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clinical and Genetic characteristics 
of 18 Patients from 13 Japanese 
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Yu Fujinami-Yokokawa1,2,3,57, Kaoru Fujinami1,4,5,6,57 ✉, Kazuki Kuniyoshi7, Takaaki Hayashi8, 
Shinji Ueno9, Atsushi Mizota10, Kei Shinoda10,11, Gavin Arno1,5,6,12, Nikolas pontikos  1,5,6, 
Lizhu Yang1,4, Xiao Liu1,4,13, Hiroyuki Sakuramoto7, Satoshi Katagiri  8, Kei Mizobuchi8, 
taro Kominami9, Hiroko Terasaki9, Natsuko Nakamura1,14, Shuhei Kameya15, 
Kazutoshi Yoshitake16, Yozo Miyake1,17,18, Toshihide Kurihara  4, Kazuo tsubota  4,  
Hiroaki Miyata2,19, Takeshi iwata  16, Kazushige tsunoda1 & Japan Eye Genetics 
Consortium1,16*

Inherited retinal disorder (IRD) is a leading cause of blindness, and CRX is one of a number of genes 
reported to harbour autosomal dominant (AD) and recessive (AR) causative variants. Eighteen patients 
from 13 families with CRX-associated retinal disorder (CRX-RD) were identified from 730 Japanese 
families with IRD. Ophthalmological examinations and phenotype subgroup classification were 
performed. The median age of onset/latest examination was 45.0/62.5 years (range, 15–77/25–94). 
The median visual acuity in the right/left eye was 0.52/0.40 (range, −0.08–2.00/−0.18–1.70) logarithm 
of the minimum angle of resolution (LogMAR) units. There was one family with macular dystrophy, 
nine with cone-rod dystrophy (CORD), and three with retinitis pigmentosa. In silico analysis of CRX 
variants was conducted for genotype subgroup classification based on inheritance and the presence of 
truncating variants. Eight pathogenic CRX variants were identified, including three novel heterozygous 
variants (p.R43H, p.P145Lfs*42, and p.P197Afs*22). A trend of a genotype-phenotype association was 
revealed between the phenotype and genotype subgroups. A considerably high proportion of CRX-RD 
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in ADCORD was determined in the Japanese cohort (39.1%), often showing the mild phenotype (CORD) 
with late-onset disease (sixth decade). Frequently found heterozygous missense variants located 
within the homeodomain underlie this mild phenotype. This large cohort study delineates the disease 
spectrum of CRX-RD in the Japanese population.

Inherited retinal disorder (IRD) is one of the major causes of blindness in developed countries in both adults and 
children1 and includes retinitis pigmentosa (RP), cone/cone-rod dystrophy (CORD), Stargardt disease (STGD), 
macular dystrophy (MD), Leber congenital amaurosis (LCA) and others. Different inheritance patterns are found 
in IRD: autosomal dominant (AD), autosomal recessive (AR), X-linked, and mitochondrial inheritance2–9. For 
instance, different inheritance patterns result in different phenotypes (GUCY2D, BEST1, PROM1) in some genes, 
while other genes are associated with different phenotypes with similar inheritance patterns (ABCA4, PRPH2, 
RPGR, KCNV2, GNGA3, CNGB3)8–17.

CRX, denoted as a cone–rod homeobox-containing gene (OMIM: 602225) with high homology to the OTX 
family of homeobox genes, is located on 19q13.33 and contains four exons encoding a 299-amino acid home-
odomain transcription factor crucial for the development and survival of photoreceptors18. Animal experiments 
have proven that CRX is predominantly expressed in vertebrate photoreceptor cells of the retina and pinealocytes 
of the pineal gland19,20, playing a significant role in the differentiation and maintenance of photoreceptor cells 
by synergistic interactions with other transcription factors, such as neural retina-specific leucine zipper protein 
(NRL), retinal homeobox protein (RAX), and nuclear receptor subfamily 2 group E member 3 (NR2E3)19,21,22.

A locus and gene for ADCORD (CORD2) was first mapped and identified as CRX in 199418,23. Since then, 
over 90 variants in the CRX gene have been associated with a wide range of different phenotypes of IRDs, includ-
ing CORD, LCA, MD, and RP (The Human Gene Mutation Database; http://www.hgmd.cf.ac.uk/ac/index.php; 
accessed on 1 August 2018)24–35. The predominant mode of inheritance in reported families is AD, and in a few 
patients, including Japanese with RP or LCA caused by homozygous CRX variants was reported29,36.

Studies of CRX-associated retinal disorder (CRX-RD) have often been separately conducted for each pheno-
type, such as CORD or RP/LCA16,24,26,27,32,36; thus, it has been hard to comprehensively understand the disorder in 
consideration of different phenotypes and different modes of inheritance. To solve such a problem, large cohort 
studies with standardized clinical and genetic investigations for IRDs are required.

The purpose of this study was to characterize the clinical and molecular genetic features of CRX-RD in a 
nationwide large cohort of Japanese subjects diagnosed with IRD.

Results
Participants. Eighteen affected subjects from 13 Japanese families with a clinical diagnosis of IRD and har-
bouring CRX variants were identified in this study. The detailed clinical information is provided in Table 1, and 
the pedigrees of the 13 families are demonstrated in Fig. 1.

There were seven families with clear AD family history (7/13, 53.8%; Families 1, 2, 4, 5, 6, 7, 13), one family 
with a family history consistent with AR inheritance with affected siblings born to unaffected parents (1/13, 7.7%; 
Family 9), and 3 sporadic cases (3/13, 23.1%; Families 8, 10, 11). Two families lacked clear family data: one with 
unknown parental affected status (Family 3) and the other with the presence of an affected deceased paternal 
great grandfather (Family 12). Consanguineous marriage was not clearly reported in all families.

There were eight affected females (8/18, 44.4%) and ten affected males (10/18, 55.6%). The median age at the 
latest examination of 18 affected subjects was 62.5 years (range, 25–94).

Onset and visual acuity. The median age of onset of 13 affected subjects with available records was 45.0 
years (range, 15–77). One subject had a childhood onset at 15 years of age (1/13, 7.6%; Patient 16). Late onset of 
45 years of age or later was reported in seven subjects (7/13, 53.8%; Patients 3, 8, 9, 10, 12, 15, 17).

The median best-corrected decimal visual acuity (VA) converted to the logarithm of the minimum angle 
of resolution (LogMAR) in the right and left eye of 18 affected subjects with available records was 0.52 (range, 
−0.08–2.00) and 0.40 (−0.18–1.70), respectively. Eight out of 18 subjects had relatively favourable VA (8/18, 
44.4%, Patients 1, 2, 3, 7, 11, 12, 15, 17; 0.22 or better LogMAR units in the better eye), eight had intermediate VA 
(8/18, 44.4%, Patients 5, 6, 9, 10, 13, 14, 16, 18; between 0.22 and 1.0 LogMAR units in the better eye). There were 
eight eyes from six patients with poor VA (8/36, 22.2%, Patient 1-right, 3-right, 4-both, 5-left, 8-both, 14-left; 1.0 
or worse LogMAR units).

Retinal imaging and morphological findings. Fundus photographs were obtained in 18 affected sub-
jects, and fundus autofluorescence (FAF) images were available in 13 affected subjects (Patients 1–3, 7, 8, 10–13, 
15–18). Representative images are presented in Fig. 2. The detailed findings are described in Supplemental 
Table 1.

Marked macular atrophy was demonstrated in nine affected subjects (9/18, 50.0%; Patients 1, 3–6, 8, 15, 17, 
18), and slight atrophic changes at the macula were found in three (3/18, 16.7%; Patients 7, 11, 12). Marked 
peripheral atrophy was observed in four subjects (4/18, 22.2%; Patients 5, 13, 14, 16). Marked atrophic changes 
along the arcade were noted in eight subjects (8/18, 44.4%; Patients 1, 2, 4, 5, 8, 10, 14, 16), and slight atrophic 
changes along the arcade were noted in two subjects (2/18, 11.1%; Patients 9, 13). Three of these ten subjects with 
atrophy along the arcade had isolated atrophy without macular or peripheral atrophy (Patients 2, 9, 10). One 
subject presented with atrophic changes affecting the entire retina, including the macula, mid-periphery, and 
periphery (1/18, 5.6%; Patient 5).

Retinal atrophy at the macula was more evident on FAF images in eight subjects (8/13, 61.5%; Patients 1, 3, 8, 
11, 12, 15, 17, 18). A ring of high density AF was observed in 11 subjects to various degrees; eight with a ring that 
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surrounded the macular changes (8/11, 72.7%, Patients 1, 3, 8, 11, 12, 15, 17, 18) and three with a ring that sur-
rounded the mid-peripheral changes (3/11, 27.2%; Patients 2, 7, 13). Foveal appearance was relatively preserved 
in nine subjects (9/13, 69.2%; Patients 1–3, 7, 10–12, 16, 17).

Spectral-domain optical coherence tomography (SD-OCT) was obtained in 18 affected subjects, and repre-
sentative images are presented in Fig. 3. Marked outer retinal disruption was demonstrated at the macula in eight 

Family 
No.

Patient 
No.

JEGC 
consortium 
ID

Inheritance 
based on 
family history Sex

Age (at latest 
examination) Onset

Chief 
complaint

Refractive errors
BCVA 
(LogMAR unit)

Phenotype 
subgroup

Molecularly 
raised 
inheritance

CRX 
variants

RE 
(dioptre)

LE 
(dioptre) RE LE

1 Patient 1 
(1-III:1)

TMC-001-
001 AD M 44 35 Reduced 

visual acuity −5.5 −5.0 1.1 0.1 CORD AD c.118C>T, 
p.R40W

1 Patient 2 
(1-II:3)

TMC-001-
002 AD F 72 NA Photophobia −0.5 −0.5 0 0 CORD AD c.118C>T, 

p.R40W

2 Patient 3 
(2-II:1) JU-001-001 AD F 71 56 Reduced 

visual acuity 0.5 −1.5 1.0 0.2 CORD AD c.118C>T, 
p.R40W

2 Patient 4 
(2-I:2) JU-001-002 AD F 94 30 Reduced 

visual acuity 0.0 0.0 2.0 CF CORD AD c.118C>T, 
p.R40W

3 Patient 5 
(3-II:2)

KDU-001-
001 Unknown F 76 NA Reduced 

visual acuity −3.5 NA 0.4 1.7 CORD AD c.118C>T, 
p.R40W

4 Patient 6 
(4-III:2) NU-001-001 AD M 32 NA Photophobia −0.5 −0.5 0.52 0.52 CORD AD c.121C>T, 

p.R41W

5 Patient 7 
(5-II:1) JU-002-001 AD M 63 NA Reduced 

visual acuity +1.0 +1.5 0.15 0.4 CORD AD c.121C>T, 
p.R41W

5 Patient 8 
(5-I:1) JU-002-002 AD M 88 60 Night 

blindness 0 −0.5 1.15 1.22 CORD AD c.121C>T, 
p.R41W

6 Patient 9 
(6-III:1)

KDU-002-
001 AD F 80 75 Reduced 

visual acuity 0.0 0.0 0.52 0.82 CORD AD c.127C>T, 
p.R43C

6 Patient 10 
(6-III:2)

KDU-002-
002 AD M 83 77 Reduced 

visual acuity +2.0 +2.0 0.7 0.7 CORD AD c.127C>T, 
p.R43C

7 Patient 11 
(7-III:3)

TMC-002-
001 AD M 35 31

Central 
visual field 
loss

NA NA 0.22 0.4 MD AD c.128G>A, 
p.R43H

7 Patient 12 
(7-II:2)

TMC-002-
002 AD M 63 62 No 

symptoms NA NA −0.08 −0.08 MD AD c.128G>A, 
p.R43H

8 Patient 13 
(8-II:2)

TMC-003-
001 Sporadic F 41 37 Reduced 

visual acuity +1.5 −0.5 0.7 0.4 RP AR

c.193G>C, 
p.D65H/
c.193G>C, 
p.D65H

9 Patient 14 
(9-II:4)

KDU-003-
001 AR M 50 NA NA −2.0 NA 0.82 LP RP AR

c.193G>C, 
p.D65H/
c.193G>C, 
p.D65H

10 Patient 15 
(10-II:3) JU-003-001 Sporadic M 55 45 Reduced 

visual acuity −3.5 −3.5 0.22 −0.18 CORD AD c.268C>T, 
p.R90W

11 Patient 16 
(11-III:3)

KDU-004-
001 Sporadic F 25 15 Night 

blindness −3.5 −5.0 0.52 0.7 RP AD (de 
novo)

c.430delC, 
p.P145Lfs*42

12 Patient 17 
(12-IV:1) TU-001-001 Unknown M 51 45 Reduced 

visual acuity −2.5 −2.5 0 −0.08 CORD AD c.587delC, 
p.P197Afs*22

13 Patient 18 
(13-III:1)

TMC-004-
001 AD F 62 30 Reduced 

visual acuity −1.0 −1.0 0.82 0.82 CORD AD c.587delC, 
p.P197Afs*22

Table 1. Demographics and detected variants in 18 Japanese patients from 13 families with CRX-associated 
retinal disorder (CRX-RD). AD = autosomal dominant; AR = autosomal recessive; CORD = cone-rod 
dystrophy; F = female; CF = counting finger; LCA = Leber congenital amaurosis; LE = left eye; LogMAR 
BCVA = best-corrected Snellen visual acuity converted to the logarithm of the minimum angle of resolution 
visual acuity; LP = light perception; M = male; MD = macular dystrophy; No.=number; NA = not available; 
RE = right eye; RP = retinitis pigmentosa. All affected and unaffected subjects are originally from Japan and 
any mixture with other ethnicity was not reported. Age was defined as the age when the latest examination 
was performed. The age of onset was defined as either the age at which visual loss was first noted by the patient 
or when an abnormal retinal finding was first detected. Phenotype subgroup was defined based on clinical 
manifestations such as onset of disease, natural course, lesioned part on retinal imaging, and pattern of 
retinal dysfunction: LCA (including early-onset RP), a severe retinal dystrophy with early onset (<10 years) 
and extinguished retinal function; RP (including rod-cone dystrophy), a progressive retinal dystrophy often 
initially presenting peripheral atrophy with generalized rod dysfunction greater than cone dysfunction; CORD, 
a progressive retinal dystrophy often initially presenting macular atrophy with generalized cone dysfunction 
greater than rod dysfunction; MD, a progressive retinal dystrophy presenting macular atrophy with confined 
macular dysfunction despite no abnormalities in generalized cone and rod function. Syndromic findings of 
central nervous system abnormalities (described as multiple sclerosis-like changes) were reported in Patient 8.
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subjects (8/18, 44.4%; Patients 1, 3, 4, 5, 6, 8, 15, 18). Outer retinal disruption in the peri-macula was observed in 
12 subjects (12/18, 66.7%; Patients 1–6, 8, 13–15, 17, 18), and slight outer retinal disruption in the peri-macula 
was found in four subjects (4/18, 22.2%; Patients 10–12,16). Intraretinal micro-cystic changes and marked intra-
retinal fluid were noted in the right and left eyes, respectively, of Patient 13 (1/18, 5.6%).

Marked preservation of the photoreceptor ellipsoid zone (EZ) at the fovea was identified in eight subjects 
(8/18, 44.4%; Patients 2, 5, 7, 10–14), and slightly preserved EZ at the fovea was seen in three subjects (3/18, 
16.7%; Patients 9, 16, 17). Preserved foveal structure surrounded by parafoveal atrophy (i.e., bull’s eye pattern) 
was observed in six subjects (6/18, 33.3%; Patient 1-left, 2-both, 10-both, 11-both, 12-both, 17-both).

Visual fields and electrophysiological findings. The detailed findings of visual fields and electrophysi-
ological findings are presented in Supplemental Table 2. Visual field testing was performed in 14 affected subjects 
(Patients 1, 3, 5, 7, 9–18). Central scotoma and paracentral scotoma were detected in eight subjects (8/14, 57.1%; 
Patients 1, 3, 5, 7, 9, 10, 15, 18). Paracentral scotoma without central scotoma was observed in five subjects (5/14, 
35.7%; Patients 11, 13, 14, 16, 17). Peripheral visual field defects were found in 5 patients (5/14, 35.7%; Patients 9, 
10, 13, 14, 16), two of whom also had central and paracentral scotoma (Patients 9, 10) and three had paracentral 
scotoma (Patients 13, 14, 16).

Full-field electroretinograms (ffERGs) were recorded in 16 affected subjects (Patients 1–3, 5–14, 16–18). 
Mildly decreased generalized light-adapted (LA) responses were demonstrated in six subjects (6/16, 37.5%; 
Patients 1, 3, 6, 7, 17, 18), five of whom had mildly decreased generalized dark-adapted (DA) responses (Patients 
1, 3, 6, 7, 17). Severely decreased generalized LA and DA responses were detected in four subjects (4/16, 25.0%; 
Patients 8, 13, 14, 16), and moderately decreased generalized DA responses were found in one subject with una-
vailable LA responses (1/16, 6.3%; Patient 2). In two subjects, both generalized DA and LA responses were within 
normal limits (2/16, 12.5%; Patients 11, 12). A lower b to a ratio in DA bright flash responses (less than 0.9) was 
identified in seven subjects (7/16, 43.8%; Patients 2, 5, 6, 10–12, 17).

Multifocal ERGs (mfERGs) were recorded in four subjects (Patients 1, 9, 13, 18). Reductions in central 
responses were observed in three subjects (Patients 9, 13, 18), and a gross reduction in stimulus fields was found 
in one subject (Patient 1).

Phenotype subgroups. Phenotype subgroup classification was performed in all 18 affected subjects. There 
were 13 subjects with CORD (13/18, 72.2%; Patients 1–10, 15, 17, 18), three with RP (3/18, 16.7%; Patients 13, 14, 

Figure 1. Pedigrees of 13 Japanese families with inherited retinal disorder harbouring CRX variants. The solid 
squares and circles (men and women, respectively) represent the affected subjects, and the white icons represent 
the unaffected family members. The slash symbol shows deceased individuals. The generation number is noted 
on the left. The proband is marked by an arrow, and the clinically investigated individuals are indicated by a 
cross.
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16), and two with MD (2/18, 11.1%; Patients 11, 12). Intrafamilial differences in phenotypic subgroups among 
the affected subjects were not observed in all five families with multiple affected subjects (Families 1, 2, 5, 6, 7).

The mean age of onset of the two subjects with MD, 13 subjects with CORD, and three subjects with RP 
was 46.5 (range, 31–62), 50.3 (range, 30–77), and 26.0 (range, 15–37), respectively. The mean VA in the right/
left eye of those with MD, CORD, and RP was 0.07/0.16 (range, −0.08–0.22/−0.08–0.4), 0.52/0.46 (range, 0.0–
2.00/−0.18–1.7), and 0.68/0.55 (range, 0.52–0.82/0.4-light perception) LogMAR units, respectively.

CRX variants. Variant data of 18 affected and 6 unaffected individuals from 13 families with CRX-RD are 
summarized in Supplemental Table 3. Seven heterozygous variants and one homozygous variant were identi-
fied by whole exome sequencing with target analysis of retinal disease-associated genes: c.118C > T, p.R40W; 
c.121C > T, p.R41W; c.127C > T, p.R43C; c.128G > A, p.R43H; c.268C > T, p.R90W; c.430delC, p.P145Lfs*42; 
c.587delC, p.P197Afs*22, and c.193G > C, p.D65H (NM_000554.5), respectively.

Five missense variants have been previously reported16,27–32,34,36. Three variants were reported in the het-
erozygous state: p.R40W for CORD, p.R41W for CORD, and p.R43C for CORD. One variant was previously 

Figure 2. Fundus photographs and fundus autofluorescence images from 18 patients with CRX-associated 
retinal disorder (CRX-RD). Fundus photographs and fundus autofluorescence (FAF) images demonstrate 
macular atrophy in nine subjects (Patients 1, 3–6, 8, 15, 17, 18) and slight atrophic changes at the macula in 
three subjects (Patients 7, 11, 12). Peripheral atrophy is observed in four subjects (Patients 5, 13, 14, 16; detected 
by fundoscopy in Patients 5 and 14). Atrophic changes affecting the entire retina, including the macula, mid-
periphery, and periphery are found in Patient 5. Macular atrophy is more evident on FAF images in eight 
subjects (Patients 1, 3, 8, 11, 12, 15, 17, 18). A ring of high density AF is observed in 11 subjects to various 
degrees (Patients 1, 2, 3, 7, 8, 11–13, 15, 17, 18). Foveal appearance is relatively preserved in nine subjects 
(Patients 1–3, 7, 10–12, 16, 17).

https://doi.org/10.1038/s41598-020-65737-z
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reported in homozygous and heterozygous states: p.R90W homozygous for LCA and heterozygous for CORD34,36. 
One variant was previously reported only in the homozygous state: p.D65H for RP29. Three variants have never 
been reported: p.R43H, p.P145Lfs*42, and p.P197Afs*22. Co-segregation analysis was performed for four var-
iants with the samples of unaffected family members; p.R41W (heterozygous), p.R43H (heterozygous), p.D65H 
(homozygous), and p.P145Lfs*42 (heterozygous, de novo). Four variants were recurrent in our cohort: p.R40W 
(heterozygous), p.R41W (heterozygous), p.D65H (homozygous), and p.P197Afs*22 (heterozygous).

Together with the clinical features of the affected subjects and the model of inheritance in the pedigree, eight 
disease-causing variants in the CRX gene were determined.

In silico molecular genetic analysis. The detailed results of in silico molecular genetic analyses for the 
eight detected CRX variants are presented in Supplemental Tables 4 and 5. Schematic genetic and protein struc-
tures of CRX are shown in Fig. 4, and multiple alignment of seven species of CRX is presented in Supplemental 
Fig. 1.

Five missense variants were located within exon 3 (p.R40W, p.R41W, p.R43C, p.R43H, p.D65H) and the 
other missense variant (p.R90W) was in exon 4. Both exons are associated with the homeodomain of the CRX 
protein (residues 39–99; Fig. 4). Perfect evolutionary conservation was confirmed in five missense variants 

Figure 3. Spectral-domain optical coherence tomographic images from 18 patients with CRX-RD. Spectral-
domain optical coherence tomographic images demonstrate outer retinal disruption at the macula in eight 
subjects (Patients 1, 3, 4–6, 8, 15, 18). Outer retinal disruption at the peri-macula is observed in 12 subjects 
(Patients 1–6, 8, 13–15, 17, 18). Intraretinal micro-cystic changes are noted in Patient 13. Epiretinal membrane 
is found in Patient 8. Marked preservation of the photoreceptor ellipsoid zone (EZ) line at the fovea is identified 
in eight subjects (Patients 2, 5, 7, 10–14), and slightly preserved EZ at the fovea isobserved in three subjects 
(Patients 9, 16, 17). Preserved foveal structure surrounded by parafoveal atrophy (i.e., bull’s eye pattern) is found 
in six subjects (Patients 1, 2, 10, 11, 12, 17).

https://doi.org/10.1038/s41598-020-65737-z
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(p.R41W, p.R43C, p.R43H, p.D65H, p.R90W; Supplemental Fig. 1). Two truncating variants (p.P145Lfs*42 and 
p.P197Afs*22) were located in the last exon (exon 4), and nonsense-mediated decay did not appear to occur.

Allele frequency available for the five CRX variants (p.R41W, p.R43C, p.R43H, p.D65H, and p.R90W) in the 
general population of East Asia/South Asia/Africa/Europe (non-Finnish) was 0.0058%/0.0%/0.0%/0.00090%, 
0.0%/0.0%/0.0%/0.0%, 0.0%/0.0%/0.0%/0.00090%, 0.0058%/0.0%/0.0%/0.0%, 0.0%/0.0%/0.0%/0.013%, respec-
tively. Two variants had considerably higher allele frequencies in the East Asian population compared to the other 
populations (p.R41W and p.D65H).

General prediction, functional prediction, and conservation were assessed for the six missense variants and 
two single nucleotide deletion variants leading to frame shift and pathogenicity classification according to the 
American College of Medical Genetics and Genomics (ACMG) guidelines was performed. One pathogenic mis-
sense (p.R90W) and five likely pathogenic missense variants (p.R40W, p.R41W, p.R43C, p.R43H, and p.D65H) 
and the two likely pathogenic truncating variants (p.P145Lfs*42 and p.P197Afs*22) were revealed.

Overall, eight disease-causing variants in the CRX gene were identified in 13 families with ADCORD, ADRP, 
ADMD, and ARRP.

Genotype-phenotype association. Genotype subgroup classification was performed in the proband 
of 13 families (Patients 1, 3, 5, 6, 7, 10, 11, 13–18). There were eight subjects in genotype subgroup A (hete-
rozygous missense), two in genotype subgroup B (homozygous missense), and three in genotype subgroup C 
(truncating variants). A distribution of the 13 families based on genotype subgroups and phenotype subgroups 
is shown in Table 2. There is a trend, but the number is not sufficient to statistically demonstrate a significant 
genotype-phenotype association.

Discussion
Detailed clinical and genetic characteristics of a Japanese cohort of 18 affected subjects from 13 families with 
CRX-RD are illustrated. Diverse clinical presentations with different inheritance patterns were identified in 
CRX-RD, including nine families with molecularly confirmed ADCORD, one family with ADMD, two families 
with ARRP, and one family with ADRP.

To our knowledge, these are data from the largest cohort of CRX-RD and includes the highest number of 
ADCORD cases to date, despite there being a well-characterized study of CRX-RD in 11 families from the 
UK32. Six out of 30 families (20.0%) diagnosed with CORD/MD/STGD and having a clear AD family history 
in the Japan Eye Genetics Consortium (JEGC) IRD cohort were associated with CRX-RD. The proportion of 
ADCRX-RD in molecularly confirmed ADCORD/MD/STGD in the JEGC cohort was considerably high (9/23 
families, 39.1%) in comparison with European cohorts (e.g., 15.6% in the UK cohort)7. On the other hand, there 
were no families with LCA in our cohort, while four out of 11 families (36.4%) with CRX-RD in the UK cohort 
manifested the severe LCA phenotype. There could be a bias in the enrolment of IRD patients, although ethnic 
variation can also occur in CRX-RD.

The median age of onset for CRX-RD was in the fifth decade in our cohort, although it varied from teenage 
years to the 8th decade, which is considerably later than that of other CORD/MD/STGD patients (e.g., 19.0 years 
for ABCA4-associated retinal disorder)37. In addition, over half of patients with late-onset disease (>45 years) 
have preserved favourable VA, and two maintained VA even after 10 years of disease history (Patients 13 and 15). 
Fundus and FAF showed variable findings; however, the severity of macular atrophy was generally associated with 
the severity of VA decline, and a characteristic ring of increased AF signal was observed in most subjects (>70%). 
Two-thirds of the subjects demonstrated preserved foveal structure often surrounded by parafoveal atrophy (i.e., 

Figure 4. Schematic genetic and protein structures of CRX and the location of the detected variants. The 
CRX gene (ENST00000221996.7) contains four exons that encode a 299 amino acid protein containing a 
homeodomain, WSP motif, and OTX tail (Hull et al. 2014). Eight variants detected in this study are presented. 
Three novel variants are shown in Italics: p.R43H, p.P145Lfs*42, and p.P197Afs*22.

https://doi.org/10.1038/s41598-020-65737-z


8Scientific RepoRtS |         (2020) 10:9531  | https://doi.org/10.1038/s41598-020-65737-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

bull’s eye pattern) with favourable VA, suggesting that late onset and morphological maintenance are indica-
tors for preserved vision. These facts suggest that the severity and progression of visual impairment are mild in 
CRX-RD compared to that of CORD/MD/STGD caused by variants in other genes in the JEGC IRD cohort.

Electrophysiological findings of CRX-RD were also mildly affected in our cohort. Ten of 16 subjects (62.5%) 
had no or mild dysfunction both in generalized rod and cone systems, all of whom were classified into MD or 
CORD. In contrast, two subjects with CORD showed moderate retinal dysfunction, one subject with CORD 
and three subjects with RP had severe retinal dysfunction. Interestingly, a lower b to a ratio in DA bright flash 
responses was identified in approximately half of the subjects. Although an interaction with the phototransduc-
tion cascade was suggested in a previous study of CRX- and OTX2-transfected iris-derived cells38, the molecular 
mechanism to support this phenomenon is unknown. This electronegative finding was also observed in the early 
stage of other CORD/MD/STGD and was not specific for CRX-RD13,39–41; however, this characteristic feature can 
be helpful to consider CRX-RD in patients with early maculopathy.

Phenotype subgroups were associated with disease severity in our cohort. The subjects with MD had 
later-onset disease, maintained VA, and normal generalized retinal function. In general, the subjects with CORD 
had late-onset disease but VA decline, and the subjects with RP presented early-onset disease, VA decline, and 
severe generalized retinal dysfunction. Thus, determining phenotype subgroups with comprehensive clinical 
assessments provides crucial information directly related to disease severity and progression.

Eight pathogenic/likely pathogenic CRX variants were identified in our cohort, including three novel variants. 
One novel missense variant (p.R43H) located within the homeodomain of the CRX protein was found in two 
affected subjects with MD in a single family. A novel de novo truncating variant (p.P145Lfs*42) was revealed 
in a patient with early-onset RP. A novel recurrent truncating variant (p.P197Afs*22) was detected in two fami-
lies with CORD. Comprehensive high-throughput gene screening of both affected and unaffected members was 
effective in obtaining a genetic diagnosis of CRX-RD manifesting AD or AR inheritance, as well as identifying de 
novo variants.

Four recurrent CRX variants were identified in our cohort, and two of these with available allele frequency in 
the general population revealed considerably high frequency in East Asia (p.R41W and p.D65H). Several cases 
with ADCORD caused by the former variant (p.R41W) have been reported in East Asian16,28,35, and the pheno-
type was the same as that observed in our two families (Families 4 and 5). Jin et al. reported only one Japanese RP 
case homozygous for the latter variant (p.D65H), and the phenotype was the same as that observed in our two 
families (Families 8 and 9)29. Given these facts, these two CRX variants with higher frequency are major causes of 
CRX-RD in the East Asian population, leading to CORD and RP, respectively.

The patients with heterozygous missense variants located within the homeodomain frequently associated with 
CORD (7/8 families; 87.5%) are consistent with previous studies34. A postulated dominant-negative effect can be 
considered for these heterozygous missense variants within the homeodomain, as reported for p.K88N42. Two 
families with homozygous missense variants (p.D65H) showed a severe phenotype, and the molecular mecha-
nism is uncertain, unlike the well-studied homozygous missense variants (p.R90W), in which the mutant home-
odomain showed a significantly reduced ability to transactivate the rhodopsin promoter and lower synergistic 
activation with the transcription factor NRL36. Three families with heterozygous truncating variants showed 
CORD (2/3, 66%) or RP (1/3, 33%). Notably, nonsense-mediated decay could possibly modify the phenotype in 
such variants43.

There are limitations in this study. The selection bias related to the disease severity should be inherent, 
since it is unusual for genetically affected subjects with good vision to visit clinics/hospitals. In addition, this 
cross-sectional retrospective case series study does not include longitudinal information; thus, natural history 
studies in a larger cohort could provide more accurate information regarding the disease progression of CRX-RD. 
The molecular mechanisms of AD missense, AR missense, and AD truncating variants have not yet been clarified 
in CRX-RD, and further functional investigation for each variant is required to conclude disease causation. The 
samples of affected and unaffected subjects of families with CRX-RD are still small to conclude the molecularly 
confirmed inheritance and genotype-phenotype associations/correlations in such a diverse disorder; thus, larger 
cohort studies are required for further analyses.

In conclusion, this large nationwide cohort study delineates the clinical and genetic characteristics of CRX-RD 
in Japan. A high proportion of ADCRX-RD was determined in Japan, which manifests late-onset ADCORD. 
The frequently found missense variants located within the homeodomain of the CRX protein can explain the 
mild phenotype of CRX-RD. In contrast, a relatively severe RP phenotype was associated with homozygous CRX 

Genotype subgroup 
A (heterozygous 
missense)

Genotype subgroup 
B (homozygous 
missense)

Genotype subgroup 
C (heterozygous 
truncating) Total

Phenotype subgroup A (MD) 1 0 0 1

Phenotype subgroup B (CORD) 7 0 2 9

Phenotype subgroup C (RP) 0 2 1 3

Total 8 2 3 13

Table 2. Associations between genotype subgroups and phenotype subgroups in 13 families with CRX-RD. 
Genotypic subgroup classification was performed based on the heterozygous/homozygous status of missense 
variants and presence of null variants (stop, frame shift, and splice site alteration): Genotype A–subjects with 
heterozygous missense variants; Genotype B–subjects with homozygous missense; and Genotype C–subjects 
with heterozygous truncating variants.
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missense variants in a small number of patients. This information will help to monitor and counsel patients, as 
well as design future therapeutic trials.

Methods
The protocol of this study adhered to the tenets of the Declaration of Helsinki, which was approved by the ethics 
committee of the participating institutions from Japan: National Institute of Sensory Organs, National Hospital 
Organization Tokyo Medical Center (Reference; R18-029). Informed consent was received from all participants 
for the tests after an explanation of the procedures, and permission was obtained to use their medical data for 
research.

Participants. Participants with a clinical diagnosis of IRD and available genetic data were studied between 
2008 and 2018 as a part of the Japan Eye Genetics Consortium Studies (JEGC studies; http://www.jegc.org/)44. A 
total of 1294 subjects from 730 families registered to the JEGC cohort were surveyed, including 30 families with 
ADCORD/MD/STGD (defined as families with clear autosomal dominant family history).

Clinical investigations. Medical history was obtained for all affected subjects and unaffected family mem-
bers (where available). The onset of disease was defined as the age when any visual symptom was first noted by 
patients or parents or when the subject was first diagnosed.

Comprehensive ophthalmological examinations were performed in all affected subjects and unaffected family 
members (where available), including measurements of decimal VA converted to LogMAR units, ophthalmos-
copy, fundus photography, FAF imaging, SD-OCT, kinetic and static visual field testing, and electrophysiological 
assessments according to the international standards of the International Society for Clinical Electrophysiology 
of Vision (ISCEV)45–48.

Phenotype subgroups. For the purpose of this study, phenotype subgroups were defined based on clinical 
manifestations such as onset of disease, natural course, lesioned part on retinal imaging, and pattern of retinal 
dysfunction, partially according to a previous report34: LCA (including early-onset RP), a severe retinal dystrophy 
with early onset (<10 years) and extinguished retinal function; RP (including rod-cone dystrophy), a progressive 
retinal dystrophy often initially presenting peripheral atrophy with generalized rod dysfunction greater than cone 
dysfunction; CORD, a progressive retinal dystrophy often initially presenting macular atrophy with generalized 
cone dysfunction greater than rod dysfunction; MD, a progressive retinal dystrophy presenting macular atrophy 
with confined macular dysfunction despite no abnormalities in generalized cone and rod function.

Genetic screening of the CRX gene. Genomic DNA was extracted from affected subjects and unaffected 
family members (where available for co-segregation analysis). Whole exome sequencing with target sequence 
analysis of 301 retinal disease-associated genes (based on RetNET; https://sph.uth.edu/retnet/home.htm; 
accessed on 1 July 2017) was performed according to a previously published method and through the Phenopolis 
platform (www.phenopolis.org)44,49. The identified variants were filtered on their allele frequency (less than 1%) 
in the Human Genetic Variation Database (HGVD; http://www.genome.med.kyoto-u.ac.jp/SnpDB/about.htm; 
accessed on 1 July 2017), which provides allele frequency of the general Japanese population. Depth and coverage 
for the target areas were examined with the integrative Genomics Viewer (http://www.broadinstitute.org/igv/) to 
detect structural variants.

Disease-causing variants were determined from the called/detected variants in the 301 retinal 
disease-associated genes, in consideration of the clinical findings of the affected subjects, the model of inheritance 
in the pedigree, and the results of co-segregation analysis.

In silico molecular genetic analysis. The allele frequency of all detected CRX variants in the HGVD, 
Integrative Japanese Genome Variation (iJGVD 2k; https://ijgvd.megabank.tohoku.ac.jp/; accessed on 1 
August 2018), 1000 genome (http://www.internationalgenome.org/; accessed on 1 August 2018), and the 
genome Aggregation Database (gnomAD) (http://gnomad.broadinstitute.org/; accessed on 1 August 2018)was 
established.

All detected CRX variants were analysed with prediction programs: MutationTaster (http://www.mutation-
taster.org/; accessed on 1 August 2018), FATHMM (http://fathmm.biocompute.org.uk/9; accessed on 1 August 
2018), SIFT (https://www.sift.co.uk/; accessed on 1 August 2018), PROVEAN (http://provean.jcvi.org/index.php; 
accessed on 1 August 2018), and Polyphen 2 (http://genetics.bwh.harvard.edu/pph2/; accessed on 1 August 2018). 
Evolutionary conservation scores were calculated for all detected CRX variants via the UCSC database (https://
genome.ucsc.edu/index.html; accessed on 1 August 2018). Pathogenicity classification of all detected variants was 
performed based on the guidelines of the ACMG50.

Genotype subgroups. Genotypic subgroup classification was performed based on the heterozygous/
homozygous state of missense variants and presence of truncating variants: Genotype A–subjects with heterozy-
gous missense variants; Genotype B–subjects with homozygous missense variants; and Genotype C–subjects with 
heterozygous truncating variants.
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