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ABSTRACT
Metal artefact reduction (MAR) techniques aim at removing
metal-induced noise from clinical images. In Computed To-
mography (CT), supervised deep learning approaches have
been shown effective but limited in generalisability, as they
mostly rely on synthetic data. In Magnetic Resonance Imag-
ing (MRI) instead, no method has yet been introduced to cor-
rect the susceptibility artefact, still present even in MAR-
specific acquisitions. In this work, we hypothesise that a mul-
timodal approach to MAR would improve both CT and MRI.
Given their different artefact appearance, their complemen-
tary information can compensate for the corrupted signal in
either modality. We thus propose an unsupervised deep learn-
ing method for multimodal MAR. We introduce the use of
Locally Normalised Cross Correlation as a loss term to en-
courage the fusion of multimodal information. Experiments
show that our approach favours a smoother correction in the
CT, while promoting signal recovery in the MRI.

Index Terms— Metal Artefact Reduction, CT, MR, Deep
Learning, Unsupervised Learning

1. INTRODUCTION

Metallic implants are one of the main causes for image quality
degradation in medical imaging. In Computed Tomography
(CT), the metal’s higher attenuation coefficient causes signal
corruption, resulting in bright and dark streaks that irradiate
from the metal source throughout the reconstructed image.
In Magnetic Resonance Imaging (MRI), metal objects induce
local magnetic field inhomogeneities that cause intensity and
geometrical distortions in the reconstructed image. These sus-
ceptibility artefacts typically appear as blackened areas close
to the implant, partially shadowing the neighbouring struc-
tures.
In patients with hip replacement, the size of the metallic pros-
thesis makes the artefacts even more severe and extended [1],
hampering the diagnostic interpretation of the images in the
most clinically relevant areas, i.e. close to the implant. As a
result, the introduction of successful metal artefact reduction

(MAR) techniques in hip replacement imaging is of great im-
portance and an active field of research.
Numerous approaches have been proposed in the literature for
MAR in CT [1]. Traditional physics-based or iterative recon-
struction methods are now being challenged by novel deep
neural network approaches, which are data-driven and less
dependent on physical model assumptions. However, most
methods [2, 3] are trained in a supervised fashion, relying on
either pre- and post-operative paired data (not always avail-
able) or simulations (not realistic enough). A solution to the
supervised training setting was recently proposed by Liao et
al. [4]. They introduced an unsupervised adversarial training
scheme to disentangle the artefact from the anatomy appear-
ance in CT images, showing state-of-the-art performance on
both synthetic and real data. In MRI research, efforts have
focused mostly on image acquisition improvements: Tailored
MR sequences such as MARS [5] or SEMAC [6] have proven
effective in reducing the extension of the shadowing, but can-
not completely eliminate it, making the clear visualisation of
the implant in MRI impossible.
In this work we introduce a novel unsupervised deep learn-
ing MAR method for jointly correcting same-subject CT and
MR hip images. Our Multimodal Artefact Disentanglement
Network (MADN) extends the approach proposed by Liao et
al. [4] by introducing a similarity loss that induces the net-
work to learn shared information between CT and MRI con-
tent. As a result, the CT correction takes advantage of the
sharper contrast of MRI throughout the field of view, while
the MRI correction is helped by implant localisation informa-
tion from the CT. As the appearance of the artefact is different
in CT and MRI, we believe that making use of their contex-
tual complementary information would help better correct for
the artefact in both modalities. We demonstrate the effect of
our approach using intensity distribution analysis in the CT
and on a segmentation propagation task in MRI, showing how
multimodal information improves the correction compared to
single-modality approaches.



2. METHOD

2.1. Artefact Disentanglement Network

Our work builds upon the Artefact Disentanglement Network
(ADN) recently proposed by Liao et al. [4] to perform un-
supervised MAR on CT images. The ADN uses two sets of
unpaired images, one including metal artefact corrupted CTs
and one with clean non-corrupted images. The key idea is
to use encoder-decoder networks coupled with adversarial
training to learn a latent representation of the data where the
artefact is disentangled from the anatomical content. This
separation allows to reconstruct the corrupted images using
only the latent content representation, therefore removing the
artefact. It also allows to reconstruct the denoised images
with the latent artefact representation and thus synthesising
corrupted images.
Let I and Ia be the domains of clean and corrupted images
respectively. The network architecture (Fig. 1) is composed
as follows: Three encoders (EI : I → C, EIa : Ia → C,
Ea : Ia → A) map the input images to either the content
C or the artefact A latent spaces; two decoders map the la-
tent space back to the image domain and work as generators
(GI : C → I, GIa : C × A → Ia); finally two discrimina-
tors (DI , DIa ) define whether an input is real (i.e. coming
from the real distribution of I or Ia respectively) or fake (i.e.
synthetically generated by the decoders GI and GIa respec-
tively). We refer the reader to the original manuscript [4] for
the layer-by-layer outline of the network.
Given a corrupted image xa ∈ Ia and a clean image y ∈ I,
we can define their encoding as ca = EIa(x

a), a = Ea(x
a)

and c = EI(x). Indicating byˆthe decoded images, from xa

we obtain a reconstructed corrupted image x̂a = GIa(c
a, a)

and its corrected version x̂ = GI(c
a). Similarly, ŷa =

GIa(c, a) is the synthetically corrupted image from the clean
input and ŷ = GI(c) is the reconstructed clean image. To
guarantee the expected outputs, the network is trained to
minimise the following total loss function:

Ltot = λIadvLIadv+λ
Ia
advL

Ia
adv+λrecLrec+λsrLsr+λartLart

(1)
The first two terms are the traditional adversarial losses that
promote a realistic generation of clean and corrupted images
from GI and GIa :

LIadv = EI [logDI(y)] + EIa [1− logDI(x̂)]

LIaadv = EIa [logDIa(x)] + EI,Ia [1− logDIa(ŷ
a)]

(2)

The reconstruction loss guarantees that same-branch encoding-
decoding correctly reconstructs the input, thus ensuring the
preservation of patient’s anatomy:

Lrec = EI,Ia [||x̂a − xa||1 + ||ŷ − y||1] (3)

The self-reduction loss promotes cycle consistency within the
cycle “clean - corrupted - clean”:

Lsr = EI,Ia [||GI(EIa(ŷa))− y||1] (4)

Finally, the artefact consistency loss enforces that the artefact
removed through the denoising path is the same added from
the artefact-synthesis path, de facto training Ea to encode the
artefact only:

Lart = EI,Ia [||(xa − x̂)− (ŷa − y)||1] (5)

Each loss term is weighted by the respective hyper-parameter
λ.

2.2. Multimodal Artefact Disentanglement Network

In this work, the ADN is extended to a multimodal case,
using two-channel inputs xa and y, with CT image as first
channel and respective registered MRI as second channel.
The network learns to correct for the artefact on both modali-
ties simultaneously, using multimodal information to encode
the anatomical content of the images. To further enforce
this sharing of information between the modalities, we intro-
duce the use of a loss term to maximise the similarity of the
artefact-corrected images. This is motivated by the idea that
two different images of the same object appear less similar if
corrupted by noise or artefacts, especially when the artefacts
present with different patterns in the two images. Conversely,
the two images should look more similar if artefact-free. By
maximising the similarity between the output channels, we
aim to improve artefact reduction for both modalities: firstly,
the high-frequency and full-field-of-view nature of the arte-
fact in the CT could be corrected through comparison with
artefact-free MRI regions; secondly, the implant lack of sig-
nal in MRI could be compensated by the CT information, and
better reconstruction should be achieved. We choose Locally
Normalised Cross Correlation (LNCC) as a measure of sim-
ilarity, as it is suitable for multimodal comparison and it can
be efficiently incorporated onto a neural network framework
thanks to its convolution formulation [7]. The new similarity
loss term is thus defined as:

Lsim = 1− EIa [|LNCC(x̂CT , x̂MRI)|] (6)

In addition, we also consider a self-synthesis consistency loss
for the cycle “corrupted - clean - corrupted”, that constitutes
a full cycle loss together with the self-reduction loss:

Lcycle = Lsr + EIa [||GIa(EI(x̂), a)− xa||1] (7)

In our experience, this helps obtain sharper output images,
especially with small training set size. The final total loss for
training the MADN architecture is thus

Ltot = λIadvLIadv + λIaadvL
Ia
adv + λrecLrec+

λcycleLcycle + λartLart + λsimLsim (8)

2.3. Experimental Setup

Our dataset included 65 3D CT-T1 MARS MRI pairs from
subjects with metal hip implants, and 63 CT-T1 MRI clean



Fig. 1: Schematic representation of MADN. We used a multichannel ADN architecture [4] and introduced a novel similarity
loss term to adapt it to the multimodal scenario.

pairs, with no metal artefacts. Data was collected in clini-
cal setting, with a variety of acquisition protocols, in com-
pliance with the Helsinki Declaration. Each CT-MRI pair
has been aligned with non-linear registration using a cubic b-
spline free-form deformation algorithm [8]. Note that the CT
images were initially corrected with the Refined Metal Arte-
fact Reduction (RMAR) [9] for more accurate transformation
estimation. However, the uncorrected images were utilised
in all the experiments subsequently described. 11 pairs of
corrupted CT-MRI were associated with manual segmenta-
tion of four muscles - Gluteus Maximus (GMAX), Gluteus
Medius (GMED), Gluteus Minimus (GMIN) and Tensor Fas-
ciae Latae (TFL). These subjects were thus left out from train-
ing and used as test set.
To quantify the effect of the MAR on CT we computed the
standard deviation of the intensities (σCT ) within the muscle
regions. The presence of metal artefact induces noise even
further from the implant, causing fluctuations of the intensi-
ties from their true value, and therefore higher standard devia-
tion. We performed this analysis before correction (No MAR)
and after correction with: (RMAR CT) a conventional MAR
algorithm [9]; (ADN CT) correction using an ADN model
trained on CT only; (Multichannel ADN) correction using an
ADN two-channel model trained on CT and MRI; (MADN)
our proposed correction based on two-channel ADN model
with LNCC similarity loss. For the MRI, we performed a seg-
mentation propagation experiment: each test MRI was regis-
tered to all others using an intensity-based free-form defor-
mation algorithm [8], their manual segmentation was propa-
gated with the estimated transformation and compared with
the manual ground truth using the Dice score. In addition to
No MAR, Multichannel ADN and MADN, for this task we
also trained an ADN model using MR only (ADN MR). All
ADN models were trained on 2D slices with ADAM opti-
miser and learning rate = 10−5. The loss weights were set to
λIadv = λIaadv = 1.0, λcycle = λrs = λrec = λart = 20.0.
For the proposed MADN, we set λsim = 1.0, and LNCC es-

timated through a Gaussian kernel with σ = 5.

3. RESULTS AND DISCUSSION

Figure 2 presents a visual comparison of all the tested MAR
methods. On the CT, our approach is the most effective in re-
ducing the streaks artefacts throughout the full field of view,
as the correction is also driven by non-corrupted MRI corre-
sponding areas. This reduction is also demonstrated by the
decrease in σCT within the muscular tissue (Fig. 3), on either
the implanted and non-implanted hip sides.

On the MRI, Fig. 2 shows that training with MR images
only (ADN MR) is not sufficient to learn an embedding of the
artefact and therefore correct for it. The multichannel ADN
and MADN approaches instead identify the corrupted area
correctly and attempt to reconstruct the signal in it. How-
ever, the shape of the implant or the surrounding tissue is still
not fully recovered. The quantitative experiments reported
in Table 1 and Fig. 4 show that MADN provides slightly
better alignment for GMAX and TFL, but it performs worse
on GMIN. It is however worth noticing that the manual seg-
mentations were performed on the non-corrected MRI, where
GMIN is the most affected by the artefact. This makes it chal-
lenging to determine whether such result is due to less accu-
rate registration or unreliable ground truth. Further analysis
is thus needed to better quantify the MAR impact on MRI.
Together with the lack of a clear ground truth, a few limita-
tions characterise our study. First, the ADN architecture was
not modified, keeping the same amount of parameters for ei-
ther single- or multi-modality tests and thus not optimising
the model capacity to the multimodal task. Moreover, differ-
ent multimodal similarity measures could be implemented in
place of LNCC (e.g. Cross Correlation or Normalised Mu-
tual Information) to test their impact on the reconstruction.
Finally, the test set is currently limited in size due to lack of
ground truth for quantitative analysis. Hence, the general-
isability of the proposed approach is to be more extensively
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Fig. 2: Visual comparison of MAR methods on CT and MRI. The implant is highlighted in yellow in all the corrected CT
images. No overlay is applied to the MRI to better display the effect of the MAR.

(a)

(b)

Fig. 3: Standard deviation of CT intensity values within spe-
cific muscles. Cases significantly different from MADN are
indicated by * (two-tailed paired t-test with p < 0.05). (a)
Implanted hip side. (b) Non implanted hip side.

validated. Despite these limitations, the qualitative examples
and quantitative results on the CT suggest that the use of the
multimodal approach for MAR could be beneficial, as it com-
bines different information to learn a better embedding of the
anatomy and of the artefact. Future work will thus address
the aforementioned limitations and focus on hyperparameters
optimisation in order to improve the correction in MRI.

GMAX GMED GMIN TFL
No MAR 0.76±0.15 0.54±0.17 0.37±0.18 0.41±0.27
ADN MR 0.76±0.18 0.53±0.16 0.34±0.19 0.44±0.26
Multich ADN 0.77±0.17 0.53±0.16 0.31±0.19 0.46±0.27
MADN 0.77±0.16 0.54±0.15 0.32±0.19 0.50±0.26

Table 1: Mean and standard deviation of Dice score for MR-
to-MR inter-subject segmentation propagation task.

Fig. 4: Dice score obtained from MR-to-MR inter-subject
registration and segmentation propagation. Cases signifi-
cantly different from MADN are indicated by * (two-tailed
paired t-test with p < 0.05)
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