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ABSTRACT 
Implantation accuracy of electrodes during stereotactic neurosurgery is necessary to 
ensure safety and efficacy. However, electrodes deflect from planned trajectories. 
Although mechanical models and data-driven approaches have been proposed for 
trajectory prediction, they lack to report uncertainty of the predictions. We propose to use 
Monte Carlo (MC) dropout on neural networks to quantify uncertainty of predicted 
electrode local displacement. We compute image features of 23 
stereoelectroencephalography cases (241 electrodes) and use them as inputs to a neural 
network to regress electrode local displacement. We use MC dropout with 200 stochastic 
passes to quantify uncertainty of predictions. To validate our approach, we define a 
baseline model without dropout and compare it to a stochastic model using 10-fold cross-
validation. Given a starting planned trajectory, we predicted electrode bending using 
inferred local displacement at the tip via simulation. We found MC dropout performed 
better than a non-stochastic baseline model and provided confidence intervals along the 
predicted trajectory of electrodes. We believe this approach facilitates better decision 
making for electrode bending prediction in surgical planning.  
 
Index Terms— stereotactic neurosurgery, epilepsy, trajectory prediction, neural network, 
uncertainty quantification 

 

1.  INTRODUCTION 
Stereotactic neurosurgery, such as stereoelectroencephalography (SEEG) and Deep Brain Stimulation (DBS), 
relies on optimal surgical planning to target specific regions of the brain. During SEEG, for instance, between 8 
and 14 electrodes are typically implanted on patients to identify the epileptogenic zone. Accurate placement is 
crucial for safety, diagnosis and treatment efficacy [1, 2, 3]. Neurosurgeons define planned trajectories by 
specifying entry and target points on pre-operative magnetic resonance (MR) T1-weighted (T1) images. Then, 
implantation accuracy is assessed on co-registered post-implantation computed tomography (CT) images [4]. 
However, electrodes may deflect from planned trajectories during insertion due to electrode design and tissue 
properties [5]. 

Previous approaches have proposed electrode trajectory prediction via mechanical modelling of tissue-needle 
interaction, whereby soft tissue and electrodes are discretised into finite elements that are numerically integrated 
[6, 7, 8]. More recently, prediction of electrode trajectories has been framed as a data-driven problem whereby 



2 

machine learning algorithms including random forests, neural networks and long short-term memory gates were 
used to regress 3 degree-of-freedom electrode bending computed as the difference between two material frames 
of electrodes modelled as elastic rods [5]. However, these methods do not provide a quantification of uncertainty 
for electrode bending prediction. Model simplifications and hand-crafted features may not be fully sufficient to 
take into account all the unknowns necessary to have an optimal model. Therefore, we believe that providing a 
metric of how reliable our output predictions are is essential for decision making. 

Uncertainty can be divided into two types: epistemic (model parameters variability) and aleatoric (noise 
inherent in the data) [9]. One way to quantify uncertainty is through Bayesian inference [9]. However, 
conventional Bayesian neural networks (NNs) are time consuming. Bayesian approximation using dropout layers 
has been proposed to overcome training limitations by doing Monte Carlo sampling at inference stage and 
applied to medical imaging tasks [10, 11, 12].  

 

 
Figure 1. Baseline (top) and MC dropout (bottom) 2D plots of mean (ground truth in red, prediction in green) 
and 95% confidence interval (light blue) of predicted local displacements: lux (left), luy (centre), luz (right). x-
axis is mm from target point and y-axis is local displacement of tip in mm. Plots correspond to the electrodes 
shown in Fig. 2 top 

In this paper, we present a quantification of epistemic uncertainty for the prediction of electrode bending. 
Compared to [5], we regress 3 degree-of-freedom local displacements instead of local bending since they are 
more clinically relevant. We focused on investigating epistemic uncertainty using the Monte Carlo (MC) 
dropout [13]. To the best our knowledge, we are the first to investigate NN uncertainty in the context of 
stereotactic electrode trajectory prediction. 

2.  MATERIAL AND METHODS 

2.1  Dataset 

Pre-operative T1 and diffusion-weighted MR images, as well as post-operative CT images of 23 refractory 
epilepsy SEEG cases with a total of 241 electrodes (8761 interpolation points) were acquired at the National 
Hospital of Neurology and Neurosurgery (London, UK) and co-registered. The position of the electrode contacts 
was computed via automated electrode segmentation [4]. We manually identified anterior/posterior 
commensurate and interhemispheric point to transform electrodes into AC-PC coordinate space [14]. We 
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interpolate electrodes at 1 mm intervals and modelled them as elastic rods with orthogonal material frames 
between points. In this work, we confirm that the y-component of material frames points upwards, x-component 
points left and z-component points towards the entry point along the trajectory. 

2.2  Feature Extraction 

Similar to [5], we compute features related to: electrode trajectory (direction of tip, direction of bolt, curvature, 
use of stylet, local bending and displacement from rigid trajectory), structure (MR intensity, distances and angles 
with respect to scalp, cortex, white matter, and deep grey matter, intra-cranial length), parcellation (regions along 
trajectory, number of regions traversed, length of segments) and tractography (fibre direction, apparent fibre 
density and angles with respect to trajectory). In contrast to previous work [5], we normalise continuous variables 
and replace categorical variables with one-hot encoding vectors including stylet (yes, no, none), types of region 
(cortex, white, deep), entry points by type of lobe (frontal, central, temporal, parietal, occipital), and target points 
by type of region (frontal, central, temporal, parietal, occipital, insula, cingulum). For each point along the 
electrode trajectory, displacement from a rigid trajectory is computed. Then, scalar projection onto the local 
material frames components is computed, i.e. 3 degrees-of-freedom local displacement (referred to as lux, luy, 
luz). 

2.3  Uncertainty Quantification 

MC dropout is a method to compute epistemic uncertainty and it is seen as a Bayesian approximation to a 
Gaussian Process [13]. Basically, for a given dataset X and annotations Y in a NN with weights W, MC dropout 
consists of finding a tractable parametrised distribution q*(W) which minimises the Kullback-Leibler divergence 
to the true model posterior p(W|X,Y) [9]. In practice, without any further change in the model during the training, 
dropout is used at the inference stage to approximate a probability distribution for the model weights. That is 
done by computing T random forward passes. The final prediction is computed by averaging the T outputs from 
the model and the standard deviation is used to compute the 95% confidence interval. In this work, we define a 
total of T=200 stochastic passes. 

  

Figure 2. Results of electrode bending prediction (views from the tip and the side) for the best (top) and worst 
(bottom) folds of Baseline (left) and MC Dropout (right) neural network (NN) models. Example of an electrode 
(test dataset) with entry point on left middle temporal gyrus, targeting left hippocampus. Ground truth trajectory 
(yellow), rigid trajectory in the direction of the bolt (white), initial trajectory used for inference (blue) and 
predicted trajectory (pink). NN (baseline) RMSE=0.31 mm and NN (MC dropout) RMSE=0.22 mm of 30 
interpolated points. 
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3.  EXPERIMENTAL DESIGN AND VALIDATION 

3.1  Model Validation 

In this work, we investigate uncertainty quantification from the model outputs rather than proposing a new NN 
architecture. We built as a baseline model a NN composed of: a parametric rectified linear unit (PReLU) 
activation [15], a hidden layer with a fully-connected layer followed by PReLU, and fully-connected layer to 
regress the local bending. PReLU activation is used as it adaptively learns the parameters of the rectifiers. From 
the baseline model we build a stochastic model by adding dropout layers, similar to [13], after the PReLU 
activations. Also, we empirically chose a dropout rate of 0.1 and one hidden layer with 1024 neurons through a 
random hyper parameter search on the training set. For all results reported, we performed 10-fold cross-
validation, where for each fold we split our data into 80% of the cases for training and 10% of the cases for 
validation for NN training stage, and 10% of the cases as a hold-out test set for the inference stage. 

The network was trained with an Adam optimizer to minimise the L2 loss function of the form 𝑙𝑜𝑠𝑠(𝑦, 𝑦') =
‖"#"$‖!!

%
 where y is the ground truth electrode local displacement and ŷ is the output inferred from the model. In 

the training stage, all the NNs were trained for 200 epochs, based on experimentally chosen convergence, with 
a weight decay of 1×10−6 and initial learning rate of 1×10−3, which was reduced by half for every 50 epochs. 

3.2  Electrode Trajectory Validation 

Trajectories were computed from local displacement predictions in which we computed an initial (planned) 
trajectory of 5 points (5 mm) from a rigid trajectory in the direction of the bolt. Our main loop consists of a) 
extending the tip of the electrode by one point (1 mm), b) model the electrode as an elastic rod, c) extract features 
from medical images, and d) predict and apply local displacement with respect to the material frame at the tip. 
Using cases in the test set, we generated trajectories for each electrode per each cross-validation fold. RMSE 
was computed between interpolated points of predicted and ground truth trajectories. 

4.  RESULTS AND DISCUSSION 
We observe that NN (MC dropout) improved both model and trajectory performance compared to the baseline 
(Table 1). Through this model we quantified model uncertainty and obtained confidence intervals along the 
predicted trajectory of electrodes. Optimal fitting is found for the lux and luy displacements (Figure 1) for NN 
(MC dropout) while NN (baseline) fits poorly the data. Although luz displacement does not suffer significant 
changes ( Figure 1, third column), we took it into account in our regression NN to provide stochasticity in the 3 
degrees of freedom. During trajectory validation, errors are accumulated per each interpolation point during 
prediction as electrodes are inserted. Therefore, its RMSE is higher when compared to model validation 
errors ( Table 1). 

Table 1.  10-fold validation for the model and trajectory predictions. Mean (standard deviation) in mm. 

 RMSE 
Method Model (10−3) Trajectory 

 NN (baseline) 6.53 (0.17) 1.09 (2.46) 
NN (MC dropout) 4.21 (0.11) 0.58 (0.72) 
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To demonstrate the performance NN (MC dropout) has on predicted trajectories,  Figure 2 shows inferred 
electrodes (in pink) closer to the ground truth (in yellow) compared to NN (baseline). In this example, we picked 
the folds that performed the best and the worst and selected an electrode that follows the direction of deflection 
optimally. However, we also noticed that it is not always the case and this might be caused by the features used 
or the amount of training data. Hence, further investigation needs to be carried out. 

We only focus on epistemic uncertainty that can be explained by having large training datasets [9] whilst 
ignoring aleatoric uncertainty which takes into account noise in the observations. In the context of electrode 
trajectory prediction, more data is necessary to cover all possible planned trajectories and modelling the noise of 
inputs such as using heterocedastic uncertainty  [9]. Hand-crafting features has an effect on model accuracy, i.e. 
they may not be enough to explain the electrode bending or they may be adding noise to NN regression. Possible 
solutions for this problem include an investigation of optimal input features and the use of end-to-end learning 
approaches. 

5.  CONCLUSIONS 
We present a method to quantify uncertainty of electrode bending prediction for SEEG stereotactic neurosurgery 
using MC dropout. This approach improves electrode prediction accuracy compared to a non-stochastic baseline 
method. Moreover, uncertainty of local bending prediction provides an estimate of confidence interval that can 
be used in decision making during surgical planning by taking into account possible deviation of trajectories 
electrodes are likely to have in order to increase the likelihood of reaching the target whilst avoiding critical 
structures. A limitation of this approach is that we only considered uncertainty of the model limited to the amount 
of data. However, aleatoric uncertainty needs to be taken into account because the implantation of electrode 
could be better modelled as a stochastic process. This would improve predictions of displacements that are not 
commonly seen in the training data. Future work will investigate the feasibility of using uncertainty 
quantification to guide electrode insertion as part of surgical planning of stereotactic neurosurgery. 
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