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ABSTRACT

The aerodynamic behaviour of turbomachinery is dominated by viscous 

effects. In the design of a component for the machine, inviscid methods are 

normally employed. However, it is useful to cover the viscosity in the calculation 

to achieve a better understanding of the fluid behaviour. This feature can be 

analysed by using Navier-Stokes calculations or simpler and more approximate 

techniques such as boundary-layer calculation.

In recent years there have been a considerable number of Navier-Stokes 

solvers as well as boundary-layer solvers. However, Navier-Stokes methods 

require a large amount of computer storage and CPU time, which limits the 

number of grid points that can be used inside the boundary-layer. Hence, 

boundary-layer techniques become very attractive.

The purpose of this study is to develop a boundary-layer calculation that is 

efficient, accurate and simple to implement, and can be applied to flow over 

complex geometry such as turbomachinery blades. To account for the surface 

curvature and rotation, the three-dimensional unsteady boundary layer equations 

are expressed in generalised curvilinear co-ordinate system on the body surface 

with respect to a rotating frame of reference. The equations are solved 

numerically by using Finite Difference Approximation without employing the 

similarity transformation. The steady state solutions are obtained by integrating 

the equations in time.

Two methods, an interactive scheme and FLARE approximation scheme, 

are described for calculating separated flow. The concept of the interactive 

approach is general but its application, in this study, is limited to two-dimensional



flow. The viscous losses, expressed in term of entropy generation, is also 

calculated from the computed flowfield.

Computational results on a wide variety of flow situations and 

configurations are validated and show good agreement with analytical results and 

experimental measurements.

Results reveal, in general, that the method holds a practical advantage, in 

both speed and accuracy of computation, for solving the boundary-layer problems 

to which it is best suited.
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CHAPTER 1 

INTRODUCTION

1.1 GENERAL

The development of boundary layer has been backed to 1904 when Prandtl 

proposed the concept of boundary layer that was possible to analyse viscous 

flows, to the Mathematical Congress in Heidelberg. His paper "On the motion of a 

fluid with very small viscosity" marked an epoch in the history of fluid mechanics, 

opening the way for understanding the motion of real fluids (Tani, 1977). He 

divided the fluid flow about a solid body into two regions (see Fig. 1.1), firstly a 

very thin layer near of the body where the effects of viscosity are always 

important and secondly the remaining region outside this layer where the effects 

of viscosity may be neglected.

Navier-Stokes and Boundary Layer Methods

The viscous flow can be analysed by using Navier-Stokes (NS) 

calculations or simpler and more approximate techniques such as Boundary-Layer 

(BL) calculations.

In recent years a considerable number of Navier-Stokes solvers as well as 

boundary-layer solvers have been developed. The complete Navier-Stokes 

equations are quite difficult to solve for many reasons. From the mathematical 

point of view, a large number of quantities are required at each grid point. For 

example, in three-dimensional flow, one might need five primitive variables, two 

turbulence properties, and nine or more metric derivatives (McNally, 1985). To 

capture the viscous layers, a large number of grid points are also required. This 

calculation is expensive because computational time increases rapidly with the 

number of grid points used. Therefore, in practice, the number of grid points that
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can be used inside the boundary-layer is reduced due to the limitation of computer 

storage and CPU time. In order to model the effect of viscous layers at the wall 

and to avoid the need for a very fine mesh near the wall, most of the Navier- 

Stokes methods employ an empirical wall function. The wall function can be 

roughly thought of as a solution to the boundary-layer momentum equation using 

Prandtl’s mixing-length turbulence model when convective and pressure gradient 

terms are insignificant (Anderson et al 1984). Therefore, the wall function can be 

used in circumstances where the mesh is too coarse to resolve down to viscous 

layers. This limits the ability of Navier-Stokes methods to accurately predict the 

viscous effects near the wall.

In application of boundary-layer methods, one of its fundamental concepts 

is that the effects of viscosity are always important in a very thin layer near the 

body surface and may be neglected in the remaining region outside this layer. This 

situation happens when the Reynolds number is very high. As a consequence of 

this, all viscous terms containing derivatives parallel to the body surface are 

dropped from the Navier-Strokes equations since they are substantially smaller 

than viscous terms containing derivatives normal to the wall. Therefore, 

boundary-layer equations may be considered as an approximate form of the 

Navier-Strokes equations. Because of their simplicity and the application of no­

slip condition (i.e. velocities are zero at the wall), they can resolve the velocities in 

the viscous layer. The boundary-layer equations are also simpler in form than the 

Navier-Stoke equations but they are still difficult to solve. One difficulty is to find 

an appropriate discretization scheme or a marching scheme to satisfy the 

boundary conditions. The implementation of the marching schemes contributes to 

the accuracy and efficiency of the solutions, but raises a number of important 

issues that needs to be solved, such as method of solution. Details of the 

numerical solution will be discussed in chapter 3.
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Three-dimensional boundary layers in turbomachinery

The flow through turbomachinery is dominated by three-dimensional 

unsteady and viscous effects. In the design of a component for the machine, 

inviscid methods are normally employed as they are quite efficient 

computationally. On the other hand, the implementation of viscous flow 

calculations in turbomachinery is not yet sufficiently well developed to be used for 

design purposes (Denton, 1986). However, the viscous methods can provide a 

very good qualitative picture of the flow such as secondary flows in a rotor. This 

will reflect the flow phenomena in turbomachinery that are not only three- 

dimensional but also extremely complex because of the interactions between 

curvature and rotation effects, pressure gradients and turbulence levels. 

Therefore, several complicating features have also to be considered in the case of 

three-dimensional problems. These features are presented in the following 

paragraphs.

In two-dimensional flow, the span wise distance is assumed to be of infinite 

length and the flow is identical in that direction. With these simplifications, the 

streamlines of the outer flow on the plane surface are straight lines perpendicular 

to the leading edge. A two-dimensional boundary layer flow over a wing section is 

shown in Fig. 1.2. In this flow, the velocity profiles are identical in the y-direction. 

However, in three-dimensional flow, the velocity profiles are not identical in the 

span wise direction and the fluid flow naturally occurs on curved surfaces or 

curved external flow. The shape of the body surfaces and the additional 

component motion make the streamlines of the outer flow curve when observed in 

a plane parallel to the body surface (see Fig. 1.3). This natural curved streamline 

can be maintained only when the centrifugal force on the fluid is balanced by the 

pressure gradient in the span wise direction. Inside the boundary-layer the pressure 

gradients remain the same and the fluid velocity decreases due to viscosity. To 

maintain the balance, the streamlines inside the boundary-layer must be more
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highly curved. This limiting streamline is also shown in Fig. 1.3. This gives rise to 

a velocity component within the boundary-layer normal to the external streamline. 

This velocity component is called the "secondary flow". It is responsible for 

transporting the low momentum fluids. Therefore, we can expect that the total 

velocity is twisting across the boundary layer. An example of three-dimensional 

boundary layer velocity profile is shown in Fig. 1.4.

The other feature of a three-dimensional boundary-layer is that the 

secondary flow may change sign during the computations. This means that the 

limiting streamline is also changed both in direction and magnitude. Johnston 

(1988) reported that three-dimensional separation occurs when the limiting 

streamline approaches the crossflow direction. Therefore the viscous flow 

calculation should have a capability to deal with separated flow since flow in the 

turbomachinery frequently tends to separate either as a result of free stream 

separation or due to the intensity of the secondary flow.

1.2 STATEMENT OF PROBLEM

The state of the art in turbomachinery has advanced to the point where 

further significant improvements will have to come from an increased knowledge 

of the fluid mechanics. For this reason, in recent years increasing attention and 

effort have been devoted to experimental and computational investigations on 

flow phenomena, especially viscous effects, in the machines. The fluid flows in 

these circumstances are three-dimensional and as a consequence the boundary- 

layer computations have to be treated as three-dimensional as well. Modem 

computers offer the possibility of solving complicated systems of partial 

differential equations numerically. As a result, a number of numerical methods 

have been developed and are still being developed. The calculations reported to 

date for three-dimensional flows have employed the usual direct method for
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solving the boundary-layer equations. This means that it is not applicable in the 

case of separated flows. Little is known about the applicability of the inverse 

boundary-layer approach for fully three-dimensional flows (Anderson et al 1984).

1.3 THE OBJECTIVES OF THE STUDY

The main objective of this study is to develop computational procedure 

that gives good qualitative predictions of three-dimensional boundary-layer that 

can be applied to flow over complex geometry such as turbomachinery blades. 

The proposed method is based on compressible, three-dimensional unsteady, 

turbulent boundary-layer equations and the solutions are established without 

employing the similarity transformation. It therefore becomes clear that this 

method is quite general.

1.4 SCOPE AND LIMITATION

The work will solve unsteady three-dimensional boundary-layer of the 

rotating cylindrical co-ordinate system as well as Cartesian co-ordinate system by 

using Finite Difference Approximation. The eddy-viscosity expression used for 

this study is Baldwin-Lomax model. In the method to be described the effects of 

the boundary layer on the inviscid flow are represented by the interactive 

boundary-layer method. FLARE approximation scheme is also described for 

calculating separated flow.

Among the new significant aspects of the present work are: (1) the 

treatment of the three-dimensional boundary-layer for application to 

turbomachinery blades in both direct and inverse modes as well as stationary and 

rotating blades; (2) the use of viscous-inviscid interaction, with the interactive 

boundary-layer model, (3) the ability to employ "non-similarity method" to probe
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the accuracy of the solutions, and finally; (4) evaluation of the effect of boundary- 

layer induced loss during passage through turbomachines.

1.5 ORGANISATION OF THE THESIS

The rest of this thesis is organised as follows. Chapter two is devoted 

entirely to review of developments in the boundary-layer method. The review 

covers topics in methods of solving boundary-layer equations, numerical methods 

for the equations, methods applicable to turbomachinery blades, turbulence 

modelling and loss due to boundary-layer. The next chapter presents the 

calculation procedure for compressible, three-dimensional unsteady, turbulent 

boundary layers. Key topics here include governing equations, turbulent model, 

transformation, discretization and numerical solution algorithm. This mainly deals 

with the direct implementation of the boundary layer equations. The inverse 

method for the case of separation flows is presented in chapter four. Three 

methods, FLARE approximation scheme, conventional inverse scheme and 

interactive scheme are discussed. The first section of the chapter focuses on 

FLARE approximation scheme. Then a conventional scheme is presented. In this 

case, we prescribe displacement thickness to solve the equations. This is because 

we can interact directly with the interactive boundary-layer model that is 

presented in the next section. The final section describes loss generation in three- 

dimensional boundary-layer. Chapter five mainly deals with validation of the 

boundary layer method. The validations covered a wide variety of flow situations 

and configurations to show that the code is efficient, accurate and simple to 

implement The last chapter consists mainly of conclusions and recommendations 

for further study. The equation sets derived for preliminary consideration and 

design have been relegated to the appendixes.
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Fig. 1.1 A boundary layer on a flat plate

Fig. 1.2 Two-dimensional boundary layer flow
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outer streamline

limiting streamline

Fig. 1.3 Three-dimensional boundary layer flow

X

Fig. 1.4 Three-dimensional boundary layer velocity profile
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CHAPTER 2 

LITERATURE SURVEY

2.1 INTRODUCTION

This chapter gives firstly a brief outline of prediction methods of 

boundary-layer problems followed by a description of current developments. The 

review is drawn from a broad structure of the problems and then concentrated on 

methods applicable to turbomachinery. To make the text readable, the author 

divides the review into 5 areas of considerations, methods of solving boundary- 

layer equations, numerical methods for the equations, methods applicable to 

turbomachinery blades, turbulence modelling and loss due to boundary-layer.

2.2 METHODS OF SOLVING BOUNDARY-LAYER EQUATIONS

In the early stage of solving boundary-layer equations especially when 

computers were not invented, the solutions were obtained by using simplifications 

or assumptions. Most early solutions of boundary-layer equations were based on 

some forms of similarity law using which the partial differential equations of the 

boundary layer could be reduced to an ordinary differential equation by the use of 

suitable substitutions. For example, Blasius used it to find the solutions for flow 

on a flat plate in 1908. In his transformation the independent variables (e.g. x, z, 

u, w) in the boundary-layer equations are replaced by a function that relates to the 

Blasius similarity variable (i.e. Ti = z j — ). Thus the boundary-layer equations are

reduced to a form that can be solved with only one function. The application and 

numerical solutions of this type of transformation for three-dimensional flow over 

a flat plate can be seen in Appendix C.
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The Blasius similarity was extended by Falkner and Skan in 1930 to the 

case in which the free-stream velocity varies in proportion to x". This type of 

solution can illustrate the flow problem both adverse (decelerating free-stream 

velocity, i.e. n<0) and favourable (accelerating free-stream velocity, i.e. n>0) 

pressure gradients depending the value of n.

In practice, the free-stream velocity will not be characterised by single 

value of n and the velocity profiles will not be similar at all points along the 

surface. The solution of the general flow presents considerable numerical and 

analytical difficulties. This fact has led to the development of calculation methods 

for finding the solution of boundary-layer equations. Methods of solving the 

equations fall into two main categories, integral methods and finite difference 

methods.

Integral method: By integrating the boundary-layer equations with 

respect to the normal distance to the surface, the partial differential equations of 

the boundary layer are reduced to one or more ordinary differential equations. 

This resulting set of ordinary differential equations usually consists of momentum 

thickness (0), displacement thickness (Ô*) and skin friction coefficient (x j. In 

order to close the equations these parameters are then related to form an auxiliary 

equation that provides a good estimate of flow inside the boundary layer. This 

auxiliary equation varies depending on the flow situation and assumptions, and 

may be obtained from direct measurement or empirical relations.

Integral methods can be applied to a wide range of both laminar and 

turbulent flows. There are many approaches and they cannot all be considered 

here. For two-dimensional incompressible laminar boundary-layer with pressure 

gradient, the reader is referred to a work by Thwaites (1949), and for turbulent 

flow by Truckenbrodt (appeared in Schlichting (1979)), and Das (1988). Reviews
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of the methods are given by many authors (e.g. Schlichting (1979) and White

(1991)).

Integral methods are simple in terms of formulation and require 

considerably less computational effort than finite difference methods. They can 

provide reliable estimates of displacement thickness, momentum thickness, wall 

shear and skin friction. These parameters are required in most engineering 

applications and design.

However, the application of the integral methods is not straightforward 

since the accuracy and reliability of the methods are limited by the available 

auxiliary equation. For application to turbomachinery, the process of finding 

suitable relations for the model is a highly complex and inherently unsteady 

phenomena and its direct measurement is difficult.

Finite difference method: By this method, the boundary layer equations 

are solved directly in fmite-difference form. In fact, any problems that can be 

solved by an integral method can also be solved by a finite-difference method. A 

summary of many methods, principally differential methods, was prepared by 

Cebeci and Smith (1974), and White (1991). Simple methods and numerical 

considerations related to the finite difference solution of the boundary layer 

equations were described in two excellent books by Anderson et al (1984) and 

Fletcher (1991).

In recent years, the finite difference methods are preferred for many 

reasons (Anderson et al (1984) and Johnston (1988)). First, finite difference 

methods are, potentially, more generally applicable than integral methods. Finite 

difference methods are flexible and easy to adapt when boundary or other problem 

conditions are changed. Second, the accuracy of integral methods is limited by the
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available auxiliary equation. Third, powerful computers are available. Integral 

methods generally provide overall predicted characteristics of the boundary-layer, 

e.g. displacement thickness, momentum thickness and skin friction, rather than 

details of the boundary layer flow. This technique makes the boundary-layer 

equations require considerably less computational effort due to simple forms of 

the equations. Finite difference methods on the other hand require larger 

computational resources and can resolve the boundary-layer equations into the 

flow inside the layer as well as the overall prediction of the flow. Therefore the 

finite difference methods are admirably suited to use on modem computers.

Comparisons and reviews dealing with the numerical solutions of three- 

dimension boundary-layer solvers (both integral and finite difference methods) can 

be seen in Lemmerman and Atta (1980), and Humphreys and Lindhout (1988).

Transformation of Boundary Layer Equations: One of the efficient 

ways of solving the boundary layer equations is to transform the equations before 

attempting to solve them. This technique is widely used especially in the finite 

difference method because it may eliminate singularities at stagnation points or 

leading edges, and stretch the co-ordinate normal to the surface in order to 

account for boundary layer growth. Many authors have successfully computed the 

boundary layer problems using Dorodnitysn-Howarth, Stewartson, Probstein- 

Elliott, Levy-Lees transformations. Details of these transformations are given in 

Stewartson (1964), Cebeci and Smith (1970), and Vatsa (1985).

2.3 NUMERICAL METHODS FOR THE BOUNDARY-LAYER 

EQUATIONS

The methods for solving boundary-layer equations have a common 

technique that the partial differential equations of the boundary layer are
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transformed to one having an algebraic representation (Anderson et al 1984). The 

methods differ only in the implementation of the marching schemes. Some of the 

widely used schemes for the numerical solution of the boundary-layer equations 

are presented in the following paragraphs.

An explicit scheme: By using this scheme, the solutions of boundary- 

layer equations may be computed directly at each grid point downstream. Since 

only one unknown appears in each equation, this method is simple. Unfortunately, 

this standard scheme is conditionally unstable through the von Neumann analysis. 

A modified explicit scheme called the DuFort-Frankel scheme seems more stable 

than the standard explicit scheme because it requires information from the two 

previous stream wise stations. For example, the streamwise derivative first-order 

derivative in the momentum equation is represented by

dx Ax

in the standard explicit method and by

du _  (uj+u -Uj-ijc) 
dx 2 Ax

2.1

+0(Ax)  ̂ 2.2

in the DuFort-Frankel method. The finite difference grid for both methods is 

shown in Fig. 2.1.

Fletcher (1969) developed the DuFort-Frankel calculation procedure for 

turbulent boundary-layer flows. Prandtl's mixing-length concept was used to 

express the turbulent shearing stress. The predictions agree well with experimental 

data for both favourable and adverse pressure gradients of flows over a flat plate. 

The method is stable and no iterative procedures are required. However the
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explicit scheme is no longer widely used for boundary layers due to the restrictive 

stability constraint.

An implicit scheme: Unlike the explicit scheme, the boundary-layer 

equations of an implicit scheme are formed in a system of simultaneous equations 

for the unknown functions at each downstream step. This system of equations 

may be similar to that shows in Fig. 2.2. To obtain the solutions, therefore, the 

equations must be solved simultaneously by either iteration or matrix inversion. 

The implicit scheme for boundary-layer problems is unconditionally stable through 

the von Neumann analysis and provides the basis for several boundary-layer 

calculations such as the Crank-Nicolson scheme, the Keller's box scheme, the 

Krause zig-zag scheme.

The Crank-Nicolson scheme: The boundary-layer equations of simple 

implicit scheme have been formulated as a first-order accurate for the grid 

arrangement. To achieve higher-order accuracy, all derivatives can be 

approximated by simple centred differences and two-point average, and the centre 

of discretization is located at the point (i+^ ,k). This type of scheme is called the

Crank-Nicolson scheme. A typical grid arrangement is shown in Fig. 2.3. 

Examples of a fully implicit and the Crank-Nicolson scheme for compressible 

laminar boundary-layer equations may be seen in Anderson et al (1984).

The Crank-Nicolson procedure can be extended for three-dimensional 

boundary-layer equations (Anderson et al (1984) and Fletcher (1991)). In this 

scheme the discretization is centred at (i+y, j+ y , k). The grid arrangement of the

scheme is shown in Fig. 2.4. The use of this Crank-Nicolson scheme is limited 

only when the sign of the crossflow components does not change due to the 

restriction of zone of dependence concept. The detail of zone of dependence 

concept will be presented in chapter 3.



31

The Keller’s box scheme: Keller (1978) developed a scheme that is 

similar to the Crank-Nicolson scheme. The discretization is centred at ( i+ j, k + i)

and the first derivatives are approximated by centred differences and two-point 

average. The grid points can be constructed involving only the four comers of a 

grid box. A typical box scheme for boundary-layer equations is shown in Fig. 2.5.

Keller and Cebeci (1972) employed the Keller's box scheme to predict the 

boundary-layer on laminar flows, turbulent flows and wake flows. The scheme is 

unconditionally stable but the resulting equations are highly implicit and non­

linear. Newton's method and a block tridiagonal system are employed to solve 

them. In order to improve the accuracy of the numerical solution and reduce the 

computer time, Richardson extrapolation is also employed. The investigation 

shows that the scheme is very efficient and is applicable to three-dimensional 

flows.

The Krause zig-zag scheme: An alternative implicit procedure for three- 

dimensional flows is the Krause zig-zag scheme. It has been widely used for flows 

in which the crossflow velocity (v) component changes sign. The centre of 

discretization is at the point (i+^, j, k). In this scheme the y-derivative is

approximated by the finite difference relation

9v
dy i+4

^  Vjfi-V+Vi+I-Vj+I.j-I 23
2Ay

Fig. 2.6 shows a computational grid for the Krause zig-zag scheme of the 

three-dimensional boundary-layer flows where x is streamline direction with 

velocity u and y is the crossflow direction with velocity v. The restriction on the 

meshes (e.g. Ax and Ay) is imposed if crossflow velocity (i.e. v) is negative due to
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zone of dependence concept. The stability constraint of this scheme is (Fletcher 

1991)

u>0.
vAx
uAy

<1 2.4

The Kitchens scheme: The Crank-Nicolson and Krause zig-zag schemes 

can be employed in three-dimensional boundary-layer flows but there is a 

restriction on Ax to satisfy the zone of dependence concept. Kitchens et al (1975) 

employed an implicit scheme in their three-dimensional calculation. In this scheme 

the discretisation is centre at (i+y, j, k). The approximation for x-derivative is

du (2Ui+i -  Uj+i -  u ^  ^ ^
0x 2 Ax

The approximation for y-derivative is

2.6
dy 2Ay

The grid configuration of this scheme is shown in Fig. 2.7. The prediction 

on three-dimensional boundary-layer over flat plate shows that this scheme seems 

relatively insensitive to violations in the zone of dependence constraint. This 

means that in some schemes the restriction on grid size (e.g. Ax) may be relaxed. 

In general, the violations of the zone of dependence rule should be avoided to 

secure the numerical results.

An upwind scheme: An upwind scheme differs from the schemes 

described earlier in that this scheme is based on bi-directional marching technique. 

It's marching scheme changes according to the local values of velocities (e.g. u.
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v). This is because the stability constraints for three-dimensional boundary-layer 

flow depend upon the local values of velocities. This scheme is less 

straightforward to implement than simple marching schemes but it is attractive 

since it provides stable solutions when the crossflow is reversed (e.g. v<0). Many 

authors (e.g. Johnston (1990), Steger and Van Dalsem (1985), and Vatsa (1985)) 

have successfully computed the three-dimensional boundary-layer using this 

scheme. Detail of the scheme will be discussed in discretization section of chapter

3.

Time marching scheme: An alternative approach to solve the boundary- 

layer equations is time-marching scheme. The scheme can be approximated for 

both unsteady and steady-state solutions. The principle and numerical methods are 

presented in Bradshaw et al (1981), Steger and Van Dalsem (1985), and Warsi 

(1992). The technique is similar to those of space-marching scheme, but differs in 

the governing equations in which the unsteady equations are integrated in time. 

The scheme is not too complex and requires reasonable storage (Lakshminarayana 

1991). The solutions can be obtained accurately and robustly.

Van Dalsem and Steger (1984 and 1985) proposed a finite difference 

method that solved the unsteady three-dimensional boundary-layer equations in 

the time-accurate or relaxation mode. A complex similarity transformation is 

avoided and viscous-layer growth is scaled out by co-ordinate transformation. 

They employ an upwind scheme for spatial derivatives in the streamwise and 

span wise directions. By this way, the complex space-marching scheme may be 

neglected.

Separation and viscous-inviscid interaction: The boundary layer 

equations have a singularity when there is a flow reversal. One way of dealing 

with the singularity is by neglecting the product of the streamwise velocity
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component and it's streamwise derivative in the governing equations wherever the 

velocity becomes negative (i.e. the so-called FLARE approximation). This is only 

relatively accurate for small reverse flow region, usually less than 10% of the local 

free stream velocity (Anderson et al (1984)). Another way is to solve the 

equations in the reverse mode by prescribing either displacement thickness or wall 

shear stress.

In general the boundary layer and inviscid calculations must be iteratively 

coupled. The surface velocity distribution from the inviscid calculation is used as 

an input to the boundary layer calculation to determine the displacement 

thickness. To estimate the effect of the displacement, the inviscid flow solution 

can be obtained by the use of a small disturbance approximation. This calculation 

consists of two parts treated alternately: the calculation of the boundary layer 

(viscous region), and the calculation of the outer flow (inviscid region). This 

interaction has been widely employed to make engineering predictions of viscous 

effects in many problems.

There are two methods of combining viscous-inviscid interaction:

1. The relaxation formula: In this method, the interaction calculation is 

initiated by prescribing displacement thickness (6*) in the interaction region. For 

the prescribed distributions of 5*(x), solutions for outer flow (u j are divided in 

two parts, one is from a inviscid solver (e.g. Euler method) and the other is from 

viscous solvers (e.g. Boundary-layer method). Viscous-inviscid interaction is 

achieved by matching these two solutions. The difference between outer flow 

calculated both ways (viscous and inviscid solutions) can be used as a potential to 

calculate an improved distribution for displacement thickness. This iterative 

updating of the solutions can be effectively carried out by the methods 

successfully demonstrated by Carter (1978) and, Kwon and Fletcher (1986a, b). 

The flow chart for this method is presented in Fig. 2.8.
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2. The interactive boundary-layer model: Interaction between the

inviscid and viscous flows is achieved by blowing-velocity (e.g. w„ = — (u^5*))
dx

distribution that is linked to the displacement thickness distribution through the 

Hilbert integral. This method was developed by Veldman (1981). Cebeci et al

(1992) suggested that the method can be viewed as an empirical formula that 

provides a better approximation to the link between inviscid and viscous flow 

equations than that the relaxation formula used by Carter (1978) and, Kwon and 

Fletcher (1986a). The method was applied to airfoil by (subsonic flow) Veldman 

(1981), and (turbulence flow) Cebeci et al (1992). Recently Jang et al (1991), 

extended the interactive approach to the calculation of blade boundary layers and 

compared its predictions with Navier-Stokes calculations. The detail of this 

method is discussed in chapter 4 and its flow chart is shown in Fig. 4.4.

2.4 METHODS APPLICABLE TO TURBOMACHINERY BLADES

Lakshminarayana (1991) has reviewed and assessed various computational 

fluid dynamic techniques for the analysis and design of turbomachinery. He 

recommends that the three-dimensional boundary-layer equations for 

turbomachinery flow should be written in a curvilinear system and a rotating 

cylindrical co-ordinate. These will enable the equations to account for the effects 

of rotation and surface curvature.

In the following paragraphs we present boundary-layer and Navier-Stokes 

methods for calculating turbomachinery flows.
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Boundary Layer Methods

Lakshminarayana and Govindan (1981) developed an integral method for 

predicting the gross properties of the boundary-layer in turbomachinery blades. 

The governing equations are based on the incompressible three-dimensional 

boundary layer of rotation curvilinear system. The integral equations are reduced 

to two first-order partial-differential equations by using a power law profile for 

velocities and a skin friction relation based on experimental data. The method uses 

Head's entrainment equations as a closure model. The numerical solution is 

compared with the cascade, inducer, compressor, and fan rotor and shows very 

good agreement in all cases. However, the code is inaccurate if there is a flow 

reversal.

Karimipanah and Olsson (1992) predicted the three-dimensional turbulent 

boundary-layer development on a turbomachinery blade and used integral 

momentum technique. The system of equations is written in an orthogonal 

curvilinear system. The entrainment equation by Michel is used as an auxiliary 

equation. The calculations show the influence of rotation and compressibility on 

the boundary-layer parameters. Momentum thickness and shape factor increase 

with increasing rotation and decrease when compressible flow is taken into 

account.

Thompkins and Usab (1982) considered a finite difference method for 

quasi-three-dimensional boundary-layer on rotating blade rows. The three- 

dimensional boundary-layer equations are written in an orthogonal curvilinear co­

ordinate system and assumed that gradients of all flow properties in the crossflow 

direction are zero. The Keller's Box scheme is employed to predict the boundary- 

layer. The results of the calculation are verified to a NASA Low Aspect Ratio 

transonic compressor stage and show that a rotor performance is influenced 

the three-dimensional boundary-layer especially for separated flow.
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Yamazaki (1981) derived the three-dimensional boundary-layer equations 

in a general non-orthogonal co-ordinate system for rotating cylindrical co­

ordinate system. His set of equations has been applied to calculate the boundary- 

layer on propeller blades by Groves and Change (1984) and Oshima (1994).

Groves and Change (1984) predicted the viscous effects on rotating 

propeller blades by using finite difference approach to approximate the three- 

dimensional boundary-layer equations. The Keller box scheme is used but the 

characteristic box scheme is used instead when the crossflow is reversed. The 

eddy-viscosity factor is defined by applying the Cebeci-Smith model for turbulent 

flow. Computed results are presented for several blade geometries. Overall, the 

predicted boundary-layer parameters are shown to give reasonable agreement 

with experimental data.

Oshima (1994) evaluated the viscous effect on propeller performance by 

using the three-dimensional boundary-layer theory. The boundary-layer equations 

are presented in a non-orthogonal co-ordinate system which rotates with the 

blade. The turbulent terms are defined by an algebraic eddy-viscosity formulation. 

The system of equations is solved numerically using the finite volume method. 

The computation is verified with local flows near a propeller blade surface. These 

flows were measured in the cavitation tunnel by using 3-component Laser 

Doppler Velocimeter. Calculated velocity profiles in the boundary layer show 

good agreement with the measured ones.

Vatsa (1985) presented a fully three-dimensional boundary method. The 

governing equations are written in non-orthogonal body surface and solved 

numerically by using a finite difference approach. In order to capture the viscous- 

layer growth, the Levy-Less transformation is introduced in the system of
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equations before solving them. He employed a first-order formulation for spatial 

derivatives and an upwind scheme in the crossflow direction (to capture flow 

reversal). The resulting linear algebraic equations are solved using a block 

tridiagonal solver. The predicted viscous flows over a turbine endwall and airfoil 

suction surfaces are in good agreement with the experimental data.

Anderson (1987) applied the method due to Vatsa for the calculation of 

heat transfer and streamline flow patterns. He has used experimental surface 

pressure to solve the Euler equations at the surface. These solutions are used as 

boundary conditions in the boundary-layer solver in order to obtain the complete 

edge flow conditions. Solutions for three-dimensional boundary-layer flow over 

the endwall and suction surface of a stationary turbine cascade and for the 

pressure surface of a rotating turbine blade are presented and evaluated with 

experimental data. Predictions show good agreement with the experimental data.

Navier-Stokes Methods

In the current survey, there are a number of studies which have been done 

to develop a technique to capture viscous flows in turbomachinery by using the 

Navier-Stokes equations. Some of the Navier-Stokes methods will be discussed in 

the following.

Three-dimensional inviscid calculations for turbomachinery are now well 

developed but three-dimensional viscous flow calculations are not yet sufficiently 

well developed to be used for design purposes. Denton (1986) suggested that 

there is scope for an intermediate type of method in which a highly developed and 

comparatively efficient inviscid method is coupled with a simple approximated 

viscous method. The approximated viscous method is obtained when the viscous 

terms in the Navier-Stokes equations are replaced by a body force in the 

momentum equations. The method has been applied to compressor and turbine
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blade rows, both rotating and stationary, and good results are obtained. However, 

it is recognised that many more grid points will be necessary to get accurate 

solutions by such a method.

Dawes (1987) investigated a three-dimensional viscous compressible flow 

in turbomachinery by using the Navier-Stokes equations. The unsteady equations 

are written in an integral form and solved numerically by finite volume 

formulation. The eddy viscosity (p.J is given by Baldwin-Lomax model. The 

steady state solutions are obtained by applying a multigrid algorithm to accelerate 

the convergence. This method is applied to the high-speed centrifugal compressor 

rotor. Computations of the entropy generation rate throughout the flowfield 

shows that the dominant loss generation is very near to the shroud. The secondary 

flows are responsible for transporting the low momentum fluid.

Ng and Dawes (1992) developed a technique to capture the viscous effect 

near the wall of turbomachinery problems using Navier-Stokes equations. The 

basic concept is to take a quasi-3D Navier-Stokes or Euler solver on a coarse 

mesh (the "outer code") and couple it to a 2-D space marching parabolised 

Navier-Stokes solver on a finer sub-mesh (the "inner code"). The FLARE 

approximation is employed when the flow is reversed in the inner code. The inner 

and outer codes are coupled in an analogous way to a multigrid method. This 

technique has been applied to compute viscous flow over a compressor cascade 

and a turbine cascade, and fairly good correlation has been obtained with 

experimental data.

Amone and Swanson (1993) presented a method for solving the 

Reynolds-averaged fiill Navier-Stokes equations. A finite-volume approach is 

applied to discretize the two-dimensional unsteady Navier-Stokes equations. 

Solutions are advanced in time by a four-stage Runge-Kutta time-stepping scheme
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with convergence accelerated to steady state by local time stepping and a full 

multigrid method. The Baldwin-Lomax eddy-viscosity model is used for turbulent 

flow. In order to validate the method for turbomachinery applications, 

computations were performed for bicircular arc cascade and gas turbine rotor 

blade. Comparisons with experimental data show that the code is an accurate 

viscous solver and can give very good blade-to-blade predictions for engineering 

applications.

Liu and Jameson (1993) solved the three-dimensional compressible 

Reynolds-averaged Navier-Stokes equations by using a finite volume scheme. A 

multigrid method is used to accelerate convergence. The eddy-viscosity is 

specified by using the Baldwin-Lomax model. The method has been applied to a 

three-dimensional low-pressure turbine cascade. The results gave reasonably good 

agreement when compared with inviscid solutions and experimental data.

2.5 TURBULENCE MODELLING

For turbulent flow, a proper turbulence model should be incorporated into 

the boundary-layer solvers to predict the results accurately. Turbulence is a 

property of the flow rather than that of the fluid, hence, empirical correlation is 

employed to represent the variation of eddy viscosity inside a boundary layer. 

Turbulence modelling may be classified as follows (White (1991)).

1. Algebraic models

2. One-equation models

3. Two-equation models

4. Reynolds Stress Models (RSM)
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Algebraic models

An algebraic turbulence model requires no additional differential equations 

to be solved. The eddy viscosity distribution is specified in two parts, the inner 

region and the outer region. Examples of this model are the Cebeci-Smith model 

and the Baldwin-Lomax model. They are used by many existing calculation 

methods and seem to be the most popular class of turbulence models (Humphreys 

and Lindhout (1988)). Lakshminarayana (1991) suggested that the algebraic 

eddy-viscosity model is strictly valid only for two-dimensional "simple shear 

flows". He also concluded that:

1. The model is adequate for two-dimensional compressible flows with a 

mild pressure gradient

2. The model is suitable for three-dimensional boundary layers with small 

cross flows.

3. The model is not valid for flows with curvature, rotation, or separation.

4. The model is not valid for pressure or turbulence-driven secondary 

flows and when abrupt changes in strain or shear rate are presented.

5. The model cannot accurately predict shock-induced separated flow.

One-equation models

In one-equation model, the turbulent eddy viscosity is evaluated by a 

model of turbulent kinetic energy (k). This model solves only one partial 

differential equation, therefore, it is less computationally intensive compared with 

two-equation model.

The use of one-equation models in the 1968 Stanford Conference showing 

that the results were satisfactory but, apparently, no better than the best algebraic 

methods that merely used a model for eddy viscosity (White (1991)). The 

implementation of one-equation model is extremely difficult for extending a
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length-scale correlation to complex flows (Lakshminarayana (1991)). These are 

the reasons why a one-equation model is not presently popular.

Two-equation models

In the two-equation model, the turbulent kinetic energy (k) and dissipation 

(e) equations are solved to calculate turbulent eddy viscosity. Lakshminarayana 

(1991) summarised the model as follows.

1. The k-e model is much superior to algebraic models.

2. The k-e model is accurately predicted for most two-dimensional flows.

3. The k-e model is not good for three-dimensional flows with high cross 

flows, swirl, rotation, curvature and shock-induced separation. This is because the 

model assumes an isotropy and low Reynolds number formulation near the wall.

Sondak (1995) developed a method for the application of wall functions to 

generalised curvilinear co-ordinate systems with non-orthogonal grids. The 

method has made the use of wall functions and the k-e turbulent model to 

accurately predict the viscous effects near the wall in low-Reynolds number 

models. It has been tested on a flat plate with a non-orthogonal grid and a prolate 

hentispheroid with an orthogonal grid. The results are compared with 

experimental data and Baldwin-Lomax model. The k-e model with the wall 

function gave good results for both the fme-grid and coarse-grid cases.

Ekaterinaris and Menter (1994) tested one- and two-equation eddy- 

viscosity models for unsteady massively separated flow. An implicit numerical 

scheme is used for the integration of the compressible, Reynolds-averaged Navier- 

Stokes equations. These turbulent models are tested for steady separated flow and 

for unsteady flow over oscillating airfoils. The selected models include the 

Baldwin-Barth (B-B) model and the Spalart-Allmaras (S-A) model for one- 

equation models, the k-e, the k-co and the shear stress transport (SST) k-co models



43

for two-equation models. The results showed that for the light-stall case the S-A 

model did not yield sufficient separation and underpredicted the extreme values of 

the unsteady loads (lift coefficient Cp drag coefficient c ,̂ and pitching moment 

coefficient c^). The B-B model overpredicted the values for the light-stall case 

and the attached flow cases. The standard k-e and the k-co models did not predict 

separation even for the deep-stall case. The SST k-co model gave good 

predictions for the attached and the light-stall cases.

Reynolds Stress Models (RSM)

RSM is potentially the superior model since it provides a more realistic 

physical simulation of turbulent flow. RSM is intended to account for complex 

turbulent effects, such as surface curvature and rotation, in three-dimensional 

layers. However, the modelled Reynolds stress equations are extremely 

complicated to solve for a three-dimensional flow since there are about 10-20 

transport equations involved (Lakshminarayana (1991)). Zhang and 

Lakshminarayana (1990) modified a model in conjunction with the k-e equations. 

This model is called an algebraic Reynolds stress model (ARSM). ARSM 

simulates the turbulent stress more realistically by relating the properties to local 

conditions. This model is efficient and inexpensive and can predict important 

features of flow in a turbomachinery (e.g. rotation and curvature effects). 

Therefore ARSM may be used to illustrate the ability of boundary layer codes to 

predict complex three-dimensional boundary layers.

2.6 LOSS DUE TO BOUNDARY-LAYER

The aerodynamic behaviour of turbomachinery is dominated by viscous 

effects. The viscous flow, fiom boundary layer methods or Navier-Stokes 

methods, can be used to predict the terms such as the boundary-layer blockage 

and secondary flow. Before taking these quantitative predictions for
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turbomachinery design purpose, one should understand the process of loss 

generation. Denton (1993) showed that the performance of turbomachines is 

directly related to rate of entropy production in the flowfield. Therefore he 

preferred to use the word "entropy" rather than the word "loss". The 

understanding of this process can identify loss sources and its mechanism, and 

improve design of turbomachines (Dawes (1987)). Denton and Cumpsty (1987) 

divided the sources of entropy into viscous effects in boundary-layer, viscous 

effects in mixing process, shock waves, and heat transfer across temperature 

difference.

Entropy generation in Boundary layers: Denton and Cumpsty (1987) 

has reviewed the entropy generation in boundary layers in the following way. The 

entropy is generated in the boundary layer because of viscous friction. Velocity 

inside the layer changes rapidly near the surface, therefore most of the entropy 

generation is concentrated in the inner part of the layer and is about 90 percent of 

the entropy generation in a boundary layer. The total rate of entropy creation is 

proportional to the area under the T-v curve. For two-dimensional boundary layer, 

it may be written as

^ = j i x d v  2.7

% is the rate of entropy production per unit surface area, T is temperature, x is

shear stress and v is velocity across the boundary layer thickness (5). He also

presented the entropy generation in terms of the dissipation (Cj,non-dimensional 

form of Ç ) and an entropy thickness (8 )̂.
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The results from the calculations can be used as guidelines and as an aid to 

understanding the physics of the flow. The principle of entropy production will be 

discussed in detail in chapter 4 and application of it to real turbomachinery will be 

presented in chapter 5.



46

i,k+l

Azi+l,ki-l,k

i,k-l

Ax
X

* unknown point 
■ known point 
O centred point

Fig. 2.1 The finite difference grid for explicit scheme

i,k+ l

i,k i+ l,k
a

i.k-1
f

"4— ►

* unknown point 
■ known point 
O centred point

Ax

Fig. 2.2 Simple implicit finite difference grid points

i,k+l

i.k 1 ■i+l,k
a

i,k-l C

"4—►

*  unknown point 
■ known point 
O centred point

Ax

Fig. 2.3 The finite difference grid points for Crank-Nicolson scheme



47

i+lj+1

i+1
* unknown point 
■ known point 
O centred point

X

Fig. 2.4 Three-dimensional finite difference grid points for the Crank- 

Nicolson scheme

i,k+l

i.k O i-kl,k
li

i,k-l

— ►

■ known point 
O centred point

Ax
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Fig. 2.6 Arrangement for the Krause zig-zag scheme
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Fig. 2.7 Grid arrangement of Kitchens scheme on x-y plane
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km. ĉ.iNv| ^ ̂
"c.INV

Inviscid solver

Initially prescribed 5

Boundary-Layer solver

*NEW “  * ^ N E W  ^  ( l  ^ ) ^ O L D

Fig. 2.8 Flow chart for the viscous-inviscid interaction: relaxation formula 

(Kwon and Fletcher (1986a))
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CHAPTER 3 

THREE-DIMENSIONAL BOUNDARY LAYERS

3.1 INTRODUCTION

This chapter provides the procedures used to develop a calculation 

method for three-dimensional boundary-layers on turbomachinery blades. The 

chapter starts by presenting the boundary-layer governing equations. These 

equations are three-dimensional unsteady boundary-layer equations. They are 

expressed in body-fitted non-orthogonal curvilinear co-ordinate system. By using 

these equations, it is possible to calculate the boundary-layer on curved surfaces. 

The equations are also written in rotating cylindrical co-ordinates that are best 

suited to turbomachinery especially when the system is rotating about one axis.

The eddy-viscosity for the turbulent flow based upon Baldwin-Lomax 

model is presented in the next section. The model was chosen because it uses 

simple empirical turbulent models and can be applied for three-dimensional 

separated flows. This model is used in many Navier-Stokes solvers and boundary- 

layer solvers, and the solution is obtained by direct computation.

The stability and accuracy of the solutions depend on the transformation 

and discretization methods employed. Since the complex similarity 

transformations are avoided and the equations are expressed in the physical 

domain that is non-uniform grid spacing, the grid generation is used to transform 

this non-uniform grid spacing (physical domain) to a uniform grid spacing 

(computational domain). This approach is presented in section four.

The discretization scheme that is used is based on an upwind differencing 

scheme. This is described in section five. The scheme provides a more stable
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discretization for predicting problems with flow reversal. It is employed with 

second-order formulation in the spatial derivatives parallel to the surface. Central 

differencing is used for the spatial derivatives in the normal direction. Finally the 

forward differencing with first-order formulation is used for time derivative.

The numerical solution algorithm is defined and discussed in section six of 

the chapter. The solutions are obtained by time integration that is in a form of a 

tridiagonal system of equations. Thus the boundary-layer equations can be 

computed efficiently and accuracy.

Section seven presents the computational procedure. The systems of 

equations from the previous section are solved in an uncoupled manner. Once the 

predicted values are obtained, they will be updated and used to predicted the 

other values. This iteration process will continue until the solutions are 

converged. To accelerate the process a variable relaxation factor is used.

In the final section, we shall investigate the stability of the boundary-layer 

equations and describe the zone of dependence concept.

3.2 GOVERNING EQUATIONS

Governing equations of fluid flows consist of three basic laws of 

conservation of mass, momentum and energy. These conservative laws are the 

heart of fluid dynamics and the fluid flows have to obey their principles. In fact all 

the fluid dynamic problems are solved with the same principles but with different 

assumptions.

The Navier-Strokes equations represent the conservation of momentum 

and are applicable in describing the motion of fluid. They are used to solve many
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fluid flow problems since they can be expressed for steady or unsteady, viscous or 

inviscid, compressible or incompressible flow, etc.

Boundary layer is formed whenever fluid flows over a solid surface. If 

Reynolds number is very high, the boundary layer will be a very narrow layer near 

to a solid surface and the effect of viscosity is significant in this thin layer. Outside 

the layer, therefore, the effect of viscosity may be ignored. With the help of this 

assumption and the order of magnitude, all viscous terms containing derivatives 

parallel to the surface are much smaller than those normal to the wall. These terms 

are dropped out in the Navier-Stokes equations. The resultant equations are 

boundary-layer momentum equations that are simpler than the Navier-Stokes 

equations. These equations together with the energy equation and the continuity 

equation are used to solve boundary-layer problems. These equations are not 

applicable to flow near the intersection of two surfaces (e.g. near hub-blade 

junctions and comers in channels) because stress gradients in two directions are 

not important in those regions. Other reduced forms of the Navier-Stokes 

equations can be used to treat the problems. These forms of equations are not 

considered here and can be seen in Anderson et al (1984).

3.2.1 CONSERVATION EQUATIONS

The equations of continuity, momentum and energy with respect to a 

frame of reference rotating with a constant angular velocity Q are given by:

^ + V ( p U )  = 0 3.1a
ot

p - ^  + pU V U  + 2 p iix U  + p Q x ( n x r )  = -V p  + V-(pVU) 3.2a
at

p ^ + p U V I  = -^ + v [ - t î -V H  + p f l - — Iv—  
3t 3t Pr V Pry 2

3.3a
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U is the velocity relative to the rotating system, p is the pressure, I 

) is the rothalpy, H (=CpT + is the total enthalpy, Pr is the

Prandtl number, p is the density, p. is the viscosity and r  is the position vector 

relative to the rotating axis.

The equations are written in the unsteady forms since they are solved by a

time marching scheme. They differ from their steady flow counterparts only

through the appearance of the term ^  in continuity equation, in
at dt

91 , 3 p .momentum equation and, p — and —  in energy equation.
dt dt

In rotating and non-rotating co-ordinates of the momentum equations 

(3.2a), there are two additional terms in the former due to the rotation. These 

terms are 2QxU, the Coriolis acceleration, and Ox(Oxr), the centripetal 

acceleration. For energy equation, the effect of rotation appears through rothalpy.

The boundary-layer equations of Cartesian co-ordinate are simple and 

quite straightforward. Therefore we will first illustrate the set of boundary-layer 

equations in this co-ordinate system. Let U = û ê  + UyCy + u^e, and the normal 

distance to the surface is in z-direction, then equations (3.1a-3.3a) for non­

rotating Cartesian co-ordinate can be written into the following scalar boundary 

layer equations:

continuity:

0t dx 9y dz
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x-momentum:
Bu, Bu, Bu, Bu, Bp B f  Bu,

y-momentum:
Bu Bu Bu, Bu y Bp B

V

z-momentum:

^  = 0 3.2.3b
Bz

energy:
BH BH BH BH Bp B

Pr 9z 2V  P rJ Bz
3.3b

Since | u, | «  |u , | and |uy |, the value of = u,^+ Uy^ u /  « u,4- Uŷ . At 

the boundary-layer edge, we set U = u^e, + û Cy + u^e^ and p, = 0 in the 

equations (3.2.1b-3.2.3b) resulting the Euler equations. Since the boundary-layer 

is very thin, we can assume that p is constant across the layer (see equation 

3.2.3b). Therefore we can relate the derivation of pressure term through the Euler 

equations. Setting p = 0 in the equations (3.2.1b-3.2.2b) we get

x-momentum:

y-momentum:

P . - ^ + P . u „ ^ + p . u , ^ + p . u „ ^  = - | £  3.2.2c
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energy:
d u  d u  dp

where a subscript e denotes a quantity at the boundary-layer edge.

The above set of equations (3.1b, 3.2.1b-3.2.3b, 3.3b) is applicable only to 

a flat plate. In order to get a general form of boundary-layer equations, the shape 

of the surface on which the boundary layers are formed has to be considered. This 

will be discussed in the following section.

3.2.2 METRIC COEFFICIENTS

It should be noted that the equations (3.1a-3.3a) are valid for any co­

ordinate systems as long as the operation of V is known. Since boundary layers 

are defined on a surface that the fluid flows, the equations should be transformed 

to the general curvilinear system (Ç, T|, Ç ). A straightforward procedure is to use 

the metric stretching factor hj (i=l, 2, 3) to relate the curvilinear co-ordinate to a 

standard co-ordinate system (e.g. Cartesian co-ordinate, cylindrical co-ordinate).

In the following transformation we will relate the general curvilinear 

system (Ç, q , Ç) to a cylindrical co-ordinate system (x, r, 0). The curvilinear 

system is defined in an non-orthogonal co-ordinate in order to cover all types of 

surface shape. This non-orthogonal curvilinear co-ordinate system is shown in 

Fig. 3.1.

The equations due to Yamazaki (1981) are adapted for unsteady 

compressible flow. The surface of the body consists of two non-orthogonal 

surface co-ordinates ( ^ , q )  with an angle a  between them. The third co-ordinate 

Ç is the actual distance measured normal to the surface. The system Ç, q , Ç is
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rotating around the x-axis with the constant angular velocity 12. At time t, the 

surface itself is defined in terms of cylindrical co-ordinates (x, r, 0 ) as

X =  Xb’ r = r,b’ 0  =  0L 3.4

where =Xy(^,T|), r̂  = rj,(^,Ti), 0 ,, = 0 b(^,Tl).

A subscript b denotes a quantity at the blade surface (i.e. at Ç = 0).

The position vector L in the non-orthogonal curvilinear co-ordinate 

system Ç, ti , Ç may be written as:

L = xe, + re  ̂+ 0 e@ 3.5

where e,, ê , are the constant unit vectors along x, r, 0 axes, respectively. The

tangential vectors to the co-ordinate lines ^ , T| and Ç can be obtained by partial

derivatives of L with respect to T|, ^ (i.e., ^ ) ,  respectively. They
9q dÇ

are called the base vectors or metric coefficients.

hi =
SI, rsx , 1

2 2 /

i + +
V

Tb̂ Qb 3.6

9L - f e T . r r ,a 8 j

3t1 V l à n j an  J
3.7

ha = dL
- f a x . f ^ r a r j

2

+ f r .a e ,^
a ; V l a U a ;  J

3.8

In cylindrical co-ordinates, the vector displacement between two points on 

the body surface is given by
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dL = dxy e, + dr^ e, + r̂ dOy e@ 3.9

In curvilinear co-ordinates, the analogous displacement is given by

dL = dLi Cl + dL^ + dL^ 3.10

where e,, e ,̂ and are the unit vectors along Tj and Ç, respectively. In the 

curvilinear co-ordinate system, if ^ is increased by AÇ, then ALj will be increased 

by hjAÇ in the ^ -direction . The other two directions are considered in a similar 

manner. For boundary layer equations, there is no loss of generality by setting ĥ  = 

1 since the value of Ç is arbitrary and independent from x̂ , r ,̂ 6 y. The element of 

length on the surface, |dL| then

|dLP = dx,2 + dr,2 + (r,dOJ2

= (hjd^ y  ^(h^d r\ y  fZh^h^ cos ad% dt] 3.11

Then we can see that

= = 3.13
^2 3îl ^2 ^T| ^2 Oti hj 3ti

The relationships among the unit vectors in Ç-, q -, ^ -directions (i.e., e ,̂ 

Cj, €3) and the unit vectors in x-, r-,0 -directions (i.e., e,, ê , e@) are
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Cx'Cx = Ce = 1

= ê e@ = 0

e .x e , =  e / e ^  =  e@xe@ = 0

Ce X e, = e.

e, xce = e.

C x  X  e, =  Ce

Ci-Cj = eye^ = 6 3 6 3  = 1

^1^3 = 6 2 6 3  = 0

63 02 = cos a

e,X0 j = 02X03 = 03X03 = 0

03X03 = 03 sin a

cos a  1
0 , X 0 , = - 0 , -------  + 0 ,

1 cos a
 --------sin a  sin a6 2 X^3 = « 1 -:---------G z------  3.14

and the directional cosines between the systems are

e . e . =



58

^2’^x= 3ti

1
hjh^ sin a  

1

3xb 3fb 3ry 3xy
an a^ an

hjhj sin a  

1

r,,89|,  ̂ r^ae^ d\^
3t| 3Ç 3%! y

ry30y ry38y 3 ry ^
hjhj sin a a^ an  a^ an

3.15

From equations (3.12-3.15), the unit vector 63 can be evaluated from

€3 = e, X €3

1

1
s i n  a

/

hjh^ sin a

hjh2 sin a

1

aç an  a^ an

3^ 3n 3^ 3n

sin a
axb ar^ ary ax^
aç an a% an

3.16

Then, the position of a point near the blade surface can be represented as

x = Xk + (e3-e,)C 

r = rb + (e3«X

6  = 0 b + (®3®e)“ 3.17

It should be noted that there are two normal directions, above and below 

the surface. If the other direction is required, the unit normal vector 63 should be 

negative.
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3.2.3 NON-ORTHOGONAL CO-ORDINATE SYSTEM

The boundary layer equations for the non-orthogonal co-ordinate system 

^ , q , Ç now can be derived since the metric coefficients (hp ĥ , ĥ ) and the unit 

vectors (Cp e ,̂ e )̂ are specified. It should be noted that these values, in general, 

vary from point to point. For more detail about differential quantities in the new 

curvilinear co-ordinate system, the reader can refer to Anderson et al (1984) and 

Warsi (1992). It should be emphasised that velocity U must be defined along the 

surface co-ordinate. In this system, we set U = uCj + vCj + we .̂ For the boundary 

layer problems, |w| «  |u| and |v|, and these velocities (i.e. u, v) are directed along 

the surface ( ^ , q ) with an angle a  between the Ç and q curves. Therefore, = 

u2+v2+2uvcosa. For the method of the velocity transformation between the 

curvilinear co-ordinate (Ç, q , ^ ) and the cylindrical co-ordinate (x, r, 0 ), the 

reader can see in Appendix A. The operation of V on the equations (3.la-3.3a) 

for the co-ordinate surfaces can be written as:

continuity:
Bp -H-

1
3t h^h^sina

0(h2sinapu) ^ 0(h)Sinapv) ^ 0(h]h2sinapw)
aq a;

= 0 3.18a

^ -momentum:
du p u  0 U  p V  3 U  9 U  2 Tjr 2 A+K ,,puv+K ,,pv + a ,

= K , . ^ + K . . - ^ + - L"14 aq ac
3.19a

q-momentum:
av pu dw pv dv dw

+ k ^ p u v + k „ p v  + a ,

av 3.20a
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energy:
a i  p u  a i  p v  a i  a i  a p  a  p a n  p r  n a u "p  + - ----= + - ----=  + p W ^  = — + ̂  —--- =̂  + — 1 -------  =r-

^ a t  h ,  a ç  a n  ^  a ;  a t  a ç  P r a c  2 V  P r j  a ç
3.21a

Equation (3.21a) can be written in the term of total enthalpy as shown in 

equation (3.21b).

9H pu3H  pv3H  9H 3p a r u  3H i i ( ,  n a u ^ '
P 4------ =r4------=  + pW^=^ = — + - ^  —--- =̂  + — 1-------  =-
^  a t  h i  a ^  h ,  a q  ^  a ;  a t  a ;  P r  a c  2  v  P r j  a c  _

+
pufl^ ar^ pvü^ ar^ 2

h , 2  ac h^ 2  aq
=r+pQ^r[Aa2U + Aajv] 3.21b

where

Kn =

^ 12  ~

Kn =

c o s a

h j h ^ s i n  a  

1
h ^ h ^ s in  a  

1

Km = -

h j h ^ s i n  a  

1

ah, ah2Cosa
â q  â T ~

( 1  +  c o s ^ a )  -  2 c o s a
' aq a c

a h ,  c o s a  a h 2

K,< =

hjSin^a

c o s a

h j S i n  a

K ^ =

c o s a

1
h i h ^ s i n  a

( 1  +  c o s ^ a )  -  2 c o s a
 ̂  ̂ a c  B n

K23 = -K ,3Cosa

K24 = -K ,4Cosa

K 2 5  =  - K , g C o s a
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Aj and are the terms that involved in the rotation of the axis. Yamazaki 

(1981) derived Aj and A  ̂by introducing a function A which equals to

A = A, 6i + A2 62

= 2pQxU + pQx(Qxr) 3.23

Let e, = 1, Cl + 12 62 + 13 63

= mj 6 i + m2 62 + m3 63

and ee = nie, + n262 + n3e3 3.24

and using the unit vectors relation, we get

•1 = [(e , e , ) - ( e .  e j c o s a ] - ^  

I2 = [(e, • ̂ 2 ) -  (e. • e, )cosa]-7^

sm^a

sin^a

sm^a
m, = [(e, e , ) - ( e ,  e2 )co sa ]-^

“ 2 = [(«r e i ) « > s a ] ^
sm^a

sin^a
" i  = [(« »  e , ) - ( e ,  e 2) c o s a ] - :4

Sin

«2  = [(«» «2) -(«» - ) c o s a ] ^sin^a



62

Ü3 = € 0 6 3 3.25

If = Qe^, we can write the term

2pQ X U =  2p[(f2ejj) X (ue, + vCj + wCj)]

= 2 pQ[(liei + + 1363) X (uci + ve^ + we3)] 3.26

The resulting equation in non-orthogonal curvilinear co-ordinate is then:

2pf2 X U = -2pQ( ucosa -H v)
1 1

sin a  h^h^sina
rb39b ry^Gb Grb

+2 pO(u + vcosa)
1 1

sina hihjsina

3t1 3Ç 3ti

9Tb rb3@b fb^Gb 9fb
8 ^ 3t1 3n

Cj 3.27

and the term pOx(Oxr) is done in the similar way

pQ X (Q X r) =  -pA r =  -pf2 r —
1

s i n ^ a

2. 1

1 9rb cosa Br̂  ]
h, 3 ^ hj dr\)  '■

-pQ^r-
sm^a

1 9rb cosa Br̂
^2 9T| hi

3.28

Therefor Ai =-2pf2 (ucosa-Hv)—
1 1

sina hihgSina
9% rb30b n,B0 b 0 Tb
B^ 0 T| B^ 0 T|

- p n 'r -
1

sm^a
1 9ry cosa 9ry

hi B^ h  ̂ 0 T|
3.29
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Aj = 2 pQ(u + vcosa)—
1

sina hjhjsina

^ 1 cosa

an  a^ an

hj an  a^
3.30

From equations (3.18a-3.21a), we can see that the velocity vector of

inviscid flow has the components n , 0  and v^(Ç, n» 0 » so the pressure 

distribution in the inviscid flow is a function of Ç, n and t (i.e. p = p(^,n,t)). The

normal pressure gradient is zero within the boundary-layer. This gives

similar result as those in the simple form of Cartesian co-ordinate as presented in 

section 3.2.1. Therefore, the derivation of pressure components can be related 

through the equations (3.31-3.32).

Pc ^  + K„ P.U* + K,jp.u. V. + K„p.v^ + A,
at hj a^ hj aq

3.31

at hj aç hj aq  

- K  ^P+K- ^P 3.32

9H.  ̂ p ,u , 9H, I p ,v , 9H, ^ 9p  ̂ P .u .g  9r^  ̂ p .v .Q  d r ^  

3t h, hj 3 t| 9t h,2 3^ h j2  3t)

+P.G^r,[A^u. + A ^ v J

From equations (3.31-3.32), we see that the pressure components are 

related to the inviscid value of u, v and H. Although the set of the governing 

equations is expressed in an unsteady form, our method is to solve the equations
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for steady flows. According to this, the inviscid terms (e.g. u ,̂ v ,̂ H J are a

function of only Ç and T|. Therefore and ^  are neglected.
dt dt dt dt

The set of the governing equations for laminar flow is now completed 

through the equation of state (R is the gas constant),

p=pRT 3.33

Molecular viscosity-temperature relation, assumed to be represented by 

the Sutherland's law (White (1991))

3.34
vtJ  t + s

where S is the Sutherland's constant, p.Q and Tq are viscosity and temperature, 

respectively at reference values.

Sutherland's formula can be approximated by the simple power law

JL 3.35

For air. White (1991) recommended the following values.

To = 273K

Po= 1.716xl(>5 N-s/m^

n = 0.666 3.36

The boundary conditions for the governing equations are given in equation 

(3.37a,b).
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at the wall Ç : the no-slip condition, u = v = w = 0

either a specified temperature, T =
3X

or heat-transfer condition, —  = q' or H = 3.37a
dÇ

at the edge of the boundary layer Ç —> <»:

a specified free-stream conditions,

u = Ug, V = Vg, T = or H = 3.37b

In the above set of equations, all scale factors are calculated at the body 

surface ^ =0 (i.e. x̂ , r̂ , 8 J . It should be noted that the distance r̂ , is a function of 

the surface co-ordinate Ç, Tj only while r is the perpendicular distance of a point 

from the axis of rotation.

3.2.4 APPROXIMATE EQUATION FOR THE ENERGY 

EQUATION

From the energy equation (3.21a) if the Prandtl number is unity (a fair

approximation for gases), the last term vanishes. When there is no heat transfer at

the surface, it implies that vanishes at the surface. Therefore the equation
dg

becomes = 0 or I = constant throughout the boundary layer. This leads to the 
dt

particular solution to the case of conservation of rothalpy.

I = constant

Thus the temperature across the boundary layer at an adiabatic wall with 

P r= l can be written as.
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« 9 .
2 Cp 2 Cp

where is the total velocity at the boundary layer edge = u /  + v /  + 2 û v̂  cosa.

r̂  is the radius relative to the rotating axis at the boundary layer edge.

The above equation can be used to approximate the energy equation of 

compressible boundary layers when Pr is near unity and there is no heat transfer at 

the surface. It should be noted that the equation can be applied for turbulent flow 

if one makes the assumption Pr -  Pr̂  = 1 (approximately true for air). The effect 

of turbulent flow will be presented in section 3.3. For non-rotating co-ordinate 

system, total enthalpy is conserved and the temperature-velocity relation can be 

obtained in the similar manner.

3.2.5 NON-DIMENSIONAL EQUATIONS

The boundary-layer equations can be non-dimensionalized by using the 

following free-stream values:

L (a characteristic length) for all lengths 

u_ (free-stream velocity) for all velocity vectors 

p _ u j (the dynamic head) for pressure 

T_ (free-stream temperature) for temperature 

CpT_ for enthalpy

^  for angular velocity

—  for time 
u„

Normal distance and velocities are also stretched by the square root of the 

Reynolds number. Re = where p., is the molecular viscosity evaluated at

free-stream temperature. The non-dimensional governing equations (3.18a-3.21a 

and 3.39a) can be expressed as:
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continuity:
ap

+ •
1

at h^h^sina
a(h2sinapu) ^ a(h,sinapv) ^ a(hih2sinapw)

3t1
= 0 3.18a

% -momentum:

au pu au pv au au ^  ^  ^  ^  2 *+ K „puv+ K „pv + a ,

^ au^
3.19a

Tj-momentum:

av pu av pv av av ^  2 ^  2 . a
p  — +  — ^  +  — ^ 4 - p W ^ + K 2 i P U  + K 22PU V  +  K23PV 4 -A 2  

dt hj dq h2 dTj dq

^ d \^  
V^âCy

3.20a

energy:

a n  pu a n  pv a n  a n  a p  a n
[ P r a ç j

+ (Y - l)M i-=
oq

f l _ ± w  
P r j  aç JV

i2 :^2

+ (y -l)M 2 p u Q ^  a r ^

“  h. 2  a l

+ (r -  l)M i +(y -  l)MipQ^r[AœU + A^v] 3.21c

2 c. 2 c.
3.39b

where M_ =
YRT^

R is the gas constant = c -  c  ̂= , ( y - 1)
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c
7  is the ratio of specific heats = — .

c..

3.3 TURBULENT MODEL

The governing equations presented in section 3.2 are applicable to laminar 

flow. Therefore in this section, we will extend the boundary layer equations for 

the turbulent flow.

It is generally observed that the flow pattern in the boundary layer is 

laminar for a certain distance from the leading edge then further downstream the 

flow in the boundary layer becomes turbulent. A good indicator in determining 

whether the flow is laminar or turbulent is the Reynolds number. When the 

Reynolds number is very high (say > 10’), the flow may be expected to become 

turbulent. Transition from laminar to turbulent flow in a boundary layer is a 

complex phenomenon and will not be considered in this study.

The flow pattern of turbulent flow is not constant in time but exhibits very 

irregular, high-frequency fluctuation. This irregular fluctuation may be 

characterised by random fluctuations of the flow variables around some average 

values. A method to find the solution of the flow is to replace this disorderly 

changing flow variables by time averages plus fluctuations about the average. For 

example, u = u+ u", where bar superscript indicates the average value and the 

double prime superscript indicates the variation due to turbulent fluctuation (see
1 ' TFig. 3.2). The time-average quantity u is defined as u = lim —  udt. WeĴ

0

require that At be large compared to the period of the random fluctuations 

associated with the turbulence, but small with respect to the time constant for any 

slow variations in a flowfield associated with ordinary unsteady flows (Anderson 

et al 1984). In practice, the limit At—>oo is taken to mean a time that is long
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compared to a reciprocal of the predominant frequencies of the turbulent 

fluctuation in the spectrum of u. For a fluctuating quantity u\ the time-average,

u , is zero, whereas p u  9=̂0 , in general, unless p‘ = 0 .

In compressible flows, the time averaging procedure creates some

additional terms in the governing equations such as a mean-mass term (e.g. p u ) .

momentum transport terms (e.g. up v , p u v ). These additional terms may be

eliminated by the mass-weighted-averaging procedure. We define mass-weighted
pf

mean variables according to f = ^ , where the bar denotes time averaging and the
P

tilde denotes mass-weighted averaging. The velocity û may then be written as

•Ê^. We define new fluctuating quantities by u = û 4- u where u‘ is the 
P

superimposed velocity fluctuation. It should also be noted that the time average of 

the primed function multiplied by the density is equal to zero (e.g. pu = 0 ), 

whereas u 0 , in general, unless p" = 0 .

In order to get the governing equations for turbulent flow, we substitute 

all the flow properties in the governing equations with the average and the 

fluctuation terms. The velocity components and thermal variables are mass 

averaged. Fluid properties such as density and pressure are time averaged. The 

entire equations are then time averaged. For further discussions see Cebeci and 

Smith (1974), and Anderson et al (1984). The new quantities, the turbulent

stresses ( -p u 'w ', -p v 'w ')  and the turbulent heat flux ( -p w T ') ,  are the 

additional variables in the governing equations. The governing mean flow 

equations for compressible turbulent flow are (drop bar for convenience):

continuity:
3p 1

dt h^h^sina
3 (h2sinapu) 3(h,sinapv) 3 (hjh2sinapw)

a l  ân  ^  %
= 0 3.18b
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^ -momentum:

3p dp d I du
3.19b

T| -momentum:

dv pu dv pv dv dv __ , 2 ap — + - — ^ - J - — ^ - t-p w ^ - l-K jiP u  + K 22PUV +  K23PV 4 -A 2 
o t  h j  o ç  n 2 oX\ o Q

/

% an  ac
dv - 7—; 

^  pv w 3.20b

energy:

dH pu dH pv dH dH d 
P  1----------- —  H = -  4- p  W — —  — —=■
^  at h, ac  K  9n a ;  ac

p aH
Pr ac

^ - p c  w*r'

i L _ A V u
p r j  ac

4—= [-puu 'w ' — pvv'w ' — puv 'w 'cosa -  pvu 'w 'cosa] 
d^ '■

3.21d

By using the mixing length model and the Boussinesq approximation it is 

possible to express the turbulent stresses in a similar way to laminar shear stresses 

by defining a turbulent viscosity and conductivity (Cousteix (1987) and Anderson

et al (1984)). Therefore, the turbulent stresses ( -p u 'w ', -p v 'w ')  and the

turbulent heat flux (-p w 'T ')  may be evaluated in terms of the turbulent viscosity 

(p j and the turbulent Prandtl number (Pr )̂.
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—f—, 3u-puw  = \ i , ^

—  8 v-pvw

-p w T ' =/  _  _ P

Pr, ac

The temperature (T) in the energy equation can be expressed in term of H 

by using the definition of total enthalpy, H = c^T + U^. These substitutions permit 

the boundary-layer equations to be written as (in non-dimensional terms)

continuity;
dp
at h^h^sina

a(h2sinapu) a(hjsinapv) a(hih2sinapw)
_ - l ----------------------------------- —

an
= 0 3.18c

C -momentum:

üt hj 1I2 oTj

3.19c

q-momentum:

av pu av pv dv dwP-— + -— - ^  + — ^ - |- P W ^ + K 21PU + K 22PUV+K23PV +A; 
c/t hj vÇ ^2 oT\ vQ

3.20c

energy:

aH pu an pv an an aP k------— H------- =r- ■+- P W — — —=■at h, a  ̂ hj an a; aç i L + M H
Pr P r J a Ç

au2
a ;
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+(Y -  l)MipQ^r[ Aq2U + Aqjv] 3.21e

Therefore a turbulent model must be defined to close the system of 

boundary-layer solutions. The turbulent Prandtl number (Pr,) is a well-behaved 

function across the flow and may assume a constant near one, most commonly, Pr, 

-0.9 (Anderson et al (1984)). Turbulent problem is thus reduced to the evaluation 

of the turbulent eddy viscosity (|i,). The ji, is not a fluid property but a property of 

the flow and the geometry. It has the same dimensions as |i.

It should be noted that the equations in the turbulent flow resemble those 

in the laminar flow except that the former contain a turbulent eddy viscosity (|i,) 

and the turbulent Prandtl number (Pr,).

In this calculation we use the Baldwin-Lomax method (1978) to evaluate 

}!,. This method is based on a simple algebraic turbulent model. The original 

model is derived from thin-layer approximation and modified for three- 

dimensional flow over a non-orthogonal surface in this study.

Baldwin-Lomax Model

The boundary layer is divided into an inner region and an outer region 

with a separate equation defining each region. |i, is given by

) inner ^ ĉrossover

3.40

^crossover ^  C
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where Ç is the normal distance from the wall and Ç the smallest value of

Ç at which values from the inner and outer formula are equal.

In the Inner Region

Eddy viscosity in the inner region is defined as

= p
' (
0 . 4 ; 1- e ^ '

1 A

2

> Icol 3.41

where A+=26

y+ _  ^
M'w

= turbulent wall shear stress

=  P , + 2  cosa

0) I = the magnitude of the vorticity

+ 2  cosa
8 v

3.42

3.43

In the Outer Region

In the outer regions, the eddy viscosity becomes

\ _  0.0168C|^gbpF^g
/outer /

I + 5 .5 M
y

3.44

where Cy^=1 .6

0 .2 5 L ,u l,

3.45

3.46

3.47
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û if =(u^+v^+2cosauv) 3.48

Pm« C mK ^  determined from the function:

F(C) = C|0)
(

1 - e ^ ' 3.49

F„ux the maximum value of F(Ç ) that occurs in a profile and C ^  is the 

value of Ç at which it occurs.

In a wake, the outer formulation is applied across the entire shear layer 

and in the Baldwin-Lomax model the exponential term in the F(Ç ) function is set 

to zero.

3.4 GRID GENERATION AND TRANSFORMATION

The systems of governing equations are now applicable for laminar or 

turbulent flow. In order to avoid the complexity of the similarity transformations 

and to solve the equations directly, we have to scale out the viscous-layer growth 

by using co-ordinate transformation. This will not only make the equations simple 

to solve but also make them general to implement

From section 3.2, the system of governing equations is written in the co­

ordinate surface such that % and r\ are the grid lines along the surface with an 

angle a  between them and Ç is in the normal direction. The accurate solution of 

the boundary-layer equations for the flow using finite difference models that 

evaluate the flow's properties at all points within the layer requires a very fine 

mesh near the wall. This is because boundary layer flows contain severe velocity



75

gradients normal to the surface. In the case of turbulent flow, the grid points have 

to be located within the viscous sublayer. A technique to generate an unequal grid 

spacing will be discussed in the next section.

3.4.1 VARIABLE GRID SPACING IN THE NORMAL DIRECTION

In boundary-layer flow problems, the normal cluster grid points near solid 

boundaries are mandatory to provide adequate resolution of the viscous boundary 

layer. The variable grid spacing is formed by using a geometric series such that the 

quotient of two consecutive terms is constant.

RY = - = t -  3.50
^Ck-1

where RY is the grid growth ratio which is greater than 1.

From the geometric series theory, we can prove that the distance to the 

grid line is given by

where is the distance from the solid wall to the first grid line. If turbulent

flow is computed, AÇj is chosen so that the first grid point is placed at

-+  - ( p  T
approximately AÇ =1.5 (defined as AÇ— — ) in order to resolve the thin

M'w

laminar sublayer (Anderson et al (1984)). In the case where AÇj is constant for 

the whole calculation, the grid growth ratio (RY) should be varied at different 

grid points in the flow direction since the boundary-layer edge is a function of the 

distance measured from the leading edge. In the above, RY is actually obtained 

from the solution of equation (3.51) at a specified value of Since the
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equation is non-linear, we can get the solution by using Newton's method. For this 

method, it gives

- / T O

where f(R Y J = A C , ^  ^ - ( R Y „ - 1) 3.53
skrmx

r ( R Y j = A ç . < i i 5 H d ) y ï : : r l - ,  3 .5 4

k̂m«x

RY„ = RY at the iteration n*̂

Thus, starting with an initial guess value of RY„, an improved 

approximation, RY^^p can be computed from the above equation. The process is

repeated iteratively until is lower than an allowance value. The
/%Ky.)

procedure usually converges in three or four iterations since the convergence of 

the Newton's iteration is rapid. Typically in laminar flow RY is set to 1.07 and 

then is varied. While in turbulent is set to about 1.5 (in order to model

the laminar sublayer) and the RY is varied.

3.4.2 UNIFORMLY SPACED GRID EQUATIONS

The governing equations can be solved on a uniformly spaced grid that is

more reliable, efficient and simpler than that on a non-uniformly spaced grid by 

using an appropriate transformation. In the boundary layer equations, we can see 

that only the normal grid that is not uniform. Therefore, we can relate the non- 

uniformly grid system (^, r), Ç) to the uniformly grid system (Ç, q, Ç) through 

equation (3.55).

5 = S(S)
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n=n(n)
;  = 3.55

The method of transformation is based on the chain rule of partial 

differentiation. Therefore, we get

9ti an dc

1 = ^ 4

The transformed parameters in the above equations are:

^1 = 1  

n^ = i

I

C,.i

For general transformation the reader can refer to Anderson et al (1984) 

and Fletcher (1991). The subscripts by T[ and Ç in the equations (3.56-3.57) 

mean differentiation with respect to q and ^.respectively. The barred term is a 

non-uniformly spaced computational grid.

Suppose we apply the transformation given in equation (3.56) to the 

governing equations (3.19a-3.21a). The compressible boundary-layer equations
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for the unsteady, three-dimensional can be written in the uniformly spaced grid Ç 

(Ô» n(nX  n , Ô  co-ordinates as

3t hjhjsina 

1

3(h2sinocpu) ^(hzsinapu)

a t a ;

-H-

h^h^sina 

1

3(hiSinapv)  ̂ 3(hiSinapv)

ân âç

h^h^sina G
3(hih2sinapw)

%
=0 3.58

9u pu 3u p u  ̂ 3u pv 3u pv_ 9u  ̂ 9u

+  K iip u ^  +  K i2 p u v  +  K j3pv^ 4- A i

3.59

dv pu 9v p u 9v pv dv p v 9 v  », 9v

4- K2ipU^ 4- K 2 2 PUV 4- K23pV^ 4- A 2

3.60

3H pu 9H pu y 9H pv 9H pv  ̂ 9H y 9H

- r  a P r  9H LI ' , _ r
P ,/

„ auy 
3Ç

3.61
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3.5 DISCRETIZATION

In order to avoid confusion about the numerical schemes, the 

discretization of the momentum and the energy equations is considered in this 

section while that of the continuity equation is presented separately in the 

continuity equation section of numerical solution algorithm. The discrete form of 

the equations is centred at (i j,k,n) where i, j and k are the points in Tj and Ç 

direction, respectively, and n is the n* time level. A solution of the discretized 

equations is assumed to be known at time n for all i, j and k (i.e. on a whole 

plane). Therefore the finite-difference forms of the equations are used to predict 

the solution at the n+1 level. The formulas given below are used to approximate 

terms involving derivatives with respect to Ç, T|, Ç and t. Superscripts and 

subscripts on the formula are used to specify their position and are not written if 

their values are unchanged from (i, j, k, n).

Before we discuss further about the discrete forms, one should bear in

mind that the same scheme of discretization is used to evaluate the transformation 
parameters (e.g. and the derivatives in the governing equations. For

this reason, the discrete form of the transformation parameters will not be 

presented. The same scheme of discretization for geometrical parameters is 

important to ensure the accuracy of the solutions.

Discretization Schemes for Momentum and Energy Equations

Time derivative

The governing equations are integrated in time. Therefore the time 

derivative is approximated for an expansion level n+ 1  with forward differencing. 

This scheme is first order accurate and can be written as
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At
3.62

The scheme is applied to the terms with time derivative of the governing 

equations (3.51-3.54).

&  T |-d e riv a tiv e s

For spatial derivatives parallel to the body surface (Ç-, (-directions) an 

explicit second-order accurate upwind difference operator is used. The use of an 

upwind scheme especially in cross-flow direction will suppress the break down of 

calculation when reverse flow occurs (e.g. v<0, Johnston (1990)). By using this

scheme, the way in which the derivative can be evaluated is subjected to the sign

of coefficient term. A convective transport term, e.g. — can be written in an
h,

upwind scheme as

pu du _  p
h7 â ( " h ;

+-P-
h,

+ +Pi4Ui.î) 3.63

where the coefficients and are given in table 3.1. This equation can 

be applied only to (  derivative. A similar expression is used for T|-derivative and 

the coefficients and Pji-pj4 are given in table 3.2.

Table 3.1: The coefficients at various values of i (for momentum and energy 

equations, see equation 3.63)

i « il a .2 a ,3 a , 4 Pn P,2 P,3 P,4

1=2 1 1 -1 0 2 -3 4 -1

3<i<iend-2 2 3 -4 1 2 -3 4 -1

i=iend-l 2 3 -4 1 1 -1 1 0

i=iend 2 3 -4 1 1 0 0 0
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Table 3.2: The coefficients at various values of j (for momentum and energy

equations)
(v + |v|) 1 / \pv 9u _  p 

hi  Bq hi 2  ttjiAq

+ +Pj4“ i*2)

j a , 3 a , 4 h P,2 P,4

j= l 1 0 0 0 2 -3 4 -1

J=2 1 1 -1 0 2 -3 4 -1

3<j<jend-2 2 3 -4 1 2 -3 4 -1

j=jend-l 2 3 -4 1 1 -1 1 0

j=jend 2 3 -4 1 1 0 0 0

^-derivatives

For spatial derivatives normal to a solid surface (^-direction) an implicit

second-order accurate central difference operator is used. By applying the scheme 

to the terms with ^-derivative, e.g. p w Q ^ ,  the difference formula can be

written as

n+1

3.64

3.6 NUMERICAL SOLUTION ALGORITHM

The discretizations (3.62-3.64) are applied in the momentum and energy 

equations. The quantities unknown at n+1 level in the equations are obtained by 

solving a set of tridiagonal matrix system. The truncation error of the difference 

equations is of order (A^ ,̂ Aq^, A^ ,̂ At) except at lateral boundaries.



82

3.6.1 ^-MOMENTUM EQUATION

The values across the boundary-layer are obtained from ^-momentum. 

The tridiagonal matrix is given in equation (3.65)

a u ; : ;+ b u " " U c u : : ;= R H s 3.65

h, 2AÇ hj 2AÇ 2AÇ 2AÇAC

b = p -L +
At 2AÇAÇ

h, 2AÇ hj 2A; 2AÇ 2A(A(
(nÇç+(pÇç)^^J

RHS = p
At

_P_
h,

_P_
h,

_P
h.

h,

+ &

(u+|u|) 1 / \
Z OtjjAÇ

^ ^ ^ ^ ^ P ^ ( P i 2U + Pi3«W +Pi4Ui+2) 

(v+|v|) I f  \

2  -p -̂ ~ (Pj2»+Pi3“ i>l +Pj4Uj«)

(“ .+ |u .|)  1

h,

p.

2  a„AÇ

(» .- |» . |)  1 

2  p„A4
(Pi2U .+ Pi3U.it, +Pi4U,i«)

( v .+ K | )  1 / \
2  ajiAri “ jsU.j-i+aj4 U,j_j)
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+Pj3«.H +Pj4“ .J-2)

+K„(PA^pu^)+K,j(p.u.v.-puv)+K,3(p.v.2-pv2)

+A„ 2n({pu - p.u J c o s a + {pv - p .v ,} )+ A,2Û^r(p -  p, )

All -
1 1

sin a  hih^sina
9T|, ar^

an  a^  an

1 Bry cosa
hi 3ri

3.6.2 ti-MOMENTUM EQUATION

The values across the boundary layer are obtained from T)-momentum 

with updated values of u"+̂  from equation (3.65), The tridiagonal matrix is given 

in equation (3.66).

a v;:| + b v"+' + c vj;; = RHS 3.66

pu n+1 1 pVy. 1

h, ’ ^ 2 AC h; ""1 2 AC 2 A ; 2 ACAÇ(pÇ ;+(pÇ ç)^_J

b = p - L + ^
At 2AÇAÇ

pu n+1
1 pv^ 1

h, ’ ^2AC "2AÇ 2AÇ 2AÇAC

RHS = p
At
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_P
h,

_P
h.

(u"«+|u"*'|) 1 ■
------- : ------------ 7 7 ^ 2 ' '  + «13 Vj., +ai4Vi.2)

2  p„A^
Tr(M +Pi3V i+Pi4V i42)

(v + |v|) 1 

2  a .A n
(a j2v + a j3V j.,+aj4v^j)

_P
h. 2 pj,Aii

( u r '+ |u r i )

h.

+ P . 
h,

. Pc

2  «i|A^

( u r ' - | u r ‘|)

T r ( « i 2V. +ai3V,i., +«i4V.j.j)

2  P,,A^
T 7(P i2V. +Pi3V... +Pl4V.,.2)

(v.+|v,|) 1 / \
2  aj,Aii “ ii''«j-2)

p : ; ^ ( P i 2 V .  + P j 3 V . j 4 ,  + P j 4 V . j , 2 )

+K2i(pc[ur']^-p[u”*‘]̂ )+K22(P.u=“*'VPu"*'v)+Kj3(p.v,2-pv2)

-A„ 2n({pu - p.u J + {pv - p.v J c o s a ) + A22Û^r(p -  p J

Acy, =
“  sin^a

1 cosa
3ti hj

3.6.3 ENERGY EQUATION

The tridiagonal matrix of the energy equation is similar to those of the 

momentum equations. The values across the boundary-layer are obtained 

from the tridiagonal matrix in the equation (3.67) with updated values of u"+̂  and

Vn+l̂
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a H J ! ;+ b H " ^ '+ c H ît ;  = RHS 3.67

where a = —

G
2AÇAÇ k-iy

b = p -L +
At 2AÇAÇ ' j k )  ' ^ 7 k * { f k )  't ' / k-l ' \ ' /k+iy

c =
pu 1 pv"*‘ „ 1 . 1

ÇïXTT+PwÇfh, ’ Î 2 AC hj ” >2 AC ’ ^ 2 AÇ

2 AÇAC k+iy

RHS =

p — +PQ^i[Aq2U + A(jgv]

_P_
hi

_P_
hi

9_
hz

_P_
h.

■(u-+ |u-i; 1 ,
2 a„A^

1 (
2 PuAr

1
2 «jiATl

(v"+'-|v"+'| 1
2 PjiAn

(^i2^ ^ 14^ 1-2 )

(<Xj2H + CtpHj_j+Ctj4H^2)

^Pj4^^j+2,

G
2 ACAÇ

KUxk"!!)'

k-l y

2 AÇAC
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+

' { ‘ “ i l
■Ç;+^P2ACAÇ

+ |u " ' ) 1
h,2 2 a„A^

pÔ ) 1 (
hi 2 2

po^ [(
n̂+1 _̂ |̂ n+l

) 1
h^2 2 ttjiAri

pQ^ ) 1 I
h^2 2 PjiAn

k+iy

'j2* ^Pj3'

The energy equation may be replaced by conservation of rothalpy. The 

approximate value is obtained by assuming Pr « Pr̂  « 1 and the adiabatic wall 

condition. As a result the temperature across boundary layer is expressed as a 

function of the velocity. For detail see section 3.2.4 Approximate Equation for the 

Energy Equation.

3.6.4 FLUID PROPERTY EQUATIONS

The values of density (p) at n+1 are computed from the ideal-gas law, 

once the temperature is known. The fluid's viscosity (|i) is computed from the 

viscosity law of the fluid. For turbulent flow, the turbulent viscosity (p j is 

evaluated as prescribed in section 3.3.

T»i+i _ H - ■u;
n+1

P i
T

n+1

'«n+1 0.66

3.68

3.69

3.70
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3.6.5 DISCRETIZATION SCHEME FOR CONTINUITY 

EQUATION

Once u, V , H, p, p and are known at n+1, therefore the value w at n+1 

can be computed from the continuity equation (3.18). The formulae given below 

are used to approximate terms involving derivatives with respect to the spatial co­

ordinate directions. The discrete form of the continuity equation is centred at (i, j, 

k+y, n+1).

& T|-derivatives

The Ç derivative is approximated with a backward difference second order 

accurate formula, except at the lateral boundaries. The discretization of this 

derivative (at i, j, k, n) can be written in the general form with the coefficients a^- 

as follows.

3(pu) 1 / \
= — ^ (a i2 p u  + «iSpUi-i + 0Ci4pUi_2)

3Ç a„A^
3.71

The T| derivative can be expressed in a similar manner, viz.;

3(pv) 1 / \
3.72

The values of coefficients and are given in table 3.3 and 3.4 

respectively.

Table 3.3: The coefficients at various values of i (for continuity equation)

i «a CC-2 a,3 a,4
i=2 1 1 -1 0
i>3 2 3 -4 1
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Table 3.4: The coefficients at various values of j (for continuity equation)

j «>3
j=l 1 0 0 0
j=2 1 1 -1 0
ĵ 3 2 3 -4 1

^-derivative

The discretized formula of ^-derivative is similar to that presented in 

equation (3.64) except in this equation the point of consideration is (ij,k-i-^). The 

scheme can be written as

9(pw) ,, PWt.i -  pw
AÇ

n+1

3.73

Continuity Equation

By applying discretized formulae (3.62, 3.71, 3.72, 3.73) to the continuity 

equation (3.58), the value of w at (i, j, k+1, n+1) can be evaluated as follow

w ::i=
RHS

Coeff
3.74

where 

Coeff = -
AC

p ::!

RHS=- ((^ î)k + i^^ î) 1 I (P w + P )° '- (P k .i+ P )
2 AÇ 

1 / l  1

2At

—— — ( - — —(aijhjsinapu+ai3h2sinapuj.,+a„hjsinapui_2) 
hjhjSina \ 2  a^Aç y

n+1

k+1
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(aijhjsinapu+auhjsinapui.,+ai4hjsmapui_2)) 
hihjSina \ 2  j

\  n+1

4------------ {-----------(a  {.h. sin apv + a  h. s i n a p v + a ; 4h.sinapV;_2)
h , h 2 s i n a \ 2 a j , A T i '  ‘

  -----( ——-— (ajjh.sinapv + aah.sinapv. 1 + a  :4b,sin a p v .,)
h , h 2 s i n a \ 2 a j , A t i  ‘

n+1

+ 1

3.7 COMPUTATIONAL PROCEDURE

The solution method is based on time marching and has the capability to 

calculate the unsteady flow properties. However, the intention of implementing 

the method is for steady flow. In this calculation a first order accurate time- 

integral routine is used. Using the discretization described in section 3.5 and the 

definition of eddy viscosity, the three conservative equations in finite difference 

form can now be solved in an uncoupled manner. The momentum equations can 

be solved for u"+̂  and v"+\ the energy equation for the equations of state for 

T"+\ p"+̂  and the viscosity law for The next step is to solve the continuity 

equation for w"+*. Finally, the update values are computed at time n+1 by 

employing the Baldwin-Lomax model. This sequence represents one cycle of an 

iteration procedure. The next time step, the values are updated and the calculation 

replaces to obtain the solutions. For steady flow solutions, the process is repeated 

until the difference between two successive values of u, v and w, for Ç-q plane, be 

less than a specific number of a convergence criterion. A suitable convergent 

criterion can be defined in terms of u. The equation is given as
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MAX I - u I ^  for all j,k 3.75

where e is the convergence criterion (usually ~ 1x 1 0 ^).

We use u as a convergence criterion because it is a base parameter in the 

governing equations. If the convergence criterion (3.75) is not satisfied, all the 

parameters are updated and the process repeats. The equation used for updating 

the values before the next time iteration is

Uncw = 0) + (1-0)) û y 3.76

where O) is relaxation factor

Once the convergence criterion (3.75) for the whole plane of span wise 

direction is satisfied at the i* downstream, the boundary layer solution is marched 

to the (i+1)* downstream. This process is repeated until the final n* downstream 

is reached.

The numerical procedure of this method is outline in Fig. 3.3 .

One of the problems in solving the equations is convergence. Many 

researchers have accelerated the convergence by using multigrid method. The 

application of multigrid method in boundary-layer problem is complicated since 

we have to recalculate all the transformed parameters every time we upgrade the 

grid construction. The more the levels we apply the more complex the equations. 

From our study, it has been shown that over relaxation and under relaxation 

factors do not much effect to the results, if the solution is converged. But a faster 

rate of convergence is obtained by using over relaxation factor. In many 

applications the over relaxation factor cannot be implemented since the solution
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oscillates or sometime does not converge. This can be eliminated by using very 

low relaxation factor but it slows the convergence rate. We can accelerate the 

convergence rate in a similar way as that in the multigrid method by adapting 

relaxation factor according to the convergence rate. That is to say when the 

convergence rate is high we use over relaxation, and when the convergent rate is 

slow we use under relaxation. We switch back to over relaxation factor when the 

convergence rate is high again. The implementation of this method is less complex 

than that of multigrid one and can accelerate the convergence. The speed of 

convergence depends upon the quality of the update procedure.

3.8 STABILITY AND ZONE OF DEPENDENCE CONCEPTS

Stability Analysis

To study the stability concept one can use the von Neumann analysis. In 

this method a partial differential equation is approximated to a linear equation by 

using a linear constant coefficient model. The equation is then implemented in a 

finite difference approximation and its stability is investigated by using a Fourier 

analysis. Since our solutions are obtained from a tridiagonal matrix, we can 

analyse the stability concept of the equations with a tridiagonal constraint.

Anderson et al (1984) show that the implicit scheme for boundary-layer 

flows is unconditionally stable in the von Neumann analysis. However, numerical 

instability of this equation can occur if the choice of grid spacing permits the 

algebraic model to be an inaccurate representation for a viscous flow. This is 

because the diagonal dominance of a tridiagonal matrix is not maintained.

The algorithm of the tridiagonal elimination scheme is very efficient since 

it requires only 5N-4 operations when N is the matrix size. It is possible to prove 

that the solutions of the tridiagonal matrix will not lead to any stability problems if
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the diagonal terms are dominated. Therefore, to avoid the numerical difficulty it is 

necessary that (Anderson et al (1984) and Fletcher (1991))

l b | > | a |  + | c |  3.77

where a is sub-diagonal of the matrix 

b is diagonal of the matrix 

c is super-diagonal of the matrix

This property can be used as a stability analysis of our equations. For 

simplification, the equation (3.65) of incompressible flow on a flat plate can be 

written as

a u;!j + b u” ‘ + c u " i = RHS 3.78

1 Hwhere a = —pw
2Az AzAz

At AzAz

c = p w -^  3.79
2Az AzAz

Equation (3.77) can also be written as

b2>a2 + c2 3.80

Substitute the values of a, b and c from equation (3.79) in equation (3.80) 

and rearrange, the inequality becomes:
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3.81
|i At jiAt |l

If we assume that At »  Az (approximately true in our case), the first two 

terms may be neglected. Then the stability of the equation requires that

Therefore, normal grid point (Az) should be small enough to hold the 

above condition. This agrees with the boundary layer assumption that the viscous 

effect is important in the narrow region. On the other hand, this condition also 

contributes to the fact that the viscosity effect can be captured if the fine mesh in 

the normal direction (Az) is used.

In the case of three-dimensional flow, we wül get the similar condition if 
j = the discretized form it yields:

Zone of Dependence Concept

Kitchens et al (1975) show that the concepts of stability and zone of 

dependence are not the same. The constraints imposed by both methods may 

coincide in some cases (Anderson et al (1984)). The zone of dependence 

condition is required for three-dimensional boundary-layer equations because the 

equations have a hyperbolic character in the plane parallel to the surface (e.g. x-y 

plane) on which the boundary-layer develops. This comes from the fact that in the 

X - and y-directions, only convective term occurs in the equations, while in the z-
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direction both convection and diffusion (second derivative term in z-direction for 

the momentum equations) occur.

If we imagine that the fluid is passing through point p in the boundary 

layer (see Fig. 3.4), there are two extreme lines, the external streamline and the 

limiting streamline, bounding the flow. Then extending downstream of these lines 

passing through A-B is the zone of dependence and that upstream is the zone of 

influence. The identified regions of zones of dependence and influence vary 

depending on the direction of local streamlines across the boundary-layer (i.e.
d y  V—  = —). This feature can be seen in Fig. 3.5 that is taken from Cousteix (1987). 
dx u

In Fig. 3.5 a, the wall and external streamlines are drawn when both u and v in the 

boundary layer are positive. When the local velocities (e.g. u, v) are changed, we 

can see that the angle between the two outer most streamlines is also changed. 

The angle is widest when both u and v are negative (see Fig. 3.5c). In Fig. 3.5c, 

there is possible that the region of dependence may cover the unknown quantities 

(denote as +).

The hyperbolic behaviour of the equation implies that the predicted 

conditions at p come from the domain of dependence. This constraint results in 

implementation of the zone of dependence principle. It requires that the numerical 

domain may include more than, but not less than, the physical zone. The exact 

quantitative statement of the zone of dependence principle depends upon the 

difference molecule employed (Anderson et al (1984)). For implicit scheme, the 

zone of dependence principle would require that (Kitchens et al (1975))

u > 0, —  2 1 3.84
uAy
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This constraint will limit the size of Ax and Ay. The calculated values of 

zone of dependence will be presented in chapter 5, computational results.

3.9 CLOSURE

The equations and procedures described in section 3.3 through 3.8 are 

general and can be applied to flow over complex geometry such as 

turbomachinery blades. Its implementation and application are simple and 

straightforward since the governing equations are solved directly without 

employing similarity transformation. The time integration makes the discretization 

scheme less complex. The convergence of the solutions is fast since the 

tridiagonal elimination scheme is formed and a multi-relaxation factor method is 

used. However, its application restricts to the flow that is not separated. In order 

to cope with the separation flow, the method has to be solved inversely. This will 

be presented in the next chapter.
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;

lody surface

Fig. 3.1 Non-orthogonal curvilinear co-ordinate system on the body surface with 

angular velocity fl.

u = u + u

t
a) Steady flow

u(l)u =  u + u

t
b) Unsteady flow

Fig. 3.2 Relationship between u, u and u" (Anderson et al 1984)
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Fig. 3.3 Flow diagram for the boundary layer method (at i* downstream)
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Fig. 3.4 Zones of dependence and influence in three-dimensional boundary layers (Anderson et al 1984).
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a) when both u and v in the boundary layer are positive
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c)when both u and v are negative

Fig. 3.5 Zone of dependence concept when freestream velocities u and v are 
positive (Cousteix, 1987)



100

CHAPTER 4

SEPARATION AND VISCOUS-INVISCID INTERACTION

4.1 INTRODUCTION

The previous chapter described the standard method or "direct method" of 

solving the boundary layer equations. In this method, the boundary layer flow is 

computed by specifying the no-slip conditions at the wall and inviscid properties 

at the boundary layer edge. The parameters such as momentum thickness (0), 

displacement thickness (Ô*), wall shear stress (x j  and skin friction (Cj) are 

obtained as parts of the solutions. However, boundary layer equations as 

implemented under the direct approach have a singularity when there is a flow 

reversal as a result of boundary layer separation. In this chapter different ways of 

solving boundary equations in case of flow reversal will be discussed.

The next section presents a brief overview of boundary layer separation in 

two- and three-dimensional flow. The discussion will be limited to qualitative 

description of this important phenomenon. The general background of the 

separation and simple treatment of this phenomenon is also presented.

The prediction of flow separation is the most difficult aspects of the 

boundary layer approach. In recent years much effort has been devoted to develop 

methods for predicting separation of boundary layer. In this chapter we will 

consider only three methods, the FLARE approximation method, the simple 

inverse method and the interactive method.

In the case when the reverse flow velocity is small compared with the 

outer velocity, one can remove the instability by using a simple technique known 

as the FLARE approximation. In this method the calculation procedure is the
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same as that in the direct method except that the stream wise convective term (e.g.

u ^ )  is neglected when the velocity is negative (i.e. u<0). This method is 
dx

presented in section three.

Catherall and Mangier (1966) demonstrated that the boundary-layer 

equations are not singular at separation when displacement thickness is prescribed 

instead of free-stream velocity. This technique is known as the "inverse method". 

It is the boundary condition that differs between the direct and the inverse 

methods. The simple technique of the inverse method is discussed in section four.

Once a solution is obtained by the inverse method, more accurate 

solutions of the boundary layer equations can be generated by using viscous- 

inviscid interaction methods. The best approach, at the moment, is the "interactive 

method" due to Veldman (1981). The essence of the method is that both the free- 

stream velocity and displacement thickness are treated as boundary condition that 

couple through the use of a Hilbert integral. This method is presented in two- and 

three-dimensional flow in section five.

To appreciate the importance of separation, we should consider loss 

generation due to viscous effect in turbomachinery. The accurate prediction of 

flow is an important information in the design process since the performance of 

the machine is governed by the flow behaviour. If the flow remains attached to the 

wall, the loss associated with viscous effects is small compared with the case 

when the flow is separated. This loss can be approximated in term of entropy 

generation that can be consulted in the final section of this chapter.
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4.2 BOUNDARY LAYERS AND SEPARATION

4.2.1 SEPARATION IN TWO-DIMENSIONAL FLOW

From the boundary-layer theory, the velocity inside the layer must change 

rapidly from the free-stream value at the layer edge to zero at the wall to satisfy 

the no-slip condition. In the region near the surface, the momentum of the fluid is 

small therefore the fluid behaviour is controlled by pressure and viscous shear 

force. The viscous shear force retards the flow across the viscous region. At the 

surface (i.e. z=0 ), the x-momentum equation for flow over flat-plate can be 

written as

If the pressure gradient along the flow direction is zero, the velocity 

gradient close to the wall is constant and equals to xy|i. Therefore, velocity 

profile is decelerated across the layer. This decelerated flow makes the boundary 

layer thickness grow higher in the flow direction.

If there is a pressure gradient in the flow direction, the rates of change of

the boundary layer thickness and the velocity profile are altered. In the inviscid

flow, the pressure gradient is results from changes in the free-stream velocity.

When the pressure decreases along the flow, the free-stream velocity is
3 f  0 u

accelerated. Therefore the term —  p-— I in equation (4.1) is negative and the
dz dz )

boundary layer is thinned. This is sometime called favourable pressure gradient.

If, on the other hand, the pressure increases in the flow direction, the free-

stream velocity is decelerated. This is known as adverse pressure gradient. In this 
d f  3u ̂

case —  p —  is positive and the boundary layer is thickened. The velocity 
dz V dz J
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profile is shown in Fig. 4.1. If the positive pressure gradient is too large it can lead

a value ^  to go to zero. Under this condition the flow near the wall will stagnate d z
or reverse as presented in Fig. 4.1. This provides some explanation for the nature 

of separation in two-dimensional flow.

It is observed that laminar separation can occur even in a small adverse 

pressure gradient. Turbulent boundary layers, on the other hand, are able to 

adhere to the surface for a greater distance than the laminar boundary layers. In 

order to prevent the separation problems, most of turbomachinery components 

operate at Reynolds numbers such that transition to turbulent flow occurs 

somewhere in the passages, or on the blades.

4.2.2 SEPARATION IN THREE-DIMENSIONAL FLOW

In three-dimensional flow it is usual to resolve the velocity vector of a 

velocity profile in the outer streamline co-ordinate and crossflow co-ordinate. The 

difference between this streamline co-ordinate system and the non-orthogonal 

curvilinear co-ordinate system will be presented first. The velocity profile in the 

streamline co-ordinate is then used to consider the three-dimensional boundary 

layer separation.

STREAMLINE CO-ORDINATE SYSTEM

In chapter 3, the non-orthogonal curvilinear co-ordinate system is defined 

by Ç = constant and Tj = constant lines drawn on the body surface with an angle a  

between them. The Ç-axis is normal to the surface. The co-ordinate system 

considered in this section is shown in Fig. 4.2. In the streamline co-ordinate 

system the s-axis is formed by the outer streamlines and the c-axis is formed by 

the line that is parallel to the wall and normal to s-axis (Fig. 4.2).
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The velocity component along the s-axis is called streamwise velocity (uj 

while the velocity component along the c-axis is called crossflow velocity (vj. 

The crossflow velocity is zero at the wall and also at the edge of the boundary 

layer. Thus, the crossflow components of velocity will generally reach a maximum 

at a point within the layer. This velocity component in some applications is 

referred to as the secondary flow velocity.

The velocity components in the streamline co-ordinate system (e.g. u,, v j 

are related to the non-orthogonal curvilinear co-ordinate system (e.g. u, v) by

Ug = u cos p -f V cos (a-P) 4.2

Vg = -u sin p + V sin (a-p) 4.3

or we can write

u = (Ug sin (a-p) - v  ̂cos (a-p)}/sin a  4.4

V = (ug sin p 4- Vg cos p)/sin a  4.5

where Ug, v  ̂= velocity components in streamline co-ordinates (s-c) 

u, V = velocity components in curvilinear co-ordinates (Ç-rj)

p = tan-'.
u, + v, cos a

At the boundary layer edge

= ("e + 4- 2u^v^ cosa)^ 4.6

u_ = 0 4.7
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SEPARATION IN THREE-DIMENSIONAL FLOW

There are two categories of the three-dimensional boundary layer 

separation (Johnston (1988)). Firstly, the boundary layer separates when the skin 

friction tends to zero. Secondly, there is a case in which a wall streamline deviates 

fiom the outer streamline (s) and approaches the span wise direction (T|). Both 

types of boundary layer separation can lead to convergence difficulty in the 

boundary layer method.

The former case may be viewed as in the case of the two-dimensional 

separation that was presented in section 4.2.1. The latter case, on the other hand, 

occurs only in three-dimensional flow. In three-dimensional flow, the local 

streamlines change across the boundary layer (see Fig. 1.4). The outer streamlines 

(s) at the boundary layer edge and the limiting streamlines ('F) at the wall are not 

always parallel for each free-stream velocity profile. The limiting streamline as the 

surface is approached is called a wall streamline. The wall streamline is tangent to 

the direction of the local wall shear stress because the velocities vanish at the wall 

and the pressure gradient is completely balanced by shear forces. This is illustrated 

in Fig. 4.2, where it is assumed that the outer streamline (s) is the least curved and 

the wall streamline ('F) is the most curved.

The angle between the limiting wall streamline ('F) and the outer 

streamline (s) can be defined as a ratio of the wall shear stress components.

tan = —  = = lim—  4.8
wo u.

We can then say that the flow separates when (Johnston (1988))
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< 0 4.9

or ( p + p j ^ a  4.10a

or (p + p j< a-1 8 0 ° 4.10b

4.3 FLARE APPROXIMATION METHOD

FLARE approximation method is based on the assumption that the 

separation is small (i.e. u < 0  and I u | «  u j. Under this condition, the convective

terms, such as u — , in the x-momentum equation may be written as C lu l^  
dx dx

where C is a constant. The value of C is made dependent on the sign of u. For 

example the x-momentum equation for two-dimensional flow is written as;

Ou I I Ou Ou Op 0 Ou ̂

where C = 1 when u > 0 and C = 0 when u < 0.

The solutions from the FLARE approximation are straightforward and it 

can be implemented in the same way as the direct mode. Since the method is 

based on the assumption that the separation is small therefore the solutions are 

acceptable if the reverse flow is less than 1 0 % of the local outer velocity, see 

Anderson et al (1984).

4.4 INVERSE METHOD

Another method to solve the boundary layer separation when the FLARE 

approximation cannot be used is the so-called inverse approach. In this method 

the boundary-layer equations are solved by prescribing either the displacement 

thickness (Ô*) or the skin friction coefficient (ĉ ). When 5* is specified, the
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definition of the displacement thickness generates û , and hence p, as part of the 

solution process.

In practice, we have to solve the equations by iteration until the specified 

displacement thickness (5*̂ )̂ is satisfied since û  is not known before the boundary 

layer calculations are completed. We prescribed displacement thickness as it can 

be obtained from an interaction between the boundary layer and the inviscid flow. 

Before the process of this interaction is discussed, the definition of the 

displacement thickness and momentum thickness in the streamline co-ordinate 

system is presented.

Displacement thickness and momentum thickness

If we define the displacement thickness (Ô*) and the momentum thickness 

(0) in the streamline co-ordinate system, we have

4.12

f (u - u )
0 Pe“c

S

ô : = - f - £ ^ Ç  4.14
i  PcU«

'  pv? 4.15
0 Pĉ es

The definition and the physical meaning of these parameters can be seen in 

Appendix F.
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Inverse method

In the inverse method, displacement thickness has to specify. An initial 

estimation of the displacement thickness may be calculated from n* power 

formula and can be written in the streamline co-ordinate (s-c) as follow.

5:«,i+l _

5L “

1-n

. ^esi+1 J

4.16

where n = j  for laminar

n = 4̂  for turbulence

From this point of view, we can see that the governing equations of the 

inverse mode are the same as those of the direct mode except the boundary 

condition at Ç—>«» where u^ is replaced by

4.17

At each grid point in the span wise direction, the value of u^ is obtained by 

an iteration of the boundary layer equations until equation (4.17) is satisfied. This 

iteration can be implemented by using a secant method. An algorithm for finding 

outer flow (u^) of a specified displacement thickness (Ô*) is presented in Appendix 

B. The iteration for computing u can be written as

u = ucs,m “ es.ni-
F(u=.n,-l) 4.18

where F(u..^) =

m = iteration cycle
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Numerical solution algorithm

The solution procedure of inverse mode starts at any station (i's, j's) when 

< 0 or (P+PJ ^ a  or (P+PJ ^ (a-180*). It is better to start the inverse mode 

a little bit ahead of that point (e.g. < 10^). The inverse mode implemented in

the whole span wise direction and the procedure is continued downstream of the 

separation up to the trailing edge.

The numerical solution algorithm starts with an initial estimate u„^. This 

velocity vector is resolved in non-orthogonal curvilinear co-ordinate system for 

three-dimensional boundary layers. The relationships between the streamline co­

ordinate system and non-orthogonal co-ordinate system are given in equations 

(4.2-4.5). The sequence of the calculation now is exactly the same as that in the 

direct mode. When the solution is converged, the next step is to check that the 

displacement thickness (6%) from u^^ satisfies the specified displacement 

thickness The criterion for this convergence is

M A x |5 ‘. - S v U e  4.19

where e is a convergence criterion («10"^).

If the convergence criterion (4.19) is not satisfied, further iteration of the 

boundary-layer equations is required. The method in Appendix B can be used for 

this iteration.

It is economical if the iteration converges for m < 10. It should be noted 

that the solution is very non-linear and there are many parameters involved. In the 

case where the solution does not converge, we should employ other methods (e.g. 

bisection method or false position method) that guarantee the convergence.
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Unfortunately most of these methods may slow the convergence down. The 

calculation procedure of this method is presented in Fig. 4.3.

In general the calculated values of 5 \  and u^ should be iteratively coupled 

by using viscous-inviscid interaction in order to correct the guessed values. One 

suitable method is the relaxation formula. Description of this technique can be 

found in Carter (1978) and, Kwon and Fletcher (1986a, b). The flow diagram for 

this approach is shown in Fig. 2.8.

4.5 INTERACTIVE BOUNDARY LAYER METHOD

Veldman (1981) presented the interactive boundary layer model for the 

calculation of boundary layers with strong viscous-inviscid interaction. The 

method solved the boundary layer equations, through the use of the interactive 

boundary condition that is the combination of an external velocity and a 

displacement thickness. This boundary condition describes how the outer potential 

flow reacts to the presence of the boundary layers.

In the interaction boundary-layer model, the external velocity and the 

displacement thickness are combined as a boundary condition and treated as 

unknown quantities. Assuming that the external velocity is the sum of an inviscid 

velocity (u®̂ ) and a perturbation velocity (5u^). Based on these assumptions, the 

external boundary conditions are

u^(s) = u®„(s) + Su^(s) 4.20a

8 ; = ] [ l — 4. 20b
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This boundary condition provides the basis of the method.

4.5.1 TWO-DIMENSIONAL FLOW

The simple case of two-dimensional flow is first used to illustrate the 

method. In this case, we assumed that the fluid flows over the curved surface with 

an infinite span wise distance and an identical value in that direction. Therefore all 

the derivative terms in the span wise direction are zero and the metric coefficient 

ĥ  = 1. The velocity in the flow direction is u and the velocity normal to the 

surface is w. With this simplifications, the continuity equation of an 

incompressible and steady flow can be written as

4.21

If we integrate this equation to find the normal velocity w just outside the 

boundary-layer edge (5) we get

w { a ; i h.a^

d
h ,  a ç  h ,

](u .-u )d Ç

4.22

1 *
where 5* = — J ( u , - u)dÇ

Lighthill (1958) pointed out that the first term in the equation (4.22) 

represents the irrotational flow around the body, and the second term is an 

outflow due to the boundary layer. This additional outflow is sometime known as
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a blowing-velocity and is "as i f  there were a source distribution on the surface. If 

this source distribution of strength a(^) per length is placed along the Ç axis, the 

potential due to such a point source element can be obtained in the similar manner 

as presented in Appendix G. Using the velocity potential O, the velocity 

components, in terms of the perturbation velocity potential, are

Therefore the perturbation velocity in equation (4.20a) can be written as

where subscript a and b mean the interaction region, and p means the point on the 

surface.

4.5.2 THREE-DIMENSIONAL FLOW

In the following considerations, the boundary-layer equations are defined 

in the three-dimensional case. The technique is similar to the two-dimensional 

flow. All the transformation parameters are the same as those presented in chapter

3. The continuity equation of incompressible and steady flow in the streamline co­

ordinates (s-c) can be written as

9(h,u.)  ̂ 9 (h .v J   ̂ a (h X w ) g ^ 2 6

ds dc dÇ

where h is the metric coefficient in the outer streamline direction (s)
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hç is the metric coefficient in the outer crossflow direction (c) 

u, is the velocity in the s direction 

Vg is the velocity in the c direction 

w is the velocity in the Ç direction (normal to the surface)

From this streamline co-ordinates, the values of u,, v̂  and w just outside 

the boundary-layer are u^, v^ and respectively. This means that v^=0 and 

can be written as

5 a(h,u^) , 1
w . = ------------

h.h^ 3s h.h.
2

3s

1 a
h,hg I 3c

h Jv .d C 4.27a

w = ------------ -j  “ +•
h.h. 3s

where 6,* = — J ( u „ -u,)dÇ
et 0

Ô* =—— j v,d;

4.28a

4.28b

In equation (4.27), the first term represents the irrotational flow around 

the body, while the rests are additional outflow due to the boundary-layer, and are 

"as i f  there were a source distribution on the surface, of strength per unit area

4.29
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If the source distribution is placed on the surface of the body (e.g. Ç=0), 

the perturbation velocity is equivalent to the flow induced region. Using the 

velocity potential (0 ), the influence of this distribution at a point p(s,c,0 ) is an 

integral of the influences of all the point elements (see Appendix G).

4.305u,(s,c,0) = ̂  a -  ^ ..^ h A d sd c
l U p - s j  + K - c j  ]

0v„(s.c,0) = i U ^ o -  | £ - i _ ^ h . h . d s d c  4.31
l U p - s j  + ( C p - c j  ]

where 5u^ and 6 v^ are the perturbation velocities in the streamline and crossflow 

direction respectively.

The effect of compressibility

The above equations are defined for incompressible flow. The effect of 

compressibility can be evaluated by using the co-ordinate transformation called 

the Prandtl-Glauert rule. Therefore the perturbation velocity is

5 u „ ( s , c , G )  =  1  ̂ [ a - ---------------—— ------------ :^h,hgdsdc 4.32a
- J s u r f . c c ............................................................ -

{ ( s , _ s r + ( c , - e r } '

where is free stream Mach No.

Discretization

Due to the complexity of the interaction and the limited time available it is 

not at the present possible to perform an exact analysis of the three-dimensional



115

interaction equations. Therefore, we will only consider the implementation of the 

interactive approach in two-dimensional flow. The value of the perturbation 

velocity contains the displacement thickness effect and can be computed from

ÔU, (s, 0) = i )  ■ (ds
3s (s - s )

4.33

where s, and Sy define the beginning and end of the interaction region. 

Sp is a field point.

Using the midpoint rule on intervals

3 ( u , S . ‘ )
ds As

4.34

The integral of equation (4.33) can be represented by

4.35

where s „ ^ = i ( s „ . ,+ s „ )

The discretization of the equation (4.35) may be rearranged to get the 

following form.

m=l m=2 S p - S ^ _ ^  S p - S ^ ^ j

u_0 *| u_Ôj| 
+ ■ 4.36
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In the interaction model, all the required values of 5 \  and u„ are supposed 

known during the i* downstream march. These values are denoted with n 

superscript that is the iteration level. The contribution for m>i is taken from the n- 

1 level solution. Now the system of the equation (4.20a) at point i can be written 

as

I
m=2 m=i+l

u ï ï ( s ) + a . 5 r  =  + P i  4.37

where
K

4.38

TtSj-Sj^ K

From the system of the equation we can see that the external velocity (u^) 

and the displacement thickness (5\) are treated as unknown quantities at i* 

downstream march. For each sweep, the boundary-layer equations are solved 

simultaneously in an inverse mode with successive sweeps over the body surface. 

It should be noted that in the previous section (inverse method) the value of 

displacement thickness (6 %) is supposed known and the external velocity (u„) is 

the solution of the equations but in the interaction model both of them are 

obtained as parts of the solutions.

Numerical Solution Algorithm

Interaction between the inviscid and viscous flows can be employed 

through the equation (4.37). In this equation, the combination of the external 

velocity and displacement thickness is linked and used as the external boundary 

conditions in the boundary-layer equations.
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The interaction calculation proceeds in the following way.

1. The boundary-layer calculation is computed up to the beginning of the 

interaction region (e.g. s., before the flow is separated) by a direct method.

2. An initial guess displacement thickness is chosen over the region 

(s,, Sy) where the interaction is believed to be important. The extrapolation of

is an arbitrary choice. A suitable choice is using flat-plate approximation (e.g. 

equation 4.16).

3. The boundary-layer solution is next obtained by an inverse procedure 

using and as boundary conditions. By guessing the value of

is obtained from the interaction equation (4.37). If the calculated value of 

displacement thickness from equation (4.20b) does not match with the guessed 

value of then the solution has to iterate. The secant method is applied to 

accelerate the solution (see Appendix B).

4. Once the solutions at i* downstream station are converged, the values 

of are updated on the right hand side of the interaction equation (4.37). The 

implementations of the step 3-4 are carried out until the solutions are completed 

sweep over the body.

5. The difference between calculated of this iteration and that of the 

previous one (8 *̂" *̂ ,̂ ) is used to check for convergence, where the convergence 

criterion has been taken as

MAX 15*<“) , - , I < e 4.40
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where e is the convergence criterion 

n = iteration level

When MAX 1 I  is less than a prescribed tolerance, 

convergence is considered to be achieved. If this criterion is not satisfied, is 

updated and the process returns to step 3. An over relaxation value of CO (e.g. CO = 

1.5) can be used in this method.

4.41

The flow diagram of the interactive mode can be seen in Fig. 4.4.

4.6 ENTROPY GENERATION IN A 3-D BOUNDARY LAYER

The generation of entropy by viscous effects is governed by the equation 

(4.42). The procedures used to develop the equation may be seen in Appendix H.

Ds 
PT— = q 4.42

where s is entropy,

T is temperature,

q is heat transfer per unit time (equation H.21), and

0  =  2
Bx

dv^ fdv/ ^Bv BuY f Bw Bv
Bx By By Bz

Bu BwY i f  du Bv Bw^
Bx By Bz

4.43

In order to make the use of the entropy generation equation (4.42) for 

boundary layers, we need to adapt some terms regarding the nature of the viscous
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layers. For q \ we can see that the amount of heat transferred into volume Aû

through surface elements that are normal to the x-direction is equal to

- k — dydz (see Fig. H.1). By contrast, the amount leaving the volume is given 
dx/  0 0rji \

by k -----H— k —  dydz. Thus, the amount of heat added by conduction during
V dx dx dx J

time dt to a volume Ai} can be written

i L
dy

4.44

From boundary layer assumption, we found that the values of x and y are 

typically 0 ( 1), and values of z (normal to the body surface) associated with the 

boundary layer are typically 0 (6 ).

3u f3 u Y dw d \  fdw^
a l '  W  ’ dH' 3 ^ ’

3w
» .  0 ( 1)

dy dx

^  are 0 (6 ) and ^  are 0 (1/6 ) 
dy dz dz

Since 6  «  1 we can see that

4.45

, . . .  dT d T . d TIn a similar manner —  »  —— — 
dz dx dy

so 3  r , 3 T '
4.46

Therefore the equation for three-dimensional boundary layers reduces to
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4.47

4.48

where T, is streamwise shearing stress =
dz

d \Tg is crossflow shearing stress = p.—
oz

4.49

4.50

Therefore the entropy generation rate inside the boundary layer is

f 1 3 ^ 3T'\The term J —— ^k — jdz can be integrated by parts and equal

jc£T  
T dz

k 3 T
T 3 z

6 6

0 0 r  3z 4.52

Equation (4.51) can be rewritten as:

fs Ds . k 3T
T 3 z z=0 0

4.53

k 3T
From the boundary condition of the boundary-layer equations, we know 

= 0. If we let p ^ d z  = and k = pCp/Pr, the entropy production

per unit surface area (Ç*) is given by
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J c ^  
^ T 3 z

+ f—du + J — d v + f- ;^ -^ d T  4.54
J  T  J  T  J  ? l7z=o o T  i T  J T ^ a z

This is the total rate of entropy creation not the change in specific entropy. 

We can expect that the entropy generation near the wall is higher than that near 

the boundary layer edge because velocities change rapidly near the wall. If we

non-dimensionalise the entropy (s) in the layer by — — y , we can write the
TLRe"

equation in non-dimensional form as,

2 _ 1 a r
Pr T az

5

+ (y-l)MiJ^du
z=0 0

Where Re is the reference Reynolds number, Re = p^u^L/p.,

R is gas constant = c - c^= c (7 -IV7

7RT_

From the above equations, we can see that the entropy generated in the

boundary-layer is proportional to the heat transfer at the wall and the summation

of viscous work per unit time in both streamwise and crosswise from the wall to

the edge of the boundary-layer. In the case of adiabatic wall temperature the heat
0 Xtransfer at the wall is zero (—  = 0). It should also be noted that equation (4.54)
dz ^

has been derived for compressible flow of a fluid.
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p i  < p 2

separation
point

reversed flow

r 3u
VISC O U S shear p .—

Fig. 4.1 Boundary layer separation from a two-dimensional flow

Fig. 4.2 Streamline co-ordinate system on the body surface 

s-c = streamline co-ordinate system, s-axis is outer streamline in the 

direction of the flow at the boundary layer edge, c-axis is crossflow 

direction

Ç-T) = non-orthogonal curvilinear co-ordinate system 

'F  = the limiting streamline 

p = angle between ^-axis and s-axis
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NO

YES

STOP

Boundary Layer calculalion

Initially prescribed 6 
from EQ. 4.16

Guess freestream velocity from EQ. 4,18

Fig. 4.3 Boundary layer calculation procedure in the inverse mode at a 

specific point

YES
STOPn - l

NO

n - l

Initially prescribed 6*  ̂& u,

n -1

Boundary Layer Method

Interactive Method

Fig. 4.4 Flow chart for the viscous-inviscid interaction: interactive model
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CHAPTER 5 

COMPUTATIONAL RESULTS

5.1 INTRODUCTION

The objectives of this chapter are to evaluate, compare and validate the 

boundary layer method described in chapter 3 and 4. Validation data comparisons 

ranging from two-dimensional flat plate to three-dimensional compressor are 

shown in this chapter to highlight the accuracy and reliability of the code. The 

background information and basic assumptions are given in each test case.

The code is applied to the following flow configurations:

1. Three-dimensional flow over a flat plate with the plate moving 

parallel to its leading edge

2. Three-dimensional flow over a flat plate with an attached cylinder

3. Rotating helical blade

4. An axial compressor

5. A centrifugal compressor rotor

6 . A dented plate with a separation bubble

5.2 THREE-DIMENSIONAL FLOW OVER A FLAT PLATE WITH 

THE PLATE MOVING PARALLEL TO ITS LEADING EDGE

A study of three-dimensional boundary layers on a flat plate is greatly 

simplified by the absence of geometrical complication. Under these circumstances 

the solutions of the boundary-layer equations can be found by employing some 

forms of similarity law (e.g. Blasius-type solutions). A study of three-dimensional 

flow over a stationary flat plate was discussed in great detail first by Loos (1955)
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and applied in the case of a moving plate parallel to its leading edge by Kitchens

et al (1975). In this test case, we compare our calculations with those reported by

Kitchens et al (1975).

Specification data:

For X, y , z co-ordinate (see Fig. 5.1), a flat plate surface is defined on 

the X - and y -axises, and the distance normal to the surface is the z -axis. This 

plate is moving parallel to its leading edge (i.e. y -axis) with a velocity of Vw«u. 

The boundary conditions of the boundary layer equations are given in equation 

(5.1-5.2).

z = 0  u = w = 0

v = vwi 5.1

Z U =  Ue

V = Ve 5.2

where u , v and w are the velocity components along the x -, y - and z -direction 

respectively. The subscript "wall" means the value at the wall and "e" means the 

value at the boundary layer edge.

In this co-ordinate system, the velocity components at boundary-layer 

edge over the plate are given by equations 5.3 and 5.4.

Ue = constant 5.3

Ve = a - b X 5.4

where "a" and "b" are constants.
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The laminar boundary layer solution for this system can be solved by the 

method described in chapter 3 or by the Blasius similarity method. In the latter 

method, the three-dimensional boundary layers can be reduced to two ordinary
— I U edifferential equations by using the Blasius similarity variable, r\ = z J ^ =  (forV DX

detail see Yohner and Hansen (1958) or Kitchens et al (1975)). The ordinary 

differential equations are

ff"  + 2 r = 0  5.5

2h" ' + f h " - 2 f ' h ' + 2  = 0 5.6

where the f' and h are the first derivatives with respect to T). The boundary 

conditions can be written as

at Ti=0 f(0) = f (̂0) = h(0) = h (0) = 0 5.7a

at T| —>00 f̂ («») = h («») = 1 5.7b

The velocities (i.e. u, v and w) are related to two functions f  and h 

through;

U =  U e f '  5.8

v = U e[af '-bxh '- l-V w di(l-f ') ]  5.9

w = i f - S ^ l  [T if '-f]  5.10

The solutions of equation (5.5) and (5.6) can be obtained by a numerical 

solution (e.g. Runge-Kutta method) or from the table in Yohner and Hansen 

(1958). For the solutions using Runge-Kutta method see Appendix C.
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Although the system of boundary layer equations is three-dimensional, the
a

flows are identical along the y -plane (e.g. —= = 0). In order to avoid the identical
dy

flows in the y -axis and to get a more general test case. Kitchens et al (1975) 

introduced the x-, y- and z-co-ordinate in which the origin of the x-, y- and z-co- 

ordinate is moved from the origin of the x-, y - and z -co-ordinate by "c", and the 

y-axis is rotated by an angle 0 to the y -axis (see Fig. 5.1). The relations between 

the barred and unbarred co-ordinate and velocities are given by

X = X C O S 0 4- (y+c) sin 0 5.11

y = -X  sin 0 + (y+c) cos 0 5.12

z = z 5.13

u = u cos 0 + V sin 0 5.14

V = - u sin 0  + V cos 0 5.15

w = w 5.16

Therefore, the system of boundary layer equations in the x-, y- and z-co- 

ordinate is a general three-dimensional flow. In our calculations, the x-, y- and z- 

co-ordinate is employed, and the solutions are compared with the analytical 

solutions (presented in Appendix C) of the x -, y - and z -co-ordinate through the 

equations (5.11-5.16).

In this test case "a" is set equal -1.25, "b" is set equal -1.0, "c" is set equal 

sin 0 (1-sin 0) and 0 = tan'* (1/6). The plate is moved paralleled to its leading 

edge with v ^  = -0 .2 .
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Discussion of Results

A 101x101x51 grid point of x, y and z-directions was used in the 

calculation. The three-dimensional velocity profiles obtained from the exact 

solutions were used as an initial data (only on the first row along the y-direction). 

Please note that the moving wall (vwiu ) has velocity components in both the x and 

y-directions due to the co-ordinate transformation.

The velocity profiles in all three co-ordinate directions are illustrated in 

Fig 5.2. We can see that they are excellent agreements in u and v of the present 

method and the exact solutions. In w, the present method shows a little bit 

downward shifts.

In order to obtain stable solutions for the three-dimensional problem, it is 

necessary to obey the zone of dependence condition. This concept is presented in 

chapter 3. Kitchens et al (1975) show that the zone of dependence for this case 

can be stated as

Ax < coAyMin ^ 5.17

where the Min ^ is evaluated over the whole plane of the data, co is a safety

factor. In this calculation we set co=l. Therefore, the choice of Ax and Ay depends 

on the magnitude of the local streamwise and crossflow velocities. To study the 

zone of dependence concept, we will use a similar approach as that reported by 

Kitchens et al (1975). In this study Ax is unchanged and Ay is changed. The value 

of AXp is defined as the largest permissible step size that is calculated from 

equation (5.17).
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The calculated values of zone of dependence are given in table 5.1. The 

results of this table are subjected to constant step size Ax. The step size of Ay was 

changed until the results are no longer acceptable. As the mesh size in the y 

direction is decreased, the error in the calculation increases even though the

truncation error decreases. This is caused by the violation of the zone of
Ax Ax

dependence principle. The highest value of ——  is about 12 with —  = 2. In

general, the results agree well with the exact solution even though the zone of 

dependence concept is violated.

Table 5.1 Summary of the zone of dependence (Ax=0.01 and co=l)

Ax
AXp u mw crmr V rm* error wTÎTIK error

5.96 5.8x10-5 1.1x10^ 5.3x10-3

8.52 5.8x10-5 1.2x10-4 5.1x10-3

11.92 7.3x10-5 1.2x10-4 1.0x10-3

Note: u = Z  (uexact aolutian u)2/  (total number of grid points)

5.3 THREE-DIMENSIONAL FLOW OVER A FLAT PLATE WITH 

AN ATTACHED CYLINDER

The boundary layer approaching a cylinder with its axis normal to a plate 

(Fig. 5.3) was computed extensively and accurately by Sowerby (1965) with a 

Blasius-type series solution, by Fillo and Burbank (1972) with two stream 

functions, and by Cebeci (1975) with a two-point finite-difference method. For 

this flow, the free-stream is assumed as a potential (i.e. inviscid) flow around the 

cylinder and the boundary layer is formed on the plate upstream of the cylinder.
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This test case gives a three-dimensional boundary layer on a flat plate. It is 

used as a test for the accuracy and the suitability of the method (i.e. discretization) 

discussed in chapter 3. In this test case, we compare our calculations with those 

reported by Fillo and Burbank (1972).

Specification data:

The co-ordinate system used in this study is shown in Fig. 5.3. In this 

system, the plate surface is defined on the x-y co-ordinate and the z-axis is normal 

to the surface. The velocity components along the x-, y- and z-co-ordinates are u, 

V and w respectively. The x-axis (e.g. y=0) is a symmetry plane at which v = 0 and 

the y-axis (e.g. x=0 ) is a leading edge plane at which velocity profiles have been 

assumed corresponding to the Blasius solutions. A circular cylinder of radius "a" 

is mounted at distance Xq downstream from the leading edge of the plate. The 

calculation domain is limited only up to x/a=4.2 on the symmetry plane, and 

y/a=1.5 on the y-axis before separation occurred.

If the main stream has uniform velocity u^ at infinity in the x-direction, the 

potential flow arising from the disturbance of a circular cylinder of radius a has 

components

i + . 5.18

V , 5.19

These velocity profiles are used to specify the boundary conditions at 

boundary layer edge (5). In order to make a direct comparison between our
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calculated results and those obtained by Fillo and Burbank (1972), we have 

chosen u_=3050 cm./sec., a = 5.1 cm. and Xq= 45.7 cm.

Fillo and Burbank (1972) represent the results of their calculations in 

terms of function F and G which are related to the wall shear stress as follows:

Bu

9v

z=0

Discussion of Results

In our calculation the convergence criterion for laminar flow was based on 

the requirement that the difference between two successive values of u and v, for 

the y-z plane, be less than a specific number e which was taken as 1 0 “̂ .

We found that for the calculation domain, the maximum values of 

|u"̂  ̂- u " | and |v"'̂ * -  v"| are at the edges of the plate (i.e. y = 0  or y = y ^ )  and,

for all x-stations the solutions near the leading edge converge faster than those 

near the trailing edge. This may be from the discretization scheme that employed 

to approximate the solutions. The error in the calculation also will be moved 

downstream and will influence the whole of the downstream flow.

A 43x16x51 grid point of x, y and z-directions was used in the calculation. 

To keep the error and iterations down, the calculations were started with Blasius 

solutions at the first and the second grid points from the leading edge. The 

computing time required per grid point was 0.0368 seconds on a VAX 

Workstation.
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The predicted variation of F and G in the streamwise distance is compared 

with the Fillo and Burbank (1972) in Fig. 5.4 and 5.5, respectively. The function 

F, which determines the streamwise shear stress, decreases as the distance from 

the leading edge increases for a fixed value of y. For the function G, which 

determines the cross-flow shear stress, its value increase with distance from the 

leading edge. At the plate leading edge both functions are independent of y and 

their values are identical with the Blasius solution, 0.4696 (Fillo and Burbank 

(1972)). The resulting solutions for the streamwise and crossflow components of 

wall shear, F and G, at four different span wise locations are in an excellent 

agreement with the analytical results of Fillo and Burbank.

5.4 ROTATING HELICAL BLADE

5.4.1 LAMINAR FLOW

To explore the possible extension of our method for complex geometry, 

we considered the three-dimensional boundary layers on a rotating blade. The 

laminar boundary layer on a rotating blade such as a rotor blade of an axial 

turbomachine or a helicopter rotor was first studied by Fogarty (1951) with an 

assumption that the blades were two-dimensional. Morris (1981) analysed a 

laminar boundary layer on a twisted helical blade that rotates in an axis 

perpendicular to its leading edge and solved the boundary-layer equations by 

using a double series expansion in powers of distance from the leading edge and 

the cosine of the blade twist angle. The blade's geometry is similar to that of the 

rotor blades of an axial turbomachine and this boundary-layer flow is three- 

dimensional because of the centrifugal force due to rotation, so we employ it as a 

test case to verify the effect of blade rotation on the boundary-layer development.
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Specification Data:

The blade geometry with a straight leading edge that rotates in a uniform 

stream u_ with angular velocity Cl is shown in Fig. 5.6a. The blade rotates about

the x-axis and the leading edge is parallel to the r-axis. The blade geometry in 

cylindrical co-ordinate can be written in the following way:

X = b 0

0 < r < l  5.22

0 < 0 < Jt/4

It is noted that a line of constant radius (r) is also the line along which 

helix angle (<j>) remains constant. ”b" is a constant and in this case we set b = 1 . 

The body surface co-ordinate system is formed with intersection of lines of 

constant radius (r) and lines of constant polar angle (0). The normal lines (Q to 

the blade surface are described in section of the governing equation in chapter 3.

The free-stream velocity in cylindrical co-ordinate system has components

û  = Uoo 5.23

u, = 0 5.24

u@ = Or 5.25

where u_ is a reference velocity, and u,, û , u@ are the free-stream velocity 

components in the x-, r-, 0-directions, respectively. For zero angle of incidence at 

the leading edge, the free-stream velocity in body surface (^, T|, Q co-ordinate 

system has components

u = ^ui+(Or)^J" 5.26
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V = 0 5.27

w = 0 5.28

where u, v and w are the velocities along the T|, Ç curves. From the calculation, 

it is found that these velocities are identical to the transformed velocities that are 

described in Appendix A.

Discussion of Results

The co-ordinate systems used in this study are the cylindrical co-ordinate. 

This physical domain (x, r, 0) is then transformed to computational domain (Ç, T|, 

Q as presented in chapter 3.

In this test case the convergence criterion (e) was taken as 10"^. The 

solution proceeds in the x-direction and requires a large number of iterations (« 

41) at lateral boundaries to satisfy the convergence criterion.

A 51x25x31 grid point of T| and Ç directions was used. The calculations 

were started at a next grid point downstream from the leading edge (i.e. x = 0  

radians). The computing time required was about 1 and a half minutes for the 

whole plane on a VMS AXP (TM) Operating System.

The streamwise and crossflow velocity profiles for various polar distances 

from the blade leading edge, at <J)=45°, are presented in Fig. 5.7. These velocity

profiles have been scaled by the local free-stream velocity magnitude ( ) in
sin(t>

the case of u and the free-stream velocity magnitude (Or) in the case of v. They 

show good agreement with those obtained by Morris when polar distance, 0<3O°. 

The main reason for the high errors when 0 is increased may be due to the fact 

that the solutions of Morris are neglecting higher order terms of 0 in the series
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and the error is high when the value of the distance from the leading edge (0 ) is 

increased. It should be noted that for a fixed value of (j) = 45° (Fig. 5.7 a-f) the 

magnitudes of the crossflow velocity near the wall increase as the magnitude of 

the polar distance from the leading edge increases.

Crossflow skin friction coefficient along the blade shows good agreement 

with that obtained by Morris (Fig. 5.8) but for streamwise skin friction coefficient 

the error is high at the leading edge when (j>=45°. These skin friction coefficients 

have been scaled by the square root of local Reynolds number, Re@. The values

increase with distance from the leading edge along the line of constant helix angle, 

<1>=45°. At the leading edge the value of crossflow skin friction is zero since there 

is no crossflow and that of streamwise skin friction is 0.6641 since c^ is

independent of the twist angle <j) (Morris (1981)) and corresponds to the Blasius 

flat-plate boundary layer.

5.4.2 TURBULENT FLOW

It is of interest to extend the application of the code to the conditions 

under which the boundary-layer flow is turbulent. In most practical situations of 

fluid flow through a turbomachinery, we encounter fairly large values for the 

Reynolds number and we must regard turbulence as the normal state of fluid 

motion. The turbulent boundary layer that develops on a rotating helical blade of 

large chord length, enclosed in an annulus is investigated by Lakshminarayana et 

al (1972). Their experimental values may therefore be taken as our verification. A 

further purpose of the study is to show the suitability of Baldwin-Lomax turbulent 

model for obtaining accurate solutions for three-dimensional boundary layers.

Specification Data:

The turbulent boundary layer development on a single rotating helical 

blade was reported by Lakshminarayana et al (1972). The blade geometry is
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similar to Fig. 5.6b. In this experiment, the hub radius is 9 inches and the tip 

radius is 18.30 inches. The maximum angle 0 measured from the leading edge is 

300®, with pitch of 10 inches. The blade rotates with an angular velocity of 57 

rad/sec (450 rev/min) corresponding to a Reynolds number of 7xl(F base on the 

tip radius and kinematic viscosity of 160x10^ ftVsec. With a suitable adjustment,

i.e. the blade geometry, to fit the experimental data, we could compare calculated 

values with those reported by Lakshminarayana et al (1972).

Discussion of Results

The blade's leading edge may be approximated by a flat circular plate since 

its pitch is very small compared to a chord length. The transition from laminar to 

turbulent flow occurs at 0 = 0.73 radians (Groves and Change (1984)). Base on 

this analysis, present calculations begin at the leading edge with Blasius solutions 

and with transition set to 0 = 0.73 radians. The convergence criterion (e) was 

taken as 2.5x1 fr .̂ A 18x18x31 grid point of T| and Ç direction was used. The 

computing time required per grid point was 0.087 seconds on a VAX 

Workstation.

The predicted momentum thickness, 0^  at various distances from the 

leading edge, is plotted in Fig. 5.9 for a rotating blade at r/r^jp =0.55, 0.72, 0.82 

and 0.93. The prediction is excellent away from the endwalls. Near the endwalls, 

the values agree closely with the experimental data. In our analysis of boundary 

layer, the constraints of the annulus wall and hub are neglected. The predictions of 

the momentum thickness grow rapidly at the transition point from laminar to 

turbulent flow (0 > 0.73 radians) and the growth is almost stable near the trailing 

edge.
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5.5 AN AXIAL COMPRESSOR

To account for the effect of viscosity on turbomachinery blade, there are a 

number of problems that have to be considered, such as the three-dimensional 

nature of the free-stream velocity, blade geometry and the rotation. Up to this 

point we can conclude that the method can cope with such problems.

Olsson (1962) carried out comprehensive measurements of the mean flow 

field on an axial compressor blade. The experiments were conducted in a 

stationary annular cascade. In order to eliminate the endwalls boundary layer, the 

endwalls of the cascade and the duct-walls approximately two chord-length 

upstream of the cascade were made of perforated material. The measurements of 

free-stream velocity were taken by using three-hole cobra-probe and five-hole 

direction probe. For velocity profiles inside the boundary layers, a specially made 

probe of the cobra-type was used. Details of the construction and measurement of 

these probes can be found in Olsson (1962). He reported that there are larger

uncertainties in the crossflow measurements than that in the streamwise

measurements. The uncertainty in the streamwise measurement (— ) was ±1.5
Uc

V
percent while in the crossflow measurement (— ) was ±10 percent. The error for

integrated quantities in streamwise direction (e.g. 0%, ©,) was ±4 percent and that 

in crossflow direction (e.g. 6 %, was ±10-15 percent.

To demonstrate the rotating effect, Olsson used the experimental blade 

geometry of the stator blade. Then, he assumed that the rotating stage is both 

preceded and followed by the stator vanes. The layout of this cascade is shown in 

Fig. 5.10b. The velocity triangle is then constructed in such a way that the inlet 

relative angle to the rotor is the same as the inlet absolute angle to the stator. 

Under this assumption, the data at 50% span-position is used to approximate the
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angular velocity and this gives the angular velocity (O) of 123 rad/sec. This value 

can be used for the boundary layer calculation concerning the blade rotation. 

Although this angular velocity is based on the 50% span data, it can be used on 

the other span position to show the trend in change of the rotation.

Specification data:

The blade is typical of compressor practice. The key parameters are 

Circular arc camber line

NACA Four Digit Series thickness distribution with 9% maximum 

thickness

Chord; c = 2.8 inches 

Camber angle = -35°

Pitch-chord ratio at mid-span; s/c =1.0 

Aspect ratio; 1/c = 1.8 

Diameter ratio; Di/Dy = 0.65 

Chord angle to tangential direction = -45°

The blade was tested in incompressible flow with the Reynolds number 

based on upstream velocity and chord-length of 1.2x10^. Details of the blade 

geometry are available in Appendix E and given in Fig. 5.10. The % chord means 

the chord position in percent of chord length, starting at the leading edge and % 

span means the span position in percent of span length, starting at the hub. The 

measured free-steam velocities on the blade for suction side and pressure side are 

presented in Fig. 5.11. These data are used as input to the code. Efforts were 

made to fit the free-stream velocities to give the fully three-dimensional velocities 

by using two-dimensional cubic spline method.
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For the present study, the flow was assumed turbulent throughout. The 

calculations have been done for both the pressure and suction sides. In order to 

investigate the effect of rotation, the calculations also have been done for both 

stator and rotor cases. The calculations were started from the leading edge to the 

trailing edge using only the free-stream velocities and the blade geometry from the 

experimental data. The initial velocity profiles were obtained by specifying the 

flow with no-slip condition at the wall.

Discussion of Results

The flow over pressure surface

The computed mean velocity profiles in the streamwise and crossflow

directions are shown in comparison with experimental data at several locations in

Fig. 5.12-5.14. The streamwise velocity ( -^ )  is well predicted at all locations.
Ue

The agreement between the prediction and the measurement of crossflow velocity
V

(— ) is good near the leading edge and fair near the trailing edge. The effect of 
Uc

rotation is found to have less significant on the velocity profile in the streamwise 

direction. The magnitude of the crossflow velocity is increased when the blade is 

rotating, especially near the trailing edge where the magnitude of the flow is 

increased more than double.

The displacement thickness (5‘), momentum thickness (0) and shape 

factor in the streamwise, and crossflow predicted from the boundary-layer code 

are shown in Fig. 5.15-5.17. The definition and the physical meaning can be seen 

in chapter 4 and appendix F. The predictions of streamwise displacement 

thickness (0 %) and momentum thickness (0 ^) show fairly good agreement with 

those of the experimental data and those of the crossflow (0 % and 0 ^̂ ) are in 

reasonably good agreement when Q = 0. The poor prediction in the crossflow 

direction is probably caused by inadequate prediction of the crossflow velocity
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shown to give reasonable agreement with the experimental data except near the

leading edge. The predictions for shape parameter of the velocity profile (H,= 
Ô*

—^ )  agree closely with experimental result.
0 _

In the case of rotation, the predicted values in the streamwise direction 

(e.g. 5 \, 0 ^) are not much changed while the predicted values in the crossflow 

direction (e.g. 6 %, 0 ^) are considerably increased especially for the crossflow 

momentum thickness. This is from the effect of the blade rotation to the velocity 

profiles as shown in Fig. 5.12-5.14 where the magnitude of the crossflow is 

dramatically increased while that of the streamwise is slightly changed. Therefore, 

we can expect the high loss of crossflow momentum in the boundary layer due to 

the rotation.

The predicted velocity vectors near the pressure surface are presented in 

Fig. 5.18 where the flow can be seen to be strongly three-dimensional. From the 

boundary layer equations we can see that the flow inside the boundary-layer is 

driven by two applied forces; the pressure gradient and the force due to rotation. 

When = 0 there is only the pressure gradient that affects the flow as shown in 

Fig. 5.18a. In this figure we can see the strong radial pressure gradient that tends 

to drive the flow radially inward (i.e. secondary flow). This force tends to drive 

the flow axially near the leading edge and radially inward near the trailing edge.

When Q = -123 rad/sec, the forces due to the pressure gradient and the 

rotation are applied to the flow. The predicted velocity vectors of this flow are 

shown in Fig. 5.18b. Comparing between the two cases (Fig. 5.18a -b), we can 

see that the rotating force tend to drive the flow radially inward as the secondary 

flow is stronger when A = -123 rad/sec than that when Q = 0.
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In both cases the local streamline velocity is stronger near the hub than 

that near the tip. This is due to the strong free-stream velocity. It should be noted 

that the effect of viscosity generates the secondary flow as shown in Fig. 5.18. In 

the absent of viscosity (i.e. inviscid flow) there is no secondary flow and the flow 

will go along the outer streamline.

The flow over the suction surface

The computation was also carried out on the suction surface. Comparisons 

between result of the code (e.g. u, v) and the measurements are shown in Fig. 

5.19-5.24. Good predictions are also obtained for the boundary layers on the 

suctions surface. The mean velocity profiles on the surface are shown in Fig. 5.19- 

5.21. The magnitude of the secondary flow trends to increase when the blade is 

rotating. The other predictions (e.g. S*, 0 )  are shown in similar manner as those 

on the pressure surface. Overall these predictions show good correlation with the 

experimental results.

From Fig. 5.11 on the suction side of the blade, the free-steam velocity 

gradually accelerates from the leading edge and reaches the maximum value at 

about 50% of the chord. This region represents as a favourable pressure gradient 

that is discussed in chapter 4. Between that point and the trailing edge of the 

blade, the pressure rise is sufficiently large to cause flow separation in the case of 

Q = 0 as we can see in Fig. 5.25a that near the trailing edge the magnitude of the 

local secondary flow is higher than that of the local streamline velocity.

When Q = -123 rad/sec, the balance of the pressure gradient and rotating 

forces tends to prevent the separation near the trailing edge as indicated in Fig. 

5.25b. The rotation effect, on this surface, tends to drive the flow radially inward 

at about 40% of the chord and generates high secondary flow. Near the trailing
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edge, the angle (p J  between the local streamline and the outer streamline when Ç1 

= 0 is higher than the angle p^ when Q = -123 rad/sec. This is because the 

direction of the rotating force depends on the sign of the blade rotation vector and 

a normal vector to the surface. Therefore, in this surface when the blade is 

rotating, the angle p^ near the trailing edge is reduced.

The above computations were carried out using a VAX AXP computer. 

Convergence of the solution is good. The convergence criteria used in the 

computation is 1x10*^. For a grid 51x21x31, it takes about 1 minute of CPU time 

except in the case of suction surface with zero angular velocity which takes about 

3 minutes of CPU time. This is because the flow is separated and the FLARE 

approximation is employed in this case.

From this calculation we can conclude that the effects of the boundary 

layer on turbomachines can be analysed using the fully three-dimensional method. 

The rotation effect makes the magnitude of the crossflow larger than in the 

stationary case. The momentum thickness as well as displacement thickness in the 

crossflow direction trends to increase rapidly when the blade is rotating. 

Therefore, secondary losses generated by the crossflow will be higher in a rotating 

than in a stationary case.

5.6 A CENTRIFUGAL COMPRESSOR

In this test case, the code is applied to the study of the three-dimensional 

compressible flow field in a high-speed, back swept centrifugal compressor 

impeller. The main objectives are to investigate the physical flow and loss 

generation due to viscosity in the machine. It is hoped that the accurate prediction 

of the flow can be used to improve the performance of the machine by altering the 

impeller blade. However, in this study no attempt was made to redesign the blade.
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Specification data:

The compressor rotor is according to the design of Eckardt (1976). Basic 

parameters are:

impeller LE radius at hub = 60 mm

impeller LE radius at tip = 140 mm

impeller TE radius = 200 mm

impeller axial distance = 130 mm

blade back swept angle (from radial) = 30^

rotational seed = 1466 rpm

The machine has axial inlet flow and radial outflow and the flow is highly 

three-dimensional. The free-stream velocity vectors (inviscid flow) of the pressure 

and the suction surfaces are shown in Fig. 5.26-5.27, respectively. These were 

computed by using Denton's (1983) three-dimensional Euler solver. From these 

figures, we can see that there is no secondary flow on the pressure surface but 

there is weak secondary flow near the trailing edge of the suction surface. This is 

not a physical effect. It is caused by numerical viscosity. The free-stream velocity 

of this flow is shown in Fig. 5.28. The contours of these velocities are presented 

in Fig. 5.29a for the pressure surface and in Fig. 5.29b for the suction surface. In 

both figures, we can see that the highest velocity is near the tip at the leading edge 

for both surfaces. The lowest velocity is about 15% of the impeller distance from 

the leading edge near the hub for the pressure surface and about 70% of the 

impeller distance from the leading edge near both the hub and the tip of the blade 

for the suction surface. All of these data are used as input to the code.

The code has been applied to simulate the three-dimensional compressible 

boundary-layer in the above configuration. The energy equation for the analysis of 

the total enthalpy has been approximated by using the conservation of rothalpy. In
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this case the flow is assumed to be adiabatic and the Prandtl number is unity (a 

fair approximation for gases). If the flow separates, the code uses the FLARE 

approximation. This is done solely to save computer time and to reduce the 

complexity of the coding.

A 51x13x31 grid point is used in this calculation. The convergence 

criterion of the solution is 1x10*^. The computations were carried on VAX AXP 

computer. The CPU time for the pressure surface was 1 minute and 2 seconds, 

and for the suction surface was 1 minute and 40 seconds. The results of the 

computations are in the followings.

Discussion of Results

Pressure side

The predicted velocity vectors near the pressure surface are shown in Fig. 

5.30. The figure shows that the flow is separated near the leading edge of the hub. 

The flow generates strong secondary flows from about the beginning of the axial- 

radial bend up to the trailing edge. The secondary flows grow dramatically from 

hub to tip. The effect of the secondary flows will be to transport the fluid particles 

toward the tip of the blade. Compare these velocity vectors (Fig. 5.30) to those of 

free-stream in Fig. 5.26, we can see that there are secondary flows in the former 

figure especially near the trailing edge. These secondary flows are generated due 

to three-dimensional boundary-layer.

Fig. 5.31 shows contours of the predicted displacement thickness on the 

pressure surface. There is substantial growth of displacement thickness near the 

shroud at the trailing edge where the secondary flows are very strong. Near the 

leading edge of hub, the displacement thickness is also high because the flow is 

reversed. Compare this result (Fig. 5.31) to the velocity vector in Fig. 5.30, the



145

displacement thickness seems to be high in a region where the secondary flows are 

strong.

Fig. 5.32 shows numerical predictions of entropy generation on the 

pressure surface. This illustrates the high loss on the shroud at rotor inlet, outflow 

and especially along the shroud of the blade. The high loss at the inlet is due to 

the high inlet flow. From this result it has shown that the inlet region of the blade 

is the major cause of lost efficiency in the machine and the dominant loss 

generation is on the shroud. The main contribution of the high loss along the 

shroud is due to the secondary flow. It transports the losses toward the shroud. 

The major source of entropy at the trailing edge comes from the subsequent 

mixing of the flow towards the exit.

Suction side

The similar results of the suction surface as those from the pressure 

surface are obtained. Fig. 5.33 shows the predicted velocity vectors near the 

suction surface. From this figure, we can see that the secondary flow is very 

strong at about 1/3 of the streamline from the leading edge where the flow is 

separated at the shroud. The results indicate that the fluid is migrating from the 

hub toward the shroud. The secondary flows are stronger than those on the 

pressure surface (Fig. 5.30). Compare these velocity vectors (Fig. 5.33) to those 

of free-stream in Fig. 5.27, the secondary flows in the former figure are generated 

earlier and stronger than those in the latter figure. The secondary flows near the 

shroud at the trailing edge of Fig. 5.33 are moved in the opposite direction of the 

other region. The main cause may be come from the free-steam velocity that 

already shown secondary flow near the trailing edge.

The predicted displacement thickness is presented in Fig. 5.34. The 

thicknesses grow dramatically at the separation points. The displacement
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thickness is also high in the region where the secondary flows are strong (compare 

this result (Fig. 5.34) to velocity vectors in Fig. 5.33). This indicates that the 

secondary flows move low momentum fluids (in this calculation from hub to 

shroud) and therefore increase the overall displacement thickness.

Fig. 5.35 shows contours of the predicted entropy generation on the 

suction surface. From this result it has been shown that the entropy generation is 

very high at the inlet region of the blade. At each meridional distance, the major 

source of loss is near the shroud. Compare this result to the free-stream velocities 

in Fig. 5.32 and to the velocity vectors near the surface in Fig. 5.33, it is likely 

that the major cause of high loss at the inlet region is due to high inlet free-stream 

velocities and the major cause of high loss near the shroud is the subsequent 

mixing out of the secondary flows. It should be noted that the secondary flow is 

responsible for transporting the low-momentum fluid from the hub region to the 

shroud region.

Compare the predicted entropy generation on both the pressure surface 

and the suction surface with the contours of free-stream velocity and the 

secondary flows, we can conclude that the rate of entropy production is high in 

the direction of the secondary flow and its value is dependent on the free-stream 

velocity. The secondary flows are not responsible for loss generation with in the 

impeller but simply transport the loss.

5.7 A BOUNDARY LAYER WITH A SEPARATION BUBBLE

In this section, we considered the two-dimensional incompressible laminar 

boundary layer with a separation bubble. This problem was presented in Briley 

(1971) by solving the Navier-Stokes equations, in Carter and Womom (1975) by
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solving the inverse method boundary-layer equations (the vorticity transport) and 

in Veldman (1981) by using the interactive boundary layer method.

The purposes of comparison are: (1) application of the present method in 

separation flow problem and (2) the use of veldman's interaction method. In this 

calculation we do not use Blasius-type solution as an initial condition but specify 

velocities (e.g. u, w) at a solid wall are zero and the rests are equal the outer flow. 

This is because we want to check the convergence of the code. The results of the 

calculation are compared with those reported by Carter and Womom (1975).

Specification data

Consider a flow parallel to a dented plate with the configuration given by 

Zjj =-0.03 sech {4(x-2.5)l 0^<©o 5.29

and presented in Fig. 5.36.

The potential flow past the body can be represented by thin airfoil theory;

viz.;

= 5.30

Veldman (1981) assumed that the interaction takes place between x = 1 

and 4 but in our calculation we assumed that the interaction takes place from the 

leading edge of the plate. In the present calculations, the Reynolds number (Re) is 

8x10^, the length of the plate is 4 ( 0 ^ ^ ) .
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Discussion of results

In this calculation the convergence criterion (e) was taken as 1x10"* and 

relaxation factor (co) for updating 8 * is 1. A 51x31 grid point of x and z-directions 

was used. To check the convergence of the method, the calculations were started 

without using Blasius solution but with specifying the flow with no-slip at wall. 

The calculation needs 64 iterations to pass the convergence criterion, which 

requires about 5 minutes computation time on a VAX workstation. This is may be 

the reason why the present calculation takes more iterations than those of 

Veldman (1981).

Fig. 5.17 shows the excellent agreement between the skin friction obtained 

from the present method and that from Carter and Womom (1975). There is no 

difference near the point x = 1 where Veldman (1981) solution has. This is 

because the domain of integration of the interaction boundary layer is extended 

upstream as he pointed out.

The computed displacement thickness distribution is compared with 

Carter's predictions in Fig. 5.38. Also shown on this figure is the initial guess for 

displacement thickness. These values are calculated from the y -power formula. A 

difference between the present results and those of Carter and Womom (1975) is 

visible at about x«2.25 where our result is a little bit higher. In general, this 

agreement is quite good.

Finally Fig. 5.39 presents the pressure, p = y (l-u /)  obtained with 

interaction and that without interaction. The difference between the two curves 

indicates the influence of the interaction (Veldman, 1981).

In conclusion it is deduced that the present method is quite accurate and 

can be implemented in the case of separation flow. The solutions showed the
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reverse flow velocity with the help of Veldman's interaction boundary layer 

method.

5.8 CONCLUSION

The three-dimensional, compressible boundary-layer solution method is 

applied to predict the behaviour of the boundary layers on a wide variety of flow 

situations and configurations. The predictions are in good agreement with 

analytical results and experimental measurements.

The method employs the non-orthogonal curvilinear co-ordinate system 

on the body surface and the finite difference approximation to solve the equation 

accurately and efficiently. In this method the boundary layer equations are 

marched in time by using a time stepping method and their truncation error has 

been shown to be numerically second-order accurate in space and first-order 

accurate in time. The equations are solved without employing the similarity law. 

The solution of the equations is obtained in an uncoupled manner using a simple 

iterative procedure to update the coefficients in the next time step. This new 

development shows that the method is straightforward and easily adapted to flow 

situations and configurations.

We may conclude that the present prediction method provides generally 

satisfactory results for all the test cases. Some of the major conclusions are as 

follows.

1. The analysis is accurate for the prediction of the three-dimensional 

boundary-layer with or without surface curvature and rotation. The method is 

simple and requires reasonable computer storage. Although the method has the
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capability to predict unsteady flow, our main development is to predict the steady 

flow.

2. The additional effect of the rotation tends to increase the magnitude of 

the crossflow but the limiting streamline angle ( p j  increases or decreases 

depending on the sign of the blade rotation vector and the unite normal vector to 

the blade surface. The secondary losses in this case, therefore, will be high.

3. The method shows poor convergence when the flow is reversed. Two 

methods are employed for calculating of the flow. The first method is based on an 

interactive scheme. The second method is based on FLARE approximation 

scheme. Due to the complexity of the interaction, it is not at the present to 

perform the three-dimensional interaction scheme. Therefore, FLARE 

approximation scheme is applied for the three-dimensional calculation. 

Theoretically, the FLARE approximation method is inaccurate beyond the flow 

separation point when the reverse flow is high.

4. The total enthalpy may be approximated by using the conservation of 

rothalpy. This approximation results from the assumption of adiabatic wall and the 

Prandtl number is unity in the energy equation of compressible boundary layer.

5. The boundary-layer induced loss is dependent on its free-stream 

velocity and the secondary flow. When the flow is separated, the displacement 

thickness increases rapidly and the secondary flow is strong. These make the flow 

non-uniform. The entropy generation is high in the direction of the secondary flow 

because it transports the loss. To improve the efficiency of a machine, the level of 

secondary flow has to reduce.
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b) helical blade due to Lakshminarayana, et al (1972)

Fig. 5.6 Schematic of rotating helical blade
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Fig. 5.26 Free-stream velocity vectors (outside the boundary-layer) of pressure 

surface on Eckardt's impeller
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Fig. 5.27 Free-stream vcloci.y vectors (outside the boundary-layer) of suction 

surface on Eckardt's impeller
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Fig. 5.28 Free-stream velocities on the Eckardt's impeller
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Fig. 5.30 Predicted velocity vectors (near the pressure surface) on Eckardt's 

impeller
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CHAPTER 6 

CONCLUSIONS AND SUGGESTIONS 

FOR FURTHER WORK

The summary of each chapter is presented in the first section of this 

chapter. The contribution of this dissertation to the three-dimensional boundary- 

layer on the turbomachinery blades is given in section two. A discussion for 

further work is in the final section.

6.1 CONCLUSIONS

6.1.1 CHAPTER 2

The literature review of current developments in the calculations of 

boundary-layer flows were discussed in this chapter. The boundary layer methods 

^plicable to turbomachinery are the highlight of the chapter. In the design of 

turbomachinery blades, inviscid methods are routinely used. To improve design 

methods, the fluid mechanics theory of turbomachinery should integrate all the 

factors that contribute to the flow and the energy transfer about the blades. This 

means that the effects of three-dimensional flow, compressibility, rotation and 

viscosity have to be taken into account.

There have been several recent attempts, as shown in chapter 2, to use 

Navier-Stokes as well as boundary layer methods to predict the viscous effect in 

turbomachinery blade analysis and design. The Navier-Stokes methods are usually 

too slow and expensive for routine design work. The boundary layer methods, on 

the other hand, can provide a better resolution of the viscous layers at the wall 

with little computational cost. Among the boundary-layer methods in recent years, 

the method due to Vatsa (1985) seems to be the most suitable for turbomachinery 

analysis. In this method the steady three-dimensional boundary-layer equations are 

solved using finite-difference techniques. The Levy-Lees transformation is
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employed in the system of the equations in order to capture the viscous-layer 

growth. He employed a first-order formulation for spatial derivatives and an 

upwind scheme in the crossflow direction. The resulting linear algebraic equations 

are solved using a block tridiagonal solver. This method, however, is not 

applicable to encounter reversal of velocity within a three-dimensional boundary 

layer. In addition the implementation and application of the similarity 

transformation to solve the equations are not straightforward since the 

transformation is varied according to the flow conditions such as laminar, 

turbulent, compressible, incompressible, two-dimensional flow, three-dimensional 

flow.

6.1.2 CHAPTER 3

The method to solve the boundary-layer equations applicable to 

turbomachinery blades is presented in this chapter. The main difference between 

the present method and the method used by Vatsa is the numerical solution 

algorithm of the boundary-layer equations. In the present method, the solutions of 

the equations are obtained by time integration. In addition, the transformations 

used to stretch the co-ordinate normal to the solid surface as well as the numerical 

method used to solve the boundary-layer equations are considerably different.

The basic methodology of the present method is to time-march the 

unsteady boundary-layer equations of flow to steady state with a multi-relaxation 

factor to enhance convergence rate. The solutions are obtained in an uncoupled 

manner with a simple iteration of tridiagonal matrix. The implementation and 

application of the method are simple and straightforward since the governing 

equations are solved directly without employing similarity transformation.

Two different approaches for energy equation were presented. One is for 

the approximate and the other is for the exact form of the equation. The
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approximate equation is based upon the conservation of rothalpy. The flow is 

assumed to be adiabatic and the Prandtl number is one. The results, under such 

conditions, show that the approximate equation give reasonable value with less 

computer time than that of the exact one.

Turbulent flow modelling is also an important feature in the computation 

of the equations. In this study, the Baldwin-Lomax model is extended for three- 

dimensional flow over a non-orthogonal surface. The model is simple to 

implement and gives reasonable solution for the test cases. However, this model 

does not account for rotation and other complex phenomenon, such as surface 

curvature.

6.1.3 CHAPTER 4

The calculation method presented in the previous chapter has the 

weakness that the computation will break down as soon as there is a flow 

reversal. This is the main concern about the stability of the solution and the 

highlight of this chapter. There are a number of solutions to this problem. But in 

this study we will consider only the FLARE approximation method, conventional 

inverse method and the implicit interactive method.

Among the three methods, the FLARE approximation method is the 

simplest to implement. In this approach, the streamwise velocity and its products 

are neglected when there is a flow reversal. The solution from this method is good 

only for regions of small reverse flow.

The main difference between the "inverse" approach and the "direct" 

approach is on the type of boundary condition specified. In the case of the inverse 

approach, the displacement thickness or skin fnction has to be prescribed and 

used as a boundary condition instead of the outer flow conditions. The problem of
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implementation of the method is that the displacement thickness or skin friction is 

not known beforehand. Therefore, the solutions from the boundary-layer (viscous 

region) have to be approximated and iteratively coupled with the solutions from 

the outer flow (inviscid region). This technique is called the viscous-inviscid 

interaction.

One of the best interactive methods, which is implemented in two- 

dimensions in this work is the method of Veldman. The method makes use of the 

Hilbert integral to couple the solutions of the inviscid and viscous flow equations. 

The essence of the method is that both pressure and displacement thickness are 

treated as boundary conditions.

The flow behaviour about the turbomachinery blade is changed due to 

viscous effects, especially when there is a flow reversal. This change also affects 

the design condition that relates to the efficiency of the machine. Therefore, it is 

of interest to investigate the loss generation by the boundary-layer. The benefits of 

this knowledge can be used as a tool to improve the design and to identify loss 

sources and mechanism. The loss in this study is investigated in term of entropy 

generation. The entropy generation is deduced from the Thermodynamics laws 

and the viscous fluid flow equations. From the equation, we can see that the 

entropy generation is proportional to the heat transfer at the wall and the viscous 

work inside the boundary-layer in both streamwise and crossflow direction.

6.1.4 CHAPTER 5

In this chapter, the code based on the proposed method was applied to a 

number of test cases to highlight the accuracy and reliability of the model. The 

test cases are in the following configuration.

1. Three-dimensional flow over a flat plate with the plate moving parallel 

to its leading edge
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2. Three-dimensional flow over a flat plate with an attached cylinder

3. Rotating helical blade (both laminar and turbulent flow)

4. An axial compressor

5. A centrifugal compressor rotor

6 . A dented plate with a separation bubble

The predictions provide generally satisfactory results for all the test cases. 

Several specific conclusions can be drawn fiom the study:

This boundary layer method has been applied in three-dimensional time 

marching technique for the computational of the above test cases. The 

convergence of the solutions is fast since the tridiagonal elimination scheme is 

formed and a multi-relaxation factor method is employed.

The computer time and storage are also reduced when the total enthalpy in 

the energy equation is approximated by employing the conservation of rothalpy. 

This approximation is resulted from the assumption of adiabatic wall and the 

Prandtl number is one in the energy equation of compressible boundary layer.

The direct method shows poor convergence when there is a flow reversal. 

For the two-dimensional flow, the interactive scheme is employed. The interactive 

method was not implemented in three-dimensional cases due to limited time 

available to the author, and were not straightforward, as shown in chapter 4. 

Therefore, the FLARE approximation scheme is employed for such cases. 

However, the application of interactive method in two-dimensional calculation is 

designed to lay the foundation for three-dimensional calculation.

The influence of the rotation in the test case tends to increase the 

magnitude of the secondary velocity. The predicted momentum thickness and
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displacement thickness are also increased. Therefore, secondary losses will be 

high in a rotating case.

The viscous losses, expressed in terms of entropy generation, is shown to 

be dependent on the ffee-stream velocity and the secondary flow. The results 

indicate that the entropy generation is high in the direction of the secondary flow 

because it transports the loss. The displacement thickness increases rapidly and 

the secondary flow is strong when there is a flow reversal. To improve the 

efficiency of a machine, the level of secondary flow has to be reduced.

6.2 CONTRIBUTIONS OF THE WORK

This thesis outlines a three-dimensional boundary-layer solver developed 

for application to turbomachinery blades. The work solved unsteady boundary- 

layer equations of the rotating cylindrical co-ordinate system. The main attraction 

of solving the unsteady equations is the ability to compute steady and unsteady 

solutions. In this study, we consider only the steady state solutions. In order to 

cope with the separated flows, the method used the FLARE approximation as 

well as an interactive approach. The concept of the interactive approach, 

presented in chapter 4, is general but its application has so far been restricted to 

two-dimensional flow. In an attempt to understand the loss generation 

mechanisms in the flow, the entropy generation rate is calculated from the 

computed flowfield.
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6.3 SUGGESTIONS FOR FURTHER WORK

6.3.1 DEVELOPMENTS OF THE METHOD FOR UNSTEADY 

FLOW

The method presented in this study solves the boundary layer equations 

using a finite difference technique in which the solution proceeds by marching in 

time. A first order integration in time is then used to advance the dependent 

variables forward to a steady state solution. Since the flow through 

turbomachinery blades are inherently unsteady and unsteady viscous effects can 

impact the time-averaged or steady-state performance, efficient calculation 

methods for unsteady viscous flow are an important goal for current and future 

research. As a step toward this goal, the time integration should be improved. A 

second order integration in time, such as RRK, or an explicit 4-state Runge-Kutta 

scheme may be employed. However, some acceleration parameter, such as 

multigrid scheme, may be needed to enhance the convergence of the solutions. 

The works on the unsteady flow may be seen in Power et al (1991), Walker and 

Dawes (1990), and Doorly (1987).

6.3.2 DEVELOPMENTS OF THE METHOD FOR 

HEAT TRANSFER ON GAS TURBINE BLADE

The thermal efficiency of gas turbines is improved by increasing the 

turbine inlet temperature. In order to increase the inlet temperature, it is important 

to obtain a better understanding of heat transfer around the turbine blades. The 

method developed in this study has a potential to predict blade heat transfer. 

However, some fluid properties, such as viscosity obtained from Sutherland's 

theory, have to be modified since the gas turbine operates at very high 

temperatures (above 1250 K). The turbine blade heat transfer predictions using
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two-dimensional boundary layer can be seen in Rodi and Scheuerer (1985), and 

using quasi-three-dimensional Navier-Stokes equations can be seen in Boyle 

(1991).

6.3.3 DEVELOPMENTS OF THE METHOD USING 

A ZONAL FORMULATION

Most of the Navier-Stokes solutions can only provide accurate prediction 

of inviscid flowfield. The major concerns are the grid resolution of viscous layers 

at the wall, and the computing cost for the Navier-Stokes solutions. One way to 

obtain a better resolution at the wall with little computational cost is to use a so- 

called zonal approach. In a zonal approach, the boundary layer equations are 

solved at the solid boundary in a fine grid and the Navier-Stokes equations are 

solved outside the Boundary layer in a coarse grid together with appropriate 

matching boundary conditions. The Navier-Stokes solutions provide an outer 

boundary condition for boundary equations in the viscous layer. In return, the 

boundary layer solutions provide information near the solid boundary. The 

solutions are advanced simultaneously on a coarse and on a fine grid. 

Implementation of the zonal approach may be seen as the extension for the 

present study. Methods outlined for zonal formulations may be seen in Tang and 

Hafez (1993), and Hafez et al (1991).

6.3.4 DEVELOPMENTS OF THE METHOD FOR 

SEPARATED FLOW

In this study, the FLARE approximation and the interactive scheme were 

used when flow reversal was presented. The present evaluation indicates that the 

two approaches are capable of dealing with the boundary-layer problems. The 

interactive scheme is preferable because as it can deal with the large separation 

region while the FLARE approximation scheme is not accurate. The main concern
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about the interactive scheme especially in three-dimensional flow is that it may be 

too complicated to implement

Although this work concentrated on solving the boundary-layer equations, 

the framework gives the general steps that can be adapted to other equations. One 

of the set of equations that falls between full Navier-Stokes and boundary-layer 

equations is the thin-layer Navier-Stokes equations. This set of equations is 

similar to that of boundary-layer equations. The main difference is that it retains 

all three of the momentum equations and makes no assumption about the 

pressure. In this way, the equations can be solved in "direct mode" even in the 

presence of flow reversal. However the computer storage and time have to be 

considered since very fine grids are required to order to resolve the normal 

gradients in the boundary-layer.

6.3.5 TURBULENT MODEL

The Baldwin-Lomax model was extended to three-dimensional flow and 

used in this calculation. The model is used in many Navier-Stokes and related 

equations. The use of turbulent models in turbomachinery blades makes it 

necessary to account for the effects of curvature and rotation. At the moment, it 

seems that only Reynolds stress model (RSM) can capture these effects. 

Lakshminarayana (1991) has reviewed the turbulent models for three-dimensional 

boundary-layer. The method due to Zhang and Lakshminarayana (1990) is 

probably the most suitable for turbomachinery flows. So further work should be 

undertaken in order to implement a Reynolds stress model into the programs.
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APPENDIX A 

VELOCITY TRANSFORMATION

The system of three-dimensional boundary-layer governing equations 

(3.18-3.21) is expressed in the co-ordinate surface ). The body surface is

defined in the co-ordinate lines Ç and T|, and Ç normal to that surface. The 

velocities u, v and w are velocities, respectively, along the ^ , T], and Ç curves. In 

the case where the velocities u ,̂ û  and u@ of a standard co-ordinate (e.g. x, r, 0 )

are known, we have to transformed these velocities in the direction of the 

curvilinear co-ordinate (^ , T|, ^ ).

Let U is the velocity vector relative to the rotating system where its 

components in (Ç, r), Ç ) co-ordinate are u, v and w, and in (x, r, 0 ) co-ordinate 

are u ,̂ û  and Ug. In terms of the unit base vectors, the velocity vector U is now

written as:

U = u,e^ + u, e, + Ugeg A .la

U = u Cj + V Cj + w 63 A .lb

Using the dot product property and the relationships among the unit 

vectors equations (3.14), we can write the equations (A.la,b) in the form

Ux = («1 • e J u  -I- (e  ̂• e J  V -t- (63  • e J w  A.2

u, = (ci • e J u  + (cj • e J v  + (€3  • e J  w A.3

Ue =  («1  • e g ) u  4- ( c j  • Cq)  V -f- (C3 • C e ) w  A.4

In matrix form the equations (A.2-A.4) becomes
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u / 3̂ e / u

Ur — Cl'Cr €3 e. V

_Ue. ‘®e ®3 w
A.5

Then, the velocity vectors along the ^ , Tl and Ç curves are

u Ci-e, 6 3  e /
V = Cl e. G 3  G r

w ^2 8̂ ^3^ 8.

-1
U .

Uf

_ U e .

A .6

For boundary-layer problem, w should be zero or nearly zero when 

compare with u. If w is not zero and has a significant value, this means that the 

velocity vector U does not parallel to the body surface. The values of the 

directional cosines between the systems (e.g. are given in equation (3.15).
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APPENDIX B 

AN ALGORITHM FOR FINDING OUTER FLOW (u J  

OF A SPECIFIED DISPLACEMENT THICKNESS (5*)

A direct boundary-layer solution method that specifies the outer flow as a 

boundary condition and calculates displacement thickness as part of the solutions, 

fails to converge as the flow separation point is approached. It is well known that 

this singularity point may be removed by using the inverse boundary-layer solution 

method. The usual procedure in an inverse calculation method is to replace the 

outer flow boundary condition by the specification of a displacement thickness or 

wall shear stress that must be satisfied by the solution.

In this appendix we describe an algorithm that accelerates the convergence 

of finding the outer flow when displacement thickness is a prescribed function.

The boundary conditions for the inverse procedure are 

at Ç=0 u,(^,Ti,0) = v^(^,T|,0) = w(Ç,ri,0) =0 B. 1

and at Ç-4 0 0  v^(Ç,t|,oo) = 0

B.2

where the subscribe "s" means streamwise direction 

the subscribe "c" means crossflow direction 

the subscribe "e" means at the boundary-layer edge

is a prescribed displacement thickness in the streamwise

direction
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The implementation of the inverse mode begins by varying u^(^,T|) in 

successive iterations at each streamwise calculation station until the solution 

satisfies the specified value of 6 \bc(^»'n) in the plane of T|. In each value of u^( ,̂Ti 

), the numerical solutions for the boundary-layer equations are implemented in the 

same ways as for the direct method. When the solution is obtained, the 

displacement thickness is evaluated from equation (B.2). The integration of the 

computed velocity distribution in unequalled grid spacing data may be seen in 

Appendix D.

To accelerate the trial-and-error process, Anderson et al (1984) suggested 

to adopt secant method that usually converges in three or four iterations. In this 

method, two initial guesses are required.

In the application of the secant method, a function of u^(Ç,T|) (i.e. F(u^)) 

at each streamwise station is 6%(^,T|)-5\yg(^,T|) and we are seeking the value of 

u^(Ç,Ti) required to establish F(u^)=0. Where 6 %( ,̂T|) is the displacement 

thickness from the computed velocity distribution of u^(^,T|).

If u^^_i and u^^_2 are two approximations to the solution of the equation 

F(u^)=0, then the secant method for finding the root is obtained from

with a convergence criteria | u^^ - u^ .̂  ̂ | < e 

where n = iteration cycle

e = convergence criteria, e.g. 1x 1 0 ^
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If I -  û _̂i I < e is not satisfied, the process is repeated by using the 

two most recent iterates and to generate The iterative process is 

illustrated in Fig. B.l. From this figure, you can see that an estimate of u^^ is 

predicted by a tangent of the function to the u^ axis.

F (u J

Ues,3Ues,l Ucs,4

Ues

Fig. B.l Graphical depiction of the secant method

Although the method required two initial guesses to generate the new one, 

it is not necessary to start the method with the two points that bracket the 

solution. In the case where the two iterations bracket the solution, the next 

iteration is obtained by linear interpolation that is a reliable process. While in the 

case where the two iterations do not bracket the solution, the next iteration is 

obtained by extrapolation. In some cases, the extrapolation feature of the secant 

method may cause difficulties, resulting in very slow convergence. Buchanam and 

Turner (1992), recommended a combination of secant and bisection methods to 

guarantee a convergence of the function. Another way of improving the 

convergence is by using the 5̂  process. This method was developed from an 

extrapolation method. Ralston (1965) used it to accelerate the Gauss-Seidel 

iteration method. The new approximation to the root is obtained from
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_  ^es.n -a '^es .n -l ( ^ « .n - 2  )  o  ç
-  I '

U=.n-l-2u«.n-2 + "«.n-3

However, it is important that the 0̂  process not be used too early in the 

computation in which case it may give poorer results than the last iteration.
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APPENDIX C 

NUMERICAL SOLUTIONS FOR THREE-DIMENSIONAL 

FLOW OVER A FLAT PLATE WITH THE PLATE MOVING 

PARALLELED TO ITS LEADING EDGE

Here we will find the solutions of two ordinary differential equations of 

three-dimensional flow over a flat plate with the plate moving paralleled to its 

leading edge. The equations of f=f(q), h=h(T|) and their derivatives are (for detail 

see section 5.2).

f f " + 2 r = o  C . 1

2h" ' + f h " - 2 f 'h '+ 2  = 0 C.2

with the associated boundary conditions 

at Ti=0 f(0) = f'(0) = h(0) = h'(0) = 0

atTj—>00 /(oo) = h (00) = 1 C.3

The fourth-order Runge-Kutta method may be utilised to find the solution 

of (C.l), if f, f̂  and are known at T|=0. Since we know the boundary conditions 

at q=0 of f  and and at T|->oo of the numerical integration of (C.l) has to 

begin with a guessed value of f  at T|=0. The solutions are accepted until the 

boundary conditions at q —K>o of {  is satisfied. This trial-and-error process is time 

consuming. Chow (1979) suggested a better method that can be derived for 

finding at q=0. He introduced a linear transformation for the independent 

variable

q = k z C.4

and a function g such that
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f ( n ) = - ^  C.5k

where k is a constant.

The differentiation of f(T|) with respect to i] can be written in a general

form as

Substitution into equation (C.l) gives an ordinary differential equation. 

g g % 2 g '" = 0  C.7

with the associated boundary conditions 

at z= 0  g(0 ) = g (0 ) = 0

at z—̂  g (oo) = k  ̂ C. 8

Since k is arbitrary and appears only in the condition at infinity, there is no

restriction on the magnitude of g '  at the plate. We can choose any values for g"

(0) (e.g. g'"(0)=l). Now, the fourth-order Runge-Kutta method can be 

implemented without any difficulties. The third order equations equation (C.7) is 

first written as three first-order simultaneous equations

g' = p, p' = q, q' = - i  g q C.9

The fourth-order Runge-Kutta method (Chow (1979)) is applied to get

A,g; = ATI Pi

A,Pi = Aqqi
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A,(L = 4  gi t  

AiSi = (Pi + i  A,Pj)

AiPi = An (<li + i- A,qj)

AjOi = - i  An (gi + i  A|g.) (Oi + -J- A,q̂ )

A)gi = An (Pi + i  AjPi)

A3Pi = An(qi + l  Â qi)

AsOi = •2' An (fi + i  Ajfj) (% + ^ AjQj)

AÆ = An(Pi + i  A;Pi)

A4Pi = An(qi + i  AjOi)

Â Oi = "i An (gi + ^ A;g;) (q, + ^ Â q̂ ) CIO

The values of g, p and q at point i+1 are computed from:

girt =  gi +  6 (A,gi +  2Ajgi +2Ajgi + A ^ i )

Pwi = Pi + i  (A,Pi + 2AjPi +2A,P| +A4>i) C. 11

4rt = <li + i  (A,qi + 2Ajqj +2A)% +Â q;)

When the calculation with an arbitrary value of g (0) is completed, the 

value of k can be calculated from

k = V g 'H  C.12

The values of n, f, and i '  can be obtained by using the transformations 

(C.4, C.5 and C.6 ). Once the values of f, (  and { ' are known the value of h" can be 

computed from equation (C.2) using the finite-difference approach. The 

differentiated components, h ' and h ' , are central differences with second-order 

accuracy in At|. Substitution of the differentiated components into equation (C.2) 

and rearrangement gives the following tridiagonal system of equations:
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(4 - Ar\ f,) h:,-(8+4 An:0  h', + (4 + An Q  h:,, = -4 An' c. 13

Equation (C .l3) is applied for 2 < i < IMAX-1. For the equation formed at 

i=l and i=IMAX the value of h . is obtained from the boundary condition (C.3).

The numerical result is shown in table C.l. The velocity profiles of this 

three-dimensional flow are:

u = U e f  '

v = U c [a f ' - b x h '  + Vwâu(l-f')] C.14

W  =  T

where T) =
V v x

a, b and v ^  are constants (in this case a=-1.25, b=-1.0 and v^= -0 .2 )
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Table C .l Numerical solutions of equations (C.l and C.2).

n f f r h'

0.00 0.0000000 0.0000000 0.3320574 0.0000000
0.39 0.0256118 0.1303754 0.3315011 0.3208094
0.79 0.1023272 0.2599889 0.3276353 0.5700335
1.18 0.2295099 0.3869232 0.3173901 0.7534750
1.57 0.4055489 0.5081798 0.2984343 0.8798628
1.96 0.6275071 0.6200985 0.2698389 0.9598057
2.36 0.8909855 0.7190220 0.2326064 1.0045818
2.75 1.1902783 0.8020837 0.1897116 1.0249364
3.14 1.5188235 0.8678786 0.1454596 1.0301020
3.54 1.8698521 0.9167671 0.1043187 1.0272063
3.93 2.2370608 0.9506937 0.0697122 1.0211310
4.32 2.6151319 0.9726124 0.0432951 1.0147635
4.71 2.9999871 0.9857675 0.0249464 1.0094725
5.11 3.3887780 0.9930922 0.0133220 1.0056442
5.50 3.7796872 0.9968729 0.0065897 1.0031444
5.89 4.1716533 0.9986810 0.0030184 1.0016457
6.28 4.5641088 0.9994820 0.0012801 1.0008119
6.68 4.9567738 0.9998107 0.0005026 1.0003794
7.07 5.3495221 0.9999356 0.0001827 1.0001690
7.46 5.7423010 0.9999797 0.0000615 1.0000730
7.86 6.1350899 0.9999940 0.0000192 1.0000314
8.25 6.5278826 0.9999984 0.0000055 1.0000142
8.64 6.9206758 0.9999996 0.0000015 1.0000070
9.03 7.3134689 1.0000000 0.0000004 1.0000036
9.43 7.7062616 1.0000000 0.0000001 1.0000017
9.82 8.0990543 1.0000000 0.0000000 1.0000000
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APPENDIX D 

AN ALGORITHM FOR THE INTEGRATION OF 

UNEQUALLY SPACED DATA

In this appendix we will describe the methods for the numerical integration 

of unequally spaced data. These techniques are used to evaluate displacement 

thickness. The displacement thickness (Ô*) of the boundary-layer is calculated 

from equation (D.l). Many numerical integration methods (e.g. trapezoidal rule, 

Simpson's rule) are based on equally spaced data points. These methods are not 

applicable to evaluate Ô* because the assumption of equally spaced data points 

does not hold and we must deal with unequal-sized segments.

D.l

For simplification, the function I 1— 1 will be written as f(z) and the
I  PcUcJ

integration of the equation (D.l) can be replaced by a summation.

5* = ^ f (z )d z ^  D.2
k = 0

For this case, one method is to apply the trapezoidal rule to each segment 

and sum the results:

g. ^  ^ [f(Zk.i) + f(Z k )K  J5 . 3

k = 0

where h  ̂= ẑ +̂  - ẑ , is the width of segment k.
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The truncation error of the integral of equation (D.3) may be substantial 

since we employ the integral under a straight-line segment to approximate the 

integral under a curve. One way to improve the accuracy is using cubic 

interpolation. The method is due to Gill and Miller (1972). Instead of integration 

the equation term-by-term, they used cubic interpolation to compute the 

integration over successive sub-intervals. We do not dwell on the details of this 

method here but will implement it to our problems.

The integral at the first interval is calculated by four-point forward 

difference formula. The integral can be represented as

1 f—  I f (z)dz = f(Zo) +Ai flzqzj + Aj flZoZjẐ ] + A3
hn ^

+ A4 ftZoZjZ2Z3Zj D.4

where Aj = ^h^

Az = 4

A3 = ( t  + 6'^ i)V

A4 = -{^ + 3 ^ 1  + + iciCej+ê )) V
-1er =

v^oy

For the end interval, the integral is obtained by using four-point backward 

difference formula which can be written as

J f  (z)dz = f(z^) +Bi f[z^.iz^] + B2 fIzN.2ZN.1ZN]

+ B3 flZN.3ZN.2Zx 1 f[^-4^N-3^N-2^N-l^Nl
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where Bi = -|hN.,

^ 2  = - i  ^N-l̂

® 4 “  ■ (  ^  ■ * '3’ ^ - 2  4" ^  3 6 " ^  2( ^ - 2" * ^  3)  ) ^N-1^

e, =
^N-1 J

-1 D.7

The integral between these two end-intervals is calculated by a four-point 

finite-difference formula centred on the interval concerned. The equation for this 

integration over the range (Zg^zJ is given in equation (D.8 ).

f(z)dz = j[f(z^  + f(z,)] - i v  tUDj." + ih ,(e , - e,)D j.’] D . 8
h o i  2 2

where
2

W  = flz-iZoZj

Di^ = f[ZoZiZj

= f[z jZqZjZJ
2

e, = ' & L  D.9
v^oy

The equation (D.2) now can be evaluated by using the formula (D.8 ) to 

integrate between consecutive pairs of points from Zj to z^ ,̂ the formula (D.4) to 

integrate the first interval (Zq,z )̂ and the formula (D.6 ) to integrate the end 

interval (z^_ ,̂z )̂. Hence the total integration is obtained by summation over the 

range (2^,2^). It should be noted that the application of equations (D.4, D . 6 and 

D.8 ) is valid when N>3. If N<3, the equation (D.3) should be implemented.
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APPENDIX E 

NACA FOUR-DIGIT WING SECTION

The blade profile used in section 5.5 is described here. The blade is NACA 

four-digit of 9 per cent maximum thickness (t). The camber angle (0) is -35®, the 

camber line is a circular arc. The chord-length (c) is 2.8 inches.

Let and 0  ̂be the angles between the tangent to the camber line and the 

chord line at inlet and outlet. The total camber 0^ = 01 + 02 . Since the blade is a 

circular arc camber line, we get 0 i = 02 = 0 ^ /2  and the maximum camber (a) 

occurs at the mid-chord (i.e. a = c/2). According to Cumpsty (1989), the 

maximum distance of the camber line from the chord line (b) can be calculated 

from equation E.l.

1
c 4 tan 0̂

-1  +
À

E.1

Mean Lines:

The camber line (i.e. the mean line) is expressed analytically as two 

parabolic arcs tangent at the position of maximum camber. The equations defining 

the camber lines are taken to be (Abbott et al (1959))

y c = ^ ( 2 ax -x ^)

y.= m
(l-a ) -

■[(1 — 2 a) + 2 ax —

for X < a 

for X > a

E.2

E.3

where m = —, the maximum distance of the camber line from the chord line 
c

expressed as fraction of chord (E.l).
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Thickness Distributions:

The thickness distribution for the NACA four-digit sections is giving by 

the following equation:

±y. = — (0.2969V^-0.126x-0.3516xH 0.2843x’ -0.1015x") E.4 
0.2 '  '

where t is the maximum thickness express as a fraction of the chord.

y
0.1

0

0 0.2 0.4 0.6
x/c

0.8

Fig. E .l Method of combining mean lines and a thickness distribution 

(Abbott et al (1959))

The blade section now can be obtain by combining a mean line and a 

thickness distribution. The process is illustrated in Fig. E .l. From this figure we 

can define the co-ordinates of the upper-surface and lower-surface in the 

following relations:

For upper-surface co-ordinate:

x̂  = X - y, sin 8  

y» = Yc + Yt cos 0

E.5

E.6

For lower-surface co-ordinate:
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Xi =  X + sin 0 

Yi = yc - Yt cos 0

E.7

E .8

where y„ are the abscissa and ordinate, respectively, of a typical point of the 

upper surface and Xj, ŷ  are the abscissa and ordinate, respectively, of a typical 

point of the lower surface.

The result of the calculation is shown in table E.l.

Table E .l Calculation for the NACA Four-digit 
Circular arc camber line 
max. thickness % o f chord = 9.00 
camber angle (degree) = -35.00 
max. camber is = -0.07882 at x/c = 0.50

x /c Yt Yc 0(degree) Xu Yu X, Y.

0.00 0.00000 0.00000 -17.500 0.00000 0.00000 0.00000 0.00000

0.10 0.03512 -0.02838 -14.157 0.10859 0.00568 0.09141 -0.06243

0.20 0.04303 -0.05045 -10.713 0.20800 -0.00817 0.19200 -0.09273

0.30 0.04501 -0.06621 -7.188 0.30563 -0.02155 0.29437 -0.11087

0.40 0.04352 -0.07567 -3.608 0.40274 -0.03224 0.39726 -0.11911

0.50 0.03971 -0.07882 0.000 0.50000 -0.03912 0.50000 -0.11853

0.60 0.03423 -0.07567 3.608 0.59785 -0.04151 0.60215 -0.10983

0.70 0.02748 -0.06621 7.188 0.69656 -0.03895 0.70344 -0.09348

0.80 0.01967 -0.05045 10.713 0.79634 -0.03112 0.80366 -0.06978

0.90 0.01086 -0.02838 14.157 0.89734 -0.01785 0.90266 -0.03891

1.00 0.00095 0.00000 17.500 1.00000 0.00000 1.00000 0.00000



230

APPENDIX F 

DEFINITION OF BOUNDARY-LAYER THICKNESS

This appendix is presented the definition and physical meaning of the 

boundary-layer thickness or boundary-layer edge (Ô). This description is taken 

from Kay and Nedderman (1990), and Schlichting (1979).

The boundary-layer edge (5) is an ambiguous layer since it defines as the 

thickness across the boundary-layer when u —> û . Another interesting effect of 

the boundary-layer is displacement thickness (5*). As shown in Fig. F.l, 

displacement thickness (6 *) represents the distance by which an equivalent 

uniform stream would have to be displaced from the surface to give the same total 

volume flow. Therefore, the displacement thickness (6 *) can be defined in a 

precise way and we can say that

s
Q = Judz = Uç( 6  —6 *) F.l

F.2

where Q is the volume flow in the boundary layer.

Ô*Thus the ratio — varies only with the non-dimensional velocity-profile 
o

u Ô* 1shape — . For boundary-layer flow over flat plate, we can conclude that — = —.

Therefore we can approximate the boundary layer edge from the displacement 

thickness. In general the boundary-layer edge (Ô) may be written as

6 = 0)0" F.3
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where Cû is a safety factor (say = 5).

Ô* can be approximated from flat plate boundary-layer.

A similar definition may be evaluated for the momentum-displacement 

thickness (Ô**). As indicated in Fig. F.2, if the momentum flow in the boundary 

layer is M, we can say that

5

M = Jpu^dz = pu^(5 —5**) F.4

F.5

We may relate the momentum displacement thickness (Ô**) and 

displacement thickness (5*) as another quantity 0  that is called momentum 

thickness as indicted in Fig. F.2. Therefore, we get

0  = 5”  - 5‘ = f —f 1 Idz F .6
o“A “J

Physically, the momentum thickness (0) represents the thickness of the 

main stream flow necessary to make up the deficiency in momentum flux within 

the boundary layer (or the loss of momentum in the boundary layer).

Both the displacement thickness (0‘) and the momentum thickness (0) 

play an important role in the momentum equation for boundary layer.
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The relation between the displacement thickness (5*) and the momentum 

thickness (0) may be defined in term of shape factor (H). This shape factor is the 

ratio of the thicknesses and is defined by

«=1 F.7

This shape factor is use as an approximated value for describing the 

velocity profiles especially in the integral method of solving the boundary layer 

equations. The application of this factor can be seen in the work of Truckenbrodt 

(appeared in Schlichting (1979)).

0

Fig. F.l Displacement thickness (Kay and Nedderman (1990))
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momentum
flow

0

Fig. F.2 Momentum thickness (Kay and Nedderman (1990))
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APPENDIX G 

PERTURBATION VELOCITY POTENTIAL ON A SURFACE

In this appendix we will consider a fundamental concept of potential flow 

about a surface. This concept is used to calculate the velocity components in 

terms of the perturbation velocity potential that used in the interactive boundary 

layer approach.

Two-dimensional flow

If a source element of strength a  is placed along the x-axis (see Fig. G .l), 

the potential (O) due to such a point source element at (Xq, 0 ) is

0  = - ^ In  r 
2 k

= —  l*i{(x-Xo)^ + z^}

= ^ h i { ( x  -  Xgf + z^} G.l

The influence of this strength a(x) distribution at a point P(x,z) is an 

integral of the influences of all the point element:

O (x ,z )= -^ j[a (x o ) ln { (x -x o f+  z^}'dxo G.2

The velocities u and w, along x-axis and z-axis, are obtained by 

differentiating 0 (x,z) with respect to x and z respectively (from the continuity 

equation: = 0 ):
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1 Y / \ z
’ = i i - 2 i r < ' * > F ü ^  •

The value of w as z—>0 can be obtained by taking a limit to the equation 

(G.4) and we obtain (Katz and Plotkin (1991))

w(x,0±) = lim w(x, z) = ± G.5
z-»0 2

Therefore, the perturbation velocity in the x-axis is

1 V 1u(x,0±) = — Ja(Xo)y rdxo G.7a
2 k  I  ( x - x o )

1 V 1= — fw (x ,0 ± ) 7  rdxg G.7b
7cJ (x-Xo)

Three>dimensional flow

In the similar manner to the above consideration, the potential (0) due to 

a point source element (a) at (x ,̂ y ,̂ 0 ) is

0  = —  G .8
47tr

where r is the distance from the point (Xq, y ,̂ 0 ) to (x, y, z)

The potential at an arbitrary point (x, y, z) can be obtained by integration 

the equation (G.8 ) over a surface (s). The velocity components u(x,y,z), v(x,y,z) 

and w(x,y,z) are presented in equations (G .l0-12).
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_  - 1  fq(xo.yo)
r

<is

u(x,y,z) = ̂  = -^ fa (x„ ,y„ )-f----------- ^LJ^o) rj<lx„dy<, 0.10
{ { x - x „ r + ( y - y „ ) S z 4 ’

v (x ,y ,z )  =  ^  =  ^ J a ( x „ , y „ ) - f ------------   i idxgdy . O i l
{ ( x - x j + ( y - y j  + z:} '

w (x,y,z) = - ^  = ^Jo (X o ,yo)-7 ---------------   G.12
{ ( x - x j + ( y - y j + z : } '

To find w(x,y,0), a limit process is required (see Katz and Plotkin (1991)) 

and the result is:

w (x,y,0±) = lini w(x,y,z) = G.13

Therefore, the perturbation velocity in the x-axis and y-axis are

u(x,y,0) = -;^ fw (x ,y ,0 )-f   îï<iXodyo G. 14
{ ( x - x . r + ( y - y , r  + z 'j -

v (x ,y ,0 )= -;^ fw (x ,y ,0 )-f-------------- ^  ïl<Jxodyo G15
2 ^-'' { ( x - x j + ( y - y j + z : } '
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P(x,z)

a(x)

Fig. G.l Source distribution along the x-axis
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APPENDIX H 

LOSS DUE TO VISCOSITY

In this appendix, we will discuss loss in the viscous fluid flow in terms of 

entropy generation. This viscous loss is presented in three-dimensional flow and 

may be used in estimating the entropy generation in a boundary layer that is 

presented in chapter 4.

BASIC PRINCIPLE

The first law of thermodynamics expresses the relationship among heat, 

internal energy and work. It may be written mathematically for a closed system as

dQ = dE + dW H.l

However, it will be appropriate to apply this law to a moving fluid and to 

obtain a general statement of the law as it applies to a three-dimensional flow 

system. For compressible flow this law applied to an open system. If the heat 

transfer dQ, the change in energy dE, and the work dW take place in time dt, we 

may write the equation as

H.2
dt dt dt

Rate of heat transfer:
dt

The heat transfer can take place by conduction, convection and radiation. 

To simplify the equation, we shall consider that heat enters or leaves the system

only through conduction across a fluid control surface area ds. According to

Fourier's Law, the quantity of heat transfer per unit time is given by
dt
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—  = -fk V T n d S  H.3
Ht Jdt

where k is the thermal conductivity, T is temperature and n the unit outward 

normal on the surface. The negative sign indicates that heat flux flows down a 

temperature gradient from a region of higher temperature to a region of lower 

temperature. Suppose the mass of our system contains in volume Û, from vector 

calculus we know that

Jk V T n d S =  fV k V T d ô  H.4

dE
Rate of change of the internal energy: —

dt

If we consider the movement of a small material volume dû, the rate of
dE

change of the internal energy (— ) of the fluid contained within this material
dt

volume is

where e is the energy of the fluid expressed per unit mass of the system.

is a substantial derivative, = —  + U • V (e).
Dt Dt at

U is the fluid velocity.

dwFluid power: —  
dt

In order to determine the work performed, we shall consider two types of
dWthe work term: the work done by the pressure forces ( - ^ )  for the inviscid case

dW
and the work done by the viscous forces (---- - )  for the viscous case.

dt
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Inviscid Work

In the absence of chemical, electrical, viscous, magnetic, or body forces, 

the work done by the system will be entirely against the surrounding pressure 

forces. It can be shown that

^ = f p U n d S  H .6
dt V

where p is pressure of the systems

From the divergence theorem,

J p U n d S  = J V ( p U ) d d  H.7
s «

Viscous Work

The work performed due to viscous forces is evaluated over the boundary 

of the volume or element and it is analogous to the flow work associated with the 

normal and shearing stresses. If we consider a small material element of fluid (see 

Fig. H .l), we can define the work per unit time by the normal stress as

^  = - d y d z { - u o . + f u + |d x Y a . + ^ d x ] |  H.8 a

— —d0^——(uG^) H.8 b
ox

The negative sign means work is added to the fluid from the outside. We 

can apply a similar method to the other surfaces involving the stresses. Therefore, 

the total work performed by the normal and shearing stresses per unit time is the
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summation of all viscous work acting over the boundary surface. Thus we can say 

that

dW,
dt

a (
— ^ u a ,  +  v x „  +  w T , ) d d -  ^ ( u x „

.9y
+  VGy +  WTJ

a I
— ^ U T „  +  V T _  +  w a .
dz Tx zy dû

dû

H.9

where a^, G y , T ^  denote the normal and shearing stresses.

We can expand the equation (H.9) into two parts, noting that

dW,
dt

= -p 'F d û  -  pOdû H.IO

where p.'F = u

and

+ w

3x 3y

''ax., ax.xz I yz

dz J 

do'.

+ v
a x . „  3 g '  3 xxy
dx dy dz

dx dy dz J

_ f  , du  ̂ dv , 3w^
<̂I> = [ a - + x , , - + x „ - J .

3u , Bv dw
yx

H.11

f  du dv , dw H.12

Since g '  = 2 p .^ ,  o ' = 2 p ^ ,  o ' = 2 p ^  
dx dy dz

'̂ xy

Thus, 0  = 2

au dv 
d y ^ d x

M
dx )

dv aw 1 aw av
dy dz

avY  aw

âÿj
^av au^ '  ^

dx dy
+

dw dv 
dy dz

H.13

H.14
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f du  3wV i f d u  dw 9w
v3z dx )  3 a x ' ^ a y ' ^ a z j

The total work performed by the normal and shearing stresses per unit 

time can be written as

dW,
dt

= -J[nY+Hd>]d0 H.16

GOVERNING EQUATION

Substitution equations (H.3, H.4, H.5, H .6  and H.16) in the open system 

(H.2) we get

- J V k V T d i 5  =  J p ^ d ô  +  J V ( p U ) d ô - J [ n ' I '  +  n < I)]d d  H.17

Since this equation must be valid for any volume û  no matter how small.

De
-V  kVT = p ^ 4 - V  ( p U ) - ^ t Y - p 0  H.18

If we drop the change in the potential energy due to a displacement in the 

gravitational field, we can write the energy term as

p — = p | ^ ^ + —— (u^+v^+w ^)l  H.19
^ D t iD t  2 Dt^

where ê  is the internal energy per unit mass.

Also, V-(pU) = p ( V U )  + U-Vp H.20

and let -V  • kVT = q H.21



243

We can write the above equation (H.18) as

1 = p ^ + p ^ ^ ! l ^ L  + p(V.U) + U V p-n ' I ' -n< I>  H.22q
Dt Dt

We may write the equation of motion for a viscous fluid as

+ ̂  H.25
Dt oz dx dy dz

Multiplying these three equations by u, v and w, respectively, and adding

we get,

H.26a
Dt

or p P i M  + u  V p -p Y  = 0 H.26b
Dt

Using this relation, the energy equation (H.22) can be written as

De
q = p - ^ +  p( V . U) -  pd) H.27

Since ê  + p/p = h H.28
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and p ( V U )  = - ^ ^  + p —  
^  Dt ^ Dt

H.29

Dh Dp
We have p  = q 4- u<I>

Dt Dt

With the aid of this equation and of T —  =
Dt Dt p Dt

where h is enthalpy and s is entropy, 

we can write the equation (H.30) in the form

H.30

H.31

DspT—  = q 4-U0 
Dt

H.32

Equation (H.32) represents the rate of entropy generation applied to a 

material element of fluid that is viscous and compressible flow.

x z

dx

Fig.H. 1 Stresses acting on a fluid element (show only on the dy dz surface)


