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Abstract

Multicast is a communication method which operates on groups of applications. Hav

ing multiple instances of an application which are addressed collectively using a 

unique, multicast address, allows elegant solutions to some of the more intractable 

problems in distributed programming, such as providing fault tolerance. However, as 

multicast techniques are applied in areas such as distributed operating systems, where 

the operating system may span a large number of hosts, or on faster network architec

tures, where the problems of congestion reduce the effectiveness of the technique, 

then the scalability of multicast must be addressed if multicast is to gain a wider 

application.

The main scalability issue was considered to be packet loss due to buffer overrun, the 

most common cause of this buffer overrun being the mismatch in packet arrival rate 

and packet consumption at the multicast originator, the so-called implosion problem. 

This issue affects positively acknowledged and transactional protocols. As these two 

techniques are the most common protocol designs, it was felt that an investigation 

into the problems of these types of protocol would be most effective.

A model for implosion was developed which was simulated in order to investigate the 

parameters of implosion. A measure of this implosion was derived from the data, this 

index o f implosion allowing the severity of implosion to be described as well as the 

location of the implosion in the model. This implosion index was derived by dividing 

the rate at which buffers were occupied by the rate at which packets were generated 

by the model. The value may then be used to predict the number of buffers required 

given the number of packets expected.

A number of techniques were developed which may be used to offset implosion, 

either by artificially increasing the inter-packet gap, or by distributing replies so that 

no one host receives enough packets to cause an implosion. Of these alternatives, the 

latter offers the most promise, although requiring a large effort to maintain the result

ing hierarchical structure in the presence of multiple failures.
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Glossary

Broadcast

The transmission of a message from an originator to all recipients. Can be con

sidered as a multicast to an ill defined group.

Bus

A parallel communication channel normally used to connect main memory to 

peripherals

Client-Server

An interaction architecture where a client accesses a remote service, see transac

tion

Closed Group

A multicast group which does not allow any access by non-group members, 

except for joining hosts.

CLOWN

Concatentated LOcal and Wide area Network simulator.

Completion Time

Time for the last expected reply to be received in response to a multicast.

Data Integrity

The assurance that the data transmitted is the data received.

Group

A set of related recipients, identified by a shared address.

Hierarchical Forwarding

A method of gathering replies so that the number of replies directed to any host 

is less than would cause implosion.

Host

A networked computer which supports protocol operation.

Implosion Index
A number which represents the degree of overflow expected from a buffering
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system, values ranging from 0 to 1.

Internet

A large collection of connected networks running the Internet suite of protocols.

Internet Protocol (IP)

A network level protocol used for routing within the Internet, part of the Internet 

suite of protocols.

Local Area Network

A network which extends up to 10km.

Metropolitan Area Network

A network which extends up to 50km.

Module

A simulation entity exhibiting specific behaviour.

Multicast

The transmission of a message from an originator to many recipients.

Multicast Address

A sharable address identifying a group.

N-reliable multicast

Refers to a transaction, where n replies are expected.

Negative Acknowledgement

A method of communication, see protocol, a special packet sent to request the 

retransmission of a missed packet.

Network Buffer

A part of the host which buffers packets between network and bus.

Open Group

A multicast group which allows access to non-group members, see Client-Server

Open Systems Interconnection

A number of international standards for protocols.

Originator

The source of a multicast, may or may not be a group member.

Packet Efficiency

The ratio of data packets transmitted to the number of packets transmitted over

all.
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Positive Acknowledgement

A method of communication, see protocol, a special packet sent to acknowledge 

the reception of a message.

Protocol

An agreed method for transferring data.

Recipient

The intended receiver of a multicast, normally a group member.

Reference Model

A model of communicating entities which has 7 levels.

Reliability

The confidence an application has that a packet will be received by the recipi

ents.

Single Site

One of the group members having special responsibility to the group for order

ing purposes.

Transaction

A sequence of exchanges where an originator wishes to use a service provided 

by a server, passing data with the service request, the service then processing 

that data an returning a reply.

Transmission Control Protocol (TCP)

A byte stream oriented transport level protocol, part of the Internet suite of pro

tocols.

Unicast

Communication with exactly one recipient.

User Datagram Protocol (UDF)

A transport level datagram protocol, part of the Internet suite of protocols.

Wide Area Network

A network which extends over 50km.
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Chapter 1 
Introduction

Until the 1980’s most computer communication could be characterized as being either 

unicast or broadcast, unicast being the predominant communication method 

employed, the one to one nature of unicast corresponding well to the most common 

usages of communications, such as file transfer and remote terminals. The introduc

tion of broadcast capable networks allowed an application to communicate with all 

other applications which may be reachable by that broadcast. The main feature of 

broadcast that allows this one to "all" communication is that the broadcast address is 

recognized by every host on a broadcast capable network.

Multicast may be described as a formalization of the broadcast model, communica

tion being with a group of applications, each group identified by a shared, multicast 

address. One feature of multicast supporting this description is the commonality 

between multicast and broadcast addresses, each being sharable, and location inde

pendent a property inherited from address sharing. Multicast is a formalized model 

because the group is now defined by its address, whereas a broadcast was to every 

host regardless of the actual locations of the individual applications. Indeed, broad

cast may be considered to be multicast with an ill-defined group, as the actual
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membership of the broadcast group is not normally associated with broadcast.

Multicast is often employed as a means of achieving application fault tolerance, mul

tiple copies of an application being used to ensure application availability in the pres

ence of failures. Associating this group of applications with a single multicast address 

allows a simplified interface for communication to be employed, the group member

ship being abstracted by the multicast address. While fault tolerance is an important 

facet of multicast, the use of multiple copies of an application also exhibits powerful 

distribution capabilities for co-operating applications, where the application copies 

co-operate in problem solving.

1.1 Objectives

The work presented in this dissertation investigates some aspects of the scalability of 

multicast communication. As communication takes place using some form of proto

col or protocols, the main thrust of this work concerns how protocol design affects the 

scalability of multicast apphcations. The first objective was therefore to characterize 

some of the mechanisms that are scalability issues, these mechanisms then being 

related to a number of protocol designs.

The second objective, once some of the mechanisms affecting scalability were identi

fied, was to quantify scalability, if possible, with a view to develop a measure of scal

ability. This objective required that the design of multicast protocols be in some way 

reduced to the basic operating principles, these operating principles thus forming the 

subject of investigation rather than the potentially large number of variations. A sim

ple model was therefore developed which was used first to identify those parameters 

that were considered to affect the scalability of multicast, and secondly to chart the 

effects of these parameters.

A third objective was to develop methods that may be employed to increase the scala

bility of multicast protocol designs. A number of methods are described which may 

be employed to mitigate the implosion problem, the methods being independent of 

any particular protocol design, being intended more as basic templates for scalable 

communication. Implosion occurs whenever the number and arrival rate of packets 

exceeds the capability of the recipient to process the arrivals, which may result in 

packets being discarded if insufficient buffering is available to temporarily store 

imploding packets, a particular problem for multicast because of the synchronization 

of replies.
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Motivationally, observation of the literature on multicast indicated that scale was 

treated tentatively by many multicast protocol designs. While it is acknowledged that 

scale was never intended by these designs to be of prime importance, it indicates that 

there was a perceived need for the parameters of scale to be investigated. Many of 

these designs appeared to be unduly limited in the number of group members sup

ported.

1.2 Multicast Scalability

Deering’s definition of multicast [De89a] refers to a "host group of zero or more 

members" as forming a multicast group, this group being defined by the shared 

address associated with it. The most natural interpretation of scalability is therefore 

the size of this multicast group, and indeed it is with group size that many of the prob

lems discussed later are concerned. The main problem considered is that of implosion, 

where replies to a multicast arrive at the originator at a rate and with sufficient num

bers to overwhelm the buffering capabilities of the originator, leading to lost replies. 

Of course, this view requires that replies are generated and necessary for the protocol 

to operate. The requirement for replies is discussed later. A number of other factors 

which may contribute to scalability includes the loss of messages in transit, and the 

requirements of group management operations and ordering considerations.

Scalability may be viewed as defining the limitations of a protocol design when the 

various controlling parameters are scaled. Strictly, for a protocol to be scalable, the 

size of the group should be transparent to the application, that is there should be no 

performance impact on the protocol dependent on group size, or any of the other 

parameters discussed later. Also, scalability is not confined to the maximum size of 

group supported, being more a measure of the range over which the design operates. 

Compromises in a design which has a large maximum, may be unsuitable for small 

group sizes. The scalability of multicast, here considered a problem of protocol 

design, is of concern because of the lack of limits implied by Deering’s definition. By 

implication, a protocol must be at least aware of any limitations on its use in order to 

ensure that an application is able to operate as intended. It is one of the primary aims 

of this dissertation at least to suggest that a multicast protocol must be assessed for 

any such limits.

Because of this lack of intrinsic limits, unless a protocol has been individually 

assessed for its scalability, any change in one of the parameters affecting scale may

15



make the design unworkable, in the context of group size reducing the maximum 

group supported to less than required for fault tolerance for example. Conversely, if a 

protocol design was intended to operate within some real time constraints, [Fe90a] 

providing a good introduction to such issues, the additional work involved in commu

nicating with a larger number of recipients may delay the protocol resulting in an 

effective failure. This example also illustrates one of the more important aspects of 

scalability, that a multicast, under certain conditions, may never complete, the overall 

time required to gather all the replies required exceeding some application defined 

limit.

As will be discussed later, the environment in which a protocol operates may pro

foundly affect the operation of that protocol even if all other parameters remain 

unchanged, this environmental aspect of multicast scalability being of importance 

given the rapidly advancing pace of communication technology. When it is consid

ered that a protocol design has a relatively long lifetime compared to these technolog

ical advances, a design must not only operate within the current environment but also 

anticipate such changes in order for to produce a return on its design and implementa

tion costs. Indeed, the environmental aspect of multicast has a powerful effect on the 

scalability as will be shown later.

A Order
Group
Management

Network 
Characteristics 

I ■
B'cast Hybrid ITcast

Desired Order

Group Overlap 
Ordered

Group
Ordered
Arbitrary
Order Scale

Increasing- 

,NA1

K(NA1)

Model

▼ Reliability

Figure 1.1 Multicast Issues

Figure 1.1 shows how the many inter-related issues of multicast may be illustrated. A 

few of these issues may be described as environmentally related, such as the

16



underlying network architecture and the structure of the group. The others are consid

ered here to be design choices. The former issues are introduced in this chapter, the 

latter in the next chapter. As scale is the subject of this dissertation this aspect is dis

cussed later.

The implication of Figure 1.1 is that multicast protocols may not be considered com

plete without considering the many issues illustrated. The design of ordering systems 

and group management are influenced by the underlying network architecture and the 

reliability of the protocol used to transfer information. In turn the reliability mecha

nism is also influenced by the underlying architecture. The multicast model influences 

the reliability required as a simple 1 :N model has no replies and therefore by implica

tion multicast reliability is not an issue. All of these are influenced by scale in that the 

use of a particular method to implement an ordering paradigm or group management 

model may be modified by potential scalability problems.

1.3 Multicast Models

One of these environmental issues is the structure of a group. Four distinct structures 

are shown in figure 1.1. The 1:1 model represents the unicast case. The N:1 and 1:N 

models represent the cases where many originators transmit to one recipient, illustra

tive of a typical multiple client, single file server interaction, and the one to many 

case which is most often referred to as multicast, respectively. The N:M model is a 

more general view of a multicast, where many clients are communicating with many 

members of the same group. Further along this axis, the most general situation is 

where many sets of such interactions are taking place simultaneously.

These models represent the physical structure of communication. The actual transfer 

of packets between these models may be bi-directional, so that in each model commu

nication may also take place in the opposite direction to that implied, for example the 

1:N model represents a communication of 1:N and N:l, where the N:1 communica

tion is decomposed into N (1:1) communications. This communication model forms 

the basic model used throughout this dissertation, encapsulating multicast from the 

point of view of an originator. It is considered that it is the originator that forms the 

weak link in the scalability of multicast.

In considering communication to be bi-directional, it is assumed that the reply traffic 

is generated in response to the reception of a multicast, the total forming a complete 

description of the communication. The types of reply traffic which may be generated
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can be divided into two broad categories. The first type is used by the protocol for 

house-keeping functions, such as buffer management and is often referred to as an 

acknowledgement. The second type is used to convey data back to the originator, 

where the data was generated in response to the forward multicast. This latter type of 

interaction is called transactional and is a common technique in distributed applica

tions.

One further communication model concerns the nature of the group communication, a 

distinction being made between communication which takes place solely between 

group members, and communication between group members and non-group mem

bers, the former referred to as closed group communication, the latter as open group 

communication.

.Unicast

Multicast

Broadcast

Group A

Group B
Group C

Figure 1.2 Generalized Group Structure of Multicast 

Figure 1.2 shows how the various concepts of group fit together, the broadcast group 

entirely encapsulating the multicast and unicast groups. The notion of overlapped 

groups, groups B and C, is of significance when order between groups is considered. 

The inclusion of a unicast "point" within the broadcast group leads to the perception 

that multicast describes a general model for communication.

1.4 Network Architecture

Three types of network architecture are shown in figure 1.1, unicast and broadcast 

having already been introduced. Network architecture constrains the functionality of a 

multicast protocol because of the physical nature of the architecture. In the case of 

broadcast there is no restriction, as by definition any message that is broadcast is 

potentially receivable by every connected host. Unicast on the other hand forces a 

multicast to take the form of multiple unicasts. The third type shown is hybrid, where 

the underlying network is less restrictive than unicast, but more restrictive than broad

cast. A measure of the efficiency of multicast in these environments is packet
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efficiency, which is described as the ratio of multicast packets to the total number of 

packets transmitted to completion. Mockapetris [Mo83a] formulates the packet effi

ciencies for a number of common protocol types. In summary, the packet efficiency of 

a simple protocol which transmits one packet and receives one reply may be 

described by the formula

Packet Efficiency = - — 1.1
{ K + \ )  + n

where K is the number of additional copies of the packet made, and n is the number 

of recipients. A broadcast capable network has a value of K =0,  as no additional 

copies are made, a unicast based network requires K = n -  1. The n in the equation 

represents n replies, one from each recipient.

The Internet Protocol {IP) [Po81a] forms the network layer of the Internet protocol 

suite. The Internet architecture is an example of the hybrid style, where packets are 

routed to their destination by a series of unicast hops. The IP possesses a b ro a d ca st  

capability as described by Mogul [Mo84a,Mo84b] and Lebowitz and Mankins 

[Le85a] achieved by copying packets at each routing node rather than just forwarding 

the received packet, transmitting these copies to other routing nodes. In this way a 

packet copy is received by each connected host. Because many packet copies are 

used this is not considered a true broadcast, where one copy is receivable by each 

host. It is also not pure unicast, as the copying of packets is distributed, and transpar

ent, to the originator. The IP style of broadcast forms the basis for the IP multicast 

host extensions described by Deering [De85a,Ch85b,De86a,De88a,De89a].

1.5 Protocol Design Issues

Given the basic structure of the group communication and the underlying restrictions 

imposed by network architecture, a multicast protocol may be described by its posi

tion relative to the remaining axes. Multicast order is a symptom of the grouping of 

applications, where the actions at each application copy must in some way be related 

across the group. The four ordering philosophies shown in figure 1.1 are developed in 

more detail later. Reliabihty refers to the number of rephes received by the origina

tor. The term replies is used crudely here to refer to some form of message which is 

transmitted in response to the reception of a multicast message. As will be discussed 

later, such a simple reply is not necessarily observed in practice. Finally, group man

agement is the mechanism employed by a multicast protocol to track changes in
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group membership. No enumerations are presented as group management may be fur

ther sub-divided, which is presented later.

1.6 Multicast Applications and Environments

A multicast application has two properties due to the multicast address. The first is 

shambility, which allows multiple copies of an application to be addressed as a single 

entity, the second is location independence which stems from shareability. By group

ing application copies using a single multicast address a number of application prop

erties are more easily achievable. For example, a fault tolerant application may have a 

number of copies of itself distributed among a number of hosts, all of which receive 

messages directed to its multicast address. Any application using this service there

fore has only to use the shared multicast address to communicate with all instances of 

the service. Location independence, in addition to allowing the use of multiple appli

cation instances, allows a more flexible approach to unicast applications, reinforcing 

the view that multicast offers a general communication model.

While fault tolerance would commonly employ a few application copies to achieve a 

particular degree of fault tolerance, the use of large scale multicast in areas such as 

distributed operating systems, object management and shared memory is becoming 

evident. While the majority of communication in these environments is unicast or 

small scale multicast, the possibility that a multicast covers a large number of the 

nodes in such distributed systems cannot be ignored, for example updating the operat

ing system on each node or monitoring a distributed computation. The use of large 

scale multicast is also encouraged by the spread of networks, the Internet for example 

spanning continents and connecting many thousands of hosts. Applying multicast 

techniques to electronic mail where mail is directed to groups is an example where 

large scale multicast may offer a reduction in traffic. By extension, computer confer

encing could be a major use of multicast in the future, the more real-time aspects of 

this demanding the type of traffic reduction potentially offered by multicast.

One of the simplest applications of multicast is that of service location. By multicast

ing to the address of a known service, the response of that service may be used to 

locate, that is get the unicast address of, that service. Using multicast for this is 

preferable to employing broadcast, as a multicast is directed only to the hosts which 

support the required service, reducing the number of messages directed to hosts 

which do not support the required service. As only one instance of a service is
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required, any extra replies are commonly discarded. The service location model is 

also applicable to many simple applications, such as a time or name service, where 

the reply contains the information provided by the service, in the case of a time ser

vice, the current time. An example of an application is the Ethernet Address Resolu

tion Protocol [P182a] which is used to map an IP address to the fixed Ethernet address.

More generally, the multicast models described above are extensively used in dis

tributed operating systems [Ta86a,Mu88a], examples of the use of such models being 

described more fully later. An associated application for multicast is distributed 

shared memory, where the illusion of a shared memory is maintained in a loosely 

coupled network of hosts by message passing. By attaching a multicast address to 

each shared memory area, or even each page of memory, would allow efficient main

tenance of the shared memory. Indeed, it has been postulated [De89b,Fa89a] that the 

advent of fibre optic networks, which offer low error rates as well as very high trans

fer rates, in conjunction with the shared memory architecture, will supersede the need 

for protocols for local area use. Other areas that use or would benefit fi'om multicast 

are distributed databases [Gr78a,Pa88b], where multiple copies of a database may be 

used to provide greater availability or to distribute large databases across many hosts.

So far, the discussion has been about applications of multicast, and the need to 

address scalability because of the number of group members. Alternatively the scala

bility of multicast may also be affected by the environment in which the multicast 

takes place. One of the perennial problems in communications is congestion, where 

packets are discarded due to the lack of buffer space, which is used to smooth the 

mismatch between the rate of reception of packets and their subsequent disposal. 

With the increase in transfer rates achievable using modem devices, it is expected that 

this problem will become more significant.

The effect that network architectures have on the scalability of multicast is described 

in greater detail later. The main reason for pursuing this avenue is the increasing 

transfer rates offered by modern networks. Fibre optic based networks offer the 

potential for much greater transfer rates than current copper based networks, although 

recent developments [Fi91a] indicate that these increased transfer rates are not con

fined to fibre optic networks, increasing the mismatch between respective rates of 

packet arrival at a host and their subsequent consumption. The use of fibre optics for 

Local Area Networks (LANs) [Li89a,Su86a], Metropolitan Area Networks (m a n s) 

[Ne88a,Ro86a] and in telephony [Mi89a] not only offer higher transfer rates but also
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a decrease in inter-packet intervals. When considering multicast replies, this latter 

point becomes significant when the synchronizing effect of a multicast is considered. 

Large scale multicast with replies will be developed, including the possibility of 

replies being transmitted with the minimum inter-packet gap exhibited by the net

work. The combination of the number of replies and the time taken to fully receive 

each packet resulting in the possibility of implosion and therefore buffer overrun. In 

addition, as will be described later, many protocol designs respond to packet loss by 

retransmission, here again resulting in possible buffer overrun. It is conceivable that 

in this case, a multicast takes an inordinately long time to complete with multiple 

retransmissions each followed by multiple replies. The effect of network and host 

architecture on the scalability of multicast protocols forms the major part of this dis

sertation, and therefore this issue is explored more fully later.

1.7 Summary

A number of multicast models were developed which included the possibility of 

replies to a multicast. The addition of replies allows a multicast to be reliable and 

transactional but introduces a potential scalability problem due to these replies 

imploding at the multicast originator. Implosion occurs whenever the number and 

rate of reception of packets exceeds the buffering capabilities of the receiving host, 

resulting in packets being discarded.

A multicast protocol may be characterized by a number of elements. Order describes 

how messages are ordered at each group member relative to messages at the other 

group members. Reliability describes both the guarantee an originator may assume 

that a message is received by group members and the number of replies that are 

required by an application. Scale is the subject of this dissertation and is discussed in 

greater detail later. A major influence on the efficiency of multicast is how messages 

are transferred by the underlying network, ranging from broadcast capable networks 

to purely unicast based networks.

A possible factor affecting scalability is expected to be the relationship between net

work transfer rate and the capabilities of a host to process received packets. With the 

transfer rates of networks increasing at a high rate due partly to the advent of fibre 

optic communications, this increase not being matched by similar increases for host 

processing, the problem of implosion is expected to become more important when 

designing a multicast protocol.
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Chapter 2 
Multicast Protocol Design

There exists an extensive body of literature concerning multicast, as illustrated by 

Chanson, Neufeld and Liang [Ch89a]. A large part of this literature concerns multi

cast protocols, which forms the main area of investigation here, as it is the protocol 

that provides an application with a service, that service including, hopefully, provi

sion for scalability. However, to investigate multicast protocols it is necessary to 

observe where multicast is considered applicable, and what is more important here, 

why the scalability of multicast protocol design is considered to be an important 

design decision.

A number of protocol designs are described, using order as the main classification. 

These designs illustrate the diversity of multicast, as well as the similarities in the 

methods employed to achieve a particular set of characteristics.

2.1 Multicast Applications

A large part of multicast research is concerned with fault tolerant multicast, that is 

ensuring that messages are received by each group member in the presence of multi

ple failures. Fault tolerance in the context of multicast is mainly concerned with
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ensuring that messages are delivered reliably to surviving group members in the pres

ence of failure. Indeed, fault tolerance may be considered one aspect of reliability. 

Most multicast protocol designs however assume only that reliability is guaranteed 

for the current group membership, so that a group member that fails before or during 

a multicast does not subsequently receive that multicast.

The ISIS toolkit [Bi89b,Jo86a,Bi87a,Ma85a,Ma88a,Bi89a] is designed around a group 

of hosts which are ISIS s ites , that is run a copy of the management system. The ISIS 

design was intended to maintain a v irtu a l synchrony  [Bi87b] between group members 

in the presence of failures, assuming a fail-silent property, using well defined group 

management operations to maintain a consistent grou p view . All ISIS operations only 

take place between hosts that are ISIS sites. Each site has a group view, which 

describes the process groups that exist within the host group of ISIS sites. This group 

view is uniquely identified by an incarnation  num ber that starts at zero and is incre

mented whenever the group view changes. Changes to the group view are synchro

nized, so that each ISIS site possesses the same group view at the same place relative 

to all ISIS messages. Group view changes are accomplished with a multi-phase Group 

Broadcast (GBCAST) protocol, which ensures that the group view is only changed 

when all operations which were in progress using the old group view have either 

completed or aborted. By synchronizing group changes the toolkit imposes virtual 

synchrony onto any processes that use the built in facilities. For virtual synchrony to 

be maintained requires that the other protocols used by the toolkit co-operate by using 

the group view for every operation. The toolkit offers three other protocols, FIFO, 

Causal Broadcast (CBCAST) and Atomic Broadcast (ABCAST). The ISIS toolkit is an 

example of a specific approach to applications which require message ordering and is 

included as an application as it offers a number of protocols as well as applications 

such as a distributed m ake  [Ma90a]. These protocols are described in greater detail 

later.

The ISIS sites communicate using the reliable byte stream service offered by the TCP 

as well as the unreliable datagram service of the UDF. Each site maintains a connec

tion to all other sites using TCP, the ISIS protocols using these for communication. The 

UDP protocol is mainly used in the later version of ISIS to allow non-/5/5 sites to com

municate with ISIS sites, using the ISIS toolkit by way of one of the ISIS sites.

While the above concentrated on achieving greater reliability, the use of multicast as 

the main communication method within distributed operating systems demonstrates a
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need to address scalability. Distributed operating systems are an obvious candidate for 

multicast, although it may be preferable to consider these as application support envi

ronments, the distribution facilities expected in such a system being used by an appli

cation proper. Any multicast protocol used within such a system must be capable of 

multicasting to potentially all of the hosts which form the operating system.

A common method for communicating in a such a system is by Remote Procedure 

Call [Bi84a,Co91a] {RPC), the paradigm often being extended for multicast use, by, 

for example, using a filter on replies so that only one reply is returned to the calling 

procedure. Examples of distributed operating systems using multicast are Amoeba 

[Mu90a,Ta89a], the V-Kernel [Ch85a,Ch84b,Ch83b,Ch83a,Ch88b], Meglos [Ga86a] 

and the Link Kernel by [Ga89a]. In addition, network computers, where the system is 

less highly integrated than in a true distributed operating system, also use multicast 

for similar tasks.

Typical uses for multicast within such systems is for communication with a dis

tributed process group such as the sending of signals to the group, load balancing 

[Cr89a,Ba85b,A187a], where the load on each host is maintained at a similar level to 

enhance overall performance, and other such "house-keeping" operations.

A number of applications that use the multicast support of these distributed operating 

systems have been described, such as a distributed make [Ba88a,Ba86a], using the 

ability the operating system to create processes remotely, allowing compilation to 

take place in parallel. This ability to create distributed process groups that execute in 

parallel is a general property of distributed operating systems. Many other examples 

may be described which use this facility, such as Orca [Ba87a,Baa], a distributed 

object manager, all of which use the multicasting facilities of the underlying operating 

system for process control. The usefulness of multicast for such activities is evident, 

and with the increasing interest in object oriented paradigms in computing as well as 

distributed systems, the need to address the scalability of such systems was consid

ered well founded.

On a different note, one of the major services provided by an operating system is the 

file service, which with the introduction of networks may now be remotely located 

from file usage. The Andrew File Service [Mo86a,Ho87a] is designed to support a 

large group of workstations using location transparent files and file migration to 

enhance data availability. One of the methods used to increase the performance of file 

server was to allow whole file caching by workstations, the file only being written
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when the file was closed. One of the problems with this is the need for files being 

used at workstations to be updated whenever the file server copy is changed. The file 

server uses ca llbacks, which are registered with the file server whenever a copy of the 

file is requested, to transmit the file changes to each of the extant copies. For a popu

lar file this may result in there being many copies requiring update, an obvious usage 

of multicast. The file server uses multiple remote procedure calls for this, RPC2 oper

ating in parallel [Sa90a], that is not waiting for each call to complete before begin

ning the next. Using multiple unicasts here may be justified by the expectation that 

unicast remote procedure calls formed the majority of communication. The basic 

Andrew File System was extended to form the Coda file server [Sa90b] which adds 

support for replicated files to the above basic file service thereby increasing file avail

ability in the event of server crashes. Clients communicate with the Coda file servers 

using RPC2. Although a file service as currently conceived may be a relatively low 

scale system, this may change with increasing distribution of services.

A number of more general applications of multicast, such as file distribution [Co84a] 

and computer conferencing [Cr89b], which use proprietary protocol designs may be 

described. More recently, computer conferencing has been extended to include multi- 

media [Ro91a], which multicasts over mixed communication media such as LANs and 

WANs [Va91a], being used for passing not just text, or simple graphics, but also full 

motion video with the consequent real-time requirements of such activity.

In summary, multicast has an application wherever there are multiple copies of an 

application and messages have to be transferred to each copy. In addition, the location 

independence of the multicast address may also be employed where there is only one 

copy of an application, the property being useful for transparent application migration 

in case of host shutdown. Many more applications could have been described. How

ever, the main aim here was to show that the scalability of multicast must be 

addressed as the group size may not be limited by some arbitrary assumption.

2.2 A Taxonomy for Multicast Protocols

Figure I.l showed the major design issues that are considered here to form the basic 

model for multicast protocol design. Of these issues, reliability, order and group man

agement are examples of protocol design issues.
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Reliability

One of the main issues in any protocol design is reliability. Reliability is often 

described in the context of a number of failure modes. The types of failure which 

may occur range from the loss of packets in transit due to noise or temporary conges

tion, a simple host failure, resulting in the unavailability of that group member, to a 

network partition, where the group members on a particular network segment are 

unavailable but remain operational, to the case where a member is functionally failed, 

but still operational and transmitting spurious or false messages, the so called Byzan

tine Generals problem [La82a], which is of interest because of the use of broadcast, 

and therefore by implication multicast, to solve the problem. The severity of a relia

bility failure may be measured in the time taken to clear the problem, in the case of a 

packet corrupted by noise, a few milliseconds, up to hours or days for a failed host. 

Most often, a short term failure is the realm of protocol design .

Babaoglu and Drummond [Ba85a] described how the architecture of the network may 

aid in solving this problem, employing multiple networks to overcome the partition 

problem, as well as Byzantine failure, message copies being transmitted by each net

work and compared, thus allowing any false messages to be discarded based on the 

majority view. Schneider, Cries and Schlichting [Sc84a] investigated a method for 

delivering messages such that the message may be guaranteed to be received by each 

group member, despite arbitrary failure and recovery. A different approach to the 

problem of ensuring reliability in the presence of failure was described by Powell and 

Presotto [Po83a], by using a special host to record every message on reliable storage 

and periodically checkpointing the group members to ensure that each member 

receives a copy of the message even if that member was failed at the time of transmis

sion.

Two short term failures conditions are errors, where the packet transmitted is cor

rupted in some way, this corruption being detected using some form of integrity 

check, such as a checksum, and packet loss, caused by a lack of buffering resources at 

either the recipient of a packet or an intermediate host, referred to as congestion. The 

former may be countered by the transmission of extra error correction information 

either contained within the packet or as a separate check packet. The multicast models 

described previously indicate that it is packet loss that is the main reliability failure 

mechanism and it is with this packet loss that this dissertation is concerned.
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The basic techniques used to achieve reliability in the design of multicast protocols 

are similar to those used by unicast and broadcast protocols. The protocols discussed 

here are considered to provide a service equivalent to the transport layer of the ISO OSI 

RM. A protocol is considered to accept a message from higher level protocols, which 

may be internally fragmented into packets before passing to the next lowest protocol, 

the maximum packet size being governed by the maximum message size of the proto

col below. Each packet is then passed to the next lowest protocol, a header being 

attached to each packet which is used by the protocol for its own use. A packet forms 

a part or all of a message, the term packet being used throughout in that context. Also, 

a distinction between a h o st group  and a p ro cess  group  must be made. A host group is 

a group of hosts each of which has one or more process groups resident. The IP multi

cast extensions refers to host group as typically only one instance of the IP protocol is 

resident on each host.

Three main techniques are considered. Of these, the datagram technique is the sim

plest, but also the least reliable, offering a "best effort" reliability. Examples of data

gram protocols are the IP [Po81a] and UDP [Po80a] members of the Internet suite of 

protocols.

The two other techniques rely on the retransmission of missed packets or messages to 

increase the reliability of the transmission. In order for the originator to retransmit a 

missed packet the recipient must somehow inform the originator which packet was 

missed. Each packet is tagged using a sequ en ce num ber, the nature of which is well 

understood by the protocol.

In the n egative ackn ow ledgem en t {NACK) technique, a small packet is returned to the 

originator which is generated in response to the detection of a missed packet, figure 

2 . 1.

Originator

Missed
Packet

Time

Recipient

Nack

Re-Transmission

Figure 2.1 Negative Acknowledgement Technique
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A missed packet is often detected by the subsequent arrival of a later packet, which 

allows the recipient to detect a gap in sequence numbers. The negative acknowledge

ment packet in effect requests the retransmission of the missed packet from the origi

nator. The major problem with this technique is that the originator has no way of dis

tinguishing whether a packet has been received correctly by the recipients or not, as 

the lack of a negative acknowledgement may mean either that the packet was 

received or that the recipient has not yet detected its loss. The implication is that 

transmitted packets must be retained until the originator is confident that the packet 

has been received by every recipient. Therefore, it is more correct to discuss the 

deg ree  of reliability offered by the technique.

The last technique is p o s itiv e  ackn ow ledgem en t {PACK), where a small packet is trans

mitted in response to the reception  of a packet, a multicast resulting in an 

acknowedgement from each recipient. Reliability is ensured by the originator retrans

mitting unacknowledged packets periodically whenever there is no reply from recipi

ents, the retransmission being governed by a timer, controlling the retransmission 

interval, and the number of unacknowledged retransmissions that must pass before 

the transmission is considered failed. Figure 2.2 shows a simple multicast with 

acknowledgments.

Originator
N Group 
Members

Time

Figure 2.2 Positive Acknowledgment Technique

Again a sequence number is used, here to inform the originator of received packets. 

Although the use of these positive acknowledgements is considered reliable, it is reli

able in the sense that the originator has confirmation of message reception. It should 

be noted that an acknowledgement must be received from each recipient.

Paliwoda [Pa88a] describes n-reliab le  multicast, where n ranges from zero to a ll  in 

the context of transactional protocols. However, this terminology may also be applied 

to more general protocol designs. The value of n is application specific, that is the 

value of n is dictated by the requirements of the application. The service location

29



model described previously is 7-reliable as only one reply is required. If every reply 

is required then the communication is ^//-reliable. While n can be any value, two 

other values have special significance, these being majority and all, as these relate to 

the current group membership rather than absolute values. Using the reliability tech

niques described above, positive acknowledgements are all-reliable, as each recipient 

must acknowledge reception. Negative acknowledgements possess variable reliability 

using this definition, but cannot be regarded as reliable.

Congestion occurs where the number and rate at which packets arrive at a host 

exceeds the capabilities of the host buffering to absorb all the packets, resulting in 

packet loss through buffer overrun. This problem is countered by employing some 

form of JÎOW control, controlling the number of packets generated and/or rate of 

packet generation, in order to reduce this buffer overrun. The simplest flow control 

mechanism is to transmit a packet at a time, gathering all acknowledgements before 

transmitting the next packet. If the round trip delay of a network is small, then the 

overall delay involved is also relatively small. However, if the round trip time is large 

then this method is inefficient. By allowing a number of packets to be transmitted in a 

block, an acknowledgements being transmitted at the end of a block, then the overall 

delay experienced per packet is reduced. The number of packets transmitted may be 

controlled by using a token that gives an originator permission to transmit a certain 

number of packets, the value of this token being based on the amount of unused 

buffer space at the recipients. The token, called a window, is most often associated 

with the positive acknowledgement above, the acknowledgement packet also contain

ing the window information. Indeed, most implementations of a window system 

require reply traffic in order to operate. This type of flow control is extensively used 

in unicast communication, an example being the Transmission Control Protocol (TCP) 

[Po81b,C182a,Ja90a]. Studies into the efficiency of windowing schemes for multicast 

over broadcast satellite are described by [Go84a,Ra86a] and [Mo87a].

An alternative is to control the rate at which packets are generated, by interposing a 

timed gap between packets at the originator. The recipient may change the rate at 

which packets are transmitted by informing the originator either that packets are 

being missed, or by specifying a preferred transmission rate. An example of a proto

col employing rate control is the NETBLT protocol [C187a,C187b]. These flow con

trol methods are equally vahd for multicast as for unicast, and indeed many protocol 

designs use them. However, because there are now many recipients, each of which
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apply flow control, some means is required to prevent some recipients from altering 

the overall flow control such that other recipients suffer congestion. The main 

requirement here is that flow control information be received from each recipient 

before any change is made. While these methods control the flow from the originator, 

controlling the flow from recipients to the originator is more difficult, especially if 

these reply packets are not traditionally subject to flow control, an example being 

acknowledgements.

When discussing multicast protocols two main measures are often used to compare 

designs. These are the completion time, that is the time delay between the transmis

sion of the first packet of a multicast and the reception of the last expected reply, and 

the packet efficiency already described. One of the primary aims of many multicast 

designs is to reduce the total number of packets transmitted per message to a mini

mum, subject to reliability and underlying network architecture constraints. The main 

factor in the packet counts exhibited by a protocol is the technique used for data 

transfer, the packet counts exhibited being modified by the two constraints introduced 

above.

Group Management

Group management is defined by group management operations, which operate on 

what may be termed management information. The structure employed for this infor

mation is influenced by the frequency at which the various operations take place. 

Simple well known applications, where there is a permanent mapping between the 

service and its multicast address, have no need for group management, the existence 

of the group being tested by simply multicasting to the group. However, the majority 

of multicast applications would be expected to create a multicast group for them

selves, using an unused multicast address, the first application being responsible for 

group creation. Two problems are immediately apparent; firstly how to discover an 

unused address, secondly how to inform joining group members and users of the 

group which address maps to which group or service.

A method much used for the discovery of an unused address is to multicast to an arbi

trarily chosen address and if replies are received then to attempt another. The effi

ciency of such a scheme is reliant on the use of a sparsely populated address space to 

ensure that the number of address clashes is small. Hughes [Hu88a] describes an 

algorithmic approach to address generation, by taking the host address and appending
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the current time of day to form a unique multicast address. Cheriton [Ch88b] 

employed an address manager for the management of process addresses in the V-Ker- 

nel which by implication could be used for the same role for multicast addresses. A 

feature of this implementation was that each host in the operating system requesting a 

block of addresses at a time to reduce the number of times that the service was called. 

The ISIS system allocates unique addresses because of the synchronous nature of 

group management operations, so that the group view at each site is identical. The 

mapping of addresses to application groups is not well documented, the mapping 

being implicitly assumed.

The converse of group creation is the destroy operation, where the address is de

allocated and returned to the pool of unused addresses. The commonest method for 

this is for the group to be implicitly destroyed when the last group member leaves the 

group. While this works well when addresses are discovered using the simple 

approach described above, if the address was allocated the address manager must 

either monitor the address for activity or be actively informed of the group’s destruc

tion. It should be noted that any users of the group must also be made aware of the 

group’s destruction, which may be achieved by simply delaying address re-use allow

ing the user time to detect the destruction of the group. Ngoh and Hopkins [Nga] 

describe the use of an explicit destroy operation, in this case occurring when the cre

ating member leaves the group regardless of the current group membership, forcing 

any remaining members of the group to leave the group.

Once a group is created then applications may join and leave the group. Because the 

group address is already allocated, a joining application must have some means of 

discovering the correct address to use. In the stricter management regimes this is 

accomplished using the group view to provide the mapping between application and 

address. The equivalent leave operation is mainly used to inform the group manage

ment of the fact to enable the group membership to be updated, but may also be used 

to delay the actual departure of an application until any extant data has been received.

Two other operations are also defined, these being failure detection and query. The 

detection of failure is important if the group management must be accurate for the 

correct operation of the system, the main method used being for a group leave to be 

issued on behalf of the failed member. The query operation is used mainly by non

group members to allow access to the group, and by group members to assess the cur

rent group membership. Figure 2.3 shows how the group management operations
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relate to each other.

Create
Join

Query

—  Fail

Leave
Destroy

Figure 2.3 Structure of Group Management Operations

The structure of management information may range from a fully centralized system 

where all operations act in a single place, through a group centred structure, where the 

operations are centralized on a per group basis to fully distributed where either full or 

partial information is replicated at each group member. The information itself may 

simply be a mapping between multicast address and the application name to a list of 

all of the group members currently active, with each entry possessing specific infor

mation about the indicated member and is often termed the group view. In a dynamic 

group environment, where applications are joining and leaving the group, the timeli

ness of updates to the management information must also be addressed, as well as the 

transfer of this information to joining members, which in addition has implications 

for order described below, specifically whether group management changes should be 

ordered relative to data transfers so that the data transfer is directed to the all of the 

current group members.

Order

The importance of order in multicast may be seen from the number of protocols 

which are designed with order as the prime design goal. One of the problems with 

multicast that is a consequence of the grouping nature of the method is consistency. 

The N:M model of figure 1.1 shows that with multiple originators and multiple recipi

ents that message may be received in a different order at each recipient. For data 

replication, where multiple copies of data are stored at a number of hosts, the problem 

is to maintain the consistency of this replicated data to ensure at least that the most 

recent version of the data may be accessible to any application. Voting may be used, 

where data is tagged with a vote, the application having to gather a quorum of votes 

so that at least one of the data copies is the most recent, the data having been written
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in such a way to ensure this. Voting is a popular method of controlling replication, as 

evidenced by the work by Herlihy [He86a] Barbara and Garcia-Molina [Ba86b] Long 

et. al. [Lo88a,Lo88c,Lo88b,Lo90a], Gifford [Gi81a] and Kumar [Ku91a].

Multicast ordering is related to those used for voting by being intended to maintain 

the consistency of data replicated at many group members. Multicast ordering is 

more concerned with the order in which messages are processed at each recipient rel

ative to the other group members, so doing ensuring that replicated data is maintained 

in a consistent state. The difference here is that multicast ordering is concerned with 

maintaining the consistency of data at the group members, rather than ensuring that 

any application is able to access the most recent copy of that data, so that all copies 

held by group members are the most recent. The role of order in distributed systems is 

explored more fully by Birman and Marzullo [Bi89a].

Multicast order becomes a problem whenever many originators communicate with a 

group. If there is only one originator then order is automatically guaranteed if the 

originator transmits messages one at a time, so that each multicast is completed 

before the next begins. If there is only one group member, then again there is no prob

lem with order, as all messages are then processed in the order of arrival. Indeed, this 

fact forms the basis for a number of protocol designs described below. A distinction 

must be made between the reception of a message at a recipient and its subsequent 

delivery, many ordering protocols increasing the delay between reception and deliv

ery to ensure the ordering paradigm, which in turn increases the latency exhibited by 

a protocol, which may be defined as the delay between message transmission and 

final delivery of the last copy of that message. Latency is also affected by the comple

tion time of a protocol, as order cannot be guaranteed until all of the messages that 

are subject to that ordering paradigm are received by each recipient, which implies 

that the transfer time between originator and recipients is of importance. A longer 

transfer delay also increases the probability that further messages are transmitted 

which need to be ordered. Indeed, it is partly because of this delay that ordering is 

required. If the transfer delay is zero, then messages are automatically ordered by the 

time of transmission, which implies that the longer this delay and greater the disper

sion, the greater the disorder. This is one of the reasons why many of the ordering 

protocols described later are confined to networks which exhibit low delay and dis

persion.
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Figure 2.4 Arbitrary Order

Definitions of order depend on the type of ordering paradigm, but can loosely be 

described as the relationship that any particular message has with other messages in a 

distributed system. The relationship is generally defined by four types. Arbitrary 

order, figure 2.4, is the simplest ordering property and describes messages ordered by 

time of arrival independently of that message’s order anywhere else in the system and 

is the basic service offered by all multicast (and unicast) protocols. The only restric

tion imposed is that messages transmitted from the same application are processed in 

the order that they were sent, which is easily achieved by using a sequence number in 

each message. From figure 2.4, host a processes message a, then b then c, whereas 

host b processes message b first, then a then c.

A stronger ordering type is group order that ensures that messages are delivered to 

each group member in a consistent order, that is each group member is guaranteed to 

receive messages in the same order as every other.
a b e

m.
m.

m

Time

Figure 2.5 Group Order 

This is often referred to as serializability. It should be noted that the order of mes

sages is arbitrary, that is there is no guarantee that the order reflects a desired 

sequence of messages. Figure 2.5 shows how the delivery messages are delayed at 

hosts b and c so that the same order is established at each host, here a before b before 

c.
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Extending group order to multiple groups results in group overlap order where, not 

only are messages guaranteed to be ordered identically at each group member, but 

also all messages at each group member which is also a member of other overlapped 

groups. Groups overlap if different group members are resident on the same host, 

with messages destined for each group ordered the same at every host that exhibits 

this overlap.

The last ordering paradigm considered is desired order, where messages are deliv

ered in the order requested by the originator. Desired order is a partial order based on 

events, such as the reception or transmission of a message, that are said to have 

occurred before the current event, so that a message that is causally dependent on 

another message requires that this later message has been, or will be, received by each 

group member that receives the former message before the former message is pro

cessed. Lamport [La78a] defines a causal relation by the symbol ->, so if a occurs 

before b then a->b. Figure 2.6 shows how causality may be employed, the dotted 

slanted line from host b to host c represented the transmission of message a to c by 

host b before message b, message b being causally related to message b and therefore 

required at host c, which was not originally a destination of message a.

A property often associated with order is atomicity which is an All or Nothing 

paradigm, stating that either all group members receive a copy of the message, which 

can subsequently be processed, or, in the event that some do not, none are allowed to 

process the message, that is the message is discarded before delivery. Atomicity can 

either be originator based, that is if an originator fails during transmission then the 

message is aborted, even if some of the recipients have received it correctly, or recipi

ent based, where the message is aborted if any of the recipients fail during transmis

sion, with the message being resent by the originator when the group membership is 

stable again.

m i

m.

Time

Figure 2.6 Desired Order
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2.3 Arbitrarily Ordered Protocols

The protocol by Erramilli [Er87a] was designed for use on a broadcast LAN and sit at 

the data link level. The protocol uses a back buffer at each originator to store trans

mitted packets, packets being pushed out of a full buffer and destroyed whenever a 

more recent packet is put into it. One of the problems with the negative acknowledge

ment technique is the detection of a missed last packet, as there is no subsequent 

packet to prompt the protocol. This design uses a timer, which is set by the originator 

on the transmission of every packet. If this timer expires, as would occur when there 

are no more packets to send, a status packet is transmitted bearing the sequence num

ber of the next packet that will be transmitted. The status packet is transmitted period

ically a number of times, giving the recipients several opportunities to receive the sta

tus packet. Of course, if a data packet becomes available for transmission during this 

period the timer is reset and the sending of status packets halted. The status packet 

has a sequence number one greater than the last data packet, which allows the recipi

ent to detect any missing packets, acting both as a reliability mechanism and a lost 

last packet detector. The status packet is superseded by the sanity packet, which is 

transmitted periodically, the interval being greater than for the status packet, and is 

used to confirm the presence of a recipient.

The main interest of this protocol is the analysis of the scalability of the protocol in 

comparison with a positively acknowledged design, although the scalability is mod

est. The analysis compares two activities of the protocol, namely the lecture mode, 

where one originator is transmitting the broadcast group, the other, conference mode, 

where packets are transmitted arbitrarily by every host. It should be noted that the 

negative acknowledgement technique is extensively used by many of the ordering 

protocols described below, the same issues having to be dealt with for these as above.

An innovative protocol design, mainly used for unicast but with multicast capability, 

is the Versatile Message Transaction Protocol {VMTP) [Ch89b,Ch86a] which was orig

inally designed for use by the V-Kernel described above as the main Inter-Process 

Communications (RPC) mechanism. The protocol has since been offered as a trans

port level Internet protocol [Ch89b,Ch88a]. The protocol’s design is transaction ori

ented, with additional emphasis on performance with large amounts of data. The pro

tocol is of interest mainly because of the selective retransmission policy and the rate 

control employed as a flow control mechanism. The protocol assumes a standard, 

fixed maximum transmission unit of 512 bytes of data, to which is pre-pended a
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relatively large header. The protocol can handle up to 32 of these chunks at a time, 

enabling up to 16 Kbytes of data to be transmitted as a chunk. Each packet in this 

chunk is represented by a bit in a 32-bit long field of the header. An acknowledge

ment sets the respective bits in its own field, forming an ackn ow ledgem en t m ask, rep

resenting the packets it received. The originator, on receiving this acknowledgement, 

can observe any patterns of missed packets and adjust the rate at which packets are 

transmitted, as well as retransmitting the indicated missed packets. Rate control is 

used to prevent an originator transmitting packets faster than recipients can receive 

them. The transmission rate is controlled by the protocol "busy-waiting", that is exe

cuting a null loop to delay the protocol execution. While this is inefficient, it provides 

the small time intervals required which may be too small for the operating system’s 

internal clock to handle. One feature of the protocol is that the transmission rate is 

dictated by the recipients, each recipient informing the originator of the preferred rate, 

which can be subsequently manipulated using the acknowledgement mask described 

above.

The protocol uses large 64-bit identifiers as addresses for both unicast and multicast 

transmissions, multicast being indicated with a portion of the address being allocated 

for group operations, which are manipulated by a set of group management opera

tions performed by a m anagem ent se rv e r  that is co-resident with each VMTP host 

implementation. The create operation requests a block of addresses from the manage

ment server, to reduce the number of queries to the server.

Beyond this there is little use of management operations, as group members join and 

leave groups with impunity. The philosophy used in the design of the VMTP is that the 

design is 1-reliable, that is only the first reply is significant. While 1-reliable transac

tional multicast is suitable for service location and the querying of idempotent ser

vices, it does not cover all cases.

The protocol by Crowcroft [Cr88a] is also a transaction protocol, with similar proper

ties to VMTP but using a sliding window for flow control, which implies a g o -b a ck  n 

type of retransmission strategy. The protocol is stream oriented, and is similar in 

many aspects to the TCP. Because each recipient will reply with a potentially different 

window size, indicating the number of packets that each recipient can accept, the 

returned windows are coupled, by choosing the lowest offered window, ensuring that 

the most congested recipient controls the transmission. It is conceivable that a differ

ent strategy could be used, especially bearing in mind the use of o p tim istic  window
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sizes, where the offered window is greater than the available buffer space. As well as 

coupling the windows, the operation of the retransmission timer is also coupled, to 

the recipient with the longest round trip delay.

The design offered an n-reliable service, with n ranging from zero to the current 

group size. The protocol itself was required to be at least n-reliable, that is at least n 

replies to the multicast must be returned, although only n replies are passed to the 

application, other messages being discarded. The design provided a means of supply

ing a filter function in order to discard messages at the protocol level rather than pass

ing unwanted messages to the application.

Because the protocol required replies, the design was perceived to be affected by the 

implosion problem. Therefore, to disperse the transmissions of a reply over time a 

small random delay was introduced by each recipient to delay transmission. The 

paper investigated the effect of using small additional delays on an Ethernet, showing 

that there exists an optimum range for the inter-packet gap which reduced collisions, 

and therefore the completion time of the protocol.

Group management for this design was assumed to exist external to the protocol, the 

protocol acquiring a list of group members from this management service. The proto

col used this list as a check when gathering replies, with a retransmission occurring if 

no reply was received from a "known" host. The operation is similar to the use of a 

connection in the TCP, except that the connection is made implicitly from the supplied 

address list, rather than from a packet interchange.

The design by Danzig [Da89a] is of interest because the protocol is designed for mul

tiple retransmissions, directly reflecting the perception that implosion has a significant 

effect on the design of a protocol. The intention was to reduce the overall completion 

time of the protocol with a combination of an optimally based delay algorithm, to 

reduce missed transmission opportunities.

Because packets were expected to be missed the protocol ensures that as a message is 

retransmitted the set of recipients which reply to the multicast is reduced because the 

originator has already received an acknowledgement from them by acknowledging 

the reception of replies in the retransmission, using a bitmask in the header, one bit 

per recipient. Therefore, after a number of rounds the number of replying recipients 

goes to zero and the multicast completes. The round time dictates the interval 

between transmissions which are uniformly distributed. By reducing the number of 

replies with repeated retransmission the protocol is an example of the need to
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consider scale as a design issue.

The delay algorithm is similar in function to the one described above, but is determin

istic rather than random. The calculation of the delay time was made to minimize the 

cost of a multicast, in terms of originator transmissions, recipient responses and the 

completion time. Each recipient uses its own response time to a multicast and the 

controlling parameters of the multicast. The delay time is divided into slots, so that 

each recipient has a slot in which it can reply, the reply being delayed until the next 

round if the slot is missed. The allocation of these slots by each recipient is controlled 

by the optimal distribution, which is calculated using the values described above. It 

must be stated that the use of an optimal delay scheme on a network that does not 

globally support such a scheme may not exhibit the optimal characteristics in the 

presence of external traffic.

Group management is, again, assumed to exist. The management operations are com

plicated by the need for each recipient to know which bit in the retransmission bit

mask represents them, joining applications having to have a free bit allocated to them. 

The use of a bitmask in this way also potentially limits the maximum group size to 

the number of bits in the mask. The need by a recipient to discover a "free slot" 

extends to the optimal delay strategy as well, as the most optimal strategy is one in 

which messages are transmitted in such a way that the inter-arrival time of messages 

equals the ability of the host to consume them.

The protocol by Errimilli is not reliable, although the degree of reliability is enhanced 

by the transmission of status packets after a packet to allow each recipient additional 

time to detect a missed packet. No flow control is employed. The other protocols in 

this section are all positively acknowledged with the multicast being reliable. How

ever, the VMTP is only guaranteed to be 1-reliable for replies, the philosophy underly

ing the design since only the first reply is significant. Flow control is employed by 

each design, exhibiting three methods for this, namely a window, rate control and the 

retransmission of packets with an effective reduction in replies for each round. These 

protocols are not fault tolerant, as there is no provision for the recording and subse

quent retransmission of messages missed by failed hosts. The packet efficiency of the 

negatively acknowledged design is high, as it can be expected that few negative 

acknowledgements will be transmitted given the low loss characteristics of a LAN. The 

positively acknowledged designs however show a steadily decreasing packet effi

ciency as the group size increases.
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2.4 Group Ordered Protocols

The Atomic Multicast Protocol (AM p) by Verissimo et. al. [Ve89a] is based on a two 

phase approach, figure 2.7, and was designed for use on token ring networks.

Originator
N Group 
Members

1
First
Phase

Time
Second
Phase

Figure 2.7 Two-Phase Pesign

The use of a two-phase design is common in systems which exhibit atomicity, the 

first, distribution, phase being used to transmit the data, the second, confirmation, 

phase to confirm or abort the delivery of that data. The protocol is implemented at 

the link layer and is designed to be decoupled from the host and therefore resides in 

the Network Attachment Controller {MAC). These NACs are considered to be fail- 

silent, that is on failure they do not transmit any more messages. The network envi

ronment is a dual token ring for additional fault tolerance.

Each protocol instance is built from the Emitter Machine, one or more Receiver 

Machines and a local Group Monitor agent, which aids in error recovery and fault 

detection and recovery. The protocol uses two context structures, a Group View and 

the Receive Queue, containing the current group composition and references to 

received frames respectively. The group view has two aspects, a concise and an 

extended view. The former is just the number of group members currently recog

nized, the latter is a full list of the actual group member unicast addresses. The use of 

a concise group view may be supported because of the packet orientation of the proto

col, acknowledgements being generated for each packet.

The distribution phase of the two phase protocol is initiated by the transmission of a 

packet to the multicast group, and ends when either all the intended group members, 

identified from the group view have replied with either an accept or reject acknowl

edgement, the latter being returned if a recipient cannot buffer the packet, or if a pre
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set timer expires, which allows for a number of retransmissions of the packet. The 

decision phase then informs the group of the originator’s decision. Serial order is 

guaranteed by utilizing the exclusivity property of the network, that is because only 

one packet can be traversing the ring at any time, then if all of the intended recipients 

receive that packet, order is maintained relative to other packets. In the event of a 

packet loss then the packet is retransmitted, any older copies o f that packet that were 

previously received being removed from the respective receive queues. In effect the 

packet loses its place in the receive queue.

The Group Monitor function is used to maintain the coherence of the group views and 

to execute a termination protocol in the event of an originator failure. The termination 

protocol transmits an abort message to the group if an originator fails at any point in 

the two phase multicast. The group monitor function is executed by an Active Moni

tor, at most one of which exists per group. The Active Monitor is elected, when 

required, from a number of Inactive Monitors, the Active Monitor existing until 

usurped by the election of a new Active Monitor. Such a scheme is recursive to 

counter Active Monitor failures. Contention and deadlock are resolved by using a 

Suspension attribute which suspends multicast activity for the group, forcing the other 

Group Monitors to enter a standby state. If more than one Group Monitor transmits a 

suspend message, then the contention is resolved by the use of a suspension level. 

Deadlock is resolved using a timer which is reset whenever a message from the 

Active Monitor is received, the expiry of which assumes the failure of the Active 

Monitor, resulting in the execution of the election algorithm. The group view is sub

ject to three group management operations, join, leave and failure.

Another example of the two phase approach to serializability is the Atomic Broadcast 

(ABCAST) protocol used in the ISIS toolkit [Bi87a,Jo88a].

The original ABCAST protocol used a timestamping approach to serializability, the 

timestamp being returned by the recipients as part of the dissimation phase, each 

recipient placing the newly received message on a list of pending messages and mark

ing it as undehverable. Each group has a separate queue for these pending messages. 

The timestamp is chosen to be larger than any other timestamp assigned or received 

by the recipient in the past. Timestamps are guaranteed unique by appending a recipi

ent specific number to it. The originator collects these timestamps, chooses the largest 

value and transmits this value to the recipients. This is the final timestamp for that 

message. Each recipient on reception of this final timestamp assigns the value to the
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message, marks the message as deliverable and then reorders the queue of messages 

by increasing value. If, after reordering, the first message on the queue is deliverable, 

the message is removed from the queue and delivered to the application, this process 

continuing until either the queue is empty or the next message is marked as undeliver

able.

While the protocol is described as being atomic, the atomicity is biased towards the 

failure of the originator, rather than the recipients. The failure of a recipient is ignored 

by the protocol, but the failure of the originator requires that one of the recipients that 

have already received the message ensures that the protocol completes.

A later version of the ABCAST protocol, while observing the same semantics, uses a 

variation on the CBCAST protocol described above. It relies on the fact that multicasts 

from an originator are automatically ordered by the time of transmission as long as a 

multicast is fully complete before any other originator is allowed to multicast. To use 

this method some means of identifying a single originator is required. A token is 

used for this purpose.

The token holder has exclusive right to perform an ABCAST thereby ensuring the seri

alizability of messages. Other originators have to request the token from the token 

holder before they in turn can transmit. The failure of a token holder results in the 

execution of a distributed algorithm by each group member to create a new token. If a 

requester fails before the token is handed to it, then the resulting inability to transfer 

the token results in the next requester being tried. The paper by Birman and Marzullo 

[Bi89a] describes a method of using the CBCAST protocol to maintain a distributed list 

of requesting originators at each site. The list is group ordered to the other lists, but 

because it is the token holder’s task to choose the next token holder, and therefore the 

next originator, then the only requirement is for the recipient of the token to be 

deleted from all of the lists. Such a token passing scheme would benefit only those 

applications which exhibited locality o f reference, that is an originator transmits many 

multicasts, before the token is requested by another group member. By using a list of 

requesters, it can be assured that only one request from each originator can be pend

ing at any time, so that fairness is guaranteed.

A variation on the ABCAST protocol is used for maintaining the group views at each 

ISIS site. Because the group view is used by all of the protocols which comprise the 

ISIS communications suite, the update of the group view requires a protocol which is 

ordered relative to all of these other protocols. However, the Group Broadcast

43



(GBCAST) protocol is not a global ordering protocol. It operates only on the group 

members of a particular group, not all groups. GBCAST uses at least three phases to 

ensure that the group change is carried out in the same order relative to any messages 

that have not yet been delivered to the group as a whole. The group management 

employed by the above protocols revolve around the group view and the use of 

GBCAST to maintain the consistency of that view.

A GBCAST is invoked whenever any of the closed group management operations are 

used, the group view being propagated, to not only group member sites, but also to 

any site that expresses an interest in that group. A site failure is countered by the 

detecting site issuing a leave operation by proxy for the failed site, so that a failure 

and an intentional leave are transparently integrated by the leave operation.

Originators

a Central Site

Group Members

Figure 2.8 Single Site Ordering

The use of a token to enforce a single originator policy, that is restricting multicasts 

so that only one originator multicasts at any time, is a variation on the use of a single 

or central site for serializing multicasts. The single site acts as an intermediary 

between the originators and the intended recipient group, figure 2.8, and is most often 

a member of that group. The single site approach uses the fact that order is guaran

teed if there is only one group member or there is only one originator of multicasts. 

By combining these, designating one of the group members as both the recipient of 

all messages to the group, and the originator of all multicasts, order may be guaran

teed. The ABCAST protocol described above is an example of this type of method.

The single site method may be described by a series of transmissions. The originators 

freely transmit in such a way that the single site receives the message, that is there is 

no restriction on when originators can transmit.
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The single site then acknowledges the message, so that the originators have confirma

tion that the message has been received, at least by the single site. The single site then 

transmits the messages in the order in which it originally received them, the recipients 

acknowledging the message reception. Although the above describes the steps taken, 

the number of messages transmitted is quite high compared to what may be achieved, 

as described below.

The protocol by Navaratnam, Chanson and Neufeld [Na88a] uses managers for all 

communication. Each group is represented by one primary manager and zero or more 

secondary managers, with one manager per host. Each manager keeps state informa

tion about the processes local to the manager, as well as the locations of all other 

managers in the group, reducing the overall amount of state information held by any 

host. Two multicast protocols form the message transfer mechanisms, UGSEND, a 

FIFO ordered multicast which may be used arbitrarily by any process, the message 

being transferred directly to the group members, and OGSEND, which is serializable.

An originator invoking an OGSEND transmits its message to the primary manager, 

which acknowledges the message. The primary manager then transmits the message 

to each of the secondary managers of the group, as well as passing copies of the mes

sage to its own processes. Each of the secondary managers acknowledges the mes

sage and passes it to their own processes. To improve the transfer rate of messages, 

the primary manager assigns a sequence number to each message before transmitted, 

so that the secondary managers can reconstruct the transmission order based on these 

sequence numbers, rather than on time of arrival, allowing message to be transmitted 

without requiring that the previous message be acknowledged. The actual transmis

sion can be by multiple unicast or a multicast, the transmission being reliable.

One of the problems with the single site approach to order is that of the failure of the 

single site, which would require that another site take over the functions of the single 

site. The problem is solved for the above protocol by using a vulture process to moni

tor the primary manager at each secondary manager. When the failure of a primary 

manager is detected by this vulture process then an algorithm is used to elect one of 

the secondary managers to be the new primary manager. The new primary manager is 

responsible for checking that each of the secondary managers is in the same state, as 

it is possible that the primary manager failed during a multicast.

The primary manager is the focus for all group management operations, as it is the 

primary manager’s job to construct a view of the current secondary managers and
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propagate that view to each of the secondary managers. The managers are responsible 

for forwarding received messages to each resident application.

All of these designs are reliable, indeed all-reliable, as the originator must have con

firmation that every packet has been received by the group in order to make a deci

sion about the order in which it is to be placed. The two phase approach requires two 

rounds of this, which results in a poor packet efficiency and a long delay relative to 

the single site approach.

The Multicast Transport Protocol by [Ar92a] uses a similar scheme to that described 

above, except that instead of the message to be ordered being transmitted to the pri

mary manager, a token is requested from the group master, which contains the 

sequence number to use for the transfer, reducing the amount of information being 

transmitted in total. The master is also used for the group management join operation, 

arbitrating the join process and assigning control values to the joining application pro

tocol.

Data transfer uses a negative acknowledgement scheme controlled by a window, 

which dictates the maximum number of packets that will be transmitted in any block. 

The packets may be of two types, data packets and dally packets. By always transmit

ting window packets, window being considered as a number here, the probability of at 

least one of the packets being received is increased, so that missed packets may be 

more easily recovered from the originator. A heartbeat value was used as the basic 

timing feature, one or more packets being transmitted in each heartbeat interval by the 

protocol.

2.5 Overlapped Group Ordering Protocols

The protocol by Kaashoek [Ka89a] is a single site protocol which uses broadcast for 

packet dissimation and is therefore only usable on a broadcast network. In addition to 

providing a monotonically increasing sequence number to each received packet, the 

sequencer has the responsibility of retaining a number of previously transmitted pack

ets in a history buffer so that any host that missed a packet can use a negative 

acknowledgement to recover it. An originator transmits a packet to the sequencer as 

a unicast. On reception the packet is assigned a sequence number and broadcast, a 

copy of the message being added to the history buffer. The protocol reduces the num

ber of packets transmitted by using the transmission of the newly sequenced packet as 

its own acknowledgement, the packet being broadcast and therefore, by definition.
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received by every host. If the originator does not observe this broadcast within a pre

set interval, then the packet is retransmitted. The history buffer has a fixed maximum 

size and so the sequencer uses state information about each host to determine the low

est sequence number seen by the hosts, enabling the sequencer to discard all cached 

packets with a lower sequence number. The state information is transmitted to the 

sequencer in the data packets or, periodically using a NULL packet. In the event of the 

history buffer becoming full the sequencer enters a two-phase synchronization period, 

where no packets are accepted and the hosts are prevented from sending any new 

packets.

The history buffer is flushed by first informing all the broadcast group members that 

the sequencer is discarded all packets older than a certain sequence number. Any host 

that does not have one of the indicated packets uses negative acknowledgements to 

recover the missed packet. When each host has indicated that it has all the packets 

that are to be discarded, the sequencer removes them from the history buffer and then 

issues a commit packet, indicating resumption of normal service, which must be 

acknowledged by each host before the sequencer accepts new packets.

The failure of the sequencer site and the location of the sequencer by originators is 

not dealt with by Kaashoek, for the protocol to be fault tolerant an alternative 

sequencer site must not only take over the functions of the failed site but also recon

struct the state of the failed sequencer so that no packets may be missed by negative 

acknowledgements. Also, the new sequencer’s address must be communicated to the 

originators.

Because the protocol is based on broadcast there is no direct use for group manage

ment, as by default all hosts are group members. The sequencer is required to main

tain state about the hosts but only because of the method used to reduce the size of the 

history buffer, and is not considered to be relevant to group management. The proto

col may be modified by using an all-multicast address to reduce the number of wasted 

packets, with packets being directed only to those hosts that have a multicast group 

resident. The design is reliable to the originator, as the original packet is acknowl

edged by the reception of the subsequent broadcast. Flow control is based on origina

tor retransmission if the packet is not acknowledged, the recipients using negative 

acknowledgements if they miss packets.

A variation on the single site approach is by Chang and Maxemchuk [Ch84a]. The 

variation is in the fact that the sequencer is rotated among the group members, the
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current sequencer site being indicated by a token. The protocol was designed for use 

over a broadcast satellite system so all packets are broadcast as above. Indeed, apart 

from the use of a circulating token the two protocols are essentially the same.

The main difference between the two is that the initial data packet is also broadcast, 

so that it can be received by every host at that time. The acknowledgement is broad

cast by the token holder, which offers a second chance for the sites to get a copy of 

the packet if it was missed on the original broadcast, using a negative acknowledge

ment. All negative acknowledgements are directed to the token holder, not the origi

nator.

The token system forms a ring, with the token being passed from host to host by an 

acknowledged broadcast. A reduction in overall traffic is achieved by piggy-backing 

the passing of the token onto a data packet acknowledgement. The ring structure is 

enforced by each host retaining information about the hosts to which it passes the 

token. This token list is maintained by a ring reformation protocol, which is invoked 

whenever a host fails, recovers or hosts are using different token lists to the one 

expected. To ensure that a token holder can satisfy requests for missed packets, the 

token can only be passed if the designated next token holder has a copy of each of the 

packets that remain in circulation. If this is not the case then all the missing packets 

are recovered from the token holder which, by definition, must have a copy of the 

missing messages.

The protocol delays the passing of packets to applications until a resilience test is 

passed, which refers to the number of hosts that can be guaranteed to possess a copy 

of that packet. The passing of the token is used to guarantee that a host has a copy of 

each packet, therefore the passing of the token N  times ensures that at least N  + 1 

hosts have a copy, after which the message can be committed. Further, after the token 

has traversed the ring once, each host can be guaranteed that the packet has been 

committed by every operating host, and therefore the packet can be removed as the 

token circulates a second time.

A reformation phase is used when the ring structure is broken, either by a failure or 

the recovery of a site. Again, because the protocol is broadcast, there is no group 

management as such. The reformation protocol is a three phase protocol that ensures 

that a new token list is received by each of the group members, elects a new token 

holder and that none of the committed messages from the old token list are lost.
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The protocol by Garcia-Molina et. al. [Ga88b] uses a hierarchical method of ordering 

messages across all groups by building a tree structure from the groups and group 

members using a Propagation Graph {PG) as a routing path for multicast packets, the 

graph being generated by a PG generator. Each host forms a node of the graph, with 

messages being passed from node to node, following the path dictated by the PG 

using the Message Passing {MP) protocol. The PG generator uses the number of 

groups at nodes as a means of reducing the traffic at each host at the same time ensur

ing that there is only one path followed by messages, so that messages are ordered as 

they traverse the tree. Originators transmit to the primary destination, which is the 

member of the destination group closest to the root of the tree. Figure 2.9 shows a 

number of such trees.
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Figure 2.9 Multicast Trees Generated by PG

The PG calculated whenever group management operations occur which change the 

state of the tree. It was assumed that one host would calculate the PG and transmit it 

to each of the other hosts which belong to the PG. The tree is built be gathering infor

mation about the number of groups resident on hosts, the PG beginning with the host 

which has the largest number of groups resident. A recursive algorithm is then called 

which partitions all of the groups not in the root groups in such a way to ensure that 

no group in a partition intersects a group in another partition. An intersection occurs 

when two groups are resident on the same host. The algorithm is then used on each 

partition using the same starting point as above. The algorithm continues until all the 

partitions are singletons. In the event that some groups have no intersections in the 

first place, then the PG generator is executed for each of these, resulting in many trees, 

3i forest of propagation graphs.
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The MP protocol is used to forward messages from the primary destination to all of 

hosts which are children of the primary. Sequence numbers are used to maintain con

sistency, each MP protocol maintaining two queues, one for local messages and one 

for messages that arrive out of sequence. By delaying the forwarding of out-of

sequence messages, the ordering guarantee can be maintained.

The performance of the PG technique depends on the depth of the trees generated and 

the number of extra nodes required for intermediate routing. The latter is of concern 

when the technique is used over a WAN such as the Internet, where extra nodes are 

used for routing purposes only. When the PG technique is used in a broadcast environ

ment there are no extra nodes, so that the cost is just the depth of the tree plus the ini

tial transmission to the primary destination.

The protocol can be used in a dynamic group environment by appointing one of the 

hosts as a manager that has the responsibility of computing a new propagation tree 

and causing the new tree to be passed to all of the hosts. The old graph is closed by 

using the old PG to send a close instruction to each root, ensuring that the close is 

delivered in order. The close ensures that the MP protocol stops forwarding using the 

graph, but does not stop originators from transmitting to primary destinations, these 

messages being queued. When a new graph has been calculated, it is forwarded to the 

hosts using the new graph. The new graph is opened using an open instruction, which 

informs primary destinations that they can continue operations, and any other host 

that has messages has to throw them away and request the originator to retransmit 

them to the new primary destination for that group. Because the close is propagated 

using the old graph, it is guaranteed that all messages transmitted before the close 

have been delivered, and any after were queued at the old primary destination, so it is 

only those hosts that were primary destinations, and are no longer, have to throw 

away messages. This assumes that the originators have some form of history buffer to 

recover messages.

All of the above protocols guarantee that packets will be ordered properly. An exam

ple of an optimistic ordering protocol, which offers only a high probability that all 

messages will be ordered at each node identically, is by Melliar-Smith [Me90a]. In 

order to guarantee global ordering the partial order achieved using the optimistic pro

tocol is manipulated by a second protocol. The Trans protocol achieves a partial order 

using an Observable Predicate o f Delivery for reliability, to determine which hosts 

have received a message, even if they have not directly acknowledged the message.
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The Total protocol constructs a fully ordered system from the partial orders con

structed by each host.

The Trans protocol is similar to that by Kaashoek above, except there is no single 

site. All messages are broadcast, so that all hosts can potentially receive every mes

sage, and the protocol uses both positive and negative acknowledgements. The basic 

premise for the operation of this protocol is that messages include acknowledgements, 

both positive and negative, as part of data messages. By including the control infor

mation in data messages, the number of messages transmitted is low, except in a 

lightly loaded system, where dummy messages are transmitted.

Each host maintains a list of received massages, a list of acknowledgements and a list 

of pending retransmissions, which are messages for which a negative acknowledge

ment was received. Because each message transmitted from the host contains a copy 

of the acknowledgement list, many hosts may attempt to retransmit a negatively 

acknowledged message. This is prevented by hosts observing broadcasts, and on the 

detection of a retransmission, removing the message identifier from the retransmis

sion list. Most of the functionality of this protocol is in the adding and deleting of 

message identifiers from these three lists.

Because information about messages received by each host is transmitted then each 

host can determine firstly which messages have been received, and secondly the order 

in which they were received. By enumeration the Observable Predicate o f Delivery 

can be used to determine when a message has been received by all of the hosts, so 

that it can be deleted from the received list. The protocol builds a partial order firom 

the information contained in messages, which is the same for all hosts, as they will all 

have received the same information, although some of the hosts may not have a com

plete view of that order, due to the omission of, rather than mis-order of, messages.

The Total protocol works on the partial order achieved by the Trans protocol to form 

a total order across the system. The Total protocol would be unnecessary if the com

munication were totally reliable as the partial order would then be the total order. The 

protocol generates no additional traffic but delays the delivery of packets until a suffi

cient number of subsequent packets have been received to guarantee global order. 

Messages that do not follow the partial order become candidate messages, with at 

most one candidate message from each originator. Total order is extended by includ

ing a set of candidate messages in the total order, the decision being voted on, voting 

being carried out by the Trans protocol.
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The group management required by this design is not described, as it is assumed that 

recovery from failure or network partition is automatic. A similar system to that used 

by Kaashoek for recovering buffer space is used by this design.

2.6 Desired Order

The causal broadcast protocol, CBCAST, used by the ISIS toolkit is the only example of 

its kind in the literature. Two variants on this design have been included in the latest 

version of ISIS, the later version being referred to as fast CBCAST, The earlier, and 

more general, CBCAST uses clabels to yield a partial order on CBCASTs using an ISIS 

system wide algorithm. Clabels are of no relevance if two CBCASTs have no destina

tions in common. It should be noted here that in ISIS each intended recipient applica

tion is addressed individually, the set of recipients being represented by a list of recip

ients, so that a sub-set of recipients within a group can be addressed. Clabels are 

restricted in their use by the notion of potential causality [La78a], where a broadcast 

B is said to be causally related to broadcast B' only if either both broadcasts had the 

same originator and B' was transmitted after B or B was delivered to the originator of 

B ’ before B ’ was transmitted. The use of clabels is application dependent. The causal 

broadcast itself is achieved by transmitting, in addition to the current message, any 

undelivered messages which preceded the current message to the recipients of the 

current message, ensuring that the causal relationship holds even for messages which 

were not originally destined for that recipient. A number of optimizations can be 

made to this design [Bi87a]. Fast CBCAST uses a distributed timestamping algorithm 

to ensure causality that requires a more restricted use of multicast addresses than for 

the protocol described above. A number of variations on the timestamping theme are 

described by Birman, Schiper and Stephenson [Bi90a].

Causality is used within the context of the ISIS programming [Bi89b] environment as 

the primary method for data transfer, having a lower transmission cost than the alter

natives while being subject to the virtual synchrony of the environment. The protocol 

is reliable, this being assumed for all of the ISIS protocols, and to some extent fault 

tolerant. The protocol is reliable because it uses the reliable byte stream service 

offered by TCP for communication between ISIS sites.

While causality here is described as being a separate ordering paradigm, the essence 

of causality is that a desired order may be defined for messages. In both the group 

ordering and overlapped group ordering schemes, the actual order is arbitrary, it only
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being guaranteed that the order achieved is consistent. Therefore, it is not inconceiv

able that a desired order be combined with these other ordering paradigms.

2.7 Summary

The usefulness of multicast in distributed programming is reflected in the use of the 

technique by many distributed operating systems, in conjunction with the Remote 

Procedure Call paradigm for communication abstraction. The technique is applicable 

to any application which exhibits replication, either of data or of the application itself.

A number of protocol designs have been discussed in the context of a taxonomy of 

multicast. The most important feature of this is the order in which messages are pro

cessed by group members, with a variety of ordering paradigms described. The simi

larity in approach in many of these protocols indicates that there are only a finite 

number of basic methods which apply to these systems, many of them exploiting spe

cific characteristics of networks to operate correctly. The scalability characteristics of 

these designs are explored later.
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Chapter 3 
Multicast Routing

One of the factors favouring multicast over multiple unicasts, is the use of broadcast 

based networks by such protocols to reduce the number of messages transmitted. 

While such networks are relatively common in the LAN  world, they are by no means 

the only architecture on which multicast is possible. The use of multiple unicasts for 

multicasting is used by many protocol designs, even where the underlying network 

architecture supports broadcast directly. While these two methods form the majority 

of cases, the efficiency of multiple unicasting may be increased by delaying the copy

ing of packets until required.

A common architecture for both WAN and closely coupled multi-processor networks is 

based on message forwarding, where messages destined for recipients not directly 

connected to the originator have to be forwarded by some intermediate node. The 

path followed by such a message is referred to as the route, the path being dictated by 

a routing protocol.

In a WAN environment, where nodes are geographically dispersed, the problems of 

calculating the best path for messages to follow from originator to recipients requires 

the use of a distributed routing scheme, each node of the network gathering
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information from immediate neighbours about the state of the network. In closely 

coupled networks of processors a routing graph is used by each node to indicate the 

path to take to each of the other processors, which can be calculated easily as the 

complete topology of the system is available and also the reliability of the compo

nents is generally higher, reducing the need for topology updates.

Multicast routing differs from unicast in that there is more than one routing path a 

message can take, with only one copy of the message received by the recipients. The 

message can be said to explode at each split in the multicast route. The explosion can 

take place at any point in the route, from the originator to the penultimate node. Mes

sage explosion at the originator is just multiple unicast.

3.1 Wide Area Routing

A number of multicast extensions to WAN protocols have been designed, mostly for 

the /f, as this protocol already possesses a broadcast capability. Figure 3.1 shows the 

architecture of a simple store and forward network, the dotted lines denoting the path 

taken by a multicast.
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Figure 3.1 Multicast Routing in WAN Environment

A protocol modification to the IP by Aguilar [Ag84a] involved extending the IP 

options field [Po81a] to include a list of unicast addresses to which the message is 

destined. Up to 9 such addresses could be included in the IP header, 8 in the options 

field and the normal destination address, the datagram being termed a multigram. In 

the Internet, the destination address is used to route the datagram, so that by including 

a list of destination addresses in the order in which they occur in the path from
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originator to final recipient, as calculated using routing information, the multigram 

can be successively routed to all of the destinations. At each intermediate node the 

next node on the route is calculated using the current destination address field.

When a node that is considered local to the current destination address is reached, the 

multigram is replicated and the next destination is placed in the current destination 

field. This is also checked to see if it is also destined for this node. When an address is 

encountered which is not destined for local consumption, the multigram is forwarded 

as before, all local copies of the multigram being transmitted to the respective desti

nations. If more than 9 recipients are addressed then more than one multigram is gen

erated by the originator.

Deering [De90a] describes more extensive modifications to two of the routing proto

cols used by the Internet, which enables true multicast routing of datagrams using 

multicast addresses. In addition, each multicasting host is required to operate a multi

cast extension to the IP, called the Internet Group Management Protocol (IGMP) 

[De89a]. It is interesting to note the change of emphasis of this protocol over time, 

the latest version being used primarily to allow the reception of multicast datagrams, 

previous versions of the protocol [De85a,De86a,De88a] possessing active group man

agement for multicasting.

The two routing algorithms are the distance vector routing algorithm, also known as 

the Bellman-Ford or Ford-Fulkerson algorithm and the link state routing also known 

as the "New Arpanet" or "Shortest Path First" algorithm.

Distance Vector Routing

Routers using the distance vector algorithm maintain a routing table which contains 

an entry for every reachable destination in the network. Each entry has information 

about the distance in intermediate nodes {hops) to the destination and the next hop 

address. To prevent old information being used for routing each entry is given an age.

The tables are built and maintained by the routers by periodically sending a routing 

packet out on each of its incident links. For LAN links the routing packet is usually 

transmitted by a local broadcast or multicast in order to reach all neighbouring 

routers. The packet contains a list of {destination, distance) pairs (a distance vector) 

taken from the originating router’s routing table. On receiving a routing packet, the 

recipient router may update its own table if the neighbour offers a better route to a 

destination, or if the old route is no longer available.
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Four algorithms are described which are modified versions of Dalai and Metcalfe’s 

Reverse Path Forwarding [Da78a] broadcast algorithm.

In the basic reverse path forwarding algorithm, a router forwards a broadcast packet 

originating at source S if and only if it arrives via the shortest path from the router 

back to S (the "reverse path"). The router forwards the packet out on all incident links 

except the one on which the packet arrived. In networks where the "length" of each 

path is the same in both directions, for example when using hop counts to measure 

path lengths, this algorithm results in a shortest path broadcast to all links.

To implement the basic reverse path forwarding algorithm a router must be able to 

identify the shortest path from the router back to any host. In internetworks that use 

distance vector routing for unicast traffic, that information is precisely what is stored 

in the routing tables of every router. In addition, most implementations of distance 

vector routing use hop counts as the distance measure as required by the algorithm.

To use this algorithm for multicast it is enough simply to specify a set of internet

works multicast addresses that can be used as packet destinations and perform reverse 

path forwarding on all packets destined for such addresses. Hosts choose which 

group they wish to belong to and discard any packets addressed to other groups.

The problem with the basic reverse path forwarding algorithm is that any single 

broadcast packet may traverse any link more than once, up to the number of routers 

that share the link.

To eliminate the duplicate broadcast packets generated by the RPF algorithm, it is nec

essary for each router to identify which of its links are "child" finks in the shortest 

reverse path tree rooted at any given source S. Then, when a broadcast packet origi

nating at S arrives by the shortest path back to S, the router can forward it out only on 

the "child" finks.

Reverse Path Broadcasting (RPB) involves identifying a single "parent" router for 

each fink, relative to each possible source 5. The parent is the one with the minimum 

distance to S. In case of a tie the router with the lowest address is chosen. Over each 

of its links a particular router learns each neighbour’s distance to every S - that is the 

information in the routing packets periodically transmitted. Therefore, each router 

can independently decide whether or not it is the parent of a particular fink, relative to 

each 5. The parent selection technique for eliminating duplicates requires one addi

tional field in each routing table entry, which is a bit-map with one bit for each inci

dent fink.
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Truncated Reverse Path Broadcasting (JRPB) prunes the tree created above so that the 

tree only reaches as far as the members of the destination group.

For a router to forgo forwarding a multicast packet over a leaf link that has no group 

members, the router must be able to (1) identify leaves and (2) detect group member

ship. Using the previous algorithm, a router can identify which of its links are child 

links, relative to a source S. Leaf links are simply those child links that no other router 

uses to reach S. If every router periodically sends a packet on each of its links, saying 

"This link is my next hop to these destinations", then the parent routers of those links 

can tell whether or not the links are leaves, for each possible destination.

To detect if there are group members on a particular leaf, the hosts periodically report 

their memberships. The routers then keep a list, for each incident link, of which 

groups are present on that link. In the routing tables another bit map, lea ves , is used 

to identify which of the child links are leaf links.

In TRPB pruning the shortest path broadcast tree by sending membership reports to 

each multicast source is costly in bandwidth and router resources. As it is not 

expected that every source will be sending multicast packets to every group, a better 

method would be to prune only the multicast trees that are in use.

Reverse Path Multicasting provides on dem an d pruning  of the shortest path multicast 

tree. When a source first sends a multicast packet to a group it is delivered along the 

shortest path broadcast tree to all links except non-member leaves by the TRPB algo

rithm. When the packet reaches a router for which all of the child links are leaves and 

none of them have members of the destination group, a non-m em bership  rep o rt {NMR) 

for that (source, group) pair is generated and sent back to the router that is one hop 

towards the source. If the one hop back router receives n m r s  from all of its child 

routers (that is, all routers on its child links that use those links to reach the source of 

the multicast), and if its child links also have no members, it in turn sends a non

membership report to its parent router. In this way the information about the locations 

of groups is propagated back to the source. Subsequent multicast transmissions from 

the source are then directed only to the links that have a member of the group on 

them.

A problem with this method is due to possible topology changes and the joining of a 

group by a new member. The latter case can be dealt with by the joining host sending 

a message to the local router informing it of its membership, this information being 

propagated when a source multicasts a message to the group. The former case would
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require the RPM router to cancel any outstanding NMRs to ensure a child link is 

included in any future multicast.

An implementation of a multicast routing protocol based on the Routing Information 

Protocol [He88a] is the Distance Vector Multicast Routing Protocol [Wa88a]. The 

protocol uses the Internet Group Management Protocol (IGMP) [De89a] to exchange 

routing datagrams. Communication with the IP routers to allow address discovery on 

multicast networks uses a modified Internet Control Message Protocol [De91a].

Link State Multicast Routing

Using this algorithm, every router monitors the state of each of its incident links (e.g. 

up/down, status, possibly traffic load etc). When the state of a link changes the routers 

attached to that link broadcast the new state to every other router in the internetwork. 

This broadcast is a special high priority flooding protocol that ensures every router 

learns of the state change quickly. Therefore, every router receives information about 

every other router and all links, from which each router can determine the complete 

topology of the internetwork. Having the complete topology each router can compute 

the shortest path tree rooted at itself. Using this tree the router determines the shortest 

path fi-om itself to any destination for forwarding packets.

It is easy to extend this algorithm for multicast by having routers included as part of 

the state of a link, a list of multicast groups that have members on the link. When a 

new group appears, or an old one disappears, the routers attached to that link flood the 

new state as before. Again, having the complete topology means that the shortest path 

tree can be calculated, but this time the calculation is from any source to a group of 

receivers.

However, computing and keeping the complete state for every multicast group would 

consume significant resources, so borrowing the idea of on demand pruning of the 

RPM algorithm, each router uses a cache of multicast routing records. There is no need 

for an age to be placed on cache entries as the old records may be discarded when 

new entries need to be added to a full cache, possibly using a least recently used algo

rithm. Whenever the topology changes the entire cache is flushed and the information 

recomputed as needed. If a group is created or deleted on a link, all fields associated 

with that group and link are removed.
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3.2 Local Area Networks

Routing can also apply to broadcast based LANs [Fr85a,Dc90a] if the LAN is seg

mented by bridges. One of the problems of routing broadcast packets in a concate

nated LAN is that of packet looping, that is a packet which circulates forever within 

the network. This can be prevented by either including a hop count in the packet 

header which is decremented every time it passes a bridge, the packet being discarded 

when the hop count reaches zero, or by ensuring that the network topology does not 

contain any loops either physically, or by using an algorithm to calculate a sing le  

spanning tree  for the network, switching off forwarding in those bridges which cause 

a loop. A multicast packet can also be affected by looping, with the same arguments 

applying as for broadcast.

If the packets are multicast, then the traffic could be reduced if the bridges knew if 

any member of the destination group was present on an attached segment, inhibiting 

forwarding to that segment if no member were present. A single spanning tree for 

each multicast group could be constructed to this purpose. The problem is mainly one 

of informing the bridges of the existence of a particular group. An easy solution is for 

each group member to multicast to the bridge directly, possibly by using an a ll 

b rid g es  multicast address as the destination and the group address as the source, with 

forwarding turned off for such packets, the reception of such a packet at a bridge 

interface informing the bridge of the presence of at least one multicast group member 

on that particular network segment. However, this can become costly if the number 

of group members on a segment is large. A modified scheme uses the multicast 

address as both the source and destination of a special packet. Using this the other 

group members on that segment receive the packet, inhibiting their own transmission 

of such a packet, while the bridge recognizes it as destined for it, by having the source 

and destination addresses the same. Both of these schemes would only have to oper

ate when a group member is present on a segment, with the bridge ageing such infor

mation so that after a time period with no such packet, the entry for that segment is 

deleted, ensuring that the single spanning tree for that group does not include that 

segment.

3.3 Mixed LANs and WANs

In the real world LANs and WANs are connected. Using multicast in such an environ

ment could cause problems due to possible unintended duplication of multicast
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addresses, and their subsequent propagation through a WAN. Using administered 

address could solve this problem, or using a global address service. Both of these 

approaches lack flexibility. One solution is to employ two multicasts, one for local 

consumption and one for wider use, both having to be transmitted if accessing a WAN 

group [Hu89a]. A problem here is that the WAN message is not limited in any way, so 

that it too will be propagated as far as possible. In a network that supports the notion 

of hop counts, such as the IP, the sco p e  of such a message can be limited by the num

ber of hops required [WaSOa]. This also removes the need for separate local and 

remote messages, as setting the hop count appropriately will automatically limit the 

distance the message can travel.

3.4 Closely Coupled Processor Networks

An illustration of the generality of multicast is its use in closely coupled multiproces

sors, where the technique allows messages to be passed to a defined set of processors. 

Figure 3.2 shows a two-dimensional example of a closely-coupled processor architec

ture.

An example of a multicast protocol for use in such an environment is by Byrd et. al. 

[By87a]. The protocol uses a list of destinations for routing each packet, with the 

packet being exploded when required. Cut through routing is used to minimize the 

storage requirements at each node, with only enough storage to buffer one word pro

vided. Control signals flow back to the originator indicating the state of the packet as 

the packet is transferred a word at a time. The deadlock avoidance scheme relies on 

the termination of a current transfer to break a potential deadlock.

Routing
Node

Figure 3.2 Routing in Closely Coupled Multiprocessor

A number of studies into the routing problems of closely coupled processor architec

tures use some kind of tree based routing for multicasting. Papers by Johnsson et. al.
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[Jo89a], Dutt et. al. [Du90a], McKinley [Mc90a] and Kandler and Shin [Ka91a] are 

examples.

3.5 Summary

One scalability issue is the size of the environment, ranging from closely coupled 

multi-processors to national wide area networks. This reflects the general nature of 

multicast, which may be considered as a general communication model, encompass

ing both unicast and broadcast communication.

A number of methods for efficiently transmitting multicast messages in a WAN envi

ronment were described, based around the IP. The methods employed the information 

used by the common routing protocols for that architecture to reduce the overall 

packet count.

Routing within a concatenated LAN was discussed, where bridges employed a span

ning tree to route packets. By allowing hosts to transmit to these bridges the multicast 

spanning tree could be pruned to reduce the number of packets forwarded to segments 

that did not have any active group members.
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Chapter 4 
What is Scalability?

Scalability has been described as a function of group size and influenced by the envi

ronment in which a multicast takes place. While group size may be viewed as a scala

bility measure, scalability is more about the limitations imposed on the group size 

supported by a protocol by problems such as implosion and the loss of packets in 

transit than on the actual size of the group.

Many multicast protocols have been discussed, most of which did not mention scala

bility as a significant factor in their design. For many protocols the issue was not con

sidered because the protocol was designed for a particular scale and was therefore, 

implicitly, not to be used out of bounds. Others did not consider scalability an issue at 

all, not being relevant to the applications considered for multicast. While these points 

are valid, there is no way of knowing in advance the environment in which a protocol 

design may be used. A number of scalability issues are discussed with reference to 

those designs detailed previously. A model of implosion is described.
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4.1 Issues of Scalability

While scalability is described as a function of group size, the effect that group size 

has depends on the issues described in chapter 2. Three of these are considered to be 

design issues, reliability, order and group management.

Group management impacts on the scalability of multicast because of the relation

ship between the number of group members and the amount of management informa

tion maintained. Scalability is therefore affected by the storage requirements of this 

information, which may be physically limited in some way, and by the need to main

tain the management information is such a way to ensure that the protocol operates 

properly, which may be limited by the data transfer capabilities of the protocol that 

supports the group management.

Order impacts on scalability mainly because of the extra overhead imposed on the 

normal transfer of data to ensure the various ordering paradigms are maintained. 

Therefore, the main limitation is the actual data transfer process, which may be effec

tively reduced by this extra overhead and may therefore be substantially subsumed 

into considering the scalability of data transfer.

Reliability impacts on scalability because of the use of replies by reliability mecha

nisms and is the area investigated here. Because data transfer occurs more often than 

group management, the scalability of this is of relatively greater importance, and also 

because, apart from the storage aspect of management information, it is the mainte

nance of the management information that impacts on scalability, which may also be 

considered a data transfer issue as maintenance implies some form of data transfer 

between a holder of such information and the requestor. Reliability implies that 

replies are transmitted from recipients to the originator in response to the reception of 

a forward multicast. A number of points may be made about these replies. Firstly, it 

is likely that the time between the reception of a multicast message and the subse

quent transmission of the reply will be similar for each of the recipients. Secondly, 

each recipient will have to reply even if only one reply is actually required, because 

each recipient in general will have no knowledge about the status of other recipients. 

This leads to the observation that if there are a large number of such recipients, and 

that the network connecting them to the originator exhibits a low dispersion, that is 

the difference in reception time between the "first" and "last" recipient is small, then 

there will be a proportionally large number of replies attempted in a relatively short 

time period. Of course, the network imposes its own mediation policy on these
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transmissions so that the replies are in effect transmitted sequentially, the minimum 

gap enforced by the network being used. If the processing rate of the host receiving 

these replies is less than the rate at which the replies are received from the network 

then there is a possibility of replies being missed. Buffering is normally used to 

absorb this rate mismatch. However, the number of these replies may cause this 

buffering to fill, again resulting in replies being missed. It is this buffer overrun  that is 

considered to be the most important issue in the scalability of multicast.

Part of this buffer overrun problem is caused by the synchronizing effect of a multi

cast, which is effected by the dispersion experienced by packets passing through the 

network, typically low for LANs and m a n s . Dispersion for multicast may be described 

as the difference in the times of arrival of a message at the group between the first 

message copy and the last. Multicast over WANs exhibits a greater degree of disper

sion, reducing this problem, although DeSimone [De91b] shows that such networks 

possess correlation effects causing packets to cluster at routing hosts, a clear sign of 

possible congestion and buffer overrun.

The problem of implosion is analysed in more detail below. A related issue, affecting 

the transmission policy of a protocol, is also dependent on the group size and con

cerns the loss of packets at recipients due to packet corruption in transit or by conges

tion at the recipient or intermediate bridges. As the group size increases, it is more 

likely that group members will be in this situation, as a multicast also has to compete 

with other traffic. A simple model of this was developed [Jo91a], which assumed that 

each host possessed a probability of missing a packet, the accumulation of these prob

abilities decreasing the overall probability of a packet being received by all of the 

members of a group. Of course, flow control may be imposed on this traffic, however 

many of the flow control mechanisms employed require replies, with the potential for 

implosion. In addition, if many originators attempt communication with a group 

simultaneously then flow control has not yet been established, leading to the possibil

ity of implosion, although the synchronization necessary for this to occur is less likely 

than that generated by a multicast.

An obvious scalability issue relates to the number of groups that may be supported by 

a host, the main limitation being the number of multicast addresses which may be fil

tered on simultaneously. One problem here relates to the need to filter packets effi

ciently, only allowing packets for which interest is indicated to be passed higher up 

the protocol stack. If the number of such filters is small then either the number of
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groups supported must be restricted, or all multicast must be passed by the filter 

increasing the number of packets passed up, and therefore potentially increasing 

buffer overrun. If the number of filters is large, then the time required to compare the 

packet address with the filter may also cause an increase in buffer overrun. Also, if a 

large number of packets are received at a host the processing load may result in unac

ceptable performance from the host, a congestion issue.

4.2 Implosion

Congestion is common to unicast communications as well as multicast, and occurs 

whenever the number and rate of packets arriving at a host exceed the capability of 

the recipient to buffer temporarily the packets. The congestion is normally relieved by 

temporarily storing messages until they can be processed, buffering working because 

congestion is normally a temporary problem, in that the input pauses allowing time 

for the output to reduce the buffer storage. However, a pause may not occur early 

enough to prevent packets being discarded. With the transfer rates of networks 

increasing rapidly, an increase that is not matched by similar increases in the speeds 

of other components, such as computer buses and processors, buffer overrun is 

expected to become even more of a problem, not just for multicast, but also for uni

cast. However, for positively acknowledged and transactional multicast protocols the 

problem is not controlling the flow from originator to recipients, but the control of 

replies, especially positive acknowledgements, which are not traditionally flow con

trolled.

The mechanism for buffer overrun in multicast is based on time. A transactional or 

positively acknowledged protocol design is compelled to return a message of some 

form to the originator in response to a multicast. Many protocols require that this 

reply be transmitted as soon as possible, after the reception of a multicast. Therefore, 

if each recipient receives the multicast within a small period of time, as will happen 

on a broadcast based LAN, then each recipient will attempt to reply, also within a short 

time period, given a certain amount of variability in the processing time of each recip

ient. It is here that dispersion is significant as it implies that if the dispersion is 

smaller than the time required to transmit a packet over the network then when the 

first reply is transmitted by a recipient, all of the other replies will be queued waiting 

for access. The network architecture imposes rules of its own on these replies to 

ensure that packets do not collide on the network itself, which implies that packets are
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transmitted as soon as possible by each recipient, given the network constraints of the 

minimum inter-packet gap. Therefore, the characteristics of the network and the 

number of recipients replying combine to potentially cause implosion which in turn 

may result in buffer overrun and the loss of replies.

Some argue that buffer overrun is not a problem, as a protocol can be designed to 

reduce the number of acknowledgements, others arguing that acknowledgements can 

be missed as only the first response is required. Although both of these can be justi

fied in a limited context the problem of buffer overrun must be addressed in the 

design of a multicast protocol.

Danzig [Da89a] investigated the implosion effect at length, using a statistical repre

sentation of a typical network with attached hosts. The statistical model identified 

three buffer overrun points, figure 4.1, within a host.

Network Buffer 
Level Buffers

Protocol Level ___ Buffers

Process Level Buffers

Network

Figure 4.1 Danzig’s Host Model

Each buffer overrun point has an associated overhead between the reception of a mes

sage and the subsequent removal of that message, either by passing it to the next 

level, or by being destroyed after processing completion.

Implosion does not just affect hosts, being also a problem for certain network archi

tectures, specifically those which use some form of collision to resolve media conflict. 

These are generically titled Carrier Sense Multiple Access networks, being exempli

fied by the Ethernet [Me76a,Bo88a,Bo89a] network. Implosion affects these networks 

because if many hosts attempt to access the network within a short collision period 

their respective packets interfere with each other. The Ethernet protocol senses this 

collision, each host then stopping their transmission and executing an algorithm to 

calculate a retransmission interval. One of the more serious, from the implosion point 

of view, is that network’s ability to discard packets which have had a number of 

attempts at transmission which resulted in a collision. The effect of multicast on an 

Ethernet was investigated, statistically, by Crowcroft and Paliwoda [Cr88a], the
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subsequent protocol design used a delay algorithm to increase the efficiency of the 

protocol.

It can be argued that buffer overrun can be dealt with by increasing the number of 

buffers available for the gathering of replies. However, adding extra buffering to 

hosts is only a temporary measure, as soon as the combination of network characteris

tics and number of recipients exceeds the new limit the problem will re-occur.

In order to investigate scalability, the parameters of implosion need to be mapped, so 

that these limits may be explored. Having described where implosion occurs, methods 

of overcoming implosion, that is using a protocol method to combat implosion, may 

be effectively employed. Given that the cause of implosion is a combination of the 

network environment and the number of replies exceeding the buffering capabilities 

of a host, three methods may be employed. The first would be to apply those flow 

control techniques described previously to the replies, as already discussed flow con

trol is not traditionally applied to positive acknowledgements for the simple reason 

that often the acknowledgement is the flow control mechanism. The second is to 

reduce the number of replies to the host so that the buffering is able to cope. The third 

is to increase the time between replies to give the host more time to process already 

received messages.

4.3 A Review of Protocol Designs

The protocols described in Chapter 2 were, in general, not designed for scalability. 

Although many of them discuss their performance with respect to the number of par

ticipants, describing this as scalability, the number of participants is usually small, in 

the region of tens of hosts. While the designs work and work well in this region, 

extrapolating to larger groups should be treated cautiously. It should be noted that 

implosion will always occur whenever a multicast is replied to either with an 

acknowledgement or by a reply message, although that implosion may not necessarily 

result in buffer overrun. While many of the protocols previously discussed were not 

specifically transactional, that does not preclude their use in such a manner by a 

higher protocol.

Centralized ordering protocols [Ka89a,Ch84a,Na88a,Ar92a,Ga88b,Ga88a], where a 

single designated group member is responsible for ordering messages from the other 

group members, have two potential scalability problems. The first is due to the poten

tial for implosion at the central site, the second the performance of the central site in
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normal usage. The central site is an implosion point because of the messages that are 

directed exclusively to that site by all of the other group members. In addition, some 

of the protocol designs discussed require some form of buffer synchronization to 

ensure reliability, each group member being required to return the message number of 

the last message received in sequence so that the central site can flush any older mes

sages from its buffers. The scalability limit here is based on the number of messages 

that the central site can process with an acceptable delay, which in turn relates to the 

number of such group members supported. Those protocol designs that are broadcast 

are more susceptible to this as the central site has to support all group members, 

rather than in some cases where there is a separate central site for each group.

One of the problems of the central site concept is that of the failure of the central site, 

which may result in an inconsistent group state due to the loss of buffered, but not yet 

transmitted, packets being lost. This is a problem for those designs which acknowl

edge each message separately, which is the case if the group accepts messages from 

non-group members, as the subsequent multicast itself is not receivable by the origi

nator, requiring an extra acknowledgement. Also, the failure of the central site 

requires that a new central site be created, most often employing some form of elec

tion algorithm to resolve any contention. As the central site also supports the group 

management information, then either this information must be maintained by every 

group member or be gathered when required, which is again a possible source of scal

ability problems.

Garcia-Molina’s Propagation Graph, PG, produces a number of short trees, the stmc- 

ture of which being passed to the individual group members in order for them to for

ward messages based on the tree structure. Each membership change requires a new 

tree structure be calculated and distributed, a potential costly operation. One of the 

problems is that the "old" tree is used to propagate the "new" tree, which seems to 

assume that all parts of a tree are reachable at all times, something which may not in 

fact be true if the group change was prompted by a member failure. As the protocol 

was designed to be employed over an arbitrary network architecture there may be no 

recourse to a broadcast to inform any lost branches of the new graph, requiring the 

generator of the F G to directly inform the lost branch of the new graph.

Kaashoek’s protocol [Ka89a] was reliable because the central site retained every 

packet transmitted to it, with packets being flushed flrom the finite buffer space when 

the central site was assured that every group member, in this case every host which
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was participating in the protocol, had received that packet. By implication therefore, 

some method was required to track the group membership, as the primary technique 

of flushing this buffer was to record the last received packet for each host, the last 

received sequence number being placed in each data packet by originating hosts. If 

the buffer became full, then a special flushing algorithm was used, which required 

each host to reply to a multicast. Two areas effectively limit the scalability of this 

design, firstly the buffering available, more hosts participating leading to potentially 

greater buffering requirements if the second limiting factor, the implosion of replies at 

the central site, is to be reduced.

Chang and Maxemchuk’s [Ch84a] design employed a ring structure to ensure both 

that order was preserved and to protect against member failure. With increasing group 

size this ring becomes large, and because the design requires that each member be the 

central site twice before messages are delivered, the latency, that is the delay between 

transmission and delivery, increases proportionally.

Multi-phase and positively acknowledged protocols [Ve89a,Bi89b,Da89a] require 

that replies be received by each group member in order for the protocol to operate 

correctly, a classic example of the potential for implosion described above. Indeed, 

the requirement of multi-phase designs that this occurs a multiplicity of times exacer

bates the situation. Because all the replies must be gathered, the originator must have 

complete knowledge of the group membership so that each reply can be "ticked off". 

The method for gathering this management information is often ignored in the design 

of such a protocol, being assumed to exist outside the protocol. Several methods have 

been proposed, such as providing a list of potential group members, which is subse

quently pruned based on the replies gathered by a multicast or series of multicasts. 

The ISIS toolkit provides management information at each ISIS site, so that complete 

information is available, the information being maintained in a consistent and timely 

manner by the group management protocol, GBCAST.

The AMp [Ve89a], in addition to requiring that all replies be gathered at each phase, 

requires that all the replies are received in response to the same multicast message, 

ensuring that the multicast is atomic by guaranteeing that the multicast group receive 

the same message. This further restricts the potential scalability, as replies cannot be 

gathered over a number of transmissions.

A potential limiting factor may be seen in Danzig’s protocol [Da89a] where a bit map 

of received acknowledgements is transmitted as part of a retransmission, the number
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of group members being limited by the size of this bit map. Of course, a bit map is the 

most efficient method of representing information and so can be extended without 

impacting too heavily on the data capacity of a packet, however a more sophisticated 

management policy must be employed to ensure that each group member "knows" 

which bit map field is allocated to itself, this information having to be passed to any 

originator on request.

Transactional protocols [Cr88a,Ch88a], where the reply contains data are also poten

tially limited by implosion. However, the number of replies that are actually required 

by the application making the multicast, expressed in terms of reliability, would tend 

to reduce the effect of buffer overrun if it occurs. If the transaction is set to be at least 

X:-reliable, that is at least k replies are required, then as long as the buffer overrun 

occurs after k replies then there is no problem. Indeed Cheriton assumes in the con

text of the V-Kernel that only the first reply is needed, which assumes that the data con

tained in each reply is identical.

As has already been described, some failure modes may lead to replies which do not 

contain the same data, which if the above argument was employed may result in an 

inconsistent application state. In addition, many applications may require all replies in 

order to be assured that the latest, or most accurate data is used by the application. So, 

while transactional designs may be less effected by implosion, it is by no means cer

tain that they will not be.

Simple protocols, such as those that use negative acknowledgements [Er87a,Me90a] 

or simple datagrams [Po80a] are less prone to reply synchronization, as replies are 

only generated by the detection of missed packets, or none at all. However, a number 

of shortcomings are inherent in such a system, the main one being the lack of reliabil

ity.

Although the use of negative acknowledgements reduces reply traffic, some synchro

nization will probably occur if messages are missed at bridges, so that a number of 

group members miss the same message, each then transmitting a NACK. One of the 

features of many negatively acknowledged designs is the use of extra traffic which is 

transmitted when there is no data to send, these extra messages being used for inform

ing other group members of the last message received as well as the next sequence 

number to be used by that host. As a group becomes larger, the amount of overhead 

will also increase, possibly resulting in a substantial amount of unproductive activity.
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The protocol by Melliar-Smith and others [Me90a] employs a distributed method of 

achieving order, each message containing information about messages received and 

the order in which they are currently arranged. It would be expected that as the group 

increases in size, the amount of this information may become a large proportion of 

the data in a message effectively limiting the number of group members supported.

Most of the protocol designs described in chapter 2 are designed around a broadcast 

capable LAN environment. One of the considerations when discussing large scale mul

ticasting is the use of WAN to link LANs together. A WAN can be characterized as hav

ing many paths to each recipient, of different lengths, which introduces dispersion 

into the system, as is artificially introduced using a delay algorithm. This is of benefit 

for multicast transactional protocols, reducing implosion at intermediate bridges and 

gateways, although as the speed of networks increase this dispersion is likely to 

reduce, as it is largely caused by storing message temporarily at bridges. However, 

the use of disparate paths, implying that messages are forwarded effectively in paral

lel, may be a cause of implosion. As implosion is caused mainly by a speed mis

match, then it is unlikely that messages passing firom WAN to LAN implode, as a LAN is 

often very much faster than a WAN. In addition, buffer overrun at intermediate bridges 

may be delayed due to the dedicated nature of bridges, both in terms of the dedicated 

processing available for protocol processing and the large number of message buffers 

which can be expected.

4.4 A Model of Implosion

Implosion has been related to both a notional host and a real network. The notional 

host model by Danzig [Da89a] did not reflect the architecture of a real host in any 

detail. That model was based on three queues, figure 4.1, one at the network level, 

one at the protocol level and one at the process level. Each queue possessed a delay 

representing some form of processing. The model was driven by a network that was 

assumed to possess an infinite transfer rate, the only factor being the inter-arrival time 

of packets. The use of an infinite transfer rate was assumed to increase the implosion, 

and was therefore considered justified, with real systems exhibiting less implosion 

than predicted.

The Danzig host model was extended for this investigation and modified to relate 

more to real systems. Also, the scalability of multicast on an Ethernet [Me76a] was 

investigated, given that network’s congestion control mechanism. The host model
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used here extended Danzig’s model by including a bus level, as well as using a more 

realistic model for a network, Danzig using a network model which assumed an infi

nite transfer rate, so that only the inter-packet gap was considered significant. Figure 

4.2 shows the modified host model used for simulation.

The model makes a number of assumption about the process of buffer overrun. 

Buffer overrun can have two causes. The first being the one investigated here, in 

which buffer overrun is considered as being caused by the inability of the host the 

consume packets. The second is considered to be caused by the inability of the appli

cation to consume packets, resulting in the cascading of buffer overrun from the top 

of the model to the bottom.

Process Level

Protocol Level

T
Bus Level

X
Network Buffer 

Level

Network

Figure 4.2 Extended Host Model

The difference is mainly of emphasis, the intention here to investigate how the archi

tecture of a host affects buffer overrun. Thus, rather than look at buffer overrun 

directly, that is set a buffer size and observe when packets are discarded, each level 

has infinite buffering, and the measure taken is the rate at which packets are buffered. 

Therefore, no actual buffer overrun occurs, the intention being to measure the degree 

of buffer overrun which may then be related to the number of actual buffers used 

later.

The process level can be considered equivalent to the process abstraction of UNIX, or 

an application. Messages are transferred to the process or application using a read 

system call, commonly either copying the data from the protocol space to application 

space, or passing references to the buffer to the application. Although the time 

required for this transfer can be considered small in comparison with the other delays 

in the system, Cabrera et. al. [Ca88a] measured the characteristics of the interface 

between the operating system and process for UNIX 4.3BSD, finding that the inter

face between the kernel and the user process consumes around two thirds of the
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overall processing delay experienced by a packet. While memory to memory copying 

is fast compared to, for example, the time taken for a packet to be received off a typi

cal network, the complications involved in ensuring that the process buffer was paged 

into main memory and the delay in actually making the process execute increased the 

overall time substantially.

The Danzig process level also included process buffering as a potential overflow 

point. While there is commonly buffering at the process, there are a number of rea

sons why such buffering may not be considered a particularly important overflow 

point. Firstly, extra buffers may be easily allocated, which given the large virtual 

address space offered by many 32-bit operating systems means that the number of 

such buffers can be assumed to reduce the problem. Secondly, as the application 

applies the reliability of the transaction, it can ensure that all possible replies can be 

buffered before making a multicast. Thirdly, if a process’s buffering does fill, then the 

application may either ignore the reply, reuse a buffer or refuse the reply, resulting in 

the replies being stored in the protocol level until the application accepts. Because of 

the difficulty in quantifying the requirements for process buffering, it was assumed 

that all replies were receivable by the process.

The process level was assumed to be software interrupt driven, for example the use of 

signal or select in the UNIX operating system, and that there was a finite delay 

between the reception of a message signalling the process and the process acting on 

the signal. It was further assumed that to increase efficiency, a process reads all mes

sages buffered by the protocol level at that time and that no other signals can be deliv

ered while that signal is being handled. The delay was intended to simulate the effects 

observed by Cabrera described above.

The protocol level was considered to reside within the operating system and therefore 

possessed limited buffering, and a limited ability to allocate more space. The process

ing delay experienced by the message was considered to be relatively fixed, as most 

of the delay was assumed to be dictated by header processing. The effect here was to 

ignore the sizes of messages in the processing delay. Because a range of values were 

chosen for this delay, this assumption is reasonable. Size related delays are the copy

ing and checksumming of packets, the latter carried out to ensure data integrity. The 

checksumming of packets is often the focus of much attention, a number of algo

rithms being described by Braden et. al. [Br89a], although on LAN  this checksumming 

is often disabled, it being assumed that any packet errors were detected by the
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checksums calculated by lower level protocols. The copying of the packet to the pro

cess level was again assumed to be subsumed into the processing delay. While many 

operating systems require that the data in a packet be copied individually into the 

group member’s process virtual address space, recent developments have allowed a 

buffer in process space to be mapped into the operating system kernel, the packet 

being transferred directly into the buffer from the bus, bypassing the kernels own 

internal buffering system and avoiding the overhead involved in byte copying.

The Danzig model described the network level as being directly attached to the proto

col level. However, the use of a device bus to interface between device and main 

memory is a common architecture in real computers, and is therefore included here.

The bus level possesses no buffering, but imposes a transfer delay between the net

work level and the protocol level proportional to the message size. A typical bus is 

expected to transfer data from many devices, using pre-emption and time-slicing to 

enable bus sharing. A physical bus was considered initially, where the transfer was 

characterized by the bus width, in bits, and clock rate. This was developed so that the 

bus was characterized by the actual transfer rate, the transfer rate referring to sustain

able rates rather than burst rates, sustainable transfer rates generally being lower than 

burst rates. Because packets are assumed to be larger than the burst transfer size, typi

cally set to be a single bus cycle in length, this assumption is valid. Of course, only 

one transfer from a particular device can be in progress at any instance.

The network buffer level interfaces to the network itself and can be characterized as 

mainly buffering. It was assumed that the network buffer level was capable of receiv

ing messages at the speed of the network, and also that the network buffer was able to 

set up a transfer to main memory in parallel with the reception of a message, so that 

there is no extra delay imposed on the message by the network buffer, over that inher

ent in the system. Although the network device is capable of a degree of concurrency, 

it was assumed that an entire packet must be received from the network before it can 

be subsequently transferred to the protocol level, which allows for the requirements 

of error checking at this level. This approach assumes that there is no extra delay 

involved in the processing of any packets, for example protocol processing by the net

work level. Because a range of bus transfer rates were employed, the effect of delay at 

the network level may be included as part of this "transfer delay" so that extra delay 

does not need to be modelled at this level.
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The above defines a "real" host attached to a conceptual network. The conceptual 

network was used to drive the host model, the direction of flow of packets being fi-om 

bottom to top only. The network was considered to have a transfer rate and an inter

packet gap. Each packet was considered to possess a length, which was divided 

between a header and data portions, the header portion being stripped by the network 

buffer, before transfer over the bus. As the header part is assumed to be stripped by 

the network level and also be relatively fixed in size across architectures, following 

the philosophy that the lower the protocol level the smaller the overhead, only the 

data length of a packet was variable. Although the header was fixed, it was not 

excluded fi*om the model, it being expected that the effect of a small transfer delay, 

present on the network but not in a bus transfer, would effect implosion at the net

work level.

An implosion effect was also considered for an Ethernet, which is based on a dis

tributed media access algorithm which uses Carrier Sense to detect the presence or 

absence of messages in transfer, and Collision Detection to detect when messages col

lide on the network. The relevance of implosion on this architecture is due to the abil

ity of the network interface to discard a message if it has collided sixteen times. A 

collision occurs if two or more hosts transmit a message within a collision period, 

which occurs because of the propagation delay between a message being placed on 

the network and its detection by other hosts. A collision results in the colliding sta

tions executing a binary backoff algorithm which forces the host to retransmit later, 

the delay increasing with each collision. A message is not transmitted if a transferring 

message is detected, the transmission being delayed until the current transmission 

ceases.

The models above were arrived at after considering a number of possible approaches 

to testing scalability.

One approach to designing for scale would be to design a protocol and, using the host 

model described above, investigate the scalability of the design directly, using a real 

network and real hosts. A number of factors preclude this approach, not only the lack 

of control over the environment, but also the need for a large number of hosts for test

ing. Given the experimental nature of any design this is not feasible on a working net

work, although a small amount of testing may be carried out to test the concept.

A more workable solution would be to implement the design under a network simula

tor, thus allowing absolute control of the environment and allowing access to all
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levels and parameters. However, a simulation is just that, a simulation, and cannot be 

considered a real substitute for actual testing. However, a simulator can show trends, 

and to a certain extent, the expected performance of the design under a wide variety 

of conditions, a number of host models being connected to a simulated network serv

ing as a real network replacement.

While this approach has many merits, for the purpose of investigating implosion it 

was considered unnecessarily complex. A simplified protocol could be used, which 

just displayed the generic attributes of a technique. For example, a positively 

acknowledged design must acknowledge the last packet of a message, so the scalabil

ity of positive acknowledgements can be captured by just investigating this simple 

interaction. This approach was initially pursued, but, in turn found to offer no real 

benefit. After all, the aim is to investigate scalability, not any one protocol design, and 

implosion was identified as a major scalability parameter.

Finally, the host model and the network were separated, and investigated individually. 

As implosion most often occurs when acknowledgements, or replies are transmitted 

back to the originator, it is this reverse flow that was modelled. Because there was no 

longer any need for a protocol as such, the protocol level degenerated to a simple pro

cessing delay. The host model was forced using a separate network, as described by 

Danzig, although a more accurate portrayal of a network was used. Danzig assumed 

that the host was fed by a network that possessed no delay between the beginning and 

end of a message. In so doing the implosion was expected to be greater than in actual

ity, as there is a finite time required to transfer a message, giving each level extra time 

to process the previous messages.

The intention of this model is to investigate the parameters of implosion, which may 

then be applied to protocol design. It has already been seen how implosion is related 

to the protocol technique and the number and transfer rate of replies. These may now 

be related in turn to host architecture.

4.5 Summary

A number of issues were introduced as affecting the scalability of multicast protocols. 

Implosion of replies is considered a potential problem at the originator possibly lead

ing to packet loss through buffer overrun. Implosion was described in greater detail, 

with reference to a host model.
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The protocol designs described earlier were analysed for specific limitations in their 

scalability, the protocols being collected into groups based on the similarities in tech

nique, which in turn exhibit similar scalability problems.

A modified host model was developed which used a more realistic network model 

than described previously, as well as a more physical representation of a typical host. 

This model was described in detail, and was used subsequently for simulation studies.
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Chapter 5 
Simulation

The host and Ethernet models which were developed to investigate the parameters of 

implosion were simulated using a propriety network simulator [So91a], Simulation 

was employed for a number of reasons, most importantly the ability to control the 

required parameters. The simulator chosen used graphical output enabling the func

tionality of the simulation modules to be verified, aiding in the diagnostic and debug

ging phase. The simulator proper offered a number of basic building blocks, although 

the design had to be modified to allow its use for multicast.

5.1 Simulation

The reasons for choosing simulation over other methods for determining implosion 

for a range of network and host characteristics were described earlier. The most 

important was the flexibility offered by simulation, allowing network and host to be 

controlled through a few parameters. Graphical output allowed the effects of parame

ter changes to be seen quickly, which also aided in the debugging of the simulation 

modules.
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As implosion was considered a potential scalability issue for multicast protocols, the 

causes of potential implosion were reduced to a few parameters, related to a typical 

host model. In addition, a popular network architecture, the Ethernet, was also seen as 

possessing a potential scalability problem due to that architectures use of packet dis

carding when the load was high, something which may occur with multicast replies, 

forming a temporary excess of traffic. The main aim in testing this aspect of the Eth

ernet architecture was to discover whether any limit on the number of multicasting 

hosts was evident. In addition, Crowcroft and Paliwoda’s [Cr88a] work indicated that 

if a small delay was imposed on replies on an Ethernet the completion time was 

reduced over the case where there was no imposed delay, a feature also investigated.

The major part of the simulation was centred on the host model already described. 

The aim here was to use this model to assess firstly the conditions that lead to implo

sion, and secondly to use the values output from the simulation to find some measure 

which may be applied to implosion which indicates the scalability of a particular host 

system. The graphical output was useful here as the development of the final graphs 

over time lead to the measure of implosion described later.

The simulation model reduced the number of parameters by modelling the system 

with infinite buffer space at each buffering level. The result was that on implosion, 

there was no buffer overrun exhibited by the model, the measurement being the rate 

at which buffers were consumed by the system. Measuring the rate at which buffers 

were consumed gave more information about how the system behaved than setting an 

arbitrary number of buffers and finding how the system behaved. Because the simula

tion was driven by a deterministic algorithm, the rate of buffer consumption reached a 

steady state, which led directly to the implosion measurement described later.

A deterministic algorithm was chosen to drive the simulation for a number of reasons. 

Firstly, the simulation was simpler and enabled a direct relationship between the rate 

of buffer consumption and driving parameters to be established. Secondly, such an 

algorithm is more representative of more recent network architectures, such as token 

rings, where access to the network is more controlled than for Ethernet. Lastly, it was 

considered that a more variant algorithm would not be any more useful than that used, 

as it would be unlikely to reflect a real network’s characteristics with real traffic. 

Recording and subsequently playing back such traffic was considered, but rejected as 

too complex for the purposes of this work.
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5.2 Ethernet

Experiments on the simulated Ethernet were intended to locate the number of recipi

ents which could be supported with a positively acknowledged protocol, and to find 

which of the many possible parameters affected this number. By charting the scalabil

ity of the Ethernet it was hoped that the applicability of many of the protocol designs 

described previously to large scale use can be determined for this network architec

ture. The Ethernet architecture was chosen for two reasons. The first is due to the 

design of the protocol itself, the protocol discarding packets if it is unable to transmit 

them, the second is the recognition of the large installed base of this type of network.

The Ethernet [Me76a,Bo88a,Bo89a] network architecture uses a backoff algorithm to 

mediate access to the shared media whenever a collision occurs. This algorithm dis

cards any packet which has collided more than sixteen times. The discarding of pack

ets under these conditions is a possible limit on the number of multicast recipients this 

network can support, as a multicast that results in replies or acknowledgements, will 

cause collisions due to the synchronizing effect of the multicast. By locating the max

imum number of recipients which can be supported using a positively acknowledged 

protocol then the scalability of those designs, on an Ethernet, can be determined.

Four simulation modules were used for these experiments. The Ethernet module itself 

could have the length of the unbridged network segment altered, which affected the 

collision period of the network, that is the time between the start of a packet transmis

sion and the time at which no collisions could occur as the transmission had reached 

the furthest part of the network, preventing transmission by any other host, the so 

called carrier sense part of the architecture. An associated module was the Ethernet 

Host module, which simulated that part of the Ethernet network which was consid

ered host specific, such as the number of times a host had transmitted. There were no 

external parameters to this module. The operation of these two modules were mod

elled on the Ethernet standard.

The Host was simulated by a single module which generated network traffic, either 

externally based on time, or in response to a multicast. The main parameters of inter

est for this module were the packet length’s of both the multicast and the reply, and 

the amount of delay imposed on replies, which used a uniform distribution to calcu

late delay.

The final module was a pure traffic generator, which was used to generate extra traffic 

over and above that generated by the modules described above. Figure 5.1 shows the
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module structure used for these experiments.

Traffic
Generator Generator/

Destructor

EtherHost

Ethernet

Echo Echo

Figure 5.1 Experimental Configuration of Ethernet

The measures chosen for these experiments were the completion time, that is between 

the initial multicast and the gathering of the last reply, and the number of excessive 

collisions which occurred, resulting in the packet being dropped. The number of 

actual collisions that occurred was also considered and measured. While this could be 

used for investigating the reduction in collisions that occurred under the conditions 

described below, it is only excessive collisions which result in packets being dis

carded.

Because the simulation time was proportional to the number of recipients attached to 

the Ethernet, the number of data points generated for the larger group sizes was rela

tively small. The results were plotted by taking the average of the generated results, 

with a maximum and minimum to indicate bounds. The experimental procedure used 

one generator generating a multicast every second, this value being chosen after a 

number of experimental tests indicated that this time was larger than the largest com

pletion time for the maximum group size considered. Recipients replied to this origi

nator using a single packet reply, the number of such recipients being varied between 

ten and five hundred.

An initial experiment was carried out to set a baseline for the other experiments in 

order to compare and contrast the results obtained. The baseline was chosen such that 

each recipient replied as soon as possible, that is with no extra delay imposed on the 

reply. The message length was 1024 bytes, both multicast and reply, and an Ethernet 

length of 2500 metres. It should be noted that all length values exclude the size of the 

ethernet header.

Figure 5.2a shows the completion time experienced as a function of the number of 

recipients. The curve exhibits a knee at around 200 recipients. For recipient numbers
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of less than this, the curve is nearly linear. Figure 5.2b shows the number of excessive 

collisions, that is the number of transmission failures due to an excessive number of 

packet collisions, resulting in the failure of the multicast, with respect to the number 

of recipients. The reason for the knee above is now apparent. The number of recipi

ents for which replies were received is less than expected due to discarded packets.
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Figure 5.3 shows the completion time when the number of packets lost due to exces

sive collisions is taken into account.
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Figure 5.3 Normalized Completion Time vs. Number of Recipients

The main conclusion to be drawn here is that a multicast to between 150 and 200 

recipients will have a high probability of failure, with multicasts to larger groups 

always failing. Of course this only applies to those protocols which require a reply 

from each recipient. The completion time for multicasts above this range is
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effectively infinite, as no completion occurs.

One method for overcoming implosion, and here which can be likened to a more het

erogeneous environment, where hosts have differing reply times, involves using some 

kind of delay at each recipient to reduce contention for the media. Three values for 

this delay were chosen, 1 millisecond, 10 milliseconds and 100 milliseconds. As a 

baseline the corresponding value from the above graphs was also used. The first value 

can also be considered to reflect a heterogeneous environment populated by hosts 

which have a wide variety of delays as part of protocol processing. The delay values 

were used to form the mean and variance of a normal distribution. The aim here was 

to investigate if such means may change the effective limit described above, and 

therefore, to reduce the number of experiments carried out, the number of recipients 

were limited to 200 and 250 respectively. Figure 5.4a shows how these delays 

effected the completion times experienced in this range, with figure 5.4b showing 

how the number of excessive collisions were effected by the delays.
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Figures 5.4 Effect of Random Delay on Completion Time and Excessive Collisions

Comparing these values with the control curves, figures 5.2a and 5.2b respectively, it 

should be noted that the completion times increase in line with expectations, follow

ing the gradient of the curve. The most interesting feature is the reduction in exces

sive collisions as the delay increases. This indicates that a backoff strategy may be 

employed to reduce implosion, but at the expense of a greater completion time. It 

should be noted, but not shown, that the average numbers of collisions that occurred 

increased with increasing delay, resulting in a reduction in excessive collisions. This 

is counter intuitive, and seems to indicate that while more collisions occur, fewer 

recipients exceed the collisions limit.
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Using the control curve as a reference, the effect of reply size on the implosion hmit 

described above was investigated. The minimum size of packet which may be trans

mitted by an Ethernet is 46 bytes. This value formed the reply size used for these 

experiments. The multicast packet size remained 1024 bytes long. Figure 5.5a shows 

the completion time against number of recipients observed, figure 5.5b shows how the 

number of excessive collisions varied with group size.
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The results show that reply size has a positive effect on implosion, virtually doubling 

the observed limit.
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Figures 5.6 Effect of Length on Completion Time and Excessive Collisions

The effect of Ethernet length was investigated by setting the length parameter to 500 

meters, and setting all other parameters to match the controls described above. Figure 

5.6a shows the single result obtained with respect to the control curve, figure 5.6b
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showing how the number of excessive collisions is effected by Ethernet length with 

respect to the number of recipients.

The single result indicates that the length of the Ethernet has a positive effect on 

implosion. The length of the Ethernet cable affects the collision period, which seems 

to be reflected in the reduced number of excessive collisions, and also the reduced 

number of actual collisions.

Another parameter which potentially affected the limit described above was the pres

ence of external traffic to the multicasting participants. No attempt was made to quan

tify the traffic level, as the intention was only to investigate the effect of traffic. Fig

ure 5.7a shows how completion time was effected by traffic, figure 5.7b showing the 

effect on the number of excessive collisions with respect to the number of recipients 

due to external traffic.
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These results indicate that completion time is reduced by the presence of traffic, 

although the number of excessive collisions was not.

The results above show that an Ethernet type of network exhibits a distinct failure 

pattern for multicast. Other network architectures are unlikely to suffer from this type 

of failure, as it requires a network architecture that drops messages which have been 

attempted a fixed number of times. The other area where messages are dropped is by 

buffer overrun in hosts, this problem being addressed in the next section.
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5.3 Host

The host model described in Chapter 3 was used in order to investigate the effects of 

differing processing and network rate on a notional network host. In order to investi

gate implosion, rather than buffer overrun, it was decided to allow an effectively infi

nite number of buffers at the relevant levels in the host model, rather than a finite 

number of buffers. The former approach enables the rate of buffer increase to be 

determined, rather than the number of packets that caused a buffer overflow at a given 

rate. Each buffer was considered to be able to buffer an entire packet, so that it may 

be assumed for some architectures that smaller packets have more available buffering. 

A number of simulation modules were developed based on the stmcture of that host 

model. Figure 5.8 shows the experimental configuration.

Bus

Network

Process

Delay

Figure 5.8 Experimental Host Configuration

The host was driven using the network module, which generated packets of variable 

length, that length being divided between a header and data portions. The header por

tion represented information used by the network itself, which was stripped from the 

packet in the network buffer module. The inter-packet gap and the transfer rate were 

used in conjunction with packet length to control the effective transfer rate of the net

work.

The network buffer module was used to buffer any packets which could not be trans

ferred immediately over the bus module. Packets were considered to occupy a buffer 

between the time at which the start of the packet arrived, to the time at which the end 

of the packet was transferred to the bus module, and that only packets which had been 

fully received were eligible for transfer to the bus module. The network buffer mod

ule output buffer usage against time.
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The bus module was used to impose a transfer delay related to the sustained transfer 

rate, measured in megabytes per second (MBps) and the number of data bytes trans

ferred. The sustained transfer rate was used rather than a combination of the bus 

width and clock rate in order to normalize the parameters. By using a single transfer 

rate the overhead involved in setting up a transfer and the possible presence of other 

traffic were automatically allowed for. The values chosen for the transfer rates ranged 

from 10 MBps  to 100 MBps, these values being based on some current and possible real 

values. The fast Small Computer Serial Interface (SCSI) standard is rated at around 10 

MBps, with the SBus rate quoted at around 42 MBps in a SFARCstation 2 [Bo91a].

The protocol module was used to impose a processing delay on each packet fully 

received by the module. The processing delay was considered fixed, reflecting packet 

header processing, rather than being related to the packet length. The delay values 

used were calculated with reference to developed from the work by Clark, Jacobsen, 

Romkey and Sal wen [C189a] with respect to the TCP,  where the emphasis was on 

finding and counting instruction path used for that protocol’s normal operation, that is 

data transfer and the reception and processing of p a c k s . Values of 100 VAX instruc

tions for transmission and 120 for reception were presented. These figures were 

purely for protocol operations and did not reflect any of the buffer handling carried 

out on behalf of the protocol by the supporting operations system, nor the time 

needed to search for protocol control structures. For the purposes of this thesis a 

generic protocol was considered to require between 100 and 500 instructions for nor

mal operations, an instruction being considered non-architecture specific for simplic

ity. In addition, Cabrera, Hunter, Karels and Mosher [Ca88a] investigated the charac

teristics of the UNIX Inter-Process communication method, which is the main method 

of accessing protocols. In order to generalize the values used, it was assumed that the 

above values included this processing overhead.

To demonstrate the effects of protocol processing time on multicast, the time taken to 

process any packet needs to be developed from the number of instructions. Such val

ues are complicated by the indeterminate times required for fetching data and instruc

tions from main memory, or from high speed memory caches if available, and also 

difficulty in calculating the number of clock cycles per instruction, typically ranging 

from about four to less than one for so called "super scalar" processors. Therefore, 

rather than attempt to calculate real values, notional figures are assumed, based on 

approximate values. A range from 5 million instructions per second (MIPS),  reflecting
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a fast Personal Computer, to 200 m i p s  was used, covering low end workstations to 

possible next generation RISC technology, which has already demonstrated the poten

tial power of this architecture. Table 5.1 shows the processing delays experienced 

using a number of processing speeds.

MIPS per 100 instructions per 500 instructions
5 2 .0 0 x  10“’ 1 .0 x 1 0 “*

10 1 .0 0 x 1 0 “’ 5 .0 0 x 1 0 “’
20 5 .0 0 x  10“’ 2 .5 0 x 1 0 “’
50 2 .0 0 x  10“’ 1 .0 0 x 1 0 “’

100 1 .00x 10“’ 5 .0 0 x 1 0 “’
150 6 . 67 X 10“’ 3.33 x  10“’
200 5 .0 0 x  10“’ 2 .5 0 x 1 0 “’

Table 5.1 Processing Speeds and Delays

From this table, a range of values were chosen which corresponded to those given in 

the table. Using time directly in this way reduced the number of variables as well as 

enabling more general conclusions to be drawn from the results.

Although the delays imposed by checksum processing and data copying, activities 

related to the number of data bytes in a message, were ignored here, in choosing a 

range of values the effects of such length related delays can be considered to be 

encapsulated within the given range of values, at least for the faster processing 

speeds.

The final module used here was the process module. The use of this module was 

intended to show the effect of a delay in reading buffered packets fi*om protocol 

space, subject to an interrupt time. This interrupt time can be considered the time 

required for a software interrupt to be acted upon by the central processor, resulting in 

a process being either made runnable, so that a read can be made, or at least interrupt 

the process to execute the interrupt handler. This activity reflects a process that either 

waits for an interrupt to be raised, or carries out processing between interrupts and 

then reads packets when available. The other model which was considered was one 

where the process has already executed a read, and is waiting for packets to arrive, it 

being assumed that the read was intended to read the replies to a multicast and that 

the buffering for these replies has already been allocated, so that the protocol module 

only has to copy the data into these buffers, the process returning when the multicast 

completes. This model requires no interrupt time and is therefore better modelled by 

passing received packets directly to it after processing.
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The host model can be considered in two sections. The first section concerns the net

work, network buffer and bus modules, the second the bus, protocol and process mod

ules. The host model was divided in this way firstly to reduce the number of experi

ments required, by observing that whenever the network buffer overflowed, no more 

packets may be passed over the bus so that there will only be one value relevant in 

this situation, that being the bus transfer rate. In addition, separating these allows each 

potential overflow point to be investigated separately, to some extent. The main 

parameter used to measure this overflow is the rate of increase of buffer usage which 

is measured in buffers per second.

Network, Network Buffer and Bus

The Network module was driven using data transfer rates of 10, 100 and 1000 Mbps  

which covers many of the current network architectures. The packet header length 

was chosen to be 18 bytes. The data portion was varied between 8192 bytes and 64 

bytes. The transfer rate of the network ranged from 10 Megabits per second {Mbps),  

characteristic of current network technology such as the Ethernet, to 1 Gigabit bit per 

second, 1000 Mbps, representing possible future research efforts in fibre optic commu

nications. An intermediate rate of 100 Mbps  was also considered, representative of 

current high speed networks, such as the Fibre Distributed Data Interface 

[Ro86a,Ro90a]. Inter-packet gaps can have a potentially large range, depending on 

the rate at which packets are placed onto a network by originators. However, for 

implosion values ranging from 1 millisecond (msec) to 0.1 microseconds (//sec) were 

chosen, intermediate values being 100//secs, 10//secs and l//sec. These values were 

chosen in order to bracket the expected implosion points of the system, mainly the 

difference between the network rate and the bus transfer rate. For comparison the Eth

ernet exhibits a minimum inter-packet gap of 16//secs, made up of a 9 .6 //secs recov

ery time and a 5 .4//secs preamble which aids collision detection. As the Ethernet is 

an example of what may be termed old technology it is to be expected that the mini

mum gaps currently used are smaller, a minimum gap being assumed of 0. l//secs. A 

uniform inter-packet gap models a more controlled environment than the Ethernet 

above, being more applicable to a token ring type of architecture. However, by choos

ing a range of inter-packet gaps, it is hoped that variation in the gaps between the 

replies may be extrapolated, making the experiments more representative, although it 

has already been noted that the synchronizing effect of a multicast may lead to replies 

being transmitted with the minimum gap allowed by a network architecture,
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especially if there are a large number of replies.

The experiments indicated that a network rate of 10 Mbps  did not cause buffer over

flow through the entire range of inter-message gaps, a buffer size of 2 being sufficient 

for this scenario. This was expected, as the slowest bus has a transfer rate greatly in 

excess of the network, even at maximum rate, with no inter-packet gap. A buffer size 

of two is a recurring theme throughout these results, being the maximum number of 

buffers used for a steady state condition.

A network rate of 100 Mbps  exhibited overflow with a bus transfer rate of 10 MBps,  as 

would be expected by normalizing the bus transfer rate to 80 Mbps.  Figure 5.9 shows 

the relationship between the rate of buffer increase and the inter-message gap for that 

bus transfer rate.
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Figure 5.9 Rate of Buffer Increase for Bus Transfer Rate of 10 MBps

All other bus transfer rates exhibited no buffer overflow as above. It should be noted 

that the buffer increase was stepped, that is the buffer usage remained level with 

packets being input before the buffer usage increased. It is this stepping that sug

gested the possibility of interpreting the data differently, as will be described later.

Figure 5.10 shows buffer overflow for a network rate of 1000 Mbps, that is 1 Gbps, 

with respect to the inter-message gap for a range of bus transfer rates. Each of the 

bus transfer rates overflowed at some point. Many of these were also stepped, the size 

of each step being reflected in the error observed.
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Figure 5.11 shows the effect of varying the length of data with respect to the header 

size for a network transfer rate of 1000 Mbps, an inter-message gap of 10/xsecs and a 

bus rate of 50 and 100 MBps.
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Figure 5.11 Effect of varying Data Length on Implosion

This result is interesting for its implications when the reply is an acknowledgement. 

Acknowledgements are generally short packets, which these results indicate are less 

affected by implosion than larger ones. Indeed, overflow does not occur for a packet 

size of 64 bytes, a typical acknowledgement size.

These results indicate the type of behaviour that may be expected of the interaction 

between bus and network. Because a typical network device has limited buffering, 

overrun here may be more severe than for the protocol buffering.
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Bus, Protocol and Process

For the testing of these upper modules, the effect of network rate and gap was investi

gated for a number of processing delays. In the limit, where the network buffering is 

overflowing, the bus is unable to transfer any more packets than it is already doing 

and therefore any results in this region will be identical with respect to the bus trans

fer rate. In addition, where there is no network buffer overrun, then it is expected that 

the results for protocol buffering will be similar, as it is only the extra delay imposed 

by bus transfer which will effect the rate of buffer overrun.

Two sets of experiments were carried out, one set which assumed that messages were 

destroyed by the protocol module, the other where messages were handed to the pro

cess module. The latter was dependent on the time needed by a process to recognize 

that messages were queued awaiting reading by the process. The former represented 

either the normal destruction of an acknowledgement by the protocol or, the passing 

of a message to the process address space directly because the process was already 

waiting to read the message.

The protocol processing delay was set to 0.1 msecs, 0.01 msecs, 0.001 msecs and 

0.0001 msecs, based on the values shown in table 5.1. The experimental conditions 

for the network were the same as above, that is a data length of 1024 bytes was used 

with the inter-packet gap ranging from 1 msec to 0.1 //sec.
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Figure 5.12 Effect of Packet Size on Implosion for 10 Mbps Network Transfer Rate

Testing using a network rate of 10 Mbps  indicated that there was no overflow due to 

protocol processing delay for this packet size, indicating that current host architecture 

is well able to handle multicast replies on today’s networks. The effect of the packet
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size was then investigated, the data portion of the packet being varied between 64 and 

4096 bytes. The inter-packet gap was set to 1 //sec, figure 5.12 showing that implosion 

occurs when the packet size reduces and the protocol processing delay is 0.1 msecs. 

Lower protocol processing delays exhibited no implosion.

A network rate of 100 Mbps  was then tested. The results indicate that for a protocol 

processing delay of 0.01 msec and below there was no implosion. However, a proto

col processing delay of 0.1 msecs did exhibit overflow, figure 5.13.
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Figure 5.13 Implosion at Protocol Level

The similarities between these curves, for bus transfer rates of 25 MBps and above is 

due to the buffer overrun being protocol processing bound, the bus being well able to 

transfer packets, as evidenced by the lack of buffer overrun in the network buffer in 

the equivalent testing above. Using this observation it was felt that a reduction in the 

number of experiments could be achieved by concentrating on one bus transfer rate 

for all subsequent experiments. An interesting effect observed was for a bus transfer 

rate of 10 MBps, which corresponds with implosion at the network buffer level, figure 

5.9. Here the rate of buffer increase was uniform for all of the protocol processing 

delays used. Indeed, this behaviour was noted whenever the bus was saturated, the 

actual rate of buffer increase being related to the bus transfer rate. Initially, the 

model, and the implementation of the model, was thought to be incorrect. However, 

careful analysis of the implementation, and the fact that the model operates as 

expected for other values seems to indicate some other mechanism for this.
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A similar set of experiments were carried out for a network rate of 1 Gbps. Because 

every bus transfer rate caused bus saturation at some point, and the same behaviour 

described above occurred, no useful results were obtained.

One set of results which were gathered relate to a gap of 1 //sec. Figure 5.14 shows 

how the rate of buffer increase increased with bus transfer rate in the bus saturation 

region. These results exhibit the constant overrun value described above, increasing 

with increasing bus transfer rate.
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Figure 5.14 Implosion for 1 Gbps  Network Rate 

The length of the data in the packet was now varied, from 4096 bytes to 64 bytes.
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Figure 5.15 Implosion as a Function of Data Length
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Figure 5.15 shows how the implosion varied when the network transfer rate was set to 

100 Mbps,  the inter-packet gap to 10//secs and the bus transfer rate to 50 MBps.

No implosion occurred for protocol processing delays greater then 0.1 msecs. The 

curve indicates that implosion increases with decreasing packet size, which was 

expected as the protocol processing delay was assumed to be independent of packet 

length. The inter-packet gap was then set to 1 //secs for the same range of data 

lengths. Figure 5.16 shows two curves, one for a protocol processing delay of 0.1 

msecs, the other of 0.01 msecs.
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Protocol processing delays greater than 0.01 msecs exhibiting no implosion. The 

trend is for increasing implosion with decreasing packet length and inter-packet gap, 

the effect of which is to increase the number of packets arriving per second.
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Figure 5.17 Effect of Processing Delay on Buffer Size

96



All of the above have assumed that packets are destroyed by the protocol. The effect 

of process delay was investigated by setting the network rate to 100 Mbps,  with an 

inter-packet gap of 1 //secs. The bus transfer rate was set to 50 MBps  and data length 

was set to 1024 bytes. The processing delay of the process module was set to 0.1, 1 

and 10 msecs respectively.

Figure 5.17 shows the effect of this process processing delay with respect to protocol 

processing delay. The measure in this case is not buffer overflow but buffers usage, as 

the process empties the protocol buffering whenever ready to read.
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Figure 5.18 Effect of Process Delay during Implosion

Figure 5.18 shows the results obtained for a protocol processing delay of 0.1 msecs 

by showing the buffer rate against the process processing delay. Because here the 

protocol buffering was overflowing, figure 5.12, the expectation was that the process 

would empty the entire buffer. However, the results indicate that this is not the case, 

and that far from evening the buffer usage, the process increases buffer overflow.

Initial conclusions from these results indicate that for network rates of around 100 

Mbps  the main problem with multicast is in the protocol processing delay of the host, 

which relates to the protocol design and the processor capabilities. For all of the 

results, a major problem is the process, which forces implosion in the protocol level 

due to the time required by the process to read any buffered packets.

Because of the extensive network buffer overrun for a network transfer rate of 1 Gbps, 

resulting in bus saturation, no useful results were gathered. All results are tabulated in 

appendix A.
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5.4 Data Analysis

The rate at which buffering is used is not directly useful. In order to enable these 

results to be applicable in determining the actual requirements for the buffering of 

multicast rephes, some measure related to the number of these replies is required. By 

dividing the rate of buffer overflow in buffers per second by the rate of packet input 

in packets per second, a number between 0 and 1 results, which is in units of buffer 

per packet, equation 5.1.

T 1 ' T ^ OverflowImplosion Index = ----- ------------------- - 5.1
Packets per second

A value of 0 indicates that there is no buffer overflow. This number describes the 

number of buffers that are required to receive a certain number of replies. By multi

plying the expected number of replies by this number the number of buffers needed to 

prevent overflow may be calculated. The number of replies expected is in turn related 

to the number of recipients, as already described. Therefore, this new measure of 

implosion, an index of implosion may be used to predict the number of buffers 

required by a host given the architecture of the network and host. Because these latter 

will be relatively fixed, certainly for the host architecture, the value may be used by 

that host to configure its internal buffering so that buffer overflow does not occur.

The rate of packet generation depends on the network transfer rate, the inter-packet 

gap, and the packet size. The packet transfer time is calculated from the bit rate of the 

network, equation 5.2.

r. , , Packet Length ^ ^Packets per second = --------  f- Inter-Packet Gap 5.2
Transfer Rate

These values may now be used to predict the number of buffers required to buffer a 

number of replies. For example, if the number of replies is expected to be 20, that is 

the number of recipients is 20 assuming a positively acknowledged protocol, then a 

host which has an implosion index of 0.5 for the protocol processing, and an implo

sion index of 0 for the network buffering will require 10 buffers. However, the experi

mental results indicate that this is in addition to the minimum requirement of 2 

buffers, which results in a need for 12 buffers to avoid implosion. Therefore, the 

implosion index may be applied using the following:

Number o f Buffers = Implosion Index x Number o f replies -1-2 5.3

From this equation it is seen that in conditions of no implosion a minimum of 2
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buffers are required. This was based on the observed behaviour of the simulated sys

tem under no implosion conditions, a steady state of between one and two buffers 

being maintained. If the arrival rate of packets was such that each packet was pro

cessed before the arrival of the next packet, then only one buffer was required. A 

value of two buffers as representing the maximum required with no implosion may be 

inferred by observing that when a buffer size of three is required, then there is always 

be a packet requiring processing.

5.5 Summary of Results

The results for testing with a network rate of 10 Mbps  indicates that the processing rate 

of many of the contemporary workstation processors is more than sufficient from an 

implosion aspect, exhibiting implosion only for small packets, A major cause of 

implosion here would be the service time of the application, where the application has 

to process each reply, and therefore delay the reading of packets from the protocol 

level. Another factor that may affect the actual number of buffers required is the 

amount of delay used to optimize protocol processing. In order to reduce the number 

of context switches required to execute a protocol, which is normally driven both by 

packet events and timers, the processing of a packet may be delayed in order to give 

extra time for more packets to arrive, so that a number of packets may be processed in 

a block. The simulation modules described in the previous chapter ignored this effect 

and dealt with the capabilities of the host to process a packet on arrival, so that when

ever implosion occurred at the protocol level it meant that the entire capacity of the 

notional processor was occupied protocol processing. Therefore, the results for the 

protocol level underestimate implosion in a real host, however, these experiments 

assumed a continuous stream of packets, whereas in reality the number of packets 

expected would be finite. As these values are intended to indicate the buffer require

ments of a finite multicast, then this aspect of the model is not considered significant.

Testing with the network rate set to 100 Mbps  showed that implosion occurred at the 

network buffer when the bus transfer rate was set to 10 MBpsy with the inter-packet 

gap being less than 10//secs, figure 5.9. The more interesting results here were those 

relating to the protocol processing delays which indicated that a protocol processing 

delay of 0.1 milliseconds resulted in buffer overflow, figure 5.12. Further tests at this 

network rate, which investigated the effect of packet length on the implosion charac

teristics, indicated that as the packet length decreased the implosion increased, with
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the degree of implosion, figures 5.15 and 5.16, and therefore the implosion index also 

increasing with decreasing inter-packet gap. These results show that current bus 

transfer rates are able to handle these network rates, and that the protocol processing 

will be a problem for many current hosts on networks with this and larger transfer 

rates.

Testing with the network rate set to 1 Gbps  showed that implosion occurred for all bus 

transfer rates, requiring some form of backoff by the network to avoid implosion. The 

reduction in implosion with packet size, figure 5.11, shows that acknowledgements 

are more implosion resistant than data replies at the network buffer. This is due to the 

effect of the packet header, which is stripped at the network buffer, and the inter

packet gap, the combined delay being greater than the delay in transferring the packet 

across the bus. The reduction in implosion with increasing packet size is due again to 

the combined effect of inter-packet gap and packet header. However, as above, the 

implosion is merely deferred to the protocol. Results obtained when the bus was sat

urated, figure 5.14, do not follow the expected pattern. Initially, the implementation of 

the model was suspected, but no obvious fault could be found. The nature of the sim

ulation system, being event driven seems a likely source of the problem, with events 

being lost resulting in packets not being processed by the protocol.

The effect of packet length on implosion at the network buffer showed that for small 

packets no implosion occurred. This was due to the time taken to transfer the packet 

over the bus being shorter than the inter-packet gap. The ciuwe after this point may 

be explained by observing that as the length of the packet increased, the effect of the 

inter-packet gap is progressively reduced so that eventually the implosion rate would 

converge to a value reflecting the disparity between the network and bus transfer 

rates, in effect forming a performance measure.

By taking a range of inter-packet gaps it is hoped that these results may be applicable 

to a wide range of network architectures. The inter-packet gap was constant for each 

experiment, which may be compared to a token based network architecture where 

hosts hold the token for a fixed time period before passing the token to the next host.

The implosion index described above is not only applicable to positively acknowl

edged and transactional multicast. It has already been described how flow control is 

used in unicast to reduce buffer overrun at recipients. The implosion index may be 

used here as well, as implosion occurs when an originator transmits many packets 

faster than a recipient can accept them. By using the implosion index for a recipient
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as the main flow control measure, the need for flow control may be reduced, as the 

behaviour of the recipient may be predicted. The only information required would be 

the implosion index of the recipient, both for the network buffer and protocol process

ing with the number of available buffers.

In general, the focus for any work to avoid implosion should centre on the protocol 

processing and application processing area, as it is here that implosion is most evi

dent, and also where the design of a protocol has the most impact.

The Ethernet experiments show that there is a finite limit on the number of recipients 

of a multicast that may reside on a single network segment, figure 5.2b. This limit 

increases with decreasing packet size, but remains less than the maximum number of 

hosts which may be supported. This maximum may be increased by delaying replies, 

a delay in the same order of magnitude as the completion time being required. The 

effect of a multicast on a bridged Ethernet may be inferred by assuming that the 

bridge is just another source of replies, which it is constrained to transmit in 

sequence, so that only one reply may be transmitted at a time. It would be expected 

that the bridge buffer replies, so that replies could be lost by buffer overrun at the 

bridge, which may be predicted using that hosts implosion index. If the number of 

replying hosts plus bridges is less than the limit for that packet size then the results 

indicate that there will be no packets dropped, although the actual limit may be less as 

there will be more packets being transmitted from the bridges as packets are transmit

ted from them.

The behaviour of a dedicated network co-processor may be inferred from these results 

by considering the bus transfer delay as processing delay by the co-processor. Table 

5.2 shows this relationship for a number of packet lengths.

Bus Transfer Rate Delay in transferring n bytes
(MBps) 128 512 1024 4096

10 1.3 X 10"' 5.1 X 10“* 1.02X 10“^ 4.1 X 10“4
25 5.1 X 10“* 2. Ox 10“* 4.1 X 10“* 1 .6 x 1 0 “^
50 2 .6 x  10“* 1 .0 x 1 0 “* 2. Ox 10“* 8 .2 x 1 0 “*
75 1 .7 x 1 0 “* 6.8 X 10“* 1.4 X 10“* 5.5 X 10“*

100 1 .3 x 1 0 “* 5.1 X 10“* 1.0 X 10“* 4.1 X 10“*

Table 5.2 Relationship of bus transfer rate to processing speed

These values may then be used with the graphs above to show the implosion which 

occurs with these values as processing delays. The use of a co-processor for protocol 

processing off-loads much of the processing required, especially for

101



acknowledgements. Co-processors typically have a quite large, but fixed buffer space 

available for use by packets so that if buffer overrun occurs there is no recourse to the 

operating system to allocate more memory for buffers.

5.6 Summary

Some experiments were carried out to investigate potential implosion, both on a sim

ulated network and on a simulated host. The simulations were intended to show that 

there may be implosion effects under certain conditions. The parameters which 

induced implosion were then used to develop a measure of implosion for these con

figurations.

The results of testing a simulated Ethernet showed that the network architecture 

caused packets to be dropped because of excessive collisions. The number of reply

ing hosts which exhibited this behaviour varied both with the size of the reply and the 

length of the Ethernet.

Experiments on a simulated host indicated that implosion was strongly affected by the 

packet size as well as the network architecture. Data analysis was employed to better 

quantify implosion, resulting in an implosion index, with values ranging from 0 to 1, 

which may be used to indicate the severity of implosion suffered by a host, but also as 

a means of determining buffer requirements given a number of replies. The implosion 

index provides a more useful way of looking at implosion, as it allows an estimation 

of buffer requirements to be made, and also to predict the number of replies that may 

be received given a number of buffers, which in turn may allow the maximum group 

size that may be supported to be determined.
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Chapter 6 
Designing for Scalability

With implosion identified as a factor in the scalability of positively acknowledged and 

transactional protocols, and a measure of such implosion derived, a number of tech

niques to decrease the effects of implosion are described. The implosion index 

described in the previous chapter is an indication of the severity of implosion. That 

implosion was found to have a packet length dependency, which in turn indicates that 

implosion is more of a problem for acknowledgements and small packets than for 

larger replies.

From the previous discussion of the congestion problem, two ways of reducing 

implosion are to reduce the number of replies, or to decrease the rate at which replies 

arrive at the host, that is increase the packet dispersion by artificial means. Both of 

these methods are discussed.

6.1 Designing for Scale

Simulation indicated that it is the processing speed of hosts that forms the most sig

nificant limits on the scalability of multicast, especially on the faster network archi

tecture’s now becoming more widespread. Given a particular host hardware, the only
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areas that are accessible to change are the protocol, operating system and applica

tions. The main areas of these which have an impact on implosion, from a purely 

processing time viewpoint, are the buffer handling performed by the operating sys

tem, the copying of packets from operating system to process and the need for ensur

ing data integrity. While these issues are largely performance related, and therefore 

generally applicable, they are included as forming the first step in designing a multi

cast protocol for scalability, the UNIX operating system [Le89a,St90a] used as a ref

erence.

The efficiency of a protocol’s internal operation can be separated into those parts 

which are operating system dependent, such as buffer allocation, packet copying, and 

those which are protocol dependent, such as the checksumming of packets and 

searching for state information. Reducing the processing time of a protocol requires 

that these elements be investigated with the aim of reducing their respective process

ing delays.

One scalability aspect of multicast concerns the amount of information about recipi

ents that an originator requires for the correct operation of a given protocol design. 

This is important for two reasons. The first is that the originator must store and access 

this information, which takes both time and possibly valuable memory. Secondly, the 

originator must be able to reference, update and maintain this information, consuming 

processor time. Although these are group management issues, many of the protocol 

designs discussed earlier require the searching of information on a per packet basis, 

most notably positively acknowledged and transactional designs.

The amount of information held may no longer be a particular issue, as reducing 

memory prices and the subsequent increase in the amount of memory now seen on 

hosts have to some extent reduced the problem. However, memory used for such 

information is not available for use by applications, and some form of compaction 

may be possible. The technique used to implement a protocol may be of help here, as 

some this information may not be necessary for the operation of the protocol, being 

used for group management purposes rather than to enable the operation of the proto

col, and therefore may be stored separately, possibly using virtual memory where the 

potentially slower access time is less of a problem.

The referencing of state information may consume a large part of a protocol’s overall 

processing delay, especially for multicast. In a positively acknowledged design, each 

acknowledgement results in the accessing of that recipient’s information. By
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definition, every recipient replies to a multicast, requiring the originator to search for 

state information relating to that recipient for each reply. Therefore, any method to 

reduce this search time would be beneficial. The problems of referencing protocol 

information was investigated by Clark, Jacobsen et. al. [C189a] with reference to the 

performance expectations of the TCP. Among the recommendations made were opti

misations such as using a reference to the last referenced protocol information block, 

which is the first tested when a reply is received. Because the TCP  tends to transmit 

many packets at a time, this optimization reduced searching time substantially. Multi

cast does not necessarily show this kind of behaviour, but the use of a faster method 

for referencing information, such as hashing [Ja89a,Ja89b], would benefit multicast 

for large numbers of recipients.

Copying is used by UNIX, and other operating systems, to ensure that the operating 

systems internal structures are not accessible by processes. Without the copying of 

data between application and operating system proper it would be possible for the 

application to modify a buffer that is already being transmitted. There are two main 

areas where packet copying may occur. The first is as above. The second is copying 

from the bus to main memory. The simulation assumed that the bus was capable of 

Direct Memory Access (DMA)  transfers, where the network device is able to copy the 

packet directly to main memory without the intervention of the main processor. The 

absence of DMA would effectively increase the processing time for each packet as the 

main processor would have to carry out copying. However copying is done, there 

must be some area of memory into which the packet may be copied, which is most 

often located in the operating system proper. As packets are of variable length buffer

ing can result in either inefficient memory usage or slower buffer handling.

UNIX uses small, fixed size blocks of memory which are then chained together to 

contain each packet, thereby minimizing the amount of unused memory. However, 

the management of these buffers requires a relatively large overhead, especially when 

dealing with headers, requiring that after header processing the data portion of the 

packet be adjusted so that the data starts at the beginning of a memory block. In addi

tion, DMA must employ scatter/gather techniques as the data may be copied into non

contiguous blocks of memory. The V-Kernel [Ch84b] employed a Uniform Input Out

put [Ch87a] system uses blocks of memory large enough for the largest packet for 

each received packet regardless of size. Although memory wastage is higher, the 

scheme is more time efficient, as much manipulation of buffers is removed. The most
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efficient method would be to allow packets to be copied directly into application 

memory, the packet being processed in the usual way before the application is in 

effect handed back the buffer. Among the problems of this is the need to protect the 

contents of a buffer during any copying.

If a host supports many group members, then an efficient Inter-Process Communica

tion method would reduce processing time. If the packet must be copied to each 

member then processing delay would increase in proportion to the number of mem

bers. Using shared memory between these group members would allow only one 

copy to be made, which would be removed when each member had referenced it. If 

the packet was to be manipulated, rather than just read then a copy of the packet must 

be made before hand and made private to that member. The shared memory area 

would be created by the first group member on that host.

The checksumming of packets to verify the data is a common method of ensuring 

data integrity. A checksum is a value that is calculated using a formula based on the 

data contained in a packet. The time taken to calculate a checksum is therefore pro

portional to the length of a packet, although checksumming may take place in parallel 

with data reception if supported. Another operation that is dependent on the length of 

a packet is copying. One method for reducing the overall time consumed by these 

two processes would be to combine copying and checksumming, so that the overall 

time decreased. Of course, some means of rejecting a copy if the checksum were 

faulty would be required.

The role of the application, and more specifically the interface to the application must 

not be ignored. The results indicate that the time taken for an application to respond 

to the arrival of messages greatly affects the implosion at the protocol level. A num

ber of unknowns exist in such a situation, depending on the number of runnable pro

cesses in time-shared systems, the priority of such and where process switching takes 

place. For example, the UNIX operating system switches whenever input or output 

occurs, which is precisely where implosion is most sensitive. It is here that the design 

of an interface has an impact. If the application has to read individually each message, 

then implosion is more likely to occur than if a single read gathers aU replies.

The simulation ignored overrun at the process level, because implosion does not in 

fact occur there. What does happen is that the inability of a process to read more 

packets causes overflow in the protocol level, as shown in the results. Of course the 

application only affects the protocol in this way if the multicast is transactional, or the

106



multicast protocol itself is part of the application. An application may be able to allo

cate a large number of buffers, using virtual memory, but not all of these buffers may 

be in real memory at a time. Therefore, more time is required to swap these buffers 

back into memory, increasing overrun at the protocol. The number of packets that are 

of value to the application may be used to decrease this problem, by rejected any mes

sages that do not match a certain criterion. If the voting algorithm can be imple

mented within the operating system, then the buffer overrun may be reduced. The 

ability of UNIX STREAMS [T89a] to push different protocol modules onto a stack 

allows modules to be used which may selectively filter messages before they are 

copied into the application.

So far the assumption has been that protocol processing takes place in main memory. 

The use of special hardware, such as a co-processor dedicated to network processing, 

has not been considered. Co-processor boards typically process packets up to the 

transport level, so that only data is actually transferred over the bus. The results in 

Chapter 4 indicated that the speed of the bus often outstripped network speeds, and 

that the limiting factor was on protocol processing speed. This would indicate that 

most advantage would be gained in using a very high performance processor to proto

col process, which would allow for less processing by the main processor if data has 

to be transferred.

If, after exhausting the possibilities above, implosion remains a problem, especially if 

the implosion occurs below the bus, then the technique used for data transfer should 

be considered. Two basic techniques were considered with a view to their scalability. 

The first was considered because of the techniques inherent reduction in reply traffic. 

The use of negative acknowledgements, because replies are only generated when a 

packet is missed by a recipient, offers an immediate way of reducing implosion. 

However the technique also has a number of inherent drawbacks that have to be 

addressed. Positive acknowledgements, where a reply is transmitted confirming the 

reception of a packet, are considered implosion prone due to the synchronizing effect 

of a multicast. The technique however has a number of features considered necessary 

for many applications. Indeed, transactional protocols, where data forms the reply, are 

being increasingly utilized in distributed applications. The technique used to imple

ment a protocol design has a potentially powerful impact on the scalability of a proto

col and should be considered with care. A number of factors should be considered 

when assessing technique, an important one being that the design should not penalize
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small groups, even if the design is intended for large scale use.

The number of groups supported by a single host, and the number of groups that can 

operate simultaneously are also scalability issues. The number of groups supported by 

a host is related to the problem of address filtering. In order to reduce the number of 

unnecessary multicasts received by a host it is preferable for address filtering to take 

place as low as possible in the protocol hierarchy. Each address must be stored and 

referenced, which may be beyond the capabilities of the network device, in which 

case a special all-multicast address may be employed. Again, the time taken to filter 

on a multicast address may be significant.

6.2 Negative Acknowledgement

It was stated earlier that the use of negative acknowledgements for multicasting is 

inherently scalable. However, it was also stated that the technique possessed a num

ber of problems that restricted its use for many applications. A number of methods 

may be employed to overcome, to some extent, these problems, although these meth

ods may reduce the scalability potential of the basic method. The technique is scal

able primarily due to the minimum use of replies from recipients to originator, 

thereby avoiding buffer overrun directly. On the other hand most of the problems of 

the negative acknowledgement technique are due to this lack of replies. Another fea

ture of the technique that aids in scalability is the lack of any need by the protocol for 

any information about the recipients as all information necessary for retransmitting a 

missed packet is contained in the NACK packet transmitted in response to the detected 

loss of a packet. Coupled with the reduced number of replies, for non-transactional 

use, the processing delay of this technique may be considered small compared to 

other methods.

Reliability is one of the primary design parameters for protocols. Using negative 

acknowledgements are inherently unreliable because an originator cannot distinguish 

between a recipient missing a packet and successfully receiving it, the two cases hav

ing the same effect. A protocol using this technique can only be described as offering 

a degree of reliability. In a negatively acknowledged protocol it is the recipient that 

has responsibility for reliability, a recipient transmitting a negative acknowledgement 

packet to the originator when it detects a missed data packet. The detection of missed 

packets is often based on observing the sequence numbers of received packets, a gap 

in sequence numbers indicating a missed packet. When a gap is detected, one or more
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negative acknowledgements are generated and transmitted to the originator of the 

missed packet. Two problems are immediately apparent. The first is that for this 

scheme to operate, there must be a subsequent received packet to trigger gap detec

tion, the so called "last packet problem". Secondly, the detection of a missed packet 

by a recipient must enable the recipient to reconstruct the originator and the identity 

of the missed packet for a negative acknowledgement to be correctly addressed.

A solution to both of these problems is for the originator to multicast either a copy of 

the last packet, or a dummy packet containing the next sequence number which would 

be transmitted when data is to be transmitted, the reception of either type of packet 

resulting in the detection of any previously missed packets. These extra packets could 

be repeatedly transmitted until either a new data packet is to be transmitted or the 

transmission has been repeated a sufficient number of times to satisfy some reliability 

criteria.

Instead of transmitting or retransmitting these extra packets, a timer could be used by 

recipients that is set on arrival of each packet. If the timer expires, then it would indi

cate that time has passed since the last packet was received and forces the recipient to 

check for missing packets. If the timed gap was set to a value which reflects the time 

taken to receive a packet, that is the time between the arrivals, then expiry would 

indicate a missed packet. By including information about the number of packets being 

transmitted in each packet, then checking for missed packets will also detect when a 

last packet has been received. The number of packets being transmitted would be 

available if the unit of transmission was the message, rather than the stream. By set

ting the timer such that the delay is calculated based on the number of packets in a 

message, so that expiry of the timer would occur after the last packet of the message 

was expected would reduce the number of timer operations. However, this scheme 

does not cater for messages which are small, where the loss of a packet ensures that 

the presence of the message is not even detected. Also, the calculation of the timer 

would require information about the expected rate of transmission, which is also 

influenced by network activity. As the main cause for packet loss is congestion, here 

at recipients, it is with this that the discussion turns.

One factor affecting the number of missed packets is congestion, leading to buffer 

overrun at recipients, as opposed to implosion and buffer overrun at the originator. A 

popular method of controlling this is to use a token, which allows an originator to 

transmit one or more packets to recipients. As the aim of using the negative
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acknowledgement technique is to reduce necessary replies the token must not be 

required by an originator to transmit, but rather as a means of modifying the number 

of packets that may be transmitted as transmission progresses. This is contrasted with 

the same methods use in positively acknowledged designs, where the token is used 

before transmission starts. Another method would be to control the rate at which 

packets are generated, the aim being to settle for a rate which is maintainable by 

every recipient. The rate may be based on some observation of patterns to missed 

packets, as in the VMTP [Ch86a] or simply using a delay system which operates for 

every missed packet. Again to reduce the number of replies, recipients must commu

nicate with the originator only to change the transmission rate, assuming a default 

value for initial transmission. Reducing lost packets using these methods does not 

preclude the need for re-transmission in the event that some packets are lost.

The reliability mechanism of the negative acknowledgement technique relies on 

recipients being able to recover missed packets from the originator of those packets. 

This requires that the originator retain packets until it can be assured that recipients 

have had a number of opportunities to detect and recover any missed packets. The 

recovery of buffer space at the originator thus forms one of the problems of using 

negative acknowledgements. If a packet is discarded too early by the originator then 

any subsequent negative acknowledgement cannot, in most cases, be satisfied. In cer

tain circumstances, for example if the data is stored on a non-volatile medium, such 

as a hard disk, then some higher level protocol could be used to retransmit missing 

sections, this being dependent on the usage of the protocol. It should be noted that 

because of the lack of replies buffer recovery is a based on rules of thumb rather than 

any precise method. A number of methods may be used to manage the buffering of 

packets at the originator.

The simplest would be to retain packets until forced to discard due to more packets 

being transmitted. The reliability of such a scheme is highly dependent on the genera

tion rate of packets, and is more suited to a low generation rate environment. A better 

method would be to guarantee that each packet is retained for at least a fixed amount 

of time, this time being calculated from the number of opportunities granted to recipi

ents of receiving each packet, any new packets being delayed until buffer space is 

free. A more adaptable method is to use information which is transmitted, either peri

odically in the absence of traffic or as part of normal protocol traffic, by recipients, so 

that the originator can track the last received packet for each recipient, discarded any
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packets which are older than the oldest seen. One of the problems with this approach 

is the requirement that the originator receive packets from all potential recipients, 

which may result in implosion, but also that the amount of additional data carried in 

each packet may be significant, requiring in the general case the address of the origi

nator and the sequence number of the last packet from it, for each originator. Also, the 

use of broadcast is implied for every packet, as the information has to be directed to 

every originator.

A different approach to this problem is to use saturation in conjunction with negative 

acknowledgements as a means of increasing the degree of reliability offered by the 

technique as described by Jones, Sorensen and Wilbur [Jo91a]. Saturation means that 

many copies of a message are transmitted, thereby increasing the probability that a 

recipient receives at least part of the message. The main aim of using saturation was 

to increase the probability that a small message, one containing one or more packets 

had a higher probability of being detected, detection of only one packet of a message 

assuring that the message would eventually be received through the use of negative 

acknowledgements. Using saturation directly would result in many redundant packets 

being transmitted, especially if the loss rate for the environment is low. Therefore 

saturation was concentrated whenever the message to be transmitted was shorter than 

a threshold size. When this was so, multiple copies of selected packets were transmit

ted to increase the probability that at least one packet were received by every recipi

ent. Otherwise, the packets of the message were multicast individually.

The use of saturation in this way was prompted by the observation that as the size of a 

group increased, the probability that each group member received a particular multi

cast reduced, increasing the need for retransmissions. Also, the design assumed that 

no more messages would follow the current one, so that if the current message was 

missed, there would be no subsequent message to prompt for it, so that enough infor

mation was conveyed in each packet for the whole message to be recovered.

The use of negative acknowledgements for requesting retransmissions is intended to 

avoid synchronization of replies. Because hosts miss packets entirely randomly and 

because the number of such missed packets may be assumed low this goal is effec

tively met. However, if a common mode failure, such as a packet being discarded at 

an intermediate bridge, then synchronization is introduced. But, only one negative 

acknowledgement needs to be received for that packet to be retransmitted, satisfying 

all of them, assuming that retransmission is also multicast.
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The efficacy of negative acknowledgements is biased towards the technique’s use on 

low loss low delay networks. Low loss because of the problems of detecting missed 

last packets, low delay because of the consequent effect on buffer recovery at origina

tors. The use of negative acknowledgements is thus effectively confined to networks 

with these characteristics, although they can be effectively used in conjunction with 

positive acknowledgements, typically with the last packet of a message being posi

tively acknowledged.

The requirements of group management information by protocols was introduced ear

lier. One of the advantages in using negative acknowledgements is the lack of knowl

edge about recipients required by the originator, implying that group management is 

not required for these types of protocols. While group management should always be 

considered when discussing multicast, a negatively acknowledged protocol does not 

require that information to operate.

Incidentally, the technique is useful if the data is time critical. As will be described 

later, a positively acknowledged design has a completion time proportional to the 

number of recipients, simply because each recipient must reply to the multicast. 

Therefore, if the time needed for gathering these replies is larger than acceptable from 

a time critical point of view, then the use of negative acknowledgements may offer a 

more suitable method for operating with time constraints, especially if the network 

has a low delay characteristic, allowing recipients at least some time to recover 

missed packets. In summary, negative acknowledgements offer inherent scalability, 

but lack reliability. For time critical activities, the potentially low completion time is 

an advantage.

6.3 Positive Acknowledgement and Transactional

The primary advantage in using positive acknowledgements is that the transmission is 

reliable. The originator has confirmation that a packet has been received by the 

intended recipient, which benefits buffer storage, because acknowledged packets can 

now be safely discarded. However, requiring replies from each recipient is a potential 

source of implosion.

The results described in Chapter 4 indicate that implosion for acknowledgements, 

which are typically short packets, is a problem. Of course, implosion is not confined 

to short packets, but the problems are more acute for acknowledgements. This may be 

fortuitous as acknowledgements may be delayed for a short time, delay being used to
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reduce synchronization and therefore to some degree reduce implosion. However, 

acknowledgements are not subject to the flow control restrictions described previ

ously, and therefore require some other means to reduce implosion to manageable 

levels, that is to prevent buffer overrun.

A positively acknowledged protocol here is considered to require at least that the last 

packet of a message be acknowledged, with other acknowledgements being transmit

ted if packets are missed. Flow control is by the use of a token to indicate buffer 

availability or by rate control. Each recipient must acknowledge at least once per 

message, which effectively excludes the use of optimistic algorithms, which assume 

that if a number of recipients acknowledge, the group as a whole is considered to 

have received the message, using the assumption that any missed packets may be 

recovered from those recipients that acknowledged the message.

A number of possible approaches may be used to reduce implosion at an originator. 

Two basic approaches may be taken. The first is to increase the time between replies 

so that overrun does not occur, that is increasing dispersion. The second is to ensure 

that the number of replies directed to any one host does not result in implosion at that 

host, as there is sufficient buffering available to ensure that buffer overrun does not 

occur.

One way of reducing implosion is to accept that implosion occurs, requiring retrans

mission, but that the retransmission is replied to only by those recipients from which 

the originator has not yet received an acknowledgement. After many retransmissions, 

the number of recipients would fall to a level where no further implosion occurs. This 

method requires that information about the recipient replies that were received is 

passed to the recipients on retransmission. For large groups this method may require 

an excessive number of retransmissions, as well as requiring a large amount of infor

mation to be passed to the recipients. Using the most efficient method of representing 

recipients, using one bit per recipient, the number of bits is equal to the number of 

recipients. To be flexible, the number of bits employed needs to be varied depending 

on the number of recipients, as well as group management to ensure that each recipi

ent is allocated a unique position in the bit table, as well as ensuring that the bit table 

does not become stale.

In a closed group environment, where communication is between group members and 

crucially the originator is a member of the group, acknowledgements may be piggy

backed onto data transmissions, reducing the number of acknowledgements
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transmitted. In order to increase the likelihood that a data packet can be used in this 

way, acknowledgements may be delayed for a period. In fact, implosion in a closed 

group is probably less likely, as the pattern of communication would tend to be less 

synchronized than for service location, for example.

Distributing Replies in Time

The host model developed in Chapter 3 identifies a number of factors affecting implo

sion. Of these, for a given host, only the inter-packet gap of the network may be used 

to decrease implosion. Therefore, an obvious method for reducing implosion would 

be to arrange replies such that each reply is preceded by a gap sufficiently large to 

negate or reduce any implosion. One of the drawbacks to delaying transmission is that 

the network is no longer being utilized fully, increasing completion times and poten

tially delaying other non-multicast traffic co-existing with multicast replies.

If the architecture of the network does not already supply a sufficient gap between 

replies then the recipients must artificially increase the gap by delaying the transmis

sion of replies subject to some distributed algorithm. The most obvious method of 

arranging the replies is to place each reply in a fixed slot, the size of which reflects the 

implosion characteristics of the originator, which may be determined using that hosts 

implosion indices, biased for the expected size of the reply, figure 6.1.

S kt
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Time

Packet

Figure 6.1 Time Slot Scheme

The first problem which must be addressed concerns the allocation of these slots 

among the recipients. For the scheme to operate each recipient must firstly know 

which slot of all potential slots it has the exclusive use of, and secondly when to 

transmit in order to fill its allocated slot. Group management finds a role here, as the 

group management operations for Joining, leaving and failure detection can be used to 

allocate hosts unoccupied slots, and to recognize free slots for allocation. Addition

ally, group management can be used to expand or contract the slot system depending 

on the group size. In order for slot management to be efficient, the number of unused 

slots should be minimized by rearranging the allocation of slots. However, this would
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require communication with recipients, as well as some means to calculate the alloca

tion of slots.

As the time slots are not a function of the network the synchronization of these slots, 

so that each recipient knows when to transmit, must be handled by the recipients. The 

multicast from the originator may be used, the reception of the multicast forming the 

synchronization signal. However, recipients will almost certainly not receive the mul

ticast at the same time, due to the propagation delay imposed by the network architec

ture. In addition, external traffic, not being a party to the slot scheme, would tend to 

disrupt the smooth running of the scheme, delaying recipients past their allocated 

slots and into others. One method of reducing the synchronization problem would be 

to use a slot of a size that would cater for propagation delay, and accept a certain 

amount of variation in the arrival times, keeping this variation within the originator’s 

implosion limit. Other methods could listen for reply traffic, and base its synchroniz

ing signal on the first reply seen.

If a host can sustain a certain amount of implosion then using a random slot allocation 

scheme may offer a simpler means of solving the problem. While a random method 

may produce implosion due to slots being picked by many recipients, the implosion 

would tend to be smaller, allowing normal buffering to operate as intended. The tech

nique would be more robust to failures, the only adjustment required being new ran

dom generator values. Indeed, it would only require adjustment of the slot time and 

random generator values to increase or decrease observed implosion.

The size of slots would have to be calculated based on the inter-packet gap required 

and the size of the expected packet. While this would favour acknowledgements, 

which are typically of fixed size, the scheme would be less favourable for variable 

sized, or even multiple packet replies. The former can be solved by using the maxi

mum packet size, and adjusting the inter-packet gap accordingly. Using the slot 

scheme for possible multiple packet replies is more problematic. Either each recipient 

reserves a number of slots for itself, or the slot scheme repeats for each packet of the 

reply.

A similar scheme to using time slots for replies is to use a token, which is passed 

from recipient to recipient, to grant each recipient access to the media. By controlling 

the passing rate of the token, a slot system is enforced. However, the use of a token 

here requires some means of guaranteeing the reliability of token passing, or at least 

some means of reconstructing the token if lost
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A more robust method for replying would be to impose a randomly generated delay 

on to replies, using the network to resolve any conflicts. Here there is no fixed time 

slot to which a recipient is bound, and therefore no need to manage slot allocation. 

The values used to drive the random delay generator would then just have to be multi

cast to the group when required.

Distributing Replies in Space

Distributing replies by space rather than time means restricting the number of replies 

which any one recipient has to receive. The basic case of this is where the group man

agement of a protocol restricts the group size to prevent buffer overrun. Such a 

method is not scalable, as the number of group members is restricted. However, the 

scheme can be extended by using a hierarchy of group members, where the group as a 

whole is split into smaller, more manageable sub-groups. Each sub-group is then 

headed by a single group member, just as above, but here that group member is itself 

a member of a sub-group. While this can also be said to be time distributed, in view 

of the extra delay imposed by forwarding, the major gain is in the distribution of the 

replies. The advantage of this approach is that no single host is expected to receive 

and process all of the messages individually. By filtering replies at each level much of 

the traffic generated can be reduced. In addition, the number of recipients supported 

by intermediate recipients may be tailored to that recipients buffer configuration.

One reason that distribution in space is considered of more importance than that of 

time is by observing the relative speeds of networks and processors. In a time dis

tributed system the bottleneck will be the ability of the host to receive and process all 

of the messages within a certain time, whereas the bottleneck in the space distributed 

system is the network as each host will only see and process a part of the returning 

messages, and as network speeds have increased far more in recent years than proces

sor speeds, the time distributed system is expected to be unable to use the potential 

offered by the new network architectures. In addition, as there is no delaying of traf

fic, the full capabilities of the network may be utilized.

The hierarchical structure developed here is intended to outline not so much a final 

solution but a philosophy that can be applied to a number of protocol designs. The 

tree structure is developed as hosts join a group, with a joining host being allocated 

by management functions to maintain a tree structure, which provides a degree of 

load balancing, each host having an optimal number of supported child hosts. A child
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host is one that possesses a paren t, to which replies are directed. A sub-group  is a col

lection of hosts which share the same parent, and are members of the same multicast 

group. A number of sub-groups whose parents are a sub-group make a level. The tree 

structure is not ro o ted  by a single host, but by a level. The levels are numbered from 

zero, with the ro o t group  residing at level zero. As more hosts are added to the group 

each level fills until the maximum allowable number of each level has been reached, 

where the next level is started. The placement of the joining hosts is discussed with 

reference to the group management requirements. The size of each sub-group may be 

determined by the implosion indices of the parent.

The structure described above has three types of group member. The root group mem

bers reside at the top of the tree and are the entry point for the originators of multi- 

casts. These originators are, in effect, parents of the root level, which implies that 

only root level members communicate with originators. There is no limit on the num

ber of originators supported. A le a f  m em ber  has no children and therefore only com

municates with its parent. An in term ed ia te  m em ber  is neither a leaf nor a root mem

ber, but has both children and a single parent. The intermediate member has to gather 

replies from its children and forward any information to its parent. Thus for leaf and 

intermediate members each sub-group has a single parent, which it is allocated by the 

management operations discussed below. The problems of the red istribu tion  of group 

members when hosts leave the structure or fail are properly a group management 

issue.

The propagation of messages from an originator to the group can have two distinct 

forms. The first is referred to as strict hierarchical forwarding, figure 6.2

Originator

Root

Leaf

Figure 6.2 Strict Hierarchical Forwarding
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where messages are actively forwarded by the intermediate group members to their 

immediate children, which in turn forward the message to their children. Replies 

flow back to each parent in a similar fashion. One restriction on such a scheme is that 

each message must be unicast to every host as the parent must transmit to only its 

children, preventing the use of multicast or broadcast. If a special addressing scheme 

is used which supports sub-group addressing, then multicast can be used. Suitable 

arrangements of sub-groups with parents may be made, so that a parent and its imme

diate children are resident on the same network segment. This is beneficial from a 

traffic point of view, but also allows strict hierarchical forwarding to be applied using 

broadcast, simply by denying broadcast, or multicast forwarding by bridges.

Loose hierarchical forwarding, figure 6.3, is of more interest as

Multicast
Replies

Originator

Multicast to 
All Group 
Members

Figure 6.3 Loose Hierarchical Forwarding 

it allows a broadcast capable network to be used directly. In loose hierarchical for

warding the message is multicast by the originator to the group, with replies from 

each recipient being passed to its parent rather than the originator. In this way replies 

are distributed among the set of parents, reducing implosion. Using such a scheme 

then introduces additional options with regard to the retransmission policy observed 

by each host.

In using the loose hierarchical model the retransmission strategy used by the protocol 

can take two forms. Either all retransmissions originate from the originator, or 

retransmissions are delegated to any parent which has received the missed packet, 

thus reducing the load on the originator. The latter is of preference, as it allows the 

originator to complete earlier than may be the case if it has responsibility to
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retransmit. In addition, intermediate hosts may be able to retransmit in parallel.

If replies are propagated back to the originator then parents delay their own replies 

until replies have been received by all of its children. The originator will therefore 

only receive a reply if an entire branch of the tree has received the message. Because 

the originator has no knowledge of which recipients actually missed packets, the 

missed packets must be re-multicast, resulting in duplicates being received by many 

recipients. If only one branch failed to acknowledge, then it may be possible to use 

strict hierarchical forwarding over that branch alone.

If the onus of retransmission is delegated to the group, then parents have the responsi

bility of retransmitting missed packets. This assumes that a parent has received the 

missed packets itself. What can be assumed is that eventually it will receive those 

packets, at which time it in turn may forward missing packets. The originator may 

complete when it has received the appropriate replies from the level zero hosts, 

although the group as a whole may not at that time have completed. Retransmission 

may be unicast, if the number of missed packets is confined to a small number of 

branches, or multicast. If the latter is used, then the retransmission would be receiv

able by all group members. The performance penalty for this may be acceptable if 

infrequent.

So far the assumption has been that replies are acknowledgements that are received 

by parents, and destroyed there. However, if the reply is data then these data mes

sages must be forwarded from the parent to its parent. The concentration of replies at 

a host offers a number of methods for pruning the number of returns. For example, if 

only one reply is required then other replies may be discarded at intermediate hosts. A 

majority can also be treated in this way. Replies could be forwarded as they arrive at 

the parent. A problem with this is that the number of packets forwarded by intermedi

ate hosts to their parents is related to the number of children possessed by each inter

mediate host. This may cause an implosion at its parent.

A solution is found in the use of flow control by parents. Using a token to indicate 

buffer availability to children may also be used to prevent children replying, acting as 

a block on transmission. Access to parent buffering can then be granted in a round 

robin fashion, so that each child is in effect polled for its data. One problem remains. 

After collecting these replies, the parent may have a large number of messages stored 

for forwarding. The problems of storing these messages may require either that some 

form of virtual buffering be used, or that messages are forwarded whenever the
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available buffering is filled. Which ever method is used, in effect the replies are 

blocked forming a larger, multi-part message. The same technique can be used to 

gather these messages into ever larger messages as the replies move up the tree, sub

ject to any filtering described previously. Because these messages will become ever 

larger as the replies filter up to the originators, the hierarchical structure will become 

in some way limited in depth, that limit being determined by the sizes of replies and 

the number of recipients replying as well as the proportion of messages that are for

warded by intermediates.

Using this structure in an open group model, where originators communicate with the 

group using some form of access operation is of interest because of the reduction in 

information transfer which can be achieved. Because originators only communicate 

with, and therefore have knowledge of, the level zero members, the amount of infor

mation required is reduced. Also, the amount of information stored at each group 

member is reduced, the maximum being at intermediate hosts. The management 

information required by the protocol is extensively discussed below.

The maintenance of the tree structure is a function of group management, the success

ful operation of a hierarchical scheme requiring that group management operations be 

used to maintain the structure. The next section describes the functionality and 

requirements needed by these management operations.

Managing the Hierarchy

Chapter 1 described a number of basic management operations which were consid

ered to be necessary for multicast protocols. In this section the implications of a hier

archical structure on the format and usage of these operations is considered.

When discussing group management it is necessary to first define what information is 

to be stored at each host. This in turn depends on the frequency of each operation that 

occurs for a group. In the structured approach one of the goals is to reduce the amount 

of information held by any one group member, which is achieved by distributing the 

information among each group member in such a way that a recovery from failure can 

be carried out with the minimum amount of overhead. As the group is by implication 

open, then there is no gain in having complete information at each group member, as 

in ISIS, as a user will not necessarily be a group member, although it can be. The 

details of the information required is left until after a discussion of the group opera

tions. In ISIS management operations are ordered relative to all other activity, ensuring
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that the group view is updated in a consistent manner. If no group view is used then 

some other method is required to ensure that there is no group change during an inter

action. This could just take the form of delaying a group management operation until 

any pending interactions have finished, with colliding management operations being 

prioritized depending on the management operation.

A create operation in a hierarchical structure is no different to a create in a flat struc

ture as the hierarchy has only one member, and can be implemented in any of the 

ways discussed previously.

A destroy operation would use the structure to propagate the destroy instruction and 

would therefore require that the destroy be delayed for each group member until all of 

its children have acknowledged the destroy operation. The destroy would therefore 

begin at the leaf hosts and propagate up the tree. The usefulness of a destroy opera

tion has been discussed previously.

The joining of the group is used to place the new member within the hierarchy 

already established. The placement decision can be based on a number of factors, not 

least the level at which the new member is inserted. The number of children that can 

be supported by a parent, based on the implosion resistance of that parent, is used to 

place a limit on the number of children of the level, with a new level being started 

when that limit is exceeded. One problem with this approach is in anticipating the 

implosion resistance of originators, which impacts the size of the root sub-group. The 

larger this group the more efficient the protocol, because of the possible reduction in 

the number of levels for a given group size. The create operation often includes a join 

for the first member. If the joining host is placed at the root level, then a number of 

actions must take place. Firstly, the other root level hosts must be informed of the 

new member, and the new member must gather state information about the others. In 

addition, the new member must also find out about any originators. The originators 

may subsequently be informed of the group change, or discover the change when 

required.

When the joining host is placed at another level, then it is allocated a parent, which is 

informed of its new child by the group management. The child is informed of its par

ent. The placement decision depends on a number of possible factors, such as the 

implosion limit of that parent, and possibly load balancing factors, such as the ration 

of children to parents for that level. A number of optimisations may be made. For 

example, it would be wasteful to create a new level populated by only one group
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member. Therefore, a certain amount of leeway should be used when joining a group, 

allowing a few members to accumulate before creating a new level.

If a host leaves a group for any reason the actions required to maintain the tree struc

ture will vary depending on the leaving hosts location in the tree as well as its manner 

of leaving and if the tree is required to remain balanced. If a leaf host leaves then the 

operations required to maintain the tree are minimal, just involving the deletion of 

state information held for the leaving host. If a non-leaf group member leaves the 

group then either its children can be redistributed to all of the other hosts at the same 

level as the leaving host, or one of the children can be elevated to take the leaving 

hosts place, and become a parent to the other members of the sub-group. The latter is 

more flexible as well maintaining the degree of distribution of the tree. In addition, if 

a root level host leaves the group, then the elevation of a child is essential, as redistri

bution may not be possible.

A more difficult case occurs when a host fails, figure 6.4, requiring failure detection 

followed by a group leave on behalf of the failed host.

m
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Figure 6.4 Recovery from Failure of Hierarchy

An advantage of the hierarchical approach is that the hierarchy isolates parts of the 

structure from all other parts, so that the group reformation can be restricted to con

cerning only a small proportion of the total. Again, the actions to be followed when a 

host fails depends on the failed host’s position within the hierarchy.

If a leaf host fails then its failure is detected by successive timeouts by its parent. If 

the group management is required to keep track of current group membership then 

some form of probe will be required, which can either be a periodic transmission 

from each child to its parent, or a poll by the parent to its children, or a broadcast by a 

group monitor, which would result in acknowledgements being transmitted up the 

tree. The probe can be likened to the "stay alive" function implemented in the TCP, 

which uses an out of window packet to force an acknowledgement from the other 

side. Alternatively, if group consistency is not required then a failure can be detected
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whenever a message is transmitted by a host to the group.

If the failed host is a non-leaf host, but has a parent, then the parent as the additional 

responsibility of somehow locating the children of the failed host and informing them 

of the failure. Once the children have discovered the failure they can then elevate one 

of their own members to take the failed host’s place. Children can discover a failure 

either through the non-response of its parent when a child requires a retransmission, 

or by a group leave operation carried out by the parent of the failed host. The latter 

case is a more reliable method.

If a root member fails, then it has no parent to detect its failure. The parents of the 

root group are the originators, so that an originator that does not receive a reply from 

a failed member may then issue a group leave for that member. Because the originator 

has no knowledge of the failed member’s children, the leave must be multicast. An 

alternative is for the other root group members to detect the failure, issuing a leave 

group as before. The latter is neater as it does not require intervention by originators, 

but does then require some means of detecting failure, such as using a periodic multi

cast which is replied to by root group members.

If a root member fails then one of its children is elevated, with the child also having a 

number of children, then either the children can be redistributed to the other hosts, or 

one of the child’s children can be elevated to take the child’s place, thus retaining 

consistency.

These observations lead to an idea of the type of information required by each host. 

Any host that has child members requires that it has a descriptor block for each child, 

each host on the same level and each parent, where a parent can be either a host one 

level higher or, in the case of a level zero host, the clients of the group. Leaf nodes 

require knowledge about each host on the same level and each parent. The logic of 

this is apparent from the need to elevate hosts. If each host in a sub-group has infor

mation about all of the other hosts in the same sub-group, then it is a simple matter to 

elevate any host, as all of the information is already in the elevated host’s possession. 

Equally, each host must know about its parent(s) and its children. Therefore, the max

imum amount of information possessed by any one host is twice the maximum sub

group size plus one or more parents.

One other group operation which must be included is the use operation. A user host 

wishing to multicast to the group has to locate and set up descriptor blocks for each 

level zero host. This setting up will involve initial parameter settings and is mainly
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used for detecting a level zero failure. The setting up could take the form of a group 

query, which is multicast to the group and forces each host to reply with its own 

address and possibly the addresses of all of the other group members that that host 

has knowledge about, providing a cross check of the current group state. All of this 

information would be filtered as it passes up the tree, until the level zero hosts send 

their information to the requesting host. One advantage of this approach is that the 

group is checked for consistency on every group query. However the costs for doing 

so may be prohibitive, so a special command could be used which is handled only by 

level zero hosts, which are identified by having no designated parent, to reduce the 

traffic generated. If no such set-up is desirable, for example in a remote procedure call 

context, then the state information could be gathered as a result of a straight multicast, 

with each reply containing the replying address, and possibly a list of n other mem

bers of the level zero group, n being less than or equal to the optimum sub-group size.

Communication of group management operations uses the structure already described 

to gather replies. This is a problem when strict hierarchical forwarding is used, as the 

structure may not allow forwarding because of failure at a node. Therefore, a true 

multicast must be used if possible to inform the relevant members.

6.4 Wide Area Networking

The problems, and some solutions, of multicasting in a WAN environment have 

already been discussed. These concerned the routing of packets within a network. The 

scalability of such system has now to be considered.

The implosion of packets in a WAN can be considered from two points of view. Firstly, 

implosion within a WAN, where packets are being received and forwarded internally to 

the WAN. The second is the interface or gateway between WAN and LAN  or MAN. In the 

former case, the transfer rates of the input and output are likely to be similar and slow. 

Therefore it is likely that any implosion will be affected by traffic rather than an 

inability of the host to cope with demand. Implosion would also increase the closer to 

the originator, as the packets will be being funnelled by the routing mechanism, to 

ever fewer bridges. To offset implosion is the greater range of delays exhibited by a 

WAN.

At the gateway between LAN, MAN and WAN the speed difference between WAN and 

LAN  is likely to be large, so that a gateway will be able to transmit packets faster than 

it receives them. However, the potentially huge number of recipients may exceed the
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capabilities of the network and must be considered.

If the method used for gathering multicast replies is time distributed, then the return

ing replies from outside the LAN must be made to conform with the backoff scheme 

used. Logic would suggest that the best place for this is at the interface between local 

and remote networks. However, bridges and gateways are often not accessible for 

change. Therefore, the use of a special WAN agent, which is responsible for forward

ing multicasts over WANs may be used as well to gather replies. By substituting the 

address of the agent for the address of the originator, any replies would be directed to 

the WAN agent, which can then be forwarded to the appropriate originator, the agent 

operating the same backoff scheme as local recipients.

One of the features of a hierarchical structure is the isolation afforded to sub-groups. 

This can be used to advantage when extending the structure to a WAN environment. 

By using one branch of the tree as a WAN forwarding agent, the characteristics of a 

WAN can be, to some degree, isolated from the other group members, with the parent 

of a WAN sub-group appearing to be just a slower host. The WAN agent can then use 

strict hierarchical forwarding over multiple connections.

The choices in extending multicast over WA/vs depends on the service provided by the 

internetworking layer. If only point to point connections are allowed then the multi

cast is forced to make multiple connections to the destination groups. On the other 

hand a broadcast capable network may not offer as good a deal as would be supposed, 

especially if the broadcast is implemented above a point to point network, as in the IP 

internetwork architecture.

A problem with linking a hierarchical network over a WAN is the fact that the structure 

described above is only really efficient if all of the level zero members are resident on 

the same extended LAN. If a group is built arbitrarily then performance can suffer.

The best method for linking a group across a WAN is to set up a WAN a g en t  which is 

responsible for connecting to the WAN agent at other sites and which are the sole 

members to do so. When a WAN agent receives a message from the WAN it forwards it 

to the group by acting as the originator of the message. Thus, as the group local to the 

agent replies or acknowledges, the agent returns the messages across the WAN to the 

original agent. At the originating site the agent is acting as a level zero host and fun

nels replies from the WAN and then acts as described above. Therefore a WAN agent is, 

in effect, connected to the tree in two places, as a level zero host and as a permanent 

user. Because the agent is a member of the group as well as acting as a user, all of the
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group operations can be applied to it, although the actions for leaving are different, 

because it would be difficult to accept a level zero host which resides over a WAN, 

Therefore, instead of the leaving host being succeeded by one of its children, either a 

child of one of the other level zero hosts must be elevated to take its place or a level 

zero host takes over the task of providing WAN access. The new agent must make con

nections with each of the sites in the group which may involve some extra informa

tion being held by the level zero hosts about the connectivity.

If a hierarchical tree is built on a per LAN basis, then the WAN agents act as surrogates 

for the user on the other side of the WAN, That is any messages that come from the 

WAN are then retransmitted to the destination group a s i f  it  cam e fro m  the WAN agen t, 

so that replies are directed to the WAN agent which then forwards them to the real 

originator. In addition, acknowledgements are fielded locally, reducing WAN traffic. 

For such a scheme to operate the WAN agent must either retain knowledge about cur

rent incomplete operations or use the packet header to identify the originator directly. 

The latter would be more secure in the event of an agent failure but requires addi

tional per packet overhead.

If the WAN directly supports multicast then the tree building algorithm could be 

extended, building unbalanced trees based on topology available and routing algo

rithms. However, this may be undesirable if originators are resident over the WAN, 

with all operations having to traverse the network to get to the level zero recipients, 

which may be all located remotely.

In a transaction oriented protocol a multicast results in each group member replying 

to the user. The implication of this is that messages from all group members must 

somehow be transmitted to the user. But in a hierarchical structure a child does not 

necessarily have a direct path back to the user and will send its reply to its immediate 

parent. The parent then has the responsibility of forwarding the replies from its chil

dren to its parent, as well as sending its own reply to its parent. The parent has the 

choice of sending each received message individually, or can apply some filtering 

algorithm to reduce return traffic, such as concatenating messages to form a larger 

block of messages which is then sent as a single message up to its parent. To enable a 

child to direct its reply through a parent the final destination address must be present 

in the packet as well as the, what is in effect a first hop address, parents address.
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6.5 Summary

Large scale multicast, especially when transactional operation is required, requires 

careful structuring of replies in order to prevent implosion. On low speed networks, 

implosion is less of a problem, as current host technology is well able to cope. How

ever, the trend in networks is for ever more speed while the available processing 

speed increases more slowly. The effect of packet length on implosion indicates that 

positive acknowledgements are the major problem when discussing multicast.

A number of possible methods have been described which may be used singly or in 

conjunction to reduce implosion if it occurs. The use of a hierarchy to reduce the 

number of replies to any host was described in detail, with the group management 

operations that are required to maintain the structure.
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Chapter 7 
Conclusions

A model for implosion was presented which showed that positively acknowledged 

and transactional multicast could be limited by the buffering capacity of the multicast 

originator. The model showed how implosion was dependent on the processing delay 

of packets as well as the transfer rate of computer buses. A specific network architec

ture was shown to exhibit packet loss when multicasting, this packet loss such that a 

multicast under the conditions described would never complete. A number of tech

niques for reducing the problem of implosion, and therefore aiding in protocol scala

bility, were also described.

7.1 Summary 

Motivation.

With distributed systems becoming ever more popular, the advantages of using some 

form of multicast to provide the data transport service, multicast addressing allowing 

fault tolerance and location transparency, leads to the view that multicast will become 

more predominant. This shift towards greater distribution is supported by the
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increasing transfer rates exhibited by many of the newer network architectures being 

proposed, with transfer rates in excess of 100 M bps being seen. These two trends lead 

to a perceived need to address the scalability of multicast, the former because of the 

potentially large groups that may emerge from this increasing usage of multicast, the 

latter because the effect of these increasing transfer rates, normally seen as beneficial 

to communications, decreasing the delay and increasing the data throughput, may be 

detrimental to multicast.

From the literature survey presented in Chapter 2, one of the observations made was 

that scalability, described as the maximum group size supported, was treated empiri

cally at best, with the group size being casually stated.

A Multicast Model

The most common model for multicast is described as a one to many type of commu

nication. If the underlying communication is reliable and the communication follows 

this model then this model is sufficient. However, if the underlying network is not 

reliable, or the protocol is transactional, then this model does not describe the whole 

interaction. By including reply traffic, be it acknowledgements for reliability, or data 

replies, then a possible scalability problem emerges, that of implosion at the multicast 

originator due to these replies.

Implosion refers to the concentration of replies at a host within a short time period. 

Implosion is a potential problem if the number of these replies and the time interval 

within which they arrive combine to cause replies to be discarded due to a lack of 

buffering in the host. Implosion is a problem for communication in general as evi

denced by the use of flow control by protocols. Implosion is a particular problem for 

multicast for two reasons. The first is due to the synchronizing effect of a multicast, 

where a message arrives at each group member within a short time, these group mem

bers then replying, again within a short time. By implication this is more a problem 

where the propagation delay between originator and the furthest group member is 

small, as in a LAN  or WAN. In addition, as the group size becomes larger, it is more 

likely that the large number of these replies would usurp other traffic, so that a large 

number of these replies are transmitted back to back on the network, that is with the 

minimum of inter-packet gaps set by that network. The second problem is due to the 

replies originating from many group members. This has two aspects. The first con

cerns acknowledgements, which provide the house keeping functions of a protocol
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such as flow control, which are not traditionally subject to flow control themselves. 

The second concerns data replies which may be subject to flow control, but due to the 

nature of multicast communication, any flow control message is directed to all of the 

group members. Of these the former is of greater concern. If the number of replies is 

less than causes buffer overrun then there is no problem, if the average rate at which 

replies arrive is lower than the rate at which the host is able to consume them, then 

again there is no problem. As described above, multicast is subject to both of these 

possibilities.

Parameters of Implosion

The influence that a number of parameters have on implosion were investigated. 

Firstly to show that there was a potential problem, and secondly to show where this 

problem occurred. In addition, it was hoped that some measure of the problem, and 

therefore indirectly some measure of multicast scalability, may be devised. Two areas 

of concern were identified, the first being the role of a network architecture in scala

bility, the Ethernet type of network exhibiting potential scalability limits. The other 

area was the host itself, which was modelled as a system of buffers interconnected 

with data paths of finite transfer rate, the aim being to investigate not only the severity 

of any implosion but also the location. A simulation of both of these systems was car

ried out, the results being presented in Chapter 4. The effect that network characteris

tics have on implosion at a host were of interest given the continual improvement in 

data transfer rates and other parameters. While such improvements are beneficial for 

much communication, for multicast they may reduce the scalability offered by a 

design.

Designs

Having ascertained parameters needed to cause implosion, some means of reducing or 

mitigating the effect of this implosion was investigated. A number of techniques are 

described which may be employed in this role. The use of negative acknowledgement 

protocols for scalable multicast is described. For positively acknowledged and trans

actional protocols, two basic approaches were investigated. The first concerned 

increasing the time between replies so that implosion does not result in buffer over

run, the second into distributing the replies among other hosts in order to ensure that 

the number of replies directed to any host does not cause buffer overrun. These
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designs are intended to demonstrate how implosion may be overcome, rather than as a 

blue print for a protocol design, although some detail is expressed in order to demon

strate the operation of these methods.

7.2 Multicast: A General Communication Model

The design of any protocol is driven by the requirements of the application or class of 

applications that are to use the service provided by the protocol. For multicast proto

cols the scalability of the design forms one of these application requirements. Scala

bility has to be considered as an application should not be required to limit its activity 

because the underlying protocol is unable to operate as required. Scalability is a reli

ability issue in that reliability mechanisms, such as acknowledgements, are a potential 

problem, protocols not designed, or at least considered, with scalability as a design 

issue cannot in turn be regarded as reliable. Whether scalability is required by the 

application is a separate issue. An application which only requires one reply from 

some multicast service, any reply satisfying the applications requirements, is unlikely 

to exhibit the problems investigated.

However, multicast is becoming a communication model applicable to many applica

tion classes, such as distributed operating systems, multi-media and fault tolerant 

computing. By considering multicast as a general communication model that encom

passes unicast as well as broadcast, the location independent property of the multicast 

address becomes a useful mechanism for network transparency, where the location of 

an application is abstracted from the user. Location independence also implies migra

tion^ where objects may be migrated from location to location without loss of service. 

Migration is of interest for storage management, where files are migrated from tape to 

remote disk to local disk on demand, which implies the use of some form of directory 

to track the movements of a particular file. This use of multicast would potentially 

require a large number of multicast addresses, which has been identified as a potential 

scalability problem, albeit a minor one. Fault tolerance is a use of multicast that 

employs the grouping of objects to ensure availability. This use of multicast is the 

more usual interpretation of multicast, and is most often the justification for using a 

multicast technique over multiple unicasts. Fault tolerance is most often a small scale 

operation, where a few copies of the object are employed. However, any operations 

on the object are also most often required to be reliable, and although the scale is 

small, the potential for implosion and buffer overrun is present. Large scale
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multicasting applications, such as conferencing, file transfer, file distribution and the 

like, are more likely candidates for the problems described previously. With increas

ing distribution and the evolution of multi-media the scalability issues described here 

become more important.

The literature indicates that there lacks a framework around which multicast function

ality may be built. Figure 1.1 shows the issues identified as affecting the design of a 

multicast protocol. Of these group management is a likely candidate for this frame

work, and should form the basis for a design rather than something that is employed 

as an "add-on" to enable the protocol to operate. A number of issues may be consid

ered to be within the domain of group management, among them security and access 

permission as well as more mundane functions such as the mapping between applica

tion and group address. A likely structure for group management is one where a sep

arate group management group, using a well known multicast address, is used for the 

creation and destruction of multicast addresses, so that a unique group address may be 

guaranteed, as well as performing the mapping between application name and multi

cast address, acting as a binding service. The create and destroy group operations are 

obvious candidates for this group manager. The other operations may also interact 

with the management group, thus controlling access to the group’s services and also 

providing a known location for address binding, although these may be more easily 

integrated into the group itself, so that once a group is created, it is the members of 

the group which manage joining, leaving and failure detection, reducing traffic to the 

group manager.

The need for order by multicast is an application issue. Placing the ordering paradigm 

in the protocol rather than the application allows some of the overhead involved in 

guaranteeing order to be subsumed into the message passing process, as well as 

allowing the simplification of the application. Of the several ordering paradigms 

described, the most popular is group order where messages are ordered identically at 

each group member, which is obviously useful for updating replicated objects. A fea

ture of this order is that the actual order achieved is arbitrary, that is the order is not 

determined by the user. While desired order is presented as being separate from the 

others, it may also be employed in conjunction with group order, producing desired 

group order, where some higher authority imposes an order that is identical at each 

group member. Order impacts on the scalability of a protocol because of the extra 

communication and processing overhead imposed.
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Figure 7.1 shows a notional multicast protocol with internal layering, which is 

intended to illustrate how the various design issues described here are may be related 

within a protocol.

1
From Application

Group
Management

11
Order

Multicast Protocol

Unicast

T
Broadcast

T
To Network

Figure 7.1 A Notional Multicast Protocol Stack

This investigation into the scalability of multicast protocols has indicated, but not 

proven, that implosion is a potential problem to the scalability of multicast protocols 

that employ positive acknowledgements or are transaction oriented. One of the aims 

of this work was to identify parameters for implosion which most affect the degree of 

implosion exhibited by a particular network/host combination. The network itself 

may be characterized by two parameters; the transfer rate and the minimum inter

packet gap. A packet is characterized by its length. The overall effect of these param

eters is to describe the time it takes for a packet to be received from the network. 

Each of these parameters was found to be significant to implosion, the most interest

ing being the effect of packet length on implosion, implosion disappearing for short 

packets if the time taken to transfer the packet over the bus is shorter than the inter

packet gap time. It was also shown that a length dependent peak occurred in the 

implosion characteristics of the network buffer module. The bus transfer rate also 

affected the implosion characteristics of the network buffer, increasing transfer rate 

decreasing the implosion suffered. The effect of protocol processing on implosion 

was less evident, although implosion was shown to occur, due partly to the large 

range chosen as well as the behaviour of the simulation when the bus was saturated, 

that is whenever the network buffer was also in implosion. The final parameter simu

lated was the effect of application delay.

The potential for buffer overrun is not solely caused by implosion. The effect of the 

application, more accurately the interaction between operating system and
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application, is also of importance. Because the application has to read the packets 

from the protocol, and that the time between reads may vary and be relatively long, 

any unread packets are buffered by the protocol, which overflows if the application 

cannot read packets faster than the protocol receives them. As the network rate 

increases however, more overruns will be caused by the inability of the host hardware 

and operating system to process packets, resulting in packets being buffered awaiting 

protocol processing rather than awaiting the application. As network rates increase 

further buffer overflow occurs in the interface between network and bus. Of course, if 

host technology keeps pace with network transfer rates then many of these problems 

will not occur. From the simulation it was apparent that the main location of implo

sion is at the protocol level. One of the features of this level is that the amount of 

buffering can be increased on request to the operating system, thus shifting the goal

posts in determining the effect of implosion.

Using a simulation allowed greater access to a number of variables that would not 

otherwise be available, as well as environments in which to test the model. However, 

a simulation is an abstraction of the real machine and as such must be treated as such. 

While the results indicated the behaviour that may be expected of a real host the 

actual values must be considered with that in mind. In particular the results for the 

protocol processing assumed a number of features which were optimistic with regard 

to the delays which may be encountered in a real system. However, the model used 

indicated the type of behaviour which could be expected, and would probably benefit 

from a more rigorous examination of this area.

Using simulation to investigate buffer overflow indirectly, by assuming an infinite 

number of buffers, concentrating on the rate of buffer increase when implosion 

occurs, allowed a more general view of buffer overflow to be derived. A measure of 

the severity of implosion was derived by comparing the rate at which buffers were 

occupied by packets to the generation rate of those packets, resulting in a number, the 

implosion index. The implosion index ranges from 0, indicating no implosion, to 1 

indicating that the increase in buffer usage is equal to the rate of packet generation. 

The index is independent of any buffering, being solely a measure of the difference in 

the production and consumption of packets at a host. The implosion index relates to 

positively acknowledged and transactional protocols, where replies to a multicast are 

always generated by each recipient, a separate index being applied to each buffering 

system. This index may be used to predict the number of buffers required to receive
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all of these replies using a simple formulae:

Number o f Buffers Required = Implosion Index x Number o f Replies + 2 7.1

In turn, the implosion index may be applied in reverse, allowing the maximum group 

size which may be supported by any host to be predicted from the number of avail

able buffers at that host. The implosion index may also be applied to the original mul

ticast describing the number of buffers required by the recipient to receive a message 

acting as a flow control method.

7.3 Multicast Scalability

A number of tentative conclusions may be drawn from this work. The first is that 

scalability is one of the design issues which must be considered in the design of a pro

tocol. The lack of a formal framework to the design process may be inferred from the 

protocol designs discussed, many of which ignored the issue of group management, 

considered here to form the main structural backbone of a well integrated multicast 

protocol. The issues introduced in chapter 1 are intended to place multicast within a 

necessary framework.

The host model used to investigate the parameters of implosion represented an 

attempt to model the structure and operation of a real host. So doing allowed the 

problem of implosion to be more directly related to the real environment so that the 

results would be more easily assimilated when considering the design of a protocol. 

Because of the lack of knowledge about the parameters of implosion, the values 

employed were deliberately given a wide latitude, which resulted in a relatively 

sparse spread of results, justified by the need to locate the presence or absence of 

implosion effects.

The thesis that implosion is a factor in scalability under certain conditions was 

demonstrated, although the exhibited problems were more apparent with the higher 

network rates generated for the simulation. However, the idea of an implosion index, 

which may be employed to predict the potential for buffer overrun, is of interest not 

just for multicast but in any congestion situation, the use of rate of increase in buffer 

usage in the simulation being a more useful way of looking at buffer overrun than 

observing buffer overrun directly. Simulation of the Ethernet showed that there exists 

a finite limit on the number of recipients of a multicast that may be supported on a 

single Ethernet, although the value of this limit is sufficiently high not to be a prob

lem in practice.
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Several ways of reducing implosion were described. The method which offers the 

most potential was the loose hierarchical method, which allowed a network to operate 

at its normal speed while reducing the potential for implosion by reducing the number 

of replies to any one host. A hierarchical structure is also scalable in the true sense of 

the word allowing a wide range of group sizes to be supported transparently, the 

"extra" group members being abstracted by the hierarchy.

Multicast as a general communication model offers a number of advantages over a 

mixed environment of unicast, multicast and broadcast models. Examples of the 

potential for multicast can be seen in the use of mobile telephones, with incoming 

calls being routed to the nearest cell, each cell being informed of its current client list 

by the ’phones themselves, and by extension to the personal communication concept, 

allowing each person to possess a unique number throughout their lifetime. Using 

multicast for these situations would allow caller grouping and conferencing automati

cally.

7.4 Limitations and Future Investigation

This work has identified a number of design issues which affect scalability. Further 

work into the implosion problem is required for this to be considered a major prob

lem. Other areas such as the scalability of group management and ordering paradigms 

also need to be explored in order to show that scalability is a potential problem for 

multicast systems.

Testing of the host model showed that there were a number of implosion parameters. 

From these the notion of an implosion index was formulated which could be 

employed as a measure of the implosion characteristics of a particular host architec

ture. However, the implosion index is influenced by the network parameters and is 

therefore not an independent measure of the characteristics of the host. In addition 

each buffering level was described by a different implosion index. These limit the 

applicability of the implosion index to a map whre every host/network combination is 

present, where variations in network and packet processing are used within a model to 

generate the appropriate implosion index value. This map could then be used to 

manipulate the characteristics of multicast replies to ensure that buffer overrun does 

not occur.

One suggestion for further work is to extend the investigation described here to 

increase the resolution of the system. As this work was intended to explore the
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boundaries of implosion, wide ranges of values were used to ensure that these bound

aries were covered. This necessitated a relatively sparse range for the parameters of 

implosion, which coupled with the number of parameters resulted in a less detailed 

view of the problem. A refinement of the simulation model to reduce the number of 

levels and unify the activities of a host would use a three level model, made up of a 

producer, the network, a buffer module which exhibits delay, and the consumer which 

may also have some transfer and delay characteristics. In addition, the simulation 

used fixed generation rates. As most network architectures are not as deterministic as 

this, investigating the implosion index with a variable generation rate would also be 

useful.

An area which would merit further investigation would be the application of the 

implosion index concept to flow control, where the implosion characteristics of the 

recipient could be used to control data flow. For example, the originator could tailor 

its transmission policy, based on the implosion index of the recipient, to ensure that 

packets are not lost because of buffer overrun. It may also be possible to apply the 

implosion index to a routing network, where a route is described by its implosion 

characteristics, possibly on a dynamic basis.

Much of the complexity of multicast, such as group management and order, were sub

sumed into the data transfer activity by assuming that each of these are higher level 

entities which used the data transfer service provided to operate. The scalability of 

group management and ordering protocols is expected to further reduce the overall 

scalability of a design, as was touched upon earlier. Because of the large number of 

different variations possible this is an area which requires further investigation.

More generally, the issue of scalability requires more investigation. This dissertation 

considered that implosion formed the most important limiting factor in the scalability 

of multicast. As technology advances, the issues described here as being important for 

scalability may become less important, but the issue of scalability may not.

Extending Multicast to Routing Networks

One of the consequences of considering multicast as a generalized model for commu

nication is the need for the routing of multicast packets across a wide variety of archi

tectures. Modifications to allow such routing in the Internet architecture, bridged LANs 

and closely coupled networks of micro-processors were described in chapter 3. If 

multicast is to truly be a generalized communication model, then the efficient routing
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of multicast packets must be investigated. It is suggested that multicast routing would 

be a useful area for investigation and by extension, any investigation into multicast 

routing would also include message passing between different network architectures 

and the problems that may occur at the network boundary. The scalability of routing 

protocols for multicast is of obvious importance, with the need to enable messages to 

be directed to potentially large numbers of recipients, with the attendant possibility of 

implosion at the routing nodes because of the number of replies traversing the reverse 

path to the originator. One potential avenue to combat this would be to use different 

reverse paths back to the originator to reduce traffic through routing nodes.

With the question of routing comes the problems of global address management. The 

latency of typical store and forward networks would tend to delay the registration of 

new addresses and the notification of address location changes possibly resulting in 

inconsistency among group members. As has already been mentioned, the techniques 

for maintaining consistency may also be susceptible to this latency, indeed in many 

cases are totally unworkable across inter-connected networks. The creation of a new 

group has to be co-ordinated across the extended network so that messages are not 

mis-routed. The dynamic nature of multicast addresses could potentially cause many 

routing changes to occur, which may result in the routing being unstable during multi

ple changes.

Multicast routing has also been extended to banyan style switched networks although 

a number of issues has not been adequately explored with regard to connecting many 

such switches together. One problem is that there is no longer a simple address which 

describes the route through all of the connected switches. Because multiple branches 

can be made, the simple "address is the route" is no longer simple. By using higher 

level logical addresses which are mapped at each switch to the multicast route 

through the switch this problem can be overcome. However, the problem now 

becomes one of tracking this mapping in a dynamic multicast environment where 

routes are changing and having to be propagated to every connected switch.

Multicast is a powerful technique for many of the issues being investigated. As a 

generalized model of communication the technique offers a unified view of communi

cation. As a mechanism to group and address programs the technique offers a further 

level of abstraction over multiple unicast. As a technique to reduce packet traffic by 

amortizing the cost of a transmission over a number of recipients the method poten

tially allows a real reduction in traffic for large scale transfers.
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Appendix A

Recipient Delay:0.0, Length 2500, Packet Size 1024 Bytes
Recipients Completion 

Time (msec)
Max Min Failures Max Min Collisions

10 13.0 18.8 10.0 0.0 0 0 17
50 78.3 100.9 67.2 0.0 0 0 96

100 132.0 152.6 120.7 0.0 0 0 254
150 179.7 196.4 163.8 0.1 1 0 366
200 233.4 250.6 213.9 2.1 4 0 497
250 266.2 285.0 247.4 23.0 31 19 849
500 416.9 439.2 395.5 207.0 211 205 2926

Table A. 1 Data for Figure 5.2 Reference Curve

Recipient Delay 1.0 msec, Length 2500, Packet Length 1024 Bytes
of Recipients Completion 

Time (msec)
Max Min Failures Max Min Collisions

100 131.7 141.6 124.2 0.0 0 0 266
150 181.1 191.7 174.1 0.1 1 0 457
200 230.9 245.7 218.2 2.0 4 0 639
250 269.3 284.4 253.9 22.0 26 15 831

Table A.2 Data for Figure 5.2 Delay 1.0 msec

Recipient Delay 10.0 msec. Length 2500, Packet Length 1024
Recipients Completion Max Min Failures Max Min Collisions

Time (msec)
200 243.5 257.4 233.4 1.9 5 0 739
250 265.1 281.9 253.0 26.0 28 18 918

Table A.3 Data for Figure 5.4

Recipient Delay 100.0, Length 2500, Packet Length 1024 Bytes
Recipients Completion Max Min Failures Max Min Collisions

Time (msec)
200 275.6 287.1 261.4 1.0 4 0 1007
250 314.7 319.7 302.1 17.8 22 14 1266

Table A.4 Data for Figure 5.4
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Recipient Delay 0.0, Length 2500, Packet Length 46 Bytes
Recipients Completion Max Min Failures Max Min Collisions

Time (msec)
200 108.1 119.7 97.1 0 0 0 956
250 138.3 167.3 115.2 0 0 0 1409
300 168.9 198.9 138.3 0 0 0 —

400 307.6 332.9 271.8 45 64 30 —

Table A.5 Data for Figure 5.5

Recipient Delay 0.0, Length 500, Packet Length 1024
Recipients Completion Max Min Failures Max Min Collisions

Time (msec)
200 211.9 224.2 198.9 0.0 1 0 308

Table A.6 Data for Figure 5.6

Recipient Delay 0.0, Length 2500, Packet Length 1024 Bytes, Traffic
Recipients Completion Max Min Failures Max Min Collisions

Time (msec)
200 229.7 240.1 219.0 2.0 0 4 624

Table A.7 Data for Figure 5.7
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Implosion at Network Buffer, Transfer Rate 100 Mbps
Gap Bus Rate Buffer: Usage Max Min
(msecs) {MBps)

1000 10 0.5 1 0
100 1.5 2 1

10 945+/-1
1 2088+/-1

0.1 2216+/-1
1000 25 0.5 1 0

100 0.5 1 0
10 1.5 2 1

1 1.5 2 1
0.1 1.5 2 1

1000 50 0.5 1 0
100 0.5 1 0

10 1.5 2 1
1 1.5 2 1

0.1 1.5 2 1
1000 75 0.5 1 0

100 0.5 1 0
10 1.5 2 1

1 1.5 2 1
0.1 1.5 2 1

1000 100 0.5 1 0
100 0.5 1 0

10 1.5 2 1
1 1.5 2 1

0.1 1.5 2 1
Table A.8 Data for Figure 5.9
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Implosion at Network Buffer, Transfer Rate 1000 Mbps
Gap Bus Rate Buffer: Usage Max Min
(msecs) {MBps)

1000 10 0.5 1 0
100 1.5 2 1

10 44772+7-3
1 97348+7-5

0.1 108776+7-6
1000 25 0.5 1 0

100 0.5 1 0
10 30123+7-4

1 45296+7-11
0.1 94127+7-7

1000 50 0.5 1 0
100 0.5 1 0

10 5709+7-6
1 58286+7-10

0.1 69709+7-10
1000 75 0.5 1 0

100 0.5 1 0
10 0.5 1 0

1 33873+7-14
0.1 45295+7-12

1000 100 0.5 1 0
100 0.5 1 0

10 1.5 2 1
1 9464+7-20

0.1 20884+7-13
Table A.9 Data for Figure 5.10

Effect of Packet Length, Network Rate 1000 Mbps^ Gap
Data Length Bus Rate Rate of Buffer Increase

(Bytes) (MBps) (Buffers7sec)
64 50 0

100 0
100 50 14385+7-64

100 0
128 50 70635+7-54

100 0
256 50 117980+7-54

100 0
512 50 93180+7-20

100 0
1024 50 58286+7-10

100 9464+7-20
2046 50 32666+7-10

100 8227+7-14
4096 50 17280+7-10

100 5076+7-12
8192 50 8891+7-10

100 2790+7-6
Table A. 10 Data for Figure 5.11
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Effect of Packet Length on Protocol Processing,
Network Rate 10 Mbps,  Gap 1.0 t̂/secs, Bus 50 MBps  
Data Length Processing Delay Rate of Buffer Increase

(Bytes) (msec) (Buffers/sec)
32 0.1 5004+/-11
64 0.01 1/0

128 0.1 0
256 0.1 0
512 0.1 0

1024 0.1 0
2048 0.1 0
4096 0.1 0

Table A. 11 Data for Figure 5.12

143



Effect of Protocol Processing, Data Length 1024 Bytes, Network Rate 10 Mbps
Bus Rate Gap Processing Delay Buffer

(MBps) (//secs) (Buffers/sec)
10 10000 0.1 0

100 0.1 0
10 0.1 —

1.0 0.1 —

0.1 0.1 —

25 1000 0.1 0
100 0.1 0
10 0.1 713+/-6

0.01 0
1.0 0.1 1854+7-5

0.01 0
0.1 0.1 1980+7-5

0.01 0
50 1000 0.1 0

100 0.1 0
10 0.1 714+7-5

0.01 0
1.0 0.1 1855+7-5

0.01 0
0.1 0.1 1979+7-6

0.01 0
75 1000 0.1 0

100 0.1 0
10 0.1 714+7-5

0.01 0
1.0 0.1 1854+7-5

0.01 0
0.1 0.1 1984+7-6

0.01 0
100 1000 0.1 0

100 0.1 0
10 0.1 709+7-6

0.01 0
1 0.1 1855+7-5
0.01 0
0.1 0.1 1981+7-5

0.01 0
Table A. 12 Data for Figures 5.13 & 5.18
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Implosion at Protocol, Network Rate 100 & 1000 Mbps, Gap 1 //sec.
3us Froc 100 Max Min 1000

10 0.1 9765+7-4 9765+7-1
0.01 9762+7-2 9762+7-2

0.001 9763+7-1 9763+7-1
0.0001 9763+7-2 9763+7-2

25 0.1 1854+7-3 14414+7-4
0.01 0.5 1 0 24406+7-3

0.001 0.5 1 0 24403+7-4
0.0001 0.5 1 0 24405+7-3

50 0.1 1854+7-3 38828+7-5
0.01 0.5 1 0 48820+7-4

0.001 0.5 1 0 48820+7-3
0.0001 0.5 1 0 48820+7-3

75 0.1 1853+7-3 63244+7-5
0.01 0.5 1 0 73224+7-5

0.001 0.5 1 0 73234+7-2
0.0001 0.5 1 0 73230+7-3

100 0.1 1853+7-3 87646+7-5
0.01 0.5 1 0 97656+7-4

0.001 0.5 1 0 97645+7-4
0.0001 0.5 1 0 97645+7-3

Table A. 13 Data for Figure 5.14
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Effect of Packet Length on Protocol Processing,
Network Rate 100 Mbps,  Inter-packet gap 10 msecs, Bus 50 MBps  
Data Length Processing Delay Rate of Buffer Increase 

(Bytes) (msec) (Buffers/sec)
64 0.1 50381+/-6

0.01 0
0.001 0

0.0001 0
128 0.1 36126+/-10

0.01 0
0.001 0

0.0001
256 0.1 21327+/-7

0.01 0
0.001 0

0.0001 0
512 0.1 9085+/-7

0.01 0
0.001 0

0.0001 0
1024 0.1 714+/-5

0.01 0
0.001 0

0.0001 0
2048 0.1 0

0.01 0
0.001 0

0.0001 0
4096 0.1 0

0.01 0
0.001 0

0.0001 0
Table A. 14 Data for Figure 5.15
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Effect of Packet Length on Protocol Processing,
Network Rate 100 Mbps,  Inter-packet gap 10 msecs, Bus 50 MBps  
Data Length Processing Delay Rate of Buffer Increase 

(Bytes) (msec) (Buffers/sec)
64 0.1 122282+/-14

0.01 32269+7-21
0.001 0

0.0001 0
128 0.1 68865+/-12

0.01 0
0.001 0

0.0001 0
256 0.1 33628+7-10

0.01 0
0.001 0

0.0001 0
512 0.1 13042+7-10

0.01 0
0.001 0

0.0001 0
1024 0.1 1855+7-5

0.01 0
0.001 0

0.0001 0
2048 0.1 0

0.01 0
0.001 0

0.0001 0
4096 0.1 0

0.01 0
0.001 0

0.0001 0
Table A. 15 Data for Figure 5.16 

Effect of Process Delay, Network Rate 50 Mbps,  Gap 1 //sec
Processing Delay Process Delay No. of Buffer

(msec) (msec) (Buffers)
0.01 0.1 2

1.0 12
10 118

0.001 0.1 2
1.0 12
10 118

0.0001 0.1 2
1.0 12
10 118

Table A. 16 Data for Figure 5.17
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Implosion at Network Buffer, Transfer Rate 10 Mbps
Gap Bus Rate Buffer: Usage Max Min
(msecs) (MBps)
1000 10 0.5 1 0

100 1.5 2 1
10 1.5 2 1

1 1.5 2 1
0.1 1.5 2 1

1000 25 0.5 1 0
100 0.5 1 0
10 1.5 2 1

1 1.5 2 1
0.1 1.5 2 1

1000 50 0.5 1
100 0.5 1 0

10 1.5 2 1
1 1.5 2 1
0.1 1.5 2 1

1000 75 0.5 1 0
100 0.5 1 0
10 1.5 2 1

1 1.5 2 1
0.1 1.5 2 1

1000 100 0.5 1 0
100 0.5 1 0

10 1.5 2 1
1 1.5 2 1
0.1 1.5 2 1

Table A. 17 Not Used

Effect of Process Delay
Bus (MBps) Delay (msec) Buffer (Buffers/sec)

25 0.1 1853+7-3
1 2007+/-10

10 20744+7-68
50 0.1 1853+7-3

1 2013+7-10
10 2159+7-67

75 0.1 1853+7-3
1 2002+7-10

10 2168+7-68
100 0.1 1853+7-3

1 2006+7-6
10 2086+7-68

Table A. 18 Not Used
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Effect of Protocol Processing, Data Length 1024 Bytes, Network Rate 10 Mbps
Bus Rate Gap Processing Delay Buffer

{MBps) (//secs) (Buffers/sec)
10 1000 0.1 0

100 0.1 0
10 0.1 0

1.0 0.1 0
0.1 0.1 0

25 1000 0.1 0
100 0.1 0

10 0.1 0
1.0 0.1 0
0.1 0.1 0

50 1000 0.1 0
100 0.1 0

10 0.1 0
1.0 0.1 0
0.1 0.1 0

75 1000 0.1 0
100 0.1 0
10 0.1 0

1.0 0.1 0
0.1 0.1 0

100 1000 0.1 0
100 0.1 0

10 0.1 0
1.0 0.1 0
0.1 0.1 0

Table A. 19 Not Used
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Effect of Protocol Processing, Data Length 1024 Bytes, Network Rate 10 Mbps
Bus Rate Gap Processing Delay Buffer

{MBps) (//secs) (Buffers/sec)
10 1000 0.1 0

100 0.1 9211+/-3
0.01 9225+7-2

10 0.1 —

1 0.1 —

0.1 0.1 —

25 1000 0.1 0
100 0.1 0

10 0.1 —

1.0 0.1 —

0.1 0.1 —

50 1000 0.1 0
100 0.1 0
10 0.1 —

1 0.1 —

0.1 0.1 —

75 1000 0.1 0
100 0.1 0
10 0.1 0

1.0 0.1 —

0.1 0.1 —

100 1000 0.1 0
100 0.1 0

10 0.1 44536+7-12
0.01 0

1.0 0.1 —

0.01 —

0.001 97639+7-7
0.1 0.1 —

Table A.20 Not Used
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