GCM 469 

range (mean: 221%, 176–281%).  470 

 471 

[TABLE 7] 472 

 473 

Baseline and projected river regimes at Hombole for each GCM and both RCP scenarios 474 

are shown in Fig. 5. Results for Hombole, the downstream station, are shown in light of 475 

the overall consensus in the direction of changes projected at the two gauging stations for 476 

the same RCP scenario / hydrological model. Changes in the regime at Melka follow 477 

those at Hombole (Supplementary Figure 2). There is considerable inter-GCM 478 

uncertainty in the seasonal distribution of river flow. Changes in river regimes are more 479 

pronounced for those hydrological models that include a spatially-distributed unsaturated 480 

zone (models 2-4) with particularly pronounced variability in peak discharge being 481 

evident for models 2 and 3. Inter-GCM variability in the regimes simulated by Model 4, 482 

which used the fully distributed physically-based Richards equation, is relatively subdued 483 



 
 

but is noticeably larger than for models 1 and 5 which employed spatially uniform and 484 

more conceptual approaches to represent key hydrological processes. 485 

 486 

[FIGURE 5] 487 

 488 

For RCP4.5, the largest increase in peak discharges across all hydrological models and at 489 

both gauging stations is projected by MPI-ESM-MR. On average this GCM projects 490 

increases in JAS discharges of 42.5% and 43% at Melka and Hombole, respectively. 491 

CSIRO-Mk3 projects the largest decreases (mean JAS declines of 45.1% and 46.5%, 492 

respectively). Whilst for RCP8.5 the same GCM (CSIRO-Mk3) projects the largest 493 

decreases in JAS discharge (58% and 59% for Melka and Hombole, respectively), the 494 

largest increases are projected by CanESM2 (76% and 81%, respectively). All GCMs 495 

project increases in river discharge during the dry season (DJF) when low flows (Q90) 496 

occur. For RCP4.5, these range between 9% and 10% for Melka and Hombole, 497 

respectively for HadGEM2-ES and between 252% and 285% for MPI-ESM-MR. For 498 

RCP8.5, mean changes in DJF flows range from between 52% and 66% for HadGEM2 499 

to between 1000% and 1280% for CanESM2 for Melka and Hombole, respectively.  500 

 501 

Inter-GCM and inter-hydrological model differences in projected changes in high and 502 

low flows are further demonstrated in Fig. 6. This figure shows percentage changes in 503 

Q10 and Q90 as simulated by each hydrological model when forced with both RCP 504 

scenarios derived from the six GCMs. Results are provided for Hombole and are broadly 505 

representative of those for Melka. The relative magnitude of change in low flows (Q90) 506 

is much larger than changes in both mean (Fig. 4) and high (Q10) flows. Projections for 507 

RCP4.5 from the different GCMs are approximately evenly split with CCSM4, 508 

HadGEM2 and CSIRO-Mk3 generally producing declines in both Q10 and Q90 for all of 509 

the hydrological models. Increases in these flows dominate results for the remaining three 510 

GCMs (CanESM2, IPSL-CM5A-MR and MPI-ESM-MR). The magnitude of these 511 

changes tends to increase in both directions for RCP8.5 although, in general, gains in the 512 

magnitude of the increases in Q10 and Q95 are larger than those where these flows 513 

decline. 514 

 515 



 
 

Figure 6 shows substantial inter-hydrological model variability in projected high and low 516 

flows at Hombole. This variability is particularly pronounced for Q90 compared to Q10. 517 

In a number of cases different hydrological models project a different direction of change 518 

in low flows for the same GCM. For example, for RCP4.5 Model 5 projects relatively 519 

large increases for CCSM4, CSIRO-Mk3, HadGEM-ES and IPSL-CM5A-MR whereas 520 

most other hydrological models project declines or only small increases. This pattern is 521 

repeated for CCSM4 and CSIRO-Mk3 in the case of RCP8.5. The inter-hydrological 522 

model range of changes in Q90 for a given GCM varies between 147% (HadGEM-ES) 523 

and 228% (MPI-ESM-MR) under RCP4.5 and 161% (CCSM4) to 419% (CanESM2) 524 

under RCP8.5. Inter-hydrological model variability in high (Q10) flows is comparatively 525 

smaller and varies between 13% (IPSL-CM5A-MR) and 43% (MPI-ESM-MR) under 526 

RCP4.5 and 10% (HadGEM-ES) and 67% (CanESM2) under RCP8.5. There are fewer 527 

instances of the direction of change in high flows for a given GCM varying according to 528 

hydrological model. Such disagreements are limited to CCSM4 for both RCP scenarios 529 

and HadGEM-ES for RCP4.5. In each case, the single hydrological model that projects a 530 

different direction of change (Model 5 for CanESM2 and Model 1 for HadGEM-ES) 531 

projects only a very small change from the baseline. 532 

 533 
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 535 

3.4 Uncertainty quantification 536 

Variance decomposition using ANOVA for individual river discharge quantiles is 537 

presented in Figure 7. Uncertainty attribution confirms that GCM-related uncertainty is 538 

the largest and most dominant source of uncertainty. The mean contribution of GCMs to 539 

overall uncertainty over Q10, Q50 and Q90 runoff quantiles is 54% across both gauging 540 

stations. The average fraction of uncertainty attributed to the different hydrological 541 

models is 7%. For low flows (Q90) the average fraction of uncertainty attributed to the 542 

different hydrological models (18%) is considerably higher than the corresponding 543 

figures for both median and high flows (Q10) (1% and <0.5%, respectively). For climate 544 

change signals of both high flows (Q10) and median flows (Q50), GCM and RCP 545 

scenarios are the largest contributors to uncertainty (>70% for both stations). However, 546 

for low flows (Q90), the contribution of hydrological model uncertainty to overall 547 



 
 

uncertainty is considerably higher. The contribution of different hydrological models to 548 

overall uncertainty in projections of Q90 is particularly pronounced at Hombole (27%) 549 

where it is comparable to GCM-related uncertainty and larger than the combined 550 

contribution of interactions between GCM and RCP-related uncertainties. 551 

 552 

[FIGURE 7] 553 

 554 

4. Discussion 555 

4.1 Model performance and uncertainty sources 556 

Model performance reflects findings from previous model inter-comparison studies. 557 

Despite being relatively less complex, models that are conceptual or have uniformly 558 

distributed parameter values (i.e. Model 1, 2 and 5 in this study) can exhibit similar, if 559 

not better, performance to physically-based or spatially distributed models (i.e. Models 3 560 

to 4) when calibrated against observations from an historical period (Reed et al. 2004; 561 

Duan et al. 2006). It should be noted that the models were calibrated using observations 562 

from only two gauging stations and similar model performance across all models is 563 

expected. Despite this, model performance at Melka and Hombole for the different 564 

hydrological models was comparable to, if not better than, previous hydrological models 565 

of the UAB (Table 8). 566 

 567 

[TABLE 8] 568 

 569 

Inter-hydrological model uncertainty was considerably higher for low flows (Q90). 570 

Previous continental-scale modelling studies have similarly found greater variability in 571 

projections of low flows that were context- and catchment-specific (Vetter et al. 2015; 572 

Krysanova et al. 2017). It has also been suggested that commonly used hydrological 573 

models tend to have relatively poorer predictive ability for low flows given the focus of 574 

most models on reproducing a basin’s response to precipitation (Staudinger et al. 2011; 575 

Trudel et al. 2017). Results from this study also reinforce the need to consider variables 576 

beyond mean annual and monthly discharge that may reveal critical differences between 577 

model structures that might otherwise not be identifiable (Gosling et al. 2011). 578 

 579 



 
 

A number of global multi-model studies have similarly suggested higher hydrological 580 

model-related uncertainty in projections of low flows under climate change. Inter-581 

hydrological model uncertainty in Q90 from the current study was also comparable to the 582 

absolute percentage differences found between hydrological models (>30%) by 583 

Vansteenkiste et al. (2014a,b). Comparing multiple distributed and semi-distributed 584 

models (including MIKE SHE) with different conceptualizations of groundwater-surface 585 

water interactions for a Belgian catchment, it was concluded that projections exhibited 586 

common impact trends for high/mean flows among the models but that results were 587 

highly variable for low flows. This variability in low flows occurred without any specific 588 

conceptualization of groundwater flow yielding superior model performance during 589 

calibration. Using four hydrological models of varying complexity, including both 590 

lumped and distributed approaches, in a climate change impact assessment for the 591 

Tualatin River Basin (Oregon, USA), Najafi et al. (2011) similarly concluded that choice 592 

of model exerts considerable uncertainty in discharge projections during the dry season.  593 

 594 

Uncertainty attribution showed that the mean contribution of GCMs to overall uncertainty 595 

for the UAB was comparable to the GCM fraction of total uncertainty (57%) averaged 596 

over 12 global basins by Krysanova et al. (2017). The average fraction of uncertainty 597 

attributed to the different hydrological models for Q90 is comparable to the fraction 598 

calculated for four out of the 12 basins (Niger, Darling, Upper Amazon and Blue Nile) in 599 

this earlier study. In contrast, the hydrological model-related fraction of uncertainty for 600 

Q10 is substantially lower than projected for all 12 basins by Krysanova et al. (2017). 601 

Our results reinforce that the contributions of individual uncertainty sources vary in space 602 

and that this might warrant different modelling philosophies to reduce the relative 603 

dominance of different sources of uncertainties (Hattermann et al. 2018). 604 

 605 

4.2 Comparison between hydrological models 606 

Uncertainties associated with hydrological model structures can be considerable 607 

depending on the calibration strategy and the selected hydrological variables. The 608 

addition of spatially distributed soil classes from Model 1 to Model 2 while the other 609 

process representations of unsaturated and saturated flow remained the same was 610 

assumed to be advantageous. However, additional parameterization as a result of 611 



 
 

specifying individual calibration parameters for each soil type may contribute to over-612 

parameterization and an improvement in model performance may not result across 613 

different climatic and environmental conditions (Jakeman and Hornberger 1993). 614 

Comparing MIKE SHE models with spatially uniform and distributed parameterisations 615 

of the Tern catchment (UK), Rochester (2010) found better performance from distributed 616 

models at locations underlain by impermeable geology. The domination of clay within 617 

the UAB and the representation of the saturated zone as a single layer of basaltic volcanic 618 

strata that is impermeable in certain regions (Yitbarek et al. 2012), may contribute to 619 

better performance of Model 2. However, although also including spatially distributed 620 

soils, the performance of Models 3-5 was only comparable and in some cases, marginally 621 

worse than models 1 and 2. This may relate to the additional parameters associated with 622 

the variation of process descriptions of unsaturated and saturated flow and the limitation 623 

of the manual calibration strategy employed in this study. Model equifinality exhibited 624 

for mean flows reflect findings of previous model intercomparison studies but 625 

considerable uncertainties exists for the representation of low flows. Even though models 626 

1-4 all employed a finite difference method for saturated zone flow, their performance 627 

for low flows varied substantially. This suggests that parameter and structural uncertainty 628 

associated with the representation of the unsaturated zone and so groundwater recharge 629 

is particularly important for the simulation of low flows.  630 

 631 

Given that the models used in this study span a range of commonly-used model structures, 632 

variations in process descriptions within MIKE SHE show that the evaluation of singular 633 

model components within an individual model code should be as fundamental as 634 

comparisons between hydrological model codes. Considerably different parameter values 635 

used in the alternative models demonstrate the importance of considering model 636 

equifinality. Variable model performance due to the use of different process 637 

representations of the unsaturated zone highlight the fact that considerable uncertainties 638 

still remain in the representation of the subsurface and the contributions from 639 

groundwater to low flows among hydrological models. The addition of conceptual 640 

effective parameters to represent macropore flows and spatial heterogeneity within 641 

physically-based process equations is further indicative of the need to better characterize 642 

and constrain epistemic uncertainties (Beven and Germann 2013). Comparing the 643 

simulation of root-zone dynamics using reservoir schemes (e.g. 2-layer water balance) 644 



 
 

and the Richards equation, Baroni et al. (2010) found comparable performance especially 645 

when no site-specific calibration was conducted. Although the Darcy-Richards equation 646 

remains the dominant description of the unsaturated zone in physically-based distributed 647 

models, non-linearity in spatially heterogeneous soils, inaccuracy at the catchment scale 648 

and the exclusion of preferential flow are concerns (Gupta et al. 2012; Beven and 649 

Germann 2013). The inclusion of preferential flow in the model employing the gravity 650 

flow unsaturated zone approach (Model 3) did not have a large influence on overall model 651 

performance.  652 

 653 

4.3 Climate change implications 654 

Projections from the six different GCMs demonstrate the dominance of projected 655 

increases in precipitation over the UAB. This reflects results of past multi-model studies 656 

and ensemble projection that have consistently projected increased precipitation over East 657 

Africa (Niang et al. 2014). Examining historical global precipitation data, Knoben et al. 658 

(2019) detected a gradual transition from bimodal to unimodal precipitation regimes 659 

latitudinally across Africa with a bimodal regime over Ethiopia. A number of GCMs used 660 

in this study project the development of a unimodal regime over the UAB under both 661 

RCP4.5 and RCP8.5. It is therefore plausible that under climate change, the latitudinal 662 

gradient in precipitation modality across Africa may shift. Projections of increased 663 

precipitation are in apparent contrast to significant drought events experienced across 664 

East Africa in recent decades, sometimes referred to as the ‘East African Climate 665 

Paradox’ (Souverijns et al. 2016; Nicholson 2017). Possible reasons for the discrepancy 666 

include the impacts of anthropogenic aerosol emissions, uncertainty in GCM 667 

representation of key processes, changes in seasonality of the rainy season and natural 668 

variability (Rowell et al. 2015; Wainwright et al. 2019).  669 

 670 

Consistency in outcomes of the impact of climate projections from different GCMs for 671 

increases in discharge and high flows (Q10) is greater for RCP8.5 than for RCP4.5, 672 

indicating a degree of confidence over the projected direction of change under scenarios 673 

of higher greenhouse-gas concentrations (i.e. RCP8.5). Projected increases in mean 674 

flows, Q10 and flood frequency over East Africa and other monsoonal regions are well 675 

documented in global-scale modelling studies (Arnell and Gosling 2013; Koirala et al. 676 



 
 

2014). Greater model agreement in projections of increased discharge under RCP8.5 in 677 

this study is also consistent with an evaluation of CMIP5 model agreement in global 678 

streamflow change (Koirala et al. 2014). Given that this study is only based on a subset 679 

of CMIP5 GCMs, an extension of this study would be to conduct a complete assessment 680 

using all 41 CMIP5 GCMs or genealogical-based model groups (e.g. Ho et al. 2016; 681 

Thompson et al. 2017; Hudson and Thompson 2019). 682 

 683 

Effective decision-making in the UAB may be hampered by the large range of 684 

uncertainties revealed in this study. Projected increases in precipitation and river flow 685 

could be expected to benefit agricultural production. However, reductions in precipitation 686 

and river flow are equally plausible. Assessing the economic impacts of hydrological 687 

changes in the Awash River Basin, Borgomeo et al. (2018) found that a 5% reduction in 688 

precipitation or a spatial redistribution of rainfall under climate change could incur up to 689 

a 10% drop in GDP of the agricultural sector. The high sensitivity of low flows to 690 

hydrological model structural uncertainty relative to mean and high flows will have 691 

significant implications for both drought mitigation (e.g. Duan et al. 2014) and 692 

environmental flows (e.g. Thompson et al. 2014a). Diverging scenarios projected by 693 

different GCMs and hydrological models may be plausible but could easily be omitted in 694 

ensemble analyses. Recent studies have suggested employing a ‘storylines’ approach to 695 

navigate uncertainties incurred along the modelling chain (Clark et al. 2016; Shepherd 696 

2019). Increasingly popular in climate science, storylines are suites of equally plausible, 697 

quantitative narratives that are catered towards providing regional climate change 698 

information to better enable decision-making (Shepherd 2019). Applying a storylines 699 

approach could better present information of plausible hydrological changes directed at 700 

operational decision making and stress-testing water resources systems to improve 701 

climate resilience.  702 

 703 

5. Conclusions 704 

Climate change impacts on river discharge in the Upper Awash Basin (UAB) of Ethiopia, 705 

assessed using an ensemble of five MIKE SHE hydrological models, six CMIP5 GCMs, 706 

and two greenhouse-gas concentration trajectories (RCP4.5, RCP8.5) reveal substantial 707 

GCM-related uncertainty in projected river discharge that determines both the direction 708 



 
 

and magnitude of change from baseline to the end of this century, 2071-2100 (RCP4.5: -709 

34% to +55%; RCP8.5: -42% to +195%). Our application of an ensemble of five MIKE 710 

SHE hydrological models found, consistent with previous model inter-comparison 711 

studies, that models with spatially uniform parameter values exhibit similar performance 712 

to physically-based models with spatially distributed parameterizations. Model 713 

performance generally exceeded that of previous hydrological models of the UAB and 714 

demonstrated a bias to its representation of peak flows (Q10) compared to low flows 715 

(Q90). Uncertainty attribution using ANOVA shows that GCM-related uncertainty 716 

represents, on average, 68% of the total uncertainty for mean and high flows whereas 717 

hydrological model uncertainty constitutes an average 18% of total uncertainty in the 718 

low-flow projections. At the downstream gauging station in the UAB (Hombole), the 719 

contribution of uncertainty in hydrological model structure (27%) to total uncertainty was 720 

comparable to that of GCM-related uncertainty for low (Q90) flows. Of note is that 721 

uncertainties arising from different hydrological model structures are masked if only 722 

projections of mean annual discharge are considered.  723 

 724 

Substantial uncertainties in the representation of low flows attributed to hydrological 725 

model structure have significant implications for the prediction and management of 726 

drought risks in semi-arid catchments such as the UAB. The lack of integrated monitoring 727 

infrastructure observing precipitation, surface waters and groundwater levels currently 728 

impairs the development of robust conceptual models of basin hydrology including 729 

critically seasonal interactions between groundwater and streamflow, and the observed 730 

contribution of groundwater to baseflow. On the modelling side, possible extensions to 731 

this study include consideration of additional sources of uncertainties along the impact 732 

modelling chain such as PET-related uncertainty stemming from the choice of algorithm 733 

used in its calculation (e.g. Kingston et al. 2009; Thompson et al. 2014b). Alternative 734 

approaches to bias correcting climate projections such as quantile mapping (see Rahman 735 

et al. 2020) could also be explored. Characterizing the propagation of impact model 736 

uncertainty in the hydrological projections in terms of environmental flows (e.g. 737 

Thompson et al. 2014a) could also be a next step to better understand potential hydro-738 

ecological impacts of climate change on the Upper Awash Basin. 739 

 740 

 741 
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Figure titles 1002 

Figure 1. The River Awash Basin (a) location within East Africa; (b) delineation of the 1003 

Upper Awash Basin within the Awash Basin; and (c) the Upper Awash Basin including 1004 

elevation, main drainage network and hydro-meteorological monitoring infrastructure 1005 

from which data are used in the current study. (Note: this figure is purely to illustrate the 1006 

location of the UAB within Ethiopia and is not representative of an official endorsement 1007 

of disputed country borders) 1008 

Figure 2. Baseline and simulated river discharge at the Melka and Hombole gauging 1009 

stations: (a,b) monthly mean discharge (through the simulation period with calibration 1010 

and validation periods indicated; (c-f) river regimes for calibration and validation periods; 1011 

note: different y-axis ranges. 1012 

Figure 3. a-d) Percentage change in precipitation and PET from the baseline (1979-1999) 1013 

for each GCM and RCP scenario (2071-2100); e-h) Baseline and projected mean monthly 1014 

catchment-averaged precipitation and PET for each GCM and both RCP scenarios. 1015 

Figure 4. Percentage changes in mean discharge at Melka and Hombole relative to the 1016 

baseline for each hydrological model and GCM under RCP4.5 (top row) and RCP 8.5 1017 

(bottom row); note: different y-axis ranges for the two RCP scenarios. 1018 

Figure 5. Baseline and simulated river regimes at Hombole for each GCM and 1019 

hydrological model under RCP4.5 and RCP8.5. 1020 

Figure 6. Percentage changes in Q10 and Q90 at Hombole for each hydrological model 1021 

and GCM under the RCP4.5 and RCP8.5 scenarios. 1022 

Figure 7. Contribution of each source of uncertainty and interactions between them to 1023 

overall uncertainty in projections of Q90, mean and Q10 discharges at Melka and 1024 

Hombole.  1025 

Supplementary Figure 1 Boxplots of delta factors for annual mean precipitation and 1026 

annual mean temperature over the Upper Awash catchment for all CMIP5 GCMs and the 1027 

six selected GCMs. 1028 



 
 

Supplementary Figure 2 Baseline and simulated river regimes at Melka for each GCM 1029 

and hydrological model under RCP4.5 and RCP8.5. 1030 

Supplementary Figure 3. Percentage change in mean discharge at Melka and Hombole 1031 

simulated by each hydrological model from the combined and individual application of 1032 

scenario precipitation and PET for the six GCMs and RCP 4.5 scenario. 1033 

Supplementary Figure 4. Percentage change in mean discharge at Melka and Hombole 1034 

simulated by each hydrological model from the combined and individual application of 1035 

scenario precipitation and PET for the six GCMs and RCP 8.5 scenario. 1036 

  1037 



 
 

Table 1. Summary of inputs and data sources for key components of the coupled MIKE 1038 
SHE/MIKE11 model of the Upper Awash Basin. 1039 

Model component Input Data source/derivation 
MIKE SHE   

Model Domain Catchment extent ESRI polygon shapefile established from 
ALOS digital elevation model 

Topography Digital Elevation Model 
(DEM) 

30m × 30m resolution ALOS Digital 
Elevation Model resampled to 1km MIKE 
SHE grids (Tadono et al. 2014) 

Land use/vegetation Land use  Seven land use classes specified using a 
2015 land cover map (rainfed agriculture, 
Irrigated agriculture, grassland, bushland, 
forest, wetland, open water and urban areas) 

 LAI/Root depth Literature (Allen et al. 1998) 

Overland flow Manning’s M; Spatial 
distribution 

- Uniform 
- Derivation: 2D finite difference method 

Catchment meteorology Precipitation  Observed daily station data from 11 
meteorological stations distributed by 
Thiessen’s polygons. A grid file defined 11 
meteorological sub-catchments based on the 
areas of each Thiessen’s polygons to 
account for the spatial distribution in 
precipitation across the entire catchment 

 Evapotranspiration (PET) - Time-varying PET derived by calculating 
lapse rate for four elevation ranges 
(1750m, 2250m, 2750m and 3250m) from 
daily minimum and maximum temperature 
at 2354m  

- PET derived using the Hargreaves method 
(Hargreaves and Samani 1985) 

Unsaturated Zone Soil classes - Spatial distribution vary among HMs 
according to the FAO soil map of the 
world (FAO 1996) 

 Soil hydraulic properties Literature and USDA soil classes hydraulic 
properties 

Saturated Zone Spatial distribution - Uniform 
- Derivation: Varies among HMs between 

finite difference or linear reservoirs  

MIKE 11    
 River network  - River delineation from aerial photography 

(Google Earth Pro) and stream order from 
ALOS DEM 

 Cross-sections of stream 
network 

- Synthetic cross sections (Representative 
max. cross section depths and profiles 
estimated from stream orders derived from 
DEM and Google Earth Pro) 

 Hydrodynamic parameters: 
High order; Fully dynamic 

- Uniform Manning’s n of 0.04 (Chow 
1959) throughout river network 

1040 



 
 

Table 2. Alternative specification of the unsaturated and saturated zones within each 1041 
MIKE SHE model. 1042 

 Model name1 

  Model 1 
(UCP) 

Model 2 
(DCP) 

Model 3 
(DPP-G) 

Model 4 
(DPP-R) 

Model 5 
(DCC) 

Unsaturated Zone Spatial Distribution      
   Uniform (U) P     
   Distributed (D)  P P P P 
Unsaturated Flow Process Representation      
   2-layer Water Balance (C) P P   P 
   Gravity Flow (P-G)   P   
   Richards Equation (P-R)    P  
Saturated Flow Process Representation      
   Finite Difference (P) P P P P  
   Linear Reservoir (C)     P 

1Model name refers for whether or not the hydrological model is uniformly distributed (U), spatially 1043 
distributed (D) conceptual (C) or physically-based (P) in their representation of the spatial 1044 
distribution of the unsaturated zone, and the process representation of the unsaturated zone and 1045 
saturated zone respectively. 1046 
 1047 
 1048 
 1049 
 1050 
 1051 
 1052 
 1053 
 1054 
 1055 
 1056 
 1057 
 1058 
 1059 
 1060 
 1061 
 1062 
 1063 
 1064 
 1065 
 1066 
 1067 
 1068 
 1069 
 1070 
 1071 
 1072 
 1073 
 1074 
 1075 
 1076 
 1077 



 
 

Table 3. Selected GCMs and their respective host institutions. 1078 

Modelling institute GCM 

Canadian Centre for Climate Modelling and Analysis CanESM2 (CA) 
National Centre for Atmospheric Research CCSM4 (CC) 
Commonwealth Scientific and Industrial Research (AU) CSIRO-Mk3.6.0 (CS) 
Met Office Hadley Centre HadGEM2-ES (HA) 
Institut Pierre-Simon Laplace IPSL-CM5A-MR (IP) 
Max Planck Institute for Meteorology MPI-ESM-MR (MP) 
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 1080 
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Table 4. Final values of calibration parameters for each MIKE SHE model. 1119 

Calibration parameter Model 1 
(UCP) 

Model 2 
(DCP) 

Model 3 
(DPP-G) 

Model 4 
(DPP-R) 

Model 5 
(DCC) 

UZ Saturated hydraulic 
conductivity (ms-1) 

9.8e-009 9.8e-008 NA1 NA1 NA1 

Horizontal hydraulic 
conductivity (ms-1) 

2.1e-008 3.5e-008 3.5e-007 5e-007 NA1 

Vertical hydraulic 
conductivity (ms-1) 

2.4e-009 3e-009 6e-008 8e-007 NA1 

Bypass fraction 0.25 0.15 0.2 0.25 0.18 
1NA denotes that the process representation included within a specific model does not include this 1120 
parameter. 1121 
 1122 
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 1124 
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 1126 

 1127 
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 1132 

 1133 

 1134 
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Table 5. Daily and monthly model performance statistics at Melka and Hombole for 1141 
each hydrological model for the calibration (cal.) and validation (val.) periods. 1142 

Station  Dv (%) Daily NSE Monthly NSE Monthly r 
Model 1 (UCP)      

Melka cal. 
val. 

-0.98 ééééé 
26.9 éé 

0.45 éé 
0.45 éé 

0.78 éééé 
0.82 éééé 

0.90 
0.93 

Hombole cal. 
val. 

11.8 ééé 
14.6 ééé 

0.45 éé 
0.52 ééé 

0.82 éééé 
0.83 éééé 

0.91 
0.93 

Model 2 (DCP)      
Melka cal. 

val. 
-5.72 éééé 

41.4 é 
0.53 ééé 
0.28 éé 

0.85 ééééé 
0.53 ééé 

0.92 
0.88 

Hombole cal. 
val. 

3.3 ééééé 
28.4 éé 

0.61 éééé 
0.55 ééé 

0.88 ééééé 
0.78 éééé 

0.94 
0.90 

Model 3 (DPP-G)     
Melka cal. 

val. 
-29.2 éé 

58.8 é 
0.42 éé 
0.19 é 

0.79 éééé 
0.33 éé 

0.79 
0.91 

Hombole cal. 
val. 

-10.5 ééé 
32.2 éé 

0.33 éé 
0.32 éé 

0.73 éééé 
0.60 ééé 

0.87 
0.93 

Model 4 (DPP-R)      
Melka cal. 

val. 
9.79 éééé 

68.2 é 
0.38 éé 
0.13 é 

0.79 éééé 
0.59 ééé 

0.91 
0.87 

Hombole cal. 
val. 

36.1 éé 
55.7 é 

0.54 ééé 
0.21 éé 

0.77 éééé 
0.67 éééé 

0.91 
0.89 

Model 5 (DCC)      
Melka cal. 

val. 
-6.18 éééé 

40.8 éé 
0.69 éééé 
0.64 ééé 

0.80 éééé 
0.65 éééé 

0.92 
0.90 

Hombole cal. 
val. 

38.7 éé 
40.5 éé 

0.65 éééé 
0.62 ééé 

0.66 éééé 
0.55 ééé 

0.87 
0.89 

Performance 
indicator1 

Excellent 
ééééé 

Very Good 
éééé 

Fair 
ééé 

Poor 
éé 

Very Poor 
é 

Dv (%) <5 5-10 10-20 20-40 >40 
NSE >0.85 0.65-0.85 0.50-0.65 0.20-0.50 <0.20 

1Model performance criteria based on Henriksen et al. (2003) 1143 
 1144 

  1145 



 
 

Table 6. Daily and monthly logNSE values and mean DJF river discharge for each 1146 
hydrological model for the calibration (cal.) and validation (val.) periods  1147 

Station  Daily 
logNSE 

Monthly 
logNSE 

Sim. DJF 
flow (m3s-1) 

Obs. DJF 
flow (m3s-1) 

Model 1 (UCP)      
Melka cal. 

val. 
0.49 
0.33 

0.58 
0.41 

3.56 
9.55 

1.46 
1.61 

Hombole cal. 
val. 

0.43 
0.39 

0.55 
0.49 

5.83 
13.28 

4.23 
4.33 

Model 2 (DCP)      
Melka cal. 

val. 
0.33 
0.44 

0.47 
0.54 

2.48 
6.25 

 

Hombole cal. 
val. 

0.27 
0.39 

0.34 
0.51 

4.27 
8.91 

 

Model 3 (DPP-G)      
Melka cal. 

val. 
0.22 
0.54 

0.23 
0.63 

0.92 
1.40 

 

Hombole cal. 
val. 

0.25 
0.58 

0.23 
0.68 

2.01 
2.92 

 

Model 4 (DPP-R)      
Melka cal. 

val. 
0.23 
0.12 

0.37 
-0.21 

6.92 
13.76 

 

Hombole cal. 
val. 

0.28 
-0.04 

0.33 
0.11 

13.11 
23.14 

 

Model 5 (DCC)      
Melka cal. 

val. 
0.12 
-0.03 

0.22 
-0.21 

4.65 
7.20 

 

Hombole cal. 
val. 

0.22 
0.36 

0.31 
0.34 

7.64 
10.49 
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Table 7. Inter-GCM uncertainty range (difference in maximum and minimum % change 1158 
in mean discharge) between hydrological models and inter-hydrological model 1159 
uncertainty range between GCMs. 1160 

  RCP 4.5  RCP8.5 
 Model Melka Hombole  Melka Hombole 

 
Inter-GCM 
uncertainty 

range 

Model 1 (UCP) 75 70  207 281 
Model 2 (DCP) 102 99  237 231 

Model 3 (DPP-G) 119 111  259 239 
Model 4 (DPP-R) 85 78  194 176 
Model 5 (DCC) 73 76  184 179 

 
Inter-HM 

uncertainty 
range within 
single GCM 

CanESM2 17 13  51 140 
CCSM4 7 7  10 62 

CSIRO-MK3 24 19  24 56 
HadGEM2-ES 14 10  8 77 

IPSL-CM5A-MR 16 11  34 74 
MPI-ESM-MR 25 26  22 63 
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Table 8. Model performance of previous hydrological models of the UAB; cal. and val. 1178 
refer to calibration and validation periods, respectively.  1179 

Model No. of 
stations 

Time-
step 

Period NSE r Reference 

WatBal 3 Monthly cal. 
val. 

NA 
NA 

0.88-0.96 
0.72-0.93 

Hailemariam (1999) 

MODSIM 2 Monthly combined NA 0.59-0.76 Berhe et al. (2013) 
 

GeoSFM 3 Daily cal. 
val. 

0.60-0.63 
0.60-0.61 

0.69-0.71 
0.64-0.66 

Dessu et al. (2016) 

HSPF 4 Daily cal. 
val. 

0.53-0.88 
0.53-0.72 

0.60-0.90 
0.64-0.89 

Gizaw et al. (2017) 

SWAT 2 Daily cal. 
val. 

0.67-0.89 
0.26-0.94 

0.67-0.89 
0.26-0.94 

Tolera et al. (2018) 
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Figure 4 1193 

  1194 



 
 

 1195 

Figure 5 1196 
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