
Worldwide, breast cancer is the second most commonly 
diagnosed cancer, with approximately 2.1 million new 
diagnoses and almost 627,000 breast cancer-related 
deaths estimated to have occurred in 2018 (ref.1). Breast 
cancer is a biologically and clinically heterogeneous 
disease, with several recognized histotypes and mole-
cular subtypes that have different aetiologies, profiles of 
risk factors, responses to treatments and prognoses2–8. 
In high-income countries, approximately 75% of breast 
cancers are diagnosed in postmenopausal women, 
although around 5–7% are diagnosed in women younger 
than 40 years of age9,10.

The risk of developing breast cancer varies among 
women. Genetic susceptibility, factors affecting levels of 

endogenous hormones (early age at menarche, later age 
at menopause, nulliparity, late age at first birth, having 
fewer children and shorter durations of breastfeeding), 
exogenous hormone intake (hormonal contraceptive 
use and hormone replacement therapy), lifestyle pat-
terns (high alcohol intake, smoking and physical inac-
tivity), anthropometric characteristics (greater weight, 
weight gain during adulthood and higher central body 
fat distribution), a high mammographic breast den-
sity and benign breast diseases (non-proliferative dis-
ease, proliferative disease without atypia and atypical 
hyperplasia) are all associated with an increased risk 
of breast cancer11–14. At an individual level, the mecha-
nisms and relative contributions of these different risk 

Personalized early detection 
and prevention of breast cancer: 
ENVISION consensus statement
Nora Pashayan  1, Antonis C. Antoniou2, Urska Ivanus  3, Laura J. Esserman4, 
Douglas F. Easton  2, David French  5, Gaby Sroczynski6,7, Per Hall8,9, Jack Cuzick10,  
D. Gareth Evans11, Jacques Simard  12, Montserrat Garcia-Closas13, Rita Schmutzler14, 
Odette Wegwarth15, Paul Pharoah  2,16, Sowmiya Moorthie17, Sandrine De Montgolfier  18, 
Camille Baron19, Zdenko Herceg  20, Clare Turnbull21, Corinne Balleyguier22, 
Paolo Giorgi Rossi23, Jelle Wesseling24, David Ritchie  25, Marc Tischkowitz26, 
Mireille Broeders27, Dan Reisel28, Andres Metspalu  29, Thomas Callender  1, 
Harry de Koning  30, Peter Devilee31, Suzette Delaloge  32, Marjanka K. Schmidt  24  
and Martin Widschwendter  28,33,34 ✉

Abstract | The European Collaborative on Personalized Early Detection and Prevention of Breast 
Cancer (ENVISION) brings together several international research consortia working on different 
aspects of the personalized early detection and prevention of breast cancer. In a consensus 
conference held in 2019, the members of this network identified research areas requiring 
development to enable evidence-based personalized interventions that might improve the benefits 
and reduce the harms of existing breast cancer screening and prevention programmes. The priority 
areas identified were: 1) breast cancer subtype-specific risk assessment tools applicable to women 
of all ancestries; 2) intermediate surrogate markers of response to preventive measures; 3) novel 
non-surgical preventive measures to reduce the incidence of breast cancer of poor prognosis; and 
4) hybrid effectiveness–implementation research combined with modelling studies to evaluate the 
long-term population outcomes of risk-based early detection strategies. The implementation of 
such programmes would require health-care systems to be open to learning and adapting, the 
engagement of a diverse range of stakeholders and tailoring to societal norms and values, while 
also addressing the ethical and legal issues. In this Consensus Statement, we discuss the current 
state of breast cancer risk prediction, risk-stratified prevention and early detection strategies, 
and their implementation. Throughout, we highlight priorities for advancing each of these areas.

✉e-mail: M.Widschwendter@
ucl.ac.uk

https://doi.org/10.1038/ 
s41571-020-0388-9

  volume 17 | November 2020 | 687

CONSENSUS
Statement

NATure revIeWS | ClINICAl ONCOlOGy

http://crossmark.crossref.org/dialog/?doi=10.1038/s41571-020-0388-9&domain=pdf
http://orcid.org/0000-0003-0843-2468
http://orcid.org/0000-0002-7909-522X
http://orcid.org/0000-0003-2444-3247
http://orcid.org/0000-0002-7663-7804
http://orcid.org/0000-0001-6906-3390
http://orcid.org/0000-0001-8494-732X
http://orcid.org/0000-0002-4216-9379
http://orcid.org/0000-0003-4109-3154
http://orcid.org/0000-0003-4816-113X
http://orcid.org/0000-0002-3718-796X
http://orcid.org/0000-0001-8440-9433
http://orcid.org/0000-0003-4682-3646
http://orcid.org/0000-0003-2106-9165
http://orcid.org/0000-0002-2228-429X
http://orcid.org/0000-0002-7778-8380
mailto:M.Widschwendter@ucl.ac.uk
mailto:M.Widschwendter@ucl.ac.uk
https://doi.org/10.1038/s41571-020-0388-9
https://doi.org/10.1038/s41571-020-0388-9


factors to the development of breast cancer and also 
to particular subtypes of the disease are increasingly 
understood15.

Women with pathogenic germline mutations in 
cancer susceptibility genes — that is, in BRCA1 or 
BRCA2 (BRCA1/2) — may opt to undergo prophylactic 
bilateral mastectomy; primary chemoprophylaxis with 
tamoxifen or other selective oestrogen receptor modula-
tors has also been recommended in this group, albeit the 
uptake is low16. Historically, members of this high-risk 

group have been identified on an opportunistic basis 
following self-referral of women with a family history 
of breast or ovarian cancer, or on the basis of an ancestry 
associated with an increased prevalence of clinically sig-
nificant pathogenic variants of BRCA1/2 (for example, 
in those of Jewish descent)16. Currently, genetic testing 
remains somewhat restricted for women with breast can-
cer; those with triple-negative, bilateral or young-onset 
disease might be offered a test at diagnosis, but most will 
be offered testing only if they also have a noted family 
history of the disease16. The 2019 US Preventive Services 
Task Force recommendations expand the population in 
which eligibility for genetic testing should be assessed 
to include women with a personal or family history of 
breast, ovarian, tubal or peritoneal cancer, in addition to 
women who have an ancestry associated with pathogenic 
BRCA1/2 variants17.

At present, the mammographic screening pro-
grammes used for early detection of breast cancer in 
most high-income countries are based on the results of 
trials conducted at least 20–30 years ago18–22 and have 
age as the only entry criterion, although the starting and 
stopping ages (varying from 40 to 74 years) and the fre-
quency of screens (yearly to triennially) differ between 
countries. This ‘one-size-fits-all’ approach does not take 
into account the heterogeneity of the breast cancer sub-
types and of the risk in the population. Three decades 
of mammographic early detection have witnessed an 
increase in the incidence of early stage cancers with a 
low-risk tumour biology and an increase in the detection 
of in situ disease, without a concomitant proportionate 
decrease in incidence of advanced-stage disease23,24. 
Increasingly, calls have been made for a new approach to 
early detection with a focus on the identification of more 
consequential cancers and on avoiding the detection of 
indolent or ultra-low-risk disease24,25.

Personalized approaches to the prevention or early 
detection of breast cancer have emerged as highly 
promising strategies26,27. These programmes require 
risk assessment of each woman in the population, strat-
ification of the population into several risk groups, 
assignment of the individuals to a specific risk group 
and tailoring of prevention and early detection interven-
tions to each risk group28 (fig. 1). Several international 
research consortia (Table 1) are studying ways to better 
understand, estimate and reduce breast cancer risk29–32, 
to use risk-based stratification to prevent consequential 
cancers33,34, to evaluate the benefit–harm trade-offs of 
such strategies35 and to assess the acceptability and fea-
sibility of implementing risk-stratified prevention and 
early detection programmes36–38.

To fulfil the promise of risk-stratified breast cancer 
prevention and screening, it is important not only to 
generate evidence on the individual component ‘jigsaw 
pieces’ of prevention and early detection programmes, 
but also to bring these pieces together in a complex 
adaptive system39. The European Collaborative on 
Personalized Early Detection and Prevention of Breast 
Cancer (ENVISION) comprises leading international 
research consortia working in this specific field (Table 1). 
In 2019, the ENVISION network organized a consensus 
conference to identify research priorities and recommend 
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actions required to enable evidence-based risk-stratified 
prevention and early detection programmes for breast 
cancer (box 1; Supplementary Table 1).

In this Consensus Statement, we review the current 
knowledge, explore the barriers and opportunities, 
and define key areas for the development and imple-
mentation of risk assessment, risk-stratified preven-
tion and early detection programmes for breast cancer. 
As representatives of the ENVISION network, we also 
present herein the recommendations formulated at the 
2019 consensus conference (box 2) in the hope that they 
stimulate and guide such programmes.

Risk assessment for breast cancer
Established risk factors
Breast cancer risk can be predicted using a combination 
of common genetic variants, mostly single-nucleotide 
polymorphisms (SNPs); rare coding variants of suscep-
tibility genes, including BRCA1/2, PALB2, CHEK2 and 
ATM; mammographic breast density; benign abnormali-
ties in breast biopsy specimens; hormonal, anthropomet-
ric and lifestyle factors; family history of the disease; and, 
potentially, epigenetic markers11,13,40–43. Genome-wide 
association studies (GWAS) have resulted in the iden-
tification of >180 independent common genetic var-
iants that together account for ~20% of the familial 
relative risk of breast cancer and ~40% of the heritabil-
ity attributed to all common variants on genome-wide 
SNP arrays40,41. Each variant confers a small risk, but 
their effects can be combined into polygenic risk scores 
(PRSs) that are predictive of the risk of developing breast 
cancer, thereby enabling breast cancer risk stratification 
in the general population44–46.

The performance of current PRSs has been thor-
oughly validated in European populations44. The relative 

risks associated with individual SNPs and PRSs vary 
between breast cancer subtypes, with oestrogen 
receptor-positive (ER+) disease being more strongly 
predicted than other forms of the disease40,41,44. The cur-
rent best performing PRS is based on 313 SNPs (PRS313): 
women in the highest 1% of the risk distribution have 
an approximately fourfold and threefold greater risk of 
developing ER+ and ER− breast cancers, respectively, 
compared with women in the middle quintile (40–60th 
percentile)44. The risk reflected in the PRSs seems to be 
independent of other established risk factors — that is, 
the effects are approximately multiplicative43. PRS313 pro-
vides the highest level of breast cancer risk stratification 
in the population, followed by mammographic breast 
density and the other risk factors45,47.

Protein-truncating variants (PTVs) in approximately 
12 genes are associated with breast cancer risk42,48; for 
some, the strength of association has been demon-
strated to differ between ER+ and ER− disease49,50. The 
risk estimates for PTVs of some genes are, however, 
very imprecise (Table 2). Missense mutations in a sub-
set of these genes have also been associated with an 
increased risk of breast cancer42,51–53. Evidence from 
in silico and functional studies can help to define this 
subset of cancers with non-truncating variants54–56. For 
rare individual variants associated with risk, however, 
the level of risk that they impart remains uncertain. 
Most genes tested using commercial multigene panels 
have not been systematically investigated as breast can-
cer susceptibility genes. The Clinical Genome Resource 
(ClinGen) framework has assessed the strength of evi-
dence between selected putative susceptibility genes and 
breast cancer and established definitive clinical validity 
classifications for only 10 of 31 genes commonly tested 
when evaluating breast cancer risk57 (Table 2).
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Fig. 1 | A schematic outlining a personalized approach to early detection and prevention of breast cancer. Women 
entering a personalized early detection programme would initially be assessed using a validated tool to determine their 
estimated risk of breast cancer. Subsequently, the women would be stratified into appropriate risk groups such that  
they can receive tailored interventions. This approach might mean that some women start mammographic screening  
at a younger age, have different screening intervals or have supplemental screening with another imaging modality, 
such as MRI. Women deemed to be at higher risk of breast cancer could, in addition, be offered prophylactic treatment.  
A healthy lifestyle would be recommended to all women, independent of risk level.
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Table 1 | Consortia participating in the ENVISION network and endorsing the recommendations herein

Acronym Consortium Description and/or aims of the consortium Funder Ref.

B-CAST Breast Cancer Stratification Define the influence of risk factors, including reproductive 
history, lifestyle, mammographic breast density and 
germline genetic variation, on susceptibility to breast 
cancer overall and for disease subtypes characterized by 
clinical and molecular markers. Define the influence of 
risk factors and tumour subtypes on clinical prognosis. 
Develop, validate and implement breast cancer risk and 
prognostication models for breast cancer, overall and for 
different subtypes. Raise awareness; that is, promote the 
development and integration of personalized breast cancer 
prevention within national public health programmes

EU Horizon 2020 29

BCAC Breast Cancer Association 
Consortium

International consortium of collaborative groups that share 
data from multiple studies in breast cancer. Identify genes 
that might be relevant to the risk of breast cancer. Provide a 
reliable assessment of the risks associated with these genes

Cancer Research UK 81

BRCA-ERC Understanding cancer 
development in BRCA1/2 
pathogenic variant carriers  
for improved Early detection 
and Risk Control

Understand cell non-autonomous factors in carriers of 
BRCA1 or BRCA2 pathogenic variants that contribute to 
cancer development. Use cell-free DNA methylation-based 
markers for early detection of ovarian cancer. Develop 
new strategies and intermediate surrogate end points 
for non-surgical prevention of breast cancer

European Research Council 31

BRIDGES Breast Cancer Risk After 
Diagnostic Gene Sequencing

Identify breast cancer susceptibility genes. Estimate risks 
associated with different genetic variants and incorporate 
into the BOADICEA risk-prediction model to provide 
individualized risk estimates. Implement individualized  
risk prediction in clinical settings

EU Horizon 2020 30

EU-TOPIA Towards Improved Screening 
for Breast, Cervical and 
Colorectal Cancer in  
All of Europe

Develop and validate microsimulation models of breast, 
cervical and colorectal cancer screening in countries  
across Europe to assess current screening programmes.  
To assess inequalities in, and barriers to uptake 
of, screening. To develop road maps to improve 
existing screening programmes in Europe

EU Horizon 2020 35

FORECEE Female Cancer Prediction 
Using Cervical Omics to 
Individualise Screening  
and Prevention

Utilize data on the cervical epigenome, genome and 
microbiome to develop personalized early detection and 
prevention strategies for breast, ovarian, endometrial 
and cervical cancer. Assess the ethical, health-economic, 
legal and societal aspects of using epigenetic markers for 
risk prediction. Develop strategies for communicating 
cancer risk

EU Horizon 2020 32

MyPeBS My Personalized Breast 
Screening

Multicountry randomized trial of personalized breast 
cancer screening comparing risk-based screening 
to standard screening offered in each participating 
country among women aged 40–70 years153. Assess if 
individual risk-based screening is non-inferior or superior 
to the current standard of care in terms of reduction of 
the incidence of stage II or higher breast cancer

EU Horizon 2020 33

PERSPECTIVE 
I&I

Personalized Risk Assessment 
for Prevention and  
Early detection of Breast 
cancer: Integration and 
Implementation

Identification and validation of novel moderate to high risk 
breast cancer susceptibility genes. Improvement, validation 
and adaptation of a web-based tool for comprehensive 
breast cancer risk prediction that is suitable for the 
Canadian context. Development of a framework to support 
implementation of a personalized risk-based approach to 
breast cancer screening within existing mammography 
centres. Economic analyses for optimal personalized 
risk-based screening implementation

Canadian Institutes of Health 
Research, Genome Canada, 
Genome Quebec, Ontario 
Research Fund, Quebec 
Breast Cancer Foundation

36

PROCAS2 Predicting Risk of Cancer  
at Screening

Assess the feasibility of individualized risk assessment 
during screening appointments. Assess a range of effects 
of implementing personalized risk assessment on women, 
health-care staff and related organizations

National Institute for Health 
Research UK

37

WISDOM Women Informed to Screen 
Depending on Measures  
of Risk

Multicentre, pragmatic, adaptive, preference-tolerant 
randomized controlled trial comparing risk-based screening 
to annual screening of women aged 40–74 years152. 
Determine if personalized breast cancer screening will lead 
to fewer harms, improve breast cancer prevention and be 
acceptable to women in comparison with standard annual 
screening

Patient-Centred Outcomes 
Research (PCORI)

34
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Emerging risk factors
The epigenome consists of various ‘layers’, including 
non-coding RNAs, histone modification and DNA 
methylation, and has an essential role in establishing 
the identity and function of any given cell by deter-
mining which genes remain silent and which are tran-
scribed. A plethora of changes in DNA-methylation 
patterns have been described in breast cancers, and 
several of these changes are often also present in the 
non-malignant breast tissue adjacent to the cancer58, 
supporting the principle that an epigenetic field defect 
renders cells of these tissues susceptible to malignant 
transformation59. In addition to genetic background60,61, 
a large variety of non-genetic factors, including age62 and 
endocrine disruption63,64, that are known to modulate 
breast cancer risk also alter patterns of DNA methyla-
tion. On the basis of these insights, one might speculate 
that epigenetic profiles could predict breast cancer risk.

To date, several groups have attempted to develop 
epigenetic risk classifiers for breast cancer but with only 
modest success, which could be due to several reasons65. 
First, the vast majority of the studies to date used only 
blood samples for DNA-methylation analyses. Blood 
is readily available from participants of several large 
cohort studies61,66, but breast cancer is, by definition, an 
epithelial disease, and hence immune cells in the blood 
might not be an appropriate surrogate tissue for those 
of the breast. Second, unlike in germline genetic analy-
ses, the timing of the sample collection for epigenetic 

analyses is crucial. For example, epigenetic analyses 
using samples obtained from women during cancer 
treatment are likely to produce results that reflect treat-
ment effects and not cancer predisposition. Third, unlike 
PRSs, which are established by combining individual 
SNPs with risk associations that remain statistically sig-
nificant after multiple test adjustment, epigenetic risk 
signatures are reflective of cell programmes; therefore, 
approaches that a priori select a large number of CpGs 
for inclusion in the epigenetic signatures are more likely 
to be appropriate. Fourth, the presence of a cancer can 
modify the epigenome of a particular surrogate tissue. 
For example, a higher granulocyte to lymphocyte ratio 
is detected in the blood of patients with ovarian cancer, 
which subsequently alters the DNA-methylation signa-
ture observed when assessing peripheral blood mononu-
clear cells67. Thus, validation of risk-predictive signatures 
in population-based cohorts is important; however, the 
majority of the existing cohorts do not have appro-
priate samples available (owing to non-standardized 
collection, storage conditions and times, and so on), 
which makes this validation process prone to producing 
false-negative results.

Nevertheless, DNA-methylation signatures in easy-to- 
collect surrogate tissues hold promise, not only in 
advancing risk-prediction strategies, but also, of equal 
importance, in providing novel opportunities to monitor 
the effects of cancer-preventive measures. In addition to 
epigenetic markers, serum levels of steroid hormones68–70 
and a double-strand DNA break-repair phenotype 
of peripheral blood cells71,72 have substantial poten-
tial to identify women with a high risk of developing 
breast cancer.

Risk-prediction models
Several breast cancer risk-prediction models are avail-
able. Empirical models such as the Gail model73, the 
Breast Cancer Surveillance Consortium (BCSC) risk 
calculator74 and the Individualized Coherent Absolute 
Risk Estimator (iCARE)75–77 do not consider explicit 
genetic models of inheritance and are primarily inte-
nded for use in women in the general population. By 
contrast, genetic models such as Tyrer–Cuzick78 and 
BOADICEA45,79 can, in principle, accommodate detailed 
family history information (including the exact pedigree 
structure and information on distant relatives) and can, 
therefore, be applied both at the general population level 
and in women with a strong family history of breast 
cancer. These models all vary in terms of the risk factors 
considered, the study designs and types of data used in 
their development, and their analytical methods. The 
validity and clinical utility of these risk-assessment tools 
must be demonstrated before they are implemented 
routinely in the clinical setting80.

Validity. Analytical validity refers to the accuracy of the 
test in measuring the underlying genotypes (for example, 
through gene-panel testing or sequencing assay for rare 
mutations), PRSs (for example, using SNP-genotyping 
technologies) and other lifestyle and hormonal risk fac-
tors (which can be self-reported or available through 
electronic health records). Importantly, the analytical 

Box 1 | Process of developing the recommendations of the ENVISION network

The european Collaborative on Personalized early Detection and Prevention of breast 
Cancer (eNvISIoN) network meeting was attended by 119 delegates from 19 countries: 
14 countries in europe (Austria, belgium, Denmark, estonia, Finland, France, Germany, 
Italy, the Netherlands, Slovenia, Spain, Switzerland, Sweden and the uK) as well as 
Israel, the uSA, Canada, malaysia and Australia. Together, the delegates brought diverse 
expertise in risk-based breast cancer research and health services (epidemiology, 
statistics, genetics, epigenetics, oncology, clinical genetics, pathology, gynaecology, 
radiology, surgery, primary care, public health, psychology, ethics, health economics, 
policy, screening services and health-care management), with representatives from 
academia, health-care organizations, industry (information technology support), 
politics (government representatives) and non-profit organizations (europa Donna 
and the Association of european Cancer league).

The meeting was held over 3 days. During the first day, presentations covered the 
latest evidence (‘where we are now’) relating to breast cancer risk prediction, risk 
stratification for prevention, risk stratification for early detection at the population 
level and the implementation of such strategies. each presentation was followed by a 
discussion session for the delegates to identify gaps in research (‘where do we want 
to be’). During the second day, through six workshops (focused on risk assessment, 
early detection, prevention, engaging stakeholders, health-care organization readiness, 
and ethical, legal and social implications (elSI)), the delegates explored how to meet 
these gaps (‘how do we get where we want to be’). During the third day, named 
delegates, in coordination with the presenters, discussants and the facilitators of 
the workshops, presented recommendation for each of the 18 areas covered in the 
eNvISIoN meeting (genetic risk, epigenetic risk, classical risk factors, risk prediction, 
breast cancer subtypes, imaging, diagnostic tools for early detection, prevention, 
specific considerations in high-risk women, outcome, trial logistics, implementation, 
economic evaluation, communication and decision aids, policy landscape, elSI, 
workforce training and health-care organization readiness). The presentation of 
each recommendation was followed by discussion and checking consensus.

each delegate who contributed through presenting the evidence, the workshop 
discussions and the recommendations presented a written summary. After collating 
these summaries, all 119 delegates were asked for their feedback.
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validity of comprehensive breast cancer risk-prediction 
models also depends on having reliable relative risk esti-
mates for the effects of the various risk factors; having 
precise risk estimates of the associations with individual 
rare and common genetic variants; as well as estimates 
of the joint effects of common genetic variants, the  
joint effects of common and rare genetic variants, and 

the combined effects of genetic and other risk factors, 
including a family history of cancer. Clinical valid-
ity refers to the accuracy of the tool in predicting the 
occurrence of breast cancer.

Ideally, the individual and combined associations of 
the various risk factors should be derived from large, 
well-designed cohort studies that are representative of 
the population in which the models are intended to 
be applied. However, cohorts with data that include 
information on all known risk factors are not widely 
available; therefore, synthetic mathematical approaches 
have been developed that combine the risk-factor dis-
tributions from separate cohorts45,75,76. Data generated 
by the B-CAST29, BRIDGES30, BCAC81 and CIMBA82 
consortia (Table 1) provide a platform for estimating the 
individual and combined risk-factor distributions and 
breast cancer risk and have been used in the develop-
ment of the iCARE77 and BOADICEA45 breast cancer 
risk-predication models. Some empirical models, which 
are commercially available, have been modified to incor-
porate breast cancer PRSs, but without accounting for 
the fact that PRSs explain a large fraction of the familial 
relative risk of breast cancer. The failure to adjust these 
models to account for family history of breast cancer 
results in substantial levels of miscalibration in differ-
ent risk categories and subsequently compromises the 
clinical validity of the model46.

With regard to clinical validity, several validation 
studies assessing model calibration (that is, the agree-
ment between the predicted and the observed risk) or 
discrimination (the ability of a risk score to discrim-
inate between those who will and those who will not 
develop the disease) in large independent cohorts have 
been published83,84. The interpretation of the literature 
is challenging, however, because these studies have not 
necessarily assessed both model calibration and discrim-
ination in the same sample. Moreover, head-to-head 
comparisons of risk models using the same datasets 
are lacking. Often the published validation studies have 
used older versions of the risk models without data on 
all model components (in particular, mammographic 
breast density), have limited sample sizes and have var-
ying timescales over which predictions are made, which 
depend on the follow-up duration of the study.

Ongoing studies by B-CAST29 and BRIDGES30 aim 
to address these issues by evaluating risk-assessment 
models in multiple prospective cohorts of women 
initially without breast cancer in diverse settings. 
Preliminary results indicate that the iCARE77,85 and 
BOADICEA45 models have well calibrated categories 
of predicted risk and discriminate well between women 
who develop breast cancer over 5–10 years of follow-up 
study from those who do not84. As such, these models 
provide valid risk-prediction tools that can be used in 
clinical practice.

Clinical utility. Conceptually, clinical utility refers to the 
usefulness, benefits and harms of an intervention86,87. 
Clinical utility is a multidimensional construct cov-
ering effectiveness and cost-effectiveness, as well as 
the psychosocial, ethical and legal implications of an 
intervention86. Risk assessment per se does not have 

Box 2 | Summary of the key recommendations of the ENVISION

Assessment of breast cancer risk
• risk-assessment tools should be validated using prospective cohorts in the context  

in which they will be used and for each population ancestry.

• risk-assessment tools that enable better predictions of breast cancer subtype-specific 
risk and risk in women of non-european descent need to be developed and validated.

• Discovery research to identify additional genetic variants and new markers is required 
to improve risk stratification.

• The trade-off between the accuracy of comprehensive models and their usability at 
the population level should be evaluated.

• Algorithm transparency should be ensured, with explicit reporting of the  
assumptions made.

Breast cancer prevention 
• Ways to better select high-risk women predisposed to breast cancer of poor 

prognosis need to be developed.

• Clinically relevant surrogate markers (reflecting the field defect in breast tissues) that 
provide early indications of the effectiveness of the preventive measures in reducing 
incidence of breast cancer of poor prognosis need to be identified.

• Programmes should incorporate healthy lifestyle recommendations for women at all 
risk levels.

• Prevention-specific drug doses, schemes and schedules need to be defined, and 
rational drug repositioning strategies should be explored.

• better and early assessment of the acceptability of new preventive interventions is 
required.

Risk-stratified early detection
• Discovery research is required to identify and validate early detection markers that 

can differentiate progressive from non-progressive breast cancers.

• Develop risk-stratified early detection strategies underpinned by understanding of 
how the natural course of breast cancer, sensitivity of the test (for example, 
mammography) and the probability of overdiagnosis vary according to risk levels.

• optimize variables related to risk assessment (which risk factors to include, what age 
to start screening, how often to screen, and so on) and risk stratification (how many 
risk groups to specify and the risk threshold for each group), thus resulting in a 
cost-effective, feasible, acceptable and equitably accessible early detection 
programme.

• modelling studies can be used to inform on long-term population outcomes and the 
optimal design of risk-stratified early detection programmes.

• Pragmatic randomized study designs, such as randomized health service studies, 
should be used to generate evidence on the effectiveness of risk-stratified early 
detection approaches in a given setting.

Programme implementation 
• Adopt hybrid effectiveness–implementation research designs to reduce the time lag 

between generation of evidence on the effectiveness of a programme and its 
implementation.

• Shift away from small studies with hypothetical scenarios performed in silos to 
multidisciplinary research with engagement of all stakeholders to ensure a systems 
approach to implementation studies in real-world settings.

• A framework for a learning health-care system should be adopted.

• The implementation process in a given setting needs to be aligned with health-care 
organization readiness for change and the social values, preferences and norms.

• The best ways of communicating risk and supporting behavioural changes in response 
to risk information need to be identified.
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inherent clinical utility; the subsequent adoption of 
a risk-based intervention based on the results of the 
assessment is what influences the health outcomes88.  
The use of such a strategy depends on whether the 
risk-based intervention is appropriate, accessible, prac-
ticable and acceptable86. The interactions of these factors 
and challenges in assessing them are discussed in more 
detail in later sections of this article (fig. 2).

Future directions in risk prediction
We have identified several key areas for development 
in breast cancer risk modelling (box 2). These research 
priorities include models that better predict the risk of 
specific subtypes of breast cancer and with improved 
risk stratification of women of all ancestries, particularly 
non-European ancestries, who have been understudied 
to date.

Subtyping of breast cancer is currently used rou-
tinely in prognostication and treatment, although its 
use in the context of prevention and early detection of 
the disease is limited. The ability to predict susceptibil-
ity to the typically more aggressive, ER− forms of breast 
cancer would enable selection of women for enhanced 
surveillance. Better datasets containing both clinical 
and genetic data are essential to develop and validate 
models that can more accurately predict subtype-specific 
risk, pathobiological behaviour and clinical outcomes. 
For example, B-CAST29 and BRIDGES30 are developing 
such data sources that integrate genetic, epidemiological, 
pathological and clinical data.

Multiancestry GWAS and targeted DNA-sequencing 
data from individuals of various ethnicities will ena-
ble translation of PRS-based and gene-based risks to 

populations of non-European ancestry. Heritability 
analyses indicate that breast cancer is a highly poly-
genic disease, with thousands of variants conferring a 
small effect on risk, and that larger studies would result 
in new discoveries89. The Confluence project89 aims to 
build a dataset comprising >300,000 patients with breast 
cancer and 300,000 individuals without the disease in 
order to conduct a multiancestry GWAS. This study will 
enable better understanding of the aetiology of distinct 
breast cancer subtypes, more powerful modelling of the 
underlying polygenic risk and improve risk stratification 
across groups of women with different ancestries.

A large fraction of the unexplained heritability of 
breast cancer might be attributable to rare variants 
(allele frequency <0.1%) not captured on SNP arrays90.  
Exome sequencing and replication studies with large 
cohorts, such as those being conducted by BRIDGES30 
and PERSPECTIVE I&I36, should be informative 
in determining whether additional susceptibility 
genes, with risk-defining coding variation, exist. For 
non-protein-coding variants, however, much larger 
whole-genome sequencing datasets, coupled with 
genomic risk prediction (genotype imputation), will 
be required.

Other promising approaches to improve breast can-
cer risk prediction include imaging and blood-based 
biomarkers. Improved use of mammography or MRI to 
predict risk is a particularly attractive area of research91–93;  
parenchymal textual features beyond simple mam-
mographic breast density, such as the co-occurrence 
matrix and multiresolution spectral features, have been 
shown to be important94 and might be independently 
predictive of the development of breast cancer92,95,96. 
Screening programmes provide longitudinal data 
that can facilitate studies to identify such imaging 
biomarkers. Potential blood-based biomarkers include 
microRNAs, tumour-educated platelets and circulat-
ing tumour DNA97–99. However, these markers might 
be more suitable for short-term early detection than 
long-term risk prediction (since they are perhaps more 
likely to reflect the presence of cancer rather than can-
cer susceptibility), and large longitudinal collections of 
samples will be required to study them.

Comprehensive models incorporating genetic and 
epidemiological risk factors and mammographic breast 
density enable more accurate risk stratification in the 
general population, as well as in carriers of germline 
pathogenic variants, than is possible with models that 
consider only PRS45,47. Repeat collection of informa-
tion on the non-genetic risk factors at a population 
level raises further complexities in the logistics of risk 
assessment. The feasibility, clinical utility, costs and 
cost-effectiveness of risk-based programmes using a 
comprehensive model versus a model with only PRS 
need to be evaluated.

To enhance the credibility of a given model, and thus 
confidence in the results, transparency (that is, a clear 
description of the model structure, equations, param-
eter values and assumptions) and validation in relevant 
settings are essential. The challenge lies in having a con-
sensus on the criteria for sufficient evidence to declare a 
model as ‘valid’ for a particular application100.

Table 2 | Genes with rare variants associated with an increased breast cancer risk

Gene PTV 
associated 
with breast 
cancer risk

Missense variants 
associated with 
breast cancer risk

Relative risk 
for PTV 
(90% CI)

Clinical Genome 
Resource (ClinGen) 
definition of 
clinical relevance

ATM Yes Yes 2.8 (2.2–3.7) Definitive

BARD1 Likely Unknown 2.1 (1.5–3.0)48 Definitive

BRCA1 Yes Yes 11.4 (NA) Definitive

BRCA2 Yes Yes 11.7 (NA) Definitive

CDH1 Yes Unknown 6.6 (2.2–19.9) Definitive

CHEK2 Yes Yes 3.0 (2.6–3.5) Definitive

NBN Yes Unknown 2.7 (1.9–3.7) Limited

NF1 Yes Unknown 2.6 (2.1–3.2) Not evaluated

PALB2 Yes Unknown 5.3 (3.0–9.4) Definitive

PTEN Yes Yes 8.8 (2.7–34.4)48 Definitive

RAD51D Likely Unknown 2.1 (1.2–3.72)48 Limited

STK11 Yes Unknown No reliable 
estimate

Definitive

TP53 Yes Yes 105 (62–165) Definitive

Data were sourced from Easton et al.42 and Lee et al.57, with risk estimates derived from 
Easton et al.42, except where indicated otherwise. Note that risk estimates calculated by 
LaDuca et al.48 come with 95% confidence intervals (CIs) and are derived from a study of 
individuals referred for testing and, therefore, might not be unbiased estimates of the general 
population risk. NA, not available; PTV, protein-truncating variants.
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Risk-stratified prevention
In high-income countries that have implemented strat-
egies to prevent or mitigate cardiovascular disease 
(CVD), cancer has superseded CVD to become the 
most common cause of death101. In the context of CVD, 
clinical parameters indicative of risk (for example, blood 
pressure and serum lipid levels) can be successfully 
targeted and subsequently used to monitor preventive 
actions102. However, mirroring these concepts in the 
context of cancer has not been possible to date. Cancer 
development is a multifactorial process that occurs at 
various stages of life and sometimes decades in advance 
of diagnosis. Avoiding certain risk factors for breast 
cancer (for example, hormone replacement therapy, 
particularly those containing progesterone103), as well 
as adopting healthier lifestyle patterns (such as limiting 
alcohol consumption104,105 and maintaining a healthy 
weight106), can have long-term cancer-preventive effects. 
Nevertheless, many of the risk factors for breast cancer 
(including a family history of the disease and genetic 
predisposition, birthweight, age at menarche, age at first 
live birth and age at menopause) are not modifiable, 
and in many cases the biological mechanism underly-
ing the associated increase in breast cancer risk remains 
unknown. Notwithstanding, several active strategies 
have been shown to modify breast cancer risk.

Chemoprevention with anti-oestrogens
The results of prospective randomized controlled trials 
(RCTs) evaluating primary prevention of breast cancer 
using selective oestrogen receptor modulators or aro-
matase inhibitors have consistently shown a reduced 
incidence in hormone receptor-positive subtypes of the 
disease107–119. However, in order to prevent one breast 
cancer in the next 20 years, 22 women needed to take 
tamoxifen daily for 5 years117. The considerable adverse 
effects of anti-oestrogens and the fact that none of these 
trials has shown any overall or breast cancer-specific 
survival benefits or a reduction in the incidence of 
aggressive, hormone receptor-negative forms of breast 
cancer make it difficult to judge whether treating healthy 
women with these drugs is a more effective strategy than 
reserving them for the adjuvant treatment of only those 
who actually develop breast cancer. Nevertheless, the  
US Preventive Services Task Force have judged that seri-
ous adverse effects, such as thrombosis and endometrial 
cancer, are uncommon and the more common toxicities, 
such as vasomotor symptoms, are reversible and were 
only marginally more frequent in women on active 
treatment than in those receiving placebo in the afore-
mentioned RCTs120. Accordingly, several international 
guidelines recommend the use of anti-oestrogens as 
chemopreventives for women at increased risk of breast 

Effective
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Equitably accessible

Risk-stratified
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How?
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and social norms
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Fig. 2 | Risk-stratified early detection and prevention programmes as complex adaptive systems. Various questions 
will define the risk-stratified programme, including which risk factors to include in risk assessments, what risk threshold 
to use for risk stratification, how many risk groups to have, when to do risk assessments, how often to screen and to 
whom screening should be offered, as well as which interventions should be used in individuals deemed to be at high risk. 
Decision-making regarding these questions will be influenced by the research evidence, the available resources, the 
health-care setting and societal values, preferences and social norms. The choices made in addressing each of these 
questions will determine whether the programme will be effective in reducing cancer-specific death and improving the 
benefit–harm balance of screening and be cost-effective, acceptable, accessible and feasible to implement. Dynamic 
interactions exist between each of these factors, and thus a change in one factor affects all others. Hence, the importance 
of a holistic, ‘systems thinking’ approach.
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cancer16,121. Whether improved risk stratification would 
reduce the number of healthy women who need to take 
anti-oestrogens in order to achieve the same preventive 
effect will need to be established in future RCTs.

Surgical prevention
Prophylactic bilateral mastectomy is certainly the most 
effective way of preventing breast cancer and reducing 
breast cancer-specific deaths in the small minority of 
women (perhaps 3%)122 with a germline pathogenic 
BRCA1/2 variant123. Nipple-sparing mastectomies are 
a safe option for these women, with no known detri-
ment to the risk reduction124. General complications 
include wound dehiscence, infection, implant loss or flap 
necrosis, asymmetry and capsular contracture125. For 
nipple-sparing mastectomies, the overall complication 
rate has been reported to be 22.3%, and the rate of nipple 
necrosis was 5.9%126. However, surgery can be associated 
with other complications and adverse effects, including 
psychological distress with body image change, and has 
implications relating to resources. Thus, clinical utility, 
feasibility and acceptability need to be evaluated in order 
to set the risk threshold for surgical intervention.

Other preventive strategies
In past few years, several new targets of potential pre-
ventive interventions for breast cancer have been dis-
covered. In particular, progesterone has an essential 
role in the development of aggressive breast cancers. 
A meta-analysis of 58 studies revealed that women 
receiving a progesterone-containing menopausal hor-
mone therapy not only have a higher incidence of 
breast cancer than women not receiving such therapy 
or those receiving oestrogen-only treatments, but also 
more cancers that had spread beyond the breast103. 
Furthermore, the data indicated that women receiv-
ing progesterone-containing therapy are more likely 
to die from breast cancer than women treated only 
with oestrogens127. Additional evidence for the role of 
progesterone in breast carcinogenesis comes from the 
observation that women with germline pathogenic 
BRCA1/2 variants have elevated levels of luteal phase 
progesterone compared with those observed in carriers 
of non-pathogenic BRCA1/2 variants128. This increase 
in progesterone levels leads to an increase in receptor 
activator of nuclear factor-κB ligand (RANKL) levels  
in the breast129–133, as well as reduced levels of the phys-
iological RANKL antagonist osteoprotegerin129. These 
effects in turn lead to an expansion of ER− and pro-
gesterone receptor-negative mammary stem cells and 
eventual breast cancer formation134. In mouse mod-
els, Brca1/2-mediated breast cancer formation can be 
prevented by disrupting the progesterone signalling 
pathway using the competitive progesterone receptor 
antagonist mifepristone135. In addition, the findings of 
a case–control study involving women with germline 
BRCA1/2 mutations indicate that moderate use of die-
tary supplements containing folic acid and vitamin 
B12 can be protective against BRCA1/2-associated 
breast cancer136. Other potential risk-reducing chem-
otherapeutics include aspirin, metformin, statins or 
other agents137.

To date, clinical trial evidence supporting these 
chemoprevention strategies is lacking. Denosumab, 
a fully humanized antagonistic monoclonal antibody 
targeting RANKL, has been shown to reduce breast 
epithelial cell proliferation in three premenopausal 
volunteers134. In postmenopausal women with breast 
cancer, however, denosumab does not seem to alter the 
incidence of contralateral breast cancer138. A prevention 
study of this agent in carriers of pathogenic BRCA1 
variants is underway139.

Future directions in prevention
Several challenges need to be addressed to advance the 
field of breast cancer prevention. First, drugs that can 
reduce the incidence of aggressive breast cancers, for 
example, of the triple-negative, HER2+ or luminal B 
subtypes, need to be identified.

Second, the required doses and frequency of admin-
istration of these potential preventive drugs need to be 
established. Unlike tamoxifen and aromatase inhibitors, 
the efficacy and safety of which have been tested in many 
thousands of women in the adjuvant treatment setting, no 
such data exist for the most promising novel preventive 
drugs (that is, progesterone antagonists and denosumab).

Third, efforts are needed to develop an effective 
approach to selecting women for whom breast cancer 
primary or secondary prevention measures will provide 
survival benefits. None of the current risk-prediction 
models intended to identify women at an increased risk 
of developing breast cancer in the absence of a familial 
predisposition (that is, mainly carriers of pathogenic 
BRCA1/2 variants) selectively identifies those women 
at risk of developing an aggressive cancer that, if not 
prevented, would likely lead to death.

Fourth, surrogate end points are required (box 2). 
Demonstration of a reduction in breast cancer-related 
mortality is recommended before implementation of 
any early detection strategy140 whereas, for prevention 
strategies, robust evidence of a reduced cancer inci-
dence seems to be sufficient to recommend clinical 
implementation141. The focus should not, however, be 
a reduction in the incidence of any breast cancer, but 
rather of breast cancers that hold a poor prognosis. 
Intermediate surrogate markers are urgently required 
to enable timely assessment of the efficacy of poten-
tial new breast cancer-preventive drugs, particularly in 
women at high risk of the disease so as not to substan-
tially delay or preclude bilateral mastectomy that is a safe 
risk-reducing option. A reduction in mammographic 
breast density has proved to be an excellent predictor 
of response to tamoxifen in the preventive setting142. 
In addition, molecular biomarkers, assessed directly in 
breast tissue and reflective of a field defect58 or indirectly 
in a surrogate tissue or blood32, could potentially pro-
vide three essential advantages in prevention strategies 
for premenopausal women at high risk of breast cancer: 
1) they can be measured frequently; 2) the dynamics of 
the molecular biomarkers in individual volunteers might 
reflect the cancer risk in real time, and thus individual 
adjustments to preventive measures could be made ad 
hoc; and 3) unlike many imaging-based markers, they 
do not require repeated exposure to x-rays (fig. 3).
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Finally, strategies should be developed to increase the 
acceptability and accessibility of interventions used for 
breast cancer prevention. Notably, the efficacy of weight 
loss programmes has been shown to be greater among 
individuals who are aware of being at high risk of devel-
oping breast cancer143. Importantly, weight loss144 and 
regular exercise145,146 not only decrease breast cancer risk 
but also the risks of other cancers and CVDs. Considering 
the general health benefits, lifestyle interventions could 
be recommended to women at all levels of breast can-
cer risk147. Thus, developing effective ways to make both 
lifestyle and chemoprevention options widely available 
(including within screening programmes), acceptable 
and better understood by health-care professionals and 
the public is essential148 (box 2).

Risk-stratified early detection
The Cancer Control Joint Action European Guide 
on Quality Improvement in Comprehensive Cancer 
Control149 recommends that the benefits (cancer-specific 
deaths averted and quality-adjusted life years gained), 
harms (related to false screen findings and subsequent 
investigations, and overdiagnoses and the associated 
treatments) and cost-effectiveness of a screening pro-
gramme should be estimated to guide decisions on 
implementation. RCTs should be used to generate 
the primary evidence on the effectiveness of a new 
screening programme in reducing cancer-specific 
mortality149. When modifying currently running pro-
grammes, however, questions remain regarding what 

constitutes supportive evidence (that is, the required 
level of evidence and study design)150 and how complete 
the evidence needs to be before recommendations for 
implementation can be made151.

Effectiveness
Two short-term RCTs evaluating the effectiveness of 
risk-stratified screening for breast cancer are currently 
ongoing: WISDOM in the USA152 and MyPeBS in 
Europe153. While the two trials share a similar design, 
with intermediate outcome measures (such as stage dis-
tribution) as end points, their protocols are adapted to 
the local health-care settings.

WISDOM152 is a multicentre, pragmatic, adaptive, 
preference-tolerant RCT comparing risk-based screen-
ing to annual screening in women aged 40–74 years. 
WISDOM is designed to determine whether risk-based 
screening is as safe as annual mammographic screening 
(number of stage ≥IIB cancers is no higher than that 
observed with annual screening), but with less morbidity 
(measured according to the number of breast biopsies 
performed) as well as greater acceptability, conductiv-
ity to preventive interventions and health-care value152. 
Women in the risk-based screening arm are receiving a 
personal risk assessment based on the BCSC risk calcu-
lator integrated with a PRS (which has been adapted dur-
ing the course of the trial) and testing of a panel of nine 
susceptibility genes154. Those women are being stratified 
into four risk groups: highest risk, elevated risk, aver-
age risk and lowest risk. Each group is recommended 
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a screening strategy that varies in starting age and the 
frequency and modality of screening — annual mam-
mography with adjunctive MRI, annual mammography, 
biennial mammography and deferred screening until 
the age of 50 years (in the lowest risk group compris-
ing women aged 40–49 years with 5-year absolute risk 
<1.3%), respectively155.

MyPeBS153 is a pragmatic, multicentre RCT that is 
being performed in five countries (Belgium, France, 
Israel, Italy and the UK) to determine if risk-based 
screening of women aged 40–70 years is non-inferior, 
in terms of the 4-year incidence of stage ≥II breast can-
cer, to the standard screening programme currently 
offered in each participating country (screening every 
2–3 years beginning at 40–50 years of age and ending 
at 69–74 years of age). In MyPeBS, the frequency and 
modality of screening vary according to the level of risk 
predicted using PRS313 combined with the BCSC74 or 
the Tyrer–Cuzick78 risk calculator. The latter calculator 
is used only in women with more than one first-degree 
relative with a history of breast or ovarian cancer. In 
MyPeBS, women are also being classified into four risk 
groups153, although the risk thresholds differ from those 
used in WISDOM. However, the lead investigators 
of both trials are ensuring that data are collected in a 
similar way and have committed to pooling the data to 
improve the ability to learn from each study.

RCTs of screening interventions provide the strong-
est evidence of efficacy, although they have certain 
limitations. In particular, lifetime health effects cannot 
be observed in RCTs with limited follow-up durations. 
Thus, the observed benefit–harm trade-offs might not 
accurately reflect those expected with long-term popu-
lation screening156. Moreover, the outcomes of screening 
depend on the screening strategy (including the choice 
of risk-assessment tool, risk thresholds, screening 
modalities, screen intervals and starting and stopping 
ages) and variables relating to the setting (such as the 
available infrastructure, levels of adherence and popu-
lation preferences)149. Variations in any of these elements 
can alter the benefit–harm trade-offs. Finding the opti-
mum strategy for a given population requires compari-
sons of several alternative screening strategies; however, 
RCTs — particularly of screening strategies that require 
very large cohorts and long follow-up durations — are 
inherently limited in their ability to compare more than 
a few approaches (typically two or three).

Simulations using natural history models and 
decision analysis models constitute useful tools to 
study the long-term benefits and harms as well as the 
cost-effectiveness of various screening strategies157–159. 
Such modelling studies can precede or follow RCTs of 
screening interventions. Lifetime health effects can be 
modelled using empirical data — for example, from 
RCTs of different approaches to screening, long-term 
observational studies and clinical registries160. Modelling 
studies that incorporate data on the population struc-
ture and preferences, the natural history and prevalence 
of disease, life expectancy, the available resources and 
costs can provide an indication of which screening 
strategies are likely to be optimal in a given setting160. 
Thereafter, the most promising strategies could be 

tested in RCTs. Thus, modelling studies can inform 
population-screening policies by extrapolating evi-
dence beyond the time horizon of prospective trials 
and enabling the translation of evidence from one study 
population to another.

To date, evidence on the effectiveness of risk-stratified 
screening has come from model-based studies26,27,161. 
Modelling approaches have limitations, however. Models 
present a simplified representation of disease progres-
sion and intervention outcomes. Moreover, the accuracy 
of the results of modelling is dependent on the under-
lying assumptions and the degree of uncertainty in the 
input parameters162. Estimating overdiagnosis through 
simulations is particularly challenging163 and more so in 
the absence of data on the rates of disease progression 
for different risk groups.

Cost-effectiveness
Thus far, few studies have evaluated the cost-effectiveness 
and benefit–harm trade-offs of risk-stratified screen-
ing for breast cancer. Vilaprinyo et al.161 risk stratified 
women using several combinations of risk factors and 
showed that quinquennial or triennial screening for the 
low-risk or moderate-risk groups and annual screening 
for the high-risk group, from 50–74 years of age, would 
reduce costs, the number of false-positive findings 
and overdiagnosis, while averting the same number of 
deaths as biennial screening between the ages of 50 and 
69 years. Trentham-Dietz et al.27 used a combination of 
mammographic breast density and four exemplar rel-
ative risk levels for risk stratification and showed that 
triennial screening of average-risk women with low 
breast density, starting at 50 years of age, and annual 
screening of higher-risk women of the same age with 
high breast density would be cost-effective at a thresh-
old of $100,000 per quality-adjusted-life years gained 
and would maintain a similar or better balance of ben-
efits and harms than biennial screening of average-risk 
women. Pashayan et al.26 used the distribution of poly-
genic risk in the population combined with other risk 
factors for stratification and showed that, compared 
with screening women from age 50–69 years triennially, 
not screening women at lower risk of developing breast 
cancer would improve the cost-effectiveness and benefit 
to harm ratio of the breast-screening programme.

Policy implications
When modifying an existing breast cancer screening 
programme, several considerations need to be taken 
into account. In particular, agreement should be reached 
on the framework of expected changes and acceptable 
trade-offs, whether in benefits, harms, net benefit, 
equity, cost or opportunity cost, in order to facilitate 
decisions on whether the evidence is supportive of the 
adapted programme. The ultimate aim is to implement 
risk-stratified screening that is justifiable from ethical, 
legal and societal viewpoints.

The policy priorities should be explicit: is the prior-
ity to maximize the return on investment or maximize 
the benefits of screening? That is, will the total number 
of screens and/or the budget allocated to the screening 
programme stay the same, but be utilized in a different 
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way to maximize the benefits by focusing on higher-risk 
groups; or will the screening efforts and resources be 
increased to enable tailoring of screening to the risk level 
of each individual?

Future directions in early detection
We have identified several key areas for future research 
to improve early breast cancer detection (box  2). 
The evidence from modelling studies indicates that 
risk-stratified screening approaches could potentially 
improve the efficiency and the benefit–harm balance of 
breast cancer screening programmes. Further data are 
required, however, on how the natural course of breast 
cancer, the sensitivity and specificity of mammography, 
as well as the probability of overdiagnosis vary according 
to the underlying risk of the disease. This information is 
needed to minimize the assumptions and uncertainties 
in the estimates used in models of risk-tailored screening 
strategies.

To have confidence in the validity of the outputs of 
modelling studies, the models have to be well calibrated, 
the structural assumptions and parameter estimates 
should be reported clearly and explicitly and the effects 
of alternative assumptions should be assessed in sensitiv-
ity analyses100,164–166. Having the code made open-source 
and easily accessible will enhance the transparency of 
the model158.

In countries with existing breast cancer screening 
programmes, randomized health service trial designs 
could be used to evaluate risk-based screening in rou-
tine health-care settings. Such trials enable the com-
parison of a new policy or intervention to the current 
standard approach within the context of an existing 
health service167. Indeed, although modelling, routine 
monitoring and observational studies can provide help-
ful evidence, they are not a replacement for randomized 
health service studies167.

Trading off benefits and harms of different screen-
ing strategies is a fundamentally value-laden activity. 
Discrete choice experiments (DCEs) provide a quanti-
tative approach to eliciting women’s preferences168. In a 
DCE, participants are asked to choose between a series of  
alternative hypothetical scenarios described in terms  
of characteristics (or attributes) of the approach and asso-
ciated levels of, for example, benefit and/or harm. In mak-
ing these choices, participants are trading off between 
preferred and less preferred attributes presented in each 
alternative scenario. Incorporating the choice proba-
bility derived from DCEs for each screening approach 
into decision analytical modelling might facilitate the 
identification of optimal screening strategies.

In addition to cost-effectiveness analyses, budget- 
impact analyses will be needed to assess the affordabil-
ity of a risk-stratified screening programme in a given 
setting169. Finally, although risk-stratified screening 
could potentially reduce overdiagnosis, a major need 
remains for tests that can differentiate, at diagnosis, 
tumours with progressive potential in order to reduce 
overtreatment. At present, no test is available for such 
differentiation at diagnosis. Biomarker-driven decisions 
regarding adjuvant therapy have, however, been incor-
porated into guidelines for the management of women 

with certain types of breast cancer170, which suggests that 
such an approach might be viable at diagnosis.

Implementation
Before risk-stratified prevention and early detection 
programmes for breast cancer can be implemented, 
health-care providers and policymakers would need 
to plan the resources, build the infrastructure for 
population-wide risk assessment, develop policies and 
regulations to protect the public from stigmatization 
and discrimination, and provide support for informed 
decision-making of individual women regarding whet-
her or not to participate in the screening programme. 
Ultimately, these actions are needed to ensure the fea-
sibility and affordability of providing a high-quality 
risk-stratified screening programme that is accessible 
to all and is aligned with public values and preferences. 
There will not be a single predefined way of organizing 
and delivering such programmes. The optimal approach 
will be context-specific to account for the idiosyncrasies 
of the health-care system, as well as the social, economic, 
cultural and political context (fig. 4). Here, we are not 
dealing with a mathematical or technical problem; the 
implementation of risk-adapted breast cancer preven-
tion and screening strategies does not constitute a simple 
change that has a simple solution, but rather necessitates 
complex adaptive changes that require all stakeholders, 
scientists, health-care professionals, the lay public and 
policymakers to work together.

Health-care organization readiness
Organizational readiness for systems change is widely 
recognized as being necessary for the successful imple-
mentation of complex changes in health-care settings171. 
This state reflects the extent to which those involved 
in implementing the new approach are primed, moti-
vated and capable of achieving the required changes172. 
Organizational readiness is a dynamic process with pull 
and push factors between what is possible owing to con-
stant emergence of new technological opportunities and 
what resources are available173.

To address the challenge of a constantly changing 
environment, health-care organizations should embrace 
an evolutionary approach, rather than espouse a sudden 
dramatic shift, by adopting a learning organizational cul-
ture and building on existing infrastructure65. In keeping 
with this concept, the adaptive design of WISDOM ena-
bles learning and adaptation of the risk-assessment model 
and the screening recommendations accordingly over 
the course of the trial, instead of waiting for certain new 
discoveries to emerge before starting the trial, or exclud-
ing participants of non-European ancestry (for whom 
limited relevant data are currently available)152. The cov-
erage with evidence development (CED) model174 is a 
way of developing a ‘learning-based health-care system’. 
CED provides a mechanism for promising but unproven 
health technologies to enter practice sooner, through 
time-limited reimbursement that is conditional on a 
specific requirement for generation of further evidence 
on the performance of the new technology.

Readiness for change requires the commitment and 
engagement of all stakeholders, resources (including 
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knowledge, skills, time, money and infrastructure) and 
governance171. To ensure the commitment of health-care 
organizations, the need for a change should be recog-
nized and embedded in a shared vision, with leadership 
and coalition of all stakeholders171,175. To achieve a shared 
vision, the stakeholders have to agree on a framework 
of values that are aligned with those of the health-care 
organization. For example, health-care organizations 
value time-efficiency; therefore, successful implementa-
tion would require time-respecting strategies and tools, 
such as having one test to predict multiple cancers (which 
is a goal that FORECEE32 aims to achieve). Overall, 
vision, skills, incentives, resources and action plans 
are needed to achieve the systems change that will be 
required for implementation of risk-stratified prevention 
and early detection programmes for breast cancer176.

Stakeholder engagement
Given the diverse opinions on breast cancer screening 
among key stakeholders at present and the specific 
challenges of risk-stratified screening, engagement 
of all stakeholders is crucial to implementation of 
new programmes. A stakeholder is a person, group or 
organization involved in or affected by a decision177. 
Key stakeholders in breast cancer prevention and 
screening include the users and the providers of the 
service, health-care professionals, policymakers, payers, 
advocacy groups, researchers and others. Stakeholder 
engagement would enable the identification of poten-
tial misunderstandings among the various stakehold-
ers regarding opposition to, and perspectives on, the 

implementation of a risk-stratified programme178. Using 
a multistakeholder approach to reach agreement on what 
would constitute sufficient evidence to change practice 
and on guidelines would increase the chances of imple-
menting the research findings within the health-care 
system152. Such an approach would also help to articu-
late the values and preferences of the wider community 
and to build mutual trust, thereby facilitating the imple-
mentation of a programme that is accessible and accept-
able. Stakeholder analysis179 would be useful to not only 
identify the key stakeholders, but also their interests and 
influences, and the level of involvement of each (whether 
it be provision of information, consultation, deliberation, 
participatory decision-making or delegated decisions)177.

Risk communication and its impact
Many women overestimate their risk of developing 
breast cancer180 and thus perceive screening as ‘almost 
always a good idea’181. This attitude is attributable to 
suboptimal levels of risk literacy among both patients 
and doctors as well as the limited transparency in the 
reporting of risks in the media and patient brochures182. 
Importantly, therefore, women should be transparently 
informed — for example, using fact boxes183,184 — about 
their baseline risks and the benefit to harm ratio of 
risk-based screening as compared to the existing options 
of a universal screening approach or no screening185. 
The development of risk-stratified programmes will 
need to include consideration of how to update risk 
assessments as risk-prediction models improve and how 
to communicate these changes to individuals.
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Fig. 4 | Implementation of risk-stratified early detection and prevention programmes in a learning health-care system. 
The schematic illustrates the various multilevel interactions between the different components needed for the implementation 
of risk-stratified programmes for the early detection and prevention of cancer. The ultimate goal is an improvement in 
population health outcomes. To achieve this goal, the process has to be iterative within a learning health-care system.
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Communicating information on breast cancer risk 
alone is unlikely to result in changes in health-related 
behaviours, such as smoking or low levels of physical 
activity148,186,187. Indeed, a methodical review of nine 
systematic reviews, encompassing at total of 36 unique 
studies, revealed no evidence that providing risk infor-
mation would have strong, consistent or sustained effects 
on behaviour186. Changes in health-related behaviour 
can, however, be facilitated by including elements of 
interventions to alter the behaviour in question143.

Importantly, the available evidence suggests that pro-
viding women with their breast cancer risk estimates is 
unlikely to produce elevated distress188. Nevertheless, 
knowledge of whether providing risk estimates will 
promote informed choices regarding screening attend-
ance is lacking, although the evidence base is starting 
to increase148. More definitive conclusions regarding 
the behavioural and emotional effects of receiving 
risk estimates require studies specifically designed to 
assess these questions (for example, PROCAS2 (ref.37), 
MyPeBS153 and PERSPECTIVE I&I36).

Acceptability
Acceptability is a complex and poorly defined concept189. 
The level of uptake is one index of the acceptability of 
a risk assessment. Many studies have addressed the 
issue of acceptability of risk-stratified screening for 
breast cancer from the perspective of women38,190 and 
of health-care professionals and policymakers191. The 
available evidence suggests that risk-stratified screening 
is broadly acceptable to women if it involves the poten-
tial for more frequent screening for those deemed to be 
at high risk192,193.

By contrast, a number of concerns exist among pro-
fessionals working in this area, not least regarding costs 
and the available evidence base38. Similarly, major res-
ervations surrounding the appropriateness of reducing 
the frequency of screening for women deemed to be 
at low risk have been expressed by health-care profes-
sionals, policymakers and women themselves194. A few 
high-quality ongoing studies36,37 are examining these 
issues empirically, rather than discussing the issues as 
hypothetical possibilities195. Further research is needed 
to determine the feasibility of risk-stratified screening, 
particularly studies on implementation of screening in 
a research context, such as PERSPECTIVE I&I36 and 
PROCAS2 (ref.37).

Workforce training
Effective delivery of risk-stratified prevention and 
screening services requires health-care professionals to 
be competent in the use of a risk tool, in interpreting 
and applying the risk scores and in communicating risk 
scores effectively to each individual, including discus-
sion of the accuracy of the risk prediction and its future 
implications196. Risk-stratified approaches entail (epi)
genetic testing for risk assessment. Health-care profes-
sionals need not become geneticists to effectively use the 
(epi)genomic information obtained197; however, they 
need to be sufficiently versed in (epi)genomics — for 
example, in understanding the contribution of common 
and rare coding variants to risk prediction, gene-panel 

testing and DNA-sequencing modalities and the impli-
cations of identifying pathogenic variants with poorly 
defined cancer risks or genetic variants of uncertain sig-
nificance (VUS)198. Health-care systems should develop 
clear guidance related to the reporting of VUS in order 
to aid health-care professionals in the management of 
these variants, including descriptions of how patients 
with VUS should be informed if and when variants are 
found to confer an additional risk.

To engage with a new prevention and/or early detec-
tion scheme, the health-care professionals involved need 
to have a clear understanding of the rationale for risk 
stratification and risk-tailored interventions196, and have 
adequate knowledge of screening risk literacy199 and 
risk-communication skills; they should also have access 
to structured referral pathways for those women who 
need more detailed counselling. Accordingly, aspects 
of genomics and risk-stratified interventions should 
be integrated across the continuum of training for 
health-care professionals, from undergraduate education 
to broad specialty training to continuous professional 
development programmes. Educational-needs assess-
ments should inform the educational requirements of 
each medical specialty200.

Ethical, legal and social implications
Ethical, legal and social issues need to be considered at 
every step of implementation of risk-based interventions, 
from health-service planning, invitation of participants 
and consent and sample collection, to risk calculation, 
communication of results and storage of data201,202. Some 
of the issues associated with risk-stratified screening will 
be dependent on the methods by which a programme is 
implemented202.

The four principles of bio-ethics promulgated by 
Beauchamp and Childress203 — autonomy, benefi-
cence, non-maleficence and justice — provide a useful 
framework to understand the potential implications 
of risk-based screening, although these principles are 
more commonly applied to the doctor–patient rela-
tionship in the clinical context. Respecting autonomy 
requires that an individual has adequate knowledge and 
understanding to decide whether they wish to opt for 
a given intervention. The capacity of the individual to 
independently make an informed decision will depend 
on the information content, the communication tools 
used and the adequacy of workforce training in convey-
ing the relevant information. Optimizing the balance 
between providing benefit (beneficence) and the poten-
tial for harm (maleficence) with a risk-based screening 
programme requires rigorous evaluation. This balance 
also requires consideration and mitigation of potential 
unintended harms of such programmes. These unin-
tended harms might include the negative consequences 
of risk assessment for individuals (such as anxiety and 
breaches of confidential genetic and other personal 
data) or at a society level (stigmatization of and dis-
crimination against some individuals because of their 
risk level and non-participation of some individuals 
in the programme, for example, because they perceive 
that health care is being rationed for those for whom 
less screening is recommended202). Finally, justice relates 
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to the fairness of a programme. Screening programmes 
have the potential to increase health inequalities, owing 
to differences in the level of uptake between socioeco-
nomic groups, including those covered under universal 
health systems204–206. Risk-based screening programmes 
might exacerbate these differences201, given their addi-
tional complexity and inherent selectivity relative to 
universal screening. Efforts are needed to mitigate this 
possibility, for example, through ‘proportionate univer-
salism’207, whereby social inequalities are considered and 
programme resources are targeted commensurately208. 
Communication relating to screening and risk assess-
ment has to be accessible and congruent to the literacy 
and numeracy level of the recipients while also accu-
rately presenting both the potential benefits and risks209. 
Meeting these requirements will not only avoid mis-
interpretation of the information provided and sub-
sequent inequitable use of screening services, but also 
enable each individual to make an informed decision201. 
In addition, robust legislation is necessary to prevent dis-
crimination and stigmatization, in particular, by insur-
ers and employers. Current approaches vary by country, 
but can be broadly divided into four categories: mor-
atoria, industry self-regulation, legal limitations to the 
use of genetic information, and legal bans210,211. As an 
example, in the UK, an open-ended code of practice 
between insurers and the government exists, prohibit-
ing the use of predictive genetic tests except in defined 
circumstances212.

Future directions for implementation
The time is right to perform implementation research 
in a real-world setting of risk-stratified prevention and 
screening for breast cancer, with clearly defined criteria 
for success (for example, relating to the extent of adop-
tion, appropriateness, acceptability, sustainability, cost 
implications and effectiveness of the programme). The 
research should be designed and conducted together 
with all stakeholder groups, taking into account the 
ethical, legal and social context as well as factors that 
affect implementation (such as the idiosyncrasies of the 
health-care system and organizational readiness). 
The process has to be iterative in a health-care system 
conducive to learning and adaptation213.

To reduce the time lag between obtaining evidence 
on the effectiveness of a programme and its implemen-
tation, studies with hybrid effectiveness–implementa-
tion design could be used214 (box 2). WISDOM152 and 
MyPeBS153 are examples of studies with hybrid designs 
primarily focused on effectiveness while also exploring 
the ‘implementability’ of the intervention. Several strat-
egies adopted in WISDOM, such as the adaptive design, 
multistakeholder approach215 and CED model174, will 

accelerate implementation of the findings. By contrast, 
PERSPECTIVE I&I36 has a hybrid design focused pri-
marily on implementation outcomes (including the 
acceptability and feasibility of risk-based screening, 
uptake of genetic testing for risk assessment and screen-
ing behaviours); however, data on effectiveness (that is, 
screening outcomes of different risk groups) are also 
being collected, and simulation modelling is being per-
formed to assess the efficiency, resource use, costs and 
cost-effectiveness of risk-based screening at a popula-
tion level using real-world administrative data. A third 
type of hybrid design involves the simultaneous study 
of effectiveness and implementation strategies. This 
approach enables the demonstration of which implemen-
tation strategies work in a given context, as opposed to 
demonstrating the effects of a particular implementation 
strategy on the adoption or uptake of an intervention214.

The model of evidence-generating health care could 
be adopted to study the clinical utility of risk stratifica-
tion in the prevention of breast cancer among carriers 
of pathogenic BRCA1/2 variants. This approach would 
require linking of genetic profiles and the outcomes  
of preventive interventions to cancer registries, train-
ing of treating physicians to develop a working knowl-
edge of cancer risk and genetics, and the development 
of decision aids for patients.

Women with a family history of breast cancer con-
stitute a ‘high-impact’ group in which to first pilot 
national level application of integrated breast cancer 
risk assessment. In this group, the intervention might 
not only substantially improve clinical management, but 
also provide valuable information on how risk-stratified 
programmes might perform in the general population. 
Thus, the results of this pilot approach could form the 
basis on which to build subsequent population-level 
risk-based interventions.

Conclusions
Substantial progress has been made in research focused 
on estimating an individual woman’s risk of developing 
breast cancer, applying risk stratification in breast cancer 
prevention studies, modelling the benefit–harm balance 
of risk-stratified early detection approaches, and assess-
ing the acceptability and feasibility of implementing 
risk-based prevention and screening programmes. To 
translate this progress into improvements in population 
health outcomes, a systems approach to the evaluation of 
risk-based programmes is necessary, taking into account 
the health-care organization’s readiness for change, its 
openness to learning and adapting, the social context 
and the need for engagement of all stakeholders.
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