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Abstract

Shape description in medical imaging has become an increasingly important research field in re­

cent years. Fast and high-resolution image acquisition methods like Magnetic Resonance (MR) 

imaging produce very detailed cross-sectional images of the human body - shape description is 

then a post-processing operation which abstracts quantitative descriptions of anatomically rel­

evant object shapes. This task is usually performed by clinicians and other experts by first seg­

menting the shapes of interest, and then making volumetric and other quantitative measurements. 

High demand on expert time and inter- and intra-observer variability impose a clinical need of au­

tomating this process. Furthermore, recent studies in clinical neurology on the correspondence 

between disease status and degree of shape deformations necessitate the use of more sophisti­

cated, higher-level shape description techniques.

In this work a new hierarchical tool for shape description has been developed, combining two 

recently developed and powerful techniques in image processing: differential invariants in scale- 

space, and active contour models. This tool enables quantitative and qualitative shape studies at 

multiple levels of image detail, exploring the extra image scale degree of freedom. Using scale- 

space continuity, the global object shape can be detected at a coarse level of image detail, and 

finer shape characteristics can be found at higher levels of detail or lower scales. New methods for 

active shape evolution and focusing have been developed for the extraction of shapes at a large set 

of scales using an active contour model whose energy function is regularized with respect to scale 

and geometric differential image invariants. The resulting set of shapes is formulated as a multi­

scale shape stack which is analysed and described for each scale level with a large set of shape 

descriptors to obtain and analyse shape changes across scales. This shape stack leads naturally to 

several questions in regard to variable sampling and appropriate levels of detail to investigate an 

image. The relationship between active contour sampling precision and scale-space is addressed.

After a thorough review of modem shape description, multi-scale image processing and active 

contour model techniques, the novel framework for multi-scale active shape description is pre­

sented and tested on synthetic images and medical images. An interesting result is the recovery of 

the fractal dimension of a known fractal boundary using this framework. Medical applications ad­

dressed are grey-matter deformations occurring for patients with epilepsy, spinal cord atrophy for
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patients with Multiple Sclerosis, and cortical impairment for neonates. Extensions to non-linear 

scale-spaces, comparisons to binary curve and curvature evolution schemes as well as other hi­

erarchical shape descriptors are discussed.
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Chapter 1

Introduction

-  V o i c i  m o n  s e c r e t . I l  e s t  t r è s  s i m p l e ; o n  n e  v o i t  b i e n  q u ’a v e c  l e  c o e u r . 

L ’ e s s e n t i e l  e s t  i n v i s i b l e  p o u r  l e s  y e u x .

’’H e r e  i s  m y  s e c r e t . I t  i s  o n l y  w i t h  t h e  h e a r t  t h a t  o n e  c a n  s e e  r i g h t l y ; w h a t

IS ESSENTIAL IS INVISIBLE TO THE E Y E .”

Le Petit Prince, Antoine de Saint-Exupéry.

In recent years, a large diversity of very detailed in-vivo medical imaging modalities have been 

developed, allowing for the acquisition of high-resolution cross-sectional images of the human 

body. The obtained images can be viewed by clinicians in order to analyse them for certain com­

plex relationships such as structural abnormalities and deformations, and distinguishing between 

normals and abnormals.

For example. Computer Tomography (CT) is based on ionizing X-rays, projecting the X-ray ab­

sorption coefficients of 3D bodies or structures in a slice-by-slice fashion onto 2D planes. Spiral 

CT as a true 3D acquisition is performed by collecting spirally obtained raw data, followed by 

interpolating planar projection data sets from the resulting volume. The resulting image inten­

sities, which are normalized with respect to the water absorption coefficient and are measured 

in Hounsfield units, are the result of so-called hard beams, and are therefore especially useful for 

the investigation of bone structure and fat tissue. For an adequate acquisition of soft tissues, how­

ever, invasive contrast agents are required which causes allergic reactions in some patients. The 

quality of the resulting images can be degraded by aliasing due to overlapping of frequencies in 

the Fourier reconstruction, ringing artefacts due to wrong calibration of the scanner coordinate 

system, and metal artefacts caused by the reflexion of metallic structures in the body, e.g. tooth 

fillings or protheses.

Magnetic Resonance Imaging (MRI) is a non-invasive, non-ionizing technique which allows for 

high-resolution, slice-by-slice or true 3D image acquisition based on the characteristics of tissues 

when placed into a strong magnetic field, and inducing an additional magnetic impulse. In par­

ticular, Magnetic Resonance Tomography (MRT) considers hydrogen proton densities, as well
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as longitudinal and transversal relaxation parameters depending on the protons’ neighbourhood. 

When exposed to a magnetic field, the protons, which have a spinning movement and an own 

magnetic moment characterized by a gyro-magnetic constant 7 , absorb electro-magnetic waves 

at a so-called Lamor frequency, and are also affected by chemical and physical conditions of their 

neighbourhood, e.g. by the number of protons or neutrons in the atomic nuclei. MRI is highly 

suitable for the high contrast visualization of different soft tissue types, but fails in structures with 

low water content such as bones. Other MRI modalities include MR Spectroscopy, where nuclei 

other than hydrogen such as carbon, sodium or phosphorus are investigated, MR Angiography 

for blood flow measurements, functional MRI for the quantification of the activation in blood 

oxygenation. Spatial Amplitude Magnetization Modulation (SPAMM) tagged MRI, MRI Fluid 

Attenuated Inversion Recovery (FLAIR), and, most recently, MR Elastography.

Finally, nuclear medicine acquisition methods like Single Photon Emission Computed Tomogra­

phy (SPECT), and Positron Emission Tomography (PET) are invasive functional imaging tech­

niques using radioactive isotopes in order to localize the distribution of physiological and patho­

logical processes rather than anatomic information. SPECT is based on the projection of emitted 

gamma rays, while PET is based on the annihilation reaction caused by the collision of emitted 

positrons with electrons, and resulting in the simultaneous emission of two gamma rays travel­

ling in opposite directions. These gamma rays are then detected as pairs in coincidence by spe­

cialized detectors which are arranged in a ring around the patient. For positron emission, atoms 

like fluorine (for perfusion studies), oxygen, nitrogen, and carbon are used. Both techniques al­

low for the temporal analysis of flow and other processes. They are often used in conjunction 

with MRI or CT in order to register the location of physiological or pathological processes to the 

corresponding anatomical location.

In clinical neurology, MRI has become an increasingly popular image acquisition method due to 

its superiority in visualizing soft tissues in the brain such as grey or white matter, providing a 

good anatomical reference frame for qualitative nuclear medicine imaging techniques, and com­

plementing CT in providing high contrast soft tissue information. In various neurological dis­

orders and diseases such as epilepsy and Multiple Sclerosis (MS), respectively, structural defor­

mations of certain parts of the brain tissues occur and even contribute to the disease. Finding a 

correspondence between the degree of deformation and the disease status, as well as monitoring 

shape changes over time, is therefore a mandatory task for patient diagnosis, as well as operative 

and drug treatment planning. A traditional way of detecting structural abnormalities is to seg­

ment the brain into its constituent parts, followed by characterizing the extracted shape in terms of 

volumetric measurements and other shape descriptors. Segmentation is usually performed man­

ually or interactively by analysing the images at a medical workstation. High demand on expert 

time, however, as well the need to eliminate variability of the results when obtained by two dif­
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ferent clinicians, or by one clinician at different times (so-called inter- and intra-observer vari­

ability), imposes the need to automatically post-process the extremely large volumetric data sets 

and image-derived shape information. Post-processing must be carefully designed and validated 

in order to provide the means for enhanced shape interpretation and decision-making processes 

based on both scientific and clinical information contained in the images.

This dissertation presents a novel and automatic multi-resolution tool for multi-scale active shape 

description in medical imaging. This tool enables quantitative and qualitative shape studies at 

multiple levels of image detail, exploring the scale or image resolution as an extra degree of free­

dom. This approach is motivated by the observation that using scale-space continuity, global ob­

ject shape characteristics become best visible at a coarse level of image detail or at higher scales, 

and finer shape properties can only be found at higher levels of detail or at lower scales.

1.1 Background

The proposed technique for multi-scale active shape description is based on three major topics 

in image processing: shape description, scale-space theory, and active contour models. These 

topics are unified in this dissertation in order to access and examine shape properties of varying 

specificity directly from the surrounding image context.

1.1.1 Shape Description

Traditionally, a shape is represented by its external characteristics in terms of its outline, an ap­

proach which is followed in this work. Shape description is then a post-processing technique 

which is applied to presegmented binary shapes of high detail.

Shape representation, underlying the description process, can be divided into local, global, and 

medial (combined local and global) methods. The main difference between local and global shape 

representation lies in the nature of the access of shape properties: Local representation allows to 

extract specific detail, but does not readily capture the overall shape outline. In contrast, global 

techniques integrate over more general shape properties, but do not allow to access specific, lo­

calized characteristics. Medial shape representation, though difficult to obtain, combines the pos­

itive aspects of local and global representation techniques by hierarchically structuring a shape 

into its subparts, giving rise to both global and local shape properties simultaneously.

Shape description can analogously be divided into local, global and medial analysis, with the ad­

ditional concept of shape comparison for relative shape investigation. Local descriptors mainly 

include differential properties of the shape outline, and are most commonly used when the focus 

is on analysing specific details such as local bending behaviour, smoothness, or degree of convo­

lution. Global descriptors are applied when the shape properties that carry over the entirety of the
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shape are to be examined. Examples are boundary length and area in two dimensions, and sur­

face area and volume in three dimensions, which form the basic shape measurements in medical 

imaging. Additionally, global and local relative distance measures indicate an overall or specific 

deviation or mismatch from another shape. Medial descriptors are useful if the focus is on detect­

ing symmetric shape properties, but can only be extracted from a medial shape representation, in 

which case also medial relative distance measurements can be derived.

Shape description in the classic sense suffers from two major disadvantages: It can only be ap­

plied on presegmented shapes and is therefore dependent on a prior segmentation technique. This 

also leads to the loss of image context. Second, when analysing a binary shape of high specificity, 

spurious local detail compromises the analysis, while more general shape characteristics cannot 

be easily extracted. This leads to the need for multi-scale rather than single-scale analysis which 

will be briefly introduced in the following.

1.1.2 Multi-Scale Image Processing

Multi-scale image processing and analysis, first introduced by Man* [Marr, 1982] as a concept 

in human vision, allows to observe and describe objects at varying levels of detail. The lower 

limit or finest detail is determined by the image resolution or inner scale which corresponds to 

the size of the image pixels, while the field of view poses the upper limit or outer scale. The irmer 

and outer scale together determine the total number o f degrees o f freedom of the measurement, 

which corresponds to the total number of image pixels [Koenderink, 1984]. Increasing the inner 

scale has a blurring effect, as finer scale details disappear. Continuously increasing the inner scale 

builds up a scale-space [Witkin, 1983]. After fixing the inner scale, all smaller image geometry 

is destroyed and cannot be restored, as there is no structure within a pixel. One can distinguish 

between two main types of scale-spaces: Linear scale-spaces are based on blurring with a Gaus­

sian kernel as a local neighbourhood operator, but often have the undesirable effect of “blurring 

across edges”. Nonlinear scale-spaces in contrast take higher order invariant differential proper­

ties of the image into account, leading to the preservation and even enhancement of edges while 

smoothing out spurious detail, but are often only well defined in two dimensions and are of con­

siderably higher computational cost. Either approach, however, provides a useful platform for 

hierarchical geometric image interpretation as well as robust segmentation.

Applications in multi-scale processing can be divided into contour-based methods and imaging 

techniques. The former construct a contour scale-space in order to obtain a qualitative sketch 

based on multi-scale contour properties, like the concepts of scale-space fingerprints [Witkin, 

1983] and curvature scale-space [Mokhtarian and Mackworth, 1986], and can also be used for 

contour recognition and indexing. The latter have their main use in image feature detection and 

multi-scale image segmentation, e.g. in terms of edge focusing [Bergholm, 1987], which is a
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robust technique to track a coarse shape estimate obtained at a high image scale down using de­

creasing levels of scale.

The main advantage of multi-scale over single scale techniques is their robustness towards noise 

and other artefacts, as well as their hierarchical nature of capturing shape characteristics of vary­

ing locality and detail. Classic multi-scale contour techniques are mathematically well defined, 

but require a ground truth shape which can be evolved for increasing levels of scale. This shape, 

if not analytically known, has to be obtained from a prior segmentation, which in turn is depen­

dent on the chosen image scale in the segmentation process. The reverse process offocusing a 

contour is not possible, as lower scale information is lost at higher scales, and different shapes 

eventually all evolve to a circular shape. In contrast, multi-scale image techniques allow to seg­

ment a shape in a coarse-to-fine fashion by pre-computing an image scale-space. However, cur­

rent image based scale-space approaches discard all but the lowest scale shape which is taken as 

the segmentation result.

1.1.3 Active Contour Models

Active contour models (also called snakes), were first presented by Kass, Witkin and Terzopou- 

los [Kass et a l, 1987b] for shape segmentation based on contour characteristics as well as the 

surrounding image context. The forces acting on the model are divided into internal smoothness 

constraints like elasticity and bending behaviour, and external image forces like salient image fea­

tures which actually define the shape outline. User constraint forces can be added in order to guide 

the segmentation process towards a desired solution. All forces are formulated within an energy 

functional which is minimized by deforming the contour in an optimization process. The energy 

function represents the best compromise of all terms, and can be adjusted to different types of 

imagery and shapes by using different weighting factors for the individual forces. The optimiza­

tion of active contour models is traditionally either based on a global or local technique. Global 

techniques guarantee reproducible and general solutions, but are of high computational cost, and 

might not lead to the desired solution if it does not correspond to the global minimum. Local 

techniques, in contrast, are much faster, but are often affected by local energy minima caused by 

noise and inadequate initialization. Using scale-space continuity in active contour models in or­

der to perform a global to local optimization with respect to decreasing levels of scale has been 

suggested in [Kass et a l, 1987b], but has not been widely followed in literature.

The classic active contour model suffers from several problems: Though defined as a continu­

ous contour, it is optimized discretely, leading to low robustness, numerical instability, as well as 

sensitivity towards noise and spurious image features. The formulation of the internal forces as 

smoothness constraints does not allow for the extraction of highly convoluted shapes (as encoun­

tered in clinical neurology, for example). Finally, active contour models are a pure segmentation
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tool which is usually applied at a single scale level only.

1.2 Contributions of this Dissertation

This dissertation makes several original contributions to the medical and general image process­

ing community:

Formulation of a multi-scale active contour model. The classic active contour model is anal­

ysed in order to find solutions for its deficiencies, namely its discrete representation, its 

inability to extract complex shapes, and its single-scale nature. A continuous spline repre­

sentation is formulated which has an inherent contour scale in terms of the spacing of the 

spline control points. Choosing a contour scale in correspondence to the underlying im­

age scale is motivated by the observation that the image scale-space is less dense at higher 

scales. Fewer control points are therefore necessary to capture the global shape outline 

at high image scales, while at lower scales finer shape detail can only be adequately lo­

cated if the contour scale is relatively low. Adjustment of the contour scale is performed 

in an adaptive sampling process based on discrete, interpolated or heuristic spline knot in­

sertion, which are compared to alternative uniform and adaptive curvature based sampling 

techniques. In order to allow for the extraction of shapes with high curvature parts, a cur­

vature matching process is developed which adjusts the model’s shape to the underlying 

image characteristics not only in terms of its boundary location, but also with respect to its 

local bending behaviour with respect to the isophote image curvature. Finally, in combina­

tion with scale continuity, a local optimization is found to be sufficient for adequate shape 

extraction, as the image scale defines the globality or locality of the solution. Three local 

techniques found in the literature are modified in order to accommodate for the multi-scale 

spline-based representation and the curvature matching process.

Formulation of a multi-scale description process. Classic multi-scale shape representation and 

analysis is generalized to a multi-scale shape stack is formed by a shape hierarchy in 

image scale-space. The shape stack is obtained using the multi-scale active contour model 

for implicit segmentation or shape regularization with respect to image scale, rather than 

for explicit segmentation. Shape regularization can be performed in two directions of the 

image scale-space, giving rise to two novel techniques:

Active shape evolution. This technique is similar to the construction of a classic contour 

scale-space, yet it takes the full image context defining the shape into account. Start­

ing from the ground truth as an initial active contour model, an image scale-space is 

computed, and the model is tracked through it for increasing levels of scale in afine- 

to-coarse manner.
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Active shape focusing. This technique is performed in analogy to edge focusing by start­

ing from a very coarse initial estimate (e.g. a circular or ellipse shaped model), and 

tracking this contour model through its surrounding image scale-space in a coarse- 

to-fine manner. In contrast to classic edge focusing, all intermediate implicit segmen­

tation results are retained and investigated. In contrast to classic curve evolution, the 

blurring process is “reversed”, yielding an approximation of the ground truth shape 

(which need not be known a priori) as a byproduct.

Dimensionalities of the multi-scale shape stack in terms of the imderlying scale-space di­

mensionality and the nature of the implicit extraction process are formulated. Multi-scale 

active shape description then comprises the construction and analysis of a multi-scale shape 

stack obtained by either method. Analysis is performed by investigating classic local, 

global, and relative shape metrics across scale. Each layer or scale level of the multi-scale 

shape stack is individually quantified, and shape changes between the layers are investi­

gated by computing mean and slope measurements for increasing or decreasing scale lev­

els. Qualitative inspection is performed by adequate visualization of the shape stack, and 

the mapping of local shape information.

Application to fractal and other synthetic images. The developed techniques for active shape 

evolution and focusing are tested on a set of synthetic silhouette images in order to demon­

strate their duality as well as their applicability to extract a variety of different shapes ad­

equately. A  new fractal measurement is derived from shape changes across scale, and is 

demonstrated to be correct on a true fractal structure.

Application to medical images. Three different applications in clinical neurology are addressed, 

namely contical dysgenesis for patients with epilepsy, spinal cord atrophy for patients with 

Multiple Sclerosis, and cortical impairment for neonates. A small but representative se­

lection of MRI data sets is tested using the newly developed technique of active shape fo ­

cusing in absence of a ground truth. Multi-scale shape characteristics and structural dif­

ferences, w/hich are otherwise not easily perceived, extracted or quantified, are recovered 

using multi-scale active shape description. No large-scale clinical evaluation is performed, 

but instead the applicability and functionality of the developed methodologies is demon­

strated.

1.3 Overview of Dissertation

This dissertation is structured in the following way:

Chapters 2-4 give a comprehensive overview and survey of classic and state-of-the-art techniques

in shape description, multi-scale image processing, and active contour models, respectively, in
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order to formulate the work in the context of existing work. Positive and negative aspects are 

highlighted, and their potential for adaptation and modification in this thesis is addressed in the 

individual summary sections. Parts of this survey have been published in [Schnabel, 1995].

Chapter 5 forms an inter-mezzo to the main part of this dissertation, by selecting the most im­

portant techniques from the survey part as the basis for multi-scale active shape description, 

and presenting an overview about the interaction of the chosen techniques. Chapter 6 intro­

duces the theoretical framework for the multi-scale active contour model, including representa­

tion, sampling, and optimization aspects in terms of illustrative examples and algorithms. Chap­

ter 7 presents the concept of the multi-scale shape stack and formulates the techniques of ac­

tive shape evolution and focusing. Multi-scale active shape description is introduced on the ba­

sis of multi-scale shape stacks of different dimensionalities, as well as on an adequate selec­

tion of classic shape metrics. An example for multi-scale active shape description is given in 

order to clarify the use of the presented techniques. Parts of this framework have been pub­

lished in [Schnabel and Arridge, 1995] (for active shape evolution in 2D images), [Schnabel 

and Arridge, 1996b] (for active shape focusing in 2D images), [Schnabel and Arridge, 1996c; 

Schnabel et a l, 1996] (for active shape focusing of 3D MRI), and [Schnabel and Arridge, 1996a] 

(for the construction and visualization of multi-scale shape stacks).

Chapter 8 demonstrates the applicability of the proposed techniques on a set of fractal and other 

synthetic examples. The duality of active shape evolution and focusing is shown, and a new frac­

tal measurement in terms of shape changes across scale is derived. Chapter 9 applies multi-scale 

active shape description on MRI data in clinical neurology. Parts of these chapters have been 

published in [Schnabel and Arridge, 1997a; Schnabel and Arridge, 1997b] (for the application to 

synthetic and fractal images), and [Schnabel and Arridge, 1997c; Schnabel and Arridge, 1997d] 

(for the application to MRI data).

Chapter 10 formulates future directions on the basis of limitations of the presented techniques, 

and concludes this dissertation. In particular, extensions to a 3D explicit or implicit models, the 

application to non-linear scale-spaces, and a tme multi-scale rather thanfine-to-coarse or coarse- 

to-fine approach are presented, comparisons to classic contour sketches are addressed and formu­

lated, and the main achievements and results are summarized. Appendix A contains colour plates 

for the qualitative visualization of the multi-scale shape stacks of chapters 7-9.

1.4 Definitions and Notations

This section briefly introduces some general definitions and notations used in the remainder of 

this dissertation. In particular, table 1.1 lists general symbols and operators. In general, subscripts 

are used to denote partial derivatives with respect to the subscript, or for enumeration, e.g from
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X Vector (bold)
X Matrix (bold)
I Identity matrix
x^, Transposed vector and matrix
det X Determinant of a matrix
/ Scalar function
f Vector-valued function
t ,  9 Tangent vector and angle
n Normal vector
K Curvature
L Image luminance function
L(x) iV-dimensional image
T Fourier transform
C Fourier transformed image
j \ / = i
u Frequency
a Standard deviation or scale

Convolution operator
d Partial derivative operator
d Differential operator
div Divergence operator
V Gradient operator
A Laplacian operator
H Hessian matrix of second derivatives
e Euler constant
e, A Eigenvector and Eigenvalue
P =  {x,y, z) Point (bold)
P Point set, e.g. P  =  {pi - - ,Pw}
D Euclidean dimension, e.g. 2D for two-dimensional
IMI Euclidean norm

Scalar product
A Vector product
\c\ Absolute value of a scalar c

Angle
max, min Maximum and minimum operators
[], ( ), [ ), ( ] Closed, open, and semi-open intervals

Table 1.1: General symbols, operators and notations.

1 • • • iV. Superscripts in brackets are used as indices with respect to an iteration, as opposed to 

ordinary superscripts used for raising to some power. Special terms and definitions are listed in 

the glossary section at the end of this dissertation, along with the page number where they are 

introduced and defined. An index register is included to provide a quick reference for the most 

important terms and techniques.



Chapter 2

Survey of Shape Description Methods

E l l e s  m ’o n t  r é p o n d u : ’’P o u r q u o i  u n  c h a p e a u  f e r a i t - i l  p e u r ? ” M o n  d e s s i n  n e

REPRÉSENTAIT PAS UN C H A PEA U . ÏL REPRÉSENTAIT UN SERPENT BO A QUI DIGÉRAIT  

UN ÉLÉPHANT. J ’AI ALORS D ESSIN É L’ INTÉRIEUR DU SERPENT B O A , AFIN QUE 

LES G R ANDES PERSO NNES PU ISSEN T COM PRENDRE. E L L E S ONT TO UJO URS BESO IN  

D ’ EXPLICATIONS.

B u t  t h e y  a n s w e r e d : ’’F r i g h t e n ? W h y  s h o u l d  a n y  o n e  b e  f r i g h t e n e d  b y  a  

H A T?” M y  d r a w i n g  w a s  n o t  a  p i c t u r e  o f  a  h a t . I t  w a s  a  p i c t u r e  o f  a  b o a  c o n ­

s t r i c t o r  DIGESTING AN ELEPHANT. B U T  SINCE THE G R O W N -U PS W ERE NOT ABLE TO 

U N D E R STA N D  IT, I M ADE ANOTHER DRAW ING: I DREW  THE IN SIDE OF THE BOA C O N ­

STRICTOR, SO THAT THE G R O W N -U PS COULD SEE IT CLEARLY. T H E Y  ALW AYS NEED TO 

HAVE THINGS EXPLAINED .

Le Petit Prince, Antoine de Saint-Exupéry.

In order to describe an object’s shape more accurately than simply using terms like elongated, 

rounded, curved, with sharp edges or straight, various shape description techniques have been 

developed for improved quantitative and qualitative measurements. Shape description is either 

based on segmentation, followed by analysis of external characteristics of the binary shape, or 

it works directly on the grey-level image when the focus is on internal shape characteristics like 

texture or other intensity-related features. In either case, the chosen shape descriptor should be 

translation and rotation invariant and insensitive to changes of scale. The aim of this dissertation 

is to analyse a shape boundary rather than its interior. Defining a shape boundary as a planar curve 

gives rise to three different curve forms: The explicit form is given h yy  = y(x),  the implicit form 

by f {x ,  y) = 0, and the parametric form by v(s) =  (z(s), y{s)), with s G [0; 1] as the arc length 

parameter.

This chapter first presents several local, global, and medial (as a combination of local and global) 

shape representation techniques based on a planar curve as the shape boundary. Then shape 

description techniques based on local, global, medial, and relative measurements are presented 

in order to provide a consistent and comprehensive overview of research done in this area. An 

overview of the methods surveyed in this chapter is illustrated in figure 2.1.
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Local Shape Representation Global Shape Representation Medial Shape Representation

Chain Code, Signature, Chord Fourier Descriptors, Moments Medial Axis/Skeleton

Polygon, Spline, Convex Hull Hough Transform Core

Local Shape Descriptors Global Shape Descriptors Medial Shape Descriptors Shape Distances

Chord Distribution 

Radial/Angle Distribution 

Convex Deficiency Loci 
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Global Shape Distance
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Figure 2.1: Overview of shape representation and description techniques

2.1 Shape Representation

After an image has been segmented into relevant regions, the resulting aggregate of segmented 

pixels needs to be represented in a form suitable for further analysis of the shape outline. Fig­

ure 2.2(a) shows a shape outline superimposed onto a sparse grid, and figure 2.2(b) shows the 

shape representation as a result of resampling with respect to the grid. As can be seen, the inner 

resolution or level of detail of a shape is dependent on the resolution of the chosen underlying co­

ordinate system (in this case the grid). Various shape representation techniques exists, allowing 

to investigate a shape’s external characteristics. One can distinguish between local representa­

tion, enabling direct access of the shape boundary points, global representation, representing the 

entirety of the shape, and medial techniques, which combine local with global representation. All 

representation techniques lead naturally to local, global and relative shape measurements, which 

will be discussed in sections 2.2—2.4. However, some of the representation techniques presented 

are inherent shape descriptors, which will be indicated when appropriate.

2.1.1 Local Shape Representation

Local shape representation has the advantage of providing a concise, direct access to the shape un­

der investigation. One has to distinguish between relative and absolute techniques, where the for­

mer provide an efficient, compact, and invariant way of coding an object independently trom its 

context, and the latter are more complex, but allow to access the object location directly. Relative 

representation techniques can be transformed into absolute representations by keeping a starting 

point address, along with orientation, offset and scaling information.
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(a) (b)

Figure 2.2: Resampling of digital boundary: (a) Superimposed resampling grid, (b) Result of 
resampling.

0 0 0 0 ; rLjri :
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(a) (b)

Figure 2.3: Chain code representation of the boundary in figure 2.2: (a) 4-directional chain code 
representation, (b) 8-directional chain code representation.

2.1.1.1 Chain Codes, Signatures and Chords

The chain code representation [Freeman, 1974] is one of the earliest representation techniques 

in image processing. It describes a digital boundary as a connected sequence of direction vectors 

based on 4- or 8-connectivity (see figure 2.3). It allows for a complete reconstruction of an object, 

given a reference to the absolute object location. Its disadvantages are that chain codes can get 

rather long for complex objects (chain codes of simple objects can be easily compressed), and that 

small disturbances of the boundary due to noise or a different segmentation technique can cause 

unwanted changes in the code which may be difficult to incorporate. A form of generalized chain 

coding encodes the boundary curvature as a function of boundary path length (curvature will be 

defined in section 2.2).

The signature o f a shape [O’Rourke, 1986] can be obtained as a sequence of normal boundary 

distances and is computed for each boundary element as a function of the boundary path length. 

For each boundary point a, the distance of an opposite border point b  is found in direction per­

pendicular to the border tangent at a, yielding a distance function d{s) of boundary parameter s. 

Note that this is not necessarily a symmetric relation (e.g. given dab(a), da'b'l^) with a  =  b  

does not necessarily imply that b ' =  a) and can lead to difficulties for objects with concavities. 

Moreover, signatures are very sensitive to noise. Figure 2.4(a) shows an example of a signature 

construction and the symmetry problem.
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b=a’

(a)

A

A X

(b) (c)

Figure 2.4: (a) Signature construction, (b) Chord distribution, (c) Rotation-independent radial 
distribution.

r n / 2

^ r a d i a l i x ^  ~  I  ^c/iord(^^? ^ 2 /)  ^J - tt/2
(2.2)

The distribution of lengths and angles of all chords on a shape boundary may be used for shape 

representation as well, where a chord is a line joining any two points of the shape boundary (figure 

2.4 (b)). The chord distribution dchord is computed as

dchord{^x,Ay) = I I f { x , y ) f { x A x , y  + Ay)  dx dy, (2.1)
J x  J y

where f {x ,  y) = l i f  (æ, y) is a boundary point, and f {x ,  y) = 0 for all other points. To obtain a 

rotation-independent radial distribution dmdiaii'f'), the integral over all angles is computed:
» 7t / 2  

f-7r/2

where r = y /A x “̂ -f and 0 =  tan“  ̂ ( ^ ) ’ ^bis radial distribution varies linearly with

scale, while the angular distribution danguiari^) is scale-independent, with the rotation causing a 

proportional offset:
^ m ax(r)

dangulari,^) ~  I  d^hoi^di^Ax  ̂A y)  d r (2*3)
JO

Figure 2.4(c) shows an example for radial distribution. Arc chord distances have been used for 

shape partitioning by [Phillips and Rosenfeld, 1987], and chord distribution has been applied for 

shape matching by [Smith and Jain, 1982; You and Jain, 1984]. Combinations of chord and radial 

distribution have been successfully used for shape description [Cootes et al., 1992a].

2.1.1.2 Polygonal Representation and Convex Hull

A digital boundary can be approximated with arbitrary accuracy by a polygon, where the most ex­

act approximation is defined as the number of segments of the polygon being equal to the number 

of points of the boundary. A polygonal representation offers the possibility to describe the essen­

tial boundary shape with the fewest possible polygonal segments [Pavlidis, 1977]. An example 

for curvature-based polygonal approximation is given in [Wu and Wang, 1993]. They propose to 

apply a simple comer detection method to locate potential comers, followed by partitioning each 

curve segment between any two consecutive potential comers via standard polygonal approxi­

mation. Minimum perimeter polygons approximate a boundary by enclosing the boundary by a
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(a) (b)

Figure 2.5: (a) Object boundary enclosed by cells, (b) M inimum perim eter polygon.

(a) (b)

Figure 2.6: (a) Boundary enclosed by convex hull with convex deficiency m arked in grey, (b) 
Polygonal convex hull and deficiency representation.

set o f  concatenated cells and regarding the boundary as a rubber band contained within the inside 

and outside boundaries o f  the strip o f  cells, shown in figure 2.5(a). Shrinking that rubber band 

produces a polygon o f minimum perimeter, as shown in figure 2.5(b).

The convex hull o f  a finite point set was first presented by [Graham, 1972] and later expanded 

among others by [Akl and Toussaint, 1978; Graham and Yao, 1983; M cQueen and Toussaint, 

1985; Toussaint, 1985]. It defines the minimum area convex polygon containing all points o f  the 

set. The set difference between the convex hull and the point set is called the convex deficiency 

o f  the set. However, as most digital objects tend to be irregular, convex deficiency has rather 

small scattered components. For this reason, prior to finding the convex deficiency a polygonal 

approximation can be used. An example o f  a convex hull and its convex deficiency is shown in 

figure 2.6. Shape description using these representation schemes can be based on the area o f  the 

convex hull, the area o f  its convex deficiency, the number o f  com ponents o f  the convex deficiency 

(which is the number o f  concavities o f  the shape) and the relative locations o f  these components. 

Fast algorithms for the computation o f  the convex hull o f  simple polygons can be found in [Chen, 

1989; Hussain, 1988].

2 .1 .1 .3  S p line  R ep resen ta tio n

Splines refer to flexible metal strips which are used to lay out the surfaces o f  ships, cars and 

airplanes. Weights are attached in order to pull the spline to desired directions. The m athe­
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matical equivalent, natural cubic splines with a polynomial basis function of order 3, are used 

as a second-order, continuous model to smoothly interpolate a set of given points. A natu­

ral spline representation is global, as the coelficients of a natural cubic spline are dependent on 

all n  control points, involving an n -f 1 by n -f 1 matrix inversion for the computation [Bar­

tels et a l, 1987]. In order to obtain a computationally more efficient, local spline represen­

tation, a smoothed curve can be created by using a set of curve segments whose coefficients 

depend only on a few points. The boundary is then described by the set of curve segments 

V =  { v i(s ) ,. . . ,  v„(s)}, s G [0;!]. Each curve segment v*(5) describes a curve starting 

at point Pi =  Vj(0) and ending at point pi+i =  Vi+i(0). For open curves, special treat­

ment of the endpoints needs to be taken. For closed curves, the set of curve segments becomes 

periodic. Splines have been applied for tracking [Bartels et a l, 1994], smoothing [Chen and 

Chin, 1993; Unser et a l, 1993], object modelling and shape estimation [Cohen and Wang, 1994; 

Wang and Cohen, 1994], shape preserving approximation [Howell et a l, 1993], and surface 

matching [Szeliski and Lavallée, 1994]. In the following, two spline models, one which is com­

monly used for curve approximation and interpolation, and the other for surface interpolation and 

deformation analysis, will be briefly presented.

2.1.1.3.1 B-Splines. are local interpolants of the same continuity as natural cubic

splines, but they do not necessarily interpolate (pass through) the control points. Each curve seg­

ment Vj is defined by the points p*_3, p i - 2, P i- i,  and p% and can be described by the B-spline 

geometry vector, Ggg. :

^ Pi-3 ^

(2.4)Pi-2 

P i—1 

V Pi )

The B-spline basis matrix, Mgg is derived by [Bartels et a l, 1987] and relates the geometrical 

constraints G bs to the blending functions and polynomial coefficients:

/ - I 3 - 3 1 \

1 3 —6 3 0
6 - 3 0 3 0

I 1 4 1 0 /

(2.5)

The entire curve is generated by applying for every curve segment i and row vector T  =  

[5  ̂ 5  ̂ 5 1], 0 < 5 < 1, the following transformation:

Vi(s) =  T  • M bs ’ G bs, = (2.6)
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yielding a curve in parametric form. Given the analytic representation of B-splines, the polyno­

mials defined by this transformation can be differentiated:

Vi (5) =  and Vi(s) =  (2.7)

This allows for computation of the spline patch tangent

t . ( . )  -  (   n  S)

and normal
 - % ( « ) ____________M f ) _______ )  (7  0 )

Advanced B-spline models include the works by [Goldman and Warren, 1993], and other locally 

controlled spline models include the Overhauser splines developed by [Brewer and Anderson, 

1977] of the Catmull-Rom family [Catmull and Rom, 1974] which smoothly interpolate a set of 

points. They can be formulated as higher order polynomials, but this may cause unwanted oscilla­

tions and zero-crossings of higher-order derivatives. Extensions to 3D spline surfaces are straight 

forward in principle, but are quite complex in terms of implementation issues.

2.1.1.3.2 Thin-Plate Splines. A different form of splines which are mainly used for shape 

description rather than representation are the so-called surface-interpolating thin-plate splines 

which can also be used to determine the physical bending energy of a thin metal plate on point 

constraints [Bookstein, 1989; Bookstein, 1991a; Bookstein, 1991b]. Interpolating over a fixed 

set of (possibly) irregularly spaced planar points, the bending energy is defined by a quadratic 

form of the heights assigned to the surface. The spline itself is expressed as the superposition of 

eigenvectors of the bending energy matrix over a tilted plane having no bending energy at all. 

Pairing the splines fy  for representing the z-iy-coordinates of the plane yields an interpolation 

map relating to sets of landmark points. Both the spline maps and surfaces are composed by a 

linear part (which represent affine transformations) and a geometrically non-affme part, called 

principal warps. Defining a surface by

f { x , y )  =  —U{r) = - r^ lo g r^  with r  =  , (2.10)

yields a special function U which satisfies

The right hand side of this equation is proportional to the “generalized function” or delta-function 

6(0,0) (which is only not equal to zero at the origin, and has an integral of 1). U is there­

fore a fundamental solution of the biharmonic equation A^C7 =  0, which is the equation of a
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shape made of thin plate f {x ,  y) lofted above the x-y-p\ane. Note that this basis function is the 

generalization of the basis function of natural cubic splines to two dimensions [Wahba, 1990]. 

Applying only slight bendings to the surface f { x , y )  yields a bending energy proportional to 

( 0 )^ +  2 { M k T  +  ( 0 )^ point p  of that surface, minimizing

//.
2

.  J ) *( 0 )
in order to take a shape in which it is least bent. For modelling and analysing the deformation 

between two sets of landmarks (which can be biological landmarks having meaningful and re­

producible biological counterparts in both sets, or pseudo-landmarks such as registration points or 

other fiducials), two separate thin-plate spline functions fx  and fy  are used to model the displace­

ment of the landmarks in the x  and y directions. This leads to the definition of a vector-valued 

thin-plate spline mapping function f  : (æ,î/) -> ( f x{x ,y) , f y{x ,y) )  which maps all points p* 

located in the Euclidean image plane into their homologues p[. Each thin-plate spline mapping 

function can be written as
N

f { x , y )  =  ao 3- axX üyy -\ - ' ^WiU{\\{x,y)  - P i | | )  (2.13)

W  =  (w i, W2, • • •, w„) can be defined as a vector with two-component weighting vectors w* 

(one component for each spatial dimension) which sum to zero and whose crossproducts with the 

X -  and ^/-coordinates of the points p% are equally zero. The first part of equation (2.13) presents 

the affine transformation part, while the summation part forms the principal warps. Thus given 

a deformation of a set of points in a plane, a deformation of all points of the plane in terms of an 

interpolated value as well as the bending energy necessary for the deformation can be computed 

using this concept.

Applications of thin-plate splines include surface interpolation and smoothing [Dyn et al., 1983], 

statistical interpolation of scattered data [Wahba, 1990], landmark feature spaces [Bookstein and 

Green, 1992], visualization and morphometric analysis of group differences [Bookstein, 1996a; 

Bookstein, 1996b; Dean et a l, 1996], medical image registration [Edwards et a l, 1995; Lit­

tle et a l, 1996; Edwards et a l, 1997; Lester and Arridge, 1997], cardiac deformation analysis 

[Sanchez-Ortiz et a l, 1996b], and deformable templates [Rueckert and Burger, 1997].

2.1.2 Global Shape Representation

The presented local shape representation techniques, though very suitable for local shape access, 

suffer from the disadvantage of not providing an overall object representation. In contrast to that, 

global representation techniques allow to capture global characteristics inherent to the entirety of 

the object. The most frequently global shape representation techniques are Fourier techniques, 

statistical moments, and the Hough transform.
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2 .1.2 .1 Fourier Representation

A Fourier representation decomposes a shape contour into its frequency components (or Fourier 

descriptors) obtained via its Fourier transform, where each Fourier descriptor describes a global 

property of the shape. Lower frequency components correspond to gradual changes of the con­

tour, while higher frequency components account for example for greater curvature of the contour, 

leading to a coarse-to-fine hierarchical shape representation.

In order to compute the Fourier representation of a parameterized contour v(^), a complex peri­

odic function /(g ) is defined which expresses the shape as a sequence of coordinates in the com­

plex plane, namely f ( s )  — x{s) + jy{s),  with j  = y / ^ .  After having reduced a 2D problem 

into a ID  problem, the discrete Fourier transform of f ( s )  is

•^(“ ) =  4  (2.14)
s=0

for u =  0 • • • iV — 1. The Fourier descriptors are given by the complex coefficients Tiu) .  The 

inverse transform of T{u)  restores the boundary /(s ) :
i V - l

f (a)  = Y ,  (2.15)
u=0

for s =  0 • • • iV — 1.

However, when only using the first M  coefficients to restore the boundary instead of the complete 

set of N  coefficients, the boundary is approximated by
M - l

f ( s )  = Y  (2.16)

for s =  0 • "  iV — 1, although only M  terms are used to obtain each component of /( s ) .  The

approximated boundary still consists of the same number N  of points, but less Fourier coefficients 

are used for the reconstruction. Recall that Fourier descriptors for high u describe high-frequency 

components (and finer shape details) of the shape boundary, and Fourier descriptors for lower 

u describe low-frequency shape properties (or broader shape details). Reconstructing a contour 

using Fourier descriptors for increasing levels of M  is a method for hierarchical, frequency-based

shape representation. Figure 2.7 shows examples for Fourier shape reconstruction.

However, each Fourier descriptor represents a global rather than local property of the boundary, 

as the individual Fourier descriptors are computed by integrating over the entire curve. Thus lo­

cal spatial information about the shape is not readily available, and the level of shape detail can 

only be controlled on a global basis. Moreover, globally truncating detail can sometimes result 

in se lf  intersecting reconstructions which changes the topology of a shape (see figure 2.7, middle 

row). A method of shape discrimination using Fourier descriptors is presented by [Persoon and 

Fu, 1986].
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(a)

(b)

(c)

Figure 2.7: Examples of Fourier reconstruction. Reconstructions of: (a) Square, for M  =  AT =  
2048, M  =  1024,32,8,2. (b) Notched rectangle, f ov M = N  = 2048, M  =  1024,16,4,2. (c) 
Von Koch curve presented in section 2.3.3, f o r M  = N  = 8192, M  = 2048,32,8,2. Note that 
the reconstructions shown in (b) and (c) lead to intersections and change of shape topology.

2.1.2.2 Moments

Moment descriptors focus on statistical properties of the object’s entire contour outline by com­

puting its statistical moments, e.g. the mean, variance, etc. The infinite set of moments gives a 

complete description of the shape contour in terms of all statistical aspects like centre of mass, 

elongation and overall orientation. The 2D Cartesian moment ppq of order {p +  g) of a contour 

v(a) is defined by the relation

P p q ( v { s ) ) = [  f  {x{s ) - r u x ) ^ ’ {y{s) - r r i y ^  f { v { s ) ) d s d s  (2.17)
Js=0Js=0

for p,q = 0, 1,2 • • -, and a density distribution function f {x ,  y) = (æ/, yf).  rux and ruy are 

defined as

rUx = [  x{s )x f {s )ds  and ruy = [  y{s)yf {s)ds  (2.18)
Js=0 J s=0

f  can be defined as binary function when regarding a shape as a binary silhouette image:

/(P ) =
1 if p is inside or on the contour v(s)

0 otherwise
(2.19)
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According to the uniqueness theorem [Papoulis, 1965], if /  is piecewise continuous and has 

nonzero values only in a finite part of the x-y-p\ane, then moments of all order exist and the 

moment set {/^pg(v(s))} is uniquely determined by /(v (s )) , and vice versa. The zeroth order 

moment, poo, computes the total mass of v(s) and is given by

mo(v) =  / f  / ( v ( s ) ) d s d s  (2.20)
J s=0 J s=0

and all higher order moments are computed by setting p  and q in equation (2.17) accordingly. For 

digital curves, the mapping function f i v ( s ) )  becomes discrete, and the integration is replaced by 

discrete summation. The two first order moments, pio and /zqi, are the central moments, which 

locate the centre o f mass'.

X — and ÿ = (2.21)
Pm Pm

Normalized central moments are computed via

i>pq =  ^  with 7 =  + 1  (2.22)
Pm ^

Second order moments measure the spread of the curve around its mean {variance), and third

order moments measure the curve’s deviation from symmetry about the mean {skew), and fourth

order moments describe the kurtosis of the curve. Similar to Fourier descriptors, details can be

truncated by using only the lower order, more general moment descriptors. However, moments

only allow to extract global rather than local shape properties, and the complete set of moments is

needed in order to reconstruct the original object. Thus moments suffer from the same problems

as Fourier descriptors, as their integration of the entire boundary does not allow for local control

of detail. A set of seven invariant moments with respect to translation, rotation, and zooming can

be obtained from second and third moments according to [Hu, 1962]. Applications of moments

for shape description are presented in [Sluzek, 1996], and an extensive survey of moment-based

techniques for object representation and recognition can be found in [Prokop and Reeves, 1992].

2.1.2.3 Hough Transform

The Hough transform [Hough, 1962] was originally developed to detect lines in binary images, 

but it also offers a way to represent and hence describe shapes of more complex analytic or gener­

alized structures contained in a grey-level images, as it examines the global relationship between 

potential contour points via their parameter or Hough space. Extensions of the classic Hough 

transform to other analytic curves have been presented in [Leavers, 1992], and a generalization 

to arbitrary curves has been developed by [Ballard, 1981]. For the detection of analytic curves, 

their general equation may be rewritten in terms of their parameters. Table 2.1 lists the general 

equations for lines, circles and ellipses. The parameter space is subdivided into accumulator cells, 

and the parameter equations for each point {xi, yi) are solved. The corresponding parameters are



2.1. Shape Representation 40

Analytic form Parameters Parameter equation

Line (slope intercept) 

Line (normal equation) 

Circle 

Ellipse

a, b

S,(f)

Xr  ̂yr^ 5

5 yr^^xt^y^4*

b = —xa 4- y 

s = X cos (f) 4- y sin (j)

= ( x -  XrŸ + { y -  y r f  

1 =  -f- (and rotation by (f))

Table 2.1 : Analytic curves described with generalized shape parameters Xr,yr,Sx,Sy,<p (adapted 
from [Ballard, 1981]).

y = a’x + b ’

b = -X  .a + y.I •' I

b = -X: a + y -

(a)

s = (x-x’) + (y-y’)

(b)

Figure 2.8: Hough transform for detecting (a) lines using slope-intercept form and (b) circles. 
Both are illustrated in the x-y plane and a-b-space.

used to increment the associated accumulator cell. Local maxima of the accumulator indicate 

shape instances for the specific parameters. The parameter space is restricted by investigating 

only the loci of edge pixels (edgels) in an image.

For example, lines can be detected by investigating the parameter space spanned by a and 6, where 

exactly one line passing through the fixed point {xi, yi) is defined, and all points on this line have 

such a line in parameter space, intersecting the line associated with yi) at (a', h') (figure 2.8

(a)). As the general slope-intercept form can not be used for vertical lines, the normal <^-s-space 

should be used instead, s defining the distance the line normal to the origin, and 4> the angle from 

the æ-axis to the normal. Circles and ellipses are detected using higher-dimensional parameter 

spaces and corresponding accumulators. For instance, circles have a three-dimensional param­
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eter space (figure 2.8(b)), which can be reduced by either fixing the radius or searching for the 

loci of the parameters on the circular cones of all edge pixels. Additionally, incorporating direc­

tional information associated with the edge reduces the parameter locus to a line. For the detec­

tion of ellipses, [Nair and Saunders (Jr.), 1996] have developed a fast straight line Hough trans­

form  (SLHT) based on the signature of the ellipse, along with other geometric ellipse properties. 

[Aguadao et a l, 1996] have used a parametric polar representation of an ellipse, decomposing 

the parameter space into two independent subspaces and one final histogram accumulator, and 

[Friedland and Adam, 1989] have applied a radial search obtain the centre of gravity of an ellipse­

shaped structure and a following four parameter Hough transform.

[Ballard, 1981] has developed a generalized Hough transform to detect any arbitrary curves pa­

rameterized by a  =  {y, s, </>}, with the reference origin y =  (xr,yr),  orthogonal scaling factors 

s = {sx, Sy), and orientation <f). These parameters can also be applied on the previously presented 

analytic curves (table 2.1). y  is described using an B-table, containing all edge-orientation refer­

ence point correspondences, which is constructed by computing the gradient direction 0(x) and 

r  =  y — X for each edge pixel x. The accumulator array is then incremented for each x at the 

corresponding loci of x  -t- r  in the accumulator array A  where r is a table entry indexed by (f). To 

allow for scale changes, rotation and reference point translation R{(j)) can be defined as a multiple 

vector-valued function.

In summary, the Hough transform is able to detect (and thus represent and describe) shapes of an­

alytical and arbitrary form by investigating the global relationship between image pixels or poten­

tial edge (and thus shape contour) pixels. This may result in a very sparse accumulator space with 

only few votes per cell, which can be overcome by specifying a set of nearby points rather than 

one point only in the accumulator array. Computational efficiency may be improved by using a 

priori information about the shape’s size, location and orientation, by decomposing the parameter 

space, and by using edge-directional information. Other valuable features for shape description 

include the detection of composite shapes and even incorporation of local information by adding 

the edge strength or the local curvature to the accumulator cells.

2.1.3 Medial Shape Representation

An alternative approach to boundary-based shape representation is given by using a shape’s me­

dial or symmetry axis, which combines local and global shape information. One medial approach 

has been developed by [Blum, 1967; Blum, 1973; Blum and Nagel, 1978]. The so-called Blum s 

medial axis classifies points on that axis by the properties of their maximal discs. Thus the sym­

metry axis is defined by the centre points of all maximal discs fitting exactly into the object and 

touching its boundary at least twice. So-called normal points are those whose underlying disc 

is tangential to the object boundary at exactly two distinct places, while the underlying discs of
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Figure 2.9: Blum’s medial axis, defined as the centre points of all maximum discs within an ob­
ject.

branch points touch the object boundary in three or more separate sets of points. An end point is 

one whose underlying disc only once touches the object border in one contiguous set. An exam­

ple is shown in figure 2.9. The maximal discs allow to establish a relationship between boundary 

points across the width of an object. Taking the radius of the discs as a distance measure to the 

corresponding boundary points, local changes in the spatial position of the axis or centre points of 

the associated radius values can be used to analyse the local behaviour of the boundaries accord­

ing to their orientation with respect to the axis, their curvature and other local shape descriptions.

Medial methods allow to capture local and global shape properties simultaneously, as objects are 

split into parts and subparts according to the relationship between several shape sections separated 

by the width of the object. While the information across the object provides global measurements, 

local specificity is still retained. Medial shape description based on the medical axis can be either 

based on its orientation 0, or on its length or diameter, respectively. The diameter is a measure 

determining the distance based on a metric || • || between the extreme points on the major axis or 

medial axis of the set B  of all boundary points. It is defined as

diameter(B) =  max ||pi -  pj|| V(pi,pj) G B (2.23)

The concept of medial shape representation has been extended by [Sheehy et al., 1996] to medial 

surface construction, and [Sherbrooke et a l, 1996] have developed a method for a medial axis 

transform of three-dimensional polyhedral solids. Additionally, the concept of medialness has 

been used for shape thinning or skeletonization [Brandt and Algazi, 1992; Wright et a l, 1994], 

with extensions to morphological shape analysis [Reinhardt and Higgins, 1996], and scale-space 

[Ogniewicz, 1994]. A new form of a multi-scale, Hough-like medial axis transform, resulting in 

the so-called core of a shape, has been developed by [Burbeck and Pizer, 1994], with extensions 

by [Eberly, 1994b; Morse, 1994] and others. The concept of cores will be presented in chapter 3.
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2.2 Local Shape Description

Local shape descriptors operate on a boundary shape representation. They are used when the 

primary focus is on locating external shape characteristics. In the following, some frequently 

used local shape quantifiers will be presented which are based on differential geometry of the 

shape.

The curvature « of a planar curve at point P  is defined as the instantaneous rate of change of the 

slope angle 6 of the tangent at this point. The slope angle of the tangent of an explicit curve is 

given by

6{s) ~  t a n ~ ^ ^  (2.24)
ax

The curvature of any point on the curve is then given by the rate of change of 0(5):

«(«) = ^  (2.25)
d5

Note that this is a rotation invariant measure, as the same value for 6{s) is obtained when the x- 

axis is substituted by any line. However, it is not scale invariant. For example, the curvature of a

circle of radius r  is defined by 1 / r  at each point. This measure is halted if the radius is doubled.

K can defined with respect to a parametric curve representation, by defining first

'^ =  (l +  / y / 2- !/' =  !  and =  ^  (2,26)

By representing the first and second derivatives of a:(5) and y{s) as

i ( s ) = j  = E
y and y" can be expressed as

y = M  and y" ^  É i f E M î M  , (2.28)
X{SP

Thus, the curvature of the parametric curve is given by:

The B-spline representation presented in section 2.1.1.3.1 allows for this analytic curvature com­

putation. The curvature is frequently used for characterizing a shape by its points of inflection 

(defined as the zero-crossings of the curvature along the shape contour). When representing the 

curvature at all shape boundary pixels in a histogram, information about the bending behaviour 

can be won. In chapter 3, section 3.4.1, scale-space extensions of this scheme by [Asada and 

Brady, 1986; Mokhtarian and Mackworth, 1986] and others will be presented.

Corners are another important local shape characteristic, as they contain significant shape infor­

mation and interpretation. They can be detected in various ways - a common approach is to detect
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local maxima of the absolute curvature ||«:(s) ||, which are negative and positive local maxima of 

the curvature. Comers can therefore be computed analytically: For k{s ) > 0, find points at Si 

such that
dK{s)

= 0 subject to
S — Si

d ‘̂K{s)
ds

and for k { s )  < 0, solve for the solutions t  

dK{s)
ds

=  0 subject to
d ‘̂K{s)

!=Si

S=Si ds"̂

< 0 , (2.30)

> 0 ,  (2.31)

which yields as the set of maxima of absolute curvature. One can now distinguish between 

concave upward comers (for positive curvature) and concave downward comers (for negative 

curvature). A scale-space extension of this scheme has been developed by [Rattarangsi and Chin, 

1992]. Due to the higher order derivatives needed for the comer computation, however, noise 

along the shape boundary may be enhanced and deteriorate the quality and accuracy of comer 

detection. Another approach is to define comers as first order derivative discontinuities of ei­

ther its æ(s) or y(s) coordinate functions, reducing the 2D comer detection problem into two ID  

detection problems which can be solved using statistical properties or numerical approximations 

[Chen and Chin, 1993].

Other local shape features can be directly derived from local boundary representations using var­

ious combinations of differential measurements. For example, normal and tangent deviations 

along the shape, the change of curvature, or curve discontinuities other than for comer detection 

are useful local shape descriptors.

2.3 Global Shape Description

Generally, global shape descriptors are selected when the primary focus is on the overall shape (or 

shape contour) rather than local shape properties. Among these, simple shape factors and quanti­

tative measurements such as volumetric and bending measurements as well as Fourier descriptors, 

moments, and the Hough transform are probably among the most frequently used global methods.

2.3.1 Perimeter, Area and Compactness

The most simple descriptor is the length of a boundary, which can be approximated in a discrete 

representation by adding the pixels along the contour, or by adding the pixels on the vertical and 

horizontal parts of the contour and adding y/2 times the number of the diagonal components, 

which gives the exact length in 8-connectivity (see section 2.1.1.1). For coarsely sampled bound­

aries, the Euclidean distances between the given boundary points may be added up instead, or, 

preferably, a spline interpolation may be computed to achieve dense sampling in order to be able 

to add up the boundary pixels in 8-connectivity. The length of a closed shape boundary is called 

perimeter.
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The area A of a region can be determined by counting all pixels contained within its boundary. 

Alternatively, the polygonal area can be approximated by

N

~  ^{i+1) % N){yi +  y{i+l) % n ) 5 (2.32)
i = l

where the boundary consists of N  points ranging from (æi, ?/i) • • • (x n , yN),  and the modulo op­

erator % ensures cyclic summation of the closed boundary. Similar sampling treatment as for the 

perimeter applies here regarding sparse contour points.

While the area and the perimeter are both invariant with respect to translation and rotation, they 

are not invariant to scaling. A combination of both descriptors, however, can be used to obtain a 

dimensionless measurement which is invariant to translation, rotation and scaling: compactness, 

which is defined as is a measure for the roundedness of a shape and is minimal for a

circular shape. Frequently compactness is defined by , which yields a compactness of

1 for circles.

2.3.2 Boundary Straightness and Bending Energy

For discrete contours (e.g. a polygonal representation like in section 2.1.1.2), a boundary scalar 

descriptor, also called boundary straightness, is defined as the ratio between the boundary length 

and the number of boundary pixels where the boundary direction changes significantly. For few 

changes in boundary direction, the boundary scalar descriptor will be very high. In order to eval­

uate the change of direction of the boundary, angles between line segments positioned h boundary 

pixels in both directions from the evaluated boundary pixels are measured. The choice of param­

eter b indicates the degree of sensitivity to local changes of the boundary direction.

The bending energy of a shape contour is defined as the energy necessary to bend a rod to a desired 

shape, and is computed by integrating the squared contour curvature n{s) over the shape contour 

having border length L  \

^bending ~  ^  (^) ? (2.33)

K being defined as in equation (2.29). [Duncan et al,  1991] have presented a model based on 

the global bending energy in order to describe cardiac shape deformities by measuring bending 

energy as a difference in curvature. The thin-plate spline model presented in section 2.1.1.3.2 also 

allows to compute the deformation or bending energy necessary to transform or warp one shape 

into another, thus providing a measurement for differences in shape. In contrast to the bending 

energy defined by equation (2.33), the thin-plate spline bending energy takes the 2D geometry 

of the shape into account, and is invariant to affine transformations such as scaling.
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(a)

(b)

Figure 2.10: Von Koch curve {snowflake)-, (a) Generation scheme, (b) Increasing fractal resolu­
tion levels (generations).

2.3.3 Fractal Descriptors

The fractal theory introduced by [Mandelbrot, 1982] provides a mathematical description of 

scale-invariant structures and the relationship between measured quantity (e.g. perimeter, area 

or volume) and the scale at which that quantity is measured. This relationship can be described 

by a scalar called fractal dimension. A fractal structure exhibits self-similarity over all scales, 

thus copies of itself can be found at any scale. Fractals can be characterized by their fractal di­

mension which can be defined by composing the fractal structure into N  distinct subsets, each 

being scaled down by ratio e and identical to the overall structure in all statistical aspects. The 

fractal dimension Dfractal is then given by the relation

^  • (2.34)

The fractal dimension of a true fractal structure is always higher than its Euclidean dimension D, 

and lower than its embedding dimension (D-f-1). For example, a fractal curve, embedded in a 2D 

Euclidean space, has a fractal dimension between 1 and 2, with a circle having a fractal dimension 

of D fractal = 1 • The more a true fractal structure fills the space in which it is embedded, the more 

its fractal dimension approaches the Euclidean dimension of the embedding space.

An example of a true fractal structure is the von Koch curve or snowflake. It is generated by 

connecting a triangular island as an initiator of side length Ij+i =  I%/3, k  being the side length 

of the previous step, to each side. This fractal has therefore a fractal dimension of log 4 / log 3 % 

1.26, as the length of the structure increases by factor |  at each generation step. The generation 

scheme is illustrated in figure 2.10(a), and figure 2.10(b) shows different fractal resolution levels 

or generations of a von Koch curve. However, natural sets behave only in a statistically self­

similar fashion within a certain range of scales. Hence several estimation techniques have been 

developed in literature to allow for recovering the fractal dimension of natural sets:
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Box counting method: The box counting method [Keller et a l, 1989] maps a given fractal struc­

ture onto a rectangular grid where the edges of each box in the grid are of length e. Now 

the number of grid boxes N{e)  containing any parts of the fractal structure are counted. 

Performing this measurement for a whole set of box sizes e, the fractal dimension can be 

estimated from a linear regression defined by log(N(e)) =  —Dfractal ’ log(e) -f c, c being 

a constant, derived from equation (2.34).

Closely related to the box counting method is another fractal shape descriptor called fractal 

signature S(e) [Peleg et al ,  1994], which is derived by plotting the enclosed shape area 

A  against the scale e at which it is measured, yielding a curve consisting of points p% =  

(cj, A(e*)). Fitting a straight line through each triple of points P i - i , Pi, Pi+i yields a slope 

equal to S{ei) = H  for true fractals, where H  is the Hurst coefficient which is related to 

the fractal dimension by

D fra c ta l  — (-^ +  1) ~  5 (2.35)

Hence the magnitude of the fractal signature indicates the amount of detail which is lost 

when e is increased.

Power-spectral dimension: A fractal structure /  can be characterized by its spectral density or 

power spectrum, V{f) .  The following relationship between the power spectrum and the 

fractal dimension holds [Pentland, 1984]:

n f )  oc , (2.36)

Estimating the slope of the linear regression curve over the logarithm of the power spectrum 

as a function of /  can therefore be used to estimate the fractal dimension using equation 

(2.35).

Fractional Brownian motion (fBm) model: The FBM model regards naturally occurring struc­

tures as the result of random walks. Assuming a D-dimensional structure /  is generated 

by a D-dimensional fBm. The increments of a Brownian motion structure /  must satisfy 

the following proportionality [Mandelbrot, 1982; Voss, 1985]:

E |A /(A x ) | a  I I A x f  , (2.37)

The expected value of E  of | A /(  Ax) | can be computed by averaging and normalizing all 

differences of all vector pairs of corresponding distances or fractal scales. Ax. Performing 

a linear regression over

log (D| A /(A x )|) = H  -log (II Ax||) +  c (2.38)

yields an estimate of the fractal dimension using equation (2.35).
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FIF, IFS, and FIM: Fractal interpolation functions (FIFs) [Bamsley, 1988] are self-similar func­

tions defined on a compact interval which have more generalized spectra than the sim­

ple exponential decay found in fBm, and have also a more local scaling behaviour. Their 

graphs are fractal curves which allow to model natural structures and to distinguish between 

similar ones. [Berkner, 1997a; Berkner, 1997b] has performed wavelet-based reconstruc­

tions of FIFs for solving the inverse problem of finding maps of the corresponding iterated 

function systems (IFS) or fractal curves. Fractal interpolation with midpoints (FIM) inter­

polates between every other point of a structure, setting free parameters to ensure correct 

values for the FIF.

An evaluation of the different fractal dimension estimation techniques for medical images is given 

in [Penn and Loew, 1996]. The fractal dimension has been successfully applied in medical imag­

ing for edge detection [Chen et al,  1989; Schnabel, 1993b], segmentation [Schnabel, 1993a; 

Schnabel, 1994; Toennies and Schnabel, 1994], texture classification [Pentland, 1984; Chen era/., 

1989; Schnabel era/., 1995], and shape analysis [Fortin era/., 1992; Goldberger, 1992; Sakar and 

Chaudhuri, 1992; Samarabanduera/., 1993; BrammerandBullmore, 1994; Bullmoreera/., 1994; 

Free et al ,  1997].

2.4 Relative Distance Measurements

When a shape is to be evaluated not in isolation, but in comparison with another shape, both 

shapes can be described with the techniques presented earlier in this chapter, and the quantitative 

measurements obtained for each shape can be directly compared with each other. However, if lo­

cal or global deviation measurements between different shapes are required (e.g. to determine the 

segmentation accuracy between a gold standard shape and a shape obtained from a segmentation 

technique), a distance measurement needs to be performed on either locally on a point-to-point 

basis, or globally on the whole set of points belonging to the shapes to be compared. A frequent 

method to compute the distance between two shapes is to use a distance transformation which 

converts a binary digital image, consisting of feature and non-feature pixels, into an image where 

all non-feature pixels have a value corresponding to the distance to the nearest feature pixel. Fea­

tures can be points, lines, edges, or, in this case, pixels belonging to a shape under investigation. 

Other distance measurements operate directly on the sets of feature points. In any case, a distance 

measurement dist should satisfy the following conditions, given three points p i, P2, and pg:

1. Positivity: d is t(p i,p2) > 0

2. Identity: d is t(p i,p2) =  0 if and only if p i =  p 2

3. Commutativity: d is t(p i,p2) =  dist(p2,pi )

4. Triangle inequality: dist(pi, ps) < dist(pi, P2) -f- dist(p2, ps)
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Figure 2.11: General 5 x 5  neighbourhood mask for distance transformations, (a) Parallel mask,
(b) Sequential forward and backward masks.

If conditions 1-3 are met, the measurement dist is a semi-metric. If condition 4 is also fulfilled, 

dist is a metric. In the following, the most commonly used distance measurements will be pre­

sented.

2.4.1 Local Distances

The most common local distance measurement is based on the Euclidean metric, which defines 

the distance between two points p i =  (a:i, ^2), P2 =  {x2 ,y 2 ) as

d is t(p i,p 2) =  IIpi - P 2II =  \ / {xi  -  X2 )^ + (2/1 -  2/2)^ (2.39)

Computing a Euclidean distance transform, however, implies a global and therefore computation­

ally expensive search [Danielsson, 1980]. Approximations of the Euclidean distance transform 

take only local neighbourhoods into account, and can be efficiently implemented by propagat­

ing local distances (obtained in a local neighbourhood) either in a sequential or, preferably, in a 

parallel manner using a mask (see figure 2.11). The neighbourhood size can vary, and the mask 

coefficients correspond to the local distances which are propagated over the image.

In order to compute such a transform, a suitable mask is placed over each image pixel, and the 

mask value is added to the underlying image pixel value. The minimum value within that neigh­

bourhood is assigned as the new image value for the centre pixel. The parallel algorithm is thus:

v^j = +  c{k, I)) V(A, I) G m ask (2.40)

where is the value of the pixel in position (z, j )  in the image at iteration m, (A;, I) is the position

in the mask (the centre being (0,0)), and c(fc, I) is the local distance from the mask. The algorithm 

continues until the image values stop changing. In the sequential case, the mask is split into two 

masks, which are each passed once over the image: the forward mask from left to right, and from 

top to bottom, and the backward mask from right to left, and from bottom to top, as illustrated in 

algorithm 2.1.
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H Forward:

for (z =  (size +  l)/2 , • " jZmes) do

for (j = {size +  l)/2 , • • •, columns) do

Vij = mm{vi+k,j+l + c{k, I)) y{k, I) 6  mask forward 
end for

end for

// Backward:

for (z =  lines — {size — l)/2 , • • •, 1) do

for {j = columns — {size — l)/2 , • • •, 1) do

Uij — j_j_/ -f- c{k^l)) ^{k^l) G niaskifookwaTd
end for 

end for

Algorithm 2.1: Algorithm for sequential distance transformation for a size  x size  mask and no­
tation as in equation (2.40).

Distance Description Mask values
City-block Smallest distance in 4-neighbourhood. Cl =  1, C2 =  oo
Chess-board Smallest distance in 8-neighbourhood. Cl =  1, C2 =  1
Octagonal Alternating city-block and chess-board. Cl — X, C2 — X and C2 — oo
Chamfer Optimal Euclidean distance transform. See figure 2.12.

Table 2.2: Overview of Euclidean approximating distance transforms.

The most common Euclidean approximating distance transforms and their mask values are listed 

in table 2.2. Probably the most important distance transform is the Chamfer distance transform, 

which is the best approximation of the Euclidean distance, having a maximal difference from the 

Euclidean distance of less than 2%. [Borgefors, 1986] has developed a 5—7—11 transform, which 

is shown in figure 2.12. Examples for the Chamfer distance transform for a square contour and 

more complex contours are illustrated in figure 2.13. Note that large distances (corresponding to 

bright intensity values) can be used to detect the medial axis and the skeleton of a shape [Ge and 

Fitzpatrick, 1996]. An extensive survey of approximations of the Euclidean distance transform 

can be found in [Borgefors, 1986], with extensions to 3D in [Borgefors, 1996]

2.4.2 Global Distances

In order to compute the global distance betA& een two shapes, any of the above local distance trans­

forms of the first shape can be computed after setting all image pixels corresponding to the shape 

contour (feature pixels) to zero and the remaining pixels to infinity (or any suitably high value).
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Figure 2.12: 5-7-11 masks for the Chamfer distance transform, (a) Parallel mask, (b) Sequential 
forward and backward masks.

(a) (b) (c)

Figure 2.13: Examples for the Chamfer distance transform: (a) Square shape, (b) Von Koch 
curve, (c) N otched rectangle. Darker intensity values correspond to closer distances to the shape, 
while brighter values indicate larger distances.

Overlaying the shape to be compared onto this distance transformed image allows to obtain the 

local distance values underneath it. By computing the absolute error (L i norm), the root mean 

squared error (L 2 norm) or the maximum error (Lqo norm), a global shape metric is obtained to 

estimate the overall deviation between the two shapes.

Alternatively, the H am do rjf distance can be computed as presented by [Huttenlocher et a i ,  1993]. 

It measures the extent to which each point o f one shape lies near some point o f  another shape and

vice versa, which is an indication o f the degree o f  mismatch between two shapes. Given two

finite point sets describing the shape contours, A  =  { a i ,  • • •, am } and B  =  { b i ,  • • •, b n } , the 

Hausdorff distance is defined as

d is t/ /(A ,B )  =  m ax (d is t/j(A ,B ),d is tf t(B , A ))  (2.41)

where the directed Hausdorff distances dist/*(A ,B ) and d ist/j(B , A ) are computed via

d istft(A ,B ) =  m a x m in  lia* - h j \ \  Va^ 6  A ,V b j G B

d is t/j(B ,A ) =  m a x m in  ||b ; -  a  j  11 Vb% G B , Va -̂ G A  (2.42)
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and II ' Il is some underlying norm, e.g. the L 2 or Euclidean norm. If dist/j(A, B) =  d, then each 

point of A must be within distance d of some point of B, and there is some point of A  that is 

exactly of distance d from the nearest point of B. Unlike most methods comparing shapes, there 

is no explicit pairing of points of A  with points of B, as many points of A  may be close to the 

same point of B. The Hausdorff distance is therefore not a local measurement. [Huttenlocher et 

a l, 1993] have developed a metric which measures the mismatch between all possible relative 

positions of two shapes, where the Hausdorff distance is defined as a function of relative position 

with respect to translation and rigid motion.

Another global distance measurement is the Levensthein distance which is motivated by the fact 

that a shape A can be mapped into a shape B by means of three possible operations, namely 

substitution, insertion, and deletion. If the costs of each operation were p, q, and r, respectively, 

then the weighted Levensthein distance (WLD) between two shapes is defined as

dist^LD(A, B) =  min(mip +  niq +  kir) , (2.43)

where the mapping of A into B requires m* substitutions, n* insertions, and ki deletions. As the 

WLD depends on the size of the compared shapes, [Cortelazzo et a l , 1996] have shown that when 

normalizing the WLD, the normalized weighted Levensthein distance (NWLD) defined by

d is tw L p (A ,B ) =  (2,44)
max(LA,ivB)

is independent of the shape sizes L x  and Lb, respectively. The NWLD does not generally satisfy 

the triangle inequality and is therefore not a metric, but is still a good shape diversity measure 

which has been applied to the comparison of strings in pattern recognition. Both the WLD and 

the NWLD operate directly on a chain-code representation, making them computationally less 

complex than the Euclidean distance measurements.

2.4.3 Corresponding Distances

A common probl em when comparing two shapes is the pairing of the points which is necessary to 

obtain the corresponding distances rather than the nearest distances. This is also a very important 

topic in registration or matching of structures, as well as segmentation evaluation.

[Chalana and Kim, 1996; Chalana et a l, 1996] have developed several distance measurements 

for segmentation evaluation based on the mean distance between two curves. The distance to the 

closest point (DCP) for point a% on curve A to curve B is defined by

dist£,c7p(ai, B) =  nun ||bj -  a%|| , (2.45)

where A and B consist of N  equidistant points and || • || is a suitable metric. Computing this 

distance for all points on both curves yields the mean absolute distance (MAD) between the two
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curves:

1 /  1 ^  1 ^  \  
distMAZ)(A, B) =  -  ^  dist£>cp(ai, B) +  — ^  dist£)C7p(bi, A) j  (2.46)

Although the DCP and hence the MAD do not fulfill the metric condition for triangle inequality, 

they were found to be more useful in terms of measuring the deviation between two shapes than 

the Hausdorff distance.

[Besl and McKay, 1992] have developed the iterated closest points (IGF) algorithm, which estab­

lishes an initial average curve C by randomly selecting a point of A, denoted by a i, finding the 

closest point on B, denoted by b i, and sequentially setting up correspondences for the remaining 

points. The points c% on the average curve are then given by the centroid of the corresponding 

points (a* -h b%)/2, and their normal intersections with both curves A and B establish a new set 

of point correspondences for A and B, leading to a new average curve. This whole process is 

iterated until the average curve does not change any more. The final set of correspondences can 

be used to find the local and overall shape deviation between A and B using any suitable metric.

A major drawback of the corresponding distances presented so far is that the shapes to be com­

pared must be of the same number of equidistant points. This condition may prove to be too hard 

for many applications in shape description, where shapes may vary in size and local point dis­

tance. A very related technique to the IGF algorithm which is independent of the lengths and 

point distances of the shapes is the concept of triangulation, used in computer graphics for ren­

dering purposes by connecting points into shortest vertex triangular patches [Ghristiansen and 

Sederberg, 1978]. After establishing an initial single-point correspondence similar to the IGF al­

gorithm, the remaining correspondences are found by finding the shortest connecting triangles:

distT(ai,bj) =  min(l|ai -  b j+ i||, ||ai+i -  hj\\) (2.47)

This distance measurement is not only more general than the iterated conditional points algorithm, 

but also faster as it needs only one bidirectional pass over the contours. Similar to IGF, it allows 

to measure local distances via the corresponding points, and to find a global, mean measurement 

for shape deviation when averaging the found local distances.

The IGF and triangulation distances solve the problem of finding point correspondences empir­

ically. A more generic way would be to take the structure of the shape into account in terms of 

either biological or pseudo-landmarks, or in terms of geometrically prominent features such as 

comers, points of high curvature etc. In the first case, the concept of thin-plate splines (section 

2.1.1.3.2) allows to measure the local deformation between two shapes by mapping each point of 

one shape into its homologous counterpart in the second shape, thus yielding an interpolated local 

distance measurement. However, a priori knowledge of the shapes under investigation or appro­

priate expert interaction is necessary in order to define a set of suitable landmarks for each shape
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(which is only a small subset of the shape). In the second case, shape features can be derived by 

extracting all points of sufficiently high curvature, for example, and finding the correspondences 

between these features only, followed by a suitable pairing of the remaining non-feature points.

2.5 Summary

This chapter has presented a survey on techniques for shape representation, description and 

distance-based comparison. Shape representation has been divided into three categories: local, 

global, and medial representation.

Local shape representation techniques, though not being able to provide access to overall shape 

properties like end-to-end length, width, or orientation, allow to compute a large number 

of local, global, and relative shape characteristics. The polygonal approximation and the 

spline representation are probably the most common ones, as they provide a compact ob­

ject representation, allow for complete shape reconstruction, and are able to approximate 

shapes with arbitrary accuracy via their explicit polynomial representation. Additionally, 

splines are smooth and continuous contour interpolants and can be analytically differenti­

ated.

Global shape representation techniques like Fourier descriptors and moments allow for the trun­

cation of details and allow to completely reconstruct a shape (but only if all descriptors 

or moments, respectively, are used). The truncation leads to a hierarchical representation 

through the extra degree of freedom, but leads to a global rather than local truncation of 

detail.

Medial representation techniques combine the properties of local and global techniques. They 

offer a hierarchical, structural way of representing a shape in terms of its subparts deter­

mined via the object width, and provide global (or rather multi-local) shape information 

while retaining spatial specificity. However, the extraction of a medial axis is a non-trivial 

task which outweighs its advantages.

Shape descriptors can also be categorized into local, global, and medial techniques. Additionally, 

relative measurements may be used.

Local shape descriptors are able to extract local spatial information such as the boundary curva­

ture or comers, and provide therefore important information for local shape interpretation. 

For example, the curvature can be used to detect and analyse local stmctural shape charac­

teristics.
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Global shape descriptors capture shape properties that carry over the entirety of the shape. Im­

portant global descriptors in medical image analysis are 2D measurements like area and 

perimeter, with volume and surface area as their respective counterparts in 3D. Compact­

ness and the fractal dimension allow to obtain a quantitative measurement for the roundness 

and ruggedness of a shape, and are therefore highly suitable as measures of shape complex­

ity. Bending energy and boundary straightness characterize the global structural deforma­

tion and elongation of an object.

Medial shape descriptors, which can be only extracted from a medial representation, include 

global shape properties such as shape orientation and elongation, as well as local measure­

ments like curvature or comers. Additionally, they give spatially-specific non-local mea­

surements like shape width, changes of width, and symmetric behaviour.

Relative (distance) measurements allow for inter- rather than intra shape description by finding 

the dissimilarity between different shapes. For example, the spatial deviation of two shapes 

in terms of their distance can be obtained locally on a point-to-point basis (using a Eu­

clidean metric), or globally, e.g. by measuring the mean or maximum deviation, or the 

worst mismatch via the Hausdorff distance. Additionally, medial distance measurements 

can be obtained by computing the distance of corresponding opposite boundary points. 

However, in order to perform appropriate distance or other dissimilarity measurements, a 

point correspondence needs to be set up which is a non-trivial problem (except for medial 

shape representation). An appropriate corresponding distance measurement is the distance 

obtained by triangulating the points of two shapes.

The following chapter will review the concept of multi-scale image processing, introducing an 

extra scale degree of freedom, including geometric image descriptors, and applications to multi­

scale contour and image processing and analysis techniques.



Chapter 3

Survey of Multi-Scale Image Processing

-  Tu REGARDERAS, LA NUIT, LES ÉTOILES. C ’EST TROP PETIT CHEZ MOI POUR QUE  

JE TE MONTRE OÙ SE TROUVE LA MIENNE. C ’ EST M IEUX COMME ÇA. M O N  ÉTOILE,

ÇA SERA POUR TOI UNE DES ÉTOILES. A L O R S , TOUTES LES ÉTOILES, TU AIM ERAS LES  

RE G AR DER.. .  EL LES SERONT TOUTES TES AMIES.

’’A N D  AT NIGHT YOU WILL LOOK UP AT THE STARS. W H E R E  I LIVE EVERYTHING IS 

SO SMALL THAT I CANNOT SHOW YOU WHERE MY STAR IS TO BE FOU ND. IT IS BET­

TER, LIKE THAT. M Y  STAR WILL JUST BE ONE OF THE STARS, FOR YO U. A N D  SO YOU  

WILL LOVE TO WATCH ALL THE STARS IN THE H E A V E N S.. .  THEY WILL ALL BE YOUR  

FR IE N D S.”

Le Petit Prince, Antoine de Saint-Exupéry.

Multi-scale image processing and analysis was first introduced by Marr [Marr, 1982] as a con­

cept in human vision. Scale-space, first represented by Witkin [Witkin, 1983], represents a sig­

nal or an image by a family of signals or images on various levels of inner spatial scale by sam­

pling with a neighbourhood operator or kernel which also allows to make differential measure­

ments. Hence local averaging allows to obtain derivatives on the discrete image grid where no 

infinitesimal limits exist. [Koenderink, 1984; Koenderink and van Doom, 1990] have shown 

that the sampling function to obtain the measurements should be the Gaussian kernel as the low­

est order, rescaling operator, and its linear partial derivatives. [Koenderink, 1984] also stated 

the scale-space causality principle, implying that coarser (or higher) scales can only be caused 

by what what happened at finer (or lower) scales. Moreover, Gaussian convolution does not 

enhance minima and maxima for increasing scales {maximum principle), and in ID  no new 

extrema are created for increasing scales [Babaud et a l, 1986]. In [ter Haar Romeny, 1996; 

ter Haar Romeny, 1997], a tutorial-like introduction to scale-space theory is given, and the main 

developments and applications will be reviewed in this chapter.

3.1 Linear Diffusion

In the continuous case, the normalized Gaussian kernel in n-dimensional space is
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where a  is the scale or width of the scaling operator. Convolving an image luminance function

L(x) =  L(x; 0) with a Gaussian kernel yields a smoothed version of the image,

L(x;cr) =  G(x;(j) 0 X(x) , (3.2)

where 0  denotes a convolution over image space. As implementations of scale-space are complex 

and very intensive in both memory and computing time, normally a fixed discretization of scale- 

space is made and the blurring is carried out in the Fourier domain followed by an inverse Fourier 

transform. In the Fourier domain, the kernel becomes diagonal:

C{uj;a) = C{u;) ' Ç{(jj-,a) (3.3)

The Gaussian kernel is the Green’s function (or propagator) of the homogeneous diffusion or heat 

equation; thus convolution of the luminance function L  with a Gaussian (or blurring) can be ex­

pressed as evolution under diffusion ([Koenderink and van Doom, 1990]), where the scale is ex­

pressed by a time parameter:

^  =  V • cVL with t  =  ^  (3.4)
at 2c

The constant conductance term c controls the rate of blurring with respect to time t. Again, the 

initial condition of the full solution L(x; t) for the continuous scale-space is given by L(x; 0) =  

L(x). Each time slice is a version of the original image after some amount of linear blurring. 

For discrete images, [Lindeberg, 1994] has shown that the necessary spatial blur kernels are 

modified Bessel functions (being fundamental solutions of a discrete version of equation (3.4)). 

For infinitesimal grid spacing, the solutions approach the continuous case and the modified Bessel 

functions approach the Gaussian kernel. Figure 3.1 shows samples of a linear scale-space for in­

creasing diffusion times.

3.1.1 Multi-Scale Differential Invariants

Using a scale-space representation of an image, local image structure can be revealed with the 

help of fundamental mathematical operations like differentiation. The Gaussian kernel and its 

linear partial derivatives permit to constmct multi-scale, orthogonal differential invariants with 

respect to changes of coordinate systems which allow for multi-scale shape measurements and 

descriptions of local image structure, [ter Haar Romeny et a/., 1991; ter Haar Romeny et al., 1993 ; 

Florack, 1993] have presented a hierarchical set of natural scaled differential operators which are 

true geometric image descriptors that resemble the receptive field profiles in the human front-end 

visual system. They propose a local jet of order N  (or AT-jet) defined as a class of functions of 

the image intensity L  sharing the same AT-truncated Taylor expansion at a given point x:

j'^ (L (x )) =  {£i,...i„(x)}JLo (3.5)
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Figure 3.1: Linear scale-space samples. Upper row: (a) ( =  2 (b) ( =  4 (c) t  =  8. Lower row: 
(d) t  =  16 (e) t  =  32 (f) t  =  64. The diffusion was carried out with the explicit scheme (see 
section 3.3.1), with a  =  0.8 as the regularizing scale and A t  =  0.25 as the numerical time step. 
The evolution tim es t  correspond to A t  • r ,  with r  =  8 ,1 6 ,3 2 , 64,128, 256 as the respective 
iteration steps.

where the lower subscripts o f L  range from I - - ■ D  and denote differentiation with respect to the 

associated spatial variables, D  is the dimensionality o f  L.  Restricting the N -je t to an orthonom ial 

basis yields a set o f independent or irreducible invariants which can express every image property. 

On the other hand, every image property being invariant to coordinate transform ations can be 

given a geom etric meaning. The complete hierarchy o f  higher order smoothed operators is thus 

given by

{G i,...i„(x;cr) =  (3.6)

In other words, any Cartesian partial derivative o f  order n  o f a rescaled image L (x ; cr) is obtained 

by convolving the original image L q ( x )  with the corresponding partial derivative o f  the zero-th 

order Gaussian G (x ;cr). Table 3.1 lists the complete set o f irreducible invariants in 2D,  which 

are illustrated at three different scales in figure 3.2. Single derivatives like Lx ,  however, rely by 

definition on the choice o f  the coordinate system. Tensor calculus can be used in order to describe 

the transform ation behaviour o f tensor components like Lx-  For example, rotating Lx  by an angle 

a  yields L'^ =  cosaL a, +  s in a L ^ . Thus Ly  must be added in order to obtain a two-com ponent
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%#

Figure 3.2: Scale-space samples for up to second order Euclidean irreducible set o f  differential 
invariants. From top to bottom: L i L i  (squared gradient). L a  (Laplacian), L i L i j L j  (no name), 
L i j L j i  (deviation from flatness), for (from left to right) evolution times t  =  4 ,8 ,6 4 , time step 
A t  =  0.25, a  =  0.8.

vector: {Lx^Ly) .  Important tensors are the Hessian,  which is in 2D  the set o f  all second order 

partial derivatives, and two constant tensors, one o f  which is the symmetric Kronecker tensor ôij, 

and the other is the Lévi-Civita tensor eij\

. _  . 1 i = j
“  I 0 otherwise ~

1 if  (z’l • - - i i))  is even permutation o f  1 - D
— 1 if  (Û • • • «d ) is odd permutation o f  1 • • • D

0 otherwise
(3 .7)
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Name Cartesian Manifest Gauge

Intensity L L L

Gradient^ L i  +  L^ LiLi L l

Laplacian LxX "F Lyy La Lyy Lyjyj

(no name) LxxLj. +  2LxyLxLy T LyyLy L iL ijL j LyjyjLyj

Deviation from flatness L lx  +  2-Lxy +  L^y L ijL ji t 2  I r2VV ' -̂ WW

Table 3.1: Set of irreducible, up to second order Euclidean image invariants in 2D. The invari­
ants are expressed in Cartesian, manifest invariant and gauge coordinates (Adapted from [ter 
Haar Romeny et al., 1993]). The manifest invariant notation follows the Einstein summation con­
vention, e.g. in 2D: LiLi = J2i=x,y and Lij = Ei=x,y ^j= x,y U j-

Given a set of tensors, an invariant is obtained by fully contracting and alternating the indices in 

a tensor product using the constant tensors 5 and e.

Beside the Cartesian and manifest tensor representation, invariants can be represented by gauge 

coordinates singling out a particular, geometrically meaningful frame and using derivatives along 

the axes. For example, choosing separately for each point of the image one axis (called w-axis) 

along the gradient direction at that particular point, and the other axis (called u-axis) tangentially 

along the isophote (contour of constant image values) which is orthogonal to the gradient direc­

tion, and applying directional derivative operators to the image will yield manifest invariants. For 

example, the isophote curvature k can be derived at point P{v =  0,w =  0) of the curve (at the 

same time the origin of the (u,w)-system) by k = w”{0). The isophote passing through P  is 

implicitly given by L  = Lp  whose first- and second-order derivatives with respect to v are given 

by

Ly -|- Lyjw' = 0 and Lyy H \-2LyyjW’ -|- Ly,y}W'‘̂ H" LyjW" =  0 (3.8)

Since Lv(0) =  0, w'(0) =  0 as well, thus ^isophote = Analogously, the flowline curva­

ture Kfiowiine (the orthogonal trajectories of the isophotes) is given by Kfiowiine = The

isophote curvature in 3D is expressed by two independent invariants, the principal curvatures. 

In 3D, where the gauge coordinates are a triple {u, v, w), the principal curvatures are given by 

and «2 =  and the mean curvature Kmean and Gaussian curvature Koaussian

are given by their average Kmean =  and product Kcaussian =  «i ' «2, respectively. In

manifest invariants, Kmean and Kcaussian are expressed as [Florack, 1993]:

1 L iL ijL j L iL iL jj
and K Q auss ian  — (3.9)

2 {LkLk)2 2 {LpLpY

It is important to note that isophote properties are invariant under more general transformations 

than coordinate transformations, e.g intensity transformations such as gamma-corrections, bright­

ness and contrast adjustments).
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Figure 3.3: Scale-space samples for second order differential invariants. From top to bottom: 
(isophote curvature), (flowline curvature), (com em ess), (umbilic-

ity), for (from left to right) evolution times t  =  4 ,8 ,6 4 , time step A r  =  0.25, a  =  Ü.8.

A list o f  some other 2 D  differential invariants (which can be obtained by combination o f  the irre­

ducible invariants) o f  the up to second order set in 2 D  is given in table 3.2 and examples are illus­

trated in figure 3.3. The most frequently used invariants perhaps are those related to the notion o f 

edges. The squared gradient magnitude, || V L |p  =  L i L i  =  L ^ , indicates the likeliness o f  a point 

presenting an edge (so-called “edgeness”), so edges can be found by looking for maxima o f this 

invariant (which forms the basis o f Canny edge-detector [Canny, 1987]). The zero-crossings o f  

the Laplacian, A L , are another edge-detector (and form the basis o f the M arr-Hildreth edge de-
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Name Cartesian Manifest Gauge

Isophote curvature

Flow-line curvature

Comemess

Umbilicity

2LxLyLxy—L^Lyy—LyLxx Li Lj Lij LiLiLjj _

_

LxjvL^

2Lw Liÿiu 
Lyy~\~L̂ ^

(Ll+LD^
Lx Ly{Lyy— Lxx)+Lxy{L^— L^)

{LkLk)^
1 LjLijLj—LiLjLjj

(Ll+LD^

L -̂Lyy — 2LxLyLxy + LyLxX

— 2{LxxLyy+Lly) 
Ll,+2Lly+Lly

 ̂ (LkLk)^

LiiLjLj Lij LjLj

^ij^klLikLji
LmnLnm

Table 3.2: Examples of 2D invariants obtained as combinations of irreducible invariants.

tector [Marr and Hildreth, 1980], though they describe edges only if the isophotes are sufficiently 

straight (thus comers cannot be reliably detected using this invariant). This can be clearly seen 

from the Laplacian’s manifest and gauge representation:

  L a    L y y  “ |-  L y i y j    L y i y i  K L - i (3.10)

The last equation follows by inserting the definition of the isophote curvature given above. Other 

important invariants are the second-order invariant called cornerness or comer strength LyyL"^, 

and the third-order bendedness LyyyL^ — ZLyyLyyyL^. Combinations of invariants are invari­

ants themselves. For example, [Lindeberg, 1993b] has proposed to multiply the curvature by the 

gradient magnitude raised to some power, m, a natural choice being m =  3, in order to give a 

stronger response near edges.

3.2 Non-linear Diffusion

Though linear smoothing greatly reduces the effect of random noise, it also “smoothes across 

edges”, an effect which may be quite unsatisfactory for the detection of boundary locations. 

Hence, several non-linear scale-space approaches have been developed in order to preserve edges 

or other interesting image features.

3.2.1 Edge-Affected and Multi-Scale Diffusion

Non-linear, edge-preserving diffusion has first been developed by [Perona and Malik, 1990]. 

They have proposed to use a variation on the heat equation which allows the conductance pa­

rameter to vary over space and time:

dt
= V • c{x.,t)VL (3.11)
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It is also referred to as variable heat conductance or edge-affected diffusion. Writing the conduc­

tance as a function of the image gradient yields

^  =  V -5 ( | |V L l |) V i .  (3.12)

The conductance g is here a bounded, positive, decreasing, non-linear function which affects 

equation (3,12) in limiting blurring near edges and increasing the gradient of sufficiently steep

edges of the original intensity function L. [Perona and Malik, 1990] have proposed two varia­

tions for the conductance:

g(||V L ||) =  e ^ ^  and 9(||VL||) = ------------------, (3.13)

The first function privileges high contrast edges over low contrast edges, and the second func­

tion privileges wider regions over smaller ones. The introduced free conductance parameter k 

reflects the range of gradients in the image or a chosen neighbourhood and thus controls the ef­

fect of a given gradient value. For very large k, equations (3.13) approach 1, which will result 

in linear diffusion. Thus k acts as a threshold for preserving or blurring edges, and can be ei­

ther manually adjusted, or derived from the noise estimator [Canny, 1987] by setting k to the 

90% value of the histogram of the absolute values of the gradient at each iteration. Figure 3.4 

shows samples using this scheme. The value of 90% is somewhat arbitrary, but usually provides 

good results. Smaller values lead to only little blurring, and higher values lead to smoothing over 

weaker borders. [Saint-Marc et a l, 1991] have fixed the number of iterations and have used k as 

a scale parameter, and [Simmons, 1992] has examined the rate of change of k which decreases 

in a pseudo-exponential manner over time, until it reaches a constant value and no further blur­

ring of the image occurs. This naturally leads to formulate fc as a function of evolution time, e.g. 

by continuously increasing k over time or varying k logarithmically. Alternatively, [Simmons, 

1992] has suggested to increment k when it falls below a fraction J of its initial value, reflecting 

its pseudo-exponential decay over time. [Yoo, 1996] has proposed to use normalized local co- 

variances as a basis for choosing local control parameters like the conductance parameter k in 

variable conductance diffusion processes, providing a statistically adaptive way to normalize the 

gradient with the expected local noise distribution.

[Alvarez et a l, 1992] and [Catté et a l, 1992] have pointed out that the method proposed by [Per­

ona and Malik, 1990] has two major drawbacks: For noisy images, very large oscillations of the 

gradient are introduced. These edges are kept throughout the non-linear diffusion process. Perona 

and Malik proposed to smooth the image with some low pass filter prior to the diffusion process, 

which nevertheless results in a non-adaptive filtering causing an unwanted loss of the edges’ ac­

curacy. The other drawback lies in equations (3.13) which do not guarantee the expression in 

equation (3.12) is nondecreasing, which might result in non-deterministic and unstable diffusion
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Figure 3.4: Edge-afFected scale samples: (a) f =  4 (b) t  =  8 (c) t  =  32, for time step A r  =  0.25, 
and k  derived from the absolute gradient histogram.

processes. [Catté e t  a l . ,  1992] therefore have proposed to replace the gradient o f  equation (3.12) 

by its estimate at time t  and the associated scale a :

= V -9 ( |V G ,® i | )V L (3.14)

where denotes linear Gaussian blurring at each step o f  the non-uniform diffusion process in 

order to obtain a reliable gradient estimate at each time step t .  Thus the necessity o f  sm ooth­

ing the image before the diffusion process vanishes, and the Gaussian kernel guarantees that the 

edge-affected diffusion is a monotonically decreasing process. Furthermore, to reflect increas­

ing confidence in the non-linear blurring process, [Whitaker, 1994b] has suggested a multi-scale 

diffusion technique which makes the scale used for the gradient measurem ent dependent on the 

time parameter. In particular, as gradient measurements should become more and more reliable 

during the diffusion process, the scale should be a decreasing function o f the evolution param eter 

t :

(3.15)

where a { t )  is called the s c a l e  r e c i p e .

3.2.2 Geometry-Limited and Multi-Valued Diffusion

[W hitaker and Pizer, 1993; W hitaker, 1993; Whitaker, 1994b; Whitaker, 1994a; W hitaker and 

Gerig, 1994] have extended the multi-scale diffusion process described above in order to account 

for higher-order properties. The concept o f non-linear diffusion is combined with geom etric local 

shape in order to diffuse according to higher-order information describing local image geometry. 

This is achieved by performing a diffusion with multiple image features, called m u l t i - v a l u e d  d i f ­

f u s i o n :

d ¥
=  ^  - 9{D cr'P)V ¥  (3 . 16)
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where F  is the feature space of the image, and D  is the dissimilarity operator, a generalized form 

of the gradient magnitude, a, chosen according to the evolution parameter t, is the scale for the 

linear diffusion process for making the dissimilarity measurements. The derivative of the feature 

space is given by a generalized Jacobian matrix of F. Thus, equation (3.16) is a system of separate 

single-valued diffusion processes for different image features, evolving simultaneously and shar­

ing a common conductance term. In order to choose an appropriate feature space, the truncated 

Taylor expansion given in equation (3.5) yields an appropriate set of partial image derivatives 

or differential invariants, respectively, which can be used for the geometry-limited diffusion pro­

cess. This allows to diffuse an image with respect to its geometric characteristics, given by edges, 

comers, high curvature points and other desirable image features.

[Arridge and Simmons, 1997] have extended this approach to perform probabilistic diffusion 

on multi-spectral images, incorporating spatial derivatives and Bayesian classification in image 

feature-space. The diffusion is either performed on the maximum a priori (MAP) from a Bayesian 

feature-space classification, or on its spatial gradient. Thus boundaries are enhanced which reflect 

objectness rather than intensity differences alone. Other feature-valued techniques include appli­

cations to colour filtering, where colour images are stored as a sequence of images [Sapiro and 

Ringach, 1996], e.g. in red-green-blue (rgb) space or in L*a*b* space which is an approximately 

uniform colour space.

3.2.3 Geometry-Driven Diffusion

A generalized framework for geometry-driven diffusion equations where a signal can be diffused 

according to a specific geometric feature has been developed in [Niessen et a l, 1997]. Again, 

the concept of non-linear diffusion is combined with geometric local shape in order to diffuse 

according to higher-order information describing local image geometry. In order to choose an 

appropriate feature space, natural scaled differential operators of the image are used to diffuse an 

image with respect to its geometric characteristics, given by edges, comers, high curvature points 

and other desirable image features. Geometry-driven diffusion techniques include the Euclidean 

shortening flow  which diffuses along the local image isophotes [Alvarez et a l, 1992; Catté et a l, 

1992], the affine shortening flow  [Sapiro and Tannenbaum, 1993] which additionally incorporates 

a gradient flow, modified affine shortening flow  [Niessen et a l, 1997] which is a combination of 

affine shortening flow and gradient flow, and entropy or reaction-diffusion [Kimia et a l, 1995] 

which is a combination of gradient flow and Euclidean shortening flow. Table 3.3 summarizes 

the most important schemes, and examples are shown in figure 3.5.
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Diffusion scheme Diffusion feature

Euclidean shortening flow [Alvarez et al, 1992; Catté et a l, 1992] üL - tdt — J-ivv

Affine shortening ffow [Sapiro and Tannenbaum, 1993] dL _  t \  r i  Qt — J-/vvJ-/w

Modified affine shortening ffow [Niessen et a l, 1997]

Entropy or reaction-diffusion [Kimia et a l, 1995] W  ~  II +

Table 3.3: Geometry-driven diffusion schemes.

3.2.4 Other Diffusion Schemes

The non-linear diffusion schemes presented so far rely on the differential structure of images. 

However, for some applications it may be desirable to incorporate higher-level knowledge into 

the actual diffusion process, which may be achieved by using the feature-based approach of sec­

tion 3.2.2. Such a knowledge-based diffusion can be based on various features, such as tempo­

ral information, velocity data, known approximate position and shape of objects in an image. 

[Sanchez-Ortiz et a l, 1996a; Sanchez-Ortiz et a l, 1997] have developed a multi-feature and 

multi-dimension non-linear diffusion technique for density and velocity encoded cine MR se­

quences of the left heart ventricle, incorporating shape and dynamics of the heart. In [Parker et 

a l, 1998], a non-linear approach to image noise reduction has been developed which performs 

median and Gaussian blurring weighted by the local image entropy.

A different non-linear diffusion approach is based on morphological diffusion. Using the concept 

of the structuring functions performing dilation and erosion, a multi-scale morphological scale- 

space can be computed. [Jackway and Deriche, 1996] have developed such a diffusion technique 

based on classic structuring elements like circles of increasing diameters. Normal or constant 

motion [Niessen et a l, 1997] is based on the gradient flow, resulting in morphological erosion or 

dilation depending on the sign of c,

—  = c\\Lyj\\ , (3.17)

an expression which can be obtained by setting /? =  0 for the entropy diffusion equation (see ta­

ble 3.3). Moreover, [Jackway and Deriche, 1996] and [Park and Lee, 1996] have shown indepen­

dently that ID  morphological scale-spaces satisfy the causality principle that no new features are 

generated for increasing scale levels, [van den Boumgard and Smeulders, 1994; Maragos, 1996] 

have formulated differential equations of morphological scale-spaces, and [van den Boumgard, 

1997] has formulated the concept of morphological deformation curves which are obtained by 

continuously deforming a shape and in the meantime measuring some geometric parameter, yield­

ing a measurement as a function o f deformation. [Bangham et a l, 1996a; Bangham et a l, 1996b; 

Harvey et a l, 1997] have developed a morphological scale-space called sieves which is equiva-
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7.

IP-

Figure 3.5: Geometry-driven scale samples. From top to bottom: Euclidean shortening flow, 
affine shortening flow, modified affine shortening, for entropy (reaction-diffusion), for (from  left 
to right) evolution times t =  3 .2 ,6 .4 ,12 .8 , time step A r  — 0.1, a  — 0.8, c =  0.5, a  =  0.1, 
/3=  1).

lent to placing a sieve o f increasing “hole” sizes over the image surface and cutting all peaks o f 

the surface which fit through the holes. Technically speaking, sieves present an im age as a graph 

r  w ith a set o f  edges describing the adjacency o f  the image pixels. The graph therefore defines 

the neighbourhood o f  a particular pixel x. Defining a region C „ ( r ;x )  = {rj e  C '„ ( r ) |x  G r]} 

over the graph that encloses x  yields the set o f  connected subsets o f  the graph with n  elem ents 

that contain x . Diffusion based on the concept o f  sieves is perfonued by increasing n  (the “holes”
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of the sieves) and alternating opening (w^) and closing (7„) operations which are defined by

a;„L(x) =  max m inL(u) and UnL(x.) — min m axL(u) (3.18) 
7,ec„(r;x) nev  ̂  ̂  ̂  ̂ ,?€C»(r;x) uGr,  ̂ ^

'Yn^n denotes then grey-scale opening followed by closing, and o;„7„ is defined vice versa. The 

advantage of sieves is their fast graph-based implementation and its ability to follow extremal 

image regions. Moreover, sieves do not introduce new extrema, something which can occur under 

linear diffusion for dimensions greater than 1 [Lifshitz and Pizer, 1990].

3.3 Scale-Space Issues

In order to investigate an image scale-space, several implementation-related issues need to be 

considered. First of all, the scale-space implementation can be performed via an implicit or ex­

plicit scheme, which will be presented in the following. Another important issue that will be ad­

dressed is the definition of scale-space differentiation and metrics.

3.3.1 Explicit and Implicit Implementation

In general, the evolution of the luminance function L  (the original image) is a mapping of the 

form (x, t) —> L(x, t), constrained by the evolution equation:

^  = (3,19)

in which F  is a function in terms of the local iV-jet. There are two main ways to perform 

a geometrically-driven or other diffusion processes. The explicit scale-space implementation 

scheme is based on Euler forward steps:

(3.20)

Thus the image at time to + A t can be derived by taking the image at time and adding the 

diffusion feature F  weighted by a time step A r for numerical stability. All of the linear and non­

linear schemes listed above can be implemented in this scheme.

The implicit scale-space implementation scheme needs a little more consideration. It has been 

noted by [Niessen et a l, 1997] that it is often difficult to find a rotationally invariant implicit 

scheme (for example, for the affine shortening flow no such scheme is feasible), but the linear 

and the edge-affected diffusion schemes can be implemented this way. Implicit scale-space im­

plementation is numerically more stable than the external scheme, and therefore larger time steps 

can be taken. In 2D, a 3D sparse (tridiagonal by blocks) matrix needs to be solved, for exam­

ple by using the alternating direction implicit method. In general, the implicit scheme has the 

following form:

L(x,fo +  A t ) -  L{x.,to)
A t

= F(Li,Lij, • • • ;fo +  Ar) (3.21)
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This implies that F  {Li, Lij, • • • ; to +  A r) needs already to be known for the diffusion step, as 

the right hand side of the equation as above is evaluated at time to +  A r rather than to. In con­

sequence, at each time step a set of linear equations needs to be solved.

3.3.2 Differentiation and Metrics

One property of a scale-space representation is that the amplitude of spatial derivatives gener­

ally decreases for increasing scales. This property can be derived from the maximum principle 

[Babaud et a l, 1986]. [ter Haar Romeny et a l, 1991; Florack et a l, 1992] therefore introduced 

the notion of normalized derivatives which are invariant with respect to rotation, translation and 

scaling (or rather zooming) in terms of normalized (dimensionless) coordinates x  and a natural 

scale parameter fr:

X =  — and à = In ^ with a  =  y/2t (3.22)

The natural scale parameter introduces a hidden scale e which carries the dimension of a length

and which allows to parameterize cr by a continuous quantity a  G (—oo; oo). Typically, only

positive integer values for à  are used (as negative values correspond to scales below the inner 

scale), and an equidistant natural scale sampling schedule is chosen. The normalized differential 

forms are then given by

=  and d à = ^  (3.23)
cr cr cr a

which reduces to
dx

dx =  —  and dfro =  0 (3.24)

for fixed-scale differential measurements. First-order dimensionless or normalized derivatives 

are then given by aoL-̂ .̂ for each spatial component x%, and second-order dimensionless deriva­

tives are consequently given by crgTx^x^. The gradient of L  is given by the vector VL =  [T%J, 

and the Hessian matrix of second derivatives of L is H  =  [Lx^xj ]- The Euclidean differential of 

L  is

dL =  y ;  Lx. dxi =  y ;  <roLx. — , (3.25)
O-Q

leading to the Euclidean scale-space gradient,

VL =  (<7oLxi,-'-,cro-I^x„) , (3.26)

and the Euclidean scale-space Hessian,

H =  [olLy^ij] . (3.27)

In general, the dimensionless spatial derivatives are given by the unnormalized spatial derivatives 

multiplied by the scale to the power of the order of differentiation. The underlying metric for
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natural coordinate and scale representation is Euclidean, which means that the natural distance 

between two points x i and X2 at a fixed scale ctq is given by the scale-space distance:

distsca/e-space(xi;X2;cro) ^  — — —  =  ||xi -  X2II (3.28)
O"0

An extension to this approach has been proposed by [Eberly, 1994a], who stated that the natural

coordinate representation is only translationally invariant if the scale is assumed to be fixed. For

multi-scale measurements, however, both spatial and scale differences are meaningful only in the 

context of the scale at which they are measured, which introduces the dimensionless spatial and 

scale differential forms

dx =  —  and dà = —  (3.29)
cr a

For a fixed scale ctq, these forms correspond to the natural ones given in equations (3.23) and 

(3.24), respectively. For a non-constant scale, however, this scale-space geometry becomes non- 

Euclidean, but hyperbolic and Riemannian. Let =  Xj for 1 <  i <  n and ^n+i ~  <7, the 

Euclidean gradient given by VL =  [L^J, and the Hessian given by H =  The differential

of L  is then:
n+l n 1 1

dL  — d^* =  <7Lxj — — , (3.30)
i = i  i = i  ^  ^

leading to the Riemannian scale-space gradient of L:

VL =  (o-Lxi,- • • , (3.31)

which reduces to equation (3.26) for fixed scales (since =  0). The Riemannian scale-space 

Hessian is consequently given by

H  =  (3.32)

The hyperbolic geometry or Riemannian metric of the scale-space suggests that the scale-space 

distance between two points(xi; cri) and (x2;ct2) which are located at possibly different scale 

levels with ai < ct2 , is to be computed along the geodesic curve connecting these points:

/  (72 (1 +  \ / l  — (p(Ti)^l
dist,c„ie-sp,„e((xi;<Ti); (x2,<T2)) =  log — 7--------= = = = = -----------------------r  (3 .33)

( l  +  V I -  -  Pl|xi -  X2II)

where
2 | |x i - X 2 ||

-  <̂2)̂  +  l|xi -  X2 |P(|xi -  X2IP +  -  ct|))

3.4 Applications in Contour and Image Analysis

(3.34)

The concept of scale-space has found many applications in shape description and image process­

ing, the main ones being multi-scale signal analysis, e.g. scale-spaces of binary contours, multi­

scale edge detection and segmentation, and multi-scale image feature detection and analysis.
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(a)

(c)

Figure 3.6: Samples of a linear contour scale-space. (a) square, (b) notched rectangle, (c) Koch 
curve (section 2.3.3), at scales cr =  16,32,64,128,256 (from left to right). Also compare to the 
Fourier truncation of the same shapes in figure 2.7 in the previous chapter, section 2.1.2.1.

3.4.1 Multi-Scale Contour Analysis

In order to examine binary contours in scale-space, several scale-based techniques have been de­

veloped in literature. Convolving a contour v(s) with a one-dimensional Gaussian function G at 

increasing levels of scale yields a set of evolved versions of the contour:

(3.35)

with

æ(s;cr) =  G(s;cr) (g) x(s) and y{s\cr) = G{s]cr) <Si y(s) (3.36)

Figure 3.6 illustrates a contour scale-space in terms of smoothed contour sequences. As can be 

seen, small or fine details of the contour disappear already at very low scales, while coarser shape 

characteristics are kept until larger scales. For very high scales, planar shapes eventually become 

circular and shrink to a point [Gage and Hamilton, 1986]. Comparing figure 3.6 to figure 2.7 in the 

previous chapter, section 2.1.2.1, makes also clear that similarly to the incomplete Fourier recon­

struction finer details (represented by higher frequency components) can be removed by smooth­

ing the shape with increasing scale levels. In contrast to the Fourier reconstruction, however, the 

higher frequency components are suppressed locally rather than globally, and the topology of the
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curve is maintained throughout the smoothing process. (Note however, that the topology is not 

always preserved for higher dimensions, as shapes embedded in an image may collapse, split or 

merge.) From this contour scale-space, [Witkin, 1983] has investigated the first few derivatives 

for general purpose qualitative shape description. In particular, the zero-crossings of a signal and 

its derivatives provide meaningful shape information, especially those of the second derivative 

(or the Laplacian of the signal) which denote extrema of the slope, i.e. points of inflection. Con­

sequently, the points of inflection of a ID  signal at all scale levels a  are given by

a^ss(s;o’) =  0 with 3:555(5; (j) ^  0 (3.37)

Tracking the zero-crossings over scales yields the so-called scale-space fingerprints [Witkin, 

1983]. Moreover, reducing the scale-space to a simple interval tree, the qualitative structure of 

the signal over all observed scales can be concisely described. Further properties of the finger­

print representation have been investigated by [Yuille and Poggio, 1986] who have shown that 

the only filter that does not introduce new zero-crossings for ID  signals at increasing scales is 

the Gaussian function.

In the previous chapter, section 2.2 it has been noted that local contour features can be derived 

from combinations of differential measurements in terms of partial derivatives. The same holds 

for multi-scale contour features, which extend this approach to a higher scale dimension. The 

partial nth order derivatives of a contour can be computed by convolving the signal with the nth 

order derivatives of the Gaussian, e.g.:

2:5(5; cr) =  ^ ( x ( s )  <S> G(s; cr)) =  x(s) (g) Gs(s; cr) (3.38)
^2

2:55(5; cr) =  ^ ( x ( s )  (g) G(s; cr)) =  x(s) (g  Gss(s; cr) (3.39)

and 2/5(5; cr), yss{s\cr) are computed analogously, leading to the first and second order contour 

derivatives Vs(s;cr) = (2:5(5; cr), 1/5(5; cr)) andVssi^lcr) = (2:55(5; <%), i/gX^; cr)), respectively. 

A multi-scale curvature representation can be obtained analogously to equation (2.29) defined in 

section 2.2:
a) ■ cr) -  y,{s-, a) ■ Xssjs; tx)

 ̂ <7)2+  y,(.;a)2)3/2  ̂  ̂ ^

Various researchers have developed multi-scale contour description techniques based on the dif­

ferential multi-scale contour properties. For example, the curvature primal sketch [Asada and 

Brady, 1986] defines a set of primitive curvature discontinuities, and then matches the multi-scale 

convolutions of the shape. Thus significant changes of curvature at various scales can be located 

and further investigated. Curvature changes that are only found at fine scales are less significant 

than those found or tracked across multiple scales, and are considered to be less geometrically 

significant. Several types of contour features like comers, smooth joins, ends, cranks, bumps or
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dents can be analysed by using curvature changes. This approach provides a method for syntacti­

cal shape representation and can also be used for shape reconstruction. Moreover, the invariance 

of scale-space curvature changes under affine transformations constitutes a scale-space signature 

of the contour, which is similar to the scale-space fingerprint.

[Mokhtarian and Mackworth, 1986; Mokhtarian and Mackworth, 1992] have presented a multi­

scale, curvature-based shape representation technique for planar curves similar to the scale-space 

fingerprint. A so-called curvature scale-space (CSS) image is computed by extracting the curva­

ture zero-crossings of the resulting curves until no further zero-crossings occur (until the curves 

become convex). The function implicitly defined by

«(s; cr) =  0 (3.41)

is the CSS of v(s,<7). To compute a renormalized curvature scale-space image, each evolved 

curve can be reparameterized by its normalized arc length parameter. Using increasing values 

for cr causes the convolved curve to shrink in direct proportion to the standard deviation. How­

ever, if the amount of movement is estimated at each point on the smoothed edges, and a vec­

tor is added to the location vector to compensate for that movement, the resulting smoothed 

curve is physically closer to the original curve. The curvature zero-crossings for all scales are 

marked in the CSS, which can then be used for scale-space tracking to determine the rate of 

change of curvature. For example, CSS-based applications include a silhouette-based shape 

recognition [Mokhtarian, 1995b; Mokhtarian, 1996], multi-scale occluded contour segmenta­

tion [Mokhtarian, 1997a], and shape indexing from large databases [Mokhtarian et a l, 1996; 

Abbasi et a l, 1997]. The convergence properties of the CSS have been studied in [Mokhtarian, 

1995a].

3.4.2 Multi-Scale Edge Detection and Segmentation

[Canny, 1987] has suggested as an optimal edge detector the located maxima of the gradient mag­

nitude of a Gaussian-smoothed image using different widths. This results in a fine-to-coarse in­

tegration of edge information at different scales. The following performance criteria need to be 

fulfilled by such an edge detector:

Good detection: All edge points or edgels should be located, and only those. This corresponds 

to maximizing the signal-to-noise ratio of the operator’s output.

Localization: The edgels should be as close as possible to the centre of the true edge.

Single response: Each edge should only yield a single response by the edge detector. This is 

implicitly covered by the good detection criterion, since if an edge is detected twice, one 

of the responses must be considered false.
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Different degrees of smoothing are therefore incorporated by smoothing the data adaptively on 

the signal-to-noise ratio.

[Bergholm, 1987] has extended Canny’s approach to edge detection by performing a coarse-to- 

fine tracking of edges leading to an edge focusing approach with high positional accuracy and 

good noise reduction. This naturally yields a hierarchical segmentation scheme. Care must be 

taken in the choice of the step length of the scale parameter, as edge elements should not move 

more than one spatial pixel per focusing step to allow for a stable edge following algorithm in 

scale-space. The key point of this technique is that the global shape of an object can be located at 

a high level of blurring without any disturbances due to noise and irrelevant image detail. Subse­

quently focusing down the edges surrounding that object allows to track down finer scale details 

of the object outline also at finer scales. [Sjoberg and Bergholm, 1988] have further investigated 

the displacement of the extracted edges due to blurring and labelled them as diffuse and non- 

diffuse.

There are only a few multi-scale segmentation techniques, which is partially due to the high com­

putational cost and amount of memory when constructing a scale-space. Moreover, they never 

perform a truly multi-scale, but rather a coarse-to-fine approach, as results of one scale are linked 

to the next lower scale in a hierarchical fashion. The hyperstack developed by [Koster, 1995; 

Vincken, 1995; Koster et a/., 1996; Vincken er a/., 1997] is a true multi-scale technique for image 

segmentation. It identifies the root of a segment at a high scale level, using a bottom-up linking 

process in which the scale-space levels are linked to another pixel-wise. This results in a tree 

of linkages in scale-space. For each segment in the image, such a tree is constructed and linked 

in a root labelling phase. This technique has been applied in medical imaging with linear and 

non-linear underlying scale-spaces [Vincken et a l, 1996]. An interesting characteristic of the 

hyperstack is that the so-called partial volume effect, caused by the limited resolution due to the 

acquisition method and leading to multiple object voxels (volumetric image pixels), is taken into 

account using a probabilistic approach.

3.4.3 M ulti-Scale Image Feature Detection and Analysis

Differential geometry in image processing in combination with a multi-scale image representation 

offers the possibility of detecting and analysing syntactical image structures. There are three main 

developments in this area, notably the multi-scale detection of blobs or circular structures, the 

multi-scale description of image structure, and multi-scale medial image analysis which will be 

briefly reviewed.
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3.4.3.1 Blob  Detection

The detection of circular, blob-like structures has recently attracted much interest in medical 

imaging, e.g. as a way to locate lesions due to Multiple Sclerosis in MR brain scans [Gerig et a l, 

1995]. [Lindeberg, 1993a; Lindeberg, 1994] has detected blobs by localizing normalized scale- 

space extrema of the normalized Laplacian (computed using scale-normalized derivatives as de­

scribed above). Displaying the scale variation of the absolute value of the normalized Laplacian 

at each image point yields the scale-space signatures of

||VLm ^(x,,r)|| =  |k^V^L(x,<7)|| (3.42)

with a maximum response at the scale oq corresponding to the local characteristic object width. 

Using local directional statistics, ellipse-like structures in all orientations can be recovered from 

the image. The multi-scale medialness measurement which will be presented in more detail in 

section 3.4.3.3 below is also able to detect circular shapes, where again the size of the circle cor­

responds to the scale at which the scale-space extremum is detected. [Gerig et a l, 1995] have 

taken a slightly different approach for blob detection. They have suggested to use a non-linear 

scale-space computed as a Euclidean shortening flow, in which local extrema in the spatial do­

main are detected, corresponding to isophote level curve singularities. These singularities are 

subsequently tracked down in the non-linear scale-space, taking a priori knowledge like image 

contrast, expected blob size, and the standard deviation of the singularity location (radial symme­

try) into account. The main problem with this otherwise very elegant approach is that the tracking 

of the singularities sometimes yields unconnected traces.

3.4.3.2 Multi-Scale Description o f Image Structure

Multi-scale differential image invariants as formulated by [Florack, 1993] provide a powerful ap­

proach for investigating the differential structure of an image, leading to the notion of a continuum 

of structures on an interval of scales {deep image structure), and at a single scale only {superfi­

cial image structure). A causal hierarchy can be observed as finer structures determine coarser 

structures (but not vice versa). [Florack, 1993] distinguishes between the fu ll differential image 

structure (given by the local N-jet), and subclasses of image structure, namely image isophotes, 

which do not change under arbitrary, invertible intensity transformations. Many classical image 

operators, such as the Marr-Hildreth edge detector or Canny’s edge detector, are embedded into 

the framework of image invariants, which provide meaningful input for higher-level image pro­

cessing tasks.

Ridges (and their dual, creases) provide another powerful image analysis tool, combining edge- 

based and region-based methods. [Eberly et a l, 1993; Eberly, 1994a; Eberly, 1996] have pre­

sented various geometric techniques for ridge detection and analysis, including height ridges
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Figure 3.7: Ridge measures o f  the image intensity, (a) Binary ridges o f the intensity, (b) Binary 
creases o f  the intensity, (c) Fuzzy ridgeness o f  the intensity (where ridges have high values and 
creases have low values). The image used throughout this chapter was blurred at scale <j =  4.

which are computed via local extrema o f e.g. the image intensity function. More specifically, 

ridge points o f  a function /  are defined as local maxima o f /  along the direction o f  the greatest 

principal curvature o f / .  Computing for an ATT)-dimensional function the eigenvalues ||A i|| >

• • • >  ||An|| o f  the Hessian matrix H  o f second derivatives (see section 3.3.2) and their corre­

sponding eigenvectors e i • • • e„ , a point is defined to be on an m -dim ensional ridge, m  <  n , if  

for all i <  n  — m

Ai <  0 and e{ • V /  =  0 (3.43)

[Eberly and Pizer, 1994] have extended this ridge definition for hierarchical image segm enta­

tion by computing ridges o f image scale-spaces (using the Riemannian scale-space Hessian), and 

segm enting each level o f the scale-space by decomposing the ridges into curvilinear segments, 

followed by labelling and constructing a region for each ridge segment based on a ridge flow 

model. Figures 3.7 (a) and (b) show the extracted ridges and creases o f the image intensity, re­

spectively, for an intermediate scale level cr =  4. A fuzzy (non-binary) ridgeness m easure for 

m edical image registration has been suggested by [van den Elsen gf a/., 1995; Maintz e ra /., 1996a; 

M aintz, 1996]. Their measurement is based on the operator which represents the second or­

der derivative in the direction perpendicular to the local gradient direction. They have extended 

this measurem ent to 3Z> which is non-trivial as in 3D  the v  direction, being perpendicular to the 

gradient, needs another constraint to be properly defined [Maintz et al., 1996b]. Other fuzzy rid­

geness measurements include the negated isophote curvature ( L w f L y j ) ,  and the more general 

operator L y y L ~ ^ .  The negated Lyy /Ly ,  image is illustrated in figure 3.3, and the Lyy image for 

scale (7 =  4 is shown in figure 3.7(c).

R elated to ridges are watersheds (point loci dividing image areas that drain to different minima 

and watercourses (the converse to watersheds), which together divide the image into dales (areas
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(a) (b)

Figure 3.8: (a) Multi-scale medial axis shown in scale-space. Height indicates the object width 
as a function o f  axis position, (b) Individual boundary-sensitive directional operators combine to 
produce a medial response.

that drain to the same minim um ) and hills (analogous areas for maxima). W atershed transforms 

o f the image gradient have become very popular as a multi-scale, morphological segmentation 

tool [Jackway, 1996; Choy and Jin, 1996; Najman and Schmitt, 1996; Maes e t  a i ,  1995], pro­

viding a generic and accurate image decomposition method. However, it has also been observed 

that they tend to over-segment the image, leading to the necessity o f  grouping regions in a hierar­

chical segmentation process or a m i n i m u m  d e s c r i p t i o n  l e n g t h  (M DL) criterion which selectively 

merges neighbouring regions such that the total boundary length is reduced while the relevant 

object regions are maintained.

[Griffin, 1995; Griffin and Colchester, 1994; Griffin and Colchester, 1995] have extensively in­

vestigated the superficial and deep structure o f the image surface in tenns o f  inter-relationships o f 

image isophotes and their dual, the flowlines, as well as critical points and s é p a r a t r i c e s  in linear 

scale-spaces. Regarding the image intensity as height above a plane, séparatrices o f  two cate­

gories are defined: those running u p h i l l  from isophote saddle points to intensity maxim a, and 

those running downhill from saddle points to intensity minima. M apping all séparatrices onto 

the image planes divides the image into d i s t r i c t s .  [Griffin and Colchester, 1995] have identified 

séparatrices as a superset to watersheds and watercourses: from each saddle, there are two sép­

aratrices running uphill, which as a pair form a watershed if  they separate two drainage basins. 

Otherwise they are v i r t u a l  s é p a r a t r i c e s .  An analogous virtual definition applies to downhill sépa­

ratrices. This frameworks provides a generic platform for multi-scale image description and inter­

scale linkage segmentation, e.g. for the tracking o f  hierarchical partitions across scales and link­

ing them into a m u l t i - s c a l e  n - a r y  h i e r a r c h y  based on constraint-guided correspondences [Griffin, 

1995].



3.4. Applications in Contour and Image Analysis 78

3.4.3.3 Multi-Scale Medial Axis (Cores)

An important approach to representing the structural shape of a region is to reduce it to its me­

dial axis as presented in section 2.1.3. A recent development is a new type of medial axis called 

multi-scale medial axis (MMA) or core, originally presented by [Burbeck and Pizer, 1994], with 

extensions by [Eberly, 1994b; Morse, 1994; Fritsch, 1994]. The MMA is computed by measure­

ments taken at multiple scales, particularly scales proportional to the object width. The idea of 

this approach is to describe object boundaries at multiple scales by pairing corresponding sides 

of the boundary. This concept is illustrated in figure 3.8(a). Fuzzy boundary measures are used 

to compute fuzzy medial measures, and medial axis points are identified as height ridges in this 

fuzzy medial space. Therefore the fuzzy nature of the image is retained until the highest level pos­

sible, which avoids the loss of information at an early stage. The extraction of cores is performed 

in two steps:

Boundariness and Medialness Measurement:

After computing a linear image scale-space, the boundariness or boundary-like behaviour 

of each point with respect to the scale is determined by applying a simple boundary function 

B, e.g. B(x; cr) = crVL(x; cr). Then the medialness of each pixel with respect to specific 

object widths is derived by letting each boundariness measurement vote for possible medi­

alness in a manner similar to the Hough transform(see section 2.1.2.3). Alternatively, the 

normalized Laplacian can be used. Points are medial with respect to a certain half-width r 

if there are at least two boundary points at distance r  from that point. Consequently, the me­

dial response M{ x a , r) is related to the amount of boundary response for the set of points 

{ x g } o n a  circle of radius r centred at x^  (see figure 3.8(b)). Additionally, M (x a , r) de­

pends on the directional response for all points on the circle in direction xg  — x^i. The 

integrated directional response along the points of the circle yields the medial response, 

which is the basis for the multi-scale Hough-like medial axis transform (HMAT):

M{xA, r )  = I B ( x a  — ru]U’,a )d u  (3.44)
J u

where C  is the unit circle, and u are the points on that circle. The half-width r can be related 

to scale by

r = k ' a  or, in practice, r = k • a  — c , (3.45)

where fc is a proportionality factor and c is a small constant.

Analysis of Medial Response Space

The second step is to examine the medial response space to identify the ridge points which 

define the object core. The ridge points are found by computing the Riemannian scale- 

space Hessian matrix of second derivatives and its eigenvectors and sorted eigenvalues as
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described above. If the n — 1 largest eigenvalues for any pixel are negative, a ray is pro­

jected through the point in direction of that eigenvector until it intersects a face of the cube 

formed by the neighbours of the point. The face’s value is then interpolated by using the 

neighbours’ values and compared to the value of the interpolating neighbouring point.

Cores were originally developed for symmetry detection and medical image registration. Recent 

applications of cores in medical imaging include stimulated cores [Fritsch et a l, 1995], shape- 

based segmentation and description [Lepard and Robb, 1996], and scale-space boundary evolu­

tion [McAuliffe et a l, 1996]. These applications are all based on the boundary at the scale o f  

the core (BASOC) which is obtained by back-projecting the core to the shape boundary in scale- 

space using equation (3.45), thus providing a multi-scale boundary representation which can be 

refined using standard segmentation methodologies.

3.5 Summary

This chapter has presented a survey on multi-scale image processing techniques. It has been di­

vided into the concepts of linear and non-linear image scale-spaces, geometrically meaningful 

multi-scale differential invariants, scale-related issues concerning implementation, differentia­

tion and metrics, and applications in image processing.

Linear scale-space theory and its associated multi-scale differential invariants are powerful tools 

for geometric image interpretation. While suppressing noise and spurious image features, 

the global spatial relationship of image pixels at any desired detail can be described. Non­

linear diffusion eliminates some of the problems caused by linear smoothing, as it allows 

to preserve edges and high curvature parts of an image even at higher scales, while simul­

taneously smoothing homogeneous regions. This concept provides a very useful platform 

for image interpretation and segmentation, extending the image dimensionality to an extra 

scale degree of freedom.

Besides spatial convolution and multiplication in the Fourier domain, scale-spaces can be com­

puted via finite differencing, and implicit and explicit diffusion. The latter is often the pre­

ferred technique, as it allows to diffuse an image with respect to a large variety of geometric 

image features based on differential invariants. When performing computations on an im­

age scale-space, either a Euclidean setting (for a constant scale) or a Riemannian setting 

(for varying scale) has to be taken into account before performing differential or spatial 

measurements.

Applications of multi-scale techniques can be divided into contour and image methods:
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Multi-scale contour representation and analysis has the advantage over higher dimen­

sional multi-scale techniques that no new extrema are created for increasing scales. 

Valuable multi-scale contour-based techniques are scale-space fingerprints of the 

Laplacian zero-crossings of a contour, and their curvature counterpart, the curva­

ture scale-space (CSS) image. Both representations establish a hierarchical shape 

representation, which can be further explored at each scale level: Differential mea­

surements of a multi-scale contour representation allow for local scale-based contour 

shape description (e.g. in terms of points of inflection and comers), global multi-scale 

shape measurements (e.g. the change of perimeter over scale), and relative distance 

measurements in scale-space. To constmct a contour scale-space, however, the con­

tour must be available at its zero scale.

Multi-scale image representation and analysis have their main application in feature de­

tection (in terms of scale-space extrema) and segmentation. Coarse-to-fine segmen­

tation strategies allow to focus objects in an image robustly down by tracking features 

across scales. These approaches use a hierarchical image representation, but discard 

all but the final results obtained at the lowest scale level. In contrast, true multi-scale 

segmentation techniques allow to obtain an object representation at varying scale lev­

els by reducing the image scale-space to its most meaningful spatial and scale loca­

tions, like the hyperstack, the multi-scale n-ary hierarchy, and techniques based on 

the BASOC. The latter is also very interesting in terms of shape description, as it is 

derived from the core representation of an object which is a multi-scale medial shape 

representation. Cores, however, are computationally expensive to compute, and suf­

fer from ridge linkage problems.

Integrating multi-scale image processing techniques into the shape extraction or segmentation 

process allows to construct a shape hierarchy in scale-space. This dissertation follows this idea 

by integrating multi-scale differential invariants into a recently developed powerful segmentation 

tool: active contour models. The following chapter introduces the theory of active contours, fol­

lowed by chapter 6 which presents a multi-scale active contour model for segmentation and shape 

description as a novel approach of this dissertation.



Chapter 4

Survey of Active Contour Models (Snakes)

-  Q u e l l e  e s t  c e t t e  h i s t o i r e - l à !  T u  p a r l e s  m a i n t e n a n t  a v e c  l e s  s e r p e n t s !

’’W h a t  d o e s  t h i s  m e a n ? W h y  a r e  y o u  t a l k i n g  w i t h  s n a k e s ? ”

Le Petit Prince, Antoine de Saint-Exupéry.

Active contour models, first introduced by Kass, Witkin and Terzopoulos [Kass et a l, 1987b; 

Kass et a l, 1987a], represent a special form of the more general multi-dimensional deformable 

model developed by [Terzopoulos, 1986a; Terzopoulos, 1986b]. Active contour models are of­

ten referred to as the classic snake or deformable contour model. They are energy-minimizing 

splines guided by internal shape forces, external constraint forces, and external image forces like 

edges that pull them towards images features during an optimization process. They dynamically 

segment an image by locking onto nearby edges and localizing them accurately. Applications of 

active contour models include line and edge detection, detection of subjective contours, motion 

tracking, stereo matching, and interactive interpretation of image scenes with user-imposed con­

straints, in the areas of computer vision, computer graphics, computer-aided geometric design, 

and more recently in computer-assisted medical image analysis. An extensive survey of current 

research in this area is given in [Mclnemey and Terzopoulos, 1996; Terzopoulos, 1996].

The key point of active contour models is the design and optimization of a suitable energy func­

tion whose local minima comprise a set of alternative solutions which can be based on a priori 

knowledge of the approximate shape, size, location, and motion of the object under investigation, 

or on a user-defined initial estimate. In lack of such a mechanism, interactive approaches like the 

snake pit [Kass et a l, 1987b] can be used, providing an interactive mechanism for defining push­

ing and pulling forces in the image scene via spring and volcano forces. The classic model is 

based on a spline with controlled continuity [Terzopoulos, 1986b], providing piecewise smooth­

ness constraints as internal spline forces and thus regularizing the deformation of the model in 

terms of its elasticity and bending. The representation of the classic active contour model, how­

ever, is not spline-based during the deformation process, but only for the final interpolation of the 

result. The image forces push the model towards salient image features such as lines or edges.
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and the external constraint forces are responsible for pulling the model near a desired local energy 

minimum using appropriate user interaction, automatic attentional mechanisms, or high-level in­

terpretation. During a following optimization process which was originally formulated within a 

Euler-Lagrangian setting for the classic model, the internal, and external image and constraint 

forces are adjusted by higher level processes to find the desired local optimum causing a suitable 

deformation of the active contour model. Scale-space continuation, as presented in [Witkin, 1983; 

Witkin et a l, 1987], can be incorporated into the deformation process in order to enlarge the cap­

ture region of image features, and to perform a coarse-to-fine tracking of image features.

In the following, the theoretical framework for the classic active contour model as well as its 

recent developments in terms of the representation, design of an energy function and different 

optimization techniques will be briefly summarized.

4.1 Representation

An active contour model is based on a parameterized contour v(g), but is normally represented by 

a discrete set of points or snaxels{\i, • • •, v„}, with v* =  {xi,yi). Closed contours are obtained 

by making the contour periodic, e.g. by setting v (0) =  v (l)  in the parametric form or v i =  v„+i 

in the discrete form. Each snaxel has two neighbours (in the closed case), and otherwise at least 

one neighbour. An energy function is formulated to obtain an estimate of the quality of the model 

in terms of its internal (autonomous) shape, and external forces, e.g. underlying image forces 

and user-constraint forces. The energy function integrates a weighted linear combination of the 

internal and external forces over the spline contour:
1

^  ~  J T" Sconstraint{'^{^)}) ds, (41)
0

This energy function can also be regarded as the compromise between internal and external con­

tour shape quality. Moving the snaxels leads to a change in energy, which transforms the segmen­

tation problem into an optimization task. The continuous energy function S  is usually discretized 

by replacing the integrals by summation, leading to a discrete energy function S*.

Extending an active contour model to a three-dimensional active surface model is straightforward, 

yet computationally complex. An active surface which is parameterized by (5 , r), with arc length 

parameters s e  [0; 1], r G [0; 1], can be represented as v(s, r) = {{x{s, r), y{s, r), z{s, r)) with 

coordinate functions x, y, z, and the energy function is given by 
1 1

^snake ^  J  J  (^internal r)) +  Simagei^^is, v)) -f Sconstraint{^{s, r))) da d r , (4.2)
0 0

This dissertation concentrates on 2D models, and briefly discusses the main developments of 3D 

models in section 4.4.4.
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4.2 Energy Function

The classic formulations of internal, and external image and constraint forces as well as more 

recent formulations and developments will be summarized in the following.

4.2.1 Internal Energy Terms

^internal represents the internal energy of the contour with respect to elastic deformations and the 

bending of the snake:

^internaliy{.^y) ^elasticityi^) ^ e l a s t i c i t y ^ b e n d i n g i . ^ )  ^bendingiyi.^)^

~  ^elasticityi^) ll^s(^)ll (^ b e n d in g ll^ss(^)ll • (4*3)

The first order derivative term, Vg(s), makes the snake behave like a membrane and represents 

the elastic energy of the contour, and the second order derivative term, Vgg(s), makes the snake 

act like a thin plate and represents the contour’s bending energy. Decreasing aeiastidty allows 

the contour to develop gaps, while increasing aeiastidty increases the tension of the model by 

reducing its length. Decreasing abending allows the active contour model to develop comers, and 

increasing abending increases the bending rigidity, making the model smoother and less flexible. 

Setting either of the weighting coefficients to zero permits first and second order discontinuities, 

respectively.

Both [Kass et a l, 1987b] and [Amini et a l, 1990] have suggested to approximate the derivatives 

in equation (4.3) by finite differences. The first order elasticity term then becomes

^dastidtyiyi) -  | |v i - V i _ i f

=  {xi — X i- iŸ  +  {yi — V i-iŸ  (4.4)

This elasticity term minimizes the distance between the snake points, causing the active contour 

model to shrink during the optimization process in absence of appropriate external image or con­

straint forces. Analogously, the second order term minimizing the bending of the active contour 

model can be discretely approximated by

^bendingiyi) ~  ~  2v* -f- V i + i f

= {x i-i — 2x{ -h X i ^ i f  +  {Vi-i — 2i/i +  Vi+iŸ (4.5)

[Williams and Shah, 1992] have pointed out that equation (4.4) is made under the assumption that 

the snaxels of the active contour model are evenly spaced. As this might not be always the case, 

they have proposed to subtract the continuity term from the average distance ||d|| of the snaxels, 

as otherwise the energy expression will be larger for points which are farther apart. This hard 

constraint forces the points to be more evenly spaced, and avoids a possible contraction of the
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Current vertex v .

Vertex projected onto base plane centroid

GDM faces
Base face or plane

Maximum dimension of base plane (D)

Figure 4.1: Local topology constraint of a solid model cut out of a GDM. The ratio between the 
distance d between current vertex and the centroid of its neighbours, and the maximum dimension 
D  of the base plane gives an estimate of the local vertex curvature.

snake:

^elasticityi^i) ~  ^ l) {.Ui 2/i—l)  ̂ (4-6)

Alternatively to the backward difference, a forward difference ||v* — Vj+i|p or a centred differ­

ence can be taken. Moreover, they have argued that the discrete approximation of

the quantity ||vgg|| =  y/x^{s) -t- u^{s) only measures the curvature if the active contour model 

is arc length parameterized, otherwise it is given by

'\xiÿi -  XiÿiW
(4.7)( i f  +  ^1)3/2

as presented in section 2.3. Besides the discrete bending approximations of equations (4.5) and

(4.7) Williams and Shah have investigated three more curvature measurements: The mathemat­

ical formulation of curvature given by equation (2.25) defines curvature as the rate of change of 

the angle 6 of the curve tangent. This measurement depends linearly on the angle AO between 

the vectors Uj =  Vj — v^_i and u^+i =  — v*. Thus, a discrete approximation of bending

energy can be obtained by 

2
d^V
d J with =  and A s =A s /  Vlluill | |u i+ i ||/  2

(4.8)

A computationally more efficient way is to compute ||u%+i — which reflects the difference 

of direction between two contour arcs as well as their difference in length. Finally, the two vec­

tors can be normalized which removes the length differential, making the measurement solely 

dependent on the direction information. The bending energy is computed as (u%+i/||u%+i|| —

u,7 u,: % a concept which has also been adopted in [Lobregt and Viergever, 1995].

Finally, [Miller et a l, 1991] have developed an internal topological constraint term for their ge- 

ometrically deformed model (GDM) whose concept will be explained later in section 4.4.1. This
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constraint term enforces surface continuity and hence topological integrity, endangered by in­

complete object boundaries and noise. Vertices are associated with the contour points, which are 

connected to their neighbours with edges (see figure 4.1). Measuring the distance between each 

vertex v% and the centroid of the base plane formed by its neighbours, and computing the ratio be­

tween this distance and the maximum dimension of the base plane gives an estimate of the local 

vertex curvature:

where m  is the number of neighbours V j, of the current point. This topology constraint is scale 

invariant and enforces the vertex to move onto the plane formed by its neighbours, defaulting to a 

spherical mesh in absence of other constraints. Note that this topology measurement is formulated 

for a higher dimensional model, e.g. a surface model, but it can also be applied to a contour model 

(which reduces the neighbours of v% to v*_i and Vj+i).

4.2.2 Image Energy Terms

The external image energy term Simage represents the energy due to image forces like lines, edges 

and terminations of line segments and comers. In [Kass et al., 1987b], the following image terms 

are suggested, consisting of a weighted sum of the terms

^ i m a g e ( ^ ( ^ ) )  ~  ^ l i n e ( ^ ) ^ l i n e ( ^ ( ^ ) )  T T Q;term( )̂ t̂erm(v(s)) (4.10)

The simplest useful image functional is the image intensity or luminance function L. In the dis­

crete case,

^/me(Vi) ^  T (v i )  , (4.11)

attracting the active contour model either to dark or to light lines depending on the sign of the 

weighting coefficient The simplest, discrete edge functional can be used by setting

£edge(-^i) =  - | | V L ( v < ) f  , (4.12)

where the negative sign produces low energy values for high gradient values. Squaring the gradi­

ent narrows the edge response. In order to find terminations of line segments and comers, [Kass 

et al, 1987b] have proposed to use the curvature of level lines in a slightly smoothed image, cor­

responding to the isophote image curvature presented in chapter 3. Let L{a) = (8) L be a

slightly smoothed version of the image, and let 9i = tan~^{Ly(-Vi) /  Lx{'Vi)) be the gradient an­

gle at snaxels v%, and let T* =  (cos 6i, sin9i) and Nj =  (—sin^*,cos^J be the unit normal 

and tangent vectors to the image isophotes at the snaxel. Then the discrete curvature of the level 

contours in L  can be written as

sr / \ ^
d T i
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a^L {-v i)/aT l
a L (v i) /a N i

2 L ^ { V i ) L y { V i ) L ^ y { V i )  -  L l { V i ) L y y { V i )  -  L l { v i ) L ^ x { v i )

(L i(vi) +  L2(v i))l

By combining Egdge and Eterm, the snake is attracted to edges or terminations. However, as the 

isophote image curvature is a signed measurement of the bending behaviour, an absolute value 

should rather be chosen for Eterm- As an alternative to the line functional, [Miller et a l, 1991] 

have used a simple event detector such as a discrete weighted threshold operator of the image 

intensity:
f 0 ifL (v i)<  threshold

=  < (4.14)
y L{vi) — threshold otherwise

Finally, [Cohen and Cohen, 1993] have suggested to use the distance transform of the zero-

crossings of the Laplacian A L  as an edge potential.

4.2.3 External Constraint Terms

The classic snake model incorporates user constraints, allowing the user to attach springs between 

points of the contour and fixed positions in the image plane:

^springiy^i) ~  ^springiyi (4.15)

This term attracts contour point v* to a point x  in the plane, with aspring as the spring constant. 

Depending on the sign of aspring, the active contour model is attracted by the spring or repelled, 

in which case the reverse effect of a volcano force takes place. In [Kass et a l, 1987b], a similar 

constraint force for matching stereo contour models has been suggested:

Sstereoi^f'^) = Otstereo(^i ~  , (4.16)

where and represent the left and right contours of a stereo pair, which couples the left 

and the right snake and enforces the disparity to vary slowly along the contour. Additionally, a 

balloon or inflation force as presented by [Cohen, 1990; Cohen, 1995] can be used to expand or

contract the active contour model in lack of other forces until it is locked:

^ballooni^i) — ^balloon^i ; (4.17)

where is a normal unitary vector at v%, enforcing an expansion of the contour point in direction 

of its normal. The weighting factor a^aiioon for the balloon force should be chosen slightly smaller 

than the weighting factors for the other energy terms in order to allow the active contour model to 

stop in the presence of these forces. For coefficients of the same order, for example, weak edges 

will be surpassed, while strong edges will stop the expansion of the model. If abaiioon changes 

its sign, the effect will be deflation instead of inflation.
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4.2.4 Region Constraint Terms

The classic active contour model is based only on the boundary characteristics of a shape, dis­

regarding the enclosed region pixels. Several approaches have been developed to constrain the 

model’s shape to its enclosed region homogeneity, the most important being statistical snakes 

or active region models by [Ivins and Porrill, 1993b; Ivins and Porrill, 1994b; Ivins and Porrill, 

1994a] who also have also presented an extensive overview about existing active contour model 

techniques [Ivins and Porrill, 1993a]. Active region models start from a user-defined homoge­

neous seed region (or template region) whose mean /x and variance cr are computed, and then 

grows with the help of an inflation or pressure force until it encounters pixels whose intensities 

change the variance of the region’s intensity significantly. The discrete pressure force is defined 

by:

=  n, , (4.18)

where k is the constant defining the significance of a change in variance, and the pressure force is 

normalized by the scaling term [ka ^ . This scheme is equivalent to weighting the balloon force 

by the mean pixel intensity at each boundary pixel. A similar approach has been developed by 

[Bascle and Deriche, 1995], who have proposed to use a normalized correlation criterion, mea­

suring the differences of grey-levels in the current region and a template region. An alternative 

approach has been developed by [Poon et a l, 1994a; Poon et a l, 1994b] who have suggested to 

incorporate a total region energy term into the energy functional by the use of a discriminant func­

tion Dregion based on the intra-region variance and a region-related constraint Hregion imposed 

by the user. [Chakraborty and Duncan, 1995; Chakraborty et a l, 1996] have integrated region 

homogeneity information into a deformable model using a Bayesian framework, and [Zhu and 

Yuille, 1996] have a developed a region competition algorithm combining aspects of statistical 

region growing and balloon models.

4.2.5 Combinations of Internal and Image Energy Terms

The classic active contour model strictly distinguishes between internal, autonomous contour 

forces, and external image and other constraint forces, making the contour model intrinsically 

non-adaptive with respect to the underlying image data. This leads to several problems: for ex­

ample, incorporating the contour curvature term into the energy functional enforces a minimiza­

tion of the contour curvature which might not always be desirable for objects having parts of high 

curvature. Choosing adaptive weighting parameters, aeiastidty {s) and abending{s), which model 

adequate material densities along the contour v(s), seems to be the appropriate solution to this 

problem, yet introduces even more complex problems regarding the derivation of such parame­

ters. Several researchers have therefore suggested to relate the elasticity and curvature properties 

o f the contour to the underlying differential image structure.
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[Cohen and Cohen, 1993] have used local implicit expressions for the material densities depend­

ing on the intrinsic metric (the inverse contour curvature) as well as on first and second order 

variations of the image gradient potential along the model. The optimal elasticity and bending 

densities are obtained by minimizing the segmentation error, defined for a given precision p 

as the residual (|| V L |p -p )^ . In order to obtain these densities, the energy of the model is mini­

mized using constant material densities aeiasticityo,<^bendingo, and then the model is refined with 

the optimal values. The material densities are therefore always of same magnitude order as the 

edge potential.

[Rougon and Prêteux, 1993a; Rougon and Prêteux, 1993b] have reviewed previously developed 

bending densities, such as (in the continuous case)

(4.19)

aieniingi^) =  I|2^P > (420)

and
^bendingo

{l + \\VL{-v{s)W)‘

where the bending weighting coefficient in equation (4.19) is purely geometric and data- 

independent, with abending{s) approaching 0 for high curvature points, and a constant value 

abendingo whenever the tangent of the contour varies slowly. The bending coefficient in equation 

(4.20) is data-dependent, approaching 0 at high image gradient magnitude values, and abendingo 

in homogeneous image areas [Samadani, 1991].

[Williams and Shah, 1992] have suggested a combination of these two schemes, by adjusting the 

bending weighting term abending{s) with respect to the local bending energy value Sbending{'^{s)) 

and the local gradient magnitude ||VT,(v(a))||. If these values exceed the predefined thresholds 

thresbending and thresmagnitude, Oibending{s) is set to zero for the next iteration, providing a 

higher level feedback to the energy optimization process and preventing the formation of comers 

until the contour is sufficiently close to an edge.

Starting from these methods, [Rougon, 1993] has investigated the intrinsic geometric differential 

properties of deformable models, and [Rougon and Prêteux, 1993b] have extended this approach 

by introducing oriented anisotropic adaptive constraints relating the differential properties of the 

internal constraints of the model to those of the underlying image intensity. Using appropriate, 

image related weighting tensors results in weakening the internal constraints within image regions 

where the image surface becomes non-stationary, and inhibiting them in case of discontinuities 

of the image surface. The continuous formulation of the internal energy term is

Sintern{^{s)) = /  v 'f {s)WiVs{s)ds F  /  vJg{s)W2Vss{s)ds (4.21)
Jo Jo

with weighting tensors W i and W 2 for the elasticity and bending constraints, respectively. W i is
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t(s),

k„N(s)

N(s)
Contour

n(s)

^  Isointensity contour 

Contour
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Figure 4.2: Geometric interpretation of elasticity and bending constraints, adapted from [Rougon 
and Prêteux, 1993b]. (a) The quantity kt{s) o f the contour tangent vector along the normal N (s) 
of an iso-intensity contour is minimized, (b) The component kgGi, o f the vector kn  within the 
tangent plane TL is minimized along the principal direction T i of the intensity surface.

given by

^ l(^ )  — ^ e l a s t i c i t y — Otelasticityi^^^ ( ^2
LxLy

(4.22)

aligning the normal 11(5) of the contour v(s) to the normal N (s) of the underlying image 

isophotes, depending on first-order partial derivatives of the image intensity L  evaluated at v(s). 

W 2 is defined as

^yy +  ^xy ~Lxy{Lxx +  Lyy) ^

~Lxy{LxX +  Lyy)
^^2(5) — (̂ bending — OCbendingî )

L x x  4 -  L ^ y

(4.23)

which is based on the squared Hessian matrix of second derivatives H . This tensor enforces align­

ment of the contour normal n(s) to the minimum and maximum principal directions of the image, 

which are determined by the unit tangent of the contour t(g), and the unit normal N  (5) of the im­

age isophotes and the geodesic normal vector G(s) to the contour, where G (s) =  N(a) A t(s). 

This relates curvature properties along the contour with curvature properties in L. Figure 4.2 il­

lustrates this concept. This approach satisfies three important conditions: consistency (first-order 

metric contour properties are related to first-order partial derivatives of the image, and second- 

order curvature contour properties are related to curvature properties of the image, expressed by 

second-order partial derivatives), positive definiteness (the tensors W i and W 2 are constrained 

to be quadratic with respect to first- and second-order partial derivatives of the image, respec­

tively), and rigid invariance (the internal energy terms are invariant with respect to coordinate 

transformations). Note that this adaptive constraint scheme is made under the assumption that 

the contour is parameterized by arc length, and that the classic active contour model is obtained 

from this framework by multiplying the parameters aeiastidtyM  and abending{s) with the two- 

dimensional identity matrix I.
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4.2.6 Scale-Space Incorporation

For the classic model it was suggested to incorporate scale-space continuity into the image en­

ergy functional in order to enlarge the capture region o f image features. Spatially smooth­

ing of the edge or line energy terms enables the active contour model to come to equilibrium

on a very blurry energy functional, thus getting attracted to very distant and prominent edges. 

By slowly reducing the blurring, similar to Bergholm’s edge-focusing approach presented in 

the previous chapter, section 3.4.2, a finer adjustment of the active contour model can be ob­

tained. This is equivalent to minimization by scale continuation as proposed in [Witkin, 1983; 

Witkin et a l, 1987]. Following the Marr-Hildreth theory o f edge detection [Man* and Hildreth, 

1980], the Laplacian-of-Gaussian can be chosen as an appropriate, discrete edge term [Kass et 

al, 1987b]:

^edgei^i) = (j) (g) A L(vi))^ (4.24)

where G is the Gaussian function with standard deviation a. As minima of the smoothed image 

gradient G (g) VL lie on zero-crossings of G 0  A L, using this term as an edge functional results 

in attracting the active contour model to zero-crossings.

4.3 Optimization

Active contour models are active because the minimization of its energy functional causes the 

model to change dynamically. The slithering movement o f the contour during the minimization 

process is the reason why they are also called snakes. The deformation of the active contour is 

controlled by an optimization or energy minimization process. In the following, the classic op­

timization technique and other energy minimizing techniques applied for active contour models 

are presented.

4.3.1 Variational Approach

The classic model is embedded in a Euler-Lagrangian setting, using variational calculus in or­

der to derive a differential equation solved by an iterative minimization technique using sparse 

matrix methods. Each iteration performs implicit Euler forward steps with respect to the internal 

energy, and explicit Euler steps with respect to the external image and constraint energy terms, 

yielding a semi-implicit method which allows to travel the entire length of the model in a single 

G(n) iteration. The minimization process remains stable in the presence of very large internal 

forces, but in the presence of large external and image forces, small time steps must be taken. Let 

^extern =  ^image+ Sccmstraint- The contour which minimizes the total snake energy must satisfy 

the following two independent Euler-Lagrange equations:

O i e l a s t i c Ü y { s ) X s s { s )  +  OLb e nd i ng {s ) xs ss s { s )  +  ^  Q
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0^elasticity{s)yss{s) + Oibending{s)yssss{s) +  =  0 (4.25)

The internal energy terms are discretely approximated as in equations (4.4) and (4.5). Let 

fx{s) = dSextern{'^(s))Idx and fy(s) = dSextern('^{s))Idy which is discretely approximated 

by fx(i) = dSextern(^i)Idxi and fy(i) = dSextemi^i)Idyi unless analytical derivatives exist. 

The corresponding Euler equations are

e la stic ity iiy i ~  l )  e l a s t i c i t y i + 1  ~  ^ i )  T

^ b e n d in g i- \iy  i—2 2 V j_ i +  Vj) —

2 OLbendingi{'^i-l ~  2v^ +  V^+i) +

Q̂ ftendmgi+i (Vi — 2v%+i +  Vj+2) +

/zW  +  /y(2) =  0 (4.26)

These equations can be written in matrix form as

A • X +  fx(x,y) =  0

A - y +  fy(x ,y) =  0 (4.27)

where A is a pentadiagonal banded matrix. To solve equations (4.27) by successive over­

relaxation, the right hand side of the equations is set to the product of a step size 7 and the nega­

tive time derivative of the left hand sides. Assuming that fx and fy are constant during one time

step cuts down the computational cost of otherwise changing A  every iteration. Thus the Euler 

method is explicit with respect to the external forces, but implicit for the internal forces as they 

are completely specified by the banded matrix. The resulting equations for evaluating the time 

derivative at time {t) rather than at time (i — 1) are

A • x<‘) +  f* =  - 7  (x<‘) -  x C - 'l)

A • y<‘) +  fy (x(‘- i) ,y ( ‘- i ) )  =  - 7  (y(‘) -  yC '^)) (4.28)

At equilibrium, the time derivative vanishes and the Euler equations (4.27) are solved. Equations 

(4.28) can then be solved by matrix inversion:

xC) =  ( A +  7 ! )“  ̂ • - f ,

y<‘) =  (A +  7 I ) - '  ■ (y(‘-^) - f y  (x(‘-^>,y<*-i))) (4.29)

As the matrix A -1- 7I is also a pentadiagonal banded matrix, its inverse can be computed in 0 (n ) 

time. However, this variational approach does not guarantee global optimality of the solution, 

and requires estimates of higher order derivatives of the discrete data. Moreover, hard constraints 

(which are a restriction on the range ofv(g) or its derivatives) cannot be directly enforced, unless
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the constraints are diflferentiable, in which case higher dimensional spaces are required for more 

unknowns. Given a desired constraint term like a mean or minimum snaxel spacing, it can only 

be enforced by increasing the associated weighting term, which will force more effect on this 

constraint, but on the cost of other terms. Another disadvantage of the variational approach in 

the context of active contour models is the numerical instability with respect to the explicit part 

of the Euler forward step, and the tendency for points to bunch up on a strong portion of an edge.

4.3.2 Dynamic Programming

[Amini et a l, 1990] have proposed dynamic programming (DP) as an approach to solving varia­

tional problems in vision with a special application to energy-minimizing active contour models. 

In contrast to the Euler-Lagrangian setting presented in the previous section, their approach al­

lows to enforce hard constraints on the behaviour of the solution directly and naturally, ensuring 

a globally optimal solution with respect to the search space, and numerical stability by moving 

the contour points on a discrete grid without any approximization requirements. However, their 

method is rather slow and they have large memory requirements of 0{nm ?) and time complex­

ity of 0{nm ^), where n is the number of points on the contour and m  is the number of potential 

locations to which every point can move during one optimization step (often referred to as neigh­

bourhood size). The optimization problem is viewed as a discrete multi-stage decision process 

and is solved by a time-delayed discrete dynamic programming algorithm. Dynamic program­

ming bypasses local minima as it is embedding the minimization problem in a family of related 

problems. This is achieved by replacing the minimization of the total energy measure by the prob­

lem of minimizing a function of the form

^(vi,V 2,-*-,V n) =  ^l(vi,V2,V3) +^2(v2,V3,V4) H ^ n -2(v „ -2, V„_i, V„) (4.30)

where each variable is allowed to take only m  possible values and

l(v j—15 Vj, Vj_j_i) =  ^ i n t e r n i y T* Sexterniyi) (4.31)

with

^mtern ( Vj—1, Vj, Vj-|-i) =  ^elasticity iy  "b ^6endznp(Vi—1, Vj, Vj-|_i) (4.32)

where Seiastidty and Spending are computed as in equations (4.4) and (4.5). In order to apply dy­

namic programming to equation (4.31 ), a two element vector of state variables, ( Vj+i, v*), is fixed 

and a recurrent optimal value function based on two adjacent points is formulated:

V%) min iSj—1 (vi, Vj_x) -f- l ,  v^, Vj+i) -f S e x t e r n i y î )  (4.33)

Apart from the energy matrix corresponding to the optimal value function Si, a position matrix 

is also needed so the value of v* minimizing equation (4.33) can be stored. The optimal contour
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Figure 4.3: Greedy optimization and local neighbourhood search. The energy function is evalu­
ated at v f  and each of its eight neighbours, using the points and for computing
the internal terms. The location with the lowest energy is chosen to be the new position v .

of minimum energy Smin{s) can be found by backtracking in the position matrix, with

(4.34)

This process is iterated until the total energy does not change significantly any longer, where one 

iteration consists of a forward pass, deriving the minimal energy values of each v*, and a back­

ward path, finding the minimum energy path in the position matrix. With dynamic programming, 

hard constraints limit the set of potential solutions and reduce the computational complexity and 

cost. The concept of dynamic programming for solving variational problems has been extended 

to two dimensions in [Amini et al., 1995b; Amini et a i, 1995a].

4.3.3 Greedy Algorithm

The greedy algorithm developed by [Williams and Shah, 1992] is a very stable, fast and flexible 

optimization technique for active contour models. It allows to incorporate hard constraints as de­

scribed in [Amini et a l, 1990], while having a much lower computational complexity of 0{nm )  

for a contour of n  points which are allowed to move in a neighbourhood of size m. Unlike dy­

namic programming, this algorithm does not guarantee to find the global minimum within its 

search space, but has proven to be a good and efficient optimization technique. The key point 

of this algorithm is the approximation of the first-order energy term as given in equation (4.6) 

enforcing even point spacing, and the different curvature measurements as discussed above (sec­

tion 4.2.1). Additionally, several normalization and reparameterization strategies are employed, 

including the local normalization of the energy values with respect to the local search space, and 

adjustment of the weighting parameter abending {s) with respect to a bending and gradient mag­

nitude threshold (section 4.2.5).

Figure 4.3 illustrates the local neighbourhood search of the greedy algorithm. The energy function 

for the current location of and each of its neighbours is computed under consideration of 

the adjacent contour points and . The location with the smallest energy value is chosen

as the new position . Note that vj^^ has already been updated to its new position in the current
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iteration over the contour, while will be updated next. In the first stage of the algorithm, 

all contour points are sequentially updated within one iteration. In the second stage the forming 

of comers is determined by recomputing the bending energy terms with the updated points, and 

adjusting the weighting parameter a^endinpi for each contour point accordingly.

This otherwise very efficient and straight forward technique introduces several problematic issues 

regarding the sequentiality of the optimization, and the choice of appropriate thresholds, weight­

ing adjustments for comer formations, and normalization strategies, none of which can be easily 

resolved. However, a change of the energy functional does not directly affect the optimization 

strategy, which makes this algorithm a very flexible and efficient local optimization technique 

for problem-oriented tasks. Modifications of this algorithm will be presented in chapter 6 of this 

dissertation.

4.3.4 Stochastic and Probabilistic Relaxation

Simulated annealing (SA) is a stochastic relaxation technique which is based on the physical pro­

cess of annealing a metal: At high temperatures the atoms are randomly distributed. With de­

creasing temperatures they arrange themselves in a crystalline state minimizing their energy. This 

model has been successfully used for global optimization purposes [Geman and Geman, 1984]. 

For active contours, the associated energy functional can be optimized similarly: Assuming that 

the position of a contour control point depends only on itself and its direct neighbouring control 

points, the active contour model can be regarded as a ID  Markov random field (MRF). The SA 

algorithm generates new configurations of the contour points in a defined neighbourhood sam­

pling from a Gibbs probability distribution of the MRF given by

P {X  =  w) =  , (4.35)

where Z{T)  is a normalization factor and T is a control parameter, called temperature, which 

influences the form of the probability distribution. New configurations are accepted with a certain 

acceptance probability H{T)  depending on the temperature:

g (T )  =  e - T  (4.36)

Since increases of energy can be accepted, the algorithm is able to escape local energy minima. 

[Geman and Geman, 1984] have shown that the algorithm converges to a global energy minimum, 

if the temperature at iteration k is

where c is a constant. Active contour optimization using Simulated Annealing as a Bayesian ap­

proach has been first presented by [Rueckert, 1993; Toennies and Rueckert, 1994]. Addition­

ally, SA has been applied to active contour models in [Storvik, 1994; Grzeszczuk and Levin,
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1994]. It has been pointed out in [Rueckert and Burger, 1995a] that stochastic relaxation op­

timization techniques like SA make high computational demands. Iterated conditional modes 

(ICM) [Besag, 1986] is a probabilistic relaxation technique which makes deterministic instead 

of random changes by maximizing the conditional probability based on a provisional estimate 

V.  For active contours, each control point can be replaced by a point in a defined neigh­

bourhood by maximizing the conditional probability of w*. Modelling the active contour as a 

ID  MRF, the probability f(w ;|v ) is again given by the Gibbs distribution (equation (4.35)). 

ICM is equivalent to SA with instantaneous freezing and therefore converges much faster. In 

contrast to SA, the contour optimized by ICM depends on the initial estimate and is there­

fore a local optimization technique rather than a global one. In [Rueckert and Burger, 1995b; 

Rueckert et a l, 1997], SA and ICM have been combined for the optimization of active contours 

by segmenting only the first time frame of a set of cine MR images using SA, and propagating the 

result to the next slice. As the initial estimate for the next slice is sufficiently close to the global 

minimum, optimization using ICM is used, the result of which is copied to the next slice. This 

process is repeated until all slices are segmented.

4.4 Other Models

A vast diversity of active contour models has been developed in recent years. Apart from the clas­

sic snake model presented in [Kass et a l, 1987b], and its main derivations in [Amini et a l, 1990; 

Williams and Shah, 1992; Cohen, 1990; Cohen, 1995] which have been described above, some 

other models will be briefly reviewed in the following. They can be categorized as geometrically 

deformable (or deformed) models, shape-based models, spline-based models, level set models, 

and extensions to 3D. Other approaches, including deformable templates, exist, but are beyond 

the scope of this survey.

4.4.1 Geometrically Deformed Models

Geometrically deformed (or deformable) models, called GDMs, have been originally developed 

by [Miller et a l, 1991]. GDMs can be viewed as a semi-permeable balloon placed within an ob­

ject, reaching its boundary by a local, geometry-driven relaxation mechanism. The balloon is 

actually a collection of discrete polygons or a polygonal mesh which ensures that the data is sam­

pled only at the vertices of the polygon. Permeability is needed to make irrelevant image features 

and noise pass through the model without blocking it. Similar to the classic active contour model, 

the vertices are evaluated using an associated cost function which is minimized during the expan­

sion of the polygonal mesh. The cost function is a linear combination of a balloon mechanism, 

an image threshold and a topological constraint:

^balloon^ballooniy^i) ^threshold^thresholdiy^i^ T OifopgiogySfopologyi^i  ̂ 5 (4.38)



4.4. Other Models 96

where the single energy terms have already been presented earlier in this chapter in equations 

(4.17), (4.14), and (4.9), respectively. The optimization of this energy functional is performed 

locally, following a steepest descent algorithm by moving each vertex v* of the model in opposite 

direction of the direction of the gradient of the energy function. Each relaxation step is followed 

by a global sampling step which adds new vertices between the existing ones. Alternating relax­

ation and sampling yields a high-resolution, accurate model of the object under investigation.

The concept of GDMs has been extended in [Rueckert, 1993] to global energy optimization us­

ing Simulated Annealing. In [Bulpitt and Efford, 1994; Bulpitt and EfFord, 1995], a local mesh 

refinement is performed in order to obtain a model with self-optimizing topology. Both ap­

proaches combine the deformation term and the sub-sampling process of the GDM with energy 

terms of the classic active contour model. Finally, in [Lobregt and Viergever, 1995], an extension 

of the cost function is suggested, incorporating a velocity and acceleration force of the vertices in 

order to describe the dynamic state of each vertex along with its position. As the model may os­

cillate instead of coming to an effective standstill, a weighted damping force is introduced which 

is proportional to the velocity. Additionally, a constant mass is associated with each vertex, al­

lowing to model a physical solid. This model therefore belongs to the class of dynamic contour 

models, of which the classic active contour model is a special case.

4.4.2 Shape-Based Models

All of the models described above are not able to incorporate any specific prior knowledge of the 

object shape. Shape-based models are a statistical tool based on a linear point distribution model 

(PDM) originally developed by [Cootes et a l, 1992b]. PDMs are defined via a training set of N  

shapes, which are example shapes for the object under investigation. Each shape is described by 

n  landmark points. Aligning the set of shapes Vj  =  {{{xn^yn),  • • •, ((rri„, 2/in)}^ to the mean 

shape V ,  which is calculated by

■v =  4 l ] v j ,  (4.39)
 ̂ t=l

allows to analyse the differences from the mean shape using principal component analysis, where

for each aligned shape vector v* a vector dv% =  -  v  is computed. Calculating the 2n x 2n

covariance matrix S by
1 ^

S =  — ^  d v id v j  (4.40)
i=i

yields the modes of variation of the training data described by the unit eigenvectors Pk^ k = 

1 "  2n, of S such that

Spjfe =  XkPk (4.41)

where Ajfe is the fc-th eigenvalue ofS and Ajb >  A^+i, and p^PA; =  1. The resulting model consists 

of the mean shape v, and the subset of t eigenvectors corresponding to the t  largest eigenvalues
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which correspond to the most significant modes of variation in the training data. Most of the vari­

ation can be explained by a rather small number of modes t < 2 n  which can be chosen such that 

the sum of their variances explain a sufficiently large proportion of the shape variability Ay. Any 

shape of the training set can be approximated by the mean shape and a weighted sum of the first t 

modes, v  =  v + P b , where P  =  (p i,P 2, "  ' ,P() is the matrix obtained from the first t eigenvec­

tors, and b  =  (61, 62, ' ' " is the vector of weights for each eigenvector. Varying the linearly 

independent parameters 6* allows to generate new examples of the shape in a shape-constraint 

fashion. This linear PDM forms the basis of active shape models developed by [Cootes and Tay­

lor, 1992; Cootes et a l, 1995]. It allows to make an initial guess in terms of the shape, position, 

orientation and scaling of the object. The deformation of the PDM provides a powerful technique 

for refinement of objects of any shape, given an appropriate training set. Optimization is per­

formed by applying genetic algorithms (GA) [Goldberg, 1989], which generate new populations 

or generations of solutions at each optimization step, using genetic operators such as crossover be­

tween existing solutions, as well as mutation in order to escape from local minima. Extensions of 

this model have been developed by [Baumberg and Hogg, 1995], whose eigenshape model can 

incorporate arbitrary numbers of landmark points using a parametric spline representation, and 

by [Heap and Hogg, 1995] who have developed a hybrid cartesian-polar PDM which allows for 

accurate modelling of non-linear bending and pivotal deformations. Statistical models based on 

PDMs have been successfully used for segmentation as well as for deformation analysis in medi­

cal imaging by comparing the shape under investigation with the training set [Cootes et a l, 1993; 

Ruff et a l, 1996]. It should be noted that in contrast to the classic active contour model, statisti­

cal models do not operate on a local basis, as the deformation which is performed by varying the 

weights of the eigenvectors affects the model globally. Another problematic aspect of statistical 

models is that there might not be sufficient training data available for a specific problem, or that 

one special case varies too much from the training data (as might be the case for medical data of 

an abnormal).

4.4.3 Spline-Based Models

A discrete contour representation of an active contour model has, despite its computational 

efficiency and speed, two major disadvantages: first, the numerical internal derivatives have to be 

approximated discretely via finite differences, leading to numerical instability and lack of preci­

sion. Second, the discrete nature of the model implies that there is no knowledge about the shape 

between contour points, leading to a lack of robustness. Using a spline representation as pre­

sented in chapter 2, section 2.1.1.3, allows to calculate derivatives analytically and to interpolate 

between contour points (in this case, spline control points) with any desired precision. However, 

there are only few examples of spline-based active contour models, most of which only use the
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interpolated spline contour to obtain a smoothly interpolated resulting contour and to control the 

contour resolution. In the following, an overview of spline-based deformable models is given:

The classic active contour model by [Kass et a i, 1987b] incorporates a controlled continuity 

spline as a generalization of a so-called Tikonov stabilizer. However, the optimization tech­

nique is based on a sparse matrix, formulating a discrete, fmite-difference setting for the 

model.

[Menet et al., 1990b; Menet et al., 1990a; Saint-Marc et al., 1993] have developed a model called 

B-snakes based on parametric B-splines. The contour control point are formulated as a 

set of control vertices, where moving one of the vertices results in only local changes of 

the contour. The model optimization is performed in two stages: first, the energy of the 

vertices is discretely minimized using a gradient descent approach. Then the final model 

is obtained by performing a least-square fit of the data by the B-spline, using the ana­

lytic spline derivatives. This approach has been modified by [Bascle and Deriche, 1992; 

Bascle and Deriche, 1993] who first perform a least square fit of the data in form of ex­

tracted edgels, averaging the intensity gradient along the B-spline contour, and then refine 

the obtained contour using a steepest descent optimization technique.

In [Cipolla and Blake, 1992; Cham and Cipolla, 1996], B-spline active contours for real-time 

tracking are used for curve fitting for chains of extracted edgels obtained from an edge de­

tection and linking algorithm. The internal forces are only implicitly defined by a simple 

differential system (the variables of which are the B-spline control points), as the spline 

regularization is regarded as intrinsic. The B-spline active contour is used as a tool for 

least square regression fitting of extracted edgels. In [LeGoualher et a l, 1996], a similar 

snake-spline model, originally developed in [Leitner et a l, 1990], is used whose internal 

energy is again only implicitly defined by the B-spline representation, and which is opti­

mized in a discrete time evolution process, similar to the variational approach used in [Kass 

et a l, 1987b]. A three-stage B-spline model has been presented recently by [Wang et a l, 

1996], which has also only implicitly defined smoothness constraints. After a coarse local 

adjustment stage, the spline control points are redistributed according to the local spline 

curvature in the second stage. In the final stage, a global fine-tuning is performed, which 

also handles insertion of additional knots at comers.

[Amini et a l, 1995b] have introduced so-called DP B-snakes for representing tag lines in radial 

and SPAMM tagged MRI, where the B-spline control points represent the junction of ver­

tical and horizontal tags, yielding a sparse data representation, as only few control points 

are needed to represent the whole grid, while achieving sub-pixel accuracy for tag detec­
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tion over time. Dynamic programming (DP) is used for the global, yet discrete control point 

optimization.

Finally, [Rueckert and Burger, 1995a] have presented an adaptive spline model based on Over- 

hauser polynomial splines and the concept of GDMs. The vertices of the GDM are mod­

elled as interpolated spline control points, and optimization is carried out by minimizing 

the definite integrals of the internal spline elasticity and bending, while interpolating im­

age forces and other constraints along the spline contour.

Only the last of these spline-based approaches uses the interpolating nature of the spline for the 

optimization of the model (yet allowing no internal constraints to be included), while the other 

approaches use the spline only for a least square fitting of discrete edgels, or perform a discrete 

optimization on the spline control points, and computing the internal spline forces either analyt­

ically or considering them as intrinsic.

4.4.4 3D  Deformable Models

The first volumetric model was developed as a polygonal mesh by [Miller et a l.,\99 \\. [Cohen et 

al., 1992; Cohen and Cohen, 1993; Mclnemey and Terzopoulos, 1995a] have developed analytic 

active surfaces based on finite elements and a thin plate under tension surface spline, control­

ling the stretching and bending of the surface (see chapter 2, section 2.1.1.3.2). [Sclaroff, 1995; 

Nastar and Ayache, 1994] have developed physics-based models on a modal basis (see section 

4.4.2). Parametric surface models for geometric matching and shape description based on a 

Fourier representation have been developed by [Staib and Duncan, 1992; Brechbühler et a l,

1995] (see chapter 2, section 2.1.2.1 for details on Fourier representations and descriptors). Other 

work on 3D deformable models can be found in [Delingette et a l, 1992; Bardinet et a l, 1996b; 

Bardinet et a l, 1996a], and the following section presents implicitly defined surface models.

4.4.5 Implicit and Topological Models

All the models presented so far rely on an explicit shape representation, relying on a close ini­

tialization and not being able to handle topological changes easily. Reparameterization and user 

interaction are often necessary which leads to numerical instability and inaccuracy. As an alter­

native, a topological snake model and several implicit approaches have been developed recently, 

acting directly on the grey-level curves and surfaces contained in the image.

[Whitaker, 1994a; Whitaker and Chen, 1994] have introduced the concept of implicit volumetric 

deformable models or active blobs which are described by the level sets (sets of isophotes) 

of the image for visualizing and segmenting volumetric data. Simultaneously, [Caselles et 

a l, 1993; Malladi et a l, 1995; Malladi et a l, 1996; Caselles é ta l,  1997] have developed a
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very similar geometric level set model. Level set models are based on an image scale-space 

and an implicitly defined multi-scale energy functional. They are based on their intrinsic 

geometry and are derived by embedding them as levels sets of a ZD scalar function F  : 

^  9% evolving over time, hence removing the parameterization needed for the active 

surface model in section 4.1:

dF  /  V F  \
- ^  =  V /  IIVFII div ( ^ i i ^ j  +  IIVFII (4.42)

with initial condition F (0 ,x ) =  -Fb(x)- Equation (4.42) acts on level sets of the im­

age, treating each set as an individual surface under evolution of its own constraints, 

div j  is the sum of the two principle curvatures of the level sets of F  (and twice 

the mean curvature), and / i s  a scalar field function defined over the range of the model 

representing image features of interest (in particular edges). The term cor­

responds to an image feature force, with V f  acting as a stopping criterion, which must be 

zero for the surface to stop (e.g. in the event of edges). The sign of aimage determines 

whether the surface is to propagate inwards or outwards, causing a balloon-like deflation 

or inflation of the model. The main advantage of level set methods is that they can incor­

porate scale continuation (in a similar fashion as presented in chapter 3, section 3.4.2) and 

their topological flexibility, as they can split and form multiple objects. The final surfaces 

can be recovered by extracting them via iso-surface rendering. An extensive introduction 

to the theory and application of level set methods can be found in [Sethian, 1996].

[Tek and Kimia, 1994; Tek and Kimia, 1995b; Tek and Kimia, 1995a; Tek and Kimia, 1997] 

have taken a slightly different approach. Their concept of bubbles relies on a shock-based 

representation of shape, as developed by [Kimia et a l, 1995; Kimia and Siddiqi, 1996]. 

The shape from deformation framework enables to derive the shape representation directly 

from the data in an inverse process, based on detecting the shocks of first (orientation dis­

continuity), second (curvature discontinuity), third (collapsing of distinct boundaries), and 

fourth (collapsing of a boundary to a single point) order which are formed when the shape 

is evolved in a reaction-diffusion process (see chapter 3, section 3.2.3 on how a reaction- 

diffusion scale-space is computed). Bubbles (or small spherical deformable structures) are 

randomly initialized as fourth-order shocks in the homogeneous areas of a volumetric im­

age, and allowed to grow, shrink, merge, split, and generally deform under physically moti­

vated forces, and eventually coming to halt near specific differential image structures (e.g. 

at a high image gradient magnitude). This is achieved by first smoothing the image by a 

shock-based reaction-diffusion technique, randomly initializing bubbles as Fq{x ) in homo­

geneous image areas, and then solving equation

dF
=  V/(x)(/3o -  A « (x ))||V F || , (4.43)
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where f { x , y )  is again a scalar potential field denoting image features, F  is the evolving 

active level set surface as parameterized by Caselles et al. and Malladi et al., k is its curva­

ture (e.g. the Gaussian, mean, or one of the principal curvatures), and po and pi are scalar 

weighting factors. The advantage of bubbles in comparison to the level set evolution pre­

sented above is that no prior knowledge is necessary about how many level sets are needed 

for a complete segmentation, that narrow regions can be captured more easily even in the 

presence of gaps in the data, and that bubbles are a completely automatic technique for 

segmentation.

[Mclnemey and Terzopoulos, 1995b; Mclnemey and Terzopoulos, 1995c] have developed a 2D 

topologically adaptable or adaptive snake model which retains all the features of the classi­

cal snake model, but overcomes many of its limitations. By superimposing a grid over the 

image, an implicit formulation of the snake is obtained which allows to iteratively reparam- 

eterize the deforming snake model, enabling it to flow into complex shapes and dynami­

cally changing its topology by branching. The snake is based on a set of nodes and springs 

which does not remain constant during the deformation. The decomposition of the image 

into a grid of discrete cells allows to compute the intersections of the model with the grid, 

and to disconnect or reconnect the snake nodes accordingly. The topological snake model 

has the functionality of the implicit level-set models presented above, but does not require 

any mathematic formulation beyond that of classic snakes, retaining their parametric form.

4.5 Summary

This chapter has presented the original or classic active contour model by [Kass et a l, 1987b; 

Kass et a l, 1987a] as well as its main derivations with respect to the choice of energy functional 

and optimization technique. The concept of active contour models is a very efficient tool for shape 

extraction and segmentation in terms of combining autonomous shape forces, image-data depen­

dent terms and other constraints, but it usually suffers from several problems which will be briefly 

stated and discussed in the following.

4.5.1 Representation

All major active contour models are discretely represented as a set contour points, snaxels, ver­

tices or spline control points. This sparse representation allows to optimize a contour model 

efficiently, yet leads to problems related to number of snaxels and spacing. [Williams and Shah, 

1992] have suggested an enforced uniform spacing scheme, where the spacing distance corre­

sponds to the contour resolution. [Miller et a l, 1991] have proposed to refine the resolution iter­

atively with each optimization step by subsampling, inserting new contour points in the middle 

between each neighbouring pair of contour points until the desired, uniform contour resolution
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is reached. This imposes the need to perform a very dense sampling of the contour points in or­

der to capture all finer shape strueture, leading to a large number of redundant contour points 

and therefore to high computational costs, [Bulpitt and Efford, 1995] have adjusted the sampling 

density of the control points to the local curvature of the model, yielding dense sampling at shape 

parts of high curvature, while straight parts are modelled by a few points. However, this sampling 

schedule is still of a discrete nature, as the model is only evaluated at the control points, and no 

knowledge of the contour parts between are given. This often leads to a lack of robustness, as 

noise and spurious edges can affect the model quite considerably. Section 4.4.3 discussed sev­

eral spline-based models, which allow to evaluate the model not only at its discrete spline eontrol 

points, but also along the interpolated spline contour.

4.5.2 Energy Function

The discrete nature of active contour models not only influences the robustness and resolution of 

the model, but also poses problems regarding the computation of the internal contour derivatives 

needed for the loeal elasticity and curvature estimation of the model. Diserete derivatives are 

usually computed using finite differences, which is no problem in itself. However, non-uniform 

or very sparse spacing causes numerical inaccuracy as discussed by [Williams and Shah, 1992]. 

Solutions to this problem are either using dense uniform sampling, causing a huge computational 

cost, or exploiting a spline representation. Several spline-based approaches have been developed 

in the literature (section 4.4.3), yet they only evaluate the derivatives at the knots of the contour 

model.

4.5.3 Optimization

Based on the chosen discrete contour representation and the assoeiated discrete derivative approx­

imation, several optimization techniques have been presented in section 4.3, including the varia­

tional approaeh, DP, the greedy algorithm, and stochastie andprobabilistie relaxation. Techniques 

like GA (section 4.4.2), and level set evolution (seetion 4.4.5) have been briefly diseussed. They 

suffer from several disadvantages, one of them being that the diserete formulation of the model 

to be optimized implies for most techniques that derivatives of the energy functionals must exist, 

e.g. for the variational approach and DP. Although the energy derivatives can be estimated using 

finite differences, the same reservations as in section 4.5.2 apply here. In particular, the choice of 

a suitable time step for the variational approach is difficult, as small choices slow down the tech­

nique eonsiderably, and larger steps cause numerical instability. Another frequently encountered 

problem is that the energy function cannot be modified freely - in particular the incorporation of 

hard constraints is limited. This implies that it is difficult to relate geometric image structure or 

other constraints into the internal model representation. However, the greec/y algorithm, DP, SA 

and ICM as well as GA can minimize any given energy function, which make these methods very
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flexible.

The optimization techniques discussed so far are either local or global. Loeal methods include 

the variational approach, level set evolution, the greedy algorithm, and ICM, while DP, SA and 

GA are all global techniques. Local optimization implies that an active contour model locks to 

nearby edges and other image features with respect to its internal forces, given a good initial esti­

mate. It should be noted though that for all techniques a trade-off between computational cost and 

the locality or globality of the solution needs to be performed. The larger the search space, e.g 

the local neighbourhood size of DP or the greedy algorithm, the more global is the final solution 

(but DP always ensures the global solution within its search space), but the higher is the compu­

tational cost and complexity. Global optimization is performed if no initial estimate is available, 

or when user-independence and absolute reproducibility are required. If the image object under 

investigation does not correspond to the global energy minimum, i.e. the global solution is not 

the desired solution, as it is most frequently the case, local techniques are used. These in turn 

rely on a good initial contour estimate or appropriate external energy forces, causing consider­

able user- and initialization-dependent variation. As it is still desirable to obtain reproducible 

and initialization-insensitive results when using the efficient local techniques, scale-space con­

tinuity as suggested by [Kass et a l, 1987b] (section 4.2.6) can be used to attract the model at a 

high image scale to distant, but very prominent image features like edges, and slowly focusing 

it down for decreasing image scale. This ensures a robust coarse-to-fine tracking as discussed 

in the previous chapter (section 3.4.2). The initial scale defines the locality of the final solution 

[Whitaker, 1994a], as at very large scales, the model gets attracted to large distant objects only, 

and at finer starting scales, it locks to nearby objects, often disturbed by noise and spurious edge 

responses.

4.5.4 Incorporation of Other Knowledge

Though formulations of shapes exists and have been discussed in chapter 2 of this dissertation, 

few approaches in active contour models take into account any prior knowledge one might have 

of the shape which is segmented. A priori shape knowledge not only speeds up the optimiza­

tion process, but also allows to use deformable models to locally regularize similar shapes and 

investigate the internal and external shape forces with respect to the model’s energy terms. It is 

possible to use techniques like the Hough transform to derive a close initial estimate, and the ac­

tive shape models and their variations (section 4.4.2) deform in ways characteristic of the class of 

objects they represent, which also enables a measurement of differences in shape. In applications 

to time sequences like in [Rueckert and Burger, 1995b], results from earlier time slices obtained 

via global SA relaxation are used as initial estimates for the next time slices which allow to use 

loeal ICM relaxation, thus improving the optimization speed. Deformable templates, a concept
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which goes beyond the scope of this dissertation, allow to constrain the deformation of a model 

to a specific shape. The use of scale-space continuation, discussed in the previous section, is an­

other good example for the direct incorporation of a priori shape knowledge, as the estimates 

obtained at higher image scales provide a coarse approximation of the model for the next lower 

scale, speeding up the optimization, while providing robust, global to local (or coarse-to-fine) 

shape extraction.

Geometric image structure, revealed by differential invariants of the image intensity as presented 

in the previous chapter (3.1.1), allows to analyse the underlying shapes contained in an image. It 

is therefore highly desirable to adjust the shape of the deformable model to the underlying shape 

which it is to extract. This is partially achieved by locking the model to the edges of the shape 

outline in the image or via one of the image energy terms in section 4.2.2. Yet there are various 

other image features which might be taken into account. The level set methods in section 4.4.5 

formulate the deformable model to be represented by image isophotes or iso-intensity contours 

and surfaces which directly relate the deformable model to the underlying image intensity and 

shape. However, despite several other forces like an edge potential, no higher-differential image 

force is incorporated or taken into account. A different approach is listed in section 4.2.5 above, 

where the internal forces of a deformable model are constrained to the underlying image structure 

using weighting tensors of similar differential structure, but this technique has only been tested 

on images containing very smooth and simple shapes, making it difficult to judge how well the 

weighting tensors perform. Moreover, the choice of the introduced free parameters of this tech­

nique and a possible extension to image scale have not been addressed.

The following chapter introduces the new framework for shape description using active contour 

models and scale-space. A new active contour model will be presented, which is based on the 

items discussed in this section. Scale continuation is incorporated in order to adjust and regularize 

the contour model locally to the underlying geometric image shape, where the locality is related 

to scale. Differences in the locality of the solution, such as intermediate results within an image 

scale-space will be investigated as a valid method for multi-scale active shape description.



Chapter 5

Introduction to Multi-Scale Active Shape 

Description

-  J e  t e  d i s  ç a . . .  c ’ e s t  à  c a u s e  a u s s i  d u  s e r p e n t . I l  n e  f a u t  p a s  q u ’ i l  t e  

M O R D E .. .  L e s  s e r p e n t s , c ’e s t  m é c h a n t . Ç a  p e u t  m o r d r e  p o u r  l e  p l a i s i r . . .

” I TELL Y O U - I T  IS ALSO BECAUSE OF THE SNAKE. H E  MUST NOT BITE Y O U . S N A K E S -  

THEY ARE MALICIOUS CREATURES. TH IS ONE MIGHT BITE YO U JUST FOR F U N . . . ”

Le Petit Prince, Antoine de Saint-Exupéry.

In chapters 2-4 of this dissertation, three important topics in image processing have been re­

viewed: shape description, multi-scale image processing, and active contour models. In this part 

a new framework is presented which combines these techniques into a hierarchical tool for multi­

scale active shape description. The motivation behind this framework is to investigate a shape 

in its image scale-space rather than its contour scale-space, using an active contour model as a 

scale-based shape regularization tool. Before an overview of the framework is given, the sur­

veyed methods from the previous chapters used for the development of the new shape descrip­

tion tool will be briefly summarized, and their relevant aspects and potential for application in 

this context will be highlighted.

5.1 Methods

In order to formulate the proposed new shape description tool, it is necessary to define a suitable, 

active contour model based shape representation embedded in an underlying image scale-space. 

After discussing the choice of shape representation and description, the concept of a hierarchical, 

multi-scale shape stack will be presented which is directly derived from the concepts of contour 

scale-space and image scale-space. Finally, an extension of active contour models to a multi-scale 

shape regularization tool, and associated topics regarding multi-scale representation and energy 

minimization are introduced.
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5.1.1 Shape Representation and Description

Before designing a new shape description tool, two choices have to be made, namely which shape 

representation is to be chosen, and what kind of measurements are to be taken. Let us consider 

the representation aspect first: As was stated in the introduction of chapter 2, this dissertation 

focuses on planar shape outlines. Several representation schemes have been presented in sec­

tion 2.1, which are categorized into local, global and medial representation methods, which in 

turn allow to obtain local, global, and medial shape measurements, respectively. This disserta­

tion favours a local representation (but in a global-to-local scale-space setting) for the following 

reasons:

• Global representation techniques like Fourier descriptors and statistical moments have 

been considered, being intrinsically hierarchical representation techniques as they allow 

for truncation of shape information. However, such a truncation affects the shape globally, 

making it impossible to locate characteristic shape features, and may lead to topological 

changes, as illustrated in figure 2.7 (chapter 2, page 38).

• Medial representation techniques like the medial axis, though being attractive in terms of 

providing a structural, multi-local (combined global and local) approach to hierarchical 

representation and description, are difficult to obtain as they are based on the symmetric 

behaviour of a shape rather than its outline. Additionally, small changes in the object shape 

can lead to branching or fragmentation of the medial axis.

• Local representation techniques are possibly the most general way of representing an ob­

ject, as they allow to compute a large range of local and other shape measurements. They 

directly encode the shape outline, allowing for easy and direct access.

Of the local representation techniques, the concept of splines is the most versatile. It allows to 

change a shape locally, while at the same time enables to interpolate or approximate a shape based 

on a sparse representation. Moreover, splines are also a hierarchical technique as the spacing of 

the spline control points can be used as to adjust the accuracy of the spline contour: Larger spacing 

of the control points naturally leads to a coarser representation, while smaller spacing allows to 

represent a shape in more detail. In combination with their analytic nature this makes them an 

ideal underlying shape representation for this dissertation.

Let us now consider which of the local, global, and relative shape description techniques reviewed 

in chapter 2, sections 2.2-2.4, will be used to describe a spline-represented shape. None of these 

shape description techniques alone is sufficient for a complete shape description, but one can ex­

pect that a balanced combination is able to capture the most important shape characteristics. The 

following global, local and relative shape quantifiers have been selected in this work:
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• In medical imaging, clinicians are generally interested in volumetric and surface measure­

ments (corresponding to area and boundary length for planar shapes), and the complexity of 

objects. Thus, a combination of area, perimeter, compactness, and statistical self-similarity 

in terms of fractal quantifiers seems to be an appropriate set of descriptors fov global shape 

measurements.

• Recent research in clinical neurology suggests that local deformations of the brain are re­

lated to the neurological disease status. Hence a local shape interpretation of deformation 

and bending behaviour is desirable, and can be performed in terms of differential geomet­

ric local shape measurements of the shape boundary, e.g. in terms of the local curvature 

behaviour.

• Finally, it is often important for clinicians to perform relative shape measurements for inter­

shape comparison, e.g. to monitor shape changes over time series or to compare shapes 

obtained from different imaging modalities. In order to derive the differences between two 

shapes, an alignment or registration needs to be performed in order to find the correct shape 

correspondence. Without such a correspondence, no accurate shape deviation measure­

ment can be performed. This is a very important and wide topic in medical imaging, going 

beyond the scope of this dissertation. Some global shape deviation and corresponding dis­

tance measurements, however, have been presented in section 2.4 and can be used when a 

shape correspondence is available.

All of these descriptors can be efficiently and accurately computed from a local spline represen­

tation. The last point, suggesting the need for relative inter-shape description, can be extended to 

the concept of intra-shape description. Obviously, intra-shape description can only be performed 

if a shape is represented in form of a shape hierarchy. In this hierarchy, shapes are inherently regis­

tered. This dissertation aims to investigate the multi-scale properties of a shape, thus a multi-scale 

hierarchy can be used to apply the shape descriptors and distance measurements across scale.

5.1.2 Multi-Scale Techniques

Chapter 3 has presented two different multi-scale representation techniques: multi-scale contour 

representation, and multi-scale image representation. Both representation schemes allow to per­

form hierarchical or structural descriptions at different levels of detail or resolution, capturing 

global features at high scales and finer detail at lower scales. This dissertation proposes a multi­

scale shape representation by uniting contour and image scale-space representation methods. This 

approach is motivated by the following two facts:

• The classic multi-scale contour representation is obtained by smoothing a binary shape out­

line for increasing levels of scale. However, a segmentation from an image at a chosen scale
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is necessary to obtain the initial contour unless an analytic contour representation is avail­

able. The choice of this scale is not obvious and its role is disregarded in the following 

binary smoothing process.

• Constructing a contour scale-space means that the image context is ignored. However, a 

contour is not only defined by its intrinsic multi-scale representation, but also by its asso­

ciated image scale-space in which it is embedded. For example, the image isophotes define 

the shape, the image gradient separates the shape from the image background, and other ge­

ometric image features define particular shape characteristics at all scale levels.

Both items naturally lead to the core idea in this dissertation: Extracting a shape at range of image 

scales rather than at a single scale yields a novel multi-scale shape representation which will be 

termed multi-scale shape stack. The embedding of a shape in its image scale-space is directly 

associated with two main techniques in multi-scale image analysis which are mutually dependent 

on each other:

• Multi-scale differential image invariants describe various image features like the edgeness, 

cornerness or curvature. Consequently, they provide a geometric and structural way to 

characterize a shape embedded in its surrounding image scale-space, and are therefore the 

first step for a multi-scale shape extraction scheme. This directly leads to the necessity 

of computing a suitable image feature scale-space from a given image scale-space, com­

prising commonly used edge detectors like the image gradient or the zero-crossings of the 

image’s Laplacian to describe the shape outline, as well as features which are used only 

rarely in image processing, like the isophote image curvature.

• The computation of a feature image scale-space forms the basis of multi-scale feature track­

ing, which is a fundamental technique for following a shape across scales. For example, 

edge focusing is a coarse-to-fine tracking technique which can be used to detect a coarse 

shape outline at a high level of image scale, and to focus the shape subsequently down in 

order to track finer scale details of the shape. Obviously, such a process can be reversed in 

order to permit a shape, whose zero-scale version is known (e.g. from a manual segmenta­

tion by an expert, or from an analytic representation), to evolve by tracking its outline for 

increasing levels of scale in a fine-to-coarse tracking process. Other image features may 

be considered, both for evolution or focusing of a shape.

Both techniques combined provide the means for shape tracking through image scale-space. The 

novelty in this approach is that in contrast to classic techniques like edge focusing which discards 

all but the lowest scale shape, this approach formulates the shape tracked at each intermediate
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scale level as layers in a multi-scale shape stack (which is organized either in a fine-to-coarse or 

a coarse-to-fine fashion).

5.1.3 Active Contour Models or Snakes

The remaining issue for the proposed multi-scale shape description technique is the actual shape 

extraction, as the shape is still embedded in the image and not yet available in its binary form 

(which is required in order to describe it). In contrast to pure segmentation techniques, this work 

proposes to track a shape through its image feature scale-space by implicitly segmenting it at 

each scale level. This implicit segmentation can be characterized as regularization with respect 

to scale, or, depending which direction in the scale-space is taken, as image data-driven shape 

evolution or focusing. While many techniques for (implicit) segmentation may seem to be suit­

able, the model of active contours or snakes has been adopted as it provides a flexible framework 

for incorporating internal shape characteristics and a large variety of external image features into 

an energy function, transforming the shape regularization problem into an energy minimization 

problem. Moreover, scale-space continuity can be readily integrated into this model. The devel­

opment of a suitable multi-scale active contour model is carried out in three stages:

1. The shape representation for the classic active contour model is discrete (and continuous 

only for initial least-squares fitting to a set of edgels, or a final smooth shape interpolation 

- see chapter 4, section 4.4.3 for more details). As discussed earlier, this leads to several 

problems concerning the model’s numerical stability, robustness, and sampling resolution. 

An arc length parameterized local spline representation, as proposed in section 5.1.1, can 

be used to circumvent these problems, as it allows for analytic differentiation, a continu­

ous interpolating representation and evaluation, as well as natural sampling (an important 

characteristic which will be explained in more detail in the next chapter).

2. The design of the energy function is a crucial point for the development of a new active 

contour model, as it describes the quality of the model in terms of various image and con­

tour features, and to provide a weighted balance or compromise between them. It serves as 

a heuristic for the following optimization or energy minimization process for the model de­

formation. This dissertation will expand the classic energy function in the following ways: 

The relationship between internal (analytic) elasticity and contour resolution will be inves­

tigated, and an improvement of the classic minimizing curvature term will be developed, 

leading to a combination of internal and external forces. More specifically, the analytic 

spline curvature will be matched to the isophote image curvature in a curvature matching 

process, adjusting the shape of the model to the shape of the underlying image isophotes. 

Finally, an additional set of image features will be integrated into the energy function.
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at each level of detail 
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Figure 5.1: Overview of multi-scale active shape description.

3. The optimization techniques for active contour models presented in section 4.5.3 are either 

local (having initialization problems and often leading to local, undesired energy minima) 

or global (needing infinite time to ensure an optimal solution). This dissertation proposes 

to use the concept of scale-continuity which naturally regularizes the locality or globality 

of the solution. Hence it is sufficient to use a fast and efficient local optimization technique, 

which is attracted at high scales to more global image features, and locks at low scales to 

more local, nearby features.

5.2 Overview

The above summary lists the methods that will be employed for the proposed multi-scale active 

shape description technique, yet their interaction and global relationship needs some further ex­

planation. The core of the technique lies in providing a hierarchical tool for shape analysis based 

on the notion of scale-space. The aim is to describe a shape not at a single scale, but rather at a 

large set of scales in order to detect shape characteristics and changes across scales. In order to do 

so, first an image scale-space and a corresponding image feature scale-space will be constructed. 

Then the shape of interest will be extracted using a novel multi-scale active contour model. This 

model is used for shape tracking or regularization in scale-space rather than for traditional seg­

mentation, a process which is referred to as implicit segmentation in this context.

If the true shape outline is known (e.g. by an analytic function), or assumed to be di gold standard 

(e.g. using a prior manual segmentation by a clinician), a fine-to-coarse strategy similar to con-
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structing a contour scale-space can be applied. This process will therefore be called active shape 

evolution, as it corresponds to the classic contour scale-space, yet at each level of scale the image 

context is taken into account. Alternatively, a coarse-to-fine technique similar to edge focusing 

can be employed which eliminates the need of a prior segmentation, as the initial model can be 

very coarse. Consequently, this process will be referred to as active shape focusing. Both tech­

niques are performed by propagating the shape contour through image scale-space and regulariz­

ing the active contour model’s energy function with respect to scale. The set of initial, intermedi­

ate, and final evolution or focusing results forms a multi-scale, image data-driven representation 

of the shape, and thus composes a multi-scale shape stack. This stack is then evaluated at each 

scale level with the shape measurements described above. Figure 5,1 illustrates this concept.

In the following chapter, the theoretical framework for the multi-scale active contour model used 

for the new shape description technique will be presented in more detail. The construction of 

the multi-scale shape stack via active shape evolution and focusing for shape description will be 

presented and discussed in chapter 7, followed by the application of the presented techniques in 

chapters 8 and 9,



Chapter 6

Multi-Scale Active Contour Model

M a i s  q u e l q u e  c h o s e  l e  r a s s u r a :

-  C ’EST VRAI Q U ’ ILS N ’ONT PAS LE VENIN POUR LA SECONDE M O R SU R E .. .

B u t  a  t h o u g h t  c a m e  t o  r e a s s u r e  h i m :

” IT IS TRUE THAT THEY HAVE NO MORE POISON FOR A SECOND B IT E .”

Le Petit Prince, Antoine de Saint-Exupéry.

This chapter presents the theoretical framework for a multi-scale active contour model for shape 

description, and discusses details regarding its representation, energy function, and optimization. 

The motivation behind this model is twofold: first, the classic model and its recent developments 

suffer from several drawbacks, including their numerical instability, lack of robustness, and in­

ability to extract strongly curved, complex shapes such as brain contours in Magnetic Resonance 

Imaging (MRI). Second, though scale-space continuity has been suggested in [Kass et a i, 1987a], 

such an approach has not been further developed in the literature, except for the level set methods 

presented in chapter 4 (section 4.4.5) whose implicit representation, however, conflicts with the 

adapted concept in this dissertation of shape as an explicit contour.

This dissertation aims to investigate and develop enhancements of the classic active contour 

model in terms of continuous spline representation, contour shape adjustment to the underlying 

image shape, and integration of other geometric image structure into the energy function. More­

over, the incorporation of the notion of scale-space into the representation, energy function and 

optimization process will be explored in order to regularize a shape in its image context at varying 

levels of image scale. This leads to the application of computationally more efficient local rather 

than global optimization techniques where the choice of the image scale determines the globality 

of the solution.

Examples and illustrations will be used to complement the theoretical formulation of the proposed 

model and to demonstrate the usefulness and validity of this approach. Figure 6.1 shows a test 

image, notched rectangle, its true shape outline, an ellipse-shaped model used as a rough estimate, 

and an initial model obtained by optimizing the ellipse-shape model at a high scale level. In the
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(b) (c) (d)

Figure 6.1; (a) Test image notched rectangle, (b) Known shape outline, (c) Ellipse-shaped model, 
(d) Initial model, obtained by optimizing shape (c) at scale œq =  32.

following, the multi-scale contour representation as well as associated sampling issues will be 

investigated.

6.1 Representation

As m entioned in the previous chapter, a local spline representation is adopted as the underlying 

representation for the new active contour model. Cubic continuous B-splines (see chapter 2,

section 2 . 1 . 1 .3.1) have been applied in the literature for various active contour models (see chap­

ter 4, section 4.4.3), and have been generally found very suitable for shape representation, ap­

proximation and analysis, because o f their smooth and continuous approximation, their efficient 

decoupling o f  the coordinates x{s)  and y{s),  their analytic differentiability, and their generative 

nature and local control.

Extending the classic active contour model which is based on a discrete set o f  snaxels to a B- 

spline representation requires the redefinition o f the snaxels as B-spline control points  v  =  

{ v i, • • •, Viv}. This allows to approximate a spline contour via a set o f  spline patches defined 

by v (s )  =  { v i ( s i ) ,  • • •, VAr(5iv)}- Each spline patch with G [0; 1) is based on four

control points v^_i, v%, in modulo notation, and is related to the overall contour by

v (a) =  Vi(0 ) if s =  -  with s G [0 ; 1 ) (6 . 1)

The set o f  B-spline eontrol points can be more sparse than the discrete set o f  snaxels, as the spline 

representation allows to approximate (and therefore evaluate) contour parts in between the control 

points with sub-pixel precision. Note that B-splines are only interpolating if  the eontrol points are 

doubled, and almost interpolating if the controls points are very close, or if  they lie along a lin­

ear part o f  the curve. The eontrol points can therefore be used to steer  the active contour model 

rather than to directly define it. It is therefore sufficient to optimize the positions o f  the set o f 

snake control points, by evaluating the internal differential energy terms and external image and 

constraint terms along the spline patches. The number o f  control points chosen defines the degree
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of freedom or flexibility of the contour in the optimization process, and the separate parametric 

representation of the spline coordinates allows to perform a fast and efficient optimization. The 

local control implies that local changes in the B-spline based active contour model due to move­

ments of the control points in the optimization process are reflected only by changes of B-spline 

parameters local to that change, allowing for a fast recomputation and evaluation.

A B-spline representation for active contour models naturally leads to questions concerning the 

choice of the number and distance of the control points of the model and associated sampling 

strategies in a scale-space setting. In the following, fixed-scale sampling strategies will be first 

developed and discussed and then further extended to multiple scales.

6.1.1 Fixed-Scale Sampling

The problem of determining the appropriate number and local distance of contour points for ac­

tive contour model optimization has been addressed by many researchers (see chapter 4, section 

4.5.1), and has been approached in three main ways:

1. [Kass et a i, 1987a] have originally developed an intrinsic uniform sampling scheme of 

a fixed number of points which is enforced by the internal elasticity term weighted by 

(^elasticity (equation (4.4), chapter 4), and [Williams and Shah, 1992] have additionally sug­

gested to integrate the mean distance into the elasticity energy term (equation (4.6), chapter 

4). However, for very complex shapes a larger number of control points might be necessary 

for accurate local adjustment than for very smooth shapes. Determining the appropriate 

number of points is not trivial, leading usually to a compromise between desired accuracy 

of the solution and computational speed.

2. [Bulpitt and Efford, 1995] have addressed the problem that a shape may vary locally in its 

detail, i.e. it may be smooth at some parts, and complex elsewhere. They have therefore 

proposed to adjust the local sampling density with respect to the local internal curvature of 

the model. The main problem of this approach is that a model might not gain higher local 

curvature and hence recover finer detailed structures unless it is already densely sampled, 

making this an inverse problem.

3. [Miller et a l, 1991] have developed a scheme which starts with only few points, allow­

ing for an efficient computation of an initial, coarse model, whose density is subsequently 

refined by inserting new points. However, smooth shapes tend to be oversampled this way, 

leading to increased computational complexity.

All three approaches are based on a fixed-scale image setting, and either enforce a fixed or vari­

able contour scale ç, which is defined by the spacing of the control points. The models suffer from
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Properties Uniform Variable Refinement
Intrinsic sampling □ —
Adaptive number of points - -k
Adaptive level of detail - +
Local refinement — □
Efficiency □ □ -f-
Flexibility - □ □
Accuracy □ □

Notation Ç

Sampling schedule ^elasticity ' (*) 

^elasticity ' (|Ç ~  ^ s(^ )l)  (**)
|K(s,r)| k l  "  ' Çn]

Table 6.1 : Qualitative comparison, notations, and sampling schedules of fixed-scale sampling 
strategies for deformable models. Uniform sampling refers to the strategies of [Kass et al., 1987b] 
(*) and [Williams and Shah, 1992] (**) using intrinsic enforcement of uniform snaxel spacing 
via Oieiasticity  ^nd mean distance constraints, respectively. Variable sampling defines local mesh 
refinement as a function of local curvature [Bulpitt and Efford, 1995]. Refinement sampling de­
notes an iterative point insertion as a coarse-to-fine approach [Miller et a l, 1991], which gradu­
ally increases the resolution. The symbols denote fulfilment, no fulfilment, and partial
fulfilment of the listed properties.

the problems of determining the appropriate number of points [Williams and Shah, 1992], and the 

range and adjustment of ç [Bulpitt and Efford, 1995; Miller et a l, 1991]. The choice of these pa­

rameters is obviously related to the size and the complexity of the object to be segmented, which 

is not known a priori. Table 6.1 summarizes the properties of these three fixed-scale approaches.

The concept of scale-space presented in chapter 3 provides a framework to represent an image 

(and objects contained in the image) at different levels of detail. In this dissertation, it is proposed 

to relate the shape complexity to the choice of the image scale, and to generalize the fixed-scale 

sampling approaches to multiple scales, allowing for flexible contour scale limits and number of 

contour points related to the notion of scale. In the following, the multi-scale B-spline represen­

tation with associated suitable sampling strategies is presented.

6.1.2 Multi-Scale Sampling

In a scale-space setting, coarse shape details can be captured at higher scales, and all finer scale 

details contributing to the shape complexity become more apparent at lower scales. Therefore, 

objects which are segmented at a high level of image scale tend to have a smooth, simple shape 

outline, and can therefore be represented by fewer points than objects segmented at low scales, 

which in general have a more complex shape outline. This dissertation proposes to relate the 

distance of the spline control points, or the contour scale ç, and the associated number of control 

points to the underlying image scale cr. Moreover, distance and differential measurements should
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be based on the geometry of scale-space.

Let us consider the scale-space distance measurements: Given two points v i and V2 of Euclidean 

distance ||vi — V2||, their distance in a Euclidean scale-space at a fixed scale œq is given by the 

distance of their normalized (dimensionless) coordinates (equation (3.28)):

distgcaZe—space(vi 5 ^o) ~  ll^i V21| (6.2)

In the Riemannian setting, equation (3.33) (chapter 3, page 70) reduces for a fixed scale measure­

ment to
1 +  \ / l  ~

1 4- \ J \  — (p<To)̂  — p||vi — V2 I
dist5coZe-spoce(vi, V2; O-o) =  log ( — ------------------  n-----------Ü 1 (6.3)

with p = 2 /||v i -  V2II. For example, given a Euclidean distance D =  8, at image scales 1,8,16 

the Euclidean and Riemannian fixed-scale distance measurements yield scale-space distances 

of 8,1,0.5 (Euclidean) and 4.189424,0.962424,0.494933 (Riemannian). Both scale-space dis­

tances have been motivated in literature (see [Florack, 1993] and [Eberly, 1994a]) by the obser­

vation that the image is less dense at higher scales, leading to an decrease in the distance between 

points. This implies that distance measurements (e.g. when measuring differential image struc­

ture) need to take the local, decreased density into account. This can be achieved by performing 

measurements over larger distances at high scales, which does not cause any loss in spatial infor­

mation, as the capture region of the image is increased with respect to the image scale. Observing 

now two points at increasing distances 1,8,16 and at corresponding scales 1,8,16 keeps all mea­

surements at a comparable level in the Euclidean scale-space setting. In the Riemannian setting, 

the shortest path between points is along geodesic curves which takes the scale-space curvature 

into account, and points become even closer (or more dense) at lower scales due to the logarithmic 

nature of the distance measurement. In this dissertation the Euclidean setting is therefore chosen 

for fixed-scale measurements, and the Riemannian setting for multi-scale measurements.

Let us now investigate the issue of the desired contour scale ç in an image scale-space: The in­

crease in density of spatial information of the image scale-space at lower scale layers leads nat­

urally to an increase in shape complexity. One has two choices when performing distance mea­

surements:

1. The distance of points in scale-space can be computed according to equations (6.2) and 

(6.3), respectively, depending on a fixed-scale or multi-scale setting (i.e. depending on 

whether two points are located at the same scale or at different scale levels in the image 

scale-space). This implies that all differential image measurements like the image gradient 

are effectively computed over larger distances at higher scales than at lower scales, leading 

to a local adjustment of the scale-space density.
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Figure 6.2: Snake optimization for different levels o f  image scale and related contour scale. O p­
timization results o f the test image and initial model o f figure 6.1 for scales a  (a) 32, (b) 16, (c) 
8 , (d) 4, (e) 2, (f) 1, with corresponding contour scales ç. The resulting contours are shown su­
perimposed on the blurred images, and have 14, 26, 49, 83, 120, 162 knots, respectively.

2. Alternatively, the control points can be expressed by their normalized coordinates v%, 

and all image related differential measurements can be scaled, like the scale-space gradi­

ent and Hessian presented in chapter 3, section 3.3.2 in the Euclidean or Riemannian set­

ting. This naturally leads to an adjustment o f the image scale-space density, which can 

be efficiently precomputed. Fixing the spacing o f the normalized control points v% for all 

scales naturally leads to a less dense spacing o f the control points at higher image scales, 

but no loss o f spatial information.

In this dissertation the second approach is adopted, which relates the spacing o f  the contour con­

trol points Vj to the image scale. Figure 6.2 illustrates a direct scale-related sampling scheme 

for the notched rectangle for six samples o f  an image scale-space, setting ç =  cr at each scale 

level, where ç represents the spacing o f the control points v^. In order to illustrate the useful­

ness o f  this scheme, figure 6.3 shows the extreme case o f  segmenting a contour o f  low scale in 

a high scale image, and vice versa. In the former case, the low contour scale model in figure 6.3

(a) yields a very similar result to the high contour scale model once more shown in figure 6.3

(b) (both were optimized at the same high image scale), thus the much larger num ber o f  control 

points only contributes to an increase in redundant information, rather than in a more accurate 

segmentation result. In contrast to that, the contour model in figure 6.3 (c) has a too high contour
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Figure 6.3: Snake optimization for low contour scale and high image scale and vice versa. Results 
for (a) cr — 32 and ç =  3.5, with 121 knots (b) Same as figure 6.2 (a), (c) cr =  1 and ç =  32, with 
15 knots, (d) Same as figure 6.2 (f). All contours are superimposed on the corresponding image 
scale-space slice.

scale and therefore cannot extract the object properly. The corresponding low contour scale result 

is shown in figure 6.3 (d).

6.1.2.1 Knot Insertion Techniques

Before the equivalent multi-scale techniques to the fixed-scale sampling strategies o f  section 6.1.1 

will be presented, the issue o f adequate spline control point or knot insertion needs to be briefly 

addressed. As was mentioned above, the classic snake model by [Kass et a l ,  1987a] as well as its 

extension by [Williams and Shah, 1992] enforce uniform snaxel spacing in an intrinsic manner, as 

it is controlled by the energy function rather than by some external adjustment. If  the num ber o f 

snaxels needs to be locally increased, e.g. as is the case for the variable and refinem ent sampling 

strategies above, sampling is performed in an extrinsic fashion. M oreover, using a B-spline repre­

sentation, it is desirable that the approximated spline contour changes as little as possible. Three 

different B-spline based techniques for knot insertion have been developed in this dissertation: 

discrete, interpolated, and heuristic.

Figure 6.4 illustrates all three concepts for knot insertion for three spline patches defined by 10 

points in total with quadruple end and start points (6.4 (a)). W hen using the discrete insertion 

scheme (6.4 (b)), one can observe that the new two spline patches, replacing the middle original



6.1. Representation 119

(a) (b)

(c) id)

Figure 6.4: Different B-spline knot insertion strategies, (a) Three spline patches defined by 10 
points, with quadruple end and start points. The four control points of the middle spline patch are 
Vi_i =  (0,0), Vi =  (0.25,0.4), Vi+i =  (0.75,0.55), Vi^2 =  (1,0). b) Discrete knot insertion 
of point Vi^i+i =  (0.5,0.475). (c) Interpolated knot insertion of point Vi,i+i =  (0.5,0.459375). 
(d) Heuristic knot insertion of point =  (0.501731,0.451757).

patch, move very close to the polygon connecting the control points. Using the interpolated or 

heuristic scheme (6.4 (c) and (d)), the deviation between the new splines and the old one can be 

decreased, with the heuristic scheme yielding only a slightly better result. However, it is always 

possible to find a better parameterization when choosing a suitable knot for the parameterization 

[Farin, 1993]. With respect to the presented knot insertion schemes, one can improve the shape 

of the curve at the expense of computation time, by the following hierarchy of methods: discrete, 

interpolated, and heuristic, with probably the best compromise between computational cost and 

quality being achieved using the interpolated method. In the following, the three knot insertion 

techniques are explained in more detail.

Discrete knot insertion between two neighbouring control points v%, Vj+i is performed by com­

puting the new control point i.e. the point on the middle of the line

between v% and v^+i. This might be in many cases a reasonable choice, especially if the 

control points interpolate the curve. This scheme has the advantage that it is very fast, need­

ing no spline approximation for the insertion. However, this insertion scheme might lead 

to short cuts at highly curved parts of the overall shape.
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Interpolated knot insertion is achieved by by setting at si = 0.5. This results in

a smoother spline than using the discrete insertion scheme, with a curve closer to the curve 

without the new point.

Heuristic knot insertion is directly based on the interpolated insertion scheme, and uses a curve 

fitting approach in order to change the shape of the overall curve only minimally. This is 

achieved by first interpolating a point p  =  at Si = 0.5, followed by computing the 

spline patches ) (where superscripts are used for enumera­

tion of the splines and their parameters). These spline patches are defined by the control 

points Vi_i, Vi, p, Vi+i, and v i,p , Vj+i, Vi+2, and p, Vj+i, Vj+2, Vi+3, respectively. Ad­

ditionally, the starting and end points of the original splines are computed, with Pstart at 

vj(0), and Pend at Vi+i(0). The corresponding points to Pstart, P, Pend on the new spline 

patches are then given by p'start which is interpolated at (0), p ' at (0), and Pg„^ at 

vj^^(O). Computing the following distance,

D  spline =  \\P s tar t  ~  P'startW^  +  l | P  “  P ^ l P  +  11 P e n d  “  P e n d  I P  ( 6 4 )

allows for an estimate of the closeness of the new spline patches to the original one. Obvi­

ously, more than three pairs of points can be taken into account, leading to a better fitting, 

but also to higher computational cost. Moving now p  along the normal n (0.5) of the orig­

inal spline allows to compute new spline patches, from which new points Pg^oroP^ Pend 

can be obtained and evaluated using equation (6.4). The point along the normal which mini­

mizes the distance between the original spline patch and the new two spline patches is taken 

as the new control point for insertion. This is a general scheme that allows for insertion of 

arbitrary points along the spline. One can then restrict the search space along the spline 

normal using the formula

-llv i-v i+ ill if SiG[0;0.5)

I  (1 -  Si) -IIVi -  Vi+i|| if Si e  [0.5; 1) 

as points for Si closer to a* =  0 or approaching a* =  1 lie closer to Pstart or Pend, respec­

tively.

Having now set up a relationship between contour scale ç and image scale a, and defined suit­

able knot insertion schemes, the question arises how existing fixed-scale sampling schemes like 

the ones in section 6.1.1 can be adapted and generalized to multi-scale sampling strategies. In 

particular, uniform, variable, and refinement sampling strategies are considered in the following.

6 .1.2.2 Uniform Sampling

Let us first consider the approach by [Williams and Shah, 1992], which was developed in order to 

enforce uniform spacing of the snaxels to prevent snaxels from bunching up at strong portions of
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Figure 6.5: Optimization results for the models of Kass et al. (top) and Williams and Shah (bot­
tom). The model of figure 6.1 (d) with 65 knots and ç =  8 was optimized for (from left to right) 
oieiasticity = 0.01,0.001,0.0001,0.00001 at scale a = 8. See text for further details.

an edge (see equation (4.6)). Using such a mean distance constraint, however, only yields evenly 

spaced points if the influence of the elasticity term in terms of the size of the energy weighting 

factor aeiasticity is choscn adequately. A similar result can be produced for the classic model 

by [Kass et a l, 1987a]. If this weighting factor is chosen too high, the shape cannot be accu­

rately located since the control points are too constrained to deform sufficiently. In contrast, if 

the elasticity weighting term is chosen too low, the control points tend to move together at edges, 

while moving apart at other parts of the contour despite the mean distance constraint. Hence a 

compromise between accuracy of the optimization and uniformity of the control point distribu­

tion must be made. Figure 6.5 illustrates this problem for the models of [Kass et a l, 1987a] and 

[Williams and Shah, 1992]. It can be observed that the latter performs only slightly better than 

the former model in terms of enforcing a uniform spacing of control points. Another problem 

with this scheme may occur when the mean distance of the control points during the optimiza­

tion increases or decreases, depending on whether the model expands or shrinks when deforming. 

Given a very dense initial model this may lead to the formation of intersections and an inability 

to deform. Using an initial model with only few points may lead to a too sparsely sampled model 

which is unable to locate the shape of interest at the level of detail needed. The appropriate con­

trol point distance therefore needs to be chosen with respect to the complexity of the shape of 

interest. The classic model suffers from similar problems as the number of control points also
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Properties Uniform Adaptive Uniform Variable Refinement
Intrinsic sampling - — — —
Adaptive number of points -f + +
Adaptive level of detail □ □ + +
Local refinement — □ □
Efficiency □ □ □ -k
Flexibility - + □ □
Accuracy □ + □ +
Notation

Sampling schedule

Ç

cr

Ç

cr ±  A ct

ç(s)

\k(s)\
1

|K,nioge(̂ )|
1

|K(â)Ktmape(̂ )|

ĉr

CTcr

Table 6.2: Qualitative comparison, notations, and sampling schedules of multi-scale sampling 
strategies for deformable models. All schemes are based on a natural coordinate representation 
of a B-spline which is related to the underlying image scale. Uniform sampling refers the redis­
tribution of the spline control points on the approximated contour, adaptive uniform sampling to 
the discrete, interpolated or heuristic knot insertion or removal scheme, variable sampling to the 
local contour refinement as a function of multi-scale contour and image curvature, and refinement 
sampling to a coarse-to-fine approach based on adaptive uniform sampling. The symbols -f, —, O 
denote fulfilment, no fulfilment, and partial fulfilment of the listed properties.

remains fixed during the optimization process.

In order to overcome the first problem, in this dissertation the mean distance is fixed to a desired 

value rather than fixing the number of control points, enforcing an even spacing of the control 

points in terms of this fixed distance. Obviously, an appropriate contour point spacing is related 

to the underlying image scale, leading to an image scale-related natural contour scale through­

out the optimization process, while the number of control points may increase or decrease. Two 

main sampling strategies to adjust the spacing of the control points v* have been developed in 

this dissertation: uniform sampling and adaptive uniform sampling. An qualitative overview of 

all schemes is given in table 6.2.

Uniform sampling: After each complete iteration step during the optimization process, the con­

tour is approximated via its spline representation, and at equidistant intervals (correspond­

ing to the image scale), points are marked as the new control points, while the previous 

control points are discarded. Figure 6.6 (a) shows an example of uniform sampling with 

very regular spacing using only a low elasticity weighting term {aeiasUdty = 0.00001), 

but which also illustrates the main problem with such a scheme: The model is not able to 

locate finer detail structures, like the comers and the inward notch of the notch in the test 

image, as details are prevented from forming due to the frequent redistribution of control 

points. Moreover, the approximating rather than interpolating nature of B-splines leads to
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Figure 6.6: Uniform B-spline sampling strategies for active contour model optimization, (a) Uni­
form sampling (with 75 final control points), (b) Adaptive discrete sampling (65 control points),
(c) Adaptive interpolated sampling (67 control points), (d) Adaptive heuristic sampling (73 con­
trol points). Figures (e)-(h) show once more the optimization results from figures (a)-(d) with the 
known shape outline from figure 6.1 (b) superimposed. The contour scale of the initial model of 
figure 6.1 (d)) was ç =  8, in direct relation to the image scale, with a tolerance of Aç =  ± |  for 
the adaptive schemes.

a shrinkage of the overall model, as the control points do not necessarily lie on the spline 

curve, while for straight, linear contour parts or a very high chosen model scale the redis­

tribution of the control points along the spline contour causes only minor changes in the 

overall shape.

Adaptive uniform sampling: This scheme is based on control point insertion and removal rather 

than redistribution, and has the advantage that control points of adequate spacing are kept 

intact, and control points whose spacing is too low are removed. In case they are too far 

apart, new control points are inserted on the basis of the spline defined by the existing con­

trol points using one of the knot insertion strategies presented in section 6.1.2.1. Algorithm

6.1 illustrates this scheme in a simplified form (as the number of control points increases 

or decreases during the sampling process, and several new control points between a pair of 

control points may be inserted). Figure 6.6 (b), (c), and (d) shows example optimization 

results using this algorithm based on discrete, interpolated, and heuristic knot insertion. 

All results are superior to uniform sampling (shown in figure 6.6 (a)), and the interpolated 

and heuristic insertion schemes allow to locate comers more accurately than the discrete
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H Loop for adaptive sampling of N  control points (modulo arithmetic) with respect to ç 

for i = 1 to iV do

// Compute spatial distance 
set distance := ||v* -  Vj+i||
// Insert control point if spacing is too large 
if  (distance >= ç + A ç) do

Insert (vi,i+i) // Insert knot (new control point) between Vi,
// Remove control point if spacing is too small 
else if  (distance <=  ç -  A ç) do 

Remove (v%) 
end if  

end for

Algorithm 6.1 : Algorithm for adaptive uniform sampling.

scheme.

6 .1.2.3 Variable Sampling

The previous section has focused on uniform sampling techniques which, though solving the 

problem of determining the number of points needed, still disregard the problem of choosing the 

appropriate local scale of the model. Choosing a too low value leads to a higher vulnerability of 

the model towards the formation of intersections and local minima, while choosing too large a 

value leads to short cuts and an inability of the model to detect structure below the chosen scale. 

Clearly, there is no optimal global sampling distance for shapes, but one would like to have a 

locally sparse representation at smooth parts of the shape, and a denser representation for more 

complex parts, where the sampling density is related to the degree of shape complexity and image 

scale. In other words, given a fixed-scale setting, one would like to have a more flexible contour 

scale with respect to local shape detail. This leads to the formulation of three variable sampling 

strategies, which are based on the spline curvature, the underlying isophote image curvature, and 

both:

Adaptive spline curvature sampling: This scheme is based on the scheme by [Bulpitt and Ef­

ford, 1995] to refine the active contour with respect to its local complexity in terms of its 

internal curvature. This can be easily incorporated into the adaptive sampling algorithm 

(algorithm 6.1) by replacing the constant contour scale parameter ç with a variable term 

ç(s), being a function of the local curvature «(s), e.g. an intuitive way of doing this is to 

set ç(s) =  In other words, for each spline patch, the inverse absolute value for k(s) 

is computed as the interpolated curvature on the middle of the spline patch (s =  0.5). For 

small contour curvature values, this results in a high contour scale (or low contour resolu­

tion) which is sufficient for the representation of smooth shape outlines of low curvature, 

whereas for high contour curvature values, the local contour scale decreases, leading to a
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Figure 6.7: Different curvature-based B-spline sampling strategies for active contour model op­
timization, (a) Adaptive spline curvature sampling (with 62 final control points), (b) Adaptive 
image curvature sampling (57 control points), (c) Adaptive spline and image curvature sampling 
(57 control points). The distance stabilizers were chosen to be ei =  ^  (to allow for maximum 
sampling of ç =  16) and €2 =  2. Optimization was carried out using the initial model of figure
6.1 (d) of Ç =  8 at <70 =  8.

higher local flexibility needed to adjust to finer details and complex structure. Care must 

be taken when the local curvature approaches 0 or very high values. In this case the range 

of resulting distances must be restricted to a maximum and minimum local scale (which 

can be expressed by distance stabilizers ei and C2, respectively):

1
(6 .6)

|k(5)|"" -f €1

with m  chosen to be m < 1 to stretch distance values locally, and m > 1 for greater local 

compactness. A typical value is m =  0.5. Equation (6.6) can be related to the image scale 

(To by setting ei =  This ensures that for very low curvature values, the image scale 

corresponds to the upper contour scale limit. €2 is accordingly set to some lower contour 

scale limit for very high curvature values. Figure 6.7 (a) shows an example optimization 

using this variable curvature-based scheme. As can be seen, the distance of the control 

points at straight parts of the contour is larger than at comers, leading to a more flexible 

(since dense) representation at more detailed parts of the shape. However, this sampling 

scheme is only indirectly dependent on the image context, leading to an inability of the 

model to deform in lack of strong enough image forces.

Adaptive image curvature sampling: This is a more consistent approach which is based on the 

isophote imaj 

tion (6.6) by

isophote image curvature — ̂  (see chapter 3) at the point v(0.5). Replacing k { s )  in equa-

^w (v(5))
(6.7)

Lw{^{s))

relates the local sampling distances directly to the image context of the shape to be ex­

tracted. At image parts of low image curvature, only few points are needed, and at parts
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of higher image curvature, more points are inserted to decrease the local distance and to 

increase the local flexibility of the spline patches. Figure 6.7 (b) shows the result of the 

optimization using this scheme. Again, comers are represented more densely than straight 

parts of the shape, but problems occur at low curvature parts of the image. In particular, 

the low image curvature region just before the notch of the test image causes problems, as 

the sampling is not dense enough.

Adaptive spline and image curvature sampling: This is an alternative approach combining in­

ternal contour curvature and external image curvature, e.g. by multiplication: (|«:(s)| • 

IX'imageMl)'^. Figure 6.7 (c) illustrates an example using this combination for adaptive 

curvature-based sampling, yielding a better result at the notch of the test image.

However, all three presented approaches for variable, curvature-based sampling suffer from two 

major disadvantages: first, the active contour model might not gain higher local curvature and 

corresponding lower scale at finer detailed shape structure unless it is densely sampled and of al­

ready high curvature (the inverse problem), and second, this scheme uses two parameters ei and 

€2 which are related to the maximum and minimum desired contour scale ç, and whose choice is 

not quite obvious. In particular, the dependency of ei of the image scale needs further investiga­

tion. In the following, a hierarchical refinement will be discussed which attempts to overcome 

both problems.

6 .1.2.4 Refinement Sampling

[Miller et a l, 1991] have developed a hierarchical scheme for subsequent refinement. Starting 

with an initial coarse model a refinement or subsampling step is performed after each iteration of 

the optimization until the desired resolution is reached for all snaxels. This refinement sampling 

strategy can be easily integrated into the spline based active contour model, by inserting after 

each iteration new control points at s =  0.5 between the existing ones using any of the schemes 

for knot insertion presented in section 6.1.2.2. The adaptive sampling algorithm (algorithm 6.1) 

can be easily modified by halving the contour scale value ç for each subsequent refinement step. 

This simultaneously enforces equidistant spacing after each subdivision step. However, as figure

6.3 illustrates, it is not desirable to decouple the contour scale from the image scale. At high 

scales, subsampling will only lead to redundant refinement, and at low scales, a coarse initial 

model may lead to inaccuracy in the localization. In fact, sections 6.1.2.2 and 6.1.2.3 have already 

presented scale-based sampling schemes and illustrations in a fixed-scale setting, which will now 

be extended to a multi-scale setting.

Integrating a hierarchical contour refinement step such as the one proposed by [Miller et a/., 1991] 

into an image scale-space setting allows to relate the contour scale directly to the image scale. A
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natural image scale-space can be computed via exponential scale sampling, e.g.

(jÿ =  e • (6 .8 )

with natural scale â  and hidden scale parameter e (see equation (3.22) in chapter 3), or more gen­

erally by

(Ti = (To- r  with /  =  " (6.9)

where the scale change factor /  defines the ratio of the outer scale (Jn-i and inner scale ctq. Natu­

ral sampling can be obtained by setting e = cfq. Equations (6.8) and (6.9) can be used to relate the 

contour scale ç defined by the distance between the contour control points directly to the image 

scale (7, e.g. by setting

Çcr ~  ĉr or Çj — (Ji ) (6.10)

respectively. Note that this actually is equivalent to using normalized coordinates and scaled im­

age features. For practical reasons, ç is defined with an offset relationship by setting

Çÿ =  ei • O'er +  €2 or Çi = e\ ' (Ji-y C2 (6.11)

with scale stabilizers ei and C2, whose meaning can be interpreted in the following way: e\ in­

dicates the general agreement between distance and scale especially at high scales, and a logical 

choice is to set ei =  1 or only slightly smaller. e2 causes a fixed offset whose influence is espe­

cially high at very small scales, causing a minimum distance between the control points to prevent 

intersections. A reasonable choice for C2 is a value between 1.5 and 3.5, depending on the size 

of the search space (the local neighbourhood within which each control point is allowed to move 

during an optimization process). Hence the role of ei has changed from its previous scale rela­

tionship in section 6.1.2.3 to a proportional constant, while the meaning of C2 remains unchanged.

Going back to figure 6.2 at the beginning of this chapter, one can see that this scheme has been 

applied in terms of choosing the scale change factor a s f  = 0.5 for equation (6.9), with stabilizers 

ei =  0.8 and e2 =  3.5, n = 8 scale samples and final and starting scales cJn-i = 1 and ctq =  32, 

respectively. Sampling was performed using algorithm 6.1 replacing the constant contour scale 

Ç by a scale-sampled Q.

6.1.3 Summary

This section has presented several scale-based sampling schemes for a spline-based active con­

tour model. Notably, a general adaptive sampling algorithm was presented which can be applied 

to fixed-scale as well as multi-scale sampling strategies. It enforces adaptive uniform or variable 

spacing of the control points with respect to a given contour scale ç which is dependent on the 

image scale a. Adaptive sampling is performed as a spline knot removal and insertion process.
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with a tolerance span to increase local variability. Three knot insertion schemes have been de­

veloped and investigated for this purpose. From the conducted experiments the interpolated knot 

insertion scheme was found to be the most suitable one in terms of its superiority over the dis­

crete scheme, and its lower computational complexity in comparison with the heuristic insertion 

strategy. Fixed-scale adaptive uniform sampling prevents the control points from drifting too far 

apart or too close together and enforces equidistant spacing with respect to the fixed image scale. 

It generally performs better than uniform sampling based on redistributing new control points on 

the approximated spline contour. Fixed-scale adaptive variable sampling distributes the control 

points with respect to the shape complexity which is also limited by the image scale. In a multi­

scale setting, adaptive uniform or variable sampling allow to locate shape details at multiple levels 

of image detail, and to refine the contour representation by a scale-related subsampling.

The main advantages of scale-based adaptive sampling are the following:

• At high image scales or smooth shape outlines, fewer control points are needed for an ad­

equate contour representation and accurate shape localization. In particular, at a large im­

age scale, the image becomes less dense, thus choosing an appropriate larger control point 

spacing is sufficient. Computational efficiency is improved by removing redundant control 

points.

• Increasing the distance between control points has a smoothing effect on the contour, a pro­

cess that is similar to the underlying image smoothing process. Inserting new control points 

increases the contour flexibility and allows to track finer details at lower scales or more 

complex parts of the shape.

•  The normalized representation of the spline contour as v(s) allows to relate a natural con­

tour scale Ç to the natural underlying image scale â  in an adaptive sampling process. This 

provides the means to automatically derive the number of control points needed for the 

shape extraction, an issue that so far has never been investigated, as the choice of the num­

ber and related spacing of control points as well as the choice of the image scale is usually 

performed empirically.

Adaptive uniform sampling using the interpolated knot insertion strategy in a fixed-scale as well 

as multi-scale setting will be adopted as a pragmatic solution for the sampling problem in ac­

tive contour models. Variable sampling based on curvature properties of the contour or image 

was found unsuitable due to the inverse nature of the problem. Further investigation of sampling 

schemes go beyond the scope of this dissertation, but a multi-scale variable sampling scheme for 

active contour model optimization, selecting locally adequate image scales and related contour 

scales, will be developed and discussed in chapter 10.
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6.2 Energy Function

The spline representation and associated multi-scale sampling schemes presented in section 6.1 

form the basis for the multi-scale energy function and multi-scale optimization of the spline-based 

active contour model developed in this chapter. The spline representation not only allows for the 

continuous computation and evaluation of internal and external energy terms, but also for analytic 

differentiation of the contour for the internal elasticity and curvature energy computation. The 

spline-based formulation of internal and external energy terms will be presented in the following. 

In particular, the incorporation of scale continuation, and a novel curvature matching process will 

be presented. To ease the understanding of the multi-scale setting of the model, a normalized 

representation v(a) =  (z(s),^(a)) is chosen, with v(5) =  ^ ) -

6.2.1 Internal Energy Terms

The elasticity energy term is traditionally a first-order tension term of the contour, controlled by 

a weighting factor aeiasUcUy which enforces uniform sampling and smoothness of the contour 

outline. Section 6.1.2.2 discussed the selection of a suitable weighting factor and the tradeoff 

between smoothness and accuracy of the contour. The presented adaptive uniform resampling 

scheme addresses these issues in a multi-scale setting, giving rise to a multi-scale elasticity energy 

defined by

è e la s tic ity i^ is ) )  =  (6 .12 )

normalized with respect to the normalized contour scale ç and the associated image scale a^. The 

analytic normalized elasticity is given by the first order derivatives of the normalized coordinate 

functions:

Va(s) =  \J xs{sy  +ÿs(s)2 (6.13)

The influence of this term can be chosen very low as the adaptive uniform resampling additionally 

enforces uniform spacing of the spline control points.

The bending energy of the classic model is defined as the squared second derivative Vgg(a). 

[Williams and Shah, 1992] pointed out that this term only holds for arc length parameterization 

and strictly uniform spacing of the discrete set of contour points. Otherwise the absolute curva­

ture is given by equation (4.7) (chapter 4, section 4.2.1). The bending energy of the multi-scale 

active contour model is given by

Sbending{^{s)) = (6.14)

where the curvature is computed by equation (2.29) (chapter 2), or in a scale setting by the nor­

malized derivatives of the contour:

a(s) = (6.15)
(xs(sP  + ÿ .(s ) ) l
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In general, curvature minimization might not be desirable when segmenting shapes with high cur­

vature parts. In the following, a curvature matching process is developed which instead adjusts 

the contour curvature to the underlying image shape.

6.2.1.1 Curvature M atching Process

To avoid minimizing of the contour curvature at high curvature parts of the shape to be segmented, 

a novel curvature process has been developed which adjusts the contour curvature «(s) to the un­

derlying isophote image curvature, which is computed as — ̂  along the contour v(s). Hence, 

not the contour curvature is minimized, but its déviation from the underlying image curvature. 

Note that the scale-space isophote curvature has to be computed via the normalized partial deriva­

tives of the image L, yielding — This term is obtained by multiplying the first order deriva­

tives of the image with a, and the second order derivatives with cr̂ . The energy term enforcing 

the curvature matching can then be formulated as

^ b e n d i n g ~  (^(^) ^  (^)) (6.16)

with

Hima,e{s) =  - ^ 4 ^  («I?)

This is a novel approach, not only because the relationship between these two curvature mea­

surements has to our knowledge not been investigated in the context of active contour models, 

but also in respect to the traditionally strict separation between internal and external terms. The 

combination of these terms implements a local, non-parametric scale-based constraint into the 

no longer autonomous shape forces. Most importantly, not only the absolute curvature values of 

contour and image are matched, but also their curvature behaviour. The use of the — operator 

is now further investigated in terms of its sign (denoted by the ±  operator in equation (6.16)), its 

robustness, its performance in the shape extraction process, and its dependence on contour and 

image scale:

Sign: The sign of the scale-space isophote image curvature depends on the chosen normal direc­

tion in the local gauge coordinate system, i.e. whether the normal to the isophote is point­

ing inward or outward. This choice is directly related to the image contrast, or whether 

the shape to be extracted is lighter or darker than the background. For light shapes on dark 

background, — ̂  is chosen, otherwise

Robustness: The robustness of the isophote curvature operator can decrease in areas of low gra­

dient values, expressed by Lyj approaching zero. [Gerig et a l, 1995] have presented a so­

lution to this problem which is adopted in this dissertation. They suggest to compute the 

isophote curvature with lower limits to the partial derivatives and Ly (the scale-space
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Curvature matching O’ =  Ç RMS error
On 32 0.038642
Off 32 0.037548
On 16 0.132589
Off 16 0.111322
On 8 0.140109
Off 8 0.502091
On 4 0.429516
Off 4 1.010320
On 2 1.740510
Off 2 8.430570

Table 6.3: Curvature deviation results in pixel units with and without curvature matching com­
puted as root-mean-squared errors for decreasing image and contour scales.

derivatives Lx and Ly in this case) to avoid numerical instability. A parameter e governs 

the stabilizing viscosity effect for weak solutions ([Evans and Spruck, 1991]). In 2D, the 

following image feature is computed:

L y y    (■f'l T  ^) L y y  4" (^Ly “t" c) L x x  ^ L x L y L x y

T Z ~  ((Z^ +  6)2 -F(Zy +  e)2)3/2
(6.18)

For low values of Lx and Ly, this expression approaches ÂL =  Lxx F  Lyy, the scale-space 

Laplacian. A reasonable choice is e =  1. Similarly, the normalized contour curvature is 

computed using the same stabilizer:

(£ 5 ( 5 ) -f e)ÿss{s)  -  Xss{s){ÿs{s)  +  e)k{s) =
{{xs{s) + + {ÿs{s) F e))2

(6.19)

Performance: Figures 6.8 and 6.9 illustrate the deviation between contour and image curvature 

for the optimization of the notched rectangle test image at decreasing levels of image scale 

and associated contour scale, using the bending energy terms based on equations (6.16) 

(for curvature matching) and (6.14) (for curvature minimization), respectively. The high 

positive curvature peak which can be observed in these figures describes the notch of the 

notched rectangle test image, and the negative peaks describe the comers of the rectangle, 

as well as the comers at the entrance to the notch. Differences in curvature deviation are 

subtle and need to be further quantified in terms of the overall error. Table 6.3 lists the 

root-mean-squared (RMS) error for both cases. It can be observed from the figures and 

the associated errors listed in the table that at high scales the curvature deviation is slightly 

lower when no curvature matching is performed. This is due to the fact that the image object 

is less complex at higher scales, and therefore minimizing the bending is almost equivalent 

to matching the bending to the underlying low image curvature. At higher scales, however, 

the RMS error for the curvature minimization becomes much higher than for the curvature
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Figure 6.8; Results for curvature matching at decreasing scales. From top to bottom: a  — ç 
32,8,4.
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RMS error a = 32 (j =  16 (7 =  8 (7 =  4
C =  32
Ç =  16 

8
Ç = 4

0.038642
0.069287
0.140109
0.429516

0.098777
0.132589
0.186350
0.374140

0.604771
0.376344
0.396742
0.866096

0.913324
0.672205
0.780066

Table 6.4: Curvature deviation results as root-mean-squared errors for different levels of image 
and contour scale. The best matches are achieved if contour scale ç and image scale a  correspond, 
or of Ç is slightly higher. Figure 6.10 illustrates the matching results for a = 32 using smaller 
contour scales.

matching. For both cases, the RMS error generally increases for decreasing scales due to 

the increasing complexity of the object. It should be noted that the contours along which the 

contour and image curvature values have been obtained are not identical for the curvature 

minimizing and curvature matching results, and that the curvature deviation in both cases 

is greatly influenced by the balance of the other internal and external energy forces acting 

on the model.

Scale dependence: Both the normalized contour curvature k{s) and the underlying scale-space 

isophote image curvature kimageis) are dependent on scale in two respects: first, the im­

age curvature is computed at a sampled image scale or rather from a blurred image 

L(x ;<7̂ ). Second, using the normalized representation v(g) yields a dependence on the 

contour scale related to the image scale by equation (6.11). The necessity of relating 

contour and image scale is further motivated by the curvature matching process itself. Fig­

ure 6.10 illustrates the effect of choosing the contour scale is chosen smaller than the im­

age scale - the contour is oversampled and its curvature is oscillating with respect to the 

image curvature, since it is computed over smaller distances than the image curvature. In 

table 6.4 this effect is quantified in terms of the RMS error between contour and image 

curvature for varying levels of image and contour scale. Note that for the particular case 

of cr =  4, Ç =  32 no adequate curvature match could be obtained at all. The best matching 

results are obtained if both contour and image scale correspond, or if the contour scale is 

chosen slightly higher. The fact that slightly higher contour scales appear to produce bet­

ter matching results is due to the tolerance span in the adaptive sampling process, which 

allows snaxel spacing in the open interval (ç — Aç; ç -f Aç) (see algorithm 6.1). Contour 

scales larger than the sampling contour scale have only a minor effect on the matching qual­

ity, while the oscillating behaviour occurring at contour scales below the sampling contour 

scale produces much higher errors. This effect may be corrected by sampling the contour 

scale with an offset (see equation (6.11)).



6.2. Energy Function 135

C urvature m atch at image scale  32 and contour scale 16
0.01

C on tou r curvature ------
Im age curvature ------

0.005

-0.005

-0 .01I
-0.015

-0.02

-0.025

-0.03
0.90 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1

C urvature m atch at im age scale 32 and contour scale 8
0.02

C ontou r curvature 
n age curvature

0.01

-0 .01

-0.02

-0.03

-0.04

-0.05

-0.06
0.8 0.9 10.5 0.6 0.70 0.1 0.2 0.3 0 4

C urvature m atch at im age scale 32 and contour scale 4
0.04

C o n tou r curvature  -  
Im age curvature  -

0.03

0.02

0.01

-0 .01

-0.02

-0.03

-0.04

-0.05

-0.06

-0.07
0.9 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 6.10; Curvature matching dependence on scale. Curvature deviation at cr =  32 and con­
tour scales Ç =  16 (top), ç =  8 (middle) and ç =  4 (bottom), resulting in oversam pling  and 
oscillations o f  the contour curvature.
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6.2.2 Image Energy terms

In order to attract the multi-scale active contour model to edges, the image scale-space gradient in 

a Euclidean setting, VL, and the ridges R  of the magnitude of the scale-space gradient, 11VL11, are 

chosen as the basis for suitable image potentials. Squaring and negating the scale-space gradient 

yields a term — which creates a high attraction to high negative edge values. Alternatively, the 

values of can be inverted, leading to high values in homogeneous regions, and low values at 

edges. Computing the ridges of Ly, allows to locate the centres of the image edges, similar to the 

zero-crossings of the scale-space Laplacian. The ridges are computed from Ly, as binary ridges 

in 2D for every scale using equation (3.43) (chapter 3), but fiizzy ridgeness measures like the 

ones presented in section 3.4.3.2 with extensions to ZD may also be used. The 2D binary ridges 

are then distance transformed in order to form an attraction potential. The 5 — 7 — 11 Chamfer 

distance transform (chapter 2, section 2.4.1) was chosen as the most suitable method due to its 

good approximation quality. Using this scheme, the multi-scale active contour model is attracted 

to low values of the distance transformed ridge potential, %g^(Zw), indicating closeness to an 

edge, with zero values for the centre of edges. Using the ridge potential additionally to the gra­

dient magnitude potential has the advantage of providing a continuous attraction potential over 

large distances even in homogeneous regions of an image. In order to achieve an adequate bal­

ance of these two image potentials to the internal terms presented above, they are normalized. 

(Note that this normalization can instead be integrated into the associated energy weighting pa­

rameters). The potential is normalized and inverted by setting

2 / - / _  I -  max(Ly,)
2Li(v(s)) =  r i f f  ’ (620)

\max(Lu;) -  min(Lu,) /

and the ridge potential is normalized between [0; 1] by computing

r 2 / f  ( I ^ d i , t ( L w { ÿ { s ) ) )  - m in(fld i,t(£„)) V
^dist\^w \y\S))) I (T W ' / ' D ^  I (0.21)

\mdJx{Rdist[Ly,)) -  mm[Rdist[Ln})) J

These two normalized image potentials are weighted with the deviation of the scale-space gradi­

ent direction of VL from the contour unit normal direction of n(a), similar to the boundariness 

measure based on directional tuning in [Morse, 1994]. Figure 6.11 illustrates this scheme. The 

directional tuning is achieved by multiplying the edge terms in equations (6.20) and (6.21), re­

spectively, with the product of n(s) and the unit gradient vector VL/Ly,:

Sgradientms)) =  ± L J , ( v ( s ) )  { '  n ( 3 } )  ( 6 .2 2 )
\L y ,(v (s ))  )

Weighting the angular falloff by raising it to the power of m allows for narrowing or broadening 

the directional tuning operator (by choosing m > 1 or m < 1, respectively). Selecting m =  0
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Spline con tour

Figure 6.11: Directional tuning.

models an operator without any directional tuning, i.e. the squared normalized scale-space gra­

dient magnitude. Similarly, the ridge potential is aligned to the contour normal direction by

■ n ( s ) )  (6.23)
\ L ^ ( v ( s ) )  J

The image contrast needs again to be taken into account, which is achieved by changing the sign 

o f  the weighted angular falloff.

6.2.3 Integration into the Energy Function

The normalized elasticity Vs(s) and curvature k{s)  o f the contour, as well as the contour nom ial 

n (s )  are computed analytically from the normalized parametric B-spline representation v ( s )  for 

all interpolated points along the contour. All image terms, including the scale-space image curva­

ture, are computed discretely by interpolating the points o f the spline contour and evaluating the 

image terms at these points. The energy function determining the total energy o f  the multi-scale 

active contour model is defined as a weighted linear combination o f  the terms given in equations 

(6.12), (6.16), (6.22), and (6.23):

^  L ( v ( s ) )  ^  ( ^elasticity ^elasticity { ^ { ^ ) )  T  (^bending ^bending{ ^ { ^ ) )  +

^gradient ^gradienti^{^))  T  Oiridge (v (s ))^  d s

where L (v (s ))  is the length o f  the overall spline contour. The integral over the spline contour can

be discretized using summation with an interval increment o f  A s =  \  :
L ( v ( s ) )

^  ~  L f v f s l )  ^  (  ^elastic ity  ^elasticity  ^bending ^ b e n d in g i^ i^ ) )''  ̂ s=0;As (6.25)

(^gradient ^gradienti^(^)) ^ridge

The normalization o f  the energy by the length o f the contour is necessary as otherwise shorter 

contours are favoured over longer, more complex ones. Equations (6.24) and (6.25) com pute the 

overall snake energy. Local optimization techniques, however, may only require the calculation
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of the energy of each spline patch, i.e.

~  L(vt(sj)) (  ^elasticity ^ e la s tic i ty i^ i i^ i) )  +  (^bending ^ b e n d in g i^ i i^ i) )  “t"
0 0 J

^gradient ^ g ra d ie n tiÿ i i^ i) )  “t“ bridge ^rW ge(^i(^*))

which is discretely approximated by 

^  (v*) — Lfv fa ')) ^  ( ^elo,sticity ^ e la s tic i ty i^ i i^ i) )  +  ^^bendzn  ̂ ^bending*'■ Si=0;Asj

(^gradient ^ g ra d ie n ti^ i(^ i) )  bridge ^ r id g e i^ i i^ i ) ) ^
(6.27)

with A si = lit the following, several modified optimization techniques based on this

energy functional will be presented.

6.3 Optimization

Since the goal of the multi-scale active contour model is the tracking of shapes through an image 

scale-space rather than their explicit segmentation, the choice of potential optimization routines 

can be restricted to local ones. This is motivated by the use of the natural contour representation 

which yields at all scale levels the same level of locality of the solution with respect to the image 

scale. The spline representation and the proposed curvature matching process rule out the classic 

variational approach (chapter 4, section 4.3.1) which is based on an implicit discrete Euler step 

with respect to the internal terms and explicit steps with respect to all external energy terms. This 

implies that such a system cannot easily be solved with respect to local, non-parametric image cur­

vature constraints. In this dissertation three other local techniques have been investigated which 

are all based on explicit constraints: the greedy algorithm. Iterated Conditional Modes (ICM), 

and a Euler forward scheme. In the following, these modified optimization techniques will be 

presented.

6.3.1 Greedy Optimization

The greedy algorithm (section 4.3.3) performs a local neighbourhood search and a sequential up­

dating of the snaxels. Additionally, the adjustment of the bending energy weighting term for cor­

ner detection as suggested by [Williams and Shah, 1992] is replaced by a fixed weighting term for 

the proposed curvature matching process, and the edge potentials are normalized over the whole 

image rather than locally. A possible sequential dependence of the greedy algorithm is avoided 

using a simultaneous or quasi-parallel updating of the control points. This is achieved by freez­

ing the neighbouring control points for each spline patch optimization, and updating only after all 

spline patches have been evaluated. This might cause a slight total energy increase as the inter­

nal energy terms (elasticity, curvature and normal direction used for the directional tuning) may 

change due to the simultaneous updating of the neighbouring control points, but was not found to



6.3. Optimization 139

affect the final optimization result. Algorithm 6.2 illustrates the strategy for the modified, multi­

scale greedy optimization with simultaneous updating. At the beginning of each iteration of the 

optimization process, the active contour model is resampled using algorithm 6.1 with respect to 

the underlying image scale. Then all snaxels or spline control points are visited once, and the 

local neighbourhood of size M  x M  is investigated. For each point in this neighbourhood, the 

corresponding new spline patches obtained by replacing the current control point with the point 

of the neighbourhood are evaluated using the energy fimction of equation (6.27), and the point is 

marked as a new potential control point if the associated local energy is lower than the energy as­

sociated with the current point or previously marked potential new points. Note that theoretically 

four spline patches have to be evaluated for each control point due to the local control associ­

ated with V-splines. However, investigating only the two middle spline patches was found to be 

quite sufficient, and additionally improved computational complexity. After all control points 

have been visited, they are updated according to the marked new points, and the next iteration 

of the optimization is performed. The optimization terminates if no new points of better (lower) 

energy are found, or if the total energy falls below a certain threshold, or if a maximum number of 

iterations is reached. As the absolute number of points may vary due to the adaptive sampling, a 

relative number in percent was found to be a more appropriate stopping criterion, while an abso­

lute energy threshold needs to be chosen due to the simultaneous updating and sampling scheme.

6.3.2 Iterated Conditional Modes Optimization

Iterated Conditional Modes (ICM) (chapter 4, section 4.3.4) is a probabilistic relaxation technique 

and corresponds to Simulated Annealing with instantaneous freezing. It has a deterministic be­

haviour and therefore converges very fast. However, the search space needs to be restricted in 

order to improve computational efficiency, which can be achieved by only searching along the 

normal direction at each snaxel. Additionally, the expansion in the normal can be constrained. In 

this form ICM is similar to the greedy algorithm, and algorithm 6.2 can be modified for the ICM 

algorithm by changing the search space definition from M  x M  to the points along the contour 

normal. Each control point v% is optimized according to the energy function in equation (6.25) 

and is replaced by a point along its normal by maximizing the conditional probability f  (w^jv)

based on the provisional estimates v of (he search space. Though fewer iterations than for the 

greedy algorithm are necessary, each iteration takes longer since the normal computation for the 

search space is computationally more expensive.

6.3.3 Euler Forward Optimization

As mentioned earlier, the classical variational approach by [Kass et a l, 1987b] takes a combina­

tion of implicit and explicit Euler steps. Formulating the internal energy terms also as external
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while no-points-moved > thres-no and S* > thres-cnergy and counter < thr es-iterations do

reset nojpoints-moved 
increment counter
II Adaptive resampling using algorithm 6.1 with respect to Çÿ 
sample-adaptive (v)
// Loop to optimize control points without updating 
for * = 1 to A do

set ÿ’newi ~
// Search local neighbourhood of size M  x M
for j  = to ^  do

for A: = — ̂  to ^  do
set Vnew ~  "h j^Vi
i f £ * { \ n e w )  <  £ * { ÿ n e w i )  then 

set 'V n e W i  —  ^ n e w

end if 
end for 

end for 
end for
// Simultaneous updating 
for 2 = 1 to A do

if (vj ^  Vncwi)then
s e t  V j  — V n e tü i

increment no-points .moved 
end if 

end for

end while

Algorithm 6.2: Algorithm for modified multi-scale greedy optimization, 

steps, an explicit Euler forward scheme is performed. Let

OXi ^Vi

where the derivatives are computed by discrete approximizations and S* is computed via equation 

(6.25). This leads to two independent Euler equations which can be minimized using a step size 

7-

f i  =  - 7  (x<"> -

fÿ (6.29)

At equilibrium, the time derivative vanishes and equation (6.29) is solved, which can be achieved 

by iteratively solving

.  '■ ...d  ,1 -. |d,do,
7 7
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Parameter name Parameter value

^elasticity 0.00001

^bending 1

(^gradient 1

^ridge 0.1

Number of iterations up to 30

Energy threshold 0.001

Number of points moved 1%

Greedy search space up to 7 X 7 pixel units

ICM normal search space 20 pixel units

Euler forward step size 7 =  1

Table 6.5: Energy function parameters.

This technique is also called simultaneous over relaxation. Numerical details of this technique 

can be found in [Press et a l, 1992]. This purely explicit method allows for incorporation of hard 

constraints into the energy function, in particular the curvature matching process as a combina­

tion of internal and external energy terms. Moreover, it can be continuously evaluated along the 

contour, rather than at discrete snaxels only, whereas the classic scheme only allowed for contin­

uous evaluation of the external energy terms. Termination criteria are chosen similar to those of 

the greedy and ICM algorithms. The main disadvantage of this techniques is that only small step 

sizes 7 can be taken, as otherwise the technique becomes numerically unstable. This implies that 

although each iteration is actually faster than for the greedy and ICM algorithms (as for each con­

trol point only the two derivative steps need to be calculated, rather than evaluating an M  x M  

neighbourhood, or the normal search space), more iterations are necessary.

Table 6.5 lists the fixed, general parameters of the energy terms for all three optimization tech­

niques along with the associated optimization parameters. The energy parameters were selected 

empirically via a set of experiments, and then fixed for all results in this dissertation. The choice 

of the energy weighting parameters reflects the emphasis on the curvature matching process and 

the edge terms, while the weighting parameter for the elasticity terms is chosen rather low, as the 

adaptive sampling strategy enforces uniform snaxel spacing.

This section has formulated three suitable extensions for scale-space integration into existing lo­

cal optimization techniques, where the locality of the respective solutions is given by the image 

and contour scale. Though all three techniques have been found suitable and yielding similar 

results, the multi-scale greedy algorithm is favoured in this dissertation due to its computation
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speed, flexible search space, numerical stability, and good convergence behaviour in practice.

6.4 Summary

This chapter has presented the theoretical framework for a novel multi-scale active contour model. 

In particular, a suitable continuous spline representation has been chosen to overcome problems 

encountered in the classic discrete active contour model. This representation has been formulated 

in a multi-scale setting by adapting the internal contour scale in terms of the control point spac­

ing to the image scale using several newly developed multi-scale sampling strategies. A multi- 

scale energy function has been formulated to include differential invariants in scale-space, as well 

as normalized edge potentials in terms of the scale-space gradient and the distance transformed 

ridges of its magnitude. A curvature matching process of the contour curvature to the underly­

ing isophote image curvature has been developed and evaluated in terms of its dependence on the 

image contrast, robustness, performance and scale-dependence, and has been found to perform 

better in extracting shapes of high curvature parts than using the classic energy function which 

minimizes the contour curvature. It was shown that the concept of a spline-based multi-scale ac­

tive contour can be formulated in a local optimization framework. In the following chapter, the 

application of this model as an implicit segmentation tool for shape description will be developed, 

and the concept of the resulting multi-scale shape stack will be presented.



Chapter 7

Multi-Scale Shape Stack

- P e t i t  b o n h o m m e , n ’e s t - c e  p a s  q u e  c ’ e s t  u n  m a u v a i s  r ê v e  c e t t e  h i s t o i r e  d e

SERPENT ET DE R E N D E Z-V O U S ET D ’ÉT O IL E...

’’L i t t l e  m a n , t e l l  m e  t h a t  i t  i s  o n l y  a  b a d  d r e a m  -  t h i s  a f f a i r  o f  t h e  s n a k e ,

A N D  THE M EETIN G -PLA C E, A N D  THE S T A R ...”

Le Petit Prince, Antoine de Saint-Exupéry.

The multi-scale active contour model presented in the previous chapter provides a tool for shape 

regularization and description in scale-space. The idea behind this is that a shape is represented 

and tracked by an active contour model through an image feature scale-space, consisting of the 

scale-space isophote image curvature, scale-space gradient magnitude and direction, and the dis­

tance transformed ridges of the scale-space gradient magnitude. At each level of this scale-space, 

the shape is quantified with respect to its size, curvature and other shape measurements. Further­

more, the whole set of regularized shapes is tested with respect to shape changes across scales. 

This is achieved by formulating the set of shapes in a hierarchical manner as a multi-scale shape 

stack, where each level of the stack represents the level of contour and image scale at which the 

shape has been regularized. The shape stack can be obtained via two different processes: active 

shape evolution, and active shape focusing. The analysis of the shape stack is referred to as active 

shape description.

This chapter first introduces some scale-space notations for the different possible dimensionalities 

of the image scale-space, multi-scale segmentation, and multi-scale shape stack. The techniques 

for active shape evolution, focusing, and description based on the concept of a multi-scale shape 

stack will be presented, and an example section will illustrate the interaction of these techniques.

7.1 Scale-Space Notations

Applying an active contour model to 2D or 3D image data and corresponding scale-spaces re­

quires the introduction of a suitable notation for image scale-spaces, multi-scale segmentation, 

and the resulting multi-scale shape stack. Table 7.1 presents an overview of the different scale-
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Properties 2 |D  stack 3D stack 3 |D  stack 3 |D  stack

Original image
Dimension 2D 3D
Notation

L{x,y)
L{x , y , z )

Slice L{x,y,Zk)

Image scale-space

Dimension 3D 3 |D 4D
Notation L{x,y ,a) {Lzk(x,y' ,a)} L{x,y, z ' ,a)
Sample

L{x,y,ai )
{Lzf^{x,y]ai)} L{x , y , z \a i )

Slice Lzk(x,y]ai) L(x,y ,Zk\ai )

Segmentation
Dimension 2D 2 |D 2 |D 3D
Notation v(5;<7) v(s,r;o-)
Sample v(s;o-i) v(5,r;o-i)

Table 7.1: Overview of scale-space dimensionalities of the multi-scale shape stack based on the 
different image scale-space dimensionalities and segmentation methods.

space dimensionalities which will be further discussed below. Let L(x,  y) denote a 2D image 

and L{x ,y , z )  a ZD or volumetric image. Individual slices of a volumetric image are denoted 

by L{x,  y,Zk). Furthermore, one can distinguish between image scale-spaces of three different 

dimensionalities (note that the more general writing of <7i rather than for the individual scale 

samples is used):

• 3D. A 3D image scale-space L{x, y\a)  can be computed of a 2D image, where the image 

scale (J is treated as an extra degree of freedom. Individual scale samples or slices of the 

scale-space are denoted by L{x, y\ai).

• 4D. A 4D image scale-space L{x , y , z \a )  can be analogously computed of a volumetric 

image. A scale sample of this image scale-space is denoted by L{x,  y, z; cr%), and a sample 

with respect to an image slice is denoted by L{x,y,Zk;(Ti).

•  3 |D .A S |D o r  slice-by-slice image scale-space is obtained by computing for each image 

slice of a volumetric image a separate ZD image scale-space, yielding a set {Lz^ (x, y\cr)}. 

A scale sample for a certain image slice is denoted by (x, y; (7̂ ), and for the whole set 

by {Lzj^{x^y\<7*)}. The scale-space structure is either organized as a 4D scale-space, or, 

more commonly, as a list of ZD scale-spaces with one entry for each image slice.

The first two approaches can be generally formulated as an (N+l)-D scale-space L(x; a) of an 

N-D image L(x). Scale samples of this scale-space are consequently denoted by L(x; ai). In 

general, slice-by-slice approaches for the scale-space computation of N-D images are less mem­

ory exhaustive and computationally more efficient than their true (N+l)-D counterparts, but they 

loose the correlation between neighbouring image slices.
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An active contour model is by its nature a 2D technique. If applied to a volumetric image, how­

ever, it can be optimized on the individual slices of the 3D data set. This is denoted by changing 

the notation of a 2D active contour model \ {s )  to a set (s)} of 2D active contour models, 

where the subscript denotes the image slice. In combination with image scale-space techniques 

for 2D and 3D images, one can generally distinguish between four segmentation dimensionalities 

[Vincken, 1995]:

• 2D. The full 3D scale-space information of a 2D image is used for the segmentation of a 

planar, 2D shape.

• 2 |D . A slice-by-slice, 3^D scale-space of a 3D image reformatted in order to obtain for 

each image slice Zk an associated 3D scale-space Lz^{x,y\(j)  which is then segmented 

individually. The result can be formulated as a set of planar shapes (one for each image 

slice), or as a volumetric shape using a suitable concatenation of the individual results, e.g. 

using triangulation.

• 2 |D . This segmentation is based on a true 4D scale-space of a 3D image, which is re­

formatted in order to obtain a 3D scale-space L{x,y,Zk]cr) for each image slice z*- Seg­

mentation is then carried out in analogy to the 2 |D  approach. The higher dimensionality 

is motivated by the fact that the correlation between neighbouring image slices due to the 

higher order image scale-space influences the segmentation result.

• 3D. A true 4D image scale-space of a 3D image is used to segment a volumetric shape. A 

true 3D segmentation requires a volumetric technique, e.g. an active surface model v(s, r ) . 

This approach is not followed in this dissertation due to the high computational complexity 

and memory demands involved, but necessary extensions will be discussed in chapter 10.

All segmentation dimensionalities except for the last one can be achieved using active contour 

models. It is important to note that the aim of this dissertation is not multi-scale segmentation, 

but shape regularization with respect to scale. This is in contrast to other multi-scale segmenta­

tion techniques like edge focusing or the hyperstack (chapter 3, section 3.4.2), which are either 

only interested in the lowest scale result only, or in a final downward projection after establishing 

suitable links between the different scale levels.

This dissertation proposes to investigate each scale level individually, and regards only the full 

set of shapes at all scales as a complete shape representation. This set is obtained using the multi­

scale active model in scale-space, where it gains an extra scale dimension, and optimizing it on 

the individual scale-space slices in a slice-by-slice fashion. Additionally, if the model is applied 

to a volumetric image, it can be optimized on the individual slices of the 3D data set, as well as on



7.1. Scale-Space Notations 146

the individual scale slices. Extending now the representation from v(5) to v(s; a), with v(a;

(for a natural scale-space) or v(s; Oi) (in the general form) at a particular scale level, allows to 

incorporate the extra scale dimension. Moreover, at each individual scale level the model has also 

an individual contour scale % or %, respectively. When applying this model to volumetric images 

and associated or 4D scale-spaces, each slice Zk can be optimized with an individual multi­

scale model, which is then denoted by (s; a), with analogous notation for the individual scale 

levels. The resulting set of shapes v(s; a) (for 2D images) and (s; a)} (for 3D images) are 

formulated as multi-scale shape stacks which are of one of the following dimensionalities:

• 2 |D .A 2^£> multi-scale shape stack is based on instances of a planar shape in a 3D image 

scale-space, consisting of all intermediate results of a 2D multi-scale segmentation process. 

It is obtained by optimizing a model v(s; a) in each slice of the scale-space of a 2D  image 

separately. The organization of the stack is as a set of 2D planar shapes, or as a 3D structure 

obtained by concatenating the individual scale results.

• 3D. A 3D shape stack is based on instances of a series of planar shapes (one for each im­

age slice) in a 3^D image scale-space. A multi-scale active contour model v^^(s; cr) is 

optimized separately in a 2^D fashion in each 3D scale-space associated with each image 

slice. The resulting shapes for each scale can be transformed back into a set of volumetric 

shapes using standard concatenation techniques. The 3D stack can therefore be structured 

in two different ways:

— as a set of 2^D multi-scale shape stacks, one for each image slice, or

— as a 3 |D  multi-scale shape stack (see below), where each layer represents a single 

volumetric scale result.

3 JD. a  3^D shape stack is similar to a 3D stack, but it is based on a true 4D image scale- 

space and a 2 |D  multi-scale segmentation of a model (s; a) which contains spatial and 

scale information about the shapes in the neighbouring slices. The individual results can 

again be concatenated to a volumetric shape. This stack is of higher dimensionality than 

3D due to the higher order image scale-space.

• 3 |D .A 3 ^ D  stack would be based on instances of a volumetric shape in a 4D image scale 

space. Such a stack can only be constructed using a multi-scale volumetric segmentation 

technique, e.g. by a multi-scale active surface model v(s, r; a), which will be discussed in 

chapter 10.

The multi-scale shape stacks developed in this dissertation assume that the shapes under inves­

tigation are planar, or can be formulated as a set of planar shapes. They add an extra scale di­

mension, and extra dimensions for instances of shapes in neighbouring slices. A true multi-scale
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H For ail image slices 

for zjfc =  1 to iV do

// Initialize with true (ground truth) model 

setv^Js;o-o) =

// Optimize for increasing scale levels 
for i = 1 to n do

set {ai) =  Optim ize (s; a i - i ) )  

end for

end for

Algorithm 7.1: Algorithm for active shape evolution.

approach where the model is optimized as a space curve in scale-space rather than as a planar 

curve at each individual scale level will be discussed in chapter 10.

In this dissertation two main types of shape stacks are investigated: those obtained using active 

shape evolution, and those obtained via active shape focusing. Both concepts will be presented 

in the following.

7.2 Active Shape Evolution

Active shape evolution is similar to the classic multi-scale contour evolution and analysis (chap­

ter 3, section 3.4.1), as it starts from the “original” shape obtained via prior manual outlining by 

an expert or a suitable segmentation tool, or through some other form of higher level knowledge 

(e.g. for analytical or artificial data). This shape is also called the true model or simply ground 

truth. Instead of directly blurring the shape contour as in the classic multi-scale contour analy­

sis, the shape contour is embedded in its image context, and is taken as an initial active contour 

model. An image scale-space rather than a contour scale-space is constructed, along with an as­

sociated image feature scale-space. The multi-scale active contour model is then tracked through 

this scale-space in a so-called fine-to-coarse fashion, for increasing levels of image scale and as­

sociated contour scale. In this way the model is attracted from the finest shape details to more and 

more global, higher scale image features. Active shape evolution in conjunction with any of the 

presented scale-space dimensionalities can be formulated as a multi-scale, implicit segmentation 

process of 2D, 2^D, or 2 |D  dimensionality. The resulting shape stack, consisting of all interme­

diate scale results, is consequently of dimensionality 2^D, 3D, or 3 |D , respectively. Algorithm

7.1 illustrates the technique for active shape evolution of 2^D or 2 |D  dimensionality (differing 

only in the dimensionality of the underlying image scale-space), which will in the following be 

explained in more detail.

Given an initial ground truth or true model at zero scale ctq for each image slice
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L(x,y,Zk) ,  all ground truth models are optimized independently for increasing scales ai. As 

an optimization routine, any of the presented techniques of the previous chapter can be used. 

For each scale level, the image energy terms of the energy functional are based on slice i of the 

3D, S^D,  or 4D image scale-space. Consequently, each model Vz^(s’,ai) at scale level ai is 

of image-scale related contour scale ç̂ , enforced by an adaptive uniform sampling process (see 

section 6.1.2.2). The fine-to-coarse tracking is performed by taking at each slice i of the image 

scale-space the optimized contour models from the previous, next lower scale slice i — 1 as an 

initial estimate, until the highest or coarsest level of scale, n, is reached. The resulting set of 

shapes {vz^(s; cr*)} represent the fine-to-coarse multi-scale shape stack, and can consequently 

be structured in three different ways:

• as a single 2 \D  shape stack, denoted by the set {v(s; ai)\i =  0, • • • , n — 1}, or

• as a set o f 2 ^ D  shape stacks, organized as the set of all intermediate evolution results for 

each image slice Zk, where each 2^D  stack is denoted by (s; ai)\i = 0, • • •, n  — 1}, 

or

• as a single 3 \ D  shape stack, which is given by the set of concatenated, volumetric shapes 

for each ascending scale level ai, denoted by (s; ai)\zk =  1, • • • ,N}.

The scale samples are formulated in ascending order. Note that the latter two structures merely 

refer to the re-organization of the resulting shapes, and not to a different active shape evolution 

method. However, in a following active shape description process, they give rise to different 

kinds of descriptors, which will be further discussed below.

7.3 Active Shape Focusing

Active shape focusing is the dual technique to active shape evolution, as it is performed in a 

coarse-to-fine fashion, similar to classic edge focusing (chapter 3, section 3.4.2). The true shape 

outline need not be known, as a very coarse initial estimate (e.g. a circle or an ellipse) is sufficient 

to capture the global shape outline at an adequately large scale. Taking such a coarse estimate as 

an initial model, this model is regularized or focused down for decreasing levels of image scale. 

It is again important to note that the final result of this active shape focusing process is also an 

implicit rather than explicit multi-scale segmentation result of 2Z>, 2^D, or 2 |D  dimensionality, 

as only the most prominent shape outline is followed in the coarse-to-fine tracking process. The 

resulting multi-scale shape stack is consequently of the same dimensionality as when based on 

active shape evolution, yet it differs in the ordering of the scales. Algorithm 7.2 illustrates the 

active shape focusing method of 2^ or 2^D  dimensionality, which will be further explained in 

the following.
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H For all image slices 

for Zk =  I to N  do

// Initialize with estimated model 
setv^,(s;an) =
// Optimize for decreasing scale levels 
for i =  n — 1 to 0 do

set (s; (Ti) =  Optim ize (s; o-j+i)) 

end for

end for

Algorithm 7.2: Algorithm for active shape focusing.

If an initial estimate (s) is available for each image slice, each of these models can be opti­

mized individually using one of the optimization techniques of section 6.3. In contrast to active 

shape evolution, however, a reverse order of the image scale cr*, with i G [n—1; 0] is used. Again, 

the image energy terms of each model are computed from the associated scale sample i of the 3D, 

3^D, or 4D image scale-space. The contour scale Q is increasing for increasing image scales, 

and is again enforced by adaptive uniform sampling. The model used for active shape focusing 

is therefore of the same form as for evolution, ai). Coarse-to-fine tracking is performed

analogously to fine-to-coarse tracking by taking at each scale slice i the optimized models from 

the previous, next higher scale levels z -I-1 as initial estimates for the current scale levels, a process 

which is repeated until the finest or lowest level of scale, oq is reached. The set of shapes at all 

intermediate scale levels {v2̂ (s;crj)} constitute the multi-scale shape stack, which is structured 

like the shape stack obtained from active shape evolution, but with reverse scale ordering:

• as a single, 2^D shape stack, denoted by the set <Ti)|z =  n — 1, • • •, 0}, or

• as a set of 2 |D  shape stacks, organized as the set of all intermediate focusing results for 

each image slice Zk, which is individually denoted by {v^^ (s; (Ti)|z =  n — 1, • • •, 0}, or

• as a single 3^D shape stack, which is given by the set of concatenated, volumetric shapes 

for each descending scale level ai, denoted by {v^^ (s; ai)\zk =  1, • • •, N).

The same remarks for the actual dimensionality of the coarse-to-fine shape stacks as for the fine- 

to-coarse shape stacks presented in the previous section apply here. Note that here the scale or­

dering is descending, and that instead of the ground truth, a very coarse initial estimate for each 

image slice is sufficient. As was mentioned earlier in this chapter, the initial estimate can be very 

general, for example circular- or ellipse-shaped. Yet it may be a very tedious and time consuming 

task to provide initial estimates for a large volumetric dataset, as it may not be sufficient to use 

the same estimate at all image slices. In this case, the concept of shape propagation, illustrated
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Figure 7.1: Shape propagation and focusing.

in figure 7.1 is used in combination with active shape focusing, which will be presented in the 

following.

7.3.1 Shape Propagation

Shape propagation is based on the assumption that the shape information contained in neighbour­

ing image slices is highly correlated. The concepts of active shape evolution and focusing are 

already based on the high correlation in neighbouring scale slices, as well as on the correlation 

between neighbouring image slices when using a 4D image scale-space. This high correlation is 

especially true at large image scales, when finer detailed structure, defining the local difference 

between neighbouring image slices, has disappeared. Only the global shape outline is accessible 

in the adjacent image slices at high scales, which varies only little in neighbouring image slices. 

This observation allows to reduce the number of initial estimates needed, i.e. the number of image 

slices, to a single initial estimate in a suitable, intermediate image slice k. This model is denoted 

by . Optimizing this estimate in its associated image slice blurred at a high level of

scale yields a refined initial estimate, denoted by cr„). This model can then be used as

an initial estimate for the neighbouring slices, k — 1 and k F  1. Refining both estimates in their 

respective image slices at the same level of scale yields again initial estimates for the next neigh­

bouring image slices, which in turn can be refined, and so forth. Figure 7.1 illustrates this concept, 

and the algorithm for shape propagation is given in algorithm 7.3.
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H Optimize initial model to be propagated

set =  Optimize

// Propagate up

for Zk =  k +  1 to N  do

set V;s J s ;  cTn) =  Optim ize (V;j^_i(s;(rn)) 

end for

// Propagate down 

for =  A; — 1 to 1 do

set V;^Js;(rn) =  Optim ize (v;^^+i(s; <t„)) 

end for

Algorithm 7.3: Algorithm for shape propagation.

As a result of the shape propagation, an initial model for each image slice is obtained in a semi­

automatic manner, as the only interaction is the initialization of a single model Ac­

tive shape focusing can then be formulated as a two stage process: shape propagation using algo­

rithm 7.3 is performed to obtain the set of initial models for all slices, (^) k* =  I , - ' ,  N }, 

followed by individually focusing down each of these models using algorithm 7.2.

7.4 Active Shape Description

The previous two sections have presented the construction of a multi-scale shape stack in a fine- 

to-coarse and coarse-to-fine fashion, respectively. This section presents methodologies for the 

description of either type of stack. These methodologies can be roughly divided into techniques 

investigating a single or a set o f 2 \ D  shape stacks, and those investigating a shape stack. 

Recall that the former are based on instances of planar shapes in the scale-spaces of their asso­

ciated image slices (which may be a reordered higher-order image scale-space), and the latter 

consist of instances of a volumetric shape (as a concatenation of planar shapes) in a true 4Z7 or 

in a slice-by-slice Z\ D  image scale-space. Consequently, a lower order shape stacks can only 

be analysed using shape descriptors for planar shapes, while for a higher-order shape stack also 

volumetric measurements can be performed.

Shape descriptors have been categorized into global, local, and relative (chapter 2, sections 2.2— 

2.4). Table 7.2 lists the selected set of suitable shape descriptors. The first three descriptors 

(perimeter, area, and compactness) are global quantifiers based on planar shapes, but can also 

be computed as mean and slope measurements across scales for a set of planar shapes. The fol­

lowing three measurements (surface area, volume, and volumetric compactness) are based on a 

volumetric representation of a set of shapes extracted from a 3D image, e.g. using concatenation 

by triangulation [Christiansen and Sederberg, 1978]. Figure 7.2 illustrates the process of triangu-
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Descriptor Symbol Definition

Perimeter

Area

Compactness 

Surface area 

Volume

Volumetric compactness

P (v(s))

A(v(s))

C(v(s))

‘S'({Vzfe(5)})

y({vzk(a)})

Length of the closed shape boundary 

Area of the enclosed region 

Dimensionless “roundness” measure 

Surface of a set of shapes 

Enclosed volume of a set of shapes 

Dimensionless “sphereness” measure

Curvature /c(s) Local curvature

Hausdorff distance 

Chamfer distance 

Triangulation distance

distff(v(s), v(’’®-̂ )(s)} 

distc(v(a), v(^^-^)(s)) 

distT(v(s), vW )(g ))

Worst mismatch 

Nearest distance 

Corresponding distance

Table 7.2: Selected set of global, local, and relative (distance) shape descriptors.

(a) (b)

Figure 7.2: Triangulation of two shape contours, (a) Initial correspondence, (b) Triangulation 
result.

lating two shape contours by establishing an initial shortest-distance correspondence (figure 7.2 

(a)), followed by iteratively connecting the neighbouring contour points with triangular patches 

(figure 7.2 (b)). A corresponding distance measurement arising from this technique, based on the 

shortest distance vertices, was briefly presented in chapter 2, section 2.4.3. The surface area of 

such a structure can be computed by summing the area of all triangular patches. Consequently, 

the volume of a closed structure obtained via triangulation can be computed by summing the vol­

umes of all tetrahedrons which are formed by one of the triangle patches, and the same point of 

origin which must be located inside the volume. Let point o denote the origin, and points a, b, c 

denote the comers of one of the triangle patches. The squared volume of such a tetrahedron is
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then given by [Bronstein and Semendjajew, 1989]:
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The determinant can be efficiently computed with standard numerical methods [Press et a i, 

1992]. The “sphereness” measurement C v  is defined in analogy to the planar compactness mea­

surement as a dimensionless quantity of the surface area S  and the volume F  of a volumetric 

structure:

Cv  - V
(7.2)

The curvature k { s )  is the only truly local shape measurement used. The distance measurements 

(Hausdorff, Chamfer, and triangulation distance, see section 2.4) allow for shape comparisons 

with respect to a reference shape v(re/)(g). For active shape evolution, this shape is equivalent 

to the ground truth, while for active shape focusing, the lowest scale model obtained

through the focusing process, v(s; ctq), is used as a reference model in the absence of any ground 

truth. The distance measures are computed in order to derive the global deviation of each shape 

from this reference shape: the Hausdoi^distance indicates the worst mismatch between each 

shape of the shape stack and the reference shape, the Chamfer distance transform of the reference 

shape yields the mean and RMS distances between each shape and the reference shape, and the 

triangulation distance measure obtained via concatenating each shape with the reference shape 

measures the mean and RMS distance of the connected minimum-edge vertices. The last two 

distance measurements also compute a pointwise local shape deviation from the reference shape. 

The iterated closest point (ICP) algorithm, also presented in section 2.4, has been considered as 

a suitable corresponding distance measurement. However, it requires that the shapes under com­

parison have the same number of points which cannot always be guaranteed. On the contrary, due 

the multi-scale contour representation in the shape stack, the snaxel spacing of shapes extracted 

at higher image scales is considerably larger than for the known or low-scale reference shape, 

leading to a lower number of points at high scales.

A general approach to shape description is to analyse the lowest-scale or reference shape only. 

The approach pursued in this dissertation, however, is to investigate a complete shape stack, tak­

ing the extra scale dimension into account. For each contour v^^(g), the construction of an as­

sociated 2 \D  shape stack yields a multi-scale planar shape representation, (5 ; cr), which for 

active shape evolution may be written as a set (s; cTi)|« =  0, • • •, n  -  1} (with reverse scale 

ordering for active shape focusing). Choosing one of the planar descriptors listed in table 7.2,
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e.g. the perimeter measurement P,  does not only yield the perimeter of the reference shape, but a 

stack of measurements, e.g. {P(xzk (̂ 5 =  0, • ••, n —1}. Consequently, for each set of con­

tours {v;ẑ  {s)\zk =  1, • • •, N} ,  the construction of a shape stack organized as a S ^ D  stack yields 

a multi-scale volumetric shape representation. Choosing the surface area measurement 5  from 

the volumetric descriptors of table 7.2 does not only yield the reference surface area, but a stack 

of surface area measures, e.g. for active shape evolution: =  1, - "  , AT})]» =

0, • • •, n  — 1} (with reverse scale ordering for active shape focusing). It is of course also possible 

to compute mean shape measurements across scale for the multi-scale planar or volumetric shape 

sets, e.g. for a planar shape as ^ (5; Oi)), as well as to compute planar shape metrics

from a set of shape contours. Additionally, the rate of the shape changes across scale can be char­

acterized by their slope. For example, the change of perimeter with respect to scale is expressed 

as which can be estimated using standard linear regression techniques.

At this point it may not immediately be apparent why this approach is better than the traditional 

approach of describing one planar shape or one shape volume only at a single, preferably low 

scale to capture all finer detailed structure. It may seem as if active shape description increases 

the amount of data at least by a factor related to the number of scale samples, and the number 

of (possibly combined) shape descriptors chosen. Reformatting of the shape stack from a set of 

stacks to a single 3^D  stack leads even to a further set of volumetric shape measurements. 

The motivation for performing active shape description nonetheless is based on several important 

observations:

• Given a ground truth shape or a lowest scale result obtained by another process, e.g. by 

outlining by an expert or via a suitable segmentation technique, traditional shape descrip­

tion is not able to capture all meaningful shape features, and to distinguish between shape 

properties arising from distinct physical processes embedded in the image [Marr, 1982]. 

Though all global shape features are inherent in the raw shape (the shape at lowest scale), 

they cannot be directly recovered. Moreover, fme-scale noise influences the quality of lo­

cal derivatives computed to locate local extrema, a process which is necessary to obtain a 

qualitative description or sketch of a shape [Witkin, 1983].

• The introduction of scale as an extra parameter yields a continuum of descriptions, where 

no one scale of description can be defined as being correct, or being more important than 

the others. In fact, every scale setting yields a different description, which leads to the need 

of organizing and possibly simplifying the increased amount of shape information. One ex­

ample solution for this problem are the concepts o f scale-space fingerprints [Witkin, 1983] 

and curvature scale-space (CSS) [Mokhtarian and Mackworth, 1986] (chapter 3, section

3.4.1). They offer a structural way of accessing, tracking and interpreting meaningful qual-
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itative shape properties in a curve evolution process. However, restricting a description to 

qualitative properties only might not be sufficient in a clinical environment where other im­

portant shape properties like global volumetric measurements, as well as relative distance 

measurements need to be analysed as well.

• Active shape evolution is an alternative technique to classic curve evolution, which allows 

to construct a multi-scale shape stack which may contain all types of local, global, and rel­

ative shape information. Its most important difference to curve evolution lies in its im­

age data-driven approach, locking a shape to the image context by which it is defined, and 

therefore leading to different, but possibly more meaningful curve evolution results. Ad­

ditionally, sparser scale steps are taken at higher scales due to the decrease in density of 

the scale-space than for the construction of classic fingerprints or the CSS, which are both 

based on dense linear scale sampling. Active shape evolution therefore allows to decrease 

the number of samples needed to obtain the highest scale result, and introduces the concept 

of an image scale-related contour scale.

• Both traditional, single-scale shape description and classic curve evolution processes as 

discussed above depend on the existence of a ground truth, or a suitable low scale shape, 

as it is not possible to analytically reverse the Gaussian blurring process. For real world 

data like medical images, however, no ground truth is available a priori, and therefore a 

reference shape needs to be acquired through some other process. Active shape focusing, 

having the same data-driven functionality and sampling process as active shape evolution, 

is based on a quasi reversed blurring process (which is implemented by computing increas­

ingly blurred scale samples of an image, and tracking down in this image scale-space in a 

coarse-to-fine manner). This technique can be used to find this reference shape, while ad­

ditionally providing the intermediate scale results at no extra computational cost. In other 

words, active shape focusing yields the lowest scale shape as a byproduct of the process.

• In order to perform a more concise yet more complete active shape description process, the 

collected shape information can be investigated across scale rather than only at each scale 

individually. This can be achieved by monitoring shape changes between adjacent scale 

levels, or with respect to the reference shape. Following this idea, the next chapter will 

present a new multi-scale shape metric, yielding a single shape measurement for a planar 

shape or set of planar shapes in scale-space.

• Finally, an important topic in shape interpretation is the visualization of qualitative shape 

information. The concept of the shape stack allows to visualize external shape changes in 

terms of the boundary location with respect to scale, and to map corresponding local shape
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measurements obtained by the active shape description process. Section 7.5 will illustrate

this visualization method.

In the following, an example active shape evolution, focusing and description process based on 

the notched rectangle test image will be presented. In particular, a suitable representation and 

visualization of a multi-scale shape stack will be discussed.

7.5 Example

Figure 7.3 illustrates the intermediate active shape evolution and focusing results for the notched 

rectangle test image (chapter 6, figure 6.1 (a)), as well as the corresponding image and normal­

ized feature scale-spaces used in the multi-scale energy function (chapter 6, section 6.2). In this 

example, the initial models are given by the ground truth (figure 6.1 (b)) for active shape evo­

lution, and by a coarse estimate in form of an ellipse (figure 6.1 (c)) for active shape focusing. 

The evolution process starts at the lowest image scale, while the focusing process is directed in 

the opposite direction and starts at the highest image scale. The intermediate results shown in 

columns (d) and (e) are remarkably similar, giving rise to the observation that active shape evo­

lution and focusing are dual techniques. This is only true if the shapes under investigation are iso­

lated, and preferably available as silhouettes, since adjacent objects, as well as noise and artefacts 

can influence both processes. Results may still be quite similar, but may locally differ at some 

parts. What is also notable about the results in figure 7.3 is the comparison to the also hierarchi­

cal, since incomplete, Fourier reconstruction of the notched rectangle, as shown in figure 2.7 (b) 

(chapter 2); unlike the Fourier reconstruction, active shape evolution and focusing maintain the 

shape’s topology throughout all hierarchical levels. A comparison to classic contour evolution of 

the same shape as presented in figure 3.6 (chapter 3) shows that the shrinkage of the shape, caused 

by the blurring via the diffusion or heat equation [Gage and Hamilton, 1986], is much lower for 

the active shape evolution and diffusion techniques at higher scales. Both processes can be de­

scribed as image-data driven curve diffusion techniques. They tend to preserve the overall shape 

size longer by locking the shape to its surrounding image context, which is also affected by the 

diffusion.

Columns (d) and (e) of figure 7.3 illustrate samples of the 2 \D  multi-scale shape stacks obtained 

via active shape evolution and focusing, respectively. In total, each stack contains n = Z2 slices 

or scale levels (26 more samples than illustrated), where each level consists of a regularized shape 

or intermediate active shape evolution or focusing result at that particular scale level. Scale sam­

pling was chosen to be very dense, with a maximum scale difference of ̂ (Jmax = o’si -  crso ~  

3.3848, and constant scale-change factors (equation 6.9, chapter 6) f evolution =  {o’silc ro )^^^^  % 

1.11829 and f focusing = f Evolution ~  0.89423. This is already a rather large difference in the



7.5. Example 157

<

(d) (e)

Figure 7.3: Active shape evolution and focusing o f the notched rectangle image. Columns: (a) 
Image scale-space. (b) Normalized edge potential scale-space. (c) Norm alized isophote curva­
ture scale-space. (d) Active shape evolution results, (e) Active shape focusing results. The ex­
amples illustrated are scale samples for (from top to bottom) ai =  1 ,2 .1 9 ,4 .2 8 ,8 .3 7 ,1 6 .3 6 ,3 2  
with (To =  l,cT n -i =  32, n  =  32, and scale sampling based on equation (6.9). Active shape 
evolution is performed using figure 6.1 (b) as an initial model starting at ctq, and active shape 
focusing using figure 6.1 (c) as an initial model starting at Also com pare to hierarchical 
Fourier reconstruction and classic contour evolution representations in figures 2.7 (b) and 3.6 (b) 
(chapters 2 and 3, respectively.)
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Method A P C dist/f distcjjj4^5

Evolution 20579 631.462 19.4717 72.0837 1.26972 20.7318

Focusing 20497 630.344 19.4841 137.5120 1.40287 21.8417

Table 7.3: Mean shape descriptors for active shape evolution and focusing of the notched rectan­
gle image with respect to scale. The size measurements for the mean area A, mean perimeter P, 
as well as for the mean Hausdortf, mean RMS Chamfer, and mean RMS triangulation distance 
measurements are in pixel units, while the mean compactness C  is dimensionless.

Method AA
Act

AP
Act

AC
Act

Adistc^^g
Act

Adistr^^g
Act

Evolution -57.7880 -6.47411 -0.336987 0.168989 3.05724

Focusing -61.6986 -6.60550 -0.342116 0.170671 3.04643

Table 7.4: Slope measurements of shape descriptors for active shape evolution and focusing of the 
notched rectangle image with respect to scale. The slopes are estimated using linear regression 
on the graphs plotted in figures 7.4 and 7.5.

sense of Bergholm [Bergholm, 1987], who analysed the displacement of edges between adjacent 

scale levels as being close to |Acr|. In order to ensure that the edges are still tracked correctly, 

the maximum displacement must still be well within the search space of the tracking technique. 

Therefore a search space of 7x7 pixel units was chosen for the modified greedy algorithm (section

6.3.1), enabling to track displacements of up to 3.5 pixel units which is in the range of Aomax- 

Alternatively, a larger number of scale samples can be chosen, leading to a smaller maximum 

scale change. In this case, a smaller search space is sufficient which improves computational 

efficiency, but which may be outweighed by the increased number of optimizations and scale- 

space computations. This observation leads to the conclusion that scale sampling and the size of 

the search space of a fine-to-coarse or coarse-to-fine tracking technique are intrinsically related 

to each other. The search space should at least be as large as the maximum possible edge dis­

placement, defined by the maximum scale change between adjacent scale levels. It would also 

be possible to formulate the size of the search space as a function of scale, allowing for very coarse 

sampling at higher scales with very large search spaces, and leading to smaller and hence compu­

tationally more efficient search spaces for decreasing scales. However, search space sizes larger 

than 7 X 7 are computationally very expensive and time demanding, and may lead to overlapping 

of neighbouring search spaces as the contour scale is related to the image scale. It is therefore 

better to regularize the necessary search space size by the highest possible edge displacement in 

the complete tracking process, rather than at each scale level individually.

Figures 7.4 and 7.5 show the plots of the global planar shape descriptors listed in table 7.2 of the 

notched rectangle across scale, where each descriptor has been obtained via active shape evolu-
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Figure 7.4: Area, perimeter and compactness o f the notched rectangle across scales for active 
shape evolution and focusing.
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across scales for active shape evolution and focusing with respect to the known shape.
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tion and focusing, respectively. Table 7.3 shows the respective mean values of these shape de­

scriptors with respect to scale, and table 7.4 lists the respective shape changes across scale in terms 

of their slopes. It can be observed that the shape descriptors are of very similar values for active 

shape evolution and description (with the exception of the Hausdorff distance due to its nature of 

computing the worst mismatch between two shapes, rather than a corresponding or closest mis­

match), as could be expected when comparing the stack of shapes for either process as shown in 

columns (d) and (e) of figure 7.3. It is also apparent that all global quantifiers increase for decreas­

ing scales (characterized by a negative slope) when adjusting to more detailed or complex struc­

tures of the shape, and that the relative RMS Chamfer and triangulation distances continuously 

decrease for decreasing scales (which is characterized by a positive slope) when approaching the 

(same) known shape for decreasing scales (or increase when evolving from the known shape). 

Other global shape characteristics become only apparent when looking at shape changes across 

scales, rather than looking at the mean, slope, or lowest scale values only: at higher scales, there 

is an almost continuous decrease of the global quantifiers due to the shrinking effect of the diffu­

sion or heat equation. At smaller scales, finer adjustment of the shapes leads to a local increase or 

decrease of the measurements. For example, it can be observed that at intermediate scales, around 

<7 =  10, the area measurement has a local minimum. This happens at the scale at which the active 

contour model just leaves the notch (for active shape evolution) or locks to the notch (for active 

shape focusing), leading to a temporary decrease in area. The RMS Chamfer and triangulation 

distances, though showing a similar behaviour across scales, are in a completely different range 

with respect to each other; this is due to the nature of the Chamfer distance of measuring the clos­

est rather than the corresponding distance between two shapes, leading to an underestimation of 

the actual shape deviation from the known shape. In this case, the main occurrence of this under­

estimation is at the deep protrusion of the notched rectangle. At the notch, the Chamfer distance 

measures the distance of each shape of the stack to points of the reference shape which lie nearby 

the notch, yielding significantly lower distance values. The triangulation distance, which is based 

on iteratively connecting all points of the shapes of the stack with the known shape, yields there­

fore much higher values at such protrusions.

In order to perform local (and therefore more qualitative) shape description across scales, it be­

comes obvious that a better form of visualization of a multi-scale shape stack is needed than illus­

trating and locally quantifying each shape separately as in figure 7.3. Recall that this particular 

shape stack, based on either active shape evolution or focusing, has been defined as a 2.6D struc­

ture. Ordering the regularized shapes contained in each stack with respect to the scale at which 

they have been obtained allows to concatenate this sequence of 2D shapes to a quasi 3D structure. 

Concatenation can be carried out using triangulation [Christiansen and Sederberg, 1978], and the 

result can be visualized using standard surface rendering techniques. In this dissertation, a freely
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available visualization package, The Visualization Toolkit [Schroeder et a l, 1997], is used for all 

rendering processes. Two types of surface rendering are used: wire frame rendering, which al­

lows to perceive the triangular patches and the increasing contour sampling density for decreasing 

scales, and smoothly interpolated surface rendering, which continuously interpolates between the 

snaxels as well as between the scale levels, and which uses standard shading techniques. Figure 

7.6 shows wire-frames and interpolated shaded surface renderings of the shape stacks obtained 

via active shape evolution and focusing of the notched rectangle test image, visualizing the shape 

stacks illustrated as individual contours in figure 7.3. Again it can be observed in this particular 

example that the shape stacks for active shape evolution and focusing are very similar, although 

they are computed by tracking from the opposite sides of the image scale-space. The coarse-to- 

fine view shown in column (a) of figure 7.6 shows the sparser sampling at higher scales, in con­

trast to the dense sampling which can be better perceived in the fine-to-coarse view illustrated 

in column (b). Higher-order scale-spaces can be visualized as a sequence of stacks, or by 

rendering the concatenated volumes at each scale individually. Chapter 9 will show renderings 

of shape stacks of volumetric medical data, as well as sequences of 2^17 stacks of singular 

image slices.

Based on such a visualization of the multi-scale shape stack, local shape metrics can be mapped 

onto the rendered surface. Figure A.l in appendix A shows the surface rendered shape stacks of 

column (c) in figure 7.6 with mapped colour coding of local shape metrics. Colour mapping can 

be performed using the Hue-Saturation-Value (HSV) model, illustrated in figure 7.7 [Foley et al., 

1990]. The hue (corresponding to the wavelength of a colour) can be adjusted to the size of a local 

shape metric according to the range [0°; 360^] of all possible colours or within [0; 1], respectively, 

the saturation (corresponding to the purity of a colour) can be set to 1 (100%), and the value (cor­

responding to the intensity of a colour) is given by the grey-level shading of the surface rendering 

and lies also in the range [0; 1]. Scaling a given list of shape metrics within a suitable subset of 

possible hue values allows to add local shape information, which is performed by creating a so- 

called colour lookup table. For example, column (a) of figure A.l shows the mapping results for 

the local curvature k(v(5); cr), which is coded between the colours green (for positive curvature 

values or outward bending of the shape) and red (for negative curvature values corresponding 

to inward bending behaviour), and yellow represents low positive or negative curvature values. 

Zero curvature parts (within a small tolerance span) are not colour coded at all. Note that the high 

inward (negative) curvature inside the notch, and the high outward (positive) curvature at the cor­

ners of the notched rectangle can be easily visually perceived, and a similar visual impact of the 

curvature mapping for active shape evolution and focusing is achieved. Column (b) of figure A. 1 

illustrates the mapping of the local Chamfer distance to the known shape of the notched rectan­

gle between yellow and red (as only positive distances can occur), with no colour coding for very
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Figure 7.6: Wire-frame and interpolated shaded surface renderings o f  the multi-scale shape stack 
o f  the notched rectangle image obtained via active shape evolution (upper row) and active shape 
focusing (lower row). Column (a) Wire frame rendering in eoarse-to-fine view. Colum n (b) W ire­
frame rendering \n fine-to-coarse view. Column (c) Surface ren d erin g 'm fine-to-coarse  view. See 
text for further details.

small distances. Column (c) o f figure A .l analogously shows the local triangulation distances. 

Both local distance mappings show a similar high (orange to red) value near the notch at high 

scales, as well as at comers. However, both distance values have been scaled within the same 

range (the lower range o f  the Chamfer distance was chosen) in order to demonstrate the differ­

ence in their behaviour. From that it becomes apparent that the triangulation distance is superior 

to the Cham fer distance in terms o f  yielding a better impact o f  the deepness o f  the protrusion or 

notch due to the much larger local distance value at higher scales.

The distance mappings are performed using a logarithmic lookup table to increase the visual im­

pact o f  smaller values, while the local curvature mapping is based on a linear lookup table [Foley 

et a i ,  1990].

7.6 Summary

This chapter has presented a new and effective method for m ulti-scale active shape description, 

applying the multi-scale active contour model to \)Qxiorm fine-to-coarse  active shape evolution, 

or coarse-to-fine active shape focusing. Both techniques give rise to a multi-scale shape stack.
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which can be suitably visualized as a 2^D structure for a single planar shape, or for a volumetric 

set of planar shapes as either a sequence o f 2^ D  structures or a sequence of 3D structures. Scale- 

space notations in terms of the scale-related dimensionalities of the image scale-space, the shape 

tracking techniques in scale-space, and the resulting shape stacks have been introduced. The tech­

nique of multi-scale active shape description is based on the investigation of a multi-scale shape 

stack, as well as on a suitably chosen set of standard shape descriptors. The novelty of this ap­

proach is to investigate a planar shape or a volumetric set of planar shapes at various scale levels, 

rather than using a traditional single-scale approach. The applicability of all techniques has been 

demonstrated using the notched rectangle test image as an example, of which global and mean 

values across scales, as well as local shape mappings onto the shape stacks where shown to pro­

vide higher level shape information, which is not readily available from the known underlying 

shape. This chapter has also discussed reasonable scale sampling strategies with respect to the 

possible displacement of edges between adjacent scale levels, an issue which can be resolved by 

adjusting the local search space of the multi-scale active contour optimization adequately. Ac­

tive shape evolution and focusing have been identified as dual techniques, with the advantage of 

active shape focusing over evolution of needing no ground truth, since it is performing implicit 

segmentation on the fly. Furthermore, the proposed techniques have been put into relation with 

existing techniques for single-scale and multi-scale contour analysis, and their higher level of ap­

plicability has been motivated. The following two chapters will test the presented techniques on 

fractal and other synthetic images (chapter 8), and medical applications (chapter 9).



Chapter 8

Application to Fractal and Other Synthetic 

Images

L e  p e t i t  p r i n c e  l e  r e g a r d a  l o n g t e m p s :

-  Tu ES UNE DRÔLE DE BÊTE, LUI DIT-IL EN FIN , MINCE COMME UN D O IG T ...

-  M a i s  je  s u i s  p l u s  p u i s s a n t  q u e  l e  d o i g t  d ’u n  r o i , d i t  l e  s e r p e n t .

T h e  l i t t l e  p r i n c e  g a z e d  a t  h i m  f o r  a  l o n g  t i m e .

’’Y ou  ARE A FU N N Y  A N IM A L ,” HE SA ID  AT LAST. ”YOU ARE NO THICKER TH AN A F IN ­

G E R ...”

’’B u t  I AM MORE POW ERFUL THAN THE FINGER OF A K IN G ,” SA ID  THE SN A K E.

Le Petit Prince, Antoine de Saint-Exupéry.

In this chapter two main types of synthetic objects will be investigated in order to test and demon­

strate the applicability of the proposed multi-scale active shape description technique on objects 

with high curvature parts and protrusions, and fractal objects. All synthetic objects are silhouette­

shaped, to allow for comparison with binary classic curve evolution techniques, and for analysis 

with respect to a ground truth. The application of active shape evolution and focusing to a true 

fractal structure will show that the proposed techniques preserve fractal characteristics, and pro­

vide a meaningful relationship between fractal resolution level and image scale.

Table 8.1 lists the optimization parameters used for the active shape evolution and focusing tech­

niques for all synthetic images, with the default parameters chosen as given in table 6.5 (chapter 

6, page 141). Active shape evolution and focusing are performed according to algorithms 7.1 and 

7.2, respectively, using the greedy algorithm for optimization. No preprocessing like thresholding 

or histogram equalization is required for any of the synthetic images.

8.1 Application to Strongly Curved Objects and Objects with Pro­

trusions

Protruded objects are in general hard to describe in terms of quantitative shape description. Their 

high number of curvature changes poses difficulties for classic active contour models which by
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Parameter Description Value

^ 2

M  X M

Upper contour scale stabilizer 

Lower contour scale stabilizer 

Greedy search space

0 . 8

3.5

7 x 7

Table 8.1: Optimization parameters for active shape evolution and focusing o f  the synthetic im ­
ages. Remaining default parameters can be found in table 6.5.

Y  ?
(b) (c)

Figure 8 .1 : Synthetic test images containing strongly curved objects and objects with protrusions, 
(a) Saw-toothed rectangle, (b) Kangaroo, (c) Teardrop, (d) Blobs.

their nature minimize the internal elasticity and curvature energy terms. One example for m ulti­

scale active shape description o f an object with a deep protrusion has already been demonstrated 

in the previous chapter in terms o f the notched rectangle image. Figure 8.1 shows four more 

synthetic test images, which will be referred to as saw-toothed rectangle, kangaroo, teardrop, and 

blobs. They have been selected for their following properties: the saw-toothed rectangle  image 

contains high curvature parts and comers, as well as a combination o f global rectangular shape 

and specific and detailed saw-toothed edges; the kangaroo image has also high curvature parts, 

is widely elongated and o f very low elasticity; the teardrop image contains a very sharp peak and 

is therefore complementary to the notched rectangle test image, and additionally its spatial width 

continually increases from the tip o f its peak to its circular, blob-like end; finally, the blobs image 

consists o f  two large circular structures which are connected at a small subpart, yielding inward 

bound high curvature peaks. All objects, including the notched rectangle, are frequently used in 

scale-space research, e.g. in [Morse, 1994; W hitaker, 1994b], since they demonstrate that single­

scale description is often not sufficient to capture all important shape characteristics.

Figure 8.2 shows the ground truths and the initial models which are used for the active shape 

evolution and focusing processes o f the synthetic images in figure 8.1. A total o f  n  =  32 scale 

samples has been chosen, with ctq =  1 and < 7 3 1  =  32, with the exception o f  the kangaroo  image, 

for which n  =  20 samples are used, with the scale ranging from ctq =  1 to aig — 20. This 

particular image needs to be processed with a smaller upper scale due to its significantly lower 

overall spatial width, which also leads to a decrease o f the necessary num ber o f  scale samples in
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(a) (b) (c) (d)

Figure 8.2: Ground truths (upper row) and initial models (lower row) for the respective synthetic 
test images of figure 8.1 (a)-(d). The size of the ellipse-shaped initial models was chosen to en­
close the shapes of interest.

the sense of Bergholm [Bergholm, 1987] (see chapter 7, section 7.5).

8.1.1 Qualitative Description

Figures 8.3 and 8.4 show samples of the active shape evolution and focusing results, respectively. 

As for the notched rectangle example in the previous chapter, similar results for both techniques 

have been obtained for all synthetic shapes. From a qualitative visual inspection, the following 

observations can be made for the evolution and focusing of each synthetic shape:

Saw-toothed rectangle: At the highest scale, both evolution and focusing yield an ellipse, which 

slowly focuses down or has evolved from a rectangular shape. At intermediate scales, the 

saw-teeth start appearing, first in a smooth wave form, and then becoming more and more 

prominent. At the lowest scale, the sharp peaks of the saw-teeth are recovered. Both ac­

tive shape evolution and focusing are therefore adequate techniques to reveal the two main 

characteristics of this particular shape, in terms of global (higher scale) overall shape and 

specific (lower-scale) detail, which single-scale techniques would not be capable of.

Kangaroo: As stated above, the kangaroo is evolved and focused in a lower scale range than the 

other synthetic examples. Recall from the reviewed techniques of blobs and cores (chapter 

3, sections 3.4.3.1 and 3.4.3.3, respectively) that scale-selection plays an important role in 

feature detection. At different scales, different object properties can be investigated whose 

spatial size is directly related to the chosen scale. In other words, if one chooses the upper 

scale too small, the overall object shape cannot be recovered due to local minima of the
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(a) (b) (c) (d)

Figure 8.3: Active shape evolution results for synthetic test images containing strongly curved 
objects and objects with protrusions. The illustrated scale samples in columns (a), (c), and (d) 
are (from top to bottom): cr = 1 ,2.18712,4.27752,8.36588,16.3618,32 with cr„_i =  32, ctq =  
1, n =  32. Column (b) was obtained in a slightly smaller scale range (from top to bottom): cr =  
1,2.19975,4.13309,7.76563,7.76563,17.0826,20 with (7n_i =  20,cro = l ,n  = 20. See text 
for further details.

multi-scale energy function of the active contour model, which are caused by fine details 

and smaller scale structures. If one chooses the upper scale too high, the object smoothes
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(a) (b) (c) (d)

Figure 8.4: Active shape focusing results for synthetic test images containing strongly curved 
objects and objects with protrusions. The illustrated scale samples in columns (a), (c), and (d) 
are (from top to bottom): a = 32,16.3618,8.36588,4.27752,2.18712,1 with a n -i = 32, (Tq =  
1,7% =  32. Column (b) was obtained in a slightly smaller scale range (from top to bottom): a =
20,17.0826,7.76563,4.13309,2.19975,1 with cr„_i =  20, ctq =  1, n =  20. See text for further 
details.

out completely. If scale selection is performed with care, however, both active shape evolu­

tion and focusing are able to reveal the overall shape with three main elongations at higher
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scales, and recover smaller substructures (i.e. the legs, front paws, and tail) at their ade­

quate scales corresponding to their spatial widths. Consequently, for a too high upper scale 

the techniques are only able to recover the main body of the kangaroo as substructures are 

blocked by high gradient values and ridges along the body or completely disappear, even 

though they reappear at smaller scales. Another problem with this particular image lies in 

the elasticity minimizing nature of the multi-scale active contour model: it is “cheaper” in 

terms of energy costs to make a short cut along the main body rather than following very 

“expensive” shape outlines of very high elasticity. The adaptive resampling technique, as 

was shown in chapter 6, partially but not completely eliminates this behaviour, as it is also 

restricted by the scale-related contour scale. Protrusions or elongations whose widths are 

smaller or only slightly larger than the respective contour and image scales can therefore 

only be tracked with difficulties, as will be further discussed in the next example.

Teardrop: The results for the teardrop show that the blob-shaped top of the structured is main­

tained throughout all scale levels, while the peak of the teardrop disappears at higher scales 

almost completely, and is continuously recovered at smaller scales. Two main problems can 

be observed for this particular example: The results of active shape evolution and focusing 

at the highest scale differ, and yield a more blob-like structure for shape evolution, and a 

more elongated, slightly larger structure for shape focusing. The second problem is that 

the peak of the teardrop is not completely recovered at the lowest scale with either tech­

nique. Both problems can be explained by the multi-scale adaptive resampling technique: 

As mentioned earlier, adaptive resampling uses a certain tolerance span for the enforce­

ment of the contour scale, as well as lower contour scale limit. The first point may lead to 

a variation of the contour scale % at scale level Oi between — A ^; Q +  AçJ (see algo­

rithm 6.1, chapter 6), where A q is chosen to be in direct relation to the contour scale. In 

this case, the choice of A% =  leads to a variation of the highest contour scale between 

[32 — 16; 32 4- 16]. This may cause a significant difference in the local sampling density 

at high scales, which is the case in this particular example. Choosing a smaller tolerance 

span may eliminate this problem, but compromises the local flexibility of the model, as 

was discussed in the concept of strict uniform sampling having no tolerance span at all (see 

chapter 6, section 6.1.2.2). Alternatively, a lower upper scale limit may be chosen, lead­

ing to similar results for either technique. This can be seen when cutting the shape stacks 

in columns (c) of figures 8.3 and 8.4 below or above scale level cr* =  16.3618, for exam­

ple. This approach can also be justified by the relatively small overall size of the teardrop. 

The second problem of the inadequate tracking of the peak of the teardrop lies in the fixed 

lower contour scale, chosen to be ç^in — 3.5. This leads to a relatively large minimum 

snaxel spacing of the contour model even at small scales, and consequently to an inability
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to track elongations or protrusions whose entrance is narrower. This problem can be solved 

by choosing a lower minimum contour scale, e.g. Çmin = 2.0, in which case the size of the 

search space needs to be decreased to 3 x 3 to avoid overlapping search spaces. This nat­

urally leads to the necessity of increasing the number of scale samples, in order to restrict 

the maximum shift of edges to one pixel only.

Blobs: The two circular blobs in this image are recovered throughout all scale levels in either 

process, while the peak-like concavities are continuously recovered at decreasing scales, 

similarly to the peak of the teardrop. The overall, ellipse-like shape becomes therefore ap­

parent at the highest scale level, while the specific detail of the inward peaks only appears 

at intermediate and fine scales. Both active shape evolution and focusing yield very similar 

and robust multi-scale shape hierarchies of this particular image.

In the following section, the obtained multi-scale hierarchical shape stacks of figures 8.3 and 8.4 

will be quantified with the methods presented in section 7.4 of the previous chapter.

8.1.2 Quantitative Description

In analogy to the example of multi-scale active shape description in the previous chapter, the 

multi-scale hierarchical shape stacks of the synthetic test images in this chapter can be investi­

gated using different quantitative shape measurements across scales. Figures 8.5 and 8.6 illustrate 

the global planar shape metrics of table 6.5 (chapter 6, page 141) plotted against scale, and tables

8.2 and 8.3 list the corresponding mean shape metrics and slopes with respect to scale. At a first 

glance, one can perceive two things: first, the shape metrics of all four shapes are distinctively dif­

ferent from each other (with the exception for the Hausdorff distance measurement, whose limited 

ability of yielding similar values for similar shapes has been already pointed out and demonstrated 

in the previous chapter, but which has been included for completeness). Second, the shape met­

rics for each shape are very similar if obtained via active shape evolution and focusing, supporting 

the results of the previous chapter and the observation in the qualitative description made above 

that active shape evolution and focusing yield approximately the same results and are therefore 

dual techniques. The individual quantitative inspection of the shapes obtained by either shape 

evolution or focusing leads to the following conclusions:

Saw-toothed rectangle: When comparing the shape metrics with the ones obtained for the 

notched rectangle in the previous chapter, a number of similarities can be observed because 

these two shapes have the highest resemblance in the chosen test set. For intermediate to 

higher scales, the rectangular shape characteristics are recovered. Similar mean and slope 

measurements for area, perimeter, and compactness, with a small offset due to the larger 

overall size of the notched rectangle are obtained. The larger mean RMS triangulation dis-
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Figure 8.5: Area, perim eter and compactness o f  the synthetic images across scales for active 
shape evolution (E) and focusing (F).
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Image Method A P C dist// dist(7jjM5

saw-toothed
E 18062 576.350 18.4658 73.5816 1.44561 26.58880
F 18138 578.688 18.5400 92.3722 1.30706 24.53830

kangaroo
E 8488 619.300 46.3591 87.1255 2.06117 13.11710
F 8582 622.225 46.3983 140.8110 2.12174 13.10450

teardrop
E 7676 396.891 20.5609 85.5625 1.82166 39.43280
F 7798 400.503 20.6393 55.5206 1.62188 35.93470

blobs
E 15042 483.553 15.5556 122.8810 1.88198 8.58081
F 15077 483.022 15.4790 118.2030 1.69480 7.16850

Table 8.2: Mean descriptors for active shape evolution (E) and focusing (F) of the synthetic im­
ages with respect to scale. The size measurements for the mean area perimeter, as well as the mean 
Hausdorff, RMS Chamfer, and RMS triangulation distance measurements are in pixel units, while 
the mean compactness is dimensionless.

Image Method AA
Aa

AP
Aar

AC
Aa

A d is tc j^ ^ j .
Aa

A d i s t r ^ ^ g
Aa

saw-toothed
E -93.2691 -6.07053 -0.292346 0.189365 3.05724
F -68.6520 -5.72710 -0.294595 0.155573 3.04641

kangaroo
E 118.3960 -10.04900 -1.885900 0.343516 5.29156
F 139.7460 -9.73863 -1.905110 0.354570 5.29158

teardrop
E -68.7714 -4.74626 -0.302381 0.194024 3.05724
F -25.1534 -3.77179 -0.310750 0.151193 3.04642

blobs
E -98.2331 -2.75860 -0.074620 0.238537 3.05724
F -69.8549 -2.21904 -0.070505 0.193869 3.04641

Table 8.3: Slope measurements for active shape evolution (E) and focusing (F) of the synthetic 
images with respect to scale. The slopes are estimated using linear regression on the graphs plot­
ted in figures 8.5 and 8.6.

tance measurement for the saw-toothed rectangle may at first seem incorrect, since it ap­

pears to be more rectangular shaped throughout all scales. However, the notched rectan­

gle is rectangular shaped everywhere except for a small part (the entrance to the notch), 

whereas one whole side of the saw-toothed rectangle deviates from the rectangular shape, 

though in smaller distance values. The most prominent difference between the two shapes 

is the continuous increase of area for decreasing scales for the saw-toothed rectangle, in 

contrast to the large local area minimum due to the deep protrusion of the notched rectan­

gle.
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Kangaroo". This shape is the only shape of the test set to have a decreasing area for decreasing 

scales, yielding a negative area slope measurement. At the same time, it has the steepest 

increase and highest overall perimeter, yielding the highest compactness and steepest in­

crease for decreasing scales. This interesting aspect can be explained by the high convolut­

edness of the kangaroo. At high scales, short cuts between the substructures are made (as 

was observed in the qualitative description in section 8.1.1), yielding higher area measure­

ments at larger scales, while shortening the overall perimeter. The area measurements for 

active shape evolution and focusing differ slightly at the highest scale due to the aforemen­

tioned problems of selecting the upper scale, leading to a lower slope value for the evolution 

result. Finally, the RMS Chamfer deviation of the kangaroo shape from its ground truth 

has the overall largest value from the test set, in contrast to the RMS triangulation distance 

which yields higher values for the teardrop which will be further discussed below.

Teardrop". The shape metrics of the teardrop shape show differing area, perimeter and RMS tri­

angulation distance measurements at the highest scale, supporting the qualitative results of 

section 8.1.1. The very small size of the shape obtained via evolution at the highest scale 

is reflected by much lower perimeter and area measurements, and by a higher distance to 

the ground truth in comparison to the respective values for the focusing result. It can also 

be noted that this higher deviation from the reference shape is not revealed by the RMS 

Chamfer distance measurement due to its nature of measuring the closest rather than cor­

responding distance. Finally, due to the inadequate tracking of the peak at the lowest scales, 

the triangulation distance metric yields the highest values across scales.

Blobs". In contrast to the teardrop, this shape is the overall closest to its ground truth in terms 

of the mean and plotted triangulation distance values. This is due to the low compactness 

(or high roundness) of the blobs. The tracking of the inward peaks at the lower scales can 

be observed from the sharp increase of the perimeter. At high scales, the same problems in 

terms of a deviation between focusing and evolution occur, leading to different estimates 

in the slope measurements, but not affecting the mean values.

In the following section, the visualization and mapping of local shape metrics onto the multi-scale 

shape stacks of the synthetic test shapes will be presented.

8.1.3 Visualization

Figure 8.7 illustrates the fine-to-coarse surface rendering of the 2 \D  multi-scale shape stacks 

of the synthetic images obtained via active shape evolution and focusing. Slices of these stacks 

were shown in figures 8.3 and 8.4 above. Local curvature. Chamfer and triangulation distance 

mappings onto these stacks are illustrated in appendix A in figures A.2-A.5, with colour lookup
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(a) (b) (c) (d)

Figure 8.7: Interpolated shaded surface renderings o f the hierarchical shape stack o f  the synthetic 
images obtained via active shape evolution (upper row) and active shape focusing (lower row). 
Surface rendering is performed in a fine-to-coarse  view. See text for further details.

tables as presented in section 7.5 in the previous chapter. Regarding the local curvature mappings 

illustrated in column (a) o f these figures, the saw-teeth and com ers o f  the saw-tooth rectangle, the 

elongated substructures o f the kangaroo, the peak o f the teardrop, as well as the inward peaks o f 

the blobs can be well perceived on both types o f shape stacks, in terms o f  outward (mapped in 

green) and inward (mapped in red) prominent bending behaviour. The Cham fer and triangulation 

distance mappings, in columns (b) and (c), respectively, provide a good visual impact o f  the shape 

flow in either direction in scale-space. The poor tracking o f  the peak o f the teardrop can only be 

perceived from the triangulation distance mapping, yielding a higher corresponding distance.

The following section applies active shape evolution and focusing to a true fractal structure o f  in­

creasing degrees o f self-similarity, in order to investigate the correspondence between the fractal 

resolution levels and image scales.

8.2 Application to Fractal Objects

Section 2.3.3 (chapter 2) has introduced the theory o f fractals, whose main characteristic is their 

self-similarity, or the geometric interpretation o f  their fragmentation and irregularities. Shapes 

other than truly circular, ellipse-shaped, or polyhedral are often difficult to describe in m athe­

matical terms, yet some o f them show a particular space filling behaviour (and were originally 

described as monster curves or simply as pathological). The fractal dimension describes the de­

gree in which planar curves o f  Euclidean dimension D  =  1 fill out their em bedding space o f 

Euclidean dimension D  =  2. For true fractals, an analytical value for their fractal dimension
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Figure 8.8; Von Koch curve {snowflake) test image series for increasing fractal resolution levels 
r. These images were obtained from the analytic curves o f  figure 2.10 (b) (chapter 2, page 46).

can be derived from their iterative fractal generation scheme, or by investigating the structure at 

each o f  its fractal generation or resolution levels. The term resolution is probably more appropri­

ate, since zoom ing  into a fractal structure recovers similarly structured subparts. This property is 

called scale invariance, as over all fractal scales the same fragmentation can be observed. Ob­

viously, the topics o f fractal resolution and scale-space theory (chapter 3) are strongly related, 

as they both give rise to multi-scale shape analysis. A curve which is not a true fractal structure 

(which is most often the case) can still exhibit statistical scale invariance, a feature which is often 

explored for classification purposes.

An example o f  a fractal generation has been shown in figure 2.10 (a), with resulting fractal curves 

o f  different fractal generations (or resolutions) shown in figure 2.10 (b). The resulting set o f  frac­

tal shapes, depicted as synthetic silhouette images in figure 8.8, are in the following investigated 

using the proposed technique o f  multi-scale active shape description. The same energy and opti­

mization parameters as for the other synthetic images above are used, with a chosen scale range 

o f  cr G [1; 32] for active shape evolution and a  G [32; 1] for active shape focusing, respectively, 

with n  =  32 scale samples.

8.2.1 Qualitative Description

Figures 8.9 and 8.10 illustrate samples o f the active shape evolution and focusing results for 

the different fractal resolution levels o f the von Koch curve, yielding sim ilar shapes at corre­

sponding fractal resolutions and image scales for either technique. The most interesting aspect 

o f  the illustrated samples is the observation that between the highest two illustrated scale levels 

ai G [16.3618; 32], all fractal resolution curves for both techniques look alm ost identical. Be­

tween the scale levels ai G [4.27752; 16.3618], the fractal curves at resolution levels r  =  2, • • •, 4 

still look identical for either technique, while the lowest fractal resolution curve approaches al­

ready its final star-shaped result. Between scale levels ai G [2.18712; 4.2775], the two higher 

fractal resolution curves with r  =  3 ,4  look still identical, while the next lower fractal resolution 

curve with r = 2 approaches its final, once substructured, star-like shape. Finally, the higher
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fractal resolution curves with r  =  3,4 diverge at the lowest scale level when approaching their 

final shapes of differently deep substructures. From this observation the following conclusion can 

be drawn: active shape focusing and evolution, when applied to true fractal structures, recover 

common substructures between different fractal resolution levels in a range of image scales. It is 

also important to note that in contrast to the hierarchical Fourier reconstruction of the von Koch 

curve in figure 2.7 (c) (see chapter 2, page 38), the topology is maintained. Additionally, the 

classic multi-scale contour representation of the same curve in figure 3.6 (c) (see chapter 3, page 

71), shows almost identical shapes across scales. This is in contrast to the observation in sec­

tion 7.5 that active shape evolution and focusing cause less shrinkage at higher scales, and can be 

explained by the global, circular shape of the fractal curves at high scales: the diffusion or heat 

equation eventually shrinks any shape into an ellipse or circle.

While the evolution results for fractal resolution r  =  4 yields an adequate result at the lowest scale 

level, the focusing result for the same fractal resolution and image scale does not recover all fine 

details correctly, and seems to perform worse than the next lower fractal resolution result. This 

effect can be partially explained with the minimum contour stabilizer C2 =  3.5 which prevents 

the multi-scale active contour model to be attracted from the outside into small concavities. The 

same applies for the adaptive resampling itself, which prevents a completely continuous focus­

ing at small scales when removing too densely located snaxels. This does not affect the reverse 

evolution process, as the model is positioned on the ground truth right from the beginning. The 

other reason for the poor result of this particular curve of fractal resolution r  =  4 is the so-called 

partial pixel effect, which describes image pixels at boundaries of structures that have a fuzzy ob­

ject membership. In other words, the fine substructures of the ground truth fractal snowflake are 

of sub-pixel accuracy, which is lost by the creation of the corresponding test images, and which 

cannot be recovered as it is below the inner scale, and which leads to a merging of fine substruc­

tures.

8.2.2 Quantitative Description

Figures 8.11 and 8.12 illustrate the global planar shape descriptors of table 6.5 across scales for 

the fractal curves obtained via active shape evolution and focusing, respectively, and tables 8.4 

and 8.5 list the respective mean and slope values with respect to scale. Again, for each fractal 

resolution curve, the results obtained from either process are very similar. The increasing area, 

perimeter, and compactness values for decreasing scales are ranked according to the fractal res­

olution level of the curves, with the higher fractal resolution curves having the largest values, 

which can be also seen from the mean values. The distance measurements (except the Haus- 

dorff distance which is again only included for completeness) almost continuously decrease for 

decreasing scales when approaching their respective ground truths, and are of similar mean val-
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(a) (b) (c) (d)

Figure 8.9: Active shape evolution results for the von Koch curves of increasing fractal resolution 
(resolutions 1 • • • 4 for columns (a)-(d)). The illustrated scale samples are (from top to bottom): 
a  = 1,2.18712,4,27752,8.36588,16.3618,32 with cr„_i =  32,cro =  l ,n  =  32. See text for 
further details.

ues and slopes across scales. The triangulation distance shows a better monotonous behaviour 

of constant slope values (which are sightly lower for the focusing results), supporting the obser­

vation that the curves evolve and focus in a uniform manner. Another interesting behaviour can 

be observed when examining the area measurements across scales: they have a number of local
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(a) (c)(b)

Figure 8.10: Active shape focusing results for the von Koch curves of increasing fractal resolution 
(resolutions 1 • • • 4 for columns (a)-(d)). The illustrated scale samples are (from top to bottom): 
(T =  32,16.3618,8.36588,4.27752,2.18712,1 with o-„_i =  32, do =  l , n  =  32. See text for 
further details.

minima at intermediate and lower image scales which seem to be related to the fractal resolution 

level with an offset of one, except for the highest fractal resolution curves, which have like the 

next lower resolution curves two instead of three local minima. This can be motivated by the 

qualitative description in the previous section that common fractal substructures in form of more
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r Method A P C dist// distCjSMs distT’̂ Afs

1
E 19550 653,747 22,0995 63,9091 1,78018 24,8871
F 19516 650,841 21,9132 105,5240 1,83869 25,6482

2 E 21803 778,294 28,8145 77,8134 2,34868 28,4989
F 21886 777,922 28,6441 92,3041 2,31065 27,7656

E 22986 879,584 36,6219 84,7512 1,98855 28,5715
j

F 22847 875,631 36,4191 75,3641 2,03132 29,7114

A E 23518 900,719 38,3319 82,6819 1,70532 35,2772
4

F 23524 887,325 36,5119 100,8640 1,73622 35,1066

Table 8,4: Mean descriptors for active shape evolution (E) and focusing (F) of the von Koch 
curves at fractal resolution levels r — 1 . . .  A with respect to scale. The same remarks as in table 
8,2 apply.

r Method AA
A<7

AP
Act

AC
Acr

^distc^Ms
Aa

Adistr^Afs
Acr

1 E -95,1515 -10,2941 -0,568904 0,218378 3,26885
1

F -116,1380 -10,4147 -0,553382 0,220597 3,47370

n E -82,5631 -18.0766 -1,155720 0,261976 3,26886
Z

F -70.6867 -17,6376 -1,129150 0,247998 3,47370

E -63,7362 -26,2651 -1,936470 0,174442 3,26886
j

F -81,8739 -26,3637 -1.919430 0,183403 3,47370

A E -101,6820 -28,4650 -2,140650 0,168913 3,26885
4

F -87,8724 -26,9242 -1,948580 0,170178 3,47369

Table 8,5: Slope measurements for active shape evolution (E) and focusing (F) of the von Koch 
curves at fractal resolution levels r  =  1 . . .  4 with respect to scale. The slopes are estimated using 
linear regression on the graphs plotted in figures 8,11 and 8,12,

detailed convexities are recovered in certain image scale ranges, which are cut off at higher scale 

levels by locally convex hulls. The most important observation, however, is the exponential in­

crease in perimeter and compactness for decreasing scales, along with the ranking in terms of the 

size of the perimeter and compactness values over all scales with respect to the fractal resolution 

level of the curves. This is due to the fractal nature of the ground truth fractal curves: at each 

fractal resolution level, the perimeter increases by a factor |  (see section 2,3,3, chapter 2), Their 

enclosed area increases as well, though in a much smaller proportion, as new triangular structures 

are padded at each side of the fractal curves to yield the next higher resolution curve. Therefore 

the compactness of the fractal curves increases for higher fractal resolutions. This observation 

gives rise to a new multi-scale fractal shape measurement, which will be presented in section

8,2,4 after the investigation based on the visualization of the multi-scale shape stacks.
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(a) (b) (c) (d)

Figure 8.13; Interpolated shaded surface renderings o f the hierarchical shape stack o f  the von 
Koch curves obtained via active shape evolution (upper row) and active shape focusing (lower 
row). Surface rendering is performed in a fine-to-coarse  view. See text for further details.

8.2.3 Visualization

Figure 8.13 illustrates the surface renderings o f the multi-scale hierarchical shape stacks o f  the 

von Koch curves obtained via the active shape evolution and focusing techniques, respectively. 

Selected slices through these stacks have been shown in figures 8.9 and 8.10. Again, both tech­

niques yield a similar visual impact. The shape flow from a circle over sim ilar fractal states at 

higher and intermediate image scales can be well perceived. Additionally, one can observe the 

positions in scale when the fractal shapes diverge to their respective final snowflake shapes o f  

different self-similarity depths. Colour mapping o f  local shape metrics on the hierarchical shape 

stack obtained via active shape focusing (the dual mapping o f active shape evolution is not de­

picted here) is illustrated in figure A.6 in appendix A. Most strikingly, the curvature mappings 

in column (a) visualize the fine-scale snowflake structures in a very regular and prom inent way, 

enabling to grasp the depth o f  the self-similarity o f  each fractal curve. The Cham fer distance 

m appings in column (b) illustrate the short cuts taken in these measurements, yielding very low 

distance measures (illustrated as no colour or slight yellow colour) at higher scales. The triangu­

lation distance measurements in column (c) show more continuous behaviour, in accordance with 

the smooth perim eter increase and RMS triangulation distance decrease for decreasing scales ob­

served in figures 8.11 and 8.12, with slightly higher values (in terms o f  hue) at the positions at 

intermediate and higher image scales where new substructures are formed at lower scales.
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8.2.4 Multi-Scale Fractal Shape Measurement

In section 8.2.1 it was observed that similar fractal substructures for the von Koch curves of in­

creasing fractal resolution are revealed in certain ranges of image scales. This was further quan­

tified in section 8.2.2 by the exponential increase of perimeter and compactness for increasing 

scales in figure 8.11, as well as by the local minima of the area changes across scale, and the 

common fractal self-similarity depths were illustrated by the renderings of the multi-scale shape 

stacks in the previous section. As was mentioned in section 2.3.3, the fractal dimension of the von 

Koch curve can be computed by the increase of perimeter per fractal resolution level. The frac­

tal relationship of area, perimeter and compactness with respect to the image scale can be further 

investigated in a logarithmic plot.

Figure 8.14 reveals linear relationships between the logarithmic area, perimeter, and compactness 

measurements with respect to scale (note that all measurements need to be scaled by the image 

scale at which they are obtained in order to take the scale-dependent self-similarity into account). 

For each measurement M , which is either the area, perimeter or compactness descriptor, the neg­

ative slope —sm  = — can now be estimated by linear regression of the respective loga­

rithmic plots:

log f —— =  Sm  • log(o-i) (8.1)

This slope estimation across scales has to be done carefully, as an adequate image scale selection 

needs to be performed. This is due to the inner and outer scales of the fractal shapes under investi­

gation, as well as the inner and outer image and contour scales. As all fractal structures have been 

evolved and focused down correctly, the upper image and associated contour scale a n -i = 32 is 

of adequate size. In terms of the overall fractal object sizes and their spatial widths it could have 

even be chosen larger. The initiator of the ground truth fractal shapes is of side length /q =  61.584, 

and the side length of each higher resolution is computed by dividing the next lower fractal resolu­

tion length by three. Therefore each fractal shape is limited by its outer scale Iq, and its inner scale 

Ir, where r  corresponds to the fractal resolution level or depth of the self-similarity. Additionally, 

the inner image scale (given by the pixel size) as well as the inner contour scale (given by the min­

imum distance Çmin = 3.5), further restrict the range of scales. Table 8.6 lists the obtained values 

for all multi-scale fractal resolution curves obtained via active shape evolution and focusing, as 

well as the image scale ranges in which the slope estimation has been performed. From that it 

becomes apparent that for the higher three fractal resolution curves, both active shape evolution 

and focusing recover the fractal dimension of Dfractal = ~  1.26 by the perimeter slope

measurement. The reason why the lowest fractal resolution curve recovers a too high dimensional 

value lies in the very limited scale range, which is effectively only in between [20.52800; 32] due 

to the upper image and contour scale limit. The logarithmic slope estimations for area and com-
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r Method Side Length ^ m in
A l o g ( ^ )  

A  l o g ( o - )

A l o g ( f  )  

A  l o g ( c r )

A l o g ( J )  

A  l o g ( o - )

E 1.454770 1.34966 1.24456
1

F
61.58400 20.528000

1.716760 1.44066 1.16453

E 1.061280 1.25725 1.45323
2

F
20.52800 5.132000

1.049860 1.25320 1.45653

E 1.037090 1.26669 1.49629
3

F
6.84267 3.500000

1.049690 1.27096 1.49222

E 1.064870 1.26881 1.47275
4

F
2.28089 3.500000

1.051530 1.26214 1.47277

Table 8.6: Logarithmic slope estimations for active shape evolution (E) and focusing (F) of the 
von Koch curves at fractal resolution levels r  =  1 . . .  4 with respect to scale. The negative slopes 
are estimated using linear regression on the graphs plotted in figures 8.14 within the scale ranges 

1 ~  32].

pactness with respect to scale show also a constant behaviour for the fractal resolution curves of 

r  >  1, yielding negative slope values around between [1.03; 1.06] for the area measurements, 

and between [1.45; 1.49] for the compactness measurements. The reason for the underestimation 

of the logarithmic area slope lies in the non-continuous increase of the enclosed area of the frac­

tal curves for decreasing scales, as finer scale concavities are recovered as convexities at higher 

scale, leading to local minima in correspondence to the degree or depth of self-similarity. This 

naturally affects the compactness slope measurement which depends on both perimeter and area 

measurements as well. The logarithmic slope estimation of the perimeter changes across scales 

obtained by active shape evolution or focusing correctly recovers the fractal dimension of the von 

Koch curve at different fractal resolution levels, based on a similar process to the composition or 

decomposition of a fractal curve outline into finer detailed substructures.

8.3 Summary

This chapter has tested the technique for multi-scale active shape description based on active 

shape evolution and active shape focusing on a set of synthetic test images. Different types 

of complex shape characteristics have been presented, as well as a synthetic set of true fractal 

shapes of increasing levels of fractal self-similarity. The silhouette-shaped images have been well 

tracked in both directions of the image scale-spaces, leading to qualitatively, quantitatively and 

visually similar results at the same scale levels for both active shape evolution and focusing. All 

levels of the resulting multi-scale shape stacks have been described with global planar shape met­

rics, as well as with mean and slope measurements across scales, leading to distinctively different



8.3. Summary 188

values for the different types of shapes. The extracted shape measurements correspond to the ex­

pected behaviour of the different object shapes across scale, and demonstrate the potential of the 

framework for multi-scale active shape description to provide shape measures for the degree of 

“convolutedness” or smoothness, and for the scale location of protruded parts.

The application to strongly curved objects of varying compactness and objects with minor and 

major protrusions has demonstrated the applicability of multi-scale active shape description to 

a large variety of shapes. Simultaneously, some of the problems encountered with adequate im­

age and contour scale selection with respect to the overall object size and tracking of substruc­

tures with small entrances (so-called bottlenecks) have been shown, and solutions have been sug­

gested. The application of multi-scale active shape description to a true fractal structure suggests 

an intrinsic relationship between fractal resolution and image scale in terms of perimeter changes 

across scales. In particular, the slope estimation in a log-log plot of scaled perimeter versus im­

age scale within an adequate range of scales has allowed to recover the fractal dimension of this 

particular structure at different fractal resolution levels. Although the fractal dimension estima­

tion based on active shape evolution and focusing has not been evaluated on a larger set of fractal 

structures for its correctness, it provides an intuitive multi-scale shape measurement which re­

duces the large amount of measurements to a single meaningful number by organizing the scale 

information in a structural way.

While this chapter has been restricted to synthetic binary shapes of known ground truth, the fol­

lowing chapter tests the presented techniques on medical image data for three different medical 

applications. In absence of a ground truth, active shape focusing, which has been shown to be a 

dual technique to active shape evolution, is used for the construction of the medical shape stacks.



Chapter 9

Application to Medical Images

L e  p e t i t  p r i n c e  e u t  u n  s o u r i r e :

-T u  N ’ EST PAS BIEN P U ISSA N T .. .  TU N ’AS MÊME PAS DE PATTES.. . TU NE PEUX MÊME  

PAS V O YAG ER .. .

-  J e  p u i s  t ’ e m p o r t e r  p l u s  l o i n  q u ’u n  n a v i r e , d i t  l e  s e r p e n t .

T h e  l i t t l e  p r i n c e  s m i l e d .

’’You ARE NOT VERY POWERFUL. Y O U  H AVEN’T EVEN A N Y  FEET. Y O U  CANNO T EVEN  

T R A V E L .. .”

” I CAN CARRY YOU FARTHER THAN ANY SHIP COULD TAKE Y O U ,” SAID THE SNAKE.

Le Petit Prince, Antoine de Saint-Exupéry.

In this chapter, the presented framework for multi-scale active shape description will be tested on 

MRI data for three different types of clinical problems in order to demonstrate its ftinctionality:

• Epilepsy, manifesting as local deformations and dysgenesis of the grey matter,

• Multiple Sclerosis (MS), manifesting as spinal cord atrophy, and

• neonatal data, manifesting as cortical impairment for early bom children.

Control data are included for all cases to provide a comparison between normal shape variability 

and abnormal shape deformation. As the goal of this dissertation is to show the applicability of 

the framework rather than performing a clinical group study, the number of image data sets is 

comparatively small. Table 9.1 summarizes the information of the medical data used.

9.1 Pre-Processing, Initialization, and Optimization

In medical imaging, several degradations of image quality can occur. Movement artefacts are 

caused by movements of the patient in the scanner during image acquisition, and lead to dis­

continuous or unsharp object contours. This is especially the case with MRI, where acquisition 

times are relatively long. Partial volume effects are caused by sampling during image acquisition, 

yielding image voxels containing a mixture of different tissue types. Each type contributes with 

its own intensity value, and the resulting intensity is a weighted combination of the contributing
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Image data information Epileptic data Spinal cord data Neonatal data

Number of data sets 6 8 (4 scan/rescans) 2

Type of deformation Cortical dysgenesis Cord atrophy Cortical impairment

Pixel size 0.9375 X 0.9375 0.4883 X 0.4883 0.0586 X 0.0586
Slice thickness 1.5 2.9297 5.0
Slice plane Coronal Reformatted Transversal

Slice size 256 X 256 512 X 512 256 X 256

Region of interest - 64 X 64 -

Linear zooming factor - 4 -

Number of slices 124 10 (5 relevant) 10

MR type T1 T2 T2

Table 9.1 : Medical image data information. The size of the slices and regions of interest is given 
in pixel units, while the actual pixel size and slice thickness are given in mm? and m m , respec­
tively. T1 and T2 refer to the weighting or relaxation times of the MRI acquisition.

intensity values. This effect might lead to inaccurate estimations of object size and location. In­

tensity variations within an image slice as well as between images slices can occur for various 

reasons; in MRI, for example, they are caused by nonuniform magnetic field strengths, and can 

be corrected using thresholding and contrast enhancement techniques. More sophisticated inten­

sity corrections are based on a thin-plate spline interpolation of the intensity surface based on a 

given set of landmark points [Zijdenbos et a l, 1994]. For slice-by-slice acquisition techniques, 

each image plane is acquired with a certain slice thickness. Thinner slices increase the accuracy 

of measurements, but simultaneously decrease the signal-to-noise-ratio. Careful pre-processing 

is required, as otherwise the objects under investigation cannot be properly delineated from the 

surrounding tissues and other structures. A combination of the following items helps to achieve 

a proper separation, which are further discussed below;

1. Thresholding and intensity cutting

2. Contrast enhancement

3. Morphological processing

4. Scale selection

5. Edge information

As a first step, background noise and meninges (membranes enclosing brain and spinal cord) can 

be removed by thresholding, where the size of the threshold may vary between the data sets and is 

dependent on the image acquisition. In order to avoid strong edge responses from neighbouring
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Pre-processing parameter Epileptic data Spinal cord data Neonatal data

Intensity scaling range [0;255]
Lower intensity threshold 1 0 - 3 0 5 1 0 - 3 0

Upper intensity threshold 255 255 -

Intensity cutting threshold 100 (upper 24 slices) - 110 -  115

Image gradient threshold 10%

Contrast enhancement Histogram equalization

Contrast Light sha]3C on dark background

Morphological operator Opening 5 x 5 - Opening 3 x 3

Table 9.2: Medical image pre-processing parameters.

tissues with high water content such as soft tissue or the eyes, an upper threshold can be used for 

intensity cutting of very high intensity values by setting them to the lower threshold. This is usu­

ally only necessary for whole brain volumes in the upper slices containing the eyes, and otherwise 

only in a few slices. Contrast enhancement using histogram equalization for the redistribution of 

the thresholded intensities increases the contrast between the different tissue types. Small isolated 

structures blocking the entrance to protrusions can be removed using morphological processing 

techniques, e.g. by morphological opening. Morphological processing has already proven to be 

very useful for the extraction of the human brain, in particular for grey matter and white matter 

extraction in MRI [Kapur et a l, 1996]. For the actual focusing process, adequate scale selection 

needs to be performed with respect to the field of view. Additionally, if the object of interest is not 

isolated, but closely surrounded by other structures, large scales cause blurring across the edges 

of both the object and the other structures, possibly leading to a premature merging of the edges. 

Finally, the optimization of the multi-scale active contour model not only depends on the edge 

strength, but also on directional edge information. In chapter 6, directional tuning was presented 

which can be used to recover objects of specific contrast to the background, which is defined by 

the sign of the image energy terms, including the isophote image curvature, in equations 6.16, 

6.22, and 6.23, respectively. Additionally, the normalization of the gradient allows to threshold 

small spurious edge values falling below a certain percentage of the overall range independently 

of the size or range of the original image values. Table 9.2 lists the image pre-processing param­

eters used for the image data for the different medical applications.

Different strategies are employed to obtain the initial models: For the application to epileptic data, 

an initial, circular shaped model is created for a single slice for each data set using manual inter­

action, followed by shape propagation as presented in chapter 7. The neonatal data has less spa­

tial correspondence between neighbouring slices due to the much larger slice thickness, leading 

to inaccurate propagation results. Therefore each slice is individually initialized with an ellipse-
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Optimization parameter Epileptic data Spinal cord data Neonatal data

oteiasticity for propagation 0.001 - -

^elasticity  foCUSing 0.00001
Iterations for propagation 10-20 - -
Iterations for focusing 20 10 10
Initial scale ^in itia l ~  8 ^in itia l ~  10 i  8 ^in itia l ~  8

Final scale ^  fina l — 1
Number of scale samples 16
Greedy search space 5 x 5 3 x 3 3 x 3

Table 9.3: Medical image optimization parameters. The fixed default parameters can be found in 
table 6.5 (chapter 6, page 141).

shaped model, which is acceptable due to the limited number of available slices. The spinal cord 

data, though being a good candidate for shape propagation, is initialized in a slightly different 

manner. The cord has an ellipse-shaped outline, varying in overall size and elongation between 

patients and controls, as well as across slices. The detection of scale-space extrema or blobs, dis­

cussed in chapter 3, has been adapted to locate the maximum scale response for each image slice 

in order to determine the centre and size of the initial ellipse-shaped models, a technique which 

will be presented in the context of this application.

In absence of a ground truth, the multi-scale shape stacks for the different types of medical image 

data are obtained via active shape focusing, using the lowest scale result of each image slice as 

the reference shape. Table 9.3 lists the optimization parameters used which will be discussed in 

the following, and the default parameters can be found in table 6.5 (chapter 6, page 141). For 

the given medical data sets, lower upper scale limits than for the synthetic data in the previous 

chapter have been chosen in order to reflect a smaller field of view in terms of object sizes and 

finer detailed substructures, and to avoid interaction with neighbouring structures. Still, the cho­

sen upper scale limits are large enough to capture the global shape outline, and in the case of the 

epileptic data allow for adequate propagation through the whole brain volume. The number of 

samples is adjusted to the upper image scale, while the lower image scale is set to one pixel unit. 

Therefore a denser sampling than for the synthetic data is used, but less samples are needed. The 

lower scale range for the focusing process implies that smaller and therefore more efficient search 

spaces can be used, and are adjusted to the expected complexity of the objects. In the following, 

general guidelines for the application of multi-scale active shape description to volumetric data 

will be given.
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9.2 Application to Volumetric Brain Data in MRI

The cortical surface of the brain can be formulated as a set of contours, one for each image slice 

L{x,y,Zk).  This allows for the computation of two different types of multi-scale shape stacks, 

viz. 3D and 3^D stacks which are based on image scale-spaces of dimensionality 3^D  and 4D, 

respectively, and are consequently obtained from 2^D or 2 |D  active shape focusing. Note that 

either type of shape stack can be organized as a set of 2 |D  stacks, one for each image slice, or as 

a 3^D  stack, with one volumetric instance per scale level. The latter is preferred due to the bet­

ter visual inspection using volumetric techniques, but simple reformatting allows to investigate 

the stacks of the individual slices without the need of performing another focusing process. Both 

2 |D  or 2 |D  active shape focusing have the same computational complexity as they are both 

based on tracking a shape through a volumetric image scale-space; however, they differ in the 

computational complexity of the underlying scale-space computation. The slice-by-slice scale- 

space computation is computationally more efficient, but does not take the correlation between 

neighbouring slices into account which generally leads to more local results than the 4D scale- 

space approach. Only linear scale-spaces are considered here, but extensions to nonlinear scale- 

spaces will be discussed in chapter 10. The application of multi-scale active shape description 

to volumetric brain images requires the consideration of several issues, like the initialization of 

all slices, the choice of the underlying image scale-space dimensionality, and the structural orga­

nization of the resulting multi-scale shape stacks. These issues are intrinsically related to each 

other, and will be discussed in the following.

In theory, each slice of the volumetric data sets can be initialized manually with a coarse estimate, 

but demand on expert time is very high, and user dependence should be avoided as much as pos­

sible. Using the concept of shape propagation as discussed in chapter 7, section 7.3.1, allows to 

reduce manual interaction to the initialization of a single slice per volumetric data set. However, 

shape propagation in MRI needs to be performed with consideration, as due to the slice thick­

ness structures may suddenly appear or disappear from one slice to another. In order to avoid a 

trapping of the multi-scale active contour model in a local energy minimum caused by the sudden 

appearance of a substructure, the initialization of an initial circular shaped model is performed on 

an intermediate slice where the brain is most circular shaped and of maximum expansion, which 

is usually between slices 40 and 50. The elasticity energy term of the multi-scale active contour 

model enables to contract the model in lack of appropriate external image forces, allowing the 

model to recover when substructures like the brain stem disappear or shrink back. For this rea­

son a larger weighting term aeiastidty is chosen for the shape propagation than for the following 

focusing process (see table 9.3). Shape propagation is performed at the upper chosen scale level, 

and is therefore also affected by the dimensionality of the underlying image scale-space. In a 

3^D  image scale-space, correspondence between neighbouring slices is lower than in a true 4D
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scale-space, where blurring is performed additionally in the slice direction. Therefore the scale- 

space dimensionality influences the stability of the propagation process. For a following focusing 

process, the scale-space dimensionality also indicates how much focus is on local properties and 

shape characteristics in individual slices. The 2^D  or organization of the resulting multi­

scale shape stacks (whose dimensionalities depend on the respective scale-space dimensional­

ities) is chosen to inspect individual brain slices, or the overall global shape of the volumetric 

brain structure. For either shape stack organization, an underlying AD image scale-space takes 

the volumetric nature of the data and the associated anisotropic voxel size into account. At large 

image scales, this influence is very high, while it vanishes at lower image scales, and the AD 

image scale-space approaches the Z^D  image scale-space. The main difference of both image 

scale-spaces therefore lies in higher to intermediate scales. This leads to solutions of different 

locality in terms of detailed structures which are not inherent in the neighbouring slices, or which 

are only enhanced by the neighbouring slices, but not very prominent in the image slice under 

investigation. Consequently, a AD image scale-space leads to a more global Z \D  stack due to 

its averaged nature, where finer scale details may not be adequately tracked. A ZD stack which 

is based on a Z^D  image scale-space captures all finer scale details in the individual slices, but 

lacks the knowledge of the more general shape. This might endanger the globality of the solution, 

and leads to the potential trapping of the multi-scale active contour model in local minima.

For multi-scale active shape description of volumetric images, volumetric rather than planar 

shape metrics which have been described in table 7.2, chapter 7, need to be computed. Both vol­

ume and surface area can be obtained from a triangulation of the sets of contours (%%)}

at each scale level ai as was described in section 7.4. However, it was found that due to poor 

results of standard triangulation techniques for very complex volumetric shapes these measure­

ments were of inadequate quality. Therefore, a more pragmatic approach has been taken to derive 

the volumetric measurements: perimeter and area measurements for each image slice and at each 

scale level are calculated and summed across slices considering the anisotropic voxel size and 

slice thickness. Volumetric compactness, indicating the deviation from sphereness, can then be 

computed using equation 7.2 (chapter 7, page 153). Similarly, the relative shape distance mea­

surements with respect to the lowest scale result for each slice (since no ground truth is available) 

can be computed for each slice and scale level separately, and then averaged across all slices.

Before moving on to the results, it should be stressed that the aim of this dissertation is to test 

multi-scale active shape description as a new methodology on different types of medical data. 

Segmentation, though being an implicit byproduct of the active shape focusing process, is not the 

primary goal. Instead, all intermediate scale results are regarded as being of the same importance 

for concise and comprehensive shape investigation. In the following, the application of active 

shape description on epileptic data, spinal cord data, and neonatal data is presented.
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9.3 Application to Patients with Epilepsy

Epilepsy is the most common major neurological disorder with a minimum prevalence of approx­

imately 0.5%. There are two major types of epilepsy, viz. idiopathic epilepsy and symptomatic 

epilepsy. The first type is presumed to be caused by genetic factors and can most of the time be 

controlled with adequate drug treatment. The second type, however, usually develops as a re­

sult of structural abnormalities of the brain, and can be identified with high-resolution MRI in 

up to 60% of the cases, which allows for adequate planning of epilepsy surgery in order to re­

move the identified abnormal parts of the brain. In 70% of the cases above eventually undergo­

ing surgical treatment, the patients become completely seizure free. A variation of symptomatic 

epilepsy is cryptogenic epilepsy, comprising all cases where a structural cause is suspected but 

not found despite of extensive investigation. Post mortem studies have suggested that cortical 

dysgenesis in form of subtle disruptions of the gyral/sulcal pattern is the most common structural 

cause in patients with epilepsy. A correspondence between subtle structural abnormalities like 

gyral thickening and deepening has been established, reflecting the strong link between cortical 

cytoarchitecture and epilepsy [Meencke, 1994]. This link has also been revealed based on the 

analysis of MRI in terms of the complexity of the white matter/cortical interface characterized 

by abnormal fractal dimensions [Cook et al., 1995; Free et al., 1997]. However, these methods 

currently require time-consuming grey/white matter segmentation and are based on the definition 

of a somewhat arbitrary set of ROI’s. Studies have shown that abnormalities can be detected by 

careful visualisation in 3D that were not visible in 2D images, that correlated with the electronic 

seizure pattern [Sisodiya et al., 1996]. Similarly, abnormal volumes and volume ratios can be 

detected in regions of the brain which appear normal on visual inspection [Sisodiya et a l, 1995]. 

Research has also recently been conducted in finding local intrinsic compactness measures based 

on 2D folded, triangulated brain surface patches and geodesic measurements [Castellano Smith 

et a l, 1997]. The multi-scale character of the presented methodology for active shape descrip­

tion approaches the problem of detecting structural differences in volumetric brain data from a 

slightly different angle. Though comparisons between the six cases will be made, the empha­

sis is on intra-shape rather than inter-shape comparison in terms of volume and surface changes 

across scale.

Figures 9.1 and 9.2 show scale samples of a 3D and a Z \D  shape stack, respectively, for an in­

termediate slice of each data set for the application to epilepsy, showing the differences in the 

locality or globality of the solutions when based on a 3^D and AD image scale-space. These 

slices also represent the position in the brain volumes at which the shape propagation process is 

initiated in order to obtain the initial estimates for each image slice. The circular shaped initial 

model is superimposed in black on the highest scale images for either scale-space dimensional­

ity. Each brain data set is initialized with a circular model only slightly varying in overall size and
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location, as the data sets are not registered. For each brain the same associated initial model is 

taken for the two different scale-space approaches. The optimization result for each scale level is 

superimposed in white. Either shape stack consists of 16 samples of which only four are shown in 

figures 9.1 and 9.2, and has been computed within the scale range of cr* e  [1; 8] with a minimum 

contour scale of Çmin =  3.5 pixel units.

Figures 9.3-9.8 illustrate the volumetric lowest scale levels of the obtained 3D and 3 \D  shape 

stacks, obtained by propagating the models in figures 9.1 and 9.2 through the whole brain volume, 

followed by performing active shape focusing in each individual image slice. The figures have 

been obtained by volume rendering of the extracted brains, where the extraction is performed by 

deriving and stacking the enclosed areas of the optimized sets of models (s; ctq)}. Volume 

rendering is performed as iso-surface rendering using the Visualization Toolkit [Schroeder et a l, 

1997]. Iso-surface rendering, in contrast to other volume rendering techniques like maximum 

intensity projection or traditional ray-tracing (often also called ray-casting), renders volume sur­

faces of constant intensity values, and, if applied to an extracted volume, is similar to a stop-at- 

first-voxel method [Levoy, 1989]. This implies that the rendering result corresponds closely to 

the true extracted volume, and performs no additional visual improvement.

The following sections will summarize the qualitative and quantitative description of the stacks 

in terms of volumetric measurements for the detection of structural differences between patients 

and controls, as well as their visualization.



9.3. Application to Patients with Epilepsy 197

V

?

t

Figure 9.1 : Samples o f  the active shape focusing results for the epileptic data obtained in a 3 |D  
image scale-spaee. From top to bottom: patient 1, patient 2, patient 3, patient 4, control 1, control 
2. Columns (a) cr =  8 (b) cr =  4 (c) cr =  2 (d) cr =  1. Columns (a) also contain the initial model 
superimposed in black.
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Figure 9.2: Samples o f  the active shape focusing results for the epileptic data obtained in a 4D 
image scale-space. From top to bottom: patient 1, patient 2, patient 3, patient 4, control 1, control 
2. Columns (a) cr =  8 (b) cr =  4 (c) cr =  2 (d) cr =  1. Columns (a) also contain the initial model 
superim posed in black.
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Figure 9.3: Right, top, and left views (from left to right) o f the iso-surface rendered lowest scale 
results o f the brain image o f  patient 1 obtained via active shape focusing in a (top row) and 
4 D  (bottom row) image scale-space.

Figure 9.4: Right, top, and left views (from left to right) o f the iso-surface rendered lowest scale
results o f the brain image o f  patient 2 obtained via active shape focusing in a (top row) and
4D  (bottom row) image scale-space.
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Figure 9.5: Right, top, and left views (from left to right) o f the iso-surface rendered lowest scale 
results o f  the brain image o f  patient 3 obtained via active shape focusing in a 3 |Z )  (top row) and 
4 D  (bottom row) image scale-space.

Figure 9.6: Right, top, and left views (from left to right) o f the iso-surface rendered lowest scale
results o f  the brain image o f  patient 4 obtained via active shape focusing in a (top row) and
4 D  (bottom row) image scale-space.
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Figure 9.7: Right, top, and left views (from left to right) o f the iso-surface rendered lowest scale 
results o f  the brain image o f  control 1 obtained via active shape focusing in a 3 ^ D  (top row) and 
4D  (bottom row) image scale-space.

Figure 9.8: Right, top, and left views (from left to right) o f  the iso-surface rendered lowest scale
results o f the brain image o f control 2 obtained via active shape focusing in a (top row) and
4 D  (bottom row) image scale-space.
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9.3.1 Qualitative Description

From a first qualitative visual inspection, two observations can be made: first, despite the con­

siderable differences due to structural abnormalities (which are more obvious for patients 1 and

2, and only subtle for patients 3 and 4) as well as natural shape variability between the individual 

cases, all slices have been well focused down using only a very coarse initial model. This was 

achieved by incorporating scale-space continuity into the active contour model in order to en- 

largen the capture region of prominent shape features, making the model apparently robust and 

less dependent on the initialization. Also, the curvature matching process enables the extraction 

of highly convoluted shapes and shapes of high local curvature like sulci and gyri of the cortex. 

The second observation lies in the different solutions with respect to the underlying image scale- 

space. At the highest scale level, the optimization results based on the 4D image scale-space 

appear to be much smoother. At intermediate to lower scales, they are more capable of capturing 

the overall global shape outline in terms of the separation of the brain from the skull, rather than 

following into small concavities and protrusions. The image scale-space based optimiza­

tion results are more capable of tracking structures of fine detail, unless prevented by bottlenecks, 

structures below the minimum contour scale, or structures which are only partially contained in 

the image slice. Note that the latter is caused by the partial volume effect, and by topological 

changes, since the brain can not always be represented as a stack of planar shapes.

Using a higher order image scale-space can help to overcome this problem, which becomes more 

obvious when comparing the results of patient 4 and control 1 in either scale-space. Small details 

which are missed out in the 3|Z> image scale-space in figure 9.1 can be tracked in the 4D scale- 

space as shown in figure 9.2 due to the blurring in the z-direction. The optimal solution to solve 

large topological problems, for example the separation of the brain into the frontal lobes at higher 

image slices, can only be obtained by using a surface- rather than a contour-based model. Advan­

tages and disadvantages of such an approach will be discussed in chapter 10. Another prominent 

difference arising from the image scale-spaces of different dimensionalities can be seen for patient

3, where the result does not correspond to the desired solution (see figure 9.1). Not the overall 

brain outline is extracted, but the model is partially trapped at one side of the brain despite us­

ing an adequate initial model. This is due to small fragmentations and fine details which do not 

provide a clear brain outline at the highest scale level, as well as intra-slice image intensity and 

contrast variations. In figure 9.2, however, the overall brain outline is enhanced across slices and 

can be well tracked, but on the cost of local detail in terms of small protrusions whose locations 

vary from slice to slice.

It must be stressed that the illustrated slices have not been especially selected for their good but 

rather their average quality, showing all occurring positive and negative aspects of active shape
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focusing in volumetric brain images. The proposed technique for active shape focusing has em­

pirically been found to be very robust in extracting a large variety of complex brain contours in 

a slice-by-slice fashion. Additionally, shape propagation at the highest scale level has proven to 

be a very stable technique to obtain initial models in both scale-space dimensionalities, and is 

therefore an adequate technique to automate the initialization and following focusing process.

In contrast to the previous single-slice scale samples structured as 2^D  stacks, figures 9.3-9.8 vi­

sualize the lowest scale level of the 3D and a 3 |D  shape stacks organized as 3^D (volumetric) 

stacks in right, top, and left view, and simultaneously show the power as well as some encoun­

tered limitations of the proposed active shape focusing technique for volumetric images. The dif­

ferent effects of the underlying image scale-space dimensionality can also be seen very clearly. 

The illustrated results, though not perfect segmentations of the brain for reasons discussed below, 

demonstrate an adequate tracking behaviour of the brain volumes through image scale-space in 

terms of their main shape outline. The top views of the illustrated volumetric brain shapes show 

very detailed tracking results for either scale-space, with the exception of patient 3, where the 

sulci are tracked in finer detail in the 3^D scale-space, but tend to be smoothed out in the 4D 

scale-space. In all cases except for patient 1, tracking problems towards the back of the brain 

(the lower part of the top views) occur due to changes in object size, contrast and intensity varia­

tions across and within slices. Experimentation has shown that manually adjusting the intensity 

distribution and scale range in these individual slices can help to improve the shape extraction 

results and yield locally better results, but cannot be generalized to all slices. More sophisticated 

intensity correction methods are expected to improve the results globally, but are not a topic of this 

dissertation. The automatic adjustment of the individual scale ranges is a non-trivial task which 

needs further research in terms of adequate scale selection of very complex and convoluted vol­

umetric structures. For practical reasons, in this dissertation all image, scale, and optimization 

parameters are kept fixed and are chosen as general as possible, yielding as a result the best com­

promise between all parameters, instead of individually fine-tuning each image slice. The only 

parameter that varies between the individual brain data sets is the level of the lower threshold due 

to the overall different intensity ranges caused by different image acquisition parameters as well 

as artefacts and patient or control dependent characteristics, but is kept constant within each data 

set. The side views in figures 9.3-9.8 illustrate the good tracking of the brain stem for which the 

classic active contour model usually fails due to its elasticity and curvature minimizing nature. 

The curvature matching process developed in chapter 6, along with the adaptive sampling strategy 

enables the multi-scale active contour model to extract the brain stem adequately, as the model’s 

curvature is adjusted to the underlying high curvature at the peak of the stem, and the sampling 

strategy allows for local flexibility. From the side views two more observations can be made: 

first, the slice-by-slice nature of the actual shape extraction in terms of active shape focusing be­
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comes very apparent when using a image scale-space, as slicing becomes visible at brain 

parts of high convolution, and where neighbouring slices differ very much. Brains with smooth 

surfaces, however, are hardly affected (e.g. patient 1). Using a 4D  image scale-space greatly 

reduces the slicing effect due to the incorporation of image information of adjacent planes.

This section has qualitatively investigated two different types of multi-scale shape stacks obtained 

from volumetric brain images, viz. stacks of dimensionality 3D and Z \D  which are based on 

linear image scale-spaces of dimensionality Z^D  and AD, respectively. Active shape focusing, 

based on either image scale-space, is a slice-by-slice, 2^D  or 2^D  multi-scale technique for im­

plicit volumetric segmentation or shape regularization, which formulates the brain volume as a 

set of planar shapes. The dimensionality of the underlying image scale-space corresponds to the 

desired locality or globality of the solution within the individual slices and across the volume, 

which may to be adjusted from case to case. A good solution for this ambivalence may be a top- 

down approach which first acquires a more general, Z \D  multi-scale shape stack organized as a 

Z^D  structure in order to investigate more global volumetric properties, followed by reformat­

ting this stack into a set o f2^D  stacks in order to further locate specific shape properties. Finally, 

individual slices of higher interest can be processed on the basis of an efficient ZD scale-space 

(or a Z^D  scale-space for the whole volume), if necessary with optimally adjusted parameters. 

In the following, the obtained ZD and Z \D  multi-scale shape stacks for all six data sets will be 

quantitatively described on the basis of a 3|Z> stack organization.

9.3.2 Quantitative Description

As for the description of synthetic shapes in the previous chapter, mean measurements, slope mea­

surements, and logarithmic slope measurements are computed from the ZD and Z^D  multi-scale 

shape stacks of all volumetric brain data sets. Additionally, global and relative shape measure­

ments are plotted across scale. In contrast to the description in synthetic images, however, the 

shape stacks are organized as structures, or as volumetric rather than planar instances in 

scale-space, requiring the computation of volumetric rather than planar shape quantifiers as de­

scribed earlier in section 9.2.

Figures 9.9 and 9.10 illustrate the global and relative shape measurements of all data sets across 

scale. In addition to the results obtained from using AD image scale-spaces, the corresponding 

results from using Z^D  scale-spaces are shown in dashed lines. The first impression from these 

plots is that all shape changes are very smooth and uniform with respect to scale. Volume, surface 

area and compactness (see figure 9.9) increase continuously for decreasing scales, and differ for 

the different scale-space dimensionalities in terms of being of lower value for the AD scale-space 

results. The distance measurements (see figure 9.10) decrease continuously when approaching 

the reference volumes, and are of lower values for the Z^D  scale-space.
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Figure 9.9: Volumetric global measurements for the application to epileptic data across scales. 
Dashed lines are the corresponding 3 |D  scale-space results.
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From both figures it becomes obvious that the shape measurements for the brain of patient 1 are 

distinctively different from all others in terms of the absolute values; it has the overall largest vol­

ume and perimeter, while at the same time it is of lowest compactness. Ranking next in overall 

volume and surface area size is control 2, which however has a much higher compactness due to a 

smaller surface to volume ratio. All other brains are of similar volume and much smaller, but be­

tween them quite similar surface area. It is important to note, however, that the absolute volume 

and surface area measurements can only be assigned much weight to if the brain data sets were 

appropriately registered. Since this is not the case in this study, the ratio between surface area and 

volume, given by the volumetric compactness as a dimensionless quantity, appears to be a more 

adequate shape descriptor, in addition to the volumetric slope measurements. For example, the 

surface area and hence the compactness of the brain of patient 1 only moderately increases for 

decreasing scales in comparison to the other sets. This corresponds to the intuition that this brain 

is very smooth and not very convoluted, which can also be observed from its overall rather low 

deviation from its reference volume, as well as from its lowest scale volumetric visualization in 

figure 9.3. The surface area measurements show a steeper increase for patients 2 and 4 than for all 

other cases, yielding therefore the highest and steepest compactness measurements for decreasing 

scales. Patient 3 has a very similar slope behaviour as patient 1, and is of next higher volumetric 

compactness, although much smaller in overall size (its overall low complexity becomes also ob­

vious from figure 9.5). Finally, control 1 has a slightly steeper increase in surface area than patient 

3, leading to a similar compactness as control 2. Global volumetric measurements across scale 

were found to provide a potentially discriminating measure for the investigated cases, by catego­

rizing them into shapes of very low (patient 1 and 3), intermediate (controls), and high complexity 

(patient 2 and 4). The distance measurements show less discrepancy between the different cases, 

and are probably not very reliable quantifiers due to their highly averaged nature.

Differences between the 4D and corresponding volumetric and distance measurements are 

only subtle. For the volumetric quantifiers, the 3^D  results are overall slightly higher than the 

corresponding AD results due to the shrinking caused by blurring in the slice direction for the AD 

image scale-space computation. The volume quantification differs at higher scales much more 

than at lower scales where it approaches similar values for both scale-space dimensionalities. The 

surface areas are characterized by an almost constant offset across scales, as are the volumetric 

compactness measurements with respect to the scale-space dimensionality. This observation in­

dicates that the two scale-spaces allow to focus to local detail at a different speed, which may be 

quantified by the slope behaviour of the shape measurements across scale. The volume, which is 

a cubic quantifier, therefore diverges more at higher scales for the different scale-space dimen­

sionalities than the surface area, which is only a squared quantifier. Similarly, the divergence of 

the distance metrics is higher at larger scales.
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Descriptor D s Patient 1 Patient 2 Patient 3 Patient 4 Control 1 Control 2

V Z \D
4D

1378990
1355440

736506
726831

729106
719606

818556
775231

782444
744394

1061740
1031910

S 3 iD
AD

57935.8
49363.7

43892.2
41791.8

42001.9
37398.4

45407.2
42093.5

40409.6
39046.3

51709.1
49364.4

C v 3 |0
AD

10.1153
8.0825

12.5005
11.7393

11.7831
10.0231

11.8161
11.1332

10.3744
10.3462

11.0700
10.6047

dist# 3i£>
AD

37.0958
28.8987

33.9456
30.6944

39.4931
32.7501

36.2594
33.1949

33.4636
34.3458

38.0819
33.9084

àistCfij^s
H d

AD
1.85335
2.44865

2.07291
2.52236

2.33769
2.80329

2.08636
2.43206

2.06739
2.40502

2.16179
2.60738

AD
5.11664
7.40156

6.75600
9.21337

6.38444
7.85925

6.21958
8.05681

5.62902
6.93419

6.52806
7.92694

AV
A(t

H D
AD

-33.5561
-60.2180

-26.3761
-39.1730

-37.3994
-51.3569

-32.6485
-34.9656

-30.6479
-41.9904

-40.8492
-58.2717

AS
A<7

H D
AD

-4.41602
-4.40825

-5.48491
-5.65955

-4.25802
-3.66259

-5.02314
-5.18233

-3.70060
-4.11427

-5.37020
-5.34478

ACv
Aa

3 iD
AD

-0.00092
-0.00074

-0.00190
-0.00177

-0.00121
-0.00077

-0.00150
-0.00156

-0.00103
-0.00107

-0.00131
-0.00114

Adistcj^^g
Aa

3|£l
AD

0.00061
0.00113

0.00072
0.00110

0.00103
0.00144

0.00080
0.00104

0.00082
0.00112

0.00085
0.00125

Aa
H ^
AD

0.00245
0.00450

0.00363
0.00537

0.00384
0.00511

0.00348
0.00479

0.00305
0.00426

0.00376
0.00498

Alog(V/a)
A l o g ( o - )

s \ d
AD

1.25317
1.46507

1.48122
1.61402

1.47336
1.42091

1.43696
1.50348

1.37877
1.35827

1.40222
1.39900

A l o g ( 5 / c r )

A l o g ( o - )

H ^
AD

1.30477
1.50634

1.55210
1.68556

1.56080
1.45544

1.52128
1.54548

1.42031
1.38357

1.44744
1.44990

A  l o g  ( C y / c r )  

A  l o g ( o - )

H d
AD

1.18626
1.19127

1.31582
1.31561

1.20854
1.16010

1.26126
1.29342

1.20429
1.21732

1.24319
1.22235

Table 9.4: Mean, slope, and logarithmic slope descriptors for active shape focusing of the epilep­
tic data with respect to scale. D s  indicates the underlying scale-space dimensionality.

Table 9.4 lists the quantitative mean and slope measurements for all brain data sets taken across 

scales, computed for the and AD image scale-spaces. The volumetric mean measurements 

quantity the observed divergence between the different scale-space dimensionalities by yielding 

smaller values for the AD image scale-space results. In particular, the volumetric compactness 

yields overall lowest results for patient 1, and overall highest values for patient 2. The other 

cases rank as observed from the plots above, with a single exception of patient 3: it was already 

observed in figure 9.5 that the different scale-space dimensionalities yield distinctively different 

results for this particular case, yielding a much higher volumetric compactness in than in 

AD, where it is only slightly higher than for patient 1. The mean distance measurements do not 

show a clear demarcation between the cases.

The volumetric slope measurements yield negative values for all cases, indicating an increase of



9.3. Application to Patients with Epilepsy 209

the values for decreasing scales. For the volume slopes, significant differences arise from the 

different scale-space dimensionalities, yielding a much steeper increase for the AD scale-space 

measurements. As mentioned before, this is due to the different speed in the respective focusing 

processes; in a true AD scale-space, shapes are much smoother and smaller due to the smoothing 

and averaging in the slice direction, while at lower scales, the scale-spaces provide more similar 

results. The ranking in the increase of volume for decreasing scales is the following: in the 

case, the volume of the brain of control 2 has the steepest increase, closely followed by patient 

3. Patients 2 and 4 and have the lowest increase, and the remaining two cases have very similar 

values. In the AD image scale-space, however, patient 1 yields the highest slope, whereas the 

remaining cases have a similar behaviour as in the scale-space. Closer examination of the 

actual focusing results of patient 1 reveals that deep sulci protrusions are tracked at a high level 

of scale in the scale-space, whereas they are only subsequently located at intermediate to 

low scales in the AD scale-space, leading to more prominent changes in volume. The increase 

of surface area for decreasing scales shows steepest behaviour for patient 2, closely followed by 

control 2 and patient 4. This naturally implies steepest increase of volumetric compactness for 

patients 2 and 4, while the two controls have an intermediate, and patients 1 and 3 lowest increase. 

Finally, the relative distance slope measurements for the investigated cases show no significant 

differences.

Figure 9.9 also illustrates an exponential behaviour of the volumetric global measurements. Re­

call from the previous chapter that the fractal dimension of a true fractal structure, the von Koch 

curve, has been recovered by analysing the logarithmic behaviour of the perimeter measurement 

across scales, where this measurement was obtained via active shape evolution or focusing. For 

structures which are not true fractals, but which may nonetheless show statistical self-similarity, 

a statistical estimate of such a fractality of the shape can be obtained in a similar fashion. For 

volumetric shapes, however, such an estimate can be computed either in a slice by slice fashion, 

yielding fractal measurements for each individual slice, or on the whole volume. In the latter 

case, the perimeter is replaced by the surface area (which is approximated by a summation over 

the perimeter across slices), yielding an average fractal measure. Similarly, planar area measure­

ments can be replaced by the volume measurements, and dimensionless planar compactness by 

volumetric compactness.

The last three rows of table 9.4 list the obtained volumetric fractal measurements, describing the 

negative slopes of the logarithmic plots of volume, surface area, and volumetric compactness 

across scale. In contrast to the restricted scale range in the estimation for the von Koch curves in 

chapter 8, the entire scale range was used for the linear regressions as no prior knowledge about 

inner and outer scale of the brain volumes is available. Additionally, it was argued in the previous 

chapter that below the inner or minimum contour scale no further shape information is available
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for the von Koch curves. However, for grey-scale images of much finer detail this does not en­

tirely hold; it can be observed from the plots of the volumetric measurements in figure 9.9 that 

there is still potential of getting attracted to details below the contour scale due to the approximat­

ing nature of the underlying continuous B-spline representation of the multi-scale active contour 

model, which even allows to model finer details which are located between the discrete snax- 

els. The estimated statistical fractal volumetric measurements for the different brain data sets in 

the application to epilepsy are mainly characterized by comparatively low values for the controls 

for the fractal volume and surface area measurements. In particular, the fractal surface measure­

ment obtained from linear regression over the logarithmic surface area across scale lies for the 

controls roughly between [1.38; 1.45], while from the results of patients 2 to 4 values between 

[1.46; 1.69] are recovered. A similar, but slightly clearer demarcation can be foimd by the fractal 

volume measurements: the values for the controls range between [1.36; 1.40], while for patients 

2, 3, and 4 they lie in between [1.42; 1.61]. For both measurements, highest values are obtained 

from the results of patient 2, closely followed by patient 4, while for the controls, the values of 

control 2 are slightly higher than for control 1. Patient 1 only fits into the values for the other 

patients for the 4D scale-space results, but has the overall lowest absolute values in the 3^D re­

sults. This different behaviour may be explained by the observation made above that in the 3^D 

scale-space for patient 1, deep protrusions are tracked, which actually lead to an overestimation 

in surface area, and an underestimation in volume. Finally, the fractal volumetric compactness 

values across scales yield lowest values for patients 1 and 3 (between [1.16; 1.20]), intermediate 

values for the controls (between [1.20; 1.24]), and overall highest values for patients 2 and 4 (be­

tween [1.26; 1.32]), yielding a similar categorization as given above for the description based on 

global volumetric shape metrics across scale. It needs to be emphasized that the obtained frac­

tal measurements are not volumetric (which would yield dimensionalities between 2 and 3), but 

planar, as they are based on average planar measurements across slices.

This section has quantitatively investigated volumetric global and relative distance metrics from 

3D and 3 |D  multi-scale shape stacks obtained in and 4D image scale-spaces for the ap­

plication to epilepsy. For the investigated cases, global volumetric measurements in terms of di­

mensionless volumetric compactness and slope measurements across scale have shown a poten­

tial for providing demarcating measures into three different categories, namely brains of overall 

smooth, average, and very convoluted shape, corresponding to the intuitive qualitative descrip­

tion in section 9.3.1. The included control data were found to be of intermediate category in terms 

of their complexity. The multi-scale fractal volume and surface measurements showed a poten­

tial for a different categorization, namely into data of low fractality (for the control data), and 

high fractality (for the patient data). While high fractality and compactness have been observed 

for data of high fragmentation and complexity, low fractality and intermediate compactness coin­
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cided more with data of average complexity and shape variability in the investigated cases. Data 

of low compactness has still been classified as being of high fractality, giving rise to the observa­

tion that the multi-scale fractal and volumetric compactness measurements are intrinsically, but 

not directly related, as they express different shape properties. Volumetric compactness measures 

the degree of sphereness, while the fractal surface and volume measurements indicate the degree 

of self-similarity. For structural abnormalities inherent in smooth shapes (as is the case for gyral 

thickening), and very fragmented shapes (as is the case for sudden disruptions of the normal gyral 

pattern), standard volumetric techniques are probably not capable of categorizing cases properly. 

The multi-scale fractal measurements investigate the brain surface and volume with respect to 

self-similarity under rescaling and therefore offer additional statistical shape information which 

may have a potential of distinguishing between normals and abnormals. It is of course not possi­

ble to generalize this empirical observation on the basis of the quantitative description of only a 

few data sets. A larger group study would be needed to further test this observation for its clinical 

correctness. In particular, the use of a brain atlas containing volumetric intensity and geometric 

information as presented in [Collins et al., 1995] could be used to define and compare mappings 

of individual brains of high shape variability to such an atlas.

9.3.3 Visualization

In addition to the planar scale samples illustrated in figures 9.1 and 9.2, and the lowest scale vol­

umetric iso-surface renderings shown in figures 9.3-9.8, qualitative local shape metrics can be 

mapped onto surface renderings of the obtained 3D and 3^D  multi-scale shape stacks, as well as 

on multi-scale shape stacks of individual slices which can be obtained by reformatting the volu­

metric shape stacks organized as single 3^D stacks into a sequence of 2^D stacks.

In appendix A, figures A.7-A.12 illustrate the reformatted 2^D  multi-scale shape stacks associ­

ated with figures 9.1 and 9.2, where the results obtained from 3^D  and 4D  image scale-spaces 

are both shown in order to illustrate the difference in the locality of the results which was already 

discussed in the qualitative description in section 9.3.1. In particular, the local curvature map­

ping visualizes the number and deepness of tracked sulci (characterized by inward curvature or 

red colour mapping) and gyri (characterized by outward curvature or green colour mapping) of 

the brains, along with the triangulation distances to the lowest scale shape, which is a more valid 

metric for 2^D  stacks than across image slices as discussed earlier. The slice samples for patients 

1 and 3 show overall very smooth outlines of low curvature and low relative distances, while for 

patients 2 and 4, disruptions and irregularities in the shape flow can be perceived. Both controls 

give a more regularly shaped visual impact in terms of more symmetric curvature behaviour.

For the visualization and qualitative mapping of local shape metrics for the 3D and Z \D  multi­

scale shape stacks, figures A.13-A.18 in appendix A illustrate four scale samples in form of vol­
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umetric instances of the brains obtained in image scale-spaces of dimensionality and 4D. 

In contrast to the iso-surface rendering of the corresponding volumetric lowest scale results in 

figures 9.3-9,8, the volumetric shape stacks in the appendix were computed and displayed by 

triangulation of the focused contours of each scale level to volumetric structures (similar to the 

visualization of the stacks of planar shapes used in this dissertation). Several items, apart 

from the local shape mapping, are important: first, the difference in locality of the results with re­

spect to the chosen scale-space dimensionality becomes very apparent. Especially at the highest 

scale, the 4D scale-space samples look very similar, while general structural differences are al­

ready apparent for the results, in particular deep protrusions of patient 1 which were already 

discussed above, in addition to apparently irregular shape patterns for patients 3 and 4, Second, 

volumetric visualization enables the inspection of brain images in regard to their structural com­

plexity, such as high fragmentation parts occurring for patients 2 and 4, or overall smoothness oc­

curring for patients 1 and 3, Third, the inadequacy of the triangulation of highly complex shapes 

becomes apparent when comparing the lowest scale volumetric brain visualizations obtained by 

triangulation in figures A,13-A,18 with the top views of the iso-surface rendered focusing results 

obtained at the lowest scale level in figures 9,3-9,8, which are of superior visual impact and accu­

racy, Local shape mapping, however, is in principle unaffected by the quality of the triangulation, 

except for the triangulation distance itself. Especially the local curvature mapping allows to vi­

sualize the location of sulci and gyri, as well as their absence characterized by large surface parts 

of low curvature, and their degree of symmetry. Additionally, the scale location at which highly 

curved structures become visible can be used as an indication for the spatial width of the structure. 

For example, larger sulci for the individual brains are tracked at higher scale levels, while smaller 

sulci and gyri are detected at intermediate to low image scales. The local Chamfer distance map­

ping enables to visualize parts of the brain surface of high smoothness in terms of partially very 

low distance values across scales, e,g, for patients 1 and 3,

9.3.4 Summary o f Application to Patients With Epilepsy

In this section multi-scale active shape description was applied to brain volumes of patients with 

epilepsy and to controls. Qualitative and quantitative shape measurements across scale were per­

formed, and resulting shape stacks were visualized with colour mapping of local shape informa­

tion which enable the inspection of the brain shapes at varying degrees of detail. Further and more 

localized investigation can be carried out by reformatting the volumetric brain stacks into 2^D  

stacks for the individual image slices.

On the limited evidence available in this study, the hypothesis could be formed that global vol­

umetric measurements across scale are capable of discriminating between normal and abnormal 

shapes. One such feature is the dimensionless volumetric compactness and its slope across scale.
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indicating the degree of sphereness, which have shown potential to categorize the investigated 

cases into shapes of very low, intermediate or average, and high complexity. Additionally, the 

fractal volumetric measurements correspond to intuition of shape regularity or irregularity in 

terms of statistical self-similarity under rescaling. They are in contrast to volumetric fractal di­

mension estimation like in [Free et al., 1997] obtained on a quasi-planar basis by averaging across 

image slices, and may prove to be an indicator of high fragmentation and complexity, as well as 

of average complexity and normal shape variability, and therefore may be equally capable of dis­

tinguishing between normals and abnormals. A study based on a larger number of cases would be 

required to further test and confirm the formulated hypothesis. Such a study, however, is beyond 

the scope of this dissertation, which focuses on formulating new multi-scale methodologies for 

shape description.

9.4 Application to Patients with Multiple Sclerosis

Spinal cord atrophy implicating axonal loss in diameter of the cord and decrease in cord area 

has been observed in the development of disability for patients with multiple sclerosis. Recent 

studies performed at the Institute of Neurology at Queen Square, London [Losseff et a l, 1996b; 

Losseff et a l, 1996a], have shown that demyelination due to lesions additionally contributes to 

atrophy by changing the shape of the cord, and have demonstrated that there is a strong correlation 

between spinal cord atrophy and clinical disability. Spinal cord data is acquired using 3D  MRI 

techniques. The number of contiguous slices containing useful information about the cord is very 

limited, and the data needs to be reformatted in the perpendicular direction to the spinal cord for 

each slice. In order to compare normal and pathology of the cord in terms of geometric shape, 

usually a segmentation of the MR image data is performed on the few slices available. Due to 

the large partial volume effect in this data, however, the appearance of the boundary between the 

cord and cerebral spinal fluid (CSF) is very blurred, and is commonly assumed by clinicians to lie 

at intensity values halfway between the values of the cord and the CSF. A standard segmentation 

technique for the spinal cord requires therefore the manual outlining of a region of interest (ROI) 

around the cord (called inner ROI) in the top slice, followed by outlining an ROI around the cord 

and CSF space {outer ROI) in the same slice in order to derive mean intensity values for CSF and 

the cord. The mean intensity value for CSF, I c s f , is then computed using the areas A  and mean 

intensities I  of the inner and outer ROIs [Losseff et a l, 1996b]:

_  ( I  outer ' A(yufej. I I /  inner ’ A inner  )
I C S F  =  ^ - - - - - - - - - - - - - - - - - - - - - - - - - - -  ( 9  1 )

■^outer -^inner

Deriving the boundary intensity as the mean of the cord and CSF intensity thus enables to auto­

mate the boundary detection in the five relevant axial slices, with resultant cross sectional area 

measurements, where the area mean across slices is used as a quantitative measure of atrophy.
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The technique described above suffers from several problems: first, it is based on the image in­

tensity distribution which may vary between patients as well as over time. Second, the semi­

automated delineating of the cord boundary is still based on manual outlining of the inner and 

outer ROIs. An overestimation of the inner ROI decreases the mean intensity of the cord, and 

leads to a higher mean CSF intensity, causing a shift of the cord boundary in the following con­

touring process and leading to an overestimation of the cord area. Similarly, an underestimation 

increases the mean cord intensity, and leads to a subsequent underestimation of the area. It was 

argued in [Losseff et al., 1996b] that if such an over- or underestimation is performed consistently 

in a clinical study, a natural regression to the mean is produced. Overestimation has been observed 

especially for normal sized cords, which is mainly attributed to the partial volume effect. Finally, 

demyelination of the cord manifests less in decrease of area, but in reduction in axonal diameter. 

Further study on how the pathology in the spinal cord changes the shape of the cord thus becomes 

interesting in view of ascertaining where and how the pathology happens. It is therefore very im­

portant to gather all available shape information which might prove to be useful for the analysis 

of normal and abnormal cord shapes in order to derive a quantification to what extent, or in what 

pattern (or the lack of it) spinal cord changes in MS occur.

The concept of multi-scale active shape description increases the amount of otherwise limited 

shape information, while at the same time organizes the multi-scale metrics in terms of their be­

haviour across scale. The application of this technique to spinal cord data involves minimal pre­

processing (see table 9.2), as well as a semi-automated technique for initialization. As mentioned 

above, initialization is not performed using shape propagation, but using multi-scale blob detec­

tion which will be explained in the following in more detail. To demonstrate the functionality of 

multi-scale active shape description in this application, four scans with rescans over a time pe­

riod are tested, including two controls and two patients suffering from MS. Figures 9.11 and 9.12 

illustrate the time series of the upper five relevant image slices of the case, with the initial highest 

scale and final lowest scale models superimposed in black and white, respectively.

9.4.1 Initialization

Section 3.4.3 has introduced the concept of multi-scale blob detection by locating the normalized 

scale-space extrema of the normalized scale-space Laplacian. Constructing a dense scale-space 

for a given range of scales allows to compute the scale-space Laplacian whose absolute value is 

given by ||cr  ̂AL(æ, y, z* ;cr)||. Using this technique for the application to spinal cord data makes 

use of the observation that the spinal cord is a blob-like, ellipse-shaped structure of varying size 

in terms of its major axis (or diameter) and its minor axis, as well as its location. These parame­

ters vary between cases, and may also need adjustment across slices as well as over time due to 

different acquisition parameters of a rescan.
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Figure 9.11: Upper five slices for spinal cord MR data sets o f two controls (columns (a) and (b)) 
and two patients (columns (c) and (d)) from a first scan. The initial model is superim posed in 
black, the final, lowest scale model is superimposed in white.

In this dissertation, a semi-automated multi-scale blob detection has been developed for the ini­

tialization o f  the multi-scale active contour model in spinal cord data. For each slice o f  each data 

set, a dense 3D  scale-space o f 16 samples ranging between a  G [12; 28] (see table 9.2) is con­

structed, and the normalized Laplacian is computed as an appropriate blob  measure. For the top 

slice o f each data set, limited user interaction is required in order to derive the potential location o f
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Figure 9.12: Upper five slices for spinal cord MR data sets o f  two controls (columns (a) and (b)) 
and two patients (columns (c) and (d)) from a rescan. The initial model is superim posed in black, 
the final, lowest scale model is superimposed in white.

the eentre o f  the cord. This is performed by specifying a seed point anywhere inside the cord. Ex­

perim entation has shown that the following blob detection behaves robustly towards this manual 

interaction. A local scale-space extremum is then found by a simple tracking algorithm  which is 

shown in algorithm 9.1. Local tracking within a neighbourhood whose size is chosen with respect 

to the image scale is preferred over global detection o f scale-space extrema to improve compu-
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H Initialize seed point Pseed for top slice, or take centre point Pcenter from previous slice, and 
set maximum scale response m a x  to zero

// Find local maximum scale response of normalized Laplacian

fo r  « =  0 to  n — 1 d o

fo r  y — y seed f® Vseed dO

fo r  X — ^seed f® ^seed "L (T* dO 
i f  \\KL{x^ y, 0̂ )11 >  max then  

se t (Ti)i0 if — (Ji 
se t Pcentre ~  2/)
se t max =  ||ÂZ/(pcentreî ||

en d  for  

en d  fo r

en d  fo r

// Ellipse detection starting from Pcentre in image slice (rotation is omitted for simplicity) 

se t  UjTiox ~  ^blob 

set bffiax —

se t  m a x  — BouTida7'iTtess(^ElHpse(jP(.0 fifgj.^affi(ix^bffi(ix'} 

fo r  a =  to  2 • abiob do

fo r  b =  to  2 • abiob do

se t v a lu e  =  B ou n dar in ess{E ll ip se {pcen ter iO ‘ib))  
i f  v a lu e  >  m a x  d o  

se t ajYidx ~  u 
se t bffiax ~  b 
se t m a x  =  va lu e

en d  fo r  

en d  fo r

Algorithm 9.1: Algorithm for maximum scale response blob detection in spinal cord data. 
||ÂL(a;,î/, (Ji)ll corresponds to the absolute normalized scale-space Laplacian at scale level cr*, 
and the boundariness is the integrated directional edge response along the ellipse. The estimated 
final ellipse is located at abiob with centre p centre and the maximum response values for major 
and minor axis Umax and bmax-

tational efficiency, and to avoid ambiguity for the case that the desired local extremum does not 

correspond to the global one (as the image might contain other scale-space extrema outside of the 

cord). The tracking is performed by taking the blob whose location is determined by its centre, 

and whose radius is given by the scale of maximum response, as an initial ellipse. Rotating, as 

well as changing the length of the major and minor axis allows to integrate the gradient magnitude 

along the ellipse boundary, and to find a best fitting.

Having obtained an initial ellipse for each top slice, the centre of the ellipse is propagated to the 

next lower slice as a new seed point, and the scale-space tracking and ellipse fitting process is
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Figure 9.13: Scale-space Laplacian at maximum response scale, and initial ellipses at maximum 
response scale for spinal cord data. The upper two rows correspond to the normalized Laplacians 
of the upper rows of figures 9.11 and 9.12, respectively, and the lower two rows show the corre­
spondingly smoothed image slice with the initial ellipses superimposed.

repeated. As a result, not only an initial ellipse shaped model for each individual image slice 

is obtained, but also the individual maximum response scales as starting scales for the following 

active shape focusing process, along with the resulting ellipse parameters indicating overall object 

width in terms of their major and minor axes. Figures 9.11 and 9.12 illustrate the found initial 

models superimposed on black. Figure 9.13 illustrates for the top slices the absolute scale-space 

Laplacians and correspondingly smoothed images at the scale where the maximum scale-response 

was found, along with the superimposed located ellipses. From these images it becomes clear that 

in some cases several scale-space extrema are present, motivating the need for local tracking.

Table 9.5 lists the ranges for the maximum response scales for all spinal cord data sets. These
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Data Time Maximum response scale Major axis Minor axis

Control 1
t = 1 
t = 2

[25,01; 26,46] 
[23,64; 26,46]

[31; 38] 
[31; 33]

[27; 30] 

[27; 31]

Control 2
t = 1 
t = 2

[21.11; 25,01] 
[21,11; 25,01]

[32; 36] 
[31; 36]

[20; 32] 
[18; 30]

Patient 1
t = 1 
t = 2

[21,11; 22.34] 
[21,11; 22,34]

[29; 33] 
[30; 33]

[23; 27] 
[23; 26]

Patient 2
t = 1 
t = 2

[15.92; 18,86] 
[15.04; 17.82]

[22; 25] 
[20; 25]

[18; 24] 

[17; 21]

Table 9.5: Maximum response scales for the spinal cord data sets, and resulting ellipse param­
eters, A linear scale-space with 16 scale samples with a  6 [12; 28] was computed, and the 
scale-space extrema were tracked in a local neighbourhood of the normalized absolute scale-space 
Laplacian ÂL. The ellipse major and minor axes parameters were found by efficient local search.

values along with the ellipse parameters provide potentially valuable shape information about the 

overall size and elongation of the spinal cord for the different cases, A decrease in overall size 

over time for all data can be observed which is probably due to different acquisition parameters 

of the scans and rescans. The maximum response scale and ellipse parameters are significantly 

lower for the data acquired of patient 2, with abiob G [15,04; 18,86] in comparison to the controls 

which range in aucb G [23,64; 26,46] (control 1) and abiob G [21,11; 25,00] (control 2), and pa­

tient 1 with abiob G [21,11; 23,33], Patient 1 and control 2 yield very similar maximum response 

scales, but differ in the elongation of the initial ellipse shape models, which are for patient 1 more 

circular shaped, i,e, with similar values for minor and major axis, than for control 2,

In the following, the results obtained for the application of multi-scale active shape description to 

the investigated spinal cord data will be presented, based on active shape focusing of the initial el­

lipse shape models obtained by multi-scale blob detection and tracking as described above. Each 

image slice is separately focused down in a 3D image scale-space which is sampled between the 

individual maximum response scale and pixel unit scale, and the number of samples is derived 

from the maximum response scale.

9.4.2 Description and Visualization

In order to qualitatively describe the active shape focusing results, figures 9,11 and 9,12 can be 

visually inspected. The final, lowest focusing results are superimposed in white on the individual 

slices. In general, focusing has been performed adequately despite the lack of a clear border of the 

cord rim, separating the cord from surrounding CSF, This is due to the ability of the multi-scale 

active contour model to locate subjective contours, as in lack of adequate edge forces the model 

is constrained by the elasticity term and by the adjustment to the underlying image curvature.
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For patient 2 in the first scan in figure 9.11, however, the lower two slices cannot be properly 

delineated due to dymelination at the elongated parts of the cord. This is additionally enhanced 

by the comparatively low image scale derived as the maximum response scale, which affects the 

locality of the solution. As was discussed in the previous section, the located cord boundaries 

vary considerably between the four cases. Control 1 has the largest overall cross-sectional cord 

size, while patient 2 has the lowest (and least ellipse-shaped) size. Patient 1 and control 2 yield 

rather similar sizes, but it can be observed that the cord rim of patient 1 is less ellipse shaped. This 

indicates that size and diameter measurements are probably not sufficient quantification methods 

to reliably detect spinal cord atrophy.

In order to quantify the shape information obtained in the active shape focusing process, figures 

9.14 and 9.15 illustrate the change of planar global shape metrics in terms of area, perimeter, 

and planar compactness across scales for all relevant slices of the spinal cord data at scan time 

t = 1 (first scan) and t = 2 (rescan), respectively, and figures 9.16 and 9.17 show the relative 

distance measurements to the respective lowest scale results (or reference shapes) in absence of 

a ground truth. The first two figures show a ranking of the largest area measurements in the or­

der of controls 1 and 2, closely followed by patient 1, and, with a considerable difference, patient 

2. A similar ranking can be observed from the perimeter measurements across scale. Both mea­

surements almost continuously increase for decreasing scales due to the low complexity of the 

shape under investigation. It can be seen, however, that for some slices of control 1 which are 

less ellipse shaped, but sharper bended at the positions of maximum elongation, and most of the 

slices of patient 1 and some slices of patient 2, a slight decrease in area occurs at smaller scales, 

indicating a local deviation from the global ellipse shape. The compactness across scales yields 

small values for all data sets at higher scales due to the overall ellipse shape of the cord rim. At 

finer scales, however, it steeply increases for patient 2, and a little less for some slices of patient 

1. Recall that the ratio between perimeter and volume in terms of the compactness measures the 

degree of roundness (yielding minimal values for circular shapes), and therefore has a potential of 

quantifying atrophy in addition to absolute area and perimeter measurements. Over the time se­

ries, only few differences can be seen. The most prominent observation is the steeper increase of 

area and perimeter for patient 2, leading also to a steeper increase of compactness. This might be 

an indication for a deterioration of the cord atrophy for patient 2, as all other measurements of the 

controls and patient 1 remain stable. This deterioration is not necessarily visible from qualitative 

inspection or the lowest scale area measurements. The relative distance measurements in terms 

of Chamfer and triangulation distance from the respective reference shapes yield largest distance 

values for the controls at higher scales, and continuous decreases for decreasing scales. This is 

due to the large upper scales in these cases, where the shrinking effect of the Gaussian blurring 

needs to be compensated, but the ellipse shape of the reference model is already captured glob-
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Figure 9.14: Area, perimeter and compactness o f  the spinal cord images o f  figure 9.11 across
scales for active shape focusing.
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Figure 9.15: Area, perimeter and compactness o f  the spinal cord images o f figure 9.12 across
scales for active shape focusing.
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Figure 9.16; Hausdorff, RMS Chamfer, and RMS triangulation distances o f  the spinal cord im­
ages o f  figure 9.11 across scales for active shape focusing.
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Figure 9.17: Hausdorff, RMS Chamfer, and RMS triangulation distances o f  the spinal cord im­
ages o f  figure 9.12 across scales for active shape focusing.
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Descriptor Time Control 1 Control 2 Patient 1 Patient 2
t=l 5109.624 4299.678 3611.464 2101.968
t=2 5095.718 4171.872 3627.066 2095.194

p t=l 272.3230 243.2956 226.7558 177.2806
t=2 269.6038 238.5722 226.5784 179.5996

C t=l 14.33150 13.81168 14.28408 14.97674
t=2 14.28716 13.68962 14.18658 15.46552

dist# t=l 31.273720 23.406560 18.459320 10.136548
t=2 33.770840 26.524732 24.989280 16.609780

disfCaMS
t=l 1.233290 1.727138 1.294718 1.565138
t=2 1.416562 1.565230 1.150386 1.579266
t=l 3.288424 4.752166 3.426866 4.780852
t=2 3.957822 4.298010 3.040460 5.696468

AA t=l -26.40479 -50.31766 -16.21226 -31.11008
Aa t=2 -34.69116 -47.27934 -12.61000 -50.16094

AP t=l -0.893604 -1.692082 -0.937893 -2.218987
Aa t=2 -1.228322 -1.538757 -0.725929 -3.353634

AC t=l -0.018089 -0.018651 -0.054276 -0.148879
Aa t=2 -0.028838 -0.008630 -0.041649 -0.203738
Adistcp;i^^ t=l 0.120126 0.238270 0.137741 0.205899

Aa t=2 0.164168 0.224702 0.109957 0.244555

"^distxaMs
Aa

t=l
t=2

0.433275
0.443217

0.493087
0.498059

0.551592
0.559648

0.754617
0.789252

A l o g ( ^ ) t=l 1.076210 1.164550 1.084070 1.179000
A log(tT-) t=2 1.099510 1.164820 1.074130 1.288140

A l o g ( f  ) t=l 1.037490 1.080940 1.046790 1.120530
A  log ((A t=2 1.051650 1.079020 1.039100 1.181810

A l o g ( f )  
A  log(<r)

t=l 0.998760 0.997330 1.009510 1.062050
t=2 1.003790 0.993222 1.004080 1.075480

Table 9.6: Mean, slope, and logarithmic slope descriptors for active shape focusing of the spinal 
cord images with respect to scale. All values are averaged over the upper five slices, and the 
logarithmic slopes are estimated within the scale ranges [(Jmin = ^min =  3.5; ouob]  ̂where the 
respective values for a îob for each image slice are listed in table 9.5.

ally at high image scales. Distance measurements for patient 1, where the focusing process starts 

from a lower scale, yield therefore rather small values, but remain in the first scan overall higher 

at intermediate scales than for the controls. In the second scan, however, they appear to be lower 

across scales. Finally, the distance measurements for patient 2 are in their scale range the overall 

highest and have the steepest decrease for decreasing scales. The distances become even higher 

in the rescan, supporting the observation above that the cord rim of patient 2 is least ellipse shaped 

and of highest complexity, with a possible deterioration over time. Finally, the Hausdorff distance 

is not found to be a useful measure as it is here closely related to the overall size of the cord data.

Table 9.6 lists the mean and slope values of all data sets averaged across scales as well as across 

the individual slices for both scanning times. The mean area and perimeter measurements are con-
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stant over time, but show a clear demarcation between patients and controls, and also between the 

two patients, possibly categorizing them into subtle and apparent cord atrophy. The mean com­

pactness has a much higher value for patient 2, as well as the observed deterioration over time. 

The other compactness values remain stable, showing lowest values for control 2 (with the most 

circular shaped cord), but similar values for control 1 and patient 1. The mean distance measure­

ments are very much influenced by the high values for the controls obtained in the highest scale 

range, for which no corresponding data for the patients is available. It is assumed that these mea­

surements should better be performed in a similar scale range, e.g. for a  G [1; 16] for which data 

of all cases exists. However, the triangulation distance for patient 2 is still overall highest despite 

the lack of information at higher scales, indicating the largest overall deviation from an ellipse 

shape, and the mean Hausdorff distance is lowest for the patients due to their smaller size, lead­

ing to lower worst mismatches. The slope measurements show mainly shape changes for patient 

2 over time, as well as overall steepest increase of perimeter and compactness, and steepest de­

crease of the deviation from the lowest scale results for the same patient. The change of compact­

ness is next lower for patient 1, followed with an offset by control 1 and control 2. In contrast to 

the slope of compactness, the slope measurements of area, perimeter, and Chamfer distance are 

not demarcating measurements for the investigated cases, as they highly depend on the overall 

size, individual scale ranges, and overall ellipse shape. For example, the Chamfer distance per­

forms the closest distance measurements with respect to an underlying ellipse shape, missing out 

more subtle disruptions in the cord pattern. Again, it is possible that adjusting the range of scales 

appropriately may lead to more demarcating results for these quantifiers.

Finally, multi-scale planar fractal measurements with respect to area, perimeter, and compactness 

have been performed, which are listed in the last three rows of table 9.6. All measurements in­

dicate a much lower level of self-similarity in comparison to the volumetric brain measurements 

of section 9.3, and are very close to 1 (note that the fractal dimension of a perfect ellipse is ex­

actly 1, and lower values than that are theoretically not possible and therefore caused by small 

numerical problems). The fractal measurements indicate a progressive deterioration in terms of 

increase of fractality for patient 2, with overall highest values for all measurements. The fractal 

area and perimeter measurements show no clear demarcation for the remaining cases which have 

all much more ellipse shaped cords, but the fractal compactness divides the investigated cases 

quite clearly.

Visualization of the resulting 2^D  multi-scale shape stacks is performed via triangulation of all 

focusing results of each individual image slice to the reference shape. Local curvature mapping, 

illustrated in figures A. 19 and A.20 in appendix A for the relevant image slices at both scanning 

times, visualize effectively parts of high outward curvature (mapped in green) at the most elon­

gated parts of the cord for the patients, and show more uniform bending behaviour for the controls.
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The Chamfer distance mappings, shown in figures A.21 and A.22, show at the same location large 

local distances for patient 2, as well overall large distances for control 2 (which is especially the 

case at higher scales and could be observed in figures 9.16 and 9.17, respectively). The triangu­

lation distance (figures A.23 and A.24) has similar mapping results for patient 1, but addition­

ally shows several parts of high local distances for patient 2, which may be attributed to local 

lesions. The colour mapping onto the hierarchical shape stacks for spinal cord data shows that 

the global quantification in terms of mean and slope measurements, as well as multi-scale frac­

tal quantification, can be well complemented with local shape information, which in this case has 

the advantage of giving a visual impression of the deviation from the initial ellipse shape for each 

individual image slice, rather than averaging across scales and slices.

9.4.3 Summary of Application to Patients With Multiple Sclerosis

In this section, multi-scale active shape description has been applied to spinal cord data. The 

shape description process, which is embedded into the active shape focusing process, requires in 

comparison to standard methodologies no prior knowledge of intensity distribution of the cord, 

or manual outlining of regions of interest, and is almost user independent. Visualization of lo­

cal shape information, in addition to global quantification, allows to further explore spinal cord 

parts with respect to atrophy. A stable initialization process has been applied which yields as a 

byproduct an adequate scale selection scheme, as well as ellipse parameters which can be used for 

a first qualitative shape description. This initialization can be further improved by using direc­

tional edge information for ellipse detection [Lindeberg, 1994], as well as by tracking the local 

maxima in a finer sampled scale direction [Rueckert et a l, 1997]. AD scale-space techniques 

have not been considered due to the reformatted nature of the image slices.

As for the application to epilepsy in section 9.3, the number of data sets used for the application to 

spinal cord data was very limited, as the aim of this work is to demonstrate the functionality of the 

framework for multi-scale active shape description. On the basis of this study, however, it could 

be hypothesised that the maximum response scales and resulting initial ellipse parameters, along 

with area and perimeter mean measurements, compactness slopes, relative distances and fractal 

compactness measures may have a potential of quantifying the degree of spinal cord atrophy oc­

curring for patients with MS. Also, the monitoring over time using these shape features may allow 

to detect progressive deterioration in some cases. A larger study would be needed to support this 

hypothesis, and to establish the clinical relevance of the multi-scale shape measurements, as well 

as their potential of demarcating atrophy from normal shape variation, and of monitoring disease 

progress over time.
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9.5 Application to Neonatal Data

The developing human brain starts as an organ with a relatively smooth outline. As development 

proceeds, an increase in the volume of the grey matter in the brain is accommodated by an in­

crease in cortical complexity with the development of convolutions in the brain surface which 

become fully developed gyri. This process occurs during gestation and in the first months of life 

and may be delayed by brain injury during gestation or at birth. Therefore, a quantitative measure 

of cortical complexity may provide a means of monitoring the rate of normal and abnormal brain 

development in order to provide a prognostic measure of the eventual degree of cerebral impair­

ment in brain-injured neonates. Multi-slice T2 weighted MRI data sets of large slice thickness 

allow to assess the clinical outcome of brain-injured infants. Shape analysis measurements have 

already been shown to provide a quantitative measure of brain myelination during the first post­

natal months of life [Thornton et a l, 1997], but will be further investigated using the developed 

techniques of this dissertation.

Figure 9.18 shows the neonatal data sets for a term brain (or a control) and a premature which 

show significant difference in area and complexity of the cortex outline. Due to the small over­

all size of either brain, only 10 contiguous slice are available. Each slice is of considerable slice 

thickness and has a very small pixel size (see table 9.1). The large slice thickness implies that the 

correlation between the individual slices is rather low. Therefore, as for the spinal cord applica­

tion above, active shape focusing is performed using individual ZD image scale spaces associated 

with each image slice. Moreover, each of the 10 slices for the two data sets is manually initialized 

with a coarse ellipse shaped model. Due to the T2 weighting of the images, CSF appears as high 

intensity values. There are two possible choices for delineating the grey matter boundary, namely 

by adjusting the contrast parameter to detect dark grey matter shape on light CSF background, or 

by thresholding the high CSF values. The latter was favoured as the CSF is only visible at some 

parts of the grey matter boundary. The pre-processing parameters, including the threshold for in­

tensity cutting for CSF, are listed in table 9.2. In the following, the results for multi-scale active 

shape description based on active shape focusing of the individual image slices will be presented.

9.5.1 Description and Visualization

Figure 9.19 shows the surface rendering results of the individual 2 \D  multi-scale shape stacks 

obtained for each image slice of the term and premature data sets. The difference in size, as well 

as the steeper tracking of sulci and gyri, and their number, has a large visual impact. The brain of 

the premature case seems visually much smoother, and does not seem to change very much for 

decreasing scales.

Figures 9.20 and 9.21 illustrate the global planar shape measurements as well as the distance
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(a) (b) (c) (d)

Figure 9.18: Brain MR data set o f  a term case (columns (a) and (b)) and a premature case (columns 
(c) and d)).

m easurem ents from the lowest scale reference shapes for all slices o f  both data sets across scale. 

W hile the term case is o f  overall higher area and perimeter, both cases are o f  surprisingly sim ­

ilar compactness, and even showing overall slightly higher values for the premature case. This 

could not be expected by the visualization o f  the data sets and the corresponding shape stacks 

which show opposite compactness behaviour, and will be further discussed below. Additionally, 

both cases have a similar continuous decrease in relative distance measurements for decreasing



9.5. Application to Neonatal Data 230

m: . .

'

(a) (b) (c) (d)

Figure 9.19: Interpolated shaded surface renderings o f the hierarchical shape stack o f  the neonatal 
data obtained via active shape focusing. Surface rendering is perform ed in afine-to-coarse  view. 
See text for further details.

scale. The global planar measurements, however, show another behaviour over scale: the area 

for the term case is continuously decreasing rather than increasing for lower scales, while the 

prem ature case shows more constant area measurements across scale. Regarding the perim eter 

m easurem ent, the term case shows a similar constant increase for all slices, while the premature 

case diverges in the different slices.



9.5. Application to Neonatal Data

M ulti-scale active shape description o f  neonatal data

23/

20000

18000

16000

14000

12000

 + ------- t:|
<  10000

8000

6000

4000

2000

2 3 4 5 7 8I 6
Scale

M ulti-scale active shape description o f  neonatal data
600

550

500

450

400

350

300

250

200

150
7 82 3 5 61 4

Scale
M ulti-scale active shape description o f  neonatal data

1 2 3 4 5 7 86

Figure 9.20: Area, perimeter and compactness o f the neonatal data for active shape focusing.
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Descriptor Term case Premature case

A 13897.300000 8307.130000

P 480.217000 371.484000

C 16.871400 17.715400

distjf 18.087900 18.472700

distc^jj^g 1.095820 1.057680

3.710300 3.686050

AA
A ct

77.360300 37.011500

A P
A a -12.733500 -9.397120

A C
A a -0.982766 -0.965931
A distc j^ ^ g

A a 0.240428 -0.255215

^ d i s t T H M s
A a 1.256820 1.256820

A l o g ( f )  
A  logfor^ 0.975164 0.977868

A l o g ( f )
A l o g f a l 1.080950 1.072310

A l o g ( f )
Alog(o-) 1.186740 1.166750

Table 9.7: Mean, slope, and logarithmic slope descriptors for active shape focusing of the neona­
tal data with respect to scale. The values were averaged across all slices, and the logarithmic slope 
estimations were performed in the scale range [cr^m =  Çmin = 2.5; amax = 8].

Table 9.7 summarizes the mean, slope, and multi-scale fractal measurements averaged across all 

slices of each data set. The most apparent difference lies in the much larger mean area and perime­

ter measurements of the term case, which also manifests as higher negative slopes. All other 

shape quantifications, however, show very similar values, including the compactness related de­

scriptors. As mentioned for the observation of similar compactness across scales, this is a quite 

unexpected result, as visually significantly different degrees of cortical complexity are visually 

observed. This result can be explained, however, by the decreasing area behaviour for the term 

case with simultaneous increase of perimeter, as opposed to rather constant area and perimeter 

behaviour for the premature case. This leads to similar values of compactness for both cases, but 

which are caused by different structural characteristics of the underlying shape. Recall from the 

previous chapter, that for the kangaroo test image a similar behaviour as for the term case could be 

observed, and that loss in area with simultaneous increase of perimeter for decreasing scales im­

plies the tracking of deep structures, e.g. convolutions and protrusions. The overall much larger 

size of the brain of the term case leads to a small compactness value, but if the two brains were
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of equal size, a problem which might be solved by registering the brains. However, especially 

the difference in cross-sectional area is an important quantitative and diagnostic measure which 

probably should not be adjusted.

The visualization of local shape metrics onto the multi-scale shape stacks shown in figure 

9.19 is given in appendix A. In particular, the local curvature mapping (figure A.25) shows the 

higher number of gyri and sulci, as well as the steeper tracking of the cortical structure for the 

term case, providing a good visual impression of the degree of potential cortical impairment for 

the premature case. The colour distance mappings, shown in figures A.26 and A.27, respectively, 

also locally illustrate the existence and deepness of sulci and gyri, in contrast to the global quan­

tification measures arising from these descriptors given above.

9.5.2 Summary o f Application to Neonatal Data

The application of multi-scale active shape description in this section supports the shape analysis 

in [Thornton et al., 1997] in terms of demarcation via area and perimeter measurements across 

scale, but it failed in detecting the different degrees in cortical complexity for reasons given above. 

In particular, the compacmess was found to be not a useful measure in this application, as an in­

creasing perimeter for tracking deep structures is made at the cost of loss in area. Similar fractal 

measures between the two cases, however, may indicate that the shapes are statistically similar, 

but in different ranges of scale, similar to the von Koch curves at different fractal resolution lev­

els in the previous chapter. In other words, the premature shape may be a simplified version of 

the more complex term shape. This empirical observation would require a large group study for 

verification.

9.6 Summary

This chapter has investigated the application of multi-scale active shape description in medical 

imaging on the basis of active shape focusing. Three different medical problems have been ad­

dressed. For the first application, six brain volumes for patients with epilepsy and controls have 

been successfully focused down in scale-spaces of different dimensionalities, yielding results dif­

fering in the locality of the solution. The main advantage of applying multi-scale active shape de­

scription to such data is that it is an almost automated method, with the only user interaction being 

the initialization of a single slice with a circular model for all data sets. It requires no prior brain 

segmentation, which in clinical practice is either performed manually or with semi-automated, 

but still time consuming methods. The adding of the extra scale dimension was found to increase 

the amount of available shape information by quantifying the speed of the active shape focusing 

process with respect to the underlying structural complexity of the investigated brain data sets. It 

is hypothesized that for a larger clinical study, several of the derived shape features, in particular
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the volumetric compactness and fractal surface measurements, could have a potential of classify­

ing brain shapes into different degrees of cortical dysgenesis for patients with epilepsy, and into 

normal shape variability. The second application to patients with Multiple Sclerosis has shown 

some potential of distinguishing between normal shape variability, and spinal cord atrophy In 

particular, the automatic scale selection scheme and initialization provide an attractive alternative 

to current manual delineating of the cord rim, providing several additional shape measures of po­

tential quantitative use regarding the overall cord size, elongation and diameter. A study based 

on a larger body of data would be required to further test these observations. Finally, the applica­

tion to neonatal data has supported recent clinical research results in finding different behaviour 

in area and perimeter measurements by quantifying the mean and slope measurements of perime­

ter and enclosed area across scale. However, the very apparent differences in cortical complexity 

could not be quantified, but only visualized with colour mapping rendering techniques. Again, an 

application to a larger set of data, including rescans, would be needed to evaluate the multi-scale 

shape descriptors for this application.

The description in medical imaging has been performed on a comparatively small number of data 

sets. These data sets were selected in order to represent a large variability in structural deforma­

tions in the different medical applications, and to give an impression of the functionality and ap­

plicability of the developed framework. The presented results can therefore not be generalized 

to give statistically representative measurements and solutions to clinical problems. However, 

they were shown to yield a large set of higher level shape measurements, some of which might 

prove to have a potential to be demarcating shape measurements in medical imaging if evaluated 

in large group studies, as well as in studies over time.

Limitations of the application of multi-scale active shape description to medical imaging in clin­

ical neurology are mainly caused by the 2D nature of the shape extraction in volumetric images. 

Although the use of higher-order image scale-spaces allows to capture correlation between neigh­

bouring image slices, topological changes between slices as well as partial volume effects and 

large slice thickness in some of the data can only be processed in 3D image slice scale-spaces, 

or using a higher order, volumetric model. Following this approach, an extended set of shape de­

scriptors for the description of brain surfaces can be added to the planar techniques used in this 

work. The following chapter will discuss several potential extensions of the presented framework 

in order to address the aforementioned problems, including true 3D shape extraction, description, 

and the use of non-linear scale-spaces.



Chapter 10

Outlook and Conclusions

-  O n  n ’ e s t  j a m a i s  c o n t e n t  l à  o ù  o n  e s t , d i t  l ’a i g u i l l e u r .

” N 0  ONE IS EVER SATISFIED WHERE HE IS ,” SAID THE SW ITCHMAN.

Le Petit Prince, Antoine de Saint-Exupéry.

This chapter will first focus on current and future work of the presented methodology of multi­

scale active shape description in medical imaging, and will present some promising approaches in 

improving and extending this methodology while simultaneously analysing its limitations. After 

the outlook section, the main contributions of this dissertation will be briefly summarized and 

discussed, and more general future directions and conclusions will be made.

10.1 Outlook

In order to formulate possible extensions, one first needs to consider and investigate the limita­

tions of the developed methodology. Multi-scale active shape description, as presented in this 

dissertation, is based on implicit shape regularization and description of planar shapes in a linear 

image scale-space. Volumetric images are described in a slice-by-slice fashion under the assump­

tion that a volumetric shape can be represented as a stack of planar shapes. AD image scale-spaces 

in combination with shape propagation through the image volume have been employed in order 

to achieve a volumetric correlation between planar shapes obtained from adjacent image slices. 

This approach has been shown to be very robust, yet still has failed in some cases due to several 

problems inherent in medical imaging in general, and in clinical neurology in particular.

The human brain is arguably one of the most complex shapes of the human body, and cannot al­

ways be modelled by concatenating a set of planar shapes. This is due to two things: First, the 

brain is not of simple topology, but of several constituent subparts. Second, even at topologically 

simple parts of the brain, there is the chance of structures disappearing temporarily from one im­

age plane, only to partially reappear in another. The most likely part of the brain to show such 

behaviour is the brain stem, which is slightly curved, but it can also be observed in the complex 

cortex pattern. The partial volume effect leads to a possibly inaccurate classification of image
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voxels not only within the image plane, but also in the slice direction of the volume. For high 

slice thickness, like for the neonatal data investigated in the previous chapter, there is only lit­

tle spatial correspondence between adjacent image slices. In these cases, 4D  image scale-spaces 

and automatic initialization methods like shape propagation cannot be used, leading to the loss of 

volumetric information. Even if a 4D image scale-space can be employed, the resulting planar 

shapes of adjacent slices can greatly differ. Additionally, the use of a linear scale-space reduces 

valuable edge information at higher scales, and yields a premature merging and shrinkage of ob­

jects. Several non-linear diffusion techniques have been reviewed in chapter 3 which may help 

to reduce this effect, but except for the classic edge-affected diffusion, no straight-forward 4D  

extensions exists. Finally, the planar nature of the multi-scale active contour model, even when 

resulting in a concatenated set of planar shapes in scale-space, only gives rise to planar shape de­

scription, and volumetric metrics can only be approximated. However, the investigation of vol­

umetric surface structure in terms of principal surface curvature directions, as well as ridge and 

crease structure would provide valuable additional volumetric shape information, but is beyond 

the scope of this dissertation.

These limitations naturally lead to two major possible and desirable extensions of multi-scale ac­

tive shape description, namely the development of a multi-scale active surface model which also 

involves the extension to volumetric internal and external energy terms as well as the investiga­

tion of true volumetric surface structure, and the use of non-linear scale-spaces which involves 

the extension of existing ones to higher dimensions. These topics will be addressed in sections

10.1.1 and 10.1.2, respectively. Furthermore, two more general future topics will be discussed: 

Section 10.1.3 will present possible approaches to investigate parallels between the developed 

planar techniques of active shape evolution and focusing, and classic multi-scale contour evolu­

tion schemes, and section 10.1.4 will show possible extensions of the multi-scale active contour 

model to incorporate diffusion flow information, as well as the concept of a true multi-scale rather 

than fine-to-coarse or coarse-to-fine approach, with an outlook to a shape-based diffusion process.

10.1.1 Extension to Multi-Scale Active Surface Models

The multi-scale active contour model developed in this dissertation is a 2D model with respect 

to spatial dimensions, with an additional scale dimension. Using shape propagation and a 4D 

image scale-space helps to improve the correlation between neighbouring image slices in volu­

metric images, but an extension to a true volumetric image might be in some cases necessary in 

order to capture the topological aspects of the shape under investigation adequately. A general 

formulation of such a model has been given in chapter 4, yet its implementation in practice poses 

several difficulties that will need to be resolved. More precisely, the following items need to be 

considered:
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•  Surface representation.

• Volumetric image features.

•  Volumetric optimization.

• Surface description.

10.1.1.1 Surface Representation

There are two main surface representation techniques for deformable models, namely explicit sur­

face representation via a spline surface or a parametric model, and implicit surface representation 

based on iso-surfaces of the image. Explicit surface representation requires the formulation of a 

suitable interconnection between the points forming the actual surface model. For example, the

logical extension of the planar multi-scale active contour model developed in this dissertation

would be a 3D spline surface with continuous first-order and piecewise continuous second-order 

derivatives in two dimensions. A B-spline surface can be represented by two arc length param­

eters and three coordinate functions, i.e. as v (5 ,r) =  {x{s,r) ,y{s, r) ,z{s ,r)) .  The B-spline 

patches are then represented as

x(s , r)  = S . M b , * G b . , (10.1)

y{s, r) = S • Mbs  *

z{s, r) = S - Mbs  * Gbsz ’

in analogy to continuous two-dimensional B-spline curves [Foley et al ,  1990]. Here, the ge­

ometry matrix G consists of x, y, and z coefficients of 16 instead of 4 control points, S and R  

denote the two row vectors S =  [s  ̂ s 1] and R  =  [r  ̂ r  1], and is the standard B-spline 

basis matrix. The advantage of such a representation is given by the associated analytic internal 

smoothness constraints. The elasticity energy of the surface is computed by

^eias t i c i t y i^{s , r ))  = ^  (v^(g,r) v^(g,r)) d s d r  (10.2)

In [Cohen et al ,  1992] it was argued that the surface bending energy is analogously given by

Sbending{^{s,r)) = f  f  {v^,,{s,r) + 2 v s { s , r ) v r { s , r ) \ ^ ^ { s , r ) )  ds dr  (10.3) 
Jo Jo

For a 3D extension of the 2D curvature matching process developed in this dissertation, however, 

the computation of the actual surface curvature is more complex. Given the unit surface normal 

vector n(s, r) =  r||| P^int of the surface, and the tangential plane defined by

the vectors Vg(s,r) and Vr(5, r), the principal curvatures and directions are the eigenvalues and
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eigenvectors solving the general eigensystem resulting from the matrix expressed in terms of the 

first and second fundamental forms [Spivak, 1979]:

(10.4)

where E  =  (vg,Vg), F  =  (vg,Vr), G  =  (vr,Vr), e =  (n,Vgg), f  =  (n,Vgr), and g =  

(n, Vrr). Note that when investigating only the intermediate neighbourhood of v(s, r) which is 

the origin of the Euclidean 3-space fixed by (vs(s, r), Vr{s, r) , n), this expression simplifies, as 

the first fundamental form matrix in equation 10.4 becomes the identity, and the denominator 

can be dropped in the expression for the normal and the second fundamental form [Koenderink, 

1990]. This yields the second-order part of the Taylor expansion for v(5, r), or the Hessian whose 

eigenvalues and eigenvectors constitute the principal curvatures and directions. An attempt for 

a suitable solution of how to base a curvature matching process on these measurements will be 

given below in the concept of volumetric image terms.

Another explicit surface representation is given by a parametric representation, e.g. in form of 

parametric surfaces [Székely et al., 1996] or deformable superquadrics [Bardinet et al., 1996a]. 

The former are based on a Fourier decomposition of the surface, where the advantages of a more 

compact representation with only few parameters are outweighed by the globality of the repre­

sentation (also recall from chapter 2 that the preservation of topology may be endangered using 

Fourier truncation techniques). The latter are based on super-ellipsoids, which provide a very 

smooth surface representation and a high potential for global refinement fitting, but usually re­

quire a two-stage process, involving a prior coarse segmentation of the shape under investigation, 

followed by further approximation based on the super-ellipsoid. Moreover, superquadrics have 

so far only been used on data containing rather simple, high contrast shapes in cardiac imaging, 

making it hard to judge how well they would perform on more complex data like brain MRI. 

Assuming that a coarse parametric representation can be obtained at a very high level of image 

scale by some other process, however, refinement can presumably be extended to a parametric ac­

tive shape focusing process. The disadvantage of using parametric models is that they are global 

techniques, which makes the extraction of local shape properties, e.g. as needed for a curvature 

matching process, not easily applicable. The main drawback of explicit surface representation 

techniques in general lies in their inability to accommodate for the simultaneous segmentation of 

multiple objects contained in an image, e.g. the inner and outer rim of the spinal cord. Addition­

ally, a considerable theoretical as well as computational effort need to be performed in terms of 

accessing internal shape information (as addressed above), and solving newly imposed optimiza­

tion problems, as will be discussed below.

Chapter 4 has presented several implicit surface representation schemes which are in general
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topologically more flexible in terms of being able to dynamically split into several objects, or 

to merge into a single one. This is achieved by their representation as iso-surfaces contained in 

the volumetric image, which are affected in their flow using a non-linear image diffusion frame­

work. Their major drawback is that a priori knowledge cannot be easily accommodated for (only 

in terms of the expected object size and the associated relevant scale range), and that the conver­

gence needs to be controlled by an additional external stopping criterion (as otherwise the objects 

in the scene are eventually completely smoothed out). Moreover, the lack of image independent 

intrinsic smoothness constraints deteriorates the performance of such an implicit approach for im­

age degradations. This however dramatically restricts the number of possible applications of such 

an approach to rather simple shapes of closed shape outline, and the application to more complex 

problems in medical imaging is very limited [Niessen, 1997].

10.1 .1 .2  Volumetric Im age Features

Given that the computation of internal constraints is either performed analytically, e.g. as dis­

cussed above for a spline surface, or implicitly, based on differential iso-surface properties, for­

mulations of the volumetric image energy terms need to be made. Considering the volumetric 

embedding of an active surface model, the implementation of the 3Z> image gradient and di­

rectional tuning is straightforward, as the surface normal is known and can be adjusted to the 

gradient direction given by VL (recall from chapter 4 that for an implicit formulation, the im­

age gradient direction is equivalent to the iso-surface normal direction, and is used as an inflation 

force). In 2D, the ridges of the gradient magnitude have been used in this dissertation. In 3D, 

the ridge computation becomes more complex, as it is are based on the local extrema of the prin­

cipal curvatures of ||Lu;|| (see chapter 3). Therefore, in order to find a suitable extension from 

2D  ridge lines to 3D ridge surfaces rather than lines, a choice needs to be made. For example, 

the fuzzy volumetric ridgeness operator presented in [Maintz, 1996] can be used. Originally, this 

ridgeness has been computed as a volumetric extension of the isophote image curvature — 

which is based on the principal image curvatures and the corresponding principal directions. This 

concept can analogously be applied to derive a ridgeness measure of the volumetric gradient mag­

nitude. However, higher order differentiation (e.g. third order differential measurements for the 

ridges of ||Zrw||) tends to be very unstable and sensitive to noise, and therefore it might be more 

appropriate and computationally more efficient to compute the zero-crossings of the 3D Lapla- 

cian AL of the image intensity, followed by a 3D Chamfer distance transform. In any rate, the 

computation of the 3D isophote image curvature of the image L, or the ridgeness of the image 

gradient magnitude L ^ , can be generalized by computing the ridgeness of any image feature F  

by removing the superfluous third spatial dimension by rotation of the local coordinate system 

spanned by the x  and y axes chosen perpendicular to the gradient direction. Formulating fuzzy
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ridge points as the second directional derivative of F  in a direction a, where a lies in the local 

tangent plane, and also points into the direction where the second derivative is minimal, is then 

equivalent of finding the maximum concavity (or minimum convexity) by solving

(10.5)

under the constraint VL • a  =  0, a  ^  0 [Maintz, 1996]. If this system of equations is maximized, 

the principal curvatures and principal directions are obtained. Note that ridges obtained from this 

framework take the volumetric image information into account, and are surfaces rather than lines.

It was pointed out above that in order to perform a suitable curvature matching process, the volu­

metric definitions of both active surface curvature and isophote image curvature need to be con­

sidered. Two different solutions exist for this problem; Either the principal curvatures and direc­

tions are matched directly, e.g. by directional tuning of the principal surface curvature vectors 

with the underlying isophote image curvature vectors in 3D, or a similar concept as for the 3D 

isophote image curvature is performed for the active surface curvature. In the first case, the local 

principal surface curvatures k i(s, r) and «2(5, r) and their corresponding directions 01(5, r) and 

82(3, r) can be derived as the eigenvalues and eigenvectors of the local surface Hessian H (a, r). 

Similarly, the principal curvatures of the image intensity at the surface location v(s, r) in the im­

age space L are given by Kimagei (s,r) = -  and «imogea (s,r) = -  in a local 3D

gauge {u,v,w),  with w pointing into the gradient direction, and u and v denoting the orthogo­

nal tangent directions depending on the gauge conditions L„ =  L„ =  Lu„ =  0 [Florack, 1993] 

(see also chapter 3). The computation of the principal directions is more complex. Similar to the 

ridgeness computation above, however, equation 10.5 can be solved, yielding the principal di­

rections Bimagei («, r) and Gimage-i («, r) of Kimagei {s, v) and î image  ̂(«, r) lying within the local 

tangent plane. Curvature matching can then be performed as directional tuning:
m

n  ( ( _  I ( \ \ I i  ®imogei ( 5 ,7 ’) i 0 i ( s , r )  j ^
£fe„dm s(v(«,r)) -  (« i„ a se , (s ,r )± « i (é . ,r - ) )  I ■ | | e i ( « , r ) | | l

m

±  «2(s,r))2 ( | |e Z % L r ) | |  ' ||e 2 ( ir )||)  

where m is used for broadening or narrowing the tuning operator, and is typically chosen asm  = 

2. The choice of the sign depends on the chosen normal direction. If the second approach is 

adopted, a 3D surface curvature in form of a singular value has to be computed in analogy to 

the 3D image ridgeness measure, by replacing in equation 10.5 the image feature F  by the local 

surface definition v(s , r) .  Denoting the thus obtained values for the active surface and the image 

by k(s, r) and Kimage{s, r), curvature matching can be performed similarly to the 2D equivalent 

used for the multi-scale planar active contour model in this work (compare to equation 6.16, page 

130):

Fbending{y{^‘)f')) — (/((3, T) ^  Kimagei^^f')) (10.7)
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The curvature matching as well as autonomous shape constraints need only be performed for ex­

plicit model representations, as they are inherent in the internal ones. Volumetric extensions of 

the image forces, however, need to be used for either representation.

10.1.1.3 Volumetric Optimization

Having decided on a suitable volumetric energy functional, the question of performing the ac­

tual optimization needs to be addressed. For an explicit representation, there are two possible 

approaches: The first, computationally more efficient and easier to be implemented one is a so- 

called slice-by-slice model, where the points of the surface model are constrained to associated 

image slices [Cohen et a/., 1992]. Optimization is then carried out within the respective image 

planes, but under consideration of 3D image and internal surface constraint forces. The second 

approach allows the spline surface points to move freely in the z direction as well, and is there­

fore probably much more useful in coping with topological changes, and partial disappearance 

and reappearance of structures as mentioned above. It is a true volumetric optimization method, 

rather than a sequential, slice-by-slice optimization, and therefore of much higher computational 

complexity. In either case, the greedy algorithm used in this thesis can be extended to optimize 

the continuous spline surface by allowing to move the surface control points in the planar neigh­

bourhoods of their respective image slices, or in volumetric neighbourhoods, depending on the 

chosen deformation approach. However, finite element methods (FEM) as used in [Cohen and 

Cohen, 1993] might prove to be computationally more efficient.

Finally, in a scale-space setting, multi-scale sampling needs to be formulated in 3D in order to 

locally change the resolution of the volumetric model, which is computationally very complex. 

For example, if the model is based on an approximating spline surface, a normalized surface rep­

resentation v(5, r) is required.

10.1.1.4 Surface Description

Multi-scale active surface description based on the topics formulated above involves an active 

surface focusing process of true 3D dimensionality (between 2 |  and 3D if the model is still con­

strained to the image planes, but affected by volumetric internal surface constraints) in a 4D im­

age scale-space and associated volumetric scale-space image features. Active surface focusing 

gives rise to a true 3^D multi-scale shape stack, which is based on instances of a volumetric 

surface v (s,r;cr) in image scale-space. Description of the volumetric multi-scale shape stack 

involves the comparison of each stack level to the lowest scale reference surface in terms of suit­

able 3D distance metrics. The problem of finding volumetric point correspondences needs to be 

addressed in order to correctly register the surface models in scale-space. Surface features like the 

principal curvatures and directions (naturally leading to geometric ridge and crease surface struc-
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ture) can be examined, and used for multi-scale registration. Examination of the surface flow in 

scale-space can therefore be applied for a complete volumetric shape description. Related work 

has been done in [Fidrich, 1997], where feature lines of iso-surfaces in scale-space have been di­

rectly extracted, allowing for the visualization of singular (umbilic) surface points as local princi­

pal curvature extrema, parabolic lines, crest lines and surfaces, ridges, and ravines. However, in 

many cases (and in particular in brain MRI), iso-surfaces cannot be directly extracted, and there­

fore an explicit surface segmentation in scale-space, like multi-scale active surface models, be­

comes necessary.

In the following, the application of non-linear image scale-space is addressed, which are expected 

to avoid the premature fusion of shapes due to their edge and other image feature preserving na­

ture.

10.1.2 Extension to Non-Linear Scale-Spaces

The choice of the underlying image scale-spaces plays an important role [Niessen et a/., 1996], as 

they vary from shape shrinking [Florack et a l, 1994] to shape preserving. The most well-known 

scale-space generation schemes have been presented in chapter 3, but their appropriateness as an 

underlying image representation for a multi-resolution shape analysis needs to be further inves­

tigated. In particular, the efficient implementation of scale-space generators needs to be consid­

ered. In contrast to the linear Gaussian scale-space, non-linear scale-spaces need to be imple­

mented by a finite differencing scheme. Recent advances provide efficient implicit schemes for 

scale-space computation which allows larger scale steps to be taken without sacrificing robust­

ness of the underlying diffusion process. However, so far only linear diffusion and edge-affected 

diffusion by Perona and Malik [Perona and Malik, 1990] can be computed implicitly. Diffusion 

schemes which additionally incorporate the Lw  operator (e.g. the Euclidean shortening flow) 

cannot be extended to 3D in a straightforward way. This has been already discussed in the pre­

vious section in terms of the 3D extension of the — operator, and similar solutions can be 

found.

In order to show the potential applicability of non-linear scale-spaces to multi-scale active shape 

description, figure 10.1 illustrates the final active shape focusing result using a 3^D scale-space 

based on the Euclidean Shortening flow for the brain of the epileptic data for patient 1 (for the lin­

ear results see chapter 9, section 9.3). Visually the difference to the linear scale-space (see figure 

9.3) is small, but the measurements across scale listed in table 10.1 show a much larger mean vol­

ume across scale than for the linear case (see table 9.4), which is also more preserved during the 

focusing process. This can be perceived by the very small volume increase, and generally smaller 

Chamfer and triangulation distance deviations. Additionally, the surface area increases only with 

less than half the slope for decreasing scales compared to the linear case.
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Figure 10.1 : Right, top, and left views o f  the iso-surface rendered lowest scale results o f  the vol­
umetric brain image o f the epileptic data for patient 1 obtained via active shape focusing in a 
3 ^ D  Euclidean shortening flow image scale-space. Active shape focusing was perform ed with 
imax - 32, tmin =  0.5,72 =  16 Samples, A t  -  0.1, approximately corresponding to amax =  8 
and amin — 1.

Figure 10.2 shows maximum intensity projections o f the linear and several non-linear 3D  scale- 

spaces o f the intermediate slice o f patient 1 (see also figure 9.1, page 197), dem onstrating the 

visual difference in shape flow. Figure 10.3 illustrates the multi-scale shape stacks obtained from 

the scale-spaces in figure 10.2, where the same circular shape as in chapter 9 was used as an ini­

tial model. In fact, figure 10.2 (a) illustrates the rendered 3D  linear scale-space shown in figure

9.1 for patient 1, and, figure 10.3 shows the corresponding surface rendered shape stack (colour 

rendering results o f  this particular linear stack can be found in appendix A, figure A.7). A prelim ­

inary conclusion o f  these visualizations is that from the non-linear schemes, the affine shortening 

flow and the Euclidean shortening flow are probably more suitable for active shape focusing than 

the other three schemes, which tend to preserve smaller structures over a larger set o f  scales. This 

observation leads to another aspect involved with non-linear diffusion schemes which is still an 

open topic in scale-space research - the investigation o f  appropriate scale-space sam pling strate­

gies. For the linear case, an exponential sampling scheme (as used in this work) is thought to be 

optimal, but the choice for non-linear schemes is more complex. In conjunction with this ques­

tion is the variation o f  control parameters, such as regularization level, and edge threshold - the 

question referred to as the scale-space recipe by W hitaker [Whitaker, 1994b], as well as the cor­

respondence between these parameters and diffusion times for the different schemes. This plays 

a particularly important role for the comparison o f non-linear scale-spaces in terms o f  implicit 

segmentation abilities in a volumetric active shape focusing process. In order to judge the appro­

priateness o f  the non-linear schemes, resulting shapes need to be compared at adequate levels o f 

image scale.
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Descriptor Value

V 1403150

S 57259.4

C v 9.773620

distjî 62.216900

1.745250

distTfljv^s 4.982440
A V
A ct

-9.257280
A S
A ct

-2.940210
ACv
A a -0.000683

Adistcj^j^^
A a 0.000262

A a 0.001443
A \og{V/a) 

Alog(o-) 1.116470
A lo g (5 /cr )

Alog(cr) 1.163590
A lo g ( C v /o - )

Alog(cr) 1.137550

Table 10.1 ; Mean, slope, and logarithmic slope descriptors for active shape focusing based on the 
Euclidean shortening flow of the epileptic data for patient 1. Compare with values for patient 1 
in table 9.4 on page 208 obtained from linear scale-spaces.

10.1.3 Comparison to Multi-Scale Contour Analysis

It was stated earlier that active shape evolution and its dual, active shape focusing, differ from 

classic contour evolution schemes in terms of the scale-space dimensionality, as they are embed­

ded in an image scale-space rather than being based on a contour scale-space. Several issues re­

garding differences of the results can be further investigated, like differences in resulting finger­

prints [Witkin, 1983] and curvature scale-spaces [Mokhtarian and Mackworth, 1986] (see chap­

ter 3), as well as comparisons to theoretical expressions for the behaviour of area and perimeter 

(and hence compactness) with respect to scale. In particular, it was shown by [Gage and Hamil­

ton, 1986] that the heat equation for a planar curve can be written as the system

from which the shrinkage of a planar curve due to the heat equation can be quantified in terms of 

the change of perimeter or length L  and the enclosed area A \

^  =  K^(5)d(s) and ^  /  w(x, y)àx  ày  (10.9)
or Jq q£ «/

where w{x,y)  is the winding number of the curve with respect to the point (x,y),  and the rate of 

decrease in area is — 2?r times the rotation index of the curve. In general, a curve evolution em­

bedded in an image scale-space will lead to a lower rate of shrinkage of the level set curves, than
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Figure 10.2: M aximum intensity projections o f  different 3D  linear and non-linear scale-spaces 
for patient 1 in a fine-to-coarse  view, (a) Linear, (b) Affine shortening flow, (c) Euclidean short­
ening flow, (d) Entropy (reaction-diffusion). (e) M odified affine shortening flow, (f) Edge- 
affected (Perona and Malik). All scale spaces have been computed between tmin =  0.5 and 
imax =  32, n  =  16 samples, A r  =  0.1 (excepting for the linear and edge-affected diffusion, 
where A r  -- 0.25).

a classic curve evolution scheme. Therefore active shape evolution and focusing can be regarded 

as non-linear curve evolution processes, with the advantage o f  the latter that it requires no ground 

truth.

10.1.4 M ulti-Scale Shape-Driven Techniques

Directly arising from the multi-scale active contour model presented in this dissertation are two 

more potential extensions. The first one is based on the linear diffusion process which can be 

used to steer the deformation o f the model between adjacent image scale levels. It is referred to 

as active shape f lo w  in the following. The second topic is based on a true multi-scale approach, 

enabling the m ulti-scale active contour model to evolve freely in image scale-space, rather than 

tracking it through the scale-space in a slice-by-slice fashion. The result is a space curve, which 

forms the basis o f  an active shape diffusion process by reformatting the image scale-space with 

respect to the multi-scale contour model, and provides a hierarchical tool for image-based shape 

interpretation.



10.1. Outlook 247

(b) (c)

%

(d) (e) (0
Figure 10.3; Interpolated shaded surface renderings o f the hierarchical shape stacks for patient 
1 o f  different SD  non-linear scale-spaces. (a) Linear, (b) Affine shortening flow, (c) Euclidean 
Shortening flow, (d) Entropy (reaction-diffusion). (e) Modified affine shortening flow, (f) Edge- 
affected (Perona and Malik). All scale spaces have been computed between tmin =  2 and tmax — 
128, using n  — IQ samples.

10.1.4.1 Active Shape Flow

W hen constructing a linear image scale-space, directional information o f the intensity flow in 

scale-space can be obtained. More specifically, if  the image at evolution time to is known and a 

diffusion step o f  A r  is performed, one has two images L (x ; to) and L (x ; to +  A r )  which are ad­

jacent in scale-space and therefore differ only slightly. The difference between these two images 

in 2 B  is given by the diffusion feature. This means that at any point x  in both blurred images, the 

local difference is given by the differences o f  the local intensity changes derived from the local 

w eighted Laplacian o f  the less blurred image. The diffusion feature can then be form ulated as 

velocities in x  and y  directions as

Vx{Li , j) -  \Li,j -  -  \Li, j  -

— \ î,j ~~ Lij-i \ — \Lij — ( 10 . 10)

where sub-indices denote the spatial location o f  the image pixels, and L  denotes the intensity 

at that position. Then the velocity vector f { L i j f o )  =  { v x { L i j ) , Vy { L i j ) )  provides the local
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]

Figure 10.4; Linear diffusion magnitude (top) and direction (bottom) for the notched rectangle 
test image at different levels o f scale. From left to right: t =  3 2 ,8 ,2 ,0 .5 , with A r  =  0.25.

diffusion magnitude  and diffusion direction as the absolute value and angle. In other words, given 

an image L (x ;fo ) , it is known in which direction and with which magnitude the image locally 

diffuses.

This knowledge can be applied as a data dependent, self-regularized local inflation or deflation 

force o f  a multi-scale active contour model, as it can locally push the model towards the direction 

o f the flow o f the underlying image feature. The diffusion can be formulated as an additional term 

in the energy function:

,2 /  f ( v ( 5 ) ; f o )
f o )  =  ±  Otflow f ( v ( s ) ;  h f n(s) ( 10 .11)

l | f ( v ( 5 ) ; f o ) l l

where a  flow is a constant weighting parameter, m  is used for broadening or narrowing the 

influence o f  this force, n (s )  is the unit normal vector o f  the contour model, and the sign o f  the 

whole expression is chosen with respect to the chosen normal direction. This is equivalent to di­

rectional tuning o f the model with respect to the diffusion flow. One should note, however, that 

in contrast to the classic balloon model presented in chapter 4, this flow force can sim ultaneously 

inflate or deflate the model at different parts, and is additionally using adaptive data-dependent 

diffusion flow magnitudes. This technique becomes particularly interesting in terms o f  tracking 

a multi-scale active contour model through image scale-space.

Figure 10.4 shows the linear diffusion magnitudes and directions for the notched rectangle  test 

images at four different evolution times. In contrast to edge potentials (see figure 7.3, page 157), 

a strong image force based on the diffusion magnitude is achieved at high scales within the notch, 

as well as at comers. These are the positions which are most diffused, and therefore are usually 

the hardest to track in a scale-based scheme. A scheme only based on the flow o f  diffusion mag-



10.1. Outlook 249

nitude and direction, however, is only well defined in synthetic binary images, and even then will 

suffer from the problem that in homogeneous parts of an image the diffusion magnitude will be 

zero, and use of the direction is therefore not applicable. Integrating the energy force of equa­

tion 10.11 into the energy function used in this dissertation, and choosing afiow adequately, e.g. 

Onflow =  1, allows to push the model in homogeneous areas towards edges and adjust it to the un­

derlying image curvature, while simultaneously improving its elastic behaviour. At more hetero­

geneous parts, i.e. near edges where diffusion has a stronger effect, directed attraction potential 

is provided.

Most recently, some related concepts have been introduced which will be briefly listed in the fol­

lowing. The edge flow  scheme performs boundary detection and segmentation by predicting the 

direction of change in colour and texture at each image location at a given fixed scale [Ma and 

Manjunath, 1997]. Another approach is the fixed-scale gradient vector flow  as an external force 

for snakes [Xu and Prince, 1997] which is computed as a diffusion of the image gradient vectors, 

and is therefore similar to the classic optic flow [Horn and Schunk, 1981].

10.1 .4 .2  A ctive Shape D iffusion

Until now, the levels of the underlying image scale-space have been investigated separately in 

a fine-to-coarse or coarse-to-fine manner, yielding a multi-scale stack of shapes, each with an 

adjusted inner scale. As mentioned in chapter 6, however, it might be more desirable to adjust the 

contour scale locally to the required level of detail. It was argued that at parts of low curvature, 

only a sparse sampling is needed, while at comers and complex stmctures, a high level of contour 

detail is needed. Obviously, contour and image detail should still be related, which gives rise to 

a space curve in scale-space with varying contour scale and local adjustment to the respective 

image scale level the contour passes through.

In order to develop such a technique, however, several topics need to be further investigated, 

namely a spline-based space curve representation, variable sampling strategies, scale-space ge­

ometry, and the effect of optimization in image scale-space. In order to formulate a multi-scale 

contour representation, an extra coordinate function is added to the previously planar B-spline 

representation, which does not refer to a spatial location, but to a natural scale location à{s)\

v(s)  = (x(s) ,ÿ(s) ,â(s))  (10.12)

Note that the natural representation does not refer to a fixed-scale setting, but to locally variable 

scales. This implies that at each point of the multi-scale contour, the contour scale becomes vari­

able as well, i.e. it is defined as ç(s). In chapter 6, three variable, but fixed-scale sampling strate­

gies based on internal and external curvature properties have been presented, which were based 

on the adaptive sampling algorithm developed in this work. Similarly, adaptive variable sam-
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pling can use the underlying image scale as a distance metric. This leads naturally to the topic 

of scale-space geometry. The planar model in this dissertation is embedded in a fixed-scale Eu­

clidean setting. Hence the distance between two points of the contour is given by the Euclidean 

distance of their natural representation. For a multi-scale setting, however, the scale-space geom­

etry becomes Riemannian. Therefore the distance of two points on the space curve needs to be 

computed along their geodesic paths, and the criterion of whether a points needs to be removed 

or inserted is based on this Riemannian scale-space distance measurement. The actual insertion 

of a new point not only involves the interpolation of the spatial coordinates, but also the interpo­

lation of the scale coordinate. The B-spline representation accommodates for that, as the natural 

representation ensures linear sampling in the natural scale direction, although the scale is actu­

ally exponentially sampled. Evolving a contour directly in scale-space rather than in a slice-by- 

slice fashion imposes the need of appropriate differentiation of the image potentials, as the scale 

dimension needs to be considered in the differentiation process. Moreover, the curvature of an 

arc length parameterized space curve is of slightly extended form [Bronstein and Semendjajew, 

1989], with

^  ((%» + y l  + +  3/1 +  z p  -  i^sXs,  +  y,ys3 +  ,,0
and it is also affected by a torsion term:

/  \    ^ s i V s s ^ s s s  ^ s s V s s s )  V s j ^ s s ^ s s s  ~  ^ s s ^ s s s )  T  ^ s j ^ s s U s s s  U s a ^ s s s )  ^

where expressions for arbitrary parameterizations exist. Additionally the principal normal vector 

11(5) is defined to be in the plane of the tangent vector t(a) which points toward the concave side 

of the curve, and a binormal vector is defined to be orthogonal to both. These three vectors form 

the so-called Frenetframe, with the inter-relationship h{s) = t(a) A n(^). Torsion and curvature 

are then related by the Frenet equations:

=  «(5)11(5) =  -K{s)t{s)  4- r(5)b(5) (10.15)
U5 05 05

Most recently, in [Mokhtarian, 1997b] a theoretical framework for a torsion scale-space (TSS) 

has been formulated, which is based on multi-scale space curves and provides an extension of 

the curvature scale-space presented in chapter 3 from planar curves to space curves. The main 

difference between the proposed concept above and the TSS is that the multi-scale contour repre­

sentation above is still spatially planar, but becomes a space curve with respect to the scale of the 

image scale-space in which it is embedded, while for the TSS, the spatial contour representation 

is a true space curve, with an extra, but fixed-scale dimension.

For a basic demonstration of the concept of this true multi-scale model, linear scale-spaces for 

the notched rectangle and teardrop test images, whose active shape evolution and focusing re­

sults have been presented and discussed in chapter 7 and 8, respectively, have been computed. A
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Figure 10.5; Multi-scale contour optimization results for the notched rectangle and teardrop test 
images.

coarse-to-fine approach, using the same ellipse-shaped initial models as for the previous active 

shape focusing with additional natural scale coordinates, was performed, by setting all natural 

scale coordinates to the highest natural scale level (i.e. to z = n  — 1). The equivalent fine-to- 

coarse  approach would be based on using the ground truth models, and setting the the scale co­

ordinate to the lowest natural scale level (i.e. to i =  0). Extending the optimization strategy, for 

instance the presented multi-scale greedy algorithm, from a local planar search space to a local 

volum etric search space, allows to deform the multi-scale model spatially as well as with respect 

to natural scale. For a first simple approach, only the gradient magnitude (without directional 

tuning), and the elasticity given by Vg(a) have been taken into account.
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Figure 10.5 shows the final multi-scale contours obtained for both test images which yielded good 

extraction results with respect to all global and local shape details, plotted against the local scale 

a{s) obtained from the natural scale coordinates ô-(s). For the notched rectangle, several obser­

vations can be made: At extended straight parts of the boundary, the local scale a(s) and asso­

ciated contour scale ç(s) is rather high. At all comers, both scale measurements become rather 

low, and continuously increase in a smooth manner towards the straight parts. The peak of the 

notch is of lowest scale (see right hand side of the plot). Note that if all scale coordinates were set 

to fr(s) =  0, the accurate planar shape outline of the notched rectangle would be obtained. For 

the teardrop, the outward peak (towards the back of the plot) is also recovered at a very low scale 

level, while the straight sides of the teardrop are of overall highest scale, starting from the centre 

of the blob like end, followed by an intermediate scale level for the circular end (at the front of 

the plot).

The local scales obtained from the multi-scale contour optimization process therefore can be re­

garded as the adequate scales, as they correspond to the maxima of the underlying scale-space 

signatures of the gradient magnitude (only slightly regularized by the elasticity term). The re­

sulting contour for both cases is equivalent to the boundary at the scale o f the core (BASOC), as 

reviewed in chapter 3, but with the suggested scheme they are much easier to obtain, and are con­

tinuous by nature. This gives rise not only to a true multi-scale shape representation, but also to 

the investigation of the locally adequate scales as local shape descriptors. Note also that a multi­

scale contour optimization results into a single contour rather than into a whole stack, and can 

be compared with slicing a multi-scale shape stack into a single meaningful plane (which is only 

planar though with respect to the spatial shape locations). This leads to another important aspect: 

Having obtained the most meaningful scales, or the most meaningful variable scale slice for a 

shape stack, this knowledge can be back-projected into the image. Similarly to the backprojec- 

tion of a core to the boundary that contributed most to it, every image pixel can be investigated 

with respect to the multi-scale shape boundary, by reducing the image scale-space to the most 

meaningful scales with respect to the located shape. Naturally, direct knowledge of the adequate 

scales is only available at the image pixels underlying the shape boundary, but interpolation can 

be used to extend this knowledge over the whole image scale-space. A suitable interpolation is 

given by thin-plate splines (see chapter 2 for the theoretical background on this topic). Defining a 

thin-plate spline mapping function on the basis of the contour control points allows to model the 

global displacement field with respect to the displacement of the natural scale coordinates of the 

shape during the optimization process. Having obtained the displacement for each image pixel, 

the image scale-space can be sliced through these natural scale coordinates, yielding an active 

shape diffusion result. Figure 10.6 shows the resulting, sliced image scale-spaces for the notched 

rectangle and teardrop images, visualizing the interpolated scale levels with respect to the multi-
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Figure 10.6: Active shape diffusion obtained from back-projection o f the multi-scale contours 
illustrated in figure 10.5 into the image scale-space using thin-plate spline interpolation.

scale contour optimization processes.

This concept, though quite attractive at first sight, needs to be further investigated in terms o f  ad­

justing the internal and external image energy terms with respect to space curve geometry and the 

Riemannian geometry o f the image scale-space. Also it needs to be appropriately compared with 

the concept o f  cores and the boundary at the scale o f  the core. The active shape diffusion  process 

as described above then allows to investigate images with respect to the shapes that they con­

tain, yielding additional valuable information about local object size and changes thereof. This 

scheme can be the starting point to true multi-scale image analysis, providing the extraction o f 

locally adequate and meaningful shape properties.

10.2 Conclusions

In this dissertation a novel scale-based framework for automated shape description with an ap­

plication to medical imaging has been developed. The primary purpose o f  this approach was to 

provide higher-level shape information than currently available, and to incorporate the shape de­

scription step into an implicit shape extraction process. In this way, and in contrast to traditional 

shape description methods in medical imaging, the developed approach does not rely on a prior 

(mostly manual) shape segmentation, but instead works directly on the grey-level M R images. 

Implicit shape extraction, however, is performed at multiple levels o f  image detail in order to ex­

tract shape information in a concise manner, capturing shape characteristics o f  varying locality 

without the loss o f  image context. Rather than increasing the amount o f  available shape inform a­

tion due to the extra scale dimension, shape characteristics have been structured with respect to 

their behaviour across image scales, from which novel multi-scale and fractal shape metrics have 

been derived.

Several important methodologies have been developed for this purpose:
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1. A multi-scale active contour model, which is based on a multi-scale spline representation 

and differential invariants in scale-space.

2. Active shape evolution and focusing, which have been identified as dual techniques for 

tracking a shape in opposite directions of a linear image scale-space.

3. The concept of a multi-scale shape stack, which organizes the shapes obtained from either 

multi-scale tracking process into a shape hierarchy, and which can be visualized in order 

to inspect local shape information.

The first item not only yields a scale-based shape extraction tool, but also combines several im­

portant topics in multi-scale image processing, like the relation between scale-space density and 

contour resolution, multi-scale spline sampling strategies, as well as the adjustment of shapes to 

the underlying geometric image structure like isophote curvature properties. The second item is 

based on the application of the multi-scale active contour model to a fine-to-coarse or coarse-to- 

fine image scale-space. The former is similar to classic multi-scale contour evolution, as it yields 

subsequently blurred versions of the known ground truth of a shape. It differs from classic evo­

lution in that it uses a higher order scale-space dimensionality, i.e. the fuzzy image-scale space 

in which the shape is embedded rather than the binary contour scale-space. The latter is simi­

lar to edge focusing in that it reverses the blurring process in order to derive a shape close to the 

(possibly unknown) ground truth. In contrast to edge focusing, however, active shape focusing 

comprises the extraction of all intermediate scale results, rather than discarding all but the result 

obtained at the final lowest scale. The third item directly arises from applying the multi-scale 

active contour model to active shape evolution or focusing, and is similar to classic scale-based 

shape sketches like scale-space fingerprints or the curvature scale-space in that it provides a struc­

tural organization and useful visual representation of the obtained shape hierarchy in scale-space. 

All items together form the theoretical framework for multi-scale active shape description as the 

main contribution of this dissertation.

This dissertation also serves as a preliminary study of the applicability of the developed method­

ologies in clinical neurology for the description of complex structures like the human brain. Three 

different types of medical problems have been investigated, to which currently exist no standard 

solutions in the clinical environment. The application to patients with epilepsy has shown promis­

ing results in quantifying structural characteristics in the cortex pattern which may prove to be 

useful for distinguishing between abnormal patterns and normal shape variability in a larger clin­

ical study. The application to patients with multiple sclerosis has additionally demonstrated a 

novel technique for automatic scale-based initialization. Finally, the application to neonates has 

illustrated the difference between visual shape complexity and shape compactness and fractal 

similarity measurements. The main clinical contributions of this work therefore lie in providing
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clinicians with a high-level framework for shape regularization, visualization and analysis with 

respect to scale, which automates the otherwise time-consuming task of shape extraction as much 

as possible, while avoiding inter- and intra-observer variability.

The use of scale continuity, the automated nature, and the high level of shape abstraction make the 

presented framework for multi-scale active shape description suitable for the application to larger 

scale clinical studies. It is hoped that this framework, along with the outlined future extensions, 

will provide a useful platform for shape analysis not only in clinical neurology, but also in other 

medical applications where shape deformations are observed and need to be analysed.
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Appendix A

Colour Plates

(a) (b) (c)

Figure A.l: Colour mapping of local shape descriptors onto the shape stack obtained via active 
shape evolution (upper row) and focusing (lower row) of the notched rectangle image. Columns
(a) Curvature, (b) Chamfer distance, (c) Triangulation distance.



258

»V

A

Vî>

f t A #

* JS * d '6

(a) (b) (c)

Figure A.2: Colour mapping of local shape descriptors onto the shape stack obtained via ac­
tive shape evolution (upper row) and focusing (lower row) of the saw-toothed rectangle image. 
Columns (a) Curvature, (b) Chamfer distance, (c) Triangulation distance.

(a) (b) (c)

Figure A.3: Colour mapping of local shape descriptors on the shape stack obtained via active 
shape evolution (upper row) and focusing (lower row) of the kangaroo image. Colunms (a) Cur­
vature. (b) Chamfer distance, (c) Triangulation distance.
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(a) (b) (c)

Figure A.4: Colour mapping of local shape descriptors on the shape stack obtained via active 
shape evolution (upper row) and focusing (lower row) of the teardrop image. Columns (a) Cur­
vature. (b) Chamfer distance, (c) Triangulation distance.

(a) (b) (c)

Figure A.5: Colour mapping of local shape descriptors on the shape stack obtained via active 
shape evolution (upper row) and focusing (lower row) of the blobs image. Columns (a) Curvature, 
(b) Chamfer distance, (c) Triangulation distance.
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(a) (b) (c)

Figure A.6: Colour mapping of local shape descriptors onto the shape stack obtained via active 
shape focusing of the von Koch curve for increasing fractal generations (from top to bottom). 
Columns (a) Curvature, (b) Chamfer distance, (c) Triangulation distance.
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(a) (b) (c)

Figure A.7: Colour mapping of the local shape descriptors onto the shape stacks obtained via 
active shape focusing in a (top) and 4D (bottom) scale-space for the epileptic data of the 
intermediate slice of patient 1. Columns (a) Curvature, (b) Chamfer distance, (c) Triangulation 
distance.

(a) (b) (c)

Figure A.8: Colour mapping of the local shape descriptors onto the shape stacks obtained via 
active shape focusing in a (top) and 42) (bottom) scale-space for the epileptic data of the 
intermediate slice of patient 2. Columns (a) Curvature, (b) Chamfer distance, (c) Triangulation 
distance.
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(a) (b) (c)

Figure A.9: Colour mapping of the local shape descriptors onto the shape stacks obtained via 
active shape focusing in a (top) and AD (bottom) scale-space for the epileptic data of the 
intermediate slice of patient 3. Columns (a) Curvature, (b) Chamfer distance, (c) Triangulation 
distance.

(a) (b) (c)

Figure A. 10; Colour mapping of the local shape descriptors onto the shape stacks obtained via 
active shape focusing in a Z\D  (top) and AD (bottom) scale-space for the epileptic data of the 
intermediate slice of patient 4. Columns (a) Curvature, (b) Chamfer distance, (c) Triangulation 
distance.
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(a) (b) (c)

Figure A ll: Colour mapping of the local shape descriptors onto the shape stacks obtained via 
active shape focusing in a (top) and 4D (bottom) scale-space for the epileptic data of the 
intermediate slice of control 1. Columns (a) Curvature, (b) Chamfer distance, (c) Triangulation 
distance.

(a) (b) (c)

Figure A. 12: Colour mapping of tlie local shape descriptors onto the shape stacks obtained via 
active shape focusing in a (top) and AD (bottom) scale-space for the epileptic data of the 
intermediate slice of control 2. Columns (a) Curvature, (b) Chamfer distance, (c) Triangulation 
distance.
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Figure A. 13: Local curvature mapping onto the shape stacks obtained via active shape focusing
in a scale-space for the epileptic data. From top to bottom: patient 1, patient 2, patient 3,
patient 4, control 1, control 2. Scale samples (from left to right): tr = 8,4,2,1.
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Figure A. 14: Local curvature mapping onto the shape stacks obtained via active shape focusing in
a 4D scale-space for the epileptic data. From top to bottom: patient 1, patient 2, patient 3, patient
4, control 1, control 2. Scale samples (from left to right): a = 8,4,2,1.
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Figure A. 15: Local Chamfer distance mapping onto the shape stacks obtained via active shape
focusing in a Z\D  scale-space for the epileptic data. From top to bottom: patient 1, patient 2,
patient 3, patient 4, control 1, control 2. Scale samples (from left to right): cr = 8,4,2,1.
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Figure A. 16: Local Chamfer distance mapping onto the shape stacks obtained via active shape
focusing in a 4D scale-space for the epileptic data. From top to bottom: patient 1, patient 2, patient
3, patient 4, control 1, control 2. Scale samples (from left to right): <7 = 8,4,2,1.
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Figure A. 17: Local triangulation distance mapping onto the shape stacks obtained via active
shape focusing ina 3^D scale-space for the epileptic data. From top to bottom: patient 1, patient
2, patient 3, patient 4, control 1, control 2. Scale samples (from left to right): a = 8 ,4 ,2 ,1.
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Figure A. 18: Local triangulation distance mapping onto the shape stacks obtained via active
shape focusing in a 4D scale-space for the epileptic data. From top to bottom: patient 1, patient
2, patient 3, patient 4, control 1, control 2. Scale samples (from left to right): cr = 8,4,2,1.
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(a) (b) (c) (d)

Figure A. 19: Colour mapping of local shape descriptors onto the shape stack obtained via active
shape focusing of the spinal cord data from the first scan, for columns: (a) Control 1. (b) Control
2. (c) Patient 1. (d) Patient 2.
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(a) (b) (c) (d)

Figure A.20; Colour mapping of local shape descriptors onto the shape stack obtained via active
shape focusing of the spinal cord data from the rescan, for columns: (a) Control 1. (b) Control 2.
(c) Patient 1. (d) Patient 2.



272

(a) (b) (c) (d)

Figure A.21: Local Chamfer distance mapping onto the shape stack obtained via active shape
focusing of the spinal cord data from the first scan, for columns: (a) Control 1. (b) Control 2. (c)
Patient 1. (d) Patient 2.
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(a) (b) (c) (d)

Figure A.22: Local Chamfer distance mapping onto the shape stack obtained via active shape
focusing of the spinal cord data from the rescan, for columns: (a) Control 1. (b) Control 2. (c)
Patient 1. (d) Patient 2.
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(a) (b) (c) (d)

Figure A.23: Local triangulation distance mapping onto the shape stack obtained via active shape
focusing of the spinal cord data from the first scan, for columns: (a) Control 1. (b) Control 2. (c)
Patient 1. (d) Patient 2
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(a) (b) (c) (d)

Figure A.24: Local triangulation distance mapping onto the shape stack obtained via active shape
focusing of the spinal cord data from the rescan, for columns: (a) Control 1. (b) Control 2. (c)
Patient 1. (d) Patient 2.
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(a) (b) (c) (d)

Figure A.25: Colour mapping of the local curvature onto the shape stacks obtained via active
shape focusing of the neonatal data. Columns (a)-(b): Term case. Columns (c)-(d): Premature
case.
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(a) (b) (c) (d)

Figure A.26: Colour mapping of the local Chamfer distance onto the shape stacks obtained via
active shape focusing of the neonatal data. Columns (a)-(b): Term case. Columns (c)-(d): Pre­
mature case.
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(a) (b) (c) (d)

Figure A.27; Colour mapping of the local triangulation distance onto the shape stacks obtained
via active shape focusing of the neonatal data. Columns (a)-(b): Term case. Columns (c)-(d):
Premature case.



Bibliography

[Abbasi et a l, 1997] S. Abbasi, F. Mokhtarian, and J. Kittler. Reliable classification of chrysan­
themum leaves through curvature scale space. In B. ter Haar Romeny, L. Florack, J. Koen- 
derink, and M. Viergever, editors, Scale-Space '97 - 1st International Conference on Scale- 
Space Theory in Computer Vision, volume 1252 of Lecture Notes in Computer Science, 
pages 284-295. Springer Verlag, 1997.

[Aguadao etal ,  1996] A.S. Aguadao, E. Montiel, and M.S. Nixon. On using directional in­
formation for parameter space decomposition in ellipse detection. Pattern Recognition, 
29(3):369-381, 1996.

[Akl and Toussaint, 1978] S.G. Akl and G. Toussaint. A fast convex hull algorithm. Information 
Processing Letters, 7:216—219, 1978.

[Alvarez et a l, 1992] L. Alvarez, R-L. Lions, and J.-M. Morel. Image selective smoothing and 
edge detection by nonlinear diffusion. II. SIAM Journal on Numerical Analysis, 29(3):845— 
866, 1992.

[Amini et a l, 1990] A.A. Amini, T.B. Weymouth, and R.C. Jain. Using dynamic programming 
for solving variational problems in vision. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 12(9):855—867, 1990.

[Amini et a l, 1995a] A. Amini, R. Curwen, and J. Gore. Measurement of tag deformations with 
DP snakes and snake grids. In Y. Bizais, C. Barillot, and R. DiPaola, editors. Information 
Processing in Medical Imaging: Proc. 14th International Conference (IPMT95), Compu­
tational Imaging and Vision, pages 363—364. Kluwer Academic Publishers, 1995.

[Amini et a l, 1995b] A.A. Amini, R.W. Curwen, R.T. Constable, and J.C. Gore. Dynamic pro­
gramming snakes, snake grids, and smooth warps for analysis of 2D tissue deformations. 
Technical report. Departments of Diagnostic Radiology and Electrical Engineering, Yale 
University, 1995.

[Arridge and Simmons, 1997] S.R. Arridge and A. Simmons. Multispectral probabilistic diffu­
sion using Bayesian classification. In B. ter Haar Romeny, L. Florack, J. Koenderink, and 
M. Viergever, editors, Scale-Space’97 - 1st International Conference on Scale-Space The­
ory in Computer Vision, volume 1252 of Lecture Notes in Computer Science, pages 224— 
235. Springer Verlag, 1997.

[Asada and Brady, 1986] H. Asada and M. Brady. The curvature primal sketch. IEEE Transac­
tions on Pattern Analysis and Machine Intelligence, 8(1):2—14, 1986.

[Babaud <3/., 1986] J. Babaud, A.P. Witkin, M. Baudin, and R.O. Duda. Uniqueness of the 
Gaussian kernel for scale-space filtering. IEEE Transactions on Pattern Analysis and Ma­
chine Intelligence, 8(l):26-33, 1986.

[Ballard, 1981] D.H. Ballard. Generalizing the Hough transform to detect arbitrary shapes. Pat­
tern Recognition, 13(2): 111—122, 1981.



Bibliography 280

[Bangham e? <3/., 1996a] J.A. Bangham, R. Harvey, RD. Ling, and R.V. Aldridge. Nonlinear 
scale-space from n-dimensional sieves. In B. Buxton and R. Cippola, editors. Computer 
Vision —Proc. 4th European Conference on Computer Vision (ECCV’96), volume 1064 of 
Lecture Notes in Computer Science, pages 189—198. Springer Verlag, 1996.

[Bangham et a l, 1996b] J.A. Bangham, RD. Ling, and R. Harvey. Nonlinear scale-space causal­
ity preserving filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 
18:520-528, 1996.

[Bardinet et a l, 1996a] E. Bardinet, L. Cohen, and N. Ayache. Tracking and motion analysis of 
the left ventricle with deformable superquadrics. Medical Image Analysis, 1(2): 129—150, 
1996.

[Bardinet et a l, 1996b] E. Bardinet, L. Cohen, and N. Ayache. Tracking medical 3D data with 
a deformable parametric model. In B. Buxton and R. Cippola, editors. Computer Vision — 
Proc. 4th European Conference on Computer Vision (ECCV’96), volume 1064 o f Lecture 
Notes in Computer Science, pages 317—328. Springer Verlag, 1996.

[Barnsley, 1988] M. Barnsley. Fractals Everywhere. Academic Press, 1988.

[Bartels et a l, 1987] R. Bartels, J. Beatty, and B. Barsky. An Introduction to Splines fo r  Use in 
Computer Graphics and Geometric Modelling. Morgan Kauftnann, 1987.

[Bartels e ta l ,  1994] K.A. Bartels, A.C. Bovik, and C.E. Griffin. Spatio-temporal tracking of 
material shape change via multi-dimensional splines. In IEEE Workshop on Biomedical 
Image Analysis, pages 110-116. IEEE Computer Society Press, 1994.

[Bascle and Deriche, 1992] B. Bascle and R. Deriche. Features extraction using parametric 
snakes. In Proc. International Conference on Pattern Recognition ICPR ’92, volume III, 
Conference C: Image, Speech, and Signal Analysis, pages 659-662. IEEE Computer So­
ciety Press, 1992.

[Bascle and Deriche, 1993] B. Bascle and R. Deriche. Stereo matching, reconstruction and re­
finement of 3D curves using deformable contours. In Proc. 4th International Conference 
on Computer Vision (ICCV’93), pages 421-430. IEEE Computer Society Press, 1993.

[Bascle and Deriche, 1995] B. Bascle and R. Deriche. Region tracking through image se­
quences. In Proc. 5th International Conference on Computer Vision (ICCV’95), pages 
302—307. IEEE Computer Society Press, 1995.

[Baumberg and Hogg, 1995] A. Baumberg and D. Hogg. An adaptive eigenshape model. In
D. Pycock, editor, Proc. 6th British Machine Vision Conference (BMVC’95), volume 1, 
pages 87—96. BMVA, 1995.

[Berghohn, 1987] F. Bergholm. Edge focusing. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 9(6):726—741, 1987.

[Berkner, 1997a] K. Berkner. Reconstruction of self-similar functions from scale-space. In B. ter 
Haar Romeny, L. Florack, J. Koenderink, and M. Viergever, editors, Scale-Space’97 - 1st 
International Conference on Scale-Space Theory in Computer Vision, volume 1252 o f Lec­
ture Notes in Computer Science, pages 311—314. Springer Verlag, 1997.

[Berkner, 1997b] K. Berkner. A wavelet-based solution to the inverse problem for fractal inter­
polation functions. In J.L. Véhel, E. Lutton, and C. Tricot, editors. Fractals in Engineer­
ing’97, pages 81—92. Springer Verlag, 1997.

[Besag, 1986] J. Besag. On the statistical analysis of dirty pictures. Journal Royal Statistical 
Society B,A8{2>y.259-'i02, 1986.

[Besl and McKay, 1992] P. Besl and N. McKay. A method for registration of 3-D shapes. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 14:239—256, 1992.



Bibliography 281

[Blum and Nagel, 1978] H. Blum and R.N. Nagel. Shape description using weighted symmetric 
axis features. Pattern Recognition, 10:167-180, 1978.

[Blum, 1967] H. Blum. A transformation for extracting new descriptors of shape. In W. Wathen- 
Dunn, editor. Models for the perception o f speech and visual form, pages 362—380. MIT 
Press, 1967.

[Blum, 1973] H. Blum. Biological shape and visual science (Part I). Journal o f Theoretical 
Biology, 38:205-287, 1973.

[Bookstein and Green, 1992] F.L. Bookstein and W.D.K. Green. A feature space for edgels in 
images with landmarks. In D C. Wilson and J.N. Wilson, editors. Mathematical Methods 
in Medical Imaging 1992, volume 1768, pages 228—247. SPIE, 1992.

[Bookstein, 1989] F.L. Bookstein. Principal warps: Thin-plate splines and the decomposi­
tion of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 
ll(6):567-585, 1989.

[Bookstein, 1991a] F.L. Bookstein. Morphometric tools for landmark data : geometry and bi­
ology. Cambridge University Press, 1991.

[Bookstein, 1991b] F.L. Bookstein. Thin-plate splines and the atlas problem for biomedical im­
ages. In A.C.F. Colchester and D.J. Hawkes, editors. Information Processing in Medical 
Imaging: Proc. 12 th International Conference (IPMI’91), volume 511 of Lecture Notes in 
Computer Science, pages 326-342. Springer Verlag, 1991.

[Bookstein, 1996a] F.L. Bookstein. Applying landmark methods to biological outline data. In 
K.V. Mardia, C.A. Gill, and I.L. Dryden, editors, 16th Leeds Annual Statistical Research 
(LASR) Workshop: Image Fusion and Shape Variability Techniques, pages 59—70. Leeds 
University Press, 1996.

[Bookstein, 1996b] F.L. Bookstein. Visualizing group differences in outline shape: methods 
from biometrics and landmark points. In K.H. Hohne and R. Kikinis, editors, Proc. 4th In­
ternational Conference on Visualization in Biomedical Computing (VBC’96), volume 1131 
of Lecture Notes in Computer Science, pages 405-^10. Springer Verlag, 1996.

[Borgefors, 1986] G. Borgefors. Distance transformations in digital images. Computer Vision, 
Graphics, and Image Processing, 34:344—371, 1986.

[Borgefors, 1996] G. Borgefors. On digital image transforms in three dimensions. Computer 
Vision and Image Understanding, 64(3):368—376, 1996.

[Brammer and Bullmore, 1994] M. Brammer and E. Bullmore. Characterisation of cerebral 
grey/white matter boundaries in Magnetic Resonance Imaging scans using fractal dimen­
sion and radius of gyration. In K.V. Mardia and C.A. Gill, editors, 14th Leeds Annual Sta­
tistical Research (LASR) Workshop: Medical Imaging: Shape and Visualisation, page 10. 
University of Leeds, Department of Statistics and CoMIR, 1994.

[Brandt and Algazi, 1992] J.W Brandt and V.R. Algazi. Continuous skeleton computation by 
Voronoi diagram. Computer Vision, Graphics, and Image Processing: Image Understand­
ing, 55(3):329-338, 1992.

[Brechbühler eta l ,  1995] C. Brechbühler, G. Gerig, and O. Kübler. Parameterization of closed 
surfaces for 3D shape description. Computer Vision and Image Understanding, 61(2): 154— 
170, 1995.

[Brewer and Anderson, 1977] J.A. Brewer and D C. Anderson. Visual interaction with Over- 
hauser curves and surfaces. In Proc. SIGGRAPH’77, volume 11(2), pages 132—137. ACM, 
1977.



Bibliography 282

[Bronstein and Semendjajew, 1989] I.N. Bronstein and K.A. Semendjajew. Taschenbuch der 
Mathematik. Verlag Harri Deutsch, 1989.

[Bullmore e/a/., 1994] E. Bullmore, M. Brammer, I. Harvey, R. Presaud, R. Murray, and 
M. Ron. Fractal analysis of the boundary between white matter and cerebral cortex in 
magnetic resonance images: a controlled study of schizophrenic and manic-depressive pa­
tients. Psychological Medicine, 24(3):111—181, 1994.

[Bulpitt and EflFord, 1994] A.J. Bulpitt and N.D. Efford. Using 3D deformable models to recog­
nise anatomical structure. In 14th Leeds Annual Statistical Research (LASR) Workshop: 
Medical Imaging: Shape and Visualisation, page 3. University of Leeds, Department of 
Statistics and CoMIR, 1994.

[Bulpitt and Efford, 1995] A.J. Bulpitt and N.D. Efford. An efficient 3D deformable model with 
self-optimising topology. In D. Pycock, editor, Proc. 6th British Machine Vision Confe­
rence (BMVC’95), volume 1, pages 37-46. BMVA, 1995.

[Burbeck and Pizer, 1994] C.A. Burbeck and S.M. Pizer. Object representation by cores: Identi­
fying and representing primitive spatial regions. TR94-160, University of North Carolina 
at Chapel Hill, 1994.

[Canny, 1987] J. Canny. A computational approach to edge detection. IEEE Transactions on 
Pattern Analysis and Machine Intelligence, 8(6):679-698, 1987.

[Caselles et a l, 1993] V. Caselles, F. Catté, T. Coll, and F. Dibos. A geometric model for active 
contours in image processing. Numerische Mathematik, 66:1—31, 1993.

[Caselles eta l ,  1997] V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours. Inter­
national Journal o f Computer Vision, 22(1):61—79, 1997.

[Castellano Smith e ta l ,  1997] A.D. Castellano Smith, D.L.G. Hill, and D.H. Hawkes. Surface 
simplification and explicit surface shape measures applied to the human brain. In C.J. Tay­
lor, J.A. Noble, and J.M. Brady, editors, Proc. 1st Annual Conference on Medical Image 
Understanding and Analysis’97, pages 181—184. BMVA, 1997.

[Catmull and Rom, 1974] E. Catmull and R. Rom. A class of local interpolating splines. In 
R. Barnhill and R. Riesenfeld, editors. Computer Aided Geometric Design, pages 317—326. 
Academic Press, 1974.

[Catté et a l, 1992] F. Catté, P.-L. Lions, J.-M. Morel, and T. Coll. Image selective smoothing and 
edge detection by nonlinear diffusion. SIAM Journal on Numerical Analysis, 29(1): 182— 
193, 1992.

[Chakraborty and Duncan, 1995] A. Chakraborty and J. Duncan. Integration of boundary find­
ing and region-based segmentation using game theory. In Y. Bizais, C. Barillot, and R. Di­
Paola, editors. Information Processing in Medical Imaging: Proc. 14th International Con­
ference (IPMI’95), Computational Imaging and Vision, pages 189-200. Kluwer Academic 
Publishers, 1995.

[Chakraborty eta l ,  1996] A. Chakraborty, L.H. Staib, and J.S. Duncan. Deformable boundary 
finding in medical images by integrating gradient and region information. IEEE Transac­
tions on Medical Imaging, 15(6):859-870, 1996.

[Chalana and Kim, 1996] V. Chalana and Y. Kim. A methodology for evaluation of image seg­
mentation algorithms on medical images. In M.H. Loew and K.M. Hanson, editors, Proc. 
SPIE Medical Imaging 1996: Image Processing, volume 2710, pages 178—189. SPIE, 
1996.

[Chalana et a l, 1996] V. Chalana, D.T. Linker, D R. Haynor, and Y. Kim. A multiple active con­
tour model for cardiac boundary detection on echocardiographic sequences. IEEE Trans­
actions on Medical Imaging, 15(3):290-298, 1996.



Bibliography 283

[Cham and Cipolla, 1996] T.-J. Cham and R. Cipolla. Automated B-spline curve representation 
with MDL-based active contours. In R.B. Fisher and E. Trucco, editors, Proc. 7th British 
Machine Vision Conference (BMVC’96), volume I, pages 363—372. BMVA, 1996.

[Chen and Chin, 1993] M.-H. Chen and R.T. Chin. Partial smoothing splines for noisy bound­
aries with comers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 
15(11):12081216, 1993.

[Chen et a l, 1989] C.-C. Chen, J.S. DaPonte, and M.D. Fox. Fractal feature analysis and classi­
fication in medical images. IEEE Transactions on Medical Imaging, 8(2): 133—142, 1989.

[Chen, 1989] C.L. Chen. Computing the convex hull of a simple polygon. Pattern Recognition, 
22:561-565, 1989.

[Choy and Jin, 1996] M.M. Choy and J.S. Jin. Morphological image analysis of left-ventricular 
endocrdial borders in 2D echocardiograms. In M.H. Loew and K.M. Hanson, editors, Proc. 
SPIE Medical Imaging 1996: Image Processing, volume 2710, pages 852—862. SPIE,
1996.

[Christiansen and Sederberg, 1978] H.N. Christiansen and T.W. Sederberg. Conversion of com­
plex contour line definitions into polygonal element mosaics. In Proc. SIGGRAPH78, 
volume 12(3), pages 187-192. ACM, 1978.

[Cipolla and Blake, 1992] R. Cipolla and A. Blake. Surface shape Ifom the deformation of ap­
parent contours. International Journal o f Computer Vision, 9(2):83—112, 1992.

[Cohen and Cohen, 1993] L.D. Cohen and I. Cohen. Finite-element methods for active contour 
models and balloons for 2D and 3D images. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 15(11):1131—1147, 1993.

[Cohen and Wang, 1994] F.S. Cohen and J.-Y. Wang. Part I: Modeling image curves using in­
variant 3-D object curve models - a path to 3-D recognition and shape estimation from im­
age contours. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(1): 1— 
12, 1994.

[Cohen eta l ,  1992] I. Cohen, L.D. Cohen, and N. Ayache. Using deformable surfaces to seg­
ment 3-D images and infer differential structures. Computer Vision, Graphics, and Image 
Processing: Image Understanding, 56(2):242—263, 1992.

[Cohen, 1990] L.D. Cohen. Note on active contour models and balloons. Computer Vision, 
Graphics, and Image Processing: Image Understanding, 53(2):211—218, 1990.

[Cohen, 1995] L.D. Cohen. Méthodes variationelles pour le traitement d ’images. Habilita­
tion à diriger des recherches. Université Paris-IX Dauphine, U.F.R. Mathématiques de la 
décision, 1995.

[Collins et a l, 1995] D.L. Collins, A.C. Evans, C. Holmes, and T.M. Peters. Automatic 3D seg­
mentation of neuro-anatomical structures from MRI. In Y. Bizais, C. Barillot, and R. Di­
Paola, editors. Information Processing in Medical Imaging: Proc. 14th International Con­
ference (IPMI’95), Computational Imaging and Vision, pages 139-152. Kluwer Academic 
Publishers, 1995.

[Cook eta l ,  1995] M.J. Cook, S.L. Free, M.R.A. Manford, D.R. Fish, S.D. Shorvon, and J.M. 
Stevens. Fractal description of cerebral cortical patterns in frontal lobe epilepsy. European 
Neurology, 35:327—335, 1995.

[Cootes and Taylor, 1992] T.F. Cootes and C.J. Taylor. Active shape models - ’Smart Snakes’. In 
Proc. 3rd British Machine Vision Conference (BMVC’92), pages 266—275. Springer Ver­
lag, 1992.



Bibliography 284

[Cootes et al., 1992a] T.F. Cootes, D.H. Cooper, C.J. Taylor, and J. Graham. Trainable method 
of parametric shape description. Image and Vision Computing, 10(5):289-294, 1992.

[Cootes et a l, 1992b] T.F. Cootes, C.J. Taylor, D.H. Cooper, and J. Graham. Training models of 
shape from sets of examples. In Proc. 3rd British Machine Vision Conference (BMVC’92), 
pages 9-18. Springer Verlag, 1992.

[Cootes e ta l ,  1993] T.F. Cootes, A. Hill, C.J. Taylor, and J. Haslam. The use of active shape 
models for locating structures in medical imaging. In H.H. Barret and A.F. Gmitro, ed­
itors, Information Processing in Medical Imaging: Proc. 13th International Conference 
(IPMI’93), volume 687 of Lecture Notes in Computer Science, pages 33—47. Springer Ver­
lag, 1993.

[Cootes et a l, 1995] T.F. Cootes, C.J. Taylor, D.H. Cooper, and J. Graham. Active shape models 
- their training and application. Computer Vision and Image Understanding, 61(1):38—59,
1995.

[Cortelazzo e ta l ,  1996] G. Cortelazzo, G. Deretta, G.A. Mian, and P. Zamperoni. Normalized 
weighted Levensthein distance and triangle inequality in the context of similarity discrim­
ination of bilevel images. Pattern Recognition Letters, 17:431—436, 1996.

[Danielsson, 1980] RE. Danielsson. Euclidean distance mapping. Computer Graphics and Im­
age Processing, 14:227—248, 1980.

[Deanera/., 1996] D. Dean, P. Buckley, F. Bookstein, J. Kamath, D. Kwon, L. Friedman, and 
C. Lys. Three dimensional MR-based morphometric comparison of schizophrenic and 
normal cerebral ventricles. In K.H. Hohne and R. Kikinis, editors, Proc. 4th International 
Conference on Visualization in Biomedical Computing (VBC’96), volume 1131 o f Lecture 
Notes in Computer Science, pages 363—373. Springer Verlag, 1996.

[Delingette et a l, 1992] H. Delingette, M. Hebert, and K. Ikeuchi. Shape representation and im­
age segmentation using deformable surfaces. Image and Vision Computing, 10(3): 132— 
144, 1992.

[Duncanera/., 1991] J.S. Duncan, F.A. Lee, A.W.M. Smeulders, and B.L. Zaret. A bending 
energy model for measurement of cardiac shape deformity. IEEE Transactions on Medical 
Imaging, 10(3):307—320, 1991.

[Dyn et a l, 1983] N. Dyn, D. Levin, and S. Rippa. Surface interpolation and smoothing by thin 
plate splines. In C.K. Chui, L.L. Schumaker, and J.D. Ward, editors, Proc. International 
Symposium on Approximation Thory IV, pages 445—449. Academic Press, 1983.

[Eberly and Pizer, 1994] D. Eberly and S.M. Pizer. Ridge flow models for image segmentation. 
TR, University of North Carolina at Chapel Hill, 1994.

[Eberly et a l, 1993] D. Eberly, R. Gardner, B. Morse, and C. Scharlach. Ridges for image anal­
ysis. TR93-055, University of North Carolina at Chapel Hill, 1993.

[Eberly, 1994a] D.H. Eberly. Geometric Methods for Analysis o f  Ridges in N-Dimensional Im­
ages. PhD thesis. University of North Carolina at Chapel Hill, 1994.

[Eberly, 1994b] D.H. Eberly. The multiscale medial axis and its application in image registration. 
Pattern Recognition Letters, 15(5):445—452, 1994.

[Eberly, 1996] D.H. Eberly. Ridges in Image and Data Analysis, volume 7 of Computational 
Imaging and Vision. Kluwer Academic Publishers, 1996.

[Edwards eta l ,  1995] PJ. Edwards, D.L.G. Hill, J.A. Little, V.A.S. Sahni, and D.H. Hawkes. 
Medical image registration incorporating deformations. In D. Pycock, editor, Proc. 6th 
British Machine Vision Conference (BMVC’95), volume 2, pages 691—699. BMVA, 1995.



Bibliography 285

[Edwards et a l, 1997] P.J. Edwards, D.L.G. Hill, J.A. Little, and D.J. Hawkes. Deformation 
for image guided interventions using a three component tissue model. In J. Duncan and 
G. Gindi, editors. Information Processing in Medical Imaging: Proc. 15th International 
Conference (IPMI’97), volume 1230 of Lecture Notes in Computer Science, pages 218— 
231. Springer Verlag, 1997.

[Evans and Spruck, 1991] L. Evans and J. Spruck. Motion of level sets by mean curvature I. 
Journal o f Differential Geometry, 33:635—681, 1991.

[Farin, 1993] G. Farin. Curves and Surfaces for Computer Aided Geometric Design: A Practical 
Guide. Computer Science and Scientific Computing. Academic Press, third edition, 1993.

[Fidrich, 1997] M. Fidrich. Following feature lines across scale. In B. ter Haar Romeny, L. Flo­
rack, J. Koenderink, and M. Viergever, editors, Scale-Space ’97 - 1st International Confer­
ence on Scale-Space Theory in Computer Vision, volume 1252 of Lecture Notes in Com­
puter Science, pages 140-151. Springer Verlag, 1997.

[Florack e/a/., 1992] L.M.J. Florack, B.M. ter Haar Romeny, J.J. Koenderink, and M.A. 
Viergever. Scale and the differential structure of images. Image and Vision Computing, 
10(6):376-388, 1992.

[Florack e/a/., 1994] L.M.J. Florack, B.M. ter Haar Romeny, J.J. Koenderink, and M.A. 
Viergever. Linear scale-space. Journal o f Mathematical Imaging and Vision, 4(4):325— 
351, 1994.

[Florack, 1993] L.M.J. Florack. The Syntactical Structure o f Scalar Images. PhD thesis, Utrecht 
University, The Netherlands, 1993.

[Foley et a l, 1990] J.D. Foley, A. van Damm, S.K. Feiner, and J.F. Hughes. Computer Graphics 
- Principles and Practice. Addison Wesley, second edition, 1990.

[Fortineta/., 1992] C. Fortin, R. Kumaresan, W. Ohley, and S. Hoefer. Fractal dimension in 
the analysis of medical images. In B. Onaral and W. Ohley, editors. Fractals and Scaling 
Theory, volume 11(2), pages 65—71. IEEE Computer Society Press, 1992.

[Free et a/., 1997] S.L. Free, S.M. Sisodiya, M.J. Cook, D.R. Fish, and S.D. Shorvon. Three- 
dimensional fractal analysis of the white matter surface from magnetic resonance images 
of the human brain. Cerebral Cortex, 6(6):830-836, 1997.

[Freeman, 1974] H. Freeman. Computer processing of line drawing images. Computer Surveys, 
6:57-98, 1974.

[Friedland and Adam, 1989] N. Friedland and D. Adam. Automatic ventricular cavity boundary 
detection from sequential ultrasound images using simulated annealing. IEEE Transac­
tions on Medical Imaging, 8:344—353, 1989.

[Fritsch e ta l ,  1995] D.S. Fritsch, D. Eberly, S.M. Pizer, and M.J. McAuliflfe. Stimulated cores 
and their applications in medical imaging. TR, University of North Carolina at Chapel 
Hill, Dept, of Radiation Oncology, 1995.

[Fritsch, 1994] D.S. Fritsch. Cores for image registration. TR, University of North Carolina at 
Chapel Hill, 1994.

[Gage and Hamilton, 1986] M. Gage and R.S. Hamilton. The heat equation shrinking convex 
plane curves. Journal o f Differential Geometry, 23:69—96, 1986.

[Ge and Fitzpatrick, 1996] Y. Ge and J.M. Fitzpatrick. On the generation of skeletons from dis­
crete Euclidean distance maps. IEEE Transactions on Pattern Analysis and Machine In­
telligence, 18(11):1955-1066, 1996.



Bibliography 286

[Geman and Geman, 1984] S. Geman and D. Geman. Stochastic relaxation, Gibbs distribution, 
and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Ma­
chine Intelligence, 6:721—741, 1984.

[Gerig et a l, 1995] G. Gerig, G. Szekely, G. Israel, and M. Berger. Detection and characteriza­
tion of unsharp blobs by curve evolution. In Y. Bizais, C. Barillot, and R. DiPaola, ed­
itors, Information Processing in Medical Imaging: Proc. 14th International Conference 
(IPMI’95), Computational Imaging and Vision, pages 165—176. Kluwer Academic Pub­
lishers, 1995.

[Goldberg, 1989] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine 
Learning. Addison Wesley, 1989.

[Goldberger, 1992] A.L. Goldberger. Fractal mechanisms in the electrophysiology of the heart. 
In B. Onaral and W. Ohley, editors. Fractals and Scaling Theory, volume 11(2), pages 47- 
52. IEEE Computer Society Press, 1992.

[Goldman and Warren, 1993] R. Goldman and J. Warren. An extension of chaiken’s algorithm 
to B-spline curves with knots in geometric progression. Computer Vision, Graphics, and 
Image Processing: Graphical Models and Image Processing, 55(l):58-62, 1993.

[Graham and Yao, 1983] R.L. Graham and F.F. Yao. Finding the convex hull of a simple poly­
gon. Journal o f Algorithms, 4\324—33\, 1983.

[Graham, 1972] R.L. Graham. An efficient algorithm for determining the convex hull of a planar 
set. Information Processing Letters, 1:132—133, 1972.

[Griffin and Colchester, 1994] L.D. Griffin and A.C.F. Colchester. The intrinsic geometry of the 
cerebral cortex. Journal o f Theoretical Biology, 166:261—273, 1994.

[Griffin and Colchester, 1995] L.D. Griffin and A.C.F. Colchester. Superficial and deep structure 
in linear diffusion scale space: critical points, isophotes and séparatrices. Image and Vision 
Computing, 13(7):543—557, 1995.

[Griffin, 1995] L.D. Griffin. Description o f image structure. PhD thesis. University of London,
1995.

[Grzeszczuk and Levin, 1994] R. Grzeszczuk and D.N. Levin. Brownian strings: segmenting 
images with stochastically deformable contours. In R.A. Robb, editor, Proc. 3rd Inter­
national Conference on Visualization in Biomedical Computing (VBC’94), volume 2359, 
pages 72-89. SPIE, 1994.

[Harvey et a l, 1997] R. Harvey, J.A. Bangham, and A. Bosson. Scale-space filters and their ro­
bustness. In B. ter Haar Romeny, L. Florack, J. Koenderink, and M. Viergever, editors, 
Scale-Space’97 - 1st International Conference on Scale-Space Theory in Computer Vi­
sion, volume 1252 o f Lecture Notes in Computer Science, pages 341—344. Springer Verlag,
1997.

[Heap and Hogg, 1995] T. Heap and D. Hogg. Automated pivot location for the cartesian-polar 
hybrid point distribution model. In D. Pycock, editor, Proc. 6th British Machine Vision 
Conference (BMVC’95), volume 1, pages 97—106. BMVA, 1995.

[Horn and Schunk, 1981] B.K.P. Horn and B.G. Schunk. Determining optic flow. Artificial In­
telligence, 17:185—203, 1981.

[Hough, 1962] P.VC. Hough. Method and means for recognizing complex patterns. U.S. Patent 
No. 3069654, 1962.

[Howell et a l, 1993] G.W. Howell, D.W. Fausett, and L.V Fausett. Quasi-circular splines: A 
shape-preserving approximation. Computer Vision, Graphics, and Image Processing: 
Graphical Models and Image Processing, 55(2):89—97, 1993.



Bibliography 287

[Hu, 1962] M.K. Hu. Visual pattern recognition by moment invariants. IRE Transactions on 
Information Theory, IT-8:179—187, 1962.

[Hussain, 1988] Z. Hussain. A fast approximation to a convex hull. Pattern Recognition Letters, 
8:289-294, 1988.

[Huttenlocher e ta l ,  1993] D.R Huttenlocher, G.A. Klanderman, and W.J. Rucklidge. Compar­
ing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Ma­
chine Intelligence, 15(9):850-863, 1993.

[Ivins and Porrill, 1993a] J. Ivins and J. Porrill. Everything you always wanted to know about 
snakes (but were afraid to ask). AIVRU Technical Memo 86, University of Sheffield, 1993.

[Ivins and Porrill, 1993b] J. Ivins and J. Porrill. Statistical snakes: active region models. AIVRU 
Technical Memo 89, University of Sheffield, 1993.

[Ivins and Porrill, 1994a] J. Ivins and J. Porrill. Statistical Snakes: Active Region Models. In
E.R. Hancock, editor, Proc. 5th British Machine Vision Conference (BMVC’94), volume 
1-2, pages 377-386. BMVA, 1994.

[Ivins and Porrill, 1994b] J. Ivins and J. Porrill. Statistical snakes II: mathematical notes on ac­
tive region models. AIVRU Technical Memo 92, University of Sheffield, 1994.

[Jackway and Deriche, 1996] P.T. Jackway and M. Deriche. Scale-space properties of the multi­
scale morphological erosion. IEEE Transactions on Pattern Analysis and Machine Intel­
ligence, 18(1):38-51, 1996.

[Jackway, 1996] P.T. Jackway. Gradient watersheds in morphological scale-space. IEEE Trans­
actions on Image Processing, 5(6):913—937, 1996.

[Kapur et a l, 1996] T. Kapur, W.E.L. Grimson, W.M. Wells III, and R. Kikinis. Segmentation 
of brain tissue from magnetic resoncance images. Medical Image Analysis, 1(2): 109—128,
1996.

[Kass et a l, 1987a] M. Kass, A. Witkin, and D. Terzopoulos. Snakes - active contour models. 
International Journal o f Computer Vision, 1(4):321—331, 1987.

[Kass et a l, 1987b] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. In 
Proc. I St International Conference on Computer Vision (ICCV’87), pages 259—268. IEEE 
Computer Society Press, 1987.

[Kellerera/., 1989] J.M. Keller, S. Chen, and R.M. Crownover. Texture description and seg­
mentation through fractal geometry. Computer Vision, Graphics, and Image Processing, 
45:150-166, 1989.

[Kimia and Siddiqi, 1996] B.B. Kimia and K. Siddiqi. Geometric heat equation and nonlinear 
diffusion of shapes and images. Computer Vision and Image Understanding, 64(3):305— 
322, 1996.

[Kimia etal ,  1995] B.B. Kimia, A.R. Tannenbaum, and S.W. Zucker. Shapes, shocks, and de­
formations I: The components of two-dimensional shape and the reaction-diffusion space. 
InternationalJournal o f Computer Vision, 15:189—224, 1995.

[Koenderink and van Doom, 1990] J.J. Koenderink and A.J. van Doom. Receptive-field fami­
lies. Biological Cybernetics, 63(4):291—297, 1990.

[Koenderink, 1984] J.J. Koenderink. The stmcture of images. Biological Cybernetics, 50:363— 
370, 1984.

[Koenderink, 1990] J.J. Koenderink. Solid Shape. The MIT Press, 1990.

[Koster era/., 1996] A.S.E. Koster, K.L. Vincken, C. De Graaf, O.C. Zander, and M.A. 
Viergever. Heuristic linking models in multiscale image segmentation. Computer Vision 
and Image Understanding, 64(3):382-402, 1996.



Bibliography 288

[Koster, 1995] A.S.E. Koster. Linking models fo r multiscale image segmentation. PhD thesis, 
Utrecht University, The Netherlands, 1995.

[Leavers, 1992] V.F. Leavers. Shape detection in computer vision using the Hough transform. 
Springer Verlag, 1992.

[LeGoualher et a l, 1996] G. LeGoualher, C. Barillot, Y.J. Bizais, and J.-M. Scarabin. Three-di­
mensional segmentation of cortical sulci using active models. In M.H. Loew and K.M. 
Hanson, editors, Proc. SPIE Medical Imaging 1996: Image Processing, volume 2710, 
pages 254—263. SPIE, 1996.

[Leitner et a l, 1990] F. Leitner, I. Marque, S. Lavallée, and P. Cinquin. Dynamic segmentation: 
finding the edge with snake splines. In International Conference on Curves and Surfaces 
(ICCS). Academic Press, 1990.

[Lepard and Robb, 1996] K.O. Lepard and R.A. Robb. Shape-based segmentation and charac­
terization of biomedical images. In M.H. Loew and K.M. Hanson, editors, Proc. SPIE 
Medical Imaging 1996: Image Processing, volume 2710, pages 232—242. SPIE, 1996.

[Lester and Arridge, 1997] H. Lester and S.R. Arridge. Summarising fluid registration by thin- 
plate spline warps with many landmarks. In C.J. Taylor, J.A. Noble, and J.M. Brady, 
editors, Proc. 1st Annual Conference on Medical Image Understanding and Analysis'97, 
pages 53-56. BMVA, 1997.

[Levoy, 1989] M. Levoy. Display o f surfaces from volume data. PhD thesis. University of North 
Carolina at Chapel Hill, 1989.

[Lifshitz and Pizer, 1990] L.M. Lifshitz and S.M. Pizer. A multiresolution hierarchical approach 
to image segmentation based on intensity extrema. IEEE Transactions on Pattern Analysis 
and Machine Intelligence, 12(6):529—540, 1990.

[Lindeberg, 1993a] T. Lindeberg. Detecting salient blob-like image structures and their scales 
with a scale-space primal sketch - a method for focus-of-attention. International Journal 
o f Computer Vision, 11(3):283—318, 1993.

[Lindeberg, 1993b] T. Lindeberg. On scale selection for differential operators. \n 8th Scandina­
vian Conference on Image Analysis, pages 857—866, 1993.

[Lindeberg, 1994] T. Lindeberg. Scale-space theory in computer vision, volume 256 of Engi­
neering and Computer Science. Kluwer Academic Publishers, 1994.

[Little a/., 1996] J.A. Little, D.L.G. Hill, and D.H. Hawkes. Constraining rigid structures 
within a landmark based registration. In K.V. Mardia, C.A. Gill, and I.L. Dryden, edi­
tors, 16th Leeds Annual Statistical Research (LASR) Workshop: Image Fusion and Shape 
Variability Techniques, pages 170-177. Leeds University Press, 1996.

[Lobregt and Viergever, 1995] S. Lobregt and M.A. Viergever. A discrete dynamic contour 
model. IEEE Transactions on Medical Imaging, 14(1): 12—24, 1995.

[Losseff et a l, 1996a] N.A. Losseff, W.I. MacDonald, D.H. Miller, and A.J. Thompson. Spinal- 
cord atrophy - a sensitive and reproducible measure of disease progression in Multiple- 
Sclerosis. Neurology, A6{2):10d0\, 1996.

[Losseff et a l, 1996b] N.A. Losseff, S.L. Webb, J.L O’Riordan, R. Page, L. Wang, G.J. Barker, 
P S. Tofts, W.I. MacDonald, D.H. Miller, and A.J. Thompson. Spinal cord atrophy and dis­
ability in Multiple-Sclerosis: a new reproducible and sensitive MRI method with potential 
to monitor disease progression. Brain, 119(3):701—708, 1996.

[Ma and Manjunath, 1997] W.Y. Ma and B.S. Manjunath. Edge flow: a ffamwework of bound­
ary detection and image segmentation. In Proc. Conference on Computer Vision and Pat­
tern Recognition (CVPR ’97), pages 744—749. IEEE Computer Society Press, 1997.



Bibliography 289

[Maes etal., 1995] F. Maes, D. Vandeimeulen, P. Suetens, and G. Marchai. Automatic image 
partitioning for generic object segmentation in medical images. In Y. Bizais, C. Barillot, 
and R. DiPaola, editors. Information Processing in Medical Imaging: Proc. 14th Interna­
tional Conference (IPMI’95), Computational Imaging and Vision, pages 215—226. Kluwer 
Academic Publishers, 1995.

[Maintz et al., 1996a] J.B.A. Maintz, P.A. van den Elsen, and M.A. Viergever. Comparison of 
edge-based and ridge-based registration of CT and MR brain images. Medical Image Anal­
ysis, 1(2):151-161, 1996.

[Maintzeta l ,  1996b] J.B.A. Maintz, P.A. van den Elsen, and M.A. Viergever. Evaluation of 
ridge seeking operators for multimodality medical image matching. IEEE Transactions 
on Pattern Analysis and Machine Intelligence, 18(4):353—365, 1996.

[Maintz, 1996] J.B.A. Maintz. Restrospective registration o f tomographic images. PhD thesis, 
Utrecht University, The Netherlands, 1996.

[Malladi etal ,  1995] R. Malladi, J.A. Sethian, and B.C. Vemuri. Shape modeling with front 
propagation: a level set approach. IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 17(2): 153-175, 1995.

[Malladi e/a/., 1996] R. Malladi, R. Kimmel, D. Adalseinssohn, G. Sapiro, V. Caselles, and 
J.A. Sethian. A geometric approach to segmentation and analysis of 3D medical images. 
In Proc. IEEE Workshop on Mathematical Methods in Biomedical Image Analysis MM- 
BIA ’96. IEEE Computer Society Press, 1996.

[Mandelbrot, 1982] B.B. Mandelbrot. The Fractal Geometry o f Nature. W.H. Freeman and Co., 
1982.

[Maragos, 1996] P. Maragos. Differential morphology in image processing. IEEE Transactions 
on Image Processing, 5(6):822—937, 1996.

[Marr and Hildreth, 1980] D. Marr and E. Hildreth. A theory of edge detection. In Royal Society, 
volume B221, pages 187—217, 1980.

[Marr, 1982] D. Marr. Vision: a computational investigation into the human representation and 
processing o f visual information. W.H. Freeman and Co., 1982.

[McAuliffe eta l ,  1996] M.J. McAuliffe, D. Eberly, D.S. Fritsch, E.L. Chaney, and S.M. Pizer. 
Scale-space boundary evolution initialized by cores. In K.H. Hohne and R. Kikinis, editors, 
Proc. 4th International Conference on Visualization in Biomedical Computing (VBC’96), 
volume 1131 of Lecture Notes in Computer Science, pages 173—182. Springer Verlag,
1996.

[Mclnemey and Terzopoulos, 1995a] T. Mclnemey and D. Terzopoulos. A dynamic finite el­
ement surface model for segmentation and tracking in multidimensional medical images 
with application to cardiac 4D image analysis. IEEE Transactions on Computerized Med­
ical Imaging and Graphics, 19(l):69-83, 1995.

[Mclnemey and Terzopoulos, 1995b] T. Mclnemey and D. Terzopoulos. Medical image analysis 
with topologically adaptive snakes. In Proc. First International Conference on Computer 
Vision, Virtual Reality and Robotics in Medicine (CVRMed’95), 1995.

[Mclnemey and Terzopoulos, 1995c] T. Mclnemey and D. Terzopoulos. Topologically adapt­
able snakes. In Proc. 5th International Conference on Computer Vision (ICCV’95), pages 
840-845. IEEE Computer Society Press, 1995.

[Mclnemey and Terzopoulos, 1996] T. Mclnemey and D. Terzopoulos. Deformable models in 
medical image analysis: A survey. Medical Image Analysis, 1(2):91-108, 1996.



Bibliography 290

[McQueen and Toussaint, 1985] M.M, McQueen and G.T. Toussaint. On the ultimate convex 
hull algorithm in practice. Pattern Recognition Letters, 3:29—34, 1985.

[Meencke, 1994] H.J. Meencke. Minimal developmental disturbances in epilepsy and MRI. In 
S.D. Shorvon et al., editor. Advanced MR and Epilepsy. Pergamon Press, 1994.

[Menete/a/., 1990a] S. Menet, P. Saint-Marc, and G. Medioni. Active contour models - 
overview, implementation and applications. In IEEE International Conference on Systems, 
Man, and Cybernetics, pages 194-199, 1990.

[Menetetal ,  1990b] S. Menet, P. Saint-Marc, and G. Medioni. B-snakes: implementation and 
application to stereo. In DARPA Image Understanding Workshop, 1990.

[Miller et a l, 1991] J.V. Miller, D.E. Breen, W.E. Lorensen, R.M. O'Bara, and M.J. Wozny. Ge­
ometrically deformed models: A method for extracting closed geometric models from vol­
ume data. In T.W. Sederberg, editor, Proc. SIGGRAPH'9I, volume 25(4), pages 217—226. 
ACM, 1991.

[Mokhtarian and Mackworth, 1986] F. Mokhtarian and A.K. Mackworth. Scale-based descrip­
tion and recognition of planar curves and two-dimensional shapes. IEEE Transactions on 
Pattern Analysis and Machine Intelligence, 8(l):34-43, 1986.

[Mokhtarian and Mackworth, 1992] F. Mokhtarian and A.K. Mackworth. A theory of multi­
scale, curvature-based shape representation for planar curves. IEEE Transactions on Pat­
tern Analysis and Machine Intelligence, 14(8):789-805, 1992.

[Mokhtarian e ta l ,  1996] F. Mokhtarian, S. Abbasi, and J. Kittler. Robust and effcient shape 
indexing through curvature scale space. In R.B. Fisher and E. Trucco, editors, Proc. 7th 
British Machine Vision Conference (BMVC’96), volume I, pages 53-62. BMVA, 1996.

[Mokhtarian, 1995a] F. Mokhtarian. Convergence properties of curvature scale space represen­
tations. In D. Pycock, editor, Proc. 6th British Machine Vision Conference (BMVC’95), 
volume 1, pages 357-366. BMVA, 1995.

[Mokhtarian, 1995b] F. Mokhtarian. Silhouette-based isolated object recognition through cur­
vature scale space. IEEE Transactions on Pattern Analysis and Machine Intelligence, 
17(5):539-544, 1995.

[Mokhtarian, 1996] F. Mokhtarian. Silhouette-based object recognition with occlusion through 
curvature scale space. InB. Buxton andR. Cippola, editors. Computer Vision—Proc. 4th 
European Conference on Computer Vision (ECCV’96), volume 1064 of Lecture Notes in 
Computer Science, pages 566-578. Springer Verlag, 1996.

[Mokhtarian, 1997a] F. Mokhtarian. Multi-scale contour segmentation. In B. ter Haar Romeny, 
L. Florack, J. Koenderink, and M. Viergever, editors, Scale-Space’97 - 1st International 
Conference on Scale-Space Theory in Computer Vision, volume 1252 o f Lecture Notes in 
Computer Science, pages 296-307. Springer Verlag, 1997.

[Mokhtarian, 1997b] F. Mokhtarian. A theory of multiscale, torsion-based shape representation 
for space curves. Computer Vision and Image Understanding, 68(1): 1—17, 1997.

[Morse, 1994] B.S. Morse. Computation o f Object Cores from Grey-Level Images. PhD thesis. 
University of North Carolina at Chapel Hill, 1994.

[Nair and Saunders (Jr.), 1996] P.S. Nair and A.T. Saunders (Jr.). Hough based ellipse detection 
algorithm. Pattern Recognition Letters, 17:777—784, 1996.

[Najman and Schmitt, 1996] L. Najman and M. Schmitt. Geodesic saliency of watershed con­
tours and hierarchical segmentation. IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 18(12): 1163-1173, 1996.



Bibliography 291

[Nastar and Ayache, 1994] C, Nastar and N. Ayache. Classification of nonrigid motion in 3D 
images using physics-based vibration analysis. In IEEE Workshop on Biomedical Image 
Analysis, pages 61-69. IEEE Computer Society Press, 1994.

[Niessen et al., 1996] W.J. Niessen, K.L. Vincken, and M.A. Viergever. Comparison of multi­
scale representations for a linking-based image segmentation model. In Proc. IEEE Work­
shop on Mathematical Methods in Biomedical Image Analysis MMBIA '96, pages 263—272. 
IEEE Computer Society Press, 1996.

[Niessen et a l, 1997] W.J. Niessen, B.M. ter Haar Romeny, L.M.J. Florack, and M.A. Viergever. 
A general framework for geometry-driven diffusion equations. International Journal o f  
Computer Vision, 21(3): 187—205, 1997.

[Niessen, 1997] W.J. Niessen. Multiscale Medical Image Analysis. PhD thesis, Utrecht Univer­
sity, The Netherlands, 1997.

[Ogniewicz, 1994] R.L. Ogniewicz. Skeleton-space: a multiscale shape description combining 
region and boundary information. In Proc. Conference on Computer Vision and Pattern 
Recognition (CVPR’94), pages 746-751. IEEE Computer Society Press, 1994.

[O’Rourke, 1986] J. O’Rourke. The signature of a plane curve. SIAM Journal on Computing, 
15:34-51, 1986.

[Papoulis, 1965] A. Papoulis. Probability, random variables, and stochastic processes. 
McGraw-Hill, 1965.

[Park and Lee, 1996] K.-R. Park and C.-N. Lee. Scale-space using mathematical morphol­
ogy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18( 11 ): 1121—1126,
1996.

[Parker er a/., 1998] G.J.M. Parker, J.A. Schnabel, and G.J. Barker. Identification of spatially 
random signal intensity using Approximate Entropy (ApEn) - a method for image noise 
reduction. In Proc. 6th Meeting o f the International Society for Magnetic Resonance in 
Medicine, page 2083, 1998. To appear.

[Pavlidis, 1977] T. Pavlidis. Polygonal approximations by Newton’s method. IEEE Transactions 
on Computing, 0-26:800-807, 1977.

[Peleg et a l, 1994] S. Peleg, J. Naor, R. Hartley, and D. Avnir. Multiple resolution texture anal­
ysis and classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 
6(4):518-523, 1994.

[Penn and Loew, 1996] A.I. Penn and M.H. Loew. Estimating fractal dimension of medical im­
ages. In M.H. Loew and K.M. Hanson, editors, Proc. SPIE Medical Imaging 1996: Image 
Processing, volume 2710, pages 840-851. SPIE, 1996.

[Pentland, 1984] A.P. Pentland. Fractal-based description of natural scenes. IEEE Transactions 
on Pattern Analysis and Machine Intelligence, 6(6):661—674, 1984.

[Perona and Malik, 1990] P. Perona and J. Malik. Scale-space and edge detection using 
anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 
12(7):629-639, 1990.

[Persoon and Fu, 1986] E. Persoon and K.-S. Fu. Shape discrimination using fourier descriptors. 
IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(3):388—397, 1986.

[Phillips and Rosenfeld, 1987] T. Y. Phillips and A. Rosenfeld. A method of curve partitioning 
using arc-chord distance. Pattern Recognition Letters, 5:285-288, 1987.

[Poon et a l, 1994a] C.S. Poon, M. Braun, R. Fahrig, and A. Ginige. A multi-feature integrated 
approach to MR image segmentation. In Proc. Society o f Magnetic Resonance (SMR '94), 
page 61, 1994.



Bibliography 292

[Poon et a l, 1994b] C.S. Poon, M. Braun, R. Fahrig, A. Ginige, and A. Dorrell. Segmentation of 
medical images using an active contour model incorporating region-based image features. 
In R.A. Robb, editor, Proc. 3rd International Conference on Visualization in Biomedical 
Computing (VBC’94), volume 2359, pages 90-97. SPIE, 1994.

[Press a/., 1992] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. 
Flannery. Numerical Recipes in C - The Art o f Scientific Programming. Bridge, second 
edition, 1992.

[Prokop and Reeves, 1992] R.J. Prokop and A.P. Reeves. A survey of moment-based techniques 
for unoccluded object representation and recognition. Computer Vision, Graphics, and 
Image Processing: Graphical Models and Image Processing, 54(5):438—460, 1992.

[Rattarangsi and Chin, 1992] A. Rattarangsi and R.T. Chin. Scale-based detection of comers 
of planar curves. IEEE Transactions on Pattern Analysis and Machine Intelligence, 
14(4):430-449, 1992.

[Reinhardt and Higgins, 1996] J. M. Reinhardt and W. E. Higgins. Comparison between the mor­
phological skeleton and morphological shape decomposition. IEEE Transactions on Pat­
tern Analysis and Machine Intelligence, 18(9):951—957, 1996.

[Rougon and Prêteux, 1993a] N. Rougon and F. Prêteux. Directional adaptive deformable mod­
els for segmentation with application to 2D and 3D medical images. Technical report, 
Télécom Paris, Département Images, 1993.

[Rougon and Prêteux, 1993b] N.F. Rougon and F. Prêteux. Directional adaptive deformable 
models for segmentation with application to 2D and 3D medical images. In M.H. Loew, 
editor, Proc. SPIE Medical Imaging 1993: Image Processing, volume 1898, pages 193— 
207. SPIE, 1993.

[Rougon, 1993] N. Rougon. On mathematical foundations of local deformations analysis. In 
J.N. Wilson and D C. Wilson, editors, Proc. Mathematical Methods in Medical Imaging 
II, volume 2035, pages 2-13. SPIE, 1993.

[Rueckert and Burger, 1995a] D. Rueckert and P. Burger. Contour fitting using an adaptive spline 
model. In D. Pycock, editor, Proc. 6th British Machine Vision Conference (BMVC’95), 
volume 1, pages 207—216. BMVA, 1995.

[Rueckert and Burger, 1995b] D. Rueckert and P. Burger. Contour fitting using stochastic and 
probabilistic relaxation for cine MR images. In H.U. Lemke, K. Inamura, C.C. Jalfe, and 
R. Felix, editors, Proc. Computer Assisted Radiology (CAR ’95), pages 137—142. Springer 
Verlag, 1995.

[Rueckert and Burger, 1997] D. Rueckert and P. Burger. Geometrically deformable templates 
for shape-based segmentation and tracking in cardiac MR images. In Proc. International 
Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition 
(EMMCVPR’97), Lecture Notes in Computer Science. Springer Verlag, 1997.

[Rueckert eta l ,  1997] D. Rueckert, P. Burger, S. M. Forbat, R. D. Mohiaddin, and G. Z. Yang. 
Automatic tracking of the aorta in cardiovascular MR images using deformable models. 
IEEE Transactions on Medical Imaging, 16(5):581—590, 1997.

[Rueckert, 1993] D. Rueckert. Bildsegmentiemng durch stochastisch optimierte Relaxation 
eines geometric deformable models. Diplomarbeit (MSc. thesis), Technische Universitat 
Berlin, FG Computer Graphics, FB Computer Science, 1993.

[Ruff et a l, 1996] C.F. Ruff, A. Bhalerao, S.W. Hughes, T.J. D’Arcy, and D.J. Hawkes. The es­
timation of fetal organ volume using statistical shape analysis. In H.U. Lemke, M.W. Van­
nier, K. Inamura, and A.G. Farman, editors, Proc. Computer Assisted Radiology (CAR ’96), 
pages 280-285. Elsevier Publishers, 1996.



Bibliography 293

[Saint-Exupéry, 1946] A. de Saint-Exupéry. Le Petit Prince. Gallimard, 1946.

[Saint-Marc et a l, 1991] P. Saint-Marc, J.S. Chen, and G. Medioni. Adaptive smoothing - a gen­
eral tool for early vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 
13(6):514^529, 1991.

[Saint-Marc eta l ,  1993] P. Saint-Marc, H. Rom, and G. Medioni. B-spline contour representa­
tion and symmetry detection. IEEE Transactions on Pattern Analysis and Machine Intel­
ligence, 15(11):1191-1197, 1993.

[Sakar and Chaudhuri, 1992] N. Sakar and B.B. Chaudhuri. An efficient approach to estimate 
fractal dimension of textural images. Pattern Recognition, 25(9): 1035-1041, 1992.

[Samadani, 1991] R. Samadani. Adaptive snakes: control of damping and material parameters. 
In C. Vemuri, editor, Proc. SPIE on Geometric Models in Computer Vision, volume 1570, 
pages 202-213. SPIE, 1991.

[Samarabandu e ta l ,  1993] J. Samarabandu, R. Acharya, E. Hausmann, and K. Allen. Analy­
sis of bone X-rays using morphological fractals. IEEE Transactions on Medical Imaging, 
12(3):466-470, 1993.

[Sanchez-Ortiz et a l, 1996a] G.I. Sanchez-Ortiz, D. Rueckert, and P. Burger. Knowledge-based 
anisotropic diffusion of vector-valued 4-dimensional cardiac MR images. In R.B. Fisher 
and E. Trucco, editors, Proc. 7th British Machine Vision Conference (BMVC’96), vol­
ume 2, pages 605-614. BMVA, 1996.

[Sanchez-Ortiz et a l, 1996b] G.I. Sanchez-Ortiz, D. Rueckert, and P. Burger. Motion and defor­
mation analysis of the heart using thin-plate splines and density and velocity encoded MR 
images. In K.V. Mardia, C.A. Gill, and I.L. Dryden, editors, 16th Leeds Annual Statisti­
cal Research (LASR) Workshop: Image Fusion and Shape Variability Techniques, pages 
71-78. Leeds University Press, 1996.

[Sanchez-Ortiz eta l ,  1997] G.I. Sanchez-Ortiz, D. Rueckert, and P. Burger. Knowledge-based 
anisotropic diffusion of cardiac cine MR images. In C.J. Taylor, J.A. Noble, and J.M. 
Brady, editors, Proc. 1st Annual Conference on Medical Image Understanding and Anal­
ysis’97, pages 89-96. BMVA, 1997.

[Sapiro and Ringach, 1996] G. Sapiro and D.L. Ringach. Anisotropic diffusion of multival­
ued images with applications to color filtering. IEEE Transactions on Image Processing, 
5(11):1582-1586, 1996.

[Sapiro and Tannenbaum, 1993] G. Sapiro and A. Tannenbaum. Affine invariant scale-space. 
InternationalJournal o f Computer Vision, ll(l):25-44, 1993.

[Schnabel and Arridge, 1995] J.A. Schnabel and S.R. Arridge. Active contour models for shape 
description using multi-scale differential invariants. In D. Pycock, editor, Proc. 6th British 
Machine Vision Conference (BMVC’95), volume 1, pages 197—206. BMVA, 1995.

[Schnabel and Arridge, 1996a] J.A. Schnabel and S.R. Arridge. Hierarchical shape description 
of MR brain images based on active contour models and multi-scale differential invariants. 
In K.V. Mardia, C.A. Gill, and I.L. Dryden, editors, 16th Leeds Annual Statistical Research 
(LASR) Workshop: Image Fusion and Shape Variability Techniques, pages 36-^3. Leeds 
University Press, 1996.

[Schnabel and Arridge, 1996b] J.A. Schnabel and S.R. Arridge. Multi-scale shape description 
of MR brain images using active contour models. In M.H. Loew and K.M. Hanson, edi­
tors, Proc. SPIE Medical Imaging 1996: Image Processing, volume 2710, pages 596-606. 
SPIE, 1996.

[Schnabel and Arridge, 1996c] J.A. Schnabel and S.R. Arridge. A multi-scale shape descrip­
tion tool for 3D MR brain images. In H.U. Lemke, M.W. Vannier, K. Inamura, and A.G.



Bibliography 294

Farman, editors, Proc. Computer Assisted Radiology (CAR’96), pages 292—297, Elsevier 
Publishers, 1996.

[Schnabel and Arridge, 1997a] J.A, Schnabel and S.R. Arridge. Active shape focusing. In C. Ar- 
celli, L.P. Cordelia, and G. Sanniti di Baja (eds.), editors. Advances in Visual Form Analysis 
- Third International Workshop on Visual Form, pages 492—501. World Scientific, 1997.

[Schnabel and Arridge, 1997b] J.A. Schnabel and S.R. Arridge. Active shape focusing. Image 
and Vision Computing, 1997. Special issue of the 3rd International Workshop on Visual 
Form, 28-30 May 1997, Capri, Italy. Invited paper for submission. Submitted.

[Schnabel and Arridge, 1997c] J.A. Schnabel and S.R. Arridge. Multi-scale active shape de­
scription. In B. ter Haar Romeny, L. Florack, J. Koenderink, and M. Viergever, editors, 
Scale-Space ’97 - 1st International Conference on Scale-Space Theory in Computer Vi­
sion, volume 1252 o f Lecture Notes in Computer Science, pages 337—340. Springer Verlag,
1997.

[Schnabel and Arridge, 1997d] J.A. Schnabel and S.R. Arridge. Multi-scale shape description 
in medical imaging. In C.J. Taylor, J.A. Noble, and J.M. Brady, editors, Proc. 1st Annual 
Conference on Medical Image Understanding and Analysis’97, pages 141—144. BMVA,
1997.

[Schnabel etal ,  1995] J.A. Schnabel, L. Wang, D. Rueckert, and S.R. Arridge. Fractal feature 
analysis and classification of MS lesions. In H.U. Lemke, K. Inamura, C.C. Jaffe, and M.V. 
Vannier, editors, Proc. Computer Assisted Radiology (CAR ’95), pages 260—265. Springer 
Verlag, 1995.

[Schnabel etal ,  1996] J.A. Schnabel, L. Wang, and S.R. Arridge. Shape description of spinal 
cord atrophy in MS patients. In H.U. Lemke, M.W. Vannier, K. Inamura, and A.G. Farman, 
editors, Proc. Computer Assisted Radiology (CAR’96), pages 286-291. Elsevier Publish­
ers, 1996.

[Schnabel, 1993a] J.A. Schnabel. Die lokale ffaktale Dimension als Segmentierungsmerkmal: 
Realisation und Evaluierung von regionen- und graph-orientierten kantenbasierten Ver- 
fahren. Diplomarbeit (MSc. thesis), FG Computer Graphics, FB Computer Science, Tech­
nische Universitat Berlin, 1993.

[Schnabel, 1993b] J.A. Schnabel. Kantenverstarkung durch Auswertung der lokalen ffaktalen 
Dimension eines Bildes. Studienarbeit (First thesis), FG Computer Graphics, FB Com­
puter Science, Technische Universitat Berlin, 1993.

[Schnabel, 1994] J.A. Schnabel. Edge detection using the local fractal dimension. In K.V. Mardia 
and C.A. Gill, editors, 14th Leeds Annual Statistical Research (LASR) Workshop: Medi­
cal Imaging: Shape and Visualisation, pages 20-21. University of Leeds, Department of 
Statistics and CoMIR, 1994.

[Schnabel, 1995] J.A. Schnabel. Shape description methods for medical images. Technical re­
port TR/95/12, Department of Computer Science, University College London, 1995.

[Schroederera/., 1997] W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit. 
Prentice Hall, second edition, 1997.

[Sclaroff, 1995] S.E. Sclaroff. Modal matching: a method for describing, comparing, and ma­
nipulating digital signals. PhD thesis, Massachusetts Institute of Technology, 1995.

[Sethian, 1996] J.A. Sethian. Level Set Methods: Evolving Interfaces in Geometry, Fluid Me­
chanics, Computer Vision, and Materials Science. Cambridge Monograph on Applied and 
Computational Mathematics. Cambridge University Press, 1996.



Bibliography 295

[Sheehy et a i, 1996] D.J. Sheehy, C.G. Armstrong, and D.J. Robinson. Shape description by 
medial surface construction. IEEE Transactions on Visualization and Computer Graphics, 
2(l):62-72, 1996.

[Sherbrooke et a l, 1996] B.C. Sherbrooke, N.M. Patrikalakis, and E. Brisson. An algorithm for 
medial axis transform of 3D polyhedral solids. IEEE Transactions on Visualization and 
Computer Graphics, 2(1):45—59, 1996.

[Simmons, 1992] A. Simmons. Segmentation o f Neuroanatomy in Magnetic Resonance Images. 
PhD thesis. Department of Medical Physics and Bioengineering, University College Lon­
don, University of London, UK, 1992.

[Sisodiya et a l, 1995] S.M. Sisodiya, S.L. Free, J.M. Stevens, D.R. Fish, and S.D. Shorvon. The 
demonstration of gyral abnormalities in patients with cryptogenic partial epilepsy using 
three-dimensional mri. Archives o f Neurology, 53:28—34, 1995.

[Sisodiya gr a/., 1996] S.M. Sisodiya, J.M. Stevens, S.L. Free, D.R. Fish, and S.D. Shorvon. 
Widespread cerebral structural changes in patients with cortical dysgenesis and epilepsy. 
Brain, 118:1039-1050, 1996.

[Sjoberg and Bergholm, 1988] F. Sjoberg and F. Bergholm. Extraction of diffuse edges by edge 
focusing. Pattern Recognition Letters, 7(3):181—190, 1988.

[Sluzek, 1996] A. Sluzek. Identification and inspection of 2-D objects using new moment-based 
shape-descriptors. Pattern Recognition Letters, 16:687—697, 1996.

[Smith and Jain, 1982] S.R Smith and A.K. Jain. Chord distribution for shape matching. Com­
puter Graphics and Image Processing, 20(3):259—271, 1982.

[Spivak, 1979] M. Spivak. Differential Geometry, volume 3. Publish or Perish Inc., second edi­
tion, 1979.

[Staib and Duncan, 1992] L.H. Staib and J.S. Duncan. Boundary finding with parametrically 
deformable models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 
14(11):1061-1075, 1992.

[Storvik, 1994] G. Storvik. A Bayesian-approach to dynamic contours through stochastic sam­
pling and Simulated Annealing. IEEE Transactions on Pattern Analysis and Machine In­
telligence, 16(10):976-986, 1994.

[Szekely et a l, 1996] G. Szekely, A. Kelemen, C. Brechbühler, and G. Gerig. Segmentation of2- 
D and 3-D objects from MRI volume data using constrained elastic deformations of flexible 
Fourier contour and surface models. Medical Image Analysis, 1(1): 19—34, 1996.

[Szeliski and Lavallée, 1994] R. Szeliski and S. Lavallée. Matching 3-D anatomical surfaces 
with non-rigid deformations using octree-splines. In IEEE Workshop on Biomedical Image 
Analysis, pages 144—153. IEEE Computer Society Press, 1994.

[Tek and Kimia, 1994] H. Tek and B.B. Kimia. Shock-based reaction-diffiision bubbles for im­
age segmentation. TR LEMS-13 8, Brown University, Providence, RI, 1994.

[Tek and Kimia, 1995a] H. Tek and B.B. Kimia. Automatic volumetric segmentation of three- 
dimensional images. In H.U. Lemke, K. Inamura, C.C. Jaffe, and M.V. Vannier, editors, 
Proc. Computer Assisted Radiology (CAR’9 5), pages 164—170. Springer Verlag, 1995.

[Tek and Kimia, 1995b] H. Tek and B.B. Kimia. Image segmentation by réaction-diffusion bub­
bles. In Proc. 5th International Conference on Computer Vision (ICCV’95), pages 156— 
162. IEEE Computer Society Press, 1995.

[Tek and Kimia, 1997] H. Tek and B.B. Kimia. Volumetric segmentation of medical images by 
three-dimensional bubbles. Computer Vision and Image Understanding, 65(2):246—258,
1997.



Bibliography 296

[ter Haar Romeny a/., 1991] B.M. ter Haar Romeny, L.M.J. Florack, J.J. Koenderink, and 
M.A. Viergever. Scale-space: Its natural operators and differential invariants. In A.C.F. 
Colchester and D.J. Hawkes, editors. Information Processing in Medical Imaging: Proc. 
12th International Conference (IPMI’91), volume 511 of Lecture Notes in Computer Sci­
ence, pages 239-255. Springer Verlag, 1991.

[ter Haar Romeny et a l, 1993] B.M. ter Haar Romeny, L.M.J. Florack, A.H. Salden, and M.A. 
Viergever. Higher order differential structure of images. In H.H. Barret and A.F. Gmitro, 
editors. Information Processing in Medical Imaging: Proc. 13th International Conference 
(IPMIVS), volume 687 o f Lecture Notes in Computer Science, pages 77—93. Springer Ver­
lag, 1993.

[ter Haar Romeny, 1996] B.M. ter Haar Romeny. Introduction to scale-space theory: multiscale 
geometric image analysis. Tutorial VBC’96, Hamburg, Germany ICU-96-21, Utrecht Uni­
versity, The Netherlands, 1996.

[ter Haar Romeny, 1997] B.M. ter Haar Romeny. Front-end vision and multiscale image analy­
sis: Introduction to scale-space theory. Computational Imaging and Vision. Kluwer Aca­
demic Publishers, 1997. In preparation.

[Terzopoulos, 1986a] D. Terzopoulos. Image analysis using multigrid relaxation methods. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 8(2): 129—139, 1986.

[Terzopoulos, 1986b] D. Terzopoulos. Regularization of inverse visual problems involving dis­
continuities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(4):413— 
424, 1986.

[Terzopoulos, 1996] D. Terzopoulos. Deformable models and the analysis of medical images. In 
K.V. Mardia, C.A. Gill, and I.L. Dryden, editors, 16th Leeds Annual Statistical Research 
(LASR) Workshop: Image Fusion and Shape Variability Techniques, pages 194—201. Leeds 
University Press, 1996.

[Thornton etal ,  1997] J. Thornton, P. Amess, J. Penrice, K. Chong, J.S. Wyatt, and R.J. Or- 
didge. Quantitative cerebral T2 relaxometry in human neonates at 2.4 Tesla: methodol­
ogy and the effects of maturation. In Proc. European Society o f Magnetic Resonance in 
Medicine and Biology, X991.

[Toennies and Rueckert, 1994] K.D. Toennies and D. Rueckert. Image segmentation by stochas­
tically relaxing contour fitting. In M.H. Loew, editor, Proc. SPIE Medical Imaging 1994: 
Image Processing, volume 2167, pages 18—27. SPIE, 1994.

[Toennies and Schnabel, 1994] K.D. Toennies and J.A. Schnabel. Edge detection using the local 
fractal dimension. In IEEE Symposium on Computer-Based Medical Systems, pages 34— 
39. IEEE Computer Society Press, 1994.

[Toussaint, 1985] G.T. Toussaint. A historical note on convex hull finding algorithms. Pattern 
Recognition Letters, 3:21—28, 1985.

[Unser et a l, 1993] M. Unser, A. Aldroubi, and M. Eden. The L(2) polynomial spline pyramid. 
IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(4):364—379, 1993.

[van den Boumgard and Smeulders, 1994] R. van den Boumgard and A. Smeulders. The mor­
phological structure of images - the differential equations of morphological scale-space. 
IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(11): 1101—1113, 
1994.

[van den Boumgard, 1997] R. van den Boumgard. Affine invariant deformation curves - a tool 
for shape characterization. In C. Arcelli, L.P. Cordelia, and G. Sanniti di Baja (eds.), ed­
itors, Advances in Visual Form Analysis - Third International Workshop on Visual Form, 
pages 594—603. World Scientific, 1997.



Bibliography 291

[van den Elsen eta l ,  1995] P.A. van den Elsen, J.B. Maintz, E.-J.D. Pol, and M.A. Viergever. 
Automatic registration of CT and MR brain images using correlation of geometrical fea­
tures. IEEE Transactions on Medical Imaging, 14(2):384-396, 1995.

[Vincken et a l, 1996] K.L. Vincken, W.J. Niessen, and M.A. Viergever. Blurring strategies for 
image segmentation using a multiscale linking model. In Proc. Conference on Computer 
Vision and Pattern Recognition (CVPR’96), volume Conference C: Image, Speech and 
Signal Analysis, pages 21—26. IEEE Computer Society Press, 1996.

[Vincken a/., 1997] K.L. Vincken, A.S.E. Koster, and M.A. Viergever. Probabilistic multi­
scale image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelli­
gence, 19(2):109-120, 1997.

[Vincken, 1995] K.L. Vincken. Probabilistic multiscale image segmentation by the hyperstack. 
PhD thesis, Utrecht University, The Netherlands, 1995.

[Voss, 1985] R.F. Voss. Random fractal forgeries. In R.A. Eamshaw, editor. Fundamental Algo­
rithms for Computer Graphics, pages 805—836. Springer Verlag, 1985.

[Wahba, 1990] G. Wahba. Spline models for observational data. Society for Industrial and Ap­
plied Mathematics, 1990.

[Wang and Cohen, 1994] J.-Y. Wang and F.S. Cohen. Part II: 3-D object recognition and shape 
estimation from image contours using B-splines, shape invariant matching, and neural net­
work. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(1): 13—23, 
1994.

[Wang et a l, 1996] M. Wang, J. Evans, L. Hassebrook, and C. Knapp. A multistage, optimal 
active contour model. IEEE Transactions on Image Processing, 5(11): 1586—1591, 1996.

[Whitaker and Chen, 1994] R.T. Whitaker and D.T. Chen. Embedded active surfaces for volume 
visualization. In M.H. Loew, editor, Proc. SPIE Medical Imaging 1994: Image Processing, 
volume 2167, pages 340-352. SPIE, 1994.

[Whitaker and Gerig, 1994] R. Whitaker and G. Gerig. Vector-valued diffusion. In B.M. ter 
Haar Romeny, editor, Geometry-Driven Diffusion in Computer Vision, Computational 
Imaging and Vision, chapter 4, pages 93—134. Kluwer Academic Publishers, 1994.

[Whitaker and Pizer, 1993] R.T. Whitaker and S.M. Pizer. A multiscale approach to nonuni­
form diffusion. Computer Vision, Graphics, and Image Processing: Image Understanding, 
57(1):99-110, 1993.

[Whitaker, 1993] R.T. Whitaker. Geometry-limited diffusion in the characterization of geomet­
ric patches of images. Computer Vision, Graphics, and Image Processing: Image Under­
standing, 57(1): 111—120, 1993.

[Whitaker, 1994a] R. Whitaker. Volumetric deformable models: active blobs. In R.A. Robb, 
editor, Proc. 3rd International Conference on Visualization in Biomedical Computing 
(VBC’94), volume 2359, pages 121-134. SPIE, 1994.

[Whitaker, 1994b] R.T. Whitaker. Geometry-Limited Diffusion. PhD thesis. University of North 
Carolina at Chapel Hill, 1994.

[Williams and Shah, 1992] D.J. Williams and M. Shah. A fast algorithm for active contours and 
curvature estimation. Computer Vision, Graphics, and Image Processing: Image Under­
standing, 55(1): 14—26, 1992.

[Witkin etal ,  1987] A. Witkin, D. Terzopoulos, and M. Kass. Signal matching through scale 
space. International Journal o f Computer Vision, 1(2): 133—144, 1987.

[Witkin, 1983] A. Witkin. Scale^-space filtering. In Proc. International Joint Conference on 
Artificial Intelligence, pages 1019-1022, 1983.



Bibliography 298

[Wright et al., 1994] M.W. Wright, R. Cipolla, and P.J. Giblin. Skeletonisation using an extended 
Euclidean distance transform. Technical Report CUED/F-INFENG/TR 196, Department 
of Engineering, University of Cambridge, 1994.

[Wu and Wang, 1993] W.-Y. Wu and M.-J. Wang. Detecting the dominant points by the 
curvature^ased polygonal approximation. Computer Vision, Graphics, and Image Pro­
cessing: Graphical Models and Image Processing, 55{2)\19-%8, 1993.

[Xu and Prince, 1997] C. Xu and J.L. Prince. Gradient vector flow: a new external forces for 
snakes. In Proc. Conference on Computer Vision and Pattern Recognition (CVPR’97), 
pages 66-71. IEEE Computer Society Press, 1997.

[Yoo, 1996] T.S.-W. Yoo. Image geometry through multiscale statistics. PhD thesis. University 
of North Carolina at Chapel Hill, 1996.

[You and Jain, 1984] Z. You and A.K. Jain. Performance evaluation of shape matching via chord 
length distribution. Computer Vision, Graphics, and Image Processing, 28:\85—\98, 1984.

[Yuille and Poggio, 1986] A.L. Yuille and T.A. Poggio. Scaling theorems for zero-crossings. 
IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(1): 15—25, 1986.

[Zhu and Yuille, 1996] S.C. Zhu and A.L. Yuille. Region competition: unifying snakes, region 
growing, and Bayes/MDL for multi-band image segmentation. IEEE Transactions on Pat­
tern Analysis and Machine Intelligence, 18(9):884—900, 1996.

[Zijdenbos etal ,  1994] A.P. Zijdenbos, B.M. Dawant, R.A. Margolin, and A.C. Palmer. Mor­
phometric analysis of white matter lesions in MR images: method and validation. IEEE 
Transactions on Medical Imaging, 13(4):716-724, 1994.



Publications

Journal Articles
J.A. Schnabel and S.R. Arridge. Active shape focusing. Image and Vision Computing. 
Special issue of the 3rd International Workshop on Visual Form, 28-30 May 1997, Capri, 
Italy. Invited paper for submission. Submitted.

• G.J.M. Parker, J.A. Schnabel and G.J. Barker. Identification of spatially random signal in­
tensity using Approximate Entropy (ApEn) - a method for image noise reduction. In prepa­
ration.

Articles in Conference Proceedings
J.A. Schnabel and S.R. Arridge. Active shape focusing. In C. Arcelli, L.P. Cordelia and G. 
Sanniti di Baja, editors, Advances in Visual Form Analysis - Third International Workshop 
on Visual Form, pages 492-501, Capri, Italy, 28-30 May 1997. World Scientific.

J.A. Schnabel and S.R. Arridge. Hierarchical shape description of MR brain images based 
on active contour models and multi-scale differential invariants. In K.V. Mardia, C.A. Gill, 
and I.L. Dryden, editors, 16th Leeds Annual Statistical Research (LASR) Workshop: Image 
Fusion and Shape Variability Techniques, pages 36—43. Leeds University Press, University 
of Leeds, Department of Statistics and CoMIR, 3-5 July 1996.

J.A. Schnabel and S.R. Arridge. A multi-scale shape description tool for 3D MR brain im­
ages. In H.U. Lemke, M.W. Vannier, K. Inamura, and A.G. Farman, editors, Proc. Com­
puter Assisted Radiology (CAR ’96), pages 292—297, Paris, France, 26-29 June 1996. Else­
vier Publishers, The Netherlands.

• J.A. Schnabel, L. Wang, and S.R. Arridge. Shape description of spinal cord atrophy in MS 
patients. In H.U. Lemke, M.W. Vannier, K. Inamura, and A.G. Farman, editors, Proc. Com­
puter Assisted Radiology (CAR ’96), pages 286—291, Paris, France, 26-29 June 1996. Else­
vier Publishers, The Netherlands.

• J.A. Schnabel and S.R. Arridge. Multi-scale shape description of MR brain images us­
ing active contour models. In M.H. Loew and K.M. Hanson, editors, Proc. SPIE Medical 
Imaging 1996: Image Processing, volume 2710, pages 596-606, Newport Beach, Califor­
nia, USA, 1996. SPIE.

J.A. Schnabel and S.R. Arridge. Active contour models for shape description using multi­
scale differential invariants. In D. Pycock, editor, Proc. 6th British Machine Vision Con­
ference (BMVC’95), volume 1, pages 197—206, Birmingham, UK, 11-14 September 1995. 
BMVA.

J.A. Schnabel, L. Wang, D. Rueckert, and S.R. Arridge. Fractal feature analysis and clas­
sification of MS lesions. In H.U. Lemke, K. Inamura, C.C. Jaffe, and M.V. Vannier, editors,



Publications 300

Proa. Computer Assisted Radiology (CAR’95), pages 260—265, Berlin, Germany, 21-24 
June 1995. Springer Verlag.

K.D. Toennies and J.A, Schnabel. Edge detection using the local fractal dimension. In 
IEEE Seventh Symposium on Computer-Based Medical Systems, pages 34—39, Winston- 
Salem, North Carolina, 1994. IEEE Computer Society Press.

Short Papers and Abstracts in Conference Proceedings
G.J.M. Parker, J.A. Schnabel and G.J. Barker. Identification of spatially random signal in­
tensity using Approximate Entropy (ApEn) - a method for image noise reduction. In Proc. 
6th Meeting of the International Society for Magnetic Resonance in Medicine, page 2083, 
Sydney, Australia, 18-24 April 1998. To appear.

J.A. Schnabel and S.R. Arridge. Multi-scale shape description in medical imaging. In C.J. 
Taylor, J.A. Noble, and J.M. Brady, editors, Proc. 1st Annual Conference on Medical Im­
age Understanding and Analysis’97, pages 141—144, University of Oxford, 7-8 July 1997. 
BMVA.

J.A. Schnabel and S.R. Arridge. Multi-scale active shape description. In B. ter 
Haar Romeny, L. Florack, J. Koenderink, and M. Viergever, editors, Scale-Space’97 - 1st 
International Conference on Scale-Space Theory in Computer Vision, volume 1252 of Lec­
ture Notes in Computer Science, pages 337—340, Utrecht, The Netherlands, 2-4 July 1997. 
Springer Verlag.

J.A. Schnabel. Edge detection using the local fractal dimension. In K.V. Mardia and C.A. 
Gill, editors, 14th Leeds Annual Statistical Research (LASR) Workshop: Medical Imaging: 
Shape and Visualisation, pages 20-21. Leeds University Press, University of Leeds, De­
partment of Statistics and CoMIR, 11-12 July 1994.

Technical Reports and Theses
J.A. Schnabel and S.R. Arridge. Scale-space implementation in the UK lUE project. 
Technical report TR/98/1, Department of Computer Science, University College London, 
Gower Street, UK - London WCIE 6BT, 1998.

J.A. Schnabel, G. Bailey and S.R. Arridge. Volume rendering implementation in the UK 
lUE project. Technical report TR/98/2, Department of Computer Science, University Col­
lege London, Gower Street, UK - London WCIE 6BT, 1998.

J.A. Schnabel and S.R. Arridge. Snake implementation in the UK lUE project. Techni­
cal report TR/98/3, Department of Computer Science, University College London, Gower 
Street, UK - London WCIE 6BT, 1998.

J.A. Schnabel. Shape description methods for medical images. Technical report TR795/12, 
Department of Computer Science, University College London, Gower Street, UK - London 
WC1E6BT, 1995.

J.A. Schnabel. Die lokale ffaktale Dimension als Segmentierungsmerkmal: Realisation 
und Evaluierung von regionen- und graph-orientierten kantenbasierten Verfahren. Diplo- 
marbeit (MSc. thesis). EG Computer Graphics, FB Computer Science, Technische Uni- 
versitat Berlin, Franklinstr. 28/29, D-10587 Berlin. 1993.

J.A. Schnabel. Kantenverstarkung durch Auswertung der lokalen fraktalen Dimension 
eines Bildes. Studienarbeit (First thesis). FG Computer Graphics, FB Computer Science, 
Technische Universitat Berlin, Franklinstr. 28/29, D-10587 Berlin. 1993.



Glossary

G(x;cr) : Gaussian kernel 56

H  : Hurst coefficient 47

L{x,y)  : 2D image 144

L{x, y, z) : 3D image 144

L{x,  Î/, z; <j) : 4D image scale-space 144

L { x , y , z ‘,(7i) : Sample of a 4D image scale-space 144

L{x, y, Zk) ; Slice of a 3D image 144

L{x, y, Zk't (Ji) : Slice of a AD image scale-space 144

L{x,y]a)  : 3D image scale-space 144

L{x,y \a i)  : Sample of a 3D image scale-space 144

L(x) : N-D image 144

L(x; a) ; (N+l)-D image scale-space 144

L(x; ai) : Sample of an (N+l)-D image scale-space 144

A t  ; Numerical diffusion time step 58

r  : Graph representation of an image 67

ôij : Kronecker tensor 59

€ : Hidden scale 69

6ij : Lévi-Civita tensor 59

7„ : Morphological closing operator 68

lipq : Cartesian moment of order {p-\- q) 38

Vpq : Normalized central moments of order (p +  q) 39

ujn : Morphological opening operator 68

a{t) : Scale recipe 64

(Jo : Fixed-scale parameter 69

T : Diffusion iteration step 58

k  : Normalized curvature 129

â  : Natural scale parameter 69

Ç : Contour scale 114

{Lzf^ (æ, y\a)}  : 3 \ D  or slice-by-slice image scale-space 144
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{Lz^. {x, y ’lOi)} : sample of a image scale-space 144

(5)} : Set of active contour models for slice-by-slice segmentation 145

f { x ,  y) : Implicit form of a curve 29

k\ Conductance parameter 63

s : Arc length parameter 29

t  : Diffusion time parameter, or evolution time, defined as A r • r  57

y{x) : Explicit form of a curve 29

v(s) : Parametric form of a curve 29

v(5, r) : Parametric form of a surface 82

Vi : snaxel of a contour 82

Vg(s) : First order curve derivative with respect to s 83

Vss(s) : Second order curve derivative with respect to s 83

S  : Continuous energy function 82

S* : Discrete energy function 82

d : Mean distance between snaxels 83

BASOC : Boundary at the scale of the core 79

Compactness : Dimensionless quantity defined by - 45

CSF : Cerebral spinal fluid 213

CSS : Curvature scale-space 73

CT : Computer Tomography 20

DCP : Distance to the closest point algorithm 52

Diameter : Length of a medial axis 42

DP : Dynamic programming, a technique for solving variational problems 92

Edgel : Edge pixel in an image 40

fBm : Fractional Brownian motion 47

FEM : Finite element methods 242

FIF : Fractal interpolation function 48

FIM : Fractal interpolation with midpoints 48

FLAIR : Fluid Attenuated Inversion Recovery 21

Fractal dimension : Measure for self-similarity 46

GA : Genetic algorithm, a global optimization technique based on genetic operators 97

GDM : Geometrically Deformed Model 95

HMAT : Hough-like medial axis transform 78
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HSV : Hue-Saturation-Value colour model 162

ICM : Iterated conditional modes, a probabilistic relaxation technique 95

ICP : Iterated closest point algorithm 53

IPS : Iterated function system (or fractal curve) 48

MDL : Minimum description length, a hierarchical technique for region grouping 77

MMA : Multi-scale medial axis, or core 78

MRP : Markov random field 94

MRI : Magnetic Resonance Imaging 20

MRT: Magnetic Resonance Tomography 20

MS : Multiple Sclerosis 21

FDM : Point distribution model 96

Perimeter : Length of a closed boundary 44

PET : Positron Emission Tomography 21

Pixel : Point in an image 23

RMS : Root-mean-squared error 131

ROI : Region of interest 213

SA : Simulated annealing, a stochastic relaxation technique 94

Snake : Active or deformable contour model for segmentation 81

Snaxel : Point of an active contour model 82

SPAMM : Spatial Amplitude Magnetization Modulation 21

SPECT : Single Photon Emission Computed Tomography 21

TSS : Torsion scale-space 250

Voxel : Volumetric image pixel 74



Index

active contour model, 81 
3D model, 82 

active surface model, 82, 99, 145 
parametric surface model, 99 
physics-based model, 99 

geometrically deformed model, 84, 95 
implicit, 99 

active blob, 99 
bubbles, 100
geometric level set model, 100 

shape-based, 96 
active shape model, 97 
eigenshape model, 97 
hybrid cartesian-polar point distribu­

tion model, 97 
point distribution model, 96 
statistical model, 97 

spline-based, 97 
adaptive spline model, 99 
B-snake, 98
B-spline active contour, 98 
B-spline model, 98 
DP B-snake, 98 
snake-spline model, 98 

topological snake model, 99, 101 
active shape description, 143 
active shape diffusion, 246 
active shape evolution, 143 
active shape focusing, 143 
active surface focusing, 242 
active surface model

deformable superquadrics, 239 
super-ellipsoids, 239 

parametric surface, 239 
alternating direction implicit method, 68 
area, 33, 45

polygonal, 45

bending energy, 45 
bottleneck, 188 
boundariness, 78 
boundary straightness, 45

chain code, 31

generalized, 31 
chord distribution, 32 

angular, 32 
radial, 32 

closing, 68
coarse-to-fme, 37, 74, 148

tracking, 74, 82, 103, 108, 148 
colour lookup table, 162 

linear, 163 
logarithmic, 163 

compactness, 45 
conductance, 57 

parameter, 63 
contrast, 60, 130 
convex hull, 33, 181 

deficiency, 33 
convolution, 56 
coordinates

Cartesian, 60 
gauge, 60
manifest invariant, 60 
normalized (dimensionless), 69, 116, 

117 
cores, 253
comer, 32, 43, 62, 72, 83 
crease, 75

surface stmcture, 243
crest

line, 243 
surface, 243 

CT,20
spiral, 20 

curvature, 43, 65, 84, 101
curvature primal sketch, 72 
curvature scale-space, 73 
Bowline curvature, 60 
Gaussian curvature, 60 
isophote curvature, 60, 76 
mean curvature, 60, 100 
principal curvatures, 60, 100 
principal surface curvature directions, 

237
space curve, 250
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vertex curvature, 85

deformable model, 81 
diameter, 42 
diffusion

active shape diffusion, 246 
diffusion time, 57 
direction, 248 
feature, 247 
linear, 56, 247 
magnitude, 248 
non-linear, 62 

affine shortening flow, 65, 247 
edge-affected, 247 
edge-affected diffusion, 63 
edge-preserving, 62 
entropy, 65, 247
Euclidean shortening flow, 65, 75, 

247
geometry-driven, 65 
geometry-limited, 65 
gradient flow, 65 
heat conductance diffusion, 63 
knowledge-based, 66 
modified affine shortening flow, 65, 

247
morphological, 66 
multi-scale, 64
multi-spectral probabilistic, 65 
multi-valued, 64 
normal (constant) motion, 66 
reaction-diffusion, 65 
sieves, 67 

velocity, 247 
dilation, 66 
dimension

Euclidean, 46, 176 
distance, 48

corresponding, 52 
DCP, 52 
ICP, 53
via triangulation, 53, 152, 153 

global, 50 
Hausdorff, 51, 153 
Levensthein, 52 

local, 49 
Chamfer, 50, 153 
Euclidean, 49 

scale-space, 70 
transformation, 48

Canny, 61, 73, 75 
Marr-Hildreth, 62, 75 

edge focusing, 74, 148 
edgel, 98, 99 
eigensystem, 239 
eigenvalue, 76, 78, 96, 238 
eigenvector, 76, 78, 96, 239 
Einstein summation convention, 60 
energy, 82

combinations, 87 
adaptive bending densities, 88 
material densities, 88 
oriented anisotropic adaptive con­

straints, 88 
constraint, 86 

balloon, 86, 95 
spring, 86 
stereo, 86 
topology, 95 

image, 85 
edge, 85 
flow, 248 
line, 85 
term, 86
threshold, 86, 95 

internal, 83 
bending, 83 
elastic, 83 
membrane, 83 
rigidity, 83 
tension, 83 

minimization, 90 
multi-scale, 100, 129 

bending, 129 
elasticity, 129 
image, 100 

region, 87 
volumetric, 237 

bending, 238 
elasticity, 238 
image, 240 

epilepsy, 21, 189 
cryptogenic, 195 
idiopathic, 195 
symptomatic, 195 

erosion, 66
Euler forward scheme, 68 
Euler-Lagrange equation, 90 
Euler-Lagrangian setting, 82, 90, 92

edge detector flne-to-coarse, 73, 147
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tracking, 108, 147
flow

active shape flow, 246 
edge flow, 249 
gradient vector flow, 249 
optic flow, 249 

Fourier, 37
coefficients, 37 
decomposition, 239 
descriptors, 37 
domain, 57
reconstruction, 20, 37, 71 
transform, 37 
truncation, 239 

fractal, 46
dimension, 46, 176 

box counting, 47 
Fractional Brownian motion, 47 
power spectral, 47 

fractal interpolation function, 48 
fractal interpolation with midpoints, 48 
iterated function system, 48 
signature, 47 

Frenet
equations, 250 
frame, 250

Gaussian, 56, 71, 90 
kernel, 56 

Gibbs probability distribution, 94 
gradient, 63, 69, 70, 77, 90 

direction, 60, 76
Euclidean scale-space gradient, 69 
magnitude, 61, 62, 73 
Riemannian scale-space gradient, 70 

Green’s function, 57 
ground truth, 147

heat equation, 57
Hessian, 59, 69, 70, 76, 89, 239

Euclidean scale-space Hessian, 69 
Riemannian scale-space Hessian, 70, 

76, 78
Hough transform, 39, 78 

accumulator cells, 39 
circle detection, 40 
core, 42, 78 

boundary at the scale of the core, 79 
ellipse detection, 40 
generalized, 41
Hough-like medial axis transform, 42, 

78

line detection, 40 
parameter space, 39 

Hounsfield units, 20 
HSV colour model, 164 
HSV model, 162 
Hurst coefficient, 47

isophote, 60
isophote image curvature, 85, 124, 130

knot, 98
insertion, 118, 128 

discrete, 119 
heuristic, 120 
interpolated, 120 

Kronecker tensor, 59

Lévi-Civita tensor, 59 
Lamor frequency, 21 
Laplacian, 61, 72, 90

normalized, 75, 78, 219 
scale-space, 214 

level set, 99 
local jet, 57, 75

Markov random field, 94 
medial axis, 41, 78 
medialness, 78 
modified Bessel function, 57 
moments, 38 

Cartesian, 38 
central, 39 

normalized, 39 
centre of mass, 39 
invariant moments, 39 
kurtosis, 39 
skew, 39 
total mass, 39 
variance, 39 

MRI, 20, 98, 112 
MRT, 20 
multi-scale 

core
boundary at the scale of the core, 253 

differential invariants, 57, 75 
bendedness, 62 
comemess, 62 
flowline curvature, 60 
Gaussian curvature, 60 
irreducible, 58 
isophote curvature, 60 
mean curvature, 60
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principal curvatures, 60 
umbilicity, 61 

image feature detection and analysis, 70 
blob detection, 74 
description of image structure, 74 
edge detection, 70 
medial analysis, 74 
medial axis, 78 

segmentation, 70, 74 
hierarchical image segmentation, 76 
hyperstack, 74 
inter-scale linkage, 77 
morphological, 77 
n-ary hierarchy, 77 
of occluded contours, 73 

shape indexing via CSS, 73 
signal analysis, 70 

multi-scale shape stack, 143 
volumetric, 242 

Multiple Sclerosis, 21, 189

normal, 31, 35,44, 85, 86, 89 
intersection, 53 

normalized derivatives, 69

opening, 68, 191 
optimization, 90

greedy algorithm, 93, 158, 242 
dynamic programming, 92 
FEM, 242
genetic algorithms, 97 
iterated conditional modes, 95 
multi-scale

algorithm, 138 
explicit Euler forward scheme, 140 
iterated conditional modes, 139 

relaxation 
geometry-driven, 95 
probabilistic, 95 
stochastic, 94 

simulated annealing, 94, 139 
simultaneous over relaxation, 141 
steepest descent, 96 
variational calculus, 90 
volumetric, 242 

slice-by-slice, 242

parabolic lines, 243 
partial pixel effect, 178 
partial volume effect, 74, 189, 202 
perimeter, 44 
PET, 21

polygon, 32
minimum perimeter, 32 

principal component analysis, 96

ravine, 243 
registration

multi-scale, 243 
rendering

surface rendering, 161 
volume rendering, 196 

iso-surface, 196
maximum intensity projection, 196 
ray casting, 196 
ray-tracing, 196 
stop-at-first-voxel, 196 

ridge, 75, 243 
line, 240 
surface, 240 
surface structure, 243 

ridgeness, 76, 240

sampling, 96, 114
adaptive uniform, 123 
equidistant natural scale, 69 
fixed-scale, 115 
multi-scale, 120 

volumetric, 242 
refinement, 126 
uniform, 122 
variable, 124 

scale
hidden scale, 69 
inner and outer scale, 23 
natural scale parameter, 69 
recipe, 64 

scale-space, 23, 104
causality principle, 56 
curvature scale-space, 73, 154, 245 
differentiation, 68 
fingerprint, 72, 73, 154, 245 
hyperbolic geometry, 70 
implementation, 68 

explicit scheme, 68 
implicit scheme, 68 

interval tree, 72 
linear, 57
maximum principle, 56, 69 
metric, 68 

Euclidean, 70, 250 
Riemannian, 70, 250 

morphological causality principle, 66
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non-linear, 62 
morphological, 66 
sieves, 66 

recipe, 244 
signature, 73 
sketch, 154 
slice-by-slice, 144 
torsion scale-space, 250 

segmentation 
multi-scale 

explicit, 148 
implicit, 147 

shape propagation, 149 
signal-to-noise ratio, 190 
signature, 31 
skeletonization, 42 
snake, 81 
snaxel, 82, 113 
SPAMM, 98 
SPECT, 21 
spline, 33, 97

B-spline, 34, 98, 113 
surface, 238 

Catmull-Rom, 35 
Overhauser, 35, 99 
thin-plate, 35, 190 

bending energy, 36 
principal warps, 35

tangent, 31, 35, 44, 84, 85 
tangent angle, 43, 84 
tangent plane, 241 

Taylor expansion, 57 
The Visualization Toolkit, 162 
thinning, 42 
torsion

space curve, 250

vertex, 85, 95 
voxel, 189

watercourse, 76 
watershed, 76 

transform, 77


