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Is Gravity Actually the Curvature of Spacetime?
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Abstract

The Einstein equations, apart from being the classical field equations of General Relativity, are

also the classical field equations of two other theories of gravity. As the experimental tests of

General Relativity are done using the Einstein equations, we do not really know, if gravity is the

curvature of a torsionless spacetime, or torsion of a curvatureless spacetime, or if it occurs due to

the non-metricity of a curvatureless and torsionless spacetime. However, as the classical actions of

all these theories differ from each other by boundary terms, and the Casimir effect is a boundary

effect, we propose that a novel gravitational Casimir effect between superconductors can be used

to test which of these theories actually describe gravity.
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General Relativity (GR) is one of the most well tested theories in Nature, but in all those

tests, what is actually tested are the predictions made by the Einstein equations [1]. It

is possible to construct two other geometrical theories describing gravity, which are funda-

mentally different from GR, but whose classical field equations are the Einstein equations.

To understand these theories, we first note that the spacetime has to be described by a

differential manifold in any geometrical theory of gravity. Now a general affine connection

Γα
µν , on such a manifold, can be decomposed into three pieces [2, 3]

Γα
µν =

{

α
µν

}

+Kα
µν + Lα

µν . (1)

The first term
{

α
µν

}

is the standard Levi-Civita connection, which is obtained from the metric.

The second term Kα
µν is the contortion tensor, which is obtained from the torsion tensor

T α
µν as Kα

µν ≡ (1/2)T α
µν + T(µ

α
ν). The last term Lα

µν is the disformation tensor, which

is constructed from the non-metricity tensor Qαµν ≡ ∇αgµν as Lα
µν ≡ (1/2)Qα

µν −Q(µ
α
ν).

GR is described by a torsionless spacetime (T α
µν = 0), which satisfies the metric com-

patibility condition ∇αgµν = 0 (Qαµν = 0). So, as Kα
µν = Lα

µν = 0 in GR, the affine

connection of Eq. (1) can be written in terms of the Levi-Civita connection as Γα
µν =

{

α
µν

}

.

The curvature tensor constructed from this Levi-Civita connection R̄α
βµν is used to obtain

the Einstein-Hilbert action

SG =
1

16πG

∫ √−gR̄ , (2)

where g is the determinant of the metric gµν and R̄ ≡ gβνR̄α
βαν is the scalar curvature

obtained from R̄α
βµν . Einstein equations are the classical field equations obtained from this

action.

Teleparallel Gravity (TG) is another geometrical theory of gravity, whose classical field

equations are the Einstein equations. In this theory, the general connection of Eq. (1) is

equated to the Weitzenböck connection, and so the curvature of spacetime vanishes. Thus,

TG is constructed using such a curvatureless spacetime, which satisfies the metric compat-

ibility condition Qαµν = 0 (Lα
µν = 0) [4–9]. This theory is constructed from the torsion

tensor in the tetrad formalism, and its action is given by

ST = − 1

16πG

∫

eT , (3)

where e =
√−g is the determinant of the tetrad and T is the scalar torsion (which is

constructed from contractions of the torsion tensor).
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It may be noted that in curvatureless spacetime of TG, the curvature tensor (Rα
βµν)

obtained from the general affine connection of Eq. (1) vanishes, but the curvature tensor

constructed using the Levi-Civita connection (R̄α
βµν) does not vanish. In TG, the scalar

curvature R obtained from Rα
βµν is related to the scalar curvature R̄ obtained from R̄α

βµν ,

as R = R̄ + T − (2/e)∂µ(eT
λ
λ
µ) = 0, so we can write

R̄ = −T +BT , (4)

where BT = (2/e)∂µ(eT
λ
λ
µ) is a boundary term. Thus, the action for GR given by Eq. (2)

and the action for TG given by Eq. (3), differ from each other by the boundary term BT.

It is also possible to formulate a Theory of Non-Metricity (TNM) to describe gravity

[10–14]. This theory is also called Coincident General Relativity or Symmetric Teleparallel

Gravity, as it has certain features which resemble both GR and TG, but we shall call it as

TNM, as the theory is based on the concept of non-metricity. In this theory, both the torsion

tensor and Rλ
µνβ vanish, and gravity is produced because of the non-vanishing non-metricity

tensor, ∇αgµν = Qαµν 6= 0 (Lαµν 6= 0). The action for this theory is constructed using the

non-metricity scalar Q (which is obtained from the non-metricity tensor Qαµν) as

SN = − 1

16πG

∫ √−gQ . (5)

As TNM is described by a torsionless and curvatureless spacetime, Q can be related to R̄

(curvature obtained from the Levi-Civita connection) as

R̄ = −Q +BN , (6)

where BN = (1/
√−g)∂α(Q

α
λ
λ−Qλ

λ
α) is again a boundary term (different from the boundary

term obtained in TG). So, the action for GR given by Eq. (2) and the action for TNM given

by Eq. (5) differ from each other by the boundary term BN.

Even though the actions of GR, TG and TNM differ from each other by boundary terms,

they have the same classical field equations (Einstein equations), so they cannot be classically

distinguish from each other. The only reason for the preferential attention given to GR (over

the other two geometrical theories) is historical and not scientific. However, they can be

differentiated using quantum effects because these theories are fundamentally different from

each other and will produce different quantum corrections. We do not have a full theory of

quantum gravity, but it is possible to get an estimate of perturbative quantum gravitational
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effects, using the formalism of effective field theories [15–17]. Thus, the classical actions for

GR (SG), TG (ST) and TNM (SN) get corrected by quantum corrections SQG, SQT and SQN,

such that

S1 = SG + SQG , S2 = ST + SQT , S3 = SN + SQN . (7)

It is not possible to use cosmological and astrophysical observations to differentiate between

SG, ST and SN, however, such observations can differentiate between S1, S2 and S3. It has

been demonstrated that the quantum corrected GR [16] and quantum corrected TG [17]

are both consistent with the cosmological data obtained from SNe Ia + BAO + CC + H0

[18–21], and so at present, quantum corrections cannot rule out either of them. However, it

is still possible that future cosmological observations may rule out one of these theories.

Even though, at present, we are not able to use quantum corrections to differentiate

between these theories, it is still possible to use a combination of quantum effects and

boundary effects to distinguish them from each other. As the actions of GR, TG, TNM

differ from each other by boundary terms, and the Casimir effect is a quantum mechanical

boundary effect, a gravitational Casimir effect can be used to distinguish them from each

other. The reflection of gravitational waves in the microwave regime by quantum properties

of superconductors (Heisenberg-Coulomb effect) [22–25] can produce a novel measurable

gravitational Casimir effect [25–29]. In ordinary metal plates, the lattice of ions and electrons

move along the same geodesic, in the presence of gravitational waves. However, when Cooper

pairs form below the superconducting transition, they move along a non-geodesic path due to

their quantum non-localizability. It has been demonstrated that this produces a large mass

conductivity due to an enhanced mass current [25–29]. As the electromagnetic waves are

reflected due to the electrical conductivity, this mass conductivity reflections gravitational

waves [22–25]. Thus, for such systems, a gravitational Casimir effect can be produced [25–

29], in analogy with the conventional electromagnetic Casimir effect [30–33].

As the actions for GR, TG and TNM are related to each other by boundary terms, we can

relate the gravitational Casimir energy in GR (〈E〉G) [25–29] to the gravitational Casimir

energies in TG (〈E〉T ) and TNM (〈E〉N) as

〈E〉T = 〈E〉G + 〈E〉BT
, 〈E〉N = 〈E〉G + 〈E〉BN

, (8)

where 〈E〉BT
is the contribution from the boundary term BT, and 〈E〉BN

is the contribu-

tion from boundary term BN. Since the boundary action for these theories is different, so
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〈E〉BT
6= 〈E〉BN

6= 0, thus we obtain 〈E〉G 6= 〈E〉T 6= 〈E〉BN
. So, these theories will produce

different gravitational Casimir effects, and such effects can be used to test which of these

theories is actually the geometrical theory of gravity. It may be noted that the Casimir force

between superconductors has been recently experimentally measured [25, 34–38]. Thus, it is

possible to measure the novel gravitational Casimir effect due to the onset of superconduc-

tivity between two aluminum nanostrings. With an optomechanical cavity readout, these

experiments could detect 6 mPa differences in the Casimir force between such nanostrings

[25, 34–38]. The magnitude of a gravitational Casimir effect depends on the difference be-

tween the change in momentum of the Cooper pair and change in the momentum of the

ion core [25–29]. Even if a more detailed analysis, reduced the magnitude of this novel

gravitational Casimir effect by ten orders of magnitude, it would still remain a measurable

effect, using the currently available technology. It is important to achieve sufficiently ac-

curate parallelism between two superconductors at low temperatures to produce this novel

gravitational Casimir effect. The technology needed to obtain such an accurate parallelism

has already been used in resonator platforms for superconducting circuits [39, 40]. So, such

an experiment can be performed using the currently available technology, and we can know

which theory actually describes gravity in our Universe.
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