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Abstract

In this thesis we investigate how knowledge of the local behaviour of a Borel 
measure on R ”' enables us to deduce information about its global behaviour. 
The main concept we use for this is that of tangent measures as introduced 
by Preiss.

In order to illustrate the limitations of tangent measures we first construct 
a Borel measure ji on R^ such that for ^-a.e. x, all non-zero, locally finite 
Borel measures on R ”' are tangent measures of // at T. Furthermore we show 
that the set of measures for which this fails to be true is of first category in 
the space of Borel measures on R ”’.

The main result of the thesis is the following:

Suppose that 1 < m  < n are integers and p, is a Borel measure on R ”' such 
that for p-a.e. x,

1. The upper and lower m-densities of p at x are positive and finite.

2. I f  v is a tangent measure of p at x then for all V  G G (n,m ) the 
orthogonal projection of the support of v onto V  is a convex set.

Then p is m-rectifiahle.

By considering a measure derived from a variation of an example given 
by Dickinson, we are able to illustrate the necessity of a condition such as [2) 
in our main theorem. Moreover this measure has its average density equal to 
its upper density and possesses a unique tangent measure distribution almost 
everywhere.

Our final example is based upon one given by Besicovitch. We show that 
there is a Borel measure p with positive and finite upper and lower 1-density 
almost everywhere and with average 1-density existing almost everywhere 
but with non-uni que tangent measure distributions.



Acknowledgem ents

I would like to thank Professor D. Preiss for his invaluable advice, guidance 
and patience in the face of adversity. Thanks are also due to all in the Post­
graduate Office of the Department of Mathematics for the many stimulating 
discussions.

I must also acknowledge my debt to the following people — without their 
support over the past years none of this would exist: Mum, Dad, Jean, David, 
Tuan, Samantha, Alexander, Luke, Charlotte, Richard and Vicki.

Finally I would like to thank SERC (now EPSRC) for the money.



C on ten ts

A bstract 2

Aknow ledgem ents 3

1 Prelim inaries 6
1.1 In troduction ........................................................................................  6
1.2 N o ta tio n ..............................................................................................  7
1.3 Some results from Measure T h e o r y ..............................................  9
1.4 Tangent M easures..............................................................................  16
1.5 Rectifiability............................................................................................ 22
1.6 A measure with a large set of tangent m e a s u re s ........................... 23

2 A local version of the Projection Theorem  37
2.1 In troduction ............................................................................................ 37
2.2 L e m m a s ...................................................................................................38
2.3 Proof of Theorem ...........................................................................  58

2.3.1 Properties of dependent upon e .................................. 60
2.3.2 Properties of independent of e ......................................84
2.3.3 Deriving a co n trad ic tio n .........................................................94

3 Exam ples 96
3.1 Average densities and tangent measure distributions.......................96
3.2 On the example of Dickinson...............................................................103

3.2.1 Construction ...........................................................................104
3.2.2 Properties of / i .......................................................................106

3.3 On an example of Besicovitch............................................................. 120
3.3.1 Properties of our m e a s u re .....................................................124



Bibliography 157



C h ap ter 1

P  relim inaries

1.1 In trod u ction

The tools introduced by Besicovitch in his seminal papers of the late twenties 

and early thirties [Bes28, Bes38, Bes39] have had an enormous influence 

on the development of modern geometric measure theory. In these papers 

he introduced, amongst others, the notions of approximate tangents and 

densities. Many mathematicians working in geometric measure theory today 

make constant use of these fundamental ideas.

Besicovitch was particularly interested in the dichotomy between regular 

and irregular sets and one of his most striking results in this direction was 

his Projection theorem for 1-sets in the plane: it stated that a 1-set, in 

the plane is irregular if and only if for almost every line, L, the projection 

of E  onto L has zero length. This result was eventually extended to general 

measures in Euclidean space by Federer [Fed47a, Fed47b] and a detailed



account of this result may be found in [Fed69, 3.3].

More recently Preiss [Pre87] introduced new tools for studying the local 

structure of measures — tangent measures. Using these new notions he has 

succeeded in answering many of the remaining problems concerning rectifi­

able measures. (See, for example, Theorem 1.5.2.)

In this thesis we investigate how information about the tangent measures 

of a measure determines its global structure.

In this Chapter we briefly summarise the background material required 

for the rest of the thesis and provide a basic introduction to the theory of 

tangent measures. The final section of this chapter illustrates the limitations 

of tangent measures and shows that they are not a universal panacea.

1.2 N o ta tio n

We use to denote n-dimensional Euclidean space with ||.|| denoting the 

usual Euclidean norm and (.,.)  the associated inner product. For E  C R" 

and a; G R ” we define

d{x,E) := mi{\\y -  x\\ : y e E}

and for r  > 0 we set

B{E,r) := {t/ G R" : d{y,E) < r},

U (E ,r) := {y e l C  : à{y,E) < r}.

Observe that U(jE, 0) =  0 and B(E, 0) is just the usual topological closure of 

E  in R^ (usually denoted by clos(F^)). We abbreviate B({a;},r) by B(rc,r)
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and similarly for U (x,r). If r  > 0 then B(a;,r) is a non-degenerate ball. If 

V  C R ” let inty(£^) denote the interior of E  with respect to the induced 

topology on V  and let dyE  denote the boundary oi E f \ V  (when considered 

as embedded in V). Define int [E) := int r ”(.ë) and dE  := conv [E)

will denote the closed convex hull of E. For a set E^ card (E) will denote the 

cardinality of E.

N  will denote the natural numbers, Z the integers, Q the rationals and

will be the positive rationals. There will also be occasion to refer to 

— n-tuples of rational numbers. For x G R, [x] will denote the least integer 

greater than or equal to x and [xj will denote the largest integer less than 

or equal to x.

Let

G(n,m ) := {V  C R" : y  is an m-dimensional linear subspace of R ”}.

For V  G G(n, m) let Py denote orthogonal projection onto V  thus Py: R ”’

R ”' and has range V. Define V{ V  to mean that ||Py- — Py|| 0 in 

the usual operator norm. Let Py be the orthogonal projection onto the 

(n — m )—dimensional subspace of R ”' which is orthogonal to V.

For X  G R^, h > 0, > 1 and V  G G(n, m) define X(æ, h, k, V) by

X{x, h, k, V) := {y eBJ" : \\x - y \ \ < k [ h i -  ||Py(a: -  y)\\]} .

This is an expanded cone around x with central axis V.



1.3 Som e resu lts from  M easu re T h eory

Throughout this thesis by saying that ^ is a Borel measure over we shall 

understand that /i is a Borel regular outer measure over R " such that all 

Borel sets are /^-measurable. A measure (i is locally finite if for all x 6 R^ 

there is an r  > 0 such that /iU(a:,r) < oo. Recall that locally finite, Borel 

measures on R^ are Radon measures (see [Fed69, 2.2,5]). Observe that this 

implies that for all compact sets K  C R ”' //(A^) < oo. All measures we shall 

consider in this thesis are Borel measures and consequently we shall often 

just write ‘measure’ for ‘Borel measure’. A measure is almost finite if

// {æ G R" : For all r > 0, /zU(a:, r) =  oo} =  0.

We define the support of a measure by

Spt [1 := R^ \  {a: : There is an r > 0 with /j,\]{x, r) =  0} .

Notice that Spt /x is a closed set and fx (R ’’' \  Spt fi) = 0. For a set A C R ”' 

we define the restriction of fi to E, by

/ |̂_g(A) := fi{A n E) for A  C R^

Observe that if A is a Borel set and // is a Borel measure then [i [e is also a 

Borel measure.

A function / :  R ”' X ,  where % is a topological space, is Borel-measurable 

if for all open sets U C X  we find that f~^{U) is a Borel set in R ’̂ . Observe 

that if // is a Borel measure on R ” then f  is //-measurable.

For X G R^, A C R^ and r > 0 define

Ax,r := {x A ra : a G A}



and for a measure f i  on R ” define a new measure by, for ^  C

f i x , r { E )  : =  f j . { { x  +  re : e G E } ) .

Thus Observe that if y G R ” and 6 > 0 then

{fJ'x, r )yg =  fJ'x+ry,rs

and consequently

One measure which will appear on numerous occasions in this work is 

m-dimensional Hausdorff measure (where 0 < m < n and we are working in 

R ”.) If a{m) denotes the Lebesgue measure of a unit ball in R ”̂  then we 

define the m-dimensional Hausdorff measure of a set ^  C R^ by

7{^{E) := sup inf |  ̂  a(m ) (  : E  C | l  Z7i, Ui are open and
>̂0 U=i V 2 /  ■

for all i,dmm{Ui) < ^ | .

For further discussion of Hausdorff measures and proofs that they are indeed 

Borel measures see either [Rog70] or [Fed69, 2.10].

It will also be helpful to define for integer m between 0 and n

Q{n, m) := {cVE [y : c > 0, V G G(n, m)}

which may be thought of as the set of flat m-dimensional measures.

One classical result on approximation of measurable functions which we 

shall use is Lusin’s Theorem which states;
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Theorem  1.3.1 I f  fi is a Radon measure over a locally compact Hausdorff 

space X ,  f  is a p-measurable function with values in a separable metric space 

Y , A  is a p-measurable set for which p{A) < oo and e>  0 then A  contains a 

compact set K  such that p[A \ K )  < e and f [ x  is continuous. (Where f\_K 

denotes the restriction of f  to K .)

Proof: See [Fed69, 2.3.5]. ■

For a measure p on R ”', x £ R ” and 0 < m < n define the lower m-density 

of p at X, D^(/z,a;), by

and define the upper m-density of p at x, Dm{p,x), by

/ N TD „ ( / . , x ) : = h m s u p ^ ^ .

If these two limits are the same at a point x then we call their common value 

the m-density of /z at a; and denote it by Dm{P:x)-

The following lemma allows us to compare a measure p with m-dimensional 

Hausdorff measure.

Lem m a 1.3.2 Suppose that p is a locally finite, Borel regular measure on 

R^, 0 < X < oo and 0 < m < n.

1. I f  E  C R " is a Borel set such that for p-a.e. x in E, D^(/z, x) < x  then 

p{E) < 2"'x 'K '"(Spt/znE).

2. I f  E  C R " is a Borel set such that for p-a.e. x in E, Dm{p-, x) > x  then 

p{E) > x ^ ”"(Spt/z n E).

11



Proof: The first statement follows immediately from [Fed69, 2.1.19(1)].

The second statement follows from [Fed69, 2.10.19(3)] which states that if 

all closed subsets of are yu-measurable, G is open, F  G G and D^(//, x) > t 

whenever x E F  then

//(G) >  ^T^-(F).

For, as E  is Borel and // is a locally finite, Borel measure, we can find an 

open set G D  E  such that //(G \  E) is arbitrarily small. Approximation now 

gives the result. ■

For a sequence of measures {fi{) on R ”' we say that //% converges to a 

(locally finite) measure // (denoted by Hi —> //) if for all continuous functions 

/  : R ” —>■ R  with compact support (that is. the set {x : f [x)  ^  0} is 

compact) we have

J  fdfXi -V j  fd^i.

1Î D > 0 and two Borel measures // and z/ are such that (// +  z/)U(0, D) < 

oo then we define their distance apart on U(0, D) by

FnifJ-, u) := snp^ J  f  dfi -  J  f  di/ : /  > 0, Spt ( /)  C B(0, D) and lip ( /)  < l |  

It can be shown, [Pre87, 1.11], that

fii > fi

if and only if for all D > 0

Fi)(//i, //) 0.

Four elementary observations to make about Ff)(//, %/) are
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1. =  -C>Fi(//o,D,i^O,D),

2. if a; 6 R" then D ¥ i {ii^̂ d , ^x,d ) < F|a,|+£)(/i, %/),

3. a  D < E  then Fd(/^, %/) < F^(/z, u),

4. if w is also a measure then

< Fd {ij>,uj) +  Fz)(w,i/).

Let A f(R ”) denote the set of all locally finite, Borel measures on R ” (we 

shall usually write M  for A f(R ”')).

If for //, z/ G At we define

oo

dist(/z,z/) := ^2~*m in{F;(/a,t/), 1}
î=i

then this is a metric on A4 and with this notion of distance A4 is both 

complete and separable (see [Pre87, 1.12(2)].) Notice that if D > 1 and 

dist(//, I/) < e < then for 0 < m < D, F,n(/^? Also observe

that for n G A4, F p (^ ,.)  is an upper semicontinuous function with respect 

to the topology induced by dist on A4.

We shall have frequent recourse to the following Lemma which is a con­

sequence of Prohorov’s Theorem.

Lem m a 1.3.3 I f  (f î) is a sequence of Borel measures on R ” such that for 

a l lT  > 0

limsup //{B(0, T) < oo
i—*oo

then (m) possesses a convergent subsequence.
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Proof: See, for example, [Pre87, Lemma 1.12]. A version of this result for 

probability measures can be found in [Par67]. ■

The following Lemmas provide us with some basic techniques to compare 

two measures.

Lem m a 1.3.4 Suppose that p and u are in A4(R”) and D > 0. I f  r  > 0 

and E  C R ” are such that C B(0, D) then

p{E) < î B{E,t ) +  Fd {p , z/)/T.

Proof: This is [Pre87, Proposition 1.10(3)]. ■

Lem m a 1.3.5 Suppose R > 1  and both Ç: A4(R”). Suppose that A  is a 

finite family of Borel sets such that:

1. I f  A, B  Ç: A  are distinct then p{A f) B) — u{A PI R) =  0,

2. [Spt (p) U Spt (i/)] n B(0, R) C Uv4.

Then

Fr {p , y) < Y ,  diam {A){p +  y){A fl B(0, R)).
AeA

I f  for all A £ A; diam(A) < d then we have

Fr {p , y) < d[p +  i/)(B(0,R)).

Proof: Observe that the second statement follows immediately from the

first since (1) and (2) imply that

+ ''){A n B(0, R)) = +  ^)(B(0, R)).
AÇiA

14



In order to verify the first statement suppose that /  : R"' —j- [0, o o ) is 

such that Spt ( /)  C B(0,i?) and lip ( /)  < 1. We need to estimate

j f d { ^ - u ) =

but on using (1) and (2) of the hypotheses we find that

< E
AÇA LA nB { 0 , R)

fd{f i  -  v)

Therefore let us investigate JAnB{o,R) f  ~  foi" some A Ç: A. For any 

measure w we have

ÜJ[A n B(0, R)) inf f ( x )  < ^  dcu < uj{A fi B(0, R)) sup f {x)

but lip ( /)  < 1 and so

inf /  > sup /  — diam(A).
^  A

Hence

w(A nB(0,R)) sup /  — diam (A) < /  /  do; < o;(A n B(0, i?)) su p / .
J A n B { 0 , R )  A

Thus on considering fAnB(o,R) f  we find

f d { f i - i y )  < /i(A nB (0 ,i?))[sup /] 
A n B { 0 ,R) A

— i/{A n B(0, i?))[sup /  — diam (A)]
A

= {fi — i/){Af] B(0, R))  sup /  — diam (A)z/(A fl B(0, R))
A

< diam(A)i/(A n B(0, jR).

15



Similarly we find that

! f  d{fi — 1/) > /i(A n B(0, i?))[sup /  — diam(A)] 
Ang(o,B) A

— u{A n B(0, R)) sup /

=  (/i — i/)(A n B(0, R)) sup /  — diam (A)fj,{A fl B(0, R))
A

> —diam (A)/^(A n B(0, i?).

Thus

L < diam (A)(// +  i/)(A fl B(0, R))
>AnB{0,R)

and so returning to our original estimates we find that

f f d { f i - i / )  < ^  d iam (A )(//+ i/)(A n B(0,i2))
AeA

which implies the Lemma. ■

1.4 T angent M easures

Tangent measures were introduced in [Pre87] and are an extension of ideas 

in [Mardi] and [Mat75j. They provide a natural framework within which to 

describe and investigate the local behaviour of measures.

Suppose that fi is an almost finite measure on R ” and that x G R ”'. We 

say that a non-zero, measure 1/ E A4 on R ” is a tangent measure of // at T if 

there are sequences \  0 and > 0 such that

ly = lim Ckfix,rk-K—t-OD

By Tân(fx,x) we denote the set of all tangent measures of jx at x.
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It is clear that Tan(^, x) has the following property: If i/ G Tan(/z, x)  then 

for c, r  > 0, ci/Q̂r E Ta.n(/n, x). Also Teni(/Lt,x) U {0} is a closed set.

We should first verify that tangent measures exist:

Lem m a 1.4.1 I f  iJ, is a almost finite Borel measure on R” then for fi-a.e. x

Tan(//, T) ^  0.

Proof: See [Pre87, 2.5] ■

One of the important properties of tangent measures is that of shift in­

variance:

Lem m a 1.4.2 Suppose that ji is an almost finite measure on R”. Then

fx-a.e.x has the following property: Whenever u G Ta.n(iJ,,x) and G Spt z/

then

z/(,i G Tan(^, x).

Proof: This is [Pre87, 2.12]. ■

If // is a measure and a: is a point in R^ such that for some 0 < m < n

0 < D^(/i,a:) < D^(/z,x) < oo

then we may define the standardised tangent measures of p at x  ̂Ta,ns{p, x), 

as follows:

Tansip, x) \= \ p Ç: M  z/ = lim px,rk for some sequence \  0 >.L k—̂ oo ’ J

It is easy to verify that if z/ is a standardised tangent measure oi p ai x then 

for p >  0

0 < Où[m)^^{p,x)p^ < z/B(0,p) < a(m)Drn(p,a;)p”' < oo (1.1)

17



and hence 0 G Spt v. It is interesting and useful to observe that shift invari­

ance holds within the (smaller) set of standardised tangent measures:

Lem m a 1.4.3 Suppose that p, is a measure on R ”, 0 < m < n and for 

p-a.e. X

0 < < D^(/i,a;) < oo

then for p-a.e. x i f  p E. Tang(^, a;) and (  G Spt z/ then G Ta,ns{p,x).

Proof: P. Morters observed that it suffices to replace every occurrence of 

the letter ‘c’ by in the proof of shift invariance for normal tangent

measures [Pre87, 2.12]. ■

As an immediate corollary of this Lemma and equation 1.1 preceding it 

we deduce that:

Corollary 1.4.4 Suppose that p is a measure on 0 < m < n and for 

p-a.e. X

0 < D^(/x,x) < V)m{p,x) < oo 

then for p-a. e.x if  v £ Tang(//, x), (̂  £ Spt v and p > 0 then

0 < < z/B((,p) <  a(m )D ^(p, a:)p^ < oo.

Moreover there are tangent measures G Ta.ns{p,x) such that

0) =  D^(p, x) and D^(a;, 0) =  D^(z/, x).

If 0 < D ^(p, x) < Dm{p,  x) < oo then limsup^^o < oo and so we

may use Lemma 1.3.3 to deduce that for every sequence r,- \  0, {rf^Px,Ti)

18



possesses a convergent subsequence and hence we deduce that Tan5 (yLf, x) will 

be a compact set.

For non-empty compact subsets M, N  C M  define their HausdorlF dis­

tance to be

H(M,7V) := max{d(M,iV), d{N, M)}

where

d{M,N)  := sup in^dist(/z, z/).

If K is defined to be the collection of non-empty compact subsets of M. then 

(/C, H) is a complete separable metric space (see [Mic51, Propositions 4.5(1), 

4.1(3)]).

Lem m a 1.4.5 Suppose that pL G M ,  0 < a < 6 < oo, 0 < m < n and 

E  C R ”' is a Borel set such that for all x Ç: E

a < Rmih'i x) < Dm(/^, x) < b

then the function t: E  K defined by t{x) := Tang(//, x) is Borel-measurable.

Proof: Since /C is a complete separable metric space it suffices to show that 

for all 0 < 6 < 1 and æ G E

F  := {y e E  : E{t{x), t{y)) < 6}

is a Borel set. However

F = {y e  E  : d{t{x),t{y)) < 6} f) {y E E  : d{t{y),t{x)) < 6} .

Thus as, for u, v E E,  we have

d{t{u),t{v)) = sup inf dist(cj, z/) 
uet{u) «"GtW

19



it suffices to verify that for all 0 < cr < 1 and all jR E N  both

and

Fa '-= \ y Çi E  : sup inf F^(w, v) < a

Fb {y  ^  E  : sup inf Ffl(a;, v) < cr
I iy£t{x)

are Borel sets. However as, for any i? > 0 and k G M., Fr {k,.) is upper 

semicontinuous, we find that

-̂4= U n n  U FA{j , k , l , r , s ,T)
j . t e N  r6(0 ,l/A ;]nQ  /,T gN  se (0 ,l /T ]n Q

where

Fa U, k, /, r, 6, T) := [y e E : Fr ( r ~ ^ < (7 (l -  i “^) ( l -  }

Also we find that

f g =  u  n  u n  u  FB{j,k, i ,r,s,T)
j,A:€N r-6(0,l//c]nQ  l £ N  T c N  s6 (0 ,l /T ]n Q

where

F B { j , k , l , r , s , T )  : = [ y  e  E : F r  (̂ s ~ ^ yx, r )  < (% (l ~  J~^)  (l “ ^~^) }  •

Hence, as these sets are clearly Borel, the result follows. ■

Lem m a 1.4.6 Suppose that M  C Af(R"'), y is an almost finite measure on

R"’, X  G R^ and for all R  > 1 and e > 0 there is an s > 0 such that for all

0 < r < s we can find a u Ç: M  with

F r  u )  < e

then

Tan^(jU, a;) C clos (AT).

20



P ro o f: Suppose there is an w G VW such that for some sequence ri \  0,

fix,n w and w 0 clos (jV). Then we can find an > 1 and an e > 0 so

that for all u G clos (Af)

F r {u , v ) >  2 e .

However there is an s > 0 such that for all r* < s

and so for such an ri and any u G clos {M) we have

F r  ( r T '^ f ix , r i ,  z/) >  e.

In particular, for all i/ G A f

F r  ( r - ' ^ f i x , r i ,  %/) >  e

which, if i is sufficiently large, contradicts the hypotheses of the Lemma. ■ 

This suggests a strategy for finding the tangent measures of a measure fi. 

Suppose that we wish to show that for ^-a.e. a;, Tang(//, a;) =  A f  (assuming 

that A f  is closed). First we should find a small (ideally finite) set Af'  C A f  

such that

clos : r  > 0, (  G Spt t/, i/ G A f ' }  =  Af .

We should then show that for /z-a.e. x

Af' C  Tang(/z, a:).

We may then use shift invariance to conclude that for /z-a.e. x ^ A f c  Tang(/z, x). 

Finally show that the hypotheses of Lemma 1.4.6 are satisfied by A f  for
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fj,-à.e. X. We may then conclude that for /z-a.e. x

J\f C Taiisif^, x) C clos (J\f) =  J\f.

This technique will be used in Chapter 3.

Finally, it is interesting to note that if a normalisation other than is 

used in the definition of standardised tangent measures then all these results 

remain true for a measure fi provided that the new normalisation, h{r) say, 

is such that for fi-a..e. x

1. 0 < liminfr_o < limsup,.^o < oo,

2. the set {h{r)~^fi^^r : 0 < ?' < 1} is such that every sequence of mea­

sures in this set possesses a convergent subsequence (not necessarily 

converging to an element of the set.)

1.5 R ectifiab ility

A set E  C R ”' is m-rectifiable for some m, an integer between 0 and n, if 

there is a countable set of lipschitz maps fi : R ” such that

A set E  is purely m-unrectifiable if for all Lipschitz maps /  : R ”̂  —> R"'

{ E n f { I T ) )  = 0.

A measure fi is m-rectihable if there is an m-rectifiable Borel set E  such that

fi (R" \ E )  = 0.
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A measure jj, is purely m-unrectifiable if for all m-rectifiable Borel sets E

fl {E) = 0.

One deep result about rectifiability which we shall use is the Besicovitch- 

Federer Projection Theorem:

Theorem  1.5.1 Suppose that E  is a purely m-unrectifiable, T-C^-measurable 

set with 1~C^{E) < oo then for almost every V  G G(n,m )

n ^ F v { E )  =  0.

Proof: See [Mat95, Theorem 18.1]. ■

More recently Preiss has proved the following deep theorem about recti­

fiability:

Theorem  1.5.2 Whenever fi is an almost finite Borel measure on R ”', the 

following conditions are equivalent:

1. fl is m-rectifiable and is absolutely continuous with respect to .

2. For fi-a.e. æ, 0 < T)m{fi, < oo.

3. For fi-a.e. x, 0 < x) < oo and Tan(//, x) C Q{n, m).

Proof: See [PreS7, Theorem 5.6]. ■

1.6 A  m easu re w ith  a large set o f  tan gen t

m easures

Throughout this section we shall be working in R ”". Let A4 be the space of 

all locally finite Borel measures on R^.
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The main advantage of tangent measures is that they often possess more 

regularity than the original measure and thus a wider range of analytical 

techniques may be used upon them. In this section we show that there exist 

non-zero, finite measures, /i G Ad such that for /i-a.e. x the set of tangent 

measures of // at rc is equal to Ad \  {0}.(Where 0 denotes the zero measure.) 

We shall then show that for most (in the sense of category) measures // G Ad 

we have that, for /z-a.e. T, Tan(/z, x) equals Ad \{0}. Hence for most measures 

consideration of their tangent measures does not aid in their analysis.

Before we construct an example of a measure with a large set of tangent 

measures observe that the definition of tangent measures implies that for 

/z G Ad and x G R"' the following two simple lemmas hold:

L em m a 1.6.1 I f  M  C Tan(^,a;) then U t-,s> o ^A/q,5 C Tan(/z, a:) where 

rJ^o,s := {ruo,s ' ^ E Af}.

L em m a 1.6.2 I f  Af C Tan(/z, a:) and Af is dense in A4 then T&n{(j,,x) =  

A d \{ 0 } .

We can now construct our example.

T h e o rem  1.6.3 There exists a non-zero measure jj, £ A4 such that for 

fi-a.e. X ,  Tan(/z, z) =  Ad \  {0}.

P roof: First let us define for x G R^ the Dirac measure at x as follows: For 

E C B T
1 ii X e  E,

0 otherwise.
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We have that

(  m —1

<S =  < CKô o +  X) : m G {2 ,3 ,...} , ol{ G Q^, Xi G Q"", ||a;t|| < 1 for
i=l

m—l ^
z G { 0 , . . . , m — 1} and ^  =  1 and i i i  j  then  X{ ^  Xj  >

i= 0  J
is a countable set and if z/ G <5 then it is a probability measure with support 

in B (0 ,1). Moreover

U P^O.g
is a countable set which is dense in A4. Thus by Lemmas 1.6.1 and 1.6.2 it 

suffices to construct a measure fi such that Tan(jLZ, x) D S  for ^-a.e. x.

Let (/iA:)^i be a sequence of elements of S  such that every element of S  

occurs infinitely many times in this sequence. Thus each is of the form

mfe-l
fik = a{k,Q)6o-\- ot{k,i)6^(^k,i)

i=l

where the a{k,  i ) , %(&, z) fulfill the appropriate conditions of S  (in particular 

z(&,0) =  0). For each fik define

—1

From this define an increasing sequence of real numbers (r&) by setting ri =  8 

and choosing Vk+i > S' '̂^^rklcrk.

Let E := n%=i{0,. . .  ,mk — 1} and let P  be the probability measure on 

E obtained by setting for j  > I

3

^iv\ j )  ri
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where 7}\j := (771, . .  .,7]j) x n%=;+i{0,. . .  — 1}. Define tt : E B (0 ,1) by

00

k=l

Notice that tt is a well defined 1 — 1 map. Set fi := tt^P , that is, for E  C R ” 

define

ti{E) := P .

I claim that /z is our required measure. The Borel regularity of ji follows 

from the continuity of the mapping tt with respect to the product topology 

on S.

L em m a 1.6.4 For a given z/ 6 let be a strictly increasing sequence

such that fly- = V for all i. Let

%/ — \j] 6  S — 0  i.o.}.

Then P (K ) =  1 and so 7 [̂7t(K )] = 1.

Proof: We have that for all i

P { r } v { i )  =  0) =  a(u(z),0) =  a (u ( l) ,0) > 0

therefore Y.P{gv{i) =  0) =  0 0  and so, by the Borel-Cantelli lemma and 

independence, the lemma follows. ■

Let V  = Hz/eJ %/ then, as S is countable, P{V)  = 1 and so fJ>[Tr{V)] = 1. 

For X G 7t(E) define Xi := x{i, [7r~^(x)]i) and so x = XlSi Let x 6  7r(y )

and let ff be the associated element of V.  Fix u G S  and define as in

the lemma (so =  1/ for all z). Then, a.s tJ G V,  there is an infinite set 

N  C U £i{^(0} such that for all k G N,  Xk = 0 and fik =  v.
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We wish to show that v E Tan(/i,^). So we need to find sequences Cj > 0 

and Sj \  0  such that Cjiix,sj —> as j  —>• oo.

Let Sj =  where k{j) is the element of N  and so Sj \  0.

Define

Cj = [ f i { x  e  7t( E )  : Xi =  Xi for i =  1 , . . . ,  k{j) — 1}]“ .̂

From Chapter 1 we know that (/)k (l>ii and only if for all R >  <l>)

0. So fix > 1 and choose g : [0, oo) such that Spt [g) C B(0, R) and

lip(^) < 1 . We need to verify that

J  gd{cjfi^,s,) -  J  gdv  0 .

Choose J  E N  such that > R.

For j  > J  we have (letting k := k{j))

J  ^gd(cjg^,s,) = Cj J  ^g{rk(j){x-x))df i{x)

Let us consider Z)£i in more detail. There are two possible cases: 

Case 1 : Xj- =  for z =  1 , . . . ,  — 1 .

Then since
E Xi Xi _

----------= X k -  Xk-Fvk 2^
Xi  — Xi

i = l

and as
Xi  — Xi

i=k+l

we have (as Xk =  0 )

X k - r k Y ,

ri

Xi — Xi

i=k+l

-  7

ri

<  - I
>-k

i = l
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Case 2  : There exists u G {1 , . . . ,  — 1 } such that X{ =  Xj for 2 =  1 , . . . ,  u — 1 

but Xu ^  .

Thus

and both

therefore

Xj Xj  X ^  X^t r —\ Xj  Xj
L — —  =  — :— +  L
i=i n- j= u + l

E
Xj  — Xj

i= u + l  *
< — ^ 8  * and 
-  7r„

Xu Xu >

Xj  — Xj

i = l

^ r& 27 
-

>  | 8 * > « ^

Thus in Case 2 , ^[r^^(x — x)] =  0 and so

Cj /  -  x)]d^(x) =  Cj / g[rk{x -  x)]dg,{x)
*/7r(E) »/ %

where % =  {x G 7t(S) : Xj =  Xj for z =  1 , . . . ,  Â; — 1}. Notice that Cj =

As lip {g) < I, we have, by case 1, that for x G X

\g[rk{x -  x)] -  g{xk)\ <

Thus integrating over X  and multiplying by Cj gives

but, by independence,

I g{xk)diJ,{x) = fi{X) I g{xk)dfj,{x)
J X  «/7r(S)

= f i{x)  g(x)du{x)
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and so

Fb u) <

and the theorem follows. ■

In order to reduce unnecessary effort later we make the following obser­

vations concerning the measure fi constructed in the proof of this theorem.

L em m a 1.6.5 The measure fj, which was constructed in the proof of Theo­

rem 1.6.3 has the following properties:

1. p(RT)  =  1 and Spt p C B(0,1),

2 . for all 1/ G S, R  > I and ^ , 7  G (0,1) there are a p E (0,1/i?) and 

C > 0 such that

p {x : There is an r E (p, 1/i?) and c E (0, C) with FR{cpx,r, < 7}

> 1 - 6».

P roof: The first item, (1), follows immediately from the definition of p.

For (2): Suppose (in the notation of the proof of Theorem 1.6.3) that 

k{j) y  0 0  is such that for all j ,  pk̂ ĵ) — v. (That such a sequence exists is 

clear from the definition of pk.) Choose Ni  such that

R < and <  7.

Now choose N 2 such that if

m —l

— CXq6 q -|“ ^  ^
1= 1
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(where the a* > 0  for all i) then

(1 -  <  6.

Finally let p be chosen so that

0  < /? < (< 1 / ^  by the definition of TVi.)

Then we find that

p { 7r(77) : 77 G E and for some j  6  {# 1 , . . .  N 2 -  I}, ?/&(;) =  o}

> ! - ( ! -  a o f ^  > l - e

and for any one of these it is clear from the calculations in Theorem 1.6.3 

that if j  6  {A^i,. . . ,  Â i +  A^2 — 1 } is such that =  0  then on setting

Cj := [P { ( 7  G E : cr* =  r]i for 2 G { I , . . . ,  k{j) — we find that

Cj ^  [P { ( 7  G E : (Ti — Tfi for i G { 1 ,.. . ,  k(^Ni +  N 2 — 1) — 1}}]
iVi+iVij—1

— J J  C 1 s& y
i = l

- 1

and

Hence the Lemma follows. ■

Having shown that there exists a measure with a large set of tangent 

measures we can now show that, in fact, most measures possess this property. 

In order to show this we need the notion of sets of first category: A set A  

contained in a topological space X  is of first category if it may be written 

as a countable union of nowhere dense sets. (A set P  in X  is nowhere dense
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if for all non-empty open sets U C  X  there is a non-empty open set V  C  U 

such that B  n V  =  0.) A discussion of these notions may be found in either 

Kelley [Kel55] or Oxtoby [Oxt71].

Let Af  denote the set of locally finite, Borel measures A on which 

possess the following property:

(*) There is a set A C R ”’ of positive A-measure such that for all T E A 

there is a non-zero measure uj £ A4 with oj ^  Tan(A, 2 ).

Thus A 4 \ A f  consists of those measures k, £ A4 such that for k a.e . - 2

Tan(/c, 2 ) = A4 \  {0 }.

Theorem  1.6.6 Af is of first category in A4.

Proof: This reduces to showing that we can find a countable union of

nowhere dense sets in M. which contains Af. This leads us to the following:

Lem m a 1.6.7

V c  U U E{i ,R ,v )
z,jRcN

where E{i,R,i /)  is defined to be the set of X £ A4 such that AU(0,R) > 0 

and

A I 2  G U(0, i? +  2 ) : For r G (0, J? ^), c > 0 , Fn(cAa;,r, i') > R  >
AU(0 ,i?) 

2%"

Proof: Suppose X £ Af then there is a set A C R"' of positive A-measure 

such that for all 2  G A there is a non-zero measure w 0  Tan(A, 2 ). On 

recalling that i® dense in A4 and that if w G Tan(A, 2 ) then

G Tan(A, 2 ) for any r, s > 0 we deduce that there is a. 1/ £ S  and a set
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B  C R" of positive A-measure such that for all x G 1/ ^  Tan(A, a:). Hence 

we can find an Jî > 1 and a set C C R of positive A-measure such that for 

all X G C, all 0  < r  < 1 /iZ and all c > 0 , FR{cXx,r, > l /R-  Hence if R  is 

chosen so large that \ {C  fl U(0, R)) > 0 then we can find an z G N  so that

A {æ 6  U(0, A +  2 ) : For r e  (0, R"^), c > 0, Fb(cA*,„ !/) > R~^} >

and so A G E { i ,  i?, i/) as required. ■

It now only remains to show that;

L e m m a  1 .6 .8  F o r  all  z,jR G N  a n d  v  G S ,  E { i , R , i y )  is n o w h e r e  d e n s e  in  

M .

Proof: We may suppose that E { i ,  i?, ly) is not empty. Suppose that U is an 

open set with U fl E { i ,  i?, z/) 0 then we need to find a non-empty open set

V C  U such that V  fl E { i , R , u )  = 0. Suppose that X G U f] E { i , R , u )  and 

choose e > 0  such that:

(i) > e > 0 ,

(ii) if dist(w, A) < e then wU(0, R) > 0,

(ill) the open set {w : dist(w, A) < e} C U.

Observe that if dist(w, A) < e then for 0 < m < -}- 3, F^(a;, A) <

Since

• f t € Q + , w e Q '* j

is a countable dense subset of Af we can find an w G D, w =  PjSy- say, 

such that

dist(w, A) < e/4.

32



Notice that (ii) ensures that a;U(0,i?) > 0. Suppose that T  is chosen so 

that T > +  3 and Sptw C B(0,T). We now wish to perturb w slightly

to form a new measure, w\ which is a positive distance from E{i,R,  u). By 

Lemma 1.6.5 we can find & p £ {0,1/R) and C > 0 such that

p { x  : There is an r  G (p,R~^) and c G (0, C) with FR{cp^^r,^) < 1/(2.R)}

> 1 -  (7z)-\

Recall that Spt p, C B (0,1) and /i(R”) =  1. Define for any measure /c, any 

(  G R ” and r > 0 a new measure by, for G C R"'

aĉ -̂ (G) := K {{{y -  Q / r  : y e G } ) .

Choose s G (0,1/3) such that if i ^  j  then

B{yi ,2s)  n B{yj ,2s )  = 0

and
e

s  <
4wB(0,T)'

Now observe that for j  G { 1 ,. . . ,  N]  we have

S p t / ; ^ c B ( y „ s ) c B ( 0 , r  + l),

py^'^B{yj,s) = 1

and for all m > T + 1

F„ < 5.

Thus if we define

2 =  1 
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then we find that for m > T + 1

and so

Hence the open set

< swB(0,T)

dist(w, ŵ ) < so;B(0,r) < e/4.

{/c : dist(/c,a;') < e/2 }

is a subset of U. Also, as lü' is made up of identically scaled copies of //, we 

find that if

W  := {x U(0, R - \ - 1 s) : There is an r G {ps^sjR) and c G (0, C) with

< 1/{2R)}

then

Lü'{W) > [ l - ( 7 z ) - 4  wU(0,jR4-l)

>

We shall now find an open ball around uj' which is disjoint from E{i,R, i ') .  

Suppose that 0  < cr < s is such that

cr <
ps

8i?Co;'B(0,r +  l ) ’ 

Fix X G W, r G [ps^sjR) and c G (0, C) such that

Ffl ( < „  Î/) < l/(2i?)
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and suppose that y  E  B(a;,cr) and dist(/c,cj') <  2"(^+^)cr (7z )"^w'U(0 , A

straightforward application of Lemma 1.3.4 verifies that

w'U(0, i? +  1 -  s) >  i? +  1 -  2s).

Also we find that

^   ̂ (^y-x,1 ) 3, 1 )

—  ̂ ’ ^y-x,l)

< 2<7r“^o;'B(0, ||a:|| +  jRr +  cr)

< 2 o -r-V B (0 ,r  +  l).

This enables us to deduce that

FH(cKj,,„t/) <  Fg (cK,,„ CŴ J  +  Fg (cw  ̂ cw  ̂J

+ Fh

< C r ^F||j,||^.B,(K,aj') +  F r  +  l/(2-R)

< 4C'<T[5p]-VB(0,r + l) + l / (2fi)

< I jR .

Thus if

K  := {y E U(0, i? +  1 +  s +  a) : There is an r G (ps, s jR )  and c E (0, C)

with Ffi(cACy,,., z/) < 1 /i?}

then

A D B ( W , c r )
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and so use of Lemma 1.3.4 gives that

Fi?+l+s+«r(^ 5

>
Fi?+2 (o;',/c)

and as F^+2 (w% /c) < cr[li) ^cj'U(0, R - \ - l  — s)

> o;'U(0,i? + l - s )

but, from our earlier estimate, this is

>

>

l-3(7z)"^] /cU(0,i? + l - 2 s )  

1 -  (2z)-^l/cU(0,i?) > 0.

Hence k, 0  E{i, R, v) which implies that the open set

7/ := !«: : dist(/c, ŵ ) < min{2“ ^^‘'‘̂ Va;'U(0, i?), e/2}} C V

is disjoint from E{i,R,i/)  as required.

Hence the theorem follows immediately from these two Lemmas.
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C h ap ter 2 

A  local version  o f  th e  

P ro jec tio n  T heorem

2.1 In trod u ction

The Besicovitch-Federer Projection Theorem (Theorem 1.5.1) has helped to 

extend the understanding of the structure of sets in R^. It is however a 

qualitative result whose hypotheses require global information about the be­

haviour of a set. It has been observed by G. David and S. Semmes in [DS91] 

that one of the difficulties in trying to find quantitative characterisations of 

rectifiability is the lack of a local version of the Projection Theorem. The 

result in this chapter is a first step towards this goal:

T h eo rem  2 .1 . 1  Suppose p is a non-zero, almost finite, Borel measure on 

R ”’ such that for p-a.e.x

1 . 0  < < Dm{p,x) < oo.
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2. Ifiy is a tangent measure of /i at x then for all V  G G(n,m ), Py(Spt z/) 

is convex.

Then fi is m-rectifiable.

We shall split the proof of the Theorem into two sections; the first section 

contains many of the preliminary Lemmas which are required for proving the 

Theorem and the second section contains the actual proof.

2.2 L em m as

Unless otherwise stated we shall always be working in R ”' and M  =  Af (R ”'). 

Define for 0 < a < 6  < co and 0 < m < n

A f’̂ (a, 6 ) := {0 7  ̂ i/ E Af : For all (  G Spt i/, for all p > 0,

a[m)ap^ < z/B(C,p) < a.[m)hp^]

and let

Af J  := {z/ G Af : For all V  G G(n,m ), Py(Spt v) is convex } . 

Finally define

Afg(o,6) := AfgnAf""(a,6).

First let us observe that:

Lem m a 2.2.1 I f O < a < b < o o  and if  u E Af^((z, 6) then for all (  G R”’ 

and all p > 0 , P~^i^Cp G A f^(u, 6 ).

P roo f: This is immediate. ■
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L em m a 2 .2 . 2  Suppose W  is an {1~C^^m)-rectifiable set in R ” . Define

A(n, m) := {A : A: ,m} —» {1 , . . .  ,n} and if  i < j  then A(z) < A(j)}

and let { e i,...,e ji}  he the standard orthonormal basis in and for x = 

A G A(t2 , m) define
m

P\{x) ■='^xx{i)ex{i))
z=l

and

Then if

we have that

Vx:= {Px{x): rc G R"} .

E  W )"
A ç A (n ,m )

1/2

< K ^ { W ) <  Y .  «A.
A e A (n ,m )

P roof: This is [Fed69, 3.2.27] . ■

Using the same notation as the last Lemma we have:

L em m a 2.2.3 Suppose that E  is an m-dimensional linear subspace of R ”' 

and there is a a G A(n, m) such that

PAE) = V.

and for all X ^  a we have

Then E  = Vcr.
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Proof: As E  G G{n,m)  there is a simple m-vector ^ representing E. The 

m-vector (  may be written (uniquely) as

(  =
A eA (n,7n)

where 6 a =  eA(i)A... AeA(m)- Since projection onto a fixed coordinate m-plane 

is linear we deduce that

PxU) = Ù^A.

Thus if A 7  ̂ cr we conclude that as 7ï^(P\E)  = 0

6  =  0

and hence the result follows. ■

Lemma 2.2.4 (Covering) Suppose that A  C is a bounded set and that 

{B(a;,r(a:)) : x G A} is a collection of non-degenerate balls in such that 

sup^.^^ r(x) < oo. Then we may find a countable (possibly finite) set D C A  

and an associated disjoint collection of Borel sets C := {Cx ■ x Ç: D} such 

that

1. for all X E D, B(a:,r(a:)) C C B(a:,4r(z));

2. A c  UC,

3. for all 0  < e < [2/(3m)]"^+^ and for all x C D

r r  [B(9C„6r(^))l <  c(m)e'/(’"+i)[r(x)]’".

(The constant c(m) depends only on m.)
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P roof: Since r{x) < oo we may use [Fed69, 2.8.4] to find a countable

set D C A such that {B(a;,r(a;)) : x G D} is a disjoint collection and yet 

{B(a;,4r(rc)) : x G D} covers A. Moreover as A is a bounded set and 

{B(a:,r(a;)) : x G D}  is a disjoint collection we conclude that for all x E D 

the set

{y e D : B(z,4r(T)) C B(î/,4r(y))}

is finite. Therefore we may assume that if x and y are distinct elements of 

D then both B(a:, 4r(a:)) \  B(y, 4r(z/)) and B(y, 4r(y)) \  B(a;, 4r(a:)) are non­

empty. As A is bounded we can find an enumeration Ti, 2:2 , . . .  of D such 

that the sequence (r(T^)) is decreasing. Define the collection C inductively 

as follows: For k >

Ck := B{xk,l:r{xk)) \ U QU IJ B{xi,r{xi))
K i < k - 1  i>k+l

Clearly the family C := {Ck ' A: > 1 } is disjoint and each member of it is a 

Borel set. It remains only to verify the other claims.

From the definition of the Ck we have that Ck C B(a;t, 4:r{xk)) for all k. In 

order to verify that Ck D B(æt, observe that as {B(a:j, r(a:j)) : j  > 1 }

is a disjoint family and for all i < k, C{ fl B(2:a;, r(a:A:)) =  0  then

U Ci U IJ B(T*,r(Ti))
i<k i>k

Hence B(a:t, C Ck and so the first claim holds.

In order to verify the second claim it suffices to show that

UC D J  B(Tt,4r(Tt)).
t>i
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Suppose that y E and let k be such that is

the first ball of which y is a member. Then as for all z, C{ C 'Q{xi^ir{xi)) 

we know that if z < Â; then y 0  Ci. Thus, from the definition of Ck, we 

conclude that either y Ç: Ck ot there is a j  > k such that y G B{xj,r[xj)),  

But B(a:j,r(xj)) C Cj  and so the second claim holds.

For the third claim fix j  > 1  and for all z > 1 let r{ =  r[xi). Observe that

if

Di := {xi : i < j  and B(a:i,4n) fl B (xj,4rj) ^  0 }

and

D 2 := {xi : i > j  and B(a; ,̂ n ) fl B(xj,4rj) ^  0 }

then

dCi C clos dB{xj,rj) U dB{xj,4:rj) U |J 5B(æ, 4r(x)) U |J 5B(x,r(a;))
x£Di XÇ.D2

Thus in order to estimate 7ï^[B{dCj,^rj)] it suffices to investigate the be­

haviour of the right hand side of the above expression. Let P i := {B(x,4r(x)) 

a: G P i}  and recall that for distinct x and y in P i, B(a;, r(a;))nB(z/, r(z/)) =  0. 

Hence (by [Fed69, 2.8.12]) there is a constant a{m) such that P i may be writ­

ten as the union of at most a(m) subfamilies of disjoint balls. Suppose P ' is 

such a subfamily then each P G P '  has a radius which is at least Vj and also 

has a non-empty intersection with B(æj, 4rj). Thus we may obtain from V  a 

new family of disjoint sets, P", by replacing each P  G P ' by B(a;, Vj) where x 

is chosen such that B(x, Vj) C B(a;j, 6 rj) fl P . As the family V  was disjoint it 

follows that card (P ') =  card (P") and, as the family P " is disjoint, it follows
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that

Thus

card (Di) < a(m )6 ^.

In addition, there is a constant b{m) such that for each B  Çl T>\

'HT' [B{d{B n B{xj,4:rj)),erj)] < b{m)er'p.

Hence combining the above gives us that there is a constant a'{m) with

'h r  [B{ÜBev^d{B n B{xj,4:rj)),erj)] < a'{m)erj'.

Now let us consider 'D2 := {B(x,r(a;)) : x  G D2 }. If B{x , p)  E X>2 then, since

for all z G D there is no y G D different from x  such that B(ar,4 r ( 2:)) C

B(y,4r(y)), we know that

B{x,4:p)\B(xj,4:rj)  ^  0

and so

4rj -{- p > \ x \ >  4(rj — p).

Thus

B{x , p )  C B{xj ,Arj  +  2p) \  B(xj,4rj -  5p).

Hence if /) < then

B (5B(x, p), erj) C B (ïy, (4 +  \  B (x,-, (4 -  ■)

and so if D '2 := {a; G D 2 : r(a:) < then

B ( U  gB(z, p), C B (xy, (4 +  \  B (x,-, (4 -  6 e‘/('"+'))r^) .
\xeD^ )

43



Hence

U B  I J  5 B ( æ , / ? ) , e r j
\xÇ:D'

which, as e < [2/(3m)]"^+^, is

<  a(m )4’"r”  [(1 +

-  ( 1  -  3e'/<’"+^V2)’

< 3 X 4’"m^a(m)e'/<’"+^Vf 

=  c'(m)e'^^”*'''*Vj*, say.

Finally let us estimate the contribution due to balls in %  \  Dg — balls in 

this set have radius between and Vy Since they are disjoint and

are all contained in B (æ j,6rJ we deduce that

Moreover there is a constant c"(m) such that each ball in this collection, jB, 

has

7^" [B(aB,6rJ]<c'% m )cr]^.

Thus combining these two inequalities we find that

n B  U  d B ,  e r i
. \BSV2\V'  ̂ ,

Finally putting all these estimates together we deduce that there is a constant 

c(m) so that

v r  [B  ( d C j ,  t r j ) ]  <

as required. ■
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Lem m a 2.2.5 Suppose 0 < a < b < oo, 0 < e < (m +  1) and both R

and D > 0. I f  p G M  and y 6 Spt p fl B(0, D) are such that for 0 < r  < R

pB{y,r) > a(m)ar^

and i f i y£ A4'^{a,b) is such that

BD+R{po,r/r'^,i') < a{m)ae^'^^

then there is a (  E Spt z/ such that

IIC-yAII < e-

Proof: This is a consequence of Lemma 1.3.4 with E  = B{y,me/{m  +  1)) 

and r  =  e/(m + 1). ■

Lem m a 2.2.6 I f  p E M  is such that for p-a,e. x

0 < B ^ {p ,x )  < Bm[p,x) < oo

then there is a Borel set B  of positive p-measure such that if X{ E B  for all i 

and Xi X E B  and if Ui E Tenisip^^i) Is a sequence of measures converging 

to a measure p then p is in Ta.ns{p,x).

Proof: We may find 0 < a < 6 < oo and a Borel set E  of finite and positive 

//-measure which is contained in the support of p  such that for a ll  x  E E

a < x) < Bm{p, x) < b.

This implies that for a ll x  E E,  Tans(/i, a:) is a non-empty, compact set and 

moreover, Tang(/z,a;) C M{a,b).  Recall from Section 1.4 the definition of
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(/c, H) and that it is a complete, separable metric space. From Lemma 1.4.5 

recall that t :E  K  defined by := Tang(//, z) is Borel-measurable. 

Hence we may use Lusin’s Theorem (Theorem 1.3.1) to find a compact sub­

set B  contained in E  which is of positive //-measure and upon which t is 

continuous. Thus if X{ x m B  and if G Tang(//, z*) converge to a

measure v then since t[xi) —>■ t{x) we conclude that i/ € Tang(//, a;) — this

implies the Lemma. ■

Lem m a 2.2.7 Suppose fi G B  is a compact set of positive //-

measure and 0  < a < b < oo are such that

1. for all X e B, a < D ^ (//,t)  < < 6,

2. if{xi) C B  and X{ x E B and V{ G Tau5 (//, X{) converge to a measure

V then p G Ta.ns{fi,x),

3. for all X E B,  Tang(//, a;) C A f^(a,6).

for all X E B, i f  p E Tàns{p,x) and (  G Spt p then G Tan^(//, æ).

Then for all 7 G (0,1) and integer M  > 2, there is an R  > 1 so that

for all X E B, all p E Tang(//, a;), all V  E G (n,m ) and all distinct points 

. . . ,  C Spt p which satisfy

min{||Py(C -  O il}  > 7m ax{||C  -  C ||}hj

we have that if u E conv . . . ,  P y O }  then there is a Y  E Spt i/ fl

B (C\ Amax{j{||C -  C ||}) with

P y y 6 B (w ,( im n { ||P y (C -C ) ||} ) .
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Proof: Suppose that the Lemma is false. Then there are ^,7 G (0, 1) and 

an integer M  >  2 such that for all >  1 there are e m  x r  G i / r  6  

Tang(/^, x r ) ,  Vr  G G(n, m) and . . . ,  C Spt i / r  with

min{||Pï"B(CR -  Ch)I|} > T^WIICÀ -  CrII}

and yet there is a u 6 conv {Py^Cg, •. •, P vkCr }̂ with

Py^[Pv'jiB(“ . ^ “ ih{l|Pi'(CR-CR)l|})]nSptyRnB(Cfl,i?ni^{||Ci-CRl|}) =  0-

We may suppose, without loss of generality, that

II(A -  Cr W =  niax{||C}j -  (All}'

There is a c > 0 such that lür  : =  G Tang(//, a;). Let :=

(CA -  (A)/IKA -  (Â ll- Then we have that

(i) for all 2, G Spt WR,

(ii) min,-^;{||Py^(?/^-%/j()|| > 7 ,

(Hi) there is a G conv {Py^yA? -  -, ^ V r Vr }  such that

( 7)] n Spt ujR n B(o, R )  =  0.

Upon recalling that for all x G B ,  <  6 < 00 we may make appro­

priate use of compactness and Lemma 1.3.3 to find a sequence R { k )  —̂ 00 

such that

(iv) XR{ k)  X e B,
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(v) w G Taii5 (/i,a:) (this follows from the definition of B),

(vi) VR(&) E G(n,m ),

(vii) for all i, E 5B (0,1),

(via) UR(̂ k) u e V  n  conv {Fvy^, . . .  Fvy^}-

As a consequence of the lower density estimate on fi we find that {y^, . . . ,  y ^ }  C 

Spt ÜJ and since for all k and all i ^  j

l|Pv̂ iî(fe)(î/iî(fc) ~  yR{k))\\ ^  7

it follows that for i ^  j

| | P y ( y ' - y ' ) | | > 7 .

As LÜ Ç: M e ,  there is an i? > 1 such that

w[B(o, R) n  P ÿ \ y  n b(u, ^7 / 2 ))] > 0 .

However if k is sufficiently large then

B ( o , 7 ^ ) n p ; X y n B ( u , ( 7 / 2 ) )

is a subset of

B{0 , R(k)) n  [%(t) n

and so

u;[B(0 ,i^) n Pÿ^(y n B(u, (̂ 7 / 2 ))] < limsupu;)t[B(0, J?) n
fc—t-oo

p ; X y n B K ( - y / 2 ) ) ]

< lim supwt [B(0, i?(A:))n
fc—*-oo

= 0 , from the definition of UR(̂ k)- 
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But this is impossible and so the Lemma holds. ■

L em m a 2.2.8 I f  0 < a < b < oo, /z is a measure, x 6 Spt /z, 6 > 0 and 

V 6 7W’̂ (a, h) are such that for some R > 1  and 0 < e < 1/m

Ffl+ 3  < a{m)ae^'^^

then for all z Ç: [x + sSpt v) fl B(x,Rs)  and all t G [es, s] we have that

a{m)a{l — 3me)t < iiB{z,t) < a{m)b{l +  3me)t.

Proof: This is an application of Lemma 1.3.4 with E  = B{{z — x) / s,  t / s)  

and T = et /s. m

L em m a 2.2.9 Suppose 0 ^  E  CBI '  is such that for all V  G G(n,m),  Bv{E)  

is a convex set and for almost every V  G G(n,m);  IdE‘\Bv{E)\ =  0 then there 

is an (m — 1 )-dimensional subspace ofBI'  which contains E.

P roof: If there were m + 1 points , {0, e i , . . . ,  such that the linear span, 

V,  of {0, e i , . . . ,  Cm} was m-dimensional then ?^”̂ (Pyconv {0, e i , . . . ,  e^}) > 

0 and moreover for all W  G G(n,m) sufficiently close to V  we would have

H""(Pw(conv{0, Cl, . . . ,  tm})) > 0

which is impossible by the hypotheses of the Lemma. Thus we conclude that 

for any m points, {ei , . . . , em} in E  the linear span of {0, e i , . . . ,  has 

dimension strictly less than m. This implies the Lemma. ■

■ As a consequence of this we have:

L em m a 2.2.10 I f O < a < b < o o  and v is a purely m-unrectifiable, locally 

finite measure on R"’ with
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1. for all (  e S p t u ,  a < D^(i/, x) < D^(z/, x) < b,

2. for all V  E G{n,m),  Py(Spt u) is a convex set.

Then 1/ = 0.

Proof: From Lemma 1.3.2 we know that for all Borel sets E  we have

u n E ) >  u{E) > o ? r (S p t u H E )

and so we deduce from the unrectifiability of i/ that if E  is m-rectifiable 

then v'(E) = 0. Thus Spty is a purely (7Y^,m)-unrectifiable set. Hence the 

Besicovitch-Federer Projection Theorem enables us to deduce that for almost 

every V  E G(n, m) and all i? > 0

n^[Fv( Spt i ^nB{0, R) ) ]  = 0.

Thus for almost every V  E G(n,m)

[Py(Sptl/)] = 0

and so we can use Lemma 2.2.9 to deduce that there is an ( m — 1 ) - dimensional 

subspace, W  say, which contains Spt z/. But then for any (  E Spt 1/ and r > 0

i/[B(C,r)] < 2"6?^"[S p tz /nB ((,r)]

=  2 ^ h n ^ [ w n S p t u n B { c , r ) ]

=  0

which implies that Spt z/ =  0 and so the Lemma follows. ■

L em m a 2.2.11 Suppose that 0 < u < % < 6 <  oo, x E R ”" and p, £ A4 are 

such that
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1. TamsifJi.x) C Mc{a,h) ,

2. i f V £ Tàiis{fJ^,x) and (  6 Spt î/ then E Ta.ns{i^,x).

X < inf {Dm(ü ,̂ 0) : w E Tan5 (/i, x) fl G{n, m)} < b.

Then for all u E Ta.ns{fJ>,x) we have that for v-a.e. (

Dm(z/, 0  >  X-

Proof: Suppose that the Lemma is false: Then there is a i/ E Tan5 (/z,x), 

a Borel set C of positive ^/-measure and a 6  E (0,1) such that for all f  E C

(1) D ^ ( i / , C ) < x ( l - ^ ) ,

(ii) if w E Tang(z/, () and (  E Spt w then a; ,̂i E Tang(i/, ().

Fix ( " E C  and consider w E Tang(//, (") then (ii) enables us to conclude

that for all ^ E Spt w

Dm(w,<^) < X(1 — ^)-

However for any ( E Spt w

W(,i E Tang(z/, () =  Tang(i/(,i,0) C Tan5 (;z,rc)

and so

Tang(w, i)  C Tan^(//, x) (c  6)).

Thus (2) and (3) of the hypotheses of the Lemma force us to conclude that w 

is purely m-unrectifiable. But then Lemma 2.2.10 impHes that w =  0. This

is impossible and so our claim holds. ■
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It is easy to see that conditions (1),(2),(3) and (5) of the following Lemma 

are not sufficient to guarantee its conclusion. For example we may consider 

the measure IH} [9 5 (0 ,1)+'^^ [c where C C B(0,1) is any purely 1-unrectifiable 

1-set with positive and finite upper and lower 1-densities.

Lem m a 2.2.12 Suppose that V  E G(n,m) and v is a measure satisfy the 

following:

1. For all W  6 G(n,m)^ PvF(Sptz/) is a convex set,

2. there is a \  > ^ such that for i/-a.e. (, Bmii', C) ^  X,

3. there are 0 < a < 6 < 0 0  such that for v-a.e. (

a < 0  < C) < 6,

4 . for all l e v ,  =  XW” (/),

5. there is an /i > 0 and k > 0 so that Spt u C X(0, h, k, V).

Then p is an m-rectifiable measure.

P ro o f: From the density estimates of (3) we may use Lemma 1.3.2 to deduce 

that for all Borel sets E  C R"'

XU^ ( E  n Spt p) < p{E) < 2^b7T{E  fl Spt p ) .  (2.1)

These density estimates enable us to conclude that a set Aïs  {p, m)-rectifiable 

if and only if AH Spt p is an m)-rectifiable set. Hence we may split Spt p 

into an m)-rectifiable Borel set, R, and a purely m)-unrectifiable 

Borel set, U, such that 7i'^{RnU) = p{Rr\U) = 0 and 'H^[{RUU)\Spt p ] = 0.

52



If 7i^[PvU] =  0 then, from (4), we conclude that y{U) =  0 and hence 

equation 2.1 implies that 7f’̂ (î7) =  0 and we are done.

So suppose instead that > 0. We may suppose (by a suitable

translation and relabeling of h and k) that 0 is a density point of Fv{U).  Fix 

0 <  (  < 1 and recall that Spt u C X(0, A, k, V).  We can find an r > 0 such 

that for 0 < 5 < r

7T{Fv{U)  n B(0, s)) > (1 -  ( )? r (B (0 , s) n V).

So for such an s we find that

i/[PÿXB(o,.)) n A] <  x (? r(B (o ,6 )  n y )

and so

?r[Pi;XB(o, s)) n R ] <  ( ? r ( B ( o ,  5) n v ) .

Fix [1 — < s < r. Since Pÿ^(B(0, s) fl X(a, h, k, V)  is compact we may

find a ^ > 0 such that if W 6 G(n,m) has ||Py — Pyr|| < 6 then

P^ÿ(B(0, a)) n X(0, h, k, V)  C P;X B(0, r)) (1 X(0, h, k, V).

On observing that (1) and (4) imply that PySpt z/ =  y  we deduce that we 

can find 0  < 6 ' < 6  such that for all W  G G(n, m) satisfying ||Py — Pw|| < S' 

we have

Pu^[Spt z/ n Pÿ^(B(0, r))] n B(0, s) 3  B(0, s) n  W.

Hence

■}T[Pw[U n  p ;'(B (0 ,r))]  n B(0,a)]

> «'"[BCD, a) Ç ^ W ) -  n Pp"B(0,r))]
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>  0.

However, from the Projection Theorem, we know that for almost every W  G 

G(n, m), 71^1?wU] = 0. But this contradicts the above and thus = 0

as required. ■

The following lemma is a key part of the proof of the main theorem: 

The proof of this theorem (in the next section) is directed towards showing 

that if there is a purely m-unrectifiable measure satisfying the hypotheses 

of the theorem then we can construct a tangent measure, i/ satisfying the 

hypotheses of the following lemma. However the construction of u is such 

that the following condition must also hold: For all A C V (defined below) 

we have

u ? y \ A )  =  xW” (A).

This is in direct contradiction with the conclusion of the lemma.

L em m a 2.2.13 Suppose 0 < u < % < 6 < o o  and z/ G M.c{a^b) is an 

m-rectifiable measure such that

1 . for v-a.e. x, D,^(z/, x ) > x

2. there is a V  E G(n,m ) with diam (PySpt z/) > 0 and V  = Py(Spt z/). 

Then there is a Borel set B  C V  such that

z/(p ;X ^)) >

P roo f: This follows from Lemma 2.2.3 and Lemma 2.2.2: For suppose we 

choose an orthonormal basis of R^, { e i,. . . ,  e^}, such that V  is the linear
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subspace spanned by { e i,. . . ,  Cm} and cr is its associated map in A(n,m). If 

for all A <7 we have that

n^[Px{Sptiy)] = 0

then from Lemma 2.2.3 we conclude that Spt u C V  which contradicts the 

fact that diam [PySpt i/] > 0. Thus there is a A E A{n,m)  which is different 

from (7 and with

?r[fA (S p t z/)] > 0.

Hence we can find a closed ball B  C V  such that for some positive (

n ”'[p,{(Py^B)  n Spt v)] >

By Lemma 2.2.2 we conclude that

1/2

and so as for z/-a.e. x, 3:) > % we deduce from Lemma 1.3.2 that

u{Py^{B)) > +

> X « " (5 )

as required. ■

Our final Lemma in this section is a technical result introduced to avoid 

unnecessary repetition later.

Lem m a 2.2.14 Fix L (possibly oo),a^b^q > 0 and suppose that Si, 0  ̂ and 

Hi are sequences of positive real numbers with limsup5i > L, S{Qi 0 and
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- 4- 0. I f  Vi e  G(n, m), i/i G M c { f  u) and Yi G Spt Ui H [B(0,1 +  Ei)] fl

X(0, a +  Hi, 6 , Vi) G re such that

Vi V  £ G (n,m ), Y i - ^ Y  and i/i —v i/ G u),

/o r all i, ||P^y[H > q - E i  

and for all to G B(0, Si) fl V

[B(to, QiSi)] n Spt i/i n X(0, a +  Hi, 6, Vi) ^  0.

Then (on interpreting B(0,oo) as

1. Fv  [Spt ^ n X(0, a, 6 , V ) ] D V n  B(0,1),

llPyi^ll >  ?,

3. r  € Spt j/ n Pÿ'B(o, 1) n x(o , a, b, v ) .

Proof: First observe that an immediate consequence of the density esti­

mates on the I/i is that if yi G Spt z/i G ti) for all i and yi — y then

y G Spt V. Hence we may immediately conclude that Y  G Spt i/. Moreover it 

is clear that ||PyF || >q.  If there was a  ̂ > 0 such that

B(y, e) n Pÿ" (b(o, i)) n x(o, a, 6, y )  =  0

then we would find that for all i sufficiently large

B(y;, 012) n p ;y B (o ,  i  +  Hj)) n x(o , a +  6, v;) =  0

which is impossible and so claim (3) holds.
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In order to verify claim (1 ) fix  ̂ > 0 and (interpreting B(0,oo) =  R") 

suppose that there is a i; G int [B(0, L)] Pi L and an r  > 0 such that

Py^[B(u, r)] n Spt u n X(0, a 9,b,V) = 0.

Let Vi € Vi be such that Vi v. We may find a 0 < p < r such that there 

are arbitrarily large i so that

P^^[B(u,-, p)] n X(0, a +  Ei, 6 , %)

is a subset of

P ;^ [B (t,,r)]nX (0 ,a  +  g ,6 ,y )

and

P^^ [B{vi, p)] n Spt Ui n X(0, a +  Ei, 6 , F) ^  0

which in view of our earlier note enables us to deduce that 

Pÿ^[B(i), r)] n Spt u n X(0, a +  6 , y ) 7  ̂ 0,

contradicting the choice of v and r. Hence, as Spt u is a. closed set

V  n B(o, L) c  Py[Spt u n x(o, a +  6 , y)]

and thus as 9 was arbitrary

y  n B(o, L) c  Py[Spt 1/ n x(o, a, b, y)]

as required. ■
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2.3 P r o o f o f  T heorem

It suffices to prove the Theorem in the case that is a locally finite measure. 

We shall prove the Theorem by contradiction: Suppose that there is a purely 

m-unrectifiable, non-zero, locally finite, Borel measure fi which satisfies the 

hypotheses of Theorem 2.1.1.

Our first task is to find a set in R ’̂ within which we shall work.

(1) From Section 1.3 we know that for ji-Si.e.x both

Tans(jW,a:) ^  0

and if 1/ G Tans(fi,x) and (  G Spt z/ then G Tan^(jU, a:). From the 

hypotheses of Theorem 2.1.1 we know that for ^-a.e. a:

Tang(//,a;) C M q -

Thus we can find a Borel set B  C Spt fi of positive and finite //-measure such 

that for all a; G

(i) 0 ^  Tan^(//, a:) C and

(ii) if 1/ G Tang(//, a:) and (  G Spt z/ then z/(,i G Tang(//, a;).

By decomposing B  into a set of measure zero and a countable number of 

(Borel) sets of the form {x E B  : p < D„^(//, a;) <  DmifJ'Tx) < q} (where p 

and q are positive rationals) we may find a Borel set C B of positive 

//-measure and 0 < / <  u < oo such that for all x  G B^^^

(in) 21 <D^{p,,x)  < u / 2 .
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By Lemma 1.3.2, for all Borel sets E  we have

and so if E  is -rectifiable then fi{Ef]B^^'^) = 0 which implies that 'H'^(Er\ 

^(^)) =  0. Thus is purely m)-unrectifiable and of positive and finite 

-measure. By the Projection Theorem we may conclude that for almost 

every V  G G(n,m)

H"* [PvB<“>] = 0.

(2 ) By applying Lemma 2.2.6 we can find a compact subset of of 

positive fl measure such that if Xi G for all i and x E B̂ ^  ̂ and i/{ G 

Ta.ns(fi, Xi) are such that they converge to a measure // then z/ G Tan^(^, z).

(3) Let Ii := and let ^ := 3/82 and 7  := l/(100 /i) and define

M  to be the maximum number of balls of radius 5/4 and with centres in 

the boundary of B(0,4) in which may be packed disjointly. Then, by 

Lemma 2.2.7, there is an B > 1 so that for all x G B^^\ all 1/ G Tan5 (^ ,x),



2.3.1 Properties of dependent upon e

(4) If 1/ is a standardised tangent measure of // at a; G then u is not

the zero measure and so Lemma 2.2.10 implies that u is not purely m- 

unrectifiable. Thus for all x G we conclude that Tan^(/^, x)r\Q{n, m) 7  ̂ 0 

and so we may define

X '= inf IA : There is a Borel set C C B̂ "̂̂  of positive //-measure so

that \/x G C, G Tang(//, æ) fl ^(n , m) with 0) < A j  .

Thus

// G : There is a // G Tang(//, x) fl ^(n, m) with 0) < x} =  0

and so we may find a compact subset of B^^l which is of positive //- 

measure such that for all x G B^^l, there is an w G Tang(//,a;) fl Qiri^m) 

with

X <  Dm(w,0) <  x ( l  +  e)

and if z/ G Tang(//,a;) fl Q{n^m) then DT^(z/,0) >  x- Observe also that from 

Lemma 2.2.11 we have that if x G B^ )̂ and v G Tan5 (//,x) then for //-a.e. (

>  X'

(5) We can find a Borel subset B^ )̂ of B^ )̂ of positive //-measure and 0 < 

r ' <  1 such that for all x G B^ )̂ and all 0 < r < r '

(iv) a{m)lr^ < //B (x,r) < a(m)ur'^.
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(6 ) We can find a Borel subset of of positive //-measure and 

0  < r" < r' so that for all x E and all 0  < r  < r” there is a

1/  G Tang(//, x){C Mc{l^u))  so that

(7) Let be a compact subset of B̂ '̂  ̂ of positive //-measure and recall 

that as is a subset of B^^  ̂ we have that for almost every V  G G(n, m)

=  0 .

(8 ) By a suitable translation of // (and hence the corresponding B^^^) we may 

suppose without loss of generality that 0 G B̂ ^  ̂ and it is a density point of 

B^^\ Thus we can find a 0 < r”' < r" so that for all 0 < r  < r'"

/ /[B (0 ,r ) ]> ( l- (6 " /4 )) / /B (0 ,r ) .

By (4) we can find an ujq G Tang'(//, 0) D Ç{n,m)  such that

X ^  Dm(^ 0 , 0 ) < x (l +  )̂-

Thus as for almost every V  G G(n,m ), 7ï^[PvB^^^] = 0 and for infinitely 

many 0  < p < r'”

FR+3+e-i f e ,  wol <

we can find a z/o G G{n^ m) with Spt ẑo =  Lo, say, such that

= 0,

X < D^(z/o,0) < x (l +  e)

61



and

Fr+3+.-i (wo, Co) < a(m );e” (’"+">/2-

Thus, in view of the density estimates for /z at 0, there is an ro < r"' such 

that

MÔB(0,ro) =  0 and F„+3 +=- coj <

Hence we have, in summary,

(v)  =  0.

(v i )  /lz5B(0, ro) =  0.

(v i i )  X <  Dm(f/o,0) <  x ( l  +  e).

(v i i i )  FB+3 + 6 - 1  ( ^ ,  ^o) <

( ix) If we define

F := B < " 'n B ( 0 ,r-o)

then F  is compact and (by (7)) for 0 < r  <  rg

/ z [ f n B ( 0 , r ) ] > ( l - ( r /4 ) ) /z B ( 0 , r ) .

Henceforth let P denote orthogonal projection onto Vq. Let

r i ; = ( l - a ) r o ,  L : = /rS"/iwB(0, rg),

Ai := a (m )2 -i5 -”*ra-” /"LA' and Aj := a(m )3” 2-^”- U « ’” .

For u G Vg and s > 0 define

S(u, s) := {y e W  : \\P{y) -  u|| < 5 } fl B{0, rg)
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and

S^u ,  s) := {t/ G R" : \\P{y) -  u|| < s} H B(0, ro).

We now define a real-valued function on points of Vo fl B(0, ri):

For u G Vo n B(0,ri) define s{u) to be the least (non-negative) number 

such that if

s{u) < s <ro -  ||u||

then

[I] for all u G Vo n B(u, (1 — S)s),

F n S { v , 6 s )^a}

and

[II] there is a VF G G(n,m) and t G R^ such that

F  n S(u, s) C B{t 4- VF, Ss)

and if T, ^ G VF then

Let

A := {u G Vo n B (0,ri) : s(u) =  0},

Ai := G [Vo n B(0, n)] \  A : /iS°(u, s(u)) >  Ai 

A2 := G [Vo n B(0, ri) | \  A : y[S(u, s{u)) \  F] > A2

ro
/^B(0,ro) > ,

s (u )

ro
//B(0,ro)
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and let

A 3 := E [Vo n B(0,ri)] \  [A U Ai U A 2] : [I] holds for s{u) at u and

6 s{u) < diam [P‘‘‘[F fl S(w, -s (w))]]  < 2 K { 1  +  j  .

As F  is compact, ii u £ A  then P~^(u) H F  ^  0 and hence (from (8 r)) 

we conclude that Ti^A  =  0 .

The function s{u) provides us with a tool to investigate the properties of 

the set F.  Our next task is to establish some of the elementary properties of 

s{u) and the sets associated with it. We shall say that a positive real number 

s is good for a point u E Vo fl B(0,ri) if it satisfies both [I] and [II]. It is bad 

if it doesn’t!

Our first task is to ensure that s{u) is well defined:

L em m a 2.3.1 For a// u E Vo fl B (0,ri), s{u) < ero/6 .

P roof: Fix u E VollB(0, ri) and evo/ 6  < s < ro —||u||. As ro—||u|| > aro and 

e/S < a  this is anon-trivial interval. As uq E %(1 c)) 11 has

Spt i/Q = Vq and F/?+3 (//o,ro/^o, ^0 ) < then for u E Vo fl B(u, (1 —

6 )s) we have by Lemma 2.2.8, since 6 s E [ero,ro], that

fj,B{v,6 s) > a (m )x (l — 3me'^){Ss)'^ > a (m )x (l — 3me^)(ero)’̂
1 -3 m e^^> ( 1  +  e) e’’̂ /zB(0, ro)

.1 4- 3mc^
>  (r/4 )//B (0 ,ro )

> /^[B(0,ro) \  Fj.

Thus S(u, 6 s) n F  ^  0 and so [I] is satisfied. I claim that [II] holds with 

W  = Vq and t = 0. For suppose there is an x E [F \  B(Vo, ^s)] fl S(u, s) and
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consider B(a:,^s) (which is disjoint from Vq). Let =  x/tq  and p =  Ss/tq. 

By the definition of we know that 6 s € [e”̂ ro,ro]. Moreover as ||x|| < ro 

and 6 s < 6 tq then B((, p) C B(0, i? +  3 +  e~^) and so by Lemma 1.3.4 (with 

E  =  B(C,/?(1 — e”̂ )) and r  =  ë^p)

Fiî+3+e-i ( ^ -^ 5  > — //Q,roB(C, (1 — e"^)p) -  i^oB((, p)
e"‘y9 \  r^" y r^

-  “^A^B(a;, (1 -  e^)(^s)
' 0

> a{m)l{l — 2 me^){6 s/roy

> a (m )Z ( l-2 m r)e '" '

and so

> — a contradiction.

Hence [II] holds. ■

L em m a 2.3.2 For all u E Vq (1 B(0 ,ri)^ if s{u) > 0 then it is good for u.

Proof; This is just an exercise in using the compactness of F. If s G 

(s(u), 2s(u)) it is good for u. Hence for all u in Vq fl B (u ,(l — 6 )s{u))^ 

F  n S(v , 6 s) is a compact non-empty set . Intersecting these compact sets

over s gives that F  fl S(u,^s(u)) is not empty and so [I] holds.

[II] follows in a similar manner using the compactness of G(n,m). ■

65



L em m a 2.3.3 For all u £ Vo C\ B(0,ri) i f  s{u) > 0 then there is an Xu G 

S (u ,0 ) such that

F  n S(w, ro — ||w||) C X(xu, s{u)/2,2K{1 +  26)s{u), V̂ ).

Also

diam n S(ii, s(tz))]) < 27^(1 +  6)6(w).

P roo f: The second part of the lemma follows from noticing that, as s(u) is 

good for u (Lemma 2.3.2), there is an Xu G S(u,0) and W  G G (n,m ) such 

that

F  n  S(u, s(u)) c  B(æ^ +  TT, <̂5 (u))

and if æ, y G LP then

/ i : | |p ( x - ï , ) | |> | |x - ÿ | | .

Thus if (  E F  n S(u, s(u)) then

||P ^ (C -^ .) ll  < /< ( !  + «>(«)•

For the main statement suppose that Xu is as defined above and fix f  G 

F  n S(u, tq — ||u||). If C G F  n S(u, s(u)) then by the above it follows that it 

is in X(a:u, 5 (u )/2 , 2F(1 +2(^), t^) as required. So suppose (  G F  H [S(u,ro — 

||u||) \  S(u, s(u))]. As s{u) is good for u we can find X  G F  fl S(u, 8 s(u)) and

||xu — X\\ < K 6 s(u) +  KSs{u).

Now consider ||P(() — u|| which is good for u and so we can find W  G G(n, m) 

and y( G S(u,0) such that

F n S(u, ||P(C) -  till) C B(t/c + w , 5||P(C) -  u||)
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and for all x ^ y  Ç : W

K \ \? { x - y ) \ \  > \ \ x -y \ \ .

In particular both X  and (  are in +  IV, < |̂|P(C) — '̂ ID- Hence

| | X - f | |  <  /C [||P (X -y^)|| +  | |P (C -J /^ ) | | ]+ 2 /a | |P (C )-n |  

< / a s ( « )  +  / - : ( n -2 5 ) ||P ( c ) -« ||

and so as 6  < 1/4

Ik,-(II < j (̂6 + 26)gW + ;r(l + 2(^)||P((-Tj||

<  +  26)aW /2 +  ; r ( i  4- 2(^)||P(C -  z ,) ||

as required.

L em m a 2.3.4 n ^ { A 2 ) < 4^-^a(m )e^AjVj^.

P roo f: Let D 2 C A2 be a countable set such that

{B(u,s(u))  : u  e  D 2}

is disjoint and

{B(u,4s(u)) : u e D2 } 

covers A 2 [Fed69, 2.8.4]. Then as D2 C A 2

fc[B(0, ro)\F] > Y ,  f i [S(u, s(u)) \F]
ueÜ2

> A 2 //[B (0 ,ro ) ] r rE k M ]" '
Ü2

Hence

< (e” /4)AjV„“ . 
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Thus

? r(A 2 )  <
Ü2

as required. 

Lem m a 2.3.5

Vo n  B(0, Ti) C .A U A i  U A2 U A3 .

P roof: Suppose that u G [Vo H B(0, ri)] \  [A U Ai U A2 ] and so s{u) > 0.

By the definition of s(u) it is possible to find an 3  G ((3/4)s(u), s(u)) 

such that it is bad for u— that is either [I] or [II] fails for s at u. Thus there 

are two cases to consider for s:

1. Either [I] fails for s at u or

2. [I] holds for s at u but [II] fails to hold.

Case 1: [I] fails.

In this situation there is a u G VonB(u, (1 —̂ )s) such that S(u, 6 s)f]F  =  0. 

In this case let t =  (4/3)s and so s{u) < t < aro and thus t is good for u. 

Consider

C := {B(u;,5<5t/4) : x G Vq and ||a: — v\\ =  iSt}

and let B = j be a maximal disjoint subfamily of C (recall

that M  was defined in (3) of Section 2.3). Since 8  < 1/17 then for all 

i =  1 ,.. .  Af

\u — u|| +  \\v — Uî|| < (1 — 8 )s +  4:8t < (1 — 8 )t
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and since t is good for u we conclude that for all i

0 .

So for 2 =  1 , . . . ,  M  choose X{ G S(ui, St) fl F.  Then \ i i  ^  j  

and

||P(xi -  Zj)|| < 106 .̂

Since t is good for u there is a Y G S(u, 0) and a IT G G(n,m ) such that

F n s ( u , t )  C B{Y + W,St)

and for x ,y  E W

K \ \ ? { x - y ) \ \ > \ \ x - y l

Hence for all i and j

l l^ i — a^jll < 2 K S t K\\F{xi  — X j ) \ \

< 2K[S +  5S]t =: p, say.

As p < ro < r" then by (6) of Section 2.3.1 there is a z/ G M-c{h '^) so that

Fb+3+.-(Px..,//»”‘, 

and so, by Lemma 2.2.5, we can find for each i a Zi G [â i +  /?Spt v] with

II2̂1 — ^i|| ^  pc^.

As pe”̂ < Stl% we conclude that

P(z^) G B ( u „ m / 8 )
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and so if i ^  j  then

l | P ( z .  -  Z,)|| > s t / i

a n d  a l s o

| |P ( z , -  -  Zj ) \ \  <  I 0 6 t  +  2 e ^ p  <  { 4 1 / A ) 6 t .

I n  a d d i t i o n

W^i — Zj \ \  <  p { l  +  2 e " ' ) .

T h u s

i m n { | | P ( z i  -  Z j ) \ \ }  >  { 6 t / 4 c ) / [ p ( l  +  2 e ^ ) ]  m a x { | |z , -  -  Z j \ \ }
hj

— ^  (8 /iT [^  +  5 ^ ] [1 +  2 e ”^]) n i a x {  ll^ i — II}

>  7 n i a x { | | 2 : i  -  2 r j ||} .

I  c l a i m  t h a t  v  i s  i n  t h e  c o n v e x  h u l l  o f  { P z i , . . . ,  P z ^ } :  F o r  i f  i t  i s n ’t  t h e n

t h e r e  i s  a  u n i t  v e c t o r  e  G Vo s u c h  t h a t  i f

H ~  : =  { y  e V o :  ( y ,  e )  <  0 }

t h e n

V +  H ~  D  c o n v  { P z i , . . . ,  V z m } -

B u t  c o n s i d e r  t h e  p o i n t  v  +  i S t e :  l i  z  £  v  -{■ H ~  t h e n  z  =  v  Ç, f o r  s o m e  

(  e  H ~ .  T h u s ,  a s  C G H ~ ,

\ \ z  -  ( u  +  4 ^ t e ) | |  =  l ie  -  4 & e | |  >  | ( (  -  4 6 ^ e ,  e ) |

>  |4<^t — ( C , e ) |  >  ^ 8 t .

H e n c e  B ( u  +  4< 5 ie , 5 ^ i / 4 ) n B ( u  + 5 ^ i / 2 )  =  0  a n d  s o  B ( u  +  4<^te, 5 < 5 t /4 )  G C

w h i c h  c o n t r a d i c t s  t h e  m a x i m a l i t y  o f  B  a n d  t h u s  t h e  c l a i m  h o l d s .
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Hence/9 ^(î; — xi) E conv {/9 ^(Pzi — x i ) , . . . ,  yo — ^i)} and for all

2 , p ~ ^ { z i  — a î) E Spt V. Thus, from (3) of Section 2.3, we can find a

z G (Spt z/ )nB(p“^(zi— max ||zi—Zjll)

C Spt V  n B(p (̂%i — 37i), i?(l T 2e”̂ ))

such tha t

P z  E  B ( p " ^ ( u  -  P x i ) , ^ p “ ^ m i n | | z i  -  Zj \ \ ) .

Hence on setting (" =  +  pz we conclude that

C E B (zi, R p { l  T 2e”̂ )) fl [a:i +  pSpt z/]

and

P (E B (u ,((4 1 /4 )(^ t).

Thus as

(41/4)^6( <  <̂ 6/2

and

max{||a!Ji[|} T p e ^  +  R p { ^  T  2e”’') +  6s/2 <  vq

we have that

B (C 6 3 /2 )c S (u ,6 5 )  (c [S ( i2 ,3 ) \f ] ) .

Hence

^^[S{u,s)\F] > ixB{(,Ss/2)  

and as Ss/2 € [(Fp-, p], we can apply Lemma 2.2.8 to conclude that

>  a (m )l( l -  3me“ )(5s/2)”

=  a (m )2 -” (l -  3me” )i<5” (s/r-o)” //B(0,ro)
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and so as s { u )  >  s  >  3s {u) / 4 :

f j,[S{u,s{u))\F] > fj,[S{u,s)\F]

ro
^B(0,ro).

But this implies that u E A 2 which is impossible and so Case (1 ) cannot 

occur.

C ase 2 :[I] holds but [II] fails.

Hence either

(i) there is a VF G G(n,m ) and Xu G S(u,0) such that

F  n  S(w, s) C B(a;u + VF, 6 a) 

and there are G VF with

J C | |P x - P y | |< | | : r - y | | ,

Or

(ii) for all VF G G(n,m ) and all Xu G S(u,0)

[F n S(u, s)j \  B{xu +  VF, 6 s) ^  0.

So suppose we have case (i) for some VF and x^- Then [Fed69, 1.7.3] enables 

us to find an orthonormal basis for VF, { e i,. . . ,  6 ,̂1 }, such that if i ^  j  then

(Pê -, Pej) =  0.
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First let us observe that {P ei,. . . ,  Pe,n} is an orthogonal basis for V q : For if it 

wasn’t then we could find a unit vector f  G Vo such that for all z, (Pe%, / )  =  0.

But then consider the vector u =  u +  (1 — ^)sf .  If (  E {xu +  W)  fl S(u, s)

then

||P C - H r  =  \ \ u ^ F { ( - X u ) - u - { l - 6 )sf\\^

= ||P (( -  +  [(1 -

but F  n S(u, a) C B(a:u +  VP, 6 s) and so if z E F  H S(u, s) then

||Pz — u|| > (1 — — 6)s > 6 s

which contradicts [I], Hence {P e i,. . . ,  Pê î} is a basis of V q and so, in par­

ticular, ||Pe^|| ^ 0  for all z.

Now observe that there is an z such that ||Pei|| < 1 /K:  For if ||Pe%|| > 1/FT 

for all z and x ,y  G W  are such that

K \ \F {x -y ) \ \  < \ \ x -y \ \

then

\ \ F { x - y ) f  = {P{x - y ) , F { x  - y ) )

i
> -  2/, e,y =  (||z -  y||/A:)^

i

which contradicts the definition of x and y. So we may suppose without loss 

of generality that ||Pei|| < 1/K.
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Consider open cuboids in Vo with sides parallel to P e i , . . . ,  and with 

sidelength equal to 4s/(5/Cm) in the Pei direction and s /m  in all the others. 

Let C be a maximal disjoint family of such cuboids contained in PB(u, (5m — 

l)s/(5m )). Then

card (C) >
2"̂  (5m — 1 ) K f  5m — 1 m —l

4>/m \  5\/m  J

Suppose that C E C and c is the centre of C then there is an xc  G TTlS(u, s) 

such that

llPa^c -  c|| < 6 s

and so, as ^ < 2/(5/Vm), Vxc  G C . Consider the family of balls in R ” given

by

B = {B(a:c,(5m)-is) : C EC}.

I claim that this is a disjoint family. In order to verify this we need to show 

that if a:,x' are distinct centres of balls in B then ||3: — a;'|| > 2s/(5m). So 

suppose that x and x' are two such distinct centres and let c and c' be the 

centres of the corresponding cuboids in C. Notice that c and d  are also 

distinct.

Since F  fl S(u, s) C B{xu +  VP, 6 s) we can find X  and X ' m  x ^ F W  such 

that

I k -æ 'l l  > ||X -X '|1  > \ \ x - x ' \ \ - 2 6 s

and

m & x { ||P ( X - z ) | | , | |P ( % '- i ') | |} < 6 . .

Hence

max{||PX -  c||, ||PX ' -  c'\\] < { 6  F 6 )s < 2sl{5Km)
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and thus F X  and FX '  lie in different cuboids.

As c and d  are the centres of distinct cuboids in C there is an i such that

|( c - c ',P e . / | |P e . | |) |> 0 .

If this 2 > 2 then

|(c -c ',P e i/ ||P e i ||) | > s /m

and hence

||P(x — a;')|| > (m“  ̂— 2(5)s.

Thus

lia; — o:'|| > (m“  ̂ — 26)s > 2s/(5m)

and we are done.

If z =  1 then

|(c -c% P e i/||P e i||) |> 4 s /(5 A :m )

and so

|(P (% -X ') ,P e i / | |P e i ||) | > [4(5/'£'m)-' - 2 ( 5  +  ^)]s

but

|(P(X-r),Pei/ | |Pei | |)|  = |(X-X',e:>|||Pei||

< \ { X - X ' , e ^ ) \ I K

and thus

\ \ X - X ' \ \ > \ { X - X ' , e i ) \  > K[i{^Km)-^  - 2 { S  + 8 )]s

> 2s/(5m)
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hence

||a; — x\\ > 2s/{5m)

as required. Thus 5  is a disjoint collection of balls with centres in F  and as 

for all C G C

Ikd l +  sl{5m) < To 

we can conclude that all balls in B are contained in S(u,s). Thus

nS{u,s) > ^  //(B)
BeB

> o;(m)/(s/(5m))”̂ card (5)

> a(m )(2/5)"-'m -’"/"i/ir(s/ro)” MB(0, ro)

and so

ro
//B(0,ro)

which implies that u E Ai  which is impossible. Hence (ii) must hold. So for 

3s(u)/4 < 5 < s(u) we have that [I] holds for s at u and for all W  E G{n, m) 

and all Xu E S(u, 0)

[ F n s ( u ,6 ) ] \B (z ,  +  iy, 6 5 ) ^ 0 .

Hence, in particular, for all Xu E S(u,0)

[F n S (u ,6 )] \B (T , +  H ) ,M f  0

and so there are an Xs and y g in S(u, s) f] F  such that

||P-^(a;5 -  ys)\\ > 6 s.
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Thus, as F  n S(u,s(u)) is compact and contains F  H S{u,s)  for s < s{u), we 

conclude that there exist x and y in F  H S(u, s(u)) with

Hence, as s(u) is good for u (Lemma 2.3.2), we may use Lemma 2.3.3 to 

deduce that

diam P -^(F nS (« ,s(u )))  <  2 ir (l  +  (5)s(u)

and so u G A3 as required.

L em m a 2.3.6 Let

77 := ( 1  + 3me’̂ ) 1
- 1

-  1

and suppose that

I < T  <

Then there is a u Ç: A3 and a Borel set J  contained in Vq nB(0,ro) such that

Vo n B(u,Ts(u)) C J  C Vo n B(u,4T6(u)),

p [p - '(7 )  n  B(0, ro)] <  x ( l  +  

and i f 0 < 9 <  [2/(3m)]" '̂""  ̂ then

[B{dv,J,Bs{u)) n  Fo] <  c(m)^^/("‘+^)[rs(u)]”‘

(where c(m) is the constant from Lemma 2.2.4 J
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P roof: Consider

C := {PB(w,s(u)) : u E Ai}  U {PB(u, T 5 (u)) : u E A3 }

which is a cover of Ai U A3 . As 4Ts(u) < aro it follows that for all u E Ai U A3

PB (u ,4T5(u)) C Vo n B(0,ro).

By Lemma 2.2.4 we can find a disjoint subcollection, of Borel sets con­

tained in Vo, which may be written as a disjoint union, U J 3 , such that

1. Ai C UjTi and A3 C UjTs,

2. for all J  E J7i there is a u E A% such that

B(w,s(u)) n Vo C J  C B(u,4s(u)) PI Vo 

and for all J  E J 3 there is a u E A3 such that

B(u,Ts(u)) n Vo C J  C B(u,4Ts(u)) n Vo,

3. for all J  E J i  if 0 < 0 < [2/(3m)]”̂ +̂  and if u is as determined in (2) 

then

W" [B(ôvi,J,é'5(w)) n %] <

and for all J  E J 3 if 0 < 0 < [2/(3m)]'^+^ and if u is as determined in

(2 ) then

W”  [B{dvJ,8Ts{u))  n Vo] <
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Thus n ^ [ \ J j )  > H ^{A i  U A3 ). If for all J  G J ,  H B(0,ro)] >

x ( l +  r])'H^J then as

J 2 f ^ [ P - \ J ) n B { 0 ,ro)] < /^B(0,ro)

<  a ( m ) x ( l  +  S m e ^ ) r ^

we find that

a ( m ) x ( l  +  3me^)rJ^ >  ^ x ( I  +

> x ( l +  T7)^"(^iUA 3) 

which, by our estimate for the size of A2 (Lemma 2.3.4), is

>  a (m )x (l +  7 /)rg '[ l-4 —

= a(m )x (l +  3me"^)rJ^ — a contradiction.

Hence there is a J  G J ' such that

//[?-:(J) n B(0,ro)] < x(l + 77)T^"(J).

If J  G c7i and u is the associated point of Ai  then we find that

a(m )x(l +  77)[46(%%)]" > x (l +  T7)? r (J )  > //[?-'( J) H B(0,ro)]

> /iS°{u,s{u))

since u G Ai

> Â2[5(u)/ro]”'^B(0,ro)

>  a ( m ) x ( l  — S m e ^ ) A 2 s { u ) ^

but then

(1 A 77)4 "  > (1 -3 m e")A i 

which is impossible and so J  G J 3 which implies the Lemma. ■
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L em m a 2.3.7 Suppose that 1 < T  < Then there are a u E A 3 ,

X  Ç: F n  S(u, 6 s{u)), 1/  6  Tang(/z, X )  ( c  VWg(/, u)) and a closed set I  C  Vo 

such that:

1 . FH+3+e-.

2 . there is a

y  6 Spt !/ n p-^ [B(0, 1 +  <S +  e“ )] n X(0 , 2 +  e™, 2K{1 + 26), Vo) 

such that

\\P^Y\\ > 6/2 -  e” ,

3. for all w Ç: VoH B(0,5T) 

?-^[B{w,{5T+S){l-6)-'^6^e^)]nSptpnX{0,2Ae^,2K{lA26),Vo)  /  0 ,

I  B(0, T(1 -  (2e-)-+^)) n V o C i C  B(0,5T) n M),

5.  i / [ p - ^ ( J ) n B ( 0 , 3 0 / ^ e ( 2 / ( 3 m ) ) - i ) ]  <  x ( l + 7 7 ) ( ? ^ ^ ( / ) + 2 c ( m ) e ™ e ( 2 / ( 3 ”^ ) ) - i ) +  

a{m)le'^^,

6 . for all 0  < 0  <

? r  [B{dvoI,OT) n Fo] < c(m )[(2eT +^ +

P roof: Fix 1 < T < From Lemma 2.3.6 we can find a w G A3

and a Borel set J  C ^  such that

PB(u,T5(u)) C j  C PB(u,4rs(u)),
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/» [p - '(7 )n B (0 ,ro )]< x (l +  'ï)W’" W

and if 0  < ^ < [2/(3m)]'^+^ then

? r  [B{dv,J,eTs[u)) n yo] <

Since u G A3 we can find a ï/, G -F fl S{u, s{u)) such that

I IP-^Cy- î /OI I^^^H-

Thus, as s{u) is good for u (Lemma 2.3.2), F  fl S{u,Ss{u)) ^  0 and so we 

can find an % G F  D S(u, 6 s{u)) such that

maj({||P-'(2/ -  % )||, ||P -^ (/ -  % )||} >  6s(?i)/2.

We may assume without loss of generality that

l |P -^ (! /-^ ) l l > ^ H / 2

and, as (5T + 6)(1 — ^)~^s(w) < aro < rg — \\u\\, we may use Lemma 2.3.3 to 

conclude that there is a t G S(u,0) such that

f  n P - '  [B(ti, ( s r  +  <5)(1 -  5)-^s(«))] c X { t , s { u ) / 2 , 2 K { l  +  2S),Vq).

Hence

F  n  p -"  [B(u, (5T +  (5)(1 -  <5)"‘s(u))] C X(X,  2s{u), 2K{1  +  26), Vo).

As s{u) < ro we may use (6 ) of Section 2.3.1 to find a

1/ G Tang(//,%) (C M c ih '^ ) )
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such that

which is (1) of the Lemma.

l i z e F n ? - ^  [B(u, (5T +  6)(1 -  < )̂- 5̂ (u))] then

\\z — X\\ < ((5T +  ^)(1 “  '̂S(u) + 2ero6/ 6  ^  3 +  e ^

and so we may use Lemma 2.2,5 to conclude that there is a (  E Spt z/ such 

that

IK ~  ~  ^)/'5(w)|| < e^.

In particular, as y G P"^B(u, 5 (u)) (1 FHX(%, 2s(u), 2Æ(1 +  26), ho), there is 

a IK G Spt z/ n P  ̂ [B(0, 1 -f- ^ -f- ê’̂ )] n X(0 , 2  -|- 2 A ( 1  -f- 26), Vq) such that

| | y _ ( y _ X ) / 6 M | |< e - .

Hence by our estimate for y and as 0 G Spt v (since u G Tan5 (/t/, x)) we have

diam p-  ̂ (Spt r/ n p - \ B ( 0 , 1 +  6 +  e”*)) n X(0, 2 +  e"*, 2/C(l +  26), %))

- r ' '
which verifies (2 ).

Suppose w G B(0,5T)nVo and let v = s{u)w-\-FX and so u G B(u,(5T +  

6 )s{u)) n Vq . As (5T +  6 ) ( 1  — 6 )“ 5̂ (u) is good for u it follows (by [I]) that 

there is a

z G f n  P-"B(u, (5T +  6)(1 -  6 )~Hs(u)).

Hence we may use Lemma 2.2.5 again to conclude that there is a (  G Spt z/ 

with

IK — — X )/5(u)|| < .
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But ||u — Pz|| <  (5T +  6)(1 — S) ^ Ss { u )  and so

\w

On observing that z G X{X,2s{u) ,2K{l  +  26), Vq) we conclude that

(G X (0 ,2  +  r , 2 j ^ ( l  +  2 6 ) ,%

and so (3) holds. 

Let

/  := CIos {(x -  P X )/s(u ) : x e J \  B{dv,J, (2 £” )” +^rs(u))}

and so

B(7, c  {(x -  PX)/s{u)  : X e J}

and, for  ̂ > 0

B{dvJ, e T)  C B(& . {(x -  BX)/s{u) : x € J}  , (9 + (2£”’)"*+')T)

Moreover from the definition of J  we have that

? r ( 7 )  > [s{u)]-^H^{J)  -  2c{m ) t^T ^  

and, since < [ 3 m ] f o r  0 <  ̂ < we have

r

which verifies (6 ). 

Since

B(u, Ts(u)) n Vo C J  C B(u, AT^(u)) fl Vq
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we conclude that

B(0 , T(1 -  - 6 ) ) n V o C l C  B (0,5T) n Vo

which is (4).

It only remains to verify (5). Since

max{30/'£'e(^/P”*»-^ +  5 T } < R  +  3 +  r'-

we may use Lemma 1.3.4 (with E =  P~'(/) A B(0, and r  =

^m(m+i)rp'j conclude that

P “ '( / )  n B(0,30/'£'e<^/(^'"»-')

p [p - '(7 )  A B(X,6(u)(30Æ6(^/(^"'))-i +  e™(” +i)T))] a(m)/e'"(” +̂ )
<

[s(u)]“^  em(m+l)2^
which as ||X|| +  < ro

< [ s W ] - / ,  p-:(J)nB(0,ro)l '+

which by the definition of J  is

< x(l + + a[m)l^"‘IT

<  x(l + Î?) [W” (/) + 2c(m)e”*eP/(̂ "*»-'“] +

verifying (5) as required. ■

2.3.2 Properties of independent of e

L em m a 2.3.8 For all T  > 1 there is an x E i/ G Tan5 (^ ,x) and

V  G G(?2 ,m ) such that

1. there is a Y  G Spt i/nX(0,2 ,2Æ(l+26), y )nP ÿ^(B (0 ,1)) wi/i ||P y y || >
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ê. v n  B (0 ,5T) c Py[Spt t/ n X (0 ,2 , 2 K ( 1  +  26), V)],

3. for ail Borel sets C contained in V  D int (B(0, T))

= x n ^ ( C ) ,

4. Spti/nPj;'[int(B(0,r))] c X ( 0 , 2 , 2 / '£ ' ( 1  +  26),P),

Proof: Fix T > 1 and suppose we have a sequence of positive real numbers 

Hi - 4- 0 and sequences Xi G G Xan5 (/i, (C u)) and % G

G(n, m) such that

(i) the points X{ x E u and so, by the definition of ,

1/ G Tan,g(/2,z) C VWg(/,u),

(ii) the m-planes V i V  and if Pi := Py., P^ := P^. then we can find

a Pi G Spt ẑi n  P i^[B (0 ,l +  “̂ i)] n X(0,2 +  j^i, 27^(1 + 26), F) with 

| |P fK - ||> 6 / 2 - H ia n d i ; - - > F ,

(iii) there is a compact set I{ C Vi such that B —> /  in the Hausdorff metric 

(denoted by dn) and

B(0, r ( i  -  Hi)) n y  c  l i  c  B(o, 4T +  ho n y, 

z/iprX/:) n B(0,%2r')] < x^ (70  + Hi

and if 0  <  ̂ < then

7r[B (^i7 i, 9T) n y] < c(m) [Hi +

(where di := 5y..)
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(iv) For all v 6  %TlB(0,5T) there is a (  G Spt ^ inX (0,2+5^, 2K{l-\-2w), Vi) 

such that

||P ,(C )-u || < 2 ,T .

Then I claim that i>,x,Y and V  would satisfy the Lemma. (We shall verify 

the existence of such sequences 2 %, i/,-, z*, Ii and Vi later.)

From Lemma 2.2.14 (with L = T) we conclude that z/ and Y  satisfy (1 ) 

and (2 ).

It is clear that I  (defined in (iii) above) satisfies

B(o,T’) n y  c / c B ( o , 5 r ) n y .

Suppose that 0 < 6  ̂ <  and j  is chosen so that for all i > j

I C B ( I i , 6 T) a n d /iC B ( / ,(^ r ) .

Thus I  C V  C\ B{Ii,ST) and, clearly,

( y  n B(7 ,̂ 6T)) < ?^"'(y n B(A-, 6T)).

Hence

n ^ { i )< n ^ { v n B { i i , 6 T ) )  < ?r(%nB(L,,6T)) 

=  n^[{ i iU B {d i i i ,ST ) )nV i]

Now observe that as /; C fl B(J, 6 T)  we have

H™(7i) < n B{I,ST)) < H”' (V  n B{I,ST)).



Hence on sending i to infinity we deduce that 

■HT(I) < l ip in f

and

limsup7r*(7;) < W”’(y n B (7 ,7 T )) .
i —*-oo

But 7 =  n«>oB(7, (5T) and so sending 6  to zero gives

W” (7) =  lim 7T(7i).
i —t-CxD

Now observe that if i and 8  are such that I  C B(/i, 8 T)  and if a; G I  \  

B (5y/, aT ) (for some a >  8 ) then

y n B ( x ,a T ) c /C B ( / i , ( 5 T )

and so T G U and

d{x,dili) > [a -  8 ]T

which means that

7 \  B(avA «T) C B(7„ 6 T) \  B(%7, (a  -

Fix 0 < 6  < 1 and choose j  such that if z > j  then

(f) +  6 ,

Ei > 6 8 ~^T and

and if a: G B(0, Ç>8 ~^T) then

||P,(a:)-Py(a:)||<6r/2.
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If X €  Pÿ' [ /  \  B(dv l ,  2ST)] n B(0,6<5-'T) then

| |P . ( x ) - P ,P y ( x ) | |  <  | |P i ( x ) - P v ( x ) l l  +  l |P v ( x ) - P . P v ( i ;  

<  ST 12 + ST 12 =  ST.

Thus

Pv" [I \  B{dvI,2ST)]  n B(0, 6r * T )  c  P.-'(P.) A B(0,6r*T)

and so we may use Lemma 1.3.4 with t  = ST and E  = Py^ [I \  B{dv l ,  3<5T)]n 

B (0,6S~^T) to deduce that

u [Pÿ' [7 \ B(ôy/,35T)] n B (0 ,5 r 'T ) '

<  [Pÿ' [ /  \  B{dv l ,  2ST)] n  B(0 , 6 ^- 'T )] +  v)

< [ p - '( ; . ) n B ( o ,6 r ^ r ) ]

as E,” '  > 6 S~^T we may use (iii) to deduce

< x'H"‘(Ii) + Ei + S

< x ? r ( L ) +  % +  (% +1)6.

Hence on sending i to infinity we find that

P ; '  [/ \  B(dv l ,  3ST)] n B(0,56-iT)] <  xW™(/) +  (x +  1)<5

but S was arbitrary and so we conclude that

[ P ÿ ' ( i n t y / ) ]  <  x H " ( P ) .

Now recall from Section 2.3.1(4) that a s  u G T a n s ( f i , x )  and x G then 

for z/-a.e. (

Dm(z/,C) > X-
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Thus if (7 C B (0 ,5T )fiy  is a Borel set then from Lemma 1.3.2 we can deduce 

that

p ; X G )n x (o ,2 ,2 j ^ ( i  +  2 6 ) ,y )

>  ( C ) n S p t ! / n x ( o ,2, 2K { i  +  2S) ,v)]

which, by projecting back onto F , is

> xW” (C).

Hence if C C int (B(0, T)) fl V is a Borel set then

X > T { C )  <  v [ ? y \ C ) \

< r/[P ;X /)| -  v [ V y \ l  \  C) n X (0,2 ,2/S'(l +  25), V)] 

which by the preceeding

< xM -(7) -  %[%'"(/) -  ? r  (C)]

= xW” (C).

Thus for all Borel sets C C int (B(0, T)) n V

^P;\c')i = xM'"(c)

which is (3) of the Lemma.

If there is an a: G Pÿ^pnt B(0, T)] \  X (0,2 ,2/iT(l +  26), F) such that x G 

Spt V then we can find an r > 0 such that PyB(x, r) C int B(0, T), z/B(a;, r) > 

0  and

B(T, r) n X(0,2 , 2 / ^ ( 1  +  26), y )  =  0

but then

xfr(B(Pvx, r)nV)  = i/[P^'(B(Pv'X,r))
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=  V P ;'(B (P y z , r)) n X (0,2 ,2K{1 +  2S), V)\

+  V P ;'(B (P y ^ , r)) \  X (0,2 ,2K{1 + 25), V)]

> x H ” (B (P v x , r )  n 1/)) +  i/[B (x, r-)]

> r) n y ) — a contradiction

and so u satisfies (4).

It remains to show that we can find sequences which satisfy (i) through 

to (iv). In order to achieve this it suffices to choose a sequence of positive 

e tending to zero and use Lemma 2.3.7 to find associated sequences of mea­

sures, points, planes and sets. Upon noting that any sequence of measures 

( t Oi )  C  A 4 q {1 ,  u )  possesses a convergent subsequence (this is an application of 

Lemma 1.3.3 together with the uniform upper density estimate on the mea­

sures iüi) and that, by compactness, any sequence of points Xi in possesses 

a convergent subsequence and similarly for Vi G G(n,m ) and compact sets 

Ii C B(0 ,5T) we deduce that we can, indeed, find a sequence satisfying (i) 

through (iv). (Z, is chosen to be the maximum of all the appropriate error 

terms in Lemma 2.3.7.) Hence the Lemma holds. ■

L em m a 2.3.9 There is an X  G w G Tan5 (//,X ) and W  G G(n,m ) 

such that

1. S p to ;C X (0 ,2 ,2 ir(I  +  2(5),IU),

2. W  = Pp^[Sptcu],

3. for all Borel sets I  C W
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4 . there is a Y  G Spto; fl P^^(B(0,1 )) fl X(0,2 ,2/<^(l +  2 <̂ ), VF) with

W^wYW > <̂ /2,

5. foTu-a.e.  D ^(w ,() > %,

6 . w is m-rectifiable.

P roof: From Observation 8  we may find for all T > 1 an x t  G lot G 

Tans(n,XT), Wt 6  G(n,m ) and a G Spt W TnP^(B(0, l))flX (0 ,2 ,2Ff(H- 

2(5), Wt) such that

rv >  6/2,

ii) W rn B (0 ,5 T ) c  P;v^[Spt wr n X(0,2,27^(1 +  26), Wy)],

(iii) for all Borel sets I  contained in int (B(0,T)) fl Wt

WT[Pi^%,m] =  x ? r ( 7 ) ,

(iv) Sptw TnP^^[int(B (0,T ))] C X (0 ,2 ,2F f(l+ 26),W r).

By repeated use of compactness and application of [Mat95, Theorem 1.23] 

we may find a sequence T{i) —̂ oo such that

(v) Xi := XT{i) X  e

(vi) uji := UT(i) w which, from Section 2.3(2), is in Tan^(//,X),

(vii) Wi ;= Wt{{) W e G(n,m ) .

(viii) Yi := YT̂ i) ^ Y e  P ^(B (0 ,1 )) H X(0 , 2 , 2 Æ ( 1  +  26),W).
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Let Pi ;= Pvvj.(j) and P f  := P ^  . From Lemma 2.2.14 we may immediately 

deduce that V  6  Sptw nPi;/(B(0, l))nX(0,2,2F:(H-2<5), IF), | |P ^ y || > S/ 2  

and

Pw[Spt ly n  X (0,2 ,2K{1 +  26), W)] D 1 .̂

Hence (2) and (4) of the Lemma hold.

Since w G Ta,ns{fi,X) for some X  G we know from Section 2.3.1(4) 

that for w-a.e. (

Dm(w,C) >  X

and so (5) holds. Hence if C C IF is a Borel set then as Pw[Spti/ PI 

X (0,2 , 2/L(l +  2(5), W)] D IF we deduce from Lemma 1.3.2 that

u>[P^i(C) n X(0,2 ,2K{1 +  26), W)\

> x H "[^w {C )  n X(0 , 2 , 2 / f ( l  +  2 6 ), IF) n  Sptw]

> XM"(C).

Hence in order to verify (3) it is sufficient to show that for all T >  1

u>[PS;(B(0,T))]<a(m )xT”*.

Since then if C C IF we deduce that, for all T > 1,

xW” [C 'n B (o ,r)]  <  a ;[P s? (B (o ,r)n c )]

<  w[Pi^B(0, T)1 -  o;[PS?(B(0, T) \  (C n  B(0, T))]

<  a (m )x î”" - x W m ) r ” -W " '(C n B (0 ,r ) ) ]

=  xW” (C n B ( 0 ,T))
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and (3) then follows on sending T  to infinity. So fix T > 1 and 0 <  ^  < 

1/(2T). Choose i so large that

T(i) > T

and

PS?[B(0,T)]nB(0,l/E)

is a subset of

P-'[B(0,r(l + E))]nB(0, l/E ).

Then

w[p-:[B(0,r)|nB(0,l/E)] < w[p-'[B(0,r(l+E))]nB(0,l/E)]

and so as Lemma 1.3.4 implies that

w[Pr'[B(0,r ( l  +  H))] n B(0, l/E)] < W<[P-'[B(0, T (1 +  25))] n B(0, 1/5)] +

which, from (Hi) above 

and so we may conclude that

w[p-XB(0,T)]nB(0,l/5)] < a(m)xr™(l + 25)’" + 5  

and as H was arbitrary we deduce that 

w [p -\B (0 ,r) )]  < a (m )x r” .

Thus (3) holds.
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The fact that (3) holds together with the earlier note that 

W  = Pvy[SptwH X (0,2 , 2K(1 +  2S), W)] 

implies (using an identical technique to that used in Lemma 2.3.8) that

S p tw C X (0 ,2 ,2 Æ (l+ 2 6 ),fy )

and so (1 ) holds.

It remains only to verify (6 ) but as w G Tan^(//, %) C u) and

we have already verified (1),(2),(3) and (5) of the Lemma then we may use 

Lemma 2.2.12 to deduce that w is m-rectifiable as required. ■

2.3.3 D eriving a contradiction

We are now able to find a contradiction: Let w be the measure whose 

existence is guaranteed by Lemma 2.3.9 and let X  G Y  G R”' and

W  G G(n,m ) be as in Lemma 2.3.9. Since w G Tan5 (/u,X) we know that 

0 G Spt w and as Y G Sptw has ||P ^y || > 6f2 we conclude that

diam (P^Sptw ) > f /2 (>  0).

In addition w is m-rectifiable,

W  =  Pw[Spt w],

and for w-a.e. x G Spt w

Dm(w,T) > %.
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Hence we may apply Lemma 2.2.13 to conclude that there is a Borel set 

B  C W  with

u,[Ps?B] > x y r { B )

but this contradicts the definition of w. Thus no such measure u  can exist 

and so our original measure fi must be m-rectifiable as claimed.
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C hapter 3

E xam ples

In this chapter we shall present examples which illustrate some of the re­

lationships between various tools for investigating the local structure of a 

measure,

3.1 A verage d en sities  and tan gen t m easure  

distr ib u tion s

It is well known that D^(/i,a;) can only exist in general if m  is an integer 

and jjL is rectifiable (see [Pre87, Mat95] or Theorem 1.5.2). In an attem pt to 

define a notion of density which exists for a wider class of measures and for, 

possibly, non-integer values of m, Bedford and Fisher [BF92] introduced the 

notion of average density: For fi a measure on and 0 < m < n the upper
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average density of ^  at a;, D^(/i,a:), is defined by

:= lim snp—^—  f  -  
r-̂ O — log r Jr a

dt
log r  Jr a (m ) t^  t 

and the lower average density of [i at x, D^(/x,a;) is defined to be

X) := limmf f  f  ■

If D^(/z,a:) =  then the common value is denoted by D ^(//,x) and

is called the average density of // at a;. It is elementary to see that

x) < D^(//, x) < D^(/z, x). (3.1)

In their paper [BF92] Bedford and Fisher showed that average density ex­

ists (is positive and finite) for the usual 1/3-Cantor set if m is taken to be 

log 2 / log 3. They also showed that for Hyperbolic Cantor sets there is an m  

such that the average m-density exists. Since then their results have been ex­

tended to cover other classes of measures. For example in [Gra93] it is shown 

that average density exists for all self-similar measures for an appropriately 

chosen value of m.

In a slightly different direction a recent paper of Falconer and Springer 

[FS95] showed that if for /x-a.e. x

0  < D^(//,a:) =  D ^(//,x) < oo

then m is an integer. This has recently been improved by Marstrand [Mar94] 

to the following: If for //-a.e. x

0  < D^(//,T) =  Dm(fJ^,x) < oo 
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then m is an integer. It was conjectured by Springer [Spr93] that equality of 

average density and upper density almost everywhere may imply rectifiabil- 

ity: The example of Section 3.2 shows that this is not true.

In [Ban92] Bandt introduced the notion of tangent measure distributions. 

These are probability measures defined on the tangent measures of a measure 

/z. They refiect how often a particular tangent measure appears as one looks 

at the blowups of ji in the vicinity of a point x  6  R ”'. The definition we 

shall present here will only be for normalisations of the form and we shall 

assume that both the upper and lower m-densities are positive and finite; 

For a more general approach see [Môr95]. Before we define tangent measure 

distributions it will be useful to recall some of the general theory of (Borel) 

probability measures on VW(R"').

Given a sequence, P ,̂ of Borel probability measures on A^(R"') we say 

that Pi —> P, a probability measure, if for all /i: A f(R ”) R  which are 

continuous and bounded we have

/ /i(/z)dPi(^) — / h{fj,) dP{fi) as i oo.
Jm  j m

This is the usual definition of weak convergence. The following Theorem 

states some useful equivalent definitions of convergence.

T h eo rem  3.1.1 I f  P  and Pi (i 6  N) are probability measures on M  then 

the following are equivalent:

L  Pi P ,

2 . for all continuous functions 0  : R"" [0 , oo) with compact support ■

f  exp[-/z(6>)] dPi{fi) f  exp[-/z(0)] dP(/z), 
j m  j  m .
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3. for all continuous functions /i : R  —>■ [0, oo) which are bounded and for

all continuous functions, 9 : R ” —> [0, oo), with compact support we

have

f  h [ - t ^ { e ) ] d P M - ^  f  h[ - f i { 0 )] dP(fi),
J  M.  J  M.

f .  for all continuous functions : R  —>• [0, oo) which are bounded and for

all continuous functions, $ : R ” —> [0 , oo)  ̂with compact support and

lip (0 ) < \  we have

J A i  J  M

P roof: The equivalence of (1) and (2) is shown in [Kal76, Theorem 4.2]. It 

is clear that (3) implies (4) and (3) implies (2). It suffices only to verify that 

(1) implies (3) and (4) implies (3).

(1)=>(3). This reduces to checking that functions, H  : M  [0 , oo), of 

the form H{p,) = h[pb(0 )) are continuous and bounded where h : H  [0 , oo) 

is continuous and bounded and 9 : R ” [0, oo) is continuous and has 

compact support. This is clear (from the definition of convergence on A4).

( 4 ) ^ ( 3 ) .  This follows from the fact that if /  : R ”' [0, oo) has support

in B(0, R) {R > 0) then for all e > 0 we can find a Lipschitz function 

g : B (0,2R) —> [0, oo) such that for all x E R ”, 0 <  (^ — f){x)  < e. ■

Another useful result concerning convergence is the following:

T h eo rem  3.1.2 Suppose that P  and P,- (i E N) are probability measures on 

A4 then the following are equivalent:

L  Pi ^  P ,
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2. for all closed sets T  C M ,  Pi{T) < P{lF),

3. for all open sets Q C M ,  liminfi^oo Pi{Q) >  P{Q)‘

P roof: See [Par67, Chapter 3]. ■

We are now in a position to define tangent measure distributions: Suppose 

that /i is a Bor el measure on R ” and there is a 0  < m < n such that for 

//-a.e. X

0  < D^(/^,x) < x) < oo.

Define, for 0  < r  < 1 and for x satisfying the above density estimates a 

probability measure, 0 r(/i,x), on VW(R^) by

0,(m, x){A)  := I  I  A ( ^ )  j  îor A C M

(where Ij, denotes the indicator function of the set ^ .)  A probability measure 

P  on Ai is a tangent measure distribution of /i at a: if there exists a sequence 

r{i) \  0  such that

P  =  lim 0 (̂0 (/i, a;).
2- 4-00

The set of all tangent measure distributions of // at a: shall be denoted by 

V{/i^x). For a measure i/ E Ai we shall let denote the probability measure 

on Ai which is given by

1 ÎÎ u e A,

0  otherwise.
^v[A )  := <

We now list a few simple properties of tangent measure distributions.
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L em m a 3.1.3 Suppose that p is a measure on and there is aQ < m  < n  

such that for p-a.e. x

0  < < oo

then for p-a.e. x the following hold:

1. V{p ,x)  ^  0,

2. if  P  £ V{p^x) then Spt (P) C Ta.ns{p,x).

Proof: See [Mor95]. ■

The following Lemma relates average densities with tangent measure dis­

tributions.

L em m a 3.1.4 Suppose that p is a measure on R"', 0  < m < n and x € R ”' 

are such that

0  < < Dm(/^, x) < oo.

Then

«(m )D ^(/i,x) =  mf /  uB{0 , 1 ) dP{i>)
PÇ.V[li ,x) J

and

o(m)D^(/i, a:) =  sup /  i/B(0,1) dP(i/).
P^V{ i i ,x )  J

P roof: Since 0 < R^{p^x)  < < oo it follows that

pB{x , 2 r) 
hm sup ——------ < oo

r \ o  l ^ D { x , r )

and so

clos {t~'^p:c,t : 0  <  ̂ < l}
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is a compact set and thus

{0r(/z,a;) : 0 < r < 1}

is a uniformly tight set of probability measures on vW(R^). Consequently, by 

Prohorov’s Theorem [Dud89, Theorem 11.5.4], for any sequence 1 > r(i) \  0 

we can find a subsequence r(z(j)) \  0  such that 0 r(qj))(/i, x) converges to

a probability measure F on M (R ^ )  (and P  is necessarily an element of

F(/^,x).) Hence for all continuous and bounded functions H  : A4 R  we 

have that

inf /  F(i/) dP[p) =  lim inf —^ —  f  ^  ( 4 ^ 1  V  Pev(,^,x)J  ̂  ̂  ̂  ̂ r \o  -  log r  A \ t - ^  J t

and

sup /  P'(i/) dP(i/) = lim sup—^ —  f  
Pev{^)J  ■ r \o  - lo g r  A K t ^ J t

Fix 0 < (  < 1 and consider 7 , F : > [0,0 0 ) given by

7 ( 0  ;= max{0, (  -  dist(C, B(0,1 -  f))},

F(C) := max{0, (  -  dist((, B(0 , 1 +  ())}.

Observe that h^H : M  [0,0 0 ) defined by h{v) := ("^ 1/(7 ) and H{u) := 

("iy (F ) are both bounded and continuous.

We find that

r \ 0  — log r  J r  \  J  t

lim in f— -----  f
r \ 0  —  log r  J r' \ 0  — log r  Jr V
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Similarly we find that

inf f  uB{0,l)dP{u) > inf f  h(u)dP(u)
-  Pevif.,x)J  ̂  ̂ ^Pevifi

r \ 6  — log rr \ 0  — log r J r  \  J t 

> liminf - ' ^B(x, ( ! -£ )< )  A
— log r J r, r \ 0  — log r J r  t

= a(m )(l

Hence, as (  was arbitrary,

a ( m ) ^ { l / . , x )  = mf f  vB(0, l)  dP(v).
PeP{fj . ,x)  J

The result for D ^(^ ,x ) follows in an identical manner. ■

3.2 On th e  exam p le  o f  D ick in son .

In this section I reconsider the example constructed in [Dic39] which was orig­

inally designed as an example of an unrectifiable 1-set with lower 1-density 

equal to a 1/2 and upper 1-density equal to 1, almost everywhere. I show 

that a slightly modified version of it, which is also unrectifiable, possesses av­

erage 1-density equal to upper 1-density and has a unique tangent measure 

distribution almost everywhere. This example also illustrates in a simple way 

the necessity of a convexity condition in Theorem 2.1.1.
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3.2.1 Construction

Suppose that (m&) is a sequence of positive integers and (&), (?t) are

sequences of positive real numbers and let

k
Nk := JJ 2rii.

i=l

Additionally suppose that

1. y  oo and < oo,

2 . 6 i < 1  and [4]"^ Ei>)t+i \  0,

3. NkSk 0 and Nk+i6 k oo,

4. ' yk[ SkNk] ~' ^  0 and E & 72& =  T . k l 2k - i  =  o o ,

5. ik > [2nfc+i]"\ < oo and

E L i ~  log ii Q 

log Nk

For examples of such sequences one may consider Uk := 8k := ^

ik := 2“* and ' k̂ ’•=

Let
OO

S := J J { 0 , . . .  ,2m& — 1}
k=l

and equip E with the usual product topology. Observe that E with this 

topology forms a compact topological space.

Define m : E ^  [0,1] by
CO

^ ( ( 7 7 1, 772, . . . ) )  : =
Ar=l
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Define c/ : E —»• R  by

d{rji,T}2 , . . . )  :=
k=l

Vk

Let Z) : E —> be given by

D{rj) := (m{ri),d{r))).

This map D is clearly invertible and it is also continuous: For if V is a 

neighbourhood of a point, x = D{r}) G E  say, then we can find a 6 > 0 such 

that V  D {y : ||y — a:|| < <̂ }. If&is chosen such that +  2^*) < 6

then for the open set (in E) T/ljt := {cr G E : ai = rji îoi i = 1 . . .  k} we find 

that D{Tj\k) C {y : \\y — T|| < 6} and so the claim holds.

Since E i s a  compact space and D is continuous we conclude that is a 

compact set.

By considering the orthogonal projection of E  onto the x-axis one sees 

that H}(E)  > 1. For 77 G E and A: > 1 let

C{rj,k) := < (5,f) : s G Vi
i<k i<k

and

t G
i<k i>fc+l i>k+l

Let

Ck := {C[r],k) : 77 G E}

and observe that card (Ct) =  and for all k, E  C UC&. Since the diameter 

of a set C G Ck is no more than [iVAr]“^[l +  2Nk J2i>k+i we conclude that
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for all ^ > 0 we can find a K  such that \i k > K  then Ck is a 6-cover of E  

and so

n \ [ E )  <  %  X [%] - 1
1 + 2 %  E  4  

,>&+!

1+2% E  '5.-
i> A :+ l

Hence on sending k to infinity we conclude that 'H\[E) < 1 which in view 

of our earlier lower bound on H}{E) implies that 'H}[E) =  1. It is also 

straightforward to verify that if C is in Ck then EO-^E f] C) =

Define the measure ^ to be [e  ̂ The measure // is Bor el regular and is 

a probability measure. Moreover E  is the support of /i.

3.2.2 Properties of [i 

L em m a 3.2.1 For all x G E

1/6 < Di(/tz,a:) < D i(//,x) < 1.

P roo f: The upper bound follows immediately from the observation that for 

all X £ E  and r > 0, f iB(x,r) < 2r.

For the lower bound suppose that rj and fix 0 < r  < 1. Choose k > I 

so that

[ N k ] - ^ < r < [ N k - i ] - \

There are two cases we shall consider 

C ase 1 : [Nk]~^ < r <  3[7Vfc]“^

In this situation we have that

/.[B(D(77),r)] > [ # , ] - ! - 2 4
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and so
/x[B(D(,,),r)] ^  [A ^ ,] - '-2 4  1 1 ,

^  -  6[% ]-: =  6 "  3^*^*-

C ase 2 : 3[Â a:]“  ̂ < r  < [#^=-1 ]""̂

In this case we have that

A<[B(D(»?),r)] > [% ]- ' [rNk -  2] -  26,

and hence

2 r
Nk 1 

L 2  r j
S_k
r

but NkV > 3  and so

. 1 1 
-  2 " ] v ^ - 7

> 2 ~ 3 ~

= -  -  3Nk6k.
D

In either case we have that

" [ B ( y ’^ ) ] > i - 3 i V A .
zr D

Moreover as 77 G E (and hence x Ç: E)  was arbitrary and as Nk^k ^  0 we 

conclude that for all a; G

Di(/i,æ) >  i

as required. ■

Let us now calculate the tangent measures of fx for /Li-a.e. x. Define mea­

sures Kj, Ku by

Kd : =  L { (a ,0 ):a > 0 }+ ^ ^  |_{(a ,l):a<0}
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and

« u  : =  [ { ( a , - l ) : a < 0 } + ’̂ ^  |_ { (a ,0 ) :a > 0 }

and also let

^  'H  L { (a ,0 ) :a G R } î

^  |_ { (a ,0 ) :a < 0 } ;

and

Â. . 'h i  L { (a ,0 ):a ;> 0 } ?

It is straightforward to verify that

J\f := : w E {/(j, Ku, A, A;, A^}, (  G Spt w and r > o}

is a closed set and that, in fact,

Af = clos : CJ G {/Cj, %%}, (  G Spt w and r  > o} .

L em m a 3.2.2 For ji-a.e. x, Af C Tans{fi, x).

P roof: In view of the shift invariance of standardised tangent measures and 

the fact that Tang(//, x) is a closed set for //-a.e. x it suffices for us to show 

that for /i-a.e. x

{%d, K,u}  C  T a n g ( / / , 2 : ) .

We shall in fact only verify that for /z-a.e. x, Ku G Tang(//, x) as an entirely 

similar method will enable us to deduce the same result for /Cj.

For 7  G (0,1) and > 1 let

4 (7 ) := { 0 ,1 , ''" ,  }
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and observe that for  ̂ >  1

'U} \ x  e E  \ (̂a:)]A: is even and [D (̂a:)]A:+i € /;t+i(7 fc+i)}

' n k - l \  r7ib+infc+i]
2t2/j /  ‘2iTlk-\.\

> (1 -  l/riA:)7fc+i/4.

Hence

[ x  e E  : 0 ^  [ D ~ ' ^ { x ) ] 2 k  is even and [ D ~ ' ^ { x ) ] 2 k + i  G / 2A:+i(7 2 ^+1 )}
k

> ^ ( 1  -  l/^2ik)72it+l/4 =  0 0 .
k

Hence we may use Borel-Cantelli and the independence of the above events 

to conclude that for /i-a.e. x  we can find a sequence k[i) y  0 0  such that for 

all i ii X  = D(t]) then

(i) 0 ^  rjk(i) which is even,

(ii) ' k̂{i)+i G Ik[i)+i{‘̂ k{i)+i) {^k{i)+i short.)

So fix such an x  and sequence k[i). In order to show G Tang(^, a;) we 

need to find a sequence r{i) \  0 such that for all i? > 4 and e > 0 there is 

an M  so that for i > M

Let r{i) := 26k(i) then I claim that is such a sequence. Fix > 4

and e > 0 and choose M  such that for z > M

[2#t(q4(q]"^ > 2i?,
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h { i ) ^ k { i ) + i  >  8jR/e

and

+  7— à  < e/2.

If j; =  (2 1 , 2 2 ) then let 2 ' =  (2 ^ , 2 2 ) := (2 1 - 771(771, . . . ,  7y;t(j), 0 ,0 ,. ..) ,  2 2 ) and 

let

l̂ i . 'hC [_{(o;,0):a>— |_{(a,—l):a<—r /̂r(i)}'

Observe that

Fiî(/c^, K) < 2R\\x\/r{i)\\
^  fTA:(t)+l̂ A:({)+l'| 4~ 1

“  26k(i)N^i^^l
< e/2.

Thus it suffices to show that

F/i(7’(z)~Vx,r(i), Ĵ i) < e /2 .

Recall from Section 3.2.1 the definition of Ck{i)+i and for C G Ck{i)+i define

Cx,r := {(y - x ) / r  :y e C } .

Let

^  {Cx,r{i) : C G Ck{i)+\ and C fl 8 (2 , jRr(z)) ^  0} .

Notice that if F  G .F then

diam (F) < [r(z)#t(%)+i]"^ ( l  +  2 #t(i)+i Y j ) < 2 [r(z)#t(%)+i]"^ =: d
\  3>k(i)+2 /

and

(j,x,r{i){F) =  z/%(F) =  [r(i)Nk{i)+i]~^.
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l ï F ^ G e J ^  then

r(z)“Vx,r(i)(^ n G) =  i^i{F n G) =  0.

Finally observe that

[Spt (r(0"Vx,r(i) +  z/i) n B(0,i?) C UF

and so we may apply Lemma 1.3.5 (with A  = F  and (  =  0) to conclude that

F/î(r(2)"Vx,r(i), ^i) < d[i/i +  r(i)"Va:,r(o](B(0, R))

< 4dR

= SR[r{i)Nk{i)+i]~'^

<: e/2.

Hence the Lemma follows. ■

An immediate consequence of this result is that n is purely 1-unrectifiable; 

this follows since for //-almost every point, fi possesses tangent measures 

which are not flat (see Theorem 1.5.2).

L em m a 3.2.3 For all 0 < e < I and R >  1 there is a K  > 1 such that for  

all r] eTi if r < [^RNk)~^ then there is a i/ E Af such that

u )  <  e.

If, moreover, there is a k > K  such that {SRNk+i)~^ < r < [SRNk)~^ and 

Tfk+i is such that

_  f |2nfc+i77fc+i -  1| I

“ “ W ’ ....

then 1/ may he taken to he \ .
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Proof: Fix 0 < e < l ,  i ? > l  and 77 6  E and let x := 772(77). Choose K  such 

that for all k > K

^  Si < 6&/2 and SkNk < e/{l28R^).
i>k+i

Now choose k > K  such that

- 1

For (7 G E and A; > 1 let

D{a, k) := < : 5  G

t G

E  [%+2] ' + E  ^
i<k+2 i<k+2

and

i<k i>k+l i<k i>fc+l

and let

Vk  := {D((T, k) : (j G E} .

Thus Vk  consists of Â jt+ 2  strips of width [Nk+2]~̂  and height 2XTi>jt+i Si < 

3Sk+i which cover E (the support of /i.) Let

!F := {0 ^(7;),r : C ÇiVk and C fl B(D(t7}, Rr) ^ 0 j  .

Observe that

(i) Spt (r"Vz?(7j),r) n B(0,jR) C UJ ,̂

(ii) if f  G .F then

diam (F) < [rNk-^2 +  +  1 ]“  ̂ < ^Sk+\jr d, say,

112



(iii) if F  G ^  then r f̂J>D{r]),r{̂ ) ~  b^^k+2]  ̂ and if F  ^  (9 G F  then 

r"^//D(7?),r(Fn G) =  0.

Thus if we can find a measure 1/ such that

(iv) Spt (i/) n B(0, R) C U F,

(v) if F  G F  then i/(F) =  [rNk+2]~ ,̂

(vi) if F  7  ̂ G G F  then z/(F HG) =  0

(vii) i/B(0,F) < 2F.

Then we may use Lemma 1.3.5 to deduce that

Fi?(r"Vi)(r,),r, < d (r~^fiD{v),r +  z/) [B(0, r)]

< ARd =

< 128F^^A:+i -Fa;+i < e.

Hence it only remains to show that we can find such a 1/ G JV. Let

^  •—  R t  [ { ( a ,0 ) : 3 F C .^  w ith  ( a , 0 ) c F } d " ^  L{(ûr,25fc/r): 3 F c F  w ith  (a ,2<5fc/r)€F}

d” ^  L{(«.-2iJfc/î’) : 3 F e F  w ith  ( a , - 2 5 f c / r ) 6 F }

and observe that, as > 8 F, at least one of

{[a,28klr) : 3F  G F  with (a, 26t/r) G F},

{(a, -28klr)  : 3F  G F  with (a, -28klr)  G F} 

is empty. In addition,

{(a, 0) : 3F  G F  with (a, 0) G F} 7  ̂ 0.
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Hence B(0, R) fl Spt w consists of at most two disjoint line segments. In ad­

dition these line segments intersect the boundary of B(0, R). Finally observe

that, as r~^[26k — 36t+i] > 0, each F  £ has an intersects exactly one

line segment in a positive length. Hence we can find a z/ E jV such that 

F/?(o;,i/) =  0. Clearly for all F  E we have that z/(F) =  [rNk+2]~̂  and if 

F  ^  G £ F  then z/(F H (9) =  0. From the definition of w we can see that

B(0, R) n Spt V C U F

and clearly z/(B(0, F)) < 2R. Thus (iv) to (vii) are satisfied and we are

done.

If, in addition,

I rNk+i rNk+i J

then we conclude that the support of u  consists of just one line segment 

which includes

{(a,0) : |o;| < R}

and hence we may take z/ to be A as required. ■

Corollary 3.2.4 For fj,-a.e. x

Tang(/z, x) = Af.

Proof: This follows immediately from the preceding two Lemmas together 

with Lemma 1.4.6. ■

Corollary 3.2.5 For fi-a.t.x,

D.i(/z, x) = 1/2 
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a n d

Di (/z,

P roof: From Lemma 3.2.2 we know that for /z-a.e. x

A /e Tan5(/z, a;).

Upon observing that

Di(Az,(0,0)) =  l/2

we immediately conclude from Corollary 1.4.4 that for /z-a.e. T

Rii li .x)  < 1/2.

However as for all z/ G W and all (  G Spt z/

D i k C ) > l / 2

we deduce from Lemma 3.2.3 that for /z-a.e. x

Ri(fi ,x) = 1/2.

For the upper density just observe, again from Lemma 3.2.2, that for /z-a.e. x, 

A G Tang(/z, x) and

Di(A,0) = 1

hence, again from Corollary 1.4.4, we conclude that

Di(/z,x) > 1

and this together with the result of Lemma 3.2.1 implies the conclusion. ■
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In many respects this example can be considered as only just failing to 

be rectifiable. The presence of ‘broken’ lines (for example Ku) as tangent 

measures easily implies that the convexity condition, (2), of Theorem 2.1.1 

fails to hold. (Just consider the projection of the support of /ĉ  onto the 

y-axis.) If 7 2 ,1  denotes the normalised Haar measure on G (2,1) (normalised 

so as 7 2 ,1  (G(2 , 1 )) =  1 ) then it is a straightforward calculation to verify that 

for all 1/ G A/"

7 2 ,1  {V  G G (2,1) : Py [Spt u] is not convex} < 1/2.

This suggests the following conjecture:

C o n jec tu re  1 I f  y is a Borel regular locally finite measure on the plane and 

for p-a.e. x

f .  0 <  Di ( / z , a : )  <  D i ( / ^ , x )  <  00 ,

2. for all V G Tang(/2 , a:) we have

7 2 ,1  {V  G G (2,1) : Py [Spt u] is convex} > 1/2.

Then p is 1 -rectifiable.

(There are, of course, natural higher dimensional generalisations of this 

conjecture.) Notice that if (1) and (2) hold for p at x then there is a (  > 0 

such that the following, apparently stronger, statement holds:

(2') for all V G Ta,ns(p.,x) we have

7 2 ,1  { y  G G(2,1) : Py [Spt i>] is convex] >  (1 +  ()/2 .
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We are now in a position to calculate the tangent measure distributions of 

for /i-a.e. x .

T h e o rem  3.2.6 For fi-a.e.x

V{fx,x) = {Aa} .

P roof: We need to show that for //-a.e. x

a;) A a as r ^  0.

From Theorem 3.1.1 it suffices to show that for f i - a , . e . x  if 0 : R ’̂ —>■ [0, oo) 

has compact support and lip (0) < 1 then

- lo g

where E(y)  := exp(î/). Thus it suffices to show that for all i? G N  and for 

/i-a.e. a; if  ̂ : R" [0, oo) is such that Spt (9) C B(0, R) and lip ^ < 1 then 

1
— logr

Fix an jR G N  and recall from Subsection 3.2.1 that the sequence \  0 was 

defined so that

< oo, i k >  (2nfc+i)~^
k

and
Z L i ~  log & Q

lo g # t
Observe that

P{Vk+l E {0, . . . , ~ 1} U {2u,&+i — — 1, ... , 2Uk+l ~ 1})

< 2(% +  " w )
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and thus

y i  P{Vk+i E { 0 ,.. . ,  — 1} U {2n/j+i — , • • •, — 1}) < oo.
k

Hence by the Borel-Cantelli Lemma we deduce that for P-a.e. t) there is a 

iT' G N  such that for all k > K '

Vk+i G { , . . . ,  ^rik+i — — 2} =: Jk+i-, say.

Fix such an 77 G S and K \  let x := 771(77) fix 0 < e < 1. Let 6  : -4-

[0, 0 0 ) have lip(^) < 1 and Spt(0) C B(0,P). Choose 6 > 0 such that if 

\y — A(^)| < 6  then \E(—y) — P ( —A(^))| < e/3. Observe that if A; > K '  and 

t > 0 are such that {8 RNk+i)~^ < A < ^k{^R^k)~^ then

Hence, by Lemma 3.2.3, it follows that we can find K "  > K '  such that for 

all k > K"  if (8A % + i)- ' < t < (kiSRNk)-'- then

Fr ( rV x ,„  a) < 5

and so, in particular,

\t — A(^)| < 6

and thus

\E{—t — P ( —A(^))| < e/3.

For 7 G N  let a* := {SRNi)~^ — this will make some of the calculations 

appear a little less unwieldy. Finally, choose K  > K"  such that for all 

k > K
log +  log ÜK" ^  e

"  log 3[1 +  P ( —A(^))]
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and
Ya =K"+\ ~  log ii <

“ lOgfjtÛA; 3[1 +  jE'(—A(^))] 
Fix 0 < r  < iK{^RNK)~^ and let us estimate

- lo g  

Choose k such that

Observe that for all y > 0, \E(—y)\ < 1 and so we may estimate that

I

< 1
— log r +

log iK" +  log ÜK"
logr

< +

+ T!1=K"+1 ~  log ii

<

3[1 +  -E(—A(0))] — log r 

+

2e
3[1 +  F^(—A(^))] 

However for K" < i < k and Ui+i < t <  ^{üi we have that

E[—\ ( 6 )) — e/3 < E[—t jix^i{9)) < £ '(—A(^)) 4- e/3

and since

f l
2e

3[1 +  F^(—A(^))]
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we conclude that

Hence upon combining these estimates we deduce that

< e

as required. ■

T h e o rem  3.2.7 For [i-a.e.x,

Dl{^i,x) = Di(/i,a:) = 1.

P roof: It is easy to calculate that for //-a.e. x 

inf /  dPiv) = 2P€V{(i,x)J  ̂ ^

= sup [  uB{0,l)dP{iy).
PGP(/x,x) "/

Hence from Lemma 3.1.4 we deduce that

B K h. x ) = 1

as required. ■

3.3 O n an exam p le  o f B esicov itch .

The class of examples we shall construct in this section is based upon an

example given by Besicovitch [Bes28, §11] and it will illustrate some of the

properties of the concepts introduced at the start of this chapter.
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Throughout this section we shall work in R^. For B  =  B(z, r) C R^, 

j  G N  and i 6  {1 , . . . ,  j}  define

D [ B , i , j )  := B (z +  r ( l  -  l/j)(cos(27rz7j), sin(27rz7j)), r / j )  •

Thus D { B , i , j )  is a disc of radius r / j  contained in B  which touches the 

boundary of R.

Let {rii) be a sequence of integers with ni > 4 and Ui oo. Let E := 

' - -, be the code space defined by this sequence and let it be 

endowed with the usual (discrete) product topology. For j  G N  let Ej := 

• • •, «i} and set Eo :=  {()} (the set consisting of the empty sequence). 

If ?7 G E U Ej then r}i will denote the value of the z^^-coordinate of 77 if this 

makes sense. For j  E N , z < j  and 77 G E U Ej let

V\i (^1 ) • ' ' 5 ^i)’

Finally let 77|o := () (the empty sequence). Define a probability measure on 

E by setting k to be the measure which satisfies: For 77 G E and j  G N U {0}

/c ({cr G E : a \ j  =  77!^}) =  ]][ ^ 7 ^
i=l

(with the convention tha t the product is defined to be 1 when j  =  0.)

Define a map ttiq from Eq to the subsets of the plane by

77Zo(0) := B (0 ,l/2).

Now for J7 G N  define a map rrij from Ej to the subsets of the plane inductively 

as follows: For (771, . . . ,  77̂ ) G Ej

' =  D  (77Zj_i(77|j_i), 77 j, Uj ) .
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Thus 77%;(7/1 , . . .  ,T}j) determines a disc contained in 77%;_i(7/|;_ i) of radius n j  

times tha t of 77%;_i(7/|;_ i). Hence

3

E
i = l

Define collections of discs, E {0} U N  by

- 1
3

diam[r77;(77i,...,77j)] =  ]][ n /  =  ac({<j G D : <7|j =  (771, . . . ,  7/;)}).

:= {77%; (o-) : (J G S;}

and define sets E j  by

E j  : =  U J - j .

Notice tha t the E j  are compact, non-empty sets and E j  D  E j + i .  Hence we 

may define a non-empty, compact set E  by

E := r i  E j .
iGN

For 77 G S we can observe th a t diam [77%;(77|j)] — 0 as j  —>■ 0 0  and hence 

we may define a map 77% : 2  — by setting 777(77) to be the unique point 

contained in

n
jeN

Moreover this map is clearly invertible and continuous.

It is possible to show tha t ' H } { E )  =  1 by a method identical to tha t 

used by Besicovitch in [Bes28, §11]. However this result is unnecessary for 

our purposes and is om itted here. Instead let us define a measure /% whose 

support is E .  Set 7% := 777^ac, th a t is for A C define

f i { A )  := AC ({77 G 2  : 777(77) G A } ) .
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Since m  is continuous it follows that // is a Borel regular measure on the 

plane and, clearly, n is finite. Observe that for j  G N  we have that if D G 

then

/^(^) =
:=1

Before proceeding further it shall be useful to make a few simple geometric 

observations about the set E. If we set po =  1/2 and define for j  G N

f t : = 5 ( g n . )

then we find that if and are the centres of two disjoint discs from Ej  

such that both the discs lie in the same disc from E j - i  and they are separated 

by t — 1 discs in E j  for some 1 < t < then

— ^Pj- 1  (f — i ĵ sin j  . (3.2)

Consequently we find that the minimum distance between disjoint discs in

E j  is given by

d j  := — rij sin ^ — ‘I p j

and, as ri\ > 4,

2 ( j3 V 2  -  l )  ft < dj < 2(7t -  l)ft (3.3)

and, since r i j  / "  oo,

lim =  2(7t — 1).
P j

Fix i  G N and suppose that B  E: E j .  Let y G and suppose that r  > 0. I 

claim that

p[dB{y,r) n B] = 0. (3.4)
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For choose J  6 N  such that if 2 >  J  and D  E then Ui >  1/100 and

[dB{y, r ) n  D] < (ll/10)diam  [dB{y, r) fl D].

Then if z > J  and D  E we find that

card {C  E : C fl 5B(z/,r) ̂  0 and C C D} < +  (2/5)n^+i

< (3/5)ni+i.

Thus if A: E N  and k > J  -\- j  then

J + j  k

card {D ^  J^k fl ^B(y, r) ^  0 and D C < J J  rzj- x J J  (Sn^/S)
i = j  i = J + j + l

and so

fi{B ndB{y ,r ) )  < f %% x f j  3ni/5^ x %%
\ i = j  J \ i = j + j + i  J  \ i = i  J

—> 0 as —> oo

as required.

3.3.1 Properties o f our measure

Our first task is to estimate the upper and lower 1-densities of points in our 

set E.

L em m a 3.3.1 For all x E: E

^  < Di(/i,x) < Di(/z,x) <
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P roof: Fix 0 < r < 2 p2 and x £ E  and choose i  G N  such that

2 pj < r  <

Observe that, as inequality 3.2 implies that dj-\ > r, B(a:,r) intersects only 

one disc from T j - \ .  We shall consider three cases:

C ase 1. If there is a t G { 1 ,.. . ,  [u j/2 j} such that

2 ft- i ( l  -  «JO  sin j  <  r  < ( l  -  nj^)  sin

then

2i — 1 < card {D £: !Fj D C B(æ,r)}

and

card {D £ : D H B(T, r) 0} < 2̂  +  3.

Thus

2(2t — l)pj < pB{x,r) < 2 {2 t +  3)pj

which implies that

2t — 1 ^  pB{x,r) ^  2Z +  3
2{rij — 1) sin[7r(t +  l)/u j]  2r 2{rij — 1) sin[7rt/rij]

This gives that for r in this range

2  < ^  5
47t “  2r ~  3'

C ase 2. If 2pj < r < 2pj-i  1̂ — sin[7r/rij] then inequality 3.2 imphes 

that B(æ,r) intersects no more than 3 discs of E j  and so

2pj < p B { x , r )  < Qpj.
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Thus

2(nj — 1) sin[7r/rzj] 2r 2

and so
J_  ^  /^B(g;,r) ^  3
27t “  2r “  2'

C ase  3. Finally, if 2/?j_i 1̂ — < r <  2/?j_i then

P j - i  <  ^ B (x ,r )  <  2 p j . i

and so
1 ^  p B { x , r )  ^  rij ^  2
2 -  2r -  2(nj -  1) ~  3'

Since one of these three cases must occur for any 0 < r  < 2 p2 we conclude

that the Lemma holds. ■

Our next lemma investigates the geometry of the support of p and will 

save a lot of repetition later.

L e m m a  3.3.2 For all R  >  1 and C  >  20i? there is a Æ G N  such that for 

all k > K  and rj G T, if

 ̂ G [ p k / C ,  p k - i / C ]

then there is a unique disc D E T k - \  '^Ith

Dm{'n),r n  B(0, i?) ^  0.

Moreover we can find a disjoint collection, T  say, of 1 \2Rr/[7rpky\ discs 

contained in D such that

1 . there is a Bq = B(yo, pkjr) G T  which contains the origin.
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2. for all B  E there is a a £ such that B  =

3. B{0,R)nSptfirn[v),rCUJ^,

4 . Let L he the line through the origin which makes an angle of {flgkl'^k — 

(1/2))7t with the positive x-axis and let Q denote orthogonal projection 

onto L and Q""" denote orthogonal projection onto the line perpendicular 

to L. Then for any B  =  B{y, pk/f') G such that B  ^  Bq we find that

+  (3.5)

a n d  ^

\2 Trtpk/r -  ||Q(y -  î /o )|| | <  8— — (tt H 1 (3.6)
rik r  \  pk J

wher e  B  is  t  d i s c s  a w a y  f r o m  B q ( t h a t  is t  — 1 d is c s  o f  T  lie be tween  

B  a n d  B q.)

P roof: Fix C and R  as described in the Lemma. Choose K  such that for 

all k > K

rik-i > 10

Fix k > K  and suppose that 77 G S. Now consider D =  mk-i{g\k-i) and 

observe that 0 G Dm{r)),r' Hence

but

^  < C/20 < /?t-i/(20r) < 2(7T -  2),9jk_i/r 

and so, as the separation of discs in J^k-\ is at least

2p& _2 (1  — ^ A : - l )   j  — 2 p fc _ i >  2(7T — 2 ) p k - \ - ,
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we conclude that B(0, R) intersects only one disc from T k - \ ’ 

Let

T  := : B  =  where a G and

(̂ k E < 1  < i  <rik : |z -  T/tl < 1 +
2Rr

mod{rik)

2 R r
T̂Pk

T̂ Pk

balls on either side of B q,Thus consists of B q together with 1 +

Observe that (1) and (2) of the lemma are clearly satisfied by To verify 

(3) holds for ^  observe that if

c  := {Bm{rj),r '• B  ^  Tk  and Bm{rj),r n  B(0,i?) 7  ̂ 0}

then UC D  B(0, R) fl Spt Prn{r!),r and

card (C) < 1 +  2
rik S i T c s m { R r / p k - i )

27T

However Rrjpk-i  < 1/20 and so arcsin(i?r//?jt_i) < 2Rrjpk-\  which gives

2Rr
card (C) < 1 +  2

T̂ Pk

Thus C <ZT and so (3) holds.

It only remains to verify that for the L defined in (4) above both inequal­

ities 3,5 and 3.6 hold. Since 0 G Bo it is clear that

llî/oll < Pkjr

and thus Bq satisfies the inequalities. Suppose that B  =  B{y,pklr)  G and 

B  ^  Bq and choose t G N  such that t — 1 discs of lie between B  and Bq. 

Notice that t < 1 { 2 R r ) / { 7 r p k ) .  From equation 3.2 we deduce that

128



Hence we find that

IIQ"^( 2/ -  2/0 ) II —  | | y  — y o | |  s i n  ^ 1
\Tik /

< 2 ( 1 - » . - ) ^ ©

2

■ rik r \  Trpk J

as required.

Finally observe that

| | Q ( 2 / - 2 /o)| |  =  \\y -yo\\cos{TTt/nk) 

= ( 1 - % ^ ) - sin

as rik > 10

> 2 TTtPk

r rik

2  (
  7T
rik V

\ r i k  J

[‘-K
27Tt

rik

+ © ]
Pk  / .

2

and thus

^ - | | Q ( y - y o ) | | < 2TVt — 1 -
[‘ - ' ( ' + “ 1 1

2"

r rik \  pk  )  _

rrik Pk
but t <  1 +  2 Rr!['Kpk) and so

as required. ■

For a unit vector ê which makes an angle 0 G [0 , 27t )  with the z-axis let 

e-*- be the unit vector perpendicular to ê which makes an angle 0 — 7r/2 with
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the a:-axis. Let

LaB(eJ-+27rie,l)
^ iGZ  ̂ ^

and let

J\f := : (  G Sptw, r  > 0 and u  = ug for some ê } .

Observe that Af is not a closed set and set

AT := dos Af = AT U 1 E 0(2,1)}.

Our next Lemmas will enable us to describe the tangent measures of fj, 

and will provide sufficient information to allow us determine the tangent 

measure distributions of fi.

L em m a 3.3.3 For all 0  < e < 1 ,R > 1 and all C > 20i^ there is & Æ G N  

such that for all k > K  and all rj eT ,  there is a v £ Af such that if

r G [pk/C,Cpk]

then

F i?  ( r  pm {r{) ,r i  ^

P roof: Fix i?, e and C as in the statement of the lemma. Choose K  such 

that for all A; > Æ

-1nt >  264C(:r +

and such that the conclusions of Lemma 3.3.2 hold for R  and C as above. 

Fix 0 < r  < CpK and choose k > K  such that

P k / C  < r <  C p k .
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Fix 7/ 6 E and set x := 772(77). Let ê be the unit vector which makes an angle 

— (l/2))7r with the positive a:-axis and let /  be the unit vector which 

makes an angle 27rr}k+i/nk+i with the positive x-axis. Define, for t G Z,

C , : = d B ( - ^ f  + 2 TTtê,^  
r r

and set

1/  :=
'^Pk t£Z

It is easy to see that 1/ G Af. We wish to estimate FR{r~^fix,r^ i/). Let be 

as given by Lemma 3.3.2 and for B  Ç: let

£{B) := : D G Â k+i and D:c,r C B}  .

Observe that ii B  E then

d iam (5) =  2— =  r ^fix,r{B) 
r

and if D G S{B)  then diam(D) =  2p&+i/r. Now let

'2Rr

and define

Observe that

and so

T̂ Pk

p :=

Fi?(7' jj>x,r') Z/) — F/î(r fJ'x,T') Ẑ)
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Let us index the 1 +  2\{2Rr)I[t:pk)\ of the discs in as follows: Let B q be 

the unique disc in which contains the origin. For |i| E iV \  {0} let Bt be 

the disc in T  which is t  discs away from B q (that is, there are t  — 1  discs 

between B q and Bt) and such that dist(B(, Q ) < dist(B(, From (3) of 

Lemma 3.3.2 we conclude that

Thus if we let w := r~̂ iJ>x,r [uBt then we have that

Ffi(r-V x,r,i>) = F R (w ,P ).

Let yt be the centre of Bt and let Ct be the centre of Ct (hence Ct =  —{pklf')f+ 

2'Ktè.) Define a cover, X, of [Spt (w +  z/) D B(0,i?)] as follows: For \ t \  G N  

and m G { ! , . . . , rik+i} let

A (t,m ) := {ct +  {pk/r){cos9,sm9) : 9 G [27r(m — l/2)nL^^, 27r(m + l/2 )n^^i)}  

and set

A  := {D{Bt, m, Uk+i) U A{t, m) : |t| G A/" and m G { 1 ,. . . ,  rik+i} .

Clearly

U A d  [Spt (w +  P )n B (0 ,^ )]

and is a finite family. Also, if there are distinct A , B Ç : A  with Af]  B  ^  

then this means that for some m ,n , s  and t

D{Bs,n, Uk+i) n A(t, m) 7  ̂ 0
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and from equation 3.4 we know that

Q[D{Bs,n,rik+i) fl A{t,m)] = 0.

Hence we can conclude from our density estimates (Lemma 3.3.1) that

i/[D{Bs, n, Uk+i) n A{t, m)] = 0.

Finally, observe that for all A E X

w(A) =  v[A) 2  ̂^ .

Hence if d  is such that for all A E A., diam(A) < d  then we may use 

Lemma 1.3.5 to deduce that

Fb ( r j I ' )  =  FB(w,P) < d(w +  z/)B(0,iJ)

< i d ( l  +  2 \ —  
V ^Pk

<  1 2 d { R  pk/r).

So suppose that A E A and so, for some suitable t and m,

A = D{Bt, m, Ufc+i) U A(t, m).

Observe that

El
r

diam (A(t,m)) < 27t
Pk+l

and

Thus

diam(D(Hf,m,nA:+i)) =  2Pk+l

diam(A) < diam(A(^,m)) + diam (i)(H t,m , 72^+1 )) +  ||yt — c<||

<  3 7 T ^ - ^  +  llî / t  — C f | | .
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Hence we need to estimate ||%/( — Cf|| for |t| G N.  Recall from Lemma 3.3.2 

that Q denotes orthogonal projection onto L and denotes orthogonal 

projection onto the line perpendicular to L.

Observe that

| |yo — Coll <  2 p k + i l r .

Now ÛX t £ N  \  {0} and consider \\yt — q||. We have that

llz/t — < \\yt — Ct — y o C o -{• yo — co\\

^  ||Q(2/t — yo)  — Q { c t  — Co) II +  ||Q‘*"(î/t — Vo) — Q"" ' (Q — co) | |

< 27t|^|pA:
-  WQiv t  -  yo) | | +  IIQ i v t  — yo) | |  +  2

+  llz/o — co| 
1 Pk

rik+1 r
but from (4) of Lemma 3.3.2 we may conclude that 

rik r \  Pk I rik+i r

n

Thus for all A G .4

< 12— — I 7 T +   I .
rik r \  pk J

Hence

d i a m ( A ) < 2 2 — +  —
rik r  \  Pk

Fg(w, P) <  264— + —
Uk r \ Pk

A + —
r

but  pk/C < r < Cpk and so

< — C{t  + 2RCŸ{R + C)
rik

< e
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and so, as

Ffl (r"Vx.r, f/) =  Fiî(â>, ÿ), 

the Lemma follows. ■

Lem m a 3.3.4 For fx-a.e. x Tàns{fx) D M .

Proof: Recall that for a unit vector ê which makes an angle of 9 with the 

positive a;-axis

•= ;r 5Ẑ HaB(êJ-+27Tiê,i)
^ iGZ  ̂ ^

where makes an angle of  ̂— tt/ 2 with the positive x-axis.

In view of shift invariance (Lemma 1.4.3) and the fact that Tang(;^, x) is 

a closed set it suffices to verify that for ^-a.e. x and all z/g we have

z/g G Xan5(/z,x).

Moreover we can find a countable set, S  say, of unit vectors, ê, of the form 

described above which is dense in the set of unit vectors directed into the 

upper half-plane. Hence we deduce that it suffices to show that for all ê G 

and for /z-a.e. x

z/g G Tang(/z,x).

Choose such a unit vector ê G <S. Let z/ := z/g and observe that

Spt z/ =  IJ -I- 27Tte, 1).
tcz

Choose a sequence 1/4 > 7 j \  0 such that Y , j^ 2j l 2j+\ =  oo. An appli­

cation of the Borel-Cantelli Lemma shows that

i f - ’' - (mod rz2j+i) < 7 2 j+i 
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for i E {0,1} infinitely oft en =  1.

So fix such an 77 E H and let x =  ^2 (77). We can find a sequence of even 

integers k{i) / "  0 0  such that for / =  0,1 and all z E N

(mod ri2k{i)+i) < 7 2 k{i)+h
27T

V2k{i)+l

In order to verify that ly E Tan5 (/u,a:) we need to find a sequence r(z) \  0 

such that for all > 1 and all 0 < e < 1 there is a J  E N such that for z > J

So fix such an R  and e. I claim that the sequence given by setting r(z) := 

is such a sequence. For, by Lemma 3.3.3, we can find a 7F E N such that for 

all z > K  there is a z/v E A/* such that

Fi?(r(z) <  c / 2 .

Moreover the radius of the circles which make up the support of Vi is equal 

to PA:(i)/^(0 — 1- Hence we can find an (orientation preserving) isometry R 

of the plane which maps the support of onto the support of u in such a 

way as to ensure that the circle in the support of z/% which contains the origin 

is mapped onto Moreover for all A  C R^, i^{A)  =  V i [ l R ^ [ A ) )

thus u =  However is determined only by the values of 77;t(i) and

77A:(i)+i and, by definition, both 2'K7]k(i)lnk{i) and 2 t : I r i k { i ) ^ \  tend to 

{O — (mod27r). Hence we conclude that R —> I  (the identity isometry) as

z —> 0 0  and thus we find that if / :  R ’̂ [0,0 0 ) is such that Spt ( /)  C B(0, R)

and lip ( /)  < 1 then

J  f  dvi -  J  =  j  f  ° li ~  J  f dv
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Hence

i/) ^  0 as z —> oo 

and 8 0  we can find a. J  > K  such that for all i > J

FR(z / z , z / )  <  e / 2

and thus the Lemma holds. ■

We may immediately conclude from this Lemma that jjL is purely 1- 

unrectifiable.

L em m a 3.3.5 For a// 0 < e < 1 and R > \  there is a C > 1  and a K  g N  

so that for all rj E 'Fi and for all k > K  there is an L E G (2,1) (which 

depends only on the value ofpk) such that if

r  E [Cpk, Pk-i/C]

then

F h  ( r ” V m (r ,) ,r ,  [ l )  <  C.

P roof: Fix e and R  as in the Lemma and choose C > 20jR such that

C > 6i?e‘ L

Choose FT E N such that for all k > K  the conclusions of Lemma 3.3.2 hold 

for R  and C and

rik > 3607ri?^e“ .̂
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Let rj E. E and set x := m { T ] ) .  Fix k > K  and suppose that r G [Cpk, Pk-i/C], 

Throughout this proof we shall use the notation of Lemma 3.3.2. In particular 

L denotes the line which is determined by Lemma 3.3.2 — notice that L =  

L{r}k).  As in the last Lemma observe that for all ^  G .F

= 2— =  r~^px,r’

Let

N : =  ( o , . . .
I ^Pk

and for \t\ G N  define

L{t) := {z e L : \\Qz -  27rtpkè/r\\ < 7rpk/r} .

(where ê is a unit vector along L.) Observe that {L{t)} forms a cover of 

L nB (0, R) and for any L{t), [l(L(^)) =  2pk/r. Now, for |t| G VV\ {0},

define Bt =  B{yt,pkl'>') G F  to be the disc in F  which is separated from Bq 

by  ̂— 1 discs of F  and chosen such that \\yt — 27rtpkè/r\\ < \\yt -j- 27rtpkê/r\\. 

Recall from Lemma 3.3.2 that F  covers B(0, F) fl Spt and define a cover 

of B(0, R) n Spt {px,r +  'kÛ' |_l) by setting

C := {conv {L{t) U Bt) : |t| G N}.

(recall that conv (A) denotes the closed convex hull of A.) Observe that for 

all A G C

r->x,r(.4) = 

and if B G C is distinct from A then

C\ B) = 'H}\ l { A  n B) =  0.
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Thus if d is chosen such that for all A G diam [A) < d then we may use 

Lemma 1.3.5 to deduce that

Fh (r Vx.r-, TT < d{r Vx,r +  tt [l)B(0,i?)

< d f — + 4 iî +  6 ^
V TT r
f 2 R

< d ( —  +  4i? +  -  
X C

< . 

< 5i?d.

Thus let us find an upper bound for d. Fix A G C and choose t such that 

A = conv (L{t) U Bt) and let y be the center of Bt and c = ^'Ktpke/r. We 

find that

diam (A) < 3x— +  ||y — c||. 
r

However

I|y — cll < \\y — C — y o y ^ W

< IQ (î/ — yo) — Q c || +  ||Q '''(y  — Vo) — Q"^c|| +  ||^o
2Tr\t\pk -  IIQ(î/ - y o ) l l +  IIQ‘''(2/ -  y o ) || +  2 1 Pk 

rik+1 r
but from (4) of Lemma 3.3.2 we may conclude that

rik r \  pk J rikJ î r

rik r \  pk J

Thus

diam (A) <  Stt— +  12— — (tt + —  
r rik r \

and às CPk ^  r < pk- i jC  we conclude that
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Hence

5R
rik

2  /  7 T   ̂ 3 R \
< 180i?^ — + —

Vnfc C J
< e

as required. ■

C oro llary  3.3.6 For all ?/ E S, Tàiis{fi,m{ri)) C vV".

P roof: Fix rj E Tt. In view of Lemma 1.4.6 it suffices for us to show that 

for all 0 < e < 1 and R >  \ there is an s > 0 such that if 0 < r < s then 

there is a i/ E VV" with

F/î(^ f̂ m{r]),r̂

But in order to ensure this, choose C and K  such that the conclusion of 

Lemma 3.3.5 holds for k > K  and then choose K'  > K  such that the 

conclusion of Lemma 3.3.3 holds for k > K '  and for the constant C. Then, 

if we set s = p K ' / C we are done. ■

C oro lla ry  3.3.7 For p-a.e.x

=  /, o 1— 7 =  4V47t2 4-1 — 1 2

P roof: This follows from calculating the bounds on the upper and lower

densities of the tangent measures and applying Lemma 1.4.4. ■
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L em m a 3.3.8 For all t] E T, if P is a tangent measure distribution of at 

772(77) ^hen

Spt (P) C [v- V e  G(2, ! ) } = : £ ,  say.

P roof: Fix 1 >  e >  0 and R  > 1 and choose C  >  1 and Æ G N such that

for all A: > ii" if r  G [ C p k ,  P k - i / C ]  then for all 77 G E there is a y  G G (2,1)

such that

Ffl ( r “ V m (rj) ,r ,

(This is possible by Lemma 3.3.5.) Consider the closed set

C{e,R) := {i> E A4 : There is an w G with Fr {u, lo) < e} .

Fix 77 G E and set x := 777(77). We will show that

lim[0 ,(/2 ,a;)] {C{e,R)) = 1
r \ 0

as we may then deduce from Theorem 3.1.2 that for any P E V(p ,x)

PiC(e,R))  = L

Hence, as

£ =
leN

it follows that for any such P, P{C) = 1 and so, as C is closed, Spt (P) C C 

as required.

Observe that if, for some j  > t E [Cpj, pj-i/C]  then t~^px,t € 

C{e,R). Thus suppose that 0  < r  < pK-ijC  and choose k such that 

 ̂ G [pkjC^ pk-ijC).
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li r > Cpk then 

[0 ,(/.,x )](£ (e ,i? )) =

>

- lo g

1
— logr

Px,t\ dt
T

Pk-i
c

k-l
E

j = K
log - l o g r  +  ( log -  log (7/?j

C

> 1 -  

>  1 -

2(Â: +  l - / 0 1 o g C  
— logr 

2(fc +  l - J i ') I o g C  
log C +  E fc î log rij

\ i  pk/C < r < C p k  then a similar calculation gives 

[0X /,,z)](£(e,A )) =

>

log 

—1— ^ log -  log Cpj

>

>

—pk 2(Â: +  1 — K )  log C
— log r — logr

Hence, as

=  0

we deduce that on sending r  to zero (and hence k to infinity) that

[Srip.x)] {C{e,R)) 1

as required.

C oro lla ry  3.3.9 For p-a.e.x

Di(/z, x) —

_______ 1___________ 2(fc + i-/<^)iogq
1 -  (log Cj  log Pk) -  log C +  EjZÎ  log Uj ■

lim —T—  ------
E j = l  log TZj
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P roof: From Lemma 3.1.3 we know that for /z-a.e. a:, V { ijl, x ) is a non­

empty set. By the preceding Theorem we can easily see that, for /z-a.e. x, if 

P  G P(/z, x) and i/ G Spt (P) then i/B(0,1) =  2/tt. Thus, from Lemma 3.1.4, 

we immediately conclude that, for /z-a.e. x, Dj(/z,a:) =  D^(/z, a;) =  1/tt and 

so the claim holds. ■

We shall now calculate the tangent measure distributions of /z — these will 

depend on how quickly the sequence Uk diverges. We shall first investigate 

what happens when Uk diverges quickly to infinity.

L em m a 3.3.10 Suppose that

loguk oo
EiiM ogUi

and that 77 G S, 1 > r(z) \  0 and k[i) y  0 0  are such that

1. for all i, pk[i) < r{i) < pk{i)-i,

2 .  27r7/A:(q/rifc(i) ^  a  G [0,27t],

3. 27r7/jt(i)-iM(0-i ^  G [0,2%],

4 . (logpA:(0-i)/logr(z) ^  7 e [0,1].

For 3  G [0,2%] let := where V  G G (2,1) is the line which makes

an angle E — %/2 with the positive x-axis. Then

0r(.')(Af, Mv))  (1 -  l )^ \a  +

Proof: First notice that if (log log Ui) —>■ 0 0  then

log Pk
y 0 0 .

log Pk-i 
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Let X := 772(7/) and, for convenience, let E{y) := exp(^). For c  E Z let L{ak) 

denote the line which makes an angle of 7r[2aklrik — 1/2) with the positive x- 

axis. In view of Theorem 3.1.1 it suffices to show that for all 0 : R ” —̂ [0,0 0 ) 

for which lip (B) < 1 and Spt (^) is compact we have

- \o g r{ i )  Jr{i)^ \  t J t
- — »■ (1 — ' j )E{—Xa{0)) +  'yE{—Xp{6)).

So fix such a 9 and choose jR > 1 such that Spt  ̂ C B(0,i?). Fix 0 < e < 1.

Choose 6 > 0 such that if \y — Aq,(^)| < 6 then \E{—y) — £ '(—Aq,(^))| <  e/18

and if \y — A^(^)| < 8 then \E(^—y) — F/(—A^(^))| < e/18.

By Lemma 3.3.5 we can find C and K'  E N  such that for all k > K '  — 1 if 

(7 E S then there is an L =  L{ak) E G(2,1) such that for all t  E [Cpk^ pk-ijC]

Fh îr-'W'U) '̂^/2-

Hypotheses (2) and (3) also enable us to find a K" > K '  such that for all 

2 >

Fr ^  '^/2

and

Hence, if i > K ” then for t E [ C pk{i)̂  pk{i)-ilC ]  we have

FB A«) <  6

and for t  E [ C p k { i ) - i ,  P k { i ) - 2 / C ]  w e  have

Fh A/3) < 6.
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Thus, in these instances, either

\ E { —t  Aq.(^))| <  e/18

or

\E{—t îÂx,t{0) — E{—\/3{9))\ < e/18,

respectively.

We shall consider three separate cases:

C ase 1 : 0 < 7  < 1.

Let e := e[l +  E{—Xa) +  E{—Xp)]~^/6 and choose a K'" > K"  such that for 

all i > K '”

and

E P k { i )  — ^  Pk{ i )  — \  I E •

(We are using that log pi_i/  log pj —>■ 0.) Finally choose K  > K'" such that 

for all i > K

max f 2 1 ogC lo |(ptQ _ 2 /C ) l  , 
X \og{pt(iyi/C)\ -

We can now estimate that

log

<

^  I d )  ^  ( ^ )  I ') i;( -A .)  -  -lEi-Xp)
1 /  Pk(i)-2 \ J .

2 1 ogC -log{pk(i)-2 /C)  
— logr(z) — logr(z)
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< _ i  r
- lo g r(z )  Jn

+ l o i T w  U , _ .  ^  ( " ¥ ( ^ 0  T  -
+  e/3.

Now for r  E [i {̂i), pk{i)-i/C] we know that

Px,t < E{—Xa{0)) +  (e/18)

and so

^og{Pk{i)-i/C)
- lo g r(z ) + 1 [—(e/18) +  £^(—Ac,(0))]

<; 1 p (  dt
' >gr(z) Jvi

<

-lo g r(z )
^og{Pkii)-i/C)

- lo g r(z ) + 1 [£ (̂—Aa(^)) +  (e/18)].

Hence

—̂ r
r(z)| Jn

P f e ( 0 - 1  ,  .  7 ,

C  7-1 /  Px,t / / 7 \ A

| logr(i)|

<  7e£(-A„(«)) +  ( e / 1 8 ) ( l + 7 ( l  +  e))

< t/3 .

Similarly we calculate that

Pfe(0-2
< e / 3 .

Thus adding together we deduce that

^  /(.•) ^  7  ~  “  7 )£ ( -A „ )  -  7^( -A , , )log
< e
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as required.

C a s e  2: 7  =  1,

Let a := 5e[l +  jE(—A/j(^))]“^/6 and choose K  >  K ” such that for all i > K

(and so >  1 -  a),

lo g r ( z )

r(i) > C log

and

We can calculate that

-\0g{pk{i)-2lC) 
— log Pk{i)-\

< e /9 .

- lo g  

<

^  f  e (
gr { l ) J r { i )  V

n i

t ) t 

E
1 rPKi)-2/c ^  \ (Ü

- lo g r(z )  7cpfe(,)_i \  t ) t
——  Ei^—Xp)

+
log Cpk{i)-i -logr(z ')

<

-lo g r(z )  
1 fPk{i)-2/c / dt

+

t j :- l o e K 'V o , , , - ,  ® T  -

^Og{Pk{i)-2/C)
logr(z)

"h (% d" e/9.

Proceeding as in Case 1 we find that

rPk{i)-2/c ^  I1
logr(z)

Thus recombining we deduce that

t t
< e/18 +  clE(^—A^).

-lo g r(z )  (
Ê  _  E (_A ,)
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as required.

Case 3: 7  =  0.

We may assume that either

(i) there is a K'" > K ” such that for all i > K ”' r{i) < Cpk{i) which 

implies that \og pk{i)l log r(i) 1.

Or

(ii) there is a K"' > K ” such that for all i > K"' r{i) > Cpk{i).

In either case the procedure is the same as before.

For (i): Let a ;= 5e[l +  jF(—Aq:(^))]~^/6 and choose K  > K'"  such that 

for all i > K
l o g C ^ > l _ ^

and
logr(z)

<  e/9.
logr(z)

Then we may calculate that

e (
)gr(z)ir-(0 V- lo g  

<

+

< r
— log r(i) Jc

t J t 
log Cpk{i)-logr{i)

- lo g r(z )  
'Pk{i)-x!c ^  f  Px,t{^)\ di

t

Hence, as in Case (2) we find that

+ log(PtC')-i/C)
logr(i)

“b <2 -f- c/9.

1 PPkii)- 
- lo g r(z )  Vcpk( 0

Pk(i)-i/c / dt

< e/18 4" UjG(—A/;).
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Thus recombining we deduce that

- lo g r(z )  (
< e

t ) t 

as required.

It is straightforward (but tedious) to verify that (ii) follows in a similar 

manner. ■

C o ro lla ry  3.3.11 Suppose that —  —»■ oo. Then for all x £ E  if
Li=i log"'

P E V{fi^ x) then there is a 'y E [0,1] and V ,W  E G (2,1) such that 

P  := (1 -

In fact it is possible to show slightly more: For /Lz-a.e. z, V{fa, x) consists of 

all possible such distributions. This follows from the Borel-Cantelli Lemma 

and some careful estimates.

If Tik tends to infinity slowly then the tangent measure distributions are 

unique: In order to see this we need the following results.

L em m a 3.3.12 Let (n ,P )  be a probability space and suppose that Xj : 0  —>■ 

R  is a sequence of independent random variables with zero mean for which 

there zs a C > 0 such that for all i, \Xi\ < C. Then

P  • iiîB ."  ̂ =  0 M = !•

P roof: Define

n —>-oo .
t= l

We wish to prove that

P (  lim =  0^ =  1.
\ n —*-oo /
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In order to show this it sufSces to verify that
CO .

E  /  (•S'n) d P < 0 0
n = l

as then, by the Monotone Convergence Theorem, we may deduce that

/ E  («.)■
. n = l

dP < GO

which in turn implies that

p  = 1
\ n = l

and thus P  (limn_oo 5*̂  =  0) =  1 which is equivalent to P  (lim„_^oo 6'  ̂ =  0) =  

1 as required.

Thus consider, for n G N  which is larger than 4,

J s U P  = n - ' I  dP-

Since the X{ are independent it follows that the only terms of the right hand 

expression which contribute to the integral are of the form

v r  . . . v r

where ^  1 for 2 G {1, . . . ,  n}. Hence

/ S i d P  < n - 4 t / ^ t d P  + ^ E / x f x ] d p
i = i  i < j

< +  Sn{n — 1))

<

Finally summing over n gives that
CO .

^  S U P  <<^
1=1

and so, in view of our earlier comments, the Lemma follows.
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L em m a 3.3.13 Let (0, P) be a probability space. Suppose that a{ y  oo is a 

sequence of positive real numbers with

11m sup I ;
kük < oo

k^oo V .

and > R  is a sequence of independent, uniformly bounded random

variables such that f  X{ dP —> e G R  «5 z —>■ oo. Then

P  (  lim —  =  e) =  1.
E i l  a.' )

P roof: We shall only prove the Lemma in the case that e > 0. The other 

cases are similar. Let Ei := f  X id P  and set Sk := ~ Ei). Fix

0 < e < e and observe that from the last Lemma we can find for P-almost 

every cj a A:' G N  such that for all k > k'

< e/3.

We can also find a k" > k' such that for all k > k", \E{ — e| <  e/3. Finally 

we can find a K  > k" such that

\K~' Ŝk"\ < e/3.

Combining this we deduce that for P-almost every w there is a Ff G N  such 

that for all k > E

IS'a: — A:e| < ke.

Now
k k

aiXi =  aiSi-\- ~
1=1 i=2

k - l
—  a^Sk T ^

i= l
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Thus, P-almost surely, there is a constant C{K)  such that 

k

2 =  1

k-l
< C { K ) -{• [ e -{■ e ) k a k [ e  — e) ^  i[ai — ai^i)

i=K+l
k-l

=  C{K)  -f (e +  e)kak -f (e — e) [K +  l)u/c+i {k — -f ^  a{
2=A'+2

which for some constant
k

— C (P )  4" ‘Itkdk T (e — e) ^
î=/C+2

In a similar manner we find that, P-almost surely, there is some constant 

C”[K) such that

k k
diXi > C ' \K  ) — 2ekük +  (e -|- e) ^

2 = 1 2 = K'-t-2

Hence, on rearranging and taking limits we find that

lim inf — e > —e ^2 lim sup —
Z&uO; -  ^ ]CLia< /

and
T EÎ=i«2-^2- /  , /"orlim sup ——̂ ---------- e < 4-c 2 hm sup —r-----------1

k-^OO E i  =  l  <%2 V E i  = l  ^2 /

which, as e was arbitrary, implies the result. ■

Finally we are in a position to calculate the tangent measure distributions 

for slowly increasing sequences Uk-

T h e o rem  3.3.14 Suppose that

(  klogrik \
hm sup —T— -------- < oo

\E;=1 lo g n j
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then for fi-a.e.x the tangent measure distributions of at x are unique and 

equal the probability measure on Ad which is uniformly distributed on C := 

{ k-^U}[v . i e G ( 2 , l ) } .

P roof: Fix #  G N and define for / G { 1 , ,  TV}, Ai := [(/ — 1)/TV, Z/TV]. 

Define a map n : [0,1] —>■ £  by %(g) := 'k~^V} \_l where L is chosen such that 

it makes an angle of tts with the positive a:-axis. Let A be Lebesgue measure 

restricted to the unit interval and set

P  := u#A.

That is, for X C VW, define

P{A)  := A ({s : u{s) G A } ) .

We wish to show that for /z-a.e. x

P(/Z,T) =  {P}.

Equivalently we need to show that for /z-a.e. x

—» P  as r —» 0.

Let, for I G Â }, Pi  := u[Ai) then Pi is closed and a subset of C.

Moreover

£  =  U ^ /
I

and recall from Lemma 3.3.8 that for any tangent measure distribution, Q, 

of /Lz, Spt (Q) C £ . Thus in order to show that P  is the only tangent measure
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distribution for fj,-à.e. x it sufSces to verify that for all TV G N  and I G 

{1, .  _,TV}

liminf [0T.(/z,ar)] (^ /) > l / N  

as we may then deduce (from Theorem 3.1.2 ) that for any Q G V{fi ,x)

0(:^,) >  i/AT

which, since N  and / were arbitrary, would imply that Q was uniformly 

distributed on C and hence equal to P.

Hence, in order to verify this, fix 77 G S and let x := 772(77). Fix 0 < e < 1 

and R  > I and choose C > 20i? and /V G N such that for all A; > /V, if t G 

[Cpk^ pk-\IC] then there is a V G G (2,1) such that |_y) < e

(this is possible by Lemma 3.3.5). Also observe that V  depends only on rjk- 

Thus we can define a sequence of independent, uniformly bounded random 

variables : E ^  R  by

M V )  : = |  ^
I 0 otherwise.

Observe that f  X{ d/c —> l / N  as z —> 0 0 .

Define

G At(R^) : There is an w G Pi  with Fr {i/ , u ) < e}

and let

F  := { 5  G (0,1] : G Pi,R,t} •

Fix 0 < r  < CpK+i and choose k such that Cpk < r < Cpk-i- Now let us 

estimate [0 r(7Lz, 2 ;)] {Pi,R,t) for p-a.e.x:
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log ^  -  log Cp i

^i(^)[logrii -  2 log C]

> T!1=k Xj{p)\[ogni -  2 log C]
- k ) g C  +  ]T gfk% ni

Since, as noted in the proof of Lemma 3.3.8,

lim . ^ =  0
E i = i  log ni

we deduce that

. , Z ,  =  7^''%,(,?)[logn.-21ogC]
- l o g C  +  E i i l o g n .

= liminf E i i  log m

Ei=i log rii \  k^oo E z i  log rii )
which, by our hypothesis on the sequence n^,

=  l i m i n f 5 k W 2 I Z ! l .
E z = i  log rii

However we may apply Lemma 3.3.13 (with o, =  log to deduce that for 

K-a.e. 77,

lim inf =  l / N
E i = i  log n

and so we deduce that for //-a.e. x

Hence as

liminf [0,.(/i,a;)] > l /N .
r \ 0

E/ = n
i € N
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we deduce that

liminf [0 7 .(/z, x)] (JF;) > 1/7V
r \ 0

and so, from our earlier observations, the result follows. ■

Thus we have calculated the tangent measure distributions of /i in two 

cases; when rik  Z '  o o  quickly and when rik  Z  ^  slowly. We have not 

investigated the case when

/  A; log nt \
lim inf —T— ------  < oo

V E?=iIognJ

and yet

lim sup I —T—^——  I =  oo.
/ k log rik 

fc-fOO \  Y2i = l log ,

It seems likely that there would be a mixture of different types of tangent 

measure distribution — some with (finite) discrete supports and others sup­

ported by the whole of C. This seems interesting but I feel that the actual 

calculations would be very similar to those presented here and little is to be 

gained by making them.
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