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Abstract

One of the most important discoveries in the study of nonlinear dynamical systems in 

the last decade is that chaotic systems can be controlled and synchronised. Chaos syn­

chronisation can be viewed as a particular problem of chaos control in the sense that 

by introducing a coupling term between two independent chaotic systems, we can pro­

vide a controlling mechanism in one or both systems (unidirectional or multi-directional 

coupling) that will eventually cause their trajectories to converge onto each other and 

then remain synchronised. But in most dynamical systems, chaotic attractors coexist 

with periodic attractors for a given set of parameters. This guarantees the coexistence of 

competing synchronous behaviours (chaotic and periodic synchronisation). Therefore in 

order to fully understand the synchronisation regimes that can occur to a given coupled 

dynamical system, we need to consider both the chaotic synchronisation component of 

the dynamics as well as periodic synchronisation and the transition between them. In 

this thesis we study both periodic and chaotic synchronisation of coupled dynamical 

systems. We introduce the subject of synchronisation of coupled dynamical systems in 

chapter 1. In chapters 2, 3 and 4 we study the oscillating, rotating and chaotic solutions 

of the single parametrically excited pendulum. The study of both periodic and chaotic 

synchronisation of two coupled parametrically excited pendula (sometimes called pen­

dulums) is considered in chapters 5 and 6 respectively. Then we summarise our main 

findings in chapter 7 together with some proposals for future research directions.
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Chapter 1

Introduction

1.1 Dynamical Systems

In this chapter we set the stage and lay the foundations for the subsequent chapters by 

reviewing concepts on dynamical systems, coupled dynamical systems and synchroni­

sation. Dynamical systems can be modelled by nonlinear differential equations. As an 

example let us consider a general n-dimensional autonomous continuous-time dynami­

cal system defined by the nonlinear differential equation

d x /d t  = (1.1)

where x  c  R ” , is an n-dimensional state space vector, and the vector A c  R ^  is 

an independent m-dimensional vector of parameters of the dynamical system. Such 

nonlinear equations are usually impossible to solve analytically except in a few special 

cases. Poincaré (1892) was the first to recognise the difficulty of solving such problems 

and devised geometric methods which give qualitative insight into the problem at hand 

without the need of getting the actual analytic solution. Poincare's geometric methods 

were motivated by the three-body problem, that is, the problem of three celestial bodies 

experiencing mutual gravitational attraction, for example the moon and two planets. 

His geometric method involves considering the behaviour of orbits arising from sets of 

initial conditions, rather than focusing on individual orbits. This allows us to study the 

properties of solutions without the requirement of obtaining them explicitly. Let me
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offer a few rules of thumb about properties of the dynamical response of the systems 

modelled by the differential equation (1.1):

(a) Suppose x(f) eventually comes to rest at some point x*. Then the velocity must 

be zero, so we call x* a fixed point. It corresponds to an equilibrium state of 

the physical system being modelled by the differential equation (1.1). If all small 

disturbances away from x* damp out (that is, x(f) x* as  ̂ > oo), then x* is 

called a stable fixed point - it acts as an attractor for states in its vicinity.

(b) Another long term possibility is that x(f) flows towards a closed loop and eventu­

ally circulates around it forever. Such a loop is called a limit cycle. It represents a 

self-sustained oscillation (no external forcing) of the physical system.

(c) A third possibility is that x{t)  might settle onto a strange chaotic attractor, a set 

of states on which it wanders forever, never stopping or repeating. Try and imag­

ine what it means for a dynamical system such a sinusoidally driven and damped 

pendulum, to never stop and never repeat its behaviour yet not run off to infin­

ity, remaining forever confined to a finite region of the phase space. For certain 

parameters this behaviour can actually be observed. But how can such a simple set 

of instructions (the differential equation of a forced pendulum) result in infinitely 

rich dynamics? This question was first confronted in 1963 [Lorenz, 1963], when 

a Meteorologist E. N. Lorenz found that even a simple set of three coupled dif­

ferential equations can lead to chaotic behaviour. Lorenz reported one of the first 

examples of deterministic chaos in a dynamical system.

Since Lorenz’s discovery of chaos many researchers have become aware that chaos is 

a pervasive phenomenon found in many nonlinear dynamical systems as diverse as in 

chemistry, engineering, ecology, solid state devices, fluid dynamics and even biology. 

An important class of dynamical systems exhibiting chaotic phenomenon is one which 

model oscillating physical systems. These dynamical systems are called oscillators. 

Oscillators can be self-excited, parametrically excited (that is, one of the parameters in 

the differential equation oscillates ), or externally excited. Externally excited oscillators
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are also often called forced oscillators. In this thesis we study oscillators which are 

parametrically excited. But the results are usually generic to all nonlinear systems.

1.2 Coupled Dynamical Systems

Since the discovery of chaos [Lorenz, 1963] there has been many studies of low dimen­

sional systems such as driven oscillators, since these are the simplest systems which can 

display chaos. These studies have been carried out in pursuit of demonstrating chaos in a 

wide range of physical situations and studying the properties of chaotic dynamics. But, 

in recent years there has been a shift from studying these low dimensional systems to 

studying higher dimensional systems synthesised from these low dimensional systems 

through coupling since this is a simple way of producing a higher dimensional system. 

Coupled dynamical systems allow us to explore the behaviour of higher dimensional 

systems but starting with those with a partitioned form. The emphasis of any study of 

such systems will be to determine under what conditions the knowledge of the behaviour 

of a subsystem can help us to understand the response of the full system. Also we are 

particularly interested in seeing if the full system can exhibit a response not seen in any 

lower dimensional subsystem. In this spirit let us propose a few generalisations about 

the collective response of coupled dynamical systems:

(1) If each single dynamical system in the coupled system has stable fixed points and 

no other attractors, the coupled system tends to lock in a static pattern. Many such 

patterns may coexist, and in this case, the coupled system may display a wide 

variety of locally stable equilibria. This type of complex response is seen in many 

models [Stein, 1989].

(2) Another type of collective behaviour is where each dynamical system has periodic 

response. This type of response has many applications in biology, ranging from 

the mutual synchronisation of cardiac pacemaker cells, to rhythmically flashing 

fireflies and chorusing crickets, to wave propagation in the intestine, the heart.
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brain and the nervous system [Winfree, 1980]. Therefore arrays of coupled non­

linear dynamical systems can display different types of periodic synchronisation 

which depend on the symmetry of the network.

(3) At the opposite extreme, suppose each dynamical system in the network has a 

chaotic attractor. It is known that chaotic attractors can synchronise. This dis­

covery, first made by [Fujisaka and Yamada, 1983, 1985; Yamada and Fujisaka, 

1983, 1984] and publicised through the work of Pecora and Carroll [Pecora and 

Carroll, 1990] has changed the view of the field of nonlinear dynamical systems, 

in particular the point of view of chaotic behaviour, leading to new hopes about 

applications of chaos particularly in the area of encryption and secure telecommu­

nications.

(4) Other common modes of responses of coupled dynamical systems are travelling 

waves in one spatial dimension, rotating spirals in two dimensions, and scroll 

waves in three dimensions [Winfree, 1980; Kuramoto, 1984].

1.3 Synchronisation of Coupled Dynamical Systems

The Study of coupled dynamical systems has opened up new research problems. One of 

the most widely investigated phenomenon is the concept that coupled dynamical systems 

can exhibit synchronisation if their coupling is above some critical level. This problem 

of synchronisation can be traced back about four centuries ago to Huygens’s work on 

synchronisation of pendulum clocks. Bom in the Netherlands in 1629, Huygens is also 

attributed to a number of scientific discoveries which among other things include: the 

wave theory of light, the observation of the rings of Saturn and for the effective invention 

of the pendulum clock. In the area of synchronisation, Huygens studied two pendulum 

clocks that were suspended side by side, each hanging from a hook embedded in the 

same wooden beam (see Figure 1.1).
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Figure 1.1: Huygens’s pendulum clocks. Adapted from [Schatz, 2001].

When Huygens disturbed the pendula, he found the clocks would return to out-of-phase 

synchronisation as before after about 30minutes. It is now 337 years since Huygens 

made his observations. Over these years attempts to understand Huygens’s observations 

have been rare. To our knowledge, there are only three studies which were directly 

motivated by Huygens’s observations.

First was Kortewerg’s paper [Kortewerg, 1906] in which he analyses a three degree 

of freedom model consisting of two planar pendula connected to a rigid frame free 

to oscillate in a plane. He made linear normal mode analysis for small oscillations 

in the absence of damping and driving effects. Kortewerg concluded that Huygens’s 

observations were entirely captured by the three-degree-of-freedom model, and that the 

out-of-phase periodic synchronisation, if not the only sustainable motion, enjoyed a 

distinct advantage over in-phase synchronisation. He attributed the unsustainability of
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the in-phase synchronisation to friction.

[Blekhman, 1988] also discusses Huygens’s observations. His model is similar to 

the one studied by Kortewerg, except that Blekhman uses van der Pol oscillators 

rather than pendula. He concluded that that in-phase and out-of-phase are coexisting 

attractors. He also reports observing both in-phase and out-of-phase synchronisation 

in the experimental studies. There is a missing link in Blekhman’s work because while 

his experimental observations agree with his predictions for the coupled van der Pol 

oscillators, Huygens as far as we know never mentioned stable in-phase synchronisation.

More recently [Bennett et al., 2002], researchers at Georgia Institute of Technology 

re-examined Huygens’s observations both experimentally and analytically. In the 

experimental results, they reported the coexistence of the out-of-phase attractor with 

another attractor: the beating oscillation. However, in their theoretical analysis, where 

they used linear theory to derive a two-dimensional map of the model, they concluded 

that Huygens’s observation of the out-of-phase synchronisation depended on both luck 

and talent.

Results of our studies in this thesis on periodic synchronisation of two parametrically 

excited pendula suggest intriguing links to the now 337 year old synchronisation 

puzzle of Huygens in which he only realised out-of-phase synchronisation in pen­

dulum clocks no matter how they were started. We shall indicate these links in chapter 5.

For some time scientists believed that only periodic systems can be synchronised. It was 

a stunning revelation when [Fujisaka and Yamada, 1983] and later [Pecora and Carroll, 

1990] revealed that even chaotic systems can be synchronised. The bizarre aspect is that 

despite their sensitivity to initial conditions, chaotic systems were shown to synchronise 

exactly. Today chaos synchronisation has become a popular subject. Motivated by 

the need to understand chaos synchronisation, many features of synchronisation have



Introduction

now been illustrated especially by building a geometric view of this behaviour. In the 

geometric view, synchronisation is described in terms of the synchronisation manifold. 

Let us adopt this geometric view and describe some types of synchronisation that have 

now been studied. First consider a pair of coupled dynamical systems

d x /d t =  / (x ,y ,A )  

d y /d t  = g { x , y , \ )

where / ,  g : R^” are smooth functions. We adopt the following definition of

synchronisation:

Definition 1.1 [Josic, 1998]: The responses x and y o f  the coupled system (1.2) are 

synchronised i f  there exists a compact, diagonal-like, smooth manifold M  with boundary 

which is invariant under the flow, inflowing, and locally attracting. M  will be referred 

to as the synchronisation manifold.

To motivate this definition, let us consider some examples of synchronisation:

• Complete synchronisation: Let x(^, xq) and y(^, yo) be solutions to (1.2). Then 

x (f , xo) and y(f, yo) are complete synchronised if

^Hm I x(f, X q )  -  y(f, yo) |=  0 (1.3)

This definition is illustrated diagrammatically in Figure 1.2.
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Figure 1.2: Illustration of complete synchronisation.

This occurs after transients have died away. Complete synchronisation, also some­

times called identical synchronisation is the simplest form of synchronisation and 

describes the interaction of two identical systems, leading to their trajectories 

remaining exactly in step with each other in the course of time [Fujisaka and 

Yamada, 1983].

• Generalised synchronisation: Suppose that there exists a functional relationship 

y =  H(x) : R" R", denote by M h the manifold y =  H(x), x G R". Let 

x(C Xo) and y{t, yo) be solutions to (1.2). If

lim I y ( L y o )  -  H ( x ( C x o ) )  | =  0
*-oo

(1.4)
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holds for all the initial values Xq and yo in the vicinity of M h, then it is said 

that x(i,xo) and y{t,yo)  are in generalised synchronisation. This definition is 

illustrated diagrammatically in Figure 1.3.

Figure 1.3: Illustration of generalised synchronisation.

This occurs after transients have died away. Generalised synchronisation is the 

form of synchronisation, which uses completely different systems and associate 

the output of one system to a given function of the output of the other sys­

tem [Rulkov et al., 1995; Pyragas, 1996a].

Other forms of synchronisation which have also been studied are:
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• Phase synchronisation: Phase synchronisation is an intermediate regime char­

acterised by the asymptotic boundedness of the phase difference of the two out­

puts, whereas the two chaotic amplitudes remain uncorrelated [Yalcinkaya and 

Lai, 1997].

• Lag synchronisation: This is an intermediate state between phase synchronisa­

tion and complete synchronisation , implying the asymptotic boundedness of the 

difference between the output of one system at time t  and the output of the other 

system shifted in time of a lag time Tiag [Rosenblum et al., 1997]

• Intermittent lag synchronisation: This type of synchronisation implies that the 

two coupled systems are lag synchronised most of the time, but intermittent bursts 

of local nonsynchronous behaviour may occur in concomitance with the passage 

of the system trajectory into attractor regions with local Lyapunov exponents dif­

ferent in sign from its global value [Boccaletti and VallaDares, 2000].

• Projective Synchronisation: This is the dynamical behaviour in which the 

responses of two coupled identical systems synchronise up to constant scaling 

factor [Mainieri and Rehacek, 1999].

• Cluster Synchronisation: Cluster synchronisation is observed when the coupled 

dynamical systems synchronise with one another in groups, but there is no syn­

chronisation among the groups [Heagy et al., 1995b; Wu and Chua, 1995; Pecora 

and Carroll, 1998; Heagy et al., 1998; Belykh et al., 2001].

• Partial synchronisation: Partial synchronisation is the phenomenon when, in a 

dynamical system, only part of the state variables synchronise and the others do 

not synchronise with them [Pyragas, 1996b; Hasler et al., 1998].

1.4 Motivation for Work in this Thesis

In January 2000, after three months of working on my PhD proposal, I finally decided in 

consultation with my supervisor Professor Steven Bishop that I was going to do research
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on the dynamics of two coupled parametrically excited pendula. My interest in carrying 

out such research was motivated by direct questions arising in mechanical and structural 

systems as well as biological systems. In particular, I intended to study periodic as well 

as chaotic synchronisation and the transition between these two types of synchronisa­

tion. While not being an experimentalist my original aim was to study experimentally 

the synchronisation of this mechanical system. By February 2000 the experiment of this 

mechanical system was set up. Figure 1.4 shows the original experimental set-up of the 

system where a thin copper wire was used to couple the two pendula.

Figure 1.4: An experimental set-up of two parametrically excited pen­
dula coupled by a thin copper wire.

From my point of view studying such a mechanical system that lends itself to both 

intuitive and physical understanding was useful and rewarding for two reasons: First, 

experimental studies of synchronised coupled systems are rare and the few that 

appear typically focus on either laser systems [Tang and Heckenburg, 1997; Roy and 

Thornburg Jr., 1994; Sugawara et al., 1994] or electronic systems [Carroll and Pecora,
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1991; Yu et al., 1995; Newell et al., 1994], rather than mechanical systems. Second, 

this provides an opportunity to study synchronisation in nonidentical systems. Most 

numerical and analytical studies assume the coupled systems to be identical. But 

experimental systems are by their nature never identical. Working on the experiment I 

could get in-phase periodic synchronisation and out-of-phase periodic synchronisation. 

But I could not get chaos synchronisation due to limitations in the experimental model. 

At this stage I realised that in order for me to go beyond just this qualitative assessment 

of the dynamics the experiment needed more resources. For example, I realised that 

it required laser monitoring that records the pendulum swings for computer analysis. 

At that time the department lacked resources for this experiment. But motivated by the 

experimental observations that I made, I decided to reconsider the whole problem using 

a combination of numerical simulations and analytical methods.

I also became aware that I need to have a more complete picture of the dynamics of the 

single parametrically excited pendulum first. Earlier studies of the single parametrically 

excited pendulum were not adequate enough to give an overall picture of the dynamics 

of the single parametrically excited pendulum since, for example, they overlooked the 

behaviour of the system in the lower resonance zones. The contents of this thesis reflects 

this pattern in my thinking in that in the first chapters of this thesis (chapters 1, 2 and 

3) I discuss the dynamics of the single parametrically excited pendulum and then later 

(chapters 5 and 6) I discuss synchronisation of the two parametrically excited pendula.

1.5 Problem Setting

The aim of this thesis is to examine mechanisms by which synchronous behaviour 

occurs and persist in a system of two coupled pendula. Parametrically excited pen­

dula are an example of dynamical systems which are modelled by differential equations 

with periodic coefficients. Closed form analytical solutions of such systems (even for
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the linearised case) do not exist and one has to rely on approximate or numerical meth­

ods. But a lot of practical applications of such systems can be found in many fields 

ranging from mechanisms such as gears [Warminski et al., 2000], robots [Bucklaew and 

Liu, 2001], current collection systems or pantograph-catenary system [Wu and Bren­

nan, 1999; Ockendon and Taylor, 1971], Vibromachines ([Belovodsky et al., 2002] and 

references therein), to animal gaits [Banning, 1998]. Legged animals typically employ 

multiple gaits, that is, phase-locked patterns of limb movements, for terrestrial locomo­

tion. Locomotion in particular has been a subject of much research [Collins and 1993, 

1993; Golubitsky et al., 1999, 1998]. Take the example of the horse where motions of 

its legs depend upon the speed with which it travels. A horse can trot, canter or gallop 

(see Figure 1.5 reproduced from [Bowling, 1999]).
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Figure 1.5: Som e gaits of horses: Top: trot, Middle: canter and Bottom: 
gallop of a horse.

These various kinds of motions are known as gaits. Over the past few years, scientists 

have become increasingly interested in animal gaits [Collins and 1993,1993; Golubitsky
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et al., 1999, 1998]. This interest has been fuelled by the need to design and develop 

multiple-legged robots [Banning, 1998; Berkemeier, 1995]. Machines capable of legged 

locomotion are an attractive option, because they can be used to explore rough and 

uneven terrain, which is often inaccessible to wheeled vehicles. In general oscillating 

systems are inherent to the mechanics and neural control of legged locomotion and 

mechanically, animal gaits, can and have been modelled using parametrically excited 

pendula [Banning, 1998].

1.5.1 The Single Parametrically Excited Pendulum

Let us first consider the single parametrically excited pendulum. The parametrically 

excited planar pendulum is a nonlinear system with the suspension point driven period­

ically (see Figure 1.6 for an idealised model) with mass m  attached at the end of a light 

inextensible rod of length I whose suspension point moves up and down according to 

cosinusoidal time history displacement z{t) =  —acos{Q.t). Its equation of motion in 

terms of the angle 0  that defines its configuration is
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z(t)

m

Figure 1.6: An idealised model of the parametrically excited pendulum.

ml'^d^O/di^ + 'ydO/dt + ml{g +  d^z/dt^) sin{6 ) = 0. (1.5)

The most important aspect of equation (1.5) is that the external driving shows up as a 

periodic modulation of one of the most important parameters of the system, the grav­

itational acceleration g, hence the name parametrically excited pendulum. Using the 

prescribed form of the external forcing equation (1.5) becomes

ml^d'^6 /dt^ 4- ^dO/dt +  ml{g 4- cos{Q,t)) sin(6>) =  0. (1.6)

If we apply the time transformation r  =  equation (1.6) takes the form
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9" + P6 ' {1 pcos{lüt)) sin(^) =  0, (1.7)

where /?, u  and p  are the scaled forms of damping coefficient, frequency of parametric 

forcing and amplitude of parametric forcing respectively while the natural frequency uq 

is now scaled to 1. The parameters of equation (1.6) and equation (1.7) are related in 

the following manner

P — jTTll CUQ, UJq — y / Q 1 p  — OjLO j l  — ufl J i O  — $7/UJq-

It is evident from equation (1.7) that for p = 0, that is, when there is no parametric 

forcing, we recover the simple pendulum equation

9" + PO'+ sm{9) = 0  (1.8)

which is frequently encountered in many textbooks and research papers as one of the 

most familiar examples of a nonlinear mechanical oscillator with many problems in 

various branches of physics and engineering reducing to this form. Of all the pendulum 

systems with external forcing, the parametrically excited pendulum is one of those with 

the same number of stationary points as the undriven pendulum described by equation 

(1.8), namely, ^ =  0 and 9 = ir. In the undriven case described by equation (1.8) 

these points are always stable and unstable respectively. So the parametric forcing can 

change the stability/instability and vice versa. This fact seems to have been realised first 

by [Stephenson, 1908], and has since been demonstrated both experimentally and by 

numerical simulations by a number of researchers [Kalmus, 1970; Pippard, 1987; Smith 

and Blackburn, 1992]. [Acheson, 1993] managed to extend this concept to multiple 

pendulums.



Introduction 18

1.75
Rotation

1.5

0.75

0.25

1.25 1.5 1.75 2 2.25 2.5 2.75

Figure 1.7: Parameter sp a ce  diagram for the single parametrically 
excited pendulum.

Different types of behaviour of the single parametric excited pendulum are shown in 

Figure 1.7 [Oliveira et al., 2001]. For certain values of p and u  the pendulum oscillates, 

for others it remains in the hanging state, simply moving up and down with the driv­

ing force. The region in the above figure defined as “Rotation” also includes chaotic 

motion which include rotations. The stability diagram shown in Figure 1.7 is only for 

oscillations about the downward equilibrium.

1.5.2 Two Coupled Parametrically Excited Pendula

When two parametric excited pendula, as described in the previous section, are 

coupled, the dynamics of the system becomes richer and more complex. There are 

different ways of coupling two pendula. [Zhang et al., 1999], for example, described 

two parametrically excited pendula coupled unidirectionally and connected through a 

periodical feedback. In this work we will concentrate on continuous bidirectional or 

mutual coupling. In bidirectional or mutual coupling each dynamical system influences 

the behaviour of the other dynamical system. This type of coupling was described in 

detail by Banning [Banning and Weele, 1995; Banning et al., 1997], where both the
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Hamiltonian and dissipative cases are considered. In the study by Banning the coupling 

strength is maintained constant throughout. Here we are mainly interested in studying 

the effect of different coupling strengths on the dynamics of the system.

If the common suspension point of the two pendula is harmonically driven according to 

z{t) =  -acos{üt)  and configurations of the pendula are defined by angles 6 i and 62 , 

then the equations of motion can be shown to be

mP(f6i/dt'^  +  '-)d9i /d t  +  ml(g  + ail? cos{üt)) sin(Oi) +  K[6i -  62) = ^ 

m?d?62ldt^ +  ')d92/dt +  ml(g  +  cos(fif)) sin(^2) — ^(^1 — ^2) =  0.

It is evident from equations (1.9) that for a =  0 and with no coupling (K = 0)

(1.9)

z(t)

m

m(a)

m

Figure 1.8: An idealised model of two coupled parametrically excited 
pendula: (a) Side view (b) Top view.

we recover the simple pendulum equation

m?d?9/dt^ +  ^d9/dt +  mgl sin(^) =  0. ( 1. 10)

In order to reduce the number of parameters in the governing equations (which are now 

m, 7 ,1, n, a, K)  and also in order for us to be able to compare directly the dynamics of 

systems described by equations (1.9) in any field, for example in lasers and in mechan­

ics, we rescale the time coordinate using the transformation r  — We apply the
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relation dr = {y /g /l)d t  to equations (1,9) and obtain the scaled equations of motion in 

the form
6 ” +  (39[ +  (1 + p c o s{u t) )  sin(^i) +  k{6 i -  6 2 ) = 0

^2 +  Pd'2 +  (1 + pcos(w T )) sin(^2) -  ^(^1 -  ^2) =  0 

where k is the scaled coupling parameter and /?, p, u  are the scaled damping, amplitude 

of parametric forcing and the frequency of parametric forcing of the pendula respec­

tively with the natural frequency ujq now scaled to 1. The parameters of equations [1.9] 

and equations [1.11] are related in the following manner:

fd 'yITTil WQ, CÛQ —- P ~~ ÜUJ y (jJ   k  — K. jTTll Wg .

Like the single parametrically excited pendulum the system of two coupled parametri­

cally excited pendula has the same number of stationary points as the undriven single 

pendulum described by equation (1.10), namely, =  ^2 =  0 and 9i = 6 2  = tt. In the 

undriven case described by equation (1.10) these points are always stable and unstable 

respectively. So the parametric forcing can change the stability/instability and vice 

versa as first noted by [Stephenson, 1908].

For low values of the amplitude of parametric forcing p  equations (1.11) exhibit pre­

dominantly two modes of periodic behaviour: in-phase periodic oscillations and out-of­

phase periodic oscillations. The occurrence of these two types of periodic oscillations 

can be illustrated more clearly by using normal coordinates. Using the normal coordi­

nates [see chapter 5 for details] the equations for in-phase oscillations and out-of-phase 

oscillations can be shown to be

9" -h P9' -h (1 -\-pcos{uT)) sm{9) =  0
(1.12)

9" -h p9' -h (1 -l-pcos(wT)) sin(^) +  2k9 = 0

where the first of equations (1.12) describe in-phase oscillations and the second of 

these equations describe out-of-phase oscillations. In order to numerically establish 

the stability of the downward equilibrium (9i,= 9[ = 0, i  =  1,2) around both
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zones of in-phase and out-of-phase oscillations in which the pendula simply go up and 

down with the point of suspension, we consider the characteristic exponents of the full 

nonlinear equations (1.11). The zones in the (w,p) space for which the fixed point 

(6>j, =  6*' =  0, 2 =  1,2) is unstable appear as tongue-shaped regions. In the case of 

the linearised form of equations (1.11), these resonance zones are called Mathieu zones. 

Outside the resonance zones the downward equilibrium (6*̂ , =  =  0, 2 =  1,2 solu­

tion) is stable.
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Figure 1.9: The resonance zon es of periodic motion in (lj, p )-parameter 
sp ace  for two coupled parametrically excited pendula with 
k = 0.6. The dark grey regions represent the parameter 
sp ace  for which periodic oscillations are realised while the 
light grey regions represent the regions for which the down­
ward equilibrium is stable for both pendula. This diagram 
w as numerically determined using the software [N usse and 
Yorke, 1998].

For in-phase periodic oscillations, the resonance zones occur around w =  2/n, 

n = 1, 2, 3,... in the (w,p) space while for the out-of-phase oscillations the resonance

zones occur around w  =  2 / t 2 a / ( 1  4 -  2k), n = 1, 2, 3,... in the (w,p) space. The position
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of the zones of out-of-phase motion change in the parameter space as k changes. 

Figure 1.9 shows the zones of in-phase and out-of-phase oscillations for k = 0.6 which 

were determined numerically for the full nonlinear equations using the software [Nusse 

and Yorke, 1998].

The non rotating periodic steady state motions of the pendula can be classified into four 

categories as shown in Figure 1.10 [Banning, 1998]:

Figure 1.10: (a) 0-motion (b) 1-motion (c) 2-motion (d) M-motion.

0-motion In this case the two pendula move only in the vertical direction for all times 

(after the transient time) : Hanging motion. In this case we have 9i (t ) =  02{r) = 

0 .

1-motion In this second motion the two pendula move in phase with each other (again 

after the transient time): In-phase synchronisation in which 9\{t ) = 92(r).
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2-motion In the third type of motion both pendula move in counterphase with each 

other: Out-of-phase synchronisation. In this case we have ^ i( r)  =  —9 2 {r).

M-motion This last type of motion are characterised by periodic motions that can not 

be classified as any of the above: Mixed motion.

The two pendula can also rotate in synchrony or exhibit chaotic behaviour, often called 

Tumbling chaos since this motion involves a complicated combination of oscillations 

and rotations like a tumbling gymnast. Rotating chaos and oscillating chaos [Bishop 

and Clifford, 1996a] also exists but in a very narrow region of the parameter space and 

it will not be considered here. We will use the term chaotic synchronisation when each 

of pendula exhibits chaotic behaviour but ^ i(r) =  0 2 {r) for all times after the transient 

motion.

1.6 Structure of the Thesis

In progressing through the work of this thesis, our guiding principle was that in order 

to understand how coupled nonlinear dynamical systems work together, one must 

first understand how one dynamical system works by itself. In this spirit the contents 

of this thesis can be broadly divided into two parts: The first part is composed of 

chapters 2, 3, and 4. In these three chapters we discuss a wide variety of dynamical 

responses of the single parametrically excited pendulum. Thus in chapter 2 we discuss 

oscillatory behaviour of the parametrically excited pendulum. In chapter 3 we study 

rotating motion of the parametrically excited pendulum. This first part concludes with 

chapter 4 in which we discuss chaotic dynamics of the parametrically excited pendulum.

In the second part, made up of chapters 5 and 6, we discuss synchronisation of two 

coupled parametrically excited pendulum. The thesis ends up with chapter 7 which 

summarises the our main findings in this thesis and point to future research directions.



Chapter 2

Oscillatory Solutions of the 

Parametrically Excited Pendulum

2.1 Introduction

In this chapter we consider periodic oscillatory solutions or orbits of the parametrically 

excited pendulum. These oscillatory solutions, sometimes referred to as swinging 

or non-rotating orbits by different authors are oscillations which do not go beyond 

the vertical static (but unstable) equilibrium point. In general, a solution x  =  x(f) 

of a continuous time dynamical system is said to be periodic with least period T  if 

x ( t  -\-T) = x{t)  and x(f +  r )  x (f ) for 0 <  r  <  T. Usually such solutions correspond 

to closed orbits in phase space. In the case of continuous time dynamical systems a 

periodic solution can be treated as a fixed point of an appropriately defined map called 

a Poincaré map.

There is a lot of theoretical work on oscillatory periodic solutions of dynamical systems 

(see for example [Thompson and Stewart, 2002] and references therein). In theoretical 

sudies, the Bendixson’s theorem can be used as a tool to exclude the existence of 

periodic solutions of two-dimensional autonomous dynamical systems [Nayfeh and 

Balachandran, 1995]. In addition, when a map from R ” to R ” which is associated with 

a continuous time dynamical system (autonomous or nonautonomous) has at least one 

fixed point, fixed point theorems such as the contraction mapping theorem and the
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Brouwer fixed point theorem can be used to prove the existence of a periodic solution 

of a dynamical system corresponding to the fixed point of the map [Hale, 1969; Arnold, 

1973].

The study of oscillatory periodic solutions of the parametrically excited pendulum 

which resulted in the material presented in this chapter was carried out because we 

realised that all the theorems mentioned thus far are limited because they do not 

provide us much information on the location in parameter space and the different 

types (and their symmetries) of the periodic oscillatory solutions of the system. So 

the work presented here was carried out to ascertain the existence (and location 

in parameter space) of oscillatory periodic solutions of the parametrically excited 

pendulum and their different types using numerical methods. The need to understand 

more about the different types of oscillatory solutions was motivated by the fact that 

in some applications of the parametrically excited pendulum, the main interest is in 

achieving periodic solutions that do not exceed 0 =  ±7t, as this might correspond 

to failure in some sense. But more importantly, knowledge of oscillatory behaviour 

of the single parametrically excited pendulum provides the necessary groundwork 

for subsequent work in this thesis [chapter 5] where we study periodic synchroni­

sation of two coupled parametrically excited pendula when their dynamics is oscillatory.

Earlier studies on the oscillatory solutions of the parametrically excited pendulum 

include [Bishop and Clifford, 1994; Clifford and Bishop, 1996; Capecchi and Bishop, 

1994]. In previous studies, interest was similarly focused on non-rotating solutions 

of the parametrically excited pendulum but when the parameters are fixed within the 

main resonance zone. A recent paper by [Szemplinska-Stupnicka et al., 2000] accu­

rately showed a detailed bifurcation structure of these oscillatory solutions in the main 

resonance zone together with an analysis of the stable invariant manifolds associated 

with rotating attractors which play a crucial role in separating the oscillating and rotat­

ing attractors in the phase plane. We extend this work by also considering oscillatory
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solutions in the lower resonance zones. However, the work presented here will not con­

sider oscillatory solutions about the vertical equilibrium which have also recently been a 

subject of curious interest [Acheson, 1995; Clifford and Bishop, 1998]. The equation of 

motion in nondimensional form (details of derivation of the equation and the appropriate 

scalings are given in chapter 1) can be written as

6 ” + [39' -\- [I -fp co s((jr)) sin(^) =  0 (2.1)

where (3, p  and u  are the scaled forms of damping coefficient, amplitude of paramet­

ric forcing and frequency of parametric forcing respectively. For sufficiently large 

values of the amplitude of parametric forcing p, different types of harmonic and sub­

harmonic oscillatory orbits can be realised depending on the frequency and the initial 

conditions given to the system. These harmonic and subharmonic oscillatory orbits 

occur in tongue-shaped regions shown in Figure 2.1 in the (w,p) space. Figure 2.1 is a 

schematic non-linear version of the well-known stability diagram of the damped Math­

ieu equation [McLachlan, 1964] to which the equation of the parametrically excited 

pendulum (2.1) reduces if we set sin(0) =  6  (that is, after linearisation of equa­

tion (2.1) about the hanging position). The tongue-shaped regions occur around the 

values (w,p) =  (2/n , 0), n = 1 ,2 ,3 ,... in the parameter space. The dotted lines in 

Figure 2.1 show the approximate position of the resonance tongues in the (w,p) space 

when P — 0. Therefore the damping acts to shift the position of the resonance tongues 

upwards. Throughout this chapter we shall investigate the properties of oscillatory orbits 

of the parametrically excited pendulum when the damping is fixed at a representative 

level of /) =  0.1. It can be seen from Figure 2.1 that with increasing p  each resonance 

tongue is twisted to the right and lies above the other so that for large p  the resonance 

tongues may overlay each other.
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2 /n 2/3 2/2

Figure 2.1: Schematic stability diagram showing both the zone of pri­
mary instability of the downward equilibrium solution marked 
I and the lower resonance zones marked II,III, IV. The 
zones are shown here for arbitrary damping. The dashed  
lines indicate the position of the resonance zones in the 
absence of damping. Inside the resonance zones the down­
ward equilibrium solution is unstable. Typically stable solu­
tions within these zones are oscillatory, rotating and their 
combination.

For {u,p) values inside these tongues the parametrically excited pendulum is said to be 

in parametric resonance. Inside the resonance zones for the Mathieu equation, solutions 

are unbounded. However, when the nonlinearity is present, different types of periodic, 

subharmonic and chaotic behaviours are realised. In this case, the nonlinearity initially 

stabilises the oscillatory solutions for increasing p. Details of the bifurcations bounding 

these zones will de discussed in section 2.3.
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2.2 Symmetry of the Governing Equations

The second-order differential equation (2.1) for the parametrically excited pendulum 

can be transformed to a system of first-order differential equations:

d e 9'
dr 6 ' —136' — { l + p  cos(cjr)) sin(^)

=  F (x , A, r ) (2.2)

where x  =  { 6 ,6 'Y ,  A =  and F ( x ,A ,r )  =  { 6 ' ,—p6' — [1 -h

P c o s { u t ) ]  s i n ( ^ ) } ^ .

Because of the nonlinearity which is odd in 6  the equation for the parametrically excited 

pendulum possesses the inversion symmetry

F (x , A ,r) =  - F ( - x ,  A ,r).

This symmetry property can be written in a more general way as

S F (x , A, r )  =  F (S x , A, r )

where S is defined to be:

S =  —I =
-  1

0 -  1

(2.3)

(2.4)

(2.5)

Thus if an initial condition x(0) generates a particular solution x (r )  of equation (2.2), 

then S x (r) is a solution as well generated by the initial condition Sx(0). Furthermore, 

since F (x , A, r )  is periodic with period T  = 27t/ uj, then

F (x , A, r )  =  F (x , A, T -H T). (2.6)

Therefore, it follows that
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F (x , A ,  r )  =  - F ( - x ,  A ,  T +  T). (2.7)

Equation (2.7) means that for the parametrically excited pendulum, the Poincaré map, 

denoted here as:

P (x ) :  ̂ x(ro) x ( tq +  2 7 r /w )  =  x(ro +  T)

has an inversion symmetry such that

(2.8)

S P S (x ) =  P (x ) V X (2.9)

where S(x) =  —x. If an orbit of the parametrically excited pendulum is invariant under 

S as represented by equation (2.9) in which the orbit of the Poincaré map P  is invariant 

under S, then it is defined as symmetric orbit and x ( r )  =  —x ( r  +  T). Otherwise it 

is unsymmetric in which case there exists a pair of the unsymmetric orbits defined by

x ( t ) and —x ( r  +  T)  such that x (r )  ^  —x ( r  +  T).

In order to gain more insight into the natural symmetries of the equation of the para­

metrically excited pendulum, let us briefly contrast its symmetry with that of pendulum 

with direct forcing. The equation for the pendulum with direct forcing can be written as

d 9 9'
dr 9' ~P9' — sin(^) -f-pcos(o;r)

=  P i(x , A ,  r ) (2.10)

where x  =  {6,6'}'^, \  = w }^andP i(x , A ,  r )  =  {6 ' ,—P6'—sm{6)-\-pcos{ur)}'^. 

In the study of the natural symmetries of the pendulum with direct forcing (see [Swift 

and Wiesenfeld, 1984]) we construct another map:

P i(x) : x ( t o )  x ( t o  + 7t / u j )  = x(ro -j- T /2) (2 .11)
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which has an inversion symmetry such that

S P iS(x) =  P i(x) V X (2.12)

where S(x) =  —x. Thus if an orbit of the pendulum with direct forcing is invariant 

under S as represented by equation (2.12) in which the orbit of the map Pi is invariant 

under S, then it is defined as symmetric orbit and x (r )  =  —x ( r  +  T /2 ). Otherwise it 

is also unsymmetric in which case a pair of unsymmetric orbits defined by x (r )  and 

—x ( r  +  T /2 ) exist such that x (r )  ^  —x ( r  +  T /2).

This means that for the equation of the pendulum with direct forcing we have

P i(x , A ,  r )  =  — P i(—X, A ,  r  +  T /2 ). (2.13)

This is unlike the equation for the pendulum with parametric forcing where we have

P (x , A ,  r )  =  - P ( - x ,  A ,  r  +  T). (2.14)

In the case of the parametrically excited pendulum, we would expect the symmetry with 

respect to the transformation

x ( r ) - x ( r  +  T /2 ) (2.15)

to be generally broken for arbitrary w and p because

cos(o;r) ^  cos[a;(r +  T /2)]. (2.16)

But on the contrary, we will show that for the parametrically excited pendulum the sym­

metry defined by the transformation x (r )  —x ( r  -f T /2 ) survives in the resonance

zones located around (w, p) = (2 /n , 0) and is only broken when n  is even. For n  odd the 

symmetry defined by the transformation (2.15) survives and is only broken for arbitrarily
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large values of p. In much of the rest of this chapter we study the symmetry of the para­

metrically excited pendulum with respect to the transformation x (r)  —x (r  +  T /2). 

A symmetric orbit with respect to transformation (2.15) can be harmonic or subhar­

monic. In this thesis we shall differentiate between the different types of subharmonic 

oscillatory solutions of the parametrically excited pendulum by specifying their orders 

using an integer m  which denotes the number of oscillations (number of local maxima 

in the time history) within one period of the solution. Using this proposed notation a 

subharmonic solution of order 1/m  is a solution which makes m  oscillations within one 

period of the solution. We shall show that in general m  = n, where n is an integer 

which defines the value of the frequency of excitation u  around which the subharmonic 

solution is realised through the relationship uj = 2/n. Figure (2.2) shows a typical sym­

metric 1/9 subharmonic oscillatory orbit (with respect to the transformation (2.15)) of 

the parametrically excited pendulum of period 2T. In this case x (r)  =  —x (r  +  T /2). 

This figure was plotted for (w,p) in the resonance zone ( i.e. (w,p) =  (2/n, 0), 

n =  9).
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Figure 2.2: Oscillatory orbits of the parametrically excited pendulum: 
Symmetric 1/9 subharmonic orbit of period 2T, for w =  0.19 
and p =  1.1. Left: time series of the trajectory. Right: phase  
sp ace plot of the trajectory.
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Figure 2.3: Oscillatory orbits of the parametrically excited pendulum: 
Unsymmetric 1/5 subharmonic orbit of period T  shown by 
thick line and the conjugate orbit shown thin line (obtained 
after applying the symmetry transformation (2.15)) for w =
0.17 and p = 1.1. Left: time series of the trajectory. Right:
phase sp ace plot of the trajectory.

Figure 2.3 shows an unsymmetric 1/5 subharmonic oscillatory orbit (with respect to 

the transformation (2.15)) of the parametrically excited pendulum of period T. This 

Figure was numerically determined for (w,p) in the resonance zone ( i.e. (w,p) =  

(2/n, 0), n =  10). The thin line shows the unsymmetric orbit and the thick line shows 

the conjugate unsymmetric 1/5 subharmonic oscillatory orbit obtained after applying 

the symmetry transformation (2.15). Here the two unsymmetric orbits are defined by

x (r) and —x (r  +  T /2), where x (r)  ^  —x (r  +  T /2). In the rest of this chapter we

investigate symmetry with respect to the transformation x (r)  - x ( r  +  T /2).

2.3 Symmetry of the Periodic Orbits

In the (w,p) parameter space the resonance zones in which the pendulum is in paramet­

ric resonance occur around uj =  2 /n , n =  1 ,2 ,3 ,....
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Figure 2.4: Numerically determined stability diagram showing the res­
onance zones where horizontal axis is w e  [0.14,3.2] and 
vertical axis is p g [0.1,1.5]. At these low values of p, non­
linear effects which cause the resonance zones to twist to the 
right are insignificant. The regions in cyan and white colours 
represents zones in the parameter space where oscilla­
tory orbits are realised. Green regions represent zones of 
chaos. Outside the resonance zones dark grey regions rep­
resent zones where the downward equilibrium point is stable. 
Within the resonance zones sky blue strips represent regions 
of rotating motion.

Figure 2.4 shows some of the resonance zones in (w,p) space which were determined 

numerically using the software [Nusse and Yorke, 1998]. Within these resonance zones, 

regions of the oscillatory motions studied in this chapter are shown by the colours cyan 

and white, while in the green regions tumbling chaos is realised. Outside the resonance 

zones the dark grey colour represents regions where the downward equilibrium is 

stable. The sky blue colour represent regions where rotating motions are realised. From 

Figure 2.4, it can be seen that we have alternating regions which are bound by red 

and purple lines. The red lines represent a zone of period doubling bifurcations while
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the purple lines represent symmetry breaking bifurcations. The zones located around 

u  =  2 /n , n =  1 ,3 ,5 ,... are bound by the red lines. Therefore these zones are bound 

by period doubling bifurcations which are subcritical to the left and supercritical to the 

right. The zones located around u  =  2 /n , n =  2 ,4 ,6 ,..., which are bound by purple 

lines are also thus bound by symmetry breaking bifurcations which are subcritical to 

the left and supercritical to the right.

We now consider in detail the oscillatory motions that occur in the cyan and white 

coloured regions. A special feature of the first two resonance zones which are located 

around u  =  2 /n , =  1,2 is that stable subharmonic oscillations are rarely located in 

these zones. Within these two zones the dominant stable solutions are harmonic solu­

tions which are symmetric period 2T  and unsymmetric period T  respectively as shown 

in Figure 2.5. Figure 2.5(a) was plotted for (w,p) in the resonance zone ( i.e. 

(w,p) =  (2 /n , 0), n  =  1) while Figure 2.5(b) was plotted for (w,p) in the res­

onance zone ( i.e. (w,p) =  (2 /n , 0), n =  2).
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Figure 2.5: Harmonic oscillatory orbits of the parametrically excited pen­
dulum in the first two resonance zones: (a) Symmetric orbit 
for LÜ =  2.0, p =  0.25 with period 2T (parameters fixed in 
the first resonance zone), (b) Unsymmetric orbit (thin line) 
with its conjugate orbit (thick line) for u  =  0.9, p =  0.9 with 
period T  (parameters fixed in the second  resonance zone), 
for initial conditions {0,0') =  (0.57,0). Left: time series of the 
trajectories. Right: phase sp ace  plot of the trajectory.

Therefore the first and second resonance zones are regions of harmonic orbits which are 

symmetric period 2T and unsymmetric period T  respectively.

Let us now consider the dynamics in the lower resonance zones (i.e. the zones located 

around {uj,p) = (2/n, 0), n > 2). Numerical simulations reveal that for n odd we 

have symmetric subharmonics of order 1 /n  with period 2T. Typical examples of the 

symmetric orbits for n odd are shown in Figure 2.6. These 1 /n  subharmonic orbits
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were numerically calculated for values of (w,p) in the VII^^ (Figure 2.6(a)), (Fig­

ure 2.6(b)) and IIF'^ (Figure 2.6(c)) resonance zones (i.e. inside the zones located 

around (w,p) =  (2/n , 0), n =  7,5,3).
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Figure 2.6: Subharmonic oscillatory orbits of the parametrically excited 
pendulum when n is odd for p =  1.106: (a) Symmetric 1 /7  
subharmonic for w =  0.25, period 2T,  (b) Symmetric 1/ 5  
subharmonic for u =  0.36, period 2T,  (c) Symmetric 1/ 3  
subharmonic for uj =  0.60, period 2T, for initial conditions 
{9,6') =  (0 .57,0) .  Left: time series of the trajectories. Right: 
phase sp ace plot of the trajectory.
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Numerical simulations also show that when n  is even we generally have unsymmet- 

ric subharmonics of order 2 /n  and period T.  Examples of these unsymmetric orbits are 

shown in Figure 2.7. These 2 /n  subharmonic orbits were numerically calculated for val­

ues of (w, p) in the (Figure 2.7(a)), (Figure 2.7(b)) and VIII*^ (Figure 2.7(c)) 

resonance zones (i.e. inside the zones located at (w,p) =  (2 /n , 0), n  =  4,6 ,8).
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Figure 2.7: Subharmonic oscillatory orbits of the parametrically excited 
pendulum when n  is even forp =  1.1: (a) Unsymmetric 1/2  
subharmonic for uj =  0.45, period T  (b) Unsymmetric 1/3
subharmonic for lu =  0.30, period T  (c) Unsymmetric 1/4
subharmonic for w =  0.22, period T, for initial conditions
{9,6') =  (0 .57,0) .  Left: time series of the trajectories. Right:
phase sp ace  plot of the trajectory.
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From the results obtained we make the following observations about the significance of

n:

•  First, n  shows the position of the resonance zone in the parameter {u,p)  space since

the resonance zones in which the different harmonic and subharmonic orbits occur 

are located around (w,p) =  (2/n , 0), n  =  1 ,2 ,3 ,... in the {u,p)  space.

•  Second, n  generally determines the order of the subharmonic, for example when n =

3 ,5 ,7  we have subharmonics of order 1/3, 1/5, and 1/7  as shown in Figure 2.6 

and when n  =  4 ,6 ,8  we have subharmonics of order 1 /2 ,1 /3 , and 1/4 as shown 

in Figure 2.7.

•  Finally, n  can be used to deduce the symmetry of the orbit, that is for n  odd, we pre­

dominantly have symmetric orbits while for n even, we have unsymmetric orbits 

for which conjugate orbits exist.

2.4 Symmetry Breaking and Period Doubling Bifurca­

tions

In this section we study the bifurcations associated with the symmetric and unsymmetric 

orbits of the parametrically excited pendulum as the amplitude of parametric forcing p 

varies. We present concrete examples of these bifurcations.

First let us consider the bifurcations associated with unsymmetric periodic orbits 

(that is, those found in resonance zones located around (uj,p) =  (2 /n , 0), were n  is 

even number). A typical example is the bifurcation diagram shown in Figure 2.8 with 

n  =  6, plotted by following an attractor. We follow stable unsymmetric 1/3 subhar­

monic oscillatory period T  orbit as p increases. It can be seen from Figure 2.8 that as p 

increases the
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Figure 2.8: Bifurcation diagram showing transition to ch aos for an 
unsymmetric orbit of the parametrically excited pendulum  
for w =  0.3, bifurcation parameter is p: Horizontal axis 
p e  [1.1,1.3], vertical axis 9 e  [-0.4,0.4].

unsymmetric subharmonic orbit evolves until p reaches a critical value which is about 

p = 1.22. Beyond this critical value the unsymmetric orbit undergoes a period dou­

bling bifurcation. This period doubling bifurcation is an example of temporal symmetry 

breaking bifurcation because the equation of the parametrically excited pendulum is 

invariant under the transformation

[ü ,ü ',T ]-+ [ü ,9 ',T -hT ] (2 17)

where T  = 27r/w is the period of the driving force. After the temporal sym­

metry breaking bifurcation (period doubling) a new solution appears which is period 

2T. Further increase of p results in a cascade of period doublings and transition to chaos.

Next, we consider the bifurcations associated with the symmetric orbits of the paramet­

rically excited pendulum (that is, those found in resonance zones located at (w,p) =  

(2 /n ,0 ), where n  is odd). As an example we consider the case when n = 3. The 

bifurcation diagram is shown in Figure 2.9. This diagram was plotted by following an
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attractor starting with p value at p =  1. The symmetric 1/3 subharmonic oscillatory 

orbit is period 2T.

Figure 2.9: Bifurcation diagram showing transition to ch aos for an sym ­
metric orbit of the parametrically excited pendulum for w =
0.6, bifurcation parameter is p\ Horizontal axis p e  [1.0,1.2], 
vertical axis 9 e  [-2.0,2.0].

It must be noted that in plotting this bifurcation diagram the sampling time was equal to 

the period of the parametric excitation, that is, T  = 27r/w. So the 2T periodic attractor 

of the symmetric orbit is represented by two branches in this case. As p increases, the 

symmetric orbit undergoes a symmetry breaking bifurcation and an unsymmetric orbit 

appears a tp  % 1.105 which has the same period as the solution changing stability. After 

the symmetry breaking bifurcation, the unsymmetric periodic orbit undergoes a cascade 

of period doublings and transition to chaos as p increases.

2.5 Final Remarks

The main issues covered in this chapter include:

• A detailed study of the different harmonic and subharmonics oscillatory orbits of 

the parametrically excited pendulum.
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•  A study of the symmetry of the different harmonic and subharmonic oscillatory 

orbits.

•  An investigation of the parameter space to show the location of the different oscil­

latory solutions of the parametrically excited pendulum.

•  A study of the transition to chaos of the different oscillatory orbits of the paramet­

rically excited pendulum.



Chapter 3 

Rotating Orbits of the Parametrically 

Excited Pendulum

3.1 Introduction

In this chapter we consider rotating periodic solutions or orbits of the parametrically 

excited pendulum. These rotating solutions, sometimes referred to as running solutions 

by some authors [Bartuccelli et al., 2001; Butikov, 1999] are solutions which make 

complete revolutions about the pivot point. We build on the earlier work of [Clifford 

and Bishop, 1995] which considered rotating orbits of the parametrically excited 

pendulum in the first resonance zone. We shall indicate how this present work and the 

earlier work of [Clifford and Bishop, 1995] fit into the overall picture of the rotating 

motion of the parametrically excited pendulum. In this chapter we classify the steady 

state stable rotating solutions of the parametrically excited pendulum into four broad 

categories and indicate the zones in the parameter space in which the different types of 

rotating solutions occur. Symmetry considerations of these rotating periodic solutions 

will help us to distinguish between those rotating solutions which exist in conjugate 

pairs and those which exist as single solution.
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Using the same scalings as in chapter 1, the equation governing the motion of the para­

metrically excited pendulum in terms of the angle 6 which the pendulum makes with the 

vertical can be shown to be

9" -f- p6' 4- (1 -l-pcos(wT)) sin(^) =  0. (3.1)

The damping coefficient is denoted by while u  and p are the frequency of parametric 

forcing and amplitude of parametric forcing respectively. Several attractors exist for 

this simple system depending on the parameter settings and initial conditions. These 

include: the stationary states {9,9') =  (0,0) and {9,9') = (tt, 0) (in which the pendulum 

simply goes up and down with the point of suspension), the oscillating solutions, the 

chaotic solutions and the rotating solutions which are the subject of this chapter. The 

stationary state {9,9') =  (0,0), is generally stable except for u,  p within the tongue 

shaped regions shown in Figure 3.1. These tongue-shaped regions occur around the 

values (w,p) =  (2/n , 0), n =  1 ,2 ,3 ,... in the parameter space. The dotted lines in 

Figure 3.1 show the position of the resonance tongues in the (w,p) space when P = 0. 

Therefore the damping acts to shift the position of the resonance zones upwards. In 

this chapter we shall investigate the properties of rotating orbits of the parametrically 

excited pendulum when the damping is fixed at a representative level of p  = 0.1. The 

response prior to rotation corresponds to the well-known phenomenon of escape from 

the potential well [Clifford and Bishop, 1993,1994; Stewart and Faulkner, 2000] which 

occurs in a wide variety of non-linear oscillators when a system’s response crosses the 

maximum value of the potential energy.
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Figure 3.1: Schematic stability diagram showing the resonance zones  
marked I, II, III, IV, V, etc. Inside these resonance zones  
the stationary state {6,6') =  (0,0) is unstable. Typically sta­
ble solutions within these zones are oscillatory, rotating and 
chaotic. Most rotating solutions occur within the blue narrow 
strips. The dashed lines indicate the position of the reso­
nance zones in the absence of damping. Rotating solutions 
occur within the blue stripes.

For (w,p) values inside these zones the parametrically excited pendulum is said to be in 

parametric resonance. Inside the resonance zones different types of oscillating, rotating 

and chaotic solutions are realised. Our focus in this chapter is explicitly on rotating 

solutions. With increasing p each resonance zone is twisted to the right and lies above 

the other so that the resonance zones may possibly merge for arbitrarily large values of 

p. We classify the steady state rotating orbits of the parametrically excited pendulum 

into four categories (see Figure 3.2 for visualisation of these solutions) as follows:
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Figure 3.2; The four basic types of rotating orbits: (a) Purely rotating 
orbit of period T, for w =  2.0, p =  1.17 in zone I. (b) Oscillat­
ing rotating orbit of period T,  for cj =  0 . 1 9 , p =  1.5 in zone IX. 
(c) Straddling rotating orbit of period 2T,  for w =  0.15, p =  1.4 
in zone X. (d) Large amplitude rotating orbit of period 2T,  for 
CJ =  1.0, p =  1.7 in zone II. Left: time series of the trajectory. 
Right: phase space plot of the trajectory.
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In Figure 3.2, transients have been allowed to decay so that, for the level of damping 

considered in this work, after time r  =  800 units we can only view the steady state 

response.

(1) Purely rotating orbits: These rotating solutions are such that the velocity is sin­

gle signed for all time, that is, either 9'{r) >  0 Vr or 6'{t) < 0 Vr. They are 

the dominant type of stable rotating motion in the first resonance zone, that is, 

they occur around (w,p) =  (2/n , 0), n =  1. A typical purely rotating orbit is 

shown in Figure 3.2(a). These rotating orbits exist in conjugate pairs: one rotating 

clockwise and another rotating anti-clockwise.

(2) Oscillating rotating orbits: These rotating solutions are such that either average 

9'{t)  >  0 or average 6'{r) < 0. For these rotating solutions a trajectory completes 

a fixed number of oscillations within a potential energy well before transversing 

a potential maximum into the next potential energy well through rotating motion. 

They are the dominant stable rotating attractors within the resonance zones located 

around (cj,p) =  (2 /n , 0), n >  2, n odd. A typical oscillating rotating orbit is 

shown in Figure 3.2(b) which makes 5 oscillations before transversing into the 

next well through rotating motion.

(3) Straddling rotating orbits: These have a similar property as oscillating rotating 

solutions of experiencing oscillations and rotations but differ in that their response 

only straddles one or two or three wells. The straddling rotating solutions are 

the dominant stable rotating attractors within the resonance zones located around 

(w,p) =  (2 /n , 0), n  >  2, n even. Figure 3.2(c) shows a typical straddling rotating 

solution which straddles two wells.

(4) Large amplitude rotating orbits: These also have similar properties as the strad­

dling rotating solutions in that they straddle one, two or three wells but differ in 

that they do not make oscillations within the potential wells. They are the dom­

inant stable rotating motions within the second resonance zone, that is the zone
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located at (uj,p) = (2/n, 0), n  =  2. A typical large amplitude rotating orbit is 

shown in Figure 3.2(d).

The rotating solutions occur within narrow strips shown in blue colour inside the reso­

nance zones whose schematic representation is shown in Figure 3.1. These narrow strips 

are bound by lines of global bifurcations [Clifford and Bishop, 1995] and extend outside 

the parametric resonance zones. The study of these global bifurcations will be subject 

of the next chapter.

3.2 The Different Types of Rotating Orbits

In the (u,p)  parameter space the resonance zones in which the pendulum is in 

parametric resonance occur around w =  2 /n , n  =  1 ,2 ,3 ,.... A schematic version of 

these resonance zones was shown in the previous section in Figure 3.1. As mentioned 

earlier on in chapter 2 the zones located around u  = 2 /n , n  =  1 ,3 ,5 ,... are bound 

by period doubling bifurcations which are subcritical to the left and supercritical to 

the right and the zones located around cu =  2 /n , n =  2 ,4 ,6 ,... are bound by sym­

metry breaking bifurcations which are subcritical to the left and supercritical to the right.

We now consider in detail the rotating motions that occur in the blue coloured narrow 

strips within the resonance zones. A characteristic feature of some of the rotating 

motions discussed in this chapter as shown in Figure 3.2 is that they always exist in 

pairs: one rotating clockwise and another rotating anticlockwise. For some rotating 

motions there is no preferred direction of rotation. In an attempt to explain these 

different features of the rotating motions we will briefly consider the symmetry of the 

system described by equation (3.1) in this section.

First let us consider the purely rotating and the oscillating rotating solutions. A common 

feature of the purely rotating and the oscillating rotating solutions is that they occur in 

conjugate pairs which are mirror images of each other under the transformation
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—» \—9^—d \ r  +  T /2]. (3.2)

These conjugate pairs are such that one rotates clockwise and another rotates anticlock­

wise. In the case of the parametrically excited pendulum, we would expect the symmetry 

with respect to the transformation [9̂  9\  r] —> [—9̂  —9', r  -h T/2] to be generally broken 

for arbitrary cu and p  because

cos{ujt) ^  cos[(jj{r-\-T/2)]. (3.3)

Numerical results show that for the parametrically excited pendulum the symmetry 

defined by the transformation [9,9', t] — [—9, —9\  r  +  T/2] survives in some of the 

resonance zones located around (w,p) =  (2/n , 0). This accounts for the observation 

that the large amplitude rotating solutions and the straddling rotating solutions are 

symmetric with respect to this transformation and the symmetry is only broken for 

arbitrarily large values of p.

The purely rotating and the large amplitude rotating solutions share a common feature 

in that they do not involve oscillations. These solutions are the dominant stable rotating 

solutions in the first and second resonance zones respectively. The properties of 

purely rotating solutions and their subharmonics were studied in detail in [Clifford and 

Bishop, 1995]. The large amplitude rotating solutions are symmetric with respect to 

the transformation [9,9',r] —> [—9 , —9' ,r  4- T/2]. This symmetry property is only 

broken for large values of the amplitude of forcing p. We want to illustrate the special 

features of the oscillating rotating (unsymmetric) and straddling rotating (symmetric) 

solutions. These two types of rotating solutions occur in the resonance zones located at 

values around (w,p) =  (2/n , 0), n  >  2 , in the (w,p) space. We will verify a conjecture 

that in general, symmetric rotating solutions occur within the resonance zones located 

at (cj,p) =  (2 /n , 0), n even, while the unsymmetric rotating solutions occur within 

the resonance zones located at (w,p) =  (2 /n , 0), n  odd, in the (w,p) space. For the
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symmetric rotating solutions, their symmetry is only broken for p arbitrarily large.

We are interested in locating solutions in the (w,p) space for which the symme­

try property defined by the transformation [6 ,9\t] [—9 , —9 \ t -h T/2] survives

when the dynamics is rotational. Within these zones where this property holds, we 

have symmetric rotating solutions of the parametrically excited pendulum which are 

defined by [9,9\r] =  [-9,  - 9 \ t  +  T/2]. Figure 3.3 shows typical symmetric rotat­

ing orbit of straddling type. Within the zones where the symmetry defined by the 

transformation [9,9\t]  —> [—9, —9 \ t  +  T/2] is broken we have unsymmetric rotat­

ing solutions which are defined by [9{t),9'{t)] and [—9(r  +  T /2 ) ,—6>'(r +  T/2)] 

where [9{t),9'{t)] ^  [-9{ t  4- T /2), - 9 ' { t  + T/2)]. Thus, the unsymmetric rotating 

orbits occur in conjugate pairs. Figure 3.4 shows typical unsymmetric rotating con­

jugate orbits of oscillating rotating type. In this case if [9{t),9'{t)] is an oscillating 

rotating solution of the parametrically excited pendulum with clockwise rotations, then 

[—9 { t + T  /2), —9'{t-\-T /2)] is another oscillating rotating solution of the parametrically 

excited pendulum with counter-clockwise rotations. It is obvious in from the example 

given in Figure3.4 that [9{r), 9'{t)] ^  [—9{t  -h T /2), —9'{t  -f T/2)].
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Figure 3.3: Symmetric straddling rotating orbits period 2T, forw =  0.14, 
p =  1.4. Left: time series of the trajectory. Right: phase  
sp ace plot of the trajectory.
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The purely rotating and the large amplitude rotating solutions share a common feature 

in that they do not involve oscillations. These solutions are the dominant stable rotating 

solutions in the first and second resonance zones respectively.

Much of the rest of this chapter will be about oscillating rotating and straddling 

rotating solutions. These two types of rotating solutions occur in the resonance zones 

located at values around (w,p) =  (2 /n ,0 ), n > 2 , in the (cj,p) space. Within these
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resonance zones the dominant stable rotating solutions are the straddling rotating 

(symmetric) and the oscillating rotating (unsymmetric) solutions. We will verify a 

conjecture that in general, symmetric rotating solutions occur within the resonance 

zones located at (uj,p) = (2/n, 0), n  even, while the unsymmetric rotating solutions 

occur within the resonance zones located at (w, p) =  (2/n, 0), n  odd, in the {uj, p) space.

First let us consider the straddling rotating orbits. These occur within the zones located 

around {uj,p) = (2/n, 0), n > 2, n even. Typical examples of these symmetric orbits 

for n even are shown in Figure 3.5. These straddling rotating orbits were numerically 

calculated for values of (w,p) in the (Figure 3.5(a)), (Figure 3.5(b)) and 

VIII*^ (Figure 3.5(c)) resonance zones (i.e. inside the zones located around (w,p) =  

(2 /n , 0), n  =  4 ,6,8).
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Figure 3.5: Straddling rotating orbits of the parametrically excited pen­
dulum for p  =  1.5 with frequency of forcing (a) l u  =  0.45, (b) 
LU =  0.30, (c) LU =  0.22 for initial conditions {0,6') =  (0.57,0). 
Left: time series of the trajectories. Right: p h ase sp a ce  plot 
of the trajectory. All the orbits are period 2T. Here the 
two potential-wells are located at points [0,0') =  (±2m7r,0 ) ,  
m =  0,1,2, . . .  in the phase plane.
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It is evident from Figure 3.5 that as u  decreases, the number of oscillations within each 

well decreases for the straddling rotating attractors. For example in Figure 3.5 we have 

2 oscillations in the local potential energy well for w =  0.45, three oscillations for 

u  — 0.30 and 4 oscillations for w =  0.22. These rotating solutions are symmetric 

with respect to the transformation formation [6,6', r] —> [—9, —6\  T 4- T/2], and the 

symmetry is only broken for large values of p.
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Figure 3.6: Oscillating rotating solutions for p =  1.5 with frequency of 
forcing (a) w =  0.60, (b) u j  =  0.36, (c) u j =  0.25 for initial con­
ditions {0,9') =  (1.57,0). Left: time series of the trajectories. 
Right: phase space plot of the trajectory. Here all the rotating 
orbits are period T.

Let us consider rotating solutions which occur in the resonance zones located at (w,p) =  

{2/n, 0), n > 2, n odd. Numerical simulations also show that when n is odd we have
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unsymmetric rotating solutions (oscillating rotating type) of period T. Examples of 

these unsymmetric rotating orbits are shown in Figure 3.6. These oscillating rotating 

orbits were numerically calculated for values of (cj,p) in the III^^ (Figure 3.6(a)), 

(Figure 3.6(b)) and VII*^ (Figure 3.6(c)) resonance zones (i.e. inside the zones located 

at (w,p) =  (2 /n , 0), n = 3 ,5 ,7). It can be seen from Figure 3.6 that the number 

of oscillations in each well before rotation takes place increases as u j decreases (one 

oscillation in the well for u  =  0.6, two oscillations for u  =  0.36 and three oscillations 

for u  = 0.25). These rotating solutions occur in conjugate pairs: one for which the 

average 6'{r) > 0 and another for which average 6'{r) < 0.

3.3 Other Rotating Orbits

The rotating solutions we have discussed so far are the dominant stable periodic rotating 

attractors of the parametrically excited pendulum in the (w, p) space for lower values of 

p (typically p < 2). In this case we have seen that the lower resonance zones ( those 

located around (w,p) =  (2 /n , 0), n >  2) are alternating regions of stable oscillating 

rotating and straddling rotating solutions. The most obvious change for higher values 

of p  (typically p  >  2) is that new variants of straddling rotating solutions (those which 

straddle one or two wells) are realised and those which straddle two well (in the case of 

p < 2) become unstable.

For lower values of the amplitude of parametric forcing p < 2, the resonance zones 

are separated by regions in which the stationary solution is stable. In this case the 

boundaries between the different resonance zones are distinct. However, for higher 

values of p >  2 the stationary solution becomes unstable and the boundaries between 

the different resonance zones become less distinct. In this case it becomes difficult to 

designate a particular rotating solution as belonging to a particular resonance zone. For 

these higher values of p, it becomes more convenient to treat the whole parameter space 

as a continuous single resonance zone with different regions representing different
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dynamical behaviours.

For p > 2 different new types of straddling rotating attractors become stable. Figure 3.7 

shows straddling rotating solutions which only straddle one well. Just as in the case 

of p <  2, it can be seen from Figure 3.7 that the number of oscillations increase as u  

decreases ( 3 oscillations in the well for u  = 0.6, 5 oscillations for lj = 0.36 and 7 

oscillations in the well for u  =  0.25).
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Figure 3.7: Straddling rotating motion with frequency of forcing (a) u =  
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for initial conditions (6>, 9') =  (1.57,0). Left: time series of the 
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exam ples here are period 2T.

Other straddling rotating solutions which can also be realised for higher values of are 

shown in Figure 3.8. Here the solutions straddle three wells.



Rotating Orbits of the Parametrically Excited Pendulum 60

ib)

5

4

3

2

1

0
0

■2

■3

-4

■5
>800 820 840 860 880 900 920 940 960 980 1000

Time
2

1.5

I

0.5

J  00'

-0.5

1.5

•2
3 6 7 8•2 1 0 1 2 4 5820 840 900 920 940 960 1000

Time

10

9

8

7

6

0
4

2

1
800 820 840 860 880 900 920 940 960 980 1000

(c) Time
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3.4 Final Remarks

We have considered the different types of rotating periodic motions of the parametri­

cally excited pendulum in the parameter space. We have seen that within the first two 

resonance zones the dominant stable rotating solutions do not involve oscillations in the 

local potential energy wells while in all other resonance zones the rotating solutions 

involve oscillations within local potential energy wells. Numerical evidence has been 

presented which shows that the lower resonance zones are alternating regions in which 

we realise symmetric and nonsymmetiic rotating solutions.

The main issues covered in this chapter are:

•  A classification of the different rotating solutions of the parametrically excited 

pendulum .

•  An investigation of symmetry of the different rotating solutions.

•  A study of the parameter space to determine the location of the different rotating 

solutions.



Chapter 4 

Chaos in the Parametrically Excited 

Pendulum

4.1 Introduction

Chaotic solutions represent another class of response of dynamical systems. In this 

chapter we explore different chaotic solutions of the parametrically excited pendulum. 

It is not easy to prove that a given dynamical response is indeed chaotic, in the technical 

sense of the word as defined for example in [Wiggins, 1990; Devaney, 1992]. Over the 

past few years the Melnikov method [Koch and Leven, 1985; Nayfeh and Balachandran, 

1995; Wiggins, 1988] has been used to analyse if chaotic responses may occur in a 

particular dynamical system. In connection with this Lyapunov exponents [Jackson, 

1991; Sano et al., 1985] have been used to evaluate if an observed dynamical response 

is indeed chaotic. The rule of thumb here is that one can regard the dynamics on 

a bounded set as chaotic if there is a positive Lyapunov exponent [Thompson and 

Stewart, 2002; Sano et al., 1985]. But the mere positivety of Lyapunov exponents is 

only necessary but not sufficient condition.

In the study of chaos one area of research which has been actively pursued by scientists 

is how nonlinear dynamical systems may evolve toward the chaotic dynamical state. At 

the centre of this problem is the following question: Given a dynamical system with 

only nonchaotic, stable, time-asymptotic states, how do chaotic attractors arise from
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these states as some parameter of the system is varied? It has since been shown that 

there are many different scenarios for transition to the chaotic state [Devaney, 1992] for 

dynamical systems when an appropriate parameter is varied. These scenarios include:

(a) The period-doubling sequence: The period doubling transition to chaos is the 

most easily identifiable route to chaos for a dynamical system. For this reason 

experimental researchers attempting to identify and study chaos in real systems 

are often drawn to look for period doubling cascades [Lepers et al., 1991; Arecchi 

et al., 1982; Bielawski et al., 1993; Kocarev et al., 1993]. In the period doubling 

scenario, as a parameter is gradually varied, we proceed from a periodic solution 

to a chaotic solution through a sequence of period-doubling bifurcations. This 

type of transition to chaos is associated with local bifurcations. In the period dou­

bling transition to chaos, the bifurcations become more and more closely spaced, 

the ratio of successive parameter intervals tending to the Feigenbaum number 

Soo = 4.669201 [Feigenbaum, 1978]. This number is universal in the sense that it 

arises in a wide class of problems.

(b) The intermittency mechanism: Another route to chaos which is observed fre­

quently in physical experiments is the onset of chaos via intermittency. It is a 

complex steady-state motion involving irregular switchings between periodic and 

chaotic behaviour [Sen, 2001; Kim et al., 1997]. In this case the dynamical system 

is periodic for long stretches but is subjected to seemingly random chaotic out­

bursts at irregular intervals. In between these chaotic bursts the system resumes 

its periodic behaviour. Thus even though the system drifts away from the periodic 

state, it is quickly re-injected into it.

(c) The quasiperiodic route: There are several types of quasipeiiodic routes to 

chaos [Nayfeh and Balachandran, 1995], some of them not yet fully under­

stood [Yang, 2000; Pazo et al., 2001]. They occur when a multi-frequency 

quasiperiodic flow destabilises. For example, if a flow arises with a two-frequency



Chaos in the Parametrically Excited Pendulum 64

quasiperiodicity, the destabilisation of a third incommensurate frequency is sup­

posed instantly to create a chaotic flow [Grebogi et al., 1983a].

(d) Crises: In some cases the period doubling route to chaos may also involve a crisis 

bifurcation. Three types of crises are described in [Grebogi et al., 1986, 1983b]. 

In the first type, a chaotic attractor is suddenly destroyed as the parameter passes 

through its critical value. In the second type, the size of the chaotic attractor in 

phase space suddenly increases. This type of crises was later on called an explo­

sion [Thompson and Stewart, 2002] to emphasise the fact that the change in the 

size of the attractor is discontinuous. In the third type, two more chaotic attractors 

merge to form one chaotic attractor. In [Grebogi et al., 1986] the authors note 

that in this third type of crises the attractors collide simultaneously with the basin 

boundary and that this can be expected only in systems which have symmetry or 

other special property.

Most of the studies on transition to chaos have been helpful to characterise the bound­

aries between periodic and chaotic responses. In this chapter we take a different 

approach and characterise the boundaries, not only between periodic and chaotic 

responses, but also between different types of chaotic response. From an engineering 

point of view this is a very attractive viewpoint because this might lead to applications 

making use of multiple types of chaos arising in a system, such as a vibration machine 

that can provide various chaotic vibrations without significant change of its mechanical 

structure. The distinct chaotic responses of the parametrically excited pendulum were 

identified by [Bishop and Clifford, 1996a]. These are:

(1) Oscillating chaos: This is chaotic motion in which the parametrically excited 

pendulum undergoes non-periodic oscillations whose amplitude is less that 27t, 

that is, I 0 |<  7T. See Figure 4.11 for a typical oscillating chaotic trajectory and 

the associated attractor.

(2) Rotating chaos: This is chaotic motion in which the parametrically excited pen­

dulum undergoes continuous rotating motions with different angular velocities.
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Here the rotating chaos is such that the velocity is single signed for all time, that 

is, either 6'{r) > 0 Vf or O'{j) < 0  Vr, but its value changes chaotically as the 

pendulum goes through one rotation to the next. Thus due to symmetry we can 

have clockwise rotating chaos or anticlockwise rotating chaos. See Figure 4.5 for 

a typical rotating chaotic trajectory and the associated attractor.

(3) Tumbling chaos: This is chaotic motion in which the parametrically excited pen­

dulum undergoes a complicated combination of oscillations and rotations. See 

Figure 4.6 for a typical tumbling chaos trajectory and the associated attractor.

We do not claim to have proved that these three types of dynamical response of the 

parametrically excited pendulum are indeed chaotic in the technical sense of the word 

such as for example in [Wiggins, 1990]. By the word chaos here we mean bounded limit 

sets on which the dynamics is not asymptotically periodic or quasiperiodic. In any case 

the results of this chapter still hold.

4.2 Transition to Tbmbling Chaos

For the parametrically excited pendulum the tumbling chaos exits in a reasonably large 

region of the parameter space. In the parameter space the regions of chaotic dynamics 

are within the resonance zones located around (w,p) =  (2 /n , 0), n  =  1 ,2 ,3 ,.... Fig­

ure 4.1 shows the numerically determined resonance zones using the software [Nusse 

and Yorke, 1998].
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Figure 4.1: Regions of tubling chaos are coloured green and are marked 
TC Other regions are zones of rotating and oscillating 
periodic solutions. In the first resonance zone the region 
of period doubled rotating solutions is marked PDRS. The 
regions in yellow marked RS represents the parameter space 
where rotating solutions are realised. The regions marked 
OS is where oscillating solutions are realised.

Within the resonance zones, regions of chaos are coloured green and are marked TC. 

Regions coloured otherwise are for rotating and oscillating periodic solutions (marked 

RS and OS respectively). The region in the first resonance zone marked PDRS is the 

zone of period doubled rotating solutions.

The robust feature of the chaotic solutions of tumbling type was confirmed by [Doreen, 

1997] in the relevant zone in the parameter space by a numerical computation of the Lya­

punov dimension, which is a measure of the fractal nature of the corresponding attrac­

tor. More recently [Szemplihska-Stupnicka et al., 2000] considered transient tumbling
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chaos. Using the same scaling as in chapter 1 the equation governing the motion of the 

parametrically excited pendulum in terms of the angle 6 which defines its configuration 

can be shown to be

0” +  p9' +  (1 + p co s(c jr)) sm{6) =  0. (4.1)

In this equation (3 is the damping while w and p  are the frequency of parametric forcing 

and amplitude of parametric forcing respectively. We use a representative value of (3 

fixed at P = 0 .1 .

In this chapter we investigate the transition from periodic solutions to tumbling chaos 

in the parametrically excited pendulum. The periodic solutions could be oscillating or 

rotating. We define oscillating periodic solutions to mean those for which \ 9 \< tt 

(oscillation about the downward equilibrium), and rotating periodic solutions to mean 

those for which | ^ |>  tt. As the driving amplitude, p  is increased two routes to 

tumbling chaos are shown to exist. These two routes to tumbling chaos take place in 

stages and are related to the initial periodic solutions. For an initial rotating periodic 

solution the transition to tumbling chaos involves two stages: The first stage is transition 

from period doubled rotating solution to rotating chaos. The second stage involves 

transition from rotating chaos to tumbling chaos. This latter transition takes place 

as a result of an explosion of the attractor [Robert et al., 2000; Endo et al., 2000] of 

rotating chaos. These stages of transition to tumbling chaos are shown schematically in 

Figure 4.2.

If an initial periodic solution is oscillatory the transition to tumbling chaos involves three 

stages: The first stage involves transition from period doubled oscillations to unsymmet- 

ric oscillating chaos with a small attractor. The second stage involves transition from 

small attactor unsymmetric oscillating chaos to unsymmetric oscillating chaos with a 

larger attractor. This stage will be shown to occur as a result of attractor collision of the



Chaos in the Parametrically Excited Pendulum 6 8

conjugate attractors [Dellnitz and Heinrich, 1995; Grebogi et al., 1987] of the unsym­

metric oscillating chaos. It is manifested by a sudden increase in the size of the chaotic 

attractor to more or less the size of the two conjugate attractors. The third and final stage 

involves transition from oscillating chaos to tumbling chaos. This latter transition again 

arises as a result of attractor explosion.
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Figure 4.2: Schematic diagram showing transition to tumbling chaos for 
an initially purely rotating solution.
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Figure 4.3: Schematic diagram showing transition to tumbling chaos for 
an initially oscillatory solution.
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The three stages when an oscillatory solution is in transition to tumbling chaos are 

shown schematically in Figure 4.3.

At the heart of this chapter is the observation that both oscillating chaos and rotating 

chaos are generally unsymmetric chaos while tumbling chaos is symmetric chaos and 

that the two types of unsymmetric chaos lose stability at an attractor explosion, which 

is a symmetry restoring bifurcation. The rest of this chapter is organised as follows: 

In section 4.3 we discuss the concept of symmetry of a chaotic attractor. Results on 

transition to tumbling chaos of rotating periodic solutions are presented in section 4.4. 

In section 4.5 we discuss the results on transition of oscillating solutions to tumbling 

chaos. We give concluding remarks in section 4.6.

4.3 Symmetry of Chaotic Attractors of the Parametri­

cally Excited Pendulum

In this section we define the concept symmetry of chaos or of a chaotic attractor. Our 

approach in seeking to define a symmetric and unsymmetric chaotic attractor is to con­

sider first some suitable maps generated by the equation of the parametrically excited 

pendulum and then use these maps to define the symmetry of their w-limit sets. We 

will assume that if these w-limit sets are attracting then they correspond to attractors 

(including the chaotic attractors which are the subject of this chapter) of the equation 

of the parametrically excited pendulum. The second-order differential equation (4.1) 

for the parametrically excited pendulum can be transformed to a system of first-order 

differential equations:

=  F (x ,A ,r ) ,  (4.2)
d 6 O'

dr 6' —(36' — (1 -f-pcos(wT)) sin(^)
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where x  =  {^,0 '}^, A =  and F ( x ,A ,r )  =  { 9 ',—p9' — [1 +

pcos(wT)] sin(^)}^.

A periodic solution of period T  =  27r/w, of the parametrically excited pendulum is 

said to be symmetric if x (r )  =  —x ( r  +  T /2). Otherwise it is unsymmetric in which 

case there exists a pair of the unsymmetric orbits defined by x (r )  and —x ( r  +  T /2) 

such that x (r )  ^  —x ( r  +  T /2). Note that for the equation of the parametrically 

excited pendulum (4.2) we would expect the symmetry defined by the transformation 

x ( t ) - 4  —x ( r  +  T /2 ) to be generally broken because cos(cjt) ^  cos[a;(r +  T/2)]. But 

this symmetry survives in some resonance zones and is only broken for arbitrarily large 

values of p. This behaviour was encounterd in chapter 2 and chapter 3 of this thesis in 

relationship to oscillating and rotating soltions of the parametrically excited pendulum 

where in some regions of the parameter space the solutions possessed symmetry which 

is not present in the governing equations.

When considering symmetry of periodic solutions it is enough to consider the behaviour 

of a single trajectory. However, for chaotic solutions, we can consider their symmetry 

by studying their attractors, which are limit sets. In order to do that we need to consider 

the limit sets of maps generated by the differential equation (4.2). One of the maps 

generated the above equation is the Poincaré map, denoted here as P (x ) where:

P (x ) : x(ro) x ( t q  +  T), T  =  27t/uj. (4.3)

Because of the symmetry condition (which requires that x ( r )  =  —x ( r  +  T /2 ) in order 

for a single periodic orbit to be symmetric) we can define another map of the parametri­

cally excited pendulum to be S(x )  where

S(x)  : R^ R^; x ( t q ) - x ( to  +  T /2 ), T  =  27t/üj. (4.4)
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Under the map 5'(x), a symmetry breaking bifurcation of a symmetric solution looks 

like a period doubling bifurcation. We adopt the following definition of w-limit sets of 

these two maps:

Definition 4.1 [Melbourne et a l, 1993] I f  X  is a finite-dimensional Euclidean space, 

h : X  ^  X  is a continuous mapping and x  G X  then the u-lim it set o f x  is the set 

w(x) consisting o f points y  G X  fo r  which there is an increasing sequence {uk} o f 

positive integers such that (x) y.

Let us denote wg(x) and wp(x) to be the w-limit sets of x  generated by the maps S  and 

P  respectively. A lot is known about properties of w-limit [Alligood et al., 1996]. Here 

we will discuss only two because of their relevance to our situation.

Proposition 4.1 wg(x) =  Wf (x) Uu;p(5(x)).

Proposition 4.2 5(cjp(x)) = (jp(5(x)).

In order for this last proposition to hold, we assume that the discrete maps P (x ) and 

5(x) are continuous and invertible with a continuous inverse. These properties follow 

from the continuity of the flow. These two propositions will now enable us to define 

a symmetric attractor. First proposition 1 makes it clear that the w-limit set under the 

map *S'(x) is the union of two conjugate w-limit sets: wp(x) and u p { S { k ) )  and from 

proposition 2  we see that by applying the map S  to one of the two conjugate sets the 

other set can be obtained. We can now define the symmetry of an w-limit set of our 

maps:

Definition 4.2 cjp(x) is symmetric i f up{x)  = cjp{S{x.)).

This means that an w-limit set is symmetric if it is equal to its conjugate set. If we now 

assume the w-limit sets to be attracting then we can define a symmetric chaotic attractor 

as follows:

Definition 4.3 A chaotic attractor is symmetric i f  its uj-limit set denoted as wp(x) is 

such that iOp(x) = üJp{S{x)). Otherwise it is unsymmetric in which case there exists a 

pair o f  conjugate attractors up  (x.) andup{S{x) )  such that u p  (x) up(S{x)) .
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Based on this definition of symmetry of a chaotic attractor, we consider the various 

chaotic attractors of the parametrically excited pendulum in the following section. We 

show that in the case of the parametrically excited pendulum, oscillatory and rotating 

chaotic attractors are generally unsymmetric. The symmetry of these two chaotic attrac­

tors is restored at a symmetry restoring bifurcation [Sanjuan, 1996; Kim, 1998], which 

in this case occurs at attractor explosion. In line with the given definition of a symmetric 

attractor, we adopt the following definition of a symmetry restoring bifurcation:

Definition 4.4 There is a symmetry restoring bifurcation at (x, p e ) i f  fo r  any sufficiently 

small neighbourhood U o f { x , p e ) ,  there exists (x ,p), (y ,p ) G U where p  <  P e  <  P 

or p  > p e  >  p,  such that, on one side o f the symmetry restoring bifurcation, cjp(x) ^  

cjp(5(x)), cjp(x) n  C/ ^ 0  and wp(x) is not contained in a larger limit set (that is there 

is not up{z)  such that wp(x) C up{z)  ), and on the other side o f  the symmetry restoring 

bifurcation ujp{y) = up{S{y)) ,  up{^)  n U  7^ 0  and up{y)  is not contained in a larger 

limit set.

In the following two sections we consider the different chaotic attractors of the paramet­

rically excited pendulum and then classify them according to their symmetry.

4.4 Numerical Illustrations of Explosions of Rotating 

Chaotic Attractors

In this section we study the transition of rotating periodic solutions to tumbling chaos. 

In the first and second resonance zones the explosion of rotating chaotic attractors is 

the main mechanism by which tumbling chaos is induced. In this section we give two 

examples to illustrate the different stages of transition from rotating periodic solutions 

to tumbling chaos. Our first example will be for parameter values fixed in the first 

resonance zone and the second with u  = 2 and our second example will be from the 

second resonance zone with uj = 0.9. The transition of rotating periodic solutions 

to tumbling chaos involves two principal stages: The transition from period doubled
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rotating solutions to rotating chaos. Then the transition from rotating chaos to tumbling 

chaos.

0
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Figure 4.4: Boundary of transition from rotating chaos to tumbling chaos 
marked in thick red line for uj  =  2 .0 . The red line corre­
sponds to the point of attractor explosion {p = = 1.8094)
which induces tumbling chaos. In this bifurcation diagram
9 =  0 mod[27r].

Figure 4.4 shows the bifurcation diagram which illustrates the transition of a purely 

rotating period 2T solution to tumbling chaos as the amplitude of parametric forcing 

increases when u j  is fixed at w =  2. For p  < Pe = 1.8094, we have rotating chaos 

due to period doubled rotating solution. At p =  p e , there is a sudden widening of 

the bifurcation diagram. This corresponds to the point of attractor explosion. Fig­

ure 4.5 shows the unsymmetric attractor of the rotating chaos together with a plot of 

time history of the angular coordinate and the associated phase space trajectory just 

before the explosion (p =  1.809



Chaos in the Parametrically Excited Pendulum 74

marks the point of attractor explosion. For p  >  we have tumbling chaos. After the 

attractor explosion (that is, p >  p^) we have a different form of chaos, the tumbling 

chaos. The tumbling chaos is symmetric chaos, and so the chaotic attractor explosion 

which occurs at p =  p^  =  1.8094 is a symmetry restoring bifurcation. The symmetric 

attractor of tumbling chaos which occurs just after this symmetry restoring bifurcation 

(p =  1.81 >  Pe) is shown in Figure 4.6 together with a plot of the time history of 

the angular coordinate and the associated phase space trajectory. From the definition 

of a symmetry restoring bifurcation given in the previous section, it means that before 

the symmetry restoring bifurcation (chaotic attractor explosion), we have two conjugate 

attractors defined by ujp{x) and lüp{S{k)) such that up{x)  ^  ujp{S{x)).  In Figure 4.5, 

one of these conjugate attractors of rotating chaos is shown as a 2-band attractor. After 

the symmetry restoring bifurcation, we only have one attractor defined by cjp(x) such 

that wp(x) =  ujp{S{x)).  This single attractor of symmetric chaos is shown in Fig­

ure 4.6.
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Figure 4.5: Top: The unsymmetric attractor of the rotating chaos just 
before the attractor explosion, w =  2.0, p =  1.809. Bottom: 
Left: Time series of the trajectory. Right: phase space plot of 
the trajectory.
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Figure 4.6: Top: The symmetric attractor of the tumbling chaos just after 
the attractor explosion, u  =  2.0, p =  1.810. Bottom: Left: 
Time series of the trajectory. Right: phase space plot of the 
trajectory.

Now we consider the transition to tumbling chaos of another type of rotating motion. 

This time we consider an example from the second resonance zone, that for (w,p) 

located around (2/n, 0), n =  2. More specifically we consider the transition to tum­

bling chaos when u  = 0.9. The initial rotating solution considered in this example can 

be viewed as an oscillation of amplitude 27t. But because it makes a complete revo­

lution, we classify it as a rotating periodic solution. Figure 4.7 shows the bifurcation
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diagram which illustrates the transition of this type of rotating periodic solution to tum­

bling chaos as the amplitude of parametric forcing increases. Again as in the previous 

case, as the amplitude of parametric forcing, p increases we have the period doubled 

rotating solution becoming rotating chaos (unsymmetric chaos) first as a transitional 

behaviour to tumbling chaos (symmetric chaos). In Figure 4.7 the point of attractor 

explosion at which the bifurcation suddenly widens is marked by a thick red line at 

P  =  P e  =  1.73971.

0

Figure 4.7: Boundary of transition from rotating chaos to tumbling chaos 
marked in thick red line for w =  0.9. The red line a i p  =  pE =  
1.73971 marks the point of attractor explosion which induces 
tumbling chaos. In this bifurcation diagram 6 =  6»mod[27r].

The unsymmetric attractor for the rotating chaos together with a typical time series of the 

trajectory and the associated phase space trajectory just before the attractor explosion 

{p = 1.735 < Pe is shown in Figure 4.8. The extinction of this rotating attractor 

occurs at the point of attractor explosion at p = pe = 1.73971, where the rotating
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chaos becomes tumbling chaos. Again this attractor explosion is a symmetry restoring 

bifurcation in which the non-symmetiic rotating chaos becomes symmetric tumbling 

chaos. The symmetric attractor as well as a typical trajectory both as time series and 

in phase space of the tumbling chaos just after the symmetry restoring bifurcation is 

shown in Figure 4.9. Thus again, here we have two conjugate unsymmetric attractors of 

the parametrically excited pendulum of rotating chaos which are defined by cjf (x) and 

Ljp{S{x)) such that Wf(x) up{S{x))  before the chaotic attractor explosion. After the 

attractor explosion we now have one symmetric chaotic attractor defined by up{x)  such 

thatw p(x) =  up{S{x)) .
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Figure 4.8: Top: The unsymmetric attractor of the rotating chaos just 
before the attractor explosion, u  =  0.90, p =  1.735. Bottom: 
Left: Time series of the trajectory. Right: phase space plot of 
the trajectory.
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Figure 4.9: Top: The symmetric attractor of the tumbling chaos just after 
the attractor explosion, w =  0.90, p =  1.760. Bottom: Left: 
Time series of the trajectory. Right: phase space plot of the 
trajectory.

Numerical investigations confirmed that the two types of chaos here, that is the rotat­

ing chaos and the tumbling chaos do not coexist and that there is no hysterisis at the 

boundary of transition from rotating chaos to tumbling chaos.
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4.5 Numerical Illustrations of Explosions and Collision 

of Oscillating Chaotic Attractors

Now we consider the transition of oscillatory solutions to tumbling chaos. We con­

sider two examples: First an initially symmetry 1/3 subharmonic oscillatory solution 

(cj =  0.6) of period 2T.  This example is for parameter values fixed in the third resonance 

zone, that is, for parameter values around (a;, p) =  (2 /n , 0), n  =  3. Second, we consider 

initially unsymmetric subharmonic oscillatory solution of order 1/2 {u = 0.45). This 

second example is for parameter values fixed in the fourth resonance zone, that is, for 

parameter values around (w,p) =  (2 /n , 0), n  =  4. In these two different types of oscil­

latory solutions, we show that the actual transition from oscillatory periodic solutions to 

tumbling chaos takes place in three principal stages: First the period doubled oscillatory 

solution become unsymmetric oscillatory chaos. Second the conjugate attractors of this 

unsymmetric oscillatory chaos collide and form a larger oscillatory chaotic attractor. In 

the third and final stage, the oscillatory chaos becomes tumbling chaos. This final stage 

involves an attractor explosion.
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Figure 4.10: Boundary of transition from oscillating chaos to tumbling 
chaos marked in thick red line for u =  0.6. The green line 
marks the point attractor collision while the red line marks 
the point of attractor explosion. In this bifurcation diagram
9 = ^modpTr).

Let us consider first the transition of an initially symmetric 1/3 subharmonic oscillatory 

solution. Before the period doubling cascade, this solution first undergoes a symme­

try breaking bifurcation. Figure 4.10 shows the bifurcation diagram which illustrates 

the three transition stages to tumbling chaos. First the period doubled 1/3 subhar­

monic oscillatory orbit becomes unsymmetric oscillatory chaos through a cascade of 

period doublings of the symmetry broken oscillatory orbit. The unsymmetric attrac­

tor of this oscillatory chaos together with a plot of the time history of the angular 

coordinate and the associated phase space trajectory is shown in Figure 4.11. Then 

atp = pc = 1.15628, there is a sudden enlargement of the oscillatory symmetry broken
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chaotic attractor. This occurs as a result of collision of the two conjugate chaotic attrac­

tors. The result is unsymmetric oscillatory chaos with a much larger 2-band attractor. 

Figure 4.12 shows the unsymmetric 2-band chaotic attractor which occurs as a result 

of this attractor collision as well as a plot of a time history of the angular coordinate 

and the associated phase space trajectory. For p = Pe  = 1.16108, we see a further 

sudden widening of the bifurcation resulting in tumbling chaos. This enlargement of 

the unsymmetric oscillatory chaotic attractor occurs as a result of attractor explosion. 

The result of this attractor explosion is symmetric chaos, which in this case is tumbling 

chaos. Figure 4.13 shows the symmetric chaotic attractor of the tumbling chaos just 

immediately after the attractor explosion (p = 1.17 > p e ) together with a time series of 

the trajectory and its corresponding one in phase space.



Chaos in the Parametrically Excited Pendulum 84

Gm od[2yc]

900 920 940 960 980 1000
Time

Figure 4.11 : Top: The unsymmetric attractor of the oscillating chaos just 
before the attractor collision, w =  0.60, p =  1.156. Bottom: 
Left: Time series of the trajectory. Right: phase space plot 
of the trajectory.
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Figure 4.12: Top: The attractor of the oscillating chaos just after the 
attractor collision, u j  == 0 .6 , p =  1.16. Bottom: Left: Time 
series of the trajectory. Right: phase space plot of the tra­
jectory.

Thus transition to tumbling chaos of the oscillatory solution here resembles other pre­

vious cases in that it involves a symmetry restoring bifurcation. In this case, for 

P <  P e  = 1.16108, we have two conjugate unsymmetric chaotic attractors defined 

by ujp(x) and ujp{S{x)) such that Wf (x) ^  up(S(x)).  After the attractor explosion we 

only have one symmetric attractor defined by up(x)  such that ujp{x) — up{S{x)).
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Figure 4.13: Top: The symmetric attractor of the tumbling chaos just 
after the attractor explosion, w =  0.60, p = 1.17. Bottom: 
Left: Time series of the trajectory. Right: phase space plot 
of the trajectory.

In our last example we consider the transition to tumbling chaos of a 1/2 subharmonic 

oscillatory orbit of period T. Figure 4.14 shows the bifurcation diagram which depicts 

the different stages of the transition to tumbling chaos of this periodic solution.
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e

Figure 4.14: Boundary of transition from oscillating chaos to tumbling 
chaos marked in thick red line for w =  0.45. The green line 
marks the point attractor collision while the red line marks 
the point of attractor explosion. In this bifurcation diagram
6 =  ^modpTr].

The three stages of transition to tumbling chaos when an periodic trajectory is oscil­

latory are further confirmed. First we have small attractor oscillatory chaos shown in 

Figure 4.15. Then the two conjugate attractors of this nonsymmetric oscillatory chaos 

collide to form a larger 2-band unsymmetric oscillatory chaos. The resultant larger 

chaotic attractor is shown in Figure 4.16.
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Figure 4,15; Top: The unsymmetric attractor of the oscillating chaos just 
before the attractor collision, u  =  0.45, p =  1.19. Bottom: 
Left: Time series of the trajectory. Right: phase space plot 
of the trajectory.
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Figure 4.16: Top: The attractor of the oscillating chaos just after the 
attractor collision, w =  0.45, p =  1 .2 0 . Bottom: Left: Time 
series of the trajectory. Right: phase space plot of the tra­
jectory.

A further increase in the amplitude of parametric forcing to beyond p =  =  1.20181

results in tumbling chaos. Figure 4.17 shows the resulting symmetric attractor of the 

tumbling chaos.
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Figure 4.17: Top: The symmetric attractor of the tumbling chaos just 
after the attractor explosion, uj =  0.45, p =  1.22. Bottom: 
Left: Time series of the trajectory. Right: phase space plot 
of the trajectory.

Numerical investigations also confirmed that the two types of chaos here, that is the 

oscillating chaos and the tumbling chaos do not coexist and that there is no hysterisis at 

the boundary of transition from oscillating chaos to tumbling chaos.
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4.6 Final Remarks

In this chapter we have considered the transition to tumbling chaos through attractor 

explosion. We have established that for low values of the amplitude of parametric forc­

ing p, small attractor oscillating and rotating chaotic states exist. When p  is increased to 

relatively higher values, these unsymmetric chaotic states lose stability through a sym­

metry restoring bifurcation to symmetric large attractor tumbling chaos. We have also 

verified that the symmetry restoring bifurcation involves the explosion of the symmetry 

broken chaotic attractors of oscillating chaos and rotating chaos. In the first and second 

resonance zones the main mechanism by which structurally stable tumbling chaos is 

induced is through the explosion of symmetry broken rotating chaotic attractors. But in 

the lower resonance zones, we have alternating zones of tumbling chaos interspaced by 

periodic windows, where some of these zones are due to attractor explosion of oscillat­

ing chaos while others are due to explosion of rotating chaos attractors.

The main results of this chapter are:

• that there is no direct transition from rotating or oscillatory solutions to tumbling 

chaos through the period doubling sequence.

•  that the rotating or oscillatory solutions first period double to either rotating or 

oscillatory chaos.

•  that the actual transition from either oscillatory chaos or rotating chaos to tum­

bling chaos is through a global bifurcation.



Chapter 5

Periodic Synchronisation Regimes of 

Two Parametrically Excited Pendula

5.1 Introduction

In this chapter we consider the different periodic synchronisation regimes that occur in 

a system of two parametrically excited pendula which are bidirectionally or mutually 

coupled. Our emphasis is on understanding the important role that the coupling plays 

in changing the synchronous behaviours of the system. This deepens our understanding 

of the desynchronisation bifurcations which cause the system to experience different 

forms of periodic synchronisation as coupling increases. We are also interested in the 

nature of the transients before the system converges onto the synchronised state. Two 

kinds of periodic synchronisation are of particular interest: one in which the pendula 

are moving in-phase with equal amplitudes and another in which the two pendula are 

always moving in counter-phase, that is, out-of-phase by tt radians, but still with equal 

amplitudes of oscillation. When there is no damping, these types of synchronised 

periodic motions are observed for very small values of the driving amplitude. But with 

damping present, these types of oscillatory motion are only realised when the amplitude 

of parametric forcing exceeds a certain threshold value so that the system can overcome 

energy losses due to damping. These two types of periodic synchronisation correspond 

to 1-motion and 2-motion as defined in section 1.5.2 of chapter 1.
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The study of periodic synchronisation is not a new discipline. Scientists have known 

about the synchronisation of periodic oscillations since the historical observation of 

this phenomenon by Huygens in pendulum clocks [Hugenii, 1673]. However, recently 

considerable attention has been focused on the synchronisation of systems behaving 

chaotically beginning with the work of Fujisaka and Yamada in the 1980s [Fujisaka 

and Yamada, 1983, 1985; Yamada and Fujisaka, 1983, 1984], which further gained 

worldwide attention after Pecora and Carroll’s suggestion of its use in secure telecom­

munications [Pecora and Carroll, 1990].

Despite this long history of the subject, fundamental issues regarding synchronisation 

of coupled dynamical systems have not been effectively tackled. The most basic and 

arguably one of the most important is sharp, sufficient conditions stating when two 

identical systems will synchronise. Research into this problem and others related to 

it have lead to the discovery of a wide variety of phenomena in the study of coupled 

dynamical systems, including attractor bubbling [Ashwin et al., 1996], riddled basins 

o f  attraction [Alexander et al., 1992], and on-ojf intermittency [Yu et al., 1995]. Inspite 

of the massive research directed at this problem, to date, the only most widely known 

criterion for successful synchronisation rely on the negativity of transverse Lyapunov 

exponents first introduced in [Fujisaka and Yamada, 1983]. When all transversal 

Lyapunov exponents of the coupled dynamical systems are negative then one expects 

that the systems synchronise. But there is now a growing body of evidence suggesting 

that the mere negativity of Lyapunov exponents alone is inadequate to guarantee high 

quality synchronisation [Varone et al., 1998]. While such conditions are necessary 

for synchronisation, they are by no means sufficient. Intervals of desynchronisation 

bursting behaviour can appear even when the largest transverse Lyapunov exponent is 

negative, especially as in practical settings, when there is noise in the system [Heagy 

et al., 1995b]. The deficiency of this criterion is perhaps not suprising since we know 

that exponents only give a linearized picture of the stability of the synchronous state. 

The ‘global’ stability of the synchronous state will be typically determined by the
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dynamics away from the synchronisation manifold, and cannot be found by a local 

analysis of higher order terms in some Taylor expansion [Ashwin et al., 1996].

The focus of this chapter is on bifurcations that destroy synchronisation when the param­

eters of the coupled dynamical systems are varied, particularly the coupling parame­

ter. Desynchronisation bifurcations in which increasing the coupling strength between 

the systems in the coupled array destabilises the synchronisation have been reported 

in [Heagy et al., 1995a]. This phenomenon was called a short wavelength bifurcation. 

In this chapter we report on desynchronisation phenomenon which occurs when the cou­

pling strength is increased in a system of two coupled parametrically excited pendula. 

This bifurcation gives rise to range of synchronisation regimes of the pendula as the 

coupling increases.

5.2 The System of Coupled Pendula

When two parametric excited pendula are coupled, the dynamics of the system becomes 

richer and more complex. There are different ways of coupling two pendula. [Zhang 

et al., 1999], for example, describe two parametrically excited pendula coupled 

unidirectionally and connected through a periodical feedback. In this work the setting 

is continuous bidirectional or mutual coupling. This type of coupling was described in 

detail by [Banning and Weele, 1995; Banning et al., 1997], where both the Hamiltonian 

and dissipative cases are considered.

Using the same scaling as those used in chapter 1, the equations of the coupled pendula 

in terms of the angles 6 i and O2 which define their configuration can be shown to be:

6 " (39[ 4- (1 -l-pcos(wT)) sin(^i) -f k{9i — ^2 ) =  0

^2  +  0 ^ 2  +  (1 + p co s(a ;r)) sin(^2 ) — — ^2 ) =  0

where k is the coupling parameter and (5, p, u  are the damping, amplitude of parametric 

forcing and the frequency of parametric forcing of the pendula respectively. In these
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equations the natural frequency is now scaled to 1.

First let us consider the zones in the parameter space in which the in-phase and out-of- 

phase periodic synchronisation occur.

f %

Figure 5.1: Regions of in-phase, out-of-phase and chaotic motion in the 
(cj,p) space for k = 0.6. In the first resonance zone (located 
around l j  = 2 ) green colour represents the parameter space  
in which in-phase motion is realised and in the second res­
onance zone (located around w =  3) the sam e colour repre­
sents region of out-of-phase motion. The yellow colour rep­
resents regions of chaos while blue colour represent regions 
of stability of the downward equilibrium.

Figure 5.1 shows the resonance zones of in-phase and out-of-phase periodic synchro­

nisation which were numerically determined for the full nonlinear equations using 

the software [Nusse and Yorke, 1998]. It is important to notice from Figure 5.1 that 

now we have another resonance zone around w =  3 which is not there for the single
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parametrically excited pendulum. Within the first resonance zone (located around 

{u,p)  =  (2,0)), the region in green colour represents the parameter space for which 

in-phase periodic synchronisation is realised while in the second zone the same colour 

represents the parameter space for which out-of-phase synchronisation occurs. In both 

resonance zones yellow colour represent regions of tumbling chaos while the blue 

colour represents regions of stability of the downward equilibrium for both pendula. We 

will discuss the synchronisation of chaos within the yellow region in the next chapter.

Within these zones shown in Figure 5.1, small perturbations from the downward 

hanging equilibrium do not die out but can be excited into in-phase and out-phase 

synchronisation for sufficiently large k. Realistically, the perturbations can be excited 

into a plethora of different types of motions, even chaotic ones in these zones, but our 

interest here is in those which are periodic and oscillatory. The main resonance zone 

for the in-phase periodic synchronisation occurs around (w,p) =  (2,0), that is, at twice 

the natural frequency of the pendula. As a consequence, for in-phase synchronisation, 

the most important motions of this type have period 2T, where T  = 27r/w is the 

period of the driving force. Similarly, the main resonance zone for out-of-phase

periodic synchronisation occurs around uj  = 2 \ / l  + 2k in the ( u j , p ) .  However, 

for both in-phase and out-of-phase periodic synchronisation higher order resonance 

zones of in-phase and out-of-phase motion are centred around ( u J , p )  =  (2 /n , 0) and 

(w,p) =  (2 /nvT +~2^, 0) respectively in the (w,p) space with n =  2 ,3 ,4 ,..., but these 

are of lesser signihcancy because for small values of the amplitude of forcing they 

occupy a small region in the parameter space.

It must be noted that as the coupling increases the second resonance zone, in which 

out-of-phase synchronisation occurs shifts to the right. The occurrence of in-phase and 

out-of phase oscillations can be illustrated more clearly by using normal co-ordinates.
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Let us indicate the periodic forcing term with F { t ). The equations of motion of the two 

coupled parametrically excited pendulums (Latin spelling pendula) are written as

e'l +  +  F{r)  sin(9i +  -  ^2 ) =  0

62 “h P^2  +  F (t^  s in ^ 2  — ^ ( ^ 1  — ^2 ) — O'

Define the normal co-ordinates by

(5.2)

</>i(r) =  (^ i(r) -i-6>2 ( r ) ) / 2  

-  d2{r))/2

Oi{r) =  </>i(t)-H(/>2 ( t)  

02{r) = </>i(r) -  (/)2(r).
(5 J )

With this change of co-ordinates the in-phase motion (^ i(r) =  9 2 {r)) is now expressed 

as 4>2 {'J') =  0, while for the out-of-phase motion (^ i(r) =  —Û2 ( t) )  it is 0 i( r )  =  0. In 

these new co-ordinates, the equations (5.2) are rewritten as

0 1  -h (5(f)'i -f- |F ( r ) ( s in 0 i -f sin ^2 ) =  0

0 2  F  / ? 0 2  4" ^.F(T) (sin ^1  — sin ^2 ) 4~ 2 A;0 2  =  0.

We can simplify the sums of the sines in equations (5.4) using the identities

sin(0i -h 0 2 ) +  sin(0i -  0 2 ) =  2 sin 0i cos 0 2  

sin(0i +  0 2 ) -  sin(0i -  0 2 ) =  —2 cos 0i sin 0 2 .

Using these identities equations (5.4) transform to

(5.4)

( 5 j )

0 1  -H /?0i -f- F { t ) sin 0 1  cos 0 2  =  0

0 2  -f / ? 0 2  +  F { t ) cos 0 1  sin 0 2  +  2&02 =  0.
(5.6)

From these equations of motion we can now investigate the in-phase motion 

(0 2 , 0 2 ) =  (0,0), as well as the out-of-phase motion (0 i, 0 1 ) =  (0,0). All we have to 

do is to linearise the respective equations about these two states, and then finding a way
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of evaluating the eigenvalues in these states.

The equation for in-phase oscillations is obtained by using the condition (j)2 =  0,and so 

from equation (5.6) this equation can be shown to be

(J)” F {t ) sin 01 =  0. (5.7)

This equation has two periodic terms. The forcing F ( r ) ,  that has period 2tt/ uj, and 

the second one is 0 i( r ) , because it is assumed we used parameter values for which a 

single parametrically excited pendulum displays a periodic behaviour. Several different 

periodic solutions can coexist for a fixed setting of parameters. For small values of p, 

we can approximate the equation of the pendulum by the linearised equation

0" +  /?0i 4- (1 +pcos(w T ))0i =  0. (5.8)

Following the work of [Hayashi, 1964], we can approximate the zones in which the 

hanging solution is unstable by the method of harmonic balance. Using the harmonic 

balance method we look for a solution to (5.8) in the form

01 =  cl{t ) cos(r2r) -t- 6(r) sin(r2r). (5.9)

Now, assume that a"(r) % 0 and h''{r) % 0, w =  2/nQ, n  = 1 ,2 ,... . We will consider

the case when n =  1 which corresponds to the main resonance zone of in-phase periodic

synchronisation. Using the identities from equation (5.10)

cos(2Qr) cos(fir) =  l/2 c o s (3 ilr )  -h l/2 cos(r2 r) 

cos(2Qr) sin($7r) =  l /2 s in (3 0 r )  — l/2 s in (r2 r),

equation (5.8) becomes

[2 6 ^ 1 7  —  - j -  l3 o ! (3bÇ î cl -\-  c o s ( f 2 T )

+[-2a'Q. -  6Q2 +  pb' - f 3 a ü  + b - ^ ]  sin (fir) =  0.

(5.10)

(5.11)
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We demand that coefficients of cos(f^r) and sin(Qr) be identically zero, from which we 

get

0 2Ü a'

- 2 Ü 0  . y

(Q2 _  1 _  I) -P Ü  

PO, (17̂  — 1 +  | )

We look for solutions of the form

a{r) =  ae '̂^ 

b{r) = be '̂^

a '{ t )  =  aXe^'^ 

b'{r) = bXe^'^.

Put equation (5.13) into equation (5.12) then we get

-, - 1
^  2f7

-2H

(fi^ — 1 — 2 ) —

(f]2 -  1 +  #)

(5.12)

(5.13)

a
=  A . (5.14)

b b'

The proposed solution will explode (be unstable) when the eigenvalue A has a positive 

real part, and die out (be stable) when its real part is negative. Thus, the hanging 

solution is unstable when R e{\)  > 0.

At the boundary of stability of the hanging solution we get from equation (5.14)

p = 2 ^ y ( ü ^ - l f  + /3Q‘̂. (5.15)

But Ü = u 1 2 for the main zone of instability of the hanging solution, so the boundary 

of stability becomes

P = 2)/(y - 1 P  + /3T- (5.16)



Periodic Synchronisation Regimes 100

Similarly for the Out-of-phase motion periodic synchronisation the equation of motion 

is

02 +  /?02 +  sin 02 +  2&02 =  0. (5.17)

which we obtained by setting 0i =  0 in (5.6). This equation of motion is no more 

the one of a single parametrically excited pendulum and displays periodic solutions for 

certain values of k. Using similar arguments as those we used for the in-phase periodic 

synchronisation we can obtain a condition for stability of the out-of-phase oscillations 

by requiring that at the boundary of stability the eigenvalues must satisfy R e{ \)  =  0. 

This condition gives the result:

p = 2 \ l l ‘Ç - { l + 2 k W  + ^ .  (5.18)

For increasing coupling strength, the zone of in-phase motion remains fixed while the 

zone of out-of-phase motion shifts to the right. Figure 5.2 illustrates the shifting of the 

zone of out-phase motion as the coupling increases. The zones of in-phase and out- 

of-phase motion shown in Figure 5.2 where numerically determined by evaluating the 

expressions (5.16) and (5.18).
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Figure 5.2: Zones of in-phase (located around w =  2) and out-of-phase 
(which shifts to the right as k increases) periodic synchroni­
sation determined analytically with /? =  0.1 for increasing k\ 
(a) k = 0.05, (b) k = 0.3, (c) k = 0.6, (d) k = 0.9. Note that the 
zone of in-phase oscillations remains fixed at (cj,p) =  (2 , 0) 
as coupling increases while the zone of out-of-phase motion 
shifts to the right.

It is clear from Figure 5.2 that as coupling increases, the zone of out-of-phase periodic 

synchronisation drifts away from the zone of in-phase periodic synchronisation. This 

means that as coupling increases, out-of-phase periodic synchronisation can only be 

realised for higher values of the frequency of parametric forcing.

In this work we will confine our investigation to periodic synchronisation in the two

resonance zones which are located around cu = 2 and to = 2y/l 4- 2k in the (w,p) 

space. One of our main tasks is to investigate the effect of increasing the coupling when 

the parameters of the system are fixed either in the in-phase zone or out-of-phase zone.
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In order to give examples of the effect of increasing the coupling, we approximate the 

basin of attraction for variation of initial position of in-phase and out-of-phase oscilla­

tions at A; =  0 as shown in Figure 5.3. We assume that the initial angular velocities are 

zero.

- 7 1

C[-,-]

- 7 1

Figure 5.3: Approximate basins for initial condition for in-phase and 
out-of-phase periodic synchronisation when parameters are 
fixed in the zone around (w,p) =  (2 , 0 ). For small values 
of the coupling, motions started in ^ [+ ,+ ]  and C [ - , - ]  will 
synchronise in-phase while motions started in B[-b, - ]  and 
D [ - ,  +] will synchronise out-of-phase. This is only true if we 
assu m e that there are no initial angular velocity perturba­
tions. For sufficiently large values of k all periodic motions 
are in-phase regardless of initial conditions when parame­
ters are fixed in the first resonance zone.

This corresponds to experimental situation where initial perturbations to angular 

velocities are assumed zero particularly if the experiments are initiated when the motor 

is not running. However, if the motor is running it might be easier to disturb the velocity 

from the fixed position 9i = $2 = 0. We will not report on experimental results here 

but broad comparison with previous experimental results are useful to provide insight 

into the dynamical response of the system [Oliveira et al., 2001]. Throughout this work 

we will fix the values of p, the damping at a representative value of P = 0.1. This is 

the value generally used in this thesis and will facilitate comparison of results in the
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different chapters.

For now we want to briefly discuss the effect of initial conditions as illustrated in 

Figure 5.3 when the motion is confined to the main zone of in-phase motion around 

cj =  2 in the {u,p)  space. Although the motion is predominantly in-phase around this 

zone, we can also realise out-of-phase motion for low coupling k  depending on initial 

conditions. In our case where we assumed no initial perturbations to the velocities, 

Figure 5.3 shows the initial conditions which result in in-phase and out-of-phase 

periodic synchronised motions for low values of the coupling strength.

In Figure 5.3 motions started from A[-|-, -f] and C[—, —] will be in-phase periodic syn­

chronised for low values of the coupling strength while those started from 

and D [—, -h] will be out-of-phase periodic synchronised for low values of the coupling 

strength. For high values of the coupling strength, all motions with parameters fixed 

in the resonance zone around =  (2,0) will be in-phase regardless of the spatial 

initial conditions.

5.3 Periodic Synchronisation in the In-phase Zone

Now we want to study the bifurcation structure of the periodic synchronised motions 

when the parameters w and p are fixed in the first resonance zone. We already know 

that in the (cj,p)-space periodic motions occur after the loss of stability of the trivial 

downward hanging solutions (9i = 9[ = î) (see Figure 5.2). However, our main interest 

here is to understand the bifurcation structure in the (/c,p)-space. The aim is to explore 

periodic synchronisation in the major zone of in-phase periodic synchronisation around 

w =  2 in the (k,p)  space. We assume static coupling, that is, where the coupling 

does not change with time. Among other things, we want to understand the mechanism 

leading to transitions from out-of-phase periodic synchronisation to in-phase periodic 

synchronisation. We use initial conditions as represented by Figure 5.3 where initial
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perturbations to angular velocities are set to zero. With these assumptions for initial 

conditions we know that for very small coupling values, the in-phase and out-of-phase 

periodic synchronisation motions coexist.

0.7

0.6

0.5

0.4

0.2
0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50 0.05 0.1

Figure 5.4: Zones of different periodic synchronisation regim es for w =  
1.9 in the (/c,p)-space: zone A: O ut-of-phase synchronisa­
tion, zone B: In-phase synchronisation with transient rota­
tion, zone C: P hase synchronisation with intermittency in 
amplitude of oscillation, zone D: In-phase synchronisation  
without transient rotation.

If the initial conditions are such that the system results in out-of-phase motion as 

represented in Figure 5.3, the system remains out-of-phase for very small coupling 

values and as coupling increases the out-of-phase periodic synchronisation destabilises 

giving birth to in-phase periodic synchronisation. Figure 5.4 shows the different 

zones in which the various types of periodic synchronisation occur as the coupling is 

gradually increased in the (k,p) space when uj is fixed around the main resonance zone 

for in-phase motion around (w,p) =  (2,0) (more specifically uj = 1.9). Here the value 

w =  1.9 was chosen to avoid any particular symmetries which may occur for uj = 2.0.
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The zones marked A, B, C and D in Figure 5.4 in the (A;, p)-space exhibit different 

forms of periodic synchronisation.

The zones were calculated for initial conditions which would result in out-of-phase peri­

odic synchronisation as represented in Figure 5.3 with the coupling strength being grad­

ually increased. But the results shown in Figure 5.4 do not change significantly if initial 

conditions which would give rise to in-phase periodic synchronisation for low values 

of the coupling strength were used. The only significant change would be in zone B; 

preliminary numerical results indicate that it would be significantly reduced in size and 

shifted upwards if in-phase initial conditions are used. Typical trajectories for motions 

started in zones A, B, C and D are shown in Figure 5.5.
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Figure 5.5: Typical trajectories for motions of the two pendula in zon es  
A, B, C, and D for p =  0.6, u =  1.9. All the motions had initial 
conditions {9u9[, 6 2 , 0 2 ) =  (1 .3 7 ,0 .0 ,-1 .17 ,0 .0 ): (a) in zone  
Ai or  k =  0.08: out-of-phase synchronisation, (b) in zone B 
for k =  0 .21: in-phase synchronisation attained after rotat­
ing motion, (c) in zone Ci or  k =  0.28: p hase synchronised  
oscillations with different amplitudes and (d) in zone D for 
k =  0.42: in-phase synchronisation attained with no rotating 
motions. Left: Transient motion. Right: Steady state motion.

Let us consider in detail the various synchronisation regimes that occur in the different 

zones shown in Figure 5.3 as the coupling increases. The example given here is for 

system when the initial conditions are out-of-phase. But we confirmed that the results
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would be similar if we had started with in-phase initial conditions.

(1) Synchronisation in zone A: In zone A, the pendula are in out-of-phase synchro­

nisation. This is mainly because we chose initial conditions which would give 

out-of-phase synchronisation for small coupling as shown in Figure 5.3. There­

fore in the first resonance zone initial conditions play a crucial role in determining 

the final synchronised state. Since the coupling is very small here it does not 

influence the final synchronised state in a significant way.

(2) Synchronisation in zone B: In zone B the system of coupled pendula exhibits in- 

phase synchronised oscillations. Thus the boundary between zone A and zone B 

is marked by a desynchronisation bifurcation which destabilises the out-of-phase 

periodic synchronisation giving birth to in-phase periodic synchronisation. An 

important feature of the in-phase periodic synchronisation which occurs in zone B 

is that it almost always occurs after the coupled pendula have undergone rotating 

motion. This rotation before the system converges onto the synchronised state 

(or indeed any other attractor), corresponds to the well documented phenomenon 

of escape from a local energy well [Clifford and Bishop, 1993, 1994; Stewart 

and Faulkner, 2000]. Therefore zone B represents the parameter space in which 

trajectories of a system of two coupled parametrically excited pendula initially 

contained within an energy well escape the confines of the local potential well 

and transverse through one or several adjacent energy wells before converging 

onto stable synchronised oscillatory behaviour.

The property of escape from a local potential energy is a common problem 

in science and engineering. Examples of this phenomena occur in capsize 

of ships [Gottwald et al., 1995; Thompson et al., 1990a; Thompson and Soli­

man, 1990b], the toppling of rigid blocks [Hogan, 1989a,b, 1990; Virgin et al., 

1996], in the response of Josephson junctions and in electrical power engineer­

ing and also in phase-locked loops [Booker et al., 2000]. In most of these
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systems, it is the disruptive nature of this escape phenomena which can cause 

failure in the smooth functioning of the technological systems. The motions 

which may be disruptive by leaving the local energy may correspond to periodic 

rotations [Garira and Bishop, 2002; Janicki and Szemplihska-Stupnicka, 1995], 

chaotic tumbling [Bishop and Clifford, 1996a; Thompson, 1989] or indeed long 

transients induced by a fractal basin boundary [Thompson et al., 1987; Lansbury 

and Thompson, 1990]. So in short, we can say that for the system of two coupled 

pendula and for a given set of initial conditions zone B represents combinations 

of amplitude of forcing p and coupling strength k for fixed frequency of forcing uj  

which cause the system to escape the confines of a local energy well as a transient 

process towards stable synchronous behaviour. The zone was determined numeri­

cally by simulating a series of start-ups involving different combinations of (fc, p) 

for fixed u  for a number of initial conditions. Each simulation which resulted in 

transient escape from a local energy well before the system became synchronised 

was recorded.

(3) Synchronisation in zone C: In zone C another type of periodic synchronisation is 

realised. This periodic synchronisation is different from the out-of-phase synchro­

nisation in zone A and in-phase synchronisation in zone B. Here the two coupled 

parametrically excited pendula are only phase synchronised and continue to per­

form oscillatory motion but with different amplitude of oscillations. Therefore 

the boundary between zone B and zone C is marked by another desychronisation 

bifurcation which destabilises the in-phase periodic synchronisation, giving birth 

to yet another form of periodic synchronisation (phase synchronisation) in which 

the pendula oscillate with different amplitudes.

(4) Synchronisation in zone D: Another desynchronisation bifurcation occurs at 

the boundary of zone C and D where the phase synchronisation is destroyed 

and the pendula become in-phase synchronised again with equal amplitudes of 

oscillation. However, the distinction between in-phase synchronisation in zone B 

and D is that in zone B in-phase motion is only realised after the pendula have
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undergone transient rotating motion (transient escape), while within zone D the 

two pendula synchronise without any transient rotating motion.

Because of the existence of the different synchronisation regimes in the parameter space 

there can be no sharp synchronisation coupling threshold. Instead there are multiple 

thresholds. We recall that in zone A of Figure 5.4 and for given initial conditions, the 

pendula are out-of-phase synchronised even for k = 0. Thus the periodic synchroni­

sation manifold M , that is, the plane = (—̂ 2 , —%) is invariant and attracting

even for A: =  0 for a given set of spatial initial conditions. As k increases and sweeps 

across zone A, it reaches a value when the orbits in M  lose transverse stability through 

a desynchronisation bifurcation. This takes us to another synchronisation regime in 

zone B. This again is subsequently destabilised as the coupling increases and so on until 

zone D where any further increase of k does not destabilise the periodic synchronisation.

The different synchronisation regimes occur because as coupling increases, the sym­

metries of the coupled pendula change. These changes in the symmetry of the system 

account for the different periodic synchronisation regimes. The study of symmetry of 

two coupled parametrically excited pendula is beyond the scope of this thesis. But we 

note that the occurrence of desynchronisation bifurcations as coupling increases is a 

fundamental property of this system and is caused by the different symmetry proper­

ties introduced into the system as the coupling increases. So we have a situation where 

different forms of periodic synchronisation are realised as coupling increases.

5.4 Periodic Synchronisation in the Out-of-phase Zone

In this section we consider periodic synchronisation in the second resonance zone which

is located around (w,p) =  (2^/1 +  2A:,p) in the parameter space. What is surprising 

about the synchronous behaviour when parameters are fixed in this zone is that for what­

ever spatial initial conditions, we only realise out-of-phase periodic synchronisation.
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This out-of-phase periodic synchronisation is different from the one that we discussed 

in the previous section which is due to initial conditions. The out-of-phase periodic 

synchronisation here is due to parameters of the system and does not depend on initial 

conditions. Whether the initial conditions are out-of-phase or in-phase as shown in Fig­

ure 5.3, the system will always asymptotically synchronise to the out-of-phase motion. 

The dominant factor here is the high frequency and high coupling. Another important 

point to note about the out-of-phase periodic synchronisation here is that the out-of­

phase periodic synchronisation only exists for a finite interval of coupling strength. 

Figure 5.6 shows typical coupling values for out-of-phase synchronisation in the (k,p) 

when UJ is fixed in the out-of-phase zone.

Figure 5.6: Zone of out-of-phase periodic synchronisation in the ( k , p ) -  

space for uj  fixed at 2 \ / l  +  2 k  =  3.2 . This zone is shifted fur­
ther to the left for higher values ofw. Green colour represents 
regions of out-of-phase synchronisation, yellow represents 
regions of chaos while blue represents regions of parameter 
space where the downward equilibrium is realised for both 
pendula.
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However, it has to be noted that for each w value the out-of-phase motion is only stable 

for a finite interval of the coupling strength. This is clearly illustrated in Figure 5.6 in the 

{k,p) space. In order to give a rough idea of the interval of coupling values for which 

the out-of-phase periodic synchronisation is stable when the parameters are fixed in the 

second resonance, we illustrate this by some bifurcation diagrams shown in Figure 5.7.
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0.5

- 0.5

-2
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 5.7: Bifurcation diagrams with coupling strength k a s  bifurcation 
parameter for different values of the amplitude of forcing and 
frequency, (a) w =  2.5, p =  0.5: w e have out-of-phase peri­
odic synchronisation for 0.17 < k <  0.492. For k outside this 
interval the system  synchronises into the downward equilib­
rium point, (b) ÜÜ =  3.2, p =  0.5 : w e have out-of-phase peri­
odic synchronisation for 0.68 < k <  0.953. For k outside this 
interval the system  synchronises into the downward equilib­
rium point.
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It is clear that the out-of-phase motion in the (k, p) space occurs after the loss of stability 

of the trivial solutions {6i = 6[ = 0). The implication of this is that at the stability 

boundary, the pendula undergo periodic doubling bifurcation as illustrated in Figure 5.7.

5.5 Final Remarks

To conclude we would like to recall some of the most important, or should we say, 

the most intriguing results of this chapter. It is perhaps not surprising that coupling 

introduces a new zone of periodic motion in the parameter space, when compared with 

the single parametrically excited pendulum. However, what we find most interesting is 

that in-phase and out-of-phase synchroninization cease to co-exist, and for high values 

of the coupling parameter k are only observed in two separate regions of the parameter 

space. The main issues studied in this chapter are:

•  Use of normal coordinates to study in-phase and out-of-phase periodic oscilla­

tions.

•  In-phase and out-of-phase periodic synchronisation of two coupled parametric 

pendula which occurs in the resonance zones located around (w,p) =  (2,0) and

{uj,p) = ( 2 v l - i - ^ ,  0) respectively.

•  The different periodic synchronisation regimes which occur in the resonance zone 

located around {u,p) = (2,0) as coupling varies.



Chapter 6

Chaos Synchronisation of Two 

Parametrically Excited Pendula

6.1 Introduction

This chapter builds on the earlier work of chapter 4 of this thesis in which we discussed 

the different chaotic regimes of the single parametrically excited pendulum. Here we 

consider chaos synchronisation of two parametrically excited pendula. This is part 

of our continuing study of the synchronous behaviour of two parametrically excited 

pendula which we initiated in chapter 5 by looking at synchronisation when the 

dynamics is both periodic and oscillatory. Previous studies of chaos synchronisation in 

a system of two coupled parametrically excited pendula include the paper by [Zhang 

et al., 1999]. In this paper the authors studied the synchronisation of tumbling chaos of 

two parametrically excited pendula which were coupled through a variable feedback, 

where the feedback was designed to periodically impose on one pendulum. In some 

time intervals the feedback was active while in other time intervals the chaotic pendula 

were uncoupled. There is also a paper by [Weele and Banning, 2001] which discusses 

mode interaction in a system of two coupled parametrically excited pendula and gives 

further insight into the dynamics of the system.

Here the fundamental question to be addressed is: If we coupled two pendula both of 

which are in chaotic state, be it oscillatory chaos, rotating chaos or tumbling chaos.
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what are the different chaotic synchronisation regimes that can be realised as we vary 

parameters of the system? In part answer to this question we show in this chapter 

that the in-phase and out-of-phase dynamics of the two parametrically excited pendula 

which we considered in chapter 5 in the context of periodic synchronisation can also be 

realised when the dynamics is chaotic.

We also want to explore if symmetry can be used to give insight into the type of 

synchronisation that can be realised. In chapter 4 we established in the case of a single 

parametrically excited pendulum that symmetry and chaos can coexist. This sounds 

weird because any particular chaotic solution that we look at for only a short period 

of time cannot have symmetry. Infact, a chaotic particle moves along a seemingly 

disordered trajectory, with no implicit local symmetry in its motion. However, we 

realised from chapter 4 that by looking at the global properties of the trajectory (e.g. the 

w-limit set associated with the trajectory), we can build some insight into the symmetry 

of the chaos, in particular, on what is called symmetry on the average [Ashwin, 1999].

Thus in this chapter where we consider synchronisation of two parametrically excited 

pendula when their dynamics is chaotic we are still interested in pursuing the same 

question: can symmetry and chaos coexist? The answer is yes, leading to what is still 

called symmetric chaos as in chapter 4, but this time the symmetric chaos turns out to 

be synchronised chaos.

6.2 Symmetry of the Equations of Motion

An idealised model of the two parametrically excited pendula which are assumed to be 

linearly coupled by a torsion spring was shown in Figure 1.8. If the common suspen­

sion point of the two pendula is given by z(t) = —acos{Q,t) and configurations of the
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pendula are defined by angles 6*i and 6 2 , then the equations of motion can be shown to 

be (after scalings as detailed in chapter 1):

?'/ +  I30[ +  (1 +  pcos(wT)) sin(^i) +  k{6 i — O2) = 0 

?2 +  PO'2 +  (1  +  p cos(cjt)) sin(6*2 ) -  k{6 i -  6 2 ) = 0
(6 .1)

where /c is a coupling parameter and p, p, uj are the damping, amplitude of parametric 

forcing and the frequency of parametric forcing of the pendula respectively.

A striking feature which makes the study of chaos synchronisation of the system 

described by equations (6.1) interesting is that apart from the usual properties of chaotic 

systems such as sensitive dependence on initial conditions as illustrated in Figure 6.1 

and the apparent randomness of the trajectories, the chaotic dynamics here if “fragile” 

with
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Figure 6.1 : Trajectories started c lo se  together showing sensitive depen­
d ence on initial conditions for w =  2 and p =  2 with (6»i, 9[) =  
(0.8001,0), (6)2, 6)̂ ) =  (0.8005,0.0).

respect to the parameters of the system, that is, a slight alteration of one of the 

parameters may destroy the chaos leading to either periodic or indeed any other types 

of stable response. This is particularly true at low values of the amplitude of forcing
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while at large values of the amplitude of forcing the chaotic attractor persists.

Take for example Figure 6.2 which shows the different dynamical responses of the two 

coupled parametrically excited pendula in the (a;, p)-space when the coupling k and 

damping 0  are fixed at /c =  0.6, /3 =  0.1.

Figure 6.2: Zones of chaotic and periodic behaviour in the (w,p)-space: 
The green regions are for period two oscillations while the 
yellow regions are the chaotic zones and blue regions are 
zones of stability of the downward equilibrium for both pen­
dula.

Figure 6.2 shows the resonance zones located around (w,p) =  (2,0) and

(w.p) =  (2 \/l +  2/c, 0), where yellow regions represent parameter values for

which chaotic behaviour is realised while the green regions represent parameter values 

for which periodic motion is realised (mainly in-phase and out-of-phase oscillations). 

Blue regions represent parameter values for which the downward equilibrium point
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is stable for both pendula. It is evident from Figure 6.2 that for lower values of p  the 

coupled pendula exhibit a wide variety of dynamical responses while for higher values 

of p the motion is predominantly chaotic.

In equations (6.1), the natural frequency is scaled to 1. For the work that follows, we 

fix the damping at /5 =  0.1. Now the accessible parameters are p, u  and k. Our primary 

goal is to describe the nature of the behaviour with respect to the parameters p, u j and 

k and indicate the different types of chaotic synchronisation that may be realised. We 

will systematically analyse the effect of varying the coupling strength both in terms of 

new dynamical features it introduces to the system and also in terms of influencing the 

dynamics of the system to converge onto (stable) synchronised state. But first let us 

briefly discuss the symmetry of equations (6.1) which govern the dynamics of the two 

coupled parametrically excited pendula.

It is now well-known that Synchrony is one of the most symmetrical states of coupled 

systems. The following are some of the symmetries of the equations of motion of the 

two coupled parametrically excited pendula:

(1) Temporal translation T: The corresponding transformation for this symmetry 

property is

[6u ^2 , r] ^  [^1 , ^2 , ^2 , T +  T]. (6.2)

This symmetry is induced into the system by the driving which is periodic. The 

implications of the periodic driving force are that the equations of motion are 

unaltered by a time translation over one driving period T  = 21: / u.

(2) Spatial translation S: The transformation corresponding to this symmetry is

[^1, ^2j &2 i 'A [̂ 1 +  62 +  27T, '̂ 1- (6.3)
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In the case of the two identical pendula considered here, the implications of this 

symmetry property is that the system possess an infinite number of invariant sub­

spaces defined by 6 i ~  62 = 2n7r where n  is an integer.

(3) Reflection R: The transformation that represents this symmetry is

[0i,9[, 0 2 :  0 2 ,  T] [—̂ 1, —0'i, — 0 2 ,  — ^ 2 ,  t ] ’ (6.4)

Its implications on the dynamics of the two coupled pendula is that it does not 

make any difference for a single pendulum whether it swings toward the right or 

to the left.

(4) Exchange E: The corresponding mathematical representation of this symmetry is 

simply an exchange of indices:

O2 , «2,r] [%, O2 , t], (6.5)

This symmetry is present in the system because the coupled pendula are identical. 

Therefore it does not matter which one of the pendula is called 1 and which is 

called 2.

In the case of periodic oscillations of the two coupled parametrically excited pendula 

which we considered in chapter 5, we noted that as coupling is varied, the symme­

tries of the periodic oscillations of the two coupled parametrically excited pendula are 

changed. We indicated that this caused the system to exhibit different periodic synchro­

nisation regimes including in-phase periodic synchronisation and out-of-phase periodic 

synchronisation. In this chapter where the dynamics of the pendula is chaotic the sys­

tem of two parametrically excited pendula also experiences different types of chaos 

synchronisation as parameters are varied. For given initial conditions and parameters 

the following two types of chaotic synchronisation are realised:

(a) Out-of-phase chaotic synchronisation: Also widely known as antiphase

chaotic synchronisation [Cao and Lai, 1998; Blazejczyk-Okolewska et al., 2001;
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Astakhov et al., 2000; Uchida et al., 2001]. Typical examples of this type of 

chaotic synchronisation are shown in Figure 6.3 and Figure 6.4.

(b) In-phase chaos synchronisation; Widely known as complete synchronisation or 

identical synchronisation [Boccoletti et al., 2001; Bown and Kocarev, 2000]. In 

this case we have 9i — 9  ̂after transients. Typical examples of this type of chaotic 

synchronisation are shown in Figure 6.5 and Figure 6.6.

Let us now consider each of these two types of chaos synchronisation and indicate their 

relationship with the different symmetry properties of the governing equations that we 

have just discussed.

6.3 Out-of-phase chaos synchronisation

In this section we describe a chaotic synchronisation regime of two parametrically 

excited pendula which occurs when the chaotic oscillations of the system possess the 

symmetry described by the transformations (6.4) and (6.5), that is they are invariant 

with respect to the reflection symmetry R  and exchange symmetry E. For notational 

convenience we shall simply say the chaotic oscillations possess the symmetry RE. A 

chaotic motion of the two coupled parametrically excited pendula possess the RE sym­

metry if and only if the following relation holds

^ i (t ) -Oï i r )

e[{r)
=  R E

0 'xir) =
% (r) 02{t ) - 0 1  (r)

0 2 {t) - 0 {{r)

(6.6)

after the transients have died away. Equation 6.6 guarantees the existence of the out-of- 

synchronisation manifold (invariant manifold) defined by

9i{t)  = —92{t ) and 9[{t) = —92{r). (6.7)
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This implies the existence of out-of-phase chaotic synchronisation which is charac­

terised by the dynamics of the two pendula collapsing onto the synchronisation man­

ifold defined by equation (6.7). Figure 6.3 and Figure 6.4 show some typical examples 

for some parameter values and initial conditions for which the out-of-phase chaotic syn­

chronisation is realised. In Figure 6.3 we have out-of-phase chaos synchronisation for 

p  =  2.0 and u  =  2.0, k = 0.2 for different initial conditions while in Figure 6.4
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Figure 6.3: Out-of-phase chaos synchronisation of two parametrically 
excited pendula for u =  2 .0 , p =  2 .0 , k =  0.2 (a) with ini­
tial conditions (6>i,6»J) =  (1.37,0), (6*2, 6*2) =  ( -1 .3 7 ,0 ) . (b) 
with initial conditions i9u6[) =  (1.57,0), (<92,%) =  (-1 .5 7 ,0 ) . 
Left: the synchronised trajectories. Right: the synchronisa­
tion manifold.
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Figure 6.4: Out-of-phase chaos synchronisation of two parametrically 
excited pendula for cj =  0.5, p =  3.6, k =  0.2 (a) with initial 
conditions (0u9[) =  (1 .3 7 ,0 ) , (6»2, 6>2) =  ( - 1 .3 7 ,0 .0 ) .  (b) with 
initial conditions {9i,6[) =  (1 .5 7 ,0 ) , ((92,% ) =  ( - 1 .5 7 ,0 .0 ) .  
Left: the synchronised trajectories. Right: the synchronisa­
tion manifold.

we have out-of-phase chaos synchronisation for p =  3.6 and uj =  0.5, k =  0.2 for 

different initial conditions as well. For these two particular exam ples, it was found 

that the out-of-phase chaotic synchronisation w ill be destroyed for higher values o f the 

coupling strength. In the out-of-phase chaos synchronisation, initial conditions play a 

crucial role. Thus even if  we have out-of-phase chaos synchronisation for the parameters
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values given in these two examples, other initial conditions would not give out-of-phase 

chaos synchronisation. In general, it would appear that if have parameters p, uj and k  for 

which the system is chaotic, then we can only realise out-of-phase chaos synchronisation 

for motions started on the out-of-phase synchronisation manifold for a certain range of 

coupling strengths.

6.4 In-phase Chaos Synchronisation

Now we describe a chaotic synchronisation regime of two parametrically excited pen­

dula which occurs when the chaotic oscillations of the system possess the symmetry 

described by the transformations (6.5), that is they are invariant with respect to the 

exchange symmetry E. For notational convenience we shall simply say the chaotic oscil­

lations possess the symmetry E. A chaotic motion of the two coupled parametrically 

excited pendula possess the E symmetry if and only if the following relation holds

U r ) U r )

U r ) =  E U r ) U r )
=

U r ) U r ) U r )

U r ) U r ) e{{r)

(6 .8)

after the transients have died away. Equation 6.8 guarantees the existence of the in-phase 

synchronisation manifold defined by

Oi {t ) = 92{t ) and d'i{r) =  O^ir). (6.9)

This implies the existence of in-phase chaotic synchronisation which is widely known as 

complete or identical synchronisation and in our case is characterised by the dynamics of 

the two pendula collapsing onto the synchronisation manifold defined by equation (6.9).
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Figure 6.5: Synchronised chaotic orbits for two parametrically excited  
pendula with parameters p =  2, cu =  1.9 and k =  0.5 (a) Time 
series of the chaotic orbits (b) Time series of the difference 
between the chaotic orbits.
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Figure 6.6: Synchronised chaotic orbits for two parametrically excited 
pendula with parameters p  =  1.4, cu =  1.9 and k  =  0.5 (a) 
Time series of the chaotic orbits (b) Time series of the differ­
en ce between the chaotic orbits.

Figure 6.5 and Figure 6 .6  show some typical examples of in-phase chaos synchronisa­

tion for some parameter values when the initial conditions are set at = (0 .2 , 0 ),

(6*2 , 6 2̂ ) =  ( — 1.57,0.0). In Figure 6.5 we have in-phase chaos synchronisation for 

p =  2.0 and u  = 1.9, k  = 0.5 while in Figure 6 . 6  we have in-phase chaos synchronisa­

tion for p = 1 .4  and uj  = 1.9, k  = 0.5 for the same initial conditions. Further numerical 

computations indicated that when uj  is fixed at w =  1.9 we have in-phase chaos
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synchronisation for the given initial conditions for values of p  in the range l A  < p < 2 

when k =  0.5. We also confirmed using numerical simulations that a further increase 

of the coupling may destroy the chaos leading to other forms of synchronisation and 

further increase of k  again may result in-phase chaos synchronisation.

An intuitive measure of the quality of synchronisation is given by

A  =  -  02)2  +  ( e [  -  ( 6 .1 0 )

which is the distance between the point on the attractor of one of the pendula and the 

attractor of the other pendulum. The two pendula are in-phase chaos synchronised if

A =  0. (6.11)

When the pendula are synchronised out-of-phase this measure of the quality of chaos 

synchronisation is irrelevant because in that case A ^  0.
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Figure 6.7: Effect of variation of linear coupling on in-phase chaos syn­
chronisation: (a) p =  1.4, (b) p =  1.6, (c) p =  1.8,(d) p =  2.0, 
with w =  1.9, with varying coupling strength.

Figure 6.7 shows a plot of the measure of in-phase chaos synchronisation as defined 

by 6.10 when u  = 1.9 for p = 1.4,1.6,1.8, 2.0 for increasing k. For all these values 

of the amplitude of parametric forcing the two pendula are in-phase chaos synchronised
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for k around k = 0.5 as shown in Figure 6.7. But it is evident from the same Figure 

that there are intermediate values of k below /c =  2 for which the in-phase chaos syn­

chronisation is destroyed leading to periodic synchronisation. For values of k around 

/c =  1.4 we have in-phase chaos synchronisation for p =  1.4,1.6,1.8, 2.0. The chaos 

synchronisation is destroyed again for k around k =  1.8. However, for A: >  2 we have 

persistent in-phase chaos synchronisation for p = 1 .4,1.6,1.8,2.0. The results shown 

in Figure 6.7 indicate that for values of /c <  2 we have multiple coupling thresholds 

for chaos synchronisation. The existence of multiple coupling thresholds for synchro­

nisation implies that the calculation of transient time to synchronisation in this case is a 

tedious exercise.

6.5 Concluding Remarks

We have studied two types of chaos synchronisation: out-of-phase and in-phase chaotic 

synchronisation. An important observation we have made from these studies is that dif­

ferent symmetries of the chaotic oscillations are responsible for the existence of different 

chaotic synchronisation regimes. We note that the arguments used in this chapter to con­

firm the existence of in-phase and out-of-phase chaos synchronisation due to different 

symmetry properties of the chaotic oscillations can be used to justify the occurrence of 

in-phase and out-of-phase periodic synchronisation which we considered in chapter 5. 

The main issues studied in this chapter are:

•  The symmetry of the governing equations of two coupled parametrically excited 

pendula and their relation to chaos synchronisation.

• In-phase and out-of-phase chaos synchronisation of two coupled parametric pen­

dula which occurs in the resonance zone located around (w,p) =  (2,0).

• The relationship between in-phase and out-of-phase chaos synchronisation and 

symmetry.



Chapter 7

Conclusions: Old Challenges and New 

Hopes

7.1 Introduction

Let US now take stock of what we have achieved in this thesis. The aim of this thesis 

was to study using numerical simulations as well as analytical methods the different syn­

chronisation regimes of two parametrically excited pendula. The initial motivation was 

an experimental set-up of a system of two coupled parametrically excited pendula. The 

experiment lacked resources and only allowed a qualitative assessment of the dynamics 

of the system. This motivated me to reconsider the whole problem using numerical and 

analytical methods.

7.2 The Results Obtained

The results contained in this thesis are about both the dynamics of the single parametri­

cally excited pendulum and the synchronisation regimes of two coupled parametrically 

excited pendula. The first part of this thesis is devoted to understanding of the dynamical 

response of the single parametrically excited pendulum. We paid particular attention to 

the dynamics in the lower resonance zones and uncovered some little-known modes of
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the parametrically excited pendulum. Previous researchers have overlooked the dynam­

ics of the parametrically excited pendulum when parameters are set in the lower reso­

nance zones. In the second part of this thesis we discussed the different synchronisation 

regimes of two coupled parametrically excited pendula. The main results found in this 

thesis can be summarised as follows:

(1) We considered oscillatory, non-rotating solutions of the parametrically excited 

pendulum. We determined the zones in the parameter space in which different 

types of oscillatory solutions are realised. In particular we determined the zones 

in which the T-periodic and 2T-periodic harmonic and subharmonic oscillatory 

solutions are the dominant type of stable solutions. The symmetry properties of 

these solutions and the associated scenarios of transition to tumbling chaos were 

also discussed.

(2) We considered rotating periodic solutions of the parametrically excited pendulum. 

Four basic types of rotating periodic solutions were shown to exist and the zones 

in which they occur in the parameter space were determined. We investigated the 

properties of these rotating solutions and their symmetries.

(3) The transitions of periodic solutions of the parametrically excited pendulum to 

three different types of chaos, namely, oscillating chaos, rotating chaos and tum­

bling chaos were investigated. We showed that the transition to oscillating chaos 

and rotating chaos is through a cascade of period doublings of periodic solutions. 

We further investigated a mechanism of explosion of the attractors of these two 

types of chaos. Numerical results were presented which show that the explosion 

of these chaotic attractors of oscillating type and rotating type is the main mecha­

nism by which structurally stable tumbling chaos is induced in the parametrically 

excited pendulum.

(4) Different periodic synchronisation regimes in a system of two coupled paramet­

rically excited pendula were studied. Two kinds of periodic synchronisation 

were of particular interest: one in which the pendula are moving in-phase with
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equal amplitudes and another in which the two pendula are always moving in 

counter-phase, that is, out-of-phase by tt radians, but still with equal amplitudes 

of oscillation. We determined the zones in the parameter space in which these 

two types of periodic synchronisation are realised and considered the effect of 

coupling when the parameters are fixed within these zones. We showed that in- 

phase and out-of-phase periodic synchronisation of two coupled parametric pen­

dula predominantly occurs in the resonance zones located around (w,p) =  (2,0) 

and (w,p) =  (2a/1 + 2k, 0) respectively.

(5) Special features of tumbling chaos synchronisation in a system of two coupled 

parametrically excited pendula were explored. In particular we investigated the 

occurrence and persistence of chaos synchronisation when system parameters are 

varied. We also give conditions under which tumbling chaos synchronisation fails.

7.3 Future Research Directions

The results of this thesis leave room for possible future work. The following future 

research directions are proposed:

(a) Further Experimental Work: In chapter 1 we discussed a physical experiment 

in which we got a qualitative assessment of the dynamics of two coupled paramet­

rically excited. In the light of the work in this thesis this experiment can now be 

redesigned. The knowledge gained so far using numerical simulations can be used 

to successfully implement an experimental study of both the single parametrically 

excited pendulum and the coupled parametrically excited pendula.

(b) Large amplitude Oscillations: In chapter 2 of this thesis, we discussed oscilla­

tory orbits of the parametrically excited whose amplitude of oscillation does not 

exceed tt ,  that is I ^ |<  t t .
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Figure 7.1: Large amplitude periodic oscillations of the parametrically 
excited pendulum: Left: time series, Right: P hase sp ace  
plot.

Numerically simulations show that there is another type oscillation which whose 

behaviour is poorly understood. An example of this new type of oscillation is 

shown in Figure 7.1. For this oscillation the amplitude is greater than tt with no 

rotation of the pendulum. It is essential if we are to have a better understanding 

of the dynamics of the parametrically excited pendulum to inaugurate a study 

specially targeted at understanding these types of oscillations and their relations 

with other dynamical responses of the parametrically excited pendulum.

(c) Oscillations About the Vertical Equilibrium: Of all the pendulum systems with 

external forcing, the parametrically excited pendulum is one of those with the 

same number of stationary points as the undriven pendulum namely, Û = 0 and 

0 = 7T. In the undriven case these points are always stable and unstable respec­

tively. In chapter 2, we only considered oscillations about the downward equi­

librium (Û, 9) = (0,0). A possible way of extending the work of chapter 2 is to 

consider oscillations about the vertical equilibrium [6,9') = ( tt , 0 ) .

(d) Rotations of Two Coupled param etrically Excited pendula: In chapter three 

of this thesis we considered rotating solutions of the single parametrically excited
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pendulum. We know very little about rotating motions of the two coupled para­

metrically excited pendula. A possible extension of the work in this thesis would 

be to consider the rotating motions of two coupled parametrically excited. Such a 

study would be to see if there are any differences between the rotating motion of 

the single pendulum and the coupled pendula.

(e) IVansition to Tumbling Chaos in Two coupled pendula: We have seen the tran­

sition of the single parametrically excited pendulum to tumbling chaos in chapter 

4 of this thesis. Although we discussed about synchronisation of chaos of two 

coupled parametrically pendula, very little is known about the actual transition to 

tumbling chaos when we coupled two parametrically excited pendula. A possible 

line of research would be to consider the transition of two coupled parametrically 

excited pendula to tumbling chaos and compare that with the transition of the 

single parametrically excited pendula discussed in chapter 4 of this thesis.

(f) Synchronisation in terms of symmetry: It is well-known that synchrony is 

the most symmetrical single state of coupled oscillators and that as coupling 

increases, the symmetry of coupled oscillators may be broken leading to other 

states. An important extension of the work of this thesis would to reconsider the 

whole problem of synchronisation of two coupled parametrically excited pendula 

in terms of symmetry of the system.

(g) Where will all this lead to: Once we understand the dynamics of a single pen­

dulum and two coupled pendula, especially their synchronous behaviour then the 

ultimate question to be addressed now is: If we now couple many such pendula 

together, and not just two, what can be said about their collective dynamics? Here 

the aim should be to consider the dynamics of large array of coupled parametri­

cally excited pendula modelled by the following system of equations:

ù j  =  F ( u j ,  a )  - h  C r ( u j + i  —  2 \ i j  - f  U j _ i ) ,  j  =  0 , 1 , 2 , A  —  1  ( 7 . 1 )
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where Uj G and F  : —> E ” defines the nonlinear vector field of a

single parametrically excited pendulum. In this case, we have =  {x j , y j } ^  

and F{uj) = { y j , —(5yj -  [1 +  pcos(cjf) sin(xj)]}^. Here Xj is the angular 

displacement, and yj is the angular velocity. The system parameters can be 

written as a  =  (/?,p, u j ) .

Using as reference point the synchronised state of two coupled parametrically 

excited pendula, we can aim to show that the system of ensembles of coupled 

parametrically excited pendula exhibits a pattern forming instability in which dis­

crete waves arise. Depending on the parameters, these structures can have a peri­

odic or chaotic waveform. We can study the routes connecting these behaviours. 

In particular, such a study would seek to establish if the dynamics of the two cou­

pled pendula is the same as for a large system of coupled pendula. It is essential 

to find out if the size of the system has any effect on the stability of the synchro­

nised states. Another issue that warrants investigation is to find out if the coupling 

strength required to bring about synchronisation in the two coupled parametrically 

excited pendula remains the same when we have a large ensemble of linearly cou­

pled parametrically excited pendula.
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