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Abstract.
In this work the main objective is to extend the theory of Hausdorff measures 
in general metric spaces. Throughout the thesis Hausdorff measures are 
defined using premeasures. A condition on premeasures of ‘finite order’ is 
introduced which enables the use of a Vitali type covering theorem. Weighted 
Hausdorff measures are shown to  be an im portant tool when working with 
Hausdorff measures defined by a premeasure of finite order.

The main result of this thesis is the existence of subsets of finite positive 
Hausdorff measure for compact metric spaces when the Hausdorff measure 
has been generated by a premeasure of finite order. This result then ex­
tends to analytic subsets of complete separable metric spaces by standard 
techniques in the case when the increasing sets lemma holds. The proof of 
this result uses techniques from functional analysis. In this respect the proof 
presented is quite different from those of the previous literature.

A discussion on Hausdorff-Besicovitch dimension is also to  be found. In 
particular the problem of whether

dim (A) 4- dim (T) < dim {X  x Y)

is solved in complete generality. Generalised dimensions involving partitions 
of Hausdorff functions are also discussed for product spaces. These results 
follow from a study of the weighted Hausdorff measure on product spaces.

An investigation is made of the sufficiency of some conditions for the 
increasing sets lemma to hold. Some counterexamples are given to show 
insufficiency of some of these conditions. The problem of finding a coun­
terexample to the increasing sets lemma for Hausdorff measures generated 
by Hausdorff functions is also examined. It is also proved th a t for compact 
metric spaces we may also approximate the weighted Hausdorff measure by 
finite Borel measures th a t are ‘dom inated’ by the premeasure generating the 
weighted Hausdorff measure.

I am greatly indebted to Professor David Preiss for proposing this investi­
gation and for much wise advice. In particular he suggested the study of the 
weighted Hausdorff measures. I should like to express my gratitude to  Pro­
fessor C.A. Rogers for his help and constructive criticism on the manuscript. 
I am also grateful to the Science and Engineering Research Council for the 
funding of my studies.

J.D.H.
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1 Introduction.

1.1 General discussion.

W hen dealing with Hausdorff measures it is often useful to be assured of 
the existence of a set of finite positive measure. For example, the mod­
ern day proof of the Frostman Lemma uses this existence. The Frostman 
Lemma relates capacities to Hausdorff-Besicovitch dimension. Frostm an’s 
original proof used properties of the net measure given by the dyadic cubes 
of Euclidean space. The techniques of comparable net measures were used 
by Besicovitch to prove the existence of subsets of finite positive Hausdorff 
measure. These techniques were then formalised by C.A. Rogers in [26]. In 
fact the Frostman Lemma follows from Theorem 6.3 of this thesis w ithout 
the use of subsets of finite positive Hausdorff measure, see Corollary 6 . 8  of 
this thesis.

In [7] R.O. Davies and C.A. Rogers give an example of a compact metric 
space and a continuous Hausdorff function h such th a t the space has infinite 
Hausdorff h-measure but no subsets of finite positive Hausdorff h-measure. 
In this example the function h decreases rapidly to zero, in the sense th a t

h{3t) 
hm — =  oo. 
t \o  h{t)

We say th a t a Hausdorff function h is of finite order if there exists a constant 
77 such th a t

h{3t) ^  
hm su p -—— < 77. 

t \o  h{t)

The question then naturally arises of whether we are assured of the existence 
of subsets of finite positive Hausdorff h-measure, when h is of finite order. 
In particular, are we assured of the existence of subsets of finite positive 
s-dimensional Hausdorff measure? We show in Corollary 11.5 th a t if X  is 
an analytic subset of a complete separable metric space of infinite Hausdorff



/i-measure, where h is a continuous Hausdorff function of finite order, then 
there exists a (compact) subset of X  of finite positive measure (as large as 
we wish). Thus if X  (an analytic subset of a complete separable metric 
space) is of infinite s-dimensional Hausdorff measure then we are assured 
of the existence of a subset of finite positive measure. This result (Corol­
lary 11.5) follows from Theorem 11.2 by the increasing sets lemma, as proved 
by R.O. Davies in [5]. Theorem 11.2 deals with the case when X  is compact 
and the Hausdorff measure is generated by a ‘premeasure of finite order’ and 
may be considered as the main result of this work.

The methods which we have introduced to prove the existence of subsets 
of finite positive measure use standard techniques from functional analysis. In 
this respect they are rather different from the methods used to prove previous 
results of this nature. The use of the measures th a t we have termed ‘the 
weighted Hausdorff measures’ has enabled the functional analytic techniques 
to be applied. In general, the weighted Hausdorff measure and the Hausdorff 
measure (defined by the same premeasure or Hausdorff function) may differ, 
see Note 6.5. H. Federer gives sufficient conditions under which the two 
measures coincide in 2.10.24 of [10], see Theorem 9.7 of this thesis. As far 
as we are aware the first systematic study of weighted Hausdorff measures 
is by J.D. Kelly in [17]. Kelly uses the term  ‘method III measures’ for the 
weighted Hausdorff measures.

The existence of a subset of finite positive Hausdorff measure has also 
been used in the proof of the proposition th a t

dim (X ) + dim (K) <  dim (X  x  V)

where dim (X )  is the Hausdorff-Besicovitch dimension of X .  For some time 
this has been unanswered in full generality. We are now able to answer 
in the affirmative the above problem for arbitrary metric spaces. There 
must however, be some restriction on how the space X  x  V  is metrised, see 
Note 10.24. The proof we give does not require the existence of subsets of



finite positive Hausdorff measure.
The condition on premeasures of finite order in the proof of the exis­

tence of subsets of finite positive Hausdorff measure ensures th a t we have 
a ‘differentiation basis’ for Borel measures ‘dom inated’ by the premeasure. 
The differentiation theorems given in Section 9 rely on a Vitali type covering 
theorem namely Theorem 7.3. Theorem 7.3 generalises the standard Vitali 
covering theorem by using the concept of overflow as may be found in [13]. 
The results of Section 9 are in the spirit of [28], Theorems 2.10.17 and 2.10.18 
of [1 0 ] and of [8 ].

A central result in the theory of Hausdorff measures is th a t of the in­
creasing sets lemma. However this result is only known to hold under fairly 
restrictive conditions. We have proved a very much weakened version for 
Hausdorff measures generated by premeasures of ‘strong finite order’. This 
has enabled me to strengthen some results. However this weakened form of 
the increasing sets lemma does not imply the approximation in Hausdorff 
measure of analytic subsets of a complete separable metric space by compact 
sets. O ther conditions for the increasing sets lemma are examined in the 
final section of this work. Some counterexamples have been given to show 
insufficiency. As far as we are aware the only counterexamples to the increas­
ing sets lemma other than Example 12.1 (of this thesis) have failed only for 
a given size S. Example 12.1 however fails the increasing sets lemma for all 
sizes.

1.2 Literature review.

The existence of subsets of finite positive measure has been shown in the 
previous literature for the following cases. A.S. Besicovitch proved, in [1 ], 
th a t a closed subset E  (of the real line) of infinite A^-measure has subsets of 
any finite measure. He was then able to extend the result to the case when 
E  is F(̂ S(t- It was also noted in the paper th a t the m ethod used in the proof



of these results is easily extended to n-dimensional Euclidean space. In a 
subsequent paper [3] R.O. Davies was able to further extend the above result 
to  the case when E  is an analytic subset of the line. The reader is also referred 
to Corollary 28 of [9] for these results. Theorems 54-57 of [26] deal with the 
cases when the Hausdorff measure is a net measure and when the Hausdorff 
measure is defined by a Hausdorff function h and may be approximated by a 
net measure ( • ; Af) in the sense th a t there exists a finite positive constant 
M  such th a t for all positive 6 and subsets E,

<  MAJ(£;) and < M K l{E -,N ).

In particular, these results apply to analytic subsets of complete separable 
ultram etric spaces in the case when the Hausdorff measure is generated by 
a continuous Hausdorff function. D.G. Larman was able to apply the results 
concerning net measures to the case when E  is a finite dimensional (in the 
sense of Larman) compact metric space and the Hausdorff measure is defined 
by a Hausdorff function, see Theorem 2 of [2 2 ]. This was then easily extended 
(Theorem 3 of [22]) to the case when E  is an analytic subset of a finite 
dimensional compact metric space.

The reader is referred to page 131 of [26] for a comprehensive list of refer­
ences on the problem of the dimension of product sets and related problems. 
Of special mention is the paper [23] of J.M. M arstrand. In a personal com­
munication J.M. M arstrand tells me th a t for premeasures of finite-order the 
m ethod he used in [23] generalizes to subsets of compact metric spaces. It 
is also noted th a t D.G. Larman answers, in [2 2 ], the corresponding problem 
with generalized Hausdorff-Besicovitch dimension when the factor spaces are 
compact and finite dimensional (in the sense of Larman). This result then 
immediately gives the required result for Hausdorff-Besicovitch dimension, 
when the factor spaces are compact and finite dimensional, by the same 
arguments as in the proof of Corollary 10.23 of this thesis. An excellent ac­
count on dimension, capacities and Hausdorff measures may be found in [9].



Further results on capacities and related topics may be found in [14] and [20].
J. Hawkes considers, in [12], 5-dimensional Hausdorff measures in 1R+ xlR  

with appropriate metrics which reflect the scaling properties of stable subor- 
dinators of index a  (where 0 < o; <  1 ). This is a generalisation of the work 
of R.P. Kaufman [16] on the stable subordinator given by Brownian motion. 
Under these metrics IR"*" x IR is neither ultram etric nor finite dimensional 
(in the sense of Larman). The method of net measures employed by Rogers, 
to  prove the existence of subsets of finite positive measure in [26], does not 
immediately translate to this situation. However since the Hausdorff func­
tions h(t) = f  are of finite order the Hausdorff measures generated by these 
metrics certainly fall into the framework presented here.

Many authors have contributed to the knowledge on the increasing sets 
lemma and the approximation in Hausdorff measure by compact sets. Of 
particular mention are the following. A.S. Besicovitch proved a weak form 
in [1] for Euclidean space and 5-dimensional Hausdorff measure. R.O. Davies 
proved the stronger form for this case in [3]. R.O. Davies was then able to ex­
tend these result firstly to ‘measures of Hausdorff type’ in [4] and then in [5] 
to arbitrary  metric spaces in the cases listed in Theorem 8.3 of this thesis. 
‘Measures of Hausdorff type’ in the terminology of this thesis are Hausdorff 
measures generated by premeasures th a t are regular with respect to a family 
of sets th a t is finite in the large. In [5] R.O. Davies also makes a searching in­
vestigation of the circumstances in which the increasing sets lemma holds for 
Hausdorff measures generated by Hausdorff functions. C.A. Rogers proved 
corresponding results for net measures in [26]. Also of note is the paper [25] 
by M. Sion and D. Sjerve. The results on the increasing sets lemma given 
by Sion and Sjerve follow as a consequence of the paper [4]. However Sion 
and Sjerve proved much more than this and show th a t under their conditions 
analytic subsets of non-a-finite Hausdorff measure contain a compact subset 
of non-cr-finite Hausdorff measure. Finally J.D. Kelly gave corresponding 
results to those of [4] for the weighted Hausdorff measure in [19].



2 Preliminary Definitions.

2.1 Real notation.

The set of reals, positive reals and non-negative reals are denoted by IR, 1R+ 
and IRq respectively. The algebraic operations and partial ordering of real 
valued functions are defined pointwise.

2.2 The arena of thought.

Throughout the following, X  will denote a metric space with metric p. Any 
conditions on the space X  will always be stated in full. We denote the closed 
ball centre x  and radius ô by B{x^0). For E  C X  we denote by B {E , S) the 
set

{x e  X \3 y  € E :p (x ,y )  <  (̂ } =  | J  B (x ,S ) .
xex

We use p to denote the Hausdorff pseudometric induced by p, which is defined 
ÎOI E  Ç. X  and F  C. X  hy

p{E, F)  =  m ï{6  G 1R+|E Ç B(F, Ô) and F Ç B(E, 5)},

with the convention inf 0  =  oo.
Remark. As is well known p restricted to the family of non-empty closed 

subsets of X  is a metric. Also if X  is compact then p induces a compact 
topology.

For E  Ç X  we denote the diameter of E  by diam E  defined as

s\ip{p(x ,y) \x ,y  e  E } ,

with the convention sup 0 =  0. Where it is necessary to distinguish between 
metrics we write diamp E  to denote the diameter with respect to p.

For E  Ç X  and F  Ç X  we denote the distance between E  and F  by 

dist (E , F)  defined as

m î{p{x ,y ) \x  G E  and y £ F},

6



with the convention inf 0  =  oo.
We say th a t X  has finite structural dimension if and only if for all positive 

AC, there exists N  such th a t every subset of X  of sufficiently small diam eter 
S can be covered by N  sets of diameter not greater than  k,S. This notion 
of finite structural dimension is similar to finite dimensional in the sense of 
Larman. Moreover if X  is compact and finite dimensional in the sense of 
Larman then X  has finite structural dimension, see [21] for further details. 

The space X  is said to be ultram etric if and only if

p{x,z) < m ax{p{x ,y ) ,p{y ,z)}

for all X, y and z m  X .

2.3 Particular families of sets

We say th a t a subset B  of % is a Borel set if and only if B  is a member of 
the smallest <j-algebra containing the family of all open sets.

We define I to be the set of all sequences i =  (in)n>i of positive integers. 
Given an element i of I we use i|n  to denote the n-tuple ( i i , . . . ,  in)- For a 
family £  of subsets of X , we define the Souslin-6  ̂ sets to  be those sets of the 
form

oo

^  =  U  n  ^'An
i6 l n—\

where E\\n G £  for all n >  1 and i in I.
We say th a t a subset A of X  is analytic if and only if ^  is a Souslin-^ 

set where T  is the family of all closed subsets of X .

N o te  2 . 1  It is well known th a t every Borel set is analytic. H



2.4 Some properties of families of sets.

It will be useful to consider particular families of sets. A family S  of subsets 
of X  is said to be a covering of a subset S' of A  if and only if

We say th a t S is a fine covering of S  if and only if for each (̂  >  0 the set

{ E e S |d ia m E < ( ^ }

is a covering of 5.
A family S  of subsets of X  is termed ^-adequate (for A ) where 0 is a 

positive constant if and only if the following conditions are satisfied:

1. 0 and X  are members of S,

2. for every subset S of A  of positive diam eter and E  in S  with S  Ç E ,  
there exists F  in S such tha t

S  Ç F  Ç. E  and diam F  < 0diam S,

3. S is a fine covering of A .

We simply say th a t S  is adequate (for A ) if for some positive constant 9 we 
have S  is adequate (for A ).

A family E of subsets of A  is called finite in the large if and only if for 
all 6  >  0  the set

{E  e  6  ̂I diam F  >  e}

has finitely many members.
Remark. J.D. Kelly uses the term ‘of countable type’ for ‘finite in the 

large’. A natural generalisation of this property could be ‘locally finite in the 
large’ or ‘point finite in the large’ meaning th a t for all 6  >  0  the set

{ E  e  6! I diam F  > e}

is locally finite or point finite. However we have found no ‘practical’ use for 
these generalisations.

8



2.5 Set enlargement.

Given a family S  of subsets of X , positive r  and a subset 5  of X  we define 

§1 the r-enlargem ent of S  with respect to E by

%  =  |J { E  6 n  E  ^  0 and d iam E  <  rdiam^"}.

In the case when E is the family of all subsets of X  we simply write S'^ for 

§1 and S  for S^.

Remark. It would be equivalent to define 5^ by = B { S ,rd \a m S ) .



3 Premeasures.

3.1 Definition.

A premeasure on X  is a function ^ mapping the subsets of X  to the non­
negative reals satisfying

1 . ( ( 0 ) =  0 ,

2 . U C V = ^  (( [ /)  < ( ( y )  for all U , V C X .

We say th a t the premeasure Ç is of finite r-order if and only if for some 
constant r] we have

1. ((g") < for all ^ Ç X,

2. inf{^(B(x, (5))|(̂  >  0} <  T]^({x}) for all x  e  X .

We simply say th a t (  is of finite order when (  is of finite 1-order. We also
say th a t ^ is of strong finite order when ^ is of finite r-order for some r  >  1 .

Remark. It is noted th a t if we restrict our attention to premeasures (  
which satisfy, ^({a;}) =  0 for every r  in X  then the condition

m î{^{B{x,ô))\ô  >  0} <  T]^{{x})

is equivalent to
=  0 .

3.2 Hausdorff functions.

A function h : IRq is a Hausdorff function if and only if the following
conditions are satisfied

1 . h{t) > 0  for all t >  0 ,

2 . h{t) > h(s) for all t >  s,

10



3. h is continuous from the right for all  ̂ >  0.

For such a function and a positive constant we define a premeasure ^ on 
X b y

^(5) =  m i n { h ( d i a m S ' ) , f o r  5  7 ^ 0  

? (0 ) =  0 .

It will be convenient to describe ^ as the premeasure, on X , defined by (the 
Hausdorff function) h and cut off size 6. We simply say th a t ^ is a premeasure 
defined by h when for some positive 9, ^  is the premeasure defined by h and 
cut off size 9. We note tha t if h satisfies the condition th a t for some constant

y h m  ^

then for sufficiently small 9 the premeasure defined by h and cut oflF size 9 is 
of finite-order. In this case we say th a t h is of finite-order. Finally we denote 
by H  the family of all Hausdorff functions.

N o te  3.1 In the above definition of a premeasure defined by some Haus­
dorff function h, we have introduced the value 9 solely to ensure th a t the 
resulting premeasure assigns (finite) values to all sets. It is clear th a t the 
resulting Hausdorff ^-measure and weighted Hausdorff f-measure are inde­
pendent of the choice of 9. Thus in the case when h is of finite order we may 
assume th a t 9 has been chosen sufficiently small to ensure th a t ^ is of finite 
order. H

Remark. In the above premeasures have been defined to map subsets 
to the non-negative reals. This definition could be extended to mappings 
from subsets to  the non-negative extended reals thus allowing the value oo 
to be assigned to subsets. In this case it would be more natural to  define the 
premeasure, (  say, defined by some Hausdorff function h by

11



f(S') =  h(diam S)  for S '/  0

( ( 0 ) =  0

with the convention tha t

h{oo) =  lim h{t),
t—̂oo

although this change in ^ would not change the resulting measures and Â . 
In much of what follows it would be necessary to impose the condition th a t 
premeasures assign a finite value to every set of finite diameter. Since this 
condition is dependent on how the space, on which the premeasure is defined, 
is metrised we prefer to restrict the definition of premeasures to maps into 
the non-negative reals. Moreover, if X  is metrised by p then we may define 
a new metric p' by

p'{x,y)  =  m m {9 ,p{x ,y )}

where 9 is some (finite) positive constant. Furthermore p and p' define the 
same topology and the same Hausdorff and weighted Hausdorff measures on 
X , and all subsets are ^-bounded.

3.3 Regularity.

For f  a premeasure and S  a family of subsets of X , we say th a t f  is ^-regular 
if and only if for all subsets 5  of X  we have

C{S) = inf { ((E ) |E  e S  and S C  E }.

In the case when E is the family of all open subsets of X  we say open regular. 
Similarly when E is the family of all Borel subsets of X  we say Borel regular.

N o te  3.2 If (  is a premeasure on X  defined by some Hausdorff function then 
(  is open regular, since Hausdorff functions were defined to be continuous 

from the right. H

12



3.4 Subspaces.

For ^ a premeasure on X  and S  a subset of X  we define ^ \S  to be the 
restriction of f  to the family of subsets of S. Also for S  a family of subsets 
of X  and S  as above we define S \S  to be the family of subsets of S

{ E n S \ E e S } .

N o te  3.3 For f  and S  as above, we note th a t Ç\S is a premeasure on S.  For 
6  a family of subsets of A , if ^ is 6^-regular then is (5 15 )-regular. H

13



4 Hausdorff Measures.

4.1 Measures.

A measure on A  is a function mapping the subsets of X  to the (non­
negative) extended reals satisfying

1 . //(0 ) =  0

2 . (7 Ç y  = >  ii{U) < fi{V) for all U ,V  Ç X

3. fi (U Si Ei) < IJ'iEi) for all sequences of subsets of X .

We say th a t /x is a finite measure (on X )  if and only if /i(A ) <  oo.
Remark. Our definition of a measure is what most authors term  an outer 

measure.
Given a measure // on A , we say th a t a set S  is //-measurable if and only

if
fi{E) =  ja{E n  5) d- fi{E \  S) (VE Ç A ).

N ote 4.1 The family M. of all //-measurable sets is a cr-algebra on which // 
is additive and every Souslin-VW set is a member of Ad. H

4.2 Some properties of measures.

For // a measure on A  and S  a family of subsets of A , we say th a t // is
^-regular if and only if for all subsets S' of A  we have

//(S) =  inî{fj,{E)\E G S  and S  Ç E }.

In the case when S  is the family of all Borel subsets of A  we say Borel regular. 
We say th a t a measure // is a regular measure if it is regular with respect 
to the family of all //-measurable sets. A Borel measure is a measure th a t is 
Borel regular and such tha t all Borel sets are measurable.

Throughout what follows it will be convenient to refer to the following
inner regularity condition on a measure // of A ,

14



(*) For every Borel set B  of X

fi{B) = s\ip{fji(K)\K  Ç B  and K  compact}.

We simply say th a t fj, satisfies the Radon condition(*).

N o te  4 .2 For /x a regular measure on X  and an increasing sequence (£'i)i>i 

of sets (that is Ei Ç Ei+i for i >  1) we have

/ x ( | j E U  =sup/x(E^). H
\i= i /  *>i

N o te  4 .3 For /x a Borel measure on X  th a t is Çg-regular (where Qs is the 
family of all countable non-empty intersections of open sets) and E  Ç X  a, 
/x-measurable set of finite /x-measure we have

li{E) = sup{/x(F)|F  Ç E  and F  closed}.

Also, whenever /x is a finite Borel measure on X  we have th a t /x is open 
regular, and hence for all /x-measurable subsets E  oî X

fi(E) = sup{/x(F)|F  Ç E  and F  closed}.

Furthermore if X  is an analytic subset of a complete separable metric space 
then /X  a finite Borel measure satisfies the Radon condition(*). H

For jjL a measure on X  and S  a subset of X  we define /x|5 to be the 
restriction of /x to the family of subsets of S.

N o te  4 .4  For /x and S  as above, we note th a t /x|5 is a measure on S. For S  
a family of subsets of X , if /x is ^-regular then /x|5' is (5 (S')-regular. Also if 
F  is a /x-measurable subset of X  then F  n  S' is (/x | S )-m easurable. H

15



For ji a measure of X  and a subset 5  of X  we define /i L 5  by

{^v .S ){E ) =

for all subsets FJ of X .

N o te  4 .5 For // and S  as above, we note th a t // L 5  is a measure on X  
(whereas fi\S  is a measure on S)  and if E  is /z-measurable then E  is ( / / l 5 ) -  
measurable. Now if // is finite and F-regular and S  is /^-measurable then /iL 5  
is 5-regular. Hence if /z is a finite Borel measure and S  is //-measurable then 

/i L 5  is a Borel measure. H

4.3 Hausdorff measures.

We say th a t a sequence (FJi)i>i of subsets of X  is a (5-cover of a set S  if 
S  Ç U ^ i Ei and diam FJ% < Ô ioi i > 1. We use to denote the family

of all such (countable) (5-covers of S. The measures are defined for (5 >  0  

by

A |(5) =  i n f ^ Ç ( £ ; 0
I i=l

with the convention th a t inf 0 =  oo. The Hausdorff (-measure is then 

defined as
A^(5) =  sup AJ(5).

f>0

When (  is a premeasure defined by some Hausdorff function h, we simply 
write A^ for A^. As is well known, see for example [26], A  ̂ is a metric outer 
measure, in particular all Borel sets are measurable.

4.4 W eighted Hausdorff measures.

In a similar fashion, we say a sequence {ci,Ei)i>i of pairs, with c* a non­
negative real number and Ei a subset of X , is a weighted cover of a set S
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if
oo

^ 5  < XI ^i^Ei j
i=l

th a t is for all points x of 5  we have X!{ci|a: € Ei} > 1 . Furthermore we say 
th a t {ci, Ei)i>i is a weighted (^-cover of a set S  if it is a weighted cover of S  
and diam E* <  (5 for i >  1. We use T s iS )  to denote the family of all weighted 

^-covers of S. The measures are defined for J >  0 by

A |(5) =  inf
2= 1

{ci, Ei)i>i € Ts{S)  > ,

with the convention th a t inf 0 =  oo. The measure is then defined as

A^(5) =  supAf(5)
<s>o

which may be described as the Hausdorff ̂ -measure defined by using weighted 
covers. It is convenient to call this the weighted Hausdorff f-measure. W hen 
^ is a premeasure defined by some Hausdorff function h, we simply write Â  
for A .̂ It can also be shown, see for example [18], th a t Â  is a metric outer 
measure.

4.5 Some properties of Hausdorff and weighted Haus­
dorff measures.

N o te  4 .6 For S  a subset of X  and ^ a premeasure, we have

A |( 5 ) / 'A « ( 5 )  and A f(5 ) / 'A « (5 )  a s 5 \ 0 ,

A |(5 )< A f(5 )  and A«(5) < A«(5). H

N o te  4 .7  For S  a family of subsets of X  th a t is adequate for X  and ^ 
a premeasure on X  tha t is 6^-regular then the measure is ^o-j-regular
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and the measure is ^g -reg u la r where T  is the closure of E under finite 
intersections, see [26] and [18] respectively. Here we use the notation to 
represent the family of all countable unions of sets Ei, in E, and similarly E$ 
for countable unions replaced by (non-empty) countable intersections. Thus 

if ̂  is Borel regular then and are Borel measures and if ̂  is open regular 
then and Â  are ^j-regular where Ç is the family of all open subsets of X .

H

N o te  4 .8  For E a family of subsets of (  a premeasure on X  and a subset 
S' of JA we have

A«|s =  A«|s and A«Î  =  A^|5.

Also if E is adequate for X  then 5 |5  is adequate for S. H

Remark. In the previous literature premeasures are often defined on some 
family of sets and then covers taken from this family of sets. To distinguish 
between these two concepts we refer, for this remark, to premeasure defined 
on all subsets of X  as outer premeasure and those defined on some particular 
family of subsets as restricted premeasures. Given an restricted premeasure, 
C say, defined on some family E of subsets of X  th a t is adequate on X  we 
may define an outer premeasure ^ by

a S )  = i n m E ) \ S Ç E e £ } ,

for all subsets S' of JA. Then using either ^ or (  results in the same measures 
for the Hausdorff construction and also for weighted Hausdorff construction. 
Also ^ is S-regular. However without the condition tha t E is adequate things 
can go badly wrong. For example, if {Ei)i>i, is a cover of a set S  with 
dinm Ei <  J for 2 >  1 there may be no cover of the set S  from E with a 
bound on their diameters. Furthermore, it seems to me th a t the condition 
th a t E be adequate for X ,  or something similar, is required by some parts
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of the previous work. To illustrate this further, in the proof of 2.10.18 (1) 
of [1 0 ] we are told th a t

M B )  < E  a s )  +  E  a s )
sen  seG\H

where (  is defined on a family of closed sets F  and

S  =  |J { T  e F \T  n 5  ^  0 and d iam T  <  2diam5'}.

It is only tacitly implied in the hypothesis of the theorem th a t is in F  by 

the condition th a t (^{S) < r](^{S) < oo whenever S  is in F, as the domain of (  
was defined to be F. Moreover in the hypothesis of 2.10.17 (3) it is asserted 
th a t F  n  T  is in F  whenever S  and T  are in F . The notion of adequacy is a 

weaker condition than  th a t of requiring S  and 5  n T  to be in F  whenever S  

and T  are in F .
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5 New Premeasures from Old.

5.1 Finite order to  finite in the large.

P ro p o s it io n  5.1 For X  a compact metric space and a premeasure ^ on X  
which is of finite-order, there exists a family of open sets, G say, such that Q 
is 3-adequate (for X ) and finite in the large and there exists a premeasure C 
on X ,  which is of finite-order and Q-regular such that

^  £  V^s

where 77 is some positive constant. H

Proof. We prove this by construction. Inductively for every integer z >  1,

{G C X \G  open, diam G < id ia m X }

covers X ,  and hence we may define Ui to be a finite subcover of X ,  since X  

is compact. For E  a subset of X  of positive diameter we define by

E ^  = [ j{ U  e Ui \ Un E ÿ ^ ( H}

where i is the unique positive integer such tha t

^ d ia m  X  < diam E  < -J-rd iam  X.

We define H  to be the set

{ E ^ \E  Ç X  and diam £7 >  0} U {{x}lx G X  and {x} is open} U {0},

G to  be the completion of H  under all finite intersections, th a t is the set 

{ n  V| V Ç and V is non-empty and finite j
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and (  by
({E)  = inf{((G )|G  e Q a ^ n d E C G }

for all subsets E  oî X .
By the finite order of (  there exists rj such th a t for all subsets E  of % of 

positive diameter ((E ) <  ry((E). Thus there exists G in ^  such th a t

E Ç G Ç Ê  and ((E )  <  ((G ) <  ?7((E ).

The required results now follow easily. □

5.2 Premeasures on metric spaces of finite order. 

L em m a 5.2 For X  a metric space and (  a premeasure on X ,  (  defined by

C (i7 )= in f{ f ;ç (Æ :i) U Q \J  Ei, Ei Ç X  for i > 1
t=lL i=l

is a premeasure on X  and

and =  Â . H

Proof. It is immediate th a t ( i s  a premeasure on X .  Now for (Ei)j>i a 
(5-cover of some set U and (T^j);>i a cover of E% (for each % >  1 ), it is clear 
th a t (E jj n  Ei)ij>i is a (5-cover of U. The required result follows. □

P ro p o s it io n  5.3 Let X  be a metric space, h a Hausdorff function and r  > 
0. Then, i f  X  has finite structural dimension then there exists a premeasure 
Ç, on X  that is of finite t -order and

h f  =  A** and =  A'“. H

Proof. By the definition of finite structural dimension, there exist positive 
constants e and K  such tha t for 6  <  6  every set of diameter not greater than
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(1 H- 2 t ) ô  can be covered by K  sets of diameter not greater than  5. We let ^ 
be the premeasure on X  defined by h and cut off size e. We define by

L i=l

S  Ç [ j  Ei, Ei Ç X  ÎOT i > 1> .
i=l )

We are assured by the previous lemma th a t 0 i s a  premeasure and

and =  Â .

Now for every subset 5  of X  we have 'd{S) < f (5 ) and if the d iam 5  <  e 
then

'â{S'^) < K  sup{?9(E)|E' Ç X  and d iam E  < diam 5"} < K ^{S) .

We define by

C(5) =  sup{i^(E)|E  Ç X  and d iam E  < diam 5}

for all non-empty subsets S  oî X  and C(0) =  0. Then ( i s  a premeasure. For 
S  a subset of X  we see th a t

C(5^) <  XC(5) if d iam f / < 6

((S') <  h{e) if d iam t/ >  e

For our convenience we set

c =  su p {((S )|S  Ç X  and d iam S  <  e} .

There are two cases, either c =  0 or c >  0. If c =  0 then we must redefine (  
to  assign the value 0 to every set. The result then follows by noting th a t for 
S  a subset of X , either S  admits a 6 -cover for every 8 < e oi S  does not: if 
S  adm its a 6 -cover for every 5 < e then A^(S) =  A^(S) =  0 , otherwise there 

is no 6 -cover of S for some 8 < e and thus A^(S) =  A^(S) =  oo. If c >  0  

then it suffices to observe th a t <  (  <  (  and

( (S 3  < max(X, |h(6))((S) (VS Ç X).

□
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P ro p o s it io n  5.4 For any ultrametric space and f  a premeasure defined by
some Hausdorff function, ^ is of finite-order. H

Proof This follows immediately from the fact th a t in an ultram etric

space for all subsets U we have diam U =  diam U. □
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6 Approximation by Finite Borel Measures.

6.1 Notation.

It is convenient to  denote the set of all finite (non-negative) Borel measures 
on X  by M '^(X ). For a premeasure ^ and a family of sets S  we also employ 
the notation

=  {/i €  M + (X )|V S  € f .d ia m S  < & = ^  ix{E) < ( ( E ) )

and

5>Q

W hen ^ is a premeasure defined by some Hausdorff function /i, we simply 
write M ^(X ;5 ) for M ^(A ';£). When S  is the family of all subsets of X , we 

simply write M |(X ) and M^(W). The set M ^(%) may be thought of as the 
set of finite Borel measures on X  tha t are ‘dom inated’ by f .

Throughout the following we denote by C{ X)  the Banach space of con­
tinuous bounded functions from X  to the reals with supremum norm || • ||. 
In the case when X  is compact we identify M '^(X ) with the positive linear 
functionals in C*{X) ,  the dual space of C{X) ,  as given by Riesz’s Represen­
tation Theorem. T hat is, for /x in we may identify // with the linear
functional on C{ X)  defined by

We refer to this identification as the identification given by Riesz’s Repre­
sentation Theorem.

6.2 Approximation Theorem.

L e m m a  6.1 Let X  be a metric space, ^ a premeasure on X ,  and (5 > 0. 

Then for all /x in M^(%) we have /x <  Â . H
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Proof. For X ,  ^ and as above, E  a subset of X  and (q , Ei)i>\ in T^(E)
we choose for i >  1 , so th a t Ui is /i-measurable,

Ei Ç Ui and fi{Ui) = fi{Ei).

Hence we calculate

/ oo oo oo
Y,CiXu, d// =  ^C i/i(£'i) <  '^Cii{Ei). 
i=l i=l i=l

The required result follows. □

Lemma 6.2 Let X  he a metric space, S  he a family of suhsets o f X  that is
6-adequate, for some 6, and ^ a premeasure on X  that is S-regular. Then 
for  all Ô > 0 we have

M L(% ) Ç M l{ X - ,£ )  Ç M l i X ) ,  

and hence M ^(X; £ ) =  M ^(X ). H

Proof. For X ,  6, S, f, and 5 as above,

{ E  e  6:|d iam E  <  66} Q {E  <Z % |d iam E  <  98}

and hence
M ^ (X ) Ç M f,(X ;£ ) .

Now for S  a subset of X  with diameter not exceeding 6,

f(5 )  =  in f{ ((E )|E  € 5, diam E  < 98 and 5  Ç E}

by the adequacy of E and the 5-regularity of ( . Hence for fi in M |^ (X ;5 ) 
we have

fi{S) < in f{ //(E )|E  G 5, d iam E  <  0(5 and 5  Ç E}

< in f{ ((E )|E  G 5, d iam E  < 98 and S  Ç E}

<

and the required result follows. □
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T h e o re m  6.3 For X  a compact metric space, Q a fam ily of open sets, which 
is 6-adequate on X ,  and a premeasure ^ (on X )  which is Q-regular we have

< sup{m(X )|„  6

and this supremum is attained. H

Proof We fix (̂  >  0 and mimic the definition of to give a function 

P: C ( X )  —>• IRq • For /  in C{X) ,  we say th a t a sequence of pairs (c%, Gi)i>i, 
with Ci a non-negative real number and Gi a set in is a weighted sequence 
from G th a t majorises /  if

oo

i=l

th a t is f {x )  < Y^{ci\x E Gi} for all x  in X .  We use to denote the
family of all weighted sequences from Q tha t majorise / ,  with

diam G i <  65 for i >  1.

We define the function P  on (7(X) by

Z=1

for all /  in C{X) .  It is easily seen th a t P  is a positive semilinear functional 

on C(% ).

Now <  P { X x)  since if (c%, P%)%>i majorises X x  then (c*, is

a weighted cover of X .  Also for p  in p{X)  < P(%%) since if

{ci,Gi)i>i is in T esi^x '.Q )  we have

/ oo .  oo

X x à t i < Y ,C i  X g, dfi < '£ c i^ {G i
i=l i=l
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This follows from the fact th a t for 2 >  1, is open and thus /x-measurable. 
Hence by the previous two lemmas if we can prove th a t there exists /z in 

Q) such th a t P { ^ x )  =  then the required result follows.
By the Hahn-Banach Theorem there exists a positive linear functional, 

m* say, on C ( X )  such tha t

<  P ( / )  (V / 6  C(%).

Hence by Riesz’s Representation Theorem there exists a positive Borel reg­
ular measure on X ,  say, such tha t for all /  in C{X)  we have

m*{f)  = J f  d^.

Hence f i (X) = P { ^ x )  and all tha t remains to be proved is th a t /z is in

For G in ^  with diam G <  OS, we choose a sequence {fi)i>i of positive 
functions in C{ X)  such tha t

f i { x ) = 0  y x e X \ G
fi{x) / ' I  a s z —>-oo Vz E G

th a t is fi  / /  Ag- It follows th a t this is possible from the fact th a t X  is 
a metric space and G is open. Therefore by the Dominated Convergence 
Theorem

fi{G) = lim / / i  d/x <  lim P{fi )  <  ((G ).
t->oo J  i->oo

Thus indeed, we have /x in ^ ). □

C o ro lla ry  6.4 F o r X ,  G and^ satisfying the conditions of the above theorem 

we have
\ ^ {X)  = sup{/x(X)|/x e  M^{X) } .  H
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N o te  6.5 In [7] an example is given of a compact metric space X  and a 

continuous Hausdorff function h where X  has infinite measure and no 
subsets of finite positive measure. It is proved th a t there are no finite 
positive measures on X  th a t are absolutely continuous with respect to A^. 
Hence by the previous corollary X  has zero measure. This is also proved 
by direct analysis in [18]. H

Remark. Given a premeasure f  on a metric space X  we may define for 

6 > 0 the measure by

5-1(5 ) = s u p { M 5 ) |a < € M « ( X ) }

and then
5-f(5) =  sup5-1(5) =  sup{^i(5)|p € M«(X)}.

5>0

It is easily proved th a t

1. ^ M s a metric measure,

2. satisfies the Radon condition(*),

3. when ever {Ei)i>i is an increasing sequence of sets with union E  we 

have ^^{E)  = supj>i

Furthermore we see by the previous corollary th a t for a compact subset K  
of X  we have =  Â (AT) provided ^ is open regular.

6.3 Capacities.

For X  a compact metric space with metric p, /jl E M ‘''(X ) and h  a Hausdorff 

function we define the h-potential of p, at the point x  by

àp{y)
=  I X h(p{x, y) )  ’ 
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The /i-capacity C^( X)  of X  is defined by

C^{X)  =  su p |//(X ) I /i € M ‘'’(X) and ^p^{x) <  1 for all a: G x } .

N o te  6.6 We note th a t if there exists /i G M"^(X) such th a t f i{X) > 0 and 

ip^{x) is bounded for x G X  then by setting

c =  sup{^j;(a;) Ix g X}

and 1/ =  we have C^{X)  > \fJ>{X) > 0 .  H

P ro p o s it io n  6.7 Let h,g  be Hausdorff functions such that fo r  some e > 0 
we have

J o W ) ^

Suppose ^ is the premeasure on X  defined by h and cut off size 2e and suppose 

fj, G M 2g(X) where 5 < e. Then 'ipf^ix) is bounded fo r  a: G X . H

Proof. This is proved in [15]. We give the proof here for completeness. We 

fix rc G X  and define m (r) by m{r) = fi{B{x,  r)). By hypothesis p  G M 2j(X ) 
and hence m (r) < h{2r) for 0 <  r < <5. Thus

rô 2 roo 1

=  I  + A

and hence ipf^{x) is bounded for x G X , as required. □
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Remark. In the case when h and g are of the form h{r) =  r* and g{r) = 
then the condition th a t

L  W ) ^  °°

merely states tha t s < t o r 5  =  t =  0.

Corollary 6.8 Let X  be a compact metric space and h, g he Hausdorff func­
tion such that \ ^ { X )  > 0 and for some £ >  0 we have

H 1
/ —7-r dh{2t) < oo.
Jo g{t)

Then C^{X)  > 0 .  H

Proof We let ^ to be the premeasure on X  defined by h and cut off size 2e. 

By the hypothesis of the corollary we choose ô < e such th a t A2^(X) >  0. By 

Theorem 6.3 we choose p  in M 2^(X) such th a t p>{X) > 0. By Proposition 6.7 
we have is bounded for a: € X , and the result follows by Note 6.6. □

Remark. In [15], S. Kametani shows th a t for X  a Borel subset of IR" and 
for h, g Hausdorff functions such th a t for some 6 >  0

L

if A^(X) > 0 then C^{X)  > 0. We also remark th a t in Section 9.3 we 

give certain conditions which guarantee A^(X) =  A^(X). In this respect 
Corollary 6.8 may be viewed as a generalisation of K am etani’s result.

Remark. There are a number of different definitions of capacity in the 
previous literature. It is sometimes more convenient to consider the quanti­
ties C* (X) defined below, see for example [20] pages 131-133 and [24] pages 

109-110. For p  € M'*"(X) we define the A-energy I^{p)  of p  by
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and then C^{X)  is defined by

=  sup jjL G and n { X )  =  1

However, if // G M'*'(X) is such th a t //(%) >  0 and < 1 for all x G X

then

jh  (  J ^ \  ^  1 f  f  ^  1
\ f j , (X)J {iJ,{X))‘̂ JxJx h{p{x,y)) ~  p { X) '

Thus in all cases C^{X)  < C* (X). Finally we remark th a t the definition 

we give for C^{X)  coincides with the definition of capacity given in [11] and 
is perhaps a more natural definition for general metric spaces (see Chap­
ter VI § 2 of [20]).
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7 Covering Theorems.

7.1 Vitali coverings.

Given a family S  of sets we say that .F is a r-Vitali subfamily of S  if and 
only if

T  ( I S ,

2. for dX\ E  E S  there exists F  E T  such tha t

F  n ^  0 and diam E  < rdiam F.

We say that F  is a Vitali subfamily when F" is a 1-Vitali subfamily. We also 
say that F  is a strong Vitali subfamily when F  is a r-Vitali subfamily for 
some r > 1.

T h e o re m  7.1 For S  a family of subsets of X  and r  >  1 there exists a 
disjoint r-V ita li subfamily of S. Furthermore if S  is finite in the large then 
there exists a disjoint Vitali subfamily of S . H

Proof. This is proved in 2.8.4 of [10]. We consider the class ÇI of all 
disjoint subfamilies H  with the property: whenever E  £ S

either E  H H  = 0 for all F  G 'H,
or F  n i f  7  ̂ 0 and diam F  < rdiam F  for some F  G F .

Applying Hausdorff’s maximal principle we choose F  G Ü so th a t F  is not a 
proper subset of any member of 1̂.

We define JC by

JC = { E e  F I VF G F , F  n F  =  0}.

If /C 7  ̂ 0 we could select F  G /C so that

rd iam  F  >  su p { d ia m F |F  G JC}
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and verify th a t T U  {E }  is in contrary to the maximality of T .
Furthermore if S  is finite in the large then the above arguments hold with 

r  set a t 1. The required results follow. □

C o ro lla ry  7.2 For E  a family of closed subsets of X  which is a fine covering 
of a subset S  o f X  and r  >  1 there exists a disjoint r -  Vitali subfamily Q of 
T  such that for all finite subfamilies 'H of Q,

S C [ j ' H u [ j { G ^ \ G e G \ n } .

Furthermore i f  T  is finite in the large then Q can be assumed to be a disjoint 
Vitali subfamily of E .  H

Proof This is proved in 2.8.6 of [10]. For T  as above we may apply the 
previous theorem to obtain a maximal family ^  of Q where is defined as 
above. For 'K a finite subfamily of Q we have U ^  is closed. Hence each point 
X Q. S \ \ } E  belongs to some F  E E  with F  n y jV ,  =  Thus F  meets some 

G ^ GX F L  with diam F  < rd iam  G and hence F  C G'^.
Furthermore if E  is finite in the large then the above arguments hold with 

T set a t 1. The required results follow. □

7.2 Overflow.

For a family S  of subsets of X  we define the overflow function of S  by

= I ]  ^ e (x ) -  

Ees

We define the //-overflow of 8  to be

j ( f ) £  d j j i

where f  denotes the upper integral.
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T h e o re m  7.3 Let fi be a finite measure on X  and S he a fam ily of sets each 
of positive measure such that E is a fine covering of a subset S  o f X  and for  
all E  E E we have

fi{E) = sup{f i{F)\F Ç E  and F  closed}.

Then fo r  all t  > \  there exists a countable r-V ita li subfamily G of E with 
fi-overflow as small as we wish such that fo r all finite subfamilies H  of Ç,

s c \ j n u [ j { G ^ \ G E g \ ' H } .

Furthermore i f  E is finite in the large then G can be assumed to be a Vitali 
subfamily of E with fi-overflow as small as we wish. H

Proof. For e >  0 by hypothesis we may choose a family T  of closed 
subsets of X  indexed by E such tha t

Fe Q E  and (1 +  >  jj,{E) (VE E E).

We consider the class Cl of all disjoint subfamilies H  oî E with the prop­
erty: whenever E  E E

either E  D =  0 for all H  eTL,
or E  n  Fff ^  and diamE" <  rd iam iF  for some H  e TL.

Applying Hausdorff’s maximal principle we choose ^  G so th a t G is not a 
proper subset of any member of Cl.

We define /C by

K  =  { E e E \ ^ G e G , E C \ F g =  0}.

If /C ^  0 we could select E  E JC so tha t

rd iam  E  >  sup{diam E |E  G JC]

34



and verify th a t Q U { E}  is in Q, contrary to the maximality of G-
For % a finite subfamily of G we have is closed. Hence each

point X G S' \  U ^  belongs to some F  e  T  with F  n  \Jh £U =  0. Thus F  

meets Fq for some G E G with diam F  <  rd iam  G and hence F  Ç. G'^.
It immediately follows from the definitions th a t

1. G is a disjoint family of closed subsets of X

2. ii{Fg) > 0 for all G G ^

and hence G is countable since // is finite. Also we see th a t the ^-overflow of 
G is not greater than

E  U-iG) -  (U  É’) <  E  t^iG) -  E  <  e E  <  e n( X)
GÇ.G Ĝ G GÇ.G GÇ.G

and hence can be made as small as we wish by a suitable choice of e.
Furthermore if S  is finite in the large then the above arguments hold with 

r  set a t 1. The required results follow. □

Corollary 7.4 For a finite Borel measure on X  and E a fam ily of f i -  

measurable sets each of positive measure which is a fine covering of a subset 
S  o f X  and r  >  1 there exists a countable r-V ita li subfamily G of E with 
li-overflow as small as we wish such that for all finite subfamilies % of G,

S  c [ j n \ j [ j { G ' ^ \ G  e G \ n } .

Furthermore i f  E is finite in the large then G can be assumed to be a Vitali 
subfamily of E with ji-overflow as small as we wish. H

Proof. This follows immediately from the previous theorem by Note 4.3.
□
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C o ro lla ry  7.5 For ji a finite regular measure on X  and S  a fam ily o f open 
sets each of positive measure which is a fine covering of a subset S  of X  and 
r  >  1 there exists a countable r-V ita li subfamily G of S  with p-overflow as 
small as we wish such that fo r all finite subfamilies Fi o f G,

S  e G \ n } .

Furthermore i f  S  is finite in the large then G can be assumed to be a Vitali 
subfamily of S  with p-overfiow as small as we wish. H

Proof. This follows immediately from the previous theorem by Note 4.2.
□
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8 Increasing Sequences of Sets.

8.1 Definitions.

A sequence {Ei)i>i of subsets of X  is said to be increasing if Ei Ç Ei+i for 
i > 1 .  For f  a premeasure on A , we say th a t the increasing sets lemma holds 
for if for all 0  <  6  <  6  and for all increasing sequences of subsets
of X  we have

A U  U  <  supA K ^i).
V>i /  '>1

Similarly, we say the increasing sets lemma holds for if

A| I U  I <  snpXliEi).
A>1 i > l

If there exist (finite) constants ^ > 1 and 77 > 1 such th a t for all increasing 
sequences {Ei)i>i of subsets of X  and for all 6  >  0 we have

ês 1 U  ̂̂ sup Af(E'i)
,t>i i>l

then we say the weak increasing sets lemma holds for A^.

8.2 Previous results.

P ro p o s it io n  8.1 For X  a metric space, (" a premeasure on X  and S  an 
adequate fam ily of subsets of X  such that (  is S  regular and S  is finite in the 
large, the increasing sets lemma holds for  A  ̂ and A .̂ H

Proof. See Theorem 1 of [19] and the final Remark of [19] for details. A 
proof for Hausdorff measures may also be found in [4]. □

37



C o ro lla ry  8 . 2  Let X  be a compact metric space, and let ^ be a premeasure 
on X  which is continuous with respect to the Hausdorff distance and satisfies 
the condition that

^{E) = 0 = >  diam E" =  0 ( i E C . X ) .

Then the increasing sets lemma holds for and H

Proof. This follows from the previous proposition by the results of [6 ]. 
This was originally proved by direct analysis in [25]. □

T h e o re m  8.3 Let X  be a metric space and h be a continuous Hausdorff 
function such that one of the following is satisfied

1. h is of finite-order;

2. X  has finite structural dimension;

3. X  is ultrametric.

Then the increasing sets lemma holds for hfi. H

Proof. This is shown in [5]. □

T h e o re m  8.4 Let X  be an analytic subset of a complete separable metric 
space, and let ^ be a premeasure on X  which is open regular. Suppose the 
increasing sets lemma holds fo r  A^. Then A  ̂ satisfies the Radon condition(^). 

Similarly i f  the increasing sets lemma holds for X  ̂ then X  ̂ satisfies the Radon 
condition(^). H

Proof. This is shown in [26] for A  ̂ and in [19] for Â . □

E x a m p le  8.5 There exists a metric space and a continuous Hausdorff func­
tion h of finite order such that the Radon condition(^) fails fo r  A^ and X^.

H
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Proof. This is well known in the m athem atical ‘folklore’. We let X  be 
any uncountable set metrised by the discrete metric and h be the function 
defined by h{t) = t. It is clear th a t the only compact sets are those sets th a t 
contain finitely many points and th a t

A'‘{E) =  A"(E) =  I 0 if E  is countable; 
oo otherwise,

for all subsets E  of X .  □

8.3 Strong finite order.

T h e o re m  8.6 For X  a metric space and ^ a premeasure of strong finite  
order, satisfies the weak increasing sets lemma. H

Proof. Given J > 0 and an increasing sequence of sets (Ei)i>i we denote 
U%i Ei by E . We wish to show th a t for some 9 > 1 and some /c > 1

< «supAf(E 'i)
i>l

where 0 and k are independent of and 6. We may suppose th a t A^(£'i)

is bounded. Now if h \[E i)  =  0 for all i >  1 then

oo
K \(E )< Y .! ^ l{ E i)  = 0.

i = l

Thus we may suppose tha t t  G IR"'' is such tha t

I  =  supA^(E'i).
i>i

Given 6 >  0 we choose (5-covers of Ei for each i >  1 such th a t

oo _
< A^(Ei) +  —.

3 =  1 ^
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Since ^ is of strong finite order there exist r  >  1 and rj > 0 such th a t 

< T]^{S) for all subsets S  of X .  For convenience we use ^  to denote 

the family of sets {Fi j \ i , j  > 1 } . We let H  = {F ^ \F  G F }  which is clearly 
indexed by F . We apply Theorem 7.1 to obtain a maximal disjoint r-V itali 
subfamily JCoîH.  Hence we may choose a subfamily ^  of.F  uniquely indexing 

JC] th a t is for each K  e  JC there exists a unique G E Q such th a t K  = GJr. 
Clearly

E c D K - ^  and diam K ^ < ( l - k 2 r)^(^ { ^ K  e  JC).
KeJC

Hence the result follows with 0 =  (1  +  2r)^ and « =  77̂  if we can show th a t

GeG

For G G ^  we define ia  to be the least integer i > 1  such th a t G = F ij 
for some j  > I. Given a finite subfamily 5  of ^  we let n  be any integer such 
th a t n >  io  for each G E S. By the disjointness of JC above we have

53 5Z .
Gee Fn,jnG#0 

; > i

Now for >  1 we let Sk = {G G S\iG = ^}- Since for all G Ç: Sk

E k f ^ G C  \J {Fnj \ j  > 1 and n C f  0} 

and ^{Ekj) < A si^k )  +  s / 2 * we have

Z  ((G ) <  Z  Z  +  &  '
Ge£k GeSk F„jnG^0

j > i

Hence

Z ((G) = Z Z ((G) + +
Gee k = i  Ge£k A=i

This completes the proof. □
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9 Differentiation.

9.1 Definition.

For a family of sets , a premeasure (  and a positive set function /i, we define 
for each point x in X

=  s u p | | | ^ X E E  E 8  and diam E  < 5

with the convention th a t

a _  J oo if a >  0;
0 I  0 if a =  0.

The case a < 0 is not considered since /z is positive. The differential of /z by
^ with respect to (the basis) S  is then defined by

D^/z(x;5) =  VimDy{x;8) .

In what follows /z will always be a measure. W hen 8  is the family of all 
subsets of X ,  we simply write D^n{x)  for D^fi{x;8).

9.2 Differentiation of measures by premeasures.

T h e o re m  9.1 Let 8  he an adequate fam ily of subsets of X ,  let ^ be a pre­
measure which is 8 -regular, and p  be a regular measure. Suppose S  is a 
subset o f X  and D^p(x' ,8) < t whenever x  G S. Then p{S) < tX^{S).  H

Proof. For (5 > 0 we define A(0)  by

A(6) = {x  e  S\Dgp{x' ,8) < t}.

The hypothesis of the theorem and Note 4.2 imply th a t

S' Ç y  A{6) and /z(S) <  sup p{A{6)).
5 > 0
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Now by the adequacy of 5 , there exists 6 such th a t for >  0 and a weighted 
5-cover {ci,Ei)i>i of A(60) we can choose a sequence of sets {Fi)i>i in £  
such th a t Ei Ç Fi and diamF* <  ^diam for a lH  >  1 and 

is as close as we wish to Z%>i Hence by the regularity of // we

have fj,{A{6S)) < iA j(^(^5)). Thus fj,{A{66)) < tX^{S).  The required result 
follows. □

C o ro lla ry  9.2 For an adequate family £  of Borel subsets of X , a premeasure 
^ which is regular with respect to £ , a subset S  o f X ,  and /i =  or p  = 
i f  p{S)  < oo then

D^{pl .S) {x;£)  > 1 fo r p-almost all x  in S . H

Proof For t 6 (0,1) we define A{t)  by

A{t) = {x e  S\D^{p\-S)(x' ,£)  < t}.

By Note 4.7 and the hypothesis of the corollary p i s  a, Borel measure. Hence 
if p{S)  <  oo we may choose a Borel set B  such th a t S  Ç B  and p{S) = p{B).  
Thus by Notes 4.5 and 4.2 /zL B  is a regular measure and hence we may apply 
the previous theorem to p \ - B  to deduce p{A{t)) < tA^(A(t)). The required 
result follows. □

Remark. In the above if X  is separable then the condition th a t p{S)  < oo 
may be removed.

T h e o re m  9.3 Let S  Ç X ,  let £  be a family of subsets of X  which is a fine  
covering of S , let t  > \ ,  let ^ be a premeasure of finite r-order, and let p  be 
a finite measure on X  such that for all E  E £

p{E) = sup{/Lt(F)|F Ç E  and F  closed}.

Suppose D^p{x;£) > t whenever x  E S . Then fo r all open sets U containing 

S  we have p{U) > tA^{S).  Furthermore if £  is finite in the large then r  may 
be set at one in the above. H
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Proof. For t as above, and positive ô it is immediate tha t

= {E  e  E C U  and d iam E  < (5}

is a fine cover of S. Hence by Theorem 7.3 for all positive e there exists a 
countable r-V itali subfamily Q oî E  with /z-overfiow less than e such th a t for 
all finite subfamilies 77 of

S C \ J n u [ j { G ' ^ \ G e Q \ n } .

Hence we may choose a finite subfamily 77 of ^  such th a t t ^G e G \n ^ i^ )  ^  
By the finite order of ^ there exists rj > 0 such th a t

( (Ê 3  < T7((E) (VE Ç %).

Thus we may calculate

< t y , ü H ) + t
Hen GeG\n

< -  I k
GeG

< IZ  //(G) +  (t; - I k
GeG

<

< p{U)  4- T]e.

Hence on letting first e and then ô tend to zero we see th a t fJ>{U) > tA^{S).
Furthermore if S  is finite in the large then the above arguments hold with 

T set a t 1. The required results follow. □

C o ro lla ry  9 .4 For a family S  o f subsets of X  which is a fine covering of X ,  
T > 1, a premeasure ^ of finite r-order, a finite Borel regular measure p  and 
a fi-measurable subset S  of X  i f  one of the following holds
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1. E  is ^-measurable for all E  E S

2. (  is Borel regular

then D^(/z L 5)(x; <f) =  0 fo r A^-almost all x  E X  \ S .  Furthermore i f  £  is 
finite in the large then r  can he set at 1. H

Proof. For t > 0 we define A{t) by

A{t) = { x e X \  S\D^{fi \-S){x-,£) > t}.

We let A(t )  be the family of sets

{ E  e  £ \ E  n A{t) ^  0 and f i (E n 5) >  t^{E)}.

We can assume tha t each set E  G A{t)  is /^-measurable since if ^ is Borel 
regular we can replace each set E  by a Borel set B  such th a t E  C B,  
d ia m E  = d iam 5  and ^{E) = ^(B) .  By the hypothesis of the corollary 

and Note 4.3 if A^(A(t)) > 0 then there exists a closed set F  of X  such th a t 

/z(5 \  F ) < tA^{A{t))  but then the previous theorem with fi, U replaced by 

fj,\-S, X \ F  would imply the opposite inequality f i ( S \ F )  >  tA^{A{t)).  The 
required results follow by noting th a t if £  is finite in the large then the above 
arguments hold with r  set a t 1. □

C o ro lla ry  9.5 Let S  C X ,  let £  be a fam ily of Borel subsets of X  which is 
a fine covering of S , let r  > 1, and let ^ be a Borel regular premeasure of 
finite r-order. Suppose p  = A^ or p, = and suppose < oo. Then

0 <  D^(p\-S)(x ' ,£)  < 1 fo r  A^-almost all x  E S.

Hence i f  S  is also p-measurable, £  is also adequate on X  and f  is also £  - 
regular then we have

f  1 f o r  f i - a l m o s t  a l l  X  e  S ', 
f ) =  j  Q y , ,  all x  i  S.

Furthermore i f  £  is finite in the large then r  can be set at 1. H
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Proof. By Note 4.7 and the hypothesis of the corollary // is a Borel 
measure. Hence if fi{S) < oo then we may choose a Borel set B  such th a t 
S  Ç B  and fj,{S) = n{B).  Thus î o t  E  e  S  and e >  0 we can choose a closed 
set F  C E  such th a t { i i \ - B ) ( E \ F )  < e. Hence { ^ \ - S ) { E \ F )  < e  and thus 
by the /z-measurability of F  we have

{l iv.S){F) = i i [ F n S )  = / i ( F n 5 )  +  / z ( £ ; n 5 \ F )

< (/x l 5 )(F )  +  £:.

For i >  1 we define A{t)  by

A{t) = { x e  S\D^{f i \ -S){x;S)  > 1}

Thus by the previous theorem for all open sets U containing A{t)  we have

( /2 L S ) ( [ / ) > ( A ( ( # ) ) .

Hence if A^(A(t)) >  0 we could find an open set U containing A{t)  such th a t 

(IjL\-B)(U) < tA^{A{t)),  since {fi\-B){A{t)) < A^{A{t)).  Thus we would gain 
a contradiction.

Hence by Corollary 9.2 if ^  is also adequate on X  and ^ is also 6^-regular 
then

D^{fjL\-S){x’,S)  =  1 for //-almost all x  G S.

Also if S  is //-measurable and S  is adequate on X  and hence a fine covering 
of X  then by Corollary 9.4

D^(//LS')(a;; S) = 0 for A^-almost all x  ^  S.

The required results follow by noting th a t if S  is finite in the large then the 
above arguments hold with r  set a t 1. □
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9.3 Equality of the Hausdorff and the weighted Haus- 
dorff measures.

L em m a 9.6 For X  a metric space and ^ a Borel regular premeasure on X  
of finite-order if for all subsets S  of X  we have

A^(5) =  0 A^(S') =  0

then =  A .̂ H

Proof. For E  a subset of X  if A^(E) =  oo then A^{E) = oo. If X^{E) =  0 

then by hypothesis A^{E) = 0. Hence we may assume th a t E  has finite 

positive A^-measure. If there exists a Borel set B  containing E  such th a t

\ ^{E)  = \ ^{B)  = A^{B)

then it is immediate tha t X^(E) = A^{E).  Hence we may assume th a t E  is 
Borel.

For T >  0 we let {Sj)j>i be a decreasing sequence of positive numbers 
tending to zero. For each j  >  1 we choose a weighted -cover {cij, E ij)i> i 
of E  with E ij  a Borel set such tha t

oo

2 = 1

For the sake of notation we let Sj be the set {Ei j \ i  >  1} and Ej  be the set 

{Eij  eSj \ { i  +  T)XHEi,i n E ) <  ^{Eij)}.

We calculate

< XZ FI + XI
Ei j  6  !Fj Ei j  €  £j \T j
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Hence

T X !  C i j X ^ ( E i j n E )  < 6j .

We let Fj be the set

{a; e  E \\fE ij e  S j , x  e  E i j  = >  (1 +  T)X^{Eij H E)  < ^(Ei j )} .

By the above we have rX^{Fj) < ôj. Hence F  = Un>i C\j>n^j is a Borel set 

and has zero A^-measure.
In a similar fashion we choose Nj so tha t

oo
X  — 3̂

i =Nj

and let Gj be the set E  \  Ei^j. It is immediate th a t G =  Un>i r\j>n Gj 

is a Borel set and has zero A^-measure.
We let H  be the set E \ { F  UG).  We let E be the family of sets

{Ei^j\Ei^j Nj  and j  > 1}.

Since E  is a Borel set and has finite A^-measure and Â  is a Borel measure it 
is clear th a t the measure fj, = X^l. E  is a finite Borel measure. Also by the 
construction we have

D « / j ( x , £ ) > - ^  ( V x e H )
1 +  T

where S  is finite in the large. Hence by Theorem 7.3 we have for all open 
sets U containing H

/i(C/) =  A«(H) >
i  +  T
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and thus on letting r  tend to zero we have X^{H) = The result

follows since by hypothesis F  and G have zero A^-measure. □

T h e o re m  9.7 Let X  be a metric space and ^ be a premeasure on X  of finite- 
order. Suppose the weak increasing sets lemma holds for  A^. Then fo r some 

positive constant rj we have A  ̂ <  7 7 and hence in the case when ^ is also 
Borel regular we have A  ̂ =  H

Proof. First suppose th a t for E  a subset of X  and (5 >  0 there exists a 
(finite) weighted (^-cover {ci,Ei)2^^ of E  such th a t

i = l

for some ^ >  0. Then we may approximate the c% by rationals with a common 
denominator Oi/N > Ci so th a t

t  i
Z=1

For the sake of notation we let T  be the family of sets < i < n}.
We consider a multiplicity function mo mapping F  and to the non-negative 
integers defined by

E i= F

for all F  e  F .  We define for 1 <  j  <  subfamilies Qj of F  and functions 
mj  mapping F  to the non-negative integers by

Gj a maximal disjoint Vitali subfamily of { F  G F \ m j - i { F )  > 1 }

xpx _  J m j - i ( F )  — 1 whenever F  G Gj
^  1 m ^-i(F ) whenever F  0  Gj
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The existence of Qj is implied by Theorem 7.1. Since (a*/TV, is a
weighted cover of E  we have

E C  [ j  G ( 1 <  j < T V) .
GeGj

Thus by the finite order of ^ we have

N A i i E )  < E  E  f(G )
j = l  G^Qj

< 12  (toj- i -
j = l  FEJF

<  v Y ^ a i^ iE i)
i = l

< N t]£.

where ry > 0 is dependent only on
For (5 > 0, T >  1 and (c ,̂ Ei)i>i a weighted 6-cover of a subset E  of % we 

define Hn by

Hn = <x E E
k i=l )

Thus if the weak increasing sets lemma holds for then for some positive 
constants 9 > 1 and /c >  1 independent of E , (c%, Ei)i>i and 6

<  K,supAls(Hn) < tt]k,xI{E).
n>l

Hence the required results follow on letting first r  tend to 1 and then 6 tend 
to zero and the previous lemma. □

C o ro lla ry  9.8 For X  a metric space and ^ a premeasure on X  of strong 
finite order there exists a positive constant r] such that <  rjX̂  and hence 
in the case when ^ is also Borel regular we have A  ̂ =  A .̂ H
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Proof. This follows immediately from the previous theorem and Theo­
rem 8.6 and in the case when f  is Borel regular Lemma 9.6. □

Corollary 9.9 For X  a compact metric space and ^ a premeasure on X  o f 
finite order there exists a positive constant p such that <  ijX^ and hence 
in the case when (  is also Borel regular we have =  A .̂ H

Proof By Proposition 5.1 there exists a family of open sets Q such th a t 
Ç is adequate and finite in the large and there exists a premeasure (  on 
which is of finite-order and ^-regular such th a t for all 6 >  0

Aj < <  î?A^

A{ < AJ <  j]Xg

where ry is some positive constant only dependent on By Proposition 8.1 
the increasing sets lemma holds for A^. Thus by the previous theorem we 
have A  ̂ =  and hence A  ̂ <  rjX̂ . In the case when ^ is Borel regular we 
can apply Lemma 9.6. The required results follow. □

Corollary 9.10 Let X  be a metric space and ^ be a Borel regular premeasure 
on X  of finite-order. Suppose A  ̂ satisfies the Radon condition(■¥). Then 

A  ̂ =  Â . H

Proof. For a subset E  of % we may choose (by the Borel regularity of ^ 

and Note 4.7) a Borel set B  containing E  and of the same Admeasure. Hence 

if A  ̂ satisfies the Radon condition(*) then by the preceding corollary we see 

th a t

K^(E) < A^(B) =  sup{A^(K)|%  C B  and K  compact}

< sup{ryA^(X)|Ar Ç B  and K  compact}

where ry >  0 is dependent only on (. The required result follows. □
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10 Dimension and Product Spaces.

10.1 Dimension.

We now make some definitions in order to discuss dimension. We recall th a t 
H  denotes the set of all Hausdorff functions. We now define the Hausdorff- 
Besicovitch dimension of a metric space (X, p) to be the supremum of all 

non-negative s for which >  0, where h{s) is defined on all non­
negative t by h{s){t) = f . We denote the Hausdorff-Besicovitch dimension 
of X  (with respect to the metric p) by dim (X, p).

N o te  10.1 By Theorem 8.3, for any metric space (X, p), the increasing sets 

lemma holds for Thus by Theorem 9.7 the Hausdorff-Besicovitch di­

mension is equal to the supremum of all non-negative s for which A^(*^(X) > 
0. H

We may partition H , for a metric space (X, p), into two sets B^{X,p)  

and B + (X ,p), by

B ”(X,/)) =  { A € H |A '‘(X) =  0},

B+{X,p)  = { h e  H |A"(% ) > 0}.

We call the partition {B°(X, p), B+(X , p)} the generalised Hausdorff-Besi­
covitch dimension (of (X, p)).

In a similar fashion we may partition H , for the metric space (X, p), into 

two sets W °(X, p) and W +(X , p), by

W+(X,  p) = { h €  H|A'*(X) >  0},

Similarly we call the partition {W®(X, p), W"^(X, p)} the generalised weight­
ed Hausdorff-Besicovitch dimension (of (X, p)).
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N o te  10.2 It is noted th a t the two partitions

{ B \ X , p ) , B + ( X , p ) }  and { W \ X , p ) , W + ( X , p ) }  

may differ, as is shown by the example in [7] (see Note 6.5). H

N o te  10.3 For X  a metric space metrised by p and r ,  if p <  r  then

dim (X, p) < dim (X, r)

and

and if there exist positive constants pi and % such th a t

m P < T  < l2p

then
dim (X, p) =  dim (X, r ) . H

Given a metric space X , we denote by 0 the set consisting solely of the 
trivial measure assigning the value 0 to every subset of X.

P ro p o s it io n  10.4 For X  a compact metric space with metric p we have the 
following characterisation of dimension

dim(X,/9) =  sup{s > 0|M "W (X ) ^  0}

and similarly

W \ X , p )  = { h e  H |M " ( % )  =  0 },

W +( X, p )  = { h e  H |M '‘(X) 9^0}. H

Proof This is immediate from the definitions of dimension, Note 3.2 and 
Theorem 6.3. □
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N o te  10.5 The condition th a t M ^(% ) /  0 above merely states th a t for 
some 5 >  0, there exists a non-trivial Borel measure such th a t for every 
subset E  0 Î X  with diamE" <  <5 we have //(E) <  /i(d iam E ). H

P ro p o s it io n  10.6 For any metric space X  and premeasure ^ on X  which is 
regular with respect to the fam ily of all open sets, (X) ^  0 i f  and only i f  
there exists a finite non-trivial Borel measure p. such that fo r some constant 
k the set

e  X  |D^//(a:) <  A:}

has non-zero p-measure. H

Proof Now suppose M ^(X ) ^  0 and hence by definition there exists 
positive 6 and a finite non-trivial Borel measure p  such th a t for every subset 
E  of X  with d iam E  < 6, //(E ) < ^(E ). Thus indeed for every a; in X  we 

have D^//(a:) <  1.
Conversely suppose // is a finite non-trivial Borel measure with the set

ja: G X  D^p{x) <  A;}

of non-zero //-measure, for some fixed k. We define the functions /„ , mapping 
X  into the non-negative extended reals, by

f n i x ) a; G E  and d iam E  < —
n

for all positive integers n. It is clear th a t

oo
{ x e x  |D«fi(x) <  *} Ç U  /-H [o ,2* ])

n = l

and hence we may choose N  so large th a t /^^([0,2A:]) is of non-zero p- 

measure. Thus for all subsets E  of X  with diameter not greater than

(//L/-X[0,2A;)))(E)<2A;((E)
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since if E  has non-empty intersection with /„  ^([0,2k]) then

and otherwise E  has zero ( / /L / “ ^([0,2A:]))-measure. Using the regularity 
of ^ one sees th a t f~^{[0,2k]) is closed and hence //-measurable. Thus, by 

Note 4.5, fj,\- f~^{[0,2k]) is a finite non-trivial Borel measure. The required 

result follows on noting th a t ^ / / l / “ ^([0, 2A;]) is in M^(%) for 6 < □

10.2 Definitions for Product Spaces.

For two metric spaces X  and Y,  with metrics p and a  respectively, there are 
many ways to metrise the space X  x Y . We may define the metric, p x  a  
say, on % X y  by

{p X a){{x, y), (w, z)) =  max{p{x, w), a(y,  z)}

for any pairs {x,y)  and (w,z)  in X  x y .  A metric r; on X  x y  is term ed a 
strict product metric if and only if for some constant rj,

p X a  < V < rj{p X a),

and is termed a weak product metric if and only if for some constant rj,

T](p X a) < V.

We reserve the term  product metric for v  when

rji{p x a )  < v  < r]2 {p x a)

with T]i, 7/2 positive constants. The idea of the above terminology is th a t 
‘s tric t’ refers to rji set a t 1 and th a t ‘weak’ refers to the validity of the left 
hand inequality only. Throughout the remainder of this section we denote 
by p x  and p y  the projections of X  x y  onto X  and Y  respectively.
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N o te  10.7 For X , V  metric spaces, with metrics p, a  respectively and X  x Y  
w ith metric v,  if r}i{p x  a) < v  for some constant rji then we have for all 
subsets G of X  x Y ,

771 max(diampPx(G^),diam^py(G)) <  diam ;̂ G.

Also for E  Ç X  and F  C Y  if v  < rj2 {p x  a) for some constant 772 then we 
have

diam„ (E  x  F) < 772 max(diamp E , diam̂  ̂F ) .

I t follows th a t if u is a product metric then the topology generated by v  is 
precisely the topology generated by p x cr; th a t is

T(X X y,u) =  T(X X y,p X (7)

where T (X , p) denotes the topology on X  generated by the metric p. H

For S , T  any families of subsets of X , y  respectively we define S, fo
be the family of sets

^E  X  F \E  ^  S  and F  ^  .

N o te  10.8 Given a product metric on X  x y ,  if ^  is adequate on X  and T  
is adequate on Y  then S i?, adequate on X  x y. H

For premeasures ^ and f  on X  and Y  we may define the product premea­
sure  ̂ M (  on X  X y  by

(?NC)(G)  =  Ç(px(G)K(py(G)), 

for all subsets G of X  x Y .

N o te  10.9 We reserve the symbol x for the product measure since measures 
may also be considered as premeasures and in this case we have in general 
the product premeasure different to the product measure. H
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N o te  10.10 For all subsets G of X  x y  we have

(( M 0 { G )  =  in f{((E )((F )|E  C X , F C Y  ^ n d S C E x F } .

It immediately follows th a t if ^ is ^-regular and C is .F-regular then ^ IX f  is 
S  (g) .F-regular. H

Throughout the rest of this section we employ the convention of

O .oo  =  o o .O  =  0 .

For measures // and i/ on X  and Y  we may define the measure f i x  i/ on X  x Y  

by

I t=l

G  g  U  X F i  .
i=l J

N o te  10.11 It is clear that, for E  and F  subsets of X  and Y  respectively,

( / /  X u){E X  F) < fi{E)i^{F),

and f i x  11 is the largest measure satisfying this inequality. As is well known, if 
E  is //-measurable and F  is //-measurable then E  x  F  \s { f i x  f/)-measurable 
and if fi is 5-regular and p is .F-regular then // x %/ is (5 (g) .F)(r-regular. 
Furthermore if fi satisfies the condition th a t for every set S  and weighted 
cover {ci,Ei)i>i of S  we have

oo
< Y^Cifi{Ei), 

i=l

then for S, T  subsets of X , T  respectively

X u){S  X T )  =  K S M T ) ,

and similarly for p. Now if // is a regular measure then fi satisfies the condition 
th a t

oo

m(5') <
i=l

56



for every set S  and weighted cover (q , Ei)i>i of S. Thus if X  x F  is metrised 
by a product metric and // and u are Borel then so is // x i/. H

10.3 Hausdorff and weighted Hausdorff measures on 
Product spaces.

P ro p o s it io n  10.12 For X , Y  metric spaces and premeasures ^ on X  and Ç 
o n Y , i f  X  X Y  is metrised by a product metric then

M^{X)<S>M^{Y) Ç X Y) ,

where M ^(X ) <S) M ^(F) is the set

{p  X i/\p e  M ^(X ) and i/ G M ^(F)}. H

Proof. Suppose p and a  are the metrics on X  and Y  respectively and v  
is a product metric on X  x F . For p  in M^(%) and i/ in M ^(F) we have 

p  in M ^(X ) and i/ in M ^(F) for some positive ô and e. Thus by Note 10.7 
there exists a positive constant rj such th a t for all subsets G of X  x F  with 
diam^ G < rj min(J, e) we see th a t

diamp (G ), diam^  ̂py(G) <  -diam^, G <  ô,£.

Hence we may calculate

{ p x u ) { G )  < { p x i y ) { p x { G ) x p Y { G ) )

< p {p x { G ) M p y {G))

<  ((p% (G ))((py(G )) =  ( ( M ( ) ( G ) .

The required result follows by Note 10.11. □
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Lem m a 10.13 For X ,  Y  metric spaces and Hausdorff functions h,g,  i f  X  x  
Y  is metrised by a strict product metric then

where h g is the product premeasure of a premeasure defined by h on X  
and a premeasure defined by g on Y . H

Proof. This result is given by Lemma 5 of [18]. It follows immediately 
from the fact th a t for all subsets G of % x F ,

/i(diam pPx(<^))^(diam ^py(G )) <  (/t^)(diam^, G ). □

Lem m a 10.14 For X , Y  metric spaces and premeasures ^ on X  and C on 
Y , i f  X  X Y  is metrised by a strict product metric then

(A« X X < ) ( S  X T) =  sup(A^ X A^)(5 x T)
S>0

fo r  all subsets S  of X  and T  of Y . H

Proof. It is clear th a t for every set S  and weighted cover (c%, E i ) i > i  of S  
we have

oo

i=l

for all positive ô and hence

oo
X H S ) < J 2 c i X ( { E i ) .

i = l

Thus by Note 10.11 we have 

sup(A| X A^)(S X T) =  sup A|(S)A^(T) =  A«(S)A«(T) =  (A« x  A«)(S x T ).
S>0 S>0

This gives the required result. □
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P ro p o s it io n  10.15 For X , Y  metric spaces and premeasures ^ on X  and C 
on Y , i f  X  X Y  is metrised by a strict product metric then fo r all subsets S  
of X  and T  o f Y ,

(Â  X A ^ (5  X T) <  A«^«(5 x T), 

and equality holds provided that the following conditions are satisfied:

1. i f  X^{S) =  0 then for every positive 5 there exists a (countable) 5-cover 
o f T ,

2. i f  \ ^{T)  = 0 then for every positive 5 there exists a (countable) 5-cover 
of S . H

Proof This is essentially proved in Theorem 2 of [18] but we give the 
proof for completeness. We suppose p and a  are the metrics on X  and Y  
respectively and is a strict product metric on % x T  with v  < r]{p x  a)
for some 77. Given subsets S  oî X  and T  of Y  and positive 5 we have for all
weighted (5-cover (c%, Q)%>i of 5  x T,

00 00

i=l i=l

Now for each 7/ in F ,

{(ci ,px(Gi))jy e  pv(G i) and i > 1} 

forms a weighted cover of S  and hence

J^{ci^(Px(Gi)) jy e  pv(Gi)  and i >  1} >  A^(5).

Thus
00

M C)(<?i) >  A|(5)A^(T) > (A« X A<)(5 X T)
Z=1
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and hence on letting â tend to 0 we see, by the previous lemma, th a t

(A ( X A ( ) ( S  X T )  <  X T ) .

If for some positive â there does not exist a (countable) (5-cover of 5  then 

there does not exist a weighted (5-cover of 5  x T  and hence x T) =

oo. Now by the above hypothesis A^(5') =  oo and hence, by Note 10.11, if 

A((T) ^  0 then

(A( X A^)(5' X T) =  0 0 .

Similarly if for some positive ô there does not exist a (countable) (5-cover of 

T  and A^(5) 0 then

(A ( X A ( ) ( 5 " X T )  =  A("'^(6 ' x  T ) .

Now suppose A^(5) =  0, so th a t if (f});>i is a (5-cover of T  then for every 
positive £ we may choose for every j  >  1 a weighted (5-cover {aij, E ij)i> i of 
S  such tha t

oo

i=l

Thus by Note 1 0 .7 ,  (a* , E i j  x  F j ) i j > i  forms a  77(5-weighted cover of 5  x  T 
with

^  ^ ĵ) <

Hence by Note 1 0 .1 1 ,  on letting first e and then 6 tend to 0  we have

A(x((^ X T) =  0 =  (A  ̂ X A^(5' X T).

Similarly if A^(T) =  0  and for every positive 5 there exists a (countable) 

(5-cover of S  then

A(M((^ X T) =  0 =  (A  ̂ X A^(5' X T).
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Hence we may assume th a t X^(S) and A^(T) are both non-zero and for 
every positive ô there exist (countable) 5-covers of both S  and T.  Thus for 

positive Ô such th a t Af ( 5 )  and A^(T) are both non-zero we have the following. 
For any weighted 5-covers {ai,Ei)i>i of S  and {bj,Fj)j>i of T  we see th a t 

(üibj, Ei  X Fj)ij>i  forms a weighted cover of 5  x T  and

^  X X F ,) =  I I I I .
w>i V>i /  V>i /

Thus by Notes 10.7 and 10.11

x T ) <  (A| X A<)(5 x T).

The required result follows on taking the limit as 5 tends to 0 and the previous 
lemma. □

N ote 10.16 W ith some slight changes to the above proof it is clear th a t for 
all 5 >  0 and all (7 Ç % x T  we have

( A | X <  x r H u ) ,

and if the following conditions are satisfied

1. whenever X ÿ { p x { U ) )  =  0 there exists a (countable) 5-cover oî p y { U )

2. whenever Ag(py(f/)) =  0 there exists a (countable) 5-cover of px(U)  

then
< (Af X X<)(U). H

Corollary 10.17 For X ,  Y  separable metric spaces and premeasures ^ on X  
and Q on Y , i f  X  x Y  is metrised by a strict product metric then

A '̂'^ <  A( X A(. 4
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Proof. We denote the family of all rectangles oî X  x F  by 7^, th a t is

n  =  {E  X F \E  Ç  X  ànd F  Ç  Y } .

By Notes 4.7, 10.10 and 10.11 we have is T^^^j-regular and x Â  is 
7?.<j-regular. The result follows by the previous proposition. □

C o ro lla ry  10.18 For X , Y  arbitrary metric spaces and Hausdorff functions 
h^g, i f  X  x Y  is metrised by a strict product metric then fo r  all subsets S  of 
X  and T  of Y  we have

(A* X A»){5 X T) < A'“»(5 x T),

and hence i f  X' '(X) and A®(K) are non-zero then x Y )  is non-zero. H

Proof This is immediate from the above proposition and Lemma 10.13. 
This result is given in Theorem 9 of [18]. □

N o te  10.19 In the above, if E  and F  are compact then this also follows by 
Notes 3.2, 4.7 and 4.8, Theorem 6.3, Proposition 10.12 and Lemma 10.13. H

E x a m p le  10.20 There exists a compact metric space X  and a Hausdorff 
function h such that

1. there exists a subset U of X  x  X  such that

(A'" X A'*)([/) > A'“̂ '*(J7) =  A'‘'"(t/),

2. there exists subsets S  and T  of X  such that

(Â  X A )̂(5' X T) =  x T) < Â (̂5' x T). -I

Proof We let X  be [0,1] and h be the function defined by h{t) = y/t. We
let U be the set {[x^x)\x G %}, S  be the set {0} and T  be the set X .  It is
easily checked tha t 1 and 2 above hold. □
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10.4 Dimension of Product spaces.

T h e o re m  10.21 F o r X , Y  arbitrary metric spaces with metrics p, a  (respec­
tively) and X  X Y  with strict product metric v  the following set inequality 
holds

W+{X,  p )  O W^{Y,  g )  Ç W ^ { X  X y ,u ), 

where p) O g )  is the set

{ f g \ f  G W ^ { X ,  p )  and g 6 W+{Y, g ) } .  H

Proof Let X , Y  be as above and /  in W'^{X,  p) O W'^fY,  g ) .  Thus /  is
equal to hg, for some h in W'^{X,  p) and g in W'^iY^ g ) .  Hence by definition

A^(X), A^(y) are non-zero. Thus, by Corollary 10.18, \ ^ { X  x Y )  is non-zero 
and the result follows. □

N o te  10.22 It is noted th a t the above theorem applies only to the partition 
given as the generalised weighted Hausdorff-Besicovitch dimension and not 
th a t given as the generalised Hausdorff-Besicovitch dimension. However, 
under certain conditions on a metric space X  we have A^{X)  = X^{X)  for all 
h in H. By the work of J.D. Kelly in [18] we have for X, Y  arbitrary metric 
spaces with metrics p, g  (respectively) and X  x Y  with strict product metric

y,
w ^ { x ,  p )  o  B + ( y ,  g )  Ç  B + ( x  X y ,  v ) .

Now by Corollary 9.8, and Proposition 5.3 if X  has finite structural dimension 
then for all h in H  we have A^(X) =  A^(X). Also by Corollary 9.9, and 
Proposition 5.4, if % is a compact ultram etric space then for all h in H  we 
have A^ =  Â  (on Z).  Hence if X  has finite structural dimension or X  is 
a subset of Z  w ith the induced metric p where Z  is as above and Y  is any 
metric space with metric g  we have

H +(X ,p) ©H+(y,a) Ç B + (X  X Y,v )
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given th a t f  is a strict product metric. The condition th a t Z  be compact is 
required since the functions in H  may not be continuous. H

C o ro lla ry  10.23 For X , Y  arbitrary metric spaces with metrics p ,a  (re­
spectively) and X  X Y  with weak product metric v  the following inequality 
holds

dim (X, p) +  dim (F, cr) <  dim {X  x Y , v ) .  H

Proof. We denote by h(s) the function defined on all non-negative t  by 
h{s){t) = P.  By the finite order of h{s) and Note 10.3, we may assume
without loss of generality th a t f  is a strict product metric. By Note 10.1

dim (X, /)) =  sup{s G Rg |h(s) G W"^(X, p)}.

The corollary now immediately follows from the previous theorem. □

N o te  10.24 There must be some restriction on how the space X  x F  is 
metrised since we can remetrise X  and F  to give as large a dimension as we 
like for X  and F  respectively. Thus without some condition on how X  x F  
is metrised the above corollary would clearly be false. H

E x a m p le  10.25 There exist compact metric spaces X  and Y  such that

dim (X, p) 4- dim (F, cr) <  dim {X  x Y , v ) .  H

Proof. Such an example is given in [2]. □

C o n je c tu re  10.26 There exist compact metric spaces X  and Y  such that

B+(X, p) Q B+(F, (7) 2  B+(X X F, u)

Remark. We believe this may be true for the case when X  =  F  is as in 
the example given in [7] or something similar.
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11 On the Existence of Sets o f Finite Positive  
Hausdorff Measure.

L e m m a  11.1 For X  a compact metric space, G  c l fam ily of open sets o f X  
that is adequate fo r  X ,  a premeasure ^ on X  that is Q-regular and positive 

Ô, the set M j(% ; G) under the identification given by R iesz’s Representation 
Theorem is convex and compact in the weak*-topology. H

Proof. The convexity of follows trivially from the definitions.
Under the identification given by Riesz’s Representation Theorem we have 
for ji in M +(% )

\\p\\ =  n{X)

and hence, by Theorem 6,3, M^(%; is bounded. Thus it only remains 

to be proved th a t M^(%; is weak*-closed, since by the Banach-Alaoglu 
Theorem, see [27], any weak*-closed and bounded set of the dual space to a 
normed vector space is compact in the weak*-topology.

Let {pi)i>i, be a sequence in M j(% ; which is convergent to m* in the 
weak*-topology. For all f  in C (X) ,  such th a t /  >  0 we have by convergence 
m *(/) >  0. Hence m* may be represented by a measure, /i say. Now for G 
in G, such th a t d iam G  < Ô we have

p{G) < lim inf/ii(G ) <  ((G ).l—̂OO

Thus fj, is in M ^ (A ;^ ). Hence is weak*-closed as required, thus
completing the proof. □

T h e o re m  11.2 For X  a compact metric space, (  a premeasure on X  of 
finite-order, and all real i  with A.^{X) > £, there exists A  a (compact) subset 
of X  such that

^ <  A((A) <  A^(A) <  00.
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Furthermore if  ^ is Borel regular then

i  <  \^{A) =  A.^{A) <00. H

Proof. Let X , ^ and £ be as above. If ^ <  0 then v4 =  0 gives the result. 
Also if A^(X) < 0 0  then A  = X  gives the required result. Hence we may 

suppose th a t £ > 0  and A^(X) =  oo.
By Proposition 5.1 there exists Ç, a family of open subsets of X  and (  a 

premeasure of X  such th a t Ç is adequate and finite in the large and (  is of 
finite-order, ^-regular and there exists a positive constant rj such th a t for all 
positive e,

<  ri\%

We define Q to be the set {x £ X  |C({^}) > 0 } . Thus if A^(Q) is infinite 
we have JZ G Q}  is infinite. Hence there exists a finite (and thus
compact) subset A oî Q such tha t IZ{C({^})I^ E A} > £, and the result 
follows. Otherwise IZ{C({^})I^ G Q}  is finite. Thus Q is countable and 
hence A^-measurable. Therefore A  \  Q is Borel and A^(A \  Q) is infinite. 
Thus if we can choose a (compact) subset A of A  \  Q such th a t

t)£ < A^(A) <  oo

then the required result follows by Corollary 9.9. Now by Proposition 8.1 
and Theorem 8.4 we may choose compact K  a subset of A  \  Q such th a t 

t]£ < A^{K).  Hence by Note 3.3 we may suppose th a t Q is the empty set 
since we may replace A , (  and Q by A , f |A , C|A and G\X  respectively. 
T hat is, without loss of generality, we may assume th a t C({^}) is zero, for 
all T in A . It follows by the adequacy of Q and the ^-regularity of (  th a t for 

all /X in and x  in A , ia{{x}) is zero.

By Corollary 9.9 we may choose positive Ô so small th a t A^(A) >  r]£ 

where rj is as above. We let h be

sup{M A C )|fieM ^(X ;e)}
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and define H* to be the hyperplane

{m* eC*{ X) \ m*{ Xx )  = h},

which is clearly weak*-closed. Throughout the following we take the identifi­

cation given by Riesz’s Representation Theorem. By Theorem 6.3, h >  A^(X) 

and hence by the preceding lemma WL^{X]Q)r\H* is non-empty, convex and 
compact in the weak*-topology. Thus by the Krein-Milman Theorem, see

[27], we may choose // in M.^{X;Q)  fl H* to be an extreme point. T hat is if

fi =  AcmJ +  (1 — «)m2,

for some k in (0,1) and distinct in C*{X),  then either m j or is

not in M ^(X ; D H*. We also define

BJ =  |J{ G  e ^ |d iam G  < e and r^(G)  > ((G )}.

We claim th a t for g in (0 ,6) and r  in (1,2), BJ is //-almost all of X . To 
prove this suppose //(X  \  BJ) > 0 , and let G i , . . .  ,Gn be an enumeration of 
{G e  ^jdiam  G > s}.  We let Xi =  X  \  BJ and then for / =  1 , . . . ,  n

Ni+i =
i f / / ( X A Q ) > / / ( x , n Q )

Ni n Gi if fJ>{Ni \  Gi) < jji{Ni n Gi)

Now B J is open and hence //-measurable. Therefore N  =  Nn+i is such th a t 
n{N)  > 0, N  is Borel and for all G in Ç, with diam G  >  6,

N  Ç G  OT N n G  = ^.

Now by hypothesis for all x  in X , (({%}) =  0 and hence fJ>{{x}) =  0, see the 
above. So there exist Mi  and M2 subsets of N  with

Ml n M2 =  0, Ml U M2 = N  and //(M^) = //(M2) =  —(jl{N) >  0
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and M l, Mg Borel.
We now define the following finite (positive) Borel measures by

^ i {E)  = Tfi{E n M l) +  (2 -  t)^{E n Mg) +  fji{E \  N)

fj,2 {E) =  (2 — t)/jl[E n M l) +  Tfi[E n Mg) +  fJ<{E \  N )  

for all subsets E  oî X .  Thus for any such we have

^ (E ) =  /^i(g)„.+ /^2(g)

and
N Ç E  or N r \ E  = (l} = >  fJ'\{E) =  112(E) = fJ'(E).

In particular
f i \ (X)  =  jUg(%) =  f l (X)  =  h.

Hence by the extremality of fi, there exists G in ^  such th a t diam G < ô and 
one of the following holds,

Mi (G) >  C(G) (1)

U.2{G) >  C(G) (2)

Suppose th a t (1) holds then diam G < e since otherwise

/ii(G) =  //i(Gj) =  ii(G)

for some z (1 < i <  n). Also

t / j , (G)  > Tfj,(G n M l) +  (2 — r)fj,(G fl Mg) +  /i(G \  N)  =  /zi(G) >  (^(G),

since r > l > 2  — r > 0 .  Therefore G is a subset of BJ, which is a contra­
diction since /z(G D M i) >  0. Similarly we gain a contradiction if (2) holds. 
Thus indeed the claim is true.
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It follows immediately from the definitions th a t

B =  n  n  b :
K t < 2 0<e<d

is equal to a countable intersection of sets BJ. Hence B  is //-almost all of X .  

Also Q) = I for all x  in B.
Thus by Theorem 9.3 and Note 4.3 we have

tx(X)  >  k<[B)  >  A<(B) >  /.(B ) =  /.(X ) =  h.

But h >  A^(A) >  T]i. Thus by Proposition 8.1 and Theorem 8.4 we may 

choose A  a compact subset of B  such th a t < A^(A). The required result 
follows. □

Corollary 11.3 For X  a metric space and ^ a premeasure on X  o f finite-
order, i f  satisfies the Radon condition(^) then fo r  all real £ with A^(X) >  i
there exists A  a (compact) subset of X  such that

£ < A^(A) <  A^(A) < oo.

Furthermore i f  ^ is Borel regular then

£ < A^(A) =  A^(A) < oo. H

Proof This follows immediately from Note 4.8 and the preceding theorem.
□

Corollary 11.4 For X  an analytic subset o f a complete separable metric 
space and ^ a premeasure on X  of finite-order that is regular with respect to 

the fam ily of all open sets, i f  the increasing sets lemma holds fo r  A  ̂ then for  
all real £ with A^(A) >  £ there exists A  a (compact) subset o f X  such that

£ < X ^ { A ) = A ^ { A ) < o o .  H
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Proof. This follows immediately from Theorem 8.4 and the preceding 
corollary. □

C o ro lla ry  11.5 For X  an analytic subset of a complete separable metric 
space, h a continuous Hausdorff function, i f  one of the following is satisfied,

1. h is of finite-order

2. X  has finite structural dimension

3. X  is ultrametric

then fo r  all real £ with A^{X)  > £, there exists A  a (compact) subset o f X  
such that

I  < =  A" (A) <  oo. H

Proof This follows immediately from Theorem 8.3, Proposition 5.3, 
Proposition 5.4 and the preceding corollary. □

Remark. The Examples 8.5 and 12.1 together with the example given 
in [7] show th a t the conditions given in this thesis for the existence of subsets 
of finite positive Hausdorff measure are in some sense best possible. However 
there is no counterpart to the example given in [7] for the weighted Hausdorff 
measure. Thus the existence of subsets of finite positive weighted Hausdorff 
measure may be assured under some more general conditions. However we 
give the following as a conjecture.

C o n je c tu re  11.6 There exists a compact metric space X  and a continuous 
Hausdorff function h such that \ ^ { X )  = oo and there are no subsets of X  of 

finite positive -measure.
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12 More on the Increasing Sets Lemma.

12.1 A counterexample.

E x a m p le  12.1 There exists a complete separable metric space X  and a pre­
measure ^ on X  such that:

1. X ^ { X ) = \ ^ { X )  = oo,

2. =  X^[K) =  0 fo r all compact subsets K  of X ,

3. ^ is open regular and continuous with respect to the Hausdorff metric.

Hence the increasing sets lemma fails fo r and and there are no subsets 
of finite positive -measure or of finite positive X^-measure. H

Proof. We prove this by construction. We let X  be the Banach space of 
summable real sequences (this is usually denoted by For each member 
X =  {xi)i>i of X  the norm ||x|| is defined by

oo

|x|| = Ü  ki|
i=l

We let p denote the metric induced by this norm. We define y  to be the 
family of all non-empty finite subsets of X .  We define f  by

f,(E) = mf{{0 e  H |3Y  e y : E C  B(Y, Ô)} U { ! } ) .

It is easily checked th a t ^ is a premeasure and open regular. Continuity of 
^ with respect to the Hausdorff metric follows trivially from the fact th a t 
if p {E , F)  < Ô then E  Ç B{F,ô)  and F  C  B{F , ô )  where p denotes the 
Hausdorff metric induced by p. This proves (3).

To prove (2) we let U{x,  6) denote the open ball centre x  and radius S. 
For Ô > 0, X e  X  and K  a compact subset of X  we have H U{x^ (5)) =  0
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since for all s >  0 there exists a finite subcover of K  (5) from the family
of sets {U[y,e) \y  E %}. The result follows by taking finite covers of K  from 

the family of sets {U{y,5)\y  E X} and deducing th a t A2^(i^) =  0.

To prove (1) we show th a t A^(B(0,1)) >  |  where 0 denotes the point 

X = (xi = 0)i>i. The result follows from this by noting th a t there are 
countably many disjoint closed balls of radius 1 contained in X .  Let us 

suppose th a t A f ( B ( 0 , 1)) <  We let D  be the set of all sequences x =
with finitely many non-zero terms: th a t is there exists N(x)  such th a t for
i > N{x)  we have Xi =  0. Now suppose th a t (cj, Ej)j>i  is a weighted 1-cover 

of B (0 ,1) such th a t Cj^{Ej) < Since D  is dense in X  we can choose a 

sequence of subsets {Dj)j>i of D  and a sequence of positive numbers {6j)j>i 
such th a t

j=l ^

Hence we can choose a sequence of positive numbers such th a t

£j > 5j (Vj >  1)

j = l  ^

Now we can choose an increasing sequence of positive integers { N j ) j > i  such 

th a t for all i > Nj  we have di = 0 whenever (di)i>i E Dj  and j  > 1. We let 
z =  {zi)i>i be the point defined by

{2cj£j when i = Nj  
0 otherwise.

By definition we have z E B (0 ,1). Also if z E then we must have

oo
^   ̂2‘Cj£j ^  6%.
j = i
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We let X  be the set

l i > l 53 ^  f
j = i

We may calculate, provided X /  0

oo

5^  Ci^i >  53 53 ^  53 53 53 ^  ( 53 ) 153 ^3^3 1 ^
iGi ieij=i iei i e i je i  \ieT /  \ j e i  J

Thus in all cases < 1- Hence we see th a t

53  (z) < 1
i=i

which is a contradiction since {cj,Ej)j>i  was chosen to be a weighted cover 
of B ( 0 ,1). This completes the proof. □

12.2 The increasing sets condition for premeasures.

We say th a t a premeasure satisfies the increasing sets condition if whenever 
(Ei)i>i is an increasing sequence of subsets of X ,  th a t is Ei Ç Ei+i for i >  1,

V>i /

In the previous example we see th a t ^ does not satisfy the increasing sets 
condition.

Remark. The counterexamples to the increasing sets lemma given in [3] 
and in [25] both fail the above condition on their premeasures. In [3] the 
premeasure fails the above condition simply because it is not defined for all 
sets.
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N o te  12.2 We note th a t a premeasure ^ on X  satisfies the increasing sets
condition if and only if for all sequences of subsets of X  (not neces­
sarily increasing) we have

(  Aim inf Ei] =   ̂ ( U  f l  -  lim inf((Ei). H
\  /  Vn=li=n /

In view of the above definition we define the operator ^  on the set func­
tions of a space X  by

<PiO{E) = i n f j s u p ( ( E i )  
U>i i = l

Hence a premeasure satisfies the increasing sets condition if and only if we 
have It is also clear th a t the increasing sets lemma holds for if

and only if for all e, 6 with 0 < 6 <  6 we have A | <  </>(A|) and similarly for 

Â .

P ro p o s it io n  12.3 For X  a metric space, ^ a premeasure on X  and 6 >  0 
we have

and (^(Af) <  H

Proof. For a subset 5  of X , ê: >  0 and a weighted (J-cover (c%, Ei) of S  we 
may choose for each i >  1 an increasing sequence of sets {Fij)j>i  such th a t

sup^(Fi,j) <  (f){^)(Ei) -f — .
j > i  ^

Now for j  >  1 we define S j  by 

S j  =  I x  E S y } ( l  +  e)ci% Fij(i) >  1 
Z=1 J
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It is clear that S = U ^ i Sj. Also

oo oo

5^(1 +  <  (1 +  ^) +  (1 +  ^)^'
i=l i=l

Hence the result follows for on first letting e tend to 0 and then taking the 
infimum over all weighted 6-covers (c%, of S.  The result follows imme­

diately for by taking the infimum over all ‘weighted’ 6-covers {ci,Ei)i>i
with Ci = 1 for all i > 1 . □

We now introduce another condition on premeasures which may be of use
in the study of the increasing sets lemma. We say th a t a premeasure f  on A  
is lower set continuous if and only if ^ satisfies the increasing sets condition 
and for every sequence of sets (not necessarily increasing) there exists
a subsequence (û)jfc>i, th a t is ik+i > ik for all A: >  1, such th a t

( (limsupEti= f f n u =? f u n •
Î—>cx) /  \n=l i=n )  \n=l i—n )

E x a m p le  12.4 There exists a space X  and a premeasure ^ on X  such that 
^ is lower set continuous and the increasing sets lemma does not hold fo r  A^. 
Furthermore X  can he metrised so that ^ is open regular and continuous with 
respect to the Hausdorff metric. H

Proof. We let J be the family of all sequences of integers {ji)i>i satisfying 
0 < ii  < Î for all z > 1. We let X  be the set of { j i ) i > i  G J which satisfies for 
some n  >  1

. J  =  0 for z <  n
I  >  1 for z >  rz

We define Ei^n for 1 < n <  z by

^i ,n  — {{jk)k>l  ^  ^ \ j i  ~  ^}*
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Letting F* =  Un=i ^i,n for i >  1, we see th a t (Fi)j>i is an increasing sequence 
of sets with union X .  For convenience we define to be the family of all 
sequence of positive integers (ji)i>i G J; th a t is 1 < ji < i for a lH  >  1. For 

J =  Ui)i>i ^  J'*' we define

oo oo

Fj =  limsupFijj =  n  U
*->oo k=li=k

First we define j  for 1 <  j  <  i and ^(X ) =  2. For every

countable subfamily K of we define

We let S be the family of sets

>  1} U < U  Fk K Ç and K countable
[kGK

Finally we define ^ for all F  Ç X  by

( (F )  =  in f{((F ) I F  Ç F  e  5  U {% }}.

It is easily checked th a t ^ satisfies the conditions of the example. Furthermore 
if X  is metrised by the discrete metric then ^ is continuous with respect to 
the Hausdorff metric and open regular.

By the above definition it is immediate th a t A^(F^) <  1 for z >  1. It 

is also clear th a t A ^(X ) <  2. The result follows on showing A ^(X ) >  2. 
Suppose th a t (Gj)i>i is a cover of X  with <  2. Thus ((G i) <  2 for
each z >  1 and hence we can choose a sequence of sets (iFi)i>i with Hi E S  
for z >  1 such th a t Gi Ç for z >  1 and < 2. We partition the
sets Hi  by setting

=  {H i \^ (H i )  >  0 and z >  1}
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= {Hi\^{Hi) = O â n d i > l } .

Now for each H  G we have H  = Ei j  for some i^j  >  1. Thus for i >  1 
we define Ni  to be the set { j  >  ^  Hence

oo

E  E  =  E  <  2.
i=l j^Ni He'H+

Thus the number of elements in tends to infinity as i tends to infinity. 
Hence given {ji)i>i G such th a t ji  G Ni for all but finitely many % >  1 we 
have

oo oo

l im in fE y . =  U  n  EiA
n=l i=n

The result follows if we can show th a t there exists {ji)i>i G such th a t 
j i  G Ni for all bu t finitely many i > 1 and

00 00

U w" n hm inf E ij, =  U n U n =  0
n=li=n

since this would imply a contradiction as {Ei)i>i was chosen to be a cover of 
X .

Now for each H  G we have H  equal to a countable union of sets Fk 
where k G Since a countable union of countable sets is countable there 
exists K Ç J+ such th a t K is countable and

[jn^Q U k̂.
keK

We let (kj =  (ki,j)i>i)j>i be an enumeration of K and choose an increasing 
sequence of integers (m„)n>i such th a t for all i > run the number of elements 
in Ni  is greater than n. Using countable choice we can select a sequence 

{ji)i>i G such tha t

i > m n  j i ^  ki^n and ji G Ni {\fi >  1 Vn > 1).
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It is clear that

oo oo

U n lim inf =  U n U n E ij, =  0
71=1 t= n

This completes the proof. □

N o te  12.5 The above construction for X  may be considered to be universal 
in the following sense. If Z  is any metric space and ( i s  a premeasure on Z  

such th a t (j){Ag{Z)) /  A^(Z) then there exists a premeasure (  on X  and a 

metric p on X  such tha t (/>(Aj(X)) ^  A^(X). To show this we may choose a 

sequence of increasing sets (Wi)i>i with union Z  and sup^>i A^(H() <  A\{Z) .  

For each z >  1 we let be a (^-cover of Wi  such th a t

oo

s u pS C (£ ^ m ) <  A ^(^).

It is clear th a t we may assume tha t for each z >  1 the covers {Ei^j)j>\ are
disjoint and there exists zz* such tha t covers Wi. We define for z >  1

and 0 <  j  <  z

r E k j  if 1 <  j  <  riA: <  z <  njfc+i;
Fi,j = l z \ W i  if i  =  0 and r i k < i  < n^+i;

1 0 otherwise.

We define a mapping / :  Z  ^  X  by

/(z) — (iz)z>l  ̂  ̂ n
i = \

We denote the metric on Z  by cr and define the metric p on X  by

'26  if diam^ ( / “ (̂o;) U / “ ^(z/)) >  25
6 i f / - ^ ( x )  =  0 o r / “ (̂z/) =  0

 ̂diam^ U f~^{y))  otherwise
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ioi X  ^  y and p{x^ x) =  0, for ail x G X  and y ^  X .  For S  Ç X  we define

( ( ^ )  =  ( ( r ' M ) .
We also note that the above example may be realised in the real line. We 

let Z  be the set [0, e) where e denotes the base of the natural logarithm. We 
use n! to denote n  factorial; that is n\ = n{n — 1 ) . . .  1 with the convention 
that 0! =  1. We also use e{n) to denote the nth partial sum of the expansion 

of e, that is For i > l  and I < j  < i  we define the sets by

(i-l)!e(i-l)

=  U
k=l 2! 2!

It is easily checked that for 2 >  1 we have

U Fij = [0,6(2)).
;=i

First we define C{Fij) =  7  for 1 < j  <  2 and ((%) =  2. Then extend C 

to a premeasure on Z  as set out in the previous example. We let /  be the 
function constructed exactly as above and note that /  is 1 - 1  (an injection). 
Defining H  to be the set of all {ji)i>i G X  such that ji = i for all but finitely 
many 2 >  1 we see that the range of /  is precisely X  \ H .  H

Remark. If we are looking for conditions which ensure that the increasing 
sets lemma holds for (where  ̂ is a premeasure) then heuristic arguments 
suggest that any such conditions should imply at least one of the following:

1 .  ̂ does not increase too much under a suitable notion of ‘set enlarge­
ment’.

2. Given any sequence of covers ((£'ij)j>i)i>i then for ‘many’ sequences 
of positive integers {ji)i>i we have

00

n
Z=1
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12.3 Approximation by compact sets.

For a premeasure  ̂ on a metric space X  we define inductively the measures 

by and for n >  0 , then the measures are
defined to be sup^>o Finally we define to be the largest measure less 
than for all n >  1 and define $°° to be sup^>o

C onjecture 12.6 For X  a complete separable metric space and (  an open 
regular premeasure on X  we have for every analytic subset A of X

0^(v4) =  sup{A^(AT)|A" Ç A  and K  compact}.

Remark. We feel that the above conjecture may be of use in proving the 
following.

C onjecture 12.7 For X  a complete separable metric space and ^ an open 
regular premeasure on X  of strong finite order the Radon condition(^) holds 
for Â  and hence also for X .̂

12.4 The problem of the increasing sets lemma and 
Hausdorff functions.

C onjecture 1 2 . 8  For X  a metric space and h a continuous Hausdorff func­
tion the increasing sets lemma holds for A^.

This conjecture is known to hold true in the cases when X  is compact, 
X  has finite structural dimension, X  is an ultrametric space or h is of finite 
order. It would be of much interest if a counterexample could be found for 
which the space is a complete separable metric space. With this in mind 
it would be natural to look for a counterexample in a Banach space. The 
following proposition eliminates this case.
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P ro p o s it io n  12.9 For X  an infinite dimensional Banach space and h a 
Hausdorff function there exists a compact subset K  of X  such that A^{K)  >
0. H

Proof Let X  be as above with norm || • ||. By the infinite dimensionality 
of X  there exists a sequence of points satisfying

1. ||xi|| =  1 for all z >  1,

2, For n > 1 we have ||a:„+i — y\\ > I for all y e  Yn where Yn is the
subspace of X  spanned by {%i,. . . ,  x„}.

For h a Hausdorff function we may suppose that lim^^o h{t) = 0  since other­

wise is a multiple of the counting measure. For a; G IR we denote by [x] 
the least integer n  such that x  < n. We define inductively a function 0 on 
the positive integers by

(/>(!) =

0(n  +  1) = h { \ )

4&(1)

It is immediate th a t
h { \ )

< h { ^ )(f>{l) ■ ■ ■ ip{n)

for all n >  1. We define a code space 1  to be the family of all sequences of 
positive integers i =  {ij)j>i such tha t ij < (j){j) for j  > 1. Given an element 
{ij)j>i G I  we use i|n  to denote the n-tuple (z i,. . . ,  in) and define Bi\n by
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It is immediate th a t for i and j  in I  and n  >  1 we have 

i\n  /  j |n  = >  dist (Si|„, Bj|„) >  ^

and

We define a sequence (F„)„>i of subsets of X  by

&  =  U  -Si|n-
iei

We define K  by K  = f j ^ i  Fn which is clearly compact.

We show th a t A ^ ( K )  > h{\) .  Suppose th a t is a covering of K .

Since h is continuous from the right there exists a sequence { G j ) j > i  such 
th a t Ej  Ç Gj  for all j  >  1 and /z(diamGj) is as close as we wish to 

h (d iam E j). Now by the compactness of K  we can choose n  so large 

th a t for each i e  I  we have

B i \ n  C\ K  Ç  G j

for some j  >  1. Since lim^^o h{t) =  0 we may also ensure th a t (f){n +  ! ) > ! .  
For each j  >  1 we define gj to be the number of distinct Bi\n D K  contained 

in G j .  Now

if Qj =  1 then diam G j >

if 1 <  g{j) < (j){n) then diam Gj >  ^

if 0(m  +  ! ) • • •  (j)[n) < g{j) < (j)(m) • • • (/>(n) then d i a m ^

for 1 <  m < n

Also
if 9 j  — 1 then h { -^ ^ )  >

if 1 <  aU) < 4>{n) then h{- )̂ >
if <f>{m + l)---<l>{n) < g(j ) <(l>(m)---4>(n) then ^  5 ( I ) ê ^ M î )

for 1 <  m < n
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Hence
oo oo

g M d ia m G ,)  > >  H \ ) .

The required result follows. □
Remark. To find a counterexample to Conjecture 12.8 for which the space 

is a complete separable metric space it is sufficient to consider only subsets 
of the space of all sequences of natural numbers with the product topology 
given by the discrete topology on the natural numbers. However the way 
this space is metrised is of course highly im portant (that is if the conjecture 
is false).

Remark. The following proposition may be of use in searching for a coun­
terexample to Conjecture 12.8 for which the space is a complete separable 
metric space.

P ro p o s it io n  12.10 For X  a complete separable metric space and h a con­
tinuous Hausdorff function satisfying

1. fo r every compact subset K  of X  we have A^{K)  = 0

2. fo r every Hausdorff function g such that

y nlim sup —— =  0
t\o  g{t)

there exist K  C X  such that K  is compact and A^{K) > 0

the increasing sets lemma fails fo r A^. H

Proof. This follows from Theorem 8.4 and the fact th a t if A^(X) =  0
then there exist a continuous Hausdorff function g such th a t

1. h{t) n lim sup =  0
t \o  g{t)

and A^(A') =  0; see [26]. O
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