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Braiding defects in topological stabiliser
codes can be used to fault-tolerantly im-
plement logical operations. Twists are de-
fects corresponding to the end-points of
domain walls and are associated with sym-
metries of the anyon model of the code.
We consider twists in multiple copies of
the 2d surface code and identify necessary
and sufficient conditions for considering
these twists as anyons: namely that they
must be self-inverse and that all charges
which can be localised by the twist must
be invariant under its associated symme-
try. If both of these conditions are sat-
isfied the twist and its set of localisable
anyonic charges reproduce the behaviour
of an anyonic model belonging to a hier-
archy which generalises the Ising anyons.
We show that the braiding of these twists
results in either (tensor products of) the S
gate or (tensor products of) the CZ gate.
We also show that for any number of copies
of the 2d surface code the application of
H gates within a copy and CNOT gates
between copies is sufficient to generate all
possible twists.

1 Introduction

The question of which quantum gates can be
performed fault-tolerantly in a particular quan-
tum error correcting code is of vital importance
if we wish to use the code in quantum compu-
tation. The conventional method of achieving
fault-tolerant operations is via the application of
transversal gates [1]. In topological codes these
have been generalised to locality preserving logi-
cal operators [2]|3] which map local errors to local
errors. However, these codes also allow us to per-
form fault-tolerant gates using another method:
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braiding of topological defects. Examples of topo-
logical defects include punctures (produced by
the removal of stabilisers) and twists (the end-
points of domain walls in the code). Braiding of
these defects can allow us access to gates which
are difficult or impossible to implement transver-
sally. For example, the S gate cannot be imple-
mented transversally in the 2d surface code (out-
side of folded surface code constructions such as
[4]) but can be implemented via braiding of twist
defects [5].

A recent paper by M. Kesselring et al [6] fully
categorises the twists of the 2d colour code, sort-
ing them into nine conjugacy classes. In light of
this result it seems natural to ask what gates we
can implement via the braiding of these twists.
In this work we attempt to answer this question
for at least some of the colour code twists. In 5]
the fact that braiding twists produces an S gate
is shown by considering the action of this braid
on the logical operators of the code but the same
result can be obtained by considering the twists
as (Ising) anyons and analysing their braiding re-
lations, as in [7]. Formally the twists in a topo-
logical code are described by G-crossed braided
tensor categories [8] and cannot in general be
considered as anyons. We will discuss below the
cases in which neglecting the full G-crossed cat-
egory treatment of these defects is permissable
and we will see that three of the nine conjugacy
classes of colour code twist are examples of cases
where twists can be analysed using anyonic mod-
els. These models are members of a hierarchy
of anyonic models generalising the standard Ising
anyon model used to study twists in the surface
code.

This paper is organised as follows: in section 2
we present a short overview of anyon fusion and
braiding relations and twists in topological codes,
touching briefly on the G-crossed braided tensor
category formalism and the occasions when it is
acceptable to disregard it. We then define a hi-
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erarchy of “extended Ising models” in section 3
and discuss the general fusion and braiding re-
lations for these models in sections 4 and 5 re-
spectively. In section 6 we clarify the correspon-
dence between these relations and the possible
logical operations that can be performed using
these anyons. Finally, in section 7 we discuss how
general models in this hierarchy can be realised in
stacks of 2d surface codes with special attention
given to the case of the 2d colour code.

2 Anyons and Twists

In this section we briefly review the theoretical
background necessary for the rest of the paper.
We assume that readers are familiar with topo-
logical stabiliser codes and so our focus is on pro-
viding an outline of anyon fusion and braiding
relations in sections 2.1 and 2.2. We refer readers
who are not familiar with these codes to refer-
ences [9, 10, 11, 12, 13]. In section 2.3 we present
a similar discussion regarding twists in topologi-
cal codes and briefly touch on the category theory
formalism that describes these objects.

2.1 Fusion and Braiding

There exist a wide variety of ways to describe
anyon models. They can be described in terms
of topological charges [7], unitary braided ten-
sor categories [8] and through the lens of confor-
mal field theory [14] [15]. For our purposes the
topological charge description is largely sufficient,
although we will very briefly use the category-
theoretic approach when discussing twists in sec-
tion 2.3. This means that we have some fi-
nite number of anyonic species, each possessing a
unique label and topological charge. The anyons
obey a set of fusion and braiding relations. Fu-
sion relations are generally written in the form
16]

axb= Z N (1)

C

where N, is an integer counting the number of
ways anyons a and b can fuse into ¢. For a given
charge a if for any charge b N, is non-zero for at
most a single charge ¢, in other words the fusion
of a with any other anyon has only one possible
result, then we say that a is Abelian. Otherwise
it is non-Abelian. All anyon models must contain
a unique vacuum charge 1 such that ¢ x 1 = a.
Additionally, each charge a in the model must

have a unique inverse a with which it can fuse to
the vacuum in a unique way (N1 = 1).

The total anyonic charge within a given region
is a topological invariant and so cannot be al-
tered by operations within this region. However,
through alterations to anyon fusion order and in-
termediate fusion outcomes we can arrive at this
same total charge via different paths, called fu-
sion channels. This gives rise to the notion of an
anyonic fusion space with dimension equal to the
number of possible fusion channels. The quantum
dimension of an anyon is defined to be

dg = Noady (2)
b

meaning that d, = 1 for all Abelian anyons and
dg > 1 for non-Abelian anyons. The dimension
of the fusion space of N anyons a grows asymp-
toticlly as (dq)" in the limit of large N. Clearly
if we wish to use anyons in quantum computa-
tion then only those models which contain non-
Abelian anyons are of interest to us.

Changes of basis in the fusion space can be de-
scribed using F-moves

a b C a b C

where u (v) can be any of the fusion outcomes
of a and b (b and ¢). More generally we should
include additional indices describing the precise
fusion channel by which a and b (b and c¢) fuse
to u (v) but in what follows we will only con-
sider fusion rules with N¢, equal to either 1 or
0 and so such generality is unnecessary. The F-
matrices associated with an anyon model can be
found from the fusion rules by solving the pen-
tagon equation [16]

(FFQC)Z(FEM)Z? = Z(FQd34)E(F15@4)g(F1bQ3)Z (3)

e
which can be understood diagramatically in Fig.
1.
Logical operations on the fusion space can be
performed via the braiding of anyon pairs. This
is an operation
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Figure 1. Diagrammatic representation of the pentagon
equation. Different sequences of F-moves that have the
same start and end point must be equivalent.

a b a b
J
ab -
¢ c

which exchanges the positions of anyons a and b
which fuse to c¢. R{, will be a phase if a and b
have only a single possible fusion outcome or a
diagonal matrix indexed by c if there are multi-
ple possible outcomes. The charges a and b and
the outcome of their fusion c¢ are left unchanged
by the braiding in accordance with the fact that
anyonic charges cannot be modified through lo-
cal operations. However, the fusion outcome of a
or b with a third anyon may be modified by this
braid. If the F-matrices for a model are known
then we can find the R-matrices for that model
using the hexagon equation

(1:3(F2413)2 %2 = Z(F§31)§R?b(Ffl23)Z. (4)
b

As with the pentagon equation, the hexagon
equation can more easily be understood when
presented diagramatically as in Fig. 2.

2.2 Examples

Two anyon models of central importance in our
work are the quantum double of Zy [7] and the

Figure 2: Diagrammatic representation of the hexagon
equation. As with the pentagon equation, different se-
quences of F and R-moves with the same start and end
points must be equivalent

Ising anyons [16]. The former is an Abelian model
with charges 1, e, m and e, fusion rules

exe=mxm=exe=1,

()

eXm=c¢€¢ eXe=m, mXe=e

and braiding relations

Ree:Rmm:L R€€: _17 (6)
RemRme = ReeRee = RmeRem =-1

This model describes the excitations that arise

in the toric code, with e and m anyons corre-

sponding to X and Z errors and € corresponding

to a combination of the two (i.e. a Y error). It

also possesses a symmetry: we can exchange the

e and m charge labels without affecting any of
the fusion or braiding relations.

In contrast, the Ising anyon model is non-

Abelian. It contains three charges: 1, and o.
The Ising anyon fusion rules are

Yx=1 Yvxo=0, oxo=1+1 (7)

and the F matrix for the fusion of three os is

. 1 (1 1
FO'O'O'_\/§<1 _1> (8)
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Figure 3: A domain wall and pair of twists in the 2d
surface code. Qubits are on the vertices. Black plaque-
ttes correspond to Z stabilisers and white plaquettes to
X stabilisers. Each twist corresponds to a weight five
stabiliser which includes one Y. X and Z stabilisers and
excitations are exchanged by the domain wall.

and all other Ffbc are arbitrary phases. The
braiding relations are

Ry = e im/8 ! O
0 1 (9)

wa =—-1, R¢URU¢ = —1.

2.3 Twists in Topological Codes

We noted above that the quantum double of Zs
is symmetric under exchange of e and m charges.
We can consider a domain wall which applies pre-
cisely this symmetry, achievable in the toric code
via a line of modified stabilisers each containing
two Z and two X operators as shown in Fig. 3
[5] [7]. An X error moved across such a domain
wall will be transformed to a Z error and vice
versa. The end points of domain walls such as
this are called twists and are formally described
by G-crossed braided tensor categories [8]. We
now give a very brief outline of some of the basic
ideas of this formalism. This will be limited to
the minimum details required for drawing a con-
nection between twists and anyons and readers
interested in a rigourous mathematical descrip-
tion of this formalism should refer to the sources
cited.

An anyon model can be described by a unitary
braided tensor category Cy which has charges ag
and a (possibly trivial) symmetry group G. The
elements of G are labelled g and correspond to
the symmetries of the anyon model. The identity

a) b)
by®

ao @ ao @

Figure 4. Braiding an anyon in a loop around a twist to
measure the enclosed topological charge. ag is invariant
under the symmetry g. cases a) and b) are distinguish-
able only if ag braids non-trivially with bg.

element of this group is labelled 0. The action of
g on Cp is an invertible map from Cy to itself. In
a physical realisation of this anyon model each g
will correspond to a twist and braiding an anyon
around this twist will apply the symmetry g to
that anyon, with this action denoted as 9ag. The
topological charge of a twist can be measured by
braiding it with an anyon ag which is invariant
under the symmetry g as in Fig. 4 a). For each
symmetry g we have a new category C, which has
charges ay. The number of distinct a, is equal to
the number of g-invariant charges in Cp. When
fusing charges a, and b, we must have that ay x
by, = c4.;, where g-h is the composition of elements
of G. This is called G-graded fusion.

Since g-0 = g we have that a, x by = aj. If the
g-invariant charge(s) in Cy cannot distinguish by
from the vacuum then a’g = a4 and we say that
anyon by is “localised” by twist ay. Such charges
and twists have fusion/splitting rules such that

N9 = N® =Nb. =N =Ng7 40

agbO agBQ GgQg ELgbO gbOag
(10)
In other words if a4 localises by:

e a4 also localises by.

e by is one of the possible fusion outcomes of
Qg X Gg.

e All charges in the orbit of by under the action
of g are also localised by a, and ag.

Additionally we note that the set of localisable
charges for a particular twist must be closed un-
der fusion since if ag and by both braid trivially
with the g-invariant charges in Cy then so must
the result of their fusion.

Braiding of charges a, and by, involves the ac-
tion of the relevant symmetries such that charges
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can be modified by these braids (this is the G-
crossed braiding part of the formalism). How-
ever, we will not require this part of the theory
for reasons that will become clear below.

Finally, we note that fusion rules in this for-
malism must still satisfy the pentagon equation.
Braiding rules are generalised to follow a “hep-
tagon equation” which accounts for the fact that
braiding with twists can alter charge labels.

We return now to the previously discussed case
of twists in the toric code. Cy in this case is the
quantum double of Zs which has only one symme-
try so G has only two elements, 0 and g, where 0 is
the identity. Cp contains two g-invariant charges
(1 and €) so C4 has two charges which can be dis-
tinguished by braiding with €. More specifically
there is one charge corresponding to the fusion
of the twist with either 1 or ¢ and one charge
corresponding to fusion with e or m. This twist
possesses two significant features: (1) it is self-
inverse and (2) its associated invariant charges
are also its localisable charges. This means that
the subset of charges consisting of this twist and
its localisable charges is closed under fusion. Fur-
thermore, none of the charges in this subset can
be altered by braiding with any of the others.
In other words this subset functions as an anyon
model - specifically the Ising anyon model. This
is precisely what was noticed by H. Bombin in [7],
although the argument in that paper was formu-
lated in terms of topological string operators.

In the 2d colour code the situation is not quite
so simple. In [6] the 72 twists of the colour code
are identified and arranged into nine conjugacy
classes. The authors of [6] point out that the ac-
tion of these twists can best be understood by
considering the nine (non-trivial) bosonic anyons
of the colour code arranged as in Table. 1. These
anyons are all self-inverse and Abelian. Two
anyons in a row or column fuse to the third and
braid trivially with each other. Two anyons which
do not share a row or column fuse to a fermion
and aquire a phase of -1 under full exchange
(monodromy).

The symmetries of the colour code anyon model
are the permutations of this table which preserve
the rows and columns. These permutations are
the column permutations (6 options), row per-
mutations (6 options) and the transpose (2 op-
tions) giving 6 X 6 x 2 = 72 possible symmetries.
Twists belonging to three of the nine conjugacy

re | gr | bx

ry | gy | by
rz | gz | bz

Table 1: The nine non-trivial bosonic anyons of the 2d
colour code arranged as in [6]. rx implies an X error on
a red plaquette and so on.

classes possess the same properties as the surface
code twist described above: they are self-inverse
and their associated sets of invariant and local-
isable charges are equivalent. One of the other
six classes is trivial (it contains only the identity
twist) and twists in the other five classes possess
neither of these properties.

In what follows we consider the general case of
the anyon model associated with these self-inverse
twists and their localisable charges. In section 7
we will show that twists in any number of stacked
surface codes can only have an invariant set of
localisable charges if they are self-inverse.

3 A Hierarchy of Models

Recall the standard Ising model in which we have
a single non-Abelian anyon ¢ and two Abelian
anyons 1 and v such that o x 0 = 1 4+ 9. We
can extend this model by including additional
Abelian anyons and modifying the outcome of
o X o to include these anyons. Such extended
models already exist in the literature in the form
of parafermions, for example in [17], but the
Abelian anyons in these models are not generally
self-inverse and so cannot be the natural anyons
of the colour code. If we write the Abelian anyons
of an extended Ising model as a; (where ap = 1)
and the non-Abelian anyon as 8 and require that
each a; must be its own antiparticle then we ob-
tain the following fusion relations

a; X aj =g, a; X =0, 5X5=Xn:0¢i (11)

=0

where k = 0 only ifi = jand k =i (k = j) only
if j =0 (i = 0). These are exactly the fusion re-
lations we observe for self-inverse twists and their
localisable anyons in the colour code. For exam-
ple, the colour code twist B is self-inverse and
can localise the anyons bz, by, bz from table 1 (as
well as the vacuum anyon). The set {1, bz, by, bz}
is closed under fusion and so if we write 1 = «yp,
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bx = a1, by = a, bz = a3 and B = 3 then fusion
relations of these five charges exactly match (11).

Only specific values of n yield valid ex-
tended Ising models. For example, the model
{ap, a1, ag, B} is not valid because it is not closed
under fusion (a1 X ag must have a fusion outcome
ay where k # 0,1,2). Given a valid extended
Ising model containing m as we can find the next
valid model with n > m by adding a single new
charge ay,41 to the model, fusing ay,+1 with all
existing charges, and adding all fusion outcomes
to the model. If we write these fusion outcomes
as a; X Q41 = Qiym+1 then we can see that the
resulting model must be closed under fusion since

e Fusion of any oy, a; with 4,7 < m results
in another aj with & < m since the initial
model was closed under fusion.

e Fusion of a,,41 with any anyon in the model
results in another anyon in the model due to
the above procedure.

e Fusion of any oy, with ¢ < m and j >
m + 2 can be written as aj<m X Qj>mi2 =
Qj<m X Q< X Q41 by definition of aj>p, 42,
and this is in the model due to the above two
points.

e Fusion of any a;, o with 4,5 > m + 2 can
be written as q;>mi2 X Qj>mi2 = Qk<m X
Qg1 X Q<m X Qpy1 Which is in the model
since the two ay, 418 cancel.

Thus we can inductively define all extended
Ising models beginning from the standard Ising
model: {ap,a1,B}. We can label these models
by I, where k = 1 is the standard Ising model.
The number of «; in a given I is ny = 2np_1 =
2F=1n, and ny = 2 so ny, = 2¥. The $ anyon for
each I can be written as 3, and it has quantum
dimension v/2*.

Note that we can equivalently define these
models from multiple copies of Zy. The Abelian
charges of the standard Ising anyon model form
a group (with composition of group elements de-
scribed by the model’s fusion rules) that is iso-
morphic to Zy. Similarly the Abelian charges of
I5 form a group that is isomorphic to Zg X Zs and
so on. In general the group of Abelian charges of
I, will be isomorphic to k copies of Zs. A set con-
sisting of a finite group A and a single additional
element 8 with composition of these elements de-
fined as in (11) is called a Tambara-Yamagami

(TY) category [18]. Thus our “extended Ising hi-
erarchy” can be described more formally as a hier-
archy of TY categories with categories in the k™"
level of the hierarchy having base group (Zs)*.

4 F Matrices

In this section we show the possible F matrices
F gﬂ 3 for general 5. The full derviation of these
matrices can be found in appendix A. These ma-
trices (up to symmetry-preserving row and col-
umn permutations) are found to be a subset of
the Hadamard matrices called Sylvester or Walsh
matrices [19] multiplied by a constant. The impli-
cations of this fact on the trace of these matrices
is examined as this will be relevant in section 5.
A general F-matrix for extended Ising anyons
can be found from the pentagon equation (3). Ev-
ery ngc is equal to zero (if it is disallowed by the
fusion rules) or a phase except for F g 35 which in-
volves only non-Abelian anyons. In appendix A
we use the pentagon equation to show that up to
a choice of gauge this matrix has the form
Fo—x Ll g (12)
BBB 2k
where ¢ is a symmetric Hadamard matrix with
elements given by

iy = (Foop)s = (Fipa ) (13)
Hadamard matrices are n X n matrices where
all entries are +£1 and M M7 = nI [20]. Addi-
tionally, ¢ as we have defined it has the property
that all entries in the first row and column are +1
(such Hadamard matrices are called “normalised”
but we will avoid using this term to prevent con-
fusion with its more common usage in quantum
physics). We can further restrict ¢ to a subset
of Hadamard matrices by using the group the-
ory and TY category connections discussed pre-
viously. The F matrices of T'Y categories are re-
lated to symmetric non-degenerate bicharacters
where “character” refers to multiplicative charac-
ter, i.e. a group homomorphism from a group A
to the multiplicative group of a field F* [21]. A
bicharacter is then a function y : A x A — F*
which satisfies [22]

x(a1az,a3) = x(a1,a3)x(az,as)
and (14)

x(a1,aza3) = x(a1,a2)x(a1,az).
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We can see that ¢ satisfies this by considering
the pentagon equation with 1 =3 = 3, 2 = «,
4 = aj and 5 = oy, which yields a constraint

(Fgt5)5 = (P2

o aiﬁaj)g(F(aj xak))g’ (15)

Baip

which can be rewritten as
Pi(jxk) = PijPik (16)

using (13) and the fact that (¢;;)~! = ¢;; since
¢ij = £1. ¢ is symmetric and so we also have
that

Pixkyi = PjiPhi- (17)

Thus ¢ is a bicharacter on (Z3)¥. The above
definition means that if we fix one argument of
a bicharacter on a group A then the bicharac-
ter as a function of the other argument defines a
character on A. In other words, each row and col-
umn of ¢ is a character on (Z)*. Because they
are homomorphisms the action of these charac-
ters on (Zs)¥ is defined by their action on each of
the k copies of Zo which make it up. There are
two valid 1 valued characters on Zs which are
given by the rows/columns of the 2 x 2 Hadamard

matrix
1 1
Hy = 18
1 (1 _1> (19)

and coincide with the irreducible representations
of Zy. Thus for (Zs)F there are 2F possible
characters corresponding to the rows/columns
of HP*. These matrices are a subset of the
Hadamard matrices called Sylvester or Walsh ma-
trices [19]. The possible bicharacters for (Zo)* are
then the Sylvester matrix H’ ¥ and any other ma-
trices which can be obtained from this matrix via
symmetry-preserving row/column permutations.

H, is the unique bicharacter for £k = 1. For
k = 2 there are four possible bicharacters which
we can write in matrix form as

1 1 1 1 1 1 1 1
1 1 -1 -1 1 -1 1 -1
1 -1 1 -1 1 1 -1 -1
1 -1 -1 1 1 -1 -1 1
1 1 1 1 1 1
1 -1 -1 1 -1 -1
1 -1 1 -1 1 -1 -1 1
1 1 -1 -1 1 -1 1 -1

(19)

One of these matrices has trace 4 while the
other three have trace 0. These three all cor-
respond to the same anyon model up to rela-
belling of charges. In appendix B we show that
symmetry-preserving permutations of columns of
a symmetric Hadamard matrix must alter the
trace of the matrix by either 0 or £2*, with
the latter only being possible for even k. The
Sylvester matrices all have trace 0 and since one
row/column contains only +1s we cannot have
Tr(¢) = —2* so the only possible traces are 0 for
odd k and 0, 2¥ for even k. In comparison general
symmetric 2F x 2 Hadamard matrices must also
have trace 0 for odd k but the trace can take any
value 2F — 2K/2+1 >  for even k [23].

5 R Matrices

We now discuss the possible R matrices for ex-
tended Ising models which are found from the
hexagon equation (4). This equation was solved
for the case of TY categories in [24]. Once again
a similar solution in the language of section 2 can
be found in appendix C.

We are concerned only with Rgg which are di-
agonal matrices. From the hexagon equation we
obtain the constraint

R = +V/¢i RGY (20)
with R3% having possible values
{£1, 4, +ei™/4, j:e_”/‘l} for even k and
{£e™/8 xem/8 Liei™/8 +ie~™/8}) for odd k.
This equation tells us that (up to a global phase)
the non-zero elements of R are equal to =1 and
+i, with the number of real (imaginary) elements
equal to the number of +1s (—1s) in the diagonal
of ¢.

The hexagon equation also gives a constraint
on the trace of R,

RE5Tr(R) .
v "
which tells us about the relative numbers of pos-

itive and negative diagonal elements. We can use
(20) to rewrite this as

(21)

(R33)2(a + ib)
NGT

where @ and b are integers. In order for |R39 ?=1

+ =1 (22)

we need a? + b2 = 2k, For even k the solutions
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k Tr(¢) Number of £1  Number of +i
Even 2k ok=1 4 gk/2-1 0
Even 0 2k=2 4 ok/2-1 ok—2
0Odd 0 ok=2 4 9(k=3)/2  9k=2 4 9(k=3)/2

Table 2: The possible numbers of +1 and +i on the
diagonal of Rgg up to global phase. The £ signs in
a given column correspond to the + in that column’s
header such that choosing the sign in the header to be
+ also fixes all &+ in the column to +.

to this equation are @ = +2%/2. b = 0 and a =
0,b = +25/2 and for odd k they are a = +b =
+2(-=1D/2 (see appendix C). Combined with (20)
this completely determines the number of +1, —1,
+i and —i elements on the diagonal of Rgg for a
given k and Tr(¢) up to global phase, with the
number of each shown for each case in table 2.

We also show in appendix C that the elements
¢;; describe the exchange statistics of the anyons
aj, with ¢; = 1 indicating that «a; is bosonic
and ¢;; = —1 telling us that «; is fermionic.
Thus we expect that for both odd and even k
we can obtain models containing 2¥~! bosonic
and 287! fermionic Abelian charges and a sin-
gle non-Abelian charge. We additionally expect
that for even k we can obtain models containing
2% bosonic Abelian charges, no fermionic charges
and a single non-Abelian charge. The models
with 2¥~! bosonic and 25! fermionic charges can
be viewed as “sub-models” of k copies of the stan-
dard Ising model (e.g. in some kind of multi-layer
system) containing all Abelian charges and only
a single non-Abelian charge (namely, the charge
corresponding to 01 ® 03... ® 0k). We note also
that this “sub-model” simply corresponds to the
case where we neglect some of the charges in
the original model and does not mean that these
charges are no longer present. It is therefore dif-
ferent from procedures such as that of Bais and
Slingerland [14] in which an actual change to the
model is made.

The models containing 2* bosonic charges can-
not be produced from copies of the standard Ising
model and instead correspond to copies of a dif-
ferent anyonic model with four bosonic Abelian
charges and a single non-Abelian charge.

6 Logical Gates

In this section we will rephrase the findings from
the past two sections in terms of the possible
logical gates which we can perform using these
anyons.

Consider a specific anyon model containing 2F
Abelian charges and a single non-Abelian charge.
This model has an F' matrix Fg 35 associated with
changing the fusion order of three of the non-
Abelian anyons and an R matrix Rgg associated
with braiding two of the non-Abelian anyons. A
system containing four such anyons has a 2* di-
mensional fusion space for which the 2¥ Abelian
anyons of the model form a canonical basis. The
F and R matrices provide us with two logical op-
erations which can be performed on this space.
The F matrix is a mapping between the canoni-
cal basis and a basis of equal superpositions of the
canonical basis vectors. The R matrix selectively
applies one of the phases {+1, —1, +i, —i} to each
vector of the canonical basis with the total num-
ber of +1s, —1s, +is and —is applied consistent
with table 2.

Both of these operations may be interpreted in
terms of Clifford gates on k qubits: the F' matrix
has the same rows and columns as a tensor prod-
uct of k Hadamard gates (up to a global phase)
and the same is true for the R matrices and ten-
sor products of either k S gates or k/2 CZ gates.
Notice that our canonical basis vectors are cur-
rently labelled only by anyonic charges and we
have not yet defined an encoding for qubits in this
space. We can always choose this encoding such
that the ordering of the diagonal elements of R
in the computational basis is consistent with the
respective tensor product of Clifford gates. The
same is also true for the trace-0 F' matrices but
not for the trace-v/2¥ F matrices since the trace is
independent of our choice of encoding. These ma-
trices cannot be decomposed into a tensor prod-
uct of single qubit gates and instead correspond
to tensor products of the trace-4 matrix in (19)
multiplied by 1/2. This matrix is equivalent to
SWAP-(H ® H) and so is also Clifford. Thus, up
to global phases and a choice of encoding, all F'
and R matrices implement Clifford operations on
our Hilbert space.
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7 Stacked Surface Codes

Part of our motivation for obtaining the results
presented in the previous sections was to examine
the braiding relations of twists in the 2d colour
code. In this section we will see that we can ob-
tain twists belonging to the first and second levels
of the hierarchy in this code and in general we can
obtain twists belonging to the k' level of the hi-
erarchy in a stack of k 2d surface codes. When
visualising such a stack we might imagine multi-
ple copies of the surface code placed one above
the other, but we allow operations between any
two layers regardless of how “far apart” in the
stack they are and thus there is no notion of dis-
tance in a third dimension and the entire stack
is embeddable in 2d (although this will have an
impact on the locality of the stabilisers).

The fact that models from the second level of
the hierarchy can be realised in the 2d colour
code is readily apparent from [6]. For example
the twist B which exchanges the r and g columns
of Table 1 has four nontrivial localisable charges:
1, bx, by and bz. This set of four charges is closed
under fusion and all four are invariant under the
action of B.

In general if we consider equivalence up to
global phases and choose our qubit encoding as
discussed in the previous section then there are
two R-matrices for k = 2:

(23)
-1 ~1

Recall that the first of these matrices belongs to
a model with four bosonic Abelian charges while
the second belongs to a model with two bosonic
and two fermionic charges. In the notation of
Kesselring et al [6] the models containing four
bosons are those associated with a twist from con-
jugacy class B while those containing two bosons
and two fermions are associated with twists from
conjugacy class C. The twists in conjugacy class
G have only two localisable charges and corre-
spond to models from the first level of the hier-
archy.

So far we have seen that we can realise the
k =1 level of the extended Ising hierarchy in the
surface code, and the k = 2 level in the colour
code, which is equivalent to two copies of the sur-

face code [25]. We now consider the general case
of a stack of k copies of the surface code.

Consider the anyon model of &k stacked surface
codes (in the absence of twists). The topolog-
ical charges in this model are the elements of
a finitely-generated free group, whose generat-
ing set can be written {e1, m1, e2, ma, ..., g, My}
where the subscript shows the layer in the stack
which the charge belongs to. Twists in the code
stack correspond to symmetries of the anyon
model. These symmetries can be formally de-
fined as the elements of the automorphism group
of the anyon model which preserve braiding re-
lations. The action of these symmetries can be
described via a set of orbits, each of which can be
written as

a—b—c—..—a (24)
with the “trivial orbit” defined as
a — a. (25)

We first show that only self-inverse symmetries
g of this anyon model can have a g-invariant set
of localisable charges. Consider a twist t, and a
charge by = ag X 9ag. bg can be localised by t,
because we can split it into ag and 9ag, then braid
ap around t, and fuse it to the vacuum with 9ag.
If we braid by around ¢, we obtain 9by = Yag x 9’ ag
and so in order for by to be g-invariant we must
have 9° ag = ag, implying that ¢ is self-inverse.

From this we can see that if a twist in a stack of
surface codes (together with its set of localisable
charges) can be considered as an anyon model this
model will belong to the hierarchy of extended
Ising models defined in section 3.

All non-trivial orbits associated with a self-
inverse symmetry have the form a — b — a which
can also be written a <> b.

The full automorphism group of a finitely gen-
erated free group with ordered basis [z1, ..., Zy]
can be generated by the elementary Neilsen
transformations|26|:

e Switch x1 and x9
e Replace x1 with 27!
e Replace x1 with z1 - 2o

The second transformation is equal to the iden-
tity transformation in our case because all charges

Accepted in {Yuantum 2020-03-02, click title to verify. Published under CC-BY 4.0. 9



in our model are their own inverse. We thus con-
sider only the first and third transformations, but
not all applications of these transformations are
valid because we must also preserve braiding re-
lations. In order to do this we require that if we
map x; — x; then we must also map z; —
and if we map x; — x;x; then we must map
x; — x;x;, where z; can be either e; or m; and
z;z; = €¢;. We also cannont map e; — e;m; within
a layer because this exchanges a boson with a
fermion. In other words all symmetries of the

model can be generated by the transformations

€; <> m; (26)
e; «» e; and m; <> m; (27)
e; <> e;jej and m; < mym; (28)

which are simply the generators of all colour code
symmetries generalised to act on a stack of more
than two surface codes [6]. A simple way to ob-
tain a twist corresponding to a [ anyon is simply
to combine twists associated with symmetry (26)
on k different levels. The domain walls produced
by these symmetries in the code correspond re-
spectively to lines of H, SWAP and CNOT gates
applied in the code stack. Since SWAP can be
generated from CNOTs the generating set of sym-
metries can be reduced to just (26) and (28). This
is consistent with the set of generating symme-
tries identified in [3] although we arrive at this re-
sult by a different method. Any product of these
symmetries thus corresponds to a product of Clif-
ford gates in the code stack and so the code con-
taining the twists will also be a 2d stabiliser code.
Braiding operations are performed using prede-
fined sets of single-qubit Pauli measurements and
additional modifications to stabilisers by the Clif-
ford gates listed above [5] and such operations in
a 2d stabiliser code should not result in a logi-
cal non-Clifford gate. Thus all twists produced
by composition of these symmetries should have
Clifford braiding relations.

This result is valid for more than just self-
inverse twists since (26-28) are the generators of
all symmetries of the anyon model. Thus the re-
striction to Clifford braiding operations is valid
for all twists in stacked surface codes. This is
in agreement with recent results regarding the
power of defect braiding in topological codes
[27](28].

Finally we comment briefly on the fault-
tolerance of such braiding procedures. As men-
tioned above, braiding operations with twists can
be performed using the standard code deforma-
tion techniques of (1) measurement of modified
stabilisers and (2) single-qubit Pauli measure-
ments to remove physical qubits from the code
and provide information for decoding [5]. In a
code with local stabilisers these operations will
also be local so we expect that braids with these
generalised twists should remain fault-tolerant
under existing decoding procedures.

8 Summary

We have constructed a hierarchy of anyonic mod-
els extending the standard Ising anyon model
and identified the significant properties of the F
and R matrices for these models in the general
case. These models are specific cases of Tambara-
Yamagami categories and have F' and R matri-
ces belonging to the Clifford group. These anyon
models can be realised using Abelian anyons and
twists in stacked surface codes: given a stack of k
surface codes we can realise models belonging to
level k of the hierarchy. The restriction to Clifford
group braiding relations of twists extends even
to those twists which do not reproduce the be-
haviour of anyons. This result is consistent with
other recent results in this area.

A number of possible future research directions
exist following the results outlined above. Al-
though we have shown that twists in stacked sur-
face codes will always have Clifford braiding re-
lations we have only characterised these relations
for a small subset of these twists. Finding the
braiding relations for the remaining twists will
likely require the use of the full G-crossed braided
tensor category formalism described in [8].

In topological codes of dimension greater than
2 the braiding relations of defects and excita-
tions are very poorly understood. Braiding in
general is a more complicated concept in these
higher dimensions and must be performed with
non-pointlike objects to be non-trivial. Recent
work shows that defects can be constructed in
higher dimensions that reproduce the braiding re-
lations of Ising anyons [28] and it is also known
that using domain walls and puncture encodings
we can perform a braided version of any single-
qubit transversal gate within a code. A rigorous
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examination of such braiding schemes should be
possible using the full G-crossed category formal-
ism since puncture encodings utilise the fact that
some of the natural anyons of the code can con-
dense at the puncture’s boundary. Passing these
punctures through a domain wall should therefore
be equivalent to braiding these natural anyons
with a twist and modifying the anyon’s charge in
the process. It remains to be seen whether or not
it is possible to implement a braided non-Clifford
gate that is not also a transversal gate of the code.

The results of this work could also be ex-
tended to qudit codes, provided the anyon mod-
els of these codes possess symmetries. The twists
that arise in such cases may again allow us to
obtain non-Abelian anyons in codes where all
the natural anyons are Abelian, but in cases
where the natural anyons are non-Abelian but
non-universal there is the possibility that ad-
ditional non-Abelian charges may be obtained
which make these models universal. These mod-
els may therefore be a fruitful topic for future
research.
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Appendices

A Derivation of F Matrices

Since we will be using the pentagon equation (3)
extensively in this section we quote it again here

(Frae)a(Fasa)i = Y (F3an)e(Fia)s (Fras)s (29)

e

B is non-Abelian so (Fgﬂﬁ) is a matrix which we
will henceforth refer to as F. If we let 1 = «g

then the elements of F' are Fj; = (Fgﬁﬂ)gf All

other (F;qT)z are phases. We note some impor-

tant properties of these phases and their inverses:

1. Every phase (szqT)g has an inverse ( ,,qu)é

since changes of fusion order are always re-
versible.

2. (qur)z" where p,q or 7 = 1 are trivial reorder-

ings and correspond to a phase of 1.

3. Phases of the type (F},,); are self-inverse and

so have value either 1 or —1.

We begin with the case where 1,2,3,4 = 3,
5=1,b=d=f, a=q; and c = o;j. We obtain
constraints

2k_1
(Flso, ), (Fapp)s’ = Y Fuj(Fha,p)5Fu (30)

=0

In the case that ¢ = j the LHS of this equation
is equal to 1 by property 1 as listed above. If
i # j the LHS is equal to 0 since o;; x aj = 1 is
only possible when i = j. If we write (Fﬁlaz ﬁ)g =
0, and sum over repeated indices then we can
rewrite (30) as

FiuFL. = 0y (31)

where each element Fi’j = 0; - F;; (we do not sum
over the repeated index here). The LHS of (31)
is the matrix F' and its inverse. F' is unitary so
we must have that

Fyj = (F))". (32)

By property 3 6; = £1 and by property 2 6y =
1. Thus

Fio = (Fg:)" = (60~ Foo)* = (Foi)"  (33)
and
Foj = (Fjo)" = (0 - Fjo)" = (£Fjo)"  (34)
and we can combine these to show
For = (£F0)" = (£(Foz)*)" = £Fo..  (35)

Thus if 8, = —1 we must have Fy, = Fp,0 =0
for all x > 0.

The next configurations of the pentagon equa-
tion that we consider are 1 = a,, 2,3,4 =  and
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2 =ay,, 1,3,4 = 5. The first of these yields con-
straints

B i X Qg
F— (Faz(azxaz)ﬂ)gl(Fazﬁﬁ))a “ F
ij = ( B )5 (ixz)j
axﬁaj B
(36)
where Fl;yp); = (Fﬁﬁﬁ)a wa,- The second config-

uration yields

X Qg .
(Fa)E (Fhis)s
) 3 Qi Xy

(Faaya,)s

Fi(jx:v) (37)

From (36) we have that

Foo = (F7

o B

)i (FY 39)5 Fao  (38)
and from (37)

Fio = (Fy"s0)b(F g)5Fir  (39)
Setting x = 7 and 2’ = j we can combine these
equations to obtain

Fiyj = (F} 0601 (Fa )5 (Fiag) B(Fia ) 5Foo
(40)
Thus all elements Fj; have magnitude equiv-
alent to that of Fpy and so the only way for
0, = —1 is to have Fyg = 0 but this contra-
dicts the constraint that Fj, F. = 1 since all the
terms in this sum would be 0. Thus all , = 1
and F must be Hermitian. Additionally, the
magnitude of all elements in the matrix must be
1/V/2F and since the diagonal elements must be

real Fpy = il/@.
Setting
b1 = (Fap)iy
fio = (Fo(i-iﬁﬂ)éa (41)

foj = (F. aj/a) ( ajﬁﬁ)gj

we can rewrite (40) as

¢ij fiofoj
VoL

By property 3all d)ij ==1 (Wlth (Z)Z'O = ¢0j =1
by property 2) while f;jo can be any phase. We
also have that fy; = (fjo)* which can be verified
by considering the five-anyon fusion tree

Fj=+ (42)

1

and observing that the F-move

sequences (Fgﬁ o ,3> (Fﬁﬁl) and
(Fﬁﬂa )az (Fgﬁla ) (Fo%,ozl )3* both map this
tree to

1

Equating these and eliminating trivial terms
using property 2 we get
(Ffiaiﬁ)f = (Fﬁlﬁai)gi(Fgéai)’f (43)

which can be rewritten as

(F )1 (Faipp) = (Faig)h) ™ (44)
using property 1.

We can then write F' as the Hadamard product
of a matrix of fs (f) and a matrix of ¢s (¢)
multiplied by 1/v/2F

1
F j:\/QT(¢Of)' (45)

f is Hermitian and so ¢ must also be Hermitian.
The multiplication of F' by itself gives

Giz fio fox Pujfrofoj
V2k V2k

1
= ok GixPzj - fio o
= bij

Fi:rij =
(46)
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where we have used the fact that fo. fz0 = 1. The
final equivalence implies

2%¢2 of =1 (47)

where T is the 2% x 2F identity matrix. The di-
agonal elements of f are all 1 (since fo; = (fio)*)
so we must have that ¢?> = 2FI. Thus ¢ is a
symmetric Hadamard matrix [20].

¢ has only a finite number of solutions while
f has an infinite number. The obvious interpre-
tation of these two matrices is that different ¢
correspond to different anyon models (with the
discreteness of these solutions consistent with Oc-
neanu rigidity [29]), while the different f corre-
spond to a choice of gauge. We can see that
we cannot transform between solutions of ¢ by
changes to f by observing that f is completely
characterised by the values of f;o, whereas ¢;o are
always 1, so changes to f are always reflected in
the first row of F g 53 While changes to ¢ are not.
We also show in appendix C that the braiding
matrices of the models depend only on ¢ and not
on f. Thus we can make the gauge choice that
all f =1so

F=+—¢. (48)

Note that instead of (38
have obtained

) and (39

) we could

Foj = (Fl} o )Y (FL 55)57 (FY 50 )aFey  (49)

from (36) and
Foo = (Fotzggﬁ),%’FOx’ (50)

from (37). Setting x =i and 2’ = j and combin-
ing these as before gives

Fij = (F3ga,): (Flnso) B (Fa 50,5 (2 o, ) 5 Foo.
(51)
Using property 1 we can see that the first three
terms are equal to (fjofo;) ! which is equal to 1
due to our choice of gauge. Thus we have that

(F) o) (52)

Vf‘*¢“ \/‘*

S0 ¢ij = (Fgélﬁ)g = (ngﬁaj)g with this gauge

choice.

B Column Permutations of Symmetric
Hadamard Matrices

In this appendix we show that column permuta-
tions that preserve the symmetry of a symmetric
2F % 28 Hadamard matrix must alter the trace by
either 0 or +£2*. Consider swapping the second
and third columns of the following matrix from
(19). This matrix corresponds to H; ® H; and
this column swap will result in the matrix from
(19) with trace 4.

1 1 1 1
1) -1 1| -1
1 1 -1| -1
1) -1 -1 1

We have divided this pair of columns into three
sections. Any changes to the top or bottom (off-
diagonal) sections will result in a non-symmetric
matrix but the central (diagonal) section can be
modified while preserving symmetry. Because
these two columns are identical in the off-diagonal
sections and the diagonal section is symmetric
both before and after the exchange the symmetry
of the overall matrix is preserved. However, for
k > 2 such exchanges cannot be symmetry pre-
serving because the diagonal section will always
contain 2 elements from each column while the
off-diagonal sections will contain the other 2¥ —4.
In order for the columns of the matrix to be or-
thogonal each pair of columns must match in ex-
actly half their entries so for matrices larger than
4 x 4 it is impossible to exchange two columns
in such a way that the off-diagonal sections are
unchanged. Instead, we must exchange sets of
columns. Consider a general 2% x 2F matrix bro-
ken into 2572 x 28=2 blocks as follows

QA |
T W

where we have once again marked diagonal and
off-diagonal sections.

Lemma 1: The exchange of FACG and
FBDH can only preserve the symmetry of the
matriz if the trace of the diagonal section is
negated by the exchange
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We can only exchange FACG and FBDH if
E = F and G = H. Additionally we must have
that A = —B and C = —D or the columns of
the matrix would not be orthogonal. Thus the
trace of the diagonal section is negated by this
exchange. [J

Lemma 2: The exchange of FACG and
FBDH can only preserve the symmetry of the
matriz if A is a symmetric Hadamard matrix

For the overall matrix to be symmetric both
before and after the exchange we require that
BT = C and AT = D and therefore A = —B =
—CT = DT and the entire diagonal section is de-
termined by A.

A is must be symmetric for the overall matrix
to be symmetric.

To show that the columns of A are orthogo-
nal we consider two columns, ¢; and ¢y, of our
full 2% x 2% matrix such that both columns pass
through A. We note that if this pair of columns
have m matched elements within A then they
must have 2m matched elements within the di-
agonal section and 28~ — 2m matched elements
in the off-diagonal sections (since exactly half
the elements of each column must match). We
now consider the pair ¢; and —co where —csy is
the column passing through B that is equal to
—1 X co within the diagonal section and identi-
cal to co outside of this section (i.e. the column
we wish to exchange c¢o with). ¢; and —co have
2k=1 _ 9m matched elements within the diagonal
section and so must have 2m matched elements
in the off-diagonal sections. Since co and —co
are identical in the off-diagonal sections we have
that 2m = 2! — 2m and m = 2*=3. Thus for
each pair of columns in A half of the elements are
matched and the other half are unmatched and
the columns of A are orthogonal. [J

Since A is a symmetric Hadamard matrix of
order 2¢=2 it can be partitioned into blocks such
that A’ is a symmetric Hadamard matrix of order
2k=4 This process can be repeated recursively,
eventually terminating when we arrive at a ma-
trix of order 1 (for odd k) or order 2 (for even k).
The possible symmetric Hadamard matrices with
these orders are (up to a possible global phase of -
1) (18) and (19). These matrices are restricted to
have trace=0 and trace=0 or 4 respectively, and
going back up the chain of recursion we see that
Tr(A) = 0 for odd k and Tr(A) = 0,421 for
even k. The trace of the central section is then

2Tr(A) and by Lemma 1 a symmetry preserv-
ing exchange of columns must negate this trace,
changing the trace of the overall matrix by either
0 for odd k or 0, 2" for even k.

So far we have only considered swapping
columns in a very specific arrangement, but any
desired set of column swaps can be rewritten in
this form such that it is apparent that the same
constraints apply. This is achieved by applying
column permutations such that the columns we
wish to swap are correctly arranged at the centre
of the matrix and then applying a matching set
of row permutations (since matching column and
row permutations preserve the symmetry of the
matrix). Following the exchange of column blocks
as described above we apply the same set of row
and column permutations again. By considering
how permutations transform under conjugation
and the fact that row and column permutations
commute we can see that this operation is equiva-
lent to exchanging the columns without first mov-
ing them to the center.

C Derivation of R Matrices

The R-matrix is defined from the hexagon equa-
tion
53(F§113)Z (ilz = Z(FﬁlsﬁgR%b(ng?))Z (53)
b
When we set 1,2,3,4 = 3, a,c = «; this gives:

2k
RR =Y Bl Fo (5)

and from (42)

Gij [i0f0j pai po
= or Teatlss =
k

Z

¢b]fbof01¢zbfzof0bRﬁab (55)

G ROGRY, 2 duon R
4 d)J BB _ Z ¢ b¢bjk Bow (56)
V2k 2

b=0

Setting 1 = «a; and 4 = a; we instead obtain

¢z‘j(R§iﬂ)2 = sz(aixaj) (57)

So we see that the braiding relations are de-
pendent on ¢ but not on f as we would expect.
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Consider the case in (56) where ¢ = j. We have
that 5
QG )2
V2k A

The RHS is independent of ¢ so
(RG3)* = du(RG5)% (59)

Additionally, if we set ¢ = 0 and sum over j

£ ZZ

J
all terms on the RHS cancel except for those
where b = 0 which sum to 2’“11’@06O (since all
rows/columns of ¢ except for the first contain
an equal number of 1s and —1s), so

RﬁﬁR b Rﬂab

(60)

RE5Rs: o

£y = =R, =1 (61)
/ok Bao

since Rgao just describes braiding with the vac-

uum and is therefore trivial. Using (59) we can

rewrite this as

N RO‘O (lzl:\/¢T:|: .t/ Pniny,)
VT

The + in the sum do not all need to be the
same, but they must be chosen such that \Rg%]z =
1 or the matrix Rgg would not be unitary.

The number of +1 (—1) terms in the diagonal
of ¢ tells us the number of £1 (44) terms in the

sum of (62) which we can rewrite as

=1 (62)

(R33)2(a + ib)
\/27;

In order for |R§‘%|2 = 1 we require that a? +
b> = 2% For even k this means that either a =
+25/2 h = 0 or a = 0,b = 252, For odd k we
have that a = +b = £20=1)/2_ The proofs are as
follows:

Consider a right-angled triangle with sides a <
b < c opposed by angles A, B, C.

+ ~1. (63)

e Even: V2F = 22 s an integer so from
a? + > = 2F we assume the existence of
a Pythagorean triple (|a|, |b|,2%/2).
b must have the same parity for the sum
of their squares to be even. If they are
both odd then this triple is primitive since
la| and |b| have no even factors and 2/2

a and

has no odd factors. If they are both even
then there must be some associated primi-
tive triple (|a|/2%, |b]/2%,2F/2%) where the
first two elements are both odd. All primi-
tive triples can be constructed using Euclid’s
formula

a=m?—n?

b=2mn, ¢=m?+n? (64)
where m and n are a pair of coprime inte-
gers, one of which is even. However, this
means that ¢ is odd, giving a contradic-
tion. Thus this primitive triple does not ex-
ist and neither does the triple (|al, |b|, 2%/2).
The only remaining solutions to the equa-
tion a2 + b2 = 2% are a = £2F/2 ph = 0 and
a=0,b=+2k?

e Odd: V2F = 2F?2 = 2(’“_1)/2\/5 where
2(k=1)/2 i5 an integer power of two. Given
c = 2(]“*1)/2\/5 we have that a =
2(k=1)/2,/2sin(A) and b = 2-=1/2,/2sin(B).
We require that both a and b are integers
and thus sin(A) and sin(B) must both be
integer multiples of 1/y/2. Thus sin(A4) =
+sin(B) = +1/v/2 and a = +£b = £2(*~1)/2,
Substituting these solutions into (63) we have
+(R35)* =1 and +i(R3*=1  (65)
for even k and

ap \2 .
(R35)°(1 £14) . (66)

V2

for odd k.
Finally, we note that by setting ¢ = j in (57)
we can show that

Rk, = £Vou\[Roi = £v/ou (67)

where Rg:l = 1 since braiding with the vacuum
is trivial. Using this and instead setting j = 0 we
find
(R%gk)z = ¢ = Ry, (68)
In other words the elements ¢;; tell us the self-
exchange statistics of the charges «.
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