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Abstract

In this thesis we investigate how knowledge of the local behaviour of a Borel
measure on R"™ enables us to deduce information about its global behaviour.
The main concept we use for this is that of tangent measures as introduced
by Preiss.

In order to illustrate the limitations of tangent measures we first construct
a Borel measure u on R" such that for u-a.e.z, all non-zero, locally finite
Borel measures on R" are tangent measures of 4 at . Furthermore we show
that the set of measures for which this fails to be true is of first category in
the space of Borel measures on R".

The main result of the thesis is the following:

Suppose that 1 < m < n are integers and p is a Borel measure on R™ such
that for p-a.e. z,

1. The upper and lower m-densities of u at z are positive and finite.

2. If v is a tangent measure of p at = then for all V € G(n,m) the
orthogonal projection of the support of v onto V' is a conver set.

Then p is m-rectifiable.

By considering a measure derived from a variation of an example given
by Dickinson, we are able to illustrate the necessity of a condition such as (2)
in our main theorem. Moreover this measure has its average density equal to
its upper density and possesses a unique tangent measure distribution almost
everywhere.

Our final example is based upon one given by Besicovitch. We show that
there is a Borel measure p with positive and finite upper and lower 1-density
almost everywhere and with average 1-density existing almost everywhere
but with non-unique tangent measure distributions.
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Chapter 1

Preliminaries

1.1 Introduction

The tools introduced by Besicovitch in his seminal papers of the late twenties
and early thirties [Bes28, Bes38, Bes39] have had an enormous influence
on the development of modern geometric measure theory. In these papers
he introduced, amongst others, the notions of approximate tangents and
densities. Many mathematicians working in geometric measure theory today
make constant use of these fundamental ideas.

Besicovitch was particularly interested in the dichotomy between regular
and irregular sets and one of his most striking results in this direction was
his Projection theorem for 1-sets in the plane: it stated that a 1-set, F, in
the plane is irregular if and only if for almost every line, L, the projection
of £ onto L has zero length. This result was eventually extended to general

measures in Euclidean space by Federer [Fed47a, Fed47b] and a detailed



account of this result may be found in [Fed69, 3.3].

More recently Preiss [Pre87] introduced new tools for studying the local
structure of measures — tangent measures. Using these new notions he has
succeeded in answering many of the remaining problems concerning rectifi-
able measures. (See, for example, Theorem 1.5.2.)

In this thesis we investigate how information about the tangent measures
of a measure determines its global structure.

In this Chapter we briefly summarise the background material required
for the rest of the thesis and provide a basic introduction to the theory of
tangent measures. The final section of this chapter illustrates the limitations

of tangent measures and shows that they are not a universal panacea.

1.2 Notation

We use R" to denote n-dimensional Euclidean space with ||.|| denoting the
usual Euclidean norm and (.,.) the associated inner product. For £ C R"

and z € R"™ we define
d(z, E) :=inf{|ly — || : y € E}
and for r > 0 we set
B(E,r):={y € R": d(y,E) <r},

UE,r):={yeR": d(y,E) <r}.

Observe that U(E,0) = 0 and B(E,0) is just the usual topological closure of
E in R" (usually denoted by clos(E)). We abbreviate B({z},r) by B(z,r)
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and similarly for U(z,r). If r > 0 then B(z,r) is a non-degenerate ball. If
V C R" let inty(E) denote the interior of E with respect to the induced
topology on V and let Oy E denote the boundary of ENV (when considered
as embedded in V). Define int (F) := int g»(E) and OF := Ogr~(E). conv (E)
will denote the closed convex hull of E. For a set £, card (E) will denote the
cardinality of E.

N will denote the natural numbers, Z the integers, Q the rationals and
Q* will be the positive rationals. There will also be occasion to refer to Q"
— n-tuples of rational numbers. For z € R, [z] will denote the least integer
greater than or equal to z and [z| will denote the largest integer less than

or equal to z.

Let
G(n,m):={V C R": V is an m-dimensional linear subspace of R"}.

For V € G(n,m) let Py denote orthogonal projection onto V thus Py: R"™ —
R" and has range V. Define V; — V to mean that |Py; — Py|| — 0 in
the usual operator norm. Let Pj; be the orthogonal projection onto the

(n — m)—dimensional subspace of R™ which is orthogonal to V.

Forz € R*, h >0, k> 1 and V € G(n,m) define X(z, h,k, V) by
X(z, bk, V) :={y € R" : |z —y[| < k[h+ |[Pv(z —y)[]}.

This is an expanded cone around z with central axis V.



1.3 Some results from Measure Theory

Throughout this thesis by saying that u is a Borel measure over R™ we shall
understand that u is a Borel regular outer measure over R™ such that all
Borel sets are y-measurable. A measure y is locally finite if for all z € R™
there is an r > 0 such that yU(z,r) < co. Recall that locally finite, Borel
measures on R”™ are Radon measures (see [Fed69, 2.2.5]). Observe that this
implies that for all compact sets K C R" u(K) < oco. All measures we shall
consider in this thesis are Borel measures and consequently we shall often

just write ‘measure’ for ‘Borel measure’. A measure y is almost finite if
p{zeR": Forall r >0, uU(z,r) = co} = 0.
We define the support of a measure p by
Sptu:=R"\ {z: Thereis an r > 0 with uU(z,r) =0}.

Notice that Spt u is a closed set and x4 (R" \ Sptu) = 0. For aset E C R"

we define the restriction of u to E, u|g, by
ple(A) == u(ANE) for ACR™

Observe that if F is a Borel set and g is a Borel measure then p|g is also a
Borel measure.

A function f: R™ — X, where X is a topological space, is Borel-measurable
if for all open sets U C X we find that f~*(U) is a Borel set in R™. Observe
that if u is a Borel measure on R" then f is p-measurable.

For z € R*, A C R" and r > 0 define
Agri={z+ra:a€ A}

9



and for a measure . on R™ define a new measure y,, by, for £ C R",
pzr(E):=p({z+re: e€ E}).

Thus pz.(E) = u(Ezr). Observe that if y € R™ and s > 0 then

(ul‘ﬂ‘)y's_ = Uz4ryrs

and consequently
(,Ux,r)_z/rvl/,. = Ho,1 = M.
One measure which will appear on numerous occasions in this work is
m-dimensional Hausdorff measure (where 0 < m < n and we are working in

R".) If a(m) denotes the Lebesgue measure of a unit ball in R™ then we

define the m-dimensional Hausdorff measure of a set £ C R™ by

H™(E) := sup inf {Z a(m) (M) : E C|JU;, U; are open and

6>0 =1 2

for all ¢,diam (U;) < 5} .

For further discussion of Hausdorff measures and proofs that they are indeed
Borel measures see either [Rog70] or [Fed69, 2.10].

It will also be helpful to define for integer m between 0 and n
G(n,m):={cH™|v: ¢>0,V € G(n,m)}

which may be thought of as the set of flat m-dimensional measures.
One classical result on approximation of measurable functions which we

shall use is Lusin’s Theorem which states:
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Theorem 1.3.1 If y is a Radon measure over a locally compact Hausdorff
space X, f is a p-measurable function with values in a separable metric space
Y, A is a u-measurable set for which u(A) < oo and € > 0 then A contains a
compact set K such that u(A\ K) < € and f|x ts continuous. (Where f|x
denotes the restriction of f to K.)

Proof: See [Fed69, 2.3.5]. ' "

For a measure g on R™, z € R™ and 0 < m < n define the lower m-density

of pat z, D_m(ﬂax), by

D, (g, ) := liminf #B(z,7)
r—0  a(m)rm

and define the upper m-density of u at z, D, (p, ), by

Don(p,z) := limsup M
r—0 a(m)rm

If these two limits are the same at a point z then we call their common value

the m-density of x at z and denote it by D, (g, z).

The following lemma allows us to compare a measure g with m-dimensional

Hausdorff measure.

Lemma 1.3.2 Suppose that p is a locally finite, Borel reqular measure on

R", 0<x<ooand 0 <m < n.

1. If E C R" is a Borel set such that for y-a.e. in E, Dpp(u,z) < x then
p(E) < 2mxH™(Sptp N E).

2. If E C R™ is a Borel set such that for py-a.e.z in E, Dpn(1, ) > X then
u(E) = xH™(Sptp N E).

11



Proof: The first statement follows immediately from [Fed69, 2.1.19(1)].
The second statement follows from [Fed69, 2.10.19(3)] which states that if
all closed subsets of R™ are y-measurable, G is open, F' C G and D (g, ) > t

whenever z € F then

w(G) = tH™(F).

For, as F is Borel and g is a locally finite, Borel measure, we can find an
open set G D F such that u(G \ E) is arbitrarily small. Approximation now
gives the result. ]

For a sequence of measures (y;) on R" we say that p; converges to a
(locally finite) measure u (denoted by u; — w) if for all continuous functions

f : R® —» R with compact support (that is, the set {z : f(z) # 0} is

[ faui— [ fan.

If D > 0 and two Borel measures g and v are such that (¢ +»)U(0,D) <

compact) we have

oo then we define their distance apart on U(0, D) by

. £> 0, Spt(f) C B(0, D) and lip (f) < 1}.

Fo(u, v) i=sup {| [ fdu— [ f v
It can be shown, [Pred7, 1.11], that
i —
if and only if for all D > 0
Fp(ui, p) — 0.

Four elementary observations to make about Fp(u,v) are
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1. FD(ﬂ, V) = DFl(#o,D, VO,D)a
2. if z € R™ then DFI(,U;C,D, V:c,D) < FI“«‘|+D(/"7 I/),
3. if D < FE then Fp(p,v) < Fe(y,v),

4. if w is also a measure then
FD(:U’ V) < FD(:”')“)) + FD(wa V)'

Let M(R") denote the set of all locally finite, Borel measures on R" (we
shall usually write M for M(R")).

If for u,v € M we define

dist(g,v) := iQ"i min{ F;(g,v), 1}
i=1

then this is a metric on M and with this notion of distance M is both
complete and separable (see [Pre87, 1.12(2)].) Notice that if D > 1 and
dist(u,v) < € < 2'=0 then for 0 < m < D, Fp(p,v) < 2™ 1€, Also observe
that for g € M, Fp(k,.) is an upper semicontinuous function with respect
to the topology induced by dist on M.

We shall have frequent recourse to the following Lemma which is a con-

sequence of Prohorov’s Theorem.

Lemma 1.3.3 If (1) is a sequence of Borel measures on R™ such that for

dlT>0
lim sup 4;B(0,T) < o0

then (p;) possesses a convergent subsequence.
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Proof: See, for example, [Pre87, Lemma 1.12]. A version of this result for
probability measures can be found in [Par67]. n
The following Lemmas provide us with some basic techniques to compare

two measures.

Lemma 1.3.4 Suppose that p and v are in M(R") and D > 0. If 7 > 0
and E C R" are such that B(E, ) C B(0, D) then

w(E) <vB(E,7)+ Fp(y, v)/T.
Proof: This is [Pre87, Proposition 1.10(3)]. ]

Lemma 1.8.5 Suppose R > 1 and both p,v € M(R"). Suppose that A is a
finite family of Borel sets such that:

1. If A,B € A are distinct then u(AN B) = v(AN B) =0,
2. [Spt () USpt (v)]NB(0, R) CUA.
Then

Fa(i v) < 3 dim (A)(p +#)(AN B0, R)

If for all A € A, diam (A) < d then we have
Pa, v) < d(s + 1)(B(0, B)).

Proof: Observe that the second statement follows immediately from the

first since (1) and (2) imply that

2 (r+v)(ANB(0, R)) = (4 + v)(B(0, R)).

A€A

14



In order to verify the first statement suppose that f : R® — [0,00) is
such that Spt (f) C B(0, R) and lip(f) < 1. We need to estimate

/; o) fd(p—v)

but on using (1) and (2) of the hypotheses we find that

Lo 48 =) ) Jinsom £ =)

d(p —v)|.
fé; /AnB(O,R)f (,u )

de(#—V)

<

Therefore let us investigate l Janso.r) fdlp — z/)l for some A € A. For any

measure w we have

w(ANB(0, R)) inf f(2) < /

B fdw <w(ANB(0, R))sup f(z)

TEA

but lip (f) £ 1 and so
inf f > sup f — diam (A).
A A

Hence

w(ANB(0, R)) [sipf - diam(A)] < /AnB(O,R) fdw <w(ANB(0, R))sip f.

Thus on considering [4np(,g) f d(k — v) we find
[ fdu—v) < w(ANBO,R)sup f]
ANB(0,R) A
—v(ANB(0, B))[sup f — diam (A4)]
= (¢ —-v)(ANB(0,R)) sup f —diam (A)v(AN B(0, R))
< diam(A)v(ANB(0, R).

15



Similarly we find that

‘memfau—w > u(ANB(0, R))[sup f - diam (4)]
—v(ANB(0,R)) sipf
= (1= v)(ANB(0, B))sup f — diam (A)u(AN B(0, )
> —diam (A)u(AN B(0, R).

Thus
< diam (A)(x + v)(AN B(0, R))

/AnB(o,R) f d(,u B V)

and so returning to our original estimates we find that

< AZ; diam (A)(p + v)(A N B(0, R))

[f =)

which implies the Lemma. [

1.4 Tangent Measures

Tangent measures were introduced in [Pre87] and are an extension of ideas
in [Mar61] and [Mat75]. They provide a natural framework within which to
describe and investigate the local behaviour of measures.

Suppose that p is an almost finite measure on R™ and that z € R". We
say that a non-zero, measure v € M on R" is a tangent measure of y at z if

there are sequences r \, 0 and c¢; > 0 such that
v = lim ckpizr,-
k—o0

By Tan(u,z) we denote the set of all tangent measures of y at z.
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It is clear that Tan(u, z) has the following property: If v € Tan(y, z) then
for ¢, > 0, cvo, € Tan(y,z). Also Tan(u,z) U {0} is a closed set.

We should first verify that tangent measures exist:

Lemma 1.4.1 If u is a almost finite Borel measure on R"™ then for py-a.e.

Tan(p, z) # 0.

Proof: See [Pre87, 2.5] n
One of the important properties of tangent measures is that of shift in-

variance:

Lemma 1.4.2 Suppose that u ts an almost finite measure on R". Then
p-a.e.z has the following property: Whenever v € Tan(p,z) and { € Sptv
then

ve1 € Tan(p, z).

Proof: This is [Pre87, 2.12]. n

If 4 is a measure and z is a point in R™ such that for some 0 <m < n
0 < Dyn(#,2) < Dp(p, ) < 00

then we may define the standardised tangent measures of y at z, Tang(y, z),

as follows:
Tang(p,z) := {1/ EM:v= klim Tr " fzr, fOr some sequence i N\ 0} .
—00

It is easy to verify that if v is a standardised tangent measure of y at = then

forp>0
0 < a(m)D,. (g, z)p™ < vB(0,p) < a(m)Dym(p,z)p™ < 00 (1.1)

17



and hence 0 € Spt v. It is interesting and useful to observe that shift invari-

ance holds within the (smaller) set of standardised tangent measures:

Lemma 1.4.3 Suppose that u is a measure on R", 0 < m < n and for
p-a.e.x

0 < D (4, ) < Dm(p,7) < 00

then for u-a.e.z if v € Tang(u,z) and ¢ € Sptv then vy € Tang(y, z).

Proof: P. Mérters observed that it suffices to replace every occurrence of
the letter ‘¢’ by ‘r~™’ in the proof of shift invariance for normal tangent
measures [Pre87, 2.12]. n

As an immediate corollary of this Lemma and equation 1.1 preceding it

we deduce that:

Corollary 1.4.4 Suppose that p is a measure on R", 0 < m < n and for
p-a.e. T

0 < D(,2) < Dm(p,2) < 00

then for p-a.e.z if v € Tang(y,z), { € Sptv and p > 0 then

0 < &(m)Dp (s, 2)p™ < vB((, p) < a(m)Dim(p,z)p™ < o0o.

Moreover there are tangent measures v,w € Tang(p, ) such that

D,.(¥,0) = D,.(,2) and Dp(w,0) = Dp(v, z).

uB(z,2r)
uB(z,r)

may use Lemma 1.3.3 to deduce that for every sequence r; \, 0, (r; ™ tiz,r)

If 0 < Dp(pty2) < Dim(p,2) < 0o then limsup,_,, < oo and so we

18



possesses a convergent subsequence and hence we deduce that Tang(p, z) will
be a compact set.
For non-empty compact subsets M, N C M define their Hausdorff dis-

tance to be

H(M,N) := max{d(M, N), d(N, M)}

where

d(M, N) := sup inf dist(g,v).
peM VEN

If K is defined to be the collection of non-empty compact subsets of M then
(K, H) is a complete separable metric space (see [Mic51, Propositions 4.5(1),

4.1(3)]).

Lemma 1.4.5 Suppose that p € M, 0 < a <b< o0, 0 <m < n and
E C R" is a Borel set such that for allz € E

a < Dm(/,t,:l:) < 5771—(/%“’) <b
then the function t: E — K defined by t(z) := Tang(y, z) is Borel-measurable.

Proof: Since K is a complete separable metric space it suffices to show that

forall0<é<landz € E
F:={y e E: H(i(z),t(y)) < 6}
is a Borel set. However
F={yekE:d(ix)ty) <é}n{y € E: d((y),t(z)) < 6}.
Thus as, for u,v € E, we have

d(t(u),t(v)) = sup inf dist(w,v)
wet(u) YEHv)
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it suffices to verify that for all 0 < o < 1 and all R € N both

Fy:= {y € E: sup inf Frlw,v) < 0'}
wet(y) vEL(Z)

and

Fg:= {y € E: sup inf Fr(w,v) < a}
vet(z) vEHY)

are Borel sets. However as, for any R > 0 and £ € M, Fg(k,.) is upper

semicontinuous, we find that

FA: U ﬂ ﬂ U FA(j,k,l,'r‘,S,T)

7,k€N r€(0,1/k]nQ |, TEN s5€(0,1/TINQ

where
FA(jak7l7 T',S,T) = {y € E: Fp (T-mﬂ«y,ras—m#x,s) <o (1 —j_l) (1 — k‘—l)} .

Also we find that

Fg= |J N U N U  FsG,k0,rs,T)

5k€EN r€(0,1/kjnQ IeN  TeN s5€(0,1/TINQ

where
Fg(5,k, 0,1, 8,T):= {y eFE:Fp (s‘muy‘s,r_mux,r) <o (l -—j'l) (1 — l_l)}.
Hence, as these sets are clearly Borel, the result follows. n

Lemma 1.4.6 Suppose that N' C M(R"), u is an almost finite measure on

R", z € R" and for all R > 1 and € > 0 there is an s > 0 such that for all
0<r<swecan find av eN with

Fr (r'mm‘,, 1/) <e€

then
Tang(p, z) C clos (V).

20



Proof: Suppose there is an w € M such that for some sequence r; \, 0,
r7 ™ g, — w and w & clos (V). Then we can find an R > 1 and an € > 0 so
that for all v € clos (V)

Fr(w, v) > 2e.
However there is an s > 0 such that for all r; < s
Fr(w, ri;mux,ri) <e
and so for such an r; and any v € clos (V) we have
Fr (ri_m/,tx,m V) > €.
In particular, for all v € N
Fr (r;m,um,n, l/) > €

which, if ¢ is sufficiently large, contradicts the hypotheses of the Lemma. m
This suggests a strategy for finding the tangent measures of a measure p.
Suppose that we wish to show that for y-a.e.z, Tang(y,z) = M (assuming
that A is closed). First we should find a small (ideally finite) set N/ C N
such that
clos{r""v;,: 7>0,{ € Sptv,v e N'} = N.

We should then show that for p-a.e. .z
N’ C Tang(p, z).

We may then use shift invariance to conclude that for p-a.e. z, N’ C Tang(y, z).

Finally show that the hypotheses of Lemma 1.4.6 are satisfied by A for
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p-a.e. z. We may then conclude that for y-a.e. z
N C Tang(g,z) Cclos(N)=N.

This technique will be used in Chapter 3.

Finally, it is interesting to note that if a normalisation other than r™ is
used in the definition of standardised tangent measures then all these results
remain true for a measure p provided that the new normalisation, h(r) say,

is such that for p-a.e. z
uB(z,r uB(z,r

1. 0 < liminf, o Jh(-r—)—l < limsup,_,, _h%ﬁl < 00,

2. the set {h(r) *uzs: 0 <7 <1} is such that every sequence of mea-
sures in this set possesses a convergent subsequence (not necessarily

converging to an element of the set.)

1.5 Rectifiability

A set E C R" is m-rectifiable for some m, an integer between 0 and n, if

there is a countable set of lipschitz maps f; : R™ — R" such that
H™ (E \ Uf,- (R’”)) = 0.
A set E is purely m-unrectifiable if for all Lipschitz maps f : R™ — R"
H™(En f(R™)=0.
A measure y is m-rectifiable if there is an m-rectifiable Borel set E such that
w(R"\ E)=0.
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A measure y is purely m-unrectifiable if for all m-rectifiable Borel sets E
p(E)=0.

One deep result about rectifiability which we shall use is the Besicovitch-

Federer Projection Theorem:

Theorem 1.5.1 Suppose that E is a purely m-unrectifiable, H™-measurable
set with H™(E) < oo then for almost every V € G(n,m)

H™Py(E) =0.
Proof: See [Mat95, Theorem 18.1]. n
More recently Preiss has proved the following deep theorem about recti-
fiability:
Theorem 1.5.2 Whenever u is an almost finite Borel measure on R", the

following conditions are equivalent:

1. u is m-rectifiable and is absolutely continuous with respect to H™.
2. For p-a.e.z, 0 < Dp(p,z) < o0.

8. For p-a.e.z, 0 < D, (¢, z) < oo and Tan(u,z) C G(n,m).

Proof: See [Pre87, Theorem 5.6]. ]

1.6 A measure with a large set of tangent
measures

Throughout this section we shall be working in R". Let M be the space of

all locally finite Borel measures on R".
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The main advantage of tangent measures is that they often possess more
regularity than the original measure and thus a wider range of analytical
techniques may be used upon them. In this section we show that there exist
non-zero, finite measures, u € M such that for u-a.e.z the set of tangent
measures of p at  is equal to M \ {0}.(Where 0 denotes the zero measure.)
We shall then show that for most (in the sense of category) measures yu € M
we have that, for y-a.e. z, Tan(u, z) equals M\ {0}. Hence for most measures
consideration of their tangent measures does not aid in their analysis.

Before we construct an example of a measure with a large set of tangent
measures observe that the definition of tangent measures implies that for

p € M and z € R" the following two simple lemmas hold:

Lemma 1.6.1 If N C Tan(y, z) then U, ;507 No,s C Tan(g, z) where
rNos = {rvos:v €N}

Lemma 1.6.2 If N C Tan(y,z) and N is dense in M then Tan(y,z) =

“We can now construct our example.

Theorem 1.6.3 There exists a non-zero measure p € M such that for

p-a.e.x, Tan(y,z) = M\ {0}.

Proof: First let us define for z € R" the Dirac measure at z as follows: For

EcCR"

1 ifzeE,
5.(E) := nE

0 otherwise.
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We have that

" m~1
S = {a050+ S @b, ime{2,3,...}, s € QF, z; € Q" [|z:]| £ 1 for

=1

m—1
1€{0,...,m—1} and Zaizlandifiaéjthenxﬁéxj}

=0 .
is a countable set and if v € § then it is a probability measure with support

in B(0,1). Moreover
U PSoq

pg€Qt
is a countable set which is dense in M. Thus by Lemmas 1.6.1 and 1.6.2 it

suffices to construct a measure g such that Tan(g,z) D S for p-a.e. z.
Let (pk)32; be a sequence of elements of S such that every element of S
occurs infinitely many times in this sequence. Thus each uy is of the form
mk—l
pr = o(k,0)60 + > a(k,i)8sk,
=1
where the a(k,1),z(k, 1) fulfill the appropriate conditions of S (in particular
z(k,0) = 0). For each yy define
or=__min {|lz(k,?)—z(k,j)||: 1 #£}.

0<i,j<my -1

From this define an increasing sequence of real numbers (1) by setting r; = 8
and choosing 71y > 8+2ri/oy.

Let ¥ :=[132,{0,...,m — 1} and let P be the probability measure on
¥ obtained by setting for y > 1

J
P(nlj) = H Qe
k=1
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where n|; 1= (n1,...,m;) X [132;4110, ..., mx — 1}. Define 7 : & — B(0,1) by
() =D (re) " z(k, k)
k=1
Notice that 7 is a well defined 1 — 1 map. Set p := 74P, that is, for £ C R"
define

u(E) =P [r7\(E)|.

I claim that g is our required measure. The Borel regularity of px follows
from the continuity of the mapping 7= with respect to the product topology

on X.

Lemma 1.6.4 For a given v € S, let (v;)2, be a strictly increasing sequence

such that u,, = v for all :. Let
Vi={neX:nu=01io0.}.
Then P(V,) =1 and so pu[r(V,)] = 1.
Proof: We have that for all ¢
Plnug = 0) = a(v(6),0) = o(v(1),0) > 0

therefore Y- P(n,;) = 0) = oo and so, by the Borel-Cantelli lemma and
independence, the lemma follows. n

Let V =(\,es V. then, as S is countable, P(V) =1 and so p[x(V)] = 1.
For z € n(X) define z; := z(4, [v~*(z)];) and so z = "2, z;/r;. Let T € n(V)
and let 7 be the associated element of V. Fix v € § and define (v;){2, as in
the lemma (so p,;) = v for all 7). Then, as 7 € V, there is an infinite set

N c U2,{v(?)} such that for all k € N, Tx = 0 and px = v.
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We wish to show that v € Tan(u,Z). So we need to find sequences ¢; > 0
and s; \, 0 such that c;uz,, — v as j — oco.

Let s; = 1/ry(j) where k(j) is the j%* element of N and so s; \, 0.

Define

c;i=[p{zen®): z; =7 fori=1,...,k(5) = 1}]7".
From Chapter 1 we know that ¢y — ¢if and only ifforall R > 1, Fr(éx, 4) —
0. So fix R > 1 and choose g : R® — [0, c0) such that Spt (¢) € B(0, R) and
lip (¢9) < 1. We need to verify that
I/g d(cjpz,s;) — /gdv
Choose J € N such that 2I8*) > R,
For j > J we have (letting k := k(j))

/R“ gd(cipzs;) = ¢ ./R" 9(rij)(z — T)) dp(z)

- ch(E)g(rkfjxifTi) du().

=1 T3

— 0.

Let us consider rx >°2; =% in more detail. There are two possible cases:
T

Casel:z;,=T;fore=1,...,k—1.

Then since
o0 — [ole) —
T; — &4 _ T, — T;
T'kz ) =$k—l’k+7"k2 _
i=1 i i=k4+1 T3
and as
fo'e) f—
T; — T; 2 _
- Z % . 1 S _’?8 k
i=k+1 i
we have (as Ty = 0)
o0 -_—
T; — T 2
T — Tk Z : : S —8 k .
=1 i 7
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Case 2 : Thereexistsu € {1,...,k—1} such that z; =F; for: = 1,.. .,

but z, # Ty.
Thus
iw,‘—fizxu—fu_{_ i T; — T
i=1 Ti Ty i=u+1 Ti
and both
Xz, —T; o z ol
Z ! < =287F and |=% Tu > =
i=ut1 i Try Tu Ty
therefore
T; — T; re 27
r Ou—
k; T; = r, “28
27 4
> —8° > R.
28

Thus in Case 2, g[ri(z — T)] = 0 and so

¢ [ 9lrslz = Ddu(z) = ¢ [ glrile ~du(z)

u—1

where X = {z € n(¥) : z; = T, for¢ = 1,...,k — 1}. Notice that ¢; =

[w(X))7
As lip (g) < 1, we have, by case 1, that for ¢ € X
2 _
alrele — )] - g(a)] < 287

Thus integrating over X and multiplying by c¢; gives
1
; -7)|d - — d
5 | gy etz = PN du(z) =~ [, o(@)iu(z)] <
but, by independence,
[oo@due) = wX) [ g@dua)
= wX) [ 9(a)dv(a)

2
—g*
7
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and so

Fr (citizs;, v) < %8"‘“)

and the theorem follows. L
In order to reduce unnecessary effort later we make the following obser-

vations concerning the measure p constructed in the proof of this theorem.

Lemma 1.6.5 The measure p which was constructed in the proof of Theo-

rem 1.6.8 has the following properties:
1. p(R™") =1 and Sptu C B(0,1),

2 forallv eS8, R>1and 0,y € (0,1) there are a p € (0,1/R) and
C > 0 such that

p{z: Thereis anr € (p,1/R) and c € (0,C) with Fgr(cpzr,v) < v}
>1-—4.

Proof: The first item, (1), follows immediately from the definition of p.

For (2): Suppose (in the notation of the proof of Theorem 1.6.3) that
k(j) /" oo is such that for all j, ux;) = v. (That such a sequence exists is
clear from the definition of p.) Choose Ny such that

2 2
R< %sk(M) and 78-’°(N1) <.

Now choose N such that if

m-—1

v=aolo+ ) aby

i=1
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(where the a; > 0 for all ¢) then
(1-ao)™ < 8.
Finally let p be chosen so that
0<p< r,:&vl+N2) (< 1/R by the definition of N;.)
Then we find that
,u{7r(n) : 7 € ¥ and for some j € {Ny,..., Ny + No — 1}, mi5) = 0}

21_(1—0[0)N2>1—0

and for any one of these 7(n) it is clear from the calculations in Theorem 1.6.3
that if j € {MNy,...,N1 + Nz — 1} is such that 7, ) = O then on setting
c;:=[P{c€X: o;=nfori€{l,...,k(5) —1}}]"" we find that

¢ < [P{oeT:oy=nforie{l,...,k(N;+ N, —1)—-1}}]7"
Ni1+N3;-1
= H ot =:C, say
1=1

and
P (e < 2g-kG) o
B\ V) =7 i
Hence the Lemma follows. |
Having shown that there exists a measure with a large set of tangent
measures we can now show that, in fact, most measures possess this property.
In order to show this we need the notion of sets of first category: A set A

contained in a topological space X is of first category if it may be written

as a countable union of nowhere dense sets. (A set B in X is nowhere dense
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if for all non-empty open sets U C X there is a non-empty open set V C U
such that BNV =0.) A discussion of these notions may be found in either
Kelley [Kel55] or Oxtoby [Oxt71].

Let NV denote the set of locally finite, Borel measures A on R™ which

possess the following property:

(*) There is a set A C R" of positive A\-measure such that for all z € A

there is a non-zero measure w € M with w ¢ Tan(A, z).

Thus M \ N consists of those measures k € M such that for £ a.e.-z
Tan(x,z) = M\ {0}.
Theorem 1.6.6 N is of first category in M.

Proof: This reduces to showing that we can find a countable union of

nowhere dense sets in M which contains /. This leads us to the following:

Lemma 1.6.7

NclJ U EGR,v)

vES i,REN
where E(i, R,v) is defined to be the set of A € M such that AU(0,R) > 0

and

AU
A{:z: € U(0,R+2): Forr€ (0,R™), ¢> 0, Fr(chzr,v) > R_l} > ———(2%—@
Proof: Suppose A € N then there is a set A C R" of positive A\-measure
such that for all £ € A there is a non-zero measure w ¢ Tan(),z). On

recalling that U, ;eq+ pSo,q is dense in M and that if w € Tan(), z) then

rwo,s € Tan(A, z) for any r,s > 0 we deduce that thereis a v € S and a set
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B C R" of positive A-measure such that for all z € B, v ¢ Tan(), z). Hence
we can find an R > 1 and a set C C B of positive A-measure such that for
alz € C,all0 <r <1/Rand all ¢ >0, Fp(chzr,v) > 1/R. Hence if R is
chosen so large that A(C N U(0, R)) > 0 then we can find an : € N so that

AU(0, R)

Mz € UQ,B+2): Forr € (0,R™), ¢ >0, Fa(chsy,v) > B} > ¥

and so A € E(i, R,v) as required. n

It now only remains to show that:

Lemma 1.6.8 For all :,R € N and v € S, E(3, R,v) is nowhere dense in
M.

Proof: We may suppose that E(7, R, v) is not empty. Suppose that U is an
épen set with U N E(z, R, v) # 0 then we need to find a non-empty open set
V C U such that VN E(%, R,v) = 0. Suppose that A € U N E(z, R,v) and
choose € > 0 such that:

(i) 21-(B+3) > ¢ > 0,
(i1) if dist(w, ) < € then wU(0, R) > 0,
(iii) the open set {w : dist(w,A) <€} CU.

Observe that if dist(w,A) < € then for 0 < m < R+ 3, Fpo(w, A) < 2/™1-1¢.
Since

N
D= {Zﬁj% : BieQt,y; € Q”}
=1

is a countable dense subset of M we can find an w € D, w = Ef;l B;by, say,
such that
dist(w, A) < €/4.
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Notice that (ii) ensures that wU(0,R) > 0. Suppose that T is chosen so
that T > R+ 3 and Sptw C B(0,7). We now wish to perturb w slightly
to form a new measure, w', which is a positive distance from E(i, R,v). By

Lemma 1.6.5 we can find a p € (0,1/R) and C > 0 such that
p{z : Thereis an r € (p, R™!) and c € (0,C) with Fr(cusr,v) < 1/(2R)}
>1— (7).

Recall that Spt 4 C B(0,1) and pu(R"™) = 1. Define for any measure «, any
¢ € R™ and r > 0 a new measure «%" by, for G C R"

7(G) =x({y = Q)/r: y €GY).
Choose s € (0,1/3) such that if ¢ # j then
B(y:,2s) N B(y;,2s) =0

and
€

* < WB0,T)
Now observe that for j € {1,..., N} we have

Spt p¥%* C B(y;,s) C B(0,T +1), -
5By, 5) = 1
and forallm >T +1
F,. (,uy"’s,5yj) <s.
Thus if we define N
o =Y B

i=1
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then we find that form > T +1
Fp(w,w') < swB(0,T)
and so
dist(w,w’) < swB(0,T) < €/4.

Hence the open set

{r: dist(x,w') < €/2}

is a subset of U. Also, as w’ is made up of identically scaled copies of u, we

find that if
W:={ze€U0,R+1+s): Thereis an r € (ps,s/R) and c € (0,C) with

Fr(cwl,,v) < 1/(2R)}

z,r?

then

W(W) > [1- (7)) wU(0,R +1)
> [1- (7)) U0, R+1 - 5).
We shall now find an open ball around ' which is disjoint from E(z, R, v).
Suppose that 0 < ¢ < s is such that

o< i
8RCwB(0,T + 1)

Fixz € W, r € (ps,s/R) and ce (0,C) such that

!
Fgr (cwz,,,

v) < 1/(2R)
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and suppose that y € B(z,0) and dist(k,w') < 2~ F+3(7:)~1w'U(0, R). A

straightforward application of Lemma 1.3.4 verifies that

, 1 — 3(75)"!
— > _ .
JUO,R+1-5)> 1—-2(7i)‘1ﬂU(0’R+1 2s)

Also we find that

A

—'1 / /
Tk (‘%,1, (wy—x’l)rl)

-1 ! !
r Fapr (@, @at )

! /
FR (wz,ﬂ wy,r)

INA

IN

207 'W'B(0, ||z|| + Rr + o)

IN

207 'W'B(0,T +1).
This enables us to deduce that

Fr(ckyr,v) < Fr(ckyrav),)+Fr (), ;)
+Fr (awl,,v)
< C [ Flaenr(6,0) + Fr (@, 05,)] +1/(2R)
< 4Co[sp]W'B(0,T +1) +1/(2R)
< 1/R.

Thus if
K:={yeU,R+1+s+0): Thereis anr € (ps,s/R) and ¢ € (0,C)

with Fg(ckyr,v) < 1/R}

then
K > B(W,0)
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and so use of Lemma 1.3.4 gives that

/
W(K) > B(W,0) > w(W) - Brise()

g

> [1- (7)Y W' UO,R+1—s)—

Friz2(w', k)
ag

and as Fpya(w', k) < o(71)"'WWw'U(0, R+ 1 — s)

> [1-2(70)7] U0, R +1-5)

but, from our earlier estimate, this is
> [1-3(7i)*] kU0, R+ 1 - 2)
> [1—(20)7] kU(0,R) > 0.
Hence k ¢ E(z, R,v) which implies that the open set
U:= {/c : dist(k,w') < min{2_(R+2)aw'U(0,R),6/2}} cVv

is disjoint from E(z, R, v) as required.

Hence the theorem follows immediately from these two Lemmas.
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Chapter 2

A local version of the

Projection Theorem

2.1 Introduction

The Besicovitch-Federer Projection Theorem (Theorem 1.5.1) has helped to
extend the understanding of the structure of sets in R™. It is however a
qualitative result whose hypotheses require global information about the be-
haviour of a set. It has been observed by G. David and S. Semmes in [DS91]
that one of the difficulties in trying to find quantitative characterisations of
rectifiability is the lack of a local version of the Projection Theorem. The

result in this chapter is a first step towards this goal:

Theorem 2.1.1 Suppose u is a non-zero, almost finite, Borel measure on

R"™ such that for p-a.e.x
1. 0 < Dp(1t,2) € Din(pty2) < c0.
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2. Ifv is a tangent measure of u at x then for all V € G(n,m), Py(Sptv)

s convez.
Then p is m-rectifiable.

We shall split the proof of the Theorem into two sections; the first section
contains many of the preliminary Lemmas which are required for proving the

Theorem and the second section contains the actual proof.

2.2 Lemmas

Unless otherwise stated we shall always be working in R™ and M = M(R").
Definefor 0 <a<b<ooand 0<m<n

M™(a,b):={0#v € M: Forall ( €Spty, for all p >0,
o(m)ap™ < vB((,p) < a(m)bo™}
and let
G :={veM: Foral Ve G(nm), Py(Sptv) is convex }.

Finally define
Mg (a,b) := MG N M™(a,b).

First let us observe that:

Lemma 2.2.1 If0 < a < b < oo and if v € MZ(a,b) then for all ( € R
and all p > 0, p~™v¢,, € ME(a,b).

Proof: This is immediate. n
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Lemma 2.2.2 Suppose W is an (H™,m)-rectifiable set in R™. Define

A(n, m):={X : X {1,...,m} = {1,...,n} and if i < j then A\(3) < A(J)}

and let {e1,...,en} be the standard orthonormal basis in R"™ and for z =
iy ziei in R™ and A € A(n, m) define

and

Vi:={P\(z): z € R"}.
Then if
ay = /card (P/\"l(y) N W) dH™ v, (y)

we have that

1/2
[ E (a,\)2} SHm(W)S Z ay.

AEA(n,m) AEA(n,m)
Proof: This is [Fed69, 3.2.27] . n

Using the same notation as the last Lemma we have:

Lemma 2.2.3 Suppose that E is an m-dimensional linear subspace of R"

and there is a 0 € A(n,m) such that
Fo(E) =V,
and for all A # o we have
H™(P\(E)) = 0.
Then E =V,.
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Proof: As E € G(n,m) there is a simple m-vector ¢ representing E. The

m-vector { may be written (uniquely) as

E= Y. bGes

A€A(n,m)
where ey = ex)A. . .Aexm). Since projection onto a fixed coordinate m-plane

is linear we deduce that
Py(€) = éxen.
Thus if A # ¢ we conclude that as H™(P\E) =0
=0
and hence the result follows. n

Lemma 2.2.4 (Covering) Suppose that A C R™ is a bounded set and that
{B(z,r(z)) : = € A} is a collection of non-degenerate balls in R™ such that
sup,e4 7(z) < co. Then we may find a countable (possibly finite) set D C A
and an associated disjoint collection of Borel sets C := {C; : z € D} such

that
1. for allz € D, B(z,r(z)) C C; C B(z,4r(z)),
2. ACLLC,

3. for all 0 < e < [2/(3m)]™*! and for all z € D

H™ [B(OC,, er(z))] < e(m)e ™+ V[r(z)]™.

(The constant c(m) depends only on m.)
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Proof: Sincesup,¢,7(z) < oo we may use [Fed69, 2.8.4] to find a countable
set D C A such that {B(z,r(z)) : ¢ € D} is a disjoint collection and yet
{B(z,4r(z)) : = € D} covers A. Moreover as A is a bounded set and
{B(z,r(z)) : = € D} is a disjoint collection we conclude that for all z € D
the set

{y € D: B(z,4r(z)) C B(y,4r(y))}

is finite. Therefore we may assume that if z and y are distinct elements of
D then both B(z,4r(z)) \ B(y,4r(y)) and B(y,4r(y)) \ B(z,4r(z)) are non-
empty. As A is bounded we can find an enumeration z;,z3,... of D such
that the sequence (r(z)) is decreasing. Define the collection C inductively
as follows: For & > 1,

Cy = B(mk,4r :z:k U C;uU U ‘B(zi,r(xi)) .

1<i<k—1 1>k+1

Clearly the family C := {C) : k > 1} is disjoint and each member of it is a
Borel set. It remains only to verify the other claims.

From the definition of the C we have that Cy C B(zk,4r(zx)) for all k. In
order to verify that Cx D B(zk,7(zx)) observe that as {B(z;,r(z;)): 7 > 1}
is a disjoint family and for all ¢ < &k, C; N B(zk,7(zx)) = @ then

B(zk,r(zk)) N U C; U U B(zi,r(z:))| = 0.

i<k D>k

Hence B(zk,r(zx)) C C and so the first claim holds.

In order to verify the second claim it suffices to show that

UC > | B(zx, 4r(zx)).

k>1
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Suppose that y € Ux>1B(zk,4r(zx)) and let k be such that B(zx,4r(zk)) is
the first ball of which y is a member. Then as for all 7, C; C B(z;,4r(z;))
we know that if 7 < k then y ¢ C;. Thus, from the definition of Cj, we
conclude that either y € Ci or there is a § > k such that y € B(z;,r(z;)).
But B(z;,7(z;)) C C; and so the second claim holds.

For the third claim fix j > 1 and for all ¢ > 1 let r; = r(z;). Observe that
if

D :={z;: ¢ < j and B(z;,4r;) N B(z;,4r;) # 0}

and

Dy :=A{z;: i >j and B(zi,r;) N B(z;,4r;) # 0}

then

dC; C clos |0B(z;,7;) U8B(zj,4r;) U | J 0B(z,4r(z))U | J 9B(z,r(z))| .

z€D, z€D2
Thus in order to estimate H™[B(9Cj,¢r;)] it suffices to investigate the be-
haviour of the right hand side of the above expression. Let D := {B(z,4r(z)) :
z € Dy} and recall that for distinct z and y in Dy, B(z, r(z))NB(y,r(y)) = 0.
Hence (by [Fed69, 2.8.12]) there is a constant a(m) such that D; may be writ-
ten as the union of at most a(m) subfamilies of disjoint balls. Suppose D’ is
such a subfamily then each B € D’ has a radius which is at least r; and also
has a non-empty intersection with B(z;,4r;). Thus we may obtain from D’ a
new family of disjoint sets, D", by replacing each B € D' by B(z, ;) where
is chosen such that B(z,r;) C B(z;,6r;) N B. As the family D' was disjoint it
follows that card (D) = card (D”) and, as the family D" is disjoint, it follows
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that

Thus
card (Dy) < a(m)6™.

In addition, there is a constant b(m) such that for each B € D,
H™ [B(O(B N B(aj, dry)), ;)] < b(m)erT.
Hence combining the above gives us that there is a constant a’(m) with
H™ [B(Upep, 0(B N B(zj,4r;)), er;)] < a'(m)er.

Now let us consider D, := {B(z,r(z)) : z € D2}. If B(z, p) € D, then, since
for all z € D there is no y € D different from z such that B(z,4r(z)) C
B(y,4r(y)), we know that

B(z,4p) \ B(z;,4r;) # 0
and so
dr; + p > |z| > 4(rj — p)-
Thus
B(z, p) C B(zj,4r; + 2p) \ B(z;,4r; — 5p).
Hence if p < €!/(m+Ur; then

B (0B(z, p), er;) C B (), (4 + 3¢/™+D)r;) \ B (=, (4 — 6¢/™+1))r))

and so if D} := {z € Dy : r(z) < /(m+1r.} then

B ( U 9B(z,p), €Tj) CB (33;', 4+ 361/(m+1))7‘j) \B (37:', (4— 661/(m+1))"j> .

z€D]
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Hence

z€D)
_ (1 _ 361/(m+1)/2)m]
which, as € < [2/(3m)]™*1, is
< 3x 4mm2a(m)61/(m+1)r}n

= (m)e/™ T say.

Finally let us estimate the contribution due to balls in D, \ D) — balls in
this set have radius between €!/(™*1r. and r;. Since they are disjoint and
are all contained in B(z;, 6r;) we deduce that

a(m)6™r?

a(m)em/ (m+1)rm

— 6m6—m/(m+1) )

card (D, \ D)) <

Moreover there is a constant ¢”(m) such that each ball in this collection, B,
has
H™ [B(0B, er;)] < ¢'(m)ery.

Thus combining these two inequalities we find that

H™ {B( U BB,erj)
BeD,\D)

Finally putting all these estimates together we deduce that there is a constant

< C,,(m)Gmél/(m-l-l)T';-n.

¢(m) so that
H™ [B(8C;, erj)] < c(m)e!/ (m+pm

as required. n
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Lemma 2.2.5 Suppose 0 < a < b < 00, 0 < e < (m+1)"2/3 and both R
and D > 0. If p € M and y € Spt p N B(0, D) are such that for0 <r <R

#B(y,r) 2 o(m)ar™
and if v € M™(a,b) is such that

Fpir(por /™, v) < a(m)ae™®

then there is a ( € Spt v such that

€ —y/rll <e

Proof: This is a consequence of Lemma 1.3.4 with £ = B(y,me/(m + 1))
and 7 = ¢/(m +1). [

Lemma 2.2.6 If u € M is such that for y-a.e.
0 < Dpn(4,2) < Dm(p,2) < 00

then there is a Borel set B of positive u-measure such that if z; € B for all 1
and z; — = € B and if v; € Tang(u, z;) is a sequence of measures converging

to a measure v then v is in Tang(y, z).

Proof: We may find 0 < a < b < oo and a Borel set F of finite and positive

p-measure which is contained in the support of g such that for all z € E
@ < Dp(p,7) < Dm(py7) < 0.

This implies that for all z € E, Tangs(g, z) is a non-empty, compact set and

moreover, Tang(yu,z) C M(a,b). Recall from Section 1.4 the definition of
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(K,H) and that it is a complete, separable metric space. From Lemma 1.4.5
recall that t: E — K defined by t(z) := Tang(g,z) is Borel-measurable.
Hence we may use Lusin’s Theorem (Theorem 1.3.1) to find a compact sub-
set B contained in F which is of positive py-measure and upon which ¢ is
continuous. Thus if z; — =z in B and if v; € Tang(y,z;) converge to a
measure v then since ¢(z;) — ¢(z) we conclude that v € Tang(p,z) — this

implies the Lemma. n

Lemma 2.2.7 Suppose p € M(R"™), B is a compact set of positive p-

measure and 0 < a < b < oo are such that
1. for all z € B, a < D(t, ) < Din(p,2) < b,

2. if (z;) C B and z; — z € B and v; € Tangs(u, z;) converge to a measure

v then v € Tang(u, ),
3. for all z € B, Tang(p,z) C M%(a,b).
4. for allz € B, if v € Tans(p,z) and ¢ € Sptv then v 1 € Tang(u,z).

Then for all £, v € (0,1) and integer M > 2, there is an R > 1 so that
for all z € B, all v € Tang(u,z), all V € G(n,m) and all distinct points
{¢,..., (M} C Sptv which satisfy

min{[Pv(¢' — )]} 2 ymax{[l¢' - ¢/}

we have that if u € conv{Py(l,...,Py(M} then there is a Y € Sptv N
B(¢*, Rmaxii{||(* = ¢7|[}) with

PyY € B(u Emin{[Pv(¢’ - ).
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Proof: Suppose that the Lemma is false. Then there are £,y € (0,1) and
an integer M > 2 such that for all R > 1 there are an zp € B, vgr €
Tans(y, zr), Vr € G(n,m) and {(},...,(M} C Spt vg with

mind [Py (G — G} 2 7 max{lch — Gl
and yet there is a u € conv {Py,(}%, ..., Pva(¥} with
P7[PvaB(w, € mind[|Pv(Cr— () DINSPt vrNB(Cr, Rmax{|[Ge—Cl}) = 0.
We may suppose, without loss of generality, that
16k — ¢RIl = max{iick — I}

There is a ¢ > 0 such that wr := ey ey € Tans(y,z). Let yk :=
¢k — CR)/IICk — ¢¥|. Then we have that

(i) for all i, y% € Sptwe,
(i4) miniz; {|[Pva(yr — yR)I = 7,
(ii) there is a ur € conv {Py,yk,...,Pvyy¥} such that

P‘—,;[PVRB(UR,&)’)] N Sptwr N B(0, R) = 0.

Upon recalling that for all z € B, Dp(g,2) < b < 0o we may make appro-
priate use of compactness and Lemma 1.3.3 to find a sequence R(k) — oo

such that

(iv) zr) — = € B,
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(v) wrx) = w € Tans(u,z) (this follows from the definition of B),
(m') VR(k) - Ve G(n,m),
(vii) for all 1, yf.%(k) — y' € 6B(0,1),

(viti) urk) — v € V Nconv {Pyy’,...PyyM}.
As a consequence of the lower density estimate on u we find that {y!,...,yM} C
Sptw and since for all k£ and all ¢ # j
1PV Wir) — ?/{a(k))” 27
it follows that for ¢ # j
IPv(y' =)l > 7.
As w € MZ, there is an R > 1 such that
w[B(0, R) N P (V N B(xy, £v/2))] > 0.
However if k is sufficiently large then
B(0, R) NP3 (V N B(xu,£v/2))

1s a subset of

B(0, R(k)) N P72, [Vaw 0 B(urg,£7)]
and so
w[B(0, R) N P7*(V N B(u,£v/2))] < 1i? supwi[B(0, R) N
PRV ABEEy/2)
< limsupwy [B(0, R(k))N
P32 (Ve N B(uag, £7))]

= 0, from the definition of ups).
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But this is impossible and so the Lemma holds. n

Lemma 2.2.8 If 0 < a < b < o0, p is a measure, £ € Sptu, s > 0 and
v € M™(a,b) are such that for some R>1 and 0 <e< 1/m

Frys (z/, #x’s) < ()z(m)aem+3
s

m

then for all z € (z + sSpt v) N B(z, Rs) and all t € [es, s] we have that
a(m)a(l — 3me)t < uB(z,t) < a(m)b(1 + 3me)t.

Proof: This is an application of Lemma 1.3.4 with E = B((z—z)/s,t/s)

and 7 = et/s. n

Lemma 2.2.9 Suppose 0 € E C R" is such that for all V € G(n,m), Py(E)
is a convez set and for almost every V € G(n,m), H™ [Py (E)] = 0 then there

is an (m — 1)-dimensional subspace of R™ which contains E.

Proof: If there were m+1 points, {0, e;,...,en}, such that the linear span,
V,of {0,e1,...,emn} was m-dimensional then H™(Pyconv {0,e1,...,en}) >

0 and moreover for all W € G(n,m) sufficiently close to V' we would have
H™ (Pw(conv {0,e1,...,em})) >0

which is impossible by the hypotheses of the Lemma. Thus we conclude that
for any m points, {e1,...,en} in E the linear span of {0,ey,...,emn} has
dimension strictly less than m. This implies the Lemma. n

" As a consequence of this we have:

Lemma 2.2.10 I[f0 < a < b < oo and v is a purely m-unrectifiable, locally

finite measure on R™ with
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1. for all { € Sptv, a <D, (v,z) < Dn(v,z) < b,
2. for all V € G(n,m), Pv(Sptv) is a convez set.
Then v = 0.
Proof: From Lemma 1.3.2 we know that for all Borel sets £ we have
2™ bH™(Spt v N E) > v(E) > aH™(Sptv N E)

and so we deduce from the unrectifiability of v that if F is m-rectifiable
then v(E) = 0. Thus Sptv is a purely (H™, m)-unrectifiable set. Hence the
Besicovitch-Federer Projection Theorem enables us to deduce that for almost

every V € G(n,m) and all R >0
H™ [Pv(Spt v N B(0, R))] = 0.
Thus for almost every V & G(ﬁ, m)
H™ [Pv(Sptv)] =0

and so we can use Lemma 2.2.9 to deduce that there is an (m—1)-dimensional

subspace, W say, which contains Spt v. But then for any { € Sptv and r > 0
JB(C, )] < 2nH™ [Spty NB(C, 1)
= 2MbH™ [W N Sptv N B((,r)]
=0
which implies that Spt v = §) and so the Lemma follows. [

Lemma 2.2.11 Suppose that 0 < a < x <b< o0, z € R" and p € M are
such that
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1. Tans(p,z) C M?}(a’ b);
2. if v € Tang(p,z) and { € Sptv then v¢1 € Tang(u, ).
3. x Linf{Dp(w,0) : w € Tang(p,z) NG(n,m)} <b.

Then for all v € Tang(y, ) we have that for v-a.e.

Dn(v,¢) 2 x-

Proof: Suppose that the Lemma is false: Then there is a v € Tang(y, z),
a Borel set C' of positive v-measure and a 6 € (0, 1) such that for all { € C

(l) ﬁm(”a C) < X(l - 0),
(ii) if w € Tang(v,() and £ € Sptw then we; € Tang(v, ().

Fix ¢ € C and consider w € Tang(u, () then (ii) enables us to conclude
that for all ¢ € Sptw
Do (w,€) < x(1 - 9).

However for any ¢ € Sptw
we;1 € Tang(v, () = Tang(v¢,1,0) C Tans(p, )

and so

Tang(w,§) C Tans(p,z) (C Mg (a,b)).

Thus (2) and (3) of the hypotheses of the Lemma force us to conclude that w
is purely m-unrectifiable. But then Lemma 2.2.10 implies that w = 0. This

is impossible and so our claim holds. . n
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It is easy to see that conditions (1),(2),(3) and (5) of the following Lemma
are not sufficient to guarantee its conclusion. For example we may consider
the measure H'|5p(0,1)+H" [c where C C B(0,1) is any purely 1-unrectifiable

1-set with positive and finite upper and lower 1-densities.

Lemma 2.2.12 Suppose that V € G(n,m) and v is a measure satisfy the

following:
1. For all W € G(n,m), Pw(Sptv) is a convex set,
2. there is a x > 0 such that for v-a.e.(, Dn(v,¢) > x,
3. there are 0 < a < b < oo such that for v-a.e.(

a < Dp(v,¢) < Dm(r,() < b,

4. foral I CV, v(Py*(I)) = xH™(I),
5. there is an h > 0 and k > 0 so that Sptv C X(0,k,k, V).
Then v is an m-rectifiable measure.

Proof: From the density estimates of (3) we may use Lemma 1.3.2 to deduce

that for all Borel sets £ C R"
xH™(ENSptv) < v(E) <2™6H™(E N Sptv). (2.1)

These density estimates enable us to conclude that a set A is (v, m)-rectifiable
if and only if ANSpt v is an (H™, m)-rectifiable set. Hence we may split Spt v
into an (H™, m)-rectifiable Borel set, R, and a purely (H™, m)-unrectifiable
Borel set, U, such that H™(RNU) = v(RNU) = 0 and H™[( RUU)\Spt v] = 0.
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If H™[PyU] = 0 then, from (4), we conclude that ¥(U) = 0 and hence
equation 2.1 implies that H™(U) = 0 and we are done.

So suppose instead that H™[PyU] > 0. We may suppose (by a suitable
translation and relabeling of & and k) that 0 is a density point of Py (U). Fix
0 < ¢ <1 and recall that Spt v C X(0,4,%,V). We can find an r > 0 such
that for0<s<r

H™(Py(U) N B(0,s)) > (1 —&H™(B(0,s)NV).
So for such an s we find that
v[Py(B(0,s)) N R] < x¢H™(B(0,s)N V)

and so
H™ [Py (B(0,s)) N R] < EH™(B(0,s) N V).
Fix [1 — £Y/™]r < s < r. Since P3'(B(0, s) N X(a, h, k, V) is compact we may
find a § > 0 such that if W € G(n,m) has |Pv — Pw/|| < 6 then
P31 (B(0,s)) N X(0, &, k, V) C PF(B(0, 7)) N X(0, h, k, V).

On observing that (1) and (4) imply that PySpt v = V we deduce that we
can find 0 < §’ < § such that for all W € G(n,m) satisfying ||Pv —Pw|| < ¢’

we have

Pw[Spt » N P (B(0,7))] N B(0,s) D B(0,s) N W.

Hence

H™[Pw(U N Py (B(0,r))] N B(0, s)]
> H™[B(0,s) N W) — H™(Pw(R N PB(0,r))]
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v
Q

(m)s™ — a(m)(Ex/a)r™

> 0.

However, from the Projection Theorem, we know that for almost every W €
G(n,m), H™[PwU] = 0. But this contradicts the above and thus H™(U) = 0
as required. [

The following lemma is a key pia,rt of the proof of the main theorem:
The proof of this theorem (in the next section) is directed towards showing
that if there is a purely m-unrectifiable measure p satisfying the hypotheses
of the theorem then we can construct a tangent measure, v satisfying the
hypotheses of the following lemma. However the construction of v is such
that the following condition must also hold: For all A C V (defined below)
we have

vP7H(A) = xH™(A).

This is in direct contradiction with the conclusion of the lemma.

Lemma 2.2.13 Suppose 0 < a < x < b < o0 and v € M%(a,b) is an

m-rectifiable measure such that
1. for v-a.e.z, Dp(v,z) > X
2. there is a V € G(n,m) with diam (Pi;Spt v) > 0 and V = Py (Sptv).
Then there is a Borel set B C V such that
v(Py'(B)) > xH™(B).

Proof: This follows from Lemma 2.2.3 and Lemma 2.2.2: For suppose we

choose an orthonormal basis of R", {es,..., e}, such that V is the linear

54



subspace spanned by {ei,...,en} and o is its associated map in A(n,m). If

for all A # o we have that
H™[P\(Sptv)] =0

then from Lemma 2.2.3 we conclude that Spt v C V which contradicts the
fact that diam [Pi-Spt v] > 0. Thus there is a A € A(n,m) which is different
from o and with

H™[P(Sptv)] > 0.

Hence we can find a closed ball B C V such that for some positive ¢
H™P\((Py'B) N Spt v)] > &.

By Lemma 2.2.2 we conclude that

1/2

H™(PyH(B) N Sptv) > [(H™(B))* + €]

and so as for v-a.e.z, D,y (v,z) > x we deduce from Lemma 1.3.2 that

1/2

v(PV'(B)) 2 x|[(H"(B))+¢]
> xH™(B)
as required. n

Our final Lemma in this section is a technical result introduced to avoid

unnecessary repetition later.

Lemma 2.2.14 Fiz L (possibly 00),a,b,q > 0 and suppose that S;, ©; and

Z; are sequences of positive real numbers with limsup S; > L, 5;0; — 0 and
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Zi — 0. If V; € G(n,m), v; € MZ(l,u) and Y; € Sptv; NP3 [B(0,1 + Z;)]N
X(0,a + =;,b,V;) are such that

Vi=VeG(n,m),Y.,—-Y andv; » v e MZ(l,u),
for all 4, |[P3.Yi]| 2 ¢ — =
and for all w € B(0,5;) NV,
P! [B(w, ©:5:)] N Sptv; N X(0,a + Z;,b,V;) # 0.

Then (on interpreting B(0,00) as R")

1. Py [Spt v N X(0,a,b,V)] D V N B(0, L),

2. [PyY > q,

3. Y € Sptv N P'B(0,1) N X(0,a,b,V).

Proof: First observe that an immediate consequence of the density esti-
mates on the v; is that if y; € Spty; € MZ(l,u) for all 7 and y; — y then
y € Spt v. Hence we may immediately conclude that Y € Spt v. Moreover it
is clear that ||P3Y|| > ¢. If there was a 6 > 0 such that

B(Y,6) N P3*(B(0,1)) N X(0,a,5,V) =0
then we would find that for all ¢ sufficiently large
B(Y;,0/2) N Py}(B(0,1 + E;)) N X(0,a + =;,5, Vi) = 0

which is impossible and so claim (3) holds.
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In order to verify claim (1) fix § > 0 and (interpreting B(0,00) = R")
suppose that there is a v € int [B(0,L)] N L and an r > 0 such that

P7'[B(v,r)]NSpt v N X(0,a + 6,5, V) = 0.

Let v; € V; be such that v; —» v. We may find a 0 < p < r such that there

are arbitrarily large 7 so that
Py [B(vi, p)] N X(0,a + E;, b, Vi)

is a subset of

P B(v, )] N X(0,a +6,5,V)

and

Py B(vi, )] N Spt v; N X(0,a + Z;,b,V) # 0

which in view of our earlier note enables us to deduce that
Py B(v,m)]NSptv N X(0,a +6,5,V) # 0,
contradicting the choice of v and r. Hence, as Spt v is a closed set
VNB(0,L) C Py[Sptvr N X(0,a + 8,5,V)]
and thus as § was arbitrary
VNB(0,L) C Py[Sptv N X(0,a,b,V)]

as required. n
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2.3 Proof of Theorem

It suffices to prove the Theorem in the case that yx is a locally finite measure.
We shall prove the Theorem by contradiction: Suppose that there is a purely
m-unrectifiable, non-zero, locally finite, Borel measure p which satisfies the
hypotheses of Theorem 2.1.1.

Our first task is to find a set in R™ within which we shall work.

(1) From Section 1.3 we know that for y-a.e. z both

Tans(p, z) # 0

and if v € Tang(g,z) and ( € Sptv then 1,1 € Tang(y,z). From the
hypotheses of Theorem 2.1.1 we know that for y-a.e.x

Tang(u,z) C Mg.

Thus we can find a Borel set B C Spt p of positive and finite y-measure such

that for all x € B
(i) 0 # Tang(y,z) C MZ and
(ii) if v € Tans(y, z) and ¢ € Spt v then vy € Tang(p, ).

By decomposing B into a set of measure zero and a countable number of
(Borel) sets of the form {z € B: p < D,,(¢,2) < Di(p,z) < q} (where p
and q are positive rationals) we may find a Borel set B(® C B of positive

p-measure and 0 < | < u < oo such that for all z € B

(iii) 20 < Dp(p,2) < Dim(p,z) < /2.
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By Lemma 1.3.2, for all Borel sets £ we have

and so if £ is -rectifiable then fi{EfJB™'") = 0 which implies that 'H"*(Er)
A™)) = 0. Thus is purely m)-unrectifiable and of positive and finite
-measure. By the Projection Theorem we may conclude that for almost
every ¥V G G(n,m)
H"™* [PvB<* = 0.

(2) By applying Lemma 2.2.6 we can find a compact subset of of
positive fI measure such that if Xi G for all i and x EB™ and i G
Ta.ns(fi, Xi) are such that they converge to a measure / then Z G Tan”™(", z).
(3) Let Ii := and let » ;= 3/82 and 7 := 1/(100/1) and define
M to be the maximum number of balls of radius 5/4 and with centres in
the boundary of B(0,4) in which may be packed disjointly. Then, by
Lemma 2.2.7, there is an B > 1 so that for all x G B\ all ¥ G Tans (*,x),



2.3.1 Properties of B») dependent upon e

(4) If v is a standardised tangent measure of p at £ € B™M then v is not
the zero measure and so Lemma 2.2.10 implies that v is not purely m-
unrectifiable. Thus for all z € B(*) we conclude that Tans(u,z)NG(n,m) # @

and so we may define
X := inf {/\ : There is a Borel set C ¢ B® of positive y-measure so

that ¥z € C, v € Tans(, z) N G(n,m) with Dpn(v,0) < A}.
Thus
I {m € BM : There is a v € Tang(u, ) N G(n,m) with D, (v,0) < X} =0

and so we may find a compact subset B(® of B() which is of positive u-
measure such that for all € B®), there is an w € Tang(u,z) N G(n,m)
with

X £ Dn(w,0) < x(1+¢)

and if v € Tans(p,z) N G(n,m) then D,(v,0) > x. Observe also that from
Lemma 2.2.11 we have that if z € B® and v € Tans(g,z) then for v-a.e. ¢

f)-m(ua C) 2 X

(5) We can find a Borel subset B®) of B® of positive y-measure and 0 <
r’ < 1 such that for all z € B® and all0 <r < ¢/

(iv) a(m)ir™ < uB(z,r) < a(m)ur™.
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(6) We can find a Borel subset B®) of B(®) of positive u-measure and
0 < r” < ' so that for all z € B® and all 0 < r < 7 there is a

v € Tang(y, z) (C Mg(l,u)) so that

FR+3+5—1 (/;L;;T y V) < a(m)lém(m+3).

(7) Let B®) be a compact subset of B(*) of positive y-measure and recall
that as B) is a subset of B(® we have that for almost every V € G(n,m)
H™[PyB®)] = 0.

(8) By a suitable translation of 4 (and hence the corresponding B(*)) we may
suppose without loss of generality that 0 € B®) and it is a density point of

B®), Thus we can find a 0 < 7 < r” so that for all 0 < r < r"”
#[B(0,7)] > (1 — (€"/4))uB(0, r).
By (4) we can find an wp € Tang(g,0) N G(n,m) such that
X < D (w0, 0) < x(1 + ).

Thus as for almost every V € G(n,m), H™[PyB®)] = 0 and for infinitely

m

many 0 < p<r
Fristet (%’ WO) < a(m)l‘fm(m+3)/2
we can find a vy € G(n,m) with Spt vy = Vg, say, such that
H™ [Py, BO)] =0,

X < Dn(10,0) < x(1+¢)
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and

FR+3+5‘1 (Lug, 1/0) < a(m)lem(m+3)/2'

Thus, in view of the density estimates for y at 0, there is an ro < r’” such

that
#0B(0,ro) = 0 and Fryzyc (#—O,’n‘rga Vo) < a(m)lemm+?
T

0
Hence we have, in summary,

(v) H™[Py, B®)] = 0.

(vi) poB(0,r0) = 0.

(vii) x < Dpn(10,0) < x(1+¢).

(viii) FRrysye (%&Q—, z/o> < a(m)lem(m+3),

(iz) If we define
| F := B® nB(0,ro)

then F is compact and (by (7)) for 0 <r < rg
#[F N B0, 7)) > (1 - (€"/4))pB(0,r).
Henceforth let P denote orthogonal projection onto V5. Let

ry = (1 — a)ro, L :=rg [uB(0,70),
Ay := a(m)2715 ™ m ™ LK and Az := a(m)3m273m L™,
For u € V; and s > 0 define
S(u,s) :=={y € R : ||[P(y) — ul| < s} N B(0,mo)
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and

S°(u,s) :={y € R": ||P(y) — u|| < s} N B(0, o).

We now define a real-valued function on points of V5 N B(0,71):
For u € V5 N B(0,7;) define s(u) to be the least (non-negative) number
such that if

s(u) < s <ro— [Juf
then
[I] for all v € Vo N B(u, (1 —6)s),
FnS(v,és)# 0
and
[II] there is a W € G(n,m) and t € R™ such that
FNS(u,s) CB(t+W,és)
and if 2,y € W then

K|[Pz —Py| > [lz — y]|.

Let
A:={ueVonB(0,r): s(u) =0},

s(u

Ay = {u € [VoNB(0,r1)]\ A : uS°(u, s(u)) > Ay [—]m pB(O,ro)} :

To

= u € 6 BOAI\ A+ S(s0)\ P2 A <) 0,
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and let
As = {u € [y B(0,r1)] \ [AU A1 U 4y] : [I] holds for s(u) at u and
§s(u) < diam [PH[F N S(u, s(u))]] < 2K (1 + 8)s(u)} .

As F is compact, if u € A then P™*(u) N F # § and hence (from (8v))
we conclude that H™A = 0.

The function s(u) provides us with a tool to investigate the properties of
the set F'. Our next task is to establish some of the elementary properties of
s(u) and the sets associated with it. We shall say that a positive real number
s is good for a point u € Vo N B(0,r;) if it satisfies both [I] and [II]. It is bad

if it doesn’t!

Our first task is to ensure that s(u) is well defined:
Lemma 2.3.1 For allu € Vo N B(0,71), s(u) < erg/é.

Proof: Fixu € Vu,NB(0,71) and erg/é6 < s < ro—||u||. Asro—||u|| = ary and
€/6 < « this is a non-trivial interval. As vo € MZ(x,x(1+€))NG(n,m) has
Sptvo = Vo and Frys(or, /o, v0) < a(m)le™*3 then for v € Vo N B(y, (1 —
8)s) we have by Lemma 2.2.8, since s € [erg, o], that

B(v,6s) > a(m)x(1 — 3me™)(6s)™

v

a(m)x(1 — 3me™)(ero)™
o] i 9 emuB(o, o)
(€™ /4)uB(0,70)

u[B(0,r0) \ F].

v v

\%

Thus S(v,6s) N F # 0 and so [I] is satisfied. I claim that [II] holds with
W =V, and ¢t = 0. For suppose there is an z € [F'\ B(Vo, §s)] N S(u, s) and
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consider B(z, és) (which is disjoint from V;). Let { = z/ro and p = és/ro.
By the definition of €™ we know that és € [¢™rq,7o]. Moreover as ||z]| < ro
and 8s < érg then B({,p) C B(0,R+ 3 + ¢') and so by Lemma 1.3.4 (with
E =B((,p(1 —€")) and 7 = €™p)

1 Ho,ro 1 m
o Frpsecs (B2000) 2 B — ) - uBGop)

—17;L-pB(:v, (1 —€e™)és)
To

> a(m)l(1 —2me™)(és/ro)™
> a(m)l(l— 27'nem)6m2
and so
Friate (%’ Vo) > a(m)le™ (1 — 2me™)p
0
> a(m)le™™D(1 — 2me™)
> a(m)le™™+3) _ a contradiction.
Hence [II] holds. =

Lemma 2.3.2 For all u € Vo N B(0,r1), if s(u) > 0 then it is good for u.

Proof: This is just an exercise in using the compactness of F. If s €
(s(u), 2s(u)) it is good for u. Hence for all v in V5 N B(wy, (1 — §)s(u)),
F N S(v,és) is a compact non-empty set . Intersecting these compact sets
over s gives that F'N S(v,és(w)) is not empty and so [I] holds.

[11] follows in a similar manner using the compactness of G(n,m). u
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Lemma 2.3.3 For all u € Vo N B(0,71) if s(u) > 0 then there is an z, €
S(u,0) such that

FNS(u,ro— |ul]) € X(zu, s(u)/2,2K (1 + 26)s(u), Vo).
Also
diam (P[F NS(u,5(u))]) < 2K (1 + 6)s(u).

Proof: The second part of the lemma follows from noticing that, as s(u) is
good for u (Lemma 2.3.2), there is an z, € S(u,0) and W € G(n,m) such
that

FNS(u,s(u)) CB(zy + W, és(u))

and if z,y € W then
K[[P(z = y)[ = [lz —yll

Thus if ¢ € F'N S(u, s(u)) then
IPH(¢ = zu)ll < K (1 + 8)s(u).

For the main statement suppose that z, is as defined above and fix { €
FNS(u,ro — ||ul]). If ¢ € FNS(u,s(u)) then by the above it follows that it
is in X(zy, s(u)/2,2K (1 4 26), Vo) as required. So suppose ¢ € F N [S(u,ro—
llu]]) \ S(x, s(u))]. As s(u) is good for u we can find X € F'NS(u,és(u)) and

|z — X|| < Kés(u) + Kés(u).

Now consider ||P({) —u|| which is good for u and so we can find W € G(n,m)
and y,; € S(u,0) such that

F 0 S(u, [[P(¢) —ull) € B(ye + W, 8|[P(C) — ull)
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and for all z,y e W
K[[P(z —y)| = [z -y

In particular both X and { are in B(y¢ + W, 6||P({) — u||). Hence

X =<l < K[IP(X = yo)ll + [IP(C — yo)ll] + 2K6[|P(¢) — vl
< K8s(u)+ K(1+28)|P(C) —u|

and so as § <1/4

lew = ¢l < K(6+26)s(u) + K(1426)[[P(C — zu)||
< K(1426)s(u)/2 4+ K(1426)||P(¢ — zu)||

as required.
Lemma 2.3.4 H™(Az) < 4™ ra(m)em™A; rD.
Proof: Let D, C A; be a countable set such that
{B(u,s(u)) : ue€ Dy}
is disjoint and
{B(u,4s(u)) : u € D3}

covers Ay [Fed69, 2.8.4]. Then as D; C A,

uBO )\ F] = 3 ulS(u,s(w))\ F]

u€Dy
> Aap[B(0,ro)]rg™ ;[S(U)]m-
Hence
m -1 m/“"[B(Oﬂ T'O) \ F]
ugz[s(u)] < Ayrg 4B(0, o)

< (€"/4)AT Mg
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Thus

H™(A2) < a(m) %:[43(1;)]’" < a(m)d™ e Ay

as required. ]

Lemma 2.3.5
%ﬂB(O,T‘]) CAUA1UA2UA3

Proof: Suppose that u € [VoNB(0,7)]\ [AU A1 U A;] and so s(u) > 0.
By the definition of s(u) it is possible to find an s € ((3/4)s(u), s(u))
such that it is bad for u— that is either [I] or [II] fails for s at u. Thus there

are two cases to consider for s:
1. Either [I] fails for s at u or
2. [1] holds for s at u but [II] fails to hold.

Case 1: []] fails.
In this situation thereis a v € VoNB(u, (1—6)s) such that S(v, §s)NF = 0.
In this case let t = (4/3)s and so s(u) <t < arg and thus ¢ is good for u.

Consider
C := {B(w,56t/4) : z € Vp and ||z — v|| = 46t}

and let B = {B(v;,56t/4)}¥, be a maximal disjoint subfamily of C (recall
that M was defined in (3) of Section 2.3). Since § < 1/17 then for all
i=1,...M

llu— o]l + v — vl < (1= 8)s +46t < (1—6)t
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and since t is good for u we conclude that for all 7
S(v;, 68) N F # 0.
So for ¢ =1,..., M choose z; € S(v;,6t) N F. Then if i # 5
IP(z: — z;)|| = 6t/2

and

|P(z; — z;)|| < 106t.
Since t is good for u there is a Y € S(u,0) and a W € G(n,m) such that
FNS(u,t) C B(Y + W, é6t)

and for z,y e W
K|[P(z —y)ll 2 llz -yl

Hence for all z and j
|zi —z;|| < 2Két+ K||P(zi — ;)|

< 2K[6+ 56t =: p, say.

As p < rg < r” then by (6) of Section 2.3.1 there is a v € ME(I,u) so that
Fryatet (Hayof P, v) < a(m)lem T+
and so, by Lemma 2.2.5, we can find for each 7 a z; € [z; + pSpt v] with
llzi — 2| < pe™.
As pe™ < 6t/8 we conclude that

P(z) € B(vi, 96t/8)
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and so if ¢ # 5 then
IP(zi = 25)I| = 6t/4

and also
IP(z: — 2;)|| < 106t + 2e¢™p < (41/4)6t.
In addition
I = 251 < o1 +2¢m).
Thus

rgg;l{llP(zi —z)ll} = (6t/4)/[p(1 + 2€™)] rr;gx{lla -z}
§ (8K [6 + 56][1 + 2¢™]) ™" n}%x{ﬂzi — 2]}

2 ymax{|lz - 2]}
I claim that v is in the convex hull of {Pzy,...,Pzy}: For if it isn’t then
there is a unit vector e € V; such that if
H :={yeV:(y,e) <0}
then
v+ H™ D conv{Pz,...,Pzp}.
But consider the point v + 4éte: If 2 € v + H™ then z = v + ( for some
(e H . Thus,as ( € H~,
|z = (v +4te)|| = ||{ —46te|| > [(¢ — 48te, €}
> |46t —(C,e)| > 46t

Hence B(v +46te,56t/4)NB(v+ H~,56t/2) = 0 and so B(v+46te, 56t/4) € C

which contradicts the maximality of B and thus the claim holds.
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Hence p~!(v— 1) € conv{p ™ (P2z; — z1),...,p (P2pr — z1)} and for all
i, p~1(2; — z1) € Sptv. Thus, from (3) of Section 2.3, we can find a

z € (Sptv)NB(p™ ' (21—21), Rp~ ! max ||z;—z;||)

C Sptv NB(p~ (21 — 1), R(1 + 2€™))

such that
Pz € B(p™' (v — Pz1),ép™" min ||z — z]).
i#]

Hence on setting ¢ = z, + pz we conclude that

¢ € B(z1, Bp(1 +2¢™)) N [z1 + pSpt v]

and
P¢ € B(v,£(41/4)6t).
Thus as
(41/4)€6t < és/2
and

mlax{||m,||} + pe™ + Rp(1 +2€™) + 6s/2 < g

we have that

B(¢,6s/2) C S(v,68s) (C [S(u,s) \ F]).
Hence
pS(u, )\ F] = uB((,8s/2)
and as §s/2 € [e™p, p|, we can apply Lemma 2.2.8 to conclude that
> a(m)l(1 —3me™)(6s/2)™
= a(m)27™(1 — 3me™)Lém(s/ro)™ 1uB(0, 7o)
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and so as s(u) > s > 3s(u)/4

p[S(u, s(u) \ Fl = u[S(u,s)\ F]
> a(m)2™™(1 - Bmem)Lém(s/ro)muB(g, To)
> a(m)3™27™L(1 — 3me™)6™ [ﬂ] pB(0, o).

To

But this implies that u € A, which is impossible and so Case (1) cannot

occur.
Case 2:[I] holds but [I] fails.

Hence either
(i) there is a W € G(n,m) and z, € S(u,0) such that
FNS(u,s) C Bz + W, és)
and there are z,y € W with
K|Pz - Py|| < [lz - y]|
Or
(11) for all W € G(n,m) and all z, € S(u,0)

[F N S(u,s)]\ B(zy + W, 85) # 0.

So suppose we have case (1) for some W and z,. Then [Fed69, 1.7.3] enables
us to find an orthonormal basis for W, {e1,...,en}, such that if  # j then

(Pei, P6j> =0.
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First let us observe that {Pe;,...,Pen,} is an orthogonal basis for V;,: For if it
wasn’t then we could find a unit vector f € V; such that for all z, (Pe;, f) = 0.
But then consider the vector v = u + (1 — 8)sf. If ( € (zo + W) N S(u, s)
then

IP¢—vl* = [lu+P(¢—2u)—u—(1-8)sf|"
= [IP(¢ = z)lI* +[(1 - 6)s]?
> [(1-6)s]”

but F N S(u,s) C B(z, + W, 6s) and so if z € F N S(u,s) then
|Pz—v|]| > (1—6—6)s> s

which contradicts [I]. Hence {Pe;,...,Pen} is a basis of V5 and so, in par-
ticular, ||Pe;|| # 0 for all <.

Now observe that there is an z such that ||Pe;|| < 1/K: Forif |Pe;|| > 1/K
for all 7 and z,y € W are such that

K|P(z—y)|l < llz -yl
then

IPz =) = (P(z—y),P(—y))
= Y (z —y,e)’|Peil?

> K7*Y (e ~y,e) = (|z - y|/K)’

which contradicts the definition of z and y. So we may suppose without loss

of generality that |Pe|| < 1/K.
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Consider open cuboids in Vp with sides parallel to Pe,...,Pe,, and with
sidelength equal to 4s/(5Km) in the Pe; direction and s/m in all the others.
Let C be a maximal disjoint family of such cuboids contained in PB(u, (5m —

1)s/(5m)). Then

om(5m — 1)K (5m —1
v

Suppose that C' € C and c is the centre of C then there is an z¢ € FNS(u, s)

m—1
card (C) > [ ) ‘ > 2™ 3 Km ™% (5m — 1)™51 ™,

such that
|IPzc — || < és

and so, as § < 2/(5m), Pz¢c € C. Consider the family of balls in R" given
by
B = {B(z¢,(5m)7's) : C € C}.

I claim that this is a disjoint family. In order to verify this we need to show
that if z,2’ are distinct centres of balls in B then ||z — 2’| > 2s/(5m). So
suppose that z and z’ are two such distinct centres and let ¢ and ¢’ be the
centres of the corresponding cuboids in C. Notice that ¢ and ¢’ are also
distinct.

Since F'NS(u,s) C B(zy + W, 6s) we can find X and X’ in z, + W such
that

o =2l 2 |1X = X' > |}z — '] — 265

and

max{[[P(X —z)||, |IP(X" - 2')[[} < és.

Hence

max{||PX — ¢, |PX' - ||} < (6 + 8)s < 2s/(5Km)
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and thus PX and PX’ lie in different cuboids.

As c and ¢’ are the centres of distinct cuboids in C there is an 7 such that
l(c — ¢, Pei/||Pei|)| > 0.
If this 2 > 2 then
l{c— ¢, Pei/||Pesfl)| > s/m

and hence

|P(z — z")|| > (m™! — 26)s.

Thus
|z — 2| > (m™" = 268)s > 2s/(5m)

and we are done.
If : =1 then
[{c — ¢, Pei/||Pe||}| = 4s/(5Km)

and so

[(P(X — X'), Per/||[Peal)] > [4(3Km)™" —2(6 + 6)]s

but

[(P(X = X'),Pes/|[Pes|})] = [(X — X', e1)][|Pei]
< (X=X e)|/K

and thus

1X = X' > |(X - X',er)| > K[4(5Km)™ —2(5+6)]s
> 2s/(5m)
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hence

|z — 2'|| > 2s/(5m)

as required. Thus B is a disjoint collection of balls with centres in F' and as

forall C €C
lzcll + s/(5m) < ro

we can conclude that all balls in B are contained in S(u, s). Thus

uS(u,s) = BZEBu(B)
2 o(m)l(s/(5m))"card (B)
> a(m)l(5m) ™2™ P Km ™/ (5m — 1)™5 ™
> a(m)(2/5)""'m ™2 LK (s/r0)" uB(0, o)

and so
4S°(u, s(w)) > 27 a(m)5 ™ m ™2 LK lsg_u)] pB(0,70)
0

which implies that u € A; which is impossible. Hence (77) must hold. So for
3s(u)/4 < s < s(u) we have that [I] holds for s at u and for all W € G(n,m)
and all z, € S(u,0)

[F N S(u,s)]\ B(z, + W,8s) # 0.
Hence, in particular, for all z, € S(u, 0)
[F' N S(u, )]\ B(zu + Vo, és) # 0
and so there are an z, and y; in S(u,s) N F such that
[Pz, — )] > bs.
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Thus, as F'N S(u, s(w)) is compact and contains F N S(u, s) for s < s(u), we
conclude that there exist z and y in F' N S(u, s(u)) with

[P+ (z — )] = &s.

Hence, as s(u) is good for v (Lemma 2.3.2), we may use Lemma 2.3.3 to

deduce that
diam [P (F NS(u,5(u)))] < 2K(1 + 8)s(u)
and so u € Az as required. =

Lemma 2.3.6 Let
1

n:= (14 3me™) [1 - 4m'lemA;1]_ -1

and suppose that
1< T < /Bm)-1,

Then there is a u € Az and a Borel set J contained in Vo NB(0,79) such that
Vo N B(u,Ts(u)) C J C Vo N B(u,4T's(u)),

plP7H(T)NB(0,r0)] < x(1+ m)H™(J)

and if 0 < 6 < [2/(3m)]™*! then
H™ [B(0v, J, 0s(uw)) N Vo] < c(m)@l/(m"'l)[Ts(u)]m

(where ¢(m) is the constant from Lemma 2.2.4 .)
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Proof: Consider
C := {PB(u,s(u)): u € A;} U{PB(v,Ts(u)): u € As}
which is a cover of A;jUAs. As4Ts(u) < arg it follows that for all u € A;UA;
PB(u,4T's(u)) C Vo N B(0, o).

By Lemma 2.2.4 we can find a disjoint subcollection, J of Borel sets con-

tained in V4, which may be written as a disjoint union, J; U J3, such that
1. Ay CUJ: and Az C UJ3,
2. for all J € J; there is a u € A; such that
B(u,s(u))NVo C J C B(u,4s(u)) NV
and for all J € J5 there is a u € A3 such that

B(u,Ts(u)) N Vo C J C B(u,4Ts(u)) NV,

3. forall J € J; if 0 < 0 < [2/(3m)]™*! and if u is as determined in (2)
then
H™ [B(dy, J, 05(u)) N Vo] < c(m)6 (™1 [s(w)]™.

and for all J € J3 if 0 < 0 < [2/(3m)]™*! and if u is as determined in
(2) then

H™ [B(dy, J, 0T s(w)) N Vo] < ¢(m)oY ™D [Ts(u)]™
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Thus H™(UJ) > H™(A1 U A;). If for all J € J, u[P7'(J) N B(0,r)] >
x(1+ n)H™J then as

>_ u[P7H(J) N B(0,mo)]

IN

HB(O,TO)
< a(m)x(l + 3me™)ry
we find that
a(m)x(1 +3me™)rg > > x(1+n)H™J
2 x(L+n7)H™(A1U As)
which, by our estimate for the size of A; (Lemma 2.3.4), is
> a(m)x(1+n)rg[l — 4™ emAY]

= a(m)x(1+ 3me™)ry — a contradiction.
Hence there is a J € J such that
p[P7H(J) N B(0,70)] < x(1 + n)H™(J).
If J € J1 and u is the associated point of A; then we find that
a(m)x(1 +n)4s(u)]™ = x(L+nH™(J) = wu[P7(J)NB(0,ro)]
pS°(u, s(w))

vV

since u € A

v

Aa[s(u)/ro]™ uB(0,70)

> a(m)x(l —3me™)Azs(u)™
but then
(14 n7)4™ > (1 —=3me™)A4
which is impossible and so J € J3 which implies the Lemma. n
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Lemma 2.3.7 Suppose that 1 < T < ¢2/Cm)=1 Then there are a u € As,
X € FNS(u,6s(u)), v € Tang(y, X) (C MZ(l,u)) and a closed set I C Vg
such that:

1. FR+3+C"1 (%7%1’ 1/) < a(m)lem(m-f-S),
2. there is a

Y €Sptv NP7H[B(0,1 46+ ™) NX(0,2 + €™, 2K (1 +26), Vo)

such that
IPY| > 6/2 — €™,

3. for all w € Vo N B(0,57)

P~ [B(w, (5T+6)(1—6)""6+€™)]NSpt vNX (0, 2+€™, 2K (1426), Vo) # 0,

4. B(0,T(1 - (2¢™)™+1)) NV, I C B(0,5T) N Vo,

5. v[P~H(I)NB(0, 30K e/ CmN=1)] < x(1+4n)(H™(I)+2¢(m)e™e?/Cm)-1)

a(m)le™,
6. for all 0 < § < [3m]~(m+1)

H™ [B(3v, [, 0T) N V] < (m)[(2¢™)™* + o]/ (mT™,

Proof: Fix1 < T < e?Gm)-1 From Lemma 2.3.6 we can find a u € A;
and a Borel set J C Vp such that

PB(u,Ts(u)) C J C PB(u,4T's(u)),
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p[P7H(J) N B(0,70)] < x(1+7)H™(J)

and if 0 < 6 < [2/(3m)]™*! then
H™ [B(Ov, J, 8T s(w)) N Vo] < e(m)g/ m+i™,
Since u € A3 we can find a y,y’ € F N S(u, s(u)) such that
P+ (y = y)l = bs(w).

Thus, as s(u) is good for u (Lemma 2.3.2), F N S(u,d8s(u)) # @ and so we
can find an X € F'N S(u,ds(u)) such that

max{|[P*(y — X)|, [P+ (y' — X)|I} > 8s(u)/2-
We may assume without loss of generality that
[P (y = X)|| = s(u)/2

and, as (57 + 6)(1 — ) *s(u) < arg < ro — ||u||, we may use Lemma 2.3.3 to
conclude that there is a t € S(u,0) such that

F NP~ [B(u, (5T + 6)(1 — 6) " s(u))] C X(t, s(u)/2,2K (1 + 26), Vo).
Hence

F 0P~ [B(u, (5T + 8)(1 — 6)™s(w))] C X(X,2s(u), 2K (1 +26), V5).
As s(u) < ro we may use (6) of Section 2.3.1 to find a

v € Tang(p, X) (C MZ(l,u))
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such that
» HX,s(u) m(m+3)
Friste (_——s(u)m , 1/) < a(m)le
which is (1) of the Lemma.
If z€ FNP ' [B(u, (5T + 6)(1 — 6)~'s(u))] then
|z = X|| < ((5T + 6)(1 — 8)s(u) + 2€ro6/6 <3+ €71

and so we may use Lemma 2.2.5 to conclude that there is a { € Sptv such

that
1€ = (2 = X)/s(u)l| < €™
In particular, as y € P7'B(u, s(u)) N FNX(X,2s(u), 2K (1+26), Vo), there is
aY € Spty NP 1[B(0,1+6+€™)]NX(0,2+ €™, 2K(1 + 26), Vo) such that
Y = (y = X)/s(u)]| < €™
Hence by our estimate for y and as 0 € Spt v (since v € Tang(u, )) we have

diam [P+ (Sptv N P(B(0,1 46 +€™)) N X(0,2 + €™, 2K (1 + 26), V)

m

> ——€

N O

which verifies (2).

Suppose w € B(0,57)NV;, and let v = s(u)w+PX and so v € B(u, (57 +
8)s(u)) N Vo. As (5T + 6)(1 — 6)s(u) is good for u it follows (by [I]) that
there is a

z € FNP'B(v, (5T + 6)(1 — 6)tés(u)).
Hence we may use Lemma 2.2.5 again to conclude that there is a ( € Sptv
with
1€ = (z = X)/s(u)]] < €™
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But ||v — Pz|| < (5T + 6)(1 — é)~'és(u) and so
lw—P¢|| < (BT +6)(1 — 6)7'6 + €™
On observing that z € X(X,2s(u),2K (1 + 26), V) we conclude that
¢ €X(0,2+€™,2K(1+26),V)

and so (3) holds.
Let

I:=Clos{(z — PX)/s(u): € J\ B(dyJ, (2¢™)™*'Ts(u)) }

and so

B(I,e™™VT) c {(z — PX)/s(u): ¢ € J}
and, for § > 0
B(0v,1,0T) C B(dy, {(x —PX)/s(u): z € J}, (8 + (26™)™)T).
Moreover from the definition of J we have that
H™(I) 2 [s()] " H™(J) = 2c(m)e"T™
and, since €™ < [3m]~(™*1) for 0 < 8 < [3m]~(™+1) we have
]1/(m+1)

H™[B(3v, I,0T) N Vo] < ¢(m) [(2¢™)™+ + 6 ™

which verifies (6).
Since

B(u,Ts(u))NVo C J C B(w,4T's(u)) N Vo
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we conclude that
B(0,7(1 - (2e™)™" —8))nVo Cc I C B(0,5T)NV,

which is (4).

It only remains to verify (5). Since
max{30K e¥/Cm)-1 L m(m+)T 57y < R4 3 471

we may use Lemma 1.3.4 (with E = P~!(I) N B(0,30K e*/Gm)-1) and 7 =
e™m+)T) to conclude that

v [P7H(I) N B(0, 30K /-1
m [P"I(J) NB(X, s(u)(30K/Gm)-1 4 em(m“)T))] a(m)lem(m+3)
) [sw) T T
which as || X|| + s(u)(30K ?/Gm)-1 L em(mt)T) < py

() ]em(mT3)
< o)) [P () N B0, )] + XTHE

which by the definition of J is
< x(L+)s(I™"H™(J) + a(m)le™ /T
< x(1+n) ['Hm(f) + QC(m)eme(Z/(Sm))_lm] + a(m)le™

verifying (5) as required. n

2.3.2 Properties of BY independent of ¢

Lemma 2.3.8 For all T > 1 there is an ¢ € B®, v € Tang(y,z) and
V € G(n,m) such that

1. thereis a Y € SptvnX(0,2,2K (1426), V)NP3'(B(0,1)) with ||P3Y|| >
§/2,
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2. VN B(0,5T) C Py[Spt v N X(0,2,2K(1 + 26),V)],
3. for all Borel sets C contained in V Nint (B(0,7))

v[Py'(C)] = xH™(C),
4. Sptv NP3 int (B(0,T))] C X(0,2,2K(1 + 26),V).

Proof: Fix T > 1 and suppose we have a sequence of positive real numbers
Z; — 0 and sequences z; € B®), v; € Tang(p, ;) (C MZ(l,u)) and V; €
G(n,m) such that

(i) the points z; — = € B®, 1; — v and so, by the definition of B(!) (D B(2)),
veE Tans(u,:c) - Mg‘l(lau)’

ii) the m-planes V; — V and if P; := Py, P+ .= P then we can find
fi % Vi
aY; € Spty; NP7UB(0,1 + =) N X(0,2 + Z;,2K (1 + 26),V) with
|P+Yi|| >6/2—=;and ¥; = Y,

(iii) there is a compact set I; C V; such that I; — I in the Hausdorff metric
(denoted by dp) and

B(0,T(1-Z))NV CcI;CB(0,4T+=,)NnV,

y[P7H (L) N B(0, Xi7Y)) < xH™(L) + =;

and if 0 < § < [3m]-(m+1) then
H™[B(0:;,0T)NVi] < ¢(m) [Z; + 0]1/(m+1) ™

(where 0; := 0Oy;.)



(iv) For all v € V;NB(0,5T") thereis a ¢ € Spt »;NX(0,2+Z;,2K(1+2w), V;)
such that '
[P:(¢) —oll < =T

Then I claim that v,z,Y and V would satisfy the Lemma. (We shall verify
the existence of such sequences =;, v;, z;, I; and V; later.)

From Lemma 2.2.14 (with L = T) we conclude that v and Y satisfy (1)
and (2).

It is clear that I (defined in (iii) above) satisfies

B(0,T)NV C I C B(0,5T)NV.
Suppose that 0 < § < [3m]~(™+1) and j is chosen so that for all ¢ > j
IC B(L;,6T) and I; C B(I, 6T).
Thus I C V NB(Z;,6T) and, clearly,
H™(V NB(L;, 6T)) < H™(V; N B(L;,6T)).
Hence

H™(I) < H™(V NB(I;,86T)) < H™V;NnB(;,6T))
= H™[(L;UB(8:1,6T)) N V]
< H™I) + c(m)[Z; + 6]/~ 7™,

Now observe that as I; C V; N B(1,6T) we have
H™(L) < H™(V:NB(I,6T)) < H™(V NB(L,6T)).
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Hence on sending ¢ to infinity we deduce that

H™ (1) < liminf H™(F) + (m) 8"/ (™7™

1—0Q

and

limsup H™(I;) < H™(V N B(I, 6T)).

1—00

But I = Ns50B(Z, 6T) and so sending § to zero gives

H™(I) = im H™(L,).

Now observe that if ¢ and é are such that I C B(I;,6T) and if z € I\
B(0vI,aT) (for some a > §) then

V NB(z,eT) C IC B(I;,6T)

and so z € I; and

d(z,0:L;) > [ — 8]T

which means that
I\B(ovI,aT) C B(I;,6T)\ B(&:I, (e — 8)T).
Fix 0 < 8§ < 1 and choose j such that if ¢ > j then
du(I,I;) < 6T, H™(L) < H™(I)+ 5,
= > 66T and Frs—1ip(vi,v) < 82T
and if z € B(0,667'T) then
|Pi(z) — Py(z)|| < 6T'/2.
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If € Py [I\ B(8yI,26T)] N B(0,66~1T) then

|Pi(z) — PiPv(2)| < [Pi(z) — Pv(z)|| + [[Pv(z) — PiPv(z)]|
< 6T/2+6T/2 = 6T.

Thus
 Py![I\ B(dyI,26T)] N B(0,66~T) C P;Y(L;) N B(0,66~T)

and so we may use Lemma 1.3.4 with 7 = 6T and E = Py, [I \ B(6v1,36T)]N
B(0,667'T') to deduce that

v [Py 11\ B(dv1,36T)|NB(0,567'T))
< v [Py I\ B(3v1,28T)| N B(0,667T)| + Frg-rr (v, v)
< » [P7NI)NB(0,667T)| +6

1'> 6671T we may use (iii) to deduce
< xH™L)+Zi+6

< xH™(I)+Ei+ (x +1)6.

as =;

Hence on sending : to infinity we find that
v [Py I\ B(v1,36T)] N B(0,567'T)| < xH™(I) + (x + 1)6
but é was arbitrary and so we conclude that
v [Py (int v )| < xH™(1).

Now recall from Section 2.3.1(4) that as v € Tangs(y,z) and z € B® then

for v-a.e. ¢

Do (v:¢) 2 x-
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Thus if C C B(0,57)NV is a Borel set then from Lemma 1.3.2 we can deduce
that

v [PFH(C) N X(0,2,2K(1 + 26),V))

> xH™[Py'(C) N Sptv N X(0,2,2K(1 + 26), V)]
which, by projecting back onto V, is

> xH™(C).

Hence if C C int (B(0,7)) NV is a Borel set then

XH™(C) < v[PFH(C)]
< V[P = v[PF(I\ C)NX(0,2,2K(1 + 26),V)]
which by the preceeding
< xH™(I) = x[H™(I) = H™(C)]

= xH™(C).
Thus for all Borel sets C C int (B(0,7))NV
v[Py(C)] = xH™(C)

which is (3) of the Lemma.

If there is an z € Py![int B(0,T)] \ X(0,2,2K (1 + 26),V) such that z €
Spt v then we can find an r > 0 such that PyB(z,7) C int B(0,T), vB(=z,r) >
0 and

B(z,r) N X(0,2,2K(1 +26),V) =0

but then
XH™(B(Pyz,r)NV) = v [Py (B(Pya,r))]
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= v [Py!(B(Pvz,r)) NX(0,2,2K(1 +26),V)]
+v [PFA(B(Pya, ) \ X(0,2,2K (1 + 26), V)|
> xH™(B(Pvz,r)NV))+v[B(z,r)]

> xH™(B(Pyz,r)NV) — a contradiction

and so v satisfies (4).

It remains to show that we can find sequences which satisfy (i) through
to (iv). In order to achieve this it suffices to choose a sequence of positive
€ tending to zero and use Lemma 2.3.7 to find associated sequences of mea-
sures, points, planes and sets. Upon noting that any sequence of measures
(w;) € MZ(l,u) possesses a convergent subsequence (this is an application of
Lemma 1.3.3 together with the uniform upper density estimate on the mea-
sures w; ) and that, by compactness, any sequence of points z; in B(?) possesses
a convergent subsequence and similarly for V; € G(n,m) and compact sets
I; C B(0,5T) we deduce that we can, indeed, find a sequence satisfying (i)
through (iv). (Z; is chosen to be the maximum of all the appropriate error |

terms in Lemma 2.3.7.) Hence the Lemma holds. [

Lemma 2.3.9 There is an X € B®, w € Tang(p, X) and W € G(n,m)
such that

1. Sptw C X(0,2,2K(1 +26), W),
2. W = Pw|[Sptw],
3. for all Borel sets [ C W
wlPy (1)] = xH™(I),

90



4. there is a Y € Sptw NP} (B(0,1)) N X(0,2,2K (1 + 26), W) with

IPwY| > 6/2,

5. fOT‘ w-a.ec. C; —ﬁm(w7C) 2 X

6. w is m-rectifiable.

Proof: From Observation 8 we may find for all T > 1 an zr € BM, wr €
Tans(p,z7), Wr € G(n,m) and a Y7 € SptwrNPy (B(0,1))NX(0,2,2K (1+
26), Wr) such that

() I[Pw, Yzl = 6/2,
i) WrNB(0,5T) C Pw,[Sptwr N X(0,2,2K (1 + 26), Wr)],
(111) for all Borel sets I contained in int (B(0,7)) N Wr

wr [Py, (I)] = xH™(I),

(iv) Sptwr NPy [int (B(0,T))] C X(0,2,2K (1 + 26), Wr).

By repeated use of compactness and application of [Mat95, Theorem 1.23]

we may find a sequence T'(z) — oo such that

(v) z;:= 27 — X € BO),

(vi) w; :=wr) — w which, from Section 2.3(2), is in Tangs(u, X),
(vii) W; := Wry — W € G(n,m) .

(viii) Y; == Yz — Y € Py} (B(0,1)) N X(0,2,2K(1 + 26), W).
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Let P; := Pwy; and P = PJWT(‘,). From Lemma 2.2.14 we may immediately
deduce that Y € SptwN Py (B(0,1))NX(0,2,2K (1426), W), |P#Y|| > 6/2
and

Pw[Spt» N X(0,2,2K(1 + 26), W)] D W.

Hence (2) and (4) of the Lemma hold.
Since w € Tang(y, X) for some X € B® we know from Section 2.3.1(4)
that for w-a.e.

D (w,() > x

and so (5) holds. Hence if C C W is a Borel set then as Pw[Sptv N
X(0,2,2K(1 4 26),W)] D W we deduce from Lemma 1.3.2 that

w[P#(C) N X(0,2,2K(1 + 26), W)
> xH™[P#(C)NX(0,2,2K(1 +26),W) N Sptw]
> xH™(C).

Hence in order to verify (3) it is sufficient to show that for all T' > 1
w[Pw (B(0,T))] < a(m)xT™.
Since then if C C W we deduce that, for all T > 1,

XH™[CNB(0,T)] < wPw(B(0,T)NC)]
w[P;VIB(O’ T)] - w[P;Vl(B((L T) \ (C N B(Oa T))]
a(m)xT™ — x[a(m)T™ — H™(C NB(0,T))]

IA A

xH™(C NB(0,T))
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and (3) then follows on sending T to infinity. So fix T > 1and 0 < = <
1/(2T). Choose ¢ so large that

F1+1/E(wiaw) < EzT,

T@E)>T

and

Pw [B(0,T)] N B(0,1/2)

is a subset of

P71B(0,T(1 + =) N B(0,1/Z).
Then

w[P7Y[B(0,T)]NB(0,1/Z)] < w[P7'[B(0,T(1+Z))]NB(0,1/Z)]

and so as Lemma 1.3.4 implies that

w[P7'B(0,T(1+E)INB(0,1/2)] < wilP7'[B(0,T(1+25))]NB(0,1/2)] +=
which, from (741) above
= a(m)xT™(1+2E)" +=

and so we may conclude that

w[P7B(0,T)]NB(0,1/2)] < a(m)xT™(1+22)™ +=
and as = was arbitrary we deduce that

wlPTI(B(O,T))] < a(m)xT™.
Thus (3) holds.
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The fact that (3) holds together with the earlier note that
W = Pw[Sptw N X(0,2,2K (1 + 26), W)]
implies (using an identical technique to that used in Lemma 2.3.8) that
Sptw C X(0,2,2K(1 4 26), W)

and so (1) holds.
It remains only to verify (6) but as w € Tang(p,X) C MZ(I,u) and
we have already verified (1),(2),(3) and (5) of the Lemma then we may use

Lemma 2.2.12 to deduce that w is m-rectifiable as required. u

2.3.3 Deriving a contradiction

We are now able to find a contradiction: Let w be the measure whose
existence is guaranteed by Lemma 2.3.9 and let X € B®, Y € R" and
W € G(n,m) be as in Lemma 2.3.9. Since w € Tang(x, X) we know that
0 € Sptw and as Y € Sptw has ||P5; Y| > 6/2 we conclude that

diam (Py Sptw) > 6/2 (> 0).
In addition w is m-rectifiable,
W = Pw[Sptw],

and for w-a.e. ¢ € Sptw

Dp(w,z) > x.
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Hence we may apply Lemma 2.2.13 to conclude that there is a Borel set

B Cc W with
w[Py B] > xH™(B)

but this contradicts the definition of w. Thus no such measure w can exist

and so our original measure g must be m-rectifiable as claimed.
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Chapter 3

Examples

In this chapter we shall present examples which illustrate some of the re-
lationships between various tools for investigating the local structure of a

Imeasure.

3.1 Average densities and tangent measure
distributions

It is well known that D,,(g, ) can only exist in general if m is an integer
and y is rectifiable (see [Pre87, Mat95] or Theorem 1.5.2). In an attempt to
define a notion of density which exists for a wider class of measures and for,
possibly, non-integer values of m, Bedford and Fisher [BF92] introduced the

notion of average density: For p a measure on R™ and 0 < m < n the upper
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average density of u at z, ﬁfn(ﬂ, ), is defined by

= . 1 1 uB(z,t) dt
D2 =1 LT
() et = logr /r a(m)t™ t

and the lower average density of y at z, D2 (i, z) is defined to be

1
D2 (1, z) := lim inf — / #B(z,t) &t
r—0 —logr Jr a(m)t™ t

If D2 (u,z) = D> (i, z) then the common value is denoted by D2, (y,z) and

is called the average density of x at z. It is elementary to see that

Do (,2) < D (1,2) < Dpo(p,2) < Dim(p,2). (3.1)

In their paper [BF92] Bedford and Fisher showed that average density ex-
ists (is positive and finite) for the usual 1/3-Cantor set if m is taken to be
log2/log 3. They also showed that for Hyperbolic Cantor sets there is an m
such that the average m-density exists. Since then their results have been ex-
tended to cover other classes of measures. For example in [Gra93] it is shown
that average density exists for all self-similar measures for an appropriately
chosen value of m.

In a slightly different direction a recent paper of Falconer and Springer

[FS95] showed that if for p-a.e.z

0 < D7.(k,2) = Dm(p,2) < 00

then m is an integer. This has recently been improved by Marstrand [Mar94]
to the following: If for p-a.e.x

0< ﬁfn(y,m) =Dn(g,7) < 0
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then m is an integer. It was conjectured by Springer [Spr93] that equality of
average density and upper density almost everywhere may imply rectifiabil-
ity: The example of Section 3.2 shows that this is not true.

In [Ban92] Bandt introduced the notion of tangent measure distributions.
These are probability measures defined on the tangent measures of a measure
p. They reflect how often a particular tangent measure appears as one looks
at the blowups of y in the vicinity of a point £ € R™. The definition we
shall present here will only be for normalisations of the form r™ and we shall
assume that both the upper and lower m-densities are positive and finite:
For a more general approach see [M6r95]. Before we define tangent measure
distributions it will be useful to recall some of the general theory of (Borel)
probability measures on M(R").

Given a sequence, P;, of Borel probability measures on M({R") we say
that P, — P, a probability measure, if for all h: M(R") — R which are

continuous and bounded we have

[ B dP(w) — [ h(w) dP(w) as i — 0.

This is the usual definition of weak convergence. The following Theorem

states some useful equivalent definitions of convergence.

Theorem 3.1.1 If P and P; (i € N) are probability measures on M then

the following are equivalent:
1. P,— P,
2. for all continuous functions 6 : R™ — [0,00) with compact support -

[ expl=(0)] dP() = [ exp[-u(®)] dP(w)
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3. for all continuous functions h : R — [0,00) which are bounded and for
all continuous functions, 0 : R™ — [0,00), with compact support we

have

[ p=n(O) dP(w) > [ R1-u(6)] dP(n),

4. for all continuous functions h : R — [0,00) which are bounded and for
all continuous functions, § : R* — [0,00), with compact support and

lip (8) <1 we have
[ Bl=n@) P — [ h1=u(0)] dP(u).

Proof: The equivalence of (1) and (2) is shown in [Kal76, Theorem 4.2]. It
is clear that (3) implies (4) and (3) implies (2). It suffices only to verify that
(1) implies (3) and (4) implies (3).

(1)=>(8). This reduces to checking that functions, H : M — [0, 00), of
the form H(u) = h(p(0)) are continuous and bounded where h : R — [0, c0)
is continuous and bounded and § : R® — [0,00) is continuous and has
compact support. This is clear (from the definition of convergence on M).

(4)=(8). This follows from the fact that if f : R™ — [0, 00) has support
in B(0,R) (R > 0) then for all ¢ > 0 we can find a Lipschitz function
g :B(0,2R) — [0,00) such that for all z € R*, 0 < (g — f)(z) < e. n

Another useful result concerning convergence is the following:

Theorem 3.1.2 Suppose that P and P; (i € N) are probability measures on
M then the following are equivalent:

1. P,— P,
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2. for all closed sets F C M, limsup,_,  Pi(F) < P(F),
3. for all open sets G C M, liminf;_,, Fi(G) > P(G).

Proof: See [Par67, Chapter 3]. m

We are now in a position to define tangent measure distributions: Suppose
that u is a Borel measure on R"™ and there is a 0 < m < n such that for
p-a.e.

0 < Dp(,2) < Dm(pt, ) < 0.

Define, for 0 < r < 1 and for z satisfying the above density estimates a

probability measure, ©,(g,z), on M(R") by

1 e dt
0. (1, 7)(A) = —-logr/r L. (‘:nf) 2 frAdcM

(where I4 denotes the indicator function of the set .4.) A probability measure
P on M is a tangent measure distribution of u at z if there exists a sequence
r(2) \\ 0 such that

P = lim 0,4 (p, ).

The set of all tangent measure distributions of p at z shall be denoted by
P(u,z). For a measure v € M we shall let A, denote the probability measure
on M which is given by

1 ifred,
AJ(A) = { 1Lve

0 otherwise.

We now list a few simple properties of tangent measure distributions.
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Lemma 3.1.3 Suppose that p is @ measure on R™ and thereisa0 < m <n

such that for y-a.e.
0 < D (g, 2) < Dm(p,z) < 00
then for p-a.e.z the following hold:

1. P(p,e) # 0,
2. if P € P(u,z) then Spt (P) C Tans(p,z).

Proof: See [Mor95]. N n
The following Lemma relates average densities with tangent measure dis-

tributions.

Lemma 3.1.4 Suppose that p is a measure on R", 0 <m <n and z € R"
are such that

0 <D, (,2) < Dp(p, ) < 00.

Then

a(m)D? (u,z) = Peipn(i ; vB(0,1)dP(v)

and
a(m)ﬁfn(p,m) = sup vB(0,1)dP(v).
P€eP(p,z)

Proof: Since 0 < D,,(#,2) < Dp(p,z) < 0o it follows that

: pB(z, 2r)
limsup ———= < ©
™\0 P NB(xﬂ 7')
and so

clos {t_m,ux,t 0t <L 1}
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is a compact set and thus
{0.(g,2): 0<r <1}

is a uniformly tight set of probability measures on M.(R"). Consequently, by
Prohorov’s Theorem [Dud89, Theorem 11.5.4], for any sequence 1 > () \, 0
we can find a subsequence r(i(3)) N\, 0 such that ©,;)(x, ) converges to
a probability measure P on M(R") (and P is necessarily an element of
P(p,z).) Hence for all continuous and bounded functions H : M — R we
have that

: 1 Pot) dt
d - / < : )
Pel7>n(£ z) (v)dP(v) = h mf —logr tm /)t

and

. 1 1 Kzt dt
su H(v)dP(v) = limsu H (—) —,
PE'P(B,z) , (v)dP() 0 Pz logr /r tm )t

Fix 0 < ¢ < 1 and consider v4,I' : R" — [0, 00) given by

7(C) = max{O, 6 - diSt(Cv B(Oa 1- 6))}a
I'(¢) := max{0, { — dist((, B(0,1 + ¢£))}.
Observe that h, H : M — [0,00) defined by A(v) := ¢~v(y) and H(v) :=

£ 1y(T) are both bounded and continuous.

We find that
. <
P€1Pn(£‘x) vB(0,1)dP(v) < Pel7>n(£,z) H(I/) dP(V)
o dt
= hIrI{.lglf - log 7‘ ( ) t

< liminf
r\.0

= a(m)(1+¢)"Dy, (s, ).
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Similarly we find that

inf vB(0,1)dP(v) > _ inf h(v)dP(v)

PeP(u,x) PeP(u,z)
1
= liminf ! / h (@) dt
™0 —logr Jr tm )t
1 -
gt L [ B0
™0 —logr Jr tm t
= a(m)(1 - £€)"Dn (s, ).
Hence, as ¢ was arbitrary,
D’ = _inf .
a(m)D; (g, ) pedf vB(0,1) dP(v)
The result for —ﬁfn(u, z) follows in an identical manner. n

3.2 On the example of Dickinson.

In this section I reconsider the example constructed in [Dic39] which was orig-
inally designed as an example of an unrectifiable 1-set with lower 1-density
equal to a 1/2 and upper 1-density equal to 1, almost everywhere. I show
that a slightly modified version of it, which is also unrectifiable, possesses av-
erage 1-density equal to upper 1-density and has a unique tangent measure
distribution almost everywhere. This example also illustrates in a simple way

the necessity of a convexity condition in Theorem 2.1.1.
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3.2.1 Construction

Suppose that (nk) is a sequence of positive integers and (&), (6x), (7x) are

sequences of positive real numbers and let

k
Ny = H 2n;.

i=1

Additionally suppose that
1. ny, / oo and Y [ni]™! < oo,
2. 6y < 1and [6] 7" Tiskr 6 \ 0,
3. Niby — 0 and Nii16x — o0,
4. [8xNg] ™t — 0 and Ty yak = Tk Yok-1 = 00,

5. & > [2np4a] 7", Tk bk < 00 and

Zf:l - ]‘Og éi - O
log Nk '

For examples of such sequences one may consider nj := 22", §; := k=1/2N;?,
€ :=27% and 43 := k734
Let
2= JJ{0,...,2n, — 1}
k=1
and equip ¥ with the usual product topology. Observe that ¥ with this

topology forms a compact topological space.

Define m : ¥ — [0, 1] by
m((’hﬂ?z, .. )) = Z Uk/Nk.
k=1
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Defined: ¥ — R by
d(T]]_, N2, .. ) = Z (5],;(—1)7”‘.
k=1

Let D : ¥ — R? be given by

This map D is clearly invertible and it is also continuous: For if V is a
neighbourhood of a point, z = D(n) € E say, then we can find a § > 0 such
that V' D {y: |ly — z|| < 6}. If k is chosen such that ¥ ;s (N7 +26;) < 6
then for the open set (in ) gl :={c € £: oy =n; fori =1...k} we find
that D(n|x) C {y: ||y — z|| < 6} and so the claim holds.

Since ¥ is a compact space and D is continuous we conclude that F is a
compact set.

By considering the orthogonal projection of E onto the z-axis one sees

that H'(E) > 1. Forn € ¥ and k > 1 let

C(n, k) := {(s,t) RS {Z %, [Ne]™ + Z%} and

i<k Vi i<k 1V

te |:Z(—1)m55— Z i, Z(—l)m&'—{- Z (5,:| } .

i<k i>k+1 i<k i>k+1
Let

Chi={C(n,k): n € T)

and observe that card (Cx) = Ny and for all k£, E C UC. Since the diameter
of a set C' € Cx is no more than [Ni]™'[1 4+ 2Ny 3;5441 6i] We conclude that
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for all § > 0 we can find a K such that if ¥ > K then Ci is a §-cover of E

and so

Hs(E) < Npx[Ne]™

1+ 2Ny Z 5,]

i>k+1

142N, Z 51] .

i>k+1
Hence on sending & to infinity we conclude that H}(E) < 1 which in view
of our earlier lower bound on H'(E) implies that H'(E) = 1. It is also
straightforward to verify that if C is in Cx then H'(E N C) = [N¢]™"
Define the measure y to be H'|g. The measure u is Borel regular and is

a probability measure. Moreover F is the support of p.

3.2.2 Properties of u

Lemma 3.2.1 Forallz € F
1/6 < Dy (4,z) < Diy(p,z) < 1.

Proof: The upper bound follows immediately from the observation that for
all z € E and r > 0, uB(z,r) < 2r.
For the lower bound suppose that 7 € ¥ and fix 0 < r < 1. Choose k > 1
so that
[Ne] ™! < r < [Nea] ™
There are two cases we shall consider
Case 1 : [Ni]™! <r < 3[Ne]™?

In this situation we have that
u[B(D(n),r)] > [N]™" — 26,
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and so

pBD(),r)] o (Ve =26 _ 1
2r T 6[Ni]? 6

Case 2 : 3[Ni]™! <r < [Np—y]?

1
— =Nibg.
3 VkOk

In this case we have that

#[B(D(n),m)] 2 [Ne] ™" [r Ny — 2] — 26,

and hence
#[B(D(n),r)] -1 [Nk 1] Sk
PUAEAIL T S E o=
2r - [Nk] 2 T r
s L 1 &
— 2 Nir r
but Nir > 3 and so
1 1
> 2
> 573 3Nk
1
= g — 3Nk6k
In either case we have that
WBOOLIL 1o
2r 6

Moreover as n € ¥ (and hence z € E) was arbitrary and as Ny — 0 we

conclude that forallz €

as required. n
Let us now calculate the tangent measures of y for y-a.e. z. Define mea-
sures K4, Ky by

Kq o= H! I_{(a,o):azo}‘i'Hl I.{(a,l)thO}
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and
Ry ‘= Hl L{(a,—l):aso}'*'%l I_{(a,O):ozZO}
and also let

A= HI I_{(a,O):ozGR}a
/\l = Hl L{(a,O):aSO}y

and

/\r = Hl |_{(01,0):a20})

It is straightforward to verify that
N = {r‘lww tw € {Kkg, Kus A, AL AR}, ( € Sptw and 7 > 0}
is a closed set and that, in fact,
N = clos {r'lw(’, : w € {Kkdy Ky}, ¢ € Sptw and r > 0}.
Lemma 3.2.2 For p-a.e.z, N' C Tans(u, z).

Proof: In view of the shift invariance of standardised tangent measures and
the fact that Tang(y,z) is a closed set for p-a.e.z it suffices for us to show
that for uy-a.e.z

{kd, Ky} C Tang(y,z).

We shall in fact only verify that for p-a.e.z, k, € Tang(y,z) as an entirely
similar method will enable us to deduce the same result for 4.

For v € (0,1) and k& > 1 let
I(y) :=10,1,..., [ynk]}
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and observe that for ¥ > 1

H! {m € E: 0 [D!(z))sis even and [D7}(z)]ps1 € Ik+1(7k+1)}

(nk - 1) [Ye+1mk41]
2nk 2nk+1

> (1 =1/ng)yker /4

Hence

;'Hl {a: € E: 0# [D7Y(2)]a is even and [D7Y(z)]aps1 € Izk+1(72k+1)}

> ;(1 — 1/nok)v2k41/4 = o0.

Hence we may use Borel-Cantelli and the independence of the above events
to conclude that for y-a.e.z we can find a sequence k(z) ,/ oo such that for

all 7 if z = D(n) then
(i) 0 # ny() which is even,
(1) 7r@y+1 € Try+1(Mr(i)+1) (Trgiy41 for short.)

So fix such an z and sequence k(z). In order to show k, € Tang(u,z) we
need to find a sequence r(z) \, 0 such that for all R > 4 and € > 0 there is
an M so that fori > M

FR(T(’I:)_I/I%T(,'), K’u) S €.

Let r(i) := 26y(;) then I claim that r(¢) ™ pz ;) is such a sequence. Fix R > 4
and € > 0 and choose M such that forz > M

[2Nk(i)6k(i)]_1 > 2R,
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Sk(iyNr(iy+1 = 8R/e

and
Ye(i)+1 1
+ < e€f2.
20k Vi) Ok(iyNigi)+1 /

If z = (z1,z3) then let ' = (z}, 73) := (z1 —m(m, ..., Mk(),0,0,...),22) and
let
— 1 , 1 )
vi = H L{(a,O):az—Ei/r(i)}—*'H I.{(a,—l):as—:fi/'r(i)}‘

Observe that

IA

2Rz /r(3)|
9R [Vk(i)+1 k(i) +1 | + 1
261(:) N (i) +1

FR(K'ua Vi)

IN

IN

€/2.

Thus it suffices to show that
Fr(r(1) ™ oy, vi) < €/2.

Recall from Section 3.2.1 the definition of Cy(;)41 and for C' € Ci(;)41 define
Cer:={(y—2a)/r:yeC}.

Let
F = {Cz,r(i) : Ce Ck(,-)+1 and C'N B(:I:,RT‘(Z)) '7'é @} :

Notice that if F € F then

diam (F) < [r(s) Ngiy41) ™ (1 +2Nkiy+1 Y, 5,) < 2[r(8) Nugyysa) ™ =2 d
i2k(i)+2
and

r(i)—lﬂx,r(i)(F) = Vi(F) = [T(i)Nk(iHl]_l'
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If F# G € F then
r(0) e (FNG) =u(FNG) = 0.
Finally observe that
[Spt (r(i)_l,ux,r(i) + VZ') N B(O,R)] CUF
and so we may apply Lemma 1.3.5 (v‘vith A =F and ¢ = 0) to conclude that

FR(r(i)_ll"x,r(i), Vi) < d[Vi + r(i)_I”Z,r(i)](B(O’ R))
4dR

IN

8R[r (i) Niw+1] ™

IA

€/2.

Hence the Lemma follows. n
An immediate consequence of this result is that x is purely 1-unrectifiable;
this follows since for p-almost every point, u possesses tangent measures

which are not flat (see Theorem 1.5.2).

Lemma 3.2.3 For all0 < e <1 and R > 1 there is a K > 1 such that for
alln € ¥ if r < (8RNk)~! then there is a v € N such that

FR (m, l/) S €.

-
If, moreover, there is a k > K such that (8RNi41)™! < r < (8RNk)™! and

Nk+1 18 such that

2 —1
min { Nk+1 , | Tk41Mk+1 |} SR
""Nk+1 T'Nk+1

then v may be taken to be A.
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Proof: Fix0<e<1, R>1andn € X and let z := m(n). Choose K such
that for all k > K

Z §:; < 8c/2 and 8Ny < ¢/(128R?).

i>k+1

Now choose k£ > K such that
(8RNk+1)'1 <r< (SRN;C)'1

Foroc € ¥ and &k > 1 let

i<k42 z<k+2

D(o,k) := {(s,t) RS [ > N [Neg2) P+ D0 } and

te [Z(—l)"&i— D& Y ()76 + Y 5]}

i<k 1>2k+1 1<k 12k+1
and let

Dy :={D(o,k): c € L}.

Thus Dy consists of Niy2 strips of width [Niy2]™! and height 237,541 8 <

38441 which cover E (the support of 1.) Let
F = {Cp(u, : C € Dy and C N B(D(n), Rr) # 0} .
Observe that
(i) Spt (r~#p(s)-) N B(0, R) C UF,
(ii) if F € F then

diam (F) < [rNpy2 + 36k + 1)1 < 4641 /7 =: d, say,
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(iii) if F € F then r'upg)(F) = [rNip2] ™! and if F # G € F then
T_lpD(n)'r(F NG)=0.

Thus if we can find a measure v such that
(iv) Spt (v) N B(0, R) C UF,

(v) if F € F then v(F) = [rNisa] ™,

(vi) f F#G € F thenv(FNG)=0

(vii) vB(0,R) < 2R.

Then we may use Lemma 1.3.5 to deduce that

Fr(r™ tpme v) < 4 (77 o +v) [B(O,r)]
< 4Rd = 16Ré3 11"

S 128R26k+1Nk+1 S €.
Hence it only remains to show that we can find such a v € N. Let
w:i= Hl I_{(a,O):EFE.’F with (a,O)EF}+H1 l_{(o:,Zb'k/r):SFE}' with (o,26k/r)EF}

+ Hl I_{(a,—26k/1'):3F'€.7-' with (a,—26k/7)EF}

and observe that, as [rNy]™! > 8R, at least one of
{(e,26/r) : IF € F with (a,26¢/r) € F},
{(a, =26x/7) : IF € F with (o, —26;/7) € F'}
is empty. In addition,
{(,0) : 3F € F with (e,0) € F} #0.

113



Hence B(0, R) N Sptw consists of at most two disjoint line segments. In ad-
dition these line segments intersect the boundary of B(0, R). Finally observe
that, as r71[26x — 36k41] > 0, each F' € F has an intersects exactly one
line segment in a positive length. Hence we can find a v € A such that
Fr(w,v) = 0. Clearly for all F € F we have that v(F) = [rNis2]™! and if
F # G € F then v(F NG) =0. From the definition of w we can see that

B(0,R) N Sptv C UF

and clearly v(B(0,R)) < 2R. Thus (iv) to (vii) are satisfied and we are
done.

If, in addition,

. Nk+1 ]2nk+171k+1 - 1|}
min >R
{?"Nk+1’ TNy

then we conclude that the support of w consists of just one line segment
which includes
{(«,0): o] < R}

and hence we may take v to be X as required. [

Corollary 3.2.4 For p-a.e.z
Tans(p,z) = N.

Proof: This follows immediately from the preceding two Lemmas together

with Lemma 1.4.6. ]
Corollary 3.2.5 For y-a.e. z,
Ql(.ua :L') = 1/2
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and

Dl(lu'aw) = 1.
Proof: From Lemma 3.2.2 we know that for y-a.e.x
Al E Tans(,u,x).

Upon observing that
Di(A;,(0,0)) =1/2

we immediately conclude from Corollary 1.4.4 that for p-a.e.z
Dy(s2) < 1/2

However as for all v € AV and all ¢ € Sptv
Di(v,¢) 2 1/2

we deduce from Lemma 3.2.3 that for p-a.e.z
Dy(p,z) = 1/2.

For the upper density just observe, again from Lemma 3.2.2, that for y-a.e. z,
A € Tang(p,z) and
ﬁl(/\, 0) = 1

hence, again from Corollary 1.4.4, we conclude that

Dl(:“? .CL‘) 2 1

and this together with the result of Lemma 3.2.1 implies the conclusion. =
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In many respects this example can be considered as only just failing to
be rectifiable. The presence of ‘broken’ lines (for example «,) as tangent
measures easily implies that the convexity condition, (2), of Theorem 2.1.1
fails to hold. (Just consider the projection of the support of &, onto the
y-axis.) If 451 denotes the normalised Haar measure on G(2,1) (normalised
so as ¥2,1(G(2,1)) = 1) then it is a straightforward calculation to verify that
forallv e N

v21{V € G(2,1) : Py [Sptv] is not convex} < 1/2.
This suggests the following conjecture:

Conjecture 1 If y is a Borel regular locally finite measure on the plane and

for p-a.e.z
1. 0 < Dy(p,z) < Dy(p,z) < oo,
2. for all v € Tans(p, ) we have

721{V € G(2,1) : Py [Sptv] is convex} > 1/2.

Then p is 1-rectifiable.

(There are, of course, natural higher dimensional generalisations of this
conjecture.) Notice that if (1) and (2) hold for p at = then thereis a { > 0
such that the following, apparently stronger, statement holds:

(2') for all v € Tang(y,z) we have
y21{V € G(2,1) : Py [Sptv] is convez} > (1 +¢)/2.
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We are now in a position to calculate the tangent measure distributions of u

for p-a.e. z.
Theorem 3.2.6 For p-a.e.z
Plu,z) = {Ax}.
Proof: We need to show that for y-a.e.z
O.(g,z) = Ay asr — 0.

From Theorem 3.1.1 it suffices to show that for p-a.e.z if 6 : R — [0, 00)

has compact support and lip (§) < 1 then

- lig'r /Tl B <_ M:,t(0)> % — E(=A(9))

where E(y) := exp(y). Thus it suffices to show that for all R € N and for
p-a.e.z if §: R" — [0,00) is such that Spt (§) C B(0, R) and lip# <1 then

_kl)gr /,1 E (—f‘—“”’f-(@) ? — E(=X(6)).

Fix an R € N and recall from Subsection 3.2.1 that the sequence &; \, 0 was
defined so that

> bk < oo, & > (2n441) 7
k i

and
i.c:l - ].Og 61 -

log Nk 0.

Observe that
P(nrt1 € {0, o, [&mkgr] — 1} U {2np41 — [€eniga] = 1,.., 2040 — 1})
< 20w+ n;-|1-1)
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and thus

ZP(UkH €{0,. ., [&knrs1] =1 U{2nes1 — [Eenesa]s - - -, 2041 —1}) < co.
k

Hence by the Borel-Cantelli Lemma we deduce that for P-a.e.n there is a
K' € N such that for all £ > K’

Me+1 € {[&knesals -5 201 — [Eenaaa] — 2} =t Jiqa, say.

Fix such ann € ¥ and K, let z := m(n) and ix 0 < e < 1. Let 6 : R" —
[0,00) have lip(f) < 1 and Spt(4) C B(0,R). Choose § > 0 such that if
ly — A(6)] £ 6 then |E(—y) — E(—A(0))| < €¢/3. Observe that if £ > K’ and
t > 0 are such that (8 RNg41)™! <t < &(8RNk)™! then

e 12ngp =M — 1|}
min , > R.
{ tNiy tNkg

Hence, by Lemma 3.2.3, it follows that we can find K” > K’ such that for
all k> K" if (BRNy41)™! <t < &(8RN;)™! then

Fr (t7 ety A) <6

and so, in particular,

[t e (0) — A(0)] < 6

and thus
|E(=t" 1z,4(0)) — E(=X(9))] < €/3.

For : € N let a; := (8RN;)™! — this will make some of the calculations
appear a little less unwieldy. Finally, choose K > K" such that for all

k> K
10g f[{n + log agn < €
—logérar T 3[1+ E(=A(9))]
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and
g1 —logéi €
—logfkak - 3[1 +E(—/\(0))]
Fix 0 < r < {x(8RNk)™! and let us estimate

’1 dt l

1
— _1 — — —
g7 |, BT e O) T~ E(X0)|
Choose k such that
(8RNk+1)_l <r< fk(gRNk)_l.

Observe that for all y > 0, |E(—y)| £ 1 and so we may estimate that

LS L dt
‘—logr/r E(t ’u”(e))T — E(-A(9))
]. E na g _ dt
< |—10gr/, K1OK E(-t 1ﬂ$’t(6))?_E(—)\(9))l+
IOg fK” + IOg agm
logr
]. Ekak k-1 ¢ia; ' dt
< -1 a
‘-—logr (/, +i§,,/c“+1)E( t ,ur,t(e))t E(=)\0))|+
¢ n Ei’c:KuH —logé;
L+ E(AD) | —logr
1 Erak k=1 0 it
< -1 a
- }—logr (/r +ZK/ ) E(~t" uey(0)) =~ E(=X(0))| +
2e

31+ E(=X(9))]
However for K” <1 < k and a;41 <t < {;a; we have that

E(=X(9)) — /3 < E(—tp24(0)) < E(=A(9)) +¢/3
and since

%2 1 Erak k-1 ctiai dt
(1 BT +E(—/\(9))]) S Tlegr (/ t2 /a,-+1) 7 st

119




we conclude that

e ([ S L) et - i)

2¢
S 3T EOO)

Hence upon combining these estimates we deduce that
1 dt
s [ B0 % ~ BC0)

o

E(=)(8)).

<e

as required. ' n
Theorem 3.2.7 For p-a.e.z,

Di(u,z) = Di(u, ) = 1.
Proof: It is easy to calculate that for p-a.e.z

pdnf / vB(0,1)dP(v) = 2

=  sup vB(0,1)dP(v).
PeP(u,x)

Hence from Lemma 3.1.4 we deduce that

DX (u,z) = 1

as required. n

3.3 On an example of Besicovitch.

The class of examples we shall construct in this section is based upon an
example given by Besicovitch [Bes28, §11] and it will illustrate some of the

properties of the concepts introduced at the start of this chapter.
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Throughout this section we shall work in R?. For B = B(z,r) C R?,
j€Nandi€{l,...,5} define

D(B,i,5) := B (2 + (1 — 1/5)(cos(2mi/7), sin(2ri/5)), /7).

Thus D(B,t,7) is a disc of radius r/; contained in B which touches the
boundary of B.
Let (n;) be a sequence of integers with n; > 4 and n; / co. Let ¥ :=
2:{1,...,ni} be the code space defined by this sequence and let it be
endowed with the usual (discrete) product topology. For j € N let ¥; :=
[T—1{1,...,n;} and set £o := {()} (the set consisting of the empty sequence).
If n € S UZ; then n; will denote the value of the i -coordinate of 7 if this
makes sense. For j € N, : < jand n € 2 UL; let

"7'1' = (7717 v Jli)-

Finally let n]o := () (the empty sequence). Define a probability measure on
¥ by setting & to be the measure which satisfies: For n € £ and j € NU {0}
J

k({eeB:alj=n;})=]]n"

1=1
(with the convention that the product is defined to be 1 when j = 0.)

Define a map mg from Xg to the subsets of the plane by

mo (()) := B(0,1/2).

Now for j € N define a map m; from X; to the subsets of the plane inductively
as follows: For (n1,...,7n;) € &;

m;i(n, ..., 05) := D (m;_1(nli-1),n5,7;) -
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Thus m;(n1,...,n;) determines a disc contained in m;_1(n|;-1) of radius n}l

times that of m;_1(n|;—1). Hence

diam (.., n)] = [L 7t = ({0 € %1 0ly = (0, 1))

=1

Define collections of discs, F;, for j € {0} UN by
Fj:={mj(o): o € L;}

and define sets E; by
E; :=UF;.

Notice that the E; are compact, non-empty sets and E; D E;4;. Hence we

may define a non-empty, compact set E by
E = ﬂ Ej.

For n € ¥ we can observe that diam [m;(n|;)] — 0 as j — oo and hence
we may define a map m : ¥ — E by setting m(n) to be the unique point

contained in

) m;(nl;)-

jEN
Moreover this map is clearly invertible and continuous.
It is possible to show that H'(E) = 1 by a method identical to that
used by Besicovitch in [Bes28, §11]. However this result is unnecessary for
our purposes and is omitted here. Instead let us define a measure p whose

support is E. Set u := myk, that is for A C R? define

w(A):==r({neX: mn) e A}).
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Since m is continuous it follows that u is a Borel regular measure on the
plane and, clearly, 4 is finite. Observe that for 7 € N we have that if D € F;
then )

w(D) = H1 n;’.
Before proceeding further it shall be useful to make a few simple geometric

observations about the set E. If we set pp = 1/2 and define for j € N

(i \7
Pi =7y H 7
=1

then we find that if x; and z, are the centres of two disjoint discs from F;
such that both the discs lie in the same disc from F;_; and they are separated
by t — 1 discs in F; for some 1 < ¢ < | %] then
|21 = z2|| = 2p5-1 (1 — n;l) sin (Z—t) . (3.2)
j
Consequently we find that the minimum distance between disjoint discs in

F; is given by

.9, o sin [ Z) — 2,
d;j :=2pj_1 (1 n; )sm (n,) 2p;
and, as ny > 4,
1
2 (53\/5— 1) pi <d; < 2x —1)p; (3.3)

and, since n; /" oo,

lim 4 _ 2(r —1).

=% pj
Fix j € N and suppose that B € F;. Let y € R? and suppose that r > 0. I

claim that

p[0B(y,r) N B] = 0. (3.4)
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For choose J € N such that if > J and D € F; then n; > 1/100 and
H' [0B(y,r) N D] < (11/10)diam [6B(y,r) N D].
Then if : > J and D € F; we find that

card {C € Fiz1: CNOB(y,r) #0and C C D} < 2v/niq +(2/5)nin
S (3/5)7?‘1'_{_1.

Thus if K € N and £ > J + j then

J+j k
card{D € Fx: DNdB(y,r) # 0 and D C B} < ]_—fni x ] (3ni/5)

=7 i=J+5+1

and so

J+j k -1
(BN oB(y,r)) < (]j:n,) x( II 3n¢/5) X (ﬁm)

i=J+j+1 1=1
— Qask — o0

as required.

3.3.1 Properties of our measure

Our first task is to estimate the upper and lower 1-densities of points in our

set E.

Lemma 3.3.1 Forallz e E

1 —
i < Dy(p,z) < Di(p,z) £

wW|
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Proof: Fix 0 <r < 2p; and z € E and choose j € N such that
2pj <r< 2Pj-—1-

Observe that, as inequality 3.2 implies that d;_; > r, B(z,r) intersects only
one disc from F;_;. We shall consider three cases:

Case 1. If thereisat € {1,..., |n;/2]} such that

2p;-1 (1 —n;') sin i <r<2pji-1(l—ni')sin m(t+1)
j n. i :

J nj
then
2t —1<card {D € F;: D CB(z,r)}
and
card {D € F;: DNB(z,r) #0} <2¢t+3.
Thus

22t — 1)p; < uB(a,r) < 22t + 3)p;
which implies that

2t —1 < pB(z,r) 2t + 3
2(n; — )sin[r(t+1)/n;] = 2r = 2(n; — 1)sin[xt/n;]

This gives that for r in this range

1 _ #B(z,7)
4r — 2r

<

W] ot

Case 2. If 2p; < r < 2pj_y (1 - n;l) sin[r/n;] then inequality 3.2 implies

that B(z,r) intersects no more than 3 discs of F; and so
2p; < pB(z,r) < 6p;.
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Thus
1 < B(z, )
2(n; —1)sin[r/n;] = 2r

and so
1 . #B(er)

2T 2r
Case 3. Finally, if 2p;_4 (1 — n;l) <r < 2pj-; then

<

N w

pi-1 < pB(z,7) < 205

and so

1<uB(m,r)< n;

! <2
27 2r T 2mn;-1) 73

Since one of these three cases must occur for any 0 < r < 2p; we conclude
that the Lemma holds. n

Our next lemma investigates the geometry of the support of p and will

save a lot of repetition later.

Lemma 3.3.2 For all R> 1 and C > 20R there is a K € N such that for
allk> K andn € X if

r € [pk/C, pr-1/C]|

then there is a unique disc D € Fy_1 with
Doy N B(0, R) # 0.

Moreover we can find a disjoint collection, F say, of 1 + [2Rr/(wpx)| discs

contained in D such that

1. there is a By = B(yo, pr/r) € F which contains the origin,
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2. for all B € F there is a 0 € Xy such that B = [my(0)]

m(n),r’

3. B(0, R) N Spt fim(n).» C UF,

4. Let L be the line through the origin which makes an angle of (2nx/nk —
(1/2))7 with the positive z-azis and let Q denote orthogonal projection
onto L and Qt denote orthogonal projection onto the line perpendicular

to L. Then for any B = B(y, px/r) € F such that B # By we find that

1 pk 2Rr\?
1 . <9 % bl .
1Q~(y — o)l < o (w+ m) (3.5)
and \
1 2Rr
et = I -l <822 (4 2E) (s
ng T Pk
where B is t discs away from By (that is t — 1 discs of F lie between
B and Bo)

Proof: Fix C and R as described in the Lemma. Choose K such that for
all k> K

ng-1 > 10

Fix k > K and suppose that n € £. Now consider D = my_1(7|k-1) and
observe that 0 € Dp,(y),,. Hence

B(0, R) C B(Dm(n),r R)

but
R< 0/20 < pk_1/(207') < 2(7(' - 2)Pk—1/7'

and so, as the separation of discs in Fi_; 1s at least

2pk—2 (1 - n;L) sin ( il

) — 2pk-1 = 2(7 — 2)p-1,
Ng—1
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we conclude that B(0, R) intersects only one disc from Fy._;.

Let

F = {Bm(n),r : B = my(o) where 0 € Xk, 0|k-1 = 7]k-1 and

or € {1 <i<me:lioml < (1+ F;;—ZD mod(nk)}}.

Thus F consists of By together with 1 + [%1 balls on either side of B,.
Observe that (1) and (2) of the lemma are clearly satisfied by F. To verify
(3) holds for F observe that if

C := {Bm(n)y’l‘ : B € Fi and Bm(n),'r n B(07R) 74 @}

then UC D B(0, R) N Spt fim(n),r and

card (C) <1+2 "nk arcsin(Rr/pk-l)‘l .

2m
However Rr/px—1 < 1/20 and so arcsin(Rr/px-1) < 2Rr/pr—1 which gives
card (C) < 1+2 P&“ .
TPk
Thus C C F and so (3) holds.
It only remains to verify that for the L defined in (4) above both inequal-

ities 3.5 and 3.6 hold. Since 0 € By it is clear that

lloll < px/r

and thus By satisfies the inequalities. Suppose that B = B(y, px/r) € F and
B # By and choose t € N such that ¢ — 1 discs of F lie between B and By.
Notice that t <1+ (2Rr)/(7pk). From equation 3.2 we deduce that

—1\Pk-1 . [Tt
ly — yoll = 2(1 — nkl)—r—sm (;;) :

128



Hence we find that

1R (v — o)l

2
"NE T TPk
as required.
Finally observe that
1Q( —wo)ll = lly —yol| cos(xt/ni)
= (1- pk L sin 27rt)
as n; > 10
S (1_ pk 127rt [1 27rt ]
> or tffll—i(vwzﬂﬂ
r ng Pk
and thus
2wt 2
TP Q- | < 2 [1— -2 (e
r ng Pk
< 8nt Pk (7r + 2Rr>
g Pk
but ¢t <1+ 2Rr/(7px) and so
@) (e
Nk r Pk

as required.

. (7t
=y~ wollsin (=)
Nk

<

2(1 — ngt) 22

_ (wt)z
r Nk

For a unit vector é which makes an angle § € [0,27) with the z-axis let

é* be the unit vector perpendicular to é which makes an angle § — 7/2 with
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the z-axis. Let

1
Vg = - %; H I_aB(el+2m'é,1)

and let
N = {r‘lwg,r : ( € Sptw, r > 0 and w = v; for some é} .
Observe that A is not a closed set and set
N:=closN =N U {7!'_17'{1 lz: L e G(2, 1)}

Our next Lemmas will enable us to describe the tangent measures of p
and will provide sufficient information to allow us determine the tangent

measure distributions of u.

Lemma 3.3.3 Forall0 < e <1,R>1 and all C > 20R there isa K € N
such that for all k > K and all n € ¥ there is a v € N such that if

r € [px/C, Cpi]

then
Fr (r_lium(n),r: V) <e

Proof: Fix R, € and C as in the statement of the lemma. Choose K such

that forall k > K
ng > 264C (7 + 2RC)*(R+ C)e™?

and such that the conclusions of Lemma 3.3.2 hold for R and C as above.

Fix 0 < r < Cpk and choose k > K such that
pr/C < r < Cp.

130



Fix n € ¥ and set z := m(7n). Let é be the unit vector which makes an angle
(2meni ' — (1/2))7 with the positive z-axis and let f be the unit vector which

makes an angle 27n41/nk41 with the positive z-axis. Define, for ¢t € Z,
C;:= 0B (—ﬂk—f + 27té, Eﬁ)
r r
and set

V.= LZ'HILC,.

TPk tez
It is easy to see that v € M. We wish to estimate Fgr(r~'u,,,v). Let F be
as given by Lemma 3.3.2 and for B € F let

E(B):={D;,: D € Fy41 and D, C B}.
Observe that if B € F then
diam (B) = 2% =ru, . (B)

and if D € £(B) then diam (D) = 2pg41/r. Now let

wim o [22]}

and define
r
Vi=— Z H I.C:'
TPk ltleN
Observe that
FR(I/, 17) =0

and so

FR(r_lpx,,., v) = FR(r'luryr, V).
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Let us index the 1 + 2[(2Rr)/(7px)] of the discs in F as follows: Let By be
the unique disc in F which contains the origin. For |t| € N \ {0} let B; be
the disc in F which is ¢ discs away from By (that is, there are ¢ — 1 discs
between By and B;) and such that dist(B;, C:) < dist(B;, C—;). From (3) of

Lemma 3.3.2 we conclude that
Fr(piz,r l_L‘;Bn pz,r) = 0.
Thus if we let & := 77!, |uB, then we have that
Fr (rttzr,7) = Fr(@,7).

Let y; be the centre of B; and let ¢; be the centre of C; (hence ¢; = —(pk/r)f-{-
2rté.) Define a cover, A, of [Spt (@ + 7) N B(0, R)] as follows: For |t| € N
and m € {1,...,nk1} let

A(t,m) := {ct + (pr/r)(cos 8,sinb) : 6 € [2n(m — 1/2)n;il, 27 (m + 1/2)n,:41_1)}
and set
A:={D(Bi,m,ngs1) UA(t,m): |t| € N and m € {1,...,nk41}.

Clearly
UA D [Spt (0 + 7) N B(0, R))

and A is a finite family. Also, if there are distinct A,B € A with AN B # ()

then this means that for some m,n,s and ¢

D(Bs,n,nk_}_l) N A(t,m) ?é @
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and from equation 3.4 we know that
w[D(Bs,n,nk+1) N A(t,m)] = 0.
Hence we can conclude from our density estimates (Lemma 3.3.1) that
v[D(Bs,n,ng41) N A(t,m)] = 0.
Finally, observe that for all A € A |
&(A) = 7(A) (= 2"—’:‘—1) .

Hence if d is such that for all A € A, diam(A) < d then we may use
Lemma 1.3.5 to deduce that

IN

d(@ + v)B(0, R)

< 4d<1+2[&]) Px
TPk r

< 12d(R + pi/7).

Fr (r,:luz,rk,u) = Fgr(o,7)

So suppose that A € A and so, for some suitable ¢t and m,
A= D(Bt,m, nk+1) U A(t, m)

Observe that

diam (A(t,m)) < 2r 2L
.

and

diam (D(By;, m, k1)) = 2pk:1 .
Thus

diam (A) < diam(A(t,m)) + diam (D(B;, m, nk+1)) + [lye — <l

< 3B 4y el
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Hence we need to estimate ||y — ¢ for [¢| € N. Recall from Lemma 3.3.2
that Q denotes orthogonal projection onto L and Q* denotes orthogonal
projection onto the line perpendicular to L.

Observe that

190 — col| < 2p41/r.

Now fix t € N\ {0} and consider ||yt — ¢¢||. We have that

lye — el < lye—ce —yo+co+yo— col|

< 1Q(ye — o) — Qler — o)l + 1Q* (w: — yo) — Q™ (ee — <o)
+ |lyo — <ol
< |2xltlex 1 1 pe
< |/ = 1Q: —w)ll| + 1Q~ (v — wo)l| + 2———
T Nkg41 T
but from (4) of Lemma 3.3.2 we may conclude that
2
< 102 <7r+—2§-r~> po L B
Nng T Pk Ngy1 T
2
< 191k (7r + -2-&> .
neg T Pk

Thus for all A€ A

1 2Rr\’
diam (A) < 99— Lk (7{' + ﬁ) :
ng T Pk

Hence

2 2
Fa(@,7) < 264-P% <7r + —@f) (R + p—")
neg T Pk T
but px/C < r < Cpy and so
< ﬁO(w +2RC)*(R+C)

ng
< €
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and so, as
Fr (r—lu”, I/) = Fr(®, 7),

the Lemma follows. n
Lemma 3.3.4 For y-a.e.z Tang(u) D N.

Proof: Recall that for a unit vector é which makes an angle of 6 with the

positive z-axis

1 1
Vei= — > H I.BB(é-’-+27rié,1)

i€Z
where é+ makes an angle of § — 7/2 with the positive z-axis.

In view of shift invariance (Lemma 1.4.3) and the fact that Tang(p, z) is

a closed set it suffices to verify that for y-a.e.z and all v; we have
ve € Tang(p, ).

Moreover we can find a countable set, S say, of unit vectors, é, of the form
described above which is dense in the set of unit vectors directed into the
upper half-plane. Hence we deduce that it suffices to show that for all é € §
and for p-a.e.z

Vs € Tans(,u, .’I))

Choose such a unit vector ¢ € S. Let v := v; and observe that
Sptv = | J 8B(é* + 2nté, 1).
teZ
Choose a sequence 1/4 > «; \, 0 such that 3°; ¥2j¥2j41 = co. An appli-

cation of the Borel-Cantelli Lemma shows that

T\ Nosjqg
n({nEE: ‘(9—5) ;]7:- — M2j4i

(mod ngjyi) < Yoj4i
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for 7 € {0,1} infinitely often}) = 1.

So fix such an n € ¥ and let £ = m(n). We can find a sequence of even

integers k(¢) /" oo such that for [ =0,1 and all i € N

T\ Nok(i)+
'(0 - 5) % - 7]2k(i)+l’ (mOd n2k(i)+1) S Yak(i)+-

In order to verify that v € Tang(y,z) we need to find a sequence r(z) \, 0
such that for all R > 1and all0 < € < 1 thereis a J € N such that forz > J

Fgr (T(i)—lﬂx,r(i), I/) <e

So fix such an R and e. I claim that the sequence given by setting r(¢) := px(;)
is such a sequence. For, by Lemma 3.3.3, we can find a K € N such that for
all ¢ > K there is a v; € N such that

FR(T(i)—lﬂx,r(i)a Vi) < 6/2

Moreover the radius of the circles which make up the support of v; is equal
to pr(iy/r(:) = 1. Hence §ve can find an (orientation preserving) isometry I;
of the plane which maps the support of v; onto the support of v in such a
way as to ensure that the circle in the support of v; which contains the origin
is mapped onto OB(ét,1). Moreover for all A C R?, v(A) = v;(I;7}(A))
thus v = (I;)gvi;. However v; is determined only by the values of 7 and
Nk@i)+1 and, by definition, both 27r77k(,-)/nk(,~) and 27r17k(1-)+1/nk(,-)+1 tend to
(0 — —’25) (mod 27). Hence we conclude that I; — I (the identity isometry) as
¢ — oo and thus we find that if f: R™ — [0, 00) is such that Spt (f) C B(0, R)

and lip(f) £ 1 then
‘/fdz/i—/fdz/ = ‘/fo],-du-/fdv
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< R||IL - I||vB(0, R).
Hence
Fr(vi,v) > 0asi — oo

and so we can find a J > K such that for allz > J

Fr(vi,v) <¢/2

and thus the Lemma holds. n
We may immediately conclude from this Lemma that p is purely 1-

unrectifiable.

Lemma 3.3.5 Forall0<e<1land R>1thereisaC>1and a K €N
so that for all n € ¥ and for all k > K there is an L € G(2,1) (which
depends only on the value of ni) such that if

r € [Cpx, pr-1/C]

then
FR (r_lﬂm(n),ra W_IHI LL) <e

Proof: Fix ¢ and R as in the Lemma and choose C' > 20R such that
C > 6Re™t.

Choose K € N such that for all £ > K the conclusions of Lemma 3.3.2 hold
for R and C and
ng > 3607 R2e7L.
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Let n € ¥ and set z := m(n). Fix k > K and suppose that r € [Cp, pr-1/C]-
Throughout this proof we shall use the notation of Lemma 3.3.2. In particular
L denotes the line which is determined by Lemma 3.3.2 — notice that L =
L(nk). As in the last Lemma observe that for all B € F

diam (B) = 2pr—k =r " Yy

wim o [22])

L(t):={z € L: |Qz—2rtpsé/r| < mpr/r}.

Let

and for |t| € N define

(where € is a unit vector along L.) Observe that {L(¢)} forms a cover of
LNB(0, R) and for any L(t), 7 *H"|L(L(t)) = 2px/r. Now, for |t| € N\ {0},
define B; = B(y:, px/r) € F to be the disc in F which is separated from By
by t — 1 discs of F and chosen such that ||y; — 27tpré/r|| < |ly: + 27tpré/r||.
Recall from Lemma 3.3.2 that F covers B(0, R) N Spt yi;,» and define a cover
of B(0, R) N Spt (pz,r + H'|1) by setting

C :={conv (L(t)U B;) : |t| € N}.

(recall that conv (A) denotes the closed convex hull of A.) Observe that for
allAeC
P (A) = 7 ()

and if B € C is distinct from A then
pzr(ANB) = H! lL(ANB)=0.
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Thus if d is chosen such that for all A € A, diam(A) < d then we may use
Lemma 1.3.5 to deduce that

A

d(r 'pe, + 7 HL)B(0, R)
d (ﬁ +4R+62)

'd<§+4R+ 6)

C
S5Rd.

FR (T_lﬂx,r, W—IHI I_L)

IN

IA

IN

Thus let us find an upper bound for d. Fix A € C and choose ¢ such that
A = conv (L(t) U B;) and let y be the center of B; and ¢ = 2ntpré/r. We
find that

diam (A) < 37r—- + ly = <l|-

However

ly—cl < lly—c—yo+ol
< QW —yo) — Q|| + 1Q* (¥ — vo) — Q™ ¢l + ol
222 ey - o)l + 10 -~ o)l + 222

1 T
but from (4) of Lemma 3.3.2 we may conclude that

1 2 1
< 10— ”’“(w+ﬁ) yo— Pk
ng T Pk Ngs1 T
2
< 12i&(,,+@),
ng r Pk

Thus

2
diam (A) < 3 —+121 Pe (7r+£7:)
ng T Pk

and as Cpr < r < pr—1/C we conclude that
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< -?ﬂ+12(1+23) (1+@)

C C Nk C
© 3R
< —_ 4 —].
< 36R (nk +5 )
Hence
1 a1 © 3R
Fr(r " per, "M 1) < 36R (n—k+ ?) x 5R
< 180R? (1 + ﬁ)
ng C
< €
as required. [ ]

Corollary 3.3.6 For all n € &, Tans(yu,m(n)) C N.

Proof: Fixn € ¥. In view of Lemma 1.4.6 it suffices for us to show that
forall0 < e <1 and R > 1 thereis an s > 0 such that if 0 < r < s then
there is a v € A with

Fr(r™ () v) < €
But in order to ensure this, choose C' and K such that the conclusion of
Lemma 3.3.5 holds for £ > K and then choose K’ > K such that the
conclusion of Lemma 3.3.3 holds for ¥ > K’ and for the constant C. Then,

if we set s = pg+/C, we are done. [

Corollary 3.3.7 For y-a.e.z

1 - 1
Dulp) = Zggy oy Pk =5

Proof: This follows from calculating the bounds on the upper and lower

densities of the tangent measures and applying Lemma 1.4.4. [
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Lemma 3.3.8 For all n € ¥ if P is a tangent measure distribution of u at
m(n) then
Spt (P) C {7 "H'[v: V € G(2,1)} =: £, say.

Proof: Fix1 >¢>0and R >1 and choose C > 1 and K € N such that
for all £ > K if r € [Cpk, px-1/C] then for all n € ¥ thereis a V € G(2,1)
such that

FR (r—lﬂm('n),r’ W—IHI '_V) <e

(This is possible by Lemma 3.3.5.) Consider the closed set
L(e,R) :={v € M: Thereis an w € £ with Fr(v,w) < ¢€}.
Fix n € ¥ and set z := m(n). We will show that
lim [0, (4, )] (£(e, B) =1

as we may then deduce from Theorem 3.1.2 that for any P € P(u,z)

P(L(e,R)) = 1.
Hence, as
L=,
leN

it follows that for any such P, P(L£) =1 and so, as L is closed, Spt (P) C £
as required.

Observe that if, for some j > K, t € [Cpj,pj-1/C] then t7ly,; €
L(e,R). Thus suppose that 0 < r < pg_1/C and choose k such that
r € [pr/C, pr-1/C).
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If r > Cpy then

[er(ﬂa x)] (£(€7 R)) =

v

>
2>
If pr,/C <r < Cpj then

[0, (1, )] (£(e, R))

Hence, as

1 /ll (Nm,t) dt
—logr Jr “eR)\ Ty t

L lo Pk-1 —logr + kz—l (lo pi-1
—logr &7¢C 8 =% 87¢C

2(k+1-K)logC
—logr
20k+1-K)logC
logC + Tl logn;

1 —

a similar calculation gives

. 1 /II <,uz,t> dt
T TlogrJr KR\ 1

— log ij)}

> Ly [log 222 — 1og € ]
- _logrj=}{ g C g p]
S TPk _2(k+1-K)logC
— —logr —logr
1 2k+1-K)logC

1-(logC/logps) —logC + kol

lim ——k—— =0
B S Togm;

logn;

we deduce that on sending r to zero (and hence k to infinity) that

as required.

Corollary 3.3.9 For u-

[0, (4, 2)] (£(e, R)) — 1

a.e.x
1
D%(Ma :L') = 7_r'
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Proof: From Lemma 3.1.3 we know that for p-a.e.z, P(g,z) is a non-
empty set. By the preceding Theorem we can easily see that, for u-a.e. z, if

P € P(u,z) and v € Spt (P) then vB(0,1) = 2/x. Thus, from Lemma 3.1.4,
we immediately conclude that, for y-a.e.z, DX (g, z) = Di(u,z) = 1/x and

so the claim holds. n
We shall now calculate the tangent measure distributions of x4 — these will
depend on how quickly the sequence n; diverges. We shall first investigate

what happens when n; diverges quickly to infinity.

Lemma 3.3.10 Suppose that

log ng

and thatn € £, 1 > (1) \, 0 and k(¢) / oo are such that

1. for alli, pruy < 7(3) < pr(iy-1,

2. 2wy [k — o € [0,27],

8. 2% nk(iy-1/nk(y)-1 — B € [0,27],

4. (log pri)-1)/ logr(i) — v € [0,1].
For = € [0,27] let Az := 7~ YH' |y where V € G(2,1) is the line which makes
an angle = — 72 with the positive z-azis. Then

O, (1, m(n)) = (1= 7)Ax, + 74,

Proof: First notice that if (log n)/(XF! logn;) — oo then

log pr
log pr—1
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Let z := m(n) and, for convenience, let E(y) := exp(y). For o € ¥ let L(o})
denote the line which makes an angle of (204 /n —1/2) with the positive z-
axis. In view of Theorem 3.1.1 it suffices to show that for all § : R* — [0, 00)

for which lip (6) < 1 and Spt (8) is compact we have

1 ) /1 . (ux.t((’)) % = (1= 7)E(=a(8)) + YE(=As(6))-

—logr(3) Jr() t
So fix such a 8 and choose R > 1 such that Sptd C B(0,R). Fix0 <e< 1.
Choose § > 0 such that if [y — A, (0)] < 6 then |E(—y) — E(—X4(9))] < €/18
and if |y — Ag(0)| < 6 then |E(—y) — E(—As(8))| < €/18.
By Lemma 3.3.5 we can find C and K’ € N such that for all £ > K’ —1if
o € ¥ then thereisan L = L(ok) € G(2,1) such that for all t € [Cp, px-1/C]

Fr (t—lﬂ'm(o‘),t, T 'H |_L) <é/2.

Hypotheses (2) and (3) also enable us to find a K” > K’ such that for all
z‘ 2 KII,
Fr (77 H Linge)> Aa) < 6/2

and
Fr (7"_1%1 I.L("?k(i)—l)’ )‘ﬁ) <é/2.

Hence, if ¢ > K" then for t € [Cpk(i), pi(i)-1/C] we have
FR (t—lﬂz,ta ’\a) S 6
and for ¢ € [Cpr(i)-1, Pr(i)—2/C] we have

Fr (t_l/l,z,t, )\[3) < 4.
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Thus, in these instances, either
|E(=t7 pa0(0) — E(=Xa(6))] < €/18

or

[E(—t7 pz(6) — E(=25(0))] < €/18,

respectively.
We shall consider three separate cases:
Case 1: 0 <y < 1.
Let e := €[l + E(—X4) + E(—Xg)]7'/6 and choose a K" > K" such that for
all e > K"

log pr(i)-1 < log(pk(i)-1/C)

M—els logr(i) —  logr(s)

<7v(l+e)
and
Corgy i < pi(iy-1/C.

(We are using that log pi-1/log p; — 0.) Finally choose K > K" such that
forall: > K

2log C log(pk(i)~2/C) }
maxq§ — , < ¢/6.
{ log(pk(i)-1/C) " log(pr(i)-1/C) /

We can now estimate that

R S N (A AR
|1Ogr(i)|/r(i)E( ) (1 =7)E(=Xa) — YE(—Xp)

t t
1 Pkgg-q Pk(::)—z ot di
T1 . 7o _i —_— - —Ay) — —A
= |llogr(z)] (/ " Jonoon E< t (6)) 7~ (1=7E(=)a) = 7E(=s)
2logC | —log(pki)-2/C)
—logr(i) " log ()
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—log T'(Z) i —t—
1 P_k%tz_ Kzt dt
“log r(4) ‘/Cpk(')—l B (__(9)) — —vE(=Xg)| +¢/3.

Now for r € [r(z), pr(i)-1/C] we know that

~(€/18) + E(=2a(0) < B (~22(0)) < B(=3a(6)) + (¢/18)

t

and so

[log(pk(i)—l/ C)

0210) 4 ((ef19)+ B2 0)

1 LOSS dt

wwl, E(HO)T

log{pi91/C) 6
< [P ) (pra(o) + (e/19)

Hence

Pk_

|logr I/ ( ) %—(1—7)E(_/\a)
veE(=Aa(9)) + (¢/18)(1 + (1 +¢))

€/3.

<
<

Similarly we calculate that

1 % 2‘—2 Mzt dt
_ E (_L 0 ) @ _
—log (1) /cpk(.-)_1 t () t 7E(=)

Thus adding together we deduce that

S 1 ! ps(0) dt
—log r(3) /T(i) E ( ¢ ) 7 ~ (1 =ME(=2a) —7E(=2p)| S €

< ¢€/3.
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as required.
Case 2: y=1.
Let a := 5¢[1 + E(—Xg(6))]71/6 and choose K > K" such that for all : > K

log Cpk(i)_

l1-a< ! <
“ log r(7) slta

(and so 1-0%‘—9.—‘—121—(1)
gr(7) ’

r(¢) > C~log pi(iy-1

and
— log(px(i)-2/C)
— log Pr(s)-1

< €/9.

We can calculate that

1—:10_;@/%11')]3 (#L:t@) % - E(_)‘ﬁ)i
e L

- log T(Z) Cpk(,‘)__l t t

N log Cpri)-1 —logr(i)| | log(pi(i-2/C)
—log r(¢) log r(z)
1 Pr-2/C s .(6) dt
- E | E= 2 _E(- .
\_ log r(z) /Cpk(-')—l ( ¢ ¢ Bt atels

Proceeding as in Case 1 we find that

1 P(i)—2/C ,uz,t(G) dt
‘— ].Og 7'(2) /Cpk(i)—l E ( t t B E(—Aﬁ)
< 6/18 + aE(—/\ﬁ).

Thus recombining we deduce that

1 /,1 E (&@) %— E(—=g)

_ <
—logr(2) Jr(i) t =€
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as required.
Case 3: v=0.

We may assume that either

(i) there is a K" > K" such that for all i > K" r(i) < Cpy) which

implies that log py(;)/ log r(i) — 1.
Or |
(i) there is a K" > K" such that for all : > K" r(3) > Cpiiy.-

In either case the procedure is the same as before.
For (i): Let a := 5¢[1 + E(—X,(6))]7'/6 and choose K > K" such that
forallz > K
__log Cp’?(") >1l—-a
log r(z)
and
log(px()-1/C)
log r(z)
Then we may calculate that

T;T/() B (&7@) T E()

1 Pr(i)-1/C prt(0)\ dt
S — — 2| ——FE(=)
|—10g r(2) /Cpk(i) b ( t ¢ ()

< ¢€/9.

4 |log Coriy — log r(s) N log(px(i)-1/C)
—log r(2) log r(1)
1 Pi(iy-1/C ,uz,t(a) dt
e /Cpk(‘) E( S T B(=X)| +a+e/o.

Hence, as in Case (2) we find that

i-1/C
1 "/‘Pk() g izt (6) ﬁ_E(_/\a)
—logr(¢) Jouwu t t
< €/18 4+ aE(—Mp).
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Thus recombining we deduce that

—lo; (1) /r(li) E (M%W)) % ~ E(=A)

<e

as required.
It is straightforward (but tedious) to verify that (ii) follows in a similar

manmner. : ]

Corollary 3.3.11 Suppose that f,f%gl%‘g— — 00. Then for all z € E if
i=1 o8 T

P € P(u,x) then there is a v € [0,1] and V,W € G(2,1) such that

P = (1=7)Alr-110), YA 190 |y -

In fact it is possible to show slightly more: For p-a.e. z, P(u, z) consists of
all possible such distributions. This follows from the Borel-Cantelli Lemma
and some careful estimates.

If ny tends to infinity slowly then the tangent measure distributions are

unique: In order to see this we need the following results.

Lemma 3.3.12 Let (Q, P) be a probability space and suppose that X; :  —
R is a sequence of independent random variables with zero mean for which

there is a C > 0 such that for all ¢, | X;| < C. Then

P ({w : lim n™ znj.X,-(w) = 0}) =1

=1

Proof: Define

We wish to prove that



In order to show this it suffices to verify that

i/(sn)‘* dP < oo

as then, by the Monotone Convergence Theorem, we may deduce that

o0

/ {Z (Sn)“] dP < oo

n=1

which in turn implies that

p (Z Si< oo) =1
n=1

and thus P (lim,— S5 = 0) = 1 which is equivalent to P (limy—e S, = 0) =

1 as required.

Thus consider, for n € N which is larger than 4,

n 4
/ S4dP =n* / (§X> dP.

Since the X; are independent it follows that the only terms of the right hand

expression which contribute to the integral are of the form
XX
where a; # 1 for 1 € {1,...,n}. Hence

n 4!
44p < p ] 1 il / 22
/ StdP < n L}ﬂj X{dP + 5 2«; X2X?dP

< n7C*n 4+ 3n(n — 1))

< 3n72CH

Finally summing over n gives that

i/SﬁdP<oo

i=1

and so, in view of our earlier comments, the Lemma follows. n
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Lemma 3.3.13 Let (2, P) be a probability space. Suppose that a; ,/ 0o is a

sequence of positive real numbers with

lim sup (—Izi> < o0
k—oo  \ 2i=1 @i
and X; : Q@ — R is a sequence of independent, uniformly bounded random
variables such that [ X;dP — e € R as 1 — oo. Then
Proof: We shall only prove the Lemma in the case that e > 0. The other
cases are similar. Let E; := [X;dP and set Sy := YF  (Xi — E;). Fix
0 < € < e and observe that from the last Lemma we can find for P-almost

every w a k' € N such that for all & > ¥/
|k71S| < €/3.

We can also find a k” > k' such that for all ¥ > k", |E; — e| < ¢/3. Finally

we can find a K > k" such that
lf{_lskul S 6/3

Combining this we deduce that for P-almost every w there is a K € N such
that for all k > K

|Sk — ke| < ke.
Now
k k
Za,’Xi = a5+ Z(Sz - Si—l)az'
=1 =2
k-1

= arSe+ D_(ai — ai1)Si.

=1
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Thus, P-almost surely, there is a constant C(K) such that

k
> aiX;
i=1
k-1
< C(K)+(e+ekar+(e—€) D> i(ai— ait1)
i=K+1

k-1
C(K)+ (e+ €)kar + (e —€) | (K + Dags1 + (K — Day + Z a;
1=K+2
which for some constant C'(K)
k

= C'(K)+2ckar+(e—¢€) Y. ai
1=K+2

In a similar manner we find that, P-almost surely, there is some constant
C"(K) such that
k k
Za,-X,- > C"(K) — 2¢ekax + (e + ¢€) Z a;.
i=1 i=K+2

Hence, on rearranging and taking limits we find that

k
.. 1 0 X . ka
hmmf’;la————ez—e 2lim sup — L
k—o0 i=1 &i i=1 Qi
and
k
. — aiXi . ka
thup-l—-kl-——eS—{-e (211msup z i —1)
k—co i=1 &1 i=1 @i
which, as € was arbitrary, implies the result. n

Finally we are in a position to calculate the tangent measure distributions

for slowly increasing sequences ny.

Theorem 3.3.14 Suppose that

. klog ny
] BTk ) o
iy (zi-;l log m) =
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then for u-a.e.z the tangent measure distributions of u at = are unique and
equal the probability measure on M which is uniformly distributed on L :=

{7('—17'{1 lz: L € G(2, 1)}

Proof: Fix N € N and define for [ € {1,...,N}, 4 :=[({ - 1)/N, I/N].
Define a map u : [0,1] — £ by u(s) := #~VH' |, where L is chosen such that
it makes an angle of ws with the positive z-axis. Let A be Lebesgue measure

restricted to the unit interval and set
P =ugl.
That is, for A C M, define
P(A):=X({s: u(s) € A}).

We wish to show that for p-a.e.z

P(p,z) = {P}.
Equivalently we need to éhow that for u-a.é. z

O,(y,z) = Pasr —0.

Let, for [ € {1,...,N}, F; := u(A;) then F; is closed and a subset of L.

Moreover

L=F
]
and recall from Lemma 3.3.8 that for any tangent measure distribution, @,

of u, Spt (@) C L. Thus in order to show that P is the only tangent measure
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distribution for p-a.e.z it suffices to verify that for all N € N and [ €
{1,...,N}
lim inf [©, (4, z)] (F1) 2 1/N
as we may then deduce (from Theorem 3.1.2 ) that for any @ € P(y, z)
Q(F) 21/N

which, since N and [ were arbitrary, would imply that @ was uniformly
distributed on £ and hence equal to P.

Hence, in order to verify this, fix n € ¥ and let z := m(n). Fix0<e< 1
and R > 1 and choose C > 20R and K € N such that for all £ > K, if t €
[C pk, pe—1/C] then thereis a V € G(2,1) such that Fr(t *pgs, 7 'H |v) <€
(this is possible by Lemma 3.3.5). Also observe that V depends only on 7.
Thus we can define a sequence of independent, uniformly bounded random

variables X; : ¥ — R by

1 ifVeF,
Xk(n) =={

0 otherwise.
Observe that [ X;dk — 1/N as 1 — oo.
Define

FiRe:= {1/ € M(R?): There is an w € F; with Fp(r,w) < e}
and let
F .= {s €(0,1]: s gy € .7:1,3,5}.
Fix 0 < r < Cpk41 and choose k such that Cpr < 7 < Cpr—y. Now let us

estimate [©,(u, z)] (Fi,g,) for p-a.e. z:

0] (Frrd = = [ I
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1

v

> Xi(n) [log %l — log Cpi]

- log T r<Cp;,i>K

= Z Xi(n)[logn; — 21og C]

— log r 5
5k Xi(n)[logn; — 2log C]
—log C + 1 logn;

Since, as noted in the proof of Lemma 3.3.8,
i =
klvn;) 21_1 log g 0
we deduce that
.. Yi= K" X(n)[logn; — 2log C]
lim inf 3
k—o0 —log C' + i, log n;

k
— limint Ziz Ki(n)log
k—oo T Etllogn;

> liminf Tio sz( ) log n: 1 — limsup ______11<:g1nk+1
k—oo > iy logn; koo Yt logn;

which, by our hypothesis on the sequence n,
Lk Xi(n )lognl
= liminf

k=00 Y5 logn;

However we may apply Lemma 3.3.13 (with a; = logn;) to deduce that for
k-a.e. 1,

e
and so we deduce that for y-a.e.z

=1/N

liniionf ©:(p, )] (Fire) =2 1/N.

Hence as

= Fri

1€EN
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we deduce that

liminf [0, (g, z)] (F1) > 1/N

N0
and so, from our earlier observations, the result follows. n
Thus we have calculated the tangent measure distributions of g in two
cases; when ny " oo quickly and when ny ,/ oo slowly. We have not

investigated the case when

lim inf (ﬂn—k—) < o0

k—o0 Zf___l log n;
and yet
) ( klogny )
limsup { 4————— ] =0
k—o0 Zi:l Iog n;

It seems likely that there would be a mixture of different types of tangent
measure distribution — some with (finite) discrete supports and others sup-
ported by the whole of £. This seems interesting but I feel that the actual
calculations would be very similar to those presented here and little is to be

gained by making them.
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