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Abstract. Given a two-variable invertible polynomial, we show that its category of maximally-
graded matrix factorisations is quasi-equivalent to the Fukaya–Seidel category of its Berglund–
Hübsch transpose. This was previously shown for Brieskorn–Pham and D-type singularities by
Futaki–Ueda. The proof involves explicit construction of a tilting object on the B-side, and compar-
ison with a specific basis of Lefschetz thimbles on the A-side.

1. Introduction

1.1. Berglund–Hübsch mirror symmetry. Suppose f : Cn → C is a polynomial with an iso-
lated singularity at the origin. This paper is concerned with two A∞-categories one can naturally
associate to such an object: the Fukaya–Seidel category F(f) as defined in [20] (the ‘A-model’),
which categorifies the intersections of vanishing cycles in the Milnor fibre of a Morsification of f ;
and the (dg-)category mf(Cn, f) of matrix factorisations of f (the ‘B-model’). Mirror symmetry
predicts that for certain pairs of singularities the A-model of one is equivalent to the B-model of
the other (after taking some symmetries into account), and vice versa, and our main result confirms
this conjecture for curve singularities (n = 2).

More precisely, given an n × n matrix A with non-negative integer entries aij , one can define a
polynomial w in C[x1, . . . , xn] by

w =

n∑
i=1

n∏
j=1

x
aij
j .

The Berglund–Hübsch transpose of w, denoted w̌, is then defined by

w̌ =

n∑
i=1

n∏
j=1

x̌
aji
j .

A polynomial is called invertible if it is quasi-homogeneous and of the form w for some matrix A
with non-zero determinant, such that both w and w̌ have isolated singularities at the origin.

Quasi-homogeneity means that there exist positive integral weights d1, . . . , dn and h such that

w(td1x1, . . . , t
dnxn) = thw(x1, . . . , xn)

for all t in C∗. The maximal symmetry group Γw of w is defined by

Γw = {(t1, . . . , tn, tn+1) ∈ (C∗)n+1 : w(t1x1, . . . , tnxn) = tn+1w(x1, . . . , xn)}.

This group acts on Cn in the obvious way, and we consider the category mf(Cn,Γw,w) of matrix
factorisations which are equivariant with respect to this group action. This is equivalent to con-
sidering graded matrix factorisations with respect to the maximal grading group for which w is
homogeneous, namely the abelian group L freely generated by elements ~x1, . . . , ~xn (the degrees of
x1, . . . , xn respectively) and ~c (the degree of w) modulo the relations

n∑
j=1

aij~xj = ~c for all i.

The prediction of mirror symmetry is then:
1
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Conjecture 1. For any invertible polynomial w there is a quasi-equivalence of pretriangulated A∞-
categories

mf(Cn,Γw,w) ' F(w̌).

Remark 1.1. Our Fukaya categories are all implicitly completed with respect to cones.

This conjecture appears in [5], which explains some of the background on mirror symmetry for
Landau–Ginzburg models. See also [12, Conjecture 1.2], and references therein. The underlying
construction of mirror pairs via the transpose operation originated with Berglund–Hübsch [2], and
was later extended by Krawitz [10], who replaced the Γw on the left-hand side of Conjecture 1 with
a subgroup. This requires the introduction of a ‘transpose’ group on the right-hand side, but to
make this precise one would need a rigorous definition of an orbifold Fukaya–Seidel category which
is currently out of reach [5, Problem 3].

Recall that the derived category of singularities of a stack X0 is defined to be the quotient

Db
sing(X0) := Db(X0)/Perf(X0)

of the derived category of coherent sheaves on X0 by the category of perfect complexes (those
complexes quasi-isomorphic to complexes of vector bundles). Orlov [13, Theorem 39] showed that
when X0 is a hypersurface in a regular scheme, its singularity category can be expressed in terms
of matrix factorisations of the defining equation. This can be extended to stacks [15, Proposition
3.19] and in our setting we obtain an equivalence of triangulated categories

HMF(C2,Γw,w)→ Db
sing([w−1(0)/Γw]), (1)

where HMF(C2,Γw,w) denotes the cohomology category of mf(C2,Γw,w). Conjecture 1 therefore
relates the algebraic geometry of the singularity w to the symplectic topology of the singularity w̌.

Our main result is:

Theorem 1. Conjecture 1 holds when n = 2, i.e. for curve singularities.

As a by-product of our proof we also show:

Theorem 2 ([12, Conjecture 1.4, n = 2]). For every two-variable invertible polynomial w the
category mf(C2,Γw,w) has a tilting object, meaning an object E satisfying Endi(E) = 0 for all i 6= 0
and such that hom•(E , X) ' 0 implies X ∼= 0.

1.2. Proof outline. Invertible polynomials have been classified Kreuzer–Skarke [11] and are known
to be Thom–Sebastiani sums of atomic polynomials of the following three types:

• Fermat, or type Ap−1: w = xp

• chain: w = xp11 x2 + · · ·+ x
pn−1

n−1 xn + xpnn
• loop: w = xp11 x2 + · · ·+ x

pn−1

n−1 xn + xpnn x1.

Example 1.2. A sum of Fermat polynomials is called Brieskorn–Pham, and Conjecture 1 was estab-
lished for these polynomials, for all values of n, by Futaki–Ueda [5, 6].

Example 1.3. The Dk singularity corresponds to the polynomial x2
1x2 + xk−1

2 of chain type. Futaki
and Ueda also proved the conjecture for these singularities [7] (where the Dk polynomial is on the
A-side), as well as for Thom–Sebastiani sums of Brieskorn–Pham and type D polynomials.

We restrict attention to n = 2, and use variables x and y rather than xi, and p and q in place of
pi. By the above classification we need to deal with the following cases:

• Brieskorn–Pham: w = xp + yq, w̌ = x̌p + y̌q

• chain: w = xpy + yq, w̌ = x̌p + x̌y̌q

• loop: w = xpy + xyq, w̌ = x̌py̌ + x̌y̌q.

We treat all three families in a uniform way, and obtain new proofs of the results of Futaki–Ueda for
the two-variable Brieskorn–Pham and type D (chain, q = 2) singularities. We shall always assume
that p and q are at least 2. In the Brieskorn–Pham and chain cases these inequalities are necessary
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in order for the origin to be a critical point of both w and w̌, whilst if p or q is 1 in the loop case
then w and w̌ can be reduced to x2 + y2 and x̌2 + y̌2 by a change of variables.

The general strategy of proof is familiar: we match up explicit collections of generators on the
two sides. Concretely, on the A-side we compute the directed A∞-category A associated to a basis
of vanishing cycles in the Milnor fibre of w̌. Seidel [20, Theorem 18.24] famously showed that after
taking twisted complexes we obtain a quasi-equivalence

TwA → F(w̌),

and readers unfamiliar with Fukaya–Seidel categories can take this as a definition of F(w̌). The
number of vanishing cycles in the basis, i.e. the Milnor number of the singularity, is given by

(p− 1)(q − 1)

in the Brieskorn–Pham case,

pq − p+ 1 = (p− 1)(q − 1) + (q − 1) + 1

in the chain case, and
pq = (p− 1)(q − 1) + (p− 1) + (q − 1) + 1

in the loop case. These quantities, and the reasons for expressing them in this way, will fall out of
our computations.

Meanwhile, on the B-side we identify a collection of objects in mf(C2,Γw,w) whose corresponding
full subcategory B is quasi-equivalent to A. Since the matrix factorisation category is already
pretriangulated we obtain a functor

TwB → mf(C2,Γw,w),

and by a generation result (see Lemma 2.16 and Remark 2.17) this becomes a quasi-equivalence after
taking the idempotent completion. Our calcuations will actually show that the objects in B form
a full exceptional collection so by [20, Remark 5.14] the categories are in fact already idempotent
complete. Putting everything together we obtain a chain of quasi-equivalences

F(w̌) ' TwA ' TwB ' mf(C2,Γw,w),

proving Theorem 1. The sum of the objects in B gives the tilting object of Theorem 2.
The choice of generators on the B-side is fairly natural; the main difficulty in proving Theorem 1

is to construct a Morsification and basis of vanishing paths for w̌ such that the category A built
from the corresponding vanishing cycles matches up with B. In order to do this systematically we
make a preliminary perturbation of w̌ by subtracting εx̌y̌ for small positive real ε. This has Morse
critical points but not, in general, distinct critical values—following a suggestion of Yankı Lekili, we
call this a resonant Morsification. The central fibre is nodal and upon passing to a nearby regular
fibre the nodes are smoothed to thin necks, each supporting a vanishing cycle as the waist curve.
These cycles naturally pair up with the B-side generators supported along components of w−1(0).

Understanding the remaining vanishing cycles, which are mirror to sheaves supported at the
origin in w−1(0), requires most of the work. There is an obvious ‘real’ vanishing cycle, and by
acting by roots of unity on the x̌- and y̌-coordinates we obtain curves which are almost the other
vanishing cycles. The problem is that they live in different regular fibres, and carrying them to the
same fibre requires explicit analysis of the parallel transport equation on the thin neck regions. The
resulting vanishing paths overlap each other, so we carefully perturb them to reduce to a small set
of transverse intersections, and then eliminate these intersections by large deformations of the paths
which do not affect the vanishing cycles. Finally we modify the vanishing cycles by Hamiltonian
perturbations to resolve the remaining ambiguities in their intersection pattern.

We end this discussion by pointing out recent work of Hirano and Ouchi [8], which constructs semi-
orthogonal decompositions of matrix factorisation categories for sums of polynomials which are only
partially decoupled (non-Thom–Sebastiani). In particular, this gives an approach to understanding
the B-model for chain polynomials, and Hirano–Ouchi show that in this case the category has a
full exceptional collection whose size matches the Milnor number of the Berglund–Hübsch trans-
pose, providing further evidence for Conjecture 1 in higher dimensions. Shortly after the present
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paper appeared on arXiv, Aramaki and Takahashi gave an explicit full exceptional collection for
chain polynomials, and showed that the Euler characteristics of the morphism complexes match the
intersection form for a specific choice of vanishing cycles on the mirror, proving the chain case of
Conjecture 1 at the level of Grothendieck groups [1, Corollary 3.8].

1.3. Structure of the paper. We first consider the case of loop polynomials in detail, describing
the B-model in Section 2 and the A-model in Section 3, culminating in proofs of Theorem 2 and
Theorem 1 (in the loop case) respectively. In Sections 4 and 5 we describe the minor modifica-
tions needed to deal with chain polynomials, and finally in Section 6 we summarise the further
modifications needed for Brieskorn–Pham polynomials. We emphasise that these modifications are
essentially just simplifications of the argument—the general approach is identical and all of the
ingredients are contained in the loop case.

1.4. Acknowledgements. The authors are indebted to Yankı Lekili for suggesting this project, for
many useful discussions, and for valuable feedback. We are also grateful to the anonymous referee for
helpful comments and suggestions. JS would like to thank Jonny Evans and Michael Wong for their
interest in this work. MH is supported by the Engineering and Physical Sciences Research Council
[EP/L015234/1], The EPSRC Centre for Doctoral Training in Geometry and Number Theory (The
London School of Geometry and Number Theory), University College London. JS is supported by
EPSRC grant [EP/P02095X/1].

2. B-model for loop polynomials

2.1. Graded matrix factorisations. Our goal in this section is to understand the category
mf(C2,Γw,w = xpy + xyq) of equivariant matrix factorisations for the loop polynomial. Recall
that here p and q are assumed to be at least 2. We begin by briefly reviewing the definition, follow-
ing [7]. As mentioned in Section 1.1, we shall encode equivariance as respect for the grading by the
abelian group L freely generated by elements ~x, ~y and ~c modulo the relations

p~x+ ~y = ~x+ q~y = ~c.

Equivalently, L is the quotient of Z2 by the subgroup generated by (p − 1, 1 − q): the elements ~x,
~y and ~c correspond to (1, 0), (0, 1) and (p, 1) = (1, q) respectively. Note that the quotient L/Z~c is
isomorphic to Z/(pq − 1), generated by ~x or equivalently by ~y = −p~x.

Let S denote the L-graded algebra C[x, y] in which x has degree ~x and y has degree ~y. The
polynomial w = xpy + xyq is a homogeneous element of degree ~c, and we write R for the quotient
S/(w). Given an L-graded R- or S-module M , and an element l of L, we write M(l) for the module
obtained from M by shifting the degree of each element downwards by l. We shall use subscripts to
denote L-graded pieces, so that M(l)i = Mi+l and S~x = k · x for example. Note that our notation
for R and S is consistent with Futaki–Ueda [7], but opposite to that of Dyckerhoff [4].

By an L-graded matrix factorisation of W we mean a sequence

K• = (· · · → Ki ki−→ Ki+1 ki+1

−−−→ Ki+2 → · · · )
of L-graded free S-modules of finite rank such that K•[2] is identified with K•(~c)—i.e. Ki+2 with
Ki(~c) and ki+2 with ki(~c) for all i—and such that under these identifications the composition of
any two consecutive maps in the sequence is multiplication by w. A finitely generated L-graded R-
module M gives rise to a matrix factorisation by taking a free resolution, which eventually stabilises
(becomes 2-periodic to the left, up to shifting the L-grading by ~c every two terms), then extending
this 2-periodic part indefinitely to the right, and replacing the free R-modules by the corresponding
free S-modules; see [4, Sections 2.1 and 2.2]. This is the stabilisation of M .

The set of L-graded matrix factorisations forms a Z-graded dg-category mf(C2,Γw,w) as follows:
homi(K•, H•) comprises sequences (f• : K• → H•[i]) satisfying f•[2] = f•(~c), the differential

d : homi(K•, H•)→ homi+1(K•, H•)

is given by [4, Definition 2.1], namely

df = h ◦ f − (−1)if ◦ k,
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and composition is component-wise. We shall write Homi for the degree i cohomology of hom•.
Finitely generated L-graded R-modules correspond to coherent sheaves on the stack [w−1(0)/Γw]

and this gives a natural equivalence between Db
sing([w−1(0)/Γw]) and the derived category of singu-

larities of graded R-modules

Db
sing(grR) := Db(grR)/Perf(grR),

where Perf now refers to complexes of projective modules (Db(grR) is the usual derived category
of finitely-generated L-graded R-modules). The equivalence (1) then becomes an equivalence

HMF(C2,Γw,w)→ Db
sing(grR). (2)

Stabilisation of a module gives an inverse to this equivalence, and we will frequently switch between
talking about matrix factorisations, modules, and sheaves on [w−1(0)/Γw].

2.2. The basic objects. The stack [w−1(0)/Γw] has three components: the lines x = 0 and y = 0
and the curve xp−1 + yq−1 = 0. For brevity we will denote xp−1 + yq−1 by w, so that w = xyw. The
matrix factorisations corresponding to the structure sheaves of these components are

Kx
• = (· · · → S(−~c) yw−−→ S(−~x)

x−→ S → · · · ),

Ky
• = (· · · → S(−~c) xw−−→ S(−~y)

y−→ S → · · · ),
and

Kw
• = (· · · → S(−~c) xy−→ S(−~c+ ~x+ ~y)

w−→ S → · · · )
respectively, obtained by applying the stabilisation procedure of Section 2.1 to the L-graded R-
modules R/(x), R/(y) and R/(w). In each case, the third of the three terms written lies in degree
0 within the sequence. We will be particularly interested in the shifts

iKx = Kx((i+ 1− p)~x) for i = 1, . . . , p− 1

and
jKy = Kx((j + 1− q)~y) for j = 1, . . . , q − 1

of the Kx and Ky objects.
The unique singular point of the stack is the origin, and the other main objects we will be interested

in are L-grading shifts of the structure sheaf of its fattenings. Specifically, for i = 1, . . . , p − 1 and
j = 1, . . . , q − 1 let i,jK0

•
be the matrix factorisation

S(~x+ ~y) S(~x+ (j + 1)~y) S(~c+ ~x+ ~y)

S(−~c+ (i+ 1)~x+ (j + 1)~y) S((i+ 1)~x+ ~y) S((i+ 1)~x+ (j + 1)~y)

yj

−xi

· · ·
⊕

xyq−j

xi⊕ ⊕
· · ·xp−iy

xyq−j

−xp−iy

yj

corresponding to the R-module R((i+ 1)~x+ (j + 1)~y)/(xi, yj). This stabilisation can be computed
by starting with the obvious first steps of an R-free resolution

R(~x+ (j + 1)~y)⊕R((i+ 1)~x+ ~y)
(xi yj )−−−−−→ R((i+ 1)~x+ (j + 1)~y)

and extending by hand. Shifts of the object R/(x, y) appear in the work of Dyckerhoff [4, Section
4.1], who calls it kstab (k is the ground field), and Seidel [21, Section 11]; here the resolution is
described abstractly as a Koszul complex. A concrete example close to our setting is given by
Futaki–Ueda [7, Section 4].

Remark 2.1. The motivation for considering these objects is Orlov’s result [13, Theorem 40(ii)],
extended to the present setting in [8, Theorem B.2], which gives a semi-orthogonal decomposition

Db
sing(grR) = 〈C, Db(Y )〉,

where Y is the projectivised stack [(w−1(0) \ {0})/Γw] and C is the full subcategory on a certain
collection of grading shifts of the structure sheaf of the origin. In our case Y is the zero locus of
w inside the weighted projective line ProjS, and it consists of three points: one is smooth and its
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structure sheaf corresponds to Kw; the other two are stacky and their structure sheaves, twisted
by characters of their isotropy groups, are given by the iKx and jKy. We replace C by the related
category 〈i,jK0〉 to give the right pattern of morphisms.

Let B be the full A∞-subcategory of mf(C2,Γw,w) on the pq − 1 objects

{i,jK0,
iKx[3], jKy[3], Kw[3]}i=1,...,p−1; j=1,...,q−1.

The reason for the shifts is so that all morphisms turn out to have degree 0. In Sections 2.3 to 2.7 we
compute the morphisms between these objects in the cohomology category HMF(C2,Γw,w). The
reader willing to take these calculations on trust may skip immediately to Section 2.8, where we
assemble the results and deduce that B is quasi-equivalent to a specific quiver algebra with relations,
with formal A∞-structure. Then in Section 2.9 we address the issue of generation, and show that
TwB → mf(C2,Γw,w) is a quasi-equivalence. We conclude that the sum of the objects in B is a
tilting object for mf(C2,Γw,w), proving Theorem 2 for loop polynomials.

2.3. Morphisms between Kx’s, between Ky’s, and from Kw to itself. We wish to compute
morphisms in the cohomology category HMF(C2,Γw,w), and a priori this involves taking the co-
homology of the morphism complexes described in Section 2.1. Thinking of matrix factorisations as
stabilisations of R-modules, this corresponds to computing module Ext’s by (projectively) resolving
both the domain and codomain. One might expect the latter to be unnecessary, and Buchweitz [3,
Section 1.3, Remark (a)] showed that this is indeed the case: given L-graded R-modules M and M ′

with stabilisations K and K ′, we have

Hom•HMF(C2,Γw,w)(K,K
′) ∼= H•

(
HomgrR(K ⊗S R,M ′)

)
.

The Hom on the right-hand side is taken component-wise on the complex K ⊗S R.
For any l in L we therefore have

Hom•(Kx, Kx(l)) ∼= H•
(
· · · → (R/(x))l

x−→ (R/(x))l+~x
yw−−→ (R/(x))l+~c → · · ·

)
,

where the first of the three written terms now lives in degree 0 (we have taken L-graded module
homomorphisms from Kx

• ⊗S R into R(l)/(x)). This gives

Hom2m(Kx, Kx(l)) ∼= (R/(x, yw))m~c+l

for any integer m, whilst Hom2m+1(Kx, Kx(l)) = 0.
One can easily compute a basis of Hom2m by hand in this situation, but since we will repeatedly

make similar arguments we record the following general facts relating gradings and divisibility:

Lemma 2.2. Suppose that a and b are integers satisfying a ≤ p− 1 and b ≤ q− 1, and that s is an
element of S (or R) which is homogeneous modulo ~c, of degree a~x+ b~y mod ~c. Then:

(i) s lies in the ideal (xa, yq−1+b) ∩ (xp−1+a, yb).
(ii) If a ≤ p− 2 then s also lies in (xa, yq+b).

(iii) If b ≤ q − 2 then s also lies in (xp+a, yb).

Proof. Assume a ≤ p− 1 and b ≤ q − 1, and let xuyv be a monomial in s, so that

(u− a)~x+ (v − b)~y ≡ 0 mod ~c. (3)

We claim first that u ≥ a or v ≥ q − 1 + b, so suppose for contradiction that neither holds. Then

−(p− 1) ≤ u− a ≤ −1 and − (q − 1) ≤ v − b ≤ q − 2,

so (u − a) − p(v − b) is non-zero (by reducing modulo p) and lies strictly between ±(pq − 1).
Substituting ~y = −p~x mod ~c into (3) tells us that (u − a) − p(v − b) ≡ 0 mod (pq − 1), which
gives the desired contradiction, and we deduce that u ≥ a or v ≥ q − 1 + b, and hence that s lies in
(xa, yq−1+b). The other arguments are analogous. �

Lemma 2.3. Suppose s is an element of degree 0 mod ~c. Then the non-constant terms in s lie in
the ideal (xpq−1, xpy, xyq, ypq−1).
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Proof. Let xuyv be a non-constant monomial in s. If u = 0 (or v = 0) then one easily obtains
v ≥ pq − 1 (respectively u ≥ pq − 1), so suppose now that u and v are both positive. We have
u− pv ≡ 0 mod (pq − 1), so if u < p then we must have u− pv ≤ −(pq − 1) and hence v ≥ q. �

From these we conclude:

Lemma 2.4. In HMF(C2,Γw,w) the objects 1Kx, . . . ,
p−1Kx are exceptional (the endomorphisms

of each are just the scalar multiples of the identity) and pairwise orthogonal.

Proof. By the above computation the morphisms from iKx to IKx are given by the elements of
R/(x, yw) of degree (I − i)~x mod ~c. If I − i > 0 then Lemma 2.2(ii) tells us that all such elements
lie in (x, yq) = (x, yw), and hence vanish in the quotient. If I−i < 0 then the same argument applies
but using Lemma 2.2(i) instead, after rewriting the degree as (p + I − i)~x + ~y mod ~c. Finally, if
I = i then Lemma 2.3 tells us that only constants survive in the quotient. �

Likewise we have:

Lemma 2.5. The objects 1Ky, . . .
q−1Ky are exceptional and pairwise orthogonal. �

Similar calculations give
Hom2m(Kw, Kw) ∼= (R/(xy,w))m~c

and Hom2m+1(Kw, Kw) = 0, so by Lemma 2.3 we deduce:

Lemma 2.6. The object Kw is exceptional. �

2.4. Morphisms between Kx’s, Ky’s, and Kw. For all l and m we have

Hom2m+1(Kx, Ky(l)) ∼= (R/(x, y))m~c+l+~x

whilst Hom2m(Kx, Ky(l)) = 0. This gives:

Lemma 2.7. Each iKx is orthogonal to each jKy.

Proof. For morphisms iKx to jKy we need to show that there are no (non-zero) elements in R/(x, y)
of degree (1 − i)~x + j~y mod ~c, and this follows from Lemma 2.2(i). The argument is similar for
morphisms in the opposite direction. �

Analogous computations yield

Hom2m+1(Kx(l), Kw) ∼= (R/(x,w))m~c−l+~x

and Hom2m(Kx(l), Kw) = 0 for all l and m. Similarly

Hom2m+1(Kw, Kx(l)) ∼= (R/(x,w))(m+1)~c+l−~y

whilst Hom2m(Kw, Kx(l)) = 0.
Likewise

Hom2m+1(Ky(l), Kw) ∼= (R/(y, w))m~c−l+~y,

Hom2m+1(Kw, Ky(l)) ∼= (R/(y, w))(m+1)~c+l−~x,

Hom2m(Ky(l), Kw) = Hom2m(Kw, Ky(l)) = 0.

In particular:

Lemma 2.8. For each i and j the objects iKx and jKy are orthogonal to Kw.

Proof. For orthogonality of iKx and Kw we need to check that elements of degree (p− i)~x or (i+1)~x
modulo ~c lie in the ideal (x,w) = (x, yq−1). This follows immediately from Lemma 2.2(i), except
that for (i+1)~x with i = p−1 we must first rewrite the degree as ~x+(q−1)~y mod ~c. The argument
for jKy is analogous. �

Remark 2.9. These results match our expectation from Remark 2.1 that the objects iKx, jKy and
Kw correspond to structure sheaves of disjoint points in the projective stack Y , twisted by characters
of their isotropy groups, and hence should be exceptional and orthogonal.
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2.5. Morphisms between Kw and K0’s. We now fix (i, j) with 1 ≤ i ≤ p− 1 and 1 ≤ j ≤ q− 1,
and see that

Hom•(Kw,
i,jK0) ∼= H•

(
· · · → (R/(xi, yj))l

w−→ (R/(xi, yj))l+~c−~x−~y
xy−→ (R/(xi, yj))l+~c → · · ·

)
,

where l = (i+ 1)~x+ (j+ 1)~y. The terms in odd positions in the complex have degree i~x+ j~y mod ~c
so by Lemma 2.2(i) they lie in (xi, yj) and therefore vanish. The same holds in even positions after
rewriting the degree (i+ 1)~x+ (j + 1)~y mod ~c as (i+ 1− p)~x+ j~y mod ~c.

In the other direction, Hom•(i,jK0, Kw) is the cohomology of the complex

(R/(w))−~c−~x−~y (R/(w))−~x−(j+1)~y (R/(w))−~x−~y

(R/(w))−(i+1)~x−(j+1)~y (R/(w))−(i+1)~x−~y (R/(w))~c−(i+1)~x−(j+1)~y

xyq−j

−xp−iy

· · ·
⊕

yj

xp−iy⊕ ⊕
· · ·

xi

yj

−xi

xyq−j

For each m, Hom2m(i,jK0, Kw) is therefore given by

Ker

(
xyq−j xi

−xp−iy yj

)
modulo Im

(
yj −xi

xp−iy xyq−j

)
in (R/(w))(m−1)~c−~x−~y⊕(R/(w))m~c−l. Ignoring gradings for a second, this kernel is spanned by those
f , g in R such that there exist h, k in R with

xyq−jf + xig = (xp−1 + yq−1)h and − xp−iyf + yjg = (xp−1 + yq−1)k.

Subtracting xi times the latter from yj times the former we see that h = xh′ and k = yk′ for some
polynomials h′ and k′, and that f = yj−1h′−xi−1k′. Plugging this back in gives g = xp−ih′+yq−jk′,
so Hom2m(i,jK0, Kw) is parametrised by(

yj−1 −xi−1

xp−i yq−j

)(
h′

k′

)
modulo Im

(
yj −xi

xp−iy xyq−j

)
(and modulo w),

with h′ ∈ R(m−2)~c+(q−j)~y and k′ ∈ R(m−2)~c+(p−i)~x. It is clear from this description that h′ and k′

only matter modulo (y, w) = (y, xp−1) and (x,w) = (x, yq−1), but h′ and k′ must lie in these ideals
by Lemma 2.2(i), so we conclude that Hom2m(i,jK0, Kw) vanishes.

Similarly, Hom2m+1(i,jK0, Kw) is parametrised by(
yq−j−1 xi

−xp−i−1 yj

)(
h′

k′

)
modulo Im

(
xyq−j xi

−xp−iy yj

)
(and w),

with h′ ∈ Rm~c−~x−(j+1)~y and k′ ∈ Rm~c−(i+1)~x−~y. Obviously k′ can be eliminated and we’re left with

Hom2m+1(i,jK0, Kw) ∼= (R/(xy,w))(m−1)~c

(
yq−j−1

−xp−i−1

)
,

and by Lemma 2.3 (R/(xy,w))(m−1)~c has only constants. The upshot is:

Lemma 2.10. In HMF(C2,Γw,w) the only morphisms between Kw and i,jK0 are from the latter
to the former, spanned by (yq−j−1,−xp−i−1) in degree 3 in the above complex. �

2.6. Morphisms between Kx’s and Ky’s and K0’s. For each I we have that Hom•(IKx,
i,jK0)

vanishes since again the whole complex is zero by Lemma 2.2(i). Morphisms the other way are
computed by the complex

(R/(x))−2~c+I~x (R/(x))−~c+I~x−j~y (R/(x))−~c+I~x

(R/(x))−~c+(I−i)~x−j~y (R/(x))−~c+(I−i)~x (R/(x))(I−i)~x−j~y

xyq−j

−xp−iy

· · ·
⊕

yj

xp−iy⊕ ⊕
· · ·

xi

yj

−xi

xyq−j
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All differentials vanish except yj , which is injective, so we get

Hom2m(i,jK0,
IKx) ∼= (R/(x, yj))(m−2)~c+I~x,

Hom2m+1(i,jK0,
IKx) ∼= (R/(x, yj))(m−1)~c+(I−i)~x.

The former is zero by Lemma 2.2(i), whilst the latter is zero unless I = i, when it contains only
constants, by the argument used in the proof of Lemma 2.4. From this we get:

Lemma 2.11. In HMF(C2,Γw,w) there are no morphisms from IKx to i,jK0. There are no
morphisms in the other direction unless I = i, in which case the morphism space is spanned by (0, 1)
in degree 3 in the above complex. Similarly for morphisms between JKy and i,jK0. �

2.7. Morphisms between K0’s. The complex computing Hom•(i,jK0,
I,JK0) is

(R/(xI , yJ))−~c+I~x+J~y (R/(xI , yJ))I~x+(J−j)~y (R/(xI , yJ))I~x+J~y

(R/(xI , yJ))(I−i)~x+(J−j)~y (R/(xI , yJ))(I−i)~x+J~y (R/(xI , yJ))~c+(I−i)~x+(J−j)~y

xyq−j

−xp−iy

· · ·
⊕

yj

xp−iy⊕ ⊕
· · ·

xi

yj

−xi

xyq−j

By Lemma 2.2(i) all of the terms vanish except the bottom term in the even positions, giving

Hom2m(i,jK0,
I,JK0) ∼= (R/(xI , yJ))(I−i)~x+(J−j)~y,

Hom2m+1(i,jK0,
I,JK0) = 0.

If I < i then we can rewrite (I − i)~x+ (J − j)~y as (p+ I − i)~x+ (J − j + 1)~y modulo ~c and apply
Lemma 2.2(i) to see that Hom2m vanishes. Likewise if J < j.

Now assume that I ≥ i and J ≥ j. By Lemma 2.2(i), any element of degree (I − i)~x + (J − j)~y
mod ~c is divisible by xI−iyJ−j modulo (xI , yJ). So we can rewrite Hom2m as

(R/(xi, yj))0 · xI−iyJ−j ,

and by Lemma 2.3 the only surviving term is C · xI−iyJ−j . We deduce:

Lemma 2.12. For all (i, j) and (I, J) we have that

Hom•(i,jK0,
I,JK0) ∼=

{
C · xI−iyJ−j if I ≥ i, J ≥ j and • = 0

0 otherwise.
�

2.8. The total endomorphism algebra of the basic objects. Combining the results of Sec-
tions 2.3 to 2.7 we see that in HMF(C2,Γw,w) the basic objects iKx, jKy, Kw and i,jK0 are all
exceptional, and that the morphisms between distinct objects are spanned by:

• (0, 1) in degree 3 from each i,jK0 to iKx

• (0, 1) in degree 3 from each i,jK0 to jKy

• (yq−j−1,−xp−i−1) in degree 3 from each i,jK0 to Kw

• xI−iyJ−j in degree 0 from i,jK0 to I,JK0 whenever I ≥ i and J ≥ j.
We immediately see that morphisms between the i,jK0 compose in the obvious way so that their
total endomorphism algebra is the tensor product Ap−1 ⊗ Aq−1 of the path algebras of the Ap−1-
and Aq−1-quivers (this is the path algebra of the obvious product quiver subject to the relations
which say that the squares commute). In fact, we have:

Theorem 2.13. The cohomology-level total endomorphism algebra of the objects iKx[3], jKy[3],
Kw[3] and i,jK0 in B is the path algebra of the quiver-with-relations described in Fig. 1, with all
arrows living in degree zero. In particular, B is a Z-graded A∞-category concentrated in degree 0,
so is intrinsically formal.
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· · ·

· · ·

· · ·

· · ·

...
...

...
...

.... .
.

i,jK0

iKx[3]

jKy[3]

Kw[3]

Relations:

(i) Squares commute
(ii) Dashed compositions

vanish

Figure 1. The quiver describing the category B for loop polynomials.

Proof. To prove the cohomology statement we just need to check that the morphisms compose
correctly, namely that for I ≥ i and J ≥ j the compositions

Hom3(I,JK0, Kw)⊗Hom0(i,jK0,
I,JK0)→ Hom3(i,jK0, Kw),

Hom3(i,JK0,
iKx)⊗Hom0(i,jK0,

i,JK0)→ Hom3(i,jK0,
iKx),

Hom3(I,jK0,
jKy)⊗Hom0(i,jK0,

I,jK0)→ Hom3(i,jK0,
jKy)

send generators to generators. This is immediate from the explicit descriptions of the morphisms
above after noting that the generator

R((i+ 1)~x+ (j + 1)~y)/(xi, yj)
xI−iyJ−j

−−−−−−→ R((I + 1)~x+ (J + 1)~y)/(xI , yJ)

of Hom0(i,jK0,
I,JK0) induces the maps(

1 0
0 xI−iyJ−j

)
in even degree and

(
yJ−j 0

0 xI−i

)
in odd degree

between the matrix factorisations (the degree 3 matrix is the only one we actually need).
The final claim, about the A∞-structure, follows from the fact that a directed algebra concentrated

in degree zero is formal—there is no room for non-trivial higher A∞-operations. �

2.9. Generation. We have now computed the quasi-isomorphism type of the full A∞-subcategory
B ⊂ mf(C2,Γw,w) on the basic objects iKx,

jKy, Kw,
i,jK0. The goal of this subsection is to prove:

Proposition 2.14. The functor

Π(TwB)→ Π(mf(C2,Γw,w))

is a quasi-equivalence, where Π denotes A∞- (or dg-) idempotent completion.

Remark 2.15. As mentioned in Section 1.2, the Π’s can be removed from this statement (and this
is what we need to prove Theorem 1) using the fact that the objects in B form a full exceptional
collection in TwB, so that the category is already idempotent complete by [20, Remark 5.14].

For a triangulated category C and a collection V of objects in C, let 〈V 〉 denote the smallest full
triangulated subcategory of C which contains the objects in V and is closed under isomorphism, and
let superscript π denote idempotent completion. We’ll say that V split-generates C if the functor
〈V 〉π → Cπ induced by the obvious inclusion of 〈V 〉 in C is an equivalence.

The content of Proposition 2.14 is that the set

V = {iKx,
jKy, Kw,

i,jK0}
split-generates C = HMF(C2,Γw,w). The key to establishing this is the following application of a
result of Polishchuk–Vaintrob:
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Lemma 2.16 ([16, Proposition 2.3.1]). The category HMF(C2,Γw,w) is split-generated by the L-
grading shifts of the stabilisation of the module R/(x, y). �

Remark 2.17. The cited result is a simple modification of the non-equivariant case, previously
obtained by several authors including Schoutens [17], Dyckerhoff [4, Corollary 5.3], Seidel [21, Lemma
12.1] (building on work of Orlov [14]), and Murfet [9, Proposition A.2].

Proof of Proposition 2.14. By Lemma 2.16 it suffices to show that under the equivalence (2) the
category 〈V 〉 contains all of the L-grading shifts of R/(x, y). In other words, it is enough to prove
that for all l in L the L-graded R-module R(l)/(x, y) can be built from the objects

R((i+ 1− p)~x)/(x), R((j + 1− q)~y)/(y), R/(w), and R((i+ 1)~x+ (j + 1)~y)/(xi, yj)

with 1 ≤ i ≤ p− 1 and 1 ≤ j ≤ q− 1, by taking cones and shifts (in the triangulated category sense,
rather than in the L-grading). Since [2] is equivalent to (~c), we actually only need consider l in a
set of representatives of L/Z~c.

For any 1 ≤ i ≤ p− 1 and 1 ≤ j ≤ q − 1 we have a morphism (of L-graded R-modules)

R(i~x+ j~y)/(xi−1, yj−1)
x−→ R((i+ 1)~x+ j~y)/(xi, yj−1) (4)

whose cone—which is just the cokernel in this case—is the module R((i+ 1)~x+ j~y)/(x, yj−1). Both
objects in (4) lie in V unless i or j is 1, in which case the offending objects are zero, so we conclude
that this cone lies in 〈V 〉. Similarly R((i+ 1)~x+ (j + 1)~y)/(x, yj) is in 〈V 〉, and hence

R((i+ 1)~x+ (j + 1)~y)/(x, y) ∼= Cone
(
R((i+ 1)~x+ j~y)/(x, yj−1)

y−→ R((i+ 1)~x+ (j + 1)~y)/(x, yj)
)

is also in 〈V 〉. This gives (p− 1)(q − 1) of the pq − 1 objects we need.
Next consider the extension

0→ R((i+ 1)~x+ ~y)/(x)
yj−→ R((i+ 1)~x+ (j + 1)~y)/(x)→ R((i+ 1)~x+ (j + 1)~y)/(x, yj)→ 0.

The outer terms are in 〈V 〉 (the first is iKx[2] and the last is built from R(a~x+b~y)/(x, y) for a = i+1
and b = 2, 3, . . . , j+ 1 by taking cones), so the middle term is in 〈V 〉. In particular, taking j = q− 1
we see that

R(i~x)/(x) = R((i+ 1)~x+ q~y)[−2]/(x)

lies in 〈V 〉. If i is at least 2 then R(i~x+ ~y)/(x) = i−1Kx[2] is also in 〈V 〉, and hence so is

R(i~x+ ~y)/(x, y) ∼= Cone
(
R(i~x)/(x)

y−→ R(i~x+ ~y)/(x)
)
.

One can make a similar argument with the roles of x and y interchanged to construct R(~x+j~y)/(x, y)
when 2 ≤ j ≤ p− 1.

So far we have thus seen that R(a~x + b~y)/(x, y) lies in 〈V 〉 for 1 ≤ a ≤ p and 1 ≤ b ≤ q, except
for the cases (a, b) = (1, 1), (1, q) and (p, 1). If we can fill in these missing three cases (the latter
two are in fact equivalent—both correspond to R(~c)/(x, y)) then we will have constructed shifts of
R/(x, y) by representatives of each class in L/Z~c, and will therefore be done.

To build R(~x+ ~y)/(x, y) note that it is the cokernel of

R(~x)/(x)⊕R(~y)/(y)
( y x )−−−→ R(~x+ ~y)/(xy).

The two summands in the domain were constructed above, whilst the codomain is Kw[1]. Finally,
to get R(~c)/(x, y) observe that R/(x, y) is the cokernel of

R(−~y)/(x, ypq−2)
y−→ R/(x, ypq−1). (5)

The domain can be built from R(−b~y)/(x, y) for b = 1, . . . , pq−2 by taking cones, and these objects
are all (up to repeated applications of [±2]) ones that we have already constructed. The codomain,
meanwhile, is given by

Cone
(
R(−(p− 1)~c)/(x)

ypq−1

−−−→ R/(x)
)
,

and the two terms inside the cone are p−1Kx[−2(p− 1)] and p−1Kx. This means that both objects
in (5) lie in 〈V 〉, and hence so does the cokernel R/(x, y). Shifting by [2] gives the object R(~c)/(x, y)
that we need. �



12 MATTHEW HABERMANN AND JACK SMITH

Remark 2.18. We proved that B generates mf(C2,Γw,w) by showing that it generates the objects
R(l)/(x, y), which split-generate the category, and then invoking the fact that TwB is idempotent
complete. The R(l)/(x, y) themselves cannot possibly generate (as opposed to split-generate), for
the following reason: mf(C2,Γw,w) has a full exceptional collection of size pq, so its Grothendieck
group is free of rank pq, whereas the span of the R(l)/(x, y) has rank at most |L/Z~c| = pq − 1.

As a corollary of Proposition 2.14, we obtain:

Theorem 2.19 (Theorem 2, loop polynomial case). The object

E :=

( ⊕
i=1,...,p−1
j=1,...,q−1

i,jK0

)
⊕
( p−1⊕

i=1

iKx[3]

)
⊕
( q−1⊕
j=1

jKy[3]

)
⊕ Kw[3]

is a tilting object for mf(C2,Γw,w).

Proof. We need to show that Endi(E) = 0 for all i 6= 0 and that hom•(E , X) ' 0 implies X ∼= 0.
The first statement follows immediately from Theorem 2.13, whilst the second is a consequence
of Proposition 2.14: if hom•(E , X) ' 0 then there are no non-zero morphisms from 〈V 〉π to X in
HMF(C2,Γw,w), which forces X to be quasi-isomorphic to 0. �

3. A-model for loop polynomials

3.1. A resonant Morsification. We are now interested in the polynomial w̌ = x̌py̌+ x̌y̌q as a map
C2 → C. To construct the category A we should Morsify w̌ by adding a small perturbation, fix a
regular value ∗, then pick a distinguished basis of vanishing paths (γ1, . . . , γN ) in the base C, where
γi is a smooth embedded path from ∗ the ith critical value. We require that the γi are pairwise
disjoint except for their common initial point γi(0) = ∗, that the vectors γ̇i(0) in T∗C are non-zero
and distinct, and that the corresponding directions are in clockwise order as i increases from 1 to
N (we are free to choose the starting direction for this clockwise ordering). We then consider the
corresponding vanishing cycles in the fibre Σ over ∗ (strictly we should take Σ to be the Liouville
completion of the Milnor fibre, but this is equivalent in our case), and define A to be the directed
A∞-category on these cycles whose morphisms and compositions in the allowed direction are given
by those in the compact Fukaya category F(Σ). Note that we are free to modify the vanishing cycles
by Hamiltonian isotopy in order to compute A up to quasi-equivalence.

In order to implement this, we first consider the perturbation

w̌ε := w̌ − εx̌y̌ = x̌y̌(x̌p−1 + y̌q−1 − ε)
of w̌, where ε is a small positive real number; in analogy with Section 2 we shall denote x̌p−1 + y̌q−1

by w̌. We call this a resonant Morsification, since its critical points are Morse but the critical values
are not all distinct. In fact, the critical points fall into four types:

(i) x̌p−1 = ε, y̌ = 0
(ii) x̌ = 0, y̌q−1 = ε

(iii) x̌ = y̌ = 0
(iv) (x̌p−1, y̌q−1) = ε

pq−1(q − 1, p− 1).

The critical points of the types (i)–(iii) all lie over the critical value zero, whilst for type (iv) the
critical value is −x̌y̌ε(p− 1)(q − 1)/(pq − 1) so is non-zero and lies on the ray through −x̌y̌.

We denote the unique positive real critical point of type (iv) by (x̌+
crit, y̌

+
crit), with corresponding

critical value ccrit (this is negative real). Letting ζ and η denote the roots of unity

ζ = e2πi/(p−1) and η = e2πi/(q−1),

the full set of type (iv) critical points is then given by

{(ζ lx̌+
crit, η

my̌+
crit) : 0 ≤ l ≤ p− 2, 0 ≤ m ≤ q − 2}.

The critical value corresponding to (ζ lx̌+
crit, η

my̌+
crit) is ζ lηmccrit, so there are gcd(p−1, q−1) critical

points in each of these critical fibres.



HOMOLOGICAL BERGLUND–HÜBSCH MIRROR SYMMETRY FOR CURVE SINGULARITIES 13

We now fix our regular fibre Σ to be w̌−1
ε (−δ) where δ is a positive real number much less than

ε (in other words, we take ∗ = −δ). The condition δ � ε is to allow us to understand Σ as a
smoothing of w̌−1

ε (0). For the critical points of types (i)–(iii) we choose the vanishing path given by
the straight line segment from −δ to 0. For the critical point (ζ lx̌+

crit, η
my̌+

crit), meanwhile, we define

the preliminary vanishing path γl,m by following the circular arc −δeiθ as θ increases from 0 to

θl,m := 2π

(
l

p− 1
+

m

q − 1

)
and then following the radial straight line segment from −ζ lηmδ to ζ lηmccrit. As the name suggests,
we will later modify these preliminary vanishing paths (they currently do not form a distinguished
basis since they intersect and overlap each other), but they serve an important intermediate role.

Figure 2 shows the critical values of w̌ε, the vanishing path for the type (i)–(iii) critical points,
and the preliminary vanishing paths for (l,m) = (0, 0), (1, 0) and (1, 2), all in the case (p, q) = (4, 6).
We have slightly separated the arcs for clarity—really they both have radius δ. Note that θl,m may

γ1,2

γ1,0

γ0,0

−δ 0

Figure 2. The critical values of w̌ε (crosses), the vanishing path for critical value
0, and three of the preliminary vanishing paths, when (p, q) = (4, 6).

be greater than 2π, in which case γl,m covers more than a full circle, but these paths are difficult to
indicate on a diagram. Note also that different values of (l,m) may give rise to different preliminary
vanishing paths, even if the critical values are the same.

3.2. The zero-fibre and its smoothing Σ. The fibre of w̌ε over zero has three components: the
lines {x̌ = 0} and {y̌ = 0}, and the smooth curve {w̌ = ε}. Schematically the picture is as in
Fig. 3. The crosses denote transverse intersections between the components, and the dotted line
where the planes appear to meet is to indicate that they are actually disjoint in C2 except for the
intersection at the origin. In Σ, each of the nodes is smoothed to a thin neck whose waist curve
is the corresponding vanishing cycle. We denote these vanishing cycles by lVy̌w̌, mVx̌w̌ and Vx̌y̌ for

l = 0, . . . , p− 2 and m = 0, . . . , q − 2, corresponding to critical points (ζ lε1/(p−1), 0), (0, ηmε1/(q−1))
and (0, 0) respectively.

Remark 3.1. We can compute the genus and number of punctures of Σ as follows. The punctures
correspond to boundary components at infinity, where the defining equation looks like x̌py̌+x̌y̌q = 0.
The lines {x̌ = 0} and {y̌ = 0} each give rise to a boundary component, whilst {x̌p−1 + y̌q−1 = 0}
gives gcd(p− 1, q − 1) components. We deduce

# punctures of Σ = gcd(p− 1, q − 1) + 2.

The pq vanishing cycles form a basis for H1(Σ;Z), whose rank is

2g(Σ) + # punctures− 1,
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x̌ = 0
y̌ = 0

w̌ = ε

p− 1

q − 1

Figure 3. The fibre w̌−1
ε (0) for loop polynomials.

so we obtain

g(Σ) =
1

2
(pq − gcd(p− 1, q − 1)− 1) .

If δ is chosen sufficiently small then the monodromy of parallel transport around the circle of radius
δ is supported in small neighbourhoods of these p+q−1 curves, and is simply the product of the Dehn
twists in them. It is not strictly true that the monodromy is supported in these neighbourhoods,
but as explained in [18, Section 19] it can be made so by a small deformation of the fibration,
which does not affect the categories and which we will not explicitly notate. After deleting these
neighbourhoods (and corresponding neighbourhoods in the other fibres) we may therefore trivialise
the fibration w̌ε over the disc of radius δ, and identify each fibre with the curve Σ′ obtained from
w̌−1
ε (0) by removing neighbourhoods of the critical points marked in Fig. 3. Equivalently, we may

think of Σ′ as being obtained from Σ by removing the neck regions. Concretely, it consists of: a
complex line (the x̌-axis) with small balls around the origin and the (p− 1)th roots of ε removed; a
complex line (the y̌-axis) with small balls around the origin and the (q−1)th roots of ε removed; and
a (p−1)(q−1)-fold cover of the line {u+v = ε} with small balls about (ε, 0) and (0, ε) removed, with
the covering map given by (u, v) = (x̌p−1, y̌q−1). All of the interesting parallel transport occurs in
the neck regions which we have deleted, and is described by ‘partial Dehn twists’ which we explicitly
describe later in a local model.

3.3. The preliminary vanishing cycles. Let l,mV pr
0 denote the preliminary vanishing cycle in Σ

corresponding to the critical point (ζ lx̌+
crit, η

my̌+
crit) and the preliminary vanishing path γl,m. The

goal of this subsection is to describe these cycles, by a combination of symmetry considerations and
parallel transport computations.

Since w̌ε has real coefficients, we can temporarily view it as a function R2 → R. This function
has a local minimum at (x̌+

crit, y̌
+
crit), where it attains the value ccrit < 0. There are no critical values

in the interval (ccrit, 0), so the level sets w̌−1
ε (c) for c in this range have a component which is a

smooth loop encircling (x̌+
crit, y̌

+
crit), and which shrinks down to this point as c ↓ ccrit. As c ↑ 0 this

loop, which we’ll denote by Λc, converges to the boundary of the region in the upper right quadrant
of R2 that is bounded on the left by x̌ = 0, below by y̌ = 0, and above and to the right by w̌ = ε.
We’ll denote this piecewise smooth limiting loop by Λ0.
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Now return from this purely real discussion to the full complex picture. Symplectic parallel
transport between the fibres of w̌ε over a path c(t) is described by the ODE(

˙̌x
˙̌y

)
=

ċ

|dw̌ε|2

(
∂x̌w̌ε

∂y̌w̌ε

)
. (6)

This obviously preserves the real part of the fibre when c moves along the real axis, as it did in the
previous paragraph, so we see that the loops Λc are carried to one another by parallel transport. In
particular, Λ−δ is exactly the preliminary vanishing cycle 0,0V pr

0 .
Just as we viewed Σ as a smoothing of w̌−1

ε (0), we shall understand 0,0V pr
0 = Λ−δ as a smoothing

of Λ0. In Σ′ it comprises: the real line segment joining the deleted ball about 0 to the deleted ball
about ε1/(p−1) in the x̌-axis; the real line segment joining the deleted ball about 0 to the deleted
ball about ε1/(q−1) in the y̌-axis; the positive real lift of the line segment joining the deleted balls
about (ε, 0) and (0, ε) in {u + v = ε}, under the covering map (x̌, y̌) 7→ (u, v) described above.
It enters three of the neck regions, namely those corresponding to 0Vy̌w̌, 0Vx̌w̌ and Vx̌y̌, in each of
which it is given by the positive real locus in (x̌, y̌)-coordinates. This is indicated in Fig. 4, where
the deleted balls are indicated by the grey blobs and the three segments of 0,0V pr

0 are respectively
the the horizontal dash-dotted line, the vertical dotted line, and the dotted diagonal arc.

0,0V pr
0 0,1V pr

0

2,2V pr
0

Figure 4. Schematic picture of some preliminary vanishing cycles in Σ′ for loop polynomials.

To compute the other l,mV pr
0 we decompose the path γl,m into its radial segment and its circular

arc. The map

fl,m : (x̌, y̌) 7→ (ζ lx̌, ηmy̌)

gives a symplectomorphism of C2 which w̌ε intertwines with multiplication by ζ lηm on C, so the
curve fl,m(0,0V pr

0 ) is the vanishing cycle in the fibre over −ζ lηmδ that corresponds to the critical

point (ζ lx̌+
crit, η

my̌+
crit) and the vanishing path given by the radial segment of γl,m. This means that

l,mV pr
0 is obtained from fl,m(0,0V pr

0 ) by parallel transporting around the circular arc of γl,m.

We can therefore immediately describe the part of l,mV pr
0 lying in Σ′, since it is obtained from the

corresponding part of 0,0V pr
0 by applying fl,m. In full detail, it comprises: the radial line segment

joining the deleted ball about 0 to the deleted ball about ζ lε1/(p−1) in the x̌-axis; the real line
segment joining the deleted ball about 0 to the deleted ball about ηmε1/(q−1) in the y̌-axis; the
lift to ζ lR+ × ηmR+ ⊂ C2 of the line segment joining the deleted balls about (ε, 0) and (0, ε) in
{u+ v = ε}, under the covering map (x̌, y̌) 7→ (u, v). This is shown in Fig. 4, where 2,2V pr

0 is drawn
in solid black and 0,1V pr

0 is drawn dashed (the segment along which it overlaps with 0,0V pr
0 is shown
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dash-dotted). The segments lying in the two coordiate axes should all really be straight, with the
grey blobs lying on a circle about the origin, but we have deformed the picture in order to draw it
in two dimensions.

To see what l,mV pr
0 looks like in the three neck regions it meets, namely those corresponding to

lVy̌w̌, mVx̌w̌ and Vx̌y̌, we simply have to take the (ζ lR+ × ηmR+)-locus in each of these necks over

−ζ lηmδ and parallel transport clockwise through angle θl,m around the circle of radius δ; this is
our next task. Near the critical point (0, 0), where x̌ and y̌ are both small, we may approximate
w̌ε by −εx̌y̌. This corresponds to the Vx̌y̌-neck region in Σ, and in this approximation the parallel
transport equation (6) simplifies to (

˙̌x
˙̌y

)
=

−ċ
ε(|x̌|2 + |y̌|2)

(
y̌
x̌

)
. (7)

We may also approximate the (ζ lR+ × ηmR+)-locus in the Vx̌y̌-neck over −ζ lηmδ by the hyperbola

(x̌, y̌) =
√
δ/ε(ζ les, ηme−s)

parametrised by a small real variable s. We want to parallel transport over the path c(t) = −δeit as

t decreases from θl,m to 0, and we postulate a solution of the form (x̌, y̌) =
√
δ/ε(es+iϕ, e−s+i(t−ϕ))

where ϕ is a real function of s and t.
Plugging this into (7) we obtain(

ϕ̇x̌
(1− ϕ̇)y̌

)
=

x̌y̌

|x̌|2 + |y̌|2

(
y̌
x̌

)
,

so after imposing the initial condition ϕ(s, θl,m) = 2πl/(p− 1) we get the unique solution

ϕ =
2πl

p− 1
+
e−2s(t− θl,m)

e2s + e−2s
. (8)

In particular, the value of ϕ at the end of the parallel transport (t = 0), which we denote by ϕl,m,
is given by

ϕl,m(s) := ϕ(s, 0) =
2π

e2s + e−2s

(
e2sl

p− 1
− e−2sm

q − 1

)
. (9)

This is supposed to describe the argument of the x̌-component of l,mV pr
0 (or minus the argument of

the y̌-component) on the Vx̌y̌-neck region of Σ, and note that it is consistent with the description
we already have on Σ′: when s becomes large this neck joins the x̌-axis, where we know that the
x̌-component of l,mV pr

0 has argument 2πl/(p − 1); when s becomes small the neck joins the y̌-axis,
where we know that y̌-component of l,mV pr

0 has argument 2πm/(q − 1).
We can run analogous arguments on the other two necks that l,mV pr

0 passes through. To combine
this information into a visualisable format, note that we can coordinatise the union of the x̌-axis
part of Σ′ and the Vx̌y̌- and lVy̌w̌-necks by x̌. The x̌-projection of this region consists of the complex

plane with a puncture at 0, a puncture at ζ lx̌+
crit, and small balls about all other ζj x̌+

crit removed.
Small balls around the two punctures represent the two necks. Strictly the punctures are extremely
tiny deleted balls, but we will not make this distinction.

Away from the two neck regions in this picture, we are simply on the x̌-axis part of Σ′, so l,mV pr
0

is given by the radial segment connecting them. On the Vx̌y̌-neck, near the puncture at 0, the
computation above shows that as we approach the pucture the argument of x̌ interpolates from
2πl/(p − 1) to −2πm/(q − 1). We can do the same on the lVy̌w̌ neck, near the puncture at ζ lx̌+

crit,

but now the local coordinate is x̌′ where x̌ = ζ lx̌+
crit− x̌′, and this time it is the argument of x̌′ which

interpolates from 2πl/(p−1) to −2πm/(q−1) as we approach the puncture. The cases (l,m) = (1, 0)
and (l,m) = (1, 1) with (p, q) = (4, 3) are shown in Fig. 5. We have drawn separate diagrams for the
two choices of (l,m) since the cycles overlap along their central segment and so would be difficult to
distinguish if drawn on top of each other. The dashed circles represent the boundaries of the deleted
balls, the dotted circles represent the boundaries of the neck regions, and the blobs represent the
punctures. The feint solid circles are the waist curves Vx̌y̌ and lVy̌w̌.
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Figure 5. The x̌-projection of the preliminary vanishing cycles 1,0V pr
0 (left) and

1,1V pr
0 (right) in the x̌-axis part of Σ′ and the Vx̌y̌- and lVy̌w̌-necks, with (p, q) = (4, 3).

There is a corresponding picture for the y̌-projection of the y̌-axis part of Σ′ and the Vx̌y̌- and
mVx̌w̌- necks. The picture on {w̌ = ε} part of Σ′ is essentially uninteresting since the l,mV pr

0 are
pairwise disjoint there. This is because on that part the different l,mV pr

0 are different lifts of the
same segment in {u + v = ε}. Combining the pictures on these three parts of Σ gives a complete
description of all of the preliminary vanishing cycles.

Remark 3.2. There are some obvious points to note here, which are clear parallels of the structure
of the generating set on the B-side. First, the vanishing cycles Vx̌y̌,

lVy̌w̌ and mVx̌w̌ are all pairwise

disjoint. Second, each l,mV pr
0 intersects Vx̌y̌ exactly once, tranvsersely. Third, l,mV pr

0 and LVy̌w̌
intersect once, transversely, if l = L and are disjoint otherwise (similarly for MVx̌w̌). And finally, if
l 6= L and m 6= M then l,mV pr

0 and L,MV pr
0 are disjoint except on the Vx̌y̌-neck region, where (9) tells

us that they intersect once, transversely, if l > L and m > M or vice versa, and are disjoint otherwise
(as |x̌| increases, the difference in their x̌-arguments varies monotonically from 2π(m−M)/(q − 1)
to 2π(L− l)/(p− 1)).

3.4. Modifying the vanishing paths. As already noted, the preliminary vanishing paths (plus
the vanishing paths connecting −δ to zero) do not form a distinguished basis of vanishing paths
because they intersect and overlap each other. In this subsection we describe how to remedy this,
which also involves perturbing w̌ to separate the critical values, in such a way that the vanishing
cycles are basically unaffected.

By plotting modulus and argument+π we may view the preliminary paths γl,m as right-angled
paths in R2 from (δ, 0) to (δ, θl,m) to (−ccrit, θl,m). We define modified paths γ′l,m using this picture
to be the piecewise linear paths as follows:

• From (δ, 0) to (δ + δ′, θl,m) to (−ccrit, θl,m) for some small positive δ′, if θl,m < 2π.
• From (δ, 0) to (δ+ δ′, 2π+ λ(θl,m− 4π)) to (δ+ 2δ′, 2π+ λ(θl,m− 4π)) to (δ+ 3δ′, θl,m− θ′))

to (−ccrit, θl,m − θ′) for some small positive λ and θ′, if θl,m ≥ 2π.

In the second case we have moved the end-point of the path so we correspondingly perturb the
fibration so that the critical point (ζ lx̌+

crit, η
my̌+

crit) has its critical value ζ lηmccrit rotated by e−iθ
′
.

The paths are illustrated in the case (p, q) = (4, 6) in Fig. 6. The feint lines are the preliminary
paths γl,m and the dashed line is at height 2π.

This construction has the following key properties:

• The clockwise ordering of the tangent directions γ̇′l,m(0) is by decreasing value of θl,m.

• If θl,m = θL,M then γ′l,m = γ′L,M .

• If θl,m 6= θL,M then γ′l,m and γ′L,M are disjoint unless θl,m > θL,M + 2π (or vice versa), in

which case they intersect once, transversely, close to −ζLηMδ (respectively −ζ lηmδ).
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Figure 6. The paths γ′l,m in modulus-(argument+π) space, when (p, q) = (4, 6).

The control on the position of the intersection point in the third property is the reason for the curious
kink in the paths γ′l,m for θl,m ≥ 2π. If we had instead taken these paths to be (δ, 0) to (δ+δ′, θl,m−θ′)
to (−ccrit, θl,m − θ′) then the intersection between γ′l,m and γ′L,M when θl,m > θL,M + 2π woud have
occurred on the sloping regions of both paths, and therefore been awkward to locate.

Our next task is to explain how to modify those γ′l,m for which θl,m > 2π in order to remove the
transverse intersections just described. The key observation is:

Lemma 3.3. Suppose θl,m > θL,M + 2π, and let z denote the intersection point of γ′l,m and

γ′L,M . Inside the fibre Σz = w̌−1
ε (z) there are vanishing cycles corresponding to the critical points

(ζ lx̌+
crit, η

my̌+
crit) and (ζLx̌+

crit, η
M y̌+

crit) and the truncations of the vanishing paths γ′l,m and γ′L,M .
Denoting these by V1 and V2 respectively, we have

V1 ∩ V2 = ∅.

Proof. First note that if l ≤ L then θl,m − θL,M is at most 2π(q − 2)/(q − 1), so we must have

l > L and similarly m > M . By applying f−1
L,M we may then assume without loss of generality

that L = M = 0 and l,m > 0. The former means that z is approximately −δ, and that V2 ⊂ Σz

is approximately 0,0V pr
0 ⊂ Σ. The curve V1, meanwhile, is constructed in approximately the same

way as l,mV pr
0 but with the parallel transport around the circle of radius δ done from θl,m to 2π,

rather than to 0. For the rest of the argument we take these approximations to be exact. Since the
cycles V1 and V2 are compact, once we show that they are disjoint after our small approximation
we automatically deduce that they were disjoint before (compact and disjoint implies separated by
a positive distance).

Since l and m are both positive we see that V1 and V2 = 0,0V pr
0 are disjoint on Σ′ ⊂ Σ, and that

the only neck region that they both pass through is that corresponding to Vx̌y̌. This means that the
only possible intersections occur in this neck, which we can coordinatise by projection to x̌. In this
projection we know that 0,0V pr

0 and V1 are parametrised by

x̌ =
√
δ/εes and x̌ =

√
δ/εes+iϕ,

respectively, where ϕ is given by setting t = 2π in (8). It therefore suffices to show that this function
ϕ never hits 2πZ. To prove this, simply note that the function is monotonically increasing from
2π − 2πm/(q − 1), which is strictly positive, to 2πl/(p− 1), which is strictly less than 2π. �

Now let γ′′l,m denote the path obtained from γ′l,m by introducing a long thin finger which loops

around the radial segment of γ′L,M , for each (L,M) with θl,m > θL,M + 2π. Figure 7 illustrates γ′′2,4
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in the case (p, q) = (4, 6). The feint lines show the paths γ′L,M which we have had to loop around. In

Figure 7. The path γ′′2,4 when (p, q) = (4, 6).

principle, each time we go around one of the fingers the ‘intermediate vanishing cycle’ V1 is changed
by the monodromy around ζLηMccrit, which is precisely the Dehn twist in V2 (or, more accurately,
the product of the Dehn twists in all cycles constructed in the same way as V2 as (L,M) ranges over
all pairs with the same value of θL,M ), and by Lemma 3.3 this has no effect. We conclude that the
vanishing cycles for the new paths γ′′l,m coincide with those of the previous paths γ′l,m, which in turn
are small perturbations of those of the preliminary paths γl,m. Note also that we can construct the
new paths so as not to introduce any new intersections between them (for example, we can make
sure the fingers for γ′′2,3 go outside the fingers for γ′′2,4 shown in Fig. 7).

The upshot is that we now have vanishing paths γ′′l,m, plus the vanishing paths connecting −δ to
0, which form a distinguished basis except for the fact that some of the paths coincide with each
other. This is straightforwardly fixed by making a small perturbation of the fibration to separate
the critical values, and corresponding small perturbations of the paths. The precise way in which
this is done will affect the ordering of the paths, and hence the ordering of the vanishing cycles in A,
but this is irrelevant since the ambiguity is always between cycles which are disjoint and therefore
orthogonal in the category.

We conclude:

Proposition 3.4. There exists a Morsification of w̌ and a distinguished basis of vanishing paths
such that the corresponding vanishing cycles are arbitrarily small pertubations of the l,mV pr

0 , lVy̌w̌,
mVx̌w̌ and Vx̌y̌ as constructed above. The l,mV pr

0 are ordered by decreasing value of θl,m, and by

choosing the starting direction for our clockwise ordering to be eiθ, for θ a small positive angle, they
occur before all of the other vanishing cycles. �

3.5. Isotoping the vanishing cycles and computing the morphisms. Let us refer to the small
perturbations of the preliminary vanishing cycles l,mV0 that appear in Proposition 3.4 as temporary
vanishing cycles. In order to compute the category A we need to understand the intersection pattern
of these temporary cycles. Some pairs of these cycles were already transverse before perturbing, as
described in Remark 3.2—in fact, all pairs except those of the form l,mV pr

0 , L,MV pr
0 with l = L or

m = M—so their intersections are unaffected by the small perturbations. For the non-transverse
pairs of preliminary cycles, however, which actually overlap along segments, we cannot pin down
the intersections of the corresponding temporary cycles without keeping more careful track of the
perturbations, which is impractical.

In order to overcome this we shall modify these problematic temporary cycles, which are small
perturbations of the l,mV pr

0 , by Hamilton isotopies to obtain final vanishing cycles l,mV0 which we
will use to compute A. This does not affect the quasi-equivalence type of the category. These
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isotopies will be small in the absolute sense, and in particular will only affect intersections between
pairs of cycles which were non-transverse before perturbing from preliminary to temporary, but will
not be small compared with these perturbations. Indeed, their very point is to undo any uncertainty
in the intersection pattern which these perturbations introduced.

Remark 3.5. Since each waist curve lVy̌w̌, mVx̌w̌, and Vx̌y̌ was already transverse to all other cycles,
the corresponding perturbed curve in Proposition 3.4 has the same intersection pattern. We therefore
do not notationally distinguish between the waist curves and their perturbations.

We only need describe the isotopies on the regions where the preliminary cycles were non-
transverse. This means that for each l,mV pr

0 we may focus on neighbourhoods of its segments
lying in the x̌-axis and y̌-axis regions of Σ′. So fix an (l,m) and consider the part of l,mV pr

0 (strictly
the temporary cycle obtained from this) lying in the x̌-axis part of Σ′ and the Vx̌y̌- and lVy̌w̌-necks.
We view this in the x̌-projection, as in Fig. 5.

We first isotope the x̌-axis segment, between the two necks, anticlockwise about x̌ = 0 by an
amount proportional to m. This of course requires corresponding small modifications at the bound-
aries of the neck regions to keep the curve continuous. To make the isotopy Hamiltonian, we then
push the curve slightly clockwise just inside the Vx̌y̌-neck. The result is shown schematically in
Fig. 8 for the (l,m) = (1, 0) and (1, 1) cycles with (p, q) = (4, 3). We then do a similar thing on the

Figure 8. The x̌-projection of the final vanishing cycles 1,0V0 and 1,1V0 in the x̌-axis
part of Σ′ and the Vx̌y̌- and 1Vy̌w̌-necks, with (p, q) = (4, 3).

y̌-axis part of Σ′ and the Vx̌y̌- and lVy̌w̌-necks.

The result is that the final cycles l,mV0 are all pairwise disjoint, except on the Vx̌y̌-neck. Inside

this neck, the intersections between l,mV0 and L,MV0 remain as described in Remark 3.2 when l 6= L
and m 6= M . When l = L and (without loss of generality) m > M the effect is as follows. Before
perturbing and isotoping, the x̌-arguments of the curves on the Vx̌y̌-neck are described by (9) and
illustrated in the left-hand part of Fig. 9. In particular, the curves converge as |x̌| becomes large.
The isotoped curves are shown schematically in the right-hand part of the same diagram, and we
see that now they intersect once, transversely, where l,mV0 has been pushed further anticlockwise
than l,MV0.

Combining this with Remark 3.2 and Proposition 3.4 (with the l,mV0 now being used in place of
the l,mV pr

0 ) we obtain a model for A with precisely the following basis of morphisms:

• An identity morphism for each object.
• A morphism from l,mV0 to L,MV0 whenever (l,m) 6= (L,M) but both l ≥ L and m ≥M .
• A morphism from each l,mV0 to each of Vx̌y̌,

lVy̌w̌ and mVx̌w̌.

This is a chain-level description, but for any pair of objects the morphism complexes are either one-
or zero-dimensional, so all differentials trivially vanish. Additively the cohomology algebra therefore
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arg x̌

2πl/(p− 1)

−2πM/(q − 1)

−2πm/(q − 1)

log |x̌| log |x̌|

Figure 9. The Vx̌y̌-neck regions of the curves l,mV0 and l,MV0 before (left) and after
(right) perturbing and isotoping.

matches exactly with the quiver description of B in Fig. 1, under the identification

l,mV0 ↔ i,jK0

lVy̌w̌ ↔ iKx[3]

mVx̌w̌ ↔ jKy[3]

Vx̌y̌ ↔ Kw[3]

with
i+ l = p− 1

j +m = q − 1.
(10)

To complete the proof of Theorem 1 in the loop case, we just need to check that the compositions
agree, and that the vanishing cycles can be graded so as to place all morphisms in degree 0. These
are the subjects of the next two subsections.

Remark 3.6. The identification (10) is between the objects of A ⊂ F(Σ) and B ⊂ mf(C2,Γw,w). In
the ultimate equivalence F(w̌) ' mf(C2,Γw,w) the vanishing cycles in (10) should be replaced by
their images under the equivalence TwA → F(w̌), which are the corresponding Lefschetz thimbles.

3.6. Composition. Suppose L0, L1 and L2 are three (final) vanishing cycles such that L0 < L1 <
L2 with respect to the ordering on the category A (we are calling them L rather than V to avoid
conflict with our earlier notation for specific cycles). We need to compute the composition

HF ∗(L1, L2)⊗HF ∗(L0, L1)→ HF ∗(L0, L2), (11)

which is defined by counting pseudo-holomorphic triangles, and Seidel [20, Section (13b)] shows
that this can be done combinatorially by simply counting triangular regions bounded by the Li.
The crucial point is that one can do without Hamiltonian perturbations or perturbations of the
complex structure because the directedness of the category automatically rules out contributions
from constant discs. (It also rules out discs in which the ordering of the Lagrangians around the
boundary does not match their ordering in the category.)

In order for this composition to have a chance of being non-zero (i.e. in order for all three HF ∗

groups to be non-zero) we must have L0 = l,mV0 and L1 = L,MV0 for some distinct (l,m) and (L,M)
with l ≥ L and m ≥M . We then have four cases, depending on whether L2 is Vx̌y̌,

LVy̌w̌, MVx̌w̌, or
of the form r,sV0 for some (r, s) 6= (L,M) with r ≤ L and s ≤M . We restrict our attention to these
four cases from now on.

In each case there is a single obvious holomorphic triangle contributing to the product. In the
first and fourth cases the triangle lies in the Vx̌y̌-neck region, as illustrated in Fig. 10, whilst in the

second (respectively third) case it stretches between the Vx̌y̌- and lVy̌w̌- (respectively mVx̌w̌-) neck
regions in the x̌- (respectively y̌-) axis part of Σ′ as shown in Fig. 11. We claim that there are no
other triangles, whence (11) is the non-degenerate multiplication e12 ⊗ e01 7→ ±e02, where eij is the
generator of HF ∗(Li, Lj) corresponding to the unique intersection point of Li and Lj . In fact there
are two natural generators, differing by sign, and the ± in the multiplication depends on the specific
generators chosen as well as the orientation on the moduli space of holomorphic triangles, but we
shall argue shortly that all signs can be arranged to be positive.
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log |x̌|

arg x̌
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L1

L2 L0
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Figure 10. The obvious triangles in the Vx̌y̌-neck contributing to the product in
the first (left) and fourth (right) cases.

Figure 11. The x̌-projection of the obvious triangle between 1,0V0, 1,1V0, and 1Vy̌w̌,
when (p, q) = (4, 3).

To prove the claim, suppose u is a non-constant holomorphic triangle with boundary on L∪,
defined to be the union of the Li. By the open mapping theorem, after deleting L∪ the image of
u consists of a union of components of Σ \ L∪ whose closures in Σ are compact. Such components
naturally correspond to generators of H2(Σ/L∪;Z) ∼= H2(Σ, L∪;Z), which the long exact sequence
of the pair tells us is isomorphic to the kernel of the inclusion pushforward H1(L∪;Z) → H1(Σ;Z).
In all of our cases, the space L∪ is homeomorphic to three circles that touch pairwise, so its H1 has
rank four. Its image in H1(Σ;Z) meanwhile, contains the classes of L0, L1 and L2, which are linearly
independent since the vanishing cycles form a basis for H1(Σ;Z). We conclude that H2(Σ, L∪;Z) has
rank at most one, so there is at most one component of Σ \ L∪ that u can enter. We have already
seen that there is at least one component, and counted the obvious triangle that it contributes, so
we conclude that there are no other triangles.

To compute the signs we should equip each Li with an orientation and the non-trivial spin
structure (this is the one that is induced by viewing Li as the boundary of a Lefschetz thimble
in the total space of our Morsified fibration), and then calculate the induced orientation on the
moduli space of holomorphic triangles. As mentioned above, however, we can choose the generators
of the morphism spaces so that all of the signs turn out to be positive. We make these choices by
induction on the length of the morphism, defined to be the maximal length of a chain of non-identity
morphisms whose composition is the given morphism (so, for example, the length of a generator of
HF ∗(l,mV0,

L,MV0) is l − L+m−M).
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First, choose arbitrary signs for the generators of length 1. Now modify these as follows. Start at
the bottom left-hand square in the quiver picture Fig. 1—explicitly this corresponds to the square

p−1,q−2V0
p−2,q−2V0

p−1,q−1V0
p−2,q−1V0

If this commutes then do nothing, otherwise reverse the sign of the morphism along the top edge.
Then consider the next square to the right and do the same, and continue all the way along to the
bottom right-hand square. Now run the same procedure on the next row of squares up, and then
the next, all the way to the top. In this way we obtain sign choices for all generators of length 1
such that the small squares commute.

For each morphism space of length k > 1 we choose its generator by expressing the space as
a composition of k morphism spaces of length 1 and taking the positive generator of each factor.
There may be several different ways of decomposing the space into length 1 factors, but any two
can be joined by a chain of moves where one commutes across a small square. We have arranged it
so that these moves have no effect, so there is no ambiguity in the overall procedure. This proves
that all signs can be taken to be +.

We conclude:

Proposition 3.7. There is a model for A which, under the identification (10), is described by the
quiver in Fig. 1 up to yet-to-be-determined gradings. �

3.7. Gradings and completing the proof. Recall from [19, 20] that to equip the Fukaya category
of a symplectic manifold X with a Z-grading one must choose a homotopy class of trivialisation of
the square K−2

X of the anticanonical bundle of X; this is possible if and only if 2c1(X) vanishes
in H2(X;Z), and in this case the set of choices forms a torsor for H1(X;Z). We are interested in
the Fukaya–Seidel category F(w̌) and the subcategory A of the compact Fukaya category of the
smooth fibre, for which the relevant choices of X are C2 and Σ respectively. The former has a unique
grading, defined by the section σ = (∂x̌ ∧ ∂y̌)⊗2 of K−2

C2 , which induces a grading of the latter, and
it is with respect to this induced grading that the quasi-equivalence TwA → F(w̌) is graded.

Trivialisations of K−2
Σ correspond naturally to line fields ` on Σ, i.e. sections of the real projec-

tivisation PRTΣ of the tangent bundle, and given a choice of ` the Lagrangian L represented by an
embedded curve γ : S1 → Σ is gradable if and only if the sections γ∗` and γ∗TL of γ∗PRTΣ are
homotopic. In this case a grading of L is a homotopy class of homotopy between them. At each
point of L we can measure the anticlockwise angle from ` to TL, and we denote this by πα, where
α is an element of R/Z. The gradings of L are then in bijection with lifts α# of this element to
R. Given two graded Lagrangians L0 and L1, which intersect transversely at a point x, let their

corresponding lifts at x be α#
0 and α#

1 respectively. By [20, Example 11.20], the grading of x as a
generator of the Floer complex CF ∗(L0, L1) is then given by

bα#
1 − α

#
0 c+ 1. (12)

From now on we will use ` to denote the specific (homotopy class of) line field corresponding to the
grading on Σ induced by the grading on C2.

To compute ` note that each Lefschetz thimble ∆ in F(w̌) is gradable with respect to σ (∆
is contractible so the grading obstruction trivially vanishes), and each choice of grading induces a
grading of the corresponding vanishing cycle V ⊂ Σ with respect to `. In particular, all of the
vanishing cycles V are gradable with respect to `, and since they form a basis for H1(Σ;Z) this
property—that ` has winding number zero around each V—determines ` uniquely.

Remark 3.8. Recall that the ordering on A is determined by a choice of starting direction in the base
C, and strictly this choice enters into the construction of the bijection between gradings of a thimble
∆ and of the corresponding vanishing cycle V . This is unimportant for our present purposes, but
we will see a manifestation of it in Section 6.2, where a change in this direction leads to a change in
the grading of a vanishing cycle.
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Using this characterisation, one can draw ` as shown in Fig. 12: the left-hand diagram depicts
a foliation of the line {u + v = ε} with the points (ε, 0) and (0, ε) deleted, and we lift its tangent
distribution to give the line field on the branched cover comprising the {w̌ = ε} part of Σ′ and the
attached neck regions; the right-hand diagram depicts a foliation whose tangent distribution gives
the line field on the x̌-axis part of Σ′ and the attached neck regions in the case q = 4—it is clear
how this generalises to other values of q and that a similar picture can be drawn for the y̌-axis part.
As usual, the dotted circles represent the boundaries of the neck regions. Note that on each neck

Figure 12. Foliations defining the line field ` used to grade Σ.

region the line field is longitudinal, so the different pictures glue together.
Each l,mV0 is approximately tangent to ` along its approximately straight segments in the three

components of Σ′, and we choose to grade it so that the homotopy from TL to ` is approximately
constant on these regions. This is consistent, in the sense that these homotopies patch together
across the neck regions. On each neck region, the lift α# is valued approximately between 0 and
1/2, and where two of these cycles intersect the one with the greater value of θl,m is ‘steeper’ and

hence has greater α#. We conclude that for distinct (l,m) and (L,M) with l ≥ L and m ≥ M the

generator of HF ∗(l,mV0,
L,MV0) lies in degree 0 (in the notation of (12) we have 1/2 > α#

0 > α#
1 > 0).

Each of the other vanishing cycles is a waist curve on a neck region and as such is orthogonal to
the line field. We grade it so that the lift α# is −1/2. This puts the generators of

HF ∗(l,mV0,
lVy̌w̌), HF ∗(l,mV0,

mVx̌w̌), and HF ∗(l,mV0, Vx̌y̌)

all in degree 0. This means that the identification (10) matches up gradings, and we deduce:

Theorem 3.9 (Theorem 1, loop polynomial case). Under (10), the Z-graded A∞-category A is
described by the quiver with relations in Fig. 1 and is formal. In particular, by Theorem 2.13 it is
quasi-equivalent to B, and hence there is an induced quasi-equivalence

mf(C2,Γw,w) ' F(w̌).

Proof. The cohomology-level version of the first statement follows from Proposition 3.7 plus the
above grading computations. Formality then follows immediately from directedness and the fact
that the morphisms are concentrated in degree 0 as in Theorem 2.13. This shows that A and B are
quasi-equivalent, and the final statement then follows from the argument outlined in Section 1.2. �

4. B-model for chain polynomials

4.1. The basic objects. We now deal with the case of the chain polynomial w = xpy + yq. This
time the maximal grading group L is the abelian group freely generated by ~x, ~y and ~c modulo the
relations

p~x+ ~y = q~y = ~c.

In contrast to the loop case, we have L/Z~c ∼= Z/(pq), generated by ~x but not by ~y = −p~x. In
keeping with our earlier notation let S be the L-graded algebra C[x, y], with x and y in degrees ~x
and ~y respectively, and let R = S/(w). Let w now denote xp + yq−1 so that w = yw.
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The stack [w−1(0)/Γw] has two components, whose structure sheaves correspond to the matrix
factorisations

Ky
• = (· · · → S(−~c) w−→ S(−~y)

y−→ S → · · · ),

and

Kw
• = (· · · → S(−~c) y−→ S(−~c+ ~y)

w−→ S → · · · ).

We will need the shifts

jKy = Ky((j + 1− q)~y) for j = 1, . . . , q − 1.

Note that Kw[1] ∼= Ky(~y).
The unique singular point of the stack is still the origin, and the objects we need that are supported

at this point are the i,jK0 defined by

S(~y) S((j + 1)~y) S(~c+ ~y)

S(−~c+ i~x+ (j + 1)~y) S(i~x+ ~y) S(i~x+ (j + 1)~y)

yj

−xi

· · ·
⊕

yq−j

xi⊕ ⊕
· · ·xp−iy

yq−j

−xp−iy

yj

for i = 1, . . . , p− 1 and j = 1, . . . , q − 1, obtained by stabilising R(i~x+ (j + 1)~y)/(xi, yj).

4.2. Morphisms between the Ky’s and Kw. For all l in L, and all integers m, we have
Hom2m(Ky, Ky(l)) ∼= (R/(y, w))m~c+l and Hom2m−1(Ky, Ky(l)) = 0. The analogue of Lemma 2.2
and Lemma 2.3, proved by similar arguments, is now:

Lemma 4.1. Suppose a and b are integers, with a ≤ p− 1, and s is an element of S (or R) which
is homogeneous modulo ~c, of degree a~x+ b~y mod ~c. Then:

(i) s is divisible by xa.
(ii) If also b ≤ q − 1 then s lies in the ideal (xayb, xp+a).

(iii) If a = b = 0 then the non-constant terms of s lie in (xpq, xpy, yq). �

Applying this to the above computation we obtain:

Lemma 4.2. The objects 1Ky, . . .
q−1Ky are exceptional and pairwise orthogonal. �

Using the fact that Kw[1] ∼= Ky(~y), we also get:

Lemma 4.3. The object Kw is exceptional and is orthogonal to the jKy. �

4.3. Morphisms between Ky’s and Kw and K0’s. For all l and all (i, j), Hom•(Ky(l),
i,jK0) is

given by the cohomology of the complex

· · · → (R/(xi, yj))i~x+(j+1)~y−l
y−→ (R/(xi, yj))i~x+(j+2)~y−l

w−→ (R/(xi, yj))~c+i~x+(j+1)~y−l → · · · .

By Lemma 4.1(i) we see that for all J

Hom•(JKy,
i,jK0) = Hom•(Kw,

i,jK0) = 0.

Morphisms in the other directions are computed by the complex

(R/(y))−~c−~y+l (R/(y))−(j+1)~y+l (R/(y))−~y+l

(R/(y))−i~x−(j+1)~y+l (R/(y))−i~x−~y+l (R/(y))~c−i~x−(j+1)~y+l

yq−j

−xp−iy

· · ·
⊕

yj

xp−iy⊕ ⊕
· · ·

xi

yj

−xi

yq−j
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The only non-vanishing differentials are xi, so we get

Hom2m(i,jK0,
JKy) ∼= (R/(xi, y))(m−2)~c+J~y,

Hom2m+1(i,jK0,
JKy) ∼= (R/(xi, y))(m−1)~c+(J−j)~y,

Hom2m(i,jK0, Kw) ∼= (R/(xi, y))(m−1)~c−j~y,

Hom2m+1(i,jK0, Kw) ∼= (R/(xi, y))(m−1)~c,

and hence:

Lemma 4.4. In HMF(C2,Γw,w) there are no morphisms from JKy or Kw to i,jK0. The morphism
spaces in the other direction are spanned by

(1, 0) ∈ Hom3(i,jK0,
jKy)

and

(0, 1) ∈ Hom3(i,jK0, Kw)

in the above complexes.

Proof. The even degree morphisms all vanish by Lemma 4.1(ii), and if j 6= J then the same holds
for Hom2m+1(i,jK0,

JKy) (if J < j then rewrite the grading as (q+J − j)~y mod ~c). Lemma 4.1(iii)
tells us that the only surviving odd morphisms are the constants. �

4.4. Morphisms between the K0’s. The complex computing Hom•(i,jK0,
I,JK0) is

(R/(xI , yJ))−~c+I~x+J~y (R/(xI , yJ))I~x+(J−j)~y (R/(xI , yJ))I~x+J~y

(R/(xI , yJ))(I−i)~x+(J−j)~y (R/(xI , yJ))(I−i)~x+J~y (R/(xI , yJ))~c+(I−i)~x+(J−j)~y

yq−j

−xp−iy

· · ·
⊕

yj

xp−iy⊕ ⊕
· · ·

xi

yj

−xi

yq−j

The top row vanishes by Lemma 4.1(i), and the same is true of the bottom row if I < i (after adding
p~x+ ~y mod ~c to the gradings), so assume that I ≥ i. The complex becomes

· · · → (R/(xI , yJ))(I−i)~x+(J−j)~y
yj−→ (R/(xI , yJ))(I−i)~x+J~y

yq−j

−−−→ (R/(xI , yJ))~c+(I−i)~x+(J−j)~y → · · ·

and the odd position terms vanish by Lemma 4.1(ii), so Hom2m+1(i,jK0,
I,JK0) = 0 and

Hom2m(i,jK0,
I,JK0) ∼= (R/(xI , yJ))m~c+(I−i)~x+(J−j)~y.

If J < j then this is zero by Lemma 4.1(ii) (after adding q~y mod ~c to the grading), so assume
J ≥ j. Lemma 4.1(ii) tells us that any element is divisible by xI−iyJ−j modulo (xI , yJ), and then
Lemma 4.1(iii) tells us that only constant multiples survive. We conclude:

Lemma 4.5. For all (i, j) and (I, J) we have that

Hom•(i,jK0,
I,JK0) ∼=

{
C · xI−iyJ−j if I ≥ i, J ≥ j and • = 0

0 otherwise.
�

4.5. The total endomorphism algebra of the basic objects. It is easy to compute the com-
positions between the morphisms and obtain the following description of the full subcategory B of
mf(C2,Γw,w) on the objects jKy[3], Kw[3], i,jK0:

Theorem 4.6. The cohomology category H(B) is the path algebra of the quiver-with-relations de-
scribed in Fig. 13. Any Z-graded A∞-structure on this algebra—and hence in particular that induced
from the dg-structure on mf(C2,Γw,w)—is formal. �
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· · ·

· · ·

· · ·

...
...

...
...

.... .
.

i,jK0
jKy[3]

Kw[3]

Relations:

(i) Squares commute
(ii) Dashed compositions

vanish

Figure 13. The quiver describing the category B for chain polynomials.

4.6. Generation. The final thing we need to check is:

Lemma 4.7. The objects in B split-generate HMF(C2,Γw,w).

Proof. Let V = {jKy, Kw,
i,jK0}. As in the loop case, it suffices to prove that the category 〈V 〉

contains all of the L/Z~c-grading shifts of R/(x, y). Again following the loop case, we easily have
that R(i~x+ (j + 1)~y)/(x, y) lies in 〈V 〉 for any 1 ≤ i ≤ p− 1 and 1 ≤ j ≤ q − 1.

By combining Kw
∼= Ky(~y)[−1], the jKy, and all of their [·]-shifts, we see that 〈V 〉 contains

R(l)/(y) for all l in Z~y + Z~c (the Z~c is redundant here but we include it for clarity). Consequently,
for each integer j we have that 〈V 〉 contains the cokernel of

R((j + 1)~y − ~c)/(y)
xp−→ R(j~y)/(y),

which is R(j~y)/(xp, y). Peeling off one-dimensional pieces R(i~x+j~y)/(x, y) for i = −1, . . . ,−(p−1),
by taking cones, we’re left with R(j~y)/(x, y). If j lies in 1, . . . , q− 1 then (after applying the trivial
operation (p~x+ ~y)[−2]) each of these pieces is in 〈V 〉 by the previous paragraph. The conclusion is
that R(j~y)/(x, y) lies in 〈V 〉 for all such j.

We have therefore constructed R(a~x+ b~y)/(x, y) for 0 ≤ a ≤ p− 1 and 0 ≤ b ≤ q − 1 except for
(a, b) = (0, 0) and (a, b) = (1, 1), . . . , (1, p− 1). To obtain the latter, consider the extension

0→ R/(w)
xi−→ R(i~x)/(w)→ R(i~x)/(xi, yq−1)→ 0

for i = 1, . . . , p − 1. The outer terms lie in 〈V 〉 (they are Kw and i,q−1K0[−2]), so we deduce that
R(i~x)/(w) also lies in 〈V 〉. Again using the fact that Kw

∼= Ky(~y)[−1], we get that R(i~x+ ~y)/(y) is
in 〈V 〉 for i = 0, . . . , p−1 (the i = 0 case comes from Kw[1] itself, not from the preceding argument).
From these we see that

R(i~x+ ~y)/(x, y) ∼= Cone
(
R((i− 1)~x+ y)/(y)

x−→ R(i~x+ ~y)/(y)
)

lies in 〈V 〉 for i = 1, . . . , p− 1.
All that is left to show now is that we have R/(x, y) in 〈V 〉, and this closely follows the loop case:

we can realise this module as the cokernel of

R(−~x)/(xpq−1, y)
x−→ R/(xpq, y),

and the domain can be built of the shifts of R/(x, y) that we already have. The codomain, meanwhile,
is given by

Cone
(
R(−(q − 1)~c)/(y)

xpq−−→ R/(y)
)
. �

Remark 4.8. The R(l)/(x, y) still only split-generate the category (which we saw for loop polynomials
in Remark 2.18), since the above proof shows that they are annihilated by the homomorphism

K0(mf(C2,Γw,w))→ Z/2
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which sends the basis elements i,jK0 to 0 but jKy and Kw to 1.

As in the loop case, we deduce:

Theorem 4.9 (Theorem 2, chain polynomial case). The object

E :=

( ⊕
i=1,...,p−1
j=1,...,q−1

i,jK0

)
⊕
( q−1⊕
j=1

jKy[3]

)
⊕ Kw[3]

is a tilting object for mf(C2,Γw,w). �

This was proved by Futaki–Ueda [7, Section] in the case q = 2.

5. A-model for chain polynomials

5.1. The setup. Just as for the B-model, our basic strategy for understanding the A-model will
closely follow the loop polynomial case. This time the Berglund–Hübsch transpose is w̌ = x̌p + x̌y̌q,
and our starting point is once more the resonant Morsification w̌ε = w̌− εx̌y̌ for small positive real
ε. We denote x̌p−1 + y̌q by w̌. The critical points now fall into three types:

(i) x̌ = 0, y̌q−1 = ε
(ii) x̌ = y̌ = 0

(iii) y̌q−1 = ε
q , x̌p−1 = (q−1)εy̌

pq .

The first two types have critical value zero, whilst the third type has critical value

−x̌y̌ε(p− 1)(q − 1)/pq,

on the ray through −x̌y̌. These critical points are indeed all Morse.
There is a unique positive real solution to (iii) which we denote by (x̌+

crit, y̌
+
crit), and again we call

the corresponding (negative real) critical value ccrit. Still letting ζ and η denote the roots of unity

ζ = e2πi/(p−1) and η = e2πi/(q−1),

but now also letting µ = e2πi/(p−1)(q−1), the type (iii) critical points are

{(ζ lµmx̌+
crit, η

my̌+
crit) : 0 ≤ l ≤ p− 2, 0 ≤ m ≤ q − 2},

with critical values µ(q−1)l+pmccrit.
Taking regular fibre Σ = w̌−1

ε (−δ) with 0 < δ � ε, we again choose the straight line segment
from −δ to 0 as the vanishing path for the critical points over zero, and denote the corresponding
vanishing cycles by mVx̌w̌ and Vx̌y̌. We also choose the same preliminary vanishing paths γl,m as
before, but with θl,m now given by

θl,m = 2π

(
l

p− 1
+

pm

(p− 1)(q − 1)

)
,

and write l,mV pr
0 for the preliminary vanishing cycles.

5.2. The vanishing cycles. The central fibre w̌−1
ε (0), shown in Fig. 14, now has only two compo-

nents, namely the line {x̌ = 0} and the smooth curve {w̌ = εy̌}. The q nodes are smoothed to thin
necks in Σ, whose complement we again refer to as Σ′, and we trivialise the fibration w̌ε on this
complement over the disc of radius δ. This time we compute

# punctures of Σ = gcd(p− 1, q) + 1

g(Σ) =
1

2
(pq − p+ 1− gcd(p− 1, q)) .

Just as in the loop case, the preliminary cycle 0,0V pr
0 is given by the loop in the positive quadrant

of the real part of Σ. On Σ′ the other preliminary cycles are given by the action of (ζ lµm, ηm). In
particular, they are pairwise disjoint on the {w̌ = εy̌} part of Σ′ (since x̌ and y̌ are both nowhere-
zero here). The only intersections on the {x̌ = 0} part occur when the m-values coincide, and in
this case the cycles overlap (at least in the limit δ ↓ 0) exactly as before.
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x̌ = 0

w̌ = εy̌
q − 1

Figure 14. The fibre w̌−1
ε (0) for chain polynomials.

On the Vx̌y̌-neck region, the argument of the y̌-component of l,mV pr
0 interpolates from

−2π

(
l

p− 1
+

m

(p− 1)(q − 1)

)
to

2πm

q − 1

as |y̌| increases, whilst on the mVx̌w̌-neck the argument of y̌ − ηmy̌+
crit interpolates back the other

way as its argument decreases. This is completely analogous to the picture in Fig. 5.
We modify the preliminary paths, and correspondingly perturb the fibration, exactly as in Sec-

tion 3.4. The chain polynomial version of Lemma 3.3 is:

Lemma 5.1. Suppose θl,m > θL,M+2π, and let z = γ′l,m∩γ′L,M . Inside Σz = w̌−1
ε (z) we have vanish-

ing cycles V1 and V2 corresponding to the critical points (ζ lµmx̌+
crit, η

my̌+
crit) and (ζLµM x̌+

crit, η
M y̌+

crit)
and the truncations of γ′l,m and γ′L,M . These cycles are disjoint.

Proof. We must have l ≥ L and m > M , so we can apply f−1
L,M to get (L,M) = (0, 0) with m > 0.

The latter ensures that V1 and V2 are disjoint on Σ′ ⊂ Σ ≈ Σz, and that their only possible
intersection is in the Vx̌y̌-neck region. On this region the argument of y̌ is approximately 0 for V2,
and interpolates between

2π

(
1− l

p− 1
− m

(p− 1)(q − 1)

)
and

2πm

q − 1

for V1, so they are disjoint there too. �

This allows us to introduce fingers to the vanishing paths γ′l,m, as before, without affecting the

vanishing cycles. We then make Hamiltonian isotopies as in Section 3.5 (but now only in the y̌-axis
part of Σ′ and the Vx̌y̌- and mVx̌w̌-necks) to obtain the final vanishing cycles. This gives a model
for A with the following basis of morphisms:

• An identity morphism for each object.
• A morphism from l,mV0 to L,MV0 whenever (l,m) 6= (L,M) but both l ≥ L and m ≥M .
• A morphism from each l,mV0 to Vx̌y̌ and to mVx̌w̌.

As in the loop case the differentials on morphism complexes trivially vanish so we are left to check
compositions and gradings.
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5.3. Composition and gradings. Once more we have one obvious triangle contributing to each
non-trivial product, and by the same homology computation as for loop polynomials there can be
no others. We can also run the same inductive argument to ensure that all of the signs in the
compositions are positive.

To grade the category we must again take the unique homotopy class of line field ` on Σ whose
winding number along each vanishing cycle V is zero, and then pick a homotopy class of homotopy
from `|V to TV . By homotoping ` we may assume it points longitudinally in each neck region,
orthogonal to the waist curves, and then up to homotopy it must look like the right-hand diagram
in Fig. 12 in the union of the neck regions and the y̌-axis part of Σ′. We can then define the gradings
in the same way as in the loop case, and see that all morphisms then lie in degree 0.

The conclusion is:

Theorem 5.2 (Theorem 1, chain polynomial case). Under the correspondence

l,mV0 ↔ i,jK0

mVx̌w̌ ↔ jKy[3]

Vx̌y̌ ↔ Kw[3]

with
i+ l = p− 1

j +m = q − 1

the Z-graded A∞-category A is described by the quiver with relations in Fig. 13 and is formal, so
there is a quasi-equivalence

mf(C2,Γw,w) ' F(w̌). �

This was also proved by Futaki–Ueda for q = 2, as a special case of [7, Theorem 1.2]. They state
the result at the level of derived categories, i.e. after passing to cohomology, but as we have seen it
is trivial to upgrade from this to the full A∞ result.

6. Brieskorn–Pham polynomials

6.1. B-model. Now w is given by xp + yq, and the maximal grading group L is generated by ~x, ~y
and ~c modulo

p~x = q~y = ~c,

so is simply Z/p⊕ Z/q, generated by ~x = (1, 0) and ~y = (0, 1). Let S = k[x, y], graded by L in the
obvious way, and let R = S/(w).

The stack [w−1(0)/Γw] has only one component this time, and the objects that we need are the
matrix factorisations i,jK0 given by

S S(j~y) S(~c)

S(−~c+ i~x+ j~y) S(i~x) S(i~x+ j~y)

yj

−xi

· · ·
⊕

yq−j

xi⊕ ⊕
· · ·

xp−i

yq−j

−xp−i

yj

for i = 1, . . . , p− 1 and j = 1, . . . , q − 1, stabilising R(i~x+ j~y)/(xi, yj).
For any (i, j) and (I, J) the morphism space Hom•(i,jK0,

I,JK0) is computed by the complex

(R/(xI , yJ))−~c+I~x+J~y (R/(xI , yJ))I~x+(J−j)~y (R/(xI , yJ))I~x+J~y

(R/(xI , yJ))(I−i)~x+(J−j)~y (R/(xI , yJ))(I−i)~x+J~y (R/(xI , yJ))~c+(I−i)~x+(J−j)~y

yq−j

−xp−i

· · ·
⊕

yj

xp−i⊕ ⊕
· · ·

xi

yj

−xi

yq−j

By considering gradings modulo ~x and modulo ~y, one sees that the top row and the odd position
terms in the bottom row vanish, and the remaining terms vanish if I < i or J < j. We therefore
assume that I ≥ i and J ≥ j, and read off that Hom2m+1(i,jK0,

I,JK0) = 0 and

Hom2m(i,jK0,
I,JK0) ∼= (R/(xI , yJ))(I−i)~x+(J−j)~y.
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Arguing as in the loop and chain cases, this is spanned by xI−iyJ−j .
The full A∞-subcategory of mf(C2,Γw,w) on the objects i,jK0 is therefore described by the quiver

with relations in Fig. 15, and is formal as before. This is the tensor product of the Ap−1 and Aq−1

· · ·

· · ·

· · ·

...
...

...
.... .

.
i,jK0

Relations:

(i) Squares commute

Figure 15. The quiver describing the category B for Brieskorn–Pham polynomials.

quivers, which describe the one-variable graded matrix factorisations of xp and yq respectively.
To prove these objects generate we just need to check that we can build all L/Z~c-shifts of R/(x, y)

from them. One easily constructs R(a~x+ b~y)/(x, y) for a = 1, . . . , p− 1, b = 1, . . . , q − 1 by taking
cones on these generators as in the previous cases. To construct the remaining shifts, note that the
modules R(i~x+j~y)/(xi, yj) and R(~c)/(xp−i, yq−j) are isomorphic in the singularity category, as they
give rise to equivalent matrix factorisations. Taking i = p− 1 and j = q− 1, q− 2, . . . , 1 in turn, we
can inductively build the a = 0 shifts from R(~c)/(xp−i, qq−j). Reversing the roles of x and y gives
the remaining shifts. In contrast to Remark 2.18 and Remark 4.8, the R(l)/(x, y) now generate the
category, rather than just split-generate.

We conclude the following well-known result, which goes back to at least [5, Theorem 6], [6,
Theorem 1.2]:

Theorem 6.1 (Theorem 2, Brieskorn–Pham polynomial case). The object

E :=
⊕

i=1,...,p−1
j=1,...,q−1

i,jK0

is a tilting object for mf(C2,Γw,w). �

6.2. A-model. We consider the resonant Morsification w̌ε := x̌p+ y̌q−εx̌y̌ of the Berglund–Hübsch
transpose w̌ = x̌p + y̌q. The critical points are:

(i) x̌ = y̌ = 0

(ii) x̌p−1 = εy̌
p , y̌q−1 = εx̌

q .

These are Morse, with critical values 0 and −x̌y̌ε(pq − p − q)/pq respectively. The equations (ii)
reduce to

x̌(p−1)(q−1)−1 =
εq

pq−1q
and y̌ =

px̌p−1

ε
,

so there is a unique positive real solution (x̌+
crit, y̌

+
crit) whose critical value we denote by ccrit as before.

All other critical points differ by the action of (pq−p− q)th roots of unity with weights (q−1, 1), or
equivalently (1, p− 1), on (x̌, y̌). We parametrise these critical points, and the associated vanishing
paths and cycles, by

(l,m) ∈ ({0, . . . , p− 2} × {0, . . . , q − 2}) \ {(p− 2, q − 2)}
as

(µ(q−1)l+mx̌+
crit, µ

l+(p−1)my̌+
crit),

where µ = e2πi/(pq−p−q).
The fibre w̌−1

ε (0) is shown in Fig. 16. This time it is irreducible. At infinity the defining equation
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w̌ = εx̌y̌

Figure 16. The fibre w̌−1
ε (0) for Brieskorn–Pham polynomials.

looks like x̌p + y̌q = 0 so the smooth fibre Σ = w̌−1
ε (−δ) satisfies

# punctures of Σ = gcd(p, q)

g(Σ) =
1

2
((p− 1)(q − 1)− gcd(p, q) + 1) .

We divide Σ into Σ′ and a single neck region, and trivialise the fibration on Σ′ over a small disc.
We define preliminary vanishing paths and cycles Vx̌y̌ and l,mV pr

0 as usual, taking

θl,m =
2π(ql + pm)

pq − p− q
.

Note that by our bounds on l and m this lies in [0, 4π). The cycle Vx̌y̌ is the waist curve on the neck,

whilst 0,0V pr
0 lives in the positive quadrant of the real part of Σ. The other l,mV pr

0 are obtained
from 0,0V pr

0 by the action of roots of unity on Σ′ and by a local parallel transport computation on
the neck. In particular, all intersections between the vanishing cycles occur on the neck. We modify
the vanishing paths (and correspondingly perturb the fibration), introducing fingers to remove their
intersections, in the familiar way.

There is now no need to isotope the cycles further, since they are already all transverse. In
particular, on the Vx̌y̌-neck the argument of x̌ along l,mV pr

0 interpolates from

−2π
l + (p− 1)m

pq − p− q
to 2π

(q − 1)l +m

pq − p− q
as its modulus increases. The intersection pattern is thus described by the morphisms in the quiver
Fig. 17, in the sense that the number of intersections between two curves is the dimension of the
corresponding morphism space; the l and m indices decrease from bottom left to top right. This

· · ·

· · ·

· · ·

...
...

...
.... .

.
l,mV0

Relations:

(i) Squares commute

Vx̌y̌

Figure 17. The quiver describing the intersection pattern.

is not quite the pattern we want, but this can be rectified as follows. Recall that the ordering of
the cycles is determined by the clockwise ordering of the directions of their vanishing paths as they
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emanate from the reference base point −δ. We have so far been starting the ordering from the
direction eiθ for 0 < θ � 2π, but we now change this to e−iθ. This has the effect of moving Vx̌y̌
from last to first in the ordering, and hence modifying the quiver from Fig. 17 to Fig. 15.

Remark 6.2. Alternatively, one can leave the starting direction as eiθ and instead replace the indexing
set

({0, . . . , p− 2} × {0, . . . , q − 2}) \ {(p− 2, q − 2)},
over which (l,m) ranges, by

({0, . . . , p− 2} × {0, . . . , q − 2}) \ {(0, 0)}.

This moves the top right vertex inside the rectangle in Fig. 17 to the bottom left. Now θl,m lies in
(0, 4π], rather than [0, 4π), so the prescription given at the start of Section 3.4 has to be modified
so that γ′l,m is described in modulus-(argument+π) space by the piecewise linear path:

• From (δ, 0) to (δ + δ′, θl,m) to (−ccrit, θl,m) for some small positive δ′, if θl,m ≤ 2π.
• From (δ, 0) to (δ+δ′, 2π+λθl,m) to (δ+2δ′, 2π+λθl,m) to (δ+3δ′, θl,m−θ′)) to (−ccrit, θl,m−θ′)

for some small positive λ and θ′, if θl,m > 2π.

Note that the inequalities < 2π and ≥ 2π have become ≤ 2π and > 2π, whilst the λ(θl,m − 4π)
terms have become λθl,m, so that the short horizontal segments in Fig. 6 are pushed slightly above
the dashed 2π line.

Compositions are non-degenerate by the standard argument, and we can arrange all signs to be
positive. To fix gradings we take the unique homotopy class of line field ` on Σ with respect to
which all vanishing cycles are gradable. We may assume ` is longitudinal on the neck, and equip the
l,mV0 with the standard gradings (we choose the lift α# to be approximately between 0 and 1/2).
We previously gave Vx̌y̌ the grading with α# = −1/2, but now that we have changed the ordering

we should choose α# = 1/2 to put all morphisms in degree 0.
We arrive at the following result Futaki–Ueda [5, Theorem 5], [6, Theorem 1.3]:

Theorem 6.3 (Theorem 1, Brieskorn–Pham polynomial case). Under the correspondence

l,mV0 ↔ i,jK0

Vx̌y̌ ↔ 1,1K0

with
i+ l = p− 1

j +m = q − 1

the Z-graded A∞-category A is described by Fig. 15 and is formal, so there is a quasi-equivalence

mf(C2,Γw,w) ' F(w̌). �
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