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Abstract

This thesis consists of a theoretical computational study of flows at high Reynolds 
number and high Mach number, where upstream  influence or non-uniqueness is of 
concern. Hypersonic flow has the special and im portant feature of prolonged upstream  
influence, in the presence of viscous forces, as upstream  influence in a compressible 
boundary layer increases with increasing Mach number. Non-uniqueness is associated 
with eigenvalues and corresponding eigenfuctions in an expansion in powers of the 
distance from a reference point. One of the objectives in this thesis is to allow for the 
presence of upstream  influence in an internal flow system, which is accompanied by 
local non-uniqueness of the solutions. The eigenfunction above is due essentially to 
the interaction of viscous and inviscid layers, and is analogous to an eigenfunction in 
hypersonic external flow. This non-uniqueness of the solution is a particular focus in 
the analysis.

The present study is concerned mostly with upstream  influence in hypersonic 
planar flow through a nozzle and the eigenvalue problem is discussed in the context 
of a composite approach. A single composite system of equations is derived to cover 
the four separate regions of the nozzle flow identified by asym ptotic analysis, the 
composite system being still a subset of the Navier-Stokes system. Non-uniqueness in 
the flow, due to upstream  influence within the composite partial-differential system, 
is examined both by numerical treatm ent of certain sim ilarity solutions and by means 
of eigenvalue analysis in the flow solution. The presence of upstream  influence is also 
shown by analysis of a limiting pressure equation. Finally, in a prelim inary a ttem p t at 
solving the composite partial-differential system in full, a semi-implicit com putational 
m ethod is introduced to  compute the flow solution, incorporating the strong upstream  
influence present. Further discussion is also presented in brief at the end.
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Chapter 1

Introduction

There have been various upsurges of activity and development in hypersonic flow the­
ory, computation and experim ent, during the 1950s and in the mid 80s to mid 90s, with 
the advent of hypersonic atmospheric entry vehicles. Reviews on different features of 
hypersonic flows are in Stewartson (1964), Neiland (1970), Werle, Dwoyer and Hankey 
(1973), Brown, Stewartson and Williams (1975), Smith and G ajjar (1983), Lysenko 
and Maslov (1984), Mack (1984), Holden (1985), Brotherton-Ratcliffe (1986), Malik 
(1987), Seddougui, Bowles, and Smith (1989), Smith (1989), Bowles (1990), Brown, 
Cheng and Lee (1990), Blackaby (1991) and Brown, Khorrami, Neish and Smith 
(1991) and references therein. Hypersonic aerodynamics is different from the more 
conventional and more explored regime of supersonic aerodynamics, for a number of 
reasons some of which are given later in this chapter.

The present thesis a ttem pts to analyse and compute the solution for certain hyper­
sonic planar flows through nozzles, under the assumption of laminar steady flow. One 
of the objectives is to allow for the presence of upstream  influence in the internal flow 
system, which is accompanied by local non-uniqueness of the solutions. The current 
study actually arose from contacts and jointly supported projects, between Univer­
sity College London and the Defence Evaluation and Research Agency, Farnborough, 
with regard to theoretical and com putational understanding of wind-tunnel or duct 
flows under hypersonic conditions, conducted w ith the aim of improving experim ental 
and /or industrial hypersonic wind-tunnel testing and design. There is special concern 
with improving on classical inviscid estimates of the downstream flow in ducts. The 
background for the work is discussed in section 1.1 below, followed by comments on 
hypersonic theory and upstream  influence in section 1.2 and a description of the scope 
of the current thesis in section 1.3.

There are a number of other aspects of hypersonic flow research which are of 
much interest, such as hypersonic transition (which is still far from understood, see 
e.g. references in section 1.2 and also Stetson 1987) and the hypersonic blunt-body



problem (see e.g. M oretti and A bbett 1966). These other aspects are not of direct 
concern to the present work, however, and their details are not discussed below.

1.1 G eneral Background

1.1.1 Internal Flows - Subsonic, Supersonic, Hypersonic

The flow regimes of supersonic and hypersonic m otion are defined in term s of the 
Mach num ber Af, which is the local ratio of the flow speed to the speed of sound. 
The definition is reviewed by, e.g., Anderson (1982).

Subsonic flow is a flow where the local Mach num ber Af <  1 everywhere, and 
hence the flow velocity is everywhere less than the speed of sound. This type of flow 
is characterised by smooth streamlines and continuously varying properties, provided 
th a t no large-scale separation takes place to produce concentrated th in  shear layers 
(due to viscous effects, as in section 1.1.3 below).

A flowfleld where Af > 1 everywhere is defined as supersonic. Shock waves occur 
frequently as part of most supersonic fields. Across such a shock wave there is a 
discontinuous and sometimes rather severe change in flow properties. The flow behind 
a shock wave can be supersonic or subsonic. This is in addition to the possible 
existence of shear layers mentioned in the previous paragraph.

In internal flow, for completely shock-free isentropic supersonic flow to exist in 
a nozzle, the pressure ratio (the ratio of the downstream pressure to the upstream , 
reservoir, pressure) must be precisely the value

+  ( 1.1)

according to inviscid theory (section 1.1.2 below), where 7  is the ratio of specific heat. 
See Anderson (1989), Brown et al. (1991) and chapter 2. Otherwise, lateral shocks 
are to  be expected w ithin the nozzle motion. The practical interest is often in finding 
such shock-free flows inside the nozzle and tha t is our interest also in the present 
work.

In external flow past an airfoil or other vehicle, if the free-stream Mach num ber M^o 
remains subsonic but is sufficiently near 1, typically 0.8 <  Afoo < 1.2 , the occurrence 
of flow expansion may result in locally supersonic regions appearing. This mixed 
regime of subsonic and supersonic flow fields is defined as transonic flow. See e.g. 
Liepman and Roshko’s (1957) book and, concerning interactions, Bowles and Sm ith’s 
(1993) review.

As Afoo is increased to higher supersonic speeds, however, certain flow properties 
increase almost explosively across a shock wave, and the representative flow angles



according to classical inviscid theory become ever smaller (for example see Liepman 
and Roshko’s (1957) book), subject again to viscous effects and substantial separations 
taking place. Hypersonic flow is defined conventionally (or often, in engineering term s) 
as a flow regime for Moo > 5, although in reality the special characteristics associated 
with hypersonic flow can appear rather gradually as Mœ is increased,

1.1.2 Inviscid Theory

The typical ratio of inviscid (inertial) to viscous forces is given by the Reynolds number 
Re,  which is defined as a characteristic flow speed multiplied by a characteristic 
length scale and divided by the kinematic viscosity of the fluid. In flows at high 
Reynolds number the viscous effects can sometimes be confined to th in  boundary 
layers near solid surfaces, although often followed by separated flow downstream and 
thickened wake regions which particularly occur in adverse pressure gradients. The 
flow outside the boundary layer however is essentially inviscid, or can be taken to be 
so as a first, classical, guess (see for example Van Dyke 1964; Smith 1982), and its 
properties depend on whether the flow range is incompressible, subsonic, supersonic 
or hypersonic as noted previously.

The assumption of inviscid flow (or, more strictly, the flow of an effectively inviscid 
fluid), in which viscosity, therm al conduction and diffusion are taken as negligible, 
may be restrictive as indicated above. However, the large regions of extended flow 
over bodies, outside the thin boundary layer on the surface, and the flows through 
wind tunnels and rocket engine nozzles, which often do not involve motions with large 
gradients, can often be assumed to be inviscid to a good approximation (see Anderson 
1989). For the internal flow case between solid fixed walls the wall boundary layers 
grow and meet sufficiently far downstream, and the inviscid core then vanishes, but 
inviscid theory applies in a short duct such as the nozzle of a wind tunnel. Even in a 
long internal flow (with ratio of length to diam eter typically greater than  10) inviscid 
theory as a crude approximation may be used, although such calculations are only 
a rough approximation of the real internal flow, especially in the hypersonic regime 
as the boundary layers then tend to grow rapidly in thickness with increasing Mach 
num ber (see section 1.1.3 below).

Hypersonic aerodynamics is highly nonlinear; even the assumption of small per­
turbations, which in subsonic and supersonic flows leads to simple linear theories, 
does not necessarily yield a system of linear equations for hypersonic flow. See for 
example Van Dyke (1954). In spite of this, various approxim ate methods have been 
successfully developed for the analysis of inviscid hypersonic flows. Anderson (1989) 
discusses several of these methods, some of them  based upon the predictions of the



hypersonic sm all-disturbance equations.
In a large part of the applications of aerodynamics in general, the Reynolds num ber

is very high and therefore the influence of viscosity might be taken to be negligible
in the theoretical analysis, for much of the farfleld, as mentioned previously. The 
Navier-Stokes equations (which are w ritten down at the end of this chapter) can then 
be reduced by neglect of the viscous term s to the Eulericin form, viz.

| |  +  d iv (ev ) =  0 , (1 .2)

D v
=  —gradp +  gX,  (1.3)

p = RgT,  (1.4)

where the operator

D d d d

for two-dimensional motions. Here v  is the velocity in Cartesian coordinates Oxy, g 
is the density, t is tim e, p is the thermo-dynamic pressure, X  are the components of 
any external force per unit mass of fluid, R  is the gas constant, T  is the tem perature, 
and Cp is the specific heat at constant pressure. Strictly the formulation behind (1.2) 
- ( 1.5) assumes tha t the flow variables u, u, p, g, T , p  and the coordinates x, y are 
typically of 0 (1), in nondimensional form.

The analysis and solution of the Eulerian equations for a slender nozzle flow will 
be considered in chapter 2 .

1.1.3 V iscous Effects

The classical theory of the boundary layer which was first introduced by Ludwig 
P randtl in 1904 divides the flowfleld into inviscid and viscous parts (see for example 
reviews by Van Dyke 1964 and Smith 1982).

The viscous boundary layer then appears in a narrow region attached to the  solid 
surface. The Navier-Stokes equations reduce to the governing equations of the  com­
pressible boundary layer,

g (eoM^ 9(g oV o)^ 0 ,  ( ig )

PO ( “ o - ^ + " 0"5; f  I - ^  I I , (1-7)



po =  RgoTo^ (1.9)

P>o =  iCTo^ (1.10)

where p  is the  viscosity, and k  is the coefficient of therm al
diffusivity. Here all the variables with subscript zero are of order unity, owing to  the 
boundary-layer scalings, and y represents the scaled boundary-layer norm al cordinate. 
The boundary conditions here are, typically,

uo =  0 , T o = T ^ ( x )  at y =  0 , ( 1.11)

(T^o,2o ) — >̂ (1̂ 00» ^oo) y — ► 00, (1.12)

where T^{x)  is the wall tem perature distribution and Uqo, Too are respectively the slip 
velocity and tem perature just outside the boundary layer (from the outer inviscid 
solution).

The characteristics of hypersonic boundary layers are dominated by tem perature 
increases caused by viscous dissipation. The viscosity coefficient increases w ith tem ­
perature, from (1.10), and this by itself makes the boundary layer much thicker (see
e.g. Stewartson 1964). In addition, because the pressure p is constant in the normal
direction through the boundary layer, the increase in tem perature T  results in a de­
crease in density g through the equation of state (1.9). In order to pass the required 
mass flow through the boundary layer at reduced density, the boundary-layer thick­
ness m ust be larger. Both of these phenomena combine to make hypersonic boundary 
layers grow more rapidly than at slower speeds. Indeed, the flat plate compressible 
lam inar boundary layer thickness S grows essentially as

where Re^  is the local Reynolds number (Stewartson 1964; Anderson 1989). Clearly, 
since 6 varies as the square of Mœ, it can become inordinately large at hypersonic 
speed.

The thick boundary layer in hypersonic flow can exert a m ajor displacement effect 
on the inviscid flow outside the boundary layer, causing a given body shape to  appear 
much thicker than  it really is. Due to  the extrem e thickness of the boundary-layer flow, 
the outer inviscid flow in section 1.1.2 is greatly changed; the changes in the inviscid 
flow in tu rn  feed back to affect the growth of the boundary layer itself. The m ajor 
interaction, or complete coupling, between the boundary layer and the outer inviscid 
flow is called viscous interaction (Neiland 1969, 1970; Werle et al. 1973; Khorram i 
1991). It soon becomes im portant as the Mach num ber increases in internal duct flow 
and it then renders the inviscid estimates of section 1.1.2 inaccurate.

10



1.1.4 Experim ents

Hypersonic wind tunnel testing is required in many stages during the development of 
a flying vehicle. In order to reproduce the physical phenomena in a scaled experiment 
similarity param eters must be considered. The simultaneous duplication of all the 
similarity param eters is not possible in ground based facilities. Such facilities can be 
grouped as follows: the classical hypersonic wind tunnel, the high enthalpy facilities 
and the low density wind tunnels. The current hypersonic flows are also of interest 
in the context of flow in the engine intakes and exhausts of hypersonic vehicles as 
described by Dusa and Younghans (1998) in a recent handbook and by Townend 
(1999) in a forthcoming review issue.

Earlier developments and extensive accounts on hypersonic wind tunnel testing are 
reviewed by Pope and Coin (1965), Lukasiewicz (1973) and Van Driest and Blume 
(1962). Kendall (1975) describes the wind tunnel experiments on the origin and 
growth of transition in zero pressure-gradient boundary layers for several Mach num ­
bers between 1.6 and 8.5 at the Jet Propulsion Laboratory.

More recently, M uylaert et al. (1991) give a review of all the facilities used within 
the Hermes project of the European Space Agency. Their simulation capabilities, flow 
quality and measurement techniques are outlined; and in order to improve the level 
of understanding in hypersonic testing a standard model has been recommended.

Also, Giordano, Marraffa and Russo (1991) present results on the flow fields in the 
Simoun and Scirocco wind tunnel nozzles. The geometrical conflgurations analysed 
are conical with a circular section for Scirocco and contoured with a semicircular sec­
tion for Simoun. Two-dimensional and three-dimensional results have been produced 
by a com puter program which solves the parabolised Navier-Stokes equations. Isoline 
contours and transversal profiles of flow field param eters are shown to give an un­
derstanding of the predicted flow patterns which settle in the nozzles under different 
operating conditions.

Literature on experimental references can be found in journals such as Experi­
ments in Fluids and AIAA Journal. Many other experiments, even some of a more 
fundam ental, less applied nature, appear to be classified and /or are not available in 
the open literature.

1.1.5 Com putational Fluid Dymanics

As hypersonic flowfleld analysis is highly nonlinear, numerical com putations or simu­
lations giving the approximate numerical solution with the effect of various param eters 
on the physical results are of interest. Computational fluid dynamics in principle ap­

11



proximates numerical solutions to the exact nonlinear governing equations (whether 
full Navier-Stokes, parabolised Navier-Stokes, interactive boundary layer, composite, 
or other reduced systems) without linearisation, i.e. the equations w ithout simplifying 
assumptions such as small perturbations, granted th a t there always exist numerical 
roundoff and truncation errors. Most of the com putations tend to become very diffi­
cult or inaccurate as the Reynolds num ber and /or Mach number increases, due to the 
subtle scales and interactions involved (this providing a motivation for the present 
work). An exception is the interactive boundary layer approach as in Khorrami and 
Smith (1994) and references therein. Khorrami and Sm ith in their fig.4 make an in­
teresting comparison with direct numerical simulations by Dr. J .J . Korte (see also 
Korte et al. 1992, Korte 1992), finding close agreement between the two planar-flow 
approaches at a Reynolds number of 8® (% 2.62 x 10®) aud Mach num ber of 16, in 
external flow. Moreover, the interactive boundary layer approach tends to become 
ever more accurate as the Reynolds and Mach numbers continue to increase (unlike 
with most other com putational methods), owing to its being founded on knowledge 
of the main flow scales and viscous-inviscid interactions present. That is the basis 
essentially behind the present study for internal nozzle flows.

We should add here tha t, in earlier numerical work, and indeed in some current 
treatm ents, the m ethod of characteristics is used for supersonic nozzle design. The 
contour of a supersonic nozzle can be obtained by applying this m ethod of charac­
teristics downstream of the limiting characteristic. Application of the m ethod in an 
actual nozzle design is given by Owczarek (1964), among others. The use of the 
method of characteristics for nozzle design is confined to inviscid flow.

Our concern is more with finite-difference approaches. Finite-difference m eth­
ods are used to replace the partial derivatives in the governing flow equations with 
finite-difference quotients. For supersonic steady flows, for example, this allows the 
calculation to march downstream, starting from known initial conditions upstream , 
provided th a t viscous effects are excluded. The intensive work in this area since 
1960 has produced a m ultitude of different algorithms. Roache (1976) gives extensive 
discussion of some of these methods, although there is also further progress more 
recently.

Other current literature in the area can be found in journals such as Computers 
and Fluids, the Journal of Computational Physics and the International Journal for 
Numerical M ethods in Fluids, as well as the Journal of Fluid Mechanics, the AIAA 
Journal, Physics of Fluids, the Annual Reviews of Fluid Mechanics, the Philosophical 
Transactions of the Royal Society of London and the Proceedings of the Royal Society 
of London.

12



1.2 H yp erson ic  T heory and U pstream  Influence

Hypersonic flow has the special and im portant feature of prolonged upstream  in­
fluence, in the  presence of viscous forces. The non-uniqueness of the solution near 
the leading edge of an insulated sharp flat plate in hypersonic planar flow, due to 
upstream  influence, was discovered and analysed by Neiland (1969, 1970), Stewart­
son and W illiams (1969) and Brown and Stewartson (1975), where the tangent-wedge 
m ethod was used to describe the inviscid layer. It was partly anticipated in Lighthill’s 
(1953a,b) work on upstream  influence in a supersonic boundary layer, the character­
istic length of the upstream  influence increasing with increasing Mach number, and 
there are some signs of it in retrospect in Stewart son's (1964) chapter on hypersonic 
interactions. Later M.J. Werle, D.L. Dwoyer and W.L. Hankey (1973) considered the 
non-insulated wall also. This non-uniqueness is associated with a single eigenvalue and 
corresponding eigenfunction in an expansion in powers of the (small) distance from 
the leading edge. Brown and Stewartson (1975) concluded tha t the tangent-wedge 
m ethod is extrem ely accurate, using a comparison with the equations of motion de­
scribing the inviscid layer, and this is confirmed by the studies of Khorrami (1991) 
and Khorrami and Smith (1994).

The eigenfunction is due to the interaction of the viscous and inviscid layers, and 
is analogous to the eigenfunction in supersonic flow discussed by M .J. Light hill. See 
also the hypersonic free-interaction study by Smith and G ajjar (1983), and other more 
recent aspects of hypersonic flow such as in Ruban and Timoshin (1986, on interac­
tions), Smith (1989, on viscous instabilities), Cassel et al. (1995, on interactions) (also 
R izzetta et at. 1978), Brown, Cheng and Lee (1990, on mixed interactions). Brown 
and Sm ith (1990, on inviscid instabilities) (followed by Cowley and Hall (1990) among 
others), Timoshin and Smith (1995, on three-dimensional hypersonic boundary lay­
ers), as well as work on Gortler and longitudinal vortices (Hall and Fu 1992; Hall and 
Sm ith 1991; Malik and Hall 1989) and on sub-characteristics in the hypersonic range. 
The behaviour and effect of the eigenvalue in the hypersonic viscous and inviscid lay­
ers are analysed in detail by Khorrami (1991) and Khorrami and Smith (1994); see 
also the review of Brown et al. (1991). The value of the coefficient multiplying the 
(leading-edge) eigenfunction is governed by the downstream conditions (among other 
boundary conditions), for example at the trailing edge or in the far-wake. Thus there 
is upstream  influence along the entire plate (and wake, if present). We find the same 
feature holding in the current internal flows.

13



1.3 T h e P resen t T hesis

We now discuss in brief the contents and reasoning of the following chapters in the 

present thesis.
Chapter 2 describes the basic flow model for high-Reynolds-number planar flow 

through a planar nozzle in the hypersonic range. The flow structure consists of four 
differently scaled regions which are governed either by inviscid theory or by boundary 
layer theory, or by a combination thereof, the entire area being subject to upstream  
influence. Shock-free flow is assumed through the nozzle. The four regions consist of 
the thick inviscid core and the accompanying, thin, classical compressible boundary 
layer, in the  near-throat stage, and further downstream (in the farfleld) two interacting 
regions of comparable but unknown thickness spanning the nozzle. See Brown et al. 
(1991). The flow quantities are non-dimensionalised and examined in term s of their 
scales to generalise the problem. The same ideas apply in axisym metric nozzle flows.

Chapter 3 sets up the governing equations which are used throughout the rest 
of the thesis. In particular, in this thesis, a single composite system of governing 
equations is introduced, which is chosen to cover the four original regions of the flow 
structure (chapter 2) and remains a subset of the compressible Navier-Stokes system. 
At the farfleld stage for instance the width of the nozzle expands significantly and 
self-similar exact solutions can be deduced to analyse the conditions there. Also in 
this chapter are examined exact solutions for compressible boundary layer flow and 
the Illingworth-Stewartson transformation.

C hapter 4 derives and examines exact similarity solutions analytically and numeri­
cally in which the flow geometry is assumed to take a power-law form (proportional to 
a power of the downstream distance). The partial differential equations in chapter 3 
reduce to a set of ordinary differential equations here. The effects of variations in the 
coefficients, the viscosity, the wall tem perature and the flow geometry in particular 
are observed.

C hapter 5 then focuses on upstream  influence. Non-uniqueness in the local solu­
tions is proved analytically and through a numerical m ethod, by means of eigenvalues 
in the flow solution. A small perturbation term  associated w ith upstream  influence 
is shown to be possible in the stream  function. Then the special cases of large and 
small effective viscosity are analysed to distinguish the effective perturbation term s 

in each case.
C hapter 6 explores the interesting limit of compressible lubrication results for the 

entire flow solution, a limit which seems peculiar to the present internal motions. The 
Reynolds num ber can still be significantly large since the typical w idth of the throat 
of a nozzle is very narrow compared with the typical length. A pressure equation 
is derived here, in the special case of large viscosity, and solved mainly analytically

14



to confirm the presence of prolonged upstream  influence, in view of the boundary 
conditions which need to be imposed downstream.

Chapter 7 extends the limit results obtained in the previous chapter to  more gen­
eral cases, A semi-implicit computational m ethod based on the above flow properties 
is introduced as a first attem pt to solve the partial differential equations for the flow 
solution numerically, incorporating the strong upstream  influence present (cf. Blot- 
tner 1962; C arter 1979; Davis 1984). Various conditions are applied to the nozzle 
param eters, and computational results are derived, convergent or divergent, to eval­
uate the method.

Finally, Chapter 8 summarises the findings of the thesis and provides further 
comments.

15



1.4 N avier-Stokes E quations

The complete equations of motion of a compressible viscous fluid are the continuity 
and the Navier-Stokes equations, which are derived for example in Stewartson (1964). 
They read

^  +  d iv(pv) =  0, (1.14)

+  (v .g rad )u « l =  +  gX^

p = R qT, (1.16)

p | ( c , r )  +  j t ; „ A ( < ^ r )  =  $  +  g  + A ( f c g )  (1.17)

where as noted before v  is the velocity in Cartesian coordinates Oxy, g is the density, t 
is tim e, p is the thermo-dynamic pressure, X  are the components of any external force 
per unit mass of fluid, p is the viscosity, R  is the gas constant, T  is the tem perature, 
Cp is the specific heat at constant pressure, $  is the dissipation function, and k is the 
coefficient of therm al diffusivity.

Exact analytical solutions of the complete Navier-Stokes equations exist for only a 
few very specialised cases. Instead, the equations are frequently simplified by making 
appropriate approximations about the flow, as is done in this thesis. Approximate 
solutions of the complete Navier-Stokes equations for many practical problems can 
also be obtained numerically, as described earlier.

16



Chapter 2 

H igh-Reynolds N um ber Flow  
Structure through N ozzle

2.1 B asic  F low  M odel

The analysis and hence the computation of compressible viscous fluid flow differs in 
the two environments of external and internal flow, as described fairly recently by 
Brown et al. (1991) and also Anderson (1993). External flow generally refers to 
flow past an airfoil and internal flow is exemplified by the flow in nozzles and wind 
tunnels (see references in chapter 1). This thesis relates to a symmetric nozzle flow 
which starts from a reservoir upstream , passes through a narrow throat and then 
expands gradually downstream where it becomes hypersonic. The motion is taken to 
be two-dimensional.

Non-dimensionalised variables are used throughout this thesis, namely the velocity 
components u, u, pressure p, density g, tem perature T , viscosity /x and cartesian 
coordinates x, p, as defined below. The x-axis is aligned along the centre-line of 
the nozzle. The p-ordinate is set at right angles to x. The corresponding velocity 
components are denoted by u  and u, respectively.

From therm odynam ics the pressure p, density q and tem perature T  are linked by 
the equation of state  for a perfect gas,

p = RgT,  (2 .1)

with R  denoting the gas constant and T  denoting the absolute tem perature.
The function p is the coefficient of viscosity or the dynamic coefficient of viscosity, 

to distinguish it from the ratio u =  p/g,  which is the kinematic coefficient of viscosity 
or, simply the kinem atic viscosity. The variable p is assumed here to be subject to 
the Chapm an viscosity law

p =  'yCT. (2.2)
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Therefore it is a tem perature-dependent variable. Laws other than  (2.2) can be ac­
com m odated also throughout the following study.

The velocity components are nondimensionalised w ith respect to  Uoo, lengths to 
loo, pressure to  poo and so on as follows

U d

y>oo

VB
9  =

Qd

g o o '

T d

T o o ’

H D X d
y  =

V D

/ o o ’
T  =

where the suffix oo refers to representative dimensional flow conditions in the nozzle. 
In particular loo is the minimum throat width and therefore the normalised nozzle
width, S{x),  has a minim um  value of 1 at the throat. The tim e t is nondimensional
in similar fashion. The suffix D  denotes the original dimensional variables.

The nondimensional param eter which measures the relative m agnitude of the vis­
cous effects is the Reynolds number Re, defined by

Re  =  “ °°^°°^”  =  (2.3)

This is proportional to the ratio of a typical dynamic pressure to a typical viscous 
stress.

The relative m agnitudes of viscosity and heat conductivity are m easured by the 
P randtl num ber cr, which is defined by

^  =  X -  (2.4)

Here the constant Cp is the specific heat at constant pressure and the function k is 
the coefficient of heat conductivity.

Therefore the continuity equation in non-dimensional form becomes

% + + = (2-5)
while the equations of momentum in x  and y  components are, respectively,

^  } . (2.6)

I :  + 1 :  (2.7)
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where X are the components of any external force per unit mass of the fluid, as in 
Newton’s laws of motion. The energy equation is

In fact the whole of this thesis will be concerned with steady flows, so th a t d jd t  is 
taken to be identically zero.

2.2 Inviscid  T heory

In a real fluid the viscosity is never strictly zero. However, in a large part of the appli­
cations of aerodynamics in general, the Reynolds number is very high and therefore 
the influence of viscosity might be taken to be negligible in the theoretical analysis, 
for much of the farfleld. This idealised concept of a perfect fluid gives the inviscid 
theory as below.

The Navier-Stokes equations can then be reduced by neglect of the viscous term s 
to the Eulerian form, as mentioned in chapter 1, viz.

D v
=  -g rad p  -h g X , (2 .9)

~  +  d iv (^v) =  0 , (2 .10)

P = RqT,  (2.11)

D T  Dp  , ^
Dt ~  D t '

where (2.9) - (2.12) assume that the flow variables u, u, p, p, T , p and the  coordinates 
X,  y  are typically of 0(1).

A viscous boundary layer must appear in a narrow region attached to the solid 
surface, where \y — 5 | is small, as considered in section 2.3. The analysis and solution 
of the Eulerian equations for slender nozzles will be shown in section 2.4 below and
provides, for part of the nozzle flow at least, an outer solution to which the inner
boundary-layer solution must match.
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2.3 B oundary-L ayer T heory

A comprehensive review of the boundary-layer equations has been given by Schlichting 
(1951) and more recently, for compressible boundary layers, by Stewartson (1964), 
Anderson(1991), Khorrami (1991), Brown et al. (1991), among others.

The Navier-Stokes equations can be reduced to  the classical boundary-layer equa­
tions as follows. All dependent variables are expanded, near the nozzle walls, in the 
form

u  =  u q -\- Re~^^^ui 4------ ,

V =  Re~̂ ^̂ vo 4- • • •,

g =  Po +  Re'^^^g 4------ ,

p  =  Re~^po 4----- ,

T  =  4-• • •,

p  =  Re~^po  4----- .

Also, X remains typically of order unity but y is scaled with Re~^^^ which is small. 
Hence from substitution into the Navier-Stokes equations the governing equations are

d ( e o ^ )  I djgovo)
dx  dy  ’  ̂  ̂ ^

( ÿ )  ' (2.15)

Po =  R qoTo, (2.16)

P o = l C T o .  (2.17)

Again, the lack of influence of displacing y to y -f 5(x), near the wall, is taken into
account by means of P rand tl’s transposition theorem in effect. The subscripts zero
are om itted for convenience above. The boundary conditions here are

u =  0 , r  =  T^(cc) at y =  0 , (2.18)

( u ,T ) — ►(woojToo) as y — ► oo, (2.19)

where Uqo and Too are respectively the slip velocity and tem perature just outside the 
boundary layer (from the outer inviscid solution).

The boundary layer equations are parabolic in x, provided u >  0, and therefore
the flow profile may be calculated by marching downstream in the x direction, for
prescribed 7^, Too in (2.18), (2.19).
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2.4 Four R egions

Internal steady flow through a slender hypersonic nozzle will be analysed in this 
thesis, first w ith regard to the four regions as discussed by Brown et al. (1991). The 
configuration produces a two-stage flow structure downstream of the nozzle throat; a 
first stage near the throat and a second, hypersonic, stage further downstream. This 
is accompanied by a two layer structure, in the norm al y direction, consisting of the 
core inviscid layer and the viscous boundary layer between the core and the nozzle 
wall.

2.4.1 Near-Throat Stage

In the near-throat stage, the compressible boundary layer can remain thin and a t­
tached as assumed above. So here we address first the  Euler form corresponding to  the 
core of the motion. For a slender nozzle with typical small slope (3 the new coordinate 
X is introduced by means of the definition x — (3x^ so tha t

[x,y] — ► [/3"^ x ,2/] ,

and then the solution of the core tcikes the form where *0 is the stream function.

[u, u,p, — ► [n, /?û, p, Q, ÿ ] . (2.20)

Therefore the governing equations form the classical thin-layer version

dy
(2 .21)

. d u \  dp
(2 .22)

(2.23)

dx

du
^dè

The inviscid flow is isentropic and therefore the energy equation is

p / = F{'ip) =  const. (2.24)

This is subject typically to the mass-fiow constraints i/) = 0,1 at y =  —5,0  respec­
tively, where S  gives the normalised nozzle shape.

From the continuity equation above

ÿ  =  Q'^y +  B (x )  (2.25)

and, since the mass-fiow constraint holds,

guS  =  1. (2.26)
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Since u is a function of x  only, the momentum equation becomes

Quu' =  - p ',  (2.27)

with the prim e denoting djdx  here, and therefore

giving on integration

Quu' =

1 2  ̂ + C 2—u  =  — •
7 - 1

where the constant Ci =  Qrea /̂Pr^a and C2 =  jgrea^^ ^/Prea- Here greai Prea are the 
density and the pressure in the reservoir. Since u  = 1 /gS  from (2.26)

1 C2 -  Ci7 ^^~^
2^252 ^  _  1

or
(2.28)

This determines the distribution g(x) in terms of the given nozzle shape S(x)y with 
the u{x), p{x) solutions following from (2.26), (2.27). At the reservoir x  — >• —00 , 
while in the far field stage downstream as x — > 00 , S  — >■ 00 for the nozzle. Therefore 

— ► 00 as g — ► 0 (downstream) or g — > (c2/c i7 ) ^  (reservoir) from (2.24).

2.4.2 The Farfleld Stage

In the farfield stage, strong hypersonic viscous-inviscid interaction occurs, as follows. 
The streamwise scale is i2eA^~^ which is significantly smaller than  tha t of Brown et 
a i  (1991),

The coordinates take the form where A is typical nozzle width S downstream.

[ x , y ,S ] — ► R e A ‘̂ ~ ^ x , A ÿ , A S  (2.29)

and the solution in the inviscid core yields the form

[ u - u ^ , v , p , e , i p ] a  , (2.30)

whereas in the boundary layer where Uc is the velocity u along the centre line.

[u,v,p,e] ~  [1, A ^ - \A - ^ ,  A -^] . (2.31)
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In the core or inviscid layer flow where no shock is present (see Brown et al. 1991) 
the velocity u  in the continuity equation becomes replaced by unity and so

dg d{gv)
dx  ^  dy

=  0 . (2.32)

In such inviscid fluid flow the viscous term s vanish and the m om entum  equation in 
the y  direction is

(  dv d v \  dp
+ (2.33)

while the energy equation is expressed as the isentropic relation

p  =  Kg'^, (2.34)

where ÜT is a positive constant. In the inviscid core flow the energy equation is 
similarly expressed (Brown et  al.) as

dg  , d g \  (  dp dp'

which is derived from the Eulerian form of the Navier-Stokes equation

(2.35)

D T  _  ^  
Dt ~  Dt

The boundary-layer equations can be simplifled by the Howarth-Dorodnitsyn trans­
formation. The purpose of this transform ation is to remove the density g from the 
equations, by introducing the new variable

y gdy
y  =  — ,Jo geo

Q = Qoo

instead of y ,  leaving x  unchanged. The velocity components are given in term s of the 
stream  function *0 by

u =
dij)
dy*'

dx  \ d x  J y dy* 

Substituting into the m om entum  equation yields

dip Q
d x Qoo

g dip 
Qoo d x

^ d x  \  g d x )  goody*
 Q d u

d x  Q o o d y * \ g ^ d y *

or

d u  dip d u \  _  dp g d  f^ C p  d u

 ̂ ^ ^ d x  d x  dy* )  dx  goo dy*  \  g ^  dy*
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or

du dij) du _  I dp 'yCj, d^u
^  dx  dx dy* Qdx~^ dy*“̂

Since the enthalpy equation reads

and therefore the æ-momentum equation becomes

+  (2 .3 .)dx dx  dy* 2'yp  ̂ / dy*

Similarly substitution into the energy equation yields

9 d H
dx  V 9 dx  J Qoody*

Q d (  Q d H
9oo dy* Qco dy*

d H diPdH d^H
“ dx  dx  d y  -  dy'^ ’ ( ^

when the Prand tl number a  is taken as unity.

The boundary-layer thickness grows to the scale of A, the typical nozzle width S  
downstream, where x is of order i2eA^~'^. By comparison, the pressure gradient in 
the y  direction becomes significant at a distance x  ~  ^ 7+1/2  ̂ because of the inviscid 
core behaviour. These scalings are given in Brown et al. (1991)

Therefore as S  —  ̂ 0 (A ) downstream, we assume th a t the viscous length scale 
ReA^~^  <C Aa''̂ '*"̂  and then dp/dy  remains zero.

Hence we assume that

o T+l
EeA "-^ <  A? ,

i.e.

A ^ " 5  >  Re.

Consequently

A >  R e ^ ( ^  (2.40)

holds for the present ones. Therefore, if A is greater than  0(i2e®('r-0 ) then the y- 
m om entum  d P f d y  is negligible. In this thesis the case A is analysed.
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2.5 U p stream  Influence

The non-uniqueness of the solution in viscous-inviscid compressible fluid flow due to 
upstream  influence was discovered by Stewartson and Williams (1969) and Neiland 
(1970), especially the la tte r in the hypersonic case, in the solution near the leading 
edge of a flat plate. A change in the boundary conditions downstream has effect on 
the solution in the upstream  region, as perturbations move upstream  in hypersonic 
flow, not only for the boundary layer but also for the external inviscid layer.

The analysis of such upstream  influence will be shown in C hapter 5.
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Chapter 3 

Governing Equations

3.1 C om posite  G overning E quations

In section 2.4 the separate governing equations were derived under certain assump­
tions in each of the main four distinct flow regions. These equations are of course 
reduced forms of the Navier-Stokes equations, the number of term s present being re­
duced in each region and some of the terms being interpreted in different form under 
transform ation. A single, composite system of equations exists, however, which cov­
ers (includes) the separate regional equations above and yet is still a subset of the 
Navier-Stokes system. In this thesis the boundary layer equations (2.13) - (2.15), 
which still fulfill the above role, are taken as the composite governing equations for 
the entire region of the nozzle.

The order of magnitude of each term  in the composite governing equations may 
be considered in each of the four regions described in the previous chapter, as follows.

In the inviscid layer in the near-throat stage, the continuity equation (2.21) is 
identical w ith the equation (2.13). Since in effect /z =  0 in the inviscid layer, the 
m om entum  equation (2.22) has no viscous term  and the equation (2.14) consists of 
all the term s of the equation (2.22) without the viscous term . The isentropic relation 
(2.24) is intrinsically contained in the energy equation (2.15).

In the inviscid layer in the farfleld stage, since the typical value of the velocity 
u  becomes nearly 1, the continuity equation (2.32) is identical w ith the equation 
(2.13) but w ith u = I. Likewise the ^/-momentum equation (2.33) reduces simply to 
d p id y  =  0, because of the assumption made at the end of section 2.4, and then the 
cc-momentum equation is incorporated in (2.14) without the viscous term  and with 
u = 1. Again, the isentropic relation is contained in the energy equation (2.15).

In the viscous layer, the governing equations (2.36) - (2.39) are derived from the
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boundary layer equations (2.13) - (2.15) by the Howard-Dorodnitsyn transform ation, 
and all the term s of both  sets of equations correspond to each other. The same applies 
to  either viscous layer, whether in the near-throat or the farfield stage.

Therefore the boundary layer equations as a composite system are consistent with 
all the governing equations throughout the entire region of the nozzle. The composite 
problem to be solved now thus tahes the form

d(eoiio) , d(eovo) „

(3.2)

( ^ )  ■ (3-3)
Po =  RgoToi (3.4)

fio =  7 CT0, (3.5)

with the boundary conditions for the nozzle.

uo =  v o = 0  and Tq= T ^  at 2/ =  0, (3.6)

Uq= To =  0 at y = yo (centre — line). (3.7)

These boundary conditions (in y) are as explained in section 2 except th a t now the 
m atching or interfacial conditions are absent because of the present composite ap­
proach. Boundary or starting conditions in x  are also assumed together with a to tal
flux constraint (on ?/;), which prevents trivial zero flow solutions.

To elim inate the Re  factor, we set C = CRe,  along with fio =  jioRe and k = kRe.  
Then the equations (3.1) - (3.7) hold with Re  replaced by 1, and C, fio, k replaced 
by Cj flo, k respectively. Henceforth in this thesis we then use C,  /̂ o, k  to represent
C, /fo, k in turn , with Re  effectively unity in (3.1) - (3.7).

3.2 Illing-worth-Stewartson T ransform ation

The compressible boundary layer flow, or nozzle flow as in (3.1) - (3.7), involves a 
rather large number of independent variables. The calculations required become com­
plicated particularly when a non-zero pressure gradients present. Illingworth (1949) 
and Stewartson (1950) presented transform ation which correlates incompressible 
and compressible boundary layers. The m ethod is slightly modified by Schlichting
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(1951) as follows. The compressible boundary layer equations are reduced to almost 
the same form as that valid for incompressible fluid flow. This reduction is achieved 
by the assumptions that the boundary is thermally insulating, i.e. adiabatic, the 
viscosity [i varies as the absolute temperature T, and the Prandtl number a has an 
arbitrary constant value. Then the various results in the incompressible theory can 
be taken over into the compressible case. The reason for our interest in this aspect 
of external compressible boundary layers is that it provides a motivation for the sub­
sequent search for similarity solutions of the present composite system (3.1) - (3.7) 
above for nozzle flows.

The Illingworth-Stewartson transformation introduces two new coordinates by 
means of the definitions

X = [  b̂ ^—̂ dx  and ÿ = — f  — dy. (3.8)
Jo pqCq Co Jo Qo

Here the constant b is provided as

'Tw \  '  To -fb
- mT / Tyj +  S\ ’

which is derived from the Sutherland's law of viscosity, for convenience, where To 
denotes the the reference temperature and T«, the wall temperature, and Si is a 
temperature constant. Also, c denotes the velocity of sound, the subscript 1 refers to 
conditions at the outer edge of the boundary layer, and

ci^ = (7  -  1) CpTi and cô  =  (7  -  1) CpTo.

We note that the reasoning applies for both external and internal (nozzle) flows, as 
we will see later, but we work here in terms of the external boundary layer context, 
for convenience. The continuity equation is satisfied through the derivatives of the 
stream function 'ip{x,y) as

d'lp g , difj Q
= —u  and —  =  V.

dy Qo ox go

After the transformation 'ip is regarded as a function of x and y , so that

dip dx dip dÿ dip bpiCi dip dÿ dip
dx dx dx dx dy pqCq dx dx dy

and
dip dÿ dip Cl g dip

dy dy dÿ coQo dÿ transformation becomi
since d x jdy  — 0. Therefore the momentum equation after the Illingworth-Stewartson

du du ( c i \ ^  pib dip d^ip dip d^ip ^  1 dci /  dip
dÿ dÿdx dx dÿ^ c% dx \  dÿ 
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Along the flow at the outer edge of the boundary layer the enthalpy remains constant 
as the isentropic relations hold,

h\ =  CpT\ +  — =  CpTo; 

or, in terms of the velocity of sound, we have

yielding

1 dci 1 . dux

Therefore

d u  d u  f  c i \ ^  p ib  f  d'lp d' '̂ip dip d ^ 'ip \  1

=  W  %

since

dx  _  ^pici  
dx PqCq

The viscous term  in the equation can be w ritten as

1 5 /  d u \  _  UQhpx f c i \ ^  d^ip 
g d y  \  d y )  po \c o / dy^

and the pressure gradient term  as

1 dp 
g dx

T  dpi T  dui
— -prrUi

giTi dx Ti dx

The relative stagnation-enthalpy difference which is the dimensionless tem perature 
function is introduced by the definition

CpT +  \u^  
CpTo h,Q

where h denotes the local, as distinct from the stagnation, enthalpy. This is w ritten 
in term s of the velocity of sound as

1 dp 
g dx 2 cx‘

Ui
dui
dx

Finally the m om entum  equation becomes

dip d^ip dip d^Ip _ o \ / c o \ ^  Po d u i
d ÿ  d ÿ d x  d x  dÿ"^

d^ip

w
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Further

dui 1 /  dci dui

which becomes

Ui
dui _  /Cl y  ^
dx  V Co /  Po

Cl \   ̂ 6pi _ (fûi
UiI ““1 j -  •Co /  Po o,x

Therefore, after the Illingworth-Stewartson transform ation, the m om entum  equation 
takes the form

=  +  +  Æ  (3.9)dx dy dx dy^

In order to transform  the energy equation, the m om entum  equation is multiplied by 
u and added to the energy equation, giving

The tem perature function t} is then substituted to transform the equation into

d'à d^  d ( 
^ T x  +  %  Y

U“ \\  d-d cr — 1 5 /  „ 
a d y ~ ^  a  d y \ 2 c p T o )

The partial derivatives with respect to x  and y are replaced now by those with respect 
to X and p, so tha t

^d'ô ^d-d ( i d H  a - 1  d^ f  \ \

Since the Mach number at the outer edge of boundary layer is Mi  =  u i /c i ,  and as 
the stagnation enthalpy remains constant.

u _ 2

■2cpTo 1 -f- I  (7  — 1) M-

Hence the energy equation after the Illingworth-Stewartson transform ation acquires 
the form

r i  W  a - I  | ( 7 - 1 ) M i "  a" 
^ d x ^ ^ d y  ° {  c  ^  £ 7 1 -f  ̂ ( 7  — 1 ) Mi^

The continuity equation is transformed to

diL dv
95 +  âÿ  “

« 1 /
(3.10)

(3.11)
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in similar fashion. The boundary conditions are originally

li =  u =  0 and T  =  Tyj a t y = 0, 

u  — > Ui{x) and T  — > as y  — y oc.

These boundary conditions are transformed as follows:

Ü = V = 0 and at ÿ =  0, (3.12)

Û — > ûi{x)  and — y 0 as ÿ — y oc. (3.13)

For later use, we observe tha t (3.13), which holds for the external boundary layer 
case, is replaced in the internal nozzle case by

u' = "â' = 0 at y = yo (the centre line)

from (3.7), the corresponding ui{x),  Ti{x) values at y =  yo being unknown then.

In a limiting case, if the Prandtl number a  is unity, the energy equation (3.10) is 
reduced to the incompressible form,

Therefore, after the Illingworth-Stewartson transform ation, the boundary layer 
equations for a compressible flow are transformed into those for an incompressible 
flow, from (3.9), (3.11) - (3.14), assuming tha t the boundary is therm ally insulating, 
the viscosity is proportional to the tem perature, and the Prandtl num ber a  is unity.

3.3 Self-Sim ilar E xact Solutions

Similarity solutions constitute a simple class of solutions which enable the system of 
partial differential equations to be reduced to ordinary differential equations. Such
similarity solutions were first deduced by Falkner and Skan (1931) and H artree (1937)
for incompressible fluid flow, and by Illingworth (1949), Stewartson (1949) and Li and 
Nagamatsu (1953) for compressible fluid flow.

From the definition of the stream  function 'ÿ(cc,y) the function can be defined by

d'lp  ̂ d'lp
u = —  and u = -  — , (3.15)

oy ox
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with =  0 at the wall say. Along with this continuity equation, the m om entum  
equation and the energy equation after the Illingworth-Stewartson transformation,
(3 .9) and (3.14), can be w ritten in term s of the stream  function as

and
dtj} d'à dtp d’à uq d
dÿ dx  dx  dÿ a  dÿ^ (3.17)

A similarity form is introduced (or tried) now with the following assumptions :

'ip = Ax“u?/(t7), 

ÿ =  Bx^û\q^

•â = î?(?7),

where A, B,  a, 6, p,  q are undeterm ined constants, f{r}) is an unknown effective stream  
function of 77 only, and i)(?7) is the effective tem perature function.
In the downstream motion for instance, such a similar solution is suggested when the 
main stream  velocity is taken to be of the form

ui  =  Acx”*. (3.18)

In order to transform the equations (3.8) and (3.9) to the coordinates x  and 77, and 
to eliminate x  in the resulting expression, the transform ation is assumed to be in the 
particular form

(  Y - L . - i

and the operators are

% = ^ cc

The derivatives of the stream  function axe 

^  =  « x " / '  ( = U i f ) ,
oy

d^ip
w  = ^  '

32



^  _  m J-J.
2^0 ' 

dijj (  2uq ' ^ ^ m + 1   ̂ ^ 2i/q 2 m  — 1 i _ m-i_
dx

9 ^ i>  - m - l r ,  , . . ” î - l - m - l _ x «

/  2z/o \ 2 m + l  /  2i/q \ 2 m - l  i .zizj,
=  t o ;  t o ;

a ï5 ÿ  ~  2 ’

where the primes denote differentiation with respect to  77. These are substitu ted into 
the m om entum  equation (3.8) and tha t yields

2uq 2 2

=  K^mx^’" - ^ f ' f  + -  Ki™ ■ m.Kx”'-'- (1 +  t? ),

or

/ " '  +  / / "  =  — ^  ( / "  - 1 - 1 ) )  (3.19)771 +  i  ̂ /

Here the param eter /3 is introduced by the definition

/3 =  ^ .  (3.20)

This characterises the pressure gradient of the external stream . Then the equation
(3.11) becomes

/ '"  +  / / »  I - , ? ) .  (3.21)

Similarly for the energy equation, the derivatives of the relative stagnation-enthalpy 
differences are as follows:

I  -

w  =
d'à -  1
d i  2 i

Then the equation (3.9) becomes

t/q^ — ^  ^  - f-â' -b ^  ^  ̂Kx^ '^ 'q f 'â '  — ^  ^  •̂K,x'^~^T}f'â' =  0,

or
_b f-â' = 0. (3.22)

Therefore two ordinary differential equations are obtained for the  functions /{rj) and
1>(77)

/» ' +  / / "  =  (3.13)
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r  +  f ’â' = 0. (3.14)

w ith the boundary conditions

/  =  /^ =  0, = 'âw at Î? =  0, (3.15)

/ '  =  Ij 1̂  =  0 at 7j = T)o (centre — line). (3.16)

In the case of an adiabatic wall, the equation (3.11) is identical with the Falkner-Skan 
equation for a similarity solution in incompressible flow, and the system of partial 
differential equations (3.8) and (3.9) are now reduced to one ordinary differential 
equation

+ = (3.17)

In the upstream  flow region, this result has to be checked to flnd out whether it 
is valid before the throat, where x  has a negative value. In the reservoir or upstream  
farfield stage where x  —  ̂ — oo, in the core region, the w idth of the nozzle S  — > -f-oo 
since S  oc The density g and the pressure p tend to  constant values. And the
velocity n ~  0 since

u = —— ~
Qb

In the reservoir, the variables are expanded with respect to 77,

I 1
7/ =  |x| 2 77, u =  |x| ^ 72(77), 7; =  | i |  2 77(77),

^  f ^  =  P‘{ 'n ) y  P  =  P r e 3 + P l ,

where pi is given by the core solution. From the continuity equation the stream  
function if) is of the order of

I I rip = \x\ 2 f

in the reservoir. Then a transformation is assumed, analogous with the downstream 
case, to be in the form

« = (a)' X| 2 77

and the operators are

/ m  1 \  2 I _ I -m -l
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The derivatives of the stream  function are therefore

^oy
( m  — 1 \  2 - 3m -l

w  =  ^  ’

^  m - l  „
2% '

d é  dll} f  2uo \  2 - m  +  1 /  2uo \  2 m  +  1, - ,
i i  =  =  - 2 — l" l '

=  m |z |— : / '  +  ^ 1 ^ 1 — \ r ,
dxdy  d\x\dy 2

where the primes denote differentiation with respect to 77. These are substitu ted  into 
the momentum equations (3.8) and tha t yields

1/0™  ~  ^ f  ~  ^ m  +  1 1
2vq 2 2

=  m\x \-^ ’" - ' ^ f ' f '  +  ( ! + ’?)•

Hence

/ " '  +  / / "  =  i f "  - 1 - 1 ) )  (3.18)771 — 1 '  '
if the param eter ^

Similarly the energy equation (3.9) becomes

+ ^ ^ ^ i x r " - ' 7 ; / v  -  = o,
2z/q 2 2 2

or
+  /,? ' =  0. (3.20)

In order to seek a resemblance with the Illingworth-Stewartson transform ation, 
the ordinary boundary layer equations have to be expressed in term s of fj. Since 
“0  z= V’(^) +  ' ' •) tke continuity equations

QU =  tpy, QV =  —ipx

can be w ritten in terms of rj

gü|æ|" =  |x| 2 <0 |a;|~ 2 j
 I _ I_lü±l. 1 ^  I ~ I ~i~^ 7 771 "h 1 _ 7/1-1 ~i~"^gv\x\ 2 =  -]---- -— l l̂ 2 ijj  — rjé PI 2 .
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W hen 1x1 term s have been cancelled out

QU =
I -  m  j  m  +  K -  _

Qy =  -------

and so the continuity equations can be w ritten simply as

u = (3.21)
1 - m -  m + l _ _

QV =  — -— 'ip  — rjUQ. (3.22)

Since u ‘ = u^q the x-mom entum equation can be expressed as 

Q H —ijuv! +  vv!^ = —2m p +  ,

or in terms of fj

Q (mü^  +  ^ -^— T]ÜQÜij +  VQÜ^^ =  - 2 m p  +  (/Zgüf,)- Q.

The velocity u can be w ritten as the derivative of the stream  function, and then

Q mi) l  +  ^  ï ’vv +  ÿQÏ’vrj = - 2 m p  +  . p.

It follows tha t

-2 1 - m  y y 2mp  , / _ _ y  \
m'lpa +  = --------Y~

= - ^  + + ( 323)

Similarly the energy equation becomes

pcp I ' + v T ' ] =  m ’f  +  mT".

Since the equation (3.22) holds, we then have

Cp -  gvT'  +  g v f ^  =  m ' f  +  m f ",

or

c J - ^ i > T '  =  m ' f  +  m f " .

So in term s of p

cJ— ^ '4 ) Q f f ,  = Q { r n Q f ^ _ . (3.24)
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Therefore the boundary-layer equations can be w ritten as

Next, new variables are introduced to simplify the coefficients:

f  =

V' =  ^ sI t ,

fj = X^ijT or
1 d

dfj Ag drjT '

with A4, As, Ae to be found. Then the equation (3.25) becomes

Ag drjr

=  m

2
1 d 

Ae drjT

Ag drjT‘

(^ 5/ r ) +  2 m p - ^ T  (A4'i?T),
P r e a

or the ordinary differential equations in terms of /  as

A A|

Also the equation (3.26)

■yC R 1 S

r  / 2mpR\4  .
+  -------   -^T .

(A4T̂ t ) 4----- %----As/T — %— (A4^T) =  0,

or

£7 Pre5 Ag drjT̂  2  Ag d?7T

'yC R  A4  II 771 — 1  A4 A5

+ ~  0 .

(3.25)

(3.26)

^  P r e a  Ag 2 Ag

Therefore the coefficients A4, Ag, Ag are related to the constants above as follows:

R  XI A,
As
Ae P r e a

'yC R X4 m  — 1 A4A5

O- P r e a  Ag 2 Ag

Hence the suggestion is tha t there exists a similarity solution for the boundary layer 
equations if A4, Ag, Ag satisfy the conditions above.
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We now introduce the coordinate

rj = y

in view of the above arguments. Expanding the variables with respect to îy as æ — > oo 
then gives

ÿ  =

Since -0 =  F  +  • • - , the derivatives of the stream  function are as follows:

ij) = | æ | ^ F ,

i ’x y  = - ' ^ j x j ÿ  =  -

i ’x  = - ' 0 | x |  =  -

1 3m
i ’ÿ ÿ  = | x |  '  F " ,

i ’ÿ ÿ ÿ  =
| ^ | —1 —2 m ^ / / /

^ , —1 —T71
x\ 2

Substituting them  into the Illingworth-Stewartson form, the m om entum  equation
(3.9) becomes

and hence

=  (1

mF'^  +  =  +  '/o f " ,  (3.27)

and similarly the energy equation (3.14) becomes

-Fèi^  =  —
<7 (3.28)

The Illingworth-Stewartson equations then take the form

ôFrjHf} +  F Ffjfj = Frj  ̂ — Ûj (1 -j- T?) , 

— 'èfjfi — Fèi^ — 0. 
cr

The sim ilarity variable is introduced with the following assumptions,

1 -f T? =

F  = A2/T,

Tj =  A377T or
d I d

(3.29)

(3.30)

dff A3 dr]']'
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Then the equation (3.29) becomes 

f/Q
A3 dr)^ (A2/T) +  A2/T  • T T T T  (^ z / t )

1 d

XI dr]^ 

(-^2/t)
A3 drjT

or in the form of an ordinary differential equation in / ,

— ilI (A21?t) ,

“̂ 2 r  Hf , X 2 r r //■^J^OJT +  ^ / T / T  =

Also, the equation (3.30) is now 

1 d^

X 2  r  I
7—VT 
' 3̂

1 d

— (A2T?t) .

Xldrj^ (Ai'dr — 1) — A2/ t y “1—  ('^I'l^T — 1) =  0,
A3 dr}T

or

f/oA1 Q IIV  +
— Ai A;

fr'^T  =  0.
A3  ̂ V A3 y

Then the coefficients Ai, A2, A3 are related to the constants as follows:

"4 " (ë) (è)
^oAi Al A;

=  1 .

This is similar to the suggestion for the boundary-layer equations, th a t there exists 
a sim ilarity solution for the Illingworth-Stewartson equations if Ai, A2, A3 satisfy the 
conditions above.
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Chapter 4 

Exact Similarity Solutions

In the previous chapter we examined the possibility of self-similarity flow when the 
geometry takes the form of a power of the coordinate x.  In this chapter the effects of 
changes in the values of the coefficients are observed analytically and numerically.

4.1 T he S im ilarity E quations

To set up the exact similarity equations the number of variables is reduced by means 
of a similarity assumption and a transformation. The flow geometry is assumed to 
take the form ~  x"'. Then the prim ary orders of the variables are expected to be

a(m -i)
)

m - l
2 j X*” , g X

These orders of magnitude are given by the mass flow constraint and by the core
solution.

In term s of a new coordinate 77 =  y /x '^  of order one, or independent of x, the 
variables are expressed as

t/> = - 0 ( 7 7 ) ,  u  =  x " ^ 72(77), V = X  ̂ ^75(77),

p  =  x ~ ^ p ( 7 7 ) ,  r  =  (77), =  x ” ‘“ ^ 7 ( 7 f  (77), Q = x ^^g {r ) ) ,

and the differential operators become

V .  -
d d T) d

d i  d i ~ ' ^ x d ^ '
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Then the boundary layer equations can be expressed in term s of 77 and powers of x. 
First of all the continuity equation is w ritten in terms of 77 as follows :

3 (e ii) d{gv) _

implying

mug  +  rnr] (ug)" — (vg)' =  0 ,

and hence
mrjü =  V. (4.1)

Here we have integrated in 77, and used the conditon tha t û, v vanish at 77 =  Ô. 
Alternatively the continuity equation can be expressed in term s of the stream  function

ûg =  (4 .2 )

vg = —mrjij}'. (4 .3 )

The m om entum  equation is

f  du d u \  dp d (  d u \

which becomes now

g | û  — mpu!  +  û û 'l  =  — p +  7(7 {Tu  ̂ ,

so tha t

m  —I ..2  ---- / , — t ^ + 1 -  , rt (m - t y— -— gu — mpguu  +  gvu =  — -— p +  7(7 [Tu j .

Hence we have
=  ’̂ P  +  i C  ( f û ' )  ' ,  ( 4 . 4 )

since the continuity equation gives v  =  m pu  in (4.1). Finally the energy equation is

f  d T  d T \  dp , d ( , d T \  , ( d u V
("a; + - " 6  + 3F W j '

and this becomes

êcp {ü (it -  1) f  -  mTjüf ' + v f ' }  =  +  ^■yC ( f f ') ' + y C f  { û f  ,

and in consequence

(it -  1) gCpûf = U p + ^ y C  ( f f ) ' +  yCf {ü 'Ÿ  . (4.5)
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Therefore the governing equations of concern here can be w ritten as

mrjû = Û,

■QU = p + 'yC{fû')' ,

{k -  1) gcpûf = ™ h p +  ^ 7C  ( f f ')' +  -yCf (ü'f  .

Since the state equation yields g = p / R T ,  the governing equations can now be re­
w ritten in terms of û, T,

=  < « )

± ih ^ ù p  +  = ^^C  [ f f )  ' + 7 C f  { ü ' f , (4.7)

with the boundary conditions

Û =  0, T  — T^  at 77 =  0, (4.8)

ü' = T '  = 0 at 77 =  1. (4.9)

Also from the mass-flow constraint, ip = 1 at 77 =  1, we obtain

The system to be solved for ü, T  is thus (4.6), (4.7), together with the above boundary 
conditions and integral property.

4.2 N um erical Treatm ent

In order to obtain numerical solutions, the new coordinate of the Howarth-Dorodnitsyn 
transform ation z  is introduced by the definition

"V drjfycLTj
Jo f ’

so th a t

T  drj dz
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formally. Then the governing equations (4.6), (4.7) become

m — 1^2 _ 'yC (Pu
2R

■u =
p dz^ ’

Cp (m — 1) m  +  1 
R  2 (S)

(4.11)

(4.12)

with the boundary conditions, from (4.8), (4.9),

n =  l, T  = 0 at 2 =  0,

u = T '  = 0 at z = zqj (4.13)

where zq is unknown. The mass-flow constraint, relation (4.10) yields two equations 
in effect,

= (4.14)

and ^
/  drj = [  Tdz  = 1. (4.15)

Jo Jo

Therefore the equations to be solved can be expressed now as

dû
dz

(Pü
dz^

dz
P t
dz^

= r.

P
i G 2R

= s.

— ICp-yC \
Cp (m — 1) ^  m  -f 1

R
. .T C  2u p - ^ r

(4.16)

(4.17)

(4.18)

(4.19)

The solution of these nonlinear equations was computed by use of the Runge-K utta 
m ethod of order four, combined with shooting in z.

Figure 4.1 shows the results obtained for C = 0.2, 1.0, 5.0, when the wall tem ­
perature T^aii =  0.5, the pressure p =  1.0 and the P randtl num ber £7 =  1. As (7 
increases, i.e. the viscosity increases in effect, the range of solution broadens in terms 
of power of m. At m  =  —1.0 the velocity u  and tem perature T  along the centre-line 
have the values as u =  0.0 and T  =  0.5. This special case will be discussed in the 
following section. There is one peculiar feature tha t near a m aximum value of the 
exponent m  there is observed an additional branch which, when m  is then reduced, 
seems to approach asymptotically close to zero as m  — y 0-f. This however is not 
easy to obtain numerically. It is assumed th a t as m  — y 0+ this branch produces
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Figure 4.1: Velocity u and tem perature T  along the centre-line with C = 0.2, 1.0, 5.0.
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zeroes in the velocity Ud and the tem perature Td along the centre-line. This thesis 
does not pursue tha t particular detailed feature further.

4.3 Special Cases

4.3.1 m  =  —1 and cr <C 1

W hen m  =  — 1, certain terms in the governing equations vanish and the results the 
values of u and T  appear to become invariant to the viscosity or the value of the 
effective Chapman constant, as shown in figure 4.1. The m om entum  equation and 
the energy equation are now

2R p dz^ ’

from (4.11), (4.12), or
ÿ? (Pû

d u V

ÛT Xd^T X
—2—  = --------- j-------- I —

R  a dz^ CpR \ d z
d u V

(4.20)

(4.21)

(4.22)

(4.23)

where A =  'yCIp. The equation (4.22) can be integrated in term s of ü  and gives

AA f  dv,\^  
2 3R  +  2 " ' '

SO tha t

d u V
d z ]

2Û

3AA
(4.24)

from which an implicit solution is obtained (as in a phase plane diagram). Here Ci is 
a constant of integration. The centre-line boundary condition û^(l) =  0 fixes c p  from

ZRX -  '  ■

Then the equation (4.23) becomes

A d ^ f  2 u f  
+a dz“̂ R CpR cp  -

2Ür.3

3RX
(4.25)
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which is a linear equation for T  given ü  and can be solved analytically in principle. 
Since

d dxL d
dz dz du

the equation (4.25) becomes

' d u V d ? f  ( P u d f
R  X CpRdz J du^ dz^ dû

or from (4.22), (4.24),

2u^ \  d ^ f  dT  2(7 -

2Ûr.3

2RX
cr
y

ZRX J du^ RX dû RX
(7

CpR ci^ -
2Ûr.3

3RX
(4.26)

However, from the equation (4.22)

d^û 2Û dû
dz^ R  dz

Therefore the complimentary function is

dz

for the case of the P rand tl number being unity. Then assuming tha t

(4.27)

(4.28)

or

T  = G^Q,

the derivatives of T  are

and

( - = ) + « - l o - l
4 R^X^ + (“m ) ■

So the equation (4.26) becomes

2u^
G

RX
2u^
~RX
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provided

G

From the assumption for the complimentary function,

Q" 3Ü̂

giving

Since

Q' R \ G '

\nQ' = ——In (j +  constant.

r,3
(j =  Cî  -

2Û 
3ÂÂ'

it follows tha t

Q' Cl' -
r.3 \  r2Û

3SÂ CpÆ V '  3 i J A y  ■

Hence

Q' Cl' -
r.3 \  22n

3 ^ Cpi?
C i ' û  —

r.4u
+  C2,

(4.30)

(4,31)

where C2 is a constant of integration. Consequently the tem perature solution is giving

by
r.3 \  2

r  =  Cl' -
2Û
3RX C3 + L" ^  -  6m )

- m)
Therefore one of the boundary conditions requires

C1C3 = 1.

dû . (4.32)

W hen the Prandtl number cr <C 1 then the equation (4.25) is approximated as

( P t
dz^

=  0 . (4.33)

In term s of the derivatives of û it becomes

d ^ n d t
\ dz j dip dip da
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and then from (4.24)

ci^ -
2^3 \  ( P f  dT
3RX J du^

W ith the assumption (4.28), T  =  G^Q,  it becomes 

G

RX dû
(4.34)

Ù*
RX

Q ' G i - § Q G -

or

G ^ Q " - ^ G Q ' + \ ^ - ^ G ] Q  = 0.(—\R^X^
2Û

RX

Hence
r,2 9Ür.4

^2A2 G^ -  AG^
i?2A2 i2A .

5Û  ̂ 8Û ^  
-h-;TrGi?2A2 i2A

Therefore the tem perature solution for £7 <C 1 is given by

.-.23Û 5Ûr.4 8Û 2Ûr.3

R^X^ AA r '  3RX

=  0)

(4.35)

(4.36)

(4.37)

4.3.2 High Wall Temperature

The wall tem perature also affects the flow solution significantly. Figure 4.2 shows the 
results of the velocity Ud and the tem perature Td for the wall tem perature Ty, =  0.45, 
0.50, 0.55. As the wall tem perature increases the m axim um  tem perature along the 
centre-line also increases, as a result, the possible first-branch range of m  for Td 
broadens and so does th a t for Ud>
It is then worth discussing the case when the wall tem perature is very high, 7^ Z$> 1. 
If Tu; 1 then the velocity u  and tem perature T  are assumed to take expansions as 
follows,

T  =  +  T„-^Ti +  r„-^T2 +  ■ • •,

u = Tyj +  Tyj ^U2 +  ■ • ■. (4.38)

These expansions are deduced from the equations (4.6) to  balance the orders of the 
term s. From the prim ary equation of the first equation

0 =  TL +  ( ^ )  +  0,
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Figure 4.2: Velocity u and temperature T  with various wall tem perature T^aii = 0.45, 
0.50, 0.55.
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or »=m
which yields a linear equation for Ui. From the second equation

u i 1 ( l C \ ^  Ti" , 1 / 7 C \ ^

(4.39)

” /Tl 21

and so

Cp a \  TT /  Cp

yielding T\ likewise. The boundary conditions are now

U i'(l) =  0 and u i(0) =  0 ,

Ti^(l) =  0 and 7i(0) =  0.

In order to find Ui(l) the equation (4.39) is integrated and in this analysis the case 
where p =  1.0 , 7  =  1.4 and C =  1.0 is applied. Thus

Ui

yielding

and hence

Therefore

Ui =  —

V 2 J 7 C ’

5 (1 +  m ) 5 (1 +  A;)
14 ■ y + 14

5 (1 +  m ) 1 2 5 (1 +  m)
=  — n — 2 ^ +  14

(4.41)

Similarly to find Ti the same case is applied and the equation (4.40) becomes

The working proceeds in the following manner,

5(1 +  m ) 5
Ti" =

142 2
( 5 m +  1)2/ — 2(5m +  1)2/ +  2(m +  1)

giving

Ti' =
25(1 +  m)

142-2
-  (5m +  1)2/  ̂ +  2(m  +  l)y  +  ^{k  -  1)
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Figure 4.3: A nalytical and Numerical values of velocity u  and tem peratu re  T w ith 

various wall tem perature T ^a i i-
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and so

25(1+ m )  
* 142-2

Therefore

5m +  1 4 5m +  1 3 . 2 4
y  g y  +  (m  +  l)y  +  - ( m  -  l)y

T i(l)  =  +  (4.42)

is the prediction for large T̂ jaii
Figure 4.3 presents the results obtained analytically and numerically for the veloc­

ity Uci and the tem perature Td along the centre-line, for various wall tem peratures. 
The trend seems clear: the wall tem perature increases the analytical and numeri­
cal values tend towards agreement and these results seem to confirm the assumption 
taken for the form of the expansion.

4.3.3 C  >  1

Here we consider not only similarity solutions but also a general form of the nozzle 
shape. W hen the effective viscosity is very high, C 1, we have in the original 
partial differential equations of chapter 3

0 =  - /  +  qC { T y U y  -h T u y y )  , (4.43)

0 = u p ' + ( r /  +  TTyy) + j C T  { u y f , (4.44)

from neglect of the inertia terms. The system (4.43), (4.44) will be re-considered 
later. The variables can now be expressed in term s of functions of ?/,

u  = x ~ ^ u {t) ) j T  = p = x ~

g =  x ' ~ ^ g { r ] ) ,  il; =  F { t}), v =  x  ^v{rj), p  -  x ^ ~ ^ - iC f { r j ) ,

with 77 =  y / x ^ .  The x-momentum equation therefore yields 

so tha t
0 =  +  7 C ( t 'û ' -f f  Û") . (4.45)

The energy equation becomes

0 +  f  f  «) +  7C  ■ x - ' f  .
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and so
0 =  ~  u i  + ^ 7 (7  ( f +  f f )  + - y C f  [ u ' f  . (4.46)

The equations here agree with the full similarity case for large C values. In addition, 
however, n =  0(C~^),  T  =  0 (1 ), if if is 0 (1). So the energy equation becomes simply

0 =  [ f ' ‘‘ +  f f " )  (4.47)

instead of (4.46). To solve the equations, we obtain from the cc-momentum equation

0 =  +  (t û ' ) '

and hence, on integration

(m +  1) #77 +  27O ( f i t ')  =  A\

where Ai  is a constant. However, at 77 =  1 (the centre-line), u' = 0. Therefore the 
constant ^1  =  (771 -f 1) if. Since the energy equation (4.47) yields T  =  constant =  
the current equation becomes

2^Cfyj  • Ü' =  (771 H-1) if (1 -  77) ,

which is a linear equation for u. Integrating this yields

where A 2 is a constant. Again, however, û =  0 at 77 =  0. Therefore the constant 

A 2 =  0 .

The predictions from this large-C analysis agree with the com putations as the 
value of C  is increased.
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Figures in chapter 4

F ig  4.1 : the values of the velocity u  and the tem perature T  at the centre-line, for 
the various effective Chapman constants C = 0.2, 1.0, 5.0, are plotted over the 
value of exponent m. The wall tem perature T̂ jaii = 0.5, the pressure p =  1.0 
and the Prandtl number a = 1.0.

F ig  4.2 : the values of u and T  along the centre-line against m, for the various wall 
tem peratures =  0.45, 0.50, 0.55.

F ig  4.3 : showing the result obtained analytically and numerically for the velocity u 
and the tem perature T  at the the centre-line, for various wall tem perature.
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Chapter 5 

U pstream  Influence

5.1 G overning E quations

As was shown in section 4.2, there are at least two solution branches for the  similarity 
flow profile and tha t provides one form of non-uniqueness possible in the local flow. 
Another form of non-uniqueness in the flow is due to upstream  influence within the 
original composite partial-differential system as follows.

The flow components now are expressed again in terms of the streamwise depen­
dence. A small perturbation term  associated with upstream  influence in the stream  
function is assumed to  be proportional to a;“ ; therefore the expression of the whole 
solution is of the form

{‘ip,u,v,p,  g ,T )  = (‘00, +

+  ( x “ V>i, + • • •  ( 5 . 1 )

where the constant a  is unknown and to be determined. The leading term s in paren­
theses on the right in (5.1) are the basic solutions found in the previous chapter, for 
the specific case m  =  0 for definiteness.

In order to determ ine the exponent a , the equations of the perturbation terms with 
certain boundary conditions are required, and these are obtained from substitution 
into the composite system (3.1) - (3.7). Our concern here is mostly w ith the possibility 
of positive values of a , corresponding to  eigenfunctions (branchings) a t small x.

The resulting similarity equations for the basic flow are as in chapter 4,

qqUq =  go^o =  0, (5.2)

^0 ~  (To^oY 3 (5.3)
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goCp {uq {—To)) — ——uqPo +  — {TqTq ) -{-'yCToUQ , (5.4)

Po = R qoTq, (5.5)

w ith the boundary conditions being

= Uq = 0, Tq =  T ^ {x) .  at 2/ =  0 (wall), (5.6)

Uq =  Tq = 0  at y =  7/0 (centre). (5.7)

The similarity-type equations at the order of a;“ then yield the governing equations

goiti +  Q\Uq = goui +  giT̂ o =  -aV 'i) (5.8)

Qo U q  ~  2 )  4- —

=  — ^ Pi -f 'yC {TqUi +  T\Uq ) , (5.9)

PoCp [7 ^ 0  (cK — 1) T i -f- 7 / 1  ( —T o) -h 7 ;iT b l +  giCp [uq ( —T o)] =

=  Tio ^o: — P i  +  u i  -po^ 4- — (TqTi' 4- T i T q ' )

4-7 ^  ( T i U q  -f- 2 T q U q ' u i ' ^ , (5.10)

Pi =  (poTi +  giT o), (5.11)

while the boundary conditions are

-01 =  m  =  Ti =  0 at 7/ =  0, (5.12)

ui = Ti =  0 and t/̂ i =  0 at y = t/o- (5.13)

Here (5.12), (5.13) hold because of the complete wall and centre-line conditions re­
spectively. In order to find the eigenvalues a , the equations (5.8) - (5.12) are to be 
solved, yielding a non-trivial solution, with pi =  1 as a convenient normalisation. 
This is done in the current work essentially by solving all the above equations for
various a  values and then examining the dependence of 7/>i(t/o) on a,  to  determ ine the
value(s) of a. The necessary further details are given below.

The equations in term s of the second derivatives of u  and T  are, from above, 

' )C TqU \ '  =  ' y C  {TqU\  -|- Ti'uq 4- T\Uq") ~  2 }

4-go Uq ~  2 )  ^  ( ~ 2 ^°)
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^ T o T ^ "  = -  ̂  (2To%'  +  TiTo") -  «0 ( a  -  pi -  1x1 ( -  ̂ po)

—'yC {T\Uq +  2TqUqU\^ +  giCp [i&o (~^o)]

- j - p o C p  [t̂ o (o! — 1) Ti +  til ( —To) +  viTo^]. (5.15)

In order to compute Vi, variables go and vi have to  be kept am algam ated since QqVi = 
—ctijji and from the state equation

Pi — R qqT i
Qi = ToR 

P i  Ti Po
RTq To RT q

Therefore a set of five equations of first order is obtained,

ipi =  Qoui +  QiUo ^and V’l =  , (5.16)

d R 1
drj

= Ui =
'yCTo

R =  n / .
d S a
drj

=  Ti" =
CplC

-U i (

(5.18)

-\-QoCp [uq [a — 1) Ti +  ui  (—To) +  Vi Tq ]} , (5.19)

S  = T / . (5.20)

These are used below.

5.2 N um erical R esu lts

The five equations just mentioned were solved numerically by use of a four-stage 
R unge-K utta scheme, along with the appropriate boundary conditions. The figures 
5.1 - 5.6 show the values of ipi{yo) versus a  (from which a  is fixed by 'tpi{yo) = 0), 
numerically solved for various values of the scaled Chapm an constant C. Sudden 
changes of pa ttern  in the graphs were observed around C = 0.005. The following are 
some sample results in tabular form; see also figure 5.7.
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a a a 0 a a
5.0 0.99 -72.21 0.002 13.88 -0.92
2.0 0.97 -11.83 0.001 12.84 -0.71
1.0 1.04 -2.89 0.0005 9.99 -0.65
0.5 1.30 -0.53 0.0002 7.39 -0.61
0.2 2.28 0.26 0.0001 6.15 -0.59
0.1 3.60 0.40 0.00005 5.23 -0.58
0.05 5.59 0.49 0.00002 4.09 -0.55
0.02 9.87 0.85
0.01 15.24 1.41
0.005 24.74 3.07

W hen the scaled Chapman constant C is sufficiently large, C > 0.005 approx., an 
eigenvalue for a. of positive value decreases but apparently converges to unity from 
above as C tends to infinity.

W hen the scaled Chapman constant C is sufficiently small, G < 0.005 approx., 
this positive eigenvalue for a  decreases but seems to tend to  an 0 (1 ) positive value, 
as C  tends to zero.

However, it should be noted tha t the com putational results became questionable 
for 0  < 0.00001 and the value of the eigenvalue is not determined accurately there.

The main point suggested by the above com putational work is th a t there are 
positive eigenvalues a , associated with the local expansion (5.1). This is borne out 
by the subsequent analytical properties, for large C  and small C  in tu rn  (the former 
also provides the basis for chapter 6).

5.3 A nalysis for Large C

W hen the scaled Chapman constant C  is large, (7 1, To is expected to be 0 (1 )
since the wall tem perature is 0 (1) and Wq is 0 (0 ~ ^ ) since po is 0 (1 ). Similarly it 
can be argued th a t go =  0(1), ij)Q = 0 ( 0 “ ^). Therefore from the prim ary equations
(5.2) - (5.5) we are left now with the system

QqUq =  ^0% (5.21)

0 =  +2^0 +  7 O (ToUo )̂ , (5.22)

0 =  ^ ( r o T o ' ) ' .  (5.23)

Po =  R qoTq, (5.24)
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Figure 5.1; Seeking eigenvalues a
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Figure 5.3: Seeking eigenvalues a

61



4.0

C=0.0053.0

2.0
CL

1.0

0.0

-1.0
-50.0 0.0- 100.0 50.0 100.0

CA
CL

alpha

alpha

4.0

C=0.0023.0

2.0

1.0

0.0

-1.0
-50.0 0.0 50.0- 100.0 100.0

4.0

C=0.0013.0

2.0

1.0

0.0

-1.0
-50.0 0.0- 100.0 50.0 100.0

alpha

Figure 5.4: Seeking eigenvalues a
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for the leading terms. Then from the energy equation (5.23) To =  constant =  
while from the cc-momentum equation (5.22)

'yCT^uo' = —-po"

After integration we therefore obtain the form, w ith unknown constants A, J5,

^0 =  ™  Ay  -h B.
'yU 1 XU

From the boundary conditions, however, uq =  0 at y =  0 and uq' =  0 a t y =  t/q, the 
solution becomes

U q

for Uq. For the secondary equations, employing a similar argument in term s of the 
orders of magnitude gives T\ = 0 (1 ) since pi =  1 (normalisation) and qi =  0 (1 ) 
from the state equation, and U\ =  0 (0 " ^ )  since pi =  1 and uq = 0 (0 ~ ^ ) from the 
m om entum  equation. Thence the equations (5.8) - (5.11) become, with a  assumed to 
be 0 (1 ),

= ^ i \ (5.26)

=  — (5.27)

0 =  — (a  — 1/2) Pi +  ')C {TqUi +  T\Uq  ̂ ; (5.28)

0 =  ^ ( T o T i '  +  TiTo')',O' (5.29)

Pi — B(goTi +  giTo). (5.30)

Hence Ti =  0 is the solution here, leaving the equation (for Ui)

'jCTxuUi” =  (a  — 1/2) pi.

Therefore

'yC/ 1 XU

with the constants A, B,  to be found. From the boundary conditions, ui =  0 at y =  0 
and u i' =  0 at y =  yo, it follows that

(5.31)
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Then from the state equation pi =  RgiT^,  gi =  p^ jR T ^  which is constant, and 
therefore the stream  fuction satisfies

^  ( , .  -  % , . )  H- -  2 , , . )
RT^  l C T „  RT„-fCT^

(y^ -  2ÿÿo) • (2a -  2 ).îPoPi
ÆT„ • -yCr,

Therefore we have, on integration,

1
_4

• 'yCT,V-i =  (p '/3  -  PopV2) • (2a  -  2 ). (5.32)

after using the boundary condition =  0 at y =  0. Also, however, Tpi = 0 aX y = yo] 
so (5.32) requires that

o: =  1 (5.33)

Therefore as C  — > oc, the eigenvalue a  — > 1, a prediction which agrees well with 
the numerical results of the previous section.

5.4 A nalysis for Sm all C

W hen the scaled Chapman constant is very small the velocity u and tem perature T  
are assumed to take the power-law forms

Uq = C ^Uq +  ' • •, (5.34)

To =  +  (5.35)

for 2/ ~  1, with L, M  being positive values to be found. From the state  equation the
density g is therefore of the form

Po =  C^po +  • • • . (5.36)

These expressions are substituted into the momentum equation and the energy equa­
tion, and then the resulting orders of magnitude are, in turn ,

q M-2L ^  1 ^  (5.37)

C~^  ~  ~  ^1-2M ^  Q1-2L-M (5.38)

Therefore the implied values of the powers are L = I f 3 and M  =  2/3. Then the
m om entum  equation effectively stays in full, when the expansion forms in powers of
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c  are inserted. Indeed the whole problem remains as it was, with C  replaced by 1 
and Tu; replaced by zero in effect.

The figure 5.8 shows vs. (7, and centre vs. (7, for small (7, as a
check on the behaviour proposed just above. The corresponding tabular form is the 
following.

c 0̂1 centre T 1 01 centre (7^/% C2/3t ^

0.1 1.7097 2.9544 0.7933 0.6348
0.05 2.2948 4.8201 0.8454 0.6523
0.02 3.2611 9.0761 0.8855 0.6666
0.01 4.1891 14.5484 0.9029 0.6730
0.005 5.3413 23.2363 0.9138 0.6771
0.002 7.3161 43.0060 0.9223 0.6803
0.001 9.2545 68.4106 0.9260 0.6817
0.0005 11.6892 108.7380 0.9278 0.6826
0.0002 15.8956 200.5021 0.9296 0.6857
0.0001 20.0443 318.4202 0.9304 0.6860
0.00005 25.2678 505.6036 0.9309 0.6862
0.00002 34.3080 931.5348 0.9313 0.6864
0.00001 43.2333 1478.8623 0.9314 0.6864

The behaviour very near the wall, where makes its presence felt significantly, is
similar to tha t analysed by Seddougui et al. (1991).

For the secondary (eigenfunction) equations the orders of m agnitudes in the con­
tinuity, momentum, energy and state equations are follows, respectively.

QoUi ~  QiUo ~  Tpi, QoVi ~  Ipi,

qqUqœT i ~  a  ~  CTqUi ~  CT\Uq,

QoUoaTi ~  ^iUqTo ~  auo ~  Ui ~  CTqT i ~  CT i Uq̂  ~  CTqUqUi ,

1 ~  ^0^1 ~  Qi Tq.

Hence from the state equation (and from the orders of m agnitude of go, T) ear­
lier) Qi ~  (7^/^ and Ti ~  (7“^/^, while from the m om entum  equation similarly 
u i ~  and a  ~  1. Therefore for small C  the suggestion is th a t the eigenvalue
a  has a positive value of 0(1).

From these scalings the secondary equations of motion rem ain in full, as do the 
prim ary equations, along with ipi ~  (7^^ ,̂ Vi ~  .
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Figures in chapter 5

F ig u re s  5.1 - 5.6 : the value of at the centre-line is plo tted  against a , from (5.16) 
- (5.20), to determine those values of a  for which (5.13) is completely satisfied.

F ig  5 .7 : showing a  versus C, over different ranges of C.

F ig  5.8 : plotting scaled values of the centre-line velocity and tem perature, against

C.
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Chapter 6 

Lubrication R esults for the Entire 
Flow Solution

6.1 T he P ressure E quation

In this chapter our attention is focused particularly on the near-throat stage when the 
change in the pressure and other flow quantities through the nozzle is due to  complete 
lubrication theory. This follows from extending the analysis of the previous chapter 
for large effective C values to incorporate the entire flow solution rather than  the  small 
disturbances of chapter 5 alone. In the current study, compressible lubrication theory, 
corresponding to neglect of the inertial effects in the original non-linear governing 
equations of chapter 3, is generally applied to the viscous flow passing through a 
narrow and variable nozzle shape. As the effective Chapm an constant becomes large 
the viscous term s and the pressure gradient become dominant. Thus in the streamwise 
m om entum  equation the typical inertia term  is negligible provided

du d^u

which is approximately, i.e. in terms of orders of m agnitude, the requirem ent th a t

u u
QU- <  11 —  ,

X  2 /2

or

^ 4  « 1-

Hence the Reynolds num ber (in effect Quxj^  here) can be large provided th a t the 
typical width of the throat of a nozzle is very narrow compared with the typical 
length, so tha t \y!x\ is sufficiently small.
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In the full boundary-layer equations, approximating similarly, we therefore obtain 
for large effective C  values the controlling equations

QU =  t j jy,  QV =  - V ’x ,  

0 =  - p  4- i C  {Tuy)y ,

0 = ^ ' r C ( T T y X ,

(6.1) 

(6.2)

(6.3)

p  =  R q T .  (6.4)

From the energy equation T  = and therefore the x-mom entum equation is

p'{x)
'yCT^Uyy   P (®)) U»n§ —

^  i C T ^ '

Therefore the velocity profile u  is given, on integration, by the following development, 

u„ = ■ {y -f So) -f A, w ith A =  ^

It follows tha t

u  = v '  { y  +  'S'o)' 

2

i C T ^

{ y  +  ‘S'o) +  B ,  but B  =  0.

Hence the velocity profile u is

p \ x )
u =■

2-fCT^ { y  +  SoŸ — 2iS'o {y +  5o)] ,

after use of the boundary conditions u' = 0 aX y = 0 and u = 0 sX y = Sq. From 
the state equation g = p jR T ^ ,  which is a function of x  only, and from the continuity 
equation

and so

Ip =

RT^ 2'yCT^

P

-  So-

RT^  2'yCT^

since 'ip = 0 a.t y = —Sq. Then the stream function is a constant D, which is 
unknown and to be found, at y =  0.

2
D = P P

2 ' y C R T j

Hence the pressure p{x) is governed by

(6.5)
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where the constant A =  ZD'yCR. Then

(6.6)

where p(cco) is the starting pressure. But actually D  is unknown and p{xi)  is given. 
Therefore we need

i p ^ x , )  = \ A xo) -  X £  ^ d x  (6.7)

which fixes A and hence D from the definition above.

Another way to regard the solution is to eliminate A from the equation (6.5), 

by differentiating to give
d d .1

=  0, (6.8)A .
dx

S o \ x )  d
( i ) d x '

and this gives a second order ordinary differential equation for p{x),  in which two 
boundary conditions are required to determine the pressure profile through the noz­
zle. That tends to confirm the existence of upstream  influence, w ith one boundary 
condition being associated with the upstream  end of the nozzle and the  other with 
the downstream end.

6.2 Sam ple Solutions

We restrict a ttention here to representative results. The two graphs of Fig. 6.1 show 
the pressure profiles along cc, with various shape of nozzle S q { x )  which is a function 
defined as

S q { x )  =  1 +  ax^

with variable a (25 >  a > 0.04). The upper graph shows the case in which the fixed 
pressure P{xo=-i) =  5.0 and P(n=i) =  1.0 are imposed, and the lower shows fixed 
pressure P(ro=-i) =  10  and P(xi=i) =  0.5. W hen a becomes large, the equation (6.7) 
becomes

\p"  -  -  X £
(x)
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and hence, for x >  0, in effect

Thus the pressure decreases rapidly. In both cases the pressure profiles are determined 
by the fixed pressures downstream and upstream; therefore there is upstream  influence 

in the flow system.

Fig. 6.2 show the pressure profiles with different wall tem perature T^{x)  func­
tions. Decrease of the wall tem perature along x  causes faster decrease of the pressure 
compared to increase of the wall tem perature.

The results thus confirm the existence of concise exact solutions for the nozzle-wall 
pressure, and likewise for other representative quantities, when the effective Chapman 
constant is large. The results also verify the presence of upstream  influence in the 
system (as implied by chapter 5) in view of the two boundary conditions appropriate 
in solving (6.8).
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Figure 6.1: Pressure equation : To = 1.0, T\ =  2.0 with various S{x) .
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Figure 6.2: Pressure equation : fixed S{ x )  with various

76



Figures in chapter 6

F ig  6.1 : the pressure profiles with various shapes of the nozzle S { X )  along x. The 
upper graph shows the case in which the fixed pressures P(xo=-i) =  5.0 and 
P(xi=i) =  1.0 are imposed, and the lower shows fixed pressures P(xo=-i) =  10  
and P(xi=i) =  0.5. The nozzle shapes S{x)  taken are, in turn,

S{x) = 1 +  25x^

=  1 +  5x^

= 1 -\- x"̂

=  1 +  0.2x^

= 1 +  0.04a;^.

F ig  6.2 : the pressure profiles with various wall tem peratures T^{x)  along x. The 
fixed pressures are imposed as Fig. 6.1. The wall tem peratures imposed are

T^{x = —1.0) — T^{x  =  1.0)

0.0 — 3.0 

1.0  -  2.0 

1.5 -  1.5 

2.0  —  1.0 

3.0 — 0.0.
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Chapter 7 

On the P.D.E. Sweeping Problem

Here we describe a preliminary a ttem pt at incorporating the findings in the previ­
ous chapters, on upstream  influence, into a m ethod for solving the original partial- 
differential system. This is a simple first such trial. Section 7.1 below considers 
the semi-implicit algorithm tha t was used, section 7.2 gives its effect on the partial 
differential equations of concern, and section 7.3 describes the resulting tridiagonal 
m atrix  algorithm. Then section 7.4 goes through the local solution procedure for the 
velocities and tem peratures, followed by section 7.5 on determ ining the  other quanti­
ties required. Finally sample solutions are discussed in section 7.6, along with some 
comments and recommendations.

7.1 Sem i-Im plicit A lgorithm

In the previous chapter the solution of the ordinary-differential system applying for 
certain similarity shapes of nozzle and suitable boundary conditions was computed 
by means of a fourth-order Runge-K utta method, for various param eter values. This 
chapter extends the previous similarity or limit results to more general cases where 
the original partial-differential system holds in full and streamwise marching in one 
form or another is required. In order to determine the solution of the flow system 
fully now, all the terms of the composite equations (3.1)-(3,7) have to  be taken into 
account in the numerical approach.

The flnite-difference m ethod which was used to discretise the governing equations 
is described in the sections tha t follow. In particular, in this work the differences are 
taken as effectively forward-time (in x)  and centred in space (y), giving a method 
which is referred to by Roache (1976) as the FTCS m ethod and which can be readily 
made second-order accurate in both x and y.

Generally there are two different types of marching scheme to solve parabolic
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partial differential equations; explicit methods and implicit methods. In an explicit 
m ethod the downstream profiles are computed directly from the known neighbouring 
upstream  profiles. Explicit methods are simple but often require small step sizes in 
the corresponding computations to achieve numerical stability. In an implicit m ethod 
the downstream-prohle solutions are determined simultaneously, typically by iteration 
and m atrix  inversion. The advantage in implicit methods tends to be th a t there is no 
or reduced numerical instability and hence the step sizes can be taken much larger 
than  those in explicit methods. On the other hand, it can take m any iterations to 
solve those steps in an implicit method.

In order to minimise or reduce the disadvantages of the two approaches above, a 
semi-implicit m ethod is introduced as an algorithm to solve the partial differential 
equations for the flow solution numerically. While an implicit m ethod requires iter­
ation and m atrix  inversion, a semi-impHcit m ethod requires only m atrix  inversion, 
without iteration.

We consider first below a single forward march streamwise in æ, before addressing 
subsequently the issue of multi-sweeping in x which is clearly necessary in view of the 
upstream  influence established in previous chapters.

7.2 T he S ystem  o f F low  E quations

A convenient system of coordinates is introduced to account for the normalised nozzle 
shape. The new coordinate y is defined as

y = y / s  (7.1)

where S(x)  is the given width of the normalised nozzle shape and y is the original 
Cartesian coordinate. Hence the y-ordinate is confined to the region of 0 < |y| < 1 
regardless of the width of the nozzle. Then as the system is transform ed, (x ,y ) — >• 
(x, y) ,  the derivatives with respect to x  and y transform according to

A  A _  A  A  A  i A
dx dx  S  ^ dy ’ dy S  dy

respectively.
Therefore the m om entum  and the energy equations become

g U  ( u x  ~  y  ^ ^ ^  ^  ^yy +  ^  My '^y,  (7-2)

g Cp(^u (T x ~  y T'y) +  ^ 5  Tÿ) =  u p \ x )  k —  ,
(7.3)
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in turn.

In order to discretise the derivatives in (7.2), (7.3) with respect to  x  first, effectively 
a forward-differencing m ethod is applied to d u j d x  in the æ-momentum equation and 
to d T  I dx  in the energy equation. First, at the current calculation step z -h 1, in 
the æ-momentum equation all the non-derivative term s are set to their values at the 
previous step i  where the variables are assumed to have been numerically determined 
already, while the æ-derivative term  is expressed in finite differences. The form is as 
follows.

Q U y  Q V ^  W y -  “ P  ( ® )  +  ^  ^ y y  +  ^  /^ y

The bars above denote their values at the previous step i. Likewise, in the energy 
equation the x-derivative of T  is expressed as

Q Cp (T x ~  y ^ 5  ^  ^ ^  ^  ^y ^y +  A ^  (^y)^ •

In the last term  (üyŸ  can be expressed as instead. The x m om entum  equation
above can then be rearranged to display the æ-derivative term  on the left hand side 
and the other variables on the right hand side,

(  - -  ̂ _ _ 1 1 _ \  Ü ,
g u - U x  =  y  0 u  —  y  — g V — —  f i ÿ j  Ufi-j -  —  Uÿÿ — p  [ x ) .

Using FTCS differencing in the ^-derivatives also, the finite-difference analogue of 
the m om entum  equation is thus, with steps j  A y  in the y direction,

+ A " " ' M

Similarly the energy equation becomes 

g C p u T ^ =  Cp Ü ^  y -  g Cp V ^  ^  Ji ^  - ^ k  ^  ^  Û p'{x),

and its finite-difference analogue is then
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In the above, (7.4) is regarded as determining the Uj, (7.5) the Tj, and then gj 
are to be found from the equation of state, Vj from the continuity, and so on. More 
details are provided below.

7.3 Tridiagonal M atrix  A lgorithm

As the finite-difference analogue of the m omentum equation (for instance) consists of 
three consecutive discretised variables Uj+i, Uj, Uj_i, the notation can be simplified 
here by denoting the coefficients involved by a , /?, 7  and R, leaving the form

“b ^3 “b Ti (7.6)

where R  denotes the entire rest of the terms in (7.4). From the boundary condition 
Ui is known, U\ =  (at the wall). Then the complete system of finite-difference 
equations representing (7.4) can be written in m atrix form as

( 1

0L2 A  72 

«3 A

V

73

CLJ-\ P j - 1  l J - 1

OLj +  7 j  /5j /

f Ui \ ( y>w ^
U2 R 2

— Rs

R j - i
 ̂ Uj } \  R j )

Here the last equation in the system represented by the equation (7.6) is

OLjuj-x 4- -f- 7 JU J+ 1  =  Rj (7.7)

originally. However, u j_ i =  u j^ i  from an interpretation of the sym m etry condition 
along the centre line; thus the equation becomes

{a j  7 j )  iij_ i 4- /3 ju j =  R j.

This is incorporated in the m atrix  equation above.
The coefficient m atrix is a tridiagonal m atrix, having non-zero elements only along 

the diagonal, the superdiagonal and the subdiagonal. The solution of the system of 
equations can therefore be obtained by m atrix inversion or Gaussian elimination.

In more detail, the equation (7.4) is

/  _ _ &  . _ _ 1 1 \

Âj 4“ 'd’j —1

li," — li,'
Qj  '^3 ’

^j+i —
Ax 2Ay

+ 52 (Ay): - / ( a : ) . ( 7 . 8 )
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and this can be w ritten in the above form (7.6) with

Pi /  _ _ &  . _ _ 1 , 1 _ \  1

fij Qj '^j

OL-i =

Pi =  - 2  

l i  =

Likewise for T , the equation (7.5) becomes

=  (ê  ^  “  f  Ï  -  ? <=P ^ I  +  i  *6 +  ^  I  “ «)

4  (7.9)

and this reduces to the form

6j T j- i  +  €j Tj +  (j Tj+i = Qj, (7.10)

similarly as (7.6), where

k j  ( .  _  .  _  _  1 , 1 r  , -  1  1

_  o  k j  Qj  Cp U j

~  S ^{A yY  A x  ’

/ ■ _  ^ j  \ (  - -  ̂ - _ 1 , 1 / - | _ 1 _ ^ 1

Qi =

The method of solution of (7.7), (7.10) is described, for completeness, in the next 
section.

7.4 G aussian E lim ination

The numerical procedure starts with the elimination of the 7  ̂ ’s by Gaussian elimi­
nation. The last equation of the system can be written as

R j  —  («J +  7 j )  ' ^ J - 1  

= ------------- J i -------------
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T h en  th e  second  last eq u ation  can be represented  as

^ i 2j  -  ( a j  +  7 j )  u j_ i _  ^
0 L J - \ U j - 2  +  p j - i U j - i  —  7 7 - 1  ' ------------------------    —  K j - i

P J

, ( o  O L J - \ - ' y j \  _  D 7J-1 D
0 L J - \ U J - 2  +  I P J-1  — 7J-1  ' --------  I U j - l  — ----- — -^7

T herefore th e  factor for G aussian  e lim in a tio n  is

0:7 +  77(3j-i =  (3j-i -  7 j_ 1 •

^7-1 =  -R7-I  -  ' R j-
P J

This will result in a bidiagonal form of equation given by

Q !7_ iU j_2  +  $J- l  ' U j _ i  =  R j - \ .

Likewise, the other equations can be solved as

OLjUj î +  (3jUj +  j jUj+i  =  Rj,

— R j'

In order to eliminate 7 ,̂ m ultiply the second equation by ' y j l P j ^ i ,  then  the coefficient 
of Uj is replaced by p  upward in the system

'Vj
P j  —  P j  ~  3  ■ ^ j + l  >

p j + 1

R j — R j ~  n ' Rj+1’
P j + l

Although the 7 ’s are eliminated from the equations, the effect of 7 ’s remains in the 
system.

The first equation of the system is ui = and therefore the solution of the
rem aining equations is obtained by back-substitution in the system and determ ination
of U j  by the general recursion formula

(7.11)
P j

for the calculation of U j  where U j _ i  has already been determ ined by the previous 
application of the formula, and the sequence ends with the last equation solved by

^  R j - { a j + j j ) _ u j . ,  ( 7 . 1 2 )

0J
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7.5 D eterm in in g  th e  O ther Q uantities

After the com putation of the æ-momentum and energy equations, Uj’s and T j’s are 
determined. In similar fashion, expanding backwards the œ-derivative in the continuity 
equation gives its finite-difference analogue here as

( H .  =  (7.13)

and similarly for d{gu) jd y  and d{gv) /d y  , namely

Then using the discrete values for j  and j  — 1 a. central difference can be evaluated with 
j  — I (as in a so-called box m ethod). The product term  at the midpoint Qj_i 
can be derived as the average of the products at the neighbouring points,

P j - L  ^  [Qj U j  +  Q j - i  U j - i ]  .

The x-derivative in the continuity equation can likewise be w ritten as

/  \  _  U j  Q j - i  U j - l )  —  U j  -f -  g j _ i  Û j - i )

~  Ax

_  ( g j  U j  —  Qj  Ü j ) ( g j - 1  U j f - I  —  Q j - l  t X j - i )

2Ax

Therefore the entire continuity equation in finite-difference form becomes

I  [(ft “ J “ j) +  (P j-l «J-1 - P j - l  “ j-Q ] I [(/>J- '̂j) -  „
A x  A y

SO th a t Vj is given by

A y

Pj

P j - l  V j - I  ( p j  U j  P j  U j )  -j -  { p j - i  U j ^ i  P j - 1  U j ^ i )

A y 2 A x
(7.14)

The value of the density g above, in (7.11), can be computed by using the state 
equation, for example pj = R  T j/p , as p and Tj are determined (or guessed) earlier in
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the com putational process. Further, the coefficient of viscosity is assumed to  be given 
by the Chapm an viscosity law, /z* =  ' y C T j ,  where the constants 7  and C  are known.

In this numerical treatm ent, the pressure p appears partly  through its gradient, 
the derivative with respect to x, and partly through the equation of state. As shown 
in previous chapters, there exists upstream  influence and so branchings can disturb 
the stability of any com putation in a purely forward-marching solution, which results 
in a departure from the main solution. This phenomenon is as in recent external 
hypersonic-flow studies by Khorrami and Smith (1994) and references therein, dating 
back to  Neiland (1969), Stewartson and Williams (1969) in particular. The numerical 
treatm ent here accordingly adopts as a first simple trial a multi-sweeping technique 
(in x), in view of the inherent upstream  influence present. The derivative of p  is 
therefore discretised in forward-differenced form to bring in the upstream  influence 
directly, an approach which is associated with numerical work by Prof. R.T. Davis and 
colleagues in the 1970s (also work by Prof. S.G. Rubin and collaborators at Cincinnati, 
e.g. Rubin (1982)); see for instance Davis and Werle (1982), Brown et al. (1991), 
Khorram i and Smith (1994) and references therein; earlier studies are by Davis (1970), 
Patankar and Spalding (1972). The forward-differenced pressure m ethod effectively 
allows for the effects of branching by incorporating upstream  influence gradually per 
outer X - sweep (whereas backward-differencing of the pressure gradient tends to retain 
the unstable branching as above). Quite simply, we set

In the current approach, the pressure difference is calculated through outer iteration 
sweeps, by first inserting a guessed value for the forward pressure and then updat­
ing it after each sweep in x. The sweeping process in x is repeated until (hopefully) the 
overall solution converges, subject to a prescribed pressure value at the downstream 
end of the com putational domain.

Results from this first trial method are presented in the following section.
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7.6 Sam ple Solutions

Solutions were obtained by using the numerical methods described above, and some 
results are shown in Figures 7.1 - 7.9. The initial profiles u, T  are given by

The normal step size used was A y  =  0.01, with a nozzle shape S  = So = 1.0 , giving 
a constant parallel wall, for simplicity. The pressure guess p is prescribed as

Po

for all X.  The computations are applied to a parallel sided duct since there exists similarity 
solution derived earlier.

First we consider the effect of the step size A x  of the computations, on which 
the accuracy of the computation partly  depends as well as the iterative convergence. 
Fig 7.1 demonstrates the iteration sequence at a relatively large value of spacing. 
A x  =  0.1, with the initial wall tem perature =  0.75, downstream tem perature
Tii;|x=io =  0.25, and the initial pressure px=o = 5. Here the wall tem perature variation 
Tiu(x) was specified as

J» I
Ttu(x) =   -----— (a is a constant)

1 d* ax

throughout, while Um(x), the wall streamwise velocity, was set to zero, as was the 
normal velocity component v^(x). P lotted in the figures are representative quantities 
along the centre-line, u (r , 1), T (x , 1). After 100 iterations the solution appears to be 
convergent although there appear also minor barely noticeable fluctuations in u near 
r  =  0 and these are found to remain essentially as they are even after 2000 iterations.

As the step size is reduced these fluctuations reduce. Fig 7.2 shows the result 
for a finer grid size. A x  = 0.05. The m ethod now takes more iterations to achieve 
convergence, where the com putational results of u  and T  settle into certain profiles, 
around 200 iterations, but the overall solution seems more acceptable, smooth and 
accurate.

Further, when the step size is reduced to A x  =  0.005 and double precision is 
applied to the variables in the programme, more iterations are required to achieve 
comparable convergence as shown in Fig 7.3.

Results for various tem perature gradients are presented in Figures 7.4 - 7.8. W ith 
the initial wall tem perature Tu,|x=o =  0.5 and Tu,|x=io =  0.25, Fig 7.4 gives the result
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obtained with step size A x  = 0,05 and single precision, while Fig 7.5 gives the result 
with Aæ =  0.005 and double precision. W ith this smaller tem perature gradient both 
achieve rather slower convergence, and the solution remains steady in Fig 7.4 with a 
certain degree of fluctuations in it.

Figures 7.6 and 7.7 demonstrate the iteration sequence at larger wall tem perature 
gradients. W ith the initial wall tem perature T^\x=o = 1.25 and final wall tem perature 
'I'w\x=io = 0.25, Fig 7.6 shows the result for a step size Aa; =  0.05 and single precision, 
and Fig 7.7 shows the result with Ax =  0.005 and double precision. The solution 
again shows noticeable fluctuations in u  near x =  0 (and further downstream), even 
with a flner grid size, and in Fig 7.7 unsteadiness appears after 1500 iterations.

In contrast. Fig 7.8 shows/suggests the failure of the iteration sequence at the 
constant wall tem perature T^j = 0.25. Clearly the convergence, if any, is poor.

Results for smaller initial pressure, px=o = 1, are presented in Figures 7.9 - 7.11. 
The initial wall tem peratures are taken to be T^\x=o =  0.5 for Fig 7.9, T^\x=o =  0.75 
for Fig 7.10 and T^\x=o =  125 for Fig 7.11, but the final ones are Tjju\x=io =  0.25 for 
all three cases. It is interesting tha t Fig 7.9 and Fig 7.10 again show unsteadiness 
(oscillations), after 700 iterations for Fig 7.9 and after 1000 iterations for Fig 7.10, 
while Fig 7.11 shows none as far as 2000 iterations and the solution appears to be 
convergent. This suggests tha t with the smaller tem perature gradient the solution 
seems to become more well-behaved and convergent.

The unsteadiness found in Figures 7.7 - 7.10 starts to appear from the down­
stream  end of the computational domain after a certain number of iterations and 
then gradually spreads upstream.

We have shown the above results, convergent or divergent as they are, to bring out 
the point th a t a better method is (or methods are) perhaps required to  be developed, 
in order to handle rapidly the underlying ellipticity of the present partial-differential 
problem. The current first, trial, method can surely be improved upon. Faster stable 
methods are described by B rot hert on- Rat cliffe (1986) for example, including methods 
originating from earlier research by R.T. Davis and by J.E . Carter. An improved or 
alternative downstream boundary condition may also be necessary, for instance of the 
sim ilarity or lim it form studied earlier in the present thesis.
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Figures in  chapter 7

F igures 7 .1-7 .3  : the computational results for the velocity u  and the tem perature 
T  at the centre-line are plotted against cc, for every 100 iterations, with the initial 

wall tem perature Tu; 11=0 =  0.75, the downstream wall tem perature T^|a.=io =  0.5 
and the initial pressure Px=o = 5.0. The grid sizes are taken to be A x  = 0.1 for 
Fig 7.1, A x  = 0.05 for Fig 7.2, Ax =  0.005 for Fig 7.3.

F igures 7.4-7 .5  : similar configurations but with the initial wall tem perature
=  0.5 and the downstream wall tem perature Tm|x=iG =  0.25. The grid sizes are 
taken to be Ax =  0.05 for Fig 7.4, Ax =  0.005 for Fig 7.5.

F igures 7 .6 -7 .7  : similar configurations but with the initial wall tem perature T„,|x=o 
=  1.25 and the downstream wall tem perature T^|a;=io =  0.25. The grid sizes are 
taken to be Ax =  0.05 for Fig 7.6, Ax =  0.005 for Fig 7;7.

F ig  7.8 : also similar configurations but with a constant wall tem perature Ty, = 0.25 
throughout x. The grid sizes are taken to be Ax =  0.005.

F igures 7 .9-7.11 ; showing u  and T  with the initial pressure Px=o =  10. The initial 
wall tem peratures are taken to be 7^|x=o =  0.5 for Fig 7.9, 7^|x=o =  0.75 for 
Fig 7.10 and 7^|x=o =  1.25 for Fig 7.11, but the final ones are T,i,|x=io =  0.25 
for all three cases.
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Chapter 8

Final Com m ents

The present study has been concerned mostly with upstream  influence in hypersonic 
planar flow through a nozzle. Hypersonic flow has the special and im portant fea­
ture  of prolonged upstream  influence, in the presence of viscous forces, as upstream  
influence in a compressible boundary layer increases with increasing Mach number. 
Non-uniqueness is associated with eigenvalues and corresponding eigenfuctions in an 
expansion in powers of the distance from a reference point. One of the objectives in 
this thesis has been to allow for the presence of upstream  influence in the internal flow 
system, which is accompanied by local non-uniqueness of the solutions. The eigen­
function above is due essentially to the interaction of viscous and inviscid layers, and 
is analogous to the eigenfunction in hypersonic external flow. This non-uniqueness of 
the solution has been a particular focus in the analysis.

The eigenvalue problem has been discussed in the context of a composite approach. 
A single composite system of equations has been derived to cover the four separate flow 
regions of the nozzle, cf. Brown et al. (1991), and the system is still a subset of the 
Navier-Stokes system. The boundary layer equations as a composite system are shown 
in section 3.1 to  be consistent with all the main governing equations throughout the 
entire domain of the nozzle. Then similarity solutions are deduced, when the nozzle 
shape is taken to be in the form of a power of the coordinate x, which are related 
to the Illingworth-Stewartson transformation. Numerical treatm ent of the sim ilarity 
solutions in section 4.2 shows the existence of branches in the solutions themselves, 
which indicate one (perhaps surprising) form of non-uniqueness possible in the local 
flow.

Another form of non-uniqueness in the flow, due to upstream  influence w ithin the 
composite partial-differential system, is examined analytically and through a num er­
ical m ethod by means of eigenvalues in the flow solution (chapter 5). The equations 
of the perturbation terms associated with upstream  influence are derived w ith certain
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boundary conditions, from substitution into the composite system. The com puta­
tional results suggest tha t there axe positive eigenvalues a  associated with the local 
expansion. The analytical predictions there agree well with the numerical results.

The presence of upstream  influence was also shown by analysis of a pressure equa­
tion in chapter 6 , for a limiting case. Analytically, an ordinary differential equation 
was derived for the pressure p{x), in which two boundary conditions were required 
to determine the pressure profile through the nozzle. The numerical results confirm 
tha t the pressure profiles are determined by fixed pressures downstream and upstream . 
Both analytical and numerical cases verify the presence of upstream  influence in the 
flow system. The results also confirm the existence of concise exact solutions for 
nozzle-wall pressure when the effective Chapm an constant is large.

In a preliminary attem pt at solving the composite partial-differential system, a 
semi-implicit computational m ethod wa^ introduced based on finite-differencing, with 
the pressure gradient forward-differenced, and on m ultiple sweeping (chapter 7). The 
m ethod performs quite well in some cases. The results show, however, tha t the 
method, as applied so far at least, is not always suflaciently stable to incorporate all 
the strong upstream  influence present. In order to handle the underlying ellipticity 
of the present partial-differential problem, this m ethod is perhaps required to be 
improved. Faster stable methods are described by Brotherton-Ratcliffe (1986) for 
example, including methods originating from earlier research by R.T. Davis and by 
J.E. Carter. Further work is called for also on an improved or alternative treatm ent 
of the downstream boundary condition, for instance of a similarity or limit form as 
studied earlier in the present thesis.
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