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Large-scale electronic health records (EHRs) present an opportunity to quickly
identify suitable individuals in order to directly invite them to participate in an
observational study. EHRs can contain data from millions of individuals, raising
the question of how to optimally select a cohort of size n from a larger pool of size
N. In this article, we propose a simple selective recruitment protocol that selects
a cohort in which covariates of interest tend to have a uniform distribution.
We show that selectively recruited cohorts potentially offer greater statistical
power and more accurate parameter estimates than randomly selected cohorts.
Our protocol can be applied to studies with multiple categorical and continuous
covariates. We apply our protocol to a numerically simulated prospective obser-
vational study using an EHR database of stable acute coronary disease patients
from 82 089 individuals in the U.K. Selective recruitment designs require a
smaller sample size, leading to more efficient and cost-effective studies.
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1 INTRODUCTION

Large-scale electronic health records present the possibility of conducting prospective observational studies by directly
identifying individuals that meet pre-specified criteria.1,2 EHRs typically contain clinical covariates and phenotypes that
can be linked to laboratory tests, primary and secondary care records, as well as molecular data. In a conventional obser-
vational study, investigators typically wait for potential recruits to arrive at designated study centers—a process that can
take years to complete, if at all.3 EHRs may potentially contain millions of patients and in many cases there will be an
abundance of eligible patients for a particular study. EHRs offer the obvious advantages of faster recruitment and reduced
costs but they also raise the interesting question of how to optimally select a cohort of n individuals from a pool of size N
where n ≪ N.

The aim of an observational study is to establish a statistical relationship between covariates and clinical outcomes
of interest. We assume that the covariates of interest are available in the EHR database, but that the outcomes are not,
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either because they are not routinely recorded or because more detailed or rigorous measurements are required. EHRs
present an opportunity to select patients on the basis of their covariates in order to invite them to participate in the
study. The simplest selection strategy is to randomly select n individuals from the pool. As we shall see this generally
would not provide the greatest statistical power. An alternative strategy is to preferentially select a more “informative”
cohort, where informativeness is defined in terms of covariate values. In this article, we propose a simple strategy that
attempts to form a cohort in which each covariate has a uniform distribution (or approximately uniform in the case of
a continuous covariate, as described below). Each member of the pool is assigned a recruitment probability. Individuals
that will contribute to a uniform cohort distribution are deemed more informative, and consequently will have a higher
probability of recruitment. Note that the purpose of our protocol is not to retain representativeness of the pool but rather
to create a more informative cohort.

To gain some intuition for this idea, consider several patients with identical covariate values compared to several
patients with slightly different covariate values. Although both groups are informative, the latter patients are inherently
more informative because they tell us how the outcome depends on different values of the covariates. Our selective recruit-
ment strategy means we are less likely to make repeated observations of similar individuals, and more likely to explore
the covariate space efficiently. Statistical inference is based on observed regularities between covariates and outcomes. It
is, therefore, advantageous to acquire observations evenly throughout the covariate space rather than a concentration of
data points within a restricted region of the space.

As a further example, consider a pool population with a single binary covariate coded as +1 and −1. Selecting a cohort
with an equal number of+1 and−1 observations will maximize statistical power. From a statistical perspective, there is no
a priori justification for selecting more of one covariate value than the other, even if the covariate is unequally distributed
in the population. The desire for an a priori uniform covariate distribution in our cohort reflects Keynes' principle of
indifference4 which states that “equal probabilities must be assigned to each of several arguments if there is an absence
of positive ground for assigning unequal ones.”

The ability to be selective about which patients to invite onto a study is only possible with the emergence of large-scale
EHRs. While the clinical utility of EHRs is increasingly recognized,5-8 the underlying infrastructure is still developing
and the use of EHRs for research purposes is fraught with issues such as missing and incomplete data, data quality,
accuracy, confidentiality, interoperability, security, and patient consent. These problems have been discussed in depth in
the literature,5,6,8,9 and we will restrict our focus to statistical issues relating to the use of EHRs as a recruitment aid. An
example of EHR based recruitment is the European Electronic Health Record systems for Clinical Research (EHR4CR)
platform.10

The remainder of this article is organized as follows. In Section 2, we review previous work on controlling the distribu-
tion of covariates in a clinical study. We describe our selective recruitment protocol in Section 3. In Section 4, we perform
numerical simulations and study the operating characteristics of our protocol in comparison to randomized selection
strategies. In Section 5, as a proof of concept, we apply our protocol to a numerically simulated observational study based
on EHR data from 82 089 patients with stable acute coronary disease in the U.K. We discuss our findings in Section 6 and
present our conclusions in Section 7.

2 BACKGROUND

The central idea behind our proposed method is to select samples on the basis of their covariate values instead of
random selection. The concept of controlling the covariate distribution within a study cohort has previously been
implemented in a variety of contexts. These techniques share a common theme: creating a favorable distribution of
covariates in order to increase statistical power and reduce the risk of bias. The most straightforward approach is strat-
ified sampling in which the population is divided into distinct strata, out of which individuals are randomly sampled.11

This ensures distinct subpopulations are equally represented. Matching is a technique that can be applied retrospec-
tively to observational datasets containing an exposure (or treatment) group and a control group.12 A subset of the
data is selected as a control group such that the distribution of covariates within the exposure and control group is
as similar as possible. Both groups are, therefore, more comparable and estimates of group differences are less prone
to bias.

When the exposure and control groups do not match perfectly, a parametric model can be used to account for differ-
ences in covariates.13 When there are a large number of covariates, it becomes difficult to form a matching cohort and
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instead propensity score matching can be used.14 Matching methods can be viewed as a means to reduce model depen-
dent bias.15 This is because the parametric model used to adjust for covariate imbalances may be misspecified in practice
and with matched groups, the dependence on model assumptions is diminished. All matching methods are prone to bias
when unmeasured covariates are associated with the outcome of interest and it is frequently assumed that all relevant
covariates are measured (although this is impossible to verify in reality).

In two-phase sampling (or double sampling), auxiliary variables are measured in a sample drawn randomly from
the population. It is assumed that the auxiliary variables are relatively inexpensive to measure. The primary variable
of interest, assumed to be comparatively expensive, is subsequently measured in a subset of the initial sample. In ratio
estimation, a two-phase strategy can be used to estimate the mean of a certain quantity in the population and subsampling
fractions can be chosen to minimize the variance of the estimators.16 When two-phase sampling is used for stratification,
the initial sample is divided into strata followed by stratified random sampling. In the context of this article, the EHR
would represent the initial sample and the auxiliary variables would correspond to the covariates. The outcome of interest
would subsequently be measured on a smaller cohort selected from the EHR pool. Applied to a categorical covariate, our
proposed selective recruitment protocol is equivalent to two-phase stratified sampling, but we additionally consider an
arbitrary combination of categorical and continuous covariates.

Covariate balancing methods have also been used in the theory of experimental design. Stratified blocking designs
randomize treatment and controls within predefined strata,17 thus ensuring both treatment and control groups are similar
in terms of the stratified covariates. Covariate-adaptive clinical trials allocate patients onto treatment arms in a manner
that tries to minimize the covariate imbalance between arms.18-20 Another field that uses covariate information to select
samples is active machine learning. The aim is to actively seek data points that are anticipated to be informative. There
are various ways to define informativeness.21 For example, individuals that are expected to reduce the posterior entropy
or reduce future prediction errors are deemed more informative. Several of these concepts were previously applied to
selective recruitment trial designs.22

All of the above methods share the common theme of selecting samples on the basis of their covariate values, either
for allocation into different treatment groups (in the context of a trial) or inclusion in a study (in the case of matching
or active machine learning). Our proposed method shares this methodological theme of selecting samples according
to their covariate values. Our aim is to select samples with “informative” covariate values from EHR databases for the
purpose of a subsequent observational study. The aim in such an observational study is to establish statistical associations
between covariates and outcomes of interest. For example, in our proof on concept in Section 5, we establish associations
between various clinical and epidemiological factors and time-to-death (all-cause mortality) using a Cox proportional
hazards model. Our overall objective is to infer the parameters of this model and our proposal is that by selecting a
cohort with uniform covariate distributions (or close to uniform), we can achieve greater statistical power. There are no
treatment/exposure and control groups, and so our aim is simply to achieve a cohort in which covariates are uniformly
distributed. This is in contrast to matching in which the covariate distribution of the control group is selected to be as
similar as possible to the treatment/exposure group. Note that the population of interest is defined by the EHR, and in
the case of our example corresponds to patients with stable coronary artery disease.

3 METHODS

We assume that each individual in the pool is characterized by a d-dimensional vector of covariates x, and denote the clin-
ical outcome of interest as y. We will consider both binary and time-to-event outcomes in this article. It is further assumed
that y is unavailable in the EHR system, either because it is not routinely measured or requires further measurements. In
this article, we will focus on selecting a cohort for a prospective observational study in which the goal is to establish the
statistical relationship between x and y.

Our goal is to select a subset of n individuals from within a larger pool of N individuals. The vector x consists of
either categorical or continuous covariates. We denote binary clinical outcomes by y ∈ {−1,+1}. Our strategy is to select
individuals such that the distribution of covariates across the cohort is as close to uniform as possible. Define r such that
r = 1 and r = 0 indicates whether an individual was recruited or not, and let xi = [xi1,… , xid] denote one realization of
the covariates (i.e. one individual) . Then our goal is to achieve

p(x = xi|r = 1) = p(x = xj|r = 1) for i, j = 1,… ,n. (1)
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Choosing a uniform distribution to reflect the absence of prior knowledge is similar in spirit to the use of uninformative
priors in Bayesian inference.23 One potential problem with uninformative priors is that they depend on how a covariate
is defined. A uniform distribution over height, for instance, will not correspond to a uniform distribution over body mass
index (which is based on the square of height). Some uninformative priors have been developed that are invariant to
re-parameterization of a covariate such as Jeffery's prior.24 For the purposes of this article, we will assume that covariates
have been appropriately defined in advance and use uniform distributions to reflect a lack of prior knowledge.

3.1 Selective recruitment with a single binary covariate

Suppose we have a single binary covariate x ∈ {−1,+1}. We can write

p(r = 1|x)p(x)
p(r = 1)

= p(x|r = 1). (2)

Uniformity in our recruited cohort requires p(x = +1|r = 1) = p(x = −1|r = 1) which implies

p(r = 1|x = +1)p(x = +1) = p(r = 1|x = −1)p(x = −1). (3)

This is solved by p(r = 1|x = +1) = p(x = −1) and p(r = 1|x = −1) = p(x = +1). If p is the proportion of individuals in
the pool with x = +1, we can therefore recruit individual i from the pool with probability

𝜌(xi) =
{

(1 − p)∕c if xi = +1
p∕c if xi = −1 for i = 1,… ,N (4)

where the normalization constant is c =
∑N

i=1 𝜌(xi). This normalized inverse weighted probability recruitment strategy
will ensure that on average the covariate is uniformly distributed within the cohort.

3.2 Selective recruitment with a single continuous covariate

In the case of a continuous covariate x ∈ R, we can write p(r = 1|x) = p(x|r = 1)p(r = 1)∕p(x). Uniformity in our cohort
requires p(x|r = 1) = q for a constant q which implies p(r = 1|x) ∝ q∕p(x). A covariate with infinite support means that
selecting a uniformly distributed cohort is not possible. As a pragmatic compromise, we attempt to form a uniform cohort
distribution between the 0.05 and 0.95 quantiles of the pool distribution (denoted by xl and xu, respectively). We first
generate an empirical density estimate p(x) of the pool distribution. A recruitment probability for an individual with
covariate xi is given by

𝜌(xi) =

{ 1
c

q
c′p(xi)

if xl ≤ xi ≤ xu
1
c

otherwise
for i = 1,… ,N (5)

where q = 1∕(xu − xl). The constants c, defined as above, and c′ = maxxl≤x≤xu q∕p(x) ensure the probabilities are appro-
priately normalized. Equation (4) is essentially a discretized version of Equation (5). An example of this can be seen in
Figure 1B.

3.3 Selective recruitment with multiple covariates

When we have d covariates, one option is to try and balance the marginal distribution of each covariate. This can be
achieved by

𝜌(xi) =
1
c

d∏
𝜇=1

𝜌𝜇(xi), (6)
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F I G U R E 1 In (A) is the pool distribution (N = 100 000) of a single covariate x (solid black line). The two vertical dotted lines
correspond to the 0.05 and 0.95 quantiles. The horizontal dashed line corresponds to the value of q (as defined in Equation (5)). In (B) is the
recruitment probability as a function of x. In (C) is the cohort distribution (n = 1000) after selective recruitment from the pool

(A) Pool distribution (B) Marginally balanced (C) Jointly balanced

F I G U R E 2 In (A) is the pool distribution of two binary covariates. In (B) is the cohort distribution after applying Equation (6) (and
assuming large N and n). In (C) is a cohort with a perfectly balanced joint distribution

where 𝜌𝜇(xi) is given by either Equation (4) or (5). An example of this protocol with two binary covariates is shown in
Figure 2B. An alternative strategy when all covariates are binary is to balance the joint distribution of covariates within
the cohort (as in Figure 2C). This can be achieved by simply stratifying the pool into four groups and randomly selecting
the requisite number of individuals from each group. However, when the pool size is relatively small in comparison to the
number of covariates, this generally would not be possible. For example, recruitment of a cohort of size n = 100 according
to Figure 2C would require 25 individuals in each stratum in the pool, which may not be possible. In these instances,
the marginally balanced method may be used instead. Equation (6) is used to compute a recruitment probability for
each individual in the pool. A cohort of size n is then obtained by using the recruitment probabilities to sample, without
replacement, n individuals from the pool. Note that the marginally balanced method will not achieve perfectly uniform
marginal distributions.

4 RESULTS FROM NUMERICAL SIMULATION STUDIES

In order to assess the performance of these different selection protocols, we performed several numerical simulations. We
evaluated the statistical power, mean square error, and type I error rates under various conditions.

4.1 Binary covariates

A pool of N = 10 000 individuals with two binary covariates was generated from the distribution shown in Figure 2A.
We recruited n individuals from the pool according to three different protocols, marginally balanced (Figure 2B), jointly
balanced (Figure 2C), and random selection. Binary outcomes y = ±1 were generated according to a logistic regression
model p(y = +1|x) = 1∕(1 + exp(−w0 − w ⋅ x)) with parameters set to w0 = −1∕6 and w = (1∕3,+1∕3). For each cohort
of size n, a logistic regression model was fitted and statistical power was calculated as the proportion of inferred parame-
ters that were statistically significant at 𝛼 = 0.05. Statistical power and the mean square error between true and inferred
parameter values as a function of cohort size n are plotted in Figure 3. Selective recruitment offers a clear advantage with
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F I G U R E 3 Statistical power and mean square error as a function of cohort size in the case of two binary covariates [Color figure can be
viewed at wileyonlinelibrary.com]
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F I G U R E 4 Statistical power and mean square error as a function of cohort size for the case of one continuous covariate [Color figure
can be viewed at wileyonlinelibrary.com]

little difference between the jointly and marginally balanced protocols. We also found that the Type I error rates in cohorts
formed using the different protocols were all well controlled at the expected 5% error rate (Supplementary Figure 1). The
existence of unmeasured covariate introduces a bias to the parameter estimates but this bias is independent of the cohort
distribution (Supplementary Figure 2).

4.2 Continuous covariate

A pool of N = 10 000 individuals was generated with a single normally distributed covariate x with zero mean and standard
deviation 0.608 (such that the 0.05 and 0.95 quantiles are equal to −1 and +1 for convenience). Cohorts were selected
according to Equation (5) and compared to a randomized recruitment design. A logistic regression model with parameters
w0 = −1∕2 and w = −1∕4 was used to generate outcomes. The statistical power and mean square error between true and
inferred parameters, obtained after fitting logistic regression models to each simulated cohort, are plotted in Figure 4.
We find that the selective recruitment protocol offers a clear gain in in statistical power. For example, to achieve a power
of 90%, approximately 275 individuals would need to be recruited using a selective recruitment design in comparison to
approximately 500 individuals in a randomized design.

5 RESULTS FROM APPLICATION TO A CARDIOVASCULAR EHR
DATABASE

In order to demonstrate how a selective-recruitment protocol can be used in practice, we simulated a prospective obser-
vational study using an EHR database of 82 089 anonymized patients with stable coronary artery disease from the
CALIBER resource25-28 (described below). The data consist of 30 biomarkers and risk factors and the primary out-
come was time-to-death (all-cause mortality). Our aim was to select a cohort of n = 1000 individuals and study the

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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associations between the 30 covariates and time-to-death. We compared the operating characteristics of randomly and
selectively recruited cohorts.

For the purposes of our proof-of-concept simulation, both covariates and the outcome of interest are already available.
In practice, however, a prospective observational study would be required in situations where the desired outcome was
unavailable or situations where a study with more rigorous and detailed measurements were required. In these situations,
EHR resources could potentially be used for the recruitment of individuals onto a study in which the clinical outcome
of interest would subsequently be measured. The type of study we are simulating is similar to the Cardiovascular Health
Study which was a prospective observational study aiming to establish cardiovascular risk factors associated with 5-year
mortality in a population of 5201 adults in the United States.29 We propose that instead of slowly accruing 5201 individuals
at designated study centers, a cohort instead could be formed using EHRs, should they be available. The results above
show that a smaller (but more informative) cohort could potentially offer the same level of power as a randomly recruited
cohort.

5.1 Data sources

CALIBER was established to provide access to longitudinal data of linked EHRs through the creation of a common data
model with reproducible phenotypes and metadata. Patients were linked across three clinical data sources: the Clini-
cal Practice Research Datalink (CPRD), Hospital Episodes Statistics (HES), and cause-specific mortality (from the Office
of National Statistics). CPRD provides information about anthropometric measurements, laboratory tests, clinical diag-
noses, prescriptions, and medical procedures, coded with the Read controlled clinical terminology30 (which are a subset
of SNOMED clinical terms). The primary care practices in CPRD and the subset of linked practices used in the present
analysis are representative of the UK primary care setting and have been validated for epidemiological research.31,32 HES
provides information about diagnoses (coded with the tenth revision of the International Classification of Diseases statis-
tical classification system) and interventional procedures related to all elective and emergency hospital admissions across
all National Health Service hospitals in England.

The eligible patients were chosen from a cohort of a previous study on stable coronary artery disease prediction using
CALIBER data.33 All variables that were chosen as predictors in the previous study were used as covariates in our sim-
ulation. These included age, diabetes, smoking, systolic blood pressure, diastolic blood pressure, total cholesterol, HDL
cholesterol, serum creatinine, hemoglobin, total white blood cell count, CABG or PCI surgery within 6 months prior to
study entry, abdominal aortic aneurysm prior to study entry, index of multiple deprivation (IMD), hypertension diagnosis
or medication prior to study entry, use of long acting nitrates prior to study entry, diabetes diagnosis prior to study entry,
peripheral arterial disease prior to study entry, and history of depression, anxiety disorder, cancer, renal disease, chronic
obstructive pulmonary disease, atrial fibrillation, or stroke. We excluded the history of MI and liver disease because both
were highly correlated with other covariates in our dataset. A summary of the patient population used in this study is
shown in Table 1. Dichotomous covariates were coded as −1 or +1. Continuous covariates were linearly scaled such that
the 0.05 and 0.95 quantiles are equal to −1 and +1, respectively. IMD and smoking were collapsed into binary variables
in accordance with previous analysis of this dataset.33

Multiple imputation was implemented using multivariate imputation by chained equations in the R package mice.34

Imputation models were estimated separately for men and women using all 115 305 patients before exclusion criteria were
applied (MI or death before study eligibility). Since many of the continuous variables were non-normally distributed, we
log-transformed all continuous variables for imputation and exponentiated back to their original scale for analysis. Only
one multiply imputed dataset was generated since any imputation errors are not expected to have a significant effect on our
analyses in respect to the comparison of different designs. The distributions of observed and imputed values of all variables
followed similar distributions indicating the plausibility of the imputation. Full details of covariates, study population
definitions, and an overview and details of the imputation methods can be found in Section 2 of the Supplementary
material.

5.2 Simulation of a prospective observational study using the CALIBER dataset

The pool of available patients was split into 10 smaller pools each containing 8208 individuals. Splitting the pool into
10 smaller pools allows us to run 10 independent simulations and average the results. From each pool, a cohort of 1000
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Covariate
Full Caliber dataset
(N = 82 089)

Example
cohort (n = 1000)

Age 68.1 (47.0-87.0) 73.6 (49.0-92.0)

Male 57.2% 52.2%

Female 42.8% 47.8%

Index of multiple deprivation 8.1% 15.0%

Non-specified coronary artery disease 1.9% 5.9%

Unstable angina 11.8% 19.7%

Non-ST-elevated MI 14.9% 24.5%

ST-elevated MI 13.9% 15.6%

Coronary artery bypass graft 2.0% 7.8%

Diabetes 15.4% 34.2%

Heart failure diagnosis 9.9% 35.1%

History of arterial fibrillation 11.6% 35.8%

History of anxiety 12.0% 24.9%

History of cancer 8.0% 21.3%

History of COPD 35.1% 50.9%

History of depression 19.1% 32.1%

History of kidney disease 6.6% 28.6%

History of stroke 5.4% 20.4%

Hypertension diagnosis 88.2% 90.1%

Use of long acting nitrates 26.9% 38.7%

Peripheral arterial disease 7.0% 21.7%

Percutaneous coronary intervention 4.5% 10.6%

Smoking 55.6% 55.9%

Systolic blood pressure (mmHg) 140.5 (110-178) 136.8 (101.5-179)

Diastolic blood pressure (mmHg) 79.4 (60-99.6) 75.6 (57.7-98.5)

Serum creatinine (mol/l) 99.1 (64.8-148.2) 111.2 (62.7-183)

Total cholesterol (mmol/l) 5.2 (3.2-7.8) 4.7 (2.8-7.5)

HDL cholesterol (mmol/l) 1.4 (0.8-2.1) 1.3 (0.7-2.1)

Total WBC count 109/l 7.4 (4.5-11.2) 7.9 (4.4-12.6)

Hemoglobin (g/dL) 13.7 (11.0-16.6) 12.9 (10.2-16.2)

Pulse (bpm) 73 (51.2-99.9) 75.4 (51.2-103.2)

Death 23.0% 47.5%

Censored 77.0% 52.5%

Note: Values are quoted to one significant figure and may not sum due to rounding. Continuous
values are summarized as mean (5th-95th percentile). Individuals with an index of multiple
deprivation (IMD) score > 1 were coded as +1, otherwise −1.
Abbreviations: COPD, chronic obstructive pulmonary disease; HDL, high density lipoprotein; MI,
myocardial infarction; WBC, white blood cell.

T A B L E 1 Summary of the full CALIBER
dataset and an example of a selectively recruited
cohort
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F I G U R E 5 The empirical density of systolic blood
pressure in a selectively recruited cohort of size 1000
compared to the pool of size 82 089 [Color figure can be
viewed at wileyonlinelibrary.com]
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patients was selected either at random or according to the selective recruitment protocol. At the end of each simulation,
we fitted a Cox proportional hazards model and recorded which covariates were found to be statistically significant at 𝛼 =
0.05. These results were compared to a Cox model fitted to the full dataset of 82 089 patients. We found in our simulations
that in the full dataset, 27 out of 30 covariates were found to be statistically significant. Of these 27, we found that, on
average, nine were statistically significant using the selective recruitment protocol compared to an average of 6.8 when
using a random protocol. An average of 0.4 and 0.2 of the three covariates which were not found to be significant in the
full dataset were found to be significant in the selectively and randomly recruited cohorts respectively. The mean square
difference between inferred model parameters in the selectively recruited cohorts and full dataset was 0.02 compared
with 0.21 for randomly selected cohorts.

An obvious limitation here is that the parameters based on the full dataset are only estimators and not the true param-
eter values (which are unknown). Nevertheless, given the large size of the dataset (N = 82 089) relative to the number
of covariates (d = 30), the estimated parameters will be reasonably accurate for the purposes of comparison to estimates
based on a small subset (n = 1000) of patients. The distribution of covariates within the selectively recruited cohorts was
closer to a uniform distribution than the randomly selected cohorts. For each dichotomous covariate, we computed the
ratio of the less frequent covariate value to the more frequent value. The median value of this ratio in the selectively
recruited cohorts was 0.32 compared with 0.13 in the randomly selected cohorts. In Figure 5, the empirical cohort density
of systolic blood pressure is plotted for one instance of a selectively recruited cohort and compared to the pool density.
The covariate has a broader distribution than the pool. Further figures are available in Supplementary Figure 3. The
characteristics of this selectively recruited cohort are compared with the full Caliber dataset in Table 1.

6 DISCUSSION

We have shown that preferential selection of a cohort with an informative distribution of covariates can lead to greater
statistical power for a given sample size. In this article, informativeness is defined in terms of a covariate distribution that
is as close to uniform as possible. We have shown that our selective recruitment protocol outperforms random selection in
terms of power, sample size, and mean square error between true and inferred parameters in numerical simulations. Fur-
thermore, we demonstrated the feasibility of our strategy by simulating realistic prospective observational studies using
the CALIBER resource, an EHR with 82 089 patients. A similar study has previously been conducted in the U.S. and our
results indicate that using EHR resources to selectively recruit patients would result in smaller sample size requirements.

Alternative measures of informativeness based on the posterior entropy and the expected decrease in prediction error
have previously been investigated,22,35 although such approaches are sensitive to the choice of statistical model. For
instance, previous research found that in a logistic regression model or a proportional hazards model individuals with
extreme covariate values are deemed most informative since effect sizes are implicitly assumed to be most pronounced in
these individuals. Note that misspecification of the statistical model will in general lead to biased inference results, and
this is a limitation of both selective recruitment and random recruitment strategies.

Researchers considering EHR based recruitment therefore have a number of recruitment strategies available. They
could choose a randomly selected cohort, or a cohort with a close to uniform distribution of covariates, or preferen-
tially recruit a cohort based on more sophisticated measures of informativeness such as those described above. Under
all of these strategies, parameter estimates in a statistical model will converge toward the same values, but with varying
degrees of statistical power. Preferential selection of informative cohorts has the potential to reduce the overall sample
size requirements leading to more cost-effective studies. On the other hand, a potential shortcoming is that a selectively
recruited cohort may not be representative of the pool. A cohort that deviates substantially from the pool population may

http://wileyonlinelibrary.com
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compromise the generalizability of the study, or limit the usefulness of the collected data for future research. The appro-
priateness of selective recruitment designs depends on striking an appropriate balance between the informativeness and
representativeness of the cohort. The degree to which the cohort distribution deviates from the population distribution
can be controlled in order to achieve an appropriate tradeoff between these competing considerations.

EHRs offer a potentially useful recruitment aid for clinical studies. A medical center could use a local database of
patients in order to identify patients with a particular condition for the purposes of a study. National level EHRs could
help to identify patients with rare conditions and help to form a cohort with a favorable composition. The techniques
considered here may also be applicable to the recruitment of patients for clinical trials. It was previously shown that in tri-
als with biomarkers it may be advantageous to select cohorts that have statistically desirable biomarker distributions.22,35

We have restricted our present analysis to observational studies but an extension to randomized trials will be considered
in future work. Another application of the protocol proposed here is to the cohort selection of a follow-up study to a
clinical trial. In such scenarios, a subset of patients are typically followed over a longer time period in order to acquire
further evidence and monitor for adverse side effects. Here too, selective recruitment methods may be useful for selecting
the maximally informative subset of individuals for the follow-up study. We anticipate that in the future the prospect of
leveraging EHRs to boost recruitment will become increasingly attractive.

7 CONCLUSION

EHRs present an opportunity to select a subset of individuals from a larger pool for the purposes of a clinical study. Rather
than randomly selecting a cohort, preferentially composing a cohort with an informative covariate distribution may offer
increased statistical power, lower mean square error, and smaller sample size requirements without compromising the
type I error rate.
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