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A b stract

This work extends the Kohonen self-organising map in two primary ways:

• A dynamic extension to the model which allows the neighbourhood size and 

learning rate timecourse to be deduced during learning.

• Inclusion of temporal features, both in single layer and hierarchical networks.

The dynamic learning param eter model is developed as a consequence of how the 

self-organising map forms ‘stable states’ under fixed values of the learning parame­

ters whilst exposed to a driving probabihty distribution. Such stable states can be 

used to deduce an appropriate stage to make a transition to  a new set of learning 

parameters. This leads to a sequence of states tha t ultim ately result in convergence.

Temporal features are developed in the hght of the Temporal Kohonen Map 

model of Chappell and Taylor. It is shown that application of the standard Kohonen 

learning law to such a network can lead to instability in the weight space. This 

problem is shown to be soluble by moving the integrating characteristics from the cell 

body (where it is a scalar quantity) to the synapses (where it is a vector quantity).

Multilayer tem poral topographic mappings are discussed in terms of coding 

strategies between layers. The codings examined include complete feed-forward, 

feed-forward with enforced output spectrum and ‘triangular coding’, a binary cod­

ing of topology.
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14 CHAPTER 1. INTRODUCTION

1.1 W h y  N eu ra l C om puting?

1.1.1 W h a t is n eu ra l com puting?

The first useful electronic digital computer appeared in 1946. From that point until 

the late 1980s, practically all information processing has been tackled by a single 

stratagem, th a t of programs. A computer programmer has always sat down and 

compiled a set of rules and algorithms which are then embodied in software. The 

program then follows the specifications set down to the letter, its behaviour only 

changing from incremental improvements and revisions added by the programmer 

(ignoring bugs, which are just unforeseen errors in the implementation of the rules). 

This situation is ideal for where the rules that apply to a particular appHcation are 

clearly defined. Because computers are entirely logical in operation, code must be 

perfect for it to work as anticipated. Exhaustive design and testing, followed by 

cycles of refinement is a time consuming and expensive process. The conventional 

approach, then, falls down in two areas:

• Formulation of rules for solving a problem is often highly complex, if not 

impossible.

• Translation of the rules into a computer program will always result in errors 

at some level, and these errors will typically result in a program ‘crash’ or 

entirely unanticipated outcome.

Neural Computing has emerged as the antidote to this situation for many areas 

of difficult problems such as pattern recognition and data  analysis. It has long been 

known th a t the brain solves the tasks of vision, speech recognition, co-ordination of 

muscle movements and other complex data processing operations tha t are so difficult 

to even attem pt on a digital computer. It does so in a fault tolerant manner, many 

thousands of cells die in the brain each day and are not replaced, but our faculties 

do not disappear in a drastic fashion (in contrast with the effect of a programming
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error as described above). Furthermore, in a case like speech or vision, the problem 

is an intrinsically parallel one, with a multitude of different and conflicting inputs 

th a t trigger memories and ideas. It is the combination of all these different processes 

tha t allow us to perform these tasks. The brain, with its massive parallelism, is able 

to store and represent this knowledge in an accessible way and combine it with other 

stimuh. It is not speed tha t dominates the operation, the basic computing speed of 

a modern computer being a million times faster than  the firing rate of a neuron. It 

is the parallelism which is why the brain is good at its job. For example, humans 

when asked to carry out a task Hke comprehending a phrase in English, can do so 

in about half a second. The basic computing speed of a neuron is around a few 

milHseconds and so such a task is only needing about a hundred steps [16].

The brain does have a large number of neurons, estim ated at around 10d° and 

each one is connected to about 10  ̂ other neurons. However, this seemingly huge 

number is quite a limitation. An illuminating example is th a t of vision, which has 

about a million parallel inputs. Clearly, the brain isn’t running an O(n^) algorithm 

as it wouldn’t fit! [16]

But perhaps the most striking and im portant aspect to  note, is th a t biological 

brains leam  from experience and learn without rules. Children learn to speak from 

example, to write, in fact everything we associate with inteUigent behaviour. People 

malce mistakes, bu t the difference is tha t they learn from them  and are less likely to 

make them  in the future.

Thus, neural computing is an attem pt to extract from living neural networks 

algorithms and architectures th a t can be used for information processing in arti­

ficial neural networks. The bottom  up approach to  the problem includes detailed 

analysis of biological neurons, synapses etc. In  contrast, the top down approach 

includes study of architectures of functionally specific areas of the brain such as the 

hippocampus (believed to relate to short term  memory) and higher cognitive pro­

cesses. The trend is towards ”a reverse engineering” perspective in which biological 

mechanisms are used to solve difficult information processing problems [20].
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1.1 .2  T h e H isto ry  O f N eu ra l N etw ork s R esearch .

The field is currently enjoying a renaissance, following in the wake of Rum elhart 

et al and the multi-layer perceptron (circa 1986) [45]. Its origins, however, are 

much earher; Aristotle had an eulogies for mental processes, or thoughts, based on 

hydrodynamics [34]. Turing was aware of the possibiHty of modeUing intelligent 

functions of the brain by neuronal computation [25], as was von Neumann who 

showed that neural networks could be equivalent to Turing machines [23]. Modern 

approaches to neural modeUing can be traced back to the work of McCuUoch and 

P itts in 1943 on the coUective properties of thresholding, neuron-hke processing 

elements [46]. These networks were put forward as general computing devices.

In 1949 Donald Hebb suggested tha t in biological networks, it is the synapses i.e. 

connections between separate neurons tha t are modified when the system leams [22]. 

Hebb went further to say that frequently active synapses should be modified so as 

to achieve greater chance of being active in the future. This is an example of un­

supervised learning. Frank Rosenblatt used a different error-correcting supervised 

learning paradigm in 1957, by building an artificial network of what he called ‘per- 

ceptrons’ [64]. Such a system could solve simple linearly separable pattern  recogni­

tion problems.

Work continued through the sixties but was dealt a crippHng blow in 1969 due 

to the work of Minsky and Papert tha t highhghted the failure of single layer percep­

tions to solve simple non-hnearly separable problems such as exclusive-or and also 

highlighted how im portant an issue scaling was [47]. They went further to speculate 

tha t even the addition of extra layers would not improve computational power sig­

nificantly, saying tha t “the extension is sterile” in the lack of a general learning rule. 

Dreyfus and Dreyfus describe Minsky and P apert’s ‘a ttack’ on ‘gestalt thinking in 

AF as having succeeded beyond their wildest dreams [12]; interest and more im por­

tantly  funding was diverted almost exclusively to their own domain of rule-based 

artificial inteUigence.
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dendrites

synapse

a)^n hillock
axons of 

impinging cells
axon

synapse

Figure 1.1: Generic biological neuron.

Some researchers, notably Grossberg, Kohonen, Aleksander, Hopfield and Taylor 

were active in the ‘quiet period’ before the recent upsurge of interest in the subject, 

but it was certainly the multilayer perceptron and ‘back-propagation’, its learning 

rule, th a t opened the floodgates.

1.2 F u n d am en ta ls O f N eu ra l N etw ork s

1 .2 .1  B io lo g ic a l N eu ro n s

AU artificial neural networks consist of simple processing units, nodes or neurons 

which have some similarities with neurons in biological brains. EssentiaUy, a neuron 

is a decision unit.

The basic features of a biological neuron are shown in Figure 1.1. Inputs are
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‘collected’ by the cell’s dendrites through synaptic connections from other neurons. 

These inputs are then summed at the ajcon hillock, some being excitatory and some 

being inhibitory.

The neuron fires (sends out an electrical signal along its axon) if the summed 

potential V  is greater than the critical potential or threshold.

1.2 .2  A rtific ia l N eu ron s: C o n n ec tio n s, W eig h ts  and  S y n a p ses

In biological neurons, the physical gap between impinging neurons’ axons and the 

collecting neuron’s dendrites are bridged by synapses. Vesicles containing neuro­

transm itter are released on stimulation from the nerve impulse and they migrate 

across the synaptic cleft to acceptor sites in the dendrites. Synaptic efficiency de­

termines what effect the incoming signal has on the receiving neuron.

The generic artificial neuron consists of a summation and thresholding device 

(analogous to the cell body) which receives input from other units, weighted ap­

propriately (See Figure 1.2). The thresholding function maybe a step-function or 

sigmoid, or some other function which usually saturates.

Real neurons are much more complex than  this model suggests. The cells in 

the brain have complex chemical reactions within them  and leaving out such details 

may be im portant. Real synapses are subject to random release of neurotransm itter 

quanta which can lead to spontaneous firing of neurons, even when there is no 

input [68]. The abihty for neurons to have tem poral properties i.e leaky integrators, 

is also an im portant factor th a t this simple picture neglects.

1.2 .3  Fault T o leran ce and G en era lisa tio n

In artificial neural networks, the synaptic efficacy is modelled by connections having 

different strengths or weights. Information is represented by these weights, in a dis­

tributed representation^ meaning tha t the whole network is involved in computation.

If a few nodes or weights fail, then the system does not fail catastrophically, but
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Inputs

Output

Figure 1.2: Generic artificial neuron.

its performance degrades slightly. Neural networks are thus both robust and fault 

tolerant devices (although recent work by Bolt has shown th a t fault tolerance should 

be a specific issue in the design of neural network architectures for this to  be relied 

on [7] [6]). Damage to  a neural network must very extensive before there is serious 

degradation of performance.

Recovery from damage will also be much quicker than  re-learning an entire prob­

lem - the weightspace will only have to  perform a little reorganisation to account 

for the disruption.

The distributed nature of neural networks is also responsible for their ability to 

generalise. Particular ‘feature detectors’ may develop in groups of neurons in the 

evolving network, which are sensitive to  some certain aspect of an input space. A 

network th a t is exposed to a pa ttern  th a t is similar to one it is has already learnt 

before will be classified correctly. An input pa ttern  tha t may be a composite of 

several recognised patterns will be classified by the ‘strongest feature’. Generahsa- 

tion, means therefore, abstraction and removal of redundancy - why store a separate
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exemplar for a pa ttern  that can be described by others? This makes good sense in 

brains of finite size.

On the whole, neural networks are good at interpolation^ i.e. they can allow 

for interm ediate states between patterns seen, enabling them to classify unfamiliar 

ones. They are bad at extrapolation^ i.e. classifying patterns which are outside the 

range of ones already seen, that is there is little to compare them with.

1 .2 .4  T h e  B in ary  D ec is io n  N o d e  (B D N )

Caianiello investigated networks using the simple model of a neuron described above 

with a hard-lim iter thresholding function [8]. The state space of a network of n  of 

these nodes is thus {0,1}” .

He found tha t the net activity formed cycles in the state space, but tha t these 

cycles had lengths much greater than the age of the universe... and so had difficulty 

in making an analogy between these cycles and ‘thoughts’.

An im portant theorem is tha t a network of BDNs can perform any logical func­

tion - AND gates and OR gates can both be formed from them. Any logical function 

can be decomposed into a combination of ANDs, ORs and NOTs and be performed 

by a 2-layer feedforward BDN network.

However, for such a universal architecture, it has been shown that the average 

number of BDNs required to perform a boolean function in n variables is given by

< N  > = <  A > -hi 

=  2"-i -h 1

where N  is the number of BDNs required and A  is the number of AND gates used [1] 

An illustrative example is one of a classifier trying to classify a 10 by 10 binary im­

age. The average number of BDNs required is ~  10^°, about 10^°. [ W O R L D M E M ] .  

W O R L D M E M  is the total amount of computer memory in the world...

Thus, this architecture is not of much practical use and direct setting of weights 

and thresholds is not something that the brain does. Neural networks need to leam
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the parameters to perform a particular mapping and this is what sets them  apart 

from other computing devices.

1.3 C ategorisation  o f  N eu ra l N etw ork s

A network wiU ideally develop an internal representation of information to which it 

is exposed. The law which governs how the weights should be changed to achieve 

this, and any concomitant architecture needed, is the principle distinction between 

different kinds of network.

The above process is in contrast to standard algorithmic programs on digital 

computers which are programmed to behave in a certain way. Neural networks can 

be employed in situations where the rules or the program is non-obvious, for example 

classifying very compHcated patterns.

1.3 .1  F u n ction s P erform ed  B y  A  N eu ra l N etw o rk

Neural networks can perform three basics types of operation: Auto-Association, 

Hetero-Association and Classification (See Figure 1.3). AU three functions are pat­

tern recognition problems. In essence, neural networks is aU about pattern  recogni­

tion of some form, where in general a pattern means any kind of arbitarily complex 

spatio-temporal data  tha t is being processed.

1 .3 .2  A rc h itec tu re s

The architecture of a neural network is the description of the type of nodes employed 

together with their connectivity. This definition then leads on to  further description 

in terms of computation style performed by the network. The two styles are feed­

forward and feed-back or recurrent computation:

• In feed-forward networks, there is a weU defined,single direction of information 

flow, from inputs to outputs (See Figure 1.4). TypicaUy, the flow is from layer
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Input O u tp u t

Auto-association

Hetero-association

Pattern 1

Pattern 2

o Classification

Figure 1.3: Operations performed by neural networks.
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Input Hidden Output
Layer 0 Layer 1 Layer 2

Figure 1.4: A feed-forward neural network, 

n  to layer n -j- 1.

The feed-forward net, by use of adaptive connections or weights can then 

perform a mapping operation, in keeping with its inpu t/ou tpu t computation 

style, i.e. for an input vector ^  there is a corresponding output vector y.. A 

prime example of a feedforward network is the multilayer perceptron (this is 

strictly true only once the network is trained: during training error signals 

propagate backwards towards the earlier nodes)

• In recurrent networks, outputs of units are fed back into other units, or them ­

selves, as input, so tha t the input to a particular unit at any one time may be 

a combination of information from the environment and input from any other 

node in the network. The system performs iterative convergence towards some 

fixed state, anabsorhing state.

x (t  -f-1) =  F (z ( t) )  for iteration

x{t) =  F{x[t))  for the absorbing state x(t)

The most simple instances of this kind of network exhibit complete connectiv­

ity. They do not distinguish between input layers and output layers and input
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Outputs

Inputs

Figure 1.5: A recurrent neural network.

to the system must consist of ‘clamping’ the network in some initial state. The 

Hopfield network is a prime example of a recurrent network (See Figure 1.5).

1.4 L earning in N eu ral N etw orks

As has been mentioned, knowledge is stored in the weights of connections of a neural 

network. This knowledge is stored in a distributed way, so tha t each node is involved 

in representing many separate mappings. The crucial feature of neural networks is 

the abihty to leam  these weights from experience, implementing an update rule for 

the modification of the weights.

There are broadly three classes of learning:

1. Supervised Learning.

In this scheme, an external teaching input is introduced from the environment 

which prescribes the desired output, and the network compares this with its 

own output. The weights of the system are then updated so as to minimise 

the discrepancy, or error, between the teacher and itself.

2. Reinforcement Training
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In this scheme, a global reward/ punishment signal is received from the envi­

ronment. The update rule serves so as to minimise the probabihty of receiving 

a penalty signal and maximise the chance of a reward signal when the network 

produces an output for a given input. This is “learning with a critic” , whereas 

supervised learning is “learning with a teacher” .

3. Unsupervised Learning

The aim of this learning strategy is for the network to discover statistical 

regularity and structure within an input space it is exposed to and be able to 

form classes of input vectors. This inevitably requires some external supervised 

learning at some stage, to ‘label’ the different classes. But this is a practical 

constraint, rather than a necessity.

1.5 Sum m ary o f  C hapter 1

We have briefly reviewed the field of neural computing and its history, noting tha t 

it has emerged as the antidote to algorithmic computing.
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2.1  T he K oh on en  Self-O rganising M ap

2 .1 .1  In tro d u ctio n

The self-organising map or S O M  was devised by Teuvo Kohonen in the period 1979- 

1982 [31]. Self-organisation as a field of study, however is older, with work carried 

out by von der Malsburg in 1973 and Willshaw and von der Malsburg in 1976 [76].

Kohonen’s model has some similarities to classical k-means clustering analysis 

in statistics [41] [23] (although this method requires an assumption of the number 

of classes in the data, and does not preserve topological information). It also draws 

from biological evidence tha t biological brains form topological representations of 

input stimuli, most notably in the visual cortex of humans. The central region of 

the visual field is m apped topographically onto the external surface of the cortex. 

Furthermore, the central 10% of the visual field occupies about 60% of the total 

brain map. Thus there is variable magnification in the mapping.

There are many other such variable magnification topographic maps in the brain 

such as the ‘motor homunculus’ which is responsible for control of muscles in the 

body, or more generally, sequences of muscle contractions that are in keeping with 

body’s perceived environment (the supplementary motor area) [10].

2 .1 .2  A im  O f T h e  Self-O rgan isin g  M ap

The aim in developing the SOM was to produce a mapping system which retained as 

much information about the structure of the input space as possible, whilst of course 

abstracting the most im portant features. In most other artificial neural networks 

there is some distributed storage of patterns, but the actual structure i.e. topology 

and probability distribution of the feature space is effectively lost. The topographic 

map compresses data: high-dimensional feature spaces are typically mapped onto a 

2-d sheet of cells. The resulting map thus allows complex statistical relationships, 

i.e. class clustering information, to be rendered in a graphical format. In this way.
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Figure 2.1: Cartesian node arrangem ent in the SOM.

the SOM acts as a vector quantiser i.e. it classifies N  dimensional input vectors 

onto M  clusters [41]. Clearly, the number of nodes in the SOM layer gives the 

upper bound on the number of classes th a t can be distinguished.

Perhaps one of the most im portant aspects of the self-organising map is what 

its name suggests, i.e. the formation of a mapping occurs by unsupervised learn­

ing. Thus classes in the input data are ‘discovered’ and not imposed. Clearly, real 

biological systems (brains) have to learn to  abstract and classify without rules.

The SOM is a competitive network, meaning th a t a node’s response depends on 

it winning some form of competition over the other nodes.

2 .1 ,3  B a s ic  A r c h ite c tu re

In keeping with the biological analogy, the SOM comprises a single layer surface of 

neurons, typically two-dimensional although 1-D and higher dimensional structures 

are possible, onto which it is intended to form a topological mapping of a space of 

presented input vectors. The actual geometry of the network is unim portant [37] eg. 

hexagonal lattice versus cartesian. The la tte r is often employed for its simphcity.
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m

^   ^   ^

Figure 2.2: Weight arrangement in the SOM.

Say then tha t the network comprises m .n  nodes arranged in a rectangular grid. 

An input vector arrives from the environment and is fed in parallel to each node in 

the network by a group of distributor nodes, one for each dimension of the input 

(See Figure 2.2), Typically, the network is fully connected i.e. there is a weight from 

each distributor line to each node. For example, with a 2-D input, there are two 

weight components per node. The number of weights in the system is thus m .n.d , 

d being the dimensionality of the input patterns.

Each node then processes the input in parallel.

2 .1 .4  N o d e  F un ction

The operation tha t the nodes perform in the basic SOM is one of measuring sim i­

larity to a presented pattern. It is not the dot-product of weight and input th a t the



2.1. THE KOHONEN SELF-O RG ANISING  M AP  31

nodes calculate, as without normalization this can ultimately only measure the an­

gular separation of the vectors, not magnitudes as weU. Hence each node calculates 

the Euclidean distance D  between its weight vector and the current input ( or more 

simply the square of this quantity, as finding the square root is redundant in terms 

of comparing the nodes’ relative success [a > b > 6 ,̂ if a and h both positive))

D i = { y u - l Y  (2.1)

The input pattern  is then claimed by the node n which minimises Equation 2.1

i.e. there is competition between all nodes to produce a winner that most closely 

matches the input vector.

How then is this winner generated? In biological topographic maps, there is 

evidence for lateral-inhibition mechanisms whereby nodes can turn  each other on/off 

depending on their proximity. This interaction can be modeled by the ‘Mexican 

H at’ function (See figure 2.3) or difference of Gaussians, which has a central region 

of excitatory interaction close to the central node, which then reverses to become 

inhibitory and then drop to zero at larger distances. Kohonen has dem onstrated 

th a t such lateral inhibition can indeed produce a winning region on the network 

which develops dynamically in response to input [37].

In practice, the above lateral interaction computations can be side-stepped by 

choosing the winner of the distance competition. This necessitates an 0 {m .n )  

search of the all nodes. The output of this winner is then taken as 1 and 0 for all 

o ther nodes.

The above exhaustive search step required by the algorithm does not lend itself 

to  parallélisation. Indeed, one can more easily conceive of a real hardware parallel 

machine th a t does perform lateral inhibition and would be appreciably faster. But 

in the realm of sequential simulation the overhead of simulating the lateral inhibition 

process is prohibitive in the average application and comphcates the implementation 

unnecessarily.
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Figure 2.3: “Mexican H at” lateral interaction function.

2 .1 .5  L earn ing Law

The learning (weight-change) law is given by

Wi{t +  1) =  Wi{t) +  7f{t)H^in{t){I{t) -  yj^(t)) (2.2)

The objective of this law is to increase the Hkelihood tha t the winning node, and 

ones around it, wiU win again, when presented with the vector /  and ones similar to 

it. The law serves so as to rotate each node’s weight vector towards the current input 

vector. 7} is the learning rate and H ^n  is a function which describes a neighbourhood 

of interaction surrounding the physical site of the winner on the grid of nodes (See 

figure 2.1). This neighbourhood function describes to what extent neighbouring 

nodes are rotated towards the input vector. Initially the range of interaction is 

large. The functional form of H^uin can most simply be a discontinous block i.e. 

all nodes within a square region a distance R  around the winner ro tate towards 

the current input by the same relative amount, those outside the block remaining 

unchanged. This is the original form used by Kohonen (see Figure 2.4(a)).

The adjustment of weights of nodes tha t are neighbours to the winning unit is 

the key factor in the system forming a topographic map of the input space. Ideally, 

pattern  vectors which are close together in their embedding feature space, should
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height = 1

height = 1

Figure 2.4: Block and gaussian shaped neighbourhood functions, 

be mapped to nodes which are physically close on the output layer of the network.

2 .1 .6  N e ig h b o u rh o o d  F u n ctio n a l Form

Hwin can also be some smoothly decaying function, such as a gaussian; this has been 

demonstrated to give greatly improved convergence rates [42]. The reason for this is 

fairly obvious in tha t the strength of attraction of nodes towards the current winner 

should be strongest for those topologically close to the winner and progressively 

weaker for more distant nodes which will be attem pting to  map distant regions of 

the input space. It doesn’t make sense to ro ta te  all nodes’ weight vectors equally, 

even ones within a restricted region, as this serves to undo previous learning for some 

nodes. Ultimately, a block neighbourhood wiU provide convergence on account of 

the reduction in block size but it is considerably slower.

The actual process of learning involves first initialising the weights to some (po­
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tentially random) values and having the neighbourhood size and learning rate large. 

Then these parameters are arranged to decay with time as learning progresses.

The formation of the mapping takes place in roughly two stages:

1. Arrangement of the weights into topological order.

2. Tuning period where the weights increasingly accurately map the input space.

The network is exposed to randomly presented training patterns and initially 

forms a coarse mapping of the input space, being allowed to make modifications 

of global scope to the initial weight space. This is the requirement of having a 

large initial neighbourhood and learning rate. As the learning param eters decay, 

the scope of modifications becomes smaller and so the detail and accuracy of the 

mapping improve until finally, the neighbourhood size becomes such th a t only the 

winning unit is afffected and individual weights are modified by a small residual 

learning ra te  - so called ‘Kohonen learning’ [23]

Kohonen gives a proof tha t such a learning law leads to a stable topographic 

map, in the one dimensional case [37] and R itter and Schulten have analysed the 

convergence and probabihty distribution of a two dimensional map [57].

It is im portant to note tha t the probabihty density of patterns is recorded in the 

mapping, as in biological topographic maps. Thus higher frequency of presentation 

of a particular pattern  results in greater overall rotation of all vectors in the current 

neighbourhood to tha t pattern  and ultimately more nodes wiU be devoted to the 

representation of tha t pattern. It is therefore im portant during training to consider 

the order in which patterns are presented.

2 .1 .7  T h e  In it ia l W eigh tsp ace  C onfigu ration

The initial state of the weight space also needs to be considered, as a purely ran­

dom starting set cannot guarantee correct convergence. Incorrect convergence is 

typified by ‘twisted m aps’ which are locally topographically correct but globally in-
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correct and can never untwist themselves and have been dem onstrated in Kohonen’s 

‘movies’ [37].

Kohonen has pointed out th a t if the SOM is relevant to biology, then the initial 

weightspace must somehow be formed with reasonable default values i.e. genetics 

m ust provide a layout tha t is basically topologically correct which can then self- 

organise into precise topological mappings [23].

2 .1 .8  T im e  D e p e n d e n c e  O f L earn ing  P a ra m eter s

As has been discussed, the training process takes place in two stages: The forming 

of a coarse, but topographically correct mapping, and then the fine tuning of the 

weight vectors. It is however not usually clear as to what times cale this should occur 

on, with respect to decreasing the neighbourhood size and learning rate. Kohonen 

talks of ‘rules of thum b’ in determining such m atters. A Hnear decay to one and 

zero respectively in a time Tend is an obvious choice, but suffers from the problem 

th a t Tend is arbitrary and the ra te  of convergence is quite poor.

It is clear tha t the coarse mapping phase requires much more severe and wide 

reaching changes in the weightspace, ie. the learning rate and neighbourhood size 

bo th  need initially to be very large. For example, the la tter might cover 75% of the 

m ap and the former be as high as 0.8. However, the learning param eters do not need 

to stay at this m agnitude for long, perhaps only a few tens of iterations. A Hnear 

decay of param eters can thus not provide both a large, initial ‘burst of activity’ and 

a protracted  convergence phase. The obvious next step is to divide up the learning 

into two Hnear phases, of steep and shallow negative gradients respectively. But 

again, one always returns to the problem of actually deciding these tim e periods. 

The best th a t can be done is running trials.

Exponential decay of the learning param eters better models the requirements of 

the timecourse required. It also has the virtue of being characterised by just one 

param eter, the half-Hfe T i/2 - This too, of course is arbitrary.
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2.2 V isualising  N etw ork  B ehaviour

2.2 .1  A  2 -D im en sio n a l T rain ing E xam p le

Kohonen and others have used a graphical format for displaying the state of an 

SOM. These are ‘weightspace’ plots, in which the weight vectors of nodes tha t are 

physically adjacent on the output layer are connected together. Figure 2.5 shows a 

network of 16 nodes, arranged in a 4 by 4 grid, together with two weightspace plots. 

The weights are two dimensional, and can thus be plotted as points (x, y) The points 

are marked with labels Wn, where n refers to the corresponding node in the grid. 

The upper plot is almost topologically complete, but has two weight vectors W ll  

and W15 interchanged. The lower plot is complete. In this way, the topology of a 

mapping is clearly visible i.e adjacent nodes on the grid have vectors which point to 

adjacent points in weightspace and thus do not cross. The probability distribution is 

also visible, with higher density regions (corresponding to more frequently presented 

patterns) having more weight vectors allocated to them and hence a tighter ‘mesh’ 

in the weightspace plot.

We now consider a typical example of the SOM in operation, performing the 

near bench-mark task of mapping the unit square. In this example, an eight by 

eight network is exposed to training vectors drawn uniformly and randomly from the 

above region. There is no dimensional compression here, but a direct correspondence 

desired between points in the weightspace and nodes’ spatial positions.

Figure 2.6 shows six snap shots of the evolving network. The parameters used 

for the simulation were

1. An initial learning rate ?/ of 0.1

2. An initial gaussian neighbourhood of standard deviation (radius) cr =  3

3. A param eter half life T1 / 2  =  2000 iterations.

The six frames are for epochs 0, 35, 170, 500, 1500 and 5000. Initially, the weights
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Figure 2.5: Example weightspace plots - top plot is not fully ordered, bottom plot 

is fuUy ordered.
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are randomly distributed around the centre of the input space ie. Wij G 0.5 ± e  where 

e is a random variable in the range 0 0.5 and i = 1,2, ..,64 and j  = 1,2. The

frame around each plot marks the boundary of the unit square. It can be clearly 

seen how the network first unravels the initial tangled set of weight vectors and 

by 170 epochs has almost completed the ordering of the weight vectors. At 5000 

epochs, the network is well on the way to asymptotic convergence. Note th a t the 

edges of the plot wiU never quite reach the edges of the space it is trying to map. 

This is because there are no training vectors outside the square, and so on average 

these boundary nodes have their weights pulled back into the central region, due to 

attraction from interior nodes. Kohonen has shown that this boundary effect scales 

as 1/m, where m is the number of nodes in the side of the square grid.

The boundary effect can, however, be reduced by means other than introducing 

more nodes. If the parameters decay such that when the neighbourhood has shrunk 

to only affecting the winning node, then further useful fine tuning can be done to 

the individual node’s weight vector if there is a residual learning capacity a, so th a t 

the learning rate ri{t) is given by

7/(t) =  77(0)exp(—At) +  a (2.3)

By the stage th a t a is the dominant term, then all weight vectors will be in 

almost their optimal positions, with the exception of the boundary nodes. At this 

point, the system is essentially disconnected i e, each winning node behaves as an 

autonomous agent, and can move according to local fluctuations in the probability 

density, according to the size of a. Now freed, the boundary nodes can move their 

weights out further into the periphery of the input space. Of course, if a is too large, 

then the map may well become corrupted, since that topology is no longer being 

enforced by the co-rotation of neighbouring weight vectors.



2.2. VISUALISING N E T W O R K  BEH AVIO UR 39

Figure 2.6: Snapshots of a network learning to map the unit square.
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Figure 2.7: The unit square approximated by a linear array SOM.

2 .2 .2  D im en sio n a l R ed u c tio n

One of the great properties of the self-organising map is its abihty to perform data- 

compression or dimensional reduction. Here we consider the mapping of the unit 

square again, but this time onto a 1-dimensional chain of nodes. Here, the network 

must compress the 2-D training vectors into a meaningful abstraction in 1-D. The 

result after 10,000 epochs can be seen in Figure 2.7.

This is an example of a Peano curve and serves so as to ‘fill ou t’ as much of the 

input space, the unit square, as possible (it is reminiscent of some of M andelbrot’s 

space fiUing fractals). Linear arrays often tend to approximate higher-dimensional 

distributions by such curves [37]
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2.3 V isualisation: C lustering, C lassification  and  

L abelling

Weightspace plots are ideal for visualisation of low dimensional input spaces. Ob­

viously, however, any space of dimension 4 or higher does not have a direct way of 

displaying the weightspace and a 2-D projection of a 3-D space (necessary in order 

to view the ‘interior’ of a 3-D plot) is hkely to be too comphcated. In general, the 

SOM is apphed to finding classes within a feature space and so a visual description 

of this classification appropiate to input vectors of arbitrary dimension is required.

Ideally, if an 7%̂dimensional space has m  classes embedded within it, we hope 

th a t the map wiU develop m regions tha t respond preferentially to presentation of 

members of th a t class and are arranged in a meaningful topographic map i.e. if class 

X  is in some way similar to class y and class z, then it should occupy a portion of the 

map spatially close to x and y. So a labelling process is required. In essence, this just 

means tagging a node as belonging to a particular class, if it won on presentation 

of a training vector tha t belonged to tha t class. Unfortunately, this is somewhat 

of a circular argument, as it is the network itself tha t forms the clusters and so for 

the outside environment to  then say tha t a vector I  belongs to class X  is perverse. 

However, if the SOM is to be of any practical value, then class labelling must be 

performed. This requires a set of prototype patterns for which the class label is 

undisputed.

An excellent demonstration of the abstraction and classification properties of the 

map and the above visualisation procedure, is in the work of R itter and Kohonen 

on semantic hierachies [60] [61]. Here, the SOM is used to display semantic relations 

between symbohc data.

This example is one where a collection of objects are to be m apped as a discrete 

symbol set. The objects chosen in the example are sixteen different animals, the 

symbol for each one being a 16-D unary coded binary vector. The relationships
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Figure 2.8: D ata used in semnatic map simulation.

between the animals are introduced implicitly by an attribute vector^ a 13 component 

binary vector (See Figure 2.8 which shows the attribute vectors for each of the sixteen 

creatures). The full description of each animal is then given by concatenating these 

two vectors.

X = (2.4)

During training, the two parts of the vector are given different weightings. The 

Xg are clearly ju st arbitrary labels and as such serve only to make each class instance 

unique. The feature vector is thus made to dominate formation of the mapping. 

Also, the Xj  ̂ are normalised, reducing the number of degrees of freedom by one and 

hence improving convergence.

After training, each node in the grid is tested to see which animal name produces 

the greatest response in it, by presenting the name part of the input vector only to 

the network i.e.

•=(ï)
The results of the visualisation procedure R itter and Kohonen call “Simulated 

electrode penetration mapping” are shown in Figure 2.9. It can be clearly seen that
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Figure 2.9: The labelled semantic map after training.
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common hierachies are represented, e.g. “birds” on the left hand side, “herbivores” 

along the top and “carnivores” towards the right. Similarly, animals falling into 

multiple categories have spatial mappings which reflect this e.g. hawks are both 

carnivores and birds, so thus appear on the right hand edge of the bird groups.

2.4 Learning V ector Q uantisation  (LVQ)

W hen the self-organising map is appHed to  practical classification problems, the re­

sulting weightspace wiU require some fine tuning to properly adjust the class bound­

aries. This process can be performed by a supervised technique called learning vector 

quantisation [37] [39].

In its simplest variant, LVQ has the form

m A t  -f 1) =  rn^{i) +  a.{t) [/(t) — ?7^(t)] classes of and /  agree (2.5) 

r n jj' +  1) =  KkJA) ~  <^(0 U (0 ~  IRcW \ classes of rn^ and 7 disagree 

rn jjt -h i )  =  TîkM) for i /  c

where is the weight of the maximally active unit c after presenting the training 

vector 7 and o:(t) is a learning ra te  as before. Each member of the set of training 

inputs 7 a known classification. It should be noted tha t LVQ is a clustering 

method in its own right (Kohonen describes it as a special case of the self-organising 

map [37]). It is appHcable to the self-organising map because self-organisation of the 

training vectors allocates weights according to the input distribution of the patterns. 

LVQ needs to  have initial weights reflecting the probabihty distribution of each class 

before it is applied. Each node is then labeled according to its class [35].

Equation 2.5 is apphed iteratively as per the self-organising map algorithm and 

a  is reduced slowly, from an initially low value, typically 0.1. The decision surface 

of the classes produced by LVQ compHes very closely with that of the equivalent 

Bayes classifier. It should be noted that the interior of the class density functions
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are of much less importance than the decision surfaces themselves (typically they 

will not remain faithful). [37]

Experiments have shown th a t LVQ gives considerable improvement to speech 

classification problems (See next section) and can enable a trained self-organising 

map to  quickly adapt to new speakers [5].

Kohonen et al [39] have introduced variants of the LVQ method which better 

comply with Bayesian classifiers.

2.5 A pplication s o f  T he Self-O rganising M ap

We will now review two appHcations of the SOM. The first, the phonetic typewriter, 

is perhaps the most famous use of the map algorithm. The second, an optimisation 

problem, shows the flexibihty of the SOM.

2 .5 .1  T h e  P h o n e tic  T y p ew r ite r

Kohonen has applied the SOM in a hybrid system for the difficult problem of speech 

recognition. This “Neural” Phonetic Typewriter, as it is called, can translate Ko­

honen’s native tongue of Finnish into text [36]

The problem of speech recognition is difficult because

• Speech phonemes have varying amphtudes and waveforms from person to per­

son.

•  Pronounciation of phonemes is context-dependant: the larynx and soft palate 

do not always have time to return to their initial rest positions and thus co- 

articulation effects come into play.

• Humans can infer the meaning of an unclear word by analysing sentence struc­

ture and semantics of what is being said
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Figure 2.10: Phonotopic map for Finnish, speech.

The phonetic typewriter is a  combination of conventional digital signal process­

ing, neural and rule-base system technology. It consists of three sections:

1. P reprocessin g

The speech-waveform is first Fourier transformed in time-slices of 9.83ms. This 

data is then used to form a 15-dimensional continuous pattern  vector, the 

components representing the instantaneous power in one of 15 frequency bands 

from 200Hz to 5kHz. A sixteenth component is used to  represent the rms value 

of the speech signal.

2. T he Topographic M ap

The above pattern  vectors are then mapped on to an SOM, using fifty samples 

of each test phoneme. The m ap is labelled to form a “phonotopic m ap” , sym­

bols being attached according to the phoneme each node was,on average,the 

most responsive to. Figure 2.10 shows the labelled output layer.

Figure 2.11 shows the trajectory of phonemes as recognised by the network 

whilst articulating the Finnish word “humppila”. Kohonen has suggested tha t
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Figure 2.11: Trajectory of Finnish word “humppila” .

this kind of visual representation of a phonetic string may be of use for speech 

training and therapy. Profoundly deaf people may find it advantageous to be 

able to associate a visual sequence with the speech they have ju st formed.

3. P ostp rocessing

Finally, the recognised phonemes must be translated into typescript. Correc­

tion of errors from the previous stage, which has been mentioned are primarily 

due to CO-articulation effects, are carried out. To this end, Kohonen has added 

a rule base of 15,000 to 20,000 rules to cope with re-constructing correct gram ­

m ar from trajectory data  obtained from the phonotopic map.

The complete system, hosted by an IBM PC can operate in near real time. 

Only a shght pause is required between words. Phoneme classification is be­

tween 80-90% correct at the phonotopic map stage and is improved to  92-97% 

correct after processing by the grammar rule base. The system adapts well to 

new users, needing about 100 words for each new user and a training tim e of 

about ten minutes.
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The phonetic typewriter is commerically viable, but has not been adapted to 

cope with Enghsh or other languages. Finnish is a phonetic language, which 

makes the speech to text problem more straight forward. However, the system 

does show the advantages of a hybrid approach, and the preprocessing stage 

is an excellent example of providing a neural network with the ‘right kind’ of 

da ta  i.e. the data which is most suitable for training in this case is FFT  time 

shces and not the raw data  itself.

2 .5 .2  T h e  T ravellin g  S a lesm an  P ro b lem  (T S F )

This apphcation, presented by R itter and Schulten [59], was inspired by the ‘elastic 

n e t’ m ethod of solving the TSP [13]

D efin ition  o f th e  T SP

For completeness, we state the notion of the travelling salesman problem: A travel- 

hng salesman must visit all of a number of cities within a given area. He must visit 

each city only once and his goal is to minimise the distance tha t he travels on the 

tour of all cities ie find the shortest round trip. Finding the best solution to this 

problem is costly, as the search time is 0{n\) for n  cities.

For the simulation, two dimensional inputs and weights were used with a closed 

hnear chain of 100 neurons. The probabihty distribution was concentrated to a set 

of 30 randomly chosen locations (cities), located within the unit square. A regular 

hundred-side polygon was used as the intial value of the weights.

During the training sequence, the polygon gradually deforms into a path con­

necting all 30 cities in a closed loop. The tendency of the map algorithm to preserve 

neighbourhood structure results in the system producing very short tours as the fi­

nal weightspace. It is pointed out, however, tha t shghtly longer tours than minimal 

may be obtained with this method of solving the TSP.
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In summary, this work demonstrates, how the self-organising map can be suc­

cessfully apphed to a difficult optimisation problem.

2.6 Sum m ary o f  C hapter 2

We have reviewed the basic formahsm of the Kohonen self-organising map and its 

successful apphcation in areas such as speech recognition, semantic maps and opti­

misation, showing tha t the map algorithm is extremely versatile.
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3.1 A  R ev iew  o f  C onvergence P rop erties  

o f SO M s

There has been much m athem atical analysis of Kohonen’s self-organising map model. 

We report here some theoretical results tha t are relevant to any simulation work us­

ing the model.

3.1 .1  C on stra in ts on  L earn ing R a te  F u n ction a l Form

In [58] R itter and Schulten derived conditions for the learning rate e(t) namely

lim J  e{t )d t  =  oo (3.1)

hm e(t) =  0 (3.2)

These conditions are necessary and sufficient for the convergence to an asymptotic 

equilibrium weightspace w = (w i, Wg, • • • {N  is the number of weights in the

system) from any initial state tha t lies sufficiently close to w  i e. meaning tha t 

the weights have completed the initial ordering phase of the map algorithm. Equa­

tions 3.1 and 3.2 are satisfied by the set of all functions e(t) oc with 0 <  a  <  1. 

Note tha t this is not exponential decay, as used in much of the literature! However, 

in practical applications, apart from a small residual e(t), the condition /  e{t) dt ^  1 

is sufficient. Moreover, the precise time course of e(t) is not significant so long as 

it decreases monotonicaUy. Hence, the benchmarking examples th a t follow in this 

chapter use exponential decay to be consistent with other work.

3 .1 .2  S e le c tin g  O p tim a l N etw o rk  P a ra m eters

Much work has been carried out on the optim al parameters tha t a Kohonen network 

should be initialised to, in order to provide maximum convergence rate. A lot of 

this work has looked at the effect of the form of the neighbourhood function.
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Two recent articles have looked at the effect of different neighbourhood functions. 

The first investigated the one dimensional case of a chain of neurons, the second to 

what extent the results in [15] apply in the general case and how the end probability 

distribution is also affected by the choice of neighbourhood function [65].

In [15], it was concluded tha t the rate at which the map algorithm converges 

depends on the shape of the neighbourhood function. Furthermore, for a fixed 

learning rate, there is an optimal width of this function, for which convergence time 

is shortest. The “best” neighbourhood function should be one tha t is “convex” over 

a large range around the winning unit and yet also has large differences in values at 

neighbouring nodes.

For the gaussian neighbourhood

H(r , s )  = exp(—(r — s Y  l2a^)

the fuU width at half height (2<t ) should be of the order of the number of neurons 

in the chain.

3 .1 .3  M eta s ta b le  S ta te s

M etastable states are discussed in [15], which are fixed points of the mapping algo­

rithm  other than  the optimal ordered representation. The algorithm may become 

“trapped” in these m etastable states for a finite number of iterations, before the 

optimal representation is discovered. It can be proved tha t no m etastable states 

exist for broad, convex neighbourhood functions. However, for gaussians with a  

below a certain width, there are metastable states. Ideally, then, a  needs to  be as 

large as needed to avoid metastable states, but not so large th a t convergence time 

is increased by spending too long in an already ordered state. Those neighbourhood 

functions which are not convex anywhere have m etastable states for all param eters, 

and the ordering time is much longer than for a gaussian.
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3 .1 .4  N eig h b o u rh o o d  F unctions In  T h e G enera l C ase

The generality of the above is examined in [65]. The critical parameters for the 

algorithm are the number of units in the chain N , the initial learning rate a ( 0 ) and 

the functional form of the neighbourhood. Obviously, the wider the neighbourhood 

function, the greater the effect that the winning node has on other neurons’ weights.

If time dependence is removed by using a fixed a  and o", we can ask the question 

what value of <r gives the fastest convergence to an ordered state^ i.e. when the 

weights are ordered in increasing or decreasing order. In [65], the point is made 

tha t the value of a  should also be allowed to take on other values apart from 0 .0 1 , 

as used in [15]. For a chain of 1 0  units, the case a  =  10 (approximately) gives the 

fastest convergence to an ordered state.

Two main conclusions were drawn from the results:

• o:(0 ) could be increased to very large values and still get good convergence 

properties. In fact, values of greater than 1 . 0  are still acceptable.

•  The basin of “good convergence” is very large, ranging to the non-optimal 

values of a. This illustrates that self-organising maps are very robust over a 

wide range of param eter values.

The value of <r of course depends on jV, the size of the net, i.e. for a bigger net 

bigger values of a  are required. In [65], a rule of thumb is put forward relating a  

and N:

= iV -f 7V/10

Of course, there are considerations other than those of ‘W hat parameters get 

the quickest ordered state?’. Perhaps more im portant is the statistical aspect of 

the weight positions, i.e. th a t the weights approximate the point density function 

of the input space.In [65], it is shown by simulation tha t the optimal a  in terms of 

convergence ra te  is not at all optimal in terms of the system faithfully capturing the
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probability distribution. Better results are obtained from using slightly non-optimal 

values of a.

Other neighbourhood functions such as triangular or step impulse do have worse 

convergence to ordered state properties, but perform better in producing a faithful 

probabihty map. Thus the total run-time may well be shorter and the distribution 

much better, if “non-optimal” (in the sense of the ordering phase) values of a  are 

used.

In different problem domains such as function approximation, a gaussian neigh­

bourhood function actually gives worse results than the step function.

In conclusion, great care must be taken when making claims about the perfor­

mance of a system using a particular neighbourhood function. The intended problem 

domain has to be taken into account.

The real problem is that a general theory of map formation is stiU out of sight [15], 

with many basic problems unsolved.

3.2 P rob lem s W ith  K o h o n en ’s L earning A lgo ­

rithm .

Self-organisation, in all its modified forms, has involved the neighbourhood (whether 

smoothly decaying or block) and the learning ra te  shrinking on some arbitrary  time 

scale. Kohonen’s original work [37] used a simple hnear fall off of both  these param ­

eters. Thus, the system starts with an initial neighbourhood size R q and learning 

rate  t/o and these fall linearly to zero after a tim e T . The network is assumed to 

have reached convergence at this time, but T  is arbitrary.

The param eter timecourse function can be any monotonicaUy decreasing one. 

Piecewise Hnear with negative slope and decaying exponential have both been em­

ployed in the Hterature with improved convergence, but no suggestion as to the 

underlying reason for this improved learning speed has been put forward.
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3.3 A d ap tive  Learning P aram eter C hange

It would also be possible to decrement the learning rate and neighbourhood size in 

a ‘stepwise’ manner, provided a suitable criterion for the transition to new (smaller) 

values of these parameters could be estabHshed. In the following sections, it is 

examined how a network whose learning parameters are decremented in this way 

goes through a series of stable states whereby no further learning is possible until 

the learning parameters are altered. The detection of a stable state provides the 

desired criterion for transition to new parameter values.

3.4 S tab le S ta tes  In K ohonen  M aps.

The learning mechanism in SOMs can be viewed as one where ultimately the weight 

vectors map out the extent of an n-dimensional structure i.e. the input probability 

distribution. Thus from an initial, arbitrary state, the weight vectors become self­

organised to reflect this structure, so long as they are picked according the input 

probability distribution. It is also im portant to remember tha t the density of this 

structure at any particular point is represented by the number of weight vectors tha t 

cluster around tha t point. This density is analogous to mass-volume density in a 

three dimensional structure.

When learning begins, the network is quite plastic in the sense tha t the neigh­

bourhood size is large, as is the learning rate. A particular weight tha t should 

optimally point to a particular point in the input structure can only move so far 

towards tha t point before its evolution is checked by attraction from other nodes. 

Thus the total ‘volume’ th a t can be mapped for a given set of learning parameters 

can not exceed a certain extent. An equilibrium comes into being, defined by the 

driving effect of the input probability distribution and the retarding effect of other 

interior nodes pulling back those on the boundary. This represents a stable state of 

the network where the input cannot be better mapped without an alteration of the
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SOM 'Amoeba

origin

Figure 3.1: Weight vector envelope.

learning parameters.

This state  can be visualised as an ‘amoeba’ structure in the space of the input. 

In the example of Figure 3.1, the input to be mapped is a 2 -dimensional distribution 

th a t surrounds the amoeba. The amoeba itself is the network’s current representa­

tion in weightspace of the input space. Note th a t the weights Wij are not normalised. 

The creature can flex and writhe but is unable to expand out further to improve the 

mapping if it has not yet reached the ideal mapping. It is thus trapped at a certain 

‘size’ and can only oscillate. Something must happen in order to break the symmetry 

of the state.

3.5 T riggering A d ap tive  P aram eter  C hange

The inability of the network to perform further learning would suggest tha t the 

stable state  could be used as a signal for a transition to a different set of learning 

parameters; the neighbourhood size and learning rate  must both be reduced. Once 

this transition has occurred, the symmetry is broken and the driving attraction of
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the extremes of the input distribution are now stronger than the retarding effects of 

interior nodes.

The system is now no longer in an equilibrium state and the ‘am oeba’ can expand 

further, until the attraction from other nodes balances the boundary of the input 

probabihty density function. This is a new stable state, one of a sequence which 

we hope wih converge on the optimal solution. The problem of deciding when to 

make a transition is then one of monitoring some easily accessible parameter of 

the network. Each state  results in a more detailed mapping of the weight space, 

following the tuning process discussed before. Exphcitly calculating this weight 

space ‘volume’ is a computationally expensive process; however, another parameter 

can be more easily used as a gauge of the rate of progress of the algorithm.

It has been observed over the course o f much experimentation that for a given 

learning rate and neighbourhood size

^  = (3 3)
t=i

has stable values, which are correlated with stable, sub-optimal configurations o f the 

weight vector envelope ( ‘amoeba*).

The form of such a measure can only be a guess, but is attractive for its simpHcity. 

It permits getting a handle on the problem.

Figure 3.2 shows the evolution of the above measure for a network which has 

artificially induced param eter reductions. The changes occur at 200, 400 and 600 

epochs, when both neighbourhood size and learning rate are reduced. It is apparent 

tha t the system has approached some kind of stable state in between the steps, as 

the measure approaches an average equilibrium value. These plateaus correspond to 

the amoeba of Figure 3.1 being trapped at some size. Clearly, after a succession of 

many states, the change in size can become arbitrarily small and the system could 

be said to have converged.

In a higher dimensional view point, the system has a state which is a vector 

of all the weights in the network Ÿ =  {w u,W 2i, where m is the dimension of
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the input vectors and n is the number of nodes in the network. This state vector 

represents a single point in phase space. It is the trajectory of this point that charts 

the evolution of the network, and the trapping of this point in the neighbourhood 

of a sub-optimal solution. This evaluative stable mapping signals the necessity of a 

transition to new learning parameters.

3.6 Identify ing  Stab le S ta tes.

In the analysis of R itter and Schulten [57], the final stationary mapping condition 

is a re-arrangement of Equation 2 . 2

{w{t +  1) -  w{t)) = {H{R, r)Tj{t)I(t) -  w{t)) = 0  (3.4)

where (• • •) means the average over presentation of training patterns. An evaluative 

stable mapping should satisfy a similar kind of constraint, due to the fact tha t on 

average the weights are Trapped’ in a region of weight space i.e. the average position 

of the weight should be constant. The variance of the position should decrease to a 

local minimum at a stable state.

The evolution of the system can productively be discussed in terms of the global 

state vector $ ( t)  . Then more aptly, equation 3.4 can be written as

( l ( i + l ) - £ ( < ) )  =  0 (3.5)

and the diminishing variance of the state vector, reflects an evaluative mapping, 

as the state vector becomes increasingly localised in the m n  dimensional space of 

the weights (m  is the number of neurons, n  is the dimension of the weights). Using 

the sum of weights in the network is a coarser, but perhaps more straight-forwardly 

calculable param eter of the network than calculating explicit variances in the state 

vector.

The averaging process required to label a stable state starts at the beginning of 

each transition. The average value of the param eter used to gauge the network’s
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(a) True Stable State

(b) Non-Stable State
M(t)  A

wobbles

Figure 3.3: Schematic difference between stable and non-stable states.

progress needs to be recorded and then changes in the derivative of this smoothed 

function need to be monitored.

Thus at the s tart of forming a stable state, begin to calculate Equation 3.3

-j- Af

Now consider the derivative of the above average. The value of M  still has many 

small local minima tha t are superimposed on the overall trend. Figure 3.3 shows 

schematically the difference between a stable state  (a) and a non-stable state  (b), 

which is still evolving. The former has clearly reached a stable value, despite the 

short time-scale fluctuations in its structure.

Consider then using a trace, X ,  oi M

X { t  -f 1 ) =  6,X( t )  +  M

where 6g is a suitable smoothing decay constant. Stable states should then 

correspond to zeroes of d X / d t .
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In practice, the trace function X[ t )  still has a number of local minima in it, 

particularly within the first few epochs after a transition - interior nodes get more of 

the activity (are more frequently winners) as the map unfolds and can thus generate 

transient contractions of the ‘am oeba’. It is thus a practical decision to forbid  a new 

transition for say the first I epochs after the last one, just to allow the system to get 

a reasonable gauge on the average value of the measure M .

A typical value of / is 30. It is a scale length tha t is usually much shorter than 

the time spent in a stable state. It can sometimes be seen tha t the system performs 

a transition about I steps after the last one. All this may mean is tha t the system 

spent longer in tha t stable state than ideally it would have and hence a shghtly 

longer convergence time overall.

3.7 M aking T ransitions.

Once the condition for a stable state has been fulfilled, a transition must be made 

to permit further learning of the input space. The transition consists of reducing 

the neighbourhood R  and the learning rate rj

R ^  XR  (3.6)

77 Xrj

where 0  <  A < 1 . The param eter A is thus a ‘decay constant’ but the decay occurs 

only at each transition of the network and not at each epoch. The network then 

generates a new evaluative mapping under the new learning parameters.

The value of A is not crucially fixed and would typically be around 0.95. If the 

value is too small, then after a few transitions, the learning rate and neighbourhood 

size become very small and further formation of improved evaluative mappings is 

thwarted i.e. the mapping becomes choked.



3.8. FACTO RS AF FE CTIN G  ST A B L E  STA TE S  63

3.8 E ffect O f N etw ork  Size and  N eig h b o u rh o o d  

F unction  On S tab le  S ta tes

The number of neurons in the output layer clearly has an effect on trying to  establish 

a stable state. This is because the measure M  takes into account the weights of all 

the nodes. In the extreme case of there being ju st a chain of two nodes, each node 

can effectively control the weight of the other, meaning th a t M  wiU have a large 

variance. Increasing the number of nodes means th a t the input structure is being 

approximated much more accurately and hence M  wiU show greater stabiUty.

Gaussian shaped neighbourhoods mean th a t the stable state  measure M( t )  is 

automatically more stable due to the decaying strength th a t surrounding nodes are 

influenced by the winner. This is in stark contrast to an impulse neighbourhood 

where all nodes in the neighbourhood are affected equally. This difference is clear 

from the results in section 3.9.1.

3.9 R esu lts  O f S im u lation s.

3.9 .1  U sin g  a F it F u n ctio n

In this first example, comparisons of the standard algorithm, use of Gaussian neigh­

bourhoods (with exponential decrease of neighbourhood size) and the new dynamic 

approach were made using the sum of weight magnitudes measure (See Figure 3.4 

for comparison of models). The standard test of the unit square mapping onto itself 

was employed for a network of 32x32 nodes which is the size used in [42]. These 

results, together with a brief description of the adaptive model, were first presented 

in [1 1 ].

The comparison is made by calculating a fit function f { t )  which compares the 

current weight vector of all the nodes i to th a t of an ‘optim al’ vector which 

we would hope the network to reach. This approach has also been employed in [42]
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Figure 3.4: Details of the models compared in simulation.
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In this example, the ^  are given by the cartesian coordinates of the positions of 

each node i on the grid of the network.

/W  =  (3-7)
t=i

Clearly, for a network which converges correctly, i.e. it is not twisted, f ( t )  —> 0 as 

t ^  oo. The rate of fall off of this param eter gives a measure of the convergence 

rate.

The downside of prescribing these ideal weights is tha t it is only practical to 

calculate them  for n —> n dimensioned mappings. It is not at all clear, in general, 

what the projection of a fifteen dimensional space onto a 2-d one should look Hke! 

T hat is usually what the network is trying to discover anyway.

Secondly, the starting weights must be seeded so the orientation and handedness 

of the mapping is the same as the idealised weights tha t we prescribe,

3 .9 .2  C om p arison  o f  th e  D y n a m ic  and  S tan d ard  M od els:  

M ap p ing  th e  U n it Square

It has been found tha t the new model performs well for a wide range of parameters.

In the following two sets of examples, the unit square is mapped onto both a 1 and

2 dimensional output layer.

3 .9 .3  2 -D im en sio n a l C ase

The param eters used for both models were: 100 neurons 10x10 output grid, initial 

learning ra te  a(0) =  0.35, initial neighbourhood standard deviation <r(0) =  5. The 

standard model had a decay half Hfe T1 / 2  of 400 epochs.

Additionally, the dynamic model had a transition decay value A =  0.6, trace 

smoothing value of 6 =  0.5 and transitions were forbidden for f =  30 epochs hom  

the start of a transition. The simulations were allowed to run for 5000 epochs.
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• Measure M  vs Epoch Figure 3.6(a) shows the value of M  for both the dynamic 

model and the exponential decay model. Note that we have not plotted the 

trace X ( t )  as this is only defined for the dynamic model. It can be seen that 

the dynamic model produces a stable value of M  much more rapidly than does 

the standard ( ‘fixed’) model. This is because the neighbourhood and learning 

rate fall off much faster than exponential decay, the weight vector envelope 

becoming much more rapidly defined.

• Radius (neighbourhood a)  vs Epoch

Figure 3.6(b) shows the comparative tim e course for the two models. We 

reiterate tha t the fall off of parameters is much steeper than exponential decay. 

Note th a t the fall off of the radius bottom s out at around 0.5. This is fairly 

typical behaviour and represents the point when the neighbourhood function 

is essentially only affecting the winning node.

• Final Weightspace plots

Figures 3.7(a) and (b) show the final weightspace plots for the two models. It 

can be seen th a t they are very similar, as would be suggested by the similar 

long term  values of M  in Figure 3.6(a). Note however tha t the convergence 

speed of the standard model has been pushed to the limits, resulting in a 

weightspace plot tha t is noticeably crumpled. Thus despite occupying a larger 

region of weightspace, as indicated by the  different long term  values of M ,  the 

quality of the mapping has suffered.

3 .9 .4  1 -D im en sio n a l C ase

For the one dimensional case, a linear array of 100 neurons was employed, with 

cr(0) =  50.0. The learning rate a(0) was 0.35. The simulation time was 3000 

epochs. For the standard model, T1 / 2  was 200, again arranged to produce mciximal 

performance.
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Figure 3.6: Evolution of M  and cr for 2-d SOM unit square simulation for both

dynamic and standard models.
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Figure 3.7: Final weightspace plots for 2-d SOM unit square simulation for both

dynamic and standard models.
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In the case of dimensional reduction, it is highly unhkely tha t there will be a 

unique optimal state tha t the network wiU tend to, but in the end, the approxima­

tions tha t the network produces wUl be similar in their space-fiUing form. In this 

case, the linear chain should try  to ‘fiU-out’ the unit-square as best as it can.

Figure 3.8(a) shows the value of the measure against epoch. Note how rapidly 

the dynamic system coUapses to a steady value. At around epoch 1700, the two 

systems have almost exactly the same value of measure.

Figure 3.8(b) shows the radius reduction points ie transitions which resulted in 

the above timecourse of the measure. The initial transitions occur rapidly, account­

ing for the observed stabiHsation of M

Figures 3.9(c) and (d) show the state of the weightspace after 1000 epochs of 

training for the dynamic and standard model respectively. The dynamic model 

is more evolved (convoluted, in this case) at this point as would be suggested by 

Figure 3.8.

Figures 3.9(a) and (b) show the final weightspace plots for the linear array. It 

can be seen tha t both curves fiU-out the unit-square in a very similar fashion, but 

tha t the fine detail in the standard model is better.

3 .9 .5  E ffect o f  V ary in g  A and 6

The effect on convergence of varying the parameters A and f, for mapping the unit 

square, was examined. Recall that A is the parameter reduction factor at each 

transition and 6 is the smoothing constant in the trace X  of M .

Varying A

The plots in Figure 3.10 show weightspace plots after 1000 epochs for values of A, 

the param eter reduction factor at each transition, of 0.1, 0.6 and 0.95. It can be seen 

tha t the very low value of A has caused evolution of the map to ‘choke’; the network 

is dealt a cripphng reduction in learning parameters which it cannot recover from
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Figure 3.8: Evolution of M  and a for 1-d unit square simulation for both dynamic

and standard models.
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Figure 3.9: Plots (a) and (b) show final weightspace configuration, plots (c) and (d) 

show snapshots of weightspace at t =  1000. (1-d SOM unit square simulation)
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and hence the map can not unfold correctly. The other two plots are very similar at 

this final stage. Earlier in the simulations, the middle value A simulation was more 

evolved, the higher value causing more frequent transitions. After 6000 epochs, the 

two plots were almost identical. In summary, higher extreme values are more robust 

than low extrem e ones, the only effect of a higher A being a longer convergence time.

Figure 3.11(a) shows the neighbourhood radius timecourse and 3.11(b) shows 

the evolution of M  for each of the three values of A. The medium and high values 

of A have radii and values of M  which are almost identical in the long term, which 

agrees with their very similar final weight spaces.

V arying 6

Figure 3.13(a) shows the timecourse for the neighbourhood radius for values of 6, 

the smoothing param eter, of 0.2,0.8 and 0.95. Figure 3.13(b) shows the value of M  

for each of the three values. It can be seen from (b) tha t the high value 6 spends 

too long in stable states, and takes much longer to reach M  values comparable to 

the other two. The medium 6 plot spends just a few extra time-steps in the first few 

transitions, bu t it is enough to separate it from the low 6 simulation. Figure 3.12 

shows the state  of the weightspace in each case after 1000 epochs.

The final states after 6000 epochs were almost identical.

3 .9 .6  E ffect o f  D ifferen t In itia l L earn ing R a te  V alues (o (0 ))

For completeness, we now present the effect of different initial learning rates on the 

adaptive model. We have so far tacitly assumed Kohonen’s rule of thumb of ‘as big 

as you like i t ’, meaning values of a(0) tha t could be up to 0.9 or so.

We now repeat the unit square bench mark using values of a(0) of 0.1,0.35 and

0.9 and again compare the evolution of the smoothed measure X (t), the radius of 

the gaussian neighbourhood and the final weightspace plots. The map was a 10 x 10 

grid, with o-(O) =  5.0, A =  0.6 and 5 = 0.5. The simulations ran for 5000 epochs.
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Figure 3.11: Evolution of M  and cr for different values of A.
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simulation).
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Figures 3.14(a) and (b) show respectively the evolution of X ( t )  and <r(t) for the 

three values of alpha and Figures 3.15(a), (b) and (c)show the corresponding final 

weightspace plot.

From Figure 3.14(a) we can see that the smaller values of a(0) reach a very similar 

long term  value of X although initially the medium value run evolves quicker. This 

is reflected in the <r plots - the lower value run spends a longer period of time with 

(j about 1.9. At around epoch 1200, both low and medium valued a(0) value runs 

have the same cr and their values of X  are very similar. The final weightspace plots 

for these two runs are also very similar, with perhaps the medium valued run having 

the edge.

In contrast, the run using the high a(0) value has a final weightspace plot tha t 

is quite crumpled, although topologically intact. The X{t )  plot shows tha t the 

system rapidly develops a maximum sized weight vector envelope and makes many 

transitions to smaller learning parameters to overcome the large a  value. However, 

in reducing a, cr will have shrunk more rapidly than required for a good mapping.

Since we have varied a(0), it is instructive to plot a ( t)  for the three cases. This 

is shown in Figure 3.16. It can be seen th a t all three runs have reached the same 

value by around epoch 600. Note tha t the low a(0) run underwent a further series of 

transitions from about epoch 1100 to epoch 1200. Due to the already small learning 

rate, the amount of useful learning that could be achieved was apparently very httle 

and so the system made transitions to a ttem pt further improvements.

Sum m ary

In summary, the value a(0) does not appear in practice to drastically affect the 

mapping ability of the model. However, as might be expected, lower end values do 

give better results in terms of the quality of the mapping produced.
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3.10 A n  Im proved M easure For Identify ing  S ta ­

b le S ta tes

The average value of the squared weight lengths (call this is a coarse, although

still effective, measure of a stable state. It can be prone to very large ‘false minima’ 

and hence prem ature labelling of stable states.

A greatly superior measure is one which would compare the relative separation 

of weight vectors between topologically close nodes on the output layer.

T —  1 C— 1 

t = i  j = i

where r  is the number of rows in the output layer and c is the number of columns

i.e. T c  nodes in total. Figure 3.17 shows the geometric meaning of the measure: 

it is the sum of the squares of all adjacent weight vector separations running both 

along rows and columns (i.e. all contributions Hke -f 6  ̂ +  and +  z^).

This measure, as was the case for Mw'^t has nothing to say about avoiding twisted 

mappings since such locally (but not globally) optimal maps will still form stable 

states.

The reason for the greatly improved performance of this measure is straightfor­

ward: it is calculating relative distances between weights, and is thus translation 

invariant and rotation invariant with respect to the geometry of the output layer. 

This is of great importance in the early stages of network evolution, when the whole 

weightspace can be shifted owing to very large initial neighbourhood sizes. Fur­

thermore, it provides an easier way to compare behaviours under different starting 

conditions for a network, as these will affect the orientation of the topographic m ap­

ping (i.e. a left to right mapping can be compared directly with a right to left 

etc).

Figure 3.18 shows the evolution of the measure for a unit-square learning ex­

ample. Plot (a) shows the averaged value of the raw measure value in plot (b).
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Figure 3.17: Geometric meaning of the new measure

where the average is over the time window since the the start of the last transition. 

Transitions are externally imposed every 800 epochs.

Note how visually apparent the stable states are. This should be compared with 

the same run, using the old measure (See Figure 3.19(a) and (b)). Here the  stable 

states are much less apparent.

There is a point worth noting about this measure; it is sensitive to  widely sep­

arated initial weight vectors. The distance between weights in such a case may be 

very large and will thus affect the initial average value of the measure ie. during the 

ordering phase of the map. This shortfall can easily be overcome by ensuring tha t 

the initial weights are closely clustered, even though still random; this is in any case 

the usually recommended practice [37].

3 .10 .1  A  M ore P ra c tica l E x a m p le

The above simulations show the dynamic method working on very simple bench­

mark training data. However, if it is to be of general use, then it should also be
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Figure 3.18; Plots of M  and X  for the new measure M l (forced transitions).
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applicable to mapping high-dimensional data onto a 2-d output grid.

In this final simulation, an example is taken from Kohonen’s book [37], where 

the map generates a topographical representation of a minimal spanning tree. The 

data used is the same artificial set used by Kohonen but is a clear example of the 

map in operation.

The training data consists of a set of 32 5-d vectors. They are given the labels

A,B,C,..,Y ,Z,1,2, 

(1,0,0.0,0) A (3,4,0,0,0) I (3,3,7,0,0) Q (3,3,6,3,0) Y

(2,0,0,0,0) B (3,5,0,0,0) J (3,3,8,0,0) R (3,3,6,4,0) Z

(3,0,0,0,0) C (3,3,1,0,0) K (3,3,3,1,0) S (3,3,6,2,1) 1

(4,0,0,0,0) D (3,3,2,0,0) L (3,3,3,2,0) T (3,3,6,2,2) 2

(5,0,0,0,0) E (3,3,3,0,0) M (3,3,3,3,0) U (3,3,6,2,3) 3

(3,1,0,0,0) F (3,3,4,0,0) N (3,3,3,4,0) V (3,3,6,2,4) 4

(3,2,0,0,0) G (3,3,5,0,0) 0 (3,3,6,1,0) W (3,3,6,2,5) 5

(3,3,0,0,0) H (3,3,6,0,0) P (3,3,6,2,0) X (3,3,6,2,6) 6

As described in [37], if a hierarchical cluster analysis of the data above was 

performed, the m inimal spanning tree of Figure 3.20 would result.

Simulations were carried out on the above data for exponential decay of pa­

rameters and for the dynamic scheme. In all cases, the output grid was 10 by 7 

neurons. The learning ra te  and neighbourhood size were a(0) =  0.35, tr(0) =  5.0. 

The simulations were allowed to  run for 4000 epochs.

For the dynamic model, the other parameters were <5̂ =  0.8 and A =  0.7 and for 

the standard model, T1 / 2  =  1200

Figures 3.22 and 3.23 show the labelled state of the output layer for the standard 

model and the dynamic model respectively. At the end of the training session, each 

label was assigned to the unit th a t generated maximum response to it. It can be seen 

tha t the basic topographical relations of the tree in Figure 3.20 have been preserved. 

The branches of the tree, of course, are not straight.
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Figure 3.20: Minimal spanning tree of simulation data.
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6 5 # R # o N M # J

# 4 # Q # # # L # I

3 # # # p # # # K H

# 2 # w # # S # G #

# 1 # # # T # # P #

# # X # u # # # 0 B

Z Y # # V # E D # A

Figure 3.23: Labelled output layer for dynamic model.
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Figure 3.25: Labelled snapshot at t =  1000 for dynamic model

Figure 3.21 shows M  vs Epoch for the simple and dynamic case. The upper 

curve is the dynamic model. This would suggest tha t the dynamic model converges 

quicker in this example.

We can give a qualitative comparison of convergence speed by looking at the 

output clustering early on in training and see how this compares with the measure 

M  being employed to monitor performance.

Figures 3.24 and 3.25 show the labeUing results for the standard and dynamic 

model respectively. The snapshot was taken after 1000 epochs of training. The 

dynamic model clearly shows more clustering structure at this point in the simulation
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and also the value of M is larger and more stable. This suggests tha t M  is indeed a 

good measure of convergence.

3 .1 0 .2  E x ten sio n s  and Im p ro v em en ts  ; Further W ork O n  

T h e  D y n a m ic  M o d el

It has been seen tha t the new dynamic model copes well in a variety of scenarios. 

The formalism could be improved by looking for a dynamic control of the magnitude 

of a param eter change at a transition i.e a control of the parameter a  in Equation 3.7. 

A likely candidate for this is the variance of the measure M  during a stable state. 

Clearly this variance diminishes as the system converges.

3.11 O ther D yn am ic  V ariants On T he SO M

A number of other schemes have been introduced which aim to improve performance 

of the SOM in some respect, whether it be convergence rate or the way in which the 

map represents the input probability distribution.

3 .11 .1  A  N o v e l A pp roach  To Im p rov in g  L earning S p eed

An interesting attack on the convergence speed problem is presented by Rodrigues 

and Almeida [63] The approach is based on the idea of starting the map with just 

a few nodes and then progressively increasing tha t number until the map reaches 

its final state. New units are added by interpolation of the weights of the old units 

(See Figure 3.26).

The method works by the initial ordering and unfolding stage being handled by 

just a few neurons. Only a rough gauge of the input space is required at this point. 

There is clearly a m ajor saving in time both from calculating similarity between 

input vector and weight for each node and from the searching for the winning node. 

In the early stages, as there are only a few nodes to check.
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Figure 3.26: Adding new units by interpolating the weights of the old units.

The paradigm also uses a constant neighbourhood size. The reason for this is that 

when the network has only a few nodes, the initial chosen neighbourhood is large 

in comparison with its dimension. The neighbourhood can thus unfold the map. 

As the number of nodes is increased, the relative scale of neighbourhood size to 

net size reduces, thus effectively shrinking the neighbourhood, but from a different 

perspective.

Rodrigues and Almeida report an order of magnitude improvement in CPU time 

required to run simulations, with particularly large improvements for big networks 

(e.g. 384x384).

3 .1 1 .2  D y n a m ic  M S T  N eig h b o u rh o o d s.

Dynamically defined neighbourhoods based on Minimal Spanning Tree (MST) topolo­

gies represent a new approach to the mapping of probabdity density functions in 

the input space th a t have a prominent, peaked regions [30]. In this scheme, nodes 

are assigned to a particular neighbourhood by defining MST arcs between nodes, so 

th a t all nodes in the neighbourhood are connected by single links and the sum of



92 CHAPTER 3. A D A P T IV E  P A R A M E T E R S

the lengths of these arcs is minimized. These ‘lengths’ are the EucHdean distance 

between the weight vectors of the nodes in the tree.

Neighbourhoods are initially large, which corresponds to following through more 

arcs off the winning node. These are then shrunk as per the original algorithm, by 

traversing less arcs. It is not necessary to recalculate the MST neighbourhood after 

each epoch, only after between 10 and 100 epochs. This is because the map has 

temporally smooth adaptation.

MST neighbourhoods have the advantage of allocating nodes to non-zero regions 

of probability density in the input space. This is however not so good for more 

symmetric distributions. They can also adapt to dynamic changes in the input 

distribution with remarkable flexibihty [30].

This scheme does not however address the issue of the rate of decrease of learning 

parameters. The dynamicism is employed to allocate the nodes to better follow the 

input distribution.

3 .11 .3  A d a p tiv e , T ensoria l W eigh tin g

This method, also presented in [30], dynamically modifies the distance function used 

to determine the winner. The impetus for this extended model is the fact tha t when 

the variances of the components of the input vector x = z (t) are not of the same 

order of magnitude, then the resultant mapping has an obhque orientation (See 

Figure 3.27); there needs to be scaling of the different components.

A better orientation can be achieved by introducing the following weighted Eu- 

chdean distance measure into the winner competition:

[z(t),  mi{t)] = Y,  ̂ ij -  PijWŸ (3.8)
3=1

Here, the are the components of z, the fiij are the components of the (the 

weight vectors) and the are the component weightings from input Hue j  to node 

i. Note tha t each synapse has an associated weighting factor.
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Figure 3.27: Final weightspace plots for two 4 x 4  networks with different variances 

in input dimensions

The main thrust of the method is to  estim ate the values of recursively i.e. 

on the fly during the learning process such th a t the effects of variance disparity are 

balanced. Each node is thus made to store 6ij, a backwards weighted exponential 

measure of the error defined as

(3.9)

where is a small scalar.

The value of Sij is then averaged over all the inputs j  to a node and the system 

is made to maintain the same average level of weighted errors over all the inputs.

A geometric interpretation of this weighting procedure is given in [30]. The 

equidistant surface around a particular node then becomes elliptic in N  dimensions. 

The scheme has been shown to work well in practice.

3 .11 .4  G row ing  C e ll-S tru c tu res

Fritzke has introduced the notion of self-organising maps tha t have problem depen­

dent cell structure [17] [18]. In the extended model, the system can dynamically 

follow an input signal distribution more accurately by inserting or deleting nodes
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from its structure. The system starts with a small number of cells, new cells are 

added successively, using dynamically gathered information about the underlying 

probabihty distribution to determine where additions/ deletions should take place. 

The modifications are arranged such that the topology-preserving and distribution- 

preserving properties of the self-organising map are retained.

3.12 Sum m ary o f  C hapter 3

We have briefl.y reviewed the “rules of thum b” that define the parameters of the 

Kohonen self-organising map, including some theoretical bounds on the learning rate 

and also experimental results on the effect of the neighbourhood function profile.

We recapitulated the standard form of learning in the SOM, whereby the time- 

course of learning param eter decay is set arbitrarily in advance. We then presented 

evidence from simulations tha t the map forms stable weightspace configurations 

when the learning parameters are held constant and the network is driven by input 

vectors presented randomly and according to the input vector probabihty density 

function. An experimental gauge of these stable states, the sum of the norms of all 

the weights was discussed, together with how this measure could be used to trig­

ger a reduction in learning parameters. This would produce a sequence of states, 

experiment ally observed to  be stable, each state correlated with a set of learning 

parameters. This sequence of states was seen to converge towards an optimal so­

lution. Three sets of simulations were then presented to show the new model in 

operation. These showed that the new model performed as weU as or better than 

the original fixed timecourse model with regard to convergence rate. An experimen­

tal investigation of the dependence of model behaviour on model parameters was 

then presented.

An improved measure for identifying stable states, based on weight vector sepa­

rations of topologically adjacent nodes, was presented and compared by simulation 

to the original. This new measure was shown to be a much better indicator of the
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presence of stable states.

We concluded the chapter by reviewing some other dynamic models based on 

the basic Kohonen model.
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T em poral K ohonen  M aps
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4.1 R ep resen tin g  T im e In N eural N etw orks

All neural networks are to some extent temporal in operation, ie there are identifiable 

steps in the computation procedure tha t lead on to the next. Temporal Neural 

Networks deal with inputs th a t are explicit functions of time and so thus process 

temporal sequences of patterns.

The ‘traditional’ approach to processing temporal patterns in neural networks 

has followed one of two routes:

• Combining a sequence of spatial patterns by concatenating them, so called 

time delay networks.

• Using recurrent networks i.e. feedback

4 .1 .1  T im e -D e la y  N etw ork s

A time-delay neural network (TDNN) works on the principle of representing a tem ­

poral sequence by concatenating the individual patterns of a sequence at times 

t =  1,2, . . r  into a larger one [71] [70]. Figure 4.1 shows a generalized architecture 

for the input layer of a TDNN.

The time-delay aspect comes into effect as patterns are arranged to have different 

transmission velocities along the connections to the separate parts of the input 

layer’s output vector. Hence at < =  0 the section of this concatenated vector with 

zero transmission time has the current pattern  vector as its output. At the next 

time step, the old pattern  has propagated to the section of the vector which has 

transmission tim e of 1 time unit and the zero transmission section has the new 

pattern  vector etc etc. In this way, an input layer’s output vector comprised of N  

blocks of n  units can hold a complete record of an n-dimensional temporal input 

sequence over the past N  time steps.

The idea is then to classify this concatenated vector in some standard way, i.e. 

as a static pattern .
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Concatenated Output Vector
delay = 0 delay = 1 delay = 2

Input

Figure 4.1: Input layer of a time-delay network.

The major drawback of this scheme is that the architecture has to change for 

different lengths of sequence. Here, the time-window manifests itself as the number 

of delay lines needed in the preprocessing stage. It is thus inflexible and biologically 

unrealistic in its operation. This form of network will also suffer from temporal 

translation problems i.e. recognition should be independent of when the pattern 

occurs in time. Scaling is also a problem in that concatenating a large number of 

pattern vectors will make the introduction of temporal translations during a pattern 

sequence very significant to performance.

In [71] the temporal translation problem was addressed. A network was con­

structed with TDNN-units that scan an input token over time in order to find local 

clues. This is as opposed to one large-network being presented with the whole input 

pattern. In [71] this is achieved by multiple hidden layers. The first layer concate­

nates three out of fifteen frames. A  five frame window then combines the outputs 

of the first layer. This method forces the hidden units to develop short term ab­
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stractions, but is heavily dependent on the architecture being clocked i.e. the first 

hidden layer only classifies after filling a three time step shift-register, the second 

after filling a five time-step shift-register etc.

4.2 R ecu rrent N etw orks

4.2 .1  W h y  R ecu rren t N etw orks?

Networks which have recurrent connections, together with suitable learning algo­

rithms, can implement dynamical systems of arbitrary complexity (given a sufficient 

number of hidden units). Such networks have important capabihties tha t are not 

found in feedforward networks. These include:

• A ttractor dynamics.

• The abihty to store information for later use i.e. there is state preservation in 

some form.

The la tter property is vital in difficult temporal tasks that may require state 

preservation over potentially unbounded periods of time.

Figure 4.2 shows a general architecture for a recurrent backpropagation network. 

The network has a set of N  nodes, n  of which comprise the output vector y  . The 

remaining m  = N  — n  nodes are hidden tha t is they are not part of the external 

output, but are used in forming internal representations. Call the fuU set of node 

states y  and call the external input vector x. Then the concatenated training input 

that the network sees is z =  (y, x)

4 .2 .2  F ix ed  P o in t N etw ork s

A number of studies of networks which settle to stable states or fixed points have 

been studied e.g. Hopfield’s model [26], but the majority have been extensions 

of the recurrent backpropagation model developed independently by Pineda and
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Figure 4.2: Recurrent back-propagation architecture.
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w

Figure 4.3: Energy landscape in a network with fixed points.

AImeida[54][2]. For such ‘fixed point’ networks, a particular problem is given to the 

network in the form of initial conditions or a constant external input and the the 

result is defined by the state of the network once a fixed point has been reached [52]. 

The learning algorithm in such cases is a rule or dynamical equation which changes 

the fixed points to encode information [54] i.e. perform gradient descent on some 

suitable energy function and have patterns represented by minima of this function. 

These networks are interesting in that they can solve classes of problems like con­

straint satisfaction and associative memory tasks. However, the requirement that 

both the actual and desired network dynamics have only point attractors and that 

the form of the input is as described above, puts severe limitations on the practical 

uses of such networks.

The problem with fixed points is discussed lucidly by Pearlmutter [52]. Figure 4.3 

shows a schematic energy function T  =  where w  is the weight matrix of the

system. It is possible for initial weight conditions a and b to be infinitesimally close 

but still map to different fixed points. Similarly, boundaries between two different
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attractors may be changed by an infinitesimal change to the weights during learning. 

The point c (See diagram) may under similar circumstances change from being a 

fixed to a non-fixed point.

Such networks can thus run into serious problems when faced with generalisation. 

Pearlm utter has developed extensions of recurrent back-propagation th a t can 

learn state  space trajectories [53]. The network learns to minimize an energy function 

E (y)  =  Stgiyit) — f { t ) Y  dt and thus y im itates the function / .  Such networks can 

learn to replicate circular and figure-of-eight 2-d orbits as well as the more mundane 

exclusive-or type benchmark examples.

4 .2 .3  R e a l-T im e  R ecu rren t L earn ing

In most work with recurrent networks, the weights are assumed to be fixed over 

presentation of the tem poral pattern x  and generation of the corresponding output 

sequence y  and contributions to VJ^(w) are integrated over the duration of the 

sequence x. This condition can be relaxed, in a similar fashion to non-recurrent 

backpropagation, so tha t weight changes are made as the network is running. This 

removes the constraint of running ‘batches’ over the duration of the sequence x. This 

scheme is called real-time recurrent learning [75]. There is the usual requirement 

th a t the learning ra te  must be sufficiently small so th a t errors introduced by not 

following the true gradient are kept small.

4 .2 .4  T each er-F orced  R ea l-T im e  R ecu rren t L earn ing

W illiams and Zipser [75] describe the process of replacing the feedback of the actual 

output ^ ( t )  by the teacher signal dj^(t), whenever it is known, as teacher forcing. 

The correct value of is then used in subsequent computation of network be­

haviour. This technique can only be applied in a discrete time formalism. Changing 

the state  of an output unit at (potentially) each tim e step only makes sense under 

this restriction [52]. However, Pearlm utter has reported that teacher forcing with
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large numbers of hidden units has caused difficulties [52].

Williams and Zipser have performed interesting simulations using real-time re­

current learning [74]. Theses include complex tasks such as:

• L ea rn in g  to  B e a  T u rin g  M ach ine  The network observed the actions (but 

not the internal state) of a finite state controller of a Turing Machine that 

had to decide whether an arbitrary length tape of left and right parentheses 

was balanced. This demonstrates very strikingly the preservation of state 

information over very long periods.

• L e a rn in g  to  O scilla te  This included training a 2-unit net so tha t one of the 

units produced approximately sinusoidal oscillations of a period on the order 

of 25 tim e steps.

Clearly, recurrent networks are very powerful, drawing on their ability to preserve 

state information and to  deal with time-varying input or output through their own 

natural temporal operation.

4.3 A d ap tin g  T he Self-O rganising M ap To T em ­

poral P rob lem s

4.3 .1  T h e  P h o n e tic  T y p ew r iter

The phonetic typewriter was discussed in Chapter 2. It is an application of the self- 

organising map, which in its original form classifies static patterns, to a temporal 

domain where context is crucial i.e. speech recognition. The input uses sampling 

over fixed temporal windows, so th a t this a form of time-delay neural network.

Kohonen got around the context problem by using a rule-based system to correct 

errors of statically classified speech data [32] [33]. However, this approach requires 

in excess of 15000 rules to work correctly.
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4 .3 .2  A llo g ra p h o to p ic  M aps

Morasso has applied the self-organising map to the problem of cursive script hand­

writing recognition [48]. The problem domain is represented by a set of three con­

tinuous variables: x = x{t ) jy  = y{ t ) , z  = z[t) with {x ,y)  being the coordinates of 

the path  followed by the pen and z is the pen pressure (a binary up/dow n signal). 

The signals are segmented into ‘strokes’ i.e. pen traces delimited by points of mini­

mum velocity, with each stroke being represented by a 5-point polygonal curve. A 

sample of cursive script writing is then coded into a set of ten-dimensional ‘stroke 

descriptors’ which are self-organised to form a graphotopic map.

As per speech recognition, this problem domain has context dependent features, 

arising from the physical movements tha t the pen has to make to link up with pre­

vious and following strokes. Morasso approached this problem by using an array 

of separate maps, one for each of a possible set of sequence lengths e.g. ‘receptive 

fields’ between 2 and 7 strokes [49]. These are Allographotopic maps. The origi­

nal graphotopic map used only single strokes. A segmentation module separates 

allographic patterns and sends them  to the appropriate network for th a t sequence 

length. During recognition, there is competition between the arrays of maps in order 

to build a tree of feasible segm entations/interpretations from which a list of the best 

matches is matches is extracted. At this point, linguistic post-processing takes over 

to select the overall winner eg by ruling out nonsense words.

Using arrays of maps in this way does introduce a limited notion of context, but 

simply on the grounds of the number of patterns in a sequence and the segmentation 

is performed in supervised (even user-interactive) way. Furthermore, the system still 

needs substantial post-processing to determine the correct result, as per the phonetic 

typewriter.

4 .3 .3  K o h o n en ’s H y p erm a p  A r c h ite c tu r e

Another approach to solving temporal problems has been introduced by Koho-
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Figure 4.4: Context timescale in the hypermap.
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Figure 4.5: Activated subset of nodes in the hypermap.

nen, called the hypermap architecture [38]. The idea revolves around a two phase 

classification procedure and two sets of weights, a context vector and pattern 

vector

• The system is presented with This is formed from the concatenation

of pattern vectors occurring within the same timescale as the pattern vector 

(See Figure 4.4). The network produces an activated subset of nodes which 

responded maximally within some constraint i.e. nodes corresponding to some 

certain class of context remain activated (See Figure 4.5). AU other nodes are 

de-activated.

• ^patt is then presented and only the activated subset from the first phase can
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take place in the competition. This subset thus represents the set of those 

nodes whose pattern  vectors occur within a context similar to the one just 

seen. The formation of subsets can proceed down to any desired level, hence 

the hypermap name, maps formed within the previous level map.

The learning algorithm has multiple stages:

• Period 1 Unsupervised training of context weights

• Period 2 Adaptation of pattern weights. This follows the two-stage sequential 

presentation of context then pattern  vectors: The winning context subset is 

chosen. Then the subset nodes’s pattern  vectors are updated, according to the 

winner of the now presented pattern  vector.

A further sub-period of supervised learning is then  required to label the nodes.

The hypermap was designed to be apphed to the co-articulation problems of 

speech. Unfortunately, it still suffers from the same problems of time-windowing i.e. 

the selection of the context window around the pa ttern  vector which forms x ^ ^ .  

It also requires, in exactly the same way as time-delay schemes, a different set of 

context weights for each level of context. Furthermore, the learning algorithm is 

very complicated, being divided into many stages.

Kangas has extended the notion of subset formation to occur in a single map [29]. 

The same set of inputs are thus used for the subset (pre-active) region as for the 

final selection of the winner. The pre-active area is defined to  be an environment 

of the previous best-matching units, for example. The next best match can only be 

selected from the close neighbourhood region of the previous best match. The next 

best m atch then defines the centre of the next pre-active region and so on. In this 

way, the centres of the pre-active regions define a curve tha t moves around on the 

surface of the map.
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This model has. several attractive properties:

• It utilises a single weightspace

• It reduces to the standard map by having the entire map as the pre-active 

region

• The map can be divided into separate regions with separate inputs, but the 

active area can pass over the boundary regions ie the subset forming mecha­

nism is continuous and the input connections are not. ‘A ttention Shifting’ can 

thus occur between different signal sources and is driven by the signal itself.

• The map can monitor multiple signals in parallel with autom atic combination 

of the representation of these signals by the lateral connections th a t form the 

subsets.

Although there is no explicit discussion in [29], it appears as though the weight 

space must have a globally non-topographic structure; there can be multiple loca­

tions, A-areas, on the map tha t are sensitive to a signal J ,  but only the one enclosed 

within the pre-active area P can respond to it. This surely means tha t weight 

adaptation only occurs within the pre-activated region P.

It is not clear how the map returns to a ‘ground-state’ i.e. the case where the 

pre-active area is the entire map. It states in [29] th a t “...the pre-active area is 

(usually) changed after every new sample...”

4 .3 .4  R esp o n se  In teg ra tio n , D a ta  A v era g in g  and P a tte r n  

C o n ca ten a tio n  M o d els

Kangas has discussed three models for time-dependent self-organising maps [27] [28] :

•  R esp o n se  In te g ra tio n  M o d e l. A response is defined as the vector of output 

layer activities y(t). This vector is then integrated according to

=  Py{^) +  (1 -  -  1 ) (4.1)
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where /? is a constant controlling the retention of the response. This equation 

is the same form as for a leaky integrator neuron (see next section), but in this 

case the whole n e t’s activity is held in the ‘memory vector’ This vector is 

then classified by a second net.

• P a t t e r n  C o n c a te n a tio n  This is time-delay used in conjunction with the 

basic map formalism.

In the speech data  experiments discussed in [28], it is reported tha t the response 

integration model is between 4 and 7 percentage points better in recognition accuracy 

than  the old model and tha t concatenation is between 6  and 1 0  percentage points 

better.

4 .4  L eaky In tegrator N eu ron s

It is a known property of biological neurons th a t they retain activity on the cell- 

membrajie, i.e. charge leaks away from the cell over a period of time. The neuron 

thus acts as a leaky integrator and combines previous (decayed) activity with new 

activity. The cell thus has a history of its recent interaction with input stimuli.

This opens the way to the construction of artificial neural networks that have an 

intrinsic tem poral character; in such networks, the need for time-delay architectures 

is removed.

In discrete time, a general equation describing the time-evolution of the activity 

for a single neuron is given by

Ai{t +  1) =  dAi(t) +  f{w {t) , L{t)) (4.2)

where d is a tim e constant of the neuron, w is a weight vector associated with the 

neuron i, 7 is an input vector arriving at i and /  is a function describing how the 

neuron processes an input for a given weight vector (e.g. weighted summation). 

This model omits other biological phenomena such as cell geometry, various ionic
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channels, an active membrane which produces non-hnear terms etc [69] which affect 

the temporal behaviour of the neuron.

Temporal Sequence Storage (TSS) using leaky integrators has been investigated 

by Taylor and Reiss [56], together with the effect of introducing ionic channels. 

They employed a network model having neurons with a range of time constants 

which learn to correlate a pattern  with the one next in a sequence. It also preserves 

tem porahty i.e. correctly reproduces the lengths of the times tha t each pattern  in 

the sequence was presented. It was shown tha t leaky integrator neurons could store 

a temporal sequence directly, holding the incoming activity long enough to learn the 

transitions between the different patterns in a sequence.

4.5 T h e T em poral K oh on en  M ap

Chappell and Taylor have included leaky integrator neurons in the basic Kohonen 

network [9]. The activity of each neuron is defined by

Ai[t +  1) =  dAi[t) — 1/2 |Z(t) — (4.3)

=  m?ix{Ai(t)} (4.4)

This activity law is such th a t the node which wins with greatest (i.e. most 

positive) activity A^in{t) will be the time aggregate winner of the minimum distance 

competition. Note th a t the model reduces to the basic map by setting d =  0

In short, if a node’s weight vector is similar to the pattern  presented at time 

t, then the contribution to the integrated activity will be small. The converse will 

be true for a node with weight very different from the presented pattern  and hence 

such a node will be less likely to win at the next presentation of a pattern.
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4 .5 .1  V ir tu a l T rain ing V ectors

For the moment, consider a “ready prepared” example weightspace. Suppose we 

wish the network to be able to discriminate between all the binary pair sequences of 

length two i.e. all sixteen permutations of the set {(0 , 0 ), (0 , 1 ), ( 1 , 0 ), ( 1 , 1 )}. Call 

this set S^.

Equation 4.3 is effectively selecting winners which have best matching virtual 

weight vectors. They are positions in the weightspace tha t he between the actual 

training vectors tha t the network sees. For our example, the real vectors he at the 

corners of the unit square. We can then choose to partition the unit square so tha t 

there will be a unique winner for all sequences 3  6  5^, i.e.

m j = ((^ -  l) /3 , ( j -  l) /3 )  (4.5)

where i and j  are the row and column positions of the nodes on the output layer 

and both run from 1 to 4 for a total of sixteen nodes.

We can now consider the time evolution of A» for each node i. We can plot this 

as a histogram at each row and column position on the output layer of the network. 

Call this activity m atrix C{j and assume tha t at t =  0 , C  =  0.

Figure 4.6(a) shows the activity profile of the network after presentation of the 

pattern  ( 1 ,1 ). It can be seen that comer node corresponding to C4 4  has the most 

positive activity and is thus the winner of the distance competition. The node 

diagonally opposite i.e. has weight vector (0 ,0 ) and hence has the most negative 

activity.

Figure 4.6(b) shows the activity profile at the next time-step, after having pre­

sented the pattern  (0,0). If there were no history then the state would be the 

opposite of the first time-step ie the node at C n would have zero activity. The 

retention of activity means that instead, the node at C22 wins as it is close to (0 ,0 ) 

but was closer than node C n  to the pattern ( 1 ,1 ) at the previous time-step.
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Figure 4.6: Activity levels in the TKM leading to the selection of a context depen­

dent winner.
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Figure 4.7: Labelled output layer of the TKM.

4 .5 .2  N a tu re  o f  th e  C lu ster in g

In our example, we can now label the output layer with sequences comprised of the 

S^. If we call the individual patterns (0 , 0 ) =  0 , (0 , 1 ) =  1 , ( 1 , 0 ) =  2  and ( 1 , 1 ) =  3 

then the sequence (0 ,0 )(1 ,1 ) can be w ritten succinctly as ‘03’. The result of giving 

all sixteen nodes such labels is shown in Figure 4.7.

We can see that clustering occurs according to the most recently presented p a t­

tern i.e. there are four groups of four nodes, one per pattern . This is exactly what 

we would expect from Equation 4.3 as the most recent p a tte rn  vector has the largest 

contributing term in the activity equation.

4 .5 .3  R o llin g  P rop erty ; C la ss ifica tio n  W ith o u t  a C o n te x t  

W in d ow

One of the most attractive features of the TKM formalism is the fact th a t no context 

window has to be decided in advance. The sensitivity to particular sequence lengths 

is determined completely by the decay param eter d in Equation 4.3. This could be 

described as the ‘rolling property’ of the model. It means th a t if the network is 

trained to be sensitive to sequences of length two, say, and we present the patterns 

A and B, if we then present a third pattern  C, the network will classify the pattern  

sequence BC. There will of course be noise in the activity from the pa ttern  A and 

any other patterns tha t have been presented in the past history, but these are all
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weighted by increasingly large powers of d. The value of d is chosen such that 

sequences of length two are responded to in preference to longer sequences and thus 

noise from previous patterns should not affect classification for a suitably trained 

weightspace.

Thus, there is no requirement for sequences to have ‘beginnings’ and ‘ends’ and 

hence no external context window that has to scan through the input pattern  stream. 

Context sensitivity is built into the network dynamics.

4 .5 .4  L earn ing Law; In sta b ility  and W eight B u n ch in g

The above discussion of the classification was based on the a-priori weightspace 

defined by 4.5. We must now ask ‘How should this weightspace be learned?’

The learning law used in [9] is the same as the standard algorithm, i.e. rotate 

the neighbourhood of the winner towards the current input vector. Unfortunately, 

using this law leads to an unstable weightspace because the only data the network 

is able to train  against are the actual training patterns; virtual vectors tha t exist 

between the real patterns are not represented in the update law.

A simulation was performed to see whether an 8 x 8  TKM could correctly learn 

to distinguish sequences of length three. The parameters used were <r(0) =  5 ,T i / 2  =  

1800, a ( 0 ) =  0 .2 , d =  0.4. The simulation ran for a total of 8000 epochs. The 

labelled output layer at epochs 5000 and 8000 are shown in Figure 4.8 (a) and (b) 

respectively. The corresponding weightspace plots axe shown in Figure 4.9(a) and

(b).

It can be seen from Figure 4.9(a) tha t after 5000 epochs, the weightspace is very 

distorted. This ‘distortion’ is the typical effect observed when a Kohonen network 

is used to map a discrete weightspace and the number of training vectors is less 

than the number of available nodes. The map algorithm correctly reproduces the 

probabihty distribution i.e. ^-functions located at each pattern vector value, the 

strengths of which are determined by the frequency of presentation of tha t pattern.
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Figure 4.8: Labelled output layer snapshots: (a) t = 5000 (b) t = 8000 for binary 

pair sequences of length three.
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Figure 4.9: Weight bunching snapshots in the TKM: (a) t = 5000 (b) t = 8000.
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This is observed as ‘bunching’ of nodes’ weight vectors around the isolated patterns. 

For our simulation, we see from Figure 4.9(b) tha t by 8000 epochs, the network has 

drawn in all available weight vectors to map the corners of the unit square, because 

the neighbourhood has shrunk to where only the winning node is affected.

From Figure 4.8(a), we can see tha t at 5000 epochs, 39/64 sequences were clas­

sified. By 8000 epochs, this has dropped to 14/64.

W ith regards to the TKM, the neighbourhood cannot be allowed to tend to a 

small size i.e. one only affecting a small fraction of the to tal number of nodes. There 

is only a shallow basin of attraction where the learning law adequately interpolates 

the weightspace to form virtual vectors and there is sufficient accuracy of these 

virtual vectors for correct classification. For the sequences of length two example, 

the balance between these two opposing requirements can produce a solution. For 

sequences of length three, only ‘tweaking’ of learning parameters and training time 

can produce any degree of classification. In either case, there is no ultim ate stable 

state where the weights can be arbitrarily, accurately self-organised and bunching 

effects to have not started to appear. A more generally apphcable learning law is 

thus required.

4 .5 .5  U sin g  T h e  T K M  for S y n ta c tic  A n a ly s is

Chappell and Taylor also looked at using the TKM for classifying the context of 

words in simple sentences i.e. occurrences of the same word but in different contexts 

should be mapped to different/nodes or regions but within some enclosing set which 

represents all uses of tha t word. A simulation was presented in which the effect 

of position  of a word in a particular sentence could not give artificial assistance 

to disambiguating different contextual meanings to th a t word i.e. verbs and nouns 

frequently occur at fixed locations within a sentence). The following set of sentences 

was thus used as training data:

1. My hair is dry now.
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START 0000

my 0001

hair 0010

is 0011

dry 0100

now 0101

I 0110

comb 0111

must 1000

off 1001

Figure 4.10; Training data for semantic map simulation

2. I comb my dry hair.

3. My hair must dry off

Clearly, all three sentences have the word ‘dry’ as the fourth word, but acting in 

different contexts e.g. as a verb in the last example. Each word was encoded on four 

binary inputs and the sequences were presented randomly to an 8 x 8 TKM, each 

one separated by the START symbol (all hnes off). The training vectors are shown 

in Figure 4.10 Figure 4.11 shows the resulting labelled map, the number(s) attached 

to each word giving the number of the sentence to which the word was a part of. It 

can be seen th a t the three instances of the word ‘dry’ form a clear cluster and th a t 

the mapping for dry from sentences 1 and 3 occupy adjacent nodes. This reflects 

that these two sentences are the same bar one word at the point ‘dry’ is seen by the 

network. The TKM is thus able to perform disambiguation in longer sentences.
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must . . hair Is
(3) (1,3) (1)

• • • h^ir • . • •
(2)

off start I . . .
(3) (2)

dry . comb
(1) (2 )

dry .
(3)

dry . . . . .
(2)

now
(1)

my my
(1.3) (2)

Figure 4.11: Semantic map of words presented in training

4.6  U sin g  V irtu a l V ectors In Training

Virtual vectors have already been defined as the optimal positions in weightspace of 

sequence representations. We can identify two types of virtual vector for the case of 

sequences of length two.

1. Representations of sequences tha t are composed of different pa tte rn  vectors 

e.g. 23 or 10

2. Representations of sequences tha t are repeated copies of one pa tte rn  e.g. 11 

or 33

The la tte r type have virtual vectors which coincide with the single patte rn  vector. 

How might we go about constructing virtual vectors which can be used to  perform 

training for all times? We might try  and construct them  so th a t they lie on the line



120 C H APTER  4. TEM PORAL KOHONEN M A PS

between two patterns A and B i.e. fulfill the criteria of existing between the real 

vectors. We could try

+ 1) =  R.{i) + (1 G)

for a sequence of two patterns A and B, i.e. use the current pattern  shifted towards 

the old pattern. This recipe will provide suitable values for training, but defeats 

the main purposes of the TKM of being a biologically plausible extension of the SOM 

and of being context-window free. Externally producing the is no better than 

a time-delay network, as the A and B have to be held somewhere.

Instead, we might consider somehow directly integrating the training vectors and 

not some activity measure.

v{t+i)=mt)+m (4.7)

However, this cannot be done directly within our artificial neurons as they can 

only retain a scalar history.

4.7  F orm ation  o f  V irtu a l V ectors U sing  Traces

4.7 .1  W h a t are T races?

Traces are models of synapses th a t can store a history of input signals tha t they are 

exposed to. This is in contrast to such a history summing mechanism only being 

present on the cell body where individual weighted inputs are combined, i.e. leaky 

integrators. Traces have been used in difficult, learning control problems, such as 

pole balancing [4]. In this example, traces implement so Ccdled ‘efigibihty’. Basically, 

there is a pairing between input on a particular pathway and output of a neuronlike

device at some later time. A weight on this pathway is modified in relation to

whether its effect in the future was good or bad i.e. there is reinforcement learning.
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but the eligibility for modification should die away rapidly to preserve the context 

of the pairing.

The synaptic trace model presented here allows for the mapping of sequences 

in a way which incorporates context information automatically, as in the Temporal 

Kohonen Map (TKM), but is rigidly stable when neighbourhood and learning rate 

become arbitrarily small. We wiU see tha t such models can map longer sequences.

4 .7 .2  L earn ing Law and T ra in ing  D a ta

The most desirable property of the TKM is tha t sequences of input signals are 

classified without the need to take exphcit account of context. This is in contrast to 

time-delay schemes and any model requiring a time-window. The problem with the 

TKM is tha t no history of the actual patterns is retained, only the nodes’ relatively 

similar response over time. So although with a ready prepared suitable weightspace, 

the discrimination function works perfectly, it is by no means clear as to how this 

weightspace can be learnt during training.

This trace model uses activities on each line, i.e. a t each synapse, to provide 

a history of the actual components of each training vector as it is presented. The 

‘rolling property’ of the TKM is preserved i.e. if three patterns constitute a sequence 

and then a fourth is presented, a new sequence is seen by the network, comprising 

of the new pattern , the two most recent and noise from any previous patterns th a t 

have been seen (if decay parameters are chosen appropriately).

In the TKM work, binary pairs were randomly presented to the networks. In 

this work, bipolar pairs are adopted for reasons which will be discussed below.

4 .7 .3  T race A rch itec tu re

Consider an input vector 7 of dimension n. Each line i of the n  Hnes is summed 

leakily:

Ai{t -f 1) =  drAiij,^ -f 7i(t) (4.8)
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where A{ is a trace activity on line i, dx is the decay rate on the Hne and li is the 

corresponding input component.

4.8 A n alysis o f  Trace A ctiv ity

Let us consider the activity A  of a. single synapse, i.e. drop the index i in Equa­

tion 4.8, when a sequence of 1-dimensional patterns is presented to it. Let us 

furthermore assume that the initial value of A  i.e. A(0) is set to be the reset value. 

W hat we mean by the reset value is the average of our possible pattern  space (see 

the end of this section for fuU description). The reset value is the value of >1(0) tha t 

corresponds to an infinite stream of random patterns having being presented at tha t 

synapse.

Let the pattern  sequence presented to our synapse be called Pi{t) and let it be 

m  time-steps in duration. Here, Z is a label which refers to a specific temporal 

sequence. At time t = m , A  will have m  terms, i.e. the backwards exponentially 

weighted values of Pi at times t =  1 ,2 , . . .  ,m . Call this value of A (m ) the synaptic 

history Si of the temporal sequence /. We can thus write

m

S, =  ' £ P l ( t ) - d T ' " - ‘ (4.9)
t = l

N oise and Error Bandvsridth

In general, the value of A(0) will not be the reset value. To preserve the rolling 

property of the TKM, we must ensure th a t a particular synaptic history Si can still 

be classified uniquely, no m atter what the noise at a particular synapse is. It should 

be independent of the value A(0) that resulted from an arbitrary presentation of 

patterns in the past.

Let Si be the value of Si containing arbitrary interference from A(0). We can 

write for a sequence I of length m

Si =  5/ +  0 (d r ^ )
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=  Si A Em (4.10)

where Em is an error term. We can calculate the worst possible effect tha t this 

term  can have. This occurs when all inputs I ( t )  for t = —o o ,. . .  ,0  have the same 

direction, e.g. for the bipolar case, all +1 or all -1. Equation 4.10 is a geometric

series. If we take Em as the sum of all terms excluding the first n, then the first

term  is a =  d r” and the ratio of terms is r  =  d r.

(411)d r

This gives a measure of the effect of a non-zero A(0) in the worst case, which we 

call the error bandwidth. For any sequence of length m, \Em\ must be less than the 

smallest separation between any two adjacent synaptic histories, or else interference 

from activity at t =  0 will be too great to allow the necessary discrimination.

Trace R eset Value and B inary versus B ipolar D ata

If we are using a trained network to classify a sequence, the reset value of the traces 

has to be considered. Call this reset value A r . This value is not simply the average 

of the basis vectors i.e. for binary data  it is not 0.5. We need to  find the centre of 

the state-space  i.e. the range of the integrated synapse values. For binary data, the 

range of the state space is

1
0 , (1 -  dr)_

and hence

A r  =
2 • (1 — dr)

For bipolar values, the reset value is always zero. Bipolar da ta  thus has a shght 

practical advantage in tha t A r  need not be calculated.
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4.9 E xp erim en ta l R esu lts

4.9 .1  A n  E x a m p le  - P a ir  S eq uences o f  L ength  T h ree

We first present a practical example to elucidate the analysis of the previous section. 

A simulation was performed to record pattern-density statistics, final convergence 

state of the weight-space and sequence labelling for a network learning the complete 

set of 64, 2-D, length three sequences of bipolar training vectors. The pattern 

statistics are shown for one input line only, but the weight-space plot shows no 

coupling effects between lines (i.e. due to poor random number generation) in this 

simulation.

The trace decay value used was dr =  0.45. The neighbourhood was Gaussian 

with initially <7 =  5, initial learning rate  a  =  0.35 and an exponential decay of 

learning parameters, T1 / 2  =  1800. The to tal training time was 8500 epochs.

According to  Equation 4.9, the set of 8 noiseless (A(0) =  0) synaptic histories 

for the set of 1-dimensional bipolar sequences of length three is

Si e  {-1.6525, -1.2475, -0.7525, -0.3475,0.3475,0.7525,1.2475,1.6525} (4.12)

calculated by taking all possible permutations of inputs thus:

{{^(1) =  ~ l> f(2 ) =  —l,f ( 3 )  =  —1}, • • •, { /(I)  =  -hi) 7(2) =  4-1,7(3) =  4-1}}

Figure 4.12 shows the probability distribution, in one dimension, of formed train­

ing vectors for the simulation. The black arrows mark the values of Si from 4.12. 

The clusters are clearly evident and are labelled 1 through 8. Note tha t the centres 

of the clusters are in agreement with the values of 5/.

Of note is the bandwidth of the clusters, which is a key factor in the network 

being able to form a correct mapping. This is the problem that any Kohonen 

network faces when trying to map an input space formed of discrete vectors. If 

this accumulated error giving rise to the bandwidth is not present during training, 

then the mapping in general wiU not converge to a correct solution and is instead
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Figure 4.12: Pattern probability distribution for a single synapse.
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Figure 4.13: Final weightspace plot for bipolar sequences of length three.

distorted, particularly in the much lower density regions of the map which occur in 

the centre.

The bandwidth measured from the results is ±0.16. This agrees very well with 

the calculated value of \Em\ = 0.1657

Figure 4.13 shows the final state of the weight-space for the simulation. There 

is good correspondence between node points and the values for Si.

The labelling for the nodes is shown in Figure 4.14. Each three digits in paren­

thesis is the label for sequences made up of the four patterns [ 0 =  { —1 ,—1},1 = 

{ - 1, ± 1},2 = {±1, - 1},3 = {±1, ± 1} ]

It can be seen that the clustering is of the same form for the TKM i.e by most 

recently presented pattern e.g. bottom-right 16 nodes are the sequences terminating
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(111)(311)(131)(331)(113)(313)(133)(333)

(011)(211)(031)(231)(013)(213)(033)(233)

(101)(301)(121)(321)(103)(303)(123)(323)

(001)(201)(021)(221)(003)(203)(023)(223)

(110)(310)(130)(330)(112)(312)(132)(332)

(010)(210)(030)(230)(012)(212)(032)(232)

(100)(300)(120)(320)(102)(302)(122)(322)

(000)(200)(020)(220)(002)(202)(022)(222)

Figure 4.14: Labelled output layer for bipolar sequences of length three, 

in pattern  2.

4 .9 .2  L earn in g  S eq u en ces o f  L en g th  Four

The above simulation was repeated for sequences of length four, using a square 

network of 256 nodes with param eters o"(0) =  8.5, o:(0) =  0.35, dx = 0.475 and 

a training time T  =  25000 epochs. It was found, over the course of numerous 

simulations (around 50), th a t the best result was one where the network classified all 

but 11 of the 256 sequences (a success rate of 95.7 %). Figure 4.15(a) shows the final 

weight space plot, which shows a few ‘crinkles’ in the positive quadrant responsible 

for the misclassifcations. It seems th a t with suitable param eter ‘tweaking’ tha t all 

sequences could be captured, but it is likely, th a t the lim it for what can be easily 

achieved in a single layer is sequences of length four. This is born out by the 

‘crowded’ pattern  spectrum  for a single synapse shown in Figure 4.15(b).

Clearly, classification of sequences longer than  four will have to be tackled by 

multilayer networks. This will be discussed in Chapter 5.
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Figure 4.15: (a) Final weightspace plot and (b) single synapse pattern  statistics for 

sequences of length four.
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4 .10  T he Im p ortan ce  o f  N o ise  In M ap F orm a­

tion

We have seen tha t the random accumulated noise at each synapse performs a crucial 

role in providing a suitable weightspace to be mapped. In the simulations above, a 

trace decay value of around 0.45 was used which is biologically unrealistic.

Another simulation was carried out, using a trace value of 0.35. It can be seen 

th a t the weightspace is somewhat distorted with resultant misclassihcation.

The main point is tha t noise improves the exploration of the state  space [68]. 

We could thus alter the model to have noisy synapses, which would remove the  need 

for such slow decay rates for the trace histories.

4.11 C om parison  O f Trace M od el W ith  K a n g a s’ 

D a ta  A verag in g  M od el

Kangas has discussed a model which is mathematically equivalent to  the trace ar­

chitecture discussed in the previous section [27]. A memory vector ^ ( t )  is defined 

as forming the average of the input patterns over time.

=  (1 -  w)x^{ t  -  1) +  wx{t)  (4.13)

Kangas described this model as being expected to have better tolerance in a 

noisy environment as the averaging afforded by Equation 4.13 wiU compensate for 

additive noise. But more im portantly, he says tha t the model was “not expected to 

produce very good representations fo r  sequential data, because the following patterns 

will effectively shadow the preceding ones”.

His test system was a simulated object moving in a two dimensional space on a 

figure of eight shaped track with the facility for adding various degrees of noise. The 

problem was to determine which direction the object was traveUing, particularly in
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the cross over region. He reported that in experiments, the classification accuracy 

was improved by data averaging, but tha t there was poor tolerance on the param eter 

w.

Kangas is quite correct to say that shadowing of past patterns will occur in a 

continuous input pattern space. This is however not the case for the discrete (bipolar) 

patterns tha t have been discussed in this chapter. They are in fact guaranteed not 

to overshadow previous patterns.

4.12 Sum m ary o f  C hapter 4

We began by reviewing methods of representing time in neural networks i.e. pattern  

vector concatenation and recurrent architecture models. The advantages and dis­

advantages of such approaches were discussed. We then reviewed work which had 

adapted the Kohonen model to temporal applications.

The leaky integrator model of the neuron was then reviewed and discussed in 

the context of the Temporal Kohonen Map of Taylor and Chappell. The problem of 

weightspace instabiHty when using the standard Kohonen update law with the TKM 

was discussed and a simulation presented showing the model attem pting to map the 

complete set of binary pair sequences of length three. A new model which moved 

the site of leaky integration from the cell body to the synapses was then introduced. 

This new model was shown to retain a history of the actual training patterns which 

allowed the map to more easily form a stable weightspace and thus map longer 

sequences. An analysis of the properties of a single synapse was presented which lead 

to the idea of ‘error bandwidth’ of the representation of a single sequence. Bounds on 

the synapse trace decay were given so th a t the non-overlapping of representations 

was assured. The importance of having a large noise term  was demonstrated by 

simulation; this is because the SOM performs much better when mapping quasi- 

continuous input distributions than  quasi-discrete ones.
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5.1 H ierarchical C lassification o f  Tem poral 

Sequences

We have investigated the classification abihty of a single layer network. The amount 

of training required and the accuracy of the weightspace discriminations needed in­

evitably Hmit the useful abstraction that can be performed in a single layer. The next 

logical step is to consider how multilayer systems can cope with longer sequences.

We wiU use both binary and bipolar variables interchangeably in this section.

5.1.1 C o n n ectio n s B e tw een  Layers

In the standard formalism, the output of the Kohonen layer is a unary vector, with 

the one active line corresponding to the winning node. Such an output vector is 

not of much use when trying to relate topographic relationships between layers. For 

example, we would expect a 4x4 output layer to have a similar output for say the 

node at row 3, column 3 and the node at row 2, column 3. The corresponding unary 

output vectors might be (0,0, • • •, 0 ,0 ,0 ,0 ,1 ) and (0,0, • • •, 1 ,0 ,0 ,0 ,0 ) respectively. 

These can hardly be considered similar! There is thus little tha t a static Hierarchical 

map can do unless it has graded response outputs. How might the graded response 

Pi for each neuron i be defined? Possibilities are

• Some function of similarity i.e. a variajit o fy  =  l/(e -f /? )  where f t  =

and D is the Euclidean distance between input /  and weight vector w. This 

then produces a ^spectrum' of activities, with the winner having the output 

value 1. This is what Kangas calls a ‘response’ [28] [27]. Kangas used a mul­

tilayer strategy to make a ‘more orthogonal’ representation of the raw input 

vectors which could then be integrated according to Equation 4.13 and then 

self-organised by another map. In all cases, he reports tha t using pattern  

concatenation gives superior results.
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• Some output layer topology variant of the above. This might be a gaussian set 

of outputs on the output layer, centred at the winning node. The winner thus 

has output 1 and other nodes are given outputs according to their distance 

from the winner.

5 .1 .2  S im u la tin g  T op ograp h ic  L o ca tio n  by C o -o rd in a te  

P a ssin g

We cau circumnavigate having to feed forward a very large output vector and the 

associated problems of giving the vector a topographic meaning, by arranging the 

output layer to  pass forward the location on the grid of the winning node directly. 

Such a mechanism was employed by W hittington et al [73] in their Hierarchical 

Adaptive Kohonen Feature Map Model (HAKFM). In this case, the coordinates 

were concatenated by a shift register i.e. a tim e delay model and then this vector is 

classified by a higher layer.

Co-ordinate passing can be achieved by an arrangement of two weights per node, 

each weight having a value linearly related to  the particular coordinate (See Fig­

ure 5.1). The input to the next layer then consists of ICîLi ^iW.i for all the n  nodes 

in the feeding layer which is just for a unary output vector z  and winning

node win.

This obviously preserves topological information and means that the need for a 

large interconnecting weightspace is sidestepped. Of course, this does not make any 

biological sense as real layers of neurons are unlikely to be doing this. Having said 

this, the model has simplicity on its side and the dimension of the interconnecting 

weights, namely two, is the same for all subsequent layers.

5 .1 .3  C o -o rd in a te  P a ss in g  W ith  T race A rc h itec tu re

Co-ordinate passing works well with the trace architecture, with the caveat tha t the 

trace decay value dr  must be less than  the smallest inter-pattern separation e.g. if



134 C H A P TE R S. HIERARCHICAL M A P S
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Figure 5.1: Weight arrangement for coordinate passing.

a 1 dimensional array of four points is represented by the set { 0.0, 0.3, 0.7 and 1.0 

}, then the boundary condition is

< 0.3

that is, the worst case scenario would be an infinite string of value 1.0, followed by 

0.0. The above condition must be met if the trace value is not to overlap with the 

first pattern  value 0.3.

5 .1 .4  C lock in g  o f  C o n n ec ted  Layers

Suppose we are trying to train a hierarchical layer B from the output of a previously 

trained layer A. If layer A classifies sequences of length two, say, then we might 

naturally want layer B to classify a sequence of length four i.e. detect two win­

ners from layer A. Of course, layer A generates winners at every time-step. If we 

want there two be just two isolated events on layer A, we have to choose to count 

that there have been two groups of two. The layers thus have to have some form
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Figure 5.2: Single synapse statistics for coordinate passing example (16 x 16 grid).

of synchronisation or clocking to guarantee tha t learning only occurs at the right 

times [72].

A simulation was carried out using clocking on a two layer system, using the 

coordinate set {—1.5, —0 .5 ,+ 0 .5 ,-f 1.5}. The single synapse statistics for this set is 

shown in Figure 5.2. The first layer was trained to respond to sequences of length 

two and then the second layer was trained on the coordinate data of the first layer. 

This correctly classified all 256 sequences, as predicted.

5 .1 .5  L earn in g  at E very  T im e -S tep

There is no reason why a two-layer feed-forward system, where the first layer is 

classifying sequences of length two, has to have a clocking mechanism as described. 

There is no requirement for it to segment the sequences into chunks of length two. 

In the hierarchical stack of Kohonen maps used by Tatersall et al, there is learning
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at every time-step [67] [66].

Suppose in our two-layer system, we have feed-forward at every time-step. W hat 

will the second layer actually be classifying?

Consider a 1-dimensional first layer (a hnear chain) which has been trained on 

one dimensional bipolar data and the decay rate of the traces is such that sequences 

of length two are classified. Now consider that the state of this layer is such that it 

has just been presented with the sequence A A. This wül have produced a winner at 

node 1, say. Then assume that a third pattern  is now presented and that it is a B. 

Node 3 will then respond as layer 1 will have correctly classified the sequence AB 

(preceded by AA at the previous time-step). The output vector therefore at times 

t and t -f 1 will be (-f 1,-1,-1,-1) and ( - l ,- l ,- f l ,- l)  respectively. Hence, if layer 2 is 

also classifying sequences of length two, it will actually classify sequences of length 

three from the two patterns presented from layer 1.

W ith learning at every-time step, a co-ordinate passing two layer system easily 

maps the set of 64, length three sequences onto a second layer of 8 x 8 nodes.

5.2 Fully C on nected  Tw o-Layer S ystem s

We want to investigate other forms of communicating co-ordinate information be­

tween layers th a t does not require multivalued neuronal outputs, but equally impor­

tantly has an intrinsic topographic structure. The most obvious choice to investigate 

is the full pass forward of all outputs of the feeding layer i.e. for a 4 x 4 feeding layer, 

this output is a 16-d unary coded vector. We would expect some hmited clustering 

abihty due to the integrated trace values i.e. the output vector will no longer appear 

to be unary coded to the second layer. We wiU look at learning at every time-step 

for the second layer.

A simulation was performed where layer 1 was first trained on two-dimensional 

bipolar sequences (sensitive to length 2, i.e. there were 16 neurons arranged in a 

square grid). The sixteen dimensional output of this layer was then used to train a
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Figure 5.3: Labelled output layer for fully connected two-layer system.

12x12 layer 2. The output of the first layer was arranged to  be bipolar also i.e. +1 

for the winning node and -1 otherwise. A 12x12 grid was used for the second layer 

due to the extrem e dimensional reduction the layer was expected to  form. It was 

found to be impossible to compress the  patterns on to  anything smaller.

Figure 5.3 shows the labelled output layer at the end of the run. All sixty-four 

patterns have been captured and it can be seen th a t each group of four patterns 

terminating in a particular pair (eg XOO at the  bottom  right) are locally correct in 

their clustering. However, global clustering is not good.

5.2 .1  A n  E n forced  O u tp u t S p e c tru m  For P r e se r v in g  T o p o ­

lo g ica l In fo rm a tio n

We have seen th a t there is no connection between particular elements of the output 

vector and th a t this vector is very sparse. For a network of n  nodes there is only a
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Figure 5.4: Use of activated patch to represent topology.

1/n chance of that node being a winner (assuming that the nodes have mapped the 

input distribution correctly). Consider that we now choose to enforce some structure 

on the nature of the output (as described above). Say that a winner has been found

in response to some pattern/ pattern sequence. Instead of the output being -f 1 for

this node and -1 for all others, that there is an ‘activated patch’ that surrounds the 

position of the winning node (See Figure 5.4)

Each output yi might be defined along the lines of

yi = exp (-R i I2(t^) for Hi < R^ut (5.1)

yi = —1 otherwise

where a = n /4 , n is the number of nodes in the (square) output grid, R{ is the 

physical distance between the winning node and the node i and Rcut =  2<r is a 

cut-off distance beyond which nodes are ‘off i.e. have output -1.

We repeat the simulation of the previous section, utilising the above form for y{. 

For a 4x4 network, this results in just a cross-shape of activity around the winning
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Figure 5.5: Clustering using gaussian profile activated patch.

node. But this simple correlation of topologically close outputs produces a dramatic 

improvement in the global clustering properties exhibited by layer 2. Figure 5.5 

shows the output state of layer2 which has been divided up to show the clusters. All 

sixteen clusters are present as before, but now they are ail topologically correctly 

positioned as per the topology of layer 1. The outer ring of twelve clusters are easy 

to follow round and the positions of the inner four are also correct (of course, the 

layer does not look perfect because of dimensional reduction).

Although each cluster is formed and is in a globally correct position, we can see 

that there is no structure internal to each class. If we extend the cutoff range to 

Rcut = 3(j, we note significant improvement of local performance in clustering i.e. 0 

in the top left, 1 in the top right, 2 in the bottom left and 3 in the bottom right of
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Figure 5.6: Clustering using an activated patch with extended cut-ofF range.

most clusters (See Figure 5.6). The subdivision is not perfect, however, within the 

central 4 clusters. This can be accounted for by recognising that interior nodes on 

the feeding layer have a higher probability of having a positive output i.e. making an 

active contribution to the output vector. They have physically more nodes around 

them to force them to be part of the output spectrum.

5.3 G rey-C ode R epresentation o f Topology

An alternative approach to communicating topological information that does not re­

quire continuous values (and hence should be much more applicable to the synaptic 

trace model) is one where the topographic position of a node on the grid is repre-
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Figure 5.7: weight organisation for greycoding of a 4 x 4 layer

sented as a ‘grey-code’ [3]. This means that there is a fixed number of bits available 

to represent each of the x and y coordinates. For example, a 4 x 4 square layer 

requires 2 bits for both x and y dimensions, so that each node requires a total of 

four bits or weights. The arrangement of weights seen by the next layer is shown in 

Figure 5.7

In general, an M x M grid wiU require 21og2(M) weights per node. The training 

vector for the next layer is the concatenation of the greycodings for the x and y 

components i.e. ( ^ , ^ )

Figure 5.8 shows the codings for each node. Moving along either the x or the y 

direction, we can see that each node’s weight vector differs by 1 bit and that this 

arrangement is topological e.g. the two highlighted weights in the diagram. This 

code is topological with respect to the Hamming distance metric [24].

Simulations were carried out on a 4 x 4 initial layer and an 12 x 12 final layer as 

before, with the greycode weights shown in Figure 5.8.

We can see from Figure 5.9(b) that coarse grouping by last pattern presented
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Figure 5.8: x and y greycode components for a 4 X 4 grid

has occurred, but that the fine structure of the map is fairly poor. Why should this 

be the case?

5.3.1 M apping Four D im en sion al G rey-C ode V ectors On 

A Single Layer

We can simplify the question of why the grey code model does not live up to ex­

pectation by choosing to map an explicit set of 4-dimensional training vectors on 

to a single layer. There is now no confusion as to what the layer is attempting to 

map i.e. we can distinguish between any errors in implementing the grey-code model 

and the coding scheme itself. The following set of training vectors was used in the 

simulation:

(0,0,0.0) 00 (0,1,0,0) 10 (1,1,0,0) 20 (1,0,0,0) 30

(0,0,0,1) 01 (0,1,0,1) 11 (1,1,0,1) 21 (1,0,0,1) 31

(0,0,1,1) 02 (0,1,1,1) 12 (1,1,1,1) 22 (1,0,1,1) 32

(0,0,1,0) 03 (0,1,1,0) 13 (1,1,1,0) 23 (1,0,1,0) 33

Here, each training pattern is followed by a label formed from the (x, y)  coordinate 

of the node we might ideally like the pattern to represent (subject of course to the 

usual rotation and reflection transformations of the self-organising map). We can 

use these vectors just to test the topographic properties of the greycode scheme used
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Figure 5.9: Single synapse statistics and clustering diagram for grey coding.
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ie we use single time step sequences consisting of each of the above pattern set. Two 

typical results are:

30 00 10 20 33 32 02 03

33 03 13 23 23 22 12 13

32 02 12 22 20 21 11 10

31 01 11 21 30 31 01 00

It can be seen th a t there is some locally correct (but this is not consistent from sim­

ulation to  simulation), but not globally correct topographic structure. The reason 

for this is tha t vectorially, the separation between the vector with label 00 and that 

with label 01 is the same as tha t between 00 and 30. In such a binary coded case, 

the Hamming distance and the EucHdean distance are the same. Hence EucHdean 

distance relationships between vectors with real components (our co-ordinates in 

this casé) are not preserved in their grey-code representation. The meaning of the 

position of a particular vector component is not taken into account by the distance 

matching algorithm as the Hamming distance can only measure the number of places 

in which two vectors differ [24]. Topological information is thus not preserved and 

there are multiple correlations between vectors which should ideally not have such 

correlations.

5.4 ^Triangular’ C oding o f  Topology

We want a coding scheme tha t is similar to the grey-coding, but which has an 

unambiguous global form. This coding must have a restricted set of correlations 

between vectors tha t we want to be topologically close. Consider now the following 

coding for (z, y ) positions of a 4 x 4 grid, based on a higher dimensional weightspace 

of six bits, three per dimension:
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(0,0,0,0,0,0) (0,0) (0,0,1,0 ,0 ,0) (1,0)

(0,0,0,0,0,1) (0,1) (0,0,1,0,0,1) (1,1)

(0,0,0,0,1,1) (0,2) (0,0,1,0,1,1) (1,2)

(0,0,0,1,1,1) (0,3) (0,0,1,1,1,1) (1,3)

(0,1,1,0,0,0) (2,0) (1,1,1,0,0,0) (3,0)

(0,1,1,0,0,1) (2,1) (1,1,1,0,0,1) (3,1)

(0,1,1,0,1,1) (2,2) (1,1,1,0,1,1) (3,2)

(0,1,1,1,1,1) (2,3) (1,1,1,1,1,1) (3,3)

This is a 2-d concatenated form of so called thermometer coding [3] [21]. Now, 

each position representation has a greatly restricted number of nearest neighbours 

e.g. the corner position (0,0) has a representation tha t is (equally) topologically 

close to (0,1) and (1,0). These are exactly the two vectors th a t it should be adjacent 

to. Similarly, an interior point such as (2, 2) has only four  nearest neighbours: 

(2,3),(1,2),(2,1) and (3,2). This coding thus preserves the Euclidean to  Hamming 

transformation. The results of self-organising these vectors on to a 4 X 4 network is

(3,3) (2,3) (1,3) (0,3)

(3,2) (2,2) (1,2) (0,2)

(3,1) (2,1) (1,1) (0,1)

(3,0) (2,0) (1,0) (0,0)

i.e. a perfect mapping. The number of weights required is 0 (M ) =  2(M  — 1) 

per node which is much more preferable to the O(M^) weights used in the fuUy 

connected model.

5.4 .1  Iso m o rp h ic  C od in gs

The 3-bit coding scheme is one of a set of equivalent coding schemes for representing 

4 topological scalars. They are generated from the following rules:
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Figure 5.10: Triangular coding isomorphisms.

1. Start with the vector (0,0,0)

2. Generate all vectors th a t differ from the parent by 1 bit.

3. Form a further generation by changing another bit. Do not repeat any previ­

ously generated vector from any part of the tree above.

The partially completed tree of vectors generated by this algorithm is shown in 

Figure 5.10. In this instance, the path  ending in the second terminal represents the 

familiar triangular coding. AU six codings can be generated by permuting the three 

column vectors (0 ,0 ,0 ,1 )^ , (0 ,0 ,1 ,1 )^  and (0 ,1 ,1 ,1 )^ .

5 .4 .2  H ierarch ica l C la ssifica tio n  U sin g  T riangular C od in g

We now consider sequences of length two, comprised of the above set of 6-d training 

vectors. Some initial simulations carried out on a 16 x 16 grid for aU 256 possible 

sequences showed only a mapping success ra te  of 58%. A simpler training set was 

used (sixteen, length two sequences comprised of (0,0) and each of the above set) to 

investigate this poor result and it was found th a t a rectangular grid of 4 x 6 neurons 

produced a near perfect topological mapping of this reduced set of sequences (See 

Figure 5.11).
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Figure 5.11: Labelled output layer for reduced set of sequences.

4 5 0 0

4 0 0 0

3 5 0 0

3 0 0 0

2 5 0 0

2000

1 5 0 0

1000

5 0 0

t r a i n i n g  v e c t o r  p r o b a b i l i t y

0 . 2  0 . 4  0 . 6  0 . 1 . 2  1 . 4

Figure 5.12: Single synapse statistics for triangular coding.
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The reason for the increased difficulty in mapping sequences of this coding is that 

the different synapses are not equiprobahle to receive an on signal. Thermom eter 

coding is not an equal weight code [24] meaning tha t representations of increasing 

magnitude scalars have increasing number of set bits, and these bits remain on. 

A particular synapse will have the elements of one of the coding’s three column 

vectors (recall these are (0 ,0 ,0 ,1 )^ , (0 ,0 ,1 ,1 )^  and (0 ,1 ,1 ,1 )^) as its training set. 

For example, lets say the training set is {0,0,0,1}. Thus P ( l )  =  1/4 and P(0) =  

3/4. The probabilities for possible sequences of length two are thus P({0 ,0}) =  

9 /16 ,P ({0 ,l> ) =  3 /1 6 ,P ({ l,0 > ) =  3/16 and P({1,1}) =  1/16 i.e. in the ratio 

9 : 3 : 3 ; 1. Figure 5.12 shows the pattern density statistics of a single synapse 

exposed to the training set of our example. The measured ratios in this simulation 

were 9.07 : 3.11 : 3.11 : 1.00 (trace decay value was 0.3). The symmetry used in 

the trace analysis of the previous chapter (which assumed a 50% probability of an 

active input) is thus broken with a resultant ‘strain’ on the weightspace. Clearly, if 

the four patterns were presented with the above frequency, then there would need 

to be sixteen nodes to produce the correct mapping.

When the geometry of the 16 x 16 grid was changed to 30 x 20 (i.e. an increase 

in the number of nodes by a factor 2.34) the capture rate of sequences of length two 

rose to 74%. This rose to 88% for a grid of 40 x 30 nodes (4.69 times the desired 

number of nodes for the job).

5.5 Super-L attice N etw orks

It is clear that complete feedforward of large dimensionality vectors to increasingly 

large networks is a poor strategy for abstraction. It is unreasonable to  expect one 

single self-organising layer to be able to accurately process a geometric increase in 

the number of training patterns at each level of abstraction. Each layer is essentially 

duplicating the information from the previous layer.

A very interesting approach to the use of hierarchical Kohonen maps is the



5.5. SU PER-LATTICE N E T W O R K S  149

. 0 0 0 0 0 0 0 0
Super-Lattice . - 'OOOOOOOO

\  O O O O O O O O
V /  O O O O O O O O

O O O O O O O O  §§8§§88§
0 0 0 0 0 0  O/O ..g§§§8§§§ 
0 0 0 0 0 0  O'O" /
O O O O O O O O  
O O O O O O O O  
O O O O O O O O  
O O O O O O O O  
O O O O O O O O

Figure 5.13: The super-lattice architecture.

‘super-lattice’ of M artinetz and Schulten tha t they appHed to controlling a robotic 

arm  and its gripper [43] [62].

The form of the network consists of a normal lattice (in the robot learning 

example a three-dimensional one) to which each node is assigned a sub-lattice (See 

Figure 5.13). The main or super-lattice self-organises its weights in the normal way, 

but then the training vector is also transferred to the winning node’s sub-lattice. 

The sub-lattice then provides a local expansion of the weight space in the vicinity 

of the super-lattice weight vector value.

The big advantage of this scheme is the searching procedure scales in a much 

less time-expensive way. For example, if N,uper is the number of nodes along one 

dimension of the super-lattice and Ng-ub is the number of nodes along one dimension 

of each sub-lattice, then the search time will be

t.,arch ~  (5.2)
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where p is the dimensionality of the super-lattice and q is the dimensionality of each 

sub-lattice. If all nodes were in one network, then the search time would scale as 

^super ’ ^Bub' ^ f  course, each sub-lattice could potentially have a sub-lattice of its 

own.

The learning algorithm is altered to reflect the new hierarchical structure; there is 

a neighbourhood defined for the super-lattice and a second for all neurons p in each 

sub-lattice s. Furthermore, the set p is allowed to contain neighbouring subnets’ 

neurons so tha t there is topographic continuity in the subnets. The effect of the 

winner on these other neurons is scaled by distance accordingly, determined by the 

super-lattice neighbourhood. The super-lattice and and sub-lattices are thus learnt 

concurrently.

This kind of structure would be eminently applicable to the synaptic trace model. 

The sequence length limit of four for the single layer model would not apply in such 

a tree-structured network as the theoretical separation of sequences in pattern  space 

could be expanded by progressively more localised sub-lattices.

Interestingly, similar hierarchical structures exist in the visual cortex of higher 

animals [62] [51]

5.6 Sum m ary o f  C hapter 5

Different strategies for coding the information passed between hierarchical layers 

that would retain topographic information were discussed and reviewed. These 

included co-ordinate passing and Kangas’ ‘response’. The role of clocking was dis­

cussed, along with the meaning of learning at every time step. The results of a naive 

fully connected system were then shown by simulation to be poor.

An enforced output spectrum model was then presented, whereby the output 

activity around the winning node forms a ‘patch’ which is used to train  a higher 

layer. This was shown by simulation to give much improved clustering performance. 

A ‘grey-code’ encoding was then presented and its failure discussed in terms of
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the Hamming-distance vs Euclidean-distance preservation conflict. A concatenated 

form of ‘therm om eter code’ was then presented which has the desired Euclidean- 

distance preserving properties, but is not an equal-weight code which would ideally 

be required for the trace architecture.

A discussion of the super-lattice model of R itter and Schulten was then presented, 

together with the suggestion that this would be a good basis for an hierarchical trace 

architecture model due its local expansion of the weightspace.



152 C H A PTE R S. H IERARCH ICAL M A P S



C hapter 6

D iscu ssion  and C onclusions

153



154 C H APTER 6. DISCUSSION AND CONCLUSIONS

The self-organising map is a very successful neural network algorithm; it has been 

applied to many problem domains, including speech recognition, optimisation and 

robot control. Its primary strengths are its simpHcity of definition and its robustness 

under a wide variety of learning parameters. These are made even more attractive 

by the observation that it displays many of the properties of biological topographic 

mappings.

Kohonen himself has in the past described using ‘rules of thum b’ for the initial 

learning parameters of the self-organising map, and for their rates of change dur­

ing learning. These are usually gleaned from experience of using the SOM. We have 

presented here an extended model of the SOM which addresses the problem of learn­

ing param eter time course and how this may be determined dynamically. We have 

developed this in terms of a sequence of stable states. These states are reached dur­

ing learning periods of constant parameter values (learning rate and neighbourhood 

size), these parameters restricting the ‘volume’ of pattern  space that can currently 

be effectively mapped. A simple metric was then used to identify the stable states 

and allow a transition to a new, smaller learning rate and neighbourhood size. We 

then showed how this model performs under standard tests of the self-organising 

map through simulations. Furthermore, we have shown that the new parameters, 

the transition decay constant A and the smoothing constant introduced by the 

model are more general than the parameter (an externally imposed time scale Î 1 / 2 ) 

tha t they replaced. They can be taken ‘off the shelf’ and applied unchanged to a 

variety of scenarios, both performing benchmark examples Hke mapping the unit- 

square and more complicated inputs requiring dimensional reduction.

A ttem pts in the past to introduce temporality into the Kohonen model have 

primarily consisted of pattern  concatenation. The Temporal Kohonen Map of Taylor 

and Chappell overcame many of the problems of such a time-delay model, primarily 

through simplicity of architecture and removal of an explicit time-window. The 

leaky-integrator neurons employed in this scheme utilised a known property of real 

neurons, tha t of integration of cell body activity, decaying over a short period of time.
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We have shown here that the application of the standard Kohonen law (i.e. rotation 

of the neighbourhood to the most recently seen pattern) to such tem poral nets is 

not general enough to cope with producing a suitably accurate enough weightspace 

configuration for binary pair sequences longer than two time steps and th a t even then 

the weightspace cannot tolerate the neighbourhood size and learning rate tending 

to zero at long times.

We have highlighted the need for the system to maintain a history of the actual 

pa ttern  vectors th a t comprise a pattern  sequence and not ju st the nodes’ scalar 

activity in response to those presented patterns in the past (as in the model of 

Taylor and Chappell). We thus provided the motivation to include the integration 

of incoming signals at the synapses of every node in the network. This forms the 

‘trace architecture’ temporal Kohonen map. We have shown by simulation tha t 

the binary pair problem has a stable weightspace even as the  learning param eters 

tend to zero with this model. We have also shown tha t in principle such traces can 

distinguish binary sequences to any desired length, although in practice the SOM 

algorithm itself severely restricts what can be done (in term s of the information 

overload of dimensional reduction). We presented the case of a 16 x 16 SOM th a t 

learnt almost the complete set of 256 sequences of length four bipolar pairs.

We have investigated ways of implementing multilayer tem poral topographic 

mappings, as a means of further extending the model so th a t longer sequences can 

be more easily claasified. Various coding schemes have been used to represent the 

topographic nature of the feeding layer. Coordinate passing was found to be the 

easiest and most obvious route, but is biologically implausible. We found th a t 

imposing a structure on the otherwise unary output vector of the feeding layer 

m et with some success, but was too close to being real valued to provide effective 

discrimination of temporal sequences.
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The triangular coding scheme has certain desirable properties

• It is binary valued

• It is unique (subject to a simple set of transformations) for a given number of 

bits

• It has an unambiguous topographic meaning

We savy however, tha t necessarily the coding scheme has different probabihty spec- 

trum s on the different synapses (for equiprobable occurrence of a particular topo­

graphic position). This means tha t the weightspace is distorted to reflect this new 

probability spectrum and hence more nodes are required to produce a more complete 

mapping.

Feedforward to ever larger layers seems to be a poor pohcy for abstraction. 

Instead, some architecture along the lines of the Super-Lattice of M artinetz and 

Schulten seems appropriate. Such an architecture frees any particular layer from 

having to  cope with too much information to accurately self-organise and scales well 

with regard to searching. Work is under way to implement such a model.

In conclusion, the Kohonen map remains a focus of interest because of its Hnks 

to observed biological organisation and information processing. It is the most bi­

ologically plausible of the popular artifical neural network algorithms. This work 

has presented two ways in which the algorithm could be extended in the direction 

of increasing flexibihty and biological plausibility: the replacement of an externally 

imposed time scale for learning parameters and the inclusion of temporal features. 

The temporal Kohonen map has aspects still to be explored, but seems hkely to play 

a role in biological information processing, since some mappings of this kind must 

be used whenever it is necessary to transform temporal information into a spatial 

representation. In any case it is a worthwhile topic for future research into artifi­

cial neural systems, being a significant conceptual extension of Kohonen’s original 

model.



A p p en d ix  A

A n  O b ject-O rien ted  E n viron m en t  

For R esearch  In  N eu ra l N etw ork s

157



158 AP PE ND IX A. A N  OBJECT-ORIENTED EN V IRO N M EN T

A .l  O bject-O riented  P rogram m ing  

for N eu ra l N etw orks  

A .2 In trod u ction

T he S p ectru m  of ‘N eurosoftw are’

The huge interest in neural networks over the past few years has spawned much 

so called neurosoftware, that is programs or programming environments aimed at 

simulating neural networks.

Much of this software has been aimed at the business community. A package 

might consist of a graphical front end through which the user can select one of a fixed 

number of neural network models to analyse his/her data. Financial institutions 

are interested in such topics as credit risk or share prices. Hence, such packages 

are restricted to being data-processing tools, and do not offer the researcher the 

flexibilty of constructing and exploring new neural network models.

Programming environments exist to provide a ‘toolkit’ approach to research into 

neural networks. They may offer the researcher libraries of algorithms and a way of 

specifying network topology, for example. AXON, the proprietary language of HNC 

Ltd, provides such an environment [23]. It is essentially the C language augmented 

by data structures and programming constructs tailored for modeUing neural net­

works. It however suffers from the following problems:

• It is proprietary - another researcher will need to buy AXON before software 

can be exchanged. Therefore relatively few people will use the language, unlike 

C-f—f , for example which is much more widespread.

• Each model has to  specified from  scratch. There is no incremental modification 

in AXON.

The PYGMALION environment is an ambitious project aimed at producing a
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full neural network environment, or platform. It is aimed at both the appHcation 

user and also the researcher/developer. It suffers in trying to be too general and as 

a result is extremely complicated - it has for example two separate languages, one 

for high level neural network programming called N  and a separate neural network 

specification langauge called nC[44][55].

A .2.1 W h y  O b ject-O rien ted ?

Object-oriented programming offers many advantages to the designer of a software 

system. These include

• A vehicle for abstraction

• Inheritance and the re-use of code

• Polymorphism

• Information hiding

We will look briefly at what the above offer a programmer trying to write sim u­

lations and more specifically neural network simulations.

A bstraction

Most programming languages provide the facility for some kind of abstraction. Even 

modern BASIC allows for writing functions and procedures. This could be called 

functional abstraction. However, these functions are Hmited to processing built-in 

types i.e. integers, strings, arrays of these simple types etc. Functions in languages 

such as BASIC and FORTRAN must therefore process data  expHcitly at the level 

of the primitive data  types.

Data-abstraction allows grouping of primitive types to form a new data-structure 

e.g. a complex number which might consist of two real numbers. This facility 

is typified by the C language’s ‘structure’ which permits such aggregates. The
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programmer wiU then develop a suite of functions which can operate on this structure 

e.g. functions to return real and imaginary parts from our complex number.

This is all well and good for such simple examples. However, let us return to our 

basic question: How should we model neural networks? We could go along the path 

of our complex number, developing structures and associated functions for different 

parts of a neural network. But we would then find that these elements would not fit 

together. They would all be stand-alone. If we want them to communicate, i t ’s back 

to functions passing built-in types again. We want to be able describe the building 

blocks of our simulation, be they neurons or layers etc, in a generic way.

Inheritance and C ode R e-u se

Inheritance is the lynchpin of object-oriented design. It is a framework which allows 

us to model some entity in a generic way and then to go on and describe specific 

instances of tha t entity. In our problem domain of neural networks, it allows us 

to define a neuron and what data  and functions wiU in general be associated with 

neurons. These functions are called virtual functions, meaning tha t they only need 

to be declared as belonging fundamentally to  our generic definition. Each specialized 

form of neuron, derived from our generic neuron, can then provide a definition of 

what these functions do, or it can inherit the definition from the generic neuron if 

it is provided.

Virtual functions thus provide an invariant interface to a set of related (derived) 

data-types. If you know this interface, you can communicate with any subsequent 

version of the type. For example, we can form Hsts of different types of neuron 

and then treat them  in a homogeneous way. In C-I--I-, this is achieved by impHcit 

conversion to base-type of pointers, objects and references of derived types i.e. a 

derived class can be assigned to  any of its pubHc base-classes without requiring an 

exphcit cast [40, pp298]. W hat this means is tha t it is safe to say that an integrating 

neuron, for example, is just a neuron. This is because the integrating neuron wiU
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automatically have an ordinary neuron as part of its internal structure. If then our 

generic neuron has a function foo  associated with it, then so wiU the integrating 

neuron. The C + +  language automatically matches up the correct version of foo  to 

use on the type of neuron being considered.

Inheritance means that anything that is unchanged in a derived type is auto­

matically carried through to that new type. Thus, if we are deriving from a class 

tha t has ten functions and we want to change the operation of one of them, then we 

only have to provide the code for th a t one function. All the rest are automatically 

included in their original form. This means lots less typing! New types can easily 

be created from ‘off the shelf’ ones and tailored for individual use.

Polym orphism

Polymorphism is the facility for a language to have consistent syntax and semantics 

for different types. For example, we can say a+b where a  and b are two reals, or 

integers or strings or two anything. AU we need to remember is tha t we can add 

these types together. This extends to the whole spectrum of operators and user- 

defined functions e.g. s q r t  can be d e fin e d  to have a meaning for real numbers, 

complex numbers etc. The top level source code is thus vastly more comprehensible 

by humans and aUows the programmer to concentrate on the logic of the program 

rather than the implementation details.

Inform ation H iding

The C + +  language aUows the programmer to control the visibility of data members 

and member functions within a class. This means tha t the end user can be ‘shielded’ 

from the internal representation of a data structure and be denied access to state  

tha t might be dangerous to access directly. Furthermore, provided the interface to 

a class remains invariant, then the internal structure and internal functions can be 

changed without having to rewrite further code th a t depends on tha t interface.
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S u m m ary

The features of an object-oriented language discussed above provide a powerful and 

descriptive framework for modelling neural networks. There can be a close semantic 

mapping between say the model of a neuron and its class description [14].

Furthermore, the incremental specification change th a t inheritance can provide to­

gether with invariant interfaces makes for more readable and intuitive code and code 

that is easier to write and maintain. In the following section we will explore in more 

detail an object-oriented model for describing neural networks.

A 3 B asic A b straction  M od el

A .3 .1  Layers and N eu ro n s A s A  B a s ic  B u ild in g  B lock

A lot of neural networks can be discussed productively in terms of layers i.e. a 

collection of neurons tha t have a clear role in the computation process (e.g. input 

layer, hidden layer, output layer) and sets of inputs and outputs. Networks can then 

be defined in terms of a suitably connected set of such layers. Hecht-Nielsen calls 

such building-blocks slabs [23]. Figure A .l shows a basic model for describing neural 

networks, in terms of generic layers tha t contain generic neurons and a connection 

protocol for linking these layers. A collection of layers will thus constitute a neural 

network.

We will now examine how to  model neurons, layers, networks and other objects 

associated with performing a neural network simulation. AU implementation is in 

C + + .

A .3 .2  D efin in g  A n  A b stra c t S u p er-C la ss for ‘N eu ro n s’

W hat are the defining properties of our generic neuron?

Data connected with the neuron might be:
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Figure A.l: Abstraction Model For Neural Networks
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•  An activity

• An output

• A threshold value

• A description of its inputs

Functions connected with the neuron might be:

• A calculation function e.g. weighted summation of its inputs

• A transfer function

• Functions to access the neuron’s state

• A reset function i.e. clear activity etc 

So, in C-f—H we have

class Neuron 

{
protected:

double activity; 
double output; 
double threshold;
Layer* parent; 

int NeuronID;
// etc

public:
virtual void Update() = 0;
virtual double Transfer(VectorA I, Vectorft W) = 0; 
double GetOutput();
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// etc

};

where Update and T ra n s fe r  are pure virtual functions i.e. the abstract class 

provides declarations of these functions, but provides no default implementation, 

p a re n t  is a pointer to the Layer where the node is situated. NeuronID is just a 

tag-number that is used in locating the neuron’s weight vector.

U p d a te  and Transfer Function D efin itions

The current implementation is such tha t each neuron has a pointer to its parent 

layer. The neuron then runs through each set of connections of the parent and 

appHes the transfer function to the relevant weight and input vector.

Here is an example of the Update and T ra n s fe r  functions for a weighted sum­

m ation binary decision node, here called BDNJIeuron:

void BDN_Neuron::Update()
{

Sitelterator list(parent); // Declare iterator
Site* site; // Site object from iterator
activity =0; // clear current activity

while (site = listO) // weighted sum from connected layers
activity +=

Transfer(site->InputVector() - 
site->weight[NeuronID]

);

output = Threshold(activity); // perform threshold
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double BDN_Neuron::Transfer(Vectorft I, Vectorft W) 

return I*W; // returns dot product
}

A .3.3  Layer class d efin ition

A L ayer class is the container for a collection of neurons. It is comprised either 

of a hnk-Hst or array of Neuron pointers (and the number of nodes), but more 

im portantly defines the following virtual functions:

void Train0  ; 
void RunO ;
Site* ConnectFrom(Layer* from_layer);

These functions implement the learning algorithm^ the operating algorithm and 

the connection protocol. T ra in  and Run call the updating and transfer rules on all 

neurons in the layer.

Layer C onn ection  P rotoco l and S ite  O bjects

The CoimectFrom function provides a connection from  the supphed layer to the 

calling layer and returns a pointer to an object of type S ite . A S i t e  contains 

the from Jayer pointer and also a connection weight M atrix  object. It has access 

functions for these relevant objects. Each layer maintains a hst of S i t e  objects so 

tha t on a training or run cycle, there is complete access to all relevant weights and 

inputs. A weight m atrix may be read in from a file if required.

Currently, the default connection produces complete connectivity^ but there is no 

requirement for this. The implementation is being altered to read in a connectivity 

matrix from an is tream .
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The protocol allows s elf-connection i.e. recurrent networks to be specified in this 

way.

E pilogue and Prologue

Each L ayer can specify an E p ilo g u e  and P ro logue  function. These functions per­

form housekeeping functions at the beginning and end of a simulation e.g. opening 

data files, checking for and initialising connection weights etc. The default operation 

for both of these functions is to do nothing.

A .3.4  N etw ork  c la ss  d e fin itio n

A Network is the container for collections of layers. The principle functions th a t the 

class declares are

void T r ainO ;

void R i m O  ;
void RunSimulationO ;

The T ra in  and Run methods call the corresponding layer methods for each layer in 

the network, in the order th a t layers were added to the network i.e. the order of the 

components in the network determines information propagation between layers.

R unS innilation  is the top level function of the simulation environment. It man­

ages structured training sessions (see Section A.5.2 below) and calls the epilogue 

and prologue functions on all constituent layers.

A Network maintains a list of its component layers. Each layer is added along 

with a tag-name to  allow associative manipulations to be performed e.g. Network 

implements a S ite *  Connect (S trin g ft to L a y e r , S tr in g ft from Layer) function, 

where the arguments are the tag-names of the layers to be connected together. 

Duphcation of tag-names when adding a new layer causes the simulation to exit in 

error state.



168 A P P E N D IX  A. A N  O BJECT-ORIENTED E N V IR O N M E N T

A .4  T he L E D A  Package

The implementation described in the previous section is somewhat inefficient, as 

each neuron has to go through its parent layer to find its weight. It also assumes 

complete connectivity between layers which makes the model much less general. 

The implementation is currently being updated along the same fines as Naher’s 

LEDA (Library of Efficient D ata types and Algorithms) package [50]. This is a 

general purpose set of classes, implementing basic structures such fink-fists, sorting 

algorithms etc, but more importantly, a set of classes for modelling graphs. The 

package has been used by Fritzke to implement the ‘growing cell structure’ Kohonen 

maps described in [17] [18].

Fritzke [19] makes the obvious mapping between graphs and neural networks:

edge weight

vertex ^  neuron 

graph neural-network

Following this framework, each neuron should maintain a  fink-fist of weights which 

in turn  contain à pointer to the neuron feeding it. The weightspace is thus stored 

directly as edges in a graph and the there is no need to  consider their storage in the 

layer structure itself. A rbitrary connectivity is thus natural to this model.

A .5 C lasses for S im ulation  Support

A .5 .1  D a ta  S ources an d  In p u t Layers

The simulator is of little use without specifying a source of input patterns. The 

D ataSource class specifies the form to which data  is supplied to a network, typically 

via an Inpu tL ayer (See Figure A.2).

A D ataSource supplies a stream  of patterns, one for each cycle of the network. 

These may originate from ‘hard-wired’ generators or present sets of patterns read
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InputLayer

Abstract DataSource

Discrete
Distribution
DataSource

Continuous
Distribution
DataSource

Temporal
Sequence
DataSource

Arbitrary
DataSource

Figure A.2: Data Presentation Model

from an i  stream . The DataSource is designed to deal with temporal data i.e. 

it presents sequences of patterns. Hard-wired sources usually present just single 

patterns according to some probabihty distribution function and the DataSource 

can be interrogated to see whether the data actually has any temporal structure 

associated with it.

An InputL ayer is a derived class of Layer and serves as the interface between 

a D ataSource and the rest of the network i.e. it makes sure that the data stream is 

updated, but otherwise provides the same functionaHty of a normal layer.

A .5.2 Training Sessions

A network has a hst of TrainBlocks. These specify what action should be performed 

on a particular layer i.e. one of

1. train
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2, run

3. dormant

where dormemt means that the particular layer should be ignored in this training 

session. This is useful for training hierarchical networks where later layers may not 

be used in training the earher ones.

The T rainB lock  also specifies the d u ra t io n  of the training session in epochs. 

The simulation will abort if there is not at least one valid TrainB lock.

A .6 A n  E xam ple: D efin ing A  Layer To M od el

K oh on en  N etw orks

In this section, we examine a programming model of a Kohonen layer. The exten­

sions to the basic Layer type required are: A description of the geometry i.e. rows 

and columns and a function to index the linear hst of the basic layer type, a function 

tha t implements the competitive search for a winner and suitable training algorithm 

function.

The basic Neuron also needs to be modified. Its T ra n s fe r  function will be one 

tha t sets the neuron’s activity to some function of the EucHdean distance between 

input vector and weight vector.

void KohonenNeuron::Update()
{

Sitelterator list (parent) ; // Declaire iterator 
Site* site = listO; // only one connection allowed

activity =
Transfer(site->InputVector() - 

site->weight[NeuronID]
);
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double KohonenNeuron::Transfer(Vectorft I, Vectorft W)

return mod_sqrd(I-W); // mod_sqrd calculates
// modulus squared

}

The connection protocol is changed so th a t a Kohonen layer can only have one 

set of connections in keeping with the specific meaning of weights in a self-organising 

map. Thus, each simple Kohonen layer must have one and only one Connect From 

call made on it. The P ro logue  function for the Kohonen layer then checks th a t a 

weightspace exists and initialises it to small, random values.

P rocessing  Order

The processing of a Kohonen layer thus takes the following course:

1. Each node calculates its separation from the input vector. This is then defined 

as the activity.

2. Select the winning node for the competition. Set the output of the winner to 

1, all others to  0.

3. If training, adjust all weights towards the winner.

A .6.1 L ab ellin g  F u n ction

The KohonenLayer class provides a function A ttach L ab e ls  which is invoked by 

KohonenLayer: : E p ilogue i.e. at the end of a simulation run. It communicates 

with a specified In p u tL ay e r and interrogates th a t layer’s D ataS ource to  check for 

discrete patterns th a t have a label associated with them . If the data  is of this 

labelled form, then A ttach L ab e ls  assumes control of the entire network and replays
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the entire sequence set of the D ataSource, attaching the label of each sequence to 

the maximally activated node.

A .6 .2  D er iv in g  a T em p ora l K oh on en  Layer

It is now a trivial m atter to form a TKM from a standard Kohonen layer. AU that 

needs to be changed is: addition of a decay rate to Kohonen neurons and change 

their Update functions to integrate their activity. We wiU thus derive the classes

• class TerapKohonenNeuron:public KohonenNeuron

• class TempKohonenLayerrpublic KohonenLayer 

and the new Update function becomes

void TempKohonenNeuron::Update()
{

Sitelterator list(parent); // Declare iterator
Site* site; // Site object from iterator
double new_activity =0; / / a  veuriable for new input activity

while(site = list()) // weighted sum from connected layers
new_activity +=

Transfer(site->InputVector() - 
site->weight[NeuronID]
);

activity = decay_rate*activity
+ new.activity; // integrate

}

The constructor for the temporal Kohonen class then just needs to supply the 

layer "with temporal Kohonen neurons. The basic F indW inner,T rain  and Run func­

tions are aU identical and can simply be inherited. The modifications require only
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about twenty lines of code (the tem poral classes must supply access functions for 

the new decay rate  param eter).

A .7 B u ild in g  a Front-E nd for S im u lation  

A .7.1 T h e  T w o  L evels o f  S im u la tio n  S u p p ort

The construction of derived Layer classes as described above provides a consistent 

and reusable m ethod of programming simulations. However, having to  hand code 

a complete simulation in C + +  can still be a lengthy and error prone task. For 

example, if we wrote a simulation for running a TKM connected to an input layer, 

we would need not only to construct these layers, but then to  set ail the relevant 

param eters such as network geometry, learning rate, neighbourhood size etc. These 

param eter values need to change in the course of performing many experiments. We 

can thus identify two levels at which a researcher will interact with the development 

of a simulation:

• Macroscopic This is the development of new C + +  types.

• Microscopic This is the setting of run time values for particular parameters.

It is the job of the front-end  to provide the microscopic interaction level. It allows 

the rapid exploration of a model through easy access to  its param eters.

A .7.2  P a rsin g  M em b er  F u n ctio n  A p p roach

Suppose we want to be parse the param eter values for a Kohonen layer. AU we wiU 

specify are values for the learning ra te  and the neighbourhood size. We wiU ignore 

aU other param eters for the purpose of clarity. The form of the scriptfile which 

contains this information might be:

KohonenLayer example
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{
alpha = 0.2; 
radius = 4.0;

}

Suppose that this scriptfile is lexically split up into the following token stream: 

‘KohonenLayer’, ‘example’, ‘{’, ‘alpha’, ‘=’, ‘0.2’, ‘;’, ‘radius’,‘=’, ‘4.0’, ‘;’ and

We can imagine defining two virtual functions, one for the header ‘KohonenLayer 

example’ and one for the body part, i.e. the parameter settings inside the curly 

brackets (the opening and terminating brackets are matched by the non-virtual 

Ib ra c k e t and rb ra c k e t  functions). A function peurse to parse the parameters 

would then consist of calling these virtual functions on the t h i s  pointer:

Layer::parse(TokenList TL)

{

header(TL);

Ibracket(TL); 

body(TL); 
rbracket(TL);

}

Thus, the header function would check tha t the type of the layer was correct and to 

ascertain the tag-name of the layer for connection purposes. It would then call any 

relevant functions to set the tag-name etc. The body part would then continue to 

m atch input tokens for the parameters until a terminating brace was encountered.

A derived class would reimplement both header and body functions. The former 

would alter the type check and the latter may typically call its namesake in the base 

class eg.
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Derived: :body(TokeiiList TL,int offset = 0)

{
int pos = this->Base::body(TL); 

int offset;

. // class specific code goes here 

return offset;

}

where the argument pos serves to pass on the position in the token Hst reached.

Thus, in this methodology, inheritance of parsing behaviour is achieved by the 

derived class expHcitly calHng a namesake function in the base class. Having the 

p a rs e  function as a member of class Layer is fine for a fixed network structure  i.e. 

one layer of type A, one layer of type B etc which the parsing function is explicitly 

invoked upon. W hat we want, however, is to be able to specify the order and type of 

simulated network components as part of the microscopic level, tha t is at run time. 

Rules for adding layers must thus be capable of being applied in variable order and 

the scheme discussed does not offer a route to achieving this. Furthermore, we want 

to be able to perform functions other than just construction of a layer, such as 

specification of layer inter-connections, in a homogeneous fashion. We thus look to 

abstracting the microscopic level in terms of very general network rules.

A .7.3 N etw o rk  R u les

We introduce a N etRule abstract class which matches a set of internal patterns and 

then performs an operation on a Network. Our top-level simulation program  then 

consists of creating a bare network, reading in a scriptfile from the outside world 

and then applying all possible rules in a rulebase to the network, according to  th a t 

scriptfile. In this way, different combinations of layers and simulation param eters
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can all be specified at run time. Because all NetRules operate on a Network object, 

they can perform any function tha t a Network understands. If further rules are 

written, all tha t needs to happen is an update of the rulebase. We shall see that 

inheritance of behaviour follows very naturally in this approach.

A .7.4  R u les for R u n -T im e B u ild in g  o f  N etw ork  Layers

The key idea behind a software-engineering approach to rule parsing is tha t each 

Layer has a LayerRule associated with it. A LayerRule is an abstract class derived 

from NetRule, specifically tailored for setting a collection of parameters associated 

with a particular layer.

Subsequent derivations of a Layer use analogous derivations of the corresponding 

LayerRule for that layer. For instance, in our TKM model, we would expect the 

parsing procedure to be identical to the basic Kohonen layer, except for the addition 

of a rule to determine the activity decay rate. We note that this rule structure exists 

outside the Layer classes themselves. It does not make sense tha t each instance of 

a particular layer carries around a complete copy of the parsing information - once 

constructed, the layer needs no further use for it.

Rules are built up from a few simple primitives. These are F ix e d P a tte m s  which 

attem pt to match an exact copy of themselves, and V ar< class T>, a tem plate class 

parameterised by T which must have a global function Convert defined for it. This 

conversion function parses a string and decides whether it has a valid interpretation 

for tha t type. Instances for the three usual types of S t r in g , in t  and double are 

provided by default. A variable of type T must be passed to the constructor of each 

Var<T> which wiU then hold the matched and converted value associated with tha t 

rule.

CompoundRules contain other primitive rules including other compound rules, 

allowing for recursive pattern  matching. UnBlocks are derived from compound rules 

and allow for matching of blocks of rules in an unstructured manner i.e. sub rules
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can appear in any order.

The input to rules is in the form of segmented strings i.e. input is read from an 

is tre a m  and simple lexical analysis is performed by segmenting at the symbols ‘ ’ 

(space character), ‘:’,V a,nd at brackets and newlines. This crude process is all 

tha t is required.

Each rule implements an ApplyRule function which attem pts to m atch from a 

given location in the input hst. If it matches, then it returns the position in the Hst 

where the matching process concluded i.e. the next unused string, and returns -1 

otherwise. For vahd values, the rules are called recursively on all sub rules. If a vahd 

value reaches the top-level, then the rule parse was successful and all the variables 

passed into Veir objects will have values ready to be used in the construction of a 

new layer.

A .7.5 Layer R u les

A LayerR ule is the basic building block for parsing instructions about the run time 

setup of a particular neural network layer. Its structure is simple, consisting of a 

header and a body enclosed by braces. The body is a  rule of type UnBlock so tha t 

param eters can be specified in any order.

<Type>Layer <TagName>

{

. // the 'body'

Each new rule derived from this basic structure can insert a sub-rule into the body 

of the main rule using a function AppendToBody. In this way inheritance of parsing 

information is achieved. The deriving rule can also elect to  call a RemoveSubRule 

function for any inherited access to state tha t is redundant in the derived layer.
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This function takes a string argument and removes a sub-rule which has that string 

as its first component (each type of rule has a virtual string comparison operator 

i n t  o p era to r= =  (S tr in g *  a) which returns false for non-fixed rules).

E x am p le  S u b -R u le

Say we want to m atch the construct ‘a lp h a  = 0 .2 ; ’, where a lp h a  is a learning 

rate for example. The constructor for our particular LayerRule would then have an 

entry

AppendToBody (new CompoundRule (new FixedPatt e m (  "alpha" ) ,
equals,
new Var<double>(alpha), 
semicolon 

)

);

which assumes th a t the rule has a variable called a lpha. After a successful ApplyRule 

call, a lp h a  wiU hold a valid value for this parameter and can be used in the con­

structor/access function of the target layer, eq u a ls  and sem icolon are macros to 

produce rules th a t must match ‘= ’ and respectively.

A .7.6 O th er  K in d s o f  R ule

Other kinds of rule, derived from the NetRule class, perform more specific oper­

ations. These include a rule to connect two named layers together and a rule to 

specify training sessions.

A .7.7  E x a m p le  Script F ile

In this subsection we give an example file used to run a simulation of an input layer 

connected to a tem poral Kohonen map.
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#Coniments may begin a line or terminate them

#declare an InputLayer 
InputLayer layerl

neurons = 2; 
seq.Iength = 3; 
bipolar = 0; 
seed = 29;

#number of neurons 
#provide sequences of length 3 
#use binary data, not bipolar 
#seed for random number

pattem_fiIe_name=none ; #use hard wired DataSource 
}

#declare a TempKohonenLayer i.e. TKM 
TempKohonenLayer Iayer2 
{

cols = 8; 
rows = 8; 
radius = 5; 
half_life = 1800; 
alpha = 0.2; 
aIpha_offset = 0.08; 
patt.Ien = 3; 
IabeI_Iayer = layerl; 
weight.seed = 22; 
decay_rate=0.4;
}

#8 columns 
#8 rows
#neighbourhood size of 5 
#parameter half life 1800 epochs 
♦learning rate of 0.2 
♦learning rate residual of 0.08 
♦sequences of length three 
♦labels from layerl's DataSource 
♦seed for weight initialisation 
♦cell body activity decay rate

Connect{layerl,layer2l ♦join input layer and TKM layer

♦declare a training session
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TrainBlock T1 
{

epochs = 5000; #diiration of 5000 epochs
layerl: run; #layeri will use Run()
layer2: train; #layer2 will use Train()
}

A .7.8 A u to m a tic  R u le  C om p ila tion

A compiler is being designed tha t generates LayerRule classes directly from Layer 

header files. The basic idea is tha t the programmer will put comments after par­

ticular access functions in a header file to indicate these functions wiU need to be 

accessed by the simulation driver. These will all have to conform to the naming 

scheme Set_<VarName>. The compiler will then generate a sub-rule for a variable 

called ‘alpha’ of type ‘double’. In the processing function, the compiler will generate 

the call to Set .a lp h a  (a lp h a ) on an object of the correct type.

class FooLayer:public <Bar>Layer 
{

protected:
double alpha;
// etc

public :
/ /
void Set.alpha(double a); // <ACCESS>

};

class FooRule:public <Bair>Rule 
{

protected:
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double alpha;
ProcessVariablesO ;

// etc

};

void FooRule::ProcessVariablesO 

{

FooLayer* layer = new FooLayer();

// etc
layer->Set.alpha(alpha);

}

The compiler currently is no further than the drawing board stage. Clearly, 

much care will need to be taken over such issues as inheritance and data  hiding.
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