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A bstract

Linear and nonlinear investigations into the early stages of transition to  turbulence 

within interactive boundary layer flows are described. The behaviour of linear dis­

turbances downstream of the point of breakaway separation of a high Reynolds 

number boundary layer away from a smooth wall is investigated first, emphasis be­

ing placed on the structure and scales at each stage of the investigation. Neutral 

eigensolutions of the Rayleigh equation are considered and the wavenumber obtained 

to leading order. A critical distance downstream of separation is found at which the 

disturbance characteristics alter rapidly. Moving upstream, next, Rayleigh instabil­

ity which can occur within locally separating two- and three-dimensional triple-deck 

boundary layer flows is considered, demonstrating tha t the existence, locally, of a 

point of inflection is not a sufficient condition for such instability to occur. Finally, 

nonlinear vortex/ Rayleigh-wave interactions are studied for small wavenumbers and 

a new wave-pressure amplitude (integro-differential) equation is obtained which fur­

ther generalizes the application of vortex/wave interactions in interactive boundary 

layer flows. The inclusion of temporal effects at the onset of inflectional instability 

leads to a new initial-value problem for weakly nonlinear input holding there. To 

conclude, nonlinear forced vortex/wave interaction solution properties are discussed 

and numerical solutions of the corresponding receptivity problem are presented.
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Chapter 1

Introduction

1.1 Classical boundary layer theory

The foundations of classical boundary layer theory were laid by Prandtl (1904) 

who addressed the flow of a fluid with small viscosity past a solid surface. In his 

paper on this subject, presented in 1904 at the Third International Congress of 

Mathematicians, Prandtl postulates the existence, between the main body of the 

flow and the solid surface, of a relatively thin viscous layer, the motion of which 

is regulated by the pressure gradient in the inviscid mainstream flow. W ithin this 

boundary layer the velocity increases smoothly but steeply from zero at the sohd 

surface to the inviscid shp-velocity at the edge of the layer.

The physical problem resulting from these postulates gave rise to one of the original, 

and now classical, solutions of boundary layer theory, the Blasius (1908) sim ilarity  

solution. Here Blasius shows that the attached flow strategy can work in the case 

of an aligned flat plate immersed in a uniform stream.

The continuation of the Blasius solution into the wake behind the aligned flat plate 

was verified by Goldstein (1930) who showed that the viscous wake solution has a 

two-tiered structure just downstream of the trailing edge. Although Goldstein (1948)
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went on to demonstrate the existence of the separation singularity, a reahzation 

which heralded the collapse of the attached flow strategy, it was his two-tiered 

structure which, in part, motivated the search for an alternative strategy which 

would produce regular separation.

The attached flow strategy of classical boundary layer theory is thus based on the 

following main assumptions:

1. The viscous effects are conflned mainly to a thin boundary layer lying close to 

the solid surface of a body and to  a thin viscous wake.

2. The mainstream flow is supposed unaffected by the presence of the bound­

ary layer and the boundary layer solution is constructed to correspond with 

the undisturbed mainstream, in particular the pressure at any point in the 

boundary layer is tha t of the mainstream at the same section.

Experience suggests that for most thick bodies these assumptions are unrealistic and 

tha t separation occurs, the boundary layer breaking away from the solid surface and 

forming a shear-layer downstream signiflcantly detached from the body.

At the onset of separation, accurate numerical solutions (Brown and Stewartson 

(1969)) of the boundary layer problem for flows with prescribed pressure gradients 

generally indicate the occurrence of the Goldstein (1948) separation singularity at 

the point of zero skin friction. This separation singularity, when encountered, cannot 

be sensibly removed using a shorter-scale analysis, as is shown by Stewartson (1970). 

Thus, with the exception of a few notable cases of which Blasius (1908) is one, the 

classical scheme described above never works.

W hat is needed therefore, is an extension of classical boundary layer theory which 

produces regular separation by incorporating into its scheme the interaction between 

the mainstream pressure gradient and the separating boundary layer. Such a theory 

emerged in the late sixties and early seventies, see Stewartson and Williams (1969),
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Neiland (1969), Messiter (1970), and predicts a triple-deck structure which holds 

on a shorter lengthscale 0 (Æe” /̂®) in the neighbourhood of the point of separation 

and is described in §1.2 . See, for example, the reviews by Smith (1982) and (1986a), 

and the subsequent demonstration of its application to instability theory. Smith 

(1979a,b).

We note here tha t there are two types of separation which can occur in boundary 

layer flows. The first is breakaway separation (or free separation) which is observed 

in flow past a bluff body. The second type may be described as local separation and 

occurs in flows past small humps, corners, injection slots, trailing edges, etc. The two 

types of separation are related, e.g. by the triple-deck structure (as described below), 

and are interactive with relative pressure unknown, hence avoiding the Goldstein 

singularity.

1.2 The triple-deck structure

On a lengthscale 0{Re~^/^) about the point of separation the adverse pressure 

gradient induced by the flow outside the boundary layer drives a reversed flow in a 

sublayer, or lower deck, close to the solid surface and of thickness 0 (i2e“ ®/®). This 

causes a shear layer, or main deck, of thickness 0{Re~^l ‘̂) to  be pushed out into 

the mainstream flow, which in turn modifies the adverse pressure gradient. A third 

region, or upper deck, is needed, but in the potential flow outside the boundary 

layer, to  relate the induced pressure to the local displacement. Because potential 

flow is expected in this third region its thickness is comparable with its streamwise 

lengthscale 0 ( i2e"^/®).

The viscous-inviscid triple-deck form is controlled mainly by the lower deck equa­

tions, which in scaled terms are
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= -^'w+S’ (:-')
with

U = V  = 0  at y  = o,
Î7 ~  y  + A(^X'j as y  —> oo, 

i U , V ,P ' , A ' ) ^ { Y , 0 ,0 , 0 )  as X - > -oo .

The unknown displacement increment —A {X )  is linked to the unknown induced 

pressure P  by Ackeret’s law

P {X )  = - A \ X )

in the case of supersonic motion, and by the Cauchy-Hilbert integral 

in the case of subsonic motion.

However, triple-deck flows are observed to be often unstable in practice, see again 

Smith (1979a,b), and yield transition to turbulence; see following sections. It is this 

observation which forms part of the motivation for the following study.

In overall terms this thesis is concerned with separating or near-separating two- 

dimensional basic flows, although the three-dimensional basic flow is touched upon 

in Chapter 4.

1.3 Hydrodynamic stability

For over a century hydrodynamic stability has been recognized as one of the funda­

mental problems within the field of fluid mechanics, rightly so in view of its practical
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importance with regard to engineering, meteorology and oceanography, and astro­

physics and geophysics. It is concerned with when and how laminar flows break 

down, their subsequent development and their eventual transition to turbulent flow.

Few authors on this subject have been able to introduce the concept of hydrodynamic 

stability without seeking the assistance of Reynolds (1883) and his own description 

of his classic series of experiments on the instability of flow in a pipe.

The . . .  experiments were made on three tubes —  The diameters of these were nearly 1 

inch, I inch and  ̂ inch. They were all . . .  fitted with trumpet mouthpieces, so that water 

might enter without disturbance. The water was drawn through the tubes out of a large 

glass tank, in which the tubes were immersed, arrangements being made so that a streak or 

streaks of highly coloured water entered the tubes with the clear water.

The general results were as follows

1. When the velocities were sufficiently low, the streaks of colour extended in a beautiful 

straight line through the tube.

2. If the water in the tank had not quite settled to rest, at sufficiently low velocities, the 

streak would shift about the tube, but there was no appearance of sinuosity.

3. As the velocity was increased by small stages, at some point in the tube, always a 

considerable distance from the trumpet or intake, the colour band would all at once 

mix up with the surrounding water, and fill the rest of the tube with a mass of coloured 

water. Any increase in the velocity caused the point of break down to approach the 

trumpet, but with no velocities tried did it reach this. On viewing the tube by the 

light of an electric spark, the mass of colour resolved itself into a mass of more or less 

distinct curls, showing eddies.

Leading on from this, Reynolds showed that the laminar flow, as described in (1.) 

above, breaks down when U rjv  (now known as the Reynolds number) exceeds a 

certain critical value; U being the maximum velocity of the water in the tube, r 

the radius of the tube, and v the kinematic viscosity of water at the appropriate 

temperature.
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However,

the critical velocity was very sensitive to disturbance in the water before entering the tubes

  This at once suggested the idea that the condition might be one of instability for

disturbances of a certain magnitude and stability for smaller disturbances.

At the critical velocity

another phenomenon . . .  was the intermittent character of the disturbance. The disturbance 

would suddenly come on through a certain length of tube and pass away and then come on 

again, giving the appearance of flashes, and these flashes would often commence successively 

at one point in the pipe.

These ‘flashes’ are now known as turbulent spots, see for example Smith (1995). 

Below the critical Reynolds number the flow was of a laminar Poiseuille form with 

a parabolic velocity profile. As the velocity was increased above its critical value 

Reynolds found tha t the flow became turbulent with a chaotic motion tha t strongly 

diffused the dye throughout the water in the tube.

Reynolds’ description illustrates the aims of the study of hydrodynamic stability: to 

determine whether or not a given laminar flow is unstable and, if it is, to investigate 

how it breaks down into turbulent or some other laminar flow.

Since the subject of hydrodynamic stability is hugely varied in its application, and in 

the light of the work contained within this thesis, we restrict ourselves hereinafter to 

the subject of boundary layer stability and the subsequent transition to turbulence.

1.4 Boundary layer stability and transition to turbu­

lence

Boundary layer stability and transition to turbulence are a major concern to ex­

perimentalists and theoreticians alike. On the experimental side see, for example.
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Schubauer and Skramstad (1947), and the much later work of Dovgal et al (1986). 

On the theoretical side the processes of transition form three mathematically dis­

tinct levels or stages, namely Hnear disturbance theory, weakly nonlinear theory, 

and finally strongly nonlinear theory.

As is described in more detail in Chapter 2, the classical linear disturbance theory 

can be formulated by superimposing a disturbance on a given steady-state solution 

of the Navier-Stokes equations, resulting in the nonlinear Orr-Sommerfeld system 

of equations which governs the disturbance behaviour. Linearizing these equations 

for small disturbances, homogeneous equations are obtained which, when coupled 

with appropriate homogeneous boundary conditions, produce an eigenvalue problem 

for the growth-rate parameter and hence determine the eflfect, stabilizing or de­

stabilizing, which the disturbance has on the basic fiow.

Weakly nonlinear theory is usually based on the assumption that wave-like neutral 

solutions of the nonlinear Orr-Sommerfeld equations exist at leading order, see for 

example the work of Stuart and Watson (1960), Stewartson and Stuart (1971). In 

contrast, strongly nonlinear theory assumes that the mean flow is completely al­

tered by the presence of the disturbance. There are three main strongly nonlinear 

theories for flat plate boundary layer-like flows at large Reynolds numbers, namely 

vortex/wave interaction theory, discussed below in detail, pressure-displacement in­

teractive boundary layer theory, and high-frequency cum Euler-scale theory, corre­

sponding basically to increasing amplitudes in turn, see Smith (1995). Alternatively, 

direct nonlinear simulations can be carried out at finite values of the Reynolds num­

ber J2e, although such computations struggle at large Re  due to resolution difficul­

ties.
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By way of an example, and in reference to Chapter 6 , we note here tha t the condition

:dy =  0, (1.3)i0 {U o -c o Y

is a direct result of strongly nonlinear stability theory and is in accordance with 

Smith (1988), agreeing with experiments as shown in Smith and Bowles (1992).

Since the development of triple-deck theory (see §1.2 ) over two decades ago, inter­

active descriptions of boundary layer flows have become a valuable tool in obtaining 

a greater theoretical understanding of both the transition process and, it is hoped, 

ultimately a systematic account of turbulent flow and turbulence modeling.

Among those more widely used in the study of transition and turbulence in both 

incompressible and compressible boundary layers are, for example, viscous /inviscid, 

two-/ three-dimensional, small-/large-scale, and vortex/wave interactions, see Smith 

(1993) for a detailed account of current research employing these interactions.

Our concern within the la tter chapters of this thesis is with nonlinear vortex/wave 

interactions initiated within an interactive boundary layer, following on from a string 

of papers on vortex/wave interactions by Hall and Smith (1988, 1989, 1990, 1991), 

Brown et al (1993), Smith et al (1993) and more recently Timoshin and Smith 

(1995), Brown and Smith (1995); much of Chapters 5 and 6 is based upon Smith 

et al (1993). A separate and approximately simultaneous string of papers is by 

Benney and Chow (1989), Goldstein and Choi (1989), Wu (1993), Wu et al (1993) 

and Khokhlov (1994), including non-equilibrium critical layers which have an extra 

effect (time-dependence) acting in the critical layer but miss the nonparallel flow 

effect th a t is present in Smith et al (1993) [later referred to as SBB].

We now present a brief summary of vortex/wave interactions, what appears to be 

a promising candidate in providing an increased rational understanding of the early 

stages of transition to turbulence in boundary layers, or pipe or channel flows.
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1.5 V ortex/w ave interactions

Vortex/wave interactions arise in various forms, principally with either viscous- 

inviscid ToLLmien-Schlichting waves or inviscid, inflectional Rayleigh-waves; see again 

Hall and Smith (1991), Brown et al (1993), Smith et al (1993). A feature common 

to all such interactions is tha t at high Reynolds numbers three-dimensional waves 

are coupled nonlinearly with the mean flow via its unknown longitudinal vortex 

component.

This coupling is termed weakly nonlinear if the vortex part is a small-amplitude 

perturbation of the mean flow. On the other hand, the coupling is strongly nonlinear 

if the mean flow comprises entirely the vortex contribution, as in the flow considered 

in the latter chapters of this thesis.

The work of Hall and Smith (1988, 1989, 1990, 1991) in particular highlights the 

ability of vortex/wave interactions to provoke strongly nonlinear effects even for 

extremely small three-dimensional input disturbances.

It has been noted in Brown and Smith (1995) tha t an obvious reason for the the­

oretical focus on vortex/wave interactions is the qualitative and quantitative links 

with experiments on transition described by Hall and Smith (1991), Walton and 

Smith (1992), Stewart and Smith (1992) and Smith and Bowles (1992) for a variety 

of input conditions. It is also noted tha t observations of the significant role of longi­

tudinal vortices in the early stages of some transition paths are given experimentally 

by Klebanoff and Tidstrom (1959), Nishioka et al (1979) and others.

1.6 Description of subsequent chapters

Throughout this thesis the flows considered are of large Reynolds number, a range 

of much practical concern in aerodynamics, atmospheric dynamics, and internal 

engine dynamics. In Chapter 2 the growth of linear disturbances in a high Reynolds
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number interactive boundary layer flow is investigated downstream of tbe point at 

which the boundary layer itself separates away from the wall. Initially the point 

of interest is sufficiently far downstream that we can ignore the presence of the 

wall, thus assuming the extent of the flow is inflnite both above and below the 

separating boundary layer. In steps we move our point of interest upstream, always 

remaining outside the interactive triple-deck region, introducing the etfects of the 

wall via appropriate boundary conditions. At each step the disturbances within 

the boundary layer are governed by the Rayleigh equation and we emphasize the 

structures and scales involved which, together with the solution obtained, determine 

the structures and scales of subsequent steps. Neutral eigensolutions are considered 

and the value of the wavenumber obtained to leading order. A critical distance 

downstream of separation is found at which the disturbance characteristics alter 

rapidly.

Continuing on from the work of Chapter 2 , in Chapter 3 we consider the linear stabil­

ity of the basic flow to long-wave inviscid perturbations. Here we also demonstrate, 

by comparison, the value of modeling the basic velocity profile using a piecewise- 

linear approximation which possesses some of the main features of the basic flow.

Chapter 4 provides a possible link between the linear studies of Chapters 2-3 and the 

nonlinear work to follow in Chapters 5-7. Here we are concerned with the Rayleigh 

instabilities which occur in separating two- and three-dimensional boundary layer 

flows as a result of inflectional velocity profiles produced locally, for example, flows 

past humps, corners, injection slots, trailing edges etc. Experimental studies of 

flow transition over various isolated or distributed roughnesses on solid surfaces 

are given in Acarlar and Smith (1987) and references therein, while computational 

studies include Mason and Morton (1987) and other works.

Smith and Bodonyi (1985) show, by means of an exact solution of the two-dimensional 

Rayleigh equation, that an order-one hump height h  is required if inflectional in­

stability, or its onset, is to occur, and therefore deduce that the existence of an
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inflectional point in the local velocity profile is a necessary but not sufficient con­

dition for Rayleigh instability. Based on this paper, we show tha t as the boundary 

layer undergoes increased separation, i.e. the inflectional point moves upwards in 

the positive y-direction, a cut-off point exists at which the flow ceases to be un­

stable. Moreover, this point occurs prior to the point at which the inflection point 

itself leaves the lower deck, re-iterating the findings of Smith and Bodonyi (1985).

A detailed description of the work of Smith et al (1993) [SBB] is presented in Chap­

ter 5 in which the starting process of strongly nonlinear vortex/Rayleigh-wave in­

teractions in a boundary layer is considered on a shorter lengthscale than tha t of 

Hall and Smith (1991), Brown et al (1993). On this new shorter lengthscale the 

abrupt starting of the interaction is smoothed out and the wave-pressure amplitude 

no longer satisfies the bifurcation equation of the previous works, now replaced by 

an integro-differential equation. Here, however, we restrict ourselves to a boundary 

layer of interactive triple-deck form, the scales involved proving significant in later 

chapters.

In the la tter sections of this chapter, and in preparation for the following chapter, 

we introduce the additional influence of a slow time derivative dt^ accompanying the 

slow spatial derivative dx^ •

The starting point for Chapter 6 is the integro-differential equation obtained in SBB, 

and derived again in the previous chapter, in which the wavenumbers a  and are 

taken to be 0 (1 ). Here we let a , P —>0 and consider the solution in the core region 

of the flow, deducing that

7  =  2 /  f{y)l{ÿ)dÿ,  (1.4)
Jo
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where

7 " =

1(5) =  f \ U o - c o ) - ^ d y .  
J  0 0

Given the wave speed and the basic velocity profile we may conclude tha t (1.4) 

fixes the value of 7  at leading order before the wave-pressure amplitude (integro- 

differential) equation can come into play at second order. Fixing 7  in turn fixes the 

input frequency fi, thus restricting the range of frequencies to which the vortex/wave 

interaction theory of SBB apphes.

By considering certain physical characteristics of the flow we set up an entirely new 

regime in which a  = 0{Re~^^^^) and the streamwise lengthscale is shortened still 

further. The wave-pressure amplitude equation thus obtained comprises the integro- 

differential equation of Chapter 5 and (1.4), now acting together at leading order. 

This new equation holds for arbitrary input frequencies 0 , further generalizing the 

application of vortex/Rayleigh-wave interactions in interactive boundary layer flows. 

Alternative regimes are briefly discussed, highlighting their physical importance and 

mathematical consequences.

To conclude this chapter we formally generalize the fixed frequency approach adopted 

up until now in this work by interpreting the results in terms of a new spatio- 

temporal form. This theory has the makings of an initial-value problem for weakly 

nonlinear input in general at the onset of inflectional instability in boundary layer­

like flows. Previous initial-value problems are found in Stewartson and Stuart (1971) 

(near the nose of the neutral curve at the critical Re) and in Smith (1986b) (at rel­

atively high frequencies and large Re). However in both examples the problem 

is for slowly-varying wave packets, a big assumption to make in comparison with 

the work contained herein, which certainly works well in the hnear case and for 

stream wise-periodic inputs.
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Work is in progress with Professor F T Smith to investigate in more detail the 

impact of the initial-value problem on weakly nonlinear theory.

Chapter 7 presents numerical solutions of the integro-differential equation when the 

effects of forcing are taken into account, corresponding to a nonlinear receptivity 

problem. Comparisons are made with the numerical solutions of SBB, the case of 

no added forcing, to establish the effects of the forcing downstream of its point of 

application.

The main novel contributions of this thesis are perhaps threefold, namely:

1. The account in Chapters 2-3 of the behaviour of neutral wavenumbers in the 

separating boundary layer flow downstream as it detaches from the wall.

2 . The inclusion of temporal effects in the nonlinear vortex/wave interactions at 

the onset of inflectional instability, leading to the new initial-value problem 

there (Chapters 5-6).

3. The nonlinear forced vortex/wave interaction solution properties of Chapter 7.

We note finally the existence of slightly related work by Vickers and Smith (1994) 

on two-dimensional nonlinear unsteady effects just downstream of breakaway sep­

aration. Here we cover a wider range of distances downstream, both shorter and 

longer, and connect both breakaway separation and local separation, finding that 

their transitions may be somewhat related too.



Chapter 2

Linear stability of a 

two-dim ensional separating 

interactive boundary layer

2.1 Introduction

Because of the mathematical simplifications associated with linearization and the 

fact tha t linearized theory is able to  provide the critical conditions for the occur­

rence of instability for infinitesimal disturbances, stability theory has largely been 

developed with this restriction. However, in recent years the role of nonlinearity in 

flow instability has received increasing study, see for example the work of Stewart­

son and Stuart (1971), Smith (1979b) and Hall and Smith (1991), consideration of 

which is the eventual aim with regard to the present thesis. Thus, the present work 

considers linear properties first, followed by certain nonlinear aspects in the later 

chapters.

The mathematical problem of hydrodynamic stability can be formulated by taking 

the given steady-state solution to the Navier-Stokes equations and superimposing a

21
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disturbance of a suitable kind. The result is a set of nonlinear ‘disturbance’ equations 

governing the behaviour of the disturbance. If the disturbance ultimately decays to 

zero the flow is said to be stable. On the other hajid, if the resulting disturbance is 

permanently nonzero the flow is said to have become unstable. On Hnearizing these 

equations for small disturbances homogeneous equations are obtained, allowing dis­

turbances which contain an exponential time factor of the form e®* to be considered, 

t  denoting time. Along with homogeneous boundary conditions the result is an 

eigenvalue problem for the determination of q, the growth-rate param eter tha t in­

dicates the effect, stabilizing or de-stabilizing, which the superimposed disturbance 

has on the basic flow.

In this chapter the growth of hnear disturbances in a high Reynolds number interac­

tive boundary layer flow is investigated, the flow being considered beyond the point 

at which the boundary layer separates away from a smooth wall. The disturbances 

within the boundary layer respond according to the Rayleigh equation, considered 

here for neutral-wave solutions, and in each case the structure and scales of the 

instabihty are presented. In considering the neutral-wave solution three regimes are 

examined. Initially the flow is examined far downstream of the point of separation 

where the effects of the wall are assumed neghgible, the flow being taken to  be in­

flnite both above and below the separated boundary layer. Moving back towards 

the point of separation, a second regime is considered in which the presence of the 

wall becomes im portant. It is the results obtained here which lead the investigation 

into the final regime, just beyond the point at which separation occurs, where the 

typical y-scaling of the small disturbance is seen to  increase.

The high Reynolds number flow under investigation is that of an incompressible fluid 

past a smooth wall just beyond the point at which breakaway separation occurs. 

Here the boundary layer progressing downstream undergoes a gradually increased 

shift away from the wall. The actual process of separation is governed by the triple­

deck equations as described in §1.2. In what follows “just beyond the point of
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separation” should be taken to mean just outside the 0 (iEe“ /̂®) triple-deck region.

The strategy adopted here is similar to that of Papageorgiou and Smith (1989) in 

which two-dimensional stability theory is applied to  a waJte formed just downstream 

of a flat plate. In §2.2 below the linear stability problem is formulated. In §2.3 the 

structure and scales are described and the Goldstein-type velocity proflles, which 

hold beyond the triple-deck region, aje given. Neutral-wave solutions are found 

in §2.4 for each of the regimes outlined above and the changes in the disturbance 

structure and scales of the flow are set out accordingly. By way of a check, §2.5 

presents and compares the results of a numerical calculation carried out in support 

of the analysis obtained in the third and final regime of §2.4. In §2.6 the neutral 

curve is presented in full and concluding remarks then follow.

Throughout this chapter in nondimensional terms the origin of the Cartesian coordi­

nates is fixed at the point of separation xq, with x ,y  the streamwise and transverse 

coordinates respectively. In addition u ,v ,p  are the velocities in the z-direction, the 

1/-direction and the pressure respectively, and tp denotes the streamfunction for the 

two-dimensional flow.

2.2 Formulation of the linear stability problem

Beyond the point of separation the boundary layer experiences a gradual shift away 

from the smooth wall. The thickness of the boundary layer remains of order Re~^!'^ 

and the motion is governed downstream by the two-dimensional boundary layer 

equations.

Small unsteady perturbations in the flow quantities are supposed to be introduced 

just beyond the point of separation iq  but still outside the triple-deck region, i.e. 

where x — xq ^  Re~^!^. The disturbances which result are expected to evolve 

inviscidly and therefore their x and y scales are equal. From a physical point of 

view it is reasonable to first study fluctuations inside the separated boundary layer
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and thus the prime scales are x ~  y ~  Re~^^^. The two-dimensional unsteady

Navier-Stokes equations form the basis of the problem and the basic flow at a flxed

X-station is two-dimensional and quasi-parallel, written as (ü(y), 0 ) to leading order. 

Linearization about the basic state reduces these equations to

du _du dû dp 1 .d^u d^u

dv _dv dp 1 .d^v d^v.

du dv
"5—  ̂ — O'dx dy

However, assuming that the Reynolds number is asymptotically large the effects of 

viscosity are neglected and the Navier-Stokes equations become

du du dû dp

dv _ dv dp 
+  =  - % '

ë + S = ° (2 .1)

in the classical Rayleigh fashion (e.g. see Stuart (1963)).

It is convenient to define

d(f> ,

where the streamfunction ip is given by '^(x, y, t) = (j){y) exp[ia(x-ct)]. The quantity 

a  is real and is the wavenumber of the disturbance in the x-direction. On the other 

hand, c is complex; the real part, namely c^, is the wave velocity and the imaginary 

part, namely c%, represents the amplification or damping of the oscillation with time. 

If Ci is positive the disturbance amplifies and becomes unstable, while if it is negative

the disturbance decays and is stable. The situation of neutral stability is governed

by Ci = 0 .

Substitution of the streamfunction into the scaled, linearized and inviscid Navier- 

Stokes equations (2.1) above yields the classical Rayleigh stability equation
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(ü -  — â (f>) = v!'(j)̂

with, (j) required to vanish at the wall and as y —̂ oo in the freestream.

An extremely importéint result obtained by Rayleigh (1880) is that a necessary 

condition for instability in an inviscid fluid is tha t the velocity profile ü  should 

contain a point of inflection. ToUmien (1935) has since shown tha t for symmetrical 

velocity profiles in a channel, and boundary layer velocity profiles, the condition 

u" =  0 is also a sufficient condition for instability. In some other contexts however 

it is not sufficient: see Chapter 4.

2.3 Structures and scales

In considering the possibility of neutral eigensolutions just beyond the point of 

separation xq the basic velocity profile must be examined more closely and its points 

of inflection found. If the given profile ü has an inflection point at y =  j/, say, then 

for symmetrical profiles in a channel and boundary layer profiles there is a band of 

wavelengths a  (<  a ,)  for which Q > 0, giving instability, and this band is bounded 

by the neutral state

(pg — ^(y^)) ol — OLg 0 , c — u(yg) =  C5, Ci — 0 . (^'^)

The profile used is that just beyond the triple-deck region of the separation and is 

described below.

For y =  0 (1 ) ü =  ü{y), where

ü ~  Ay -  +  £7 +  . . .  (2.3)

as y —» 0 "̂  and ü ~  0 for y < 0 .
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For y  = ez, z  = 0 (1), ü =  6F(z), where the Goldstein-like function F{z) is such 

tha t

F { z )  ~  Xz  -(- A q -f  - ^ e  9^ -f ... (2 .4 )

as z  —> 00 and F{ z )  —> 0 as z —> —oo.

Here e =  (x — 7  is a positive constant and A q is a Goldstein displacement

constant. We may locate the inflection point by combining (2.3) and (2.4) and 

balancing their second derivatives. This yields an inflection point at y =  eX -f 0(e) 

where L^ =  —(9/;^loge. From (2.2), combined with (2.3), we see tha t the neutral 

wave speed has the expansion

c =  eXA e^X^c , (2.5)

and a balance of terms in the Rayleigh equation leads to the following expansion for 

a;

OL —  — Y  “t" 0 :1  eXo'2 . (2 .6 )

Solutions must be found in each of the regions shown in Figure 2.1 and matched 

with those of neighbouring regions.

2.4 Neutral-wave solutions

Initially in what follows we consider the problem set out in §2.3 for the case in which 

the presence of the wall is ignored, i.e. the flow is considered far enough downstream 

of the point of separation xq for the effect of the wall to become negligible. Thus the 

extent of the flow is assumed infinite both above and below the separating boundary 

layer and boundary conditions are apphed accordingly.

W ith the same structure and scales as those used in the case above we may then 

proceed to readily consider the same problem, this time taking into account the
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O(eL)

0(e). CL

y=0

O(eL)III

y=-h

—  0(E), GL

wall

Figure 2.1: The various regions in which neutral waves develop. CL denotes the critical 

layer, GL the Goldstein layer.

presence of the wall. Thus, through the new boundary conditions, we introduce the 

separation distance h between the boundary layer and the wall. It is the results 

obtained for this case which lead us into the second and third regimes, moving 

our position of interest upstream towards the point of separation by reducing h 

gradually.

The aim of the work below is mostly to obtain the neutral curve for this particular 

separating boundary layer flow as a function of the separation distance (height) 

h. In each of the three regimes mentioned above we employ matched asymptotic 

expansions in the various regions of the flow, and in doing so obtain an expression 

for the wavenumber a  to leading order.
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2 .4 .1  R e g im e  1 

R egion I

We begin in region I in which y =  eL(l  +  Y ) ,  0 < Y  = 0 (1 ), and the expansions for 

Ü and (j> are

Ü =  e L \{ l  +  y )  -  e^A2i ^ ( l  -}- Y Ÿ  +  ^2^4(1 +  Y Y ^ ^  +  • • • j (2 7)

(f> — (f>o “f" L̂(f>\ + L^(j) 2  +  . . . ,  (2.8)

where E j  = exp[—(A/9)Z-^(1 +  Y)^].

Substituting (2.5) -  (2.8) into the Rayleigh equation and balancing successive powers 

of eLj we obtain the equations

A y (ÿ g -ag ÿ o ) =  0, (2.9)

\ Y  — ô (j>i — 2(XoOii<t>o) — —2A,^o, (2.10)

subject to the boundary conditions —» 0 and ► 0 as Y oo. It should be

noted here that for (2.9) and (2.10) to hold true we require that 

be small compared with e~^L~^ and be small compared with 1. Since

Y > 0 in region I these requirements are met and therefore the first and second

order terms in the expansion of (f> have solutions

ÿo =  Aoe-“”^ , (2 .11)

-  a iA o Y e -"^^  + ^ ^ e - ““^ lo g y
olqX

,   ̂ Y
A&Ao -e
0-0 A

(2 .12)

where Ao, B\  are constants. In order to achieve our goal it is necessary only to 

obtain a solution for the first two terms in the expansion for (f) in region I.

It can be shown tha t as Y —̂ 0+

<t>i~ Do + D i Y + D 2 Y ï o g Y + 0 (Y ^ )  (2.13)
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where Dq, D 2  are constants and D 2  =  —2A2A0/A.

We will use (2.13) to match the solution of region I with tha t of the critical layer,

which we now proceed to obtain.

Critical layer

Here y = eL -\- ez (—00 < z < 00) and, since Y  = zL~^, the expansions for ü  and 4> 

impHed in the critical layer are

Ü = eZ-A + eAz — e^Zr^A2( l+  ^)^-|-eZ ^ + . . , ,  (2.14)

(j> =  fpo + Z ^“01 +  Z *̂02 + . . .  +  eZ "I"00 4- Z +  ..  .^ +  . . .

+  L (2.15)

where E cl =  exp[-(A /9)Z^(l +  zL'^Ÿ].

Substituting expansions (2.5), (2.6), (2.14) and (2.15) into the Rayleigh equation 

we obtain the equations

\ ziI)q =  0 , AzV»i =  0 , Az(-02 -  ckqV'o) =  0 , (2.16)

and

Az-^o =  0, Az*^" =  —2A2'0o- (2.17)

The solutions of (2.16) consistent with those in region I are

-00 =  ^ 0, V’l =  - olqA qz, ^2 =  \ a lA o z ^ .

In order to match with the solution in region I it follows from (2.17) tha t -0o =  D q 

while the equation for becomes

7// 2A2A0
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Again, on matching with the solution in region I we have

7 2AgAo, , \ I LV’l =  T— ( z l o g z -  z) +  biz

where bi = Di — 2A2A0/A. Finally the equation for is obtained from a balance 

of terms 0{e~^jEcL)  in the Rayleigh equation and is

V’o =

R egion II

Continuing into region II where y =  eL{l + Y), — 1 < Y" < 0, the effects of the 

exponential term in the basic velocity profile must be considered more closely. Here 

the expansions for ü and <f> axe

Û = e L \ ( l  + Y ) -  + Y f  +  +  . . . ,  (2.18)

(i+y)®
(f> = (l>o + L̂(f>\ +  . . .  +  !/  ̂^  1^0 +  1̂  +  • • - j- +  • • • 5 (2.19)

where E j i  =  exp[-(A /9)ü^(l +  y)^].

In (2.19) 00 is given by (2 .11) and 0 i satisfies (2 .10). We note here for future 

reference tha t at the Rayleigh equation implies

which matches with the contribution from 00 in the critical layer.

G oldstein  layer

Moving into the Goldstein layer where y =  ez, z = 0 (1 ), and ü = eF(z), 0  has an 

expansion of the form

0 =  $0  4" L ^$1 +  L ^$2 “!“ •••> (2.20)
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On substituting (2.5), (2.6) and (2.20) into the Rayleigh equation, along with the 

above expression for ü, we obtain

=  0 , - A $ ï  =  F"{z)^o-  (2 .21)

In matching with region II it follows from (2.21) that $o =  Aoe°^° while the equation 

for $ 1, along with its behaviour as z —̂ oo, is

$1 = ----- ^— F(z) +  clqz +  bo, (2 .22)

$1 ^ ----- ^— (Az +  i4.G + ) +  uqz +  6q. (2.23)

The exponential term in (2.23) matches with the contribution from of region II as 

Y  —» — 1"̂ . As there is no constant term of order L~^ in the solution for <f> obtained 

in region II, we may deduce that bo =  AoAcA'^e^o. In order to  determine the value 

of ao, and hence ao, it is necessary to match the solution across the Goldstein layer 

into region III.

R egion III

In region III y = eLY  for Y < — 1 and the basic velocity profile ü is approximated 

to  zero. The expansion for (j) is now

(f) — (j>o L (̂j)oi +  . . .  +  eT {^1 +  ...}  +  . . . .  (2.24)

In (2.24) 4>o satisfies (2.9) subject to the boundary condition tha t 0 as T  

—oo and therefore <f>o =  Aoe“°^, where Ao is a constant to be determined. Sim ilarly,

<Aoi -  Q!o<̂ oi =  0 (2.25)

and hence <f>oi =  where again is a constant to be determined.
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Matching into the Goldstein layer it follows that

Âo = Aoe^°‘°, Â i = AoAc^~^e^°‘°, ao = aoAoe°‘°. (2.26)

Finally, matching the linear terms of order L~^ across the Goldstein layer, a value 

for 0=0 is obtained, namely

ao = - ,  (2.27)

implying a neutral wave frequency u; = ac = j  O(eL). The results above indicate

tha t when the the presence of the wall is ignored, typical wavelengths for neutral

waves are O(eL).

We must now introduce the effects of the wall on the flow as our position of interest 

X starts to move back upstream towards the point of separation, still remaining 

outside the triple-deck region. At this early stage these effects are seen only in 

region III in which the boundary condition to be satisfied by the streamfunction 

reduces to  the requirement that ^  = 0 at y = —h. Matching similar to tha t above 

yields the result

 ̂ “  ta n h lo S

where h  =  eLH. Notice tha t as Æ —» oo, i.e. as the current position progresses 

downstream, (2.28) becomes ao ~  1 — ao &nd so we regain the result (2.27) in which 

the value of H  was effectively taken to be infinite.

W ith (2.28) as our starting point we now begin a closer examination of the separation 

distance H  and its effects on the value of the resulting wavenumber a  to  leading 

order. If we let H  0"̂  in such a way that aoH  —> O'*" it follows that

ao ~  1 — - 1

thus producing a critical value. He = 1, of the separation distance H  at which the 

wavenumber a  vanishes to leading order. We proceed next by expanding H  about 

its critical value Hr.
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O(eL)
II

y=0

y=-h

  0(6), GL

wall

Figure 2.2: The flow structure at .E-values close to the critical value He, y  =  eLH.  

2.4.2 Regim e 2

The analysis carried out in Regime 1 above indicates the need for a more detailed 

investigation into the effects of the separation distance h on the boundary layer 

flow under consideration, in particular on the wavenumber a , about the point at 

which the scaled separation distance H  attains the critical value of 1. As mentioned 

above, at this value the wavenumber vanishes to leading order and so it is necessary 

to  consider the behaviour at second order, achieved by expanding H  about its critical 

value. We write

H  = 1 L -f-. . .

implying an expansion for the wavenumber a  of the form

O' =  e ^L  ^0=00 "t“ ( ^ L  ôiQi +  • • • +  0:10 4- L  +  O(eZr). (2.29)

In each of the regions II, III and the Goldstein layer (as described in Figure 2.2) we
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will use matched asymptotic expansions to solve the Rayleigh equation, noting that

in these regions it reduces to the equation

for the order of working considered, i.e. the — t erm may be neglected. If in 

(2.30) we write (j) in the form

<f> = ( Ü -  c)f{y)  (2.31)

for some function f{y ),  we obtain the integral equation

y
= Di{u - c )  J { u -  c)-^dt (2.32)

Vw

»/,

where y^  =  eLq, q = and Di is some constant to be determined. This

can be rewritten in the form

A
D

Solving (2.33) directly will provide us with an alternative form of the required solu­

tion and may be used to determine the value of arbitrary constants obtained using 

the matched-asymptotics approach.

In what follows, the process of solution begins in those regions closest to the smooth 

wall itself and proceeds in the ‘upward’ direction of y increasing, towards the main­

stream flow.

R egion III

Here y =  eLY, —H < Y  < 0 ,  the basic velocity profile û is approximated to zero 

and the expansion for <f> takes the form

(f> =  000 4" L  ^001 +  L ^002 + . . .  +  €jL ^010 + L ^0n -f ..  .^ -1" . . . .  (2.34)
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A balance of similarly-ordered terms in the Rayleigh equation yields

-X(j>oo =  0 ,

-\<Poi =  0 ,
—A0 O2 +  Aago^oo =  Oj

"^^03 +  +  2Aa=oo 0=01^00 =  0 ,

and

-A<^"o = 0 ,

—A^ii -j- 2AaooQ!io^oo = 0 ,

^12 "b 2A {0:000:11 +  o:oiO:io} <Poo +  2Ao:ooO:io^oi +  ^ckqo^io =  0,

which have solutions of the form

000 =  AqY  Bq,

001 =  CqY  -f  D q,

002 =  2 0:00 I  -^Oj

003 =  gO:QQ I  2 ^ 0 ^ ^  +  D o l^^  j  +  0:000:01 ^  +  GqY  + Hq,

and

010 =  ÂqY  H" Èq,

011= 20:000:10 ^ 3 "^°^^ "b + f^o^ +  -Ôoj

where Ao, Bqj etc. are constants.
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Applying the boundary condition (̂  =  0 at the wall we find tha t

Ao =  Bo,

D q =  Co +  A o h ,

Coh =  ûqoAo/S — E q +  i^o,

Âo =  Bo,

D q =  C o  +  À o h  — 2aoo<^ioAo/3.

Since ü ~  0 in region III, it follows from (2.33) tha t the solution to the reduced 

Rayleigh equation taking the form of (2.31) is

(f) 1 l ^ c f l  1 16 1 1 
>1 ''J-.L-ek c 2  ( A t -Di J-eL-eh. (At — c)^ A |  (eBY — c) (AeB +  e^B^Ah +  c) j  *

(2.35)

where, as before, c is given by (2.5). Matching this solution with tha t obtained 

using the method of asymptotic expansions we deduce tha t D\ =  — AAq, Co =  0 

and Ao =  —cA~^Ao, Ao remaining arbitrary.

G oldstein  layer

Inside the Goldstein layer y = ez, ü = eF{z) and the following expansion is implied 

for <f)]

<f> =  $0  4" L  ^$1 +  . . .  +  eB($o 4" B 4~ • • •) 4~ • • • • (2.36)

In order to match with the solution in region III as 2 —»• — oo, we note here th a t in 

this limit  the terms of (2.36) are such that

$0  ~  Ao,

$1 ~  Aoz +  Aoh,

$2  ~  Bo,

$3  ru (Bq - 0:QQAo)z +  Ho,

1 2
$4  ~  —ûqqAo^^ +  g Ao(cKQQh 4- 0=000=01 )^ 4- (Bo — Foh)z 4- Bo, (2.37)
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and

cAo
A ’

$1 ~  +  A) — —OiooQiio-̂ o +  Cq. (2,38)

Substituting (2.36) into the Rayleigh equation, with a  given by (2.29), c given by

(2.5) and ü =  eF{x), we obtain

= 0,

-A $ ï  =  y% z)$o,

- A $ ;  +  =  F " (z )$ i, (2.39)

- A $ ï  +  F (z )$ ;  = y % z )$ 2,

- A $ ï  +  F (z )$ ï  +  Aago$o = F ' \ z ) ^ s .

and

-A#% =  0 ,

- A $ ï  -  c0" =  F"(z)$o. (2.40)

The solutions of (2.39) which satisfy the conditions of matching with region III, as

set out in (2.37), are

$0  =  -4.0, $1 =  — —F{z) +  A q(̂z +  A),

$2  =  {^F{z) — 27i(z)} — -^F{z)  -f Fq,

$ 3  =  —
2i4o
“Â ^ ^F {z)Ii{z)  -  -7 2 (2 ) | — + 2 ^ 00^ 0)2 +  ^ 0,

$4  =  ^F{z)l2{z) -  - 73(2 ) j  -  - (7 b  +  gCKoo^o) {zF{z) -  27i(z)}

— —̂ F { z )  +  - olqqA q z  ̂ +  —A o[aQ Q h  +  aooctoi)^ +  { H o  — F qK ) z  +  TTo,

(2.41) 

where 

7i ( 2 ) =  f  F{s) ds,
J —00
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l 2 (z) =  r  F(s)^d3,
J—oo

h { z ) =  r  F { s fd s .
J—oo

The solutions of (2.40), consistent with (2.38), are

« c A q 
$ 0  - .
4 i =  ——̂ F { z )  — — + h) — —0:000:10^0 +  C^. (2.42)

Although not outlined here, given tha t Di =  —XAq the alternative approach to 

solving the Rayleigh equation described in (2.30) -  (2.33) also yields (2.41) and 

(2.42).

R egion II

Here y = e L Y , Y > 0, and the appropriate expansions for û  and 0 are

U = e L Y -  +  eAc + +  ■ • •. (2.43)

(j> = 4>o L  4- L <̂l>2 +  . . .  +  e i  ^^0 +  R +  .. .^ +  . . .

+  L ^  4- L  ̂f i  + eL ^ /o 4- L ^ f i  4 - ..  .^ 4 - .. .^ 4 - . . . .

(2.44)

From the Rayleigh equation we obtain as the equations for ^o, and (j>2 

A(y -  i)ÿg =  0, A ( y - i ) ÿ ( '  =  o, A (y - i) (ÿ ;- a g ( ,A ÿ o )  =  o

which, in order to match with the Goldstein layer as Y —♦•O'*', have solutions

(f>o =  ^ 0 , =  ^ o ( - ^  — ^ )(^  — 1))

<h = \ o ^ A o Y ^  + l^ lo A o Y  + ^ ^ Y  -  4-
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It can also be deduced from the Rayleigh equation tha t 

Y*fo = A ( y - I ) ’
y ’ / i  =

4 j. A qA g A qA g A qA g
A2 A 2 (y -1 )2  A ’

4 A qA}. A qA q Fq Q-oqA qY  (1  11
^ 1 2  ^3 _  1)3 A(y -  1) A(y -  1) 12 3 J '

matching with the solution in the Goldstein layer as y  O'*'. The governing 

equation for 0o is obtained from a balance of 0 (1 ) terms in the Rayleigh equation 

and is, together with its solution which satisfies matching requirements with the 

Goldstein layer,

2X2(f>o
A ( y - i ) '

^0 =  - 2^  { (y  -  i)iog  |y  - 1 | -  y }  +  £ ^ ( y  -  i) .

We note here for future reference that as y  oo

^  ~  Ao + (y  — 1) +  0 (lf  ^,eZf), (2.45)

where only the terms given exphcitly are necessary in matching region II with region

I for the purpose of obtaining aoQ.

R egion I

In region I we introduce the new coordinate ^ > 0 such that

y =

with ^ =  0 (1 ). Here it follows that û and (f> have expansions of the form

Ü =  eL^X^ — X2^L^^^ +  J^46 9^  ̂ +  . . . ,  (2.46)

<j) =  Ÿg + L ^$1 +  . . .  +  T 9^  ̂ ^go +  L ^g\ +  .. . (2.47)
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and, when balances between terms in the Rayleigh equation are set up, the equation 

obtained for the leading component of <f) is

-  aSoto) =  0 .

Hence $o =  where A% is a constant. Matching this solution with tha t

obtained in region II leads us to the result tha t A i = A q. We notice that as ^ » 0"""

^0  ~  -^0 | l  ~ 0=00^ + 2 *̂00^  ̂ — .. • (2.48)

and, since Y  L^  for large Y  and small on matching (2.45) with (2.48) we deduce

tha t

Id'oc =  h. — .

The value obtained here for aoo provides the motivation for the third and final 

regime. By putting h =  A g^~^ in the expansion for H  of Regime 2 we are able to 

conduct an even closer examination of the behaviour of the wavenumber aoo about 

the point at which H  attains its critical value of 1.

2.4.3 R egim e 3

In the light of the results obtained in the working of Regime 2 we expand H  in the 

form

H  =  1 -]— 4" €Lh +  . . .
Jj X

so that to  leading order the wavenumber a  is 0 (1), thus indicating the possibility 

of neutral waves of wavelength 0 (1 ) close to the point of separation. We write

a  =  a  +  Zf â% +  L ^ct2  4 - . . .  4- cLÇâo +  L  0̂% +  . . . )  +  ...}  

producing an upper region I of 0(1).
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Similar matching of the solutions in each of the flow regions I, II, III and the Gold­

stein layer leads to the eigenvalue problem

û(( Ŝ -  (2.49)

for â , the 0 (1 ) equation obtained from the Rayleigh equation in region I, where as 

3 /- .0 +

Û ~  Ay -  ^2y^ +

00 ~  ^0  -  Ao(h -  j ) y  -  (ylogy -  y) +  ̂ â^Aoy^

+ -  ^)y2 + ^ ^ ^ (y ^ lo g y  -  3y }̂ + . . .  (2.50)

in order to match with the solution obtained in region II.

We consider the problem presented in (2.49) and (2.50) for small wavenumbers and 

approach it both analytically and numerically, the analytical method being described 

below.

The flow is considered in an outer region Iq in which y =  â~^ÿ, ÿ =  0 (1 ) and û 1. 

The expansion for 0q takes the form

00 = 5 " ^  $0  +  $ 1 + 0  $2  +  . -,

and on substituting this into (2.49) we find that for % =  0 ,1 ,2 , . . .

= 0, $i = ai€~^, (2.51)

where each a» is a constant.

Moving into region I in which y =  0 (1 ), the behaviour of ü is such tha t

u ~  1 as y —» oo,

Ü ~  Ay -  A2y^ + O(y^) as y -> 0+
(2.52)
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and it emerges tha t the expansion for (j)o takes the form

<f>0 = ÔL ^^0 +  ^1 +  ÔL̂ 2 +  ^3 +  • • • •

Substituting this expansion into (2.49) and equating powers of â  yields the following 

equations for the four leading terms in (f>o]

=  ü"^o, (2.53)

û^'l =  ü"^i^ (2.54)

ü^2 — ^^0 =  ^"^2^ (2.55)

-  ü^i  =  ü"4>3. (2.56)

Considering equation (2.54) first, a possible solution for is

y
<̂ i =  &ii2 +  6ofi J  û~^dyi, (2.57)

1

where 6q &nd 6i are constants to be determined.

As 3/ —> oo, 01 behaves linearly with

01 ~  &i +  boK, +  6oy>
fOO

K = y- vT'^dy.

Matching with the solution obtained in region Iq as ÿ —> 0 we may deduce that

bo =  -a o , bi oc 6q. (2.58)

As y ^  O'*" it can be shown that

7 bo 260A2 . , \
0 1  y  +  - ^ 2/logy +  0 (y)
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and therefore, to match with region II, it follows from (2.50) tha t bo =  —-AqA, i.e. 

ao =  Av4o.

The solution to  (2.53) which matches with that of region Iq is

— CLqU — ŷ A-oiL.

To conclude we note tha t, in matching the solutions between regions I and II,

^0 ~  AALo 'IAt/ — A2%/̂  + .. .|̂  (2.59)

as 2/ —> 0 .

If we assume tha t h — cX~^ is 0 (â~ ^) then in matching with region II it follows from 

(2.59) that

h - c X ~ ^  = - A ^ d - \

Thus, to complete the neutral curve for the separating interactive boundary layer 

flow under consideration, aU that remains is for us to reinforce the assumption made 

above, namely

h — ^  =  0(^ct ^). (2.60)

To do this we now solve numerically the eigenvalue problem set out in (2.49) and 

(2.50) for small wavenumbers.

2.5 Numerical solution o f Regim e 3

As mentioned towards the end of the previous section, the aim in this section is 

to  solve numerically the problem set out in (2.49) and (2.50) in order to verify the 

assumptions made in the analytical working of Regime 3.
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The numerical problem is thus. For a given wavenumber, â  to leading, the value of 

the constant Ai  is to be found such that

(̂ o(O) =  Ai,

subject to the boundary condition that 0 as 3/ oo.

The undisturbed flow ü(y) is assumed to have exponential decay as 3/ 00; more

precisely ü ~  1 — e“^. For clarity, this model, rather than the full Blasius profile,

has been assumed to apply over all y since the effect of the decay is qualitatively

the same.

The numerical method of integration employed is the classical Runge-Kutta method 

of order four generalized to solve a system of first order differential equations, in 

this case a system of two.

The second order differential equation which arises from (2.49) and (2.50) is

(1 — e )̂{(f)Q — â^(j)o) = —e ^00 ) (2.61)

subject to  the initial and boundary conditions

<Ao(0) =  Ao,

(^o(O) =  A i,

(f>o{oo) = 0 .

W ith v{y) = (j>o{y) and w{y) =  <j>o{y), (2.61) is transformed into the system

v' =  +  (1 — (2,62)

w' = V,  (2.63)

and upon normalization, owing to the singularity at 3/ =  0 in equation (2.62), the 

initial conditions are replaced by the boundary conditions w 1 (i.e. Aq =  1) and 

u —> uo as 3/ ^  C*", where the constant uq is to be found.
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The range of dependence is taken to be y G (0,î/oo]j Voo a suitably large number. 

We then map this range onto the interval (0,1] using the transformation y  =  f ( ÿ )  

for 3/ G (0,1] where

If ÿ is taken over the range [ÿo, 1], where 0 < ÿo <  1? the system of first order 

differential equations in (2.62) -  (2.63) becomes

with initial conditions w(ÿo) =  1, v(ÿo) =  vq.

The interval [ÿo, 1] is divided into N  equal subintervals, the transformation y  =  f ( ÿ )  

therefore concentrating the mesh points in the lower half of the interval [ f (ÿo) ,  / ( I ) ]  

in which the streamfunction varies more dramatically. The differential equations 

(2.65) and (2.66) are used to obtain the value vq for different values of the parameter

â, the true value taken to be that which results in the solution for 0 o satisfying the

appropriate boundary condition at yoo’, namely tha t (j>o{yoo) = 0 where y^o = / ( I ) -

In the model described above the constants A q , A and A2 take the values 1, 1, 0.5 

respectively and therefore from equation (2.50) it follows tha t as y ^  O'*"

(f>o 1 - Ahy -  {ylogy -  y) + (2.67)

(j)Q ~  —Ah — log 3/ +  . . . ,  (2 .68)

where Ah = h — c \  ^.

Figures 2.3-2 .6 show the variation of (f>o with the scaled variable ÿ  for â = 0.25, 

0.125, 0.0625, 0.03125 respectively, and the values for vq are given. Values of Ah are 

calculated for each value of â  using (2.68) and the transformation equation (2.64)
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and are presented in Table 2.1. As a  —> 0 it can be seen from these results that 

âAh  —» —1, thus reinforcing the assumption (2.60) made in §2.4.3.

a ciAh

0.25 -2.8169 -0.704

0.125 -7.1173 -0.890

0.0625 -15.2531 -0.953

0.03125 -31.2355 -0.976

Table 2.1: Values of Ah and a Ah for a  -C 1
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Figure 2.3: Plot of y against for â = 0.25; v q  =  12.0263.
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Figure 2.4: Plot of y against <f>o for a =  0 .125; vq =  16.3267.
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Figure 2.5: Plot of ÿ against 0o for a  =  0.0625; vq = 24.4627.
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Figure 2.6: Plot of y  against 0o for a  =  0.03125; vq = 40.4450.
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Figure 2.7: The variation of a  as a function of the separation distance H.

2.6 Additional comments and conclusion

In concluding this chapter we present graphically the variation of the wavenumber 

O' as a function of the scaled separation distance H . Figure 2,7 identifies the regimes 

considered by indicating on the graph the size of a  to  leading order and maps the 

behaviour for a  •< 1 as calculated numerically in §2.5.

We can see from the graph that as 5" oo the wavenumber approaches the value 

obtained when the presence of the wall is ignored, i.e. (2ei)~^. Moving our point of 

interest back upstream towards separation the effects of the wall become im portant. 

Here a  =  (ei))~^ao to leading order, where in terms of the separation distance H

a o  =  1 —
«0

tanh aoH
(2.69)
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Moving progressively further upstream as jE —̂ 0 it is (2.69) which yields the critical 

value H = Hc{= 1) at which a  vanishes to leading order, indicating the need for a 

more thorough investigation of the behaviour of a  at Æ-values close to this critical 

value.

To leading order the expansion for a  is now 0((eT ^)“ ^) and we add to the critical 

5"-value a small perturbation parameter h of 0{L~^).  The analysis in this regime 

shows that a  continues to  approach zero a.s H  He and, when h = again

a  vanishes to leading order, motivating the form of the expansion for H  in the third 

and final regime.

Here a  = 0 (1 ) and we move upstream of the point at which H  attains its critical 

value He, ex. remaining positive. As O' —>■ 0 numerical analysis affirms the assumptions 

made in the matched-asymptotic approach and the neutral curve is completed as 

we move towards the triple-deck region of the flow.

At this point our particular investigation ends and we pick it up again in Chapter 4 

in which we consider the possibility of Rayleigh instabilities in triple-deck flows.



Chapter 3

Long-wave analysis of a 

two-dim ensional separating 

interactive boundary layer

3.1 Introduction

Continuing on from the work of Chapter 2 in which the possibility of neutral-wave 

solutions just beyond the point of separation of a two-dimensional interactive bound­

ary layer is investigated, this chapter considers the linear stability of the same flow 

to  long-wave inviscid perturbations.

The eigenvalue problem defined by the Rayleigh equation

(ü -  c)(0" -  (3.1)

along with the boundary conditions that <f> must vanish at the wall and as y —> oo, 

is not easy to solve explicitly when u{y) is a smoothly varying function. However, 

if u[y) is piecewise-linear the solutions of the Rayleigh equation are simple expo­

nential or hyperbolic functions which must satisfy certain matching conditions at

51
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discontinuities in û{y) or ü'{y). The use of piecewise-linear profiles thus provides us 

with a simple method of modeling some features of smoothly varying profiles.

Therefore, by way of an introduction to long-wave analysis, we begin this chapter by 

first solving (3.1) using a piecewise-linear approximation to the undisturbed velocity 

profile Û, considering the solution in the long-wave limit as a  —> 0 .

Detailed asymptotic solutions of (3.1) in the Hmit a  —> 0 are then presented. Here 

the basic velocity profile ü  remains unspecified, although we assume it to  be a 

smoothly varying function which satisfies appropriate conditions at the edge of the 

boundary layer and at the wall.

In §3.2 below we solve (3.1) with ü  taken to be a piecewise-linear profile and consider 

the limit as a  —»• 0. Long-wave perturbations to  the separating boundary layer are 

considered for the fuU Rayleigh equation in §3.3. In each of these two cases we 

approach the problem for a semi-infinite flow, i.e. we take into account the presence 

of the wall, lying a.t y = —h, and its effect on the flow and its stability.

3.2 Piecewise-linear velocity profile

We aim to solve the eigenvalue problem of (3.1), along with the appropriate bound­

ary conditions, for a basic velocity û  of the form described in (2.3) and (2.4) of 

Chapter 2. By approximating ü using a piecewise-linear profile which possesses 

some of its main features we can solve what originally appears a difficult problem 

in little more than a page of working.

If we normalize the transverse coordinate so that the boundary layer region is de­

noted by 0 < 2/ < Ij the features we wish to retain on approximating ü  are:

(i) within the boundary layer ü  behaves linearly to  leading order,

(ii) as 3/ ^  I " ,  Ü approaches the mainstream flow,

(iii) between the separated boundary layer and the wall ü =  0 .
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This can probably best be achieved using a piecewise-hneaj profile of the form

1 if 3/ > 1,

u = < y if 0 < y < 1, (3.2)

0 if - h  < y < 0.

At CL point of discontinuity in u and u', y =  2/o say, two matching conditions must 

hold, namely

A[(u — c)^' — u'(f>] = 0, (3.3)

(3.4)

where A /  =  / ( ÿ j )  -  /{Vq ) denotes the ‘jum p’ in f{y )  at t/q. For a detailed descrip­

tion of the derivation of conditions (3.3) and (3.4) see Drazin and Reid (1981).

When ü" = 0 the Rayleigh equation reduces to

[ü — — o? (f>) =  0

and, ignoring the continuous part of the spectrum, this is equivalent to

<{)" — (f) — 0 .

The solution takes the form

A(cosh 0=3/ -  sinh ay) if y > 1,

= { B  cosh ay  + C sinh ay  if 0 < y < 1,

D sinh. a{y + h) if - h  < y < 0,

(3.5)

and the boundary conditions are automatically satisfied. On applying the matching 

conditions (3.3) and (3.4) we obtain the eigenvalue relation

a'^c^{l + X ) { l  + Y ) - a : ^ c { l - ^ X ){ l+ Y )  + a c X ( l - Y ) ^ a Y ( l ^ X ) - X Y  = 0, (3.6)

where X  =  tanh a  and Y  =  tanh ah.
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Before we consider the long-wave limit a  ^  0 we will use (3.6) to establish a 

more complete stability picture for the boundary layer flow under investigation. 

In Chapter 2 we obtained the neutral curve as a function of the separation-height 

param eter h, all that remains is to determine whether instability is likely to occur 

at large or small wavenumbers.

In order to achieve this, for a flxed value of the separation-height parameter h we 

solve (3.6) numerically using ‘the formula’ for calculating the roots of a quadratic 

equation, the positive root taken where necessary. For each value of h we plot cv, Ci 

and / ( a ,  h) against the wavenumber a; c = C r i c i  representing the wave speed and 

f  = — 4AC. Results are presented in Figures 3.3-3.14 for h =  1,0.5,0.25,0.125,

found at the close of this chapter.

It can be seen from these graphs tha t c* 7̂  0 for small wavenumbers a , which in 

physical terms implies that the flow is unstable to long-wave perturbations. For 

large a , c* =  0 , implying stability to short waves. As h —> 00 , in accordance with 

(2 .2 ) the value of the wavenumber a ,  at which neutral stability occurs increases (see 

Figure 2.7), thus showing increasing instability with increased distance downstream 

from the point of separation.

We may deduce from these results tha t above the neutral curve, obtained in Chap­

ter 2 as a function of the separating-height parameter h, the flow is stable to linear 

disturbances, and below it the flow is unstable. The stability picture is thus com­

plete.

To serve as an analytical check we let a  —> 00 in (3.6). It follows then tha t to leading 

order the eigenvalue relation between a  and c reduces to

2a^c^ -2cx'^c + a = 0. (3.7)

Assuming firstly that there exists a root Ci of 0 (1 ), we may further approximate
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(3 .7) by the equation

a^c(c — 1) =  0

which has the non-trivial solution ci =  1 . K we now assume tha t there exists a root 

C2  such th a t C2 <C 1, (3.7) becomes

—2o:^c + a  = 0 ,

with solution C2 =  (2a)~^. These solutions for c at large wavenumbers are in good 

agreement with the results obtained numerically. To enable a comparison to made 

more easily, Figure 3.1 presents a plot of Cr against a  for h =  1, showing the 

behaviour of both roots as a  —> oo.

c

>l/2a

Figure 3.1: Plot of Cr against a with h = 1 showing the behaviour of both roots as a  —» oo.

If we now let o: —> 0 in such a way that H = ah  = 0 (1 ), (3.6) becomes

c^(l 1') — 2ct -j-1  =  0

to leading order which, on taking the positive root, has solution

t +  iy/i
c = (3.8)

where t = tanh 5".
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Thus, in modeling the basic velocity profile ü using a piecewise-linear profile, we 

have been able to determine the nature of the stability to  linear disturbances of the 

two-dimensional flow described in Chapter 2. Also, in considering the limit a  ^  0 

in (3.6) above, we have at least gained a feeling for the solution of the Rayleigh 

equation for long-wave disturbances.

3.3 Generalized analysis o f long-wave solutions

In this section, as in the above, long-wave inviscid perturbations to the separating 

interactive boundary layer are investigated, but here the full eigenvalue problem 

posed by (3.1) is considered. The basic flow velocity ü{y) wiU remain unspecified 

although we assume that it is a smoothly varying function satisfying appropriate

conditions at the edge of the boundary layer and at the wall. If y = 0 (1 ) inside the

boundary layer then the boundary conditions satisfied by ü are;

Ü ^  1 as y —> oo, (3.9)

Ü = 0 at y =  —h. (3.10)

Asymptotic solutions in the limit o: —> 0 are presented, the structure of the flow as 

shown in Figure 3.2.

Boundary layer

Inside the boundary layer y =  0 (1), —oo < y <  oo, the basic velocity profile satisfies 

the conditions (3.9) and (3.10) above, and the appropriate expansions for (f> and c 

are

(f> = 4*0 Ci4i +  0:^02 +  • • • j (3.11)

c = Co +  0!Ci -f C2  + ----  (3.12)

When (3.11) and (3.12) are substituted into the Rayleigh equation (3.1) and pow­

ers of a  are equated, the following equations are obtained for the three leading
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/ N

O(a’)

Boundary Layer 0 (1)

wall

Figure 3.2: The various regions in which long waves develop.

components of <̂;

(u -  co)<̂ o -  ^ " ^ 0  

(ü — co)<f>'l — ü"(f>i 

( ü  -  C o)<^2 -  "^”^2

0 ,

C2^0 “I" ^1^1 +  (ü — Co)^Q.

(3.13)

(3.14)

(3.15)

A solution of (3.13) is the simple displacement solution =  Aq{u — c q )  where Aq 

is a constant. The solutions of (3.14) and (3.15) then take the form

ciAo_
Co /y

(ü -  co)~^dyi,
-O O

(3.16)

c  fv r y i
<f>2 =  —Aq(c2  - ) ü  +  Aq{Ü — Cq )  I (ü  — Cq )   ̂ /  (ü — Cq)^dy2 dy\

C q  «/—oo J —oo

—C i d \  f  ( ü  —  C q )  ^ d y i  +  2 c i d i ( ü  — C q )  f  ( ü  — C q )  ^ d y i
* / — OO */ — GO

+£^2(1̂  “  Cq) f  (ü — Co) ^dyi. (3.17)
J — 00



CH APTER 3. LONG-WAVE ANALYSIS  58

Noting condition (3.9), it follows that as y —̂ oo

<l>o ~  Ao(l — C q ) ,  (3.18)

~  ( ï ^ î ' + - - -  (3-19)

(j>2 ~  2 "^o(l — co)y^ +  . . . .  (3.20)

We now proceed into region I.

R eg ion  I

In the upper region 1 y = a~^Y  for 0 < Y < oo and. ü ~  1 . Here too the wave 

velocity c is given by (3.12) and <f> has the expansion

^  = $0  +  +  0!^$2 + ----  (3.21)

Substitution of expansions (3.12) and (3.21) into the Rayleigh equation yields equa­

tions of the form

=  0

for j  =  0 , 1 , 2 , . . .  and therefore, in order to satisfy the condition tha t 0  —> 0 as 

Y  —>■ 00 ,

Matching with the solution in the boundary layer we deduced that

fco =  A o ( l-c o )  = - ^ j ^ .

and hence

di =  —Aq(1 — cq)^. (3.22)
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R eg ion  I I

In the lower region 11 y = a~^Y  for —H  < Y  < 0 (h =  a~^E)^  ü ~  0, and we write

^  =  $0  +  + ----  (3.23)

Again substitution into the Rayleigh equation leads to equations of the form — 

=  0 for j  =  0 , 1 , 2 , . . but in region II the condition tha t ^  =  0 at the wall must 

be satisfied.

If the presence of the wall is neglected, i.e. R  —̂ oo, and the extent of the flow 

assumed infinite in both the positive and negative y-directions, this boundary con­

dition is replaced by the condition ^ (—oo) =  0 , implying

for j  =  0 , 1 , 2 , —

We note here tha t as y —» — oo inside the boundary layer

00 ~  ~CqAo,

01 — -y,
Cq

02 ~  J

and matching with the solution obtained in region II it follows that

^0 — —CqAq —------ ,
Co

di =  CqAo. (3.24)

Therefore, combining (3.24) with (3.22) we deduce that

co =  ^ ( l  +  0- (3.25)
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This result is in fuU agreement with Drazin and Howard’s (1962) treatm ent of long­

wave linear instability in parallel shear flows which concludes tha t as a  ^  O'*', on 

taking the root with ĉ  > 0 ,

c ^  {fl(oo) 4- ü (-oo)}  4- i i  {iZ(oo) -  ü (-oo)}  . (3.26)

If however the effects of the wall at y =  —h are taken into consideration, the ap­

propriate boundary condition to be satisfied for j  = 0 , 1, 2 , . . .  is ^ j { —H)  =  0 , 

h  =  a ~ ^ H . Matching similar to tha t above yields the result

where t =  tanh H.  This result is in full agreement with (3.8) obtained in the previous 

section in the limit as ct tends to zero.

In conclusion, for the separating boundary layer considered in this and the previous 

chapter we have demonstrated that by modeling the basic velocity profile using the 

piecewise-linear profile described in (3.2) we are able to establish some of the major 

characteristics and behaviours of the flow itself, achieved employing relatively simple 

mathematics. Such a method of solution provides us with a useful tool for checking 

more rigorous calculations, which can only strengthen the results obtained.
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C.

Figure 3.3: Plot of C{ against a with h = 1.

c.

Figure 3.4: Plot of Cr against a  with h =  1.

Figure 3.5: Plot of /(a , h) against a with h= 1.



CHAPTER 3. LONG-WAVE ANALYSIS 62

C,

Figure 3.6: Plot of Ci against a  with h = 0.5.

c.

Figure 3.7: Plot of Cr against a with h = 0.5.

fia.h)

Figure 3.8: Plot of /(a , h) against a with h = 0.5,
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c.

Figure 3.9: Plot of Ci against a  with h =  0.25.

c .

Figure 3.10: Plot of Cr against a  with h = 0.25.

f{a.h)

Figure 3.11: Plot of /(a ,/i) against a with h — 0.25.
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c,

Figure 3.12: Plot of Ci against a with h = 0.125.

c.

Figure 3.13: Plot of against a with h =  0.125.

Figure 3.14: Plot of /(a , h) against a with h = 0.125.



Chapter 4

Linear instability of triple-deck  

flows

4.1 Introduction

This somewhat brief chapter concerning Rayleigh instability within triple-deck flows 

serves as a link between the linear studies of downstream breakaway separating 

boundary layers (Chapters 2-3) and the nonlinear studies concerning more local 

separating-type interactive flows which follow in Chapters 5-7.

The effects of small surface-mounted obstacles, or other local distortions, on the 

boundary layer flow over a solid surface have been of great experimental interest for 

many years. Among the more notable of these effects, and relating to the work of 

this thesis, are the phenomena of separation, of small or large scale, and instability, 

often leading to transition to turbulence. This la tter aspect is commonly employed 

in aerodynamics to deliberately produce a turbulent boundary layer downstream by 

means of transition due to a small trip wire placed on or near the surface, see Van 

Dyke (1982). As mentioned in Chapter 1, experimental studies of flow transition 

over surface-mounted obstacles are given in Acarlar and Smith (1987) and references 

therein, while computational studies include Mason and Morton (1987) and others.

65
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Our concerns in this chapter are with the essentially inviscid, i.e Rayleigh, insta­

bilities which occur within separating two-dimensional boundary layer flows as a 

result of inflectional velocity profiles produced locally, for example in the case of 

nonparallel flow past a short, smooth obstacle mounted on a flat surface.

In what follows we demonstrate, by means of a model problem presented in Smith 

and Bodonyi’s (1985) paper concerning shortscale instabflity in boundary flows past 

surface-mounted obstacles of relative height h, tha t in some specific contexts the 

existence, locally, of a point of inflection is not a sufiicient condition for Rayleigh 

instabflity to occur.

In §4.2 the two-dimensional governing equations are set down and in §4.3 we de­

scribe in detail the model solution of Smith and Bodonyi (1985). In considering 

the situation of a two-dimensional separating boundary layer flow of triple-deck 

form, and with reference to the above-mentioned model solution, we show tha t as 

the boundary layer undergoes increased separation, corresponding to  the inflection 

point moving upwards in the positive y-direction towards the main deck of the flow, 

a cut-off point, xi  say, occurs at which the flow ceases to be unstable, prior to the 

point, X2  say, at which the inflection point leaves the lower deck. It is interesting to 

observe that this departure of the inflection point zg from the lower deck is consis­

tent with the flow further downstream studied in Chapters 2 and 3, as weU as with 

the downstream asymptote of the lower deck flow solution and the Papageorgiou 

and Smith (1989) near-wake profile. It should also be noted tha t the cut-off point 

x i  may actually be far upstream in some separating flows.

Finally, in §4.4 we consider three-dimensional triple-deck flows and, in particular, 

we show tha t very oblique waves allow the criterion for inflectional instabiflty to be 

satisfied even at small h-values. This is in comparison with the two-dimensional case 

of Smith and Bodonyi (1985) in which the authors show tha t an order-one value of 

h is needed for inflectional instability, or its onset, to occur even though inflection 

points are present for any smaller value of h, corresponding to smaller hump heights.



CH APTER 4. LINEAR IN STA B ILITY  OF TRIPLE-DECK FLOW S  67

4.2 Two-dimensional governing equations

If the lengths cale and height of the obstacle, centred at x =  iq  > 0, are 0{Re~^^^)  

and respectively then the local steady motion is controlled by the lower

deck equations which in scaled form are

| |  +  ^  =  0. (4.1)

with F { X )  the given scaled shape of the obstacle and

u = V = 0 on y  =  0, (4.3)

u ~  y  + A(X) +  F (X ) as y  ^  oo, (4.4)

(u ,u ,p ', . A ' ) (y, 0,0 ,0) as |X | - > -o o . (4.5)

The pressure p  is related to  the displacement increment —A {X )  by the Cauchy- 

Hilbert integral

If the P randtl shift Y  Y  — F ( X )  is applied, the shortscale disturbances are then 

governed by Rayleigh’s equation for the disturbance streamfunction 0,

subject to the boundary conditions ^  =  0 at y  =  0 and as y  —> oo.

4.3 Two-dimensional triple-deck flows

The model inflectional velocity profile considered by Smith and Bodonyi (1985), 

typical of flow past a surface-mounted obstacle, provides us with valuable physical
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insight into the problem of Rayleigh instabihty in triple-deck flows. Before applying 

its findings to  the case of a separating boundary layer flow, we first outline the model 

itself for F { X )  =  0{h)  where h is of 0 (1 ) or less.

If the Rayleigh equation is rewritten in the form

d̂ (f)

where

and a  is assumed real and non-negative, g{Y)  is generally of 0{h)  and tends to zero 

exponentially as Y —» oo. Since u =  c at the single inflection point it follows also 

th a t g{Y)  is smooth for all Y > 0 in the neutral case a , c real. A representative 

example for g{Y)  is therefore

g[Y)  =  (4.8)

Thus, the local velocity profile imphed by (4.7) and (4.8) is

u = c — —Yo(z) -f bJo{z) (4.9)

where Jq and lo  are the standard Bessel functions of zero order and

z =  (4.10)

c =  ( /o (A '/')  -  1 ) - ' { [ a  +  +  |lo g ( ^ )  +  7 ] Jo (k '/") -  |ro(fe'/=*)} ,(4.11)

b =  (J o (A '/ ') ) - ' \^Yo(h}-l^) -  c} . (4.12)

The coefficients of Jo, Iq are such that as Y —»• 00 (4.4) holds. In terms of z  this 

implies th a t u  ~  - lo g z  4- 0 (1 ) as z 0, the 0 (1 ) term corresponding to the 

displacement effect A F.  The no-slip condition is satisfied at Y =  0 and the 

velocity profile has an inflection point at u =  c, as is required.
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With. (4.8) holding, and the Rayleigh equation written in the form (4.6), by making 

the substitution (4.10) it may be deduced that the streamfunction ^  satisfies the 

Bessel equation

= 0, (4.13)

subject to the conditions ^  =  0 at z =  0 and z = On applying a normalization 

it follows tha t (f> =  Ja{z) in order to  satisfy the condition at z =  0. The condition 

at z =  then requires tha t =  0 and therefore

h = zW ^

determines values of a  implicitly in terms of h. For m = 1 ,2 , . . .  the are the

positive zeros of the Bessel function Ja{z)’

However, since a  is real the smallest root possible is the first root z ^ ^  of J q{z ). 

Therefore

h > he =  5.7831] (4.14)

must hold if a neutral solution is to exist.

If we assume tha t Rayleigh instability can only occur for a range of positive values 

of a , thus requiring at least one neutral solution to  exist, then we may deduce from 

(4.14) tha t there is a cut-off value h = he below which the profile (4.9) is inviscidly 

stable. Therefore, this demonstrates tha t in the present context the existence of an 

infiection point in the local velocity profile is a necessary but not sufficient condition 

for Rayleigh instability to occur.

Following on from the above we now show that in the case of a separating two- 

dimensional boundary layer flow of triple-deck form and with local velocity profile 

as in (4.9), the existence of an infiection point is again not a sufficient condition for 

the occurrence of Rayleigh instability.
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We suppose firstly that the critical layer [u =  c) lies bX z = z  say, implying from 

(4.9) that

^Yo(z)  =  bJoiz).

Since 6 is given by (4.12) it follows then that z  is determined by

Jo{i)Yo(h}'^) -  Yo{z)Jo{h}/^) =  — Jo{z) (4.15)
7T

in the range 0 < z < (i.e. 0 < Y < oo).

We now consider a particular profile of the form (4.9) which possesses a large value 

of the wave speed c. This corresponds to the downstream region of the fiow where 

the critical layer, or infiection point, is about to leave the lower deck of the triple­

deck structure. Assuming h =  0 (1 ), for the lefthand side of (4.15) to balance 

with the righthand side, z -C 1 must hold. Therefore, since J q{z ) ~  1 — z^/4 and 

~  2x“ ^logz + 0 (1 ) as z -4 0, (4.15) can be written in the form

Yo{h}^^) -  I I l o g 2 +  .. . |  (4.16)

implying tha t

+  (4.17)
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Re-writing this in terms of Y ,  it follows from (4,10) that

where i  =  h}^^e~ y  >  1 denoting the critical layer. However at large Y, 

u (=  c) ~  y  -f . , ,  and therefore, given h =  0 (1 ), we have a contradiction with

(4,18),

The suggestion then from the above is that c >  1 only if h is small. But, from (4,13) 

and (4,14), h being small implies no instability, or at least no neutral solution.

In conclusion we may deduce that if X2  is the station at which the inflection point 

leaves the lower deck of the flow, there exists a cut-off point æi, prior to X2 , down­

stream of which the profile is inviscidly stable. This again demonstrates th a t the 

existence of an inflection point in the local velocity profile is a necessary but not 

sufficient condition for Rayleigh instability to occur.

We mention briefly tha t attem pts were made to find a region of inviscid instability 

ahead of some cut-off point x i. The results were found to be inconclusive and it may 

be th a t xi  is indeed far upstream. But, on the other hand, there are probably some 

breakaway separating flows such as in supersonic or hypersonic boundary layers, 

channel and pipe flows, wail-jet flows, etc, which do admit such inviscid instability 

over a finite scaled portion of the separation process prior to the departure of the 

inflectional point, as above,

4.4 Three-dimensional triple-deck flows

An interesting point should be mentioned here concerning three-dimensional inflec­

tional instabilities in near-wall shear flows. The point actually arises from Smith 

and Bodonyi’s (1985) study of two-dimensional waves in which the inviscid insta­

bility of a profile u = y 0{h)  is examined for y  typically of order one. This is
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for flow past a surface-mounted flump in tfle lower deck witfl relative flump fleigflt 

h, for example. Most significantly, Smith, and Bodonyi (1985) sflow by means of an 

exact solution of tfle Rayleigfl equation (see §4.3) tflat an order-one value of h is 

needed for inflectional instability, or its onset, to occur, i.e.

u - y  = 0 ( l ) ,  (4.19)

even tflougfl inflection points are present for any smaller value of h, corresponding 

to smaller flump fleigflt s.

Let us consider tflree-dimensional waves instead for wflicfl tfle equivalent Rayleigfl 

equation is

( ^ - c ) ( $ " - f $ )  =  u ''$ , (4.20)

wflere 7  ̂ =  -f /3̂  and

Ü (X ( a ü -h/3iv) (4.21)

for disturbances proportional to exp[iaX  — iacT] of a basic flow witfl profiles

Ü and w. We indicate below tflat inflectional instability is likely for any value of 

h, no m atter flow small, unlike in tfle two-dimensional case discussed earlier. Tflus, 

wflen h is small, tfle profiles flave tfle form û = y 0{h)  and w =  hivi say, wflere 

iDi is of order unity and flas a waU-jet sflape in y including at least one inflection 

point: see solutions in Smith, et al (1977).

So, for most (0 (1)) values of tfle wavenumbers a , (3, tfle effective profile ü  in (4.21) 

is dominated by tfle ü-term, i.e. by 2/ -1- 0 (/i), and flence, in view of tfle requirement

(4.19), tflere is stability.

In contrast, for very oblique waves such, tflat /? >• a , witfl a  ~  /i/3, u oc j3[{a/l3)ü-\-w] 

gives

u cc h/3 (4.22)



CH APTER 4. LINEAR IN STA B ILITY  OF TRIPLE-DECK FLOW S  73

and so the effective profile ü can be strongly inflectional as the two terms in the 

sqnaxe brackets of (4.22) are now comparable, both being 0 (1 ). Also, is domi­

nated by j3̂  here, leaving (4.20) in the relatively fuU form

{ ( 0 )  Î' +  (^ "  -  (4.23)

provided /3 remains typically 0 (1 ), with a  then having to be of order h, while 

y  =  0(1); c would be the effective inflectional speed for the neutral inviscid case.

In essence, those very obhque waves allow the criterion (4.19) for inflectional insta­

bility to be satisfied even at small h-values. For flow past three-dimensional humps 

for instance, as in Smith et al (1977), a wide variety of waU-jet profiles Wi is pro­

duced, and likewise in other three-dimensional sublayer motions, and it seems likely 

from (4.19)-(4.23) that a range of those profiles will provoke inflectional instabil­

ity. It is of much interest that almost any three-dimensional hump on a surface 

can provoke inviscidly unstable flow past it, even for a very shallow hump (or dent, 

wing-body junction, injection hole, and so on).



Chapter 5

Nonlinear vortex/w ave  

interaction in an interactive 

boundary layer

5.1 Introduction

The recently developed theory of vortex/wave interaction is seen as a potential 

breakthrough in the search for an increased rational understanding of the early 

stages of certain transitions to turbulence in boundary layers, or pipe and channel 

flows. It concerns the nonlinear interplay between the mean vortex part and the 

wave part of the flow, the former comprising longitudinal or stream wise vortices of 

a relatively long lengthscale in comparison with tha t of the latter. For example, 

when nonlinear interactions between longitudinal vortex flow and inviscid inflec­

tional waves are considered for the incompressible boundary layer, see Hall and 

Smith (§4, 1991), the induced Rayleigh waves are of typical wavelength 0[Re~^!^)  

compared with the 0(1) lengthscale of the vortex motion.

Vortex/wave interaction may be categorized as weakly or strongly nonlinear. If the 

effect of the vortex motion is a small ampUtude three-dimensional perturbation to

74
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the original incident mean flow, the interaction is termed weakly nonlinear, whereas 

if the mean flow consists entirely of vortex motion, the interaction is termed strongly 

nonlinear. Both weakly and strongly nonlinear interactions may be further classified, 

depending on the nature of the wave motion to leading order. Two types of nonlinear 

wave contribution have been considered to date, namely ToUmien-Schlichting waves 

(viscous) and inflectional Rayleigh waves (inviscid), see Smith et al (1993), Brown et 

al (1993), and Hall and Smith (1991). Related theory by Stewart and Smith (1992) 

and Smith and Bowles (1992) shows good agreement with the transition experiments 

of Klebanoff and Tidstrom (1959) and Nishioka et al (1979). Other related works 

and comments are provided.in Chapter 1.

Partly by way of an introduction to or basis for the work which follows in subsequent 

chapters, this chapter is given mostly over to a detailed description of the work of 

Smith et al (1993), hereinafter referred to as SBB, in which the starting process of 

strongly nonlinear vortex/Rayleigh-wave interaction in a laminar boundary layer is 

considered on a shorter lengthscale than that of previous studies; see in particular 

Brown et al (1993), and Hall and Smith (1991). However, significant temporal 

eflfects are also included. On the new shorter lengthscale the abrupt starting of the 

interaction is smoothed out, compared with tha t of the la tter two references, and 

the bifurcation equation satisfied by the wave-pressure amplitude downstream is 

replaced by an integro-differential equation which, depending on the relative signs 

of the coefficients, possesses a solution that matches downstream. In addition, other 

im portant solution paths (transition paths) are also found.

Before setting out the problem mathematically, we call upon SBB to provide us with 

a brief description of what is envisaged at the start of the vortex/wave interaction:

A two-dimensional boundary layer, either classical or possibly of triple-deck or related form, 

has, when it attains a particular station, a stream wise velocity profile with a point of inflec­

tion (e.g. under an adverse pressure gradient). This station represents a neutral point for 

the corresponding two-dimensional Rayleigh equation which possesses a non-trivial eigen-
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solution. The three-dimensional nonlinear interaction now begins, and the vortex flow de­

velops downstream in such a way as to keep the Rayleigh wave neutral, according to the 

description in Brown et al. (1993). A critical level is initiated and persists, the developing 

three-dimensionality gradually eroding the inflection-point condition.

In what follows we shall restrict ourselves to a boundary layer with the interactive 

triple-deck structure. The reason for this particular choice is tha t we are concerned 

eventually with interactive/possibly separating basic flows and their transition, with 

other basic separating flows following as limiting forms of the triple-deck case.

The basic interactive motion referred to here could be steady flow past a surface- 

mounted hump or dent, steady flow past a convex or concave corner, steady break­

away separating flow, a nonlinear ToUmien-Schlichting unsteady motion, or so on. 

The precise scales involved for the triple-deck basic case prove significant in subse­

quent chapters.

In §5.2 the variables are defined and the Navier-Stokes equations set out in a conve­

nient form. Subsequent sections give the solution of the Navier-Stokes equations for 

the various regions of the flow. In §5.3 we consider the solution within the inviscid 

core flow, and in §5.4 tha t in the viscous buffer layers which are situated above 

and below the critical layer. The solution in the critical layer itself is not described 

in detail and the reader is referred to SBB or Brown (1993) for a more indepth 

discussion. The matching of the solution between the various horizontal layers is 

completed in §5.5 and the above-mentioned integro-differential equation obtained.

For the sake of later chapters, and foUowing on directly from the results obtained in 

this chapter, we complete §5.5 by considering the influence of a slow time derivative 

dti on the wave-amplitude equation. This time derivative is absent in the original 

SBB approach where only spatial developments are under investigation.

Further comments and concluding remarks are made in §5.6.
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5.2 The outline o f the problem

The full incompressible three-dimensional Navier-Stokes equations form the basis of 

the problem. If T is a representative length and U a representative speed, we may 

write the starred dimensional Cartesian coordinates z*), velocity components

( u * pressure/density ratio p*/ p* and time t* as

) 2/ ) ^ 3/)

{u*^v*,w*) =  U{u^v,w)j

p y p '  = u^p,  

t '  = V i jL .

In terms of these nondimensional quantities the Navier-Stokes equations are

du du du du dp 1 ( d^u d^u d^u 1

dv dv dv dv dp 1 f  d^v d^v d^v 1

dw dw dw dw dp 1 f d^w d^w d^w 1
â T  +  %  = ~ Y z ' ^ T e \ d ^ ^ W ^ d ^ j '

where Re  is the Reynolds number defined as

Re = E I
V

(assumed to  be large throughout), and v  is the kinematic viscosity of the fluid.

Confined to the lower deck of the triple-deck structure where y has 0{Re~^/^)  

for a flow developing on a streamwise lengthscale there is a transverse

dependence which gives a three-dimensionality to  the flow on a scale 0 (R e “ /̂®).
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We write

X = e^x, y = z  = (5.2)

where, for convenience, e =

The vortex/wave interaction solution is the sum of two contributions, namely the 

wave component of the solution and the vortex (or mean flow) component. The wave 

part of the solution has an exponential factor of the form

E  =  exp[i(aoX — HT)], (5.3)

where T  = eH and the fast scale X  is defined by

œqX =  e“  ̂J  a{x)dx.  (5.4)

W ithin the lower deck of the triple-deck structure the inviscid Rayleigh-type distur­

bance typically has a Re“ ®/®-cube scaling which justifies the definition of X  in (5.4) 

above.

Here the prescribed frequency Q, is real, as is the wavenumber a{x)  which is to be 

determined. The vortex part of the solution is .B-independent and must satisfy con­

ventional boundary conditions as ÿ —> oo and at the wall. It is Hnked to the wave by 

a jump condition on the transverse shear stress across the (unknown) critical surface 

ÿ  =  f { x , z )  at which the streamwise velocity component has the value Q/a{x).

We now introduce the new shorter streamwise lengthscale over which the vor­

tex/wave interaction is considered. This wOl enable us to examine more closely the 

starting process of the interaction within the lower deck. In terms of the streamwise 

variable x the new scaling is

X =  exi, (5.5)

where xi = 0 (1 ). We proceed by considering the flow within the core region and 

the buffer layers, in each case describing the structure and scales used. The final
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result, obtained by matching the solutions in the various regions of the flow, is an 

integro-differential equation for the amplitude of the wave pressure.

5.3 The core region

In the core regions Xi = 0 (1 ), ÿ =  0 (1 ), z — 0 (1 ) and in (5.1) we write

u =  eC/o(ÿ) +  €^Ui{xi, ÿ) +  . . .  + e^^^^Eüo 4- . . . ,

r  =  e^Vi{ÿ) + e^V2{xi,ÿ,z) + . . .  + €^^/^Evo + e^^/^Evi + . . , ,

w =  W i(zi, ÿ, z) E wq E w \  +  . . . ,

p  =  e^xipo -f . . .  4- e^^^^Epo 4- c^^^^Epi 4 - . . . ,  (5.6)

where we have only specified the terms which it will be necessary to consider. In

(5.6) Poo &nd po are constants and üq etc. are functions of Zi, ÿ, z; the complex 

conjugates etc. also occur in (5.6) but for simphcity have not been displayed.

Here the unperturbed flow, comprising u =  eUo{y), v =  e^Vi(y) and p =  e^poo, is

in fact a basic interactive triple-deck steady flow solution satisfying the lower deck 

equations

dUo ^  dVi .
w  '

rr dUo _  dpoo , Ô^Uq

with

Uq y + A  as p —>■ oo.

the slow scale z-dependence of Z7q, Vi and poo not given explicitly in (5.6) above. The 

unknown displacement increment —A  is linked to the pressure poo by the Cauchy- 

Hilbert integral

1 7°° dA d i  

and we note tha t for shorter-scale flows A  is effectively zero.
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5 .3 .1  T h e  v o r te x  so lu tio n  

The solutions for Vi  and Ui  are

V, .  « » )  { £  ' ^ ■ 1 » I ®' )

The constant Vo is the value of the normal velocity v at the initiation of the critical 

level, which has been taken here to be at y =  üo, and the constant cq is such tha t 

Uo{ào) =  Cq and is the leading term in the expansion

n /a (x i )  = Cq + €C2Xi + ----

Therefore, since O is a prescribed constant, it follows that the wavenumber o:(xi) is 

given by

a{Xi) =  Q q  +  6 0 =2 x i  +  . . . ,

where ctoC2 +  0 2C0 =  0.

5 .3 .2  T h e  w ave so lu tio n

The leading order pressure term po satisfies the Rayleigh equation

such tha t Po — 0 as ÿ —> 00 and d p o / d ÿ  =  0 on ÿ = 0. We write

p o { x i , ÿ , z )  =  Po{ÿ)  +  7*2(xi)e~‘^°^} (5 .10 )

for a pair of waves obliquely inclined to the mainstream direction and aim, in what 

follows, to find an equation relating the wave-amplitude functions r i(x i)  and r 2(x i).
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We will note here that as 2/ —> ao the inflectional velocity profile Uo{y) is such that

bn{y -  aoYUo{y) — Co +  bi{y — üq) +  ^  ,
n=3

Prom (5.11) it follows that as ÿ üq

(5.11)

where

and

^n{y — <̂0)”' p _  -1 I 9n{y —
-  =  2 . — ^ — > •Po =  i + 2 ^ -Xi n=0 71= 2

nl

do =  - (po  +  Vob,)/co, di = 63/co, 

^ 2  =  (6 4  — V063 — 6 1 6 3 /  Co)/Co,

(5.12)

(5.13)

?2 = -(û !§ +  /?2) = -7o> say, 

Ç4 =  92(463/61 +  37o).
(5.14)

The value of the constant 53 cannot be fixed by such local expansions and instead 

must be obtained by integrating (5.9).

The equation satisfied by pi is a forced Rayleigh equation of the form

+  2iaoXi ja o a ip o  +  ^
d^Pi 2 -

- ~  ( ô ô ^ W r
(5.15)

where we have set Ui{xi ,y)  =  xiUi{y),  Ui given in (5.8).
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If we write

p i( i i , î î ,2 )  =  P o (ÿ ){ < ? i( ii,ÿ K ^ "  +  Ç 2(a:i,ÿ )e-‘̂ * }  (5.16)

then the solution of (5.15) which satisfies the condition pi(oo) =  0 is given by, for 

ÿ > âo,

W  (P o -C o ) ' " L  (Po - c o f  +  «or;(n)Æ i,} dy (5.17)

and, for jf < So,

dQi  P | /•» P(-*0
=  T ^ j ^ - ^ - ^ { x i r i { x i ) R a  +  icor'i{xi)Rb}dy

{Uq — cqY  Jo {Uq — cq)^

+  (5.18)

for i =  1 , 2 , where the functions Ra(y)  and Rb{y)  are defined as

and

p .  =  2 L o % (P o  -  co)Po +  -Fo j (5.19)

The value of the constant Q~ in (5.18) is determined by the wall layer which, for 

the purpose of the following chapter, bears no great significance. We therefore refer 

the reader to Appendix A of SBB where the result

QZ, = -7 o ^ ’o(0)(-iaoco)-*/" (5.21)

is obtained.
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The integrands in (5.17) and (5.18) have triple poles at y =  no and it can be shown 

th a t near ÿ = üq

where

R.

Rh

{ U o - C o f  { y - a o f  { y - d o Y  [ y - a o ]

Po +  0 (1 ), (5.23)
(Uq - co)^ { y - o o ) ^  { y - a o Y  {y -  ao)

(5.24)

a_3 =  2^2 (c2 — do)fi>i,

a ~ 2  =  { 9 3 ( ^ 2  — do) — 2 0 = 0 6 1 0 2 / C o }  / 6 j ,

a _ i  =  {^2^2 +  (^0 — C 2 )(6 3 ^ 2 /3 6 i — Ç4 /3  — 52) }  /6i^

6 - 3  =  2 ^ 2 / 0 : 0 6 1 ,

6 - 2  =  9 3 / 0 = 0 6 1  -  2 o o / 6 i C o ,

6-1 =  63^2/ 0=061.

In fact, in matching the solution in the buffer layers with that of the core we find 

tha t a_i vanishes, as will be shown in § 5.4. Combining (5.17), (5.18), (5.22) and 

(5.23), as ÿ -> âg Pi takes the form

P i( z i ,ÿ ,z) -  Pi{xi,ao,z)

% 6i(ÿ -  âo) j z i r i ( z i )
a_3 0 . - 2 /^
~ 2  2 {ÿ — ûo) +  (y ~ ®o)̂

+  2Cori(zi) 1̂— ^ -----^ { y  -  ao) +  —̂ { y  ~  ^o)^log \y -  no I

+  l^biÿ -  “o)^j +  : ^ ^ Q Ï r i ( z i ) ( ÿ  -  no)2|

+ 6i(ÿ -  no) j z i r 2(zi)

+  icori^ixi) 1̂— ^ ----- ^ { ÿ  -  tto) +  ~ ^ i V  ~  ^o)^ lo g  \V — ô,q\

■ ^ ^ ^ Q ï r 2(z i)(ÿ  -  no)^! (5.25)

— ^ -----^ { y  ~  ®o) +  gGg (y -  no)^

+  g <̂ 6 {y -  ^o)
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where Q+ is zero, Q is given by (5.21), and and C f  are constants whose 

differences we wiU need later. The values of these differences are

G t - G Z  = _  f  RgPp_______ 0_3________g-2  \
Jo W o - c o f  { y - a o f  ( ÿ - â o ) 2 j  ^
g-3 g-2
2ag do (5.26)

and

=  - f { RbPo b . r 6-:
(^0 -  cq)^ {y -  gloY (ÿ -  ô-oY

b-3 . 6-2

26-1&0 1 
( f - a § ) j  ^

2 df\ clq
(5.27)

where Æo and Ri  are defined in (5.19) and (5.20) respectively.

5.4 The buffer layers

The buffer layers are sandwiched between the core region and the critical layer and 

it is here tha t the mean (vortex) flow feels viscous effects at leading order, implying 

tha t, for xi = 0 (1), the appropriate ÿ-scaling takes the form

(5.28)

where / ( x i ,  z) =  üq +  ea2Xi +  We write

u = eco + e^/^6iY  +  ê C2Xi +  e^/^63 +  e^U4  +  . . .
\ 6  Co /

u =  e^Vo +  6^/2(5201 -  C2)Y +  6^2 +  . . .  +  Ee^^/^ 

w  — +  . . .  +  wq +  +  ew2 +  • •

P  =  Y p o o  +  €®pqXi +  . . .  +  P o  +  +  e p 2 +  e ^ ^ ^ p s  +  e^p4 +  e®/^ps +  . . .

(5.29)
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where, again for simplicity, terms in E~^j E" ,̂ etc. have not been displayed. The 

powers of e in (5.29) and some of the ^^-independent terms have been anticipated 

from the solution in the core region, in particular, if we consider the normal velocity 

component v, a match between the two regions implies

cqC2 =  —biÇVo — Ü2C0) — Po- (5.30)

5 .4 .1  T h e  v o r te x  so lu tio n

The equation for wq is obtained from the z-momentum equation as the diffusion 

equation

- ë =& (*■»')
with the conditions wg —» 0 as |Y| —> 00 and as Xi —> — oc. As in SBB we will 

assume tha t wq is continuous across Y =  0 but tha t the critical layer forces a jump, 

Jo{xi ,z)  say, in dwofdY  across Y =  0. To justify this assumption we refer the 

reader to Appendix B of SBB where the solution in the critical layer is discussed in 

detail. If we define the Fourier transform of wq with respect to xi  to be

J^{wo) = f  tüo(xi, Y,z)e~*‘̂ “'^dxi 
J — 0 0

with parameter w, then (5.31) implies

:^(wo) =  " 2(^!i^)V 2  Gxp[-(icoWi)^/^|Y|] (5.32)

where Ui =  a; — ir ,  r  being a small positive parameter, and is real

and positive when w is large, real and positive. Therefore,

exp[-coY V 4(x, -  s)]ds. (5.33)
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The continuity equation gives us

dv 2 dwo 63Y

from which it follows that

V2  =  —- — — —  f  wody — A 4 (x i , z ) f  (5.34)
Z Co O z  J o

where A/^{xi,z) is an arbitrary function which gives the value of ug at the critical 

level.

Finally, from the x-momentum equation we obtain a forced diffusion equation for 

îi4, namely

+Â 4(x i,z ), (5.35)

where ^ 4(11 , 2) is a combination of A^{x\ ,z )  and linear terms in x i. If we write

U4 =  Ü4 +  63-—  ( — +  Vo — dgCol 4-----/  A^^dxi (5.36)
2 4  \ c q  j  Co j

then it follows that

We require tha t the term O(Y^) in (5.36) matches with the term  O(y^) of Uo{y) in 

the core, therefore implying that

64 =  63 — h Vo — â g C o ^  .

This, together with (5.13), leads to the vanishing of a_i in (5.24).
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5 .4 .2  T h e  w ave so lu tio n

Our aim in this section is to obtain an expression for ps in (5.29) and in particular 

the terms in ps of 0(|Y |^) which must match, as |Y| oo, with those 0 { ÿ  — ôq)^ 

in (5.25) as ÿ ^  âg .

The early ÆJ-dependent terms in (5.29) are easily obtained by direct matching with 

the solution in the core. We deduce that

Po =  Po(zi,do, z), Pi = 0. (5.38)

It then follows that

i dpQ  ̂ i fd^po  2 - ^

ûo = p 2  =  + ÿ i(z i ,û o ,z ) , (5.39)
CCq oz 2.

and

dwo
dxi d Y ^ J

i /  dwi
Üi =

0=0 \  dz IS*) •
Pz =  - \ i a o b iV o — Y^ -  cqY ^  +  p3(x i,z ) , (5.40)

D Q2 0 X \

where the arbitrary function pz{x \ , z)  is of no consequence. The expressions for

W2 -, V2 j Û2  and p^ are more complicated and only needed as steps in obtaining the

required information, namely ps. For this reason we will omit their details here and 

refer the reader to Brown (1993) for a more lengthy discussion, moving straight to 

the equation for ps which is

d^ps 2  dps Cobs dvo rd u i  i , \
1 9 Ÿ  “

-  dÜ4
®0 1 "3 ^  — ^ ^ 4  I + (5.41)

On the righthand side of (5.41) only the terms with factors U4  or 0(Y ) have been 

included since, as mentioned above, it is the terms of this nature which are required 

for the match of the solution with tha t in the core region.
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On integrating (5.41) we get

 ̂te""*’'’. 1
Y dY^

dY

Y 1 d H i  
Y  dY^

dY

(5,42)

according as Y < 0 or Y > 0. It can be shown tha t Ü4 is an odd function of Y, and 

tha t

L
^ ^ ^ ^ * d Y = p - ^ T o ( x u z )

where

0 Y dY^  4co dz

T o{x i , z )=  I  Jo{s,z)ds.  
J  — 0 0

(5.43)

(5.44)

The term  in ps of order |Yp is needed both as |Y| —> 00 (to match with the core 

region) and as |Y| 0 (to match with the critical layer). We see from (5.42), (5.43)

and (5.44) tha t the constant term on the righthand side of (5.42) required to give 

the match is, for |Y| <C 1,

D ^ { x i , z )  (5.45)

and, for |Y| >  1,

D ^ { x i , z )  ±
4co

dTo , dpod^To)
dz dz dz^ j

(5.46)

according as Y < 0 or Y > 0. The match with the critical layer determines the 

difference — D~,  namely

(5.47)
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In the following section we match the terms of order |Yp in ps to the corresponding 

terms of the solution in the core.

5.5 The matching and the final equation

On matching the difference in the terms in |Y|^ for the buffer layers and the core

region we obtain

=  j z i r i ( z i )  ( G i - G ~ )  +  icori(xi) (g ^ -G ^ 'J  -  Ê

+  bf | x i r 2(xi) (Ga~G~)  +  icor'2 (xi) ( ^ G ^ -G ^ ' j  j

(5.48)

where Ê  —

The jump Jq(x i , z ) in dwofdz  across Y =  0 forced by the presence of a critical layer 

is derived in Appendix B of SBB. Here we simply quote the result

dpo
dz

(5.49)

On setting po =  ri{xi)e^^°^ +  r 2(a;i)e“ *̂ °̂  and equating terms in and 

respectively in (5.48), we obtain two integro-differential equations linking r i(z i)  and 

r 2(x i), namely

=  h i  | x i 7 * i ( x i ) ( G J - G ^  ) -I- i c o r [ { x i ) { G ' ^ - G f ^  ) -  ^ f ^ 7 * i ( x i ) | ,

(5.50)
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and

=  bl i^xir2 {xi){G'^-Ga ) 4- ĉo7’2(xi)(G ^-G j, ) -  •

(5.51)

Here the constant Q~ is given by (5.21), noting tha t Po(0) =  1, (G+ -  G~)  and 

(G f — G ^) are given by (5.26) and (5.27) respectively, and r* denotes the complex 

conjugate of t\ .

If however r i  =  rg, po can be written in the form

po = r{xi)cosl3oz. (5.52)

It then follows that on equating terms in cos/3q2 in (5.48) we obtain the equation 

satisfied by r(cci), namely

=  ja :ir (z i) (G g -  G~)  +  icor'{xi){G'^- G ^) -  ^f^7*(xi)|

(5.53)

where r  =  2 ri, accounting for the factor 4 which appears in (5.50) and (5.51) but 

not in (5.53).

It is equation (5.53) which forms the basis of the work carried out in Chapter 6 ,

in which the behaviour of the solution is investigated for small ao, and subsequent

work.

Before concluding this chapter, and in preparation for the next, we consider here 

the additional influence of a slow time derivative dt  ̂ accompanying the slow spatial
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derivative dxĵ  .This is found to entail replacing the operator Cq^xi with the operator 

dtĵ  +Co^xi on the lefthand side of (5.53), along with a corresponding replacement of 

the operator (G^ -  )co^xi with (G+ -  G~)dti +  (G^ -  G^  )co^xi on the righthand 

side, thus yielding the equation

+ ‘= c - ^ ) + K 2 r ( x ^ , h ) J _ j T ^ ( s , h ) \ d s

= bl G~) r{x i , i i )  +  i{G'^-  G j)  — |

— 6j^ |^ r ( x i , t i ) ,  (5.54)
0̂

in place of (5.53), for the time-dependent wave-amplitude function r (x i , t i ) .  Here 

and, analogously with (5.20) and (5.27),

9 TT' P '

We leave this result for the moment, referring back to it in §6.7 of the proceeding 

chapter.

5.6 Additional comments

In summary, the present chapter has examined the starting process of strongly 

nonlinear vortex/Rayleigh-wave interaction in an interactive boundary layer on a 

streamwise lengthscale shorter than tha t considered by previous works (see Brown
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et al (1993) and Hall and Smith (1991)), the main outcome being the integro- 

difFerential equation (5.53) for the amplitude of the wave pressure. In particular, 

this chapter has concentrated on the flow structure and scales appropriate to an 

otherwise laminar steady triple-deck motion. Extra temporal dependence has also 

been included however, as in (5.54), and a similar extension holds for the case of 

two unequal waves in (5.50), (5.51).

In the next chapter we move on to consider the same nonlinear vortex/wave inter­

action or transition process as above, this time reducing the wavenumber a  in order 

tha t such a transition process occurs closer to the point at which the inflectional 

instability first appears.



Chapter 6

Analysis of the new  

vortex/w ave interaction for 

small wavenumbers

6.1 Introduction

The integro-diifereiitial equation (5.53), derived in the previous chapter and obtained 

in SBB (1993), is the starting point for the investigation carried out in this chapter. 

Our original aim in conducting this particular part of the study was ultimately to 

hnk up the work of SBB, more specifically the triple-deck basic fiow as described in 

Chapter 5, with pure three-dimensional unsteady triple-deck fiow and its shortscale 

waves and nonlinear finite-time break-up. Along the way some more interesting new 

features were/are found to emerge, based essentially on the extension of (5.53) to

(5.54), and these are described in the following.

Our investigation is based on the assumption that

a  =  Qo + (0=2 +  . . . ,

P — /̂ o + • • ' }

93
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which, represent the two wavenumbers in the direction of and transverse to the 

mainstream flow respectively, are comparable at leading order throughout (ao ~  (3o)- 

We consider the results of Chapter 5 for small a , /?, effectively taking ao <C 1 and 

/3o <C 1 in the integro-diflerential wave-pressure amplitude equation (5.53). In other 

words, if we put To =  ckq +  Po essentially we are considering the case of To small.

The reason we choose to take this approach is tha t we are interested in what tran­

sition processes can occur as inflectional instability first appears. That first appear­

ance, or onset, happens for small Rayleigh wavenumbers or relatively long waves 

(Smith and Bodonyi (1985), Tutty and Cowley (1986)), and is also connected with 

the nonlinear finite-time break-up phenomenon of Smith (1988) in two dimensions. 

Physically we might expect nonlinear three-dimensional transition processes such 

as vortex/wave interactions to be more relevant if they arise early (close to such a 

first infiectional-instability point) rather than later (as at a fully fledged infiectional- 

instability point), the latter being the situation addressed in SBB and in the previous 

chapter. Our focus is now on the former onset stage.

In the pursuit of clarity we need to simplify our notation by writing a , and 

T hereinafter when referring to the terms ao, Po and To respectively of Chapter 5 

since we are concerned only with the behaviour of the wavenumbers to leading order.

First, with the same structure and scales as those of Chapter 5, we begin by dis­

cussing the wave and vortex solutions within the core region of the fiow for small 

wavenumbers. By dividing the core into two further regions (or tiers) and matching 

accordingly we are able to  understand the response of the coefficients in (5.53) at 

small a , T- In doing so we highlight some im portant features, indeed restrictions, 

of SBB and related work which are eliminated when we then proceed to  consider 

the fiow on a new lengthscale; this elimination therefore further generalizes the ap­

plication of vortex/Rayleigh-wave interactions in interactive boundary layer flows. 

Moreover, the investigation yields particular situations in which the coefficients in 

the wave-pressure amplitude equation can be derived more explicitly than in SBB.
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In §6,2 the wave solution in the core is obtained for small wavenumbers, employing 

the same structure and scales as in Chapter 5. Here it is shown tha t before the 

wave-pressure amphtude equation is derived at second order, at leading order the 

scaled input frequency 0  of the Rayleigh wave is fixed in terms of the inflectional 

velocity profile and the known inflectional speeds, thus implying tha t (5.53) can 

only hold for certain input frequencies.

The corresponding core vortex-solution is outlined in §6.3, yielding the behaviour 

of the vortex velocity components, denoted Uy, Vy, Wv, in terms of a, I  and A; 

I  the xi-scale, A the p„-scale, the leading order pressure-vortex term. In §6.4 

we analyse the integro-diflerential equation (5.53) for small a , /), 7 , and obtain the 

behaviour of x\  and and hence Uy^Vy, W„, in terms of a  alone, as required.

Second, a new regime, distinct from that of Chapter 5, is then set up in which 

a  ~  §6.5 describes the reasoning behind this choice of a  and outlines the

scales involved. The wave-pressure amplitude equation is then obtained for this 

new regime, consisting of the integro-diflerential equation of Chapter 5 combined 

with the equation obtained for 7  in (6.16) of §6 .2 ; both now seen acting together at 

leading order. Other regimes arising at even smaller values of a  are also identifled 

in §6 .6 .

Finally, in §6.7 we briefly interpret the work of §6.5 in terms of a new spatio-temporal 

form which seems appropriate to an initial-value problem, generalizing from the 

fixed frequency setting used hitherto in this work and other works on vortex/wave 

interactions.
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6.2 The core wave-solution for small wavenumbers

W ith the same structure and scales as those of Chapter 5, the leading order wave 

part of the pressure solution in the core region satisfies the equation

with boundary conditions p(oo) =  0 and 5p/^ÿ(0) =  0. Again, for the sake of a 

more simple notation we have replaced Uq, cq and po of Chapter 5 with Î7, c and p.

For 7  <C 1 we further subdivide the core region into a two-tier structure as described 

in §6 .2.1 and §6 .2.2 and obtain the solution of (6 .1) in each of the tiers, matching 

accordingly. Expanding in terms of the now small parameter a  we write

7 = «70 + OL̂ li +  ot^ 2  +  . . . ,  (6.2)

c = Co + aci + a^C2  +  . . . ,  (6.3)

where 70 etc. are constants and cq etc. are known inflectional speeds.

6 .2 .1  T h e  o u te r -t ie r  so lu tio n

Here ÿ =  a~^ÿ  where ÿ =  0 ( l ) , / 7  ~ ( ÿ - t - A)  where A is a constant, and in terms 

of a

P = P o (x i,ÿ ,2) -f ap i{x i ,y , z )  + a^p 2 {x i ,y , z )  + . . . .  (6.4)

On substituting (6.2)-(6.4) into (6.1), along with the scaling for ÿ  and the approxi­

mation to /7, we obtain at first order an equation for po, namely



CH APTER 6. NONLINEAR VO RTEX/W AVE INTERACTIO N 97

The solution to (6.5) satisfying the boundary conditions po(oo) =  0 and dpoldy{9) =  

0 is

Po =  P o{x i,z )[ l  +  (6.6)

As ÿ —> 0 the form of po which we must match with the solution in the inner tier as 

ÿ —» oo is

Po ~  A)(a:i, z) ^1 -  +  g?oP^ .. .^ . (6.7)

We now consider the wave solution in the inner tier of the core.

6 .2 .2  T h e  in n er-tier  so lu tio n

In this tier ÿ  remains 0 (1 ) and U and p take the forms

U =  Ûo{ÿ) + aÛi{ÿ) + a^Û 2 {ÿ) + • • (6 .8 ) 

p  =  Po[x-i_,z)-{-a^P2 {x i ,ÿ , z )  + Q^Pz[xi,ÿ,z)  + (6.9)

the leading order term  Pq[x i ^z ) of p  having been anticipated from the solution in 

the outer tier. On substituting (6 .2 ), (6.3), (6 .8) and (6.9) into (6.1) we obtain at 

first and second order

, ^ û ô i û i - C i ) dp2 2Uj ap2 .
(Po -  Ôo) dÿ  +  (%  -  co)2 dÿ  (âo -  Co) dy  “ ■

(6.11)

From (6.10)
d p 2

dÿ = 7oPo{Ûo -  èoŸ r  -f-^ — dy, (6 .12)
Joo [Uo — C o )
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and on applying the wall-condition it follows that

i  { U o - c o / ^  "

linking with the papers mentioned in the introduction to this chapter and with 

Chapter 4. It is emphasized by Smith (1988) in the nonlinear context in particular.

If we put I(ÿ) =  S^{Ûo -  co)~^dÿ then from (6.11)

^  = {Û0 -  c o f  | a 3(xi, 2 ) +  2M i-â>I +  2ÿiPo £  m m d y ^  (6,14)

where

A match with (6.7) implies that A 3  =  7o-̂ o and on applying the wall-condition 

dpldy{ 0 ) =  0 we have

70 =  2 /  f { ÿK V )dÿ ,  (6.16)
Jo

fixing 70 . In general 70 could be complex, for example if c were not equal to an 

inflectional speed. Here however we are concerned with the neutral case in which 

70 is real.

6.3 The core vortex-solution for small wavenumbers

The jEJ-independent vortex components of the solution in the core region of the flow 

are of the form

u = eU{ÿ) + 6 ^xiÜ{ÿ) + €^Uv{xi,ÿ,z) + (6.17)

V =  e^V{ÿ) + €"^Vy{xi,ÿ,z) + . . (6.18)

w = €^Wy{xi ,ÿ,z)  + . . . ,  (6.19)

p  =  . . .-F £®p„(xi,ÿ,z) 4 - . . . ,  (6.20)
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where the terms with suffix v represent the vortex effects within the flow.

Substituting these expansions into the Navier-Stokes equations we obtain the set of 

equations governing the vortex motion to  leading order, namely

dxi  ^  dÿ ^  dz  ’ dxi  dÿ  ’

+ = =  (6 .21)

which, after some algebraic manipulation, yield a Rayleigh-like equation for of

the form

We will solve (6 .22) in each of the two tiers and match accordingly.

6 .3 .1  T h e  o u te r -tie r  so lu tio n

W ith ÿ =  a~^ÿ  and Ï7 ~  (ÿ -j- A) we assume that takes the form

P y {x i , ÿ , z )=  {poixi,ÿ)  + a p i { x i , ÿ )  + a^p2 (x i , ÿ )  + (6.23)

where /3 = a  Substituting (6.23) into (6.22), along with the expressions for ÿ and 

Uj we obtain the equation

for Po which, in order to satisfy the boundary conditions Po(oo) =  0 and dpo/dÿ{ 0 ) = 

0 , has solution

Po =  7To(zi) ( l  -t- $ÿ^  (6.25)

We note tha t the arbitrary function 7ro(xi) is of no consequence in what follows.
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6 .3 .2  T h e  in n e r - t i e r  s o lu tio n

In the inner tier, where ÿ =  0 (1 ), the leading vortex-pressure term  has expansion

Pv = +  a^p 2 {xi ,ÿ)  +  a^p 3 {xi ,ÿ )  +  . . . )  (6.26)

U given by (6 .8 ). It follows then that P2 satisfies the equation

If we let P2  denote the solution of (6.27) above the critical and P2 denote its 

solution below the critical we have

+ (6.28)

Matching with the outer solution (6.25) we may deduce that We simply

note here tha t by matching the jump (P ^  — )' with its equivalent in the buffer

layer B ^  may be fixed.

Prom the vortex solution within the core region we obtain expressions

U y r ^ a ^ A f ,  V ^ r . a ^ A i ,  ~  aA£, (6.29)

for the behaviour of the vortex velocities in terms of a , £ and A, £ the xi-scale 

and A the p^-scale. All tha t remains is to establish the magnitudes of the scales £ 

and A in terms of a . For tha t we turn to the integro-differential equation (5,53) of 

Chapter 5.
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6.4 Analysis o f the integro-diflferential equation for small 

wavenumbers

The integro-differential equation (5.53) can be written in the form

C r \ x i ) A r { x i )  f  |r^(s)|ds -  (B zi +  2D )r(a;i) =  0 (6.30)
J — OO

where A, B  are real constants and C is a complex constant. W ith a change in the 

origin of xi the constant D  may be taken to be real. Therefore in what follows we 

win assume this to  be true.

If we write r(xi )  =  p(æi) exp[i^(xi)], where both p{x\) and 6 {x{) are real functions 

of x i, then putting C — X ip li follows that

p' Ap I  p^ds -  B x i p  = 0, (6.31)
J  — OO

and

e ' = J { D - ^ i p ’/p) ,  (6.32)

a second change in the origin of Xi having ehminated a term  Dp  in (6.31). Con­

sidering the expressions for (G+ — G~)  and (G^ — G ^) given in (5.26) and (5.27) 

respectively, from (5.53) we may deduce that

A ~  O', A  ~

/i ~  a , 5  ~  (6.33)

at small a . From a balance of terms in (6.31) it then follows tha t

xi ~  p ~  (6.34)
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in other words t  =  0{a~^^^).  On considering the solution in the buffer layers it may 

be deduced that A = 0{a~^)  which, together with (6.29), yields the expressions

(6.35)

for the vortex velocities in terms of the small wavenumber a.

We now proceed by considering the fuU solution of the Navier-Stokes equations for 

particular values of small a , the resulting physical effects which come in to play 

provoking significant chéinge.

6.5 The new regime with wavenumbers o f order

This new regime comes about if we compare the relative error O (a ) in U (see (6 .8 )) 

with the relative error O(ecci) due to nonpajaUelism of the basic flow (see (6.17)). 

We note here that only the core region alters under this new regime, the buffer layers 

and the critical layer remaining unchanged. Therefore in what follows we restrict 

our analysis to the core region of the flow. The lengthscales involved are

X = y = z =

and we write

u  — €Uo{y) + y) +  y, zq) + ...-(- + • • •,

u =  6^ '/% (z o , ÿ,zo) + . . .  + e^^/^E {ûo + 

w =  e^Wv(xo, ÿ, Zg) + . . .  +  E  4- +  . . . ,

p = . . .  + {po(a:o, zo) + . . . } + ----  (6.36)

Here U\{xQ^y) = Ui{y) xoÜi{ÿ) and, unless otherwise stated, Ûq etc. are functions 

of iQ, ÿ and Z q .  Again E  = exp[zao(A' -  cqT)] with t = x = and

ct = olq + -|- ê ^̂ O!2 + •. • J
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^  =  ^0 +  + • • • 5

c =  cq +  +  . . . ,  (6.37)

while as a reminder e =  Re~^/^. Substituting (6.37) into the Navier-Stokes equa­

tions, the leading order equations governing the wave motion are

iao[Uo — co)ûo +  UqVq =  —ioLopo, 

ioco{Uo — cq)vo = —
oy

iOLoiÜQ — cq)wo =
UZq

iaouo =  0. (6.38)
oy  ozq

If we write

Po(zo, zo) =  Ti{xo)È -I- r 2(xo)Ê“ S (6.39)

where É  = from (6,38) we may deduce that

Vo
Û0

Üq —

= ' ^ { U o -  co)i { n i :  +  r j i : - ! } ,

i f  { '■ * + « “ > •

P2 =  To y  (C/̂ D -  co )^ Id y |riÊ  + r 2Ê “ ^} . (6.40)

Here To =  Q̂o +  Po KV) =  SLi^o -  co)~^dy. Therefore, as ÿ ^  oo

2

P2 ~  , (6.41)

matching with the outer region of §6.2 as ÿ —̂ 0. Proceeding to the second order 

equations we have
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[Uq — Co) ioLQÛi +  ia iû o | +  iao{Ui — Ci)Ûq +  UqVi

+  U [ v q  =  — i o L o p i  —
O X q

{ (£ T o - ° c o )^  +

• -  , - . . d u o  dvi  dwi  _laoUi +  laiuo +  ——  +  +  -5—  — 0 .
O X q oy OZq

(6.42)

If for convenience we put u  =  ( U q — c q )  and suppose that

Pi =  Æ i(xo)i +  Æ2( i o ) i ‘ \  (6.43)

writing ûq =  ûoi{xotÿ)È +  'ÜQ2 {^Qiÿ)ê~^ etc. it follows that

= + + (6.44)
ŒqU 0 .qU L U J ttQU^

where, apart from a change in the signs, Wi2  has the same form. For this reason we 

will only give details of the solution for the Ë-components, assuring the reader that 

the final result in terms of the FJ“ ^-components of the solution is obtained in the 

same way as the working below.

Continuing,

—û^—  — —ioco{Ui — Ci)Ûqi — U{vqi — iaoRi — r[ — cq

+  î/3qü | - ^ ^  +  s i j  (6.45)
L c i q u  j

where
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We further simplify this equation by singling out the dependence of ûn  on the

function Æi(xo) so that

1= ~— Ri - S 2  (6.46)
oy { u } ao

where

52 = — Ci)Ûoi +  U[voi +  T*! +   i^oUSi.
O X q

We note here tha t (6.13) still holds as the leading order result. On integrating (6.46) 

it follows tha t

V\i = û \ —ioLQA^ + - ^ R i  f~ ^ d y [ '  (6.47)( 0̂ 0 J OO J OO J

where are unknown functions of x q . From (6.42) we obtain an equation for 

dp3 i ldÿ ,  namely

dpzi
dÿ

=  -  ci)I«rx +  I (iax  +  ^ ^ )  g l n j

+  ioLQÜ̂  20=0̂ 4]̂  +  +  J~  , (6.48)

which we must then match to  the outer region of §6.2 as ÿ oo. To achieve this we

require tha t pai ~  JoTiÿ^/S,  i.e. dpsildÿ  ~  and therefore we may deduce

from this match that

ioLoÿ  ̂{ -z a o A f } ~  (6.49)

implying that

A t  = (6.50)ai
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We now define

Jo =
ZVii

LaouJ (6 .5 1 )

as the jump in i{aoû) across the buffer layer. Applying the wall-condition to 

ûii fixes A ï  such that

. i f°° So -
(6,52)

so from (6.50) and (6.52) it follows that

i P n + a o J o  U r f | d 5 -  
CKo I Jo Çut ̂ 1] (6.53)

the constant =  Q^fiiaoCg) determined by the wall layer, given by (5 .21). 

We can write S2 in the form S2 =  iri[L] -|- r[[M] where

L

M

=  - 7 o
2(^1 “  ^1) f 1

ao
j i  +  tfo l j  +  — û ü i ï  -U  ) a o  ag

(6.54)

which, after some algebraic manipulation, implies tha t

i I  — 7*1 -|- Qo Jo 
«0

2 co 7 o ;

( P i  -  C l )

u
dÿ

=o7o / / “  1 - (6.55)

We expect the solution in the buffer layers and the critical layer to remain unchanged 

on this shorter streamwise lengthscale. Therefore, for the purposes of matching, we 

assume the results obtained in Chapter 5 in these regions, in particular (5.47).
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Thus, it follows from (6.55) that

2 i-ri {Ü1 -  Cl) (CTi -  à,)'
ciyj 7*1

(6.56)

where c i= c ,:^ + c i and =  Q^l{iotocl)] given by (5.21).

As was mentioned earlier, a similar result is obtained for the -component of the 

solution and is in fact tha t of (6.56) with r i replaced throughout by r 2, and vice 

versa. It is also noted here that from the definition of (G^ — G~)  in (5.26) and the 

expression for p 2 in (6.38), we have to leading order

(P i -  El)
u

û^ i lK ÿ )dÿ

(Pi -  C l )

u
dy (6.57)

which, when multiphed by the 5-coordinate, corresponds to the first coefficient of 

T\ within the brackets on the righthand side of (6.56). Similarly fiom the definition 

of (G^ — G ^) in (5.27) we have at leading order

(6.58)

corresponding to the coefficient of on the righthand side of (6.56). In conclusion, 

the coefficients in the wave-pressure ampfitude equation have been obtained more 

exphcitly than those of SBB.
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In fact, we may deduce from (5.27) and (6.13) tha t (6.58) is exactly (G^ — G^). 

Moreover, from the definition (5.55) of (G^ -  G “ ) we may conclude tha t for small 

wavenumbers (G^ — G ^) =  (G j — G~) which will be of importance in §6 .7 .

6.6 Additional comments and conclusion

The main outcome so far of the present investigation into vortex/wave interactions 

for wavenumbers of order (i.e. a  ~  is the integro-differential equation

(6.56) for the wave-pressure amplitude and its differences as compared with (5.53), 

obtained in Chapter 5 for a  ~  1 . Here, in addition, all the coefficients in the 

amplitude equation can be evaluated quite explicitly, unlike in (5.53).

From the preliminary investigation of this chapter, in which we considered the core 

solution of SBB for small wavenumbers a, we conclude that 7  ̂ =  -f is fixed to 

leading order by (6.16) before the integro-differential equation (5.50) can come into 

play at second order. Fixing 7  in turn fixes the input frequency It = ac (since /5 

and c are known), thus restricting the range of frequencies to which the vortex/wave 

interaction theory of SBB may be applied.

Under the scalings of the new regime in which a  ~  the wave-pressure amplitude 

equation obtained comprises the integro-differential equation (5.50) and (6.16), now 

seen acting together at leading order. Therefore this new wave-pressure amplitude 

equation holds for arbitrary input frequencies Ü, further generalizing the application 

of vortex/Rayleigh-wave interactions in interactive boundary layer flows.

In Chapter 7 we present some solutions of (6.56) with the addition of forcing, cor­

responding to  a nonlinear receptivity problem. The results, obtained numerically, 

show typical responses downstream (giving four transition paths in principle) and 

comparisons are made with the solutions obtained by SBB in the non-forcing case.

We conclude this subsection by noting that, along with the e^/^-regime discussed in
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§6.5, two other possible regimes, a  ~  e and a  ~  e^, are of physical importance and 

have been brought to light in this work.

The second regime a  ~  e is implied by the outer tier of §6.2 and §6.3 whose y- 

coordinate becomes 0{e^) when a  —> 0(e). As a result the fuU Blasius profile, Ub 

say, exerts influence and we are required to solve

such that

Po ~  Pq{x i , z ) { l -  +  v [ x i , z ) ^  +  . . .  as ÿ 0+

and po(oo) =  0 for various 70-values, thus obtaining v. Here y =  e^ÿ, 70 is unknown 

and A3 =  i/^Pq in (6.14), thus fixing 70 on applying the wall-condition.

The third regime a  ~  ê  comes about on balancing the leading vortex terms e^C/ ,̂ 

etc. with the leading wave terms etc. in the core region. At such small a

we would arrive at the fully nonlinear and nonparallel three-dimensional triple-deck 

structure.

6.7 The initial-value formulation

Before moving on to numerical solutions of (6.56) in Chapter 7, we complete this 

chapter by interpreting the work of §6.5 in terms of a new spatio-temporal form 

which seems appropriate to  an initial-value problem. In doing so we generalize 

(formally) from the fixed frequency setting used up until now in this work and other 

work on vortex/wave interactions.

In mathematical terms we achieve this new interpretation by replacing the multipher 

iao with the operator d fd X  in the appropriate equations, X  being the fast scale 

in the mainstream direction. The replacement is equivalent to  a Fourier-transform



CH APTER 6. NONLINEAR VO RTEX/W AVE IN TERA C TIO N  110

approach for covering more general X  variations. Thus at leading order, replacing 

(6.38), we have

from which we obtain

»/3o

«01 =  ( %  -  Co) | l | ^  -  Pll 7-1 d X i  I  , 

dÛQi 1
d X  9JÇ ^  ( U o - c o ) d X '

=  -(P o  -  c o ) ^ ,  (6.60)

for the Ê-components of the solution, po =  r i{ x o jX )E  + r 2 {xo^X)E~^. At second 

order the governing equations become

U q dÛQ

. { U o - C q )  dXQ

r Uo dvQ

I ( U q — C q )  dXQ

Uo d w Q

-  “> {(5 ^ S  + Î5 ) + dwo dpi
{U o -co )d xo  ' d X } ^  d X  dzo'

dûi dûo dvi dwi _
d X  dxQ dÿ dzo

(6.61)

and hence
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(Po -  c o ) ^  = - iP o R i  +

As in §6.5 we write v u  in the form

-(Po -  oo)^^ { R , d X ^ - ^ - S

where

,2 (Pi -C l) «2 Po r  Pn
— 5 =

" ^ “ ( P ^ / c c  ’■* "  ^ “ ( P o ^ / o o  /- c c  3 ^

+ (% T ^ &  +

-P l(P o  -  Co) | l | ^  -  P l l J _ ^  r i d X ij  -  c o ^  -  £  

and Pi =  R i{x o ,X )È  + R 2 {xq ,X )È ~^. Therefore

*11 =  (Po -  Co) | - ^  -  iJi d ^ i  +  +  1  (P o -c o )2 ‘̂ 4

and thus

+ Po(Po -  Co) { i g ^  -  Ê

+(ï7i -  ci)(Z7o -  Co) ~  • (6.63)

If we use the result, conjectured and confirmed in Appendix A, tha t in matching 

with the outer solution the function A f (xq, X )  is such that

^  =   Y l n Æ l ______  (6 64)
d X ^  2 x  J - o o L o o  [ { X  -  0 ^  +  (zo -  T7)2]1/2 ’  ̂ ^
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then, as in §6.5, it can be deduced tha t the wave-pressure amplitude equation is of 

the form

zTrfeaCo

where

d^ri
dxodX

dX,
d X ^  bl \  bl

= {é S x  ~ {
, 1 J_£!_ _  / “  ,

( i r c 5 ) i / 2 \ ô J ï 2  PojJ^  ( s - j f ) l / 2

+ N '

d^Ti
d X ^ - P i n

= £ {Uo -  c o f
dy d  r (P i-_ cO

<=o).
dy

(6.65)

N  represents the nonlinear term derived from the jump condition across the buffer 

layer, its determination requiring a more detailed analysis than is carried out here.

By replacing iPo with the operator dz^ in (6.65) we are able to further generalize the 

amphtude equation to include the fuU spectrum of waves. Thus, after differentiating 

with respect to the fast scale X  we have

d ^ A t
d x ^ 5 f l  bl ÔIO'' ) d X i

+

dXQ
d V2 

d X  (7rc5)i/2 Jx  ( s - X ) i / 2/;
d X
r

ds.

where dl,ZQ

(6 .66)

Recalling (5.54) and the comments made at the close of §6.5 we now proceed to 

introduce the influence of the slow time derivative dt^. This is achieved here by 

replacing the operator cqÔxq by dt^ +  cq^xq throughout (6.66), thus yielding the 

equation
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d d ’
'  d X ^  ' bl

"  [é "“él
+ b l

y2

/ ,a x  (x4 ) i/2 Vx (« -  x )>/2
ds. (6.67)

As was noted in Chapter 1, the above spatio-temporal interpretation has the makings 

of an initial-value problem for weakly nonlinear input in general at the onset of 

inflectional instability in boundary layer-like flows.

Work is in progress with Professor F T Smith in which three-dimensional initial-value 

problems are developed concerning the onset of transition over a surface roughness 

within interactive boundary layers and other related flows. The aim is to describe 

the free evolution of general disturbances rather than forced, fixed frequency or fixed 

wavelength evolutions.



Chapter 7

The Nonlinear receptivity  

problem

7.1 Introduction

On applying a shift in the origin of xq to incorporate the two new ri-term s, the 

solution of the wave-pressure amplitude equation (6.56) is covered extensively by 

SBB for the case r i = r 2 ’, the case r i  7  ̂ r 2  yields a much wider range of solutions, 

as given in Brown and Smith (1995).

W ith the addition of a forcing term  to the amplitude equation, corresponding to a 

nonlinear receptivity problem (see for example Hall and Smith (1982) and Smith 

(1987)), our aim in this chapter is to investigate numerically the effects of the forcing 

on the flow downstream of its point of introduction. In the case addressed below the 

forcing effectively dies away downstream. Comparisons are made with the solutions 

obtained by SBB in the non-forcing case.

In §7.2 the nonlinear receptivity problem is formulated and the method of approach 

described for a general forcing F{xq) before a speciflc form of F  is considered in 

§7.3. The results are presented graphically and compared with those of SBB.

114
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7.2 Formulation of the receptivity problem

In its simplest form the integro-difFerential equation for the wave-pressure amplitude 

is

Cr'{xo) + At{xq) f  |r^(s)|d6 -  (Bzo +  :D)r(a;o) =  0, (7.1)
J — OO

where A, B , D are real constants, C is a complex constant, and r(xo) is the wave- 

amplitude function. Introducing the effects of forcing in the form of a complex 

function F(xo) added to the righthand side of (7.1) we obtain the balance

(A +  zm)(p' +  +  Ape*® f  p^ds -  Bxope'^ =  F { x q ) ,  (7.2)
J  — OO

where r(xo) =  p(zo) exp[i0(xo)]j C = \  -\-ip. and a shift in the origin of xq has been 

applied in order to eliminate the constant D. If we write F(xq) in the form

F(xo) =  K{xo)ex-p[iL{xo)] 

then on substituting this into (7.2) we have

/ X q

p ds — B xqPj (7.3)
-OO

K  sin(Zr — ^) — P-P^ "t" (7 .4 )

the system of equations governing the nonlinear receptivity problem to be solved 

for p{xo) and ^(xq). In solving this system we are interested mostly in the relative 

signs of the coefficients A, A  and 5 ,  yielding four possible outcomes downstream (in 

principle).

To solve (7.3) and (7.4) numerically we employ the Runge-Kutta method of order 

two combined with the composite trapezoidal rule which is used to evaluate the 

integral in (7.3). We introduce the forcing at a point xq =  —a say, p(xo) =  0 for 

Xq < —CL, and then march on in xo from this point.
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7.3 F(xo) = r  exp[-Xo + i^(xo)]

The case addressed here is of the relatively simple form

F { x q )  = r exp[-Zo +  2̂ (zo)] (7.5)

in which L = 6 in (7.3) and (7.4). Thus the two-equation system reduces to a single 

equation, namely

t  r  -B x a P  = V e-“l , (7.6)
^ J—oo

independent of the function ^(xq)* The positive constant T represents the strength 

of the forcing apphed and in the analysis which follows solutions are presented for 

varying values of this parameter.

Since we are concerned mostly in the relative signs of the coefficients in (7.6), we 

take

= |v4| =  |J3| =  1
A

and consider all possible combinations of A B  and XB positive or negative.

A B  > 0, AB > 0.

When A B  > 0 and XB > 0 the solutions obtained in SBB, for the case in which 

no forcing is added, are periodic in x q . W ith the addition of forcing of the form 

given in (7.5) at xq = —a, the solutions of (7.6) for F =  0.01,0.2,1,6,10 are shown 

in Figures 7.1-7.5. The wave amphtude p is plotted against the short streamwise 

lengthscale xq ajid the same set of axes is used for each value of the strength F so 

tha t comparisons may be made between each set of results.

These figures show that the strength of the forcing apphed varies the size of the peaks 

and troughs, and the distance between consecutive peaks, but overall the shape of 

the graph remains the same once the forcing itself has died out. Thus downstream
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the solutions of (7.6) exhibit periodicity, as do the solutions of the wave-amplitude 

equation in the non-forcing case.

A B  < 0, AB < 0.

In the non-forcing case of SBB the wave-pressure disturbances die out as xq — oo 

although the vortex flow persists downstream. Figures 7.7-7.9 show the solutions 

obtained for the receptivity problem when T =  0.2,1,6,10 respectively.

Again it can be seen tha t once the forcing has died out there are no long term effects 

on the solution and the wave-pressure disturbances tend to zero as x q  —> 0 , as in 

the non-forcing case of SBB.

P

320 8 12 20 24 28 36•8

Figure 7.1: AB  > 0, AB > 0 and F = 0.01.
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P

20 24 28 3212

Figure 7.2: AB > 0, XB > 0 and V =  0.2.

P

32 3616 20 24 288 12•8

Figure 7.3: AB  > 0, AB > 0 and F =  1.
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P

20 28 3212

%

Figure 7.4: AB > 0, XB > 0 and T = 6.

P 7

Figure 7.5: AB > 0, XB > 0 and F =  10.
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3 .0-1

P
2 .5 -

2.0 -

1 .5 -

1.0 -

0 .5 -

0 .0 '

0 2 3 4 5-4 ■3 2 1 1•5

Xo

Figure 7.6: AB  < 0, AB < 0 and F =  0.2,
3.0-1

P
2 .5 -

2.0 -

1.5 -

1.0 -

0 .5 -

0 .0 -

0 1 2 3 4 5-3 ■2 •1■5 -4

Figure 7.7: AB  < 0, AB < 0 and T = 1.
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P

-5 -3 22

Figure 7.8: AB < 0, XB < 0 and F = 6.

P

2 3 5•5 •2

Figure 7.9: AB  < 0, XB < 0 and T = 10.
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A B  < 0, AB > 0.

W ith the relative signs of the coefficients such tha t A B  < 0 and XB > 0 the non- 

forcing case produces solutions in which the wave-pressure disturbances shoot off to 

infinity as xq oo. W ith forcing added of the form given in (7.5), Figures 7.10-7.12 

show the results obtained for T = 0.3,1,6.

Once the forcing itself dies away no lasting effects are seen downstream and here too 

the wave-pressure disturbances shoot off to infinity. The strength of the forcing de­

termines the distance downstream at which this shooting takes place, as T increases 

this distance decreases.

A B  > 0, AB < 0.

Finally, when A B  > 0 and XB < 0 the reverse situation to the above occurs. In 

the non-forcing case p —oo as zo —̂ 0. In physical terms the same thing takes 

place when forcing is added, again the strength of the force determining the distance 

downstream at which the shooting occurs; the larger F the shorter the distance.
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p

X .

Figure 7.10: AB  < 0, A5 > 0 and F =  0.3.

p

Figure 7.11: AB < 0, XB > 0 and F =  1.

p

X .

Figure 7.12: AB  < 0, XB > 0 and F =  6.
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Strength Eqn. (7.6) Eqn. (7.9) %

F a b b: Û-

10 5.3901 3.0472 56.5

50 10.0103 8.9100 89.0

100 15.2532 14.1438 92.7

200 23.5684 22.4519 95.3

400 36.7130 35.6401 97.1

800 57.6994 56.5752 98.1

1000 66.7746 65.6497 98.3

Table 7.1: Comparison of values obtained for p^(0) calculated using (a) the full amplitude 

equation Eqn. (7.6), and (b) Eqn. (7.9), for various values of F.

To conclude this section, and indeed this chapter, we consider again the case in which 

periodic solutions result [AB  > 0, \ B  > 0). We note that by choosing F large the 

nonlinear integral-term in (7.6) dominates the lefthand side of the equation and we 

can approximate the amplitude equation by

Fe-'o /Xo 

oo
ds. (7.7)

A  taking the value 1. If we then write f[xo) =  Fe after some algebraic manip­

ulation it can be shown that

—2/3r /"ZQ
P (®o) = Y  J  f  («)<i«| /  (»o) (7.8)

and therefore

p \0 )  =  r :  { 5 r ^ }
—2/3

(7.9)

Using the fuU amplitude equation (7.6) and (7.9) above we evaluate p^(0) for various 

values of F >> 1 to verify tha t the appropriate asymptote has been chosen. The 

results obtained are compared in Table 7.1 above and show good agreement for 

F > 100.



Chapter 8

Summary

8.1 Conclusions

It is tempting to  regard the linear and nonlinear studies of Chapters 2-3 and Chap­

ters 5-7 respectively as two separate parts, the first concerning the downstream 

breakaway of separating boundary layers and the second concerning more local 

separation-type interactive flows. Chapter 4 however provides a link between the 

two, thus presenting this thesis more as one related study.

As stated in Chapter 1, the main novel contributions of this thesis are threefold. 

F irst, in Chapters 2-3, in which the behaviour of linear disturbances downstream 

of breakaway separation is investigated, the responses of neutral wavenumbers in 

the separating boundary layer are described as it detaches from the wall. A criti­

cal distance is found at which the linear properties change abruptly. Second, when 

considering nonlinear vortex/Rayleigh-wave interactions within an interactive triple­

deck boundary layer flow, the inclusion of temporal effects at the onset of inflectional 

instability leads to  the new initial-value problem there, described in Chapters 5-6. 

Finally, with the addition of forcing to  the wave-pressure amplitude equation, non­

linear forced wave/vortex interaction solution properties are discussed in Chapter 7.
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We note also that an analysis for small coefficients <C 1 could be performed, 

similar to tha t for a  -C 1, which may produce a nonlinear link between the work of 

Chapters 2-3 for breakaway separating flows and that of Chapter 6.

As so often happens in the course of mathematical research, original aims become 

more directed as results obtained begin to highlight more interesting avenues of 

investigation. Such an occurrence led the work described in Chapter 6 towards the 

spatio-temporal interpretation of the integro-differential obtained therein, indicating 

the possibility of an initial-value problem for weakly nonhnear flows.
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A ppendix A

Employing a similar approach to that of §6.2, onr intention here is to  obtain the 

wave solution in the outer tier of the core and match it with tha t obtained in the 

inner tier for the case of the initial-value problem set out in §6.7 under the new 

regime there.

In considering the initial-value formulation we must first replace the multipliers iao, 

ij3o and 7q with the operators dz  ̂ and —(d^  +  respectively.

The governing equations for the wave-pressure solution p and the wave part of the 

normal velocity component v are

+  =  (A.2)

If we suppose tha t

as 2/ —»• 0" ,̂ then it follows that

g  =  -v ^ p „ ,  X  = - g ,  (A.3)

where =  d j  -t- .
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The work of Smith et al (1977) shows that if

=  0, (A.4)

(J.2 ^  =  - D u  (A.5)

for some suitably bounded function d{x, y) of the form d{x, y) =  D q[x , z) +  Z>i(x, z)y

at small y, then it follows that

« . ( - ' - An : (-)
Fourier transforms {X  zq I) are being assumed here. Re-writing (A.5) in 

the form

{k̂  + l̂ )Do = -{k  ̂+ iy/^Du

i.e.

V^Do =  {k^ +  (‘ f/ '^ D u  

we can invert the result (A.6) so that

By applying this result to the normal velocity component v we may deduce tha t

v , ( x . . „ ) = ^ r r
27T J - o a J - o o  [(A  — ^)^ 4- (zo — 77)^]^/^

On differentiating through with respect to X  and substituting for Vo and V\ using 

(A.3), we obtain an equation for the function K ( X , zq) in terms of Pq, namely
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