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Abstract

In Free Rings and their Relations, P.M.Cohn constructed a skew 

field from a prime matrix ideal using admissible matrices. When S 

is a lower multiplicative set of matrices over any non-commutative 

ring this method can be generalised to construct any epic 

S-inverting homomorphism upto isomorphism. This depends on the 

introduction of the concept of a S-matrix ideal. Every Z-inverting 

homomorphism gives rise to a Z-matrix ideal and conversely our main 

theorem shows that, given a Z-matrix ideal, an epic Z-inverting 

homomorphism can be constructed and that the matrices which are 

admissible for zero are precisely those lying in the Z-matrix 

ideal.

It is shown that the least Z-matrix ideal induces the 

universal Z-inverting homomorphism. A description of the least 

Z-matrix ideal is then obtained yielding a new description of the 

kernel of the Z-inverting homomorphism and a criterion for it to be 

an embedding; Malcolmson and Gerasimovs’ respective descriptions of 

the kernel are also proved.

When Z is taken to be the complement of a prime matrix ideal 

the construction reduces to that used by Cohn to construct a skew 

field.

It is further shown that the definition of a prime matrix 

ideal T can be simplified by restricting the class of matrices 

necessarily lying in "P to be the hollow and degenerate matrices. 

The condition that T be closed with respect to row determinantal 

sums can be dropped completely. As a consequence, Cohn’s criterion 

for the existence of a homomorphism from a ring to a field and the 

criterion for the existence of a field of fractions for a ring can 

be refined somewhat. For completeness Dicks and Sontag*s result



that Sylvester domains form the precise class of rings which have a 

universal field of fractions inverting all full matrices is also 

included.



Acknow1edgement

I wish to acknowledge the guidance received from my supervisor 

Professor P.M.Cohn. Without his constructive criticisms and 

suggestions this work would not have been possible. Also I would 

like to thank my joint supervisor Dr.W.Stephenson for his friendly 

help and advice.

This research was supported by a studentship from the Science 

and Engineering Research Council.



Contents

Abstract

Acknow1edgement

Chapter 1 S-Inverting Homomorphisms

Chapter 2 S-Matrix Ideals 15

Chapter 3 Universal Localisation 32

Chapter 4 The Criteria of Malcolmson and Gerasimov 40

Chapter 5 Prime Matrix Ideals 50

Chapter 6 Fields of Fractions 62

References 67



Chapter 1 S-Inverting Homomorphisms

We shall be concerned with inverting certain sets of matrices 

over a non-commutative ring or more generally homomorphisms which 

invert certain matrices. In the commutative case this reduces to 

inverting certain sets of elements of the ring since we can invert 

any square matrix A by adjoining an inverse of detA. However for a 

non-commutative ring we shall have to adjoin all the entries in the 

matrix's inverse. In this chapter we consider general Z-inverting 

homomorphisms and in particular the universal localisation at a set 

of matrices. We conclude with a description of the universal 

localisation in terms of the universal right localisation.

Definitions If R is any ring and Z a set of matrices over R then a 

ring homomorphism f:R— >S is said to be Z-inverting if every matrix 

in Z is mapped to an invertible matrix over S.

Similar notions of f being Z-right (left) inverting are clear.

If f:R— >S is a ring homomorphism and Z a set of matrices over 

R then we define R_ (S) as the set of all final components to2̂ , I

solutions u over S of equations,

Au=A where AeZf and A is a column over imf. (1) o o

When the context is clear we write R^(S) for R^ ^(S).

We will have to impose some restrictions on Z so we also make 

the following definition:

A set of matrices Z over a ring is said to be lower multiplicative
"A o'if A,B€Z implies that 

iate size and leZ.
C B

eZ where C is any matrix of the appropr-



Lemma 1.1 Let f:R— >S be a ring homomorphism and Z a lower 

multiplicative set of matrices over R. Then is a subring of S

containing imf.

Proof. If ceimf then c=af for some aeR and c satisfies the

equation l.u=af. Hence imf£R^(S), so R^fS) is non-empty containing 

in particular 0 and 1.
TLet p be the final component of the solution u=(u* p) of (1)

where A=(A*A ) and A is the final column of A and also let q be 
*  00 00

the final component of the solution v of Bv=B^ where BeZf etc. Then 

p-q is the final component of a solution w of the equation,

■ B* B00 0 0
W  =

■ Bo
0 A K A A00 00 o

T TNamely w=(v u,̂ p-q) is a solution. Similarly pq is the final 

component of a solution w of the equation,

■ B* B00 0 0
W  =

’ B 1 o
0 -Ao Â A00 0

T TThat is to say w=(v u^q pq) is a solution. This shows that R^lS) 

is closed under subtraction and multiplication and since we have 

already shown that leR^(S) we have that R^(S) is a subring of S as 

claimed. ■

Now any given equation (1) need not necessarily have any solution 

in S. However if f is Z-right inverting then every equation has a 

(not necessarily unique) solution. In this case we have the



following characterisation of R^lS)

Theorem 1.2 If R is any ring, S a lower multiplicative set of 

matrices over R and let f:R— >S be a Z-right inverting ring

homomorphism. Then xeR^CS) if and only if x is an entry in the

right inverse of the image of a matrix in Z.

TProof. (*=) X is (say) the ith entry in a column u=(u*u ) whichn
satisfies the equation,

Au = Oj AeZ^f; n^jeN .

[ê  is the column which is zero except in the Jth entry which is 

one and likewise e^ is zero except in the final entry.] If i=n then 

the conclusion follows by the definition of R^(S). Otherwise we 

note that the following holds;

A* A 0 0

C A A* A
00 *  00

T -, u.
' '%

Tu* - .

X

where C has as ith column -A and the rest zero. Since the matrix00

on the L.H.S. lies in Ef and e^ has entries in imf the conclusion 

follows.

(=>) X is the final component of the solution to (1). Now A has 

a right inverse over S, say B. Then

■ 1 0 ■ ■ 1 0 '

-A A u Bo .

= I

Hence x is an entry in the right inverse of an element of Ef.

This result highlights the one-sided nature of the definition of



R^(S). We shall return to this matter at the end of Chapter 2. When 

R^(S)=S for a Z-inverting homomorphism f:R— >S then we shall call f 

epic Z-inverting.

If we have an equation (1) then we have an important analogue 

of Cramer's Rule;

Proposition 1.3 Let R be any ring, Z a lower multiplicative set

of matrices over R and f:R— >S a Z-inverting homomorphism. If we

Thave an equation over S where u=(u* p) has final component

p, A=(A^A^)eZf and A^ is a column over imf then p is stably

associated to (A A^) over S.o *

Proof. If so we have

(A A.) = (A*A )
ul I

P 0
, and (^A^) is invertible over S.

Definition For a set Z of matrices over a ring R a universal 

Z-inverting homomorphism is a homomorphism X^:R— >R̂  such that any 

Z-inverting homomorphism f:R— >S factors uniquely through A via a 

homomorphism f^iR^— >S. The ring R^ is determined up to isomorphism 

by these conditions and is called the universal Z-inverting ring or 

the universal localisation of R. This was first considered by 

P.M.Cohn [1] and below is his proof of its existence. Similarly 

there is a universal Z-right inverting homomorphism A^^:R-^R^^.

Theorem 1.4 (Cohn) Let R be any ring and Z any set of matrices 

over R. Then there is a universal [right] localisation R^ [R^^J, 

unique up to isomorphism, with a universal Z-[right] inverting 

homomorphism

X^:R-^R^ [  ̂ '



Moreover, is" injective if and only if R can be embedded in

a ring over which all the matrices of S have [right] inverses.

Proof. For each mxn matrix A=(a^j) in Z we take a set of mn 

symbols, arranged as an nxm matrix A'̂ =(aĵ ) and take a ring 

presentation of [R̂ ]̂ consisting of all the elements of R, as 

well as all the a^^ as generators, and as defining relations take 

all the relations holding in R, together with the relations, in 

matrix form.

AA^=A^A=I for each AeZ. [ AA^=I each AeZ]

The mapping taking each element of R to the corresponding element 

of Rg [R̂ ]̂ is clearly a homomorphism X^:R— >R̂  [X^^:R— >R^^], which

is S-[right] inverting by construction. If f:R— >S is any Z-[right] 

inverting homomorphism, we define a homomorphism f^:R^— >S 

[f'̂ :R̂ —̂ >S] by putting xf^=xf for all xeR and for any matrix AeZ 

defining f̂  on (AX)  ̂by putting (AX) ^f^=(Af) ^. This gives a well 

defined homomorphism f̂ , because any relation in R^ [R̂ ]̂ is a 

consequence of the defining relations in R and the relations above 

and all these relations also hold in S. If there is a Z-[right] 

inverting homomorphism f which is injective then it must factor 

through X^ [X̂ ]̂ which then must also be injective. ■

It is now possible to show how R^ is related to R^^ when Z is a 

lower multiplicative set of matrices over R.

Lemma 1.5 If f:R— >S is a ring homomorphism and Z a lower 

multiplicative set of matrices over R then the set J_ of finalZ4 , I

components of solutions u to equations,

10



Au = 0 where AéZf

is a two sided ideal of R- -(S).
y  1

Proof, If p,q are the final components of solutions u,v

respectively to equations Au=0 and Bv=0 where A,BeSf then p-q is 

the final component to the solution w of

B« B 0 0
*  00

0 A A* A
00 *  00

W  = 0

J^(S) is non-empty since zero is easily seen to be a member. If

reR^CS) and (2) holds then Aur=0. It remains to show closure under

multiplication by elements of R^CS) on the left. By the definition

of R^tS) r is the final component of the solution v to say Cv=C^

where CeEf and C has entries in imf. Then rp is the finalo ^
component of a solution w of,

A* A 0 0
*  00

0 -c c* cO * 00

w = 0,

Hence rpeJ^(S) and J^fS) is a two sided ideal of R^fS)

When Z is lower multiplicative then by Lemma 1.1 we have that 

Rg X a subring of R^^ and from the ring presentation

construction of the universal E-right inverting homomorphism and 

Theorem 1.2 it is clear that R^(R^^) contains all of the generators 

of R^^ hence R^(R^^)=R^^. Consequently R^^ has a two sided ideal J 

where every element of J is the final component of the solution u 

to an equation Au=0 where AeEX^^.

11



Theorem 1.6 If R is any ring, S a lower multiplicative set of 

matrices over R then the universal Z-inverting homomorphism 

factors through the universal Z-right inverting

homomorphism as follows;

where J is the two sided ideal of R^^ consisting of final 

components of solutions to equations Au=0, and v is the
-I

natural homomorphism . Also kerX^=X^^(J).

Proof. Write A=A^^.y then A is Z-right inverting since A^^ is 

Z-right inverting.

Now we shall denote by r the equivalence class of R^^/J which

has r as a representative. If Âu=0 in R^^/J where AeZA^^ then we

have an equation (A+U)(u+U2 )=Ugin R^^ where tl.û  and u^ all have 

entries in J. Expanding and rearranging we get

Au = Ug - Au^ - Uu “Uu^ .

All the terms on the right hand side are over J since J is a two

sided ideal of R^^- Say Au=u^eJ. Since A lies in ZA^^ it has a

right inverse, B say. Then Au=ABu^ and so A(u-Bu^)=0 in R^^- Hence 

by the definition of J the final component of u-Bu^ lies in J. But

again Bu^ has entries in J since u^ is over J, so the final

component of u lies in J also. Therefore the final component of u 

is zero. It is straightforward to show that the other entries in u 

are zero since we can use the trick employed in Theorem 1.2 to

write an equation in which they occur as final components. We have

shown therefore that Xu=0 implies that u=0. Since 
Â(BÂ - I) = (ÂB)Â - Â = IÂ - Â = 0,

12



we must have BA-1=0 and we see that A is S-inverting.

Any Z-inverting homomorphism f:R— >S factors through the 

universal Z-right inverting homomorphism via a unique homomorphism 

say.

(Z

 ̂ SR

Now JÇkerf'since otherwise there is an equation in which a member 

of Zf is a left zero divisor. Hence f^ factors through v and the 

following diagram commutes.

(Z

./J(Z

 ̂ SR

. / /

So f factors through A via f'̂'̂ and this is unique by the uniqueness 

of so since A is Z-inverting we see that A is the universal 

Z-inverting homomorphism. Also it is immediate that kerA^=A^^(J). ■

In fact P.M.Cohn has shown in [2] that any ring R can be embedded 

in a fully right inversive ring S such that every left regular 

matrix over R is mapped to a right invertible matrix over S. What 

this implies is the following:

Theorem 1.7 (Cohn [2]) If R is any ring and Z any set of matrices 

over R then the universal Z-right inverting homomorphism is an

13



embedding if and only if Z does not contain any right zero 

divisors. u

14



Chapter 2 Z-Matrix Ideals

This chapter contains our main construction. From the 

definition of a Z-matrix ideal given later we generalise Cohn’s 

construction using admissible matrices (Chap.7 [1]) to show that 

every Z-matrix ideal gives rise to an epic Z-inverting ring 

homomorphism and conversely every Z-inverting homomorphism factors 

through such a map.

From Theorem 1.2 we see that when Z is lower multiplicative 

then formally attaching to a ring R the entries in right inverses 

of elements of Z is equivalent to attaching the final components of 

solutions u to equations Au=A^, where AeZ. This latter system is

more conveniently written (A A* A ) where A=(A*A ), A is the
O  *  00 *  CO CO

final column of A and A,̂ the remaining columns of A. The matrix

(A*A )eZ which we aim to invert will be called the denominator of
*  CO

the admissible matrix (A A#A ); the matrix (A*) will be called the
O  OO *

core; and noting Cramer’s rule (Proposition 1.3), the numerator of

the admissible matrix is the matrix (A A*).o *

Definition If R is any ring and Z a lower multiplicative set of 

matrices over R then we define to be the set of all admissible 

matrices, i.e. all matrices A such that A=(A A*A ) with (A*A ) e Z
O  *  CO *  CO

and A^ a column over R. For any two admissible matrices A,B we will 

write A->B if they are obtainable from each other by a series of the 

following invertible permissible operations;

(a) row operations, i.e multiplication on the left by an 

invertible matrix over R.

(b) column operations within the core Â  ̂ over the 

characteristic ring and we also permit the addition of a right 

multiple (over the characteristic ring of R) of a column of the

15



core to i.e. this amounts to multiplication on the right by a

half bordered matrix over the characteristic ring of R where a half

bordered matrix is an invertible matrix of the form 1©Q where the
Tbottom row of Q is e .

The above relation is easily shown to be an equivalence and by 

we shall understand M^/^. Any application of the above 

operations will be denoted by an arrow.

Definition. If f:R— >S is a Z-inverting homomorphism then 

(A A*A )eM_ is said to be admissible for zero under f ifO * 00 &

e^(A*fA f)"^A f=0. Similarly a subset of M_ is said to be00 • CO o &
admissible for zero under f if every member of the set has that 

property.

We now proceed by defining a commutative semigroup structure 

on as follows;

A □ B =
B B* B 0 0O * 00

A 0 -A A
O  OO *  00

(1)

Firstly this is compatible with the permissible operations (a) and

(b), i.e. if A^A then AoB^AoB etc., and hence is well defined.

Also AoB e since Z is lower multiplicative and A and B are 

admissible. Now we verify that □ is an associative operation:

(AdB)dC = B 0 0 B. B 0 0O * 00

A 0 -A 0 -A A* AO 00 00 *  00

16



c c. c 0 0 0 0o * 00

B 0 -B B» B 0 0o 00 * 00

 ̂ 0 0 0 -A A* Ao oo » c

= Ad (BdC)

So forms a semigroup with respect to this operation.

Commutativity follows as easily;

r B o B» B00 0 0 Ao 0 -A00 A* A00
A □ B = -»

Ao 0 -A00 A* A00 Bo B* B00 0 0

r Ao A* A00 0 0
= B □ A •

Bo 0 -B00 B* B00

It is also possible to define another binary operation on 

multiplication, which is also associative.

A.B =
B B* B 0 0

O  *  00

0 0 -A A* A
(2)

Again this is compatible with the permissible operations and so is 

a well defined binary operation. Also since Z is lower 

multiplicative A.B lies in if A and B lie in M̂ . The operation 

is immediately seen to be associative. Hence we have shown;

Proposition 2.1 If R is any ring and Z a lower multiplicative set 

of matrices over R then the set of admissible matrices is a

17



commutâtive semigroup with respect to addition "n' defined by (1) 

and is a semigroup with respect to multiplication defined by

( 2 ) . ■

We now investigate when can have a ring structure imposed 

on it. First we need a lemma on commutative semigroups. If H is a 

subset of a commutative semigroup then H is said to be unitary if 

aeH and a+beH imply that beH. The following is a commutative 

version of a result from Clifford and Preston [3].

Lemma 2.2 Let S be a non-empty commutative semigroup, U a unitary

subsemigroup of S and let there exist a unary operation ^:S— >S 

such that m+nFeU for any meS. Then the relation 'J  defined by

ajb iff 3 xeS; a+x, b+x eU (3)

is a congruence on S, the quotient S/ is an abelian group and 

moreover if e is a représentât ive of the equivalence class which is 

the identity in S/ then a e if and only if aeU.

Proof. It is clear that ' ' is symmetric by definition and a+a°eU 

for any aeS hence a a. If a b, b^c with a+x, b+x, b+y, c+yeU then 

a+x+b+y=(a+y)+(b+x) €U. Since U is unitary and b+xeU then a+yeU and 

a c. Also for any deS we have (a+x)+(d+d°), (b+x)+(d+d°) eU hence 

a+d b+d and we have established that (3) defines a congruence on S.

Let SAJ denote S/^ the quotient semigroup which is commutative 

since S is commutative. Since U is closed under addition it is 

clear that U is contained in a single equivalence class. Conversely 

if b^ueU then b+x, u+x €U so ueU implies that xeU which in turn 

implies that beU. We denote the equivalence class of U by 0. Now 

b+0=b in SAJ since e,b+e+xeU imply that b+xeU and x=(b+e)° gives

18



b+e+xeU. So 0 is the identity element in SAJ. That SAJ is a group 

follows since b+b°eU for any beS. ■

If S is a lower multiplicative set of matrices over a ring R 

then we consider the case when S is taken to be the commutative 

semigroup of admissible matrices with respect to addition *□’. In 

this case U will be the unitary subsemigroup of admissible matrices 

which are going to represent zero in the quotient semigroup. We 

know that the unary operation ^  corresponds to finding an

additive inverse for each meM^AJ. Within our construction we define 

such an operation by

(A A* A = (-Â  A^ A )O * 00 O CO (4)

Since if (A* Â ) is invertible (under some homomorphism to a ring) 

then, e^(A*A ) ^(-A )= -e^(A*A ) ^A . Taking (4) as the definition
00 * 00 o 0 0 ^ 0 0  O

of the unary operation we see that U must contain all matrices of

the form (A A*A )o(-A A*A ). This sum can written as follows:
O  *  00 O  *  00

r - A o K  A* 00 0 0
-»

-Ao A* A* 00 0 0

AL O 0 -A00 A* A* 00 0 0 0 A» A* 00 J

In fact we shall impose a stronger condition on U. Define jg to be 

the set of admissible matrices which after a sequence of 

permissible operations can be written;

K K 0 o
0 0 L

where K,LeZ and K is a column, o

Certainly it is easy to see that any matrix in jg must be admissible 

for zero under any Z-inverting homomorphism. For this reason f will

19



be called the minimal set of matrices admissible for zero. It is

important to realise that £ need not contain all the matrices 

admissible for zero. We are now in a position to define a Z-matrix 

ideal.

Definition Let R be any ring and Z a lower multiplicative set of 

matrices over R. Then a Z-matrix ideal 11 of R is a well defined 

subset of Mg with the following properties:

(i) 11 contains £, the minimal set of matrices admissible for zero.

(ii) 11 is an additive unitary subsemigroup of Mg.

(iii) 11 is a multiplicative semigroup ideal of Mg.

We note that the intersection of any family of Z-matrix ideals is

also a Z-matrix ideal and hence we can talk of the least Z-matrix 

ideal which we shall write Ug. This Z-matrix ideal has important 

properties which are taken up in the next chapter. Now we 

investigate the properties of a general Z-matrix ideal. Firstly we 

note that it is straightforward to prove that a Z-inverting 

homomorphism gives rise to a Z-matrix ideal.

Lemma 2.3 Let R be a ring, Z a lower multiplicative set of

matrices over R and f:R— >S a IL-invert ing homomorphism then

Z-Kerf={(A A A )eM-\e^(AfA f) Â f=0} is a Z-matrix ideal, m O  ̂00 Z ' o o ^ o o  o

Given a Z-matrix ideal for a ring R we can construct an R-ring as 

follows;

Theorem 2.4 Let R be any ring and let Z be a set of lower 

multiplicative matrices over R. If XL is a Z-matrix ideal of R then 

Mg/11 has a ring structure and the map — >Mg/ll given by =

20



(r 1) is a ring homomorphism from R to Moreover is the

zero ring if and only if

Proof. From the above remarks U satisfies the conditions of Lemma 

2.2 with respect to the unary operation defined in (4). Applying 

Lemma 2.2, Mg/11 is an abelian group under ‘a’ and we have A B if 

and only if AoB°ell. Since Mg has a multiplication defined on it we 

define multiplication on Mg/11 in the obvious way. It remains to be 

shown that this operation is well defined. However we can prove the 

following identities in Mg/11 for any (A^A^),?€Z by noting that 11 

contains £.

0 P 0 0

A Q A* A
(A A. A ) (5)

B P B* BO * 00

A 0 A* AO *  CO

(A A. A ) (6)

whenever the denominator of the l.h.s of (6) lies in S. We prove 

these by showing (L.H.S.)o(R.H.S)°ef, so we have for (5);

r - A o A* A
CO

0 0 0 ' -Ao A* A00 0 0 0

0 0 0 p 0 0 -* 0 0 0 p 0 0

AL O 0 -A
CO Q A* A

CO -J
0 0 0 Q A^ A

CO -J

and similarly for (6);

■ -Ao A* A
CO

0 0 0 ' -Ao A* A
CO

0 0 0
Bo 0 -B

CO
p B

CO
-* B

0 -B* -B
CO

P B* B
00

AL O 0 -A
CO

0 A* A
CO

0 0 0 0 A* A
CO J

21



■ -Ao A* A00 0 A* A00 ■ -Ao A* A00 0 0 0

Bo -B* -B00 P 0 0 -> Bo -B* -B00 P 0 0

0 0 0 0 A* A00 -J 0 0 0 0 A* A00 J

ejg

These identities can in turn be used to show that the distributive 

identities hold in

A. C □ B. C 

C.A □ C.B

(A □ B).C 

C.( A □ B)

(7)

(8)
[We note for future use that we actually show here that A.C □ B.C □ 

{(A □ B).C>°eiS and similarly for (8).] The l.h.s. of (7) is, (with 

a dot representing a zero);

C C* C

—B B^ B

-A -A A^ A

C C* C

—B B^ B

-A . -A . -A A^ A

which by (5),

C C* CO * 00

-B B^ B

-A . -A A* AO 00 *  CO

= (A □ B).C

22



And again the l.h.s. of (8) is,

B B* B

. -c c

-c
A* A

-C C* C

B B* B

-C C

A . -AO 00 A* A

C -C* -C
o *  oo

-c C

After adding the second row block to the fourth row block we can 

apply (6) to get;

B B* B
O  *  CO

A . -A A* AO  00 * 00

-C C. C

= C.(A □ B)

We can also use (5) and (6) to establish the existence of a 

multiplicative identity element (1 1) since we have;

(A AjkA ). ( 1 1 ) —O * 00

' 1 1 .  . 1 1
-»

. - A  A *  A A  . A *  AL O  * 00 -1 L o * 00-1

(A A.A )

Also we note that similarly;

(1 1).(A A*A )=O OO

A A* A A A* . AO * 00 0 * 00-». —1 1 . —1 1
(A A.A )O * 00

23



We can now show that multiplication is well defined. Suppose that

A^B i.e. that AdB°€ÎI. Then we require that A.C B.C and C.A C.B for

any CeM^. Now A.C B.C if and only if A.Cd (B.C)°^0. It is an easy

check that (B.C)°=B.C°=B°.C in M_. Hence A.Cd (B.C)° A.CdB°.C and2, ^
using the distributive identity (7) we get A.Cd (B.C) 

,o
(AdB ).C

and AoB~^ 0 so it suffices to show that if A O then A.C 0. 

Similarly on the l.h.s. we require that C.A 0. But this is 

precisely the condition that tl is an ideal w.r.t. the 

multiplicative semigroup structure of M̂ . Hence M̂ /11 has a ring 

structure.

Now define a map R— >M^/U by A^(r) = (r 1). We observe 

immediately that A^ preserves 1 and the following identities show 

A^ to be a ring homomorphism.

(r 1).(s 1) = ’ s i  .' s 1
. -r 1 -» rs . 1 (rs 1)

(r 1) □ (s 1) = ' s i . ' s 1
r -1 1 -» r+s . 1 (r+s 1)

That M^/U is trivial precisely when follows from Lemma 2.2

From now on we will denote M̂ /ll by R^. In fact the above 

homomorphism is Z-inverting but first we require a lemma.

Lemma 2.5 Under the conditions of Theorem 2.4 we have the 

following identities in

(i) (A A^A ) o (B A^A ) = (A +B A^A )
O  O  * 00

(ii) If peR^ has as an admissible matrix (A^A^A^) then p=l in R^.

(iii) (A A^ A ) = (A +A*q A^ A ) when q is a column of the
O  * m  O  OO ^

appropriate size over the characteristic ring of R.
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Proof, (i) Writing out the l.h.s. we have

■ Bo A* A00 0 0 r B A.o * A00 0 0

Ao 0 -A00 A^ A00 A +B 0 o o 0 A* A00

which by (6) is equivalent to (A +B A* A ).O O * 00

(A A*A )□(! 1)° = 
00 ^  00

The final matrix on the r.h.s. lies in and hence is equivalent to 

zero.

■ -1 1 0 0 -» ■ -1 1 0 0
A -A00 00 A* A * 00 0 0 A* A* 00

(iii) (A A.A )
O  *  00

1 1 0 0 -> 1 1 0  0 '
A 0 A* AO * CO Ao+A*q A*q A* A^

(The second operation here is acheived by row operations.)

1 1 0  0 
A +A*q 0 A* AO * * 00

(A +A*q A* A )O 00

(The first operation is permitted by column operations within the 

core.) ■

[ n.b. when two matrices differ in one column only e.g. A^iA^A*),

B=(B A. ) then the determinantal sum of the two matrices is defined o *
w.r.t. that column and is written AVB=(A +B A*). This is developedo o *
later in Chapter 5. In (i) above we have shown that in the 

determinantal sum w.r.t. the initial column is admissible for the 

sum of the two elements represented by the original two matrices.]

Theorem 2.6 Under the same hypotheses as Theorem 2.4 the

homomorphism is epic 71-inverting.
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Proof. Let A=(A*A )eS . We shall denote the (i,j)th element of A
00 n

by a. . and the kth column of A by A,. Also if K n  we will write ij k
Â ^̂  for the square matrix whose columns are all zero except the 

ith which is -A and the nth which is A ; for i=n define Â ^̂ =0.
OO CO 00

Let B be the square matrix over whose (i,j)th element, b^j 

has as an admissible matrix

ê  A 0 

e Â ^̂  A
J OO

Then we can show that B is a left inverse for X^(A) over R^. If S 

admitted column permutations then we could (as in Cohn [1] for his 

skew field construction) define a simpler admissible matrix for b 

but we shall use the above. Then we have
iJ

where the r.h.s. has an admissible matrix;

-ej A

-e. Â ^̂  A
1 00

Considering the jth individual summand we see that after adding the 

top row to the j+1 th and n+j+1 th row we have;

*jk 1

ajkCj • 

"jk"j • A<‘> A00
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which simplifies by (6) hence,

We notice that each summand is only dependent on J in the first 

column so we can apply Lemma 2.5(1) inductively to obtain;

If i^k then by simply subtracting the relevant two columns (k#n) or 

relevant column (k=n) from the first column we get a zero initial 

column hence;

(BA^(A))^^ = 0 for i#k.

For i=k there are two cases. Firstly if i=k=n then and00

subtracting the (n+l)th column from the first we see that the 

initial and final columns agree since A^=A^. By Lemma 2.5 (ii) we 

have an admissible matrix for 1. Secondly if i=k*n we have;

4 ..A^... .A00 0 ■ ■ 0 A 0 ■
-»

A.+A Â ^̂  1 00 00/ i 0 0 ..-A 0.
CO

.A00 A A

and subtracting the (n+i+l)th column from the first we can again

apply Lemma 2.5 (ii) to obtain a matrix that is admissible for 1.

Hence we have proved that (BA^(A)).,= ô., and B is a left inveseU ik ik
for the image of A under A^.

If V  has as admissible matrix (A A*A ) where (A»A )€Sn i l  0 * 0 0  * 00 n
then we can show that there is an equation in R^;
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(9)

where each has as an admissible matrix

' Ao A 0

Ao a “ > a00

To prove this we shall take n=2 for simplicity. The proof for

larger n is entirely ana1ogous. Then the ith row of the l.h.s. of

(9) has as an admissible matrix;

■ A A 0  ■ ' A A 0 ■
(-a 1) □ (a 1).lO 11 A° A»>O CO

A □ (a^2 1>-
O 00

(2)However since n=2 A =0 and
00

A A 0o
A 0 Ao

(Â A) by (6)

So we have,

■ Ao *2 0 0 0
■ A A. A 0 1

(-*10 "  ° Ao ^2 *2 0 □ o 1 =

0 0 0 0 -*11 1 0 0 “^12  ̂-

Ao *2 0 0 0 0 0 0 0

0 0 "^12 1 0 0 0 0 0 0

Ao 0 0 0 ^2 0 0 0 0

Ao 0 0 0 -^2 ^2 \ *2 0 0

0 0 0 -1 0 0 0 -*11 1 0

-a. 0 0 0 0 0 0 0 -1 110

28



After adding the seventh and the eight columns to the fifth and 

then subtracting the third row block from the fourth we get;

Ao *2 0 0 0 0 0 0 0

0 0 ”^i2 1 0 0 0 0 0 0

A0 0 0 0 \ ^2 0 0 0 0

0 0 0 0 0 0 \ *2 0 0

0 0 0 -1 -*il 0 0 -*il 1 0

^ o 0 0 0 0 0 0 0 -1 1

which by (5) is equivalent to,

Ao *2 0 0 0 0 0

0 0 -»12 1 0 0 0 0

Ao 0 0 0 ^2 0 0

0 0 0 -1 -*il 0 1 0

-a. 0 0 0 0 0 -1 1lO

Similarly by repeating this process we get

A A, A_ 0 0 0o 1 Z

0 0 -a_2 1 0 0

0 -a_^ 0 - 1 1 0

■a. 0 0 0 -1 110

After several row operations we can reduce this to

Ao Ai A, 0 0 0
0 0 -a_2 1 0 0

0 -a_^ 0 - 1 1 0

0 0 0 0 0 1
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which we see lies in iC. Hence we have shown that (9) holds and 

taking 4^=0^ (j=l to n) we have that the image of A has a right 

inverse over R^. Hence by Theorem 1.2 every element of is an 

entry in the inverse of the image of an element of S and A^:R— >R^ 

is epic S-inverting. ■

Corollary If R is any ring, S a lower multiplicative set of 

matrices over R and tl a Z-matrix ideal then Z-KerA^=ll.

Proof. If we have an equation (9) in R^ then v^ is unique since

(A*A is invertible. Hence if v is zero then (A A.A )€Îl or else
* 0 0  11 n o * CO

it is admissible for a non-zero element v and we have the samen
equation by what precedes (9), which is a contradiction. ■

We have the following result which shows that a general Z-inverting 

homomorphism will factor through certain homomorphisms X^:R— >R̂ .

Lemma 2.7 If R is a ring, Z a set of lower multiplicative matrices 

over R, f:R— >S a Z-inverting homomorphism and U a Z matrix ideal 

such that U£Z-Kerf then f factors uniquely through

Proof. Define a man f̂ :R..— >S bv (A A.A )l— > e^CA.fA f) ^A f.----------------------- U  O * 00 I 00 * 00 O

We know that this map is linear and multiplicative by construction 

(e.g. Lemma 1.1, 2.3). Hence to show f'' is well defined it suffices 

to show that if (A A*A ) 0 in R̂ . then (A A*A )f̂ =0, but this isO * o o ~  u o * 00

precisely the property that 11 has since 11 is admissible for zero 

under f. If reR then rA^f^= (r l)f'= l.rf= rf. Hence f factors 

through X^. Suppose f also factors through X^ via f̂ '. If v^eR^ 

with admissible matrix (A A*A ) then we have an equation (9) as in
O  *  OO ^

Theorem 2.6 taking the image of this equation under and f̂  ̂we
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see that v f'=v since is Z-inverting.n n II U

There is an alternative way of doing this whole construction

using rows as opposed to columns. The set of matrices S will then

have to be upper multiplicative and our set of admissible matrices

will be given by A=

matrix A lies in

where a^ is a row and the remaining

Z with final row a .00

The two binary operations are then;

A □ B =

b a ao o o
b* . A. B =
b -a a -b
00 CO 00 o

b*
a b
00 CO

The minimal set of admissible matrices for zero !£. consists of all 

matrices which after a series of permissible operations (these 

differ also) can be written in the form below;

, where K,LeZ and k is a row.o

This we shall call the dual construction. We do not go into detail 

here but much is analogous to the proofs used above. In the next 

chapter we shall quote without proof the dual of our results on 

universal localisation.
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Chapter 3 Universal Localisation

We start by showing that the universal Z-inverting 

homomorphism is the R-ring constructed from the least Z-matrix 

ideal We then proceed to describe in terms of the minimal 

set of matrices admissible for zero and once this is achieved we 

have a description of the kernel. Having determined kerX^ we give a 

necessary and sufficient condition for the universal Z-inverting 

homomorphism to be an embedding.

Theorem 3.1 If R is any ring, Z a lower multiplicative set of

matrices over R and 11̂  the least 'Z-matrix ideal then the universal

Z-inverting homomorphism is given by :R— .
Z Z

Proof. Let <r be the collection of all Z-inverting homomorphisms 

then 11=0/ ,Z-Kerf is a Z-matrix ideal which is admissible for 

zero under all Z-inverting homomorphisms. Hence by Lemma 2.7 every 

f€(T factors uniquely through X^:R— which is itself a Z-inverting 

homomorphism by Theorem 2.6 i.e. this is the universal Z-inverting 

homomorphism. Since 11̂  is the least Z-matrix ideal we have but

since Z-KerX^ =11̂  by the corollary to Theorem 2.6 we have 11̂ 211 and

we have proved the result. ■

Now we proceed to describe 11̂ .

Lemma 3.2 Let R be a ring, Z a lower multiplicative set of 

matrices and £ the minimal set of admissible matrices for zero. 

Then £ is an additive subsemigroup of and a multiplicative ideal 

of
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Proof If and lie in it then by definition we have;

A A ■ C C . .o o
B* B

*  CO
• D* D 

*  00

where A, ), C and (D*D ) lie in Z; A and C are columns over* 00 * CO o o
R. Then we have;

c cO
D* D

. -B B* B

C C o

D* D
*  c

. -B B* B

C C

D* D
*  e

. -B B* B

6 it

Hence so iC is an additive subsemigroup of

If now (E E*E )=E is any admissible matrix then we have theO * 00

following;

L^.E -» E E* EO * 00
-A A o e it

and also;
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E.L^ A A o
B* B 

*  00
-E Eo

So jg is also a multiplicative ideal of ■

Now we require a lemma on commutative semigroups.

Lemma 3.3 If H is a subsemigroup of a commutative semigroup S 

then H:H = {aeS\3beH;a+beH) is the least unitary subsemigroup of S 

containing H.

Proof Firstly H:H is a subsemigroup of S. For if a,ceH:H then 

there are b,deS such that b,a+b,d,c+deH. Then (a+b)+(c+d) 

=(a+c)+(b+d)€H and b+deH, hence a+ceH:H.

H:H is unitary since if a+b,beH:H then there exist c,deH with 

(a+b)+c,b+deH. So b+c+deH and a+b+c+deH hence aeH:H.

If K is a unitary subsemigroup of S containing H then aeH:H 

implies that there exists beH with a+beH. So b,a+beK and since K is 

unitary aeK. Hence K2H:H. ■

Applying this to U, an additive subsemigroup of we see that 11:11 

is the least unitary subsemigroup containing 11.

Lemma 3.4 If R is any ring, Z a lower multiplicative set of 

matrices and ll2i? is an additive subsemigroup and a multiplicative 

ideal of then 11:11 is the least Z-matrix ideal containing 11.

Proof From the above remark the result will follow if we can show 

that 11:11 is a multiplicative ideal of M̂ .
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If A€ îl:U then there exists Bell such that AaBetl. Now let C be 

any admissible matrix in then from the remark succeeding (7) and 

(8) in Theorem 2.4 we have;

{C.(AdB)>° □ C.A □ C.B e f Ç U:U

Since Bell and II is an ideal we have that C.Bell. So since II:II is 

unitary the following holds;

{C.(AdB)>°d C.A € U:U

Now C?(ADB)ell by the same argument that holds for C.B. And in we 

have C°.X=(C.X)° so again since II: II is unitary we have that 

C.Aell:ll.

The argument showing A. Cell: U follows in exactly the same 

manner using the distributive law on the other side. ■

By applying this to Ü we have;

Theorem 3.5 If R is any ring and S a lower multiplicative set of 

matrices over R then the least Z-matrix ideal is !£,:!£. where £ is 

the minimal set of matrices admissible for zero. ■

Corollarv If M is an additive unitary subset of which contains 

a, the minimal set of admissible matrices for zero, and every 

admissible matrix in M necessarily represents zero under any 

Z-inverting homomorphism then M is the least Z-matrix ideal.

Proof M contains £ so M:M contains £:£ which is the least 

Z-matrix ideal from the above. However M is unitary so M:M is just 

M and hence we have that M contains H^. Conversely since all 

admissible matrices in M represent zero under any Z-inverting 

homomorphism M must be contained in the least Z-matrix ideal. ■
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Now we have our description of the kernel of the universal 

S-inverting homomorphism.

Theorem 3.6 If R is any ring and Z a lower multiplicative set of 

matrices over R then reR lies in the kernel of the universal 

'L-inverting homomorphism if and only if there exists an equation:

A^Q = (A r ^)Z 
^  00 (1)

Where (A^A ) and Z lie in Z, Q has entries in the characteristic 
^  00

ring, and ^ is some matrix of the appropriate size.

Proof An element r of R lies in the kernel if and only if (r 1)

lies in which we have shown is Then by the definition of

we must have an equation; {(U^U)0V>a(rl)eiS where U,VeZ. Hence 

we get a matrix equation as below.

r 1 . . .
U . U . .0
. -V . V V

CO * CO

Q Q11 12
Q Q21 22
Q Q31 32
• e

CO

p P11 12
p P21 22
P P31 32

M

Where are columns; U,(V^^V^),L,M€Z. The half bordered matrix

together with the other invertible matrix (with entries in the 

have been blocked appropriately. From this we can obtain directly 

the following matrix equation;

■ r 1 . ■ ■ 1 . r p 111
. -V V • Qi. —

CO * p
- Q 3. 31

[ L ] (2)

After eliminating by row operations this gives us the equations,
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V r=P ''l and V.Q = P L̂, where P  ̂ is the transformed P (after00 31 O * 31 31 31 31
eliminating by row operations). Rewriting these in the following 

form we have proved the necessity of the result.

V*(0 Q_) = (V r P/)
31 00 31

1 0
-L L o

It is a straightforward calculation to show that the condition is 

also sufficient and this is discussed below. ■

We also have the dual result:

Theorem 3.6* If R is any ring and Z an upper multiplicative set 

of matrices over R then reR lies in the kernel of the universal 

Z-inverting homomorphism if and only if there exists an equation:

Qi*= Z rl (3)

where Z and €Z, Q has entries in the characteristic ring and

 ̂is some matrix of the appropriate size. u

From this description of the kernel we can state a necessary and

sufficient condition on a ring for the universal Z-inverting

homomorphism to be an embedding. If we have an equation (1) for

(A*A )eZ where r is non-zero we shall say that (A*A ) is a column 
*  00 *  00

Z-zero divisor (and for an equation (3) we say row Z-zero divisor)

since if Z is right-inverted (A*A ) becomes a left zero divisor via
*  00

the first column in the expression below;

,-iA^QZ =(A r *).

Hence we have the following.
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Theorem 3.7 If R is any ring, Z a lower maltiplicative set of 

matrices over R then the universal Z-inverting homomorphism is an

embedding if and only if Z contains no column Z-zero divisors. m

And the dual result:

Theorem 3.7* If R is any ring, Z an upper multiplicative set of 

matrices over R then the universal Z-inverting homomorphism is an

embedding if and only if Z contains no row Z-zero divisors. m

There is a special case where this condition simplifies.

Lemma 3.8 If R is any ring, Z a lower multiplicative set of 

matrices and if £ the minimal set of admissible matrices for zero 

is closed w.r.t. first column determinantal sums then the universal 

Z-inverting homomorphism is an embedding if and only if Z does not 

contain a left zero divisor.

Proof If Z u=0 in R where Z eZ and u is a non-zero column over R   1 1
then in we can cancel the image of Ẑ  to show that the

components of u must lie in the kernel. Conversely we have;

■ r 1 . • • ■ . 1 . • ■ r 1 . . .
U . Uo • V -u . uo • — . . U . .
. -V .00 V* . -V .

CO V. . -V . V. V
CO *  GO

If r lies in the kernel then by Theorem 3.5 there exist U, (V*V )eZ
*  00

and U a column such that the first matrix on the l.h.s. lies in £. o
After permuting some rows and columns of the second matrix on 

the l.h.s. we see that it lies in £. Hence by hypothesis the r.h.s. 

must lie in f also. After adding left multiples of the top row to

38



rows within the bottom row block and then a column operation we 

see that there exist invertible matrices P and Q where Q is half 

bordered such that there is a factorisation.

r 1

V r .00

U
1

V. V

L L o Q

Equating first and last columns on both sides and noting that Q is 

half bordered we see that,

1 L ■ 1 *

V
CO

r = o and P
V
CO

where an asterisk denotes a non-specific column and q is also a 

column. Hence if r is a non-zero member of the kernel then we have 

a non-trivial column u such that (M*M )u=0 as required. ■
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Chapter 4 The Criteria of Malcolmson and Gerasimov

The results of the previous chapter now enable us to prove the 

results of Malcolmson and Gerasimov respectively on the kernel of 

the universal Z-inverting homomorphism. Of course this can be 

achieved directly by using the equations in (2) of Theorem 3.6 in 

the previous chapter but we shall verify what amounts to their 

description of the least Z-matrix ideal by using the corollary to 

Theorem 3.5.

Malcolmson’s construction, using a so called "zigzag" method,

constructs as a set of equivalence classes of triples (b,A,c)

where b is a row, c a column and A lies in Z. The equivalence class

of (b,A,c) is to be interpreted as the element bA c of R̂ . In the
T — 1present construction we are considering elements e^A Â . Hence by 

substituting b=e^ and c=A we can determine Malcolmson’s00 O
Tdescription of the elements (e^,A,A^) which lie in the equivalence 

class of (1,1,0) i.e. those admissible matrices which represent 

zero and therefore lie in Û .
TIn Malcolmson [4] we see that (e ,A,A ) (1,1,0) if there exist
CO O ~

L,M,P,QeZ, rows j and u the sizes of L and P, respectively, and 

columns w and v the sizes of M and Q, respectively, such that

A . . .  A(

M w

J ■

[Q V]

In fact we can simplify this slightly. We shall prove the following 

theorem which is essentially Malcolmson’s description of the

least Z-matrix ideal. Then we will gain a description of the kernel
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of the universal Z-inverting homomorphism which is Malcolmson’s 

criterion without having used his "zigzag" construction. However 

our result will have to be slightly less general.

Theorem 4.1 If R is a ring and Z a lower multiplicative set of 

matrices closed w.r.t. multiplication on the left and right by 

elements of GL(R) then the least Z-matrix ideal consists

precisely of those admissible matrices iA A^A ) for which thereO * 00

exist matrices L,M,P,Q^Z ; rows J and u the sizes of L and P 

respect ively; and columns w and v the sizes of M and Q 

respect ively, such that there exists a factorisât ion (1) below.

. L . .
M w

J j  . .

[ Q V ]
(1)

Where A=(A^A ).

Proof Such a factorisation will be called an allowable

factorisation for (A A*A )
-------------------- O  * 00

Given the R.H.S. of (1) we note that we can perform certain 

elementary operations viz. if S,l€GL(R) and t is any column of the 

appropriate size then,

S 0 

0 1 u

[ Q V ] I t 

0 1

SP

u

[ QT Qt+v ]

Consequently we can apply these restricted operations to both sides 

of (1) and maintain the form of the factorisation on the R.H.S.. 

Any application of these restricted operations will be denoted by
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an arrow. We note that given a factorisation (1) for an admissible 

matrix A then by using these restricted operations we can obtain an 

allowable factorisation for any matrix obtainable from A by a 

series of permissible operations. Hence U is a well defined subset 

of Mg. We can now proceed to show that U is the least Z-matrix 

ideal by using the corollary to Theorem 3.5. Observing the 

following factorisation;

K .
. L

K I . .
. L .

K . . K(
. I . .
. . I .

where K,LgZ and is any column we see that U contins f . Now 

suppose that (A A»A )d (B B»B )ell with an allowable factorisationO * 00 O * 00

(1) and also (B B*B )€ll with a similar factorisation in which P isO * 00

replaced by etc. then,

u -u.

Q

"i.

A* A
-B B* B00 *  00

L . . .
. M . .

B* B
*  CO

..............“i ”i
1 j . . -1 .

After adding the fourth column block to the second and to the 

eighth column blocks, and the third to the seventh we 

have;
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A
B* B . . B* B* «  * 00

M
B* B

B

Mj Wj
1 . 1 j . • . .

Then subtracting the fifth row block from the second and permuting

allowable rows and columns we get an allowable factorisation for

(A A*A ) so that U is unitary, o * 00

It is clear that any admissible matrix with an allowable 

factorisation (1) represents zero under any Z-inverting 

homomorphism for then we have;

0 = uv = uQ(PQ) ^Pv = e^A ^A + JL 0̂ + OM ^w = e^A ^A
00 o 00 o

Indeed this was Malcolmson’s initial motivation for defining his 

equivalence. So consequently by the corollary to Theorem 3.5 we 

deduce that U is the least Z-matrix ideal. ■

Malcolmson’s Description of the Kernel

Now r€ker(A) if and only if -reker(A) which is if and only if 

(-r 1 ) € % 2  and this is if and only if there is an allowable

factorisation for (-r 1). Suppose so then;

p ■ [ Q  V  ] _ 1 . -r ■ 1 . . .
u . L . . . L . .

M w M w
1 j . . 1 J . r
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This is an instance of a factorisation (2) below.

' p ■ [Q vl ■ L •

u
L

J
M w 

r

(2)

where P,Q,... etc, satisfy the conditions of (1). If we have such a 

factorisation then we have rekerCA.̂ ) by the following allowable 

factorisation for (-r 1 ).

' 1 . ■ 1 . -r ■ ■ 1 . -r ■
. P . • Q V . PQ .
1 u 1 uQ .

We have proved the following description of the kernel due to 

Malcolmson [4].

Theorem 4.2 If R is any ring, Z a set of lower multiplicative 

matrices closed w.r.t. multiplication on the left and right by 

elements of GL(R) then the kernel of the universal ^.-inverting 

homomorphism consists precisely of those elements reR for which 

there exist matrices L,M,P,QeZ; rows J and u the sizes of L and P 

respectively; and columns w and v the sizes of M and Q 

respectively, such that

L 0 0  ■ ■ P '
0 M w = u
j 0 r

[ « .]
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Gerasimov* s Criterion

Gerasimov constructed the universal Z-inverting ring by considering 

not elements of but all matrices over R̂ . There is an account of 

the construction in Chapter 7 [1]. As before we will take the 

description of those admissible matrices over R which represent 

zero and prove that they form the least Z-matrix ideal.

Gerasimov constructed all matrices over R^ by considering 

4-block matrices over R of the form

A =

where A eZ. Then A was to be interpreted as the matrix over R̂ , 

given by A-Â (̂A° ) ^̂ A. Hence in this construction an admissible 

matrix (A A,̂ A ) is represented by the 4-block matrix,

A =
. - 1 •

A* A A* 00 o

From the account of Gerasimov's construction in 7.11 [1] we see

that this matrix represents zero in R^ if and only if there exists 

a factorisation

-1

Ajif A
if if

if if

if if

Z *

where Z denotes any matrix lying in Z and an asterisk denotes any 

matrix of the appropriate size. In fact we shall simplify this
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slightly and prove the following result.

Theorem 4.3 If R is any ring and S a lower maltiplicative set of 

matrices over R then the least 'L-matrix ideal consists precisely of 

those admissible matrices (A A^A ) for which there exists a
O  * CO

factorisation (3) below.

' A* * ^  ̂ if ' r 0 A  1o
0 Z ^ if if 0 0

z ^

(3)

Where an asterisk denotes any matrix over R of the appropriate size 

and S denotes any matrix lying in S.

Proof Let Tl be all those admissible matrices for which there 

exists such a factorisation. Firstly we show that Tl is indeed a 

well defined subset of M̂ . If P is any matrix over R such that PÂ  ̂

is defined then multiplying both sides of (3) on the left by Pel 

gives us,

PA* P^ ' i f  if ' = r 0 P A  1o
if if 0 0

z ^

If Q is an invertible matrix and A*Q is defined then we note;

A*Q ^

0 Z

-1 -1 Q ^  Q ^

0 0

46



We have shown that if (A A*A )-»(B ) then (A A*A )ell implies0 * 0 0  0 * 0 0  0 * 0 0

that (B B*B )etl . Hence U is a well defined subset of M_. We canO * 00 2.

now show that U is the least Z-matrix ideal of R by using the

corollary to Theorem 3.5.

Firstly U contains !£, since if K,L€Z and is any column over

R then we have a factorisation for (K K)@L*;o *

K 0 0 I

0 L* 0 0

0 0 I 0

-I 0 

0 0 
0 0 
K Ko-“

0 K
0 0
0 0

To show that U is a unitary subset of the additive semigroup we 

suppose that (A_A*A )o(B_B*B_) has an allowable factorisation 

below;

Ajk A* 00
U V

. -B
00 Be Ü V

• • w

M m 

T t

Q q
N n

I2  s

A

B

;and also that (B B*B ) lies in U with a factorisation given below;o * 00

■ B *  u "  v"" ■ ' m* ' r . B  10
, ,+ . + —

z. w N nL 1 - 1
„ +  +Z s

Then we see from the following factorisation that (A A*A )eUo * 00
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I* . -A U*  00

4  • •

w
w

U B* B V V** CO

M m
N"*" -n"̂

n
Q q-m* 
-T . -t

•

. . A

By the corollary to Theorem 3.5 it is now possible to show that U 

is the least Z-matrix ideal by showing that every admissible matrix 

in U represents zero under any Z-inverting homomorphism.

Suppose that we have a factorisation below for an admissible 

matrix (A A*A )€Îl.O * CO

A* U
' M m
N n • A ■ o

/ z s • •
(4)

Then upon expansion we get;

Z N̂ + WZ^ == 0 
Z^n + Ws = 0

A*M + UN + VZ^ = 0

A.m + Un + Vs = A

(5)

(6)
(7)

(8)
From (5) and (6 ) we get;

UN=-UZ^^WZ^ and Un=-UZ“^Ws

Substituting into (7) and (8 ) respectively we get;

A*M + (V-UZ7^W)Z^= 0

A»m + (V-UZ ^W)s = A * 1 o

Thus we see that Â ĵ Cm-MẐ  s)=A^. After multiplying both sides on
- 1the left by (A*A^) we conclude that the last component of
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-1(A*A ) A is zero. Hence tl is the least Z-matrix ideal. * 00 o

Now the following theorem is Gerasimov’s description of the kernel 

of the universal Z-inverting homomorphism.

Theorem 4.4 If R is any ring and Z a lower multiplicative set of 

matrices over R then the kernel of the universal Z-inverting 

homomorphism consists precisely of those elements r of R for which 

there exists a factorisation below.

z *

Vhere Z represents any matrix lying in Z and  ̂denotes any matrix 

over R of the appropriate size.

Proof For any reR, r lies in the kernel if and only if (r Dell. 

Then we have a factorisation (4) for (r 1);

u V

Si w

Since the core of (r 1) is null u and v are rows, M and m are 

null. ■

By comparison it is straightforward to show the equations in (2) 

Theorem 3.6 give the following:

Theorem 4.5 Under the same conditions as Theorem 4.4 then rekerX^ 

if and only if there exists a factorisat ion below.

r = e? , 1 
00 ■ Q 0 ■

• • z ^ z if
ZeZ etc.
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Chapter 5 Prime Matrix Ideals

The concept of a prime matrix ideal T was introduced by 

P.M.Cohn to construct a skew field using admissible matrices whose 

numerators lie in T. This construction was the basis of the more 

general construction in Chapter 2. Here we define, slightly more 

simply than Cohn, a prime matrix ideal going on to determine 

conditions for a ring to have a prime matrix ideal. This criterion 

will be shown to refine Cohn's result for a ring R to have a 

homomorphism to a skew field.

Prime matrix ideals are collections of square matrices over a 

ring R with certain defined properties. We will show that given a 

prime matrix ideal T the set of admissible matrices whose 

numerators lie in ^ is a Z-matrix ideal where Z is the complement 

of T. This can then be shown to lead directly to the construction 

of a skew field using Theorem 2.6.

Definitions. The inner rank of an rxs matrix A over a ring R is 

defined as the least n such that A=PQ where P is rxn and Q is nxs 

over R. We shall write p(A)=n. A square matrix is called full if 

its inner rank equals its order and non-full otherwise.

Let R be any ring, f:R— >F a homomorphism from R to a field F; 

then we can consider T, the set of all square matrices over R which 

are mapped to singular matrices over F. This set is called the 

singular kernel of f and is denoted by Kerf. We make the following 

observations;

Nl. All non-full matrices lie in T. This is simply because f 

preserves the property of being non-full and since a field has UGN 

only full matrices can be invertible.

N2. If the determinantal sum of A , i s  defined w.r.t. some column 

then AVBeP. This is since f(AVB)=f(A)Vf(B) and the expression on
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the right is the determinantal sum of two singular matrices over a 

field which must be singular.

N3. If k&T then for any square matrix B over R, k®B&T.

N4. If \®kç!P then k^T.

N5. and if A,B are square matrices with A@Be^ then at least one 

of A or B must lie in T .

A square matrix is said to be hollow if it has an rxs block of 

zeros (maybe after column permutations) and r+s>n where n is the 

order of the matrix. A square matrix is said to be degenerate if 

one column is a right multiple of another (distinct) column. Both 

hollow and degenerate matrices can easily be shown to be non-full. 

With the above definitions and observations in mind we now 

introduce the notions of matrix pre-ideal, matrix ideal and prime 

matrix ideal and aim to derive a condition for the existence of the 

latter.

If y is a set of square matrices over a ring R then T is said 

to be a matrix pre-ideal if the following conditions hold.

Ml. All square matrices which are hollow or degenerate lie in T. 

(Such matrices will be said to have property Ml.)

M2. T is closed w.r.t. column determinantal sums (when defined).

M3. If kç!P and B is any square matrix over R then A®BeP.

A matrix ideal is a matrix pre-ideal which also satisfies,

M4. If \®k€.‘P then k^T.

A matrix ideal is said to be proper if 12^. A prime matrix ideal is 

a proper matrix ideal which additionally satisfies,
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M5. If k®BçT where both A and B are square then at least one of A 

or B lies in 'P.

It is clear from what has been said above that,

Proposition 5.1 If f:R— >F is a homomorphism from a ring R to a 

field F then the singular kernel of f is a prime matrix ideal of 

R. m

The following hold for a matrix pre-ideal.

(a) If C=AVB and B has property Ml then CeP if and only if AeP.

For if A€P then by M2 CeP. Conversely changing the sign of a 

column of B preserves property Ml, so taking B to the other side of 

the equation the result follows.

(b) If AeP then the result of adding a right multiple of one column 

of A to another also lies in P.

Since if A=(A^,A2 .... A^) where A^ is the ith column of A then

(Ai+A^c,A^,A3 ,...An)=A V (A^c,A^,A3 ,...A^) and the second matrix on 

the r.h.s. is in P by Ml. So the result follows by M2.

(c) If A and B are square and C,D are matrices of the appropriate

size then the following hold.

€ P(i) ■ A c ■ € ■ A 0 ■ Ç. P " A O "
0 B 0 B D B

(ii) ■ 0 B ■ € P 0
■ 0 B ■ e P ^ ■ D B ■

A C A 0 A 0

shall prove (i)(*) . The other results follow

€ P

analogous way.
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If B= (B^,B ) where B^ is the first column of B and similarly

C= (C^,C ) then

■ A c ■ ■ A c" 1 ■ A 0 c" 1= 1
b"

7
b"0 B 0 0 0 B

The first matrix on the R.H.S. is hollow and hence has property Ml. 

Thus by (a) we have,

,/A C 
0 B

A 0 C 
_ 0  b /  j

In a similar way the columns of C can be varied and the assertion 

proved.

(d) If A and B are square and of the same size (although not 

necessarily in T) then

€ T.■ A 0 ■ e P ■ 0 -A ■
0 B B 0

Since by column operations as in (b) we get

■ A 0 ■ ■ A 0 '
0 B B B

€ ?

■ A -A e P ^ ' 0 -A ■
B 0 B 0

€ T

Now if further ^ is a matrix ideal then we have

(e) If A and B are square and of the same size and if at least one

of them lies in T then AB lies in "P.

Firstly let k€.P then by M3 and so by (c) we obtain,
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A -I 

0 B

By succesive column operations as in (b) we can get,

So by (c)

■ 0 -I e P .
BA B

■ 0 -I € P, and by (d) this gives us ' I O'
BA 0 _ 0 BA 1

■ A 0 ■ e P <̂> ■ 0 -A ■ ■ B 0 ■ & P ^ ■ B 0 ■e P
0 B B 0 0 -A 0 A

Now M4 implies that BAeP. Hence "P admits left multiplication by 

square matrices. In particular P allows the corresponding row 

operations to (b). As a consequence

€ P.

By an identical argument to above we then get kB€.P.

(f) If A belongs to a matrix ideal P then the result of 

permuting the rows or columns of A in any way belongs to P.

For we can achieve any permutation by multiplying by an 

appropriate permutation matrix on the left or right.

(g) A matrix ideal P is proper if and only if ?̂ !̂in(R).

If P is proper then \^P by definition. If P is not proper then leP 

and hence by (e) A=A. I e P for any Ae3Tl(R).

We now proceed to establish a necessary and sufficient 

condition on a ring R for a proper matrix ideal to exist.

Let (P̂ ) be any family of matrix ideals; then it is clear that
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P= PI is again a matrix ideal. We can therefore speak of the

‘least’ matrix ideal containing a given subset X of 3n(R). This

least matrix ideal is also called the matrix ideal generated by X.

Similarly we can define the matrix pre-ideal generated by X.

Let £ be the matrix pre-ideal generated by the empty set.

Clearly this is the least matrix pre-ideal and it consists

precisely of all column determinantal sums of square matrices which

are hollow or degenerate.

We note that £ has an additional property apart from M1-M3. If

BeîJÎCR) and Ae£ then B®Ae£. This is similar to but not equivalent to

M3 (although it is in the prescence of Ml, M2 and M4). In

particular we shall use I©A€£ for all Ae£, where I is any unit

matrix. We shall denote by £ the set of all unit matrices.

Now define £/£ ={A€!Ul(R) | I©A€£ >. From the above remark we see

that £/£ 2 £ and hence £/£ satisfies Ml. If A_e£/£ (1=1,2), then

I ©A e£. By the above remark I ©I ©A e£ and if A,VA_ is defined n i  ̂ n n i 1 2i 1 2

then.

(I ©I ©A.) V (I ©I ©A„)= I ©I ©(A VA ) . 
"2 1 "2 2 "2 1 2

The L.H.S, lies in £ hence and so we have M2.

If B is square over R and Ae£/£ then I©A€£ so I©A©B€£ and

hence A©B€£/£. Therefore M3 holds. Also if l©Ae£/£ then I ®l®Ae£.n
But I^@1=I^^^ so Ae£/£. Consequently M4 holds and we have shown 

that £/£ is a matrix ideal. If ^ is a matrix ideal containing £ 

then;

A€£/£ =» I®A€£ => I©Ae^ => k&T => P 2 £/£ .

Hence £/£ is the least matrix ideal containing £. Now £/£ is proper 

if and only if £n£ =0 . When P is a matrix ideal and Z is either a
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singleton set or a set of square matrices closed under diagonal 

sums and containing 1 then in a similar fashion we can show that 

^/Z= {Be#(R) I B ® , AeZ} is also a matrix ideal containing T. 

Summarizing these results we see.

Proposition 5.2 S/£ is the least matrix ideal containing S and

S/f is proper if and only if £n£=0 . ■

Since every matrix ideal contains £ we see £/£ is the least matrix

ideal (written as and we have,

Proposition 5.3 Let R be any ring. Then R has a proper matrix

ideal if and only if no unit matrix can be written as a column

determinantal sum of matrices which are hollow or degenerate, m

It is now possible to consider when a ring R has a prime matrix 

ideal. The following is taken directly from Cohn [1].

Definition. Given two matrix ideals in a ring R, their

product, denoted by is defined as the matrix ideal generated

by all with (i=l,2 ).

The product so defined is easily seen to be associative and 

from property (f) it follows that the product is commutative.

Lemma 5.4 In any ring R, let (1=1,2), X the set of

matrices A ®A (A eX ) and P ,T ,T the matrix ideals generated by 1 2  1 1  1 2
X ,X ,X, respectively. Then T=T T .1 2  12

Proof. Clearly XQT^T^, hence To establish equality, let

A eX , then A @A eT by definition, hence X QT/A and so T QT/k . It
i i 12 1 2  1 2
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follows that for all so fixing we have X̂ QT/B̂ ,

hence T QT/B and so B ®B eP for all B eT , and it follows that 
2 1 1 2  i i

T T QT. ■1 2

Proposition 5.5 for any matrix Ideal T in a ring R the following 

three properties are equivalent.

(a) T is prime,

(h) T is proper and for any matrix ideals we have =>

T QT or T QT,1 2
(a) T is proper and for any matrix ideals that " P w e

have P P QP %» P =P or P =P.
1 2  1 2

Proof. (a)=̂ (b). Let P be prime and P^P^QP but P^^/ P (i=l,2). Then 

there exist but A^^P. Since P is prime, A^@k^€P, but

k^®k^e.P^^P, a contradiction. Clearly P is also proper.

(b)^Tc) is clear; to prove (c)=>(a), suppose that k^@k^€.P. 

Consider the matrix ideal P^ generated by P and Â ; for any 

B,€?̂ u{Â >, B^®B^^P, henceP^^P. By hypothesis, P^ or P^ must equal 

P, so A^ or A^ lies in P, i.e. (a). ■

The usual method of constructing prime ideals also works for prime 

matrix ideals:

Theorem 5.6 Let R he any ring, Z a non-empty subset of ÜTICR) closed 

under diagonal sums and d any matrix ideal such that dnîZ=0. Then 

there exists a matrix ideal P which is maximal subject to the 

conditions P'2d, PrS>0, and any such matrix ideal is prime.

Proof. The collection Ç of all matrix ideals containing d and 

disjoint from Z is clearly inductive, so by Zorn's lemma it has a
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maximal member and this satisfies the conditions of the theorem. 

Any such T is proper, because S is non-empty; now let T be 

matrix ideals such that If T (1=1,2), then T ^  so by

maximality of T, Take then A^eA^e^nZ, which is a

contradiction. Hence or equals Py and so P is prime by the 

previous proposition. ■

This theorem shows for example that every maximal proper 

matrix ideal is prime; we need only take Z=£.

Corollary, viny ring R has a prime matrix ideal if and only if R has 

a proper matrix ideal. ■

Hence by Proposition 5.3 we have;

Theorem 5.7 Any ring R has a prime matrix ideal if and only if no 

unit matrix can be written as a column determinantal sum of 

matrices which are either hollow or degenerate. m

Localisation at a Prime Pair.

We can now proceed to show that when a ring R does indeed have a 

prime matrix ideal then there exists a homomorphism from R to a 

field. We shall first consider the concept of localisation at a 

prime pair introduced by Malcolmson [4]. If Z is a lower 

multiplicative set of matrices over a ring R and ^ is a matrix 

ideal of R then a pair Q=(Z,y) is said to be a prime pair if AeBe^ 

and AeZ implies that Be^. The idea is to form a localisation where 

the image of Z becomes invertible while somehow setting the 

elements of ^ to become ‘singular’ . If (Z,y) is a pair Malcolmson 

showed that (Z,y/Z) is in fact prime and ^/Z is proper iff r̂\Z=0 .
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Given a prime pair Q=(S,y) we can form the well defined associated 

subset of M_ as Q={(A A.A )€M_|(A A»)€y>. Below we show that Q is ai  O * 00 2. ' O *

Z-matrix ideal and then we call the homomorphism the

localisation at Q.

Proposition 5.8 If Q=CZ,if) is a prime pair then the associated 

subset of M̂ , Q, is a Z-matrix ideal, and the localisation at Q is 

Z-inverting.

Proof. Since y is a matrix ideal it contains all hollow matrices 

and so Si 2 y. If A.BeQ then the numerator of AoB can be written;

■ Bo B* B
*  CO

0 V ■ 0 B. B
*  CO

0

0 0 -A
CO A* . - Ao 0 -A

CO A. .

and the matrix on the left is in y since (B B*)ey and y is a matrixo *
ideal. After some row and column permutations the matrix on the 

right is similarly seen to lie in y since (A^A*)€y. Hence since y 

is closed w.r.t. determinantal sums we see that AoBeQ and Si is an 

additive subsemigroup of M̂ . We now show that SI is unitary. Assume 

that AoB,Beü. Then the numerator of AoB,

B B* B 0O * 00
A 0 -A A,

lies in y.

If (BgB*)€y then by the properties of a matrix ideal,

-B B* B 0O CO

0 0 -A A.
€ y.

The determinantal sum of the above two matrices is defined w.r.t 

the first column and hence.
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■ 0 B* B 0 e if ^ ' B* B 0 0* 00 00
AL O 0 -A

00 A. . 0 0 Ao A. .
€ if.

Since Q is a prime pair we get (A^A*)€y and AeÜ . So Q is unitary 

and it just remains to show that & is an ideal w.r.t. the 

multiplicative semigroup structure of M̂ . If AeO and then the

numerator of both A.B and B.A is immediately seen to lie in if by 

the properties of a matrix ideal. Consequently by Theorem 2.6 

Aq:R— >Rq is Z-inverting. ■

Malcolmson used this result to get a bound on the kernel of the 

universal Z-inverting homomorphism by taking a ‘minimal’ prime pair 

(Z,y^/Z) where if̂ is the least matrix ideal. This is no longer 

necessary as we have a complete description of the kernel.

When a ring R has a prime matrix ideal T then the complement 

of T y \Ty is easily seen to be a lower multiplicative set of square 

matrices over R and P) is a prime pair. With the present

notation the localisation at this prime pair is written A^rR— >R̂ .

Theorem 5.9 (Cohn) If R is any ring with a prime matrix ideal T 

then the localisation at p (the associated \T-matrix ideal) is a 

homomorphism from R to a skew field whose singular kernel is 

precisely T.

Proof p is the associated \P-matrix ideal and consists of all 

those admissible matrices with numerators lying in T so 

(A A*A )(gp implies that (A k^)€P and (A A*A ) is an admissible0 * 0 0  O 00 * O

matrix. We observe the following;
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(A A* A ). (A Ajk A ) — 
00 * o o * 00

A A* A 0 0O  * 00
0 0 -A A* A00 * O

A A* AO * 00
0 0 -> ■ Ao A* A*  CO

0 0

0 -A.-AL * 00 A* Aq 0 0 -A
CO A* A * 0 - 1

(Ao

Similarly we can get (A A* A ). (A A* A ) 1, and hence allO * 0 0  0 0 * O ~

non-zero elements in have multiplicative inverses and is seen 

to be a field.

We already have that KerA^Ç? since inverts the complement 

of T. Now we proceed to show that ^SKerA^. Let PeP and denote by 

the matrix obtained from P by omitting the first column and 

the ith row. If for all i, then by induction and the use of

column determinantal sums w.r.t. the initial column we get that 

PeKerAp. So w.l.o.g, we can assume that €P. Then since \P is 

lower multiplicative and admits row permutations we have that (Pê ) 

is admissible, and moreover it is admissible for zero since the

numerator lies in T . Hence from Theorem 2.6 there is an equation in

Rg.; P =(P*e )(u#0)^ i.e P is a zero divisor in R^ and so asp 0 * 1 * p
required we have PeKerA^. ■

(Cohn actually showed that R^ the universal \^-inverting ring is

local with residue class field R»,. )
V

Corollarv For any ring R there exists a homomorphism from R to a 

field if and only if no unit matrix can be written as a column 

determinantal sum of hollow or degenerate matrices. m
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Chapter 6 Fields of Fractions

With the results of the previous chapter we are now in a 

position to determine a criterion for any ring to have a field of 

fractions. This is a refinement of Cohn's criterion (a reference is 

given after the proof). For completeness we then go on to prove 

Dicks and Sontag*s result classifying all rings having a universal 

field of fractions inverting all full matrices over that ring.

Theorem 6 .1 Any non-zero ring R has a field of fractions if and 

only if no diagonal matrix over R with non-zero diagonal entries 

can be expressed as the column determinantal sum of matrices that 

are either hollow or degenerate.

Proof If R has a field of fractions then R is embeddable in a 

field over which every diagonal matrix with non-zero diagonal 

entries is invertible. However over a field the column 

determinantal sum of non-full matrices is singular, so we have 

proved the necessity of the condition.

To prove sufficiency we note that S, the set of diagonal 

matrices over R with non-zero diagonal entries is closed w.r.t. 

diagonal sums and non-empty. Then the condition states that Z is 

disjoint from the least matrix pre-ideal. From the description of 

the least matrix ideal in Proposition 5.2 we can see that S is 

also disjoint from the least matrix ideal. Hence by applying 

Theorem 5.6 we have a prime matrix ideal P disjoint from S which by 

Theorem 5.9 gives rise to a homomorphism from R to a field F with 

singular kernel precisely T i.e. Z is inverted which is sufficient 

to prove that we have an embedding in a field of fractions. ■
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(cf. Cohn [1], Th. 7.5.6.). We note that this condition ensures 

that R is an integral domain for if ab=0, then

a 0 a 0 ■ 0 o'= V
0 b 1 b - 1 b

where the second matrix on the right is clearly hollow, and the 

first matrix on the right is degenerate since the first column 

multiplied by b on the right is just the second column.

If there is an homomorphism from a ring R to a field then no 

non-full matrix over R can be inverted since a non-full matrix over 

a field is singular. Hence the most that can be hoped for is that 

all full matrices over R be inverted and this is only possible if 

the singular kernel of the homomorphism consists precisely of the 

non-full matrices over R. In this case we must have an embedding 

since any non-zero 1x1 matrix is full and so maps to an invertible 

element. A ring homomorphism which keeps all full matrices full is 

called honest so by the above we have that there is an honest 

homomorphism from a ring to a field if and only if there is a fully 

inverting homomorphism from the ring to a field. Let $=$(R) denote 

the set of all full matrices over R, if this set is lower 

multiplicative then we can consider R^ the universal localisation 

at $.

Proposition 6.2 (Cohn) Let R be any ring. If the set of full

matrices over R, is lower multiplicative and R.*0 then R, is a$ $
field.

Proof Let p be a non-unit in R, with an admissible matrix   $
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A=(A^A^A^). By Cramer’s rule the image of the numerator over is 

stably associated to p and hence must be non-full over R or else p

is invertible. So (A^A^)=PQ where Pe^R" and r" and then we

can write A as follows;

A = (A A A ) = (PQ A ) = (P A ) 0  * 00 00 00
Q 0  

0 1

Now (P A ) must be full for it is a left factor of the denominator 00

of A which is full by definition and so the image of (P A^) is

invertible over R.. Since A is an admissible matrix for p then we

have an equation Au=0 over R^ where the last component of u is p,

but from above we can cancel the left factor (P A^) in the equation

to deduce that p= 0  as required. ■

We are now in a position to determine exactly when R^ is a field.

Theorem 6 .3 (Cohn) If R is any ring then the two following

conditions are equivalent:

(i) The set of non-full matrices over R is a prime matrix ideal.

(ii) R has a universal field of fractions inverting all full

matrices over R.

Proof If (i) holds then the set $ of full matrices is lower

multiplicative and so by Proposition 6.2 R^ is either a field or

the zero ring. If R^=0 then the admissible matrix (1 1) represents 

zero. However from Theorem 5.7 we know that the least ^-matrix 

ideal has numerators which are non-full because (i) ensures that 

those admissible matrices with full denominators and non-full 

numerators form a ^-matrix ideal which necessarily contains the
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least ^-matrix ideal. Hence if R_=0 then 1 is non-full; a9

contradiction, so R, is a field.$
Conversely if R is embeddable in such a field then we have a 

fully inverting homomorphism from R to a field. Hence the singular 

kernel is a prime matrix ideal and from an earlier comment we know 

that the singular kernel must consist precisely of the non-full 

matrices over R. ■

We are now in a position to classify all rings with a universal 

field of fractions inverting all full matrices but first we shall 

have to state (without proof) a couple of results from Cohn [1] 

Chapter 5.

Theorem 6.4 Every honest homomorphism of a ring preserves the

inner rank. ■

Let R be a ring. If PQ=0 where Pe^R^, Qe^R^ and r+s>n implies that,

p(P)+p(Q) n 

then R is said to be a Sylvester domain.

Lemma 6.5 Let R be a Sylvester domain. Then

(i) if A,B are fall matrices over R then A®B is also fall.

(11) if A,B,C are any matrices over R with the same namber of rows

and if p(A,B)=p(A,C)=p(A) and A is right fall, then

p(A B C ) = p(A) . m

With these two results we can prove the main theorem of this

chapter.
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Theorem 6 . 6  (Dicks and Sontag [6 ]) A ring R has a universal field 

of fractions inverting all full matrices over R if and only if R is 

a Sylvester domain.

Proof If is a field then A:R— >R̂  is an honest homomorphism 

from R to a field, hence by Theorem 6.4 we have an inner rank 

preserving homomorphism from R to a field. Any field necessarily 

satisfies Sylvester’s law of nullity and so is seen to be a 

Sylvester domain. Therefore R must also be a Sylvester domain as 

the inner rank is preserved by the homomorphism.

Conversely by Theorem 6.3 it suffices to show that the set of 

non-full matrices over a Sylvester domain form a prime matrix 

ideal. Using the basic properties of non-full matrices this amounts 

to showing that the set of non-full matrices is closed under column 

determinantal sums and that the set of full matrices is closed 

under diagonal sums. Lemma 6.5 (i) shows that the set of full 

matrices over a Sylvester domain is closed w.r.t. diagonal sums. To 

prove that the set of non-full matrices is closed w.r.t. column 

determinantal sums suppose that A=(A^,a), B=(A^,b), C=(A^,a+b)

where Â ê R*̂  ̂ ;a,b are columns over R and A,B are not full. If Â  

is right full then n-l= p(A^)= p(A^,a)= p(A^,b), so by Lemma 6.5

(ii) n-l= p(A^,a,b)= p(A^,a+b,b) 2: p(A^,a+b)= p(C). If Â  is not 

right full then p(A^)<n-l and then p(C)<n. In either case C is 

non-full as required. ■

In particular, since a semifir is a Sylvester domain we have the 

following corollary.

Corollarv 6.7 (Cohn) Any semi fir R has a universal field of 

fractions K and any full matrix over R is invertible over K. u
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