
Æ
UCL

UNIVERSITY COLLEGE LONDON
DEPARTMENT OF COM PUTER SCIENCE

Extending the Kohonen
Self-Organising Map by Use of

Adaptive Parameters and
Temporal Neurons

David A. Critchley

A thesis subm itted for the degree of
Doctor of Philosophy

in the University of London

February 1994

ProQuest Number: 10017742

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com plete manuscript
and there are missing pages, th ese will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest 10017742

Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

A cknow ledgem ent s
No PhD thesis gets written without a lot of backing. This one is no exception:

A huge vote of thanks is due to Denise Gorse, my supervisor, for continued interest
and constructive support throughout the whole duration of my PhD study. I have
been lucky in being able to follow through an area of personal interest whilst being
guided to a completed thesis. Her expertise in proof reading has been invaluable
throughout my writing up period and her knowledge of the entire field of neural-
networks has been invaluable.

Thanks are due to Geoff Chappell and John Taylor for several useful discussions
on the Temporal Kohonen Map.

Thanks are due to David Lee and Simon Courtenage for help with proof reading
and a special mention for Dave Parrott for being a source of wisdom in all areas
during my time at UCL.

I would like to acknowledge the Science and Engineering Research Council of
Great Britain for funding of my study.

Finally, I want to thank my wife Gillian Romano for the huge support and
belief tha t she has given me throughout. Over the months of writing up she has
encouraged, cajoled and bribed me to finish. I cannot overstate her contribution.

David A. Romano-Critchley

February 1994.

A b stract

This work extends the Kohonen self-organising map in two primary ways:

• A dynamic extension to the model which allows the neighbourhood size and

learning rate timecourse to be deduced during learning.

• Inclusion of temporal features, both in single layer and hierarchical networks.

The dynamic learning param eter model is developed as a consequence of how the

self-organising map forms ‘stable states’ under fixed values of the learning parame

ters whilst exposed to a driving probabihty distribution. Such stable states can be

used to deduce an appropriate stage to make a transition to a new set of learning

parameters. This leads to a sequence of states tha t ultim ately result in convergence.

Temporal features are developed in the hght of the Temporal Kohonen Map

model of Chappell and Taylor. It is shown that application of the standard Kohonen

learning law to such a network can lead to instability in the weight space. This

problem is shown to be soluble by moving the integrating characteristics from the cell

body (where it is a scalar quantity) to the synapses (where it is a vector quantity).

Multilayer tem poral topographic mappings are discussed in terms of coding

strategies between layers. The codings examined include complete feed-forward,

feed-forward with enforced output spectrum and ‘triangular coding’, a binary cod

ing of topology.

C on ten ts

1 Introdu ction 13

1.1 Why Neural C om puting? ... 14

1.1.1 W hat is neural computing? .. 14

1.1.2 The History Of Neural Networks Research...................................... 16

1.2 Fundamentals Of Neural Networks ... 17

1.2.1 Biological N e u r o n s ... 17

1.2.2 Artificial Neurons: Connections, Weights and Synapses 18

1.2.3 Fault Tolerance and G e n e ra lisa tio n ...18

1.2.4 The Binary Decision Node (B D N)..20

1.3 Categorisation of Neural N etw orks.. 21

1.3.1 Functions Performed By A Neural N etw ork21

1.3.2 A rc h ite c tu re s ...21

1.4 Learning in Neural N etw orks.. 24

1.5 Summary of Chapter 1 ...25

2 T he K ohonen Self-O rganising M ap 27

2.1 The Kohonen Self-Organising Map ...28

2.1.1 In tro d u c tio n .. 28

2.1.2 Aim Of The Self-Organising M a p ..28

2.1.3 Basic A rc h i te c tu r e ... 29

2.1.4 Node Function ... 30

7

8 C O NT EN TS

2.1.5 Learning L a w ..32

2.1.6 Neighbourhood Functional F o rm ... 33

2.1.7 The Initial Weightspace Configuration ..34

2.1.8 Time Dependence Of Learning P a ra m e te rs 35

2.2 Visualising Network Behaviour.. 36

2.2.1 A 2-Dimensional Training E x a m p le .. 36

2.2.2 Dimensional R eduction ... 40

2.3 Visualisation of the S O M ..41

2.4 Learning Vector Quantisation (L V Q) ...44

2.5 Applications of The Self-Organising M a p .. 45

2.5.1 The Phonetic Typew riter..45

2.5.2 The Travelling Salesman Problem (T S P) .. 48

Definition of the T S P ... 48

2.6 Summary of C hapter 2 ...49

3 A daptive Param eters 51

3.1 Convergence Properties: A R e v ie w ..52

3.1.1 Constraints on Learning Rate Functional F o rm 52

3.1.2 Selecting Optimal Network P a ra m e te rs ... 52

3.1.3 M etastable S ta te s .. 53

3.1.4 Neighbourhood Functions In The General Case 54

3.2 Problems W ith Kohonen's Learning Algorithm... 55

3.3 Adaptive Learning Parameter C hange.. 56

3.4 Stable States In Kohonen Maps... 56

3.5 Triggering Adaptive Parameter C h a n g e ...57

3.6 Identifying Stable States.. 60

3.7 Making Transitions..62

3.8 Factors Affecting Stable S ta te s ..63

3.9 Results Of Simulations... 63

C O N T E N T S 9

3.9.1 Using a Fit Function . . ' ... 63

3.9.2 Comparison of M o d e ls ...65

3.9.3 2-DimensionaI C a s e ... 65

3.9.4 1-Dimensional C a s e ... 67

3.9.5 Effect of Varying X and 6 ... 70

Varying A .. 70

Varying 6 .. 74

3.9.6 Effect of Changing a(0) 74

S u m m a ry .. 80

3.10 An Improved Measure For Identifying Stable S t a t e s82

3.10.1 A More Practical E x a m p le ... 83

3.10.2 Extensions and Improvements : Further Work On The Dy

namic Model ... 90

3.11 O ther Dynamic Variants On The S O M ..90

3.11.1 A Novel Approach To Improving Learning Speed90

3.11.2 Dynamic MST Neighbourhoods.. 91

3.11.3 Adaptive, Tensorial W eigh ting .. 92

3.11.4 Growing C e ll-S tru c tu res ...93

3.12 Summary of Chapter 3 .. 94

4 T e m p o ra l K o h o n en M ap s 97

4.1 Representing Time In Neural N e tw o rk s ...98

4.1.1 Time-Delay N etw orks.. 98

4.2 Recurrent N etw orks..100

4.2.1 Why Recurrent N e tw o rk s? ... 100

4.2.2 Fixed Point N etw orks................... 100

4.2.3 Real-Time Recurrent L earn ing .. 103

4.2.4 Teacher-Forced Real-Time Recurrent L e a rn in g 103

4.3 SOM Adaptations For Temporal P ro b le m s 104

10 C O NT EN TS

4.3.1 The Phonetic T ypew riter..104

4.3.2 AUcgraphotopic Maps ...105

4.3.3 Hypermap Architecture ..105

4.3.4 Response Integration, D ata Averaging and Pattern Concate

nation M odels ...108

4.4 Leaky Integrator Neurons .. 109

4.5 The Temporal Kohonen M a p ... 110

4.5.1 Virtual Training V e c to r s ...I l l

4.5.2 Nature of the Clustering .. 113

4.5.3 Rolling P r o p e r t y .. 113

4.5.4 Learning Law: Instability and Weight B u n ch in g 114

4.5.5 Using The TKM for Syntactic A n a ly sis ..117

4.6 Using Virtual Vectors In T ra in in g ...119

4.7 Formation of Virtual Vectors Using T r a c e s ... 120

4.7.1 W hat are T rac e s? .. 120

4.7.2 Learning Law and Training D a t a ...121

4.7.3 Trace A rc h ite c tu re ... 121

4.8 Analysis of Trace A c t iv i ty ..122

Noise and Error Bandwidth122

Trace Reset Value and Binary versus Bipolar D a t a 123

4.9 Experimental R e s u lts ... 124

4.9.1 An Example - Pair Sequences of Length T h re e 124

4.9.2 Learning Sequences of Length F o u r 127

4.10 Importance of Noise ... 129

4.11 Comparison of Trace M o d e l .. 129

4.12 Summary of Chapter 4 .. 130

5 H ie ra rch ica l M ap s 131

5.1 Hierarchical C la ss ific a tio n 132

C O N T E N T S 11

5.1.1 Connections Between L ay e rs ... 132

5.1.2 Co-ordinate p a ss in g ...133

5.1.3 Co-ordinate Passing W ith Trace A rc h i te c tu r e 133

5.1.4 Clocking of Connected L a y e r s ...134

5.1.5 Learning at Every T im e - S te p ...135

5.2 Fully Connected Two-Layer S y s te m s ..136

5.2.1 Enforced O utput Spectrum .. 137

5.3 Grey-Code Representation of T o p o lo g y ... 140

5.3.1 Mapping Four Dimensional Grey-Code Vectors On A Single

L ay er.. 142

5.4 ‘Triangular’ Coding of T opo logy .. 144

5.4.1 Isomorphic C od in g s ... 145

5.4.2 Hierarchical Classification Using Triangular C o d in g 146

5.5 Super-Lattice N etw orks... 148

5.6 Summary of Chapter 5 ... 150

6 D iscussion and C onclusions 153

A A n object-orien ted environm ent 157

A .l OOP for Neural N e tw o rk s .. 158

A.2 In tro d u c tio n ...158

The Spectrum of ‘Neurosoftware’ ...158

A.2.1 Why O b jec t-O rien ted ? ...159

A b s tra c tio n ...159

Inheritance and Code R e-use... 160

Polym orphism ..161

Information H id in g ..161

S u m m a r y .. 162

A 3 Basic Abstraction M o d e l ..162

12 C O NTENTS

A.3.1 Layers and Neurons As A Basic Building B l o c k 162

A.3.2 Defining An Abstract Super-Class for ‘Neurons’162

Update and Transfer Function Definitions 165

A.3.3 Layer class d e fin itio n ... 166

Layer Connection Protocol and S i te Objects166

Epilogue and P ro lo g u e ..167

A.3.4 Network class definition .. 167

A.4 The LEDA P ackage.. 168

A.5 Classes for Simulation S upport...168

A.5.1 D ata Sources and Input L a y e r s ... 168

A.5.2 Training S e ss io n s ... 169

A.6 An Example: Defining A Kohonen L a y e r ...170

Processing O r d e r ... 171

A.6.1 Labelling F u n c t io n ..171

A.6.2 Deriving a Temporal Kohonen L a y e r ...172

A.7 Building a Front-End for Simulation ... 173

A.7.1 The Two Levels of Simulation S u p p o r t ..173

A.7.2 Parsing Member Function Approach ...173

A.7.3 Network Rules .. 175

A.7.4 Rules for Run-Time Building of Network L a y e rs176

A.7.5 Layer R u l e s ...177

Example S u b - R u le .. 178

A.7.6 Other Kinds of R u l e .. 178

A.7.7 Example Script F ile ... 178

A.7.8 Automatic Rule Com pilation...180

C hapter 1

In trod u ction

13

14 CHAPTER 1. INTRODUCTION

1.1 W h y N eu ra l C om puting?

1.1.1 W h a t is n eu ra l com puting?

The first useful electronic digital computer appeared in 1946. From that point until

the late 1980s, practically all information processing has been tackled by a single

stratagem, th a t of programs. A computer programmer has always sat down and

compiled a set of rules and algorithms which are then embodied in software. The

program then follows the specifications set down to the letter, its behaviour only

changing from incremental improvements and revisions added by the programmer

(ignoring bugs, which are just unforeseen errors in the implementation of the rules).

This situation is ideal for where the rules that apply to a particular appHcation are

clearly defined. Because computers are entirely logical in operation, code must be

perfect for it to work as anticipated. Exhaustive design and testing, followed by

cycles of refinement is a time consuming and expensive process. The conventional

approach, then, falls down in two areas:

• Formulation of rules for solving a problem is often highly complex, if not

impossible.

• Translation of the rules into a computer program will always result in errors

at some level, and these errors will typically result in a program ‘crash’ or

entirely unanticipated outcome.

Neural Computing has emerged as the antidote to this situation for many areas

of difficult problems such as pattern recognition and data analysis. It has long been

known th a t the brain solves the tasks of vision, speech recognition, co-ordination of

muscle movements and other complex data processing operations tha t are so difficult

to even attem pt on a digital computer. It does so in a fault tolerant manner, many

thousands of cells die in the brain each day and are not replaced, but our faculties

do not disappear in a drastic fashion (in contrast with the effect of a programming

1.1. W H Y N E U R A L COMPUTING? 15

error as described above). Furthermore, in a case like speech or vision, the problem

is an intrinsically parallel one, with a multitude of different and conflicting inputs

th a t trigger memories and ideas. It is the combination of all these different processes

tha t allow us to perform these tasks. The brain, with its massive parallelism, is able

to store and represent this knowledge in an accessible way and combine it with other

stimuh. It is not speed tha t dominates the operation, the basic computing speed of

a modern computer being a million times faster than the firing rate of a neuron. It

is the parallelism which is why the brain is good at its job. For example, humans

when asked to carry out a task Hke comprehending a phrase in English, can do so

in about half a second. The basic computing speed of a neuron is around a few

milHseconds and so such a task is only needing about a hundred steps [16].

The brain does have a large number of neurons, estim ated at around 10d° and

each one is connected to about 10 ̂ other neurons. However, this seemingly huge

number is quite a limitation. An illuminating example is th a t of vision, which has

about a million parallel inputs. Clearly, the brain isn’t running an O(n^) algorithm

as it wouldn’t fit! [16]

But perhaps the most striking and im portant aspect to note, is th a t biological

brains leam from experience and learn without rules. Children learn to speak from

example, to write, in fact everything we associate with inteUigent behaviour. People

malce mistakes, bu t the difference is tha t they learn from them and are less likely to

make them in the future.

Thus, neural computing is an attem pt to extract from living neural networks

algorithms and architectures th a t can be used for information processing in arti

ficial neural networks. The bottom up approach to the problem includes detailed

analysis of biological neurons, synapses etc. In contrast, the top down approach

includes study of architectures of functionally specific areas of the brain such as the

hippocampus (believed to relate to short term memory) and higher cognitive pro

cesses. The trend is towards ”a reverse engineering” perspective in which biological

mechanisms are used to solve difficult information processing problems [20].

16 C H APT ER 1. IN TR O D U C TIO N

1.1 .2 T h e H isto ry O f N eu ra l N etw ork s R esearch .

The field is currently enjoying a renaissance, following in the wake of Rum elhart

et al and the multi-layer perceptron (circa 1986) [45]. Its origins, however, are

much earher; Aristotle had an eulogies for mental processes, or thoughts, based on

hydrodynamics [34]. Turing was aware of the possibiHty of modeUing intelligent

functions of the brain by neuronal computation [25], as was von Neumann who

showed that neural networks could be equivalent to Turing machines [23]. Modern

approaches to neural modeUing can be traced back to the work of McCuUoch and

P itts in 1943 on the coUective properties of thresholding, neuron-hke processing

elements [46]. These networks were put forward as general computing devices.

In 1949 Donald Hebb suggested tha t in biological networks, it is the synapses i.e.

connections between separate neurons tha t are modified when the system leams [22].

Hebb went further to say that frequently active synapses should be modified so as

to achieve greater chance of being active in the future. This is an example of un

supervised learning. Frank Rosenblatt used a different error-correcting supervised

learning paradigm in 1957, by building an artificial network of what he called ‘per-

ceptrons’ [64]. Such a system could solve simple linearly separable pattern recogni

tion problems.

Work continued through the sixties but was dealt a crippHng blow in 1969 due

to the work of Minsky and Papert tha t highhghted the failure of single layer percep

tions to solve simple non-hnearly separable problems such as exclusive-or and also

highlighted how im portant an issue scaling was [47]. They went further to speculate

tha t even the addition of extra layers would not improve computational power sig

nificantly, saying tha t “the extension is sterile” in the lack of a general learning rule.

Dreyfus and Dreyfus describe Minsky and P apert’s ‘a ttack’ on ‘gestalt thinking in

AF as having succeeded beyond their wildest dreams [12]; interest and more im por

tantly funding was diverted almost exclusively to their own domain of rule-based

artificial inteUigence.

1.2. FU N D AM EN TAL S OF N E U R A L N E T W O R K S 17

dendrites

synapse

a)^n hillock
axons of

impinging cells
axon

synapse

Figure 1.1: Generic biological neuron.

Some researchers, notably Grossberg, Kohonen, Aleksander, Hopfield and Taylor

were active in the ‘quiet period’ before the recent upsurge of interest in the subject,

but it was certainly the multilayer perceptron and ‘back-propagation’, its learning

rule, th a t opened the floodgates.

1.2 F u n d am en ta ls O f N eu ra l N etw ork s

1 .2 .1 B io lo g ic a l N eu ro n s

AU artificial neural networks consist of simple processing units, nodes or neurons

which have some similarities with neurons in biological brains. EssentiaUy, a neuron

is a decision unit.

The basic features of a biological neuron are shown in Figure 1.1. Inputs are

18 CHAPTER 1. IN T R O D U C T IO N

‘collected’ by the cell’s dendrites through synaptic connections from other neurons.

These inputs are then summed at the ajcon hillock, some being excitatory and some

being inhibitory.

The neuron fires (sends out an electrical signal along its axon) if the summed

potential V is greater than the critical potential or threshold.

1.2 .2 A rtific ia l N eu ron s: C o n n ec tio n s, W eig h ts and S y n a p ses

In biological neurons, the physical gap between impinging neurons’ axons and the

collecting neuron’s dendrites are bridged by synapses. Vesicles containing neuro

transm itter are released on stimulation from the nerve impulse and they migrate

across the synaptic cleft to acceptor sites in the dendrites. Synaptic efficiency de

termines what effect the incoming signal has on the receiving neuron.

The generic artificial neuron consists of a summation and thresholding device

(analogous to the cell body) which receives input from other units, weighted ap

propriately (See Figure 1.2). The thresholding function maybe a step-function or

sigmoid, or some other function which usually saturates.

Real neurons are much more complex than this model suggests. The cells in

the brain have complex chemical reactions within them and leaving out such details

may be im portant. Real synapses are subject to random release of neurotransm itter

quanta which can lead to spontaneous firing of neurons, even when there is no

input [68]. The abihty for neurons to have tem poral properties i.e leaky integrators,

is also an im portant factor th a t this simple picture neglects.

1.2 .3 Fault T o leran ce and G en era lisa tio n

In artificial neural networks, the synaptic efficacy is modelled by connections having

different strengths or weights. Information is represented by these weights, in a dis

tributed representation^ meaning tha t the whole network is involved in computation.

If a few nodes or weights fail, then the system does not fail catastrophically, but

1.2. F U N D AM EN TA L S OF N EU RA L N E T W O R K S 19

Inputs

Output

Figure 1.2: Generic artificial neuron.

its performance degrades slightly. Neural networks are thus both robust and fault

tolerant devices (although recent work by Bolt has shown th a t fault tolerance should

be a specific issue in the design of neural network architectures for this to be relied

on [7] [6]). Damage to a neural network must very extensive before there is serious

degradation of performance.

Recovery from damage will also be much quicker than re-learning an entire prob

lem - the weightspace will only have to perform a little reorganisation to account

for the disruption.

The distributed nature of neural networks is also responsible for their ability to

generalise. Particular ‘feature detectors’ may develop in groups of neurons in the

evolving network, which are sensitive to some certain aspect of an input space. A

network th a t is exposed to a pa ttern th a t is similar to one it is has already learnt

before will be classified correctly. An input pa ttern tha t may be a composite of

several recognised patterns will be classified by the ‘strongest feature’. Generahsa-

tion, means therefore, abstraction and removal of redundancy - why store a separate

20 CHAPTER 1. INTRODUCTION

exemplar for a pa ttern that can be described by others? This makes good sense in

brains of finite size.

On the whole, neural networks are good at interpolation^ i.e. they can allow

for interm ediate states between patterns seen, enabling them to classify unfamiliar

ones. They are bad at extrapolation^ i.e. classifying patterns which are outside the

range of ones already seen, that is there is little to compare them with.

1 .2 .4 T h e B in ary D ec is io n N o d e (B D N)

Caianiello investigated networks using the simple model of a neuron described above

with a hard-lim iter thresholding function [8]. The state space of a network of n of

these nodes is thus {0,1}” .

He found tha t the net activity formed cycles in the state space, but tha t these

cycles had lengths much greater than the age of the universe... and so had difficulty

in making an analogy between these cycles and ‘thoughts’.

An im portant theorem is tha t a network of BDNs can perform any logical func

tion - AND gates and OR gates can both be formed from them. Any logical function

can be decomposed into a combination of ANDs, ORs and NOTs and be performed

by a 2-layer feedforward BDN network.

However, for such a universal architecture, it has been shown that the average

number of BDNs required to perform a boolean function in n variables is given by

< N > = < A > -hi

= 2"-i -h 1

where N is the number of BDNs required and A is the number of AND gates used [1]

An illustrative example is one of a classifier trying to classify a 10 by 10 binary im

age. The average number of BDNs required is ~ 10^°, about 10^°. [W O R L D M E M] .

W O R L D M E M is the total amount of computer memory in the world...

Thus, this architecture is not of much practical use and direct setting of weights

and thresholds is not something that the brain does. Neural networks need to leam

1.3. CATEGORISATION OF NEURAL N E T W O R K S 21

the parameters to perform a particular mapping and this is what sets them apart

from other computing devices.

1.3 C ategorisation o f N eu ra l N etw ork s

A network wiU ideally develop an internal representation of information to which it

is exposed. The law which governs how the weights should be changed to achieve

this, and any concomitant architecture needed, is the principle distinction between

different kinds of network.

The above process is in contrast to standard algorithmic programs on digital

computers which are programmed to behave in a certain way. Neural networks can

be employed in situations where the rules or the program is non-obvious, for example

classifying very compHcated patterns.

1.3 .1 F u n ction s P erform ed B y A N eu ra l N etw o rk

Neural networks can perform three basics types of operation: Auto-Association,

Hetero-Association and Classification (See Figure 1.3). AU three functions are pat

tern recognition problems. In essence, neural networks is aU about pattern recogni

tion of some form, where in general a pattern means any kind of arbitarily complex

spatio-temporal data tha t is being processed.

1 .3 .2 A rc h itec tu re s

The architecture of a neural network is the description of the type of nodes employed

together with their connectivity. This definition then leads on to further description

in terms of computation style performed by the network. The two styles are feed

forward and feed-back or recurrent computation:

• In feed-forward networks, there is a weU defined,single direction of information

flow, from inputs to outputs (See Figure 1.4). TypicaUy, the flow is from layer

22 CHAPTER 1. INTRODUCTION

Input O u tp u t

Auto-association

Hetero-association

Pattern 1

Pattern 2

o Classification

Figure 1.3: Operations performed by neural networks.

1.3. CATEGORISATION OF N EU RA L N E T W O R K S 23

Input Hidden Output
Layer 0 Layer 1 Layer 2

Figure 1.4: A feed-forward neural network,

n to layer n -j- 1.

The feed-forward net, by use of adaptive connections or weights can then

perform a mapping operation, in keeping with its inpu t/ou tpu t computation

style, i.e. for an input vector ^ there is a corresponding output vector y.. A

prime example of a feedforward network is the multilayer perceptron (this is

strictly true only once the network is trained: during training error signals

propagate backwards towards the earlier nodes)

• In recurrent networks, outputs of units are fed back into other units, or them

selves, as input, so tha t the input to a particular unit at any one time may be

a combination of information from the environment and input from any other

node in the network. The system performs iterative convergence towards some

fixed state, anabsorhing state.

x (t -f-1) = F (z (t)) for iteration

x{t) = F{x[t)) for the absorbing state x(t)

The most simple instances of this kind of network exhibit complete connectiv

ity. They do not distinguish between input layers and output layers and input

24 CHAPTER 1. IN TRO DU C TIO N

Outputs

Inputs

Figure 1.5: A recurrent neural network.

to the system must consist of ‘clamping’ the network in some initial state. The

Hopfield network is a prime example of a recurrent network (See Figure 1.5).

1.4 L earning in N eu ral N etw orks

As has been mentioned, knowledge is stored in the weights of connections of a neural

network. This knowledge is stored in a distributed way, so tha t each node is involved

in representing many separate mappings. The crucial feature of neural networks is

the abihty to leam these weights from experience, implementing an update rule for

the modification of the weights.

There are broadly three classes of learning:

1. Supervised Learning.

In this scheme, an external teaching input is introduced from the environment

which prescribes the desired output, and the network compares this with its

own output. The weights of the system are then updated so as to minimise

the discrepancy, or error, between the teacher and itself.

2. Reinforcement Training

1.5. S U M M A R Y OF CHAPTER 1 25

In this scheme, a global reward/ punishment signal is received from the envi

ronment. The update rule serves so as to minimise the probabihty of receiving

a penalty signal and maximise the chance of a reward signal when the network

produces an output for a given input. This is “learning with a critic” , whereas

supervised learning is “learning with a teacher” .

3. Unsupervised Learning

The aim of this learning strategy is for the network to discover statistical

regularity and structure within an input space it is exposed to and be able to

form classes of input vectors. This inevitably requires some external supervised

learning at some stage, to ‘label’ the different classes. But this is a practical

constraint, rather than a necessity.

1.5 Sum m ary o f C hapter 1

We have briefly reviewed the field of neural computing and its history, noting tha t

it has emerged as the antidote to algorithmic computing.

26 CHAPTER 1. IN TR O D U C TIO N

C hapter 2

T h e K ohonen Self-O rganising

M ap

27

28 CH APTER 2. THE KOHONEN SELF-ORGANISING M A P

2.1 T he K oh on en Self-O rganising M ap

2 .1 .1 In tro d u ctio n

The self-organising map or S O M was devised by Teuvo Kohonen in the period 1979-

1982 [31]. Self-organisation as a field of study, however is older, with work carried

out by von der Malsburg in 1973 and Willshaw and von der Malsburg in 1976 [76].

Kohonen’s model has some similarities to classical k-means clustering analysis

in statistics [41] [23] (although this method requires an assumption of the number

of classes in the data, and does not preserve topological information). It also draws

from biological evidence tha t biological brains form topological representations of

input stimuli, most notably in the visual cortex of humans. The central region of

the visual field is m apped topographically onto the external surface of the cortex.

Furthermore, the central 10% of the visual field occupies about 60% of the total

brain map. Thus there is variable magnification in the mapping.

There are many other such variable magnification topographic maps in the brain

such as the ‘motor homunculus’ which is responsible for control of muscles in the

body, or more generally, sequences of muscle contractions that are in keeping with

body’s perceived environment (the supplementary motor area) [10].

2 .1 .2 A im O f T h e Self-O rgan isin g M ap

The aim in developing the SOM was to produce a mapping system which retained as

much information about the structure of the input space as possible, whilst of course

abstracting the most im portant features. In most other artificial neural networks

there is some distributed storage of patterns, but the actual structure i.e. topology

and probability distribution of the feature space is effectively lost. The topographic

map compresses data: high-dimensional feature spaces are typically mapped onto a

2-d sheet of cells. The resulting map thus allows complex statistical relationships,

i.e. class clustering information, to be rendered in a graphical format. In this way.

2.1. THE KO HO NEN SELF-O RG ANISING M A P 29

Winning
Node

n o c i o
OO OO
OO OO
O O OO
O O OO
O O O O
OOO

- o e
OOO
O O OO
O O OO
O O O O

J D O O p Oooopo
O O OO
ooooo ooobo ooo'oo
O O O P O
O O O P O
O O O P Q

O O P
0 ^ 0

00t)00

lock Neighbourhood
with R=7

Node Being
Updated

Intemode separation r

Figure 2.1: Cartesian node arrangem ent in the SOM.

the SOM acts as a vector quantiser i.e. it classifies N dimensional input vectors

onto M clusters [41]. Clearly, the number of nodes in the SOM layer gives the

upper bound on the number of classes th a t can be distinguished.

Perhaps one of the most im portant aspects of the self-organising map is what

its name suggests, i.e. the formation of a mapping occurs by unsupervised learn

ing. Thus classes in the input data are ‘discovered’ and not imposed. Clearly, real

biological systems (brains) have to learn to abstract and classify without rules.

The SOM is a competitive network, meaning th a t a node’s response depends on

it winning some form of competition over the other nodes.

2 .1 ,3 B a s ic A r c h ite c tu re

In keeping with the biological analogy, the SOM comprises a single layer surface of

neurons, typically two-dimensional although 1-D and higher dimensional structures

are possible, onto which it is intended to form a topological mapping of a space of

presented input vectors. The actual geometry of the network is unim portant [37] eg.

hexagonal lattice versus cartesian. The la tte r is often employed for its simphcity.

30 C H APTER 2. THE KOHONEN SELF-ORGANISING M A P

m

^ ^ ^

Figure 2.2: Weight arrangement in the SOM.

Say then tha t the network comprises m .n nodes arranged in a rectangular grid.

An input vector arrives from the environment and is fed in parallel to each node in

the network by a group of distributor nodes, one for each dimension of the input

(See Figure 2.2), Typically, the network is fully connected i.e. there is a weight from

each distributor line to each node. For example, with a 2-D input, there are two

weight components per node. The number of weights in the system is thus m .n.d ,

d being the dimensionality of the input patterns.

Each node then processes the input in parallel.

2 .1 .4 N o d e F un ction

The operation tha t the nodes perform in the basic SOM is one of measuring sim i

larity to a presented pattern. It is not the dot-product of weight and input th a t the

2.1. THE KOHONEN SELF-O RG ANISING M AP 31

nodes calculate, as without normalization this can ultimately only measure the an

gular separation of the vectors, not magnitudes as weU. Hence each node calculates

the Euclidean distance D between its weight vector and the current input (or more

simply the square of this quantity, as finding the square root is redundant in terms

of comparing the nodes’ relative success [a > b > 6 ,̂ if a and h both positive))

D i = { y u - l Y (2.1)

The input pattern is then claimed by the node n which minimises Equation 2.1

i.e. there is competition between all nodes to produce a winner that most closely

matches the input vector.

How then is this winner generated? In biological topographic maps, there is

evidence for lateral-inhibition mechanisms whereby nodes can turn each other on/off

depending on their proximity. This interaction can be modeled by the ‘Mexican

H at’ function (See figure 2.3) or difference of Gaussians, which has a central region

of excitatory interaction close to the central node, which then reverses to become

inhibitory and then drop to zero at larger distances. Kohonen has dem onstrated

th a t such lateral inhibition can indeed produce a winning region on the network

which develops dynamically in response to input [37].

In practice, the above lateral interaction computations can be side-stepped by

choosing the winner of the distance competition. This necessitates an 0 {m .n)

search of the all nodes. The output of this winner is then taken as 1 and 0 for all

o ther nodes.

The above exhaustive search step required by the algorithm does not lend itself

to parallélisation. Indeed, one can more easily conceive of a real hardware parallel

machine th a t does perform lateral inhibition and would be appreciably faster. But

in the realm of sequential simulation the overhead of simulating the lateral inhibition

process is prohibitive in the average application and comphcates the implementation

unnecessarily.

32 CHAPTER 2. THE KOHONEN SELF-ORGANISING M AP

Figure 2.3: “Mexican H at” lateral interaction function.

2 .1 .5 L earn ing Law

The learning (weight-change) law is given by

Wi{t + 1) = Wi{t) + 7f{t)H^in{t){I{t) - yj^(t)) (2.2)

The objective of this law is to increase the Hkelihood tha t the winning node, and

ones around it, wiU win again, when presented with the vector / and ones similar to

it. The law serves so as to rotate each node’s weight vector towards the current input

vector. 7} is the learning rate and H ^n is a function which describes a neighbourhood

of interaction surrounding the physical site of the winner on the grid of nodes (See

figure 2.1). This neighbourhood function describes to what extent neighbouring

nodes are rotated towards the input vector. Initially the range of interaction is

large. The functional form of H^uin can most simply be a discontinous block i.e.

all nodes within a square region a distance R around the winner ro tate towards

the current input by the same relative amount, those outside the block remaining

unchanged. This is the original form used by Kohonen (see Figure 2.4(a)).

The adjustment of weights of nodes tha t are neighbours to the winning unit is

the key factor in the system forming a topographic map of the input space. Ideally,

pattern vectors which are close together in their embedding feature space, should

2.1. THE KOHONEN SELF-O RG ANISING M A P 33

height = 1

height = 1

Figure 2.4: Block and gaussian shaped neighbourhood functions,

be mapped to nodes which are physically close on the output layer of the network.

2 .1 .6 N e ig h b o u rh o o d F u n ctio n a l Form

Hwin can also be some smoothly decaying function, such as a gaussian; this has been

demonstrated to give greatly improved convergence rates [42]. The reason for this is

fairly obvious in tha t the strength of attraction of nodes towards the current winner

should be strongest for those topologically close to the winner and progressively

weaker for more distant nodes which will be attem pting to map distant regions of

the input space. It doesn’t make sense to ro ta te all nodes’ weight vectors equally,

even ones within a restricted region, as this serves to undo previous learning for some

nodes. Ultimately, a block neighbourhood wiU provide convergence on account of

the reduction in block size but it is considerably slower.

The actual process of learning involves first initialising the weights to some (po

34 CH APTER 2. THE KOHONEN SELF-ORGANISING M A P

tentially random) values and having the neighbourhood size and learning rate large.

Then these parameters are arranged to decay with time as learning progresses.

The formation of the mapping takes place in roughly two stages:

1. Arrangement of the weights into topological order.

2. Tuning period where the weights increasingly accurately map the input space.

The network is exposed to randomly presented training patterns and initially

forms a coarse mapping of the input space, being allowed to make modifications

of global scope to the initial weight space. This is the requirement of having a

large initial neighbourhood and learning rate. As the learning param eters decay,

the scope of modifications becomes smaller and so the detail and accuracy of the

mapping improve until finally, the neighbourhood size becomes such th a t only the

winning unit is afffected and individual weights are modified by a small residual

learning ra te - so called ‘Kohonen learning’ [23]

Kohonen gives a proof tha t such a learning law leads to a stable topographic

map, in the one dimensional case [37] and R itter and Schulten have analysed the

convergence and probabihty distribution of a two dimensional map [57].

It is im portant to note tha t the probabihty density of patterns is recorded in the

mapping, as in biological topographic maps. Thus higher frequency of presentation

of a particular pattern results in greater overall rotation of all vectors in the current

neighbourhood to tha t pattern and ultimately more nodes wiU be devoted to the

representation of tha t pattern. It is therefore im portant during training to consider

the order in which patterns are presented.

2 .1 .7 T h e In it ia l W eigh tsp ace C onfigu ration

The initial state of the weight space also needs to be considered, as a purely ran

dom starting set cannot guarantee correct convergence. Incorrect convergence is

typified by ‘twisted m aps’ which are locally topographically correct but globally in-

2.1. TH E KOHONEN SELF-O RG ANISING M AP 35

correct and can never untwist themselves and have been dem onstrated in Kohonen’s

‘movies’ [37].

Kohonen has pointed out th a t if the SOM is relevant to biology, then the initial

weightspace must somehow be formed with reasonable default values i.e. genetics

m ust provide a layout tha t is basically topologically correct which can then self-

organise into precise topological mappings [23].

2 .1 .8 T im e D e p e n d e n c e O f L earn ing P a ra m eter s

As has been discussed, the training process takes place in two stages: The forming

of a coarse, but topographically correct mapping, and then the fine tuning of the

weight vectors. It is however not usually clear as to what times cale this should occur

on, with respect to decreasing the neighbourhood size and learning rate. Kohonen

talks of ‘rules of thum b’ in determining such m atters. A Hnear decay to one and

zero respectively in a time Tend is an obvious choice, but suffers from the problem

th a t Tend is arbitrary and the ra te of convergence is quite poor.

It is clear tha t the coarse mapping phase requires much more severe and wide

reaching changes in the weightspace, ie. the learning rate and neighbourhood size

bo th need initially to be very large. For example, the la tter might cover 75% of the

m ap and the former be as high as 0.8. However, the learning param eters do not need

to stay at this m agnitude for long, perhaps only a few tens of iterations. A Hnear

decay of param eters can thus not provide both a large, initial ‘burst of activity’ and

a protracted convergence phase. The obvious next step is to divide up the learning

into two Hnear phases, of steep and shallow negative gradients respectively. But

again, one always returns to the problem of actually deciding these tim e periods.

The best th a t can be done is running trials.

Exponential decay of the learning param eters better models the requirements of

the timecourse required. It also has the virtue of being characterised by just one

param eter, the half-Hfe T i/2 - This too, of course is arbitrary.

36 CH APTER 2. THE KOHONEN SELF-ORGANISING M AP

2.2 V isualising N etw ork B ehaviour

2.2 .1 A 2 -D im en sio n a l T rain ing E xam p le

Kohonen and others have used a graphical format for displaying the state of an

SOM. These are ‘weightspace’ plots, in which the weight vectors of nodes tha t are

physically adjacent on the output layer are connected together. Figure 2.5 shows a

network of 16 nodes, arranged in a 4 by 4 grid, together with two weightspace plots.

The weights are two dimensional, and can thus be plotted as points (x, y) The points

are marked with labels Wn, where n refers to the corresponding node in the grid.

The upper plot is almost topologically complete, but has two weight vectors W ll

and W15 interchanged. The lower plot is complete. In this way, the topology of a

mapping is clearly visible i.e adjacent nodes on the grid have vectors which point to

adjacent points in weightspace and thus do not cross. The probability distribution is

also visible, with higher density regions (corresponding to more frequently presented

patterns) having more weight vectors allocated to them and hence a tighter ‘mesh’

in the weightspace plot.

We now consider a typical example of the SOM in operation, performing the

near bench-mark task of mapping the unit square. In this example, an eight by

eight network is exposed to training vectors drawn uniformly and randomly from the

above region. There is no dimensional compression here, but a direct correspondence

desired between points in the weightspace and nodes’ spatial positions.

Figure 2.6 shows six snap shots of the evolving network. The parameters used

for the simulation were

1. An initial learning rate ?/ of 0.1

2. An initial gaussian neighbourhood of standard deviation (radius) cr = 3

3. A param eter half life T1 / 2 = 2000 iterations.

The six frames are for epochs 0, 35, 170, 500, 1500 and 5000. Initially, the weights

2.2. VISUALISING N ETW O RK BEHAVIOUR 37

w W4

W6
W7

W15kWlO W8

W9

W12

V IL

W14
W16

W13

5 6 7

w: W4

W6
W8

'10

W9 W l l

W12

W14
W15 W16

W13

9 10 1 1 — 12.

13 14 15 16

Figure 2.5: Example weightspace plots - top plot is not fully ordered, bottom plot

is fuUy ordered.

38 CHAPTER 2. THE KOHONEN SELF-ORGANISING M A P

are randomly distributed around the centre of the input space ie. Wij G 0.5 ± e where

e is a random variable in the range 0 0.5 and i = 1,2, ..,64 and j = 1,2. The

frame around each plot marks the boundary of the unit square. It can be clearly

seen how the network first unravels the initial tangled set of weight vectors and

by 170 epochs has almost completed the ordering of the weight vectors. At 5000

epochs, the network is well on the way to asymptotic convergence. Note th a t the

edges of the plot wiU never quite reach the edges of the space it is trying to map.

This is because there are no training vectors outside the square, and so on average

these boundary nodes have their weights pulled back into the central region, due to

attraction from interior nodes. Kohonen has shown that this boundary effect scales

as 1/m, where m is the number of nodes in the side of the square grid.

The boundary effect can, however, be reduced by means other than introducing

more nodes. If the parameters decay such that when the neighbourhood has shrunk

to only affecting the winning node, then further useful fine tuning can be done to

the individual node’s weight vector if there is a residual learning capacity a, so th a t

the learning rate ri{t) is given by

7/(t) = 77(0)exp(—At) + a (2.3)

By the stage th a t a is the dominant term, then all weight vectors will be in

almost their optimal positions, with the exception of the boundary nodes. At this

point, the system is essentially disconnected i e, each winning node behaves as an

autonomous agent, and can move according to local fluctuations in the probability

density, according to the size of a. Now freed, the boundary nodes can move their

weights out further into the periphery of the input space. Of course, if a is too large,

then the map may well become corrupted, since that topology is no longer being

enforced by the co-rotation of neighbouring weight vectors.

2.2. VISUALISING N E T W O R K BEH AVIO UR 39

Figure 2.6: Snapshots of a network learning to map the unit square.

40 CHAPTER 2. THE KOHONEN SELF-ORGANISING M A P

1

0 . 9

0 . 8

0 . 7

0 . 6

0 . 5

0 . 4

0 . 3

0 . 2

0 . 1

0
0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

Figure 2.7: The unit square approximated by a linear array SOM.

2 .2 .2 D im en sio n a l R ed u c tio n

One of the great properties of the self-organising map is its abihty to perform data-

compression or dimensional reduction. Here we consider the mapping of the unit

square again, but this time onto a 1-dimensional chain of nodes. Here, the network

must compress the 2-D training vectors into a meaningful abstraction in 1-D. The

result after 10,000 epochs can be seen in Figure 2.7.

This is an example of a Peano curve and serves so as to ‘fill ou t’ as much of the

input space, the unit square, as possible (it is reminiscent of some of M andelbrot’s

space fiUing fractals). Linear arrays often tend to approximate higher-dimensional

distributions by such curves [37]

2.3. VISUALISATION OF THE SOM 41

2.3 V isualisation: C lustering, C lassification and

L abelling

Weightspace plots are ideal for visualisation of low dimensional input spaces. Ob

viously, however, any space of dimension 4 or higher does not have a direct way of

displaying the weightspace and a 2-D projection of a 3-D space (necessary in order

to view the ‘interior’ of a 3-D plot) is hkely to be too comphcated. In general, the

SOM is apphed to finding classes within a feature space and so a visual description

of this classification appropiate to input vectors of arbitrary dimension is required.

Ideally, if an 7%̂dimensional space has m classes embedded within it, we hope

th a t the map wiU develop m regions tha t respond preferentially to presentation of

members of th a t class and are arranged in a meaningful topographic map i.e. if class

X is in some way similar to class y and class z, then it should occupy a portion of the

map spatially close to x and y. So a labelling process is required. In essence, this just

means tagging a node as belonging to a particular class, if it won on presentation

of a training vector tha t belonged to tha t class. Unfortunately, this is somewhat

of a circular argument, as it is the network itself tha t forms the clusters and so for

the outside environment to then say tha t a vector I belongs to class X is perverse.

However, if the SOM is to be of any practical value, then class labelling must be

performed. This requires a set of prototype patterns for which the class label is

undisputed.

An excellent demonstration of the abstraction and classification properties of the

map and the above visualisation procedure, is in the work of R itter and Kohonen

on semantic hierachies [60] [61]. Here, the SOM is used to display semantic relations

between symbohc data.

This example is one where a collection of objects are to be m apped as a discrete

symbol set. The objects chosen in the example are sixteen different animals, the

symbol for each one being a 16-D unary coded binary vector. The relationships

42 C H APTER 2. THE KOHONEN SELF-ORGANISING M A P

0)
s s•0 43

XÜ
0) 4) M 0) rQ 0) 0) d W H 0 H > tn M 44 tn 0 M 43 O ^ R j<dOOOn)-HTHO<t> tnOjd « m ' a > U 44 H 43 N %u

small 1 1 I 1 1 1 0 0 0 0 1 0 0 0 0 0
IS medium 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0

big 0 0 0 0 0 0 0 0 0 0 0 I I I 1 1
2 legs 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
4 legs 0 0 0 0 0 0 0 1 1 1 1 I I 1 1 I

has hair 0 0 0 0 0 0 0 1 1 1 I I 1 1 1 I
hooves 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
mane 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0

feathers 1 I 1 1 I I 1 0 0 0 0 0 0 0 0 0
likes
to

hunt 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0 0
run 0 0 0 0 0 0 0 0 I 1 0 I I I I 0
fly 1 0 0 I I 1 1 0 0 0 0 0 0 0 0 0
swim 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Figure 2.8: D ata used in semnatic map simulation.

between the animals are introduced implicitly by an attribute vector^ a 13 component

binary vector (See Figure 2.8 which shows the attribute vectors for each of the sixteen

creatures). The full description of each animal is then given by concatenating these

two vectors.

X = (2.4)

During training, the two parts of the vector are given different weightings. The

Xg are clearly ju st arbitrary labels and as such serve only to make each class instance

unique. The feature vector is thus made to dominate formation of the mapping.

Also, the Xj ̂ are normalised, reducing the number of degrees of freedom by one and

hence improving convergence.

After training, each node in the grid is tested to see which animal name produces

the greatest response in it, by presenting the name part of the input vector only to

the network i.e.

•=(ï)
The results of the visualisation procedure R itter and Kohonen call “Simulated

electrode penetration mapping” are shown in Figure 2.9. It can be clearly seen that

2.3. VISU ALISATIO N OF THE SO M 43

duck duck horse horse zebra zebra cow

duck duck horse zebra zebra zebra cow tiger tiger

goose goose goose zebra zebra zebra wolf wolf tiger tiger

goose goose hawk hawk hawk wolf wolf wolf tiger tiger

goose owl hawk hawk hawk wolf wolf wolf lion lion

dove owl owl hawk hawk dog dog dog lion lion

dove dove owl owl owl dog dog dog dog lion

dove dove eagle eagle eagle dog dog dog dog cat

hen hen eagle eagle eagle fox fox fox cat cat

hen hen eagle eagle eagle fox fox fox cat cat

Figure 2.9: The labelled semantic map after training.

44 CH APTER 2. THE KOHONEN SELF-ORGANISING M A P

common hierachies are represented, e.g. “birds” on the left hand side, “herbivores”

along the top and “carnivores” towards the right. Similarly, animals falling into

multiple categories have spatial mappings which reflect this e.g. hawks are both

carnivores and birds, so thus appear on the right hand edge of the bird groups.

2.4 Learning V ector Q uantisation (LVQ)

W hen the self-organising map is appHed to practical classification problems, the re

sulting weightspace wiU require some fine tuning to properly adjust the class bound

aries. This process can be performed by a supervised technique called learning vector

quantisation [37] [39].

In its simplest variant, LVQ has the form

m A t -f 1) = rn^{i) + a.{t) [/(t) — ?7^(t)] classes of and / agree (2.5)

r n jj' + 1) = KkJA) ~ <^(0 U (0 ~ IRcW \ classes of rn^ and 7 disagree

rn jjt -h i) = TîkM) for i / c

where is the weight of the maximally active unit c after presenting the training

vector 7 and o:(t) is a learning ra te as before. Each member of the set of training

inputs 7 a known classification. It should be noted tha t LVQ is a clustering

method in its own right (Kohonen describes it as a special case of the self-organising

map [37]). It is appHcable to the self-organising map because self-organisation of the

training vectors allocates weights according to the input distribution of the patterns.

LVQ needs to have initial weights reflecting the probabihty distribution of each class

before it is applied. Each node is then labeled according to its class [35].

Equation 2.5 is apphed iteratively as per the self-organising map algorithm and

a is reduced slowly, from an initially low value, typically 0.1. The decision surface

of the classes produced by LVQ compHes very closely with that of the equivalent

Bayes classifier. It should be noted that the interior of the class density functions

2.5. APPLICATIONS OF THE SELF-ORGANISING M AP 45

are of much less importance than the decision surfaces themselves (typically they

will not remain faithful). [37]

Experiments have shown th a t LVQ gives considerable improvement to speech

classification problems (See next section) and can enable a trained self-organising

map to quickly adapt to new speakers [5].

Kohonen et al [39] have introduced variants of the LVQ method which better

comply with Bayesian classifiers.

2.5 A pplication s o f T he Self-O rganising M ap

We will now review two appHcations of the SOM. The first, the phonetic typewriter,

is perhaps the most famous use of the map algorithm. The second, an optimisation

problem, shows the flexibihty of the SOM.

2 .5 .1 T h e P h o n e tic T y p ew r ite r

Kohonen has applied the SOM in a hybrid system for the difficult problem of speech

recognition. This “Neural” Phonetic Typewriter, as it is called, can translate Ko

honen’s native tongue of Finnish into text [36]

The problem of speech recognition is difficult because

• Speech phonemes have varying amphtudes and waveforms from person to per

son.

• Pronounciation of phonemes is context-dependant: the larynx and soft palate

do not always have time to return to their initial rest positions and thus co-

articulation effects come into play.

• Humans can infer the meaning of an unclear word by analysing sentence struc

ture and semantics of what is being said

46 CH APTER 2. THE KOHONEN SELF-ORGANISING M A P

O O O 0 0 0 0 0 0 O O O
O O O O O 0 O 0 O O O O

OOO0OOOOO00O
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 ©

O00O0O000000
OOO00O0000O0

Figure 2.10: Phonotopic map for Finnish, speech.

The phonetic typewriter is a combination of conventional digital signal process

ing, neural and rule-base system technology. It consists of three sections:

1. P reprocessin g

The speech-waveform is first Fourier transformed in time-slices of 9.83ms. This

data is then used to form a 15-dimensional continuous pattern vector, the

components representing the instantaneous power in one of 15 frequency bands

from 200Hz to 5kHz. A sixteenth component is used to represent the rms value

of the speech signal.

2. T he Topographic M ap

The above pattern vectors are then mapped on to an SOM, using fifty samples

of each test phoneme. The m ap is labelled to form a “phonotopic m ap” , sym

bols being attached according to the phoneme each node was,on average,the

most responsive to. Figure 2.10 shows the labelled output layer.

Figure 2.11 shows the trajectory of phonemes as recognised by the network

whilst articulating the Finnish word “humppila”. Kohonen has suggested tha t

2.5. APPLICATIONS OF THE SELF-ORGANISING M A P 47

G) (Z) (Z) 0 0 (D

O O O © © O < S > © 0 O O O
Figure 2.11: Trajectory of Finnish word “humppila” .

this kind of visual representation of a phonetic string may be of use for speech

training and therapy. Profoundly deaf people may find it advantageous to be

able to associate a visual sequence with the speech they have ju st formed.

3. P ostp rocessing

Finally, the recognised phonemes must be translated into typescript. Correc

tion of errors from the previous stage, which has been mentioned are primarily

due to CO-articulation effects, are carried out. To this end, Kohonen has added

a rule base of 15,000 to 20,000 rules to cope with re-constructing correct gram

m ar from trajectory data obtained from the phonotopic map.

The complete system, hosted by an IBM PC can operate in near real time.

Only a shght pause is required between words. Phoneme classification is be

tween 80-90% correct at the phonotopic map stage and is improved to 92-97%

correct after processing by the grammar rule base. The system adapts well to

new users, needing about 100 words for each new user and a training tim e of

about ten minutes.

48 C H APTER 2. THE KOHONEN SELF-ORGANISING M AP

The phonetic typewriter is commerically viable, but has not been adapted to

cope with Enghsh or other languages. Finnish is a phonetic language, which

makes the speech to text problem more straight forward. However, the system

does show the advantages of a hybrid approach, and the preprocessing stage

is an excellent example of providing a neural network with the ‘right kind’ of

da ta i.e. the data which is most suitable for training in this case is FFT time

shces and not the raw data itself.

2 .5 .2 T h e T ravellin g S a lesm an P ro b lem (T S F)

This apphcation, presented by R itter and Schulten [59], was inspired by the ‘elastic

n e t’ m ethod of solving the TSP [13]

D efin ition o f th e T SP

For completeness, we state the notion of the travelling salesman problem: A travel-

hng salesman must visit all of a number of cities within a given area. He must visit

each city only once and his goal is to minimise the distance tha t he travels on the

tour of all cities ie find the shortest round trip. Finding the best solution to this

problem is costly, as the search time is 0{n\) for n cities.

For the simulation, two dimensional inputs and weights were used with a closed

hnear chain of 100 neurons. The probabihty distribution was concentrated to a set

of 30 randomly chosen locations (cities), located within the unit square. A regular

hundred-side polygon was used as the intial value of the weights.

During the training sequence, the polygon gradually deforms into a path con

necting all 30 cities in a closed loop. The tendency of the map algorithm to preserve

neighbourhood structure results in the system producing very short tours as the fi

nal weightspace. It is pointed out, however, tha t shghtly longer tours than minimal

may be obtained with this method of solving the TSP.

2.6. SU M M A R Y OF C H APTER 2 49

In summary, this work demonstrates, how the self-organising map can be suc

cessfully apphed to a difficult optimisation problem.

2.6 Sum m ary o f C hapter 2

We have reviewed the basic formahsm of the Kohonen self-organising map and its

successful apphcation in areas such as speech recognition, semantic maps and opti

misation, showing tha t the map algorithm is extremely versatile.

50 CH APTER 2. THE KOHONEN SELF-ORGANISING M A P

C h ap ter 3

L earning w ith A d a p tiv e

P aram eters In th e K oh on en

N etw ork

51

52 CH APTER 3. A D A P T IV E P A R A M E T E R S

3.1 A R ev iew o f C onvergence P rop erties

o f SO M s

There has been much m athem atical analysis of Kohonen’s self-organising map model.

We report here some theoretical results tha t are relevant to any simulation work us

ing the model.

3.1 .1 C on stra in ts on L earn ing R a te F u n ction a l Form

In [58] R itter and Schulten derived conditions for the learning rate e(t) namely

lim J e{t)d t = oo (3.1)

hm e(t) = 0 (3.2)

These conditions are necessary and sufficient for the convergence to an asymptotic

equilibrium weightspace w = (w i, Wg, • • • {N is the number of weights in the

system) from any initial state tha t lies sufficiently close to w i e. meaning tha t

the weights have completed the initial ordering phase of the map algorithm. Equa

tions 3.1 and 3.2 are satisfied by the set of all functions e(t) oc with 0 < a < 1.

Note tha t this is not exponential decay, as used in much of the literature! However,

in practical applications, apart from a small residual e(t), the condition / e{t) dt ^ 1

is sufficient. Moreover, the precise time course of e(t) is not significant so long as

it decreases monotonicaUy. Hence, the benchmarking examples th a t follow in this

chapter use exponential decay to be consistent with other work.

3 .1 .2 S e le c tin g O p tim a l N etw o rk P a ra m eters

Much work has been carried out on the optim al parameters tha t a Kohonen network

should be initialised to, in order to provide maximum convergence rate. A lot of

this work has looked at the effect of the form of the neighbourhood function.

3.1. CONVERGENCE PROPERTIES: A R E V IE W 53

Two recent articles have looked at the effect of different neighbourhood functions.

The first investigated the one dimensional case of a chain of neurons, the second to

what extent the results in [15] apply in the general case and how the end probability

distribution is also affected by the choice of neighbourhood function [65].

In [15], it was concluded tha t the rate at which the map algorithm converges

depends on the shape of the neighbourhood function. Furthermore, for a fixed

learning rate, there is an optimal width of this function, for which convergence time

is shortest. The “best” neighbourhood function should be one tha t is “convex” over

a large range around the winning unit and yet also has large differences in values at

neighbouring nodes.

For the gaussian neighbourhood

H(r , s) = exp(—(r — s Y l2a^)

the fuU width at half height (2<t) should be of the order of the number of neurons

in the chain.

3 .1 .3 M eta s ta b le S ta te s

M etastable states are discussed in [15], which are fixed points of the mapping algo

rithm other than the optimal ordered representation. The algorithm may become

“trapped” in these m etastable states for a finite number of iterations, before the

optimal representation is discovered. It can be proved tha t no m etastable states

exist for broad, convex neighbourhood functions. However, for gaussians with a

below a certain width, there are metastable states. Ideally, then, a needs to be as

large as needed to avoid metastable states, but not so large th a t convergence time

is increased by spending too long in an already ordered state. Those neighbourhood

functions which are not convex anywhere have m etastable states for all param eters,

and the ordering time is much longer than for a gaussian.

54 CHAPTER 3. A D A P T IV E P A R A M E T E R S

3 .1 .4 N eig h b o u rh o o d F unctions In T h e G enera l C ase

The generality of the above is examined in [65]. The critical parameters for the

algorithm are the number of units in the chain N , the initial learning rate a (0) and

the functional form of the neighbourhood. Obviously, the wider the neighbourhood

function, the greater the effect that the winning node has on other neurons’ weights.

If time dependence is removed by using a fixed a and o", we can ask the question

what value of <r gives the fastest convergence to an ordered state^ i.e. when the

weights are ordered in increasing or decreasing order. In [65], the point is made

tha t the value of a should also be allowed to take on other values apart from 0 .0 1 ,

as used in [15]. For a chain of 1 0 units, the case a = 10 (approximately) gives the

fastest convergence to an ordered state.

Two main conclusions were drawn from the results:

• o:(0) could be increased to very large values and still get good convergence

properties. In fact, values of greater than 1 . 0 are still acceptable.

• The basin of “good convergence” is very large, ranging to the non-optimal

values of a. This illustrates that self-organising maps are very robust over a

wide range of param eter values.

The value of <r of course depends on jV, the size of the net, i.e. for a bigger net

bigger values of a are required. In [65], a rule of thumb is put forward relating a

and N:

= iV -f 7V/10

Of course, there are considerations other than those of ‘W hat parameters get

the quickest ordered state?’. Perhaps more im portant is the statistical aspect of

the weight positions, i.e. th a t the weights approximate the point density function

of the input space.In [65], it is shown by simulation tha t the optimal a in terms of

convergence ra te is not at all optimal in terms of the system faithfully capturing the

3.2. PRO BLEM S W ITH K O H O N EN ’S LE A R N IN G ALG O RITH M . 55

probability distribution. Better results are obtained from using slightly non-optimal

values of a.

Other neighbourhood functions such as triangular or step impulse do have worse

convergence to ordered state properties, but perform better in producing a faithful

probabihty map. Thus the total run-time may well be shorter and the distribution

much better, if “non-optimal” (in the sense of the ordering phase) values of a are

used.

In different problem domains such as function approximation, a gaussian neigh

bourhood function actually gives worse results than the step function.

In conclusion, great care must be taken when making claims about the perfor

mance of a system using a particular neighbourhood function. The intended problem

domain has to be taken into account.

The real problem is that a general theory of map formation is stiU out of sight [15],

with many basic problems unsolved.

3.2 P rob lem s W ith K o h o n en ’s L earning A lgo

rithm .

Self-organisation, in all its modified forms, has involved the neighbourhood (whether

smoothly decaying or block) and the learning ra te shrinking on some arbitrary time

scale. Kohonen’s original work [37] used a simple hnear fall off of both these param

eters. Thus, the system starts with an initial neighbourhood size R q and learning

rate t/o and these fall linearly to zero after a tim e T . The network is assumed to

have reached convergence at this time, but T is arbitrary.

The param eter timecourse function can be any monotonicaUy decreasing one.

Piecewise Hnear with negative slope and decaying exponential have both been em

ployed in the Hterature with improved convergence, but no suggestion as to the

underlying reason for this improved learning speed has been put forward.

56 CHAPTER 3. A D A P T IV E P A R A M E T E R S

3.3 A d ap tive Learning P aram eter C hange

It would also be possible to decrement the learning rate and neighbourhood size in

a ‘stepwise’ manner, provided a suitable criterion for the transition to new (smaller)

values of these parameters could be estabHshed. In the following sections, it is

examined how a network whose learning parameters are decremented in this way

goes through a series of stable states whereby no further learning is possible until

the learning parameters are altered. The detection of a stable state provides the

desired criterion for transition to new parameter values.

3.4 S tab le S ta tes In K ohonen M aps.

The learning mechanism in SOMs can be viewed as one where ultimately the weight

vectors map out the extent of an n-dimensional structure i.e. the input probability

distribution. Thus from an initial, arbitrary state, the weight vectors become self

organised to reflect this structure, so long as they are picked according the input

probability distribution. It is also im portant to remember tha t the density of this

structure at any particular point is represented by the number of weight vectors tha t

cluster around tha t point. This density is analogous to mass-volume density in a

three dimensional structure.

When learning begins, the network is quite plastic in the sense tha t the neigh

bourhood size is large, as is the learning rate. A particular weight tha t should

optimally point to a particular point in the input structure can only move so far

towards tha t point before its evolution is checked by attraction from other nodes.

Thus the total ‘volume’ th a t can be mapped for a given set of learning parameters

can not exceed a certain extent. An equilibrium comes into being, defined by the

driving effect of the input probability distribution and the retarding effect of other

interior nodes pulling back those on the boundary. This represents a stable state of

the network where the input cannot be better mapped without an alteration of the

3.5. TRIG G ERING A D A P T E E P A R A M E T E R CHANGE 57

SOM 'Amoeba

origin

Figure 3.1: Weight vector envelope.

learning parameters.

This state can be visualised as an ‘amoeba’ structure in the space of the input.

In the example of Figure 3.1, the input to be mapped is a 2 -dimensional distribution

th a t surrounds the amoeba. The amoeba itself is the network’s current representa

tion in weightspace of the input space. Note th a t the weights Wij are not normalised.

The creature can flex and writhe but is unable to expand out further to improve the

mapping if it has not yet reached the ideal mapping. It is thus trapped at a certain

‘size’ and can only oscillate. Something must happen in order to break the symmetry

of the state.

3.5 T riggering A d ap tive P aram eter C hange

The inability of the network to perform further learning would suggest tha t the

stable state could be used as a signal for a transition to a different set of learning

parameters; the neighbourhood size and learning rate must both be reduced. Once

this transition has occurred, the symmetry is broken and the driving attraction of

58 CHAPTER 3. A D A P T IV E P A R A M E T E R S

the extremes of the input distribution are now stronger than the retarding effects of

interior nodes.

The system is now no longer in an equilibrium state and the ‘am oeba’ can expand

further, until the attraction from other nodes balances the boundary of the input

probabihty density function. This is a new stable state, one of a sequence which

we hope wih converge on the optimal solution. The problem of deciding when to

make a transition is then one of monitoring some easily accessible parameter of

the network. Each state results in a more detailed mapping of the weight space,

following the tuning process discussed before. Exphcitly calculating this weight

space ‘volume’ is a computationally expensive process; however, another parameter

can be more easily used as a gauge of the rate of progress of the algorithm.

It has been observed over the course o f much experimentation that for a given

learning rate and neighbourhood size

^ = (3 3)
t=i

has stable values, which are correlated with stable, sub-optimal configurations o f the

weight vector envelope (‘amoeba*).

The form of such a measure can only be a guess, but is attractive for its simpHcity.

It permits getting a handle on the problem.

Figure 3.2 shows the evolution of the above measure for a network which has

artificially induced param eter reductions. The changes occur at 200, 400 and 600

epochs, when both neighbourhood size and learning rate are reduced. It is apparent

tha t the system has approached some kind of stable state in between the steps, as

the measure approaches an average equilibrium value. These plateaus correspond to

the amoeba of Figure 3.1 being trapped at some size. Clearly, after a succession of

many states, the change in size can become arbitrarily small and the system could

be said to have converged.

In a higher dimensional view point, the system has a state which is a vector

of all the weights in the network Ÿ = {w u,W 2i, where m is the dimension of

3.5. TRIGGERING AD APTIVE PARAM ETER CHANGE 59

Sum Of Magnitudes of All Weigfits

I
610.00'

i
600.00}

590.00

I
580.001

570.00'

i

560.00

550.00

540.001

A '
530.00 I !

. /V

Transition

Transition

iV

Transition

520.00

510.00;

500.001
0.00 200.00 400.00 600.00

Epocfi

Grapti stiowing the effect of externally introduced transitions at Epochs 200, 400
and 600.

Figure 3.2:

60 CH APTER 3. A D A P T IV E P A R A M E T E R S

the input vectors and n is the number of nodes in the network. This state vector

represents a single point in phase space. It is the trajectory of this point that charts

the evolution of the network, and the trapping of this point in the neighbourhood

of a sub-optimal solution. This evaluative stable mapping signals the necessity of a

transition to new learning parameters.

3.6 Identify ing Stab le S ta tes.

In the analysis of R itter and Schulten [57], the final stationary mapping condition

is a re-arrangement of Equation 2 . 2

{w{t + 1) - w{t)) = {H{R, r)Tj{t)I(t) - w{t)) = 0 (3.4)

where (• • •) means the average over presentation of training patterns. An evaluative

stable mapping should satisfy a similar kind of constraint, due to the fact tha t on

average the weights are Trapped’ in a region of weight space i.e. the average position

of the weight should be constant. The variance of the position should decrease to a

local minimum at a stable state.

The evolution of the system can productively be discussed in terms of the global

state vector $ (t) . Then more aptly, equation 3.4 can be written as

(l (i + l) - £ (<)) = 0 (3.5)

and the diminishing variance of the state vector, reflects an evaluative mapping,

as the state vector becomes increasingly localised in the m n dimensional space of

the weights (m is the number of neurons, n is the dimension of the weights). Using

the sum of weights in the network is a coarser, but perhaps more straight-forwardly

calculable param eter of the network than calculating explicit variances in the state

vector.

The averaging process required to label a stable state starts at the beginning of

each transition. The average value of the param eter used to gauge the network’s

3.6. ID E N T IF Y IN G STA B LE STATES. 61

(a) True Stable State

(b) Non-Stable State
M(t) A

wobbles

Figure 3.3: Schematic difference between stable and non-stable states.

progress needs to be recorded and then changes in the derivative of this smoothed

function need to be monitored.

Thus at the s tart of forming a stable state, begin to calculate Equation 3.3

-j- Af

Now consider the derivative of the above average. The value of M still has many

small local minima tha t are superimposed on the overall trend. Figure 3.3 shows

schematically the difference between a stable state (a) and a non-stable state (b),

which is still evolving. The former has clearly reached a stable value, despite the

short time-scale fluctuations in its structure.

Consider then using a trace, X , oi M

X { t -f 1) = 6,X(t) + M

where 6g is a suitable smoothing decay constant. Stable states should then

correspond to zeroes of d X / d t .

62 CH APTER 3. A D A P T IV E P A R A M E T E R S

In practice, the trace function X[t) still has a number of local minima in it,

particularly within the first few epochs after a transition - interior nodes get more of

the activity (are more frequently winners) as the map unfolds and can thus generate

transient contractions of the ‘am oeba’. It is thus a practical decision to forbid a new

transition for say the first I epochs after the last one, just to allow the system to get

a reasonable gauge on the average value of the measure M .

A typical value of / is 30. It is a scale length tha t is usually much shorter than

the time spent in a stable state. It can sometimes be seen tha t the system performs

a transition about I steps after the last one. All this may mean is tha t the system

spent longer in tha t stable state than ideally it would have and hence a shghtly

longer convergence time overall.

3.7 M aking T ransitions.

Once the condition for a stable state has been fulfilled, a transition must be made

to permit further learning of the input space. The transition consists of reducing

the neighbourhood R and the learning rate rj

R ^ XR (3.6)

77 Xrj

where 0 < A < 1 . The param eter A is thus a ‘decay constant’ but the decay occurs

only at each transition of the network and not at each epoch. The network then

generates a new evaluative mapping under the new learning parameters.

The value of A is not crucially fixed and would typically be around 0.95. If the

value is too small, then after a few transitions, the learning rate and neighbourhood

size become very small and further formation of improved evaluative mappings is

thwarted i.e. the mapping becomes choked.

3.8. FACTO RS AF FE CTIN G ST A B L E STA TE S 63

3.8 E ffect O f N etw ork Size and N eig h b o u rh o o d

F unction On S tab le S ta tes

The number of neurons in the output layer clearly has an effect on trying to establish

a stable state. This is because the measure M takes into account the weights of all

the nodes. In the extreme case of there being ju st a chain of two nodes, each node

can effectively control the weight of the other, meaning th a t M wiU have a large

variance. Increasing the number of nodes means th a t the input structure is being

approximated much more accurately and hence M wiU show greater stabiUty.

Gaussian shaped neighbourhoods mean th a t the stable state measure M(t) is

automatically more stable due to the decaying strength th a t surrounding nodes are

influenced by the winner. This is in stark contrast to an impulse neighbourhood

where all nodes in the neighbourhood are affected equally. This difference is clear

from the results in section 3.9.1.

3.9 R esu lts O f S im u lation s.

3.9 .1 U sin g a F it F u n ctio n

In this first example, comparisons of the standard algorithm, use of Gaussian neigh

bourhoods (with exponential decrease of neighbourhood size) and the new dynamic

approach were made using the sum of weight magnitudes measure (See Figure 3.4

for comparison of models). The standard test of the unit square mapping onto itself

was employed for a network of 32x32 nodes which is the size used in [42]. These

results, together with a brief description of the adaptive model, were first presented

in [1 1].

The comparison is made by calculating a fit function f { t) which compares the

current weight vector of all the nodes i to th a t of an ‘optim al’ vector which

we would hope the network to reach. This approach has also been employed in [42]

64 C H APTER 3. A D A P T IV E P A R A M E T E R S

Neighbourhood
Profile

Learning Parameter
Decay

height = 1

(a)

height = 1

(b)

height =

t

(C)

Figure 3.4: Details of the models compared in simulation.

3.9. RESU LTS OF SIMULATIONS. 65

In this example, the ^ are given by the cartesian coordinates of the positions of

each node i on the grid of the network.

/W = (3-7)
t=i

Clearly, for a network which converges correctly, i.e. it is not twisted, f (t) —> 0 as

t ^ oo. The rate of fall off of this param eter gives a measure of the convergence

rate.

The downside of prescribing these ideal weights is tha t it is only practical to

calculate them for n —> n dimensioned mappings. It is not at all clear, in general,

what the projection of a fifteen dimensional space onto a 2-d one should look Hke!

T hat is usually what the network is trying to discover anyway.

Secondly, the starting weights must be seeded so the orientation and handedness

of the mapping is the same as the idealised weights tha t we prescribe,

3 .9 .2 C om p arison o f th e D y n a m ic and S tan d ard M od els:

M ap p ing th e U n it Square

It has been found tha t the new model performs well for a wide range of parameters.

In the following two sets of examples, the unit square is mapped onto both a 1 and

2 dimensional output layer.

3 .9 .3 2 -D im en sio n a l C ase

The param eters used for both models were: 100 neurons 10x10 output grid, initial

learning ra te a(0) = 0.35, initial neighbourhood standard deviation <r(0) = 5. The

standard model had a decay half Hfe T1 / 2 of 400 epochs.

Additionally, the dynamic model had a transition decay value A = 0.6, trace

smoothing value of 6 = 0.5 and transitions were forbidden for f = 30 epochs hom

the start of a transition. The simulations were allowed to run for 5000 epochs.

66 CHAPTER 3. ADAPTIVE PARAM ETERS

Fit

110.00L_

100. 00 -

90.001

80.00 —

70.0 0 .

60 .001—

50.00 Linear Fall Off
Block Neighbourhood

40.00 _

30.001—

20.00 Exponential Fall Off
Gaussian Neighbourhood

Dynamic Fall Off
Gaussian Neighbourhood

lO.OOu

I 1i
0.00 0.20 0.40 0.60 0.80 1.00

Epoch X 1^

Graph Showing Comparitive Convergence R ates For The Three Models. All three
networks were 32x32 nodes.

Figure 3.5:

3,9. RESU LTS OF SIMULATIONS. 67

• Measure M vs Epoch Figure 3.6(a) shows the value of M for both the dynamic

model and the exponential decay model. Note that we have not plotted the

trace X (t) as this is only defined for the dynamic model. It can be seen that

the dynamic model produces a stable value of M much more rapidly than does

the standard (‘fixed’) model. This is because the neighbourhood and learning

rate fall off much faster than exponential decay, the weight vector envelope

becoming much more rapidly defined.

• Radius (neighbourhood a) vs Epoch

Figure 3.6(b) shows the comparative tim e course for the two models. We

reiterate tha t the fall off of parameters is much steeper than exponential decay.

Note th a t the fall off of the radius bottom s out at around 0.5. This is fairly

typical behaviour and represents the point when the neighbourhood function

is essentially only affecting the winning node.

• Final Weightspace plots

Figures 3.7(a) and (b) show the final weightspace plots for the two models. It

can be seen th a t they are very similar, as would be suggested by the similar

long term values of M in Figure 3.6(a). Note however tha t the convergence

speed of the standard model has been pushed to the limits, resulting in a

weightspace plot tha t is noticeably crumpled. Thus despite occupying a larger

region of weightspace, as indicated by the different long term values of M , the

quality of the mapping has suffered.

3 .9 .4 1 -D im en sio n a l C ase

For the one dimensional case, a linear array of 100 neurons was employed, with

cr(0) = 50.0. The learning rate a(0) was 0.35. The simulation time was 3000

epochs. For the standard model, T1 / 2 was 200, again arranged to produce mciximal

performance.

68 CHAPTER 2. ADAPTIVE PARAM ETERS

80
dynamic model ---

fixed model ---
70

20

10

0 500 10 0 0 1 5 0 0 2 000 25 00 3 0 0 0 3 500 4000 4 5 0 0 5 0 0 0 55 0 0
Epoch

(a)

5 . 5

dynamic model
standard model5

4 . 5

4

3 . 5

3

2 . 5

2

1 . 5

1

0 . 5

00 500 1 0 0 0 1 5 0 0 20 0 0 2500 3000 3500 4000 4 5 0 0 50 0 0
Epoch

(b)

Figure 3.6: Evolution of M and cr for 2-d SOM unit square simulation for both

dynamic and standard models.

3.9. RESU LTS OF SIM ULATIO NS. 69

1

0 . 9

0.8

0 . 7

0.6

0 . 5

0 . 4

0 . 3

0.2

0.1

0
0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

d y n a m i c m o d e l w e i g h t p l o t

1

0 . 9

0.8

0 . 7

0.6

0 . 5

0 . 4

0 . 3

0.2

0.1

0
0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

(a)

s t a n d a r d m o d e l w e i g h t p l o t
(b)

Figure 3.7: Final weightspace plots for 2-d SOM unit square simulation for both

dynamic and standard models.

70 CHAPTER 3. A D A P TIV E P A R A M E T E R S

In the case of dimensional reduction, it is highly unhkely tha t there will be a

unique optimal state tha t the network wiU tend to, but in the end, the approxima

tions tha t the network produces wUl be similar in their space-fiUing form. In this

case, the linear chain should try to ‘fiU-out’ the unit-square as best as it can.

Figure 3.8(a) shows the value of the measure against epoch. Note how rapidly

the dynamic system coUapses to a steady value. At around epoch 1700, the two

systems have almost exactly the same value of measure.

Figure 3.8(b) shows the radius reduction points ie transitions which resulted in

the above timecourse of the measure. The initial transitions occur rapidly, account

ing for the observed stabiHsation of M

Figures 3.9(c) and (d) show the state of the weightspace after 1000 epochs of

training for the dynamic and standard model respectively. The dynamic model

is more evolved (convoluted, in this case) at this point as would be suggested by

Figure 3.8.

Figures 3.9(a) and (b) show the final weightspace plots for the linear array. It

can be seen tha t both curves fiU-out the unit-square in a very similar fashion, but

tha t the fine detail in the standard model is better.

3 .9 .5 E ffect o f V ary in g A and 6

The effect on convergence of varying the parameters A and f, for mapping the unit

square, was examined. Recall that A is the parameter reduction factor at each

transition and 6 is the smoothing constant in the trace X of M .

Varying A

The plots in Figure 3.10 show weightspace plots after 1000 epochs for values of A,

the param eter reduction factor at each transition, of 0.1, 0.6 and 0.95. It can be seen

tha t the very low value of A has caused evolution of the map to ‘choke’; the network

is dealt a cripphng reduction in learning parameters which it cannot recover from

3.9. RESULTS OF SIMULATIONS. 71

80
dynamic model ---

standard model ---
70

60

50

40

30

20

10
35000 500 1500 2 0 0 0 25 00 3 0 0 01 000

Epoch
(a)

dynamic model ---
standard model ---

500 1 000 1500 2 000
Epoch

2 5 0 0 3000

(b)

Figure 3.8: Evolution of M and a for 1-d unit square simulation for both dynamic

and standard models.

72 CH APTER 3. A D A P T IV E P A R A M E T E R S

1

0.8

0 . 6

0 . 4

0 . 2

00 0 . 60 . 2 0 . 4 0.8 1

dynamic model
(a)

1

0.8

0.6

0 . 4

0.2

00 0.2 0 . 4 0.6 0.8 1

dynamic model (c)

1

0.8

0.6

0 . 4

0.2

0 0.6 0.80 0.2 0 . 4 1

standard model

1

0.8

0.6

0 . 4

0.2

00 0.2 0 . 4 0.6 0.8 1

(b)

standard model (d)

Figure 3.9: Plots (a) and (b) show final weightspace configuration, plots (c) and (d)

show snapshots of weightspace at t = 1000. (1-d SOM unit square simulation)

3.9. RESULTS OF SIMULATIONS. 73

1

0.8

0.6

0 . 4

0.2

0 0.6 0.8 10 . 2 0 . 40

1

0.8

0.6

0 . 4

0.2

0 0.80 . 4 0.60.2 10

(a) A = 0,1 (b) A = 0.6

1

0.8

0.6

0 . 4

0.2

0 0.80.6 10 0.2 0 . 4

(c) A = 0.95

Figure 3.10: Effect on final weightspace of different values of A, the transition decay

constant.

74 CHAPTER 3. A D A P T IV E P A R A M E T E R S

and hence the map can not unfold correctly. The other two plots are very similar at

this final stage. Earlier in the simulations, the middle value A simulation was more

evolved, the higher value causing more frequent transitions. After 6000 epochs, the

two plots were almost identical. In summary, higher extreme values are more robust

than low extrem e ones, the only effect of a higher A being a longer convergence time.

Figure 3.11(a) shows the neighbourhood radius timecourse and 3.11(b) shows

the evolution of M for each of the three values of A. The medium and high values

of A have radii and values of M which are almost identical in the long term, which

agrees with their very similar final weight spaces.

V arying 6

Figure 3.13(a) shows the timecourse for the neighbourhood radius for values of 6,

the smoothing param eter, of 0.2,0.8 and 0.95. Figure 3.13(b) shows the value of M

for each of the three values. It can be seen from (b) tha t the high value 6 spends

too long in stable states, and takes much longer to reach M values comparable to

the other two. The medium 6 plot spends just a few extra time-steps in the first few

transitions, bu t it is enough to separate it from the low 6 simulation. Figure 3.12

shows the state of the weightspace in each case after 1000 epochs.

The final states after 6000 epochs were almost identical.

3 .9 .6 E ffect o f D ifferen t In itia l L earn ing R a te V alues (o (0))

For completeness, we now present the effect of different initial learning rates on the

adaptive model. We have so far tacitly assumed Kohonen’s rule of thumb of ‘as big

as you like i t ’, meaning values of a(0) tha t could be up to 0.9 or so.

We now repeat the unit square bench mark using values of a(0) of 0.1,0.35 and

0.9 and again compare the evolution of the smoothed measure X (t), the radius of

the gaussian neighbourhood and the final weightspace plots. The map was a 10 x 10

grid, with o-(O) = 5.0, A = 0.6 and 5 = 0.5. The simulations ran for 5000 epochs.

3.9. RESULTS OF SIMULATIONS. 75

5 . 5

5

4 . 5

4

3 . 5

3

2 . 5

2

1 . 5

1

0 . 5

0
1000 2000 3000

Epoch

low lambda
medium lambda

high lambda

40 00 5 000 6 0 0 0

(a)

70

65

60

55

50

low lambda ---
medium lambda ---

high lambda ...
40

35

30

25

0 1000 2000 3000 4000 50 00 6 0 0 0
Epoch

(b)

Figure 3.11: Evolution of M and cr for different values of A.

76 C H APTER 3. A D A P T IV E P A R A M E T E R S

1

0 . 8

0 . 6

0 . 4

0 . 2

0
0 . 6 0 . 80 . 4 10 0 . 2

1

0 . 8

0 . 6

0 . 4

0 . 2

0
0 . 6 0 . 8 10 . 2 0 . 40

(a) S = 0.2 (b) 6 = 0.8

1

0 . 8

0 . 6

0 . 4

0 . 2

0 10 . 4 0 . 6 0 . 80 0 . 2

(c) 6 = 0.95

Figure 3.12: Weightspace snapshots at t = 1000 for different values of 6, the smooth

ing parameter.

3.9. RESULTS OF SIMULATIONS. 77

5
low delta

medium delta
high delta5

4

5

3

5

2

5

1

5

0
1 0 00 3000 4 0 0 0 5000 6 0000 2 00 0

Epoch
(a)

60

55

50

low delta ---
medium delta ---

high delta ...

40

35

25

10000 2000 3000 40 0 0 50 0 0 60 0 0
Epoch

(b)

Figure 3.13: Evolution of <j and M for different values of 8.

78 CHAPTER 3. AD APTIVE PARAM ETERS

70

60

low alpha ---
medium alpha ---

high alpha ..50

40

30

20

10

1000 50 000 500 1 5 0 0 2000 25 0 0 3 0 0 0 3 500 4 000 4 5 0 0
Epoch

(a)

5 . 5
low alpha ---

medium alpha ---
high alpha ..5

4 . 5

4

3 . 5

3

2 . 5

2

1 . 5

1

0 . 5

00 500 1 0 0 0 1 5 0 0 2000 25 00 30 0 0 3 5 0 0 4000 4 5 0 0 50 00
Epoch

(b)

Figure 3.14: Evolution of X and a for different values of a(0) (2-d SOM unit square

simulation).

3.9. RESU LTS OF SIMULATIONS. 79

1

0 . 8

0 . 6

0.4

0 . 2

0
0 . 80 0 . 2 0.4 0 . 6 1

1

0 . 8

0 . 6

0.4

0 . 2

0
0 . 8 10 . 2 0.4 0 . 60

(a) CK(0) = 0.1 (b) a(0) = 0.35

1

0 . 8

0 . 6

0.4

0 . 2

0
0 0 . 2 0.4 0 . 6 0. 8 1

(c) ûi(0) = 0.9

Figure 3.15; Final weightspace plots for different values of a(0) (2-d SOM unit

square simulation).

80 C H APTER 3. A D A P TIV E P A R A M E T E R S

Figures 3.14(a) and (b) show respectively the evolution of X (t) and <r(t) for the

three values of alpha and Figures 3.15(a), (b) and (c)show the corresponding final

weightspace plot.

From Figure 3.14(a) we can see that the smaller values of a(0) reach a very similar

long term value of X although initially the medium value run evolves quicker. This

is reflected in the <r plots - the lower value run spends a longer period of time with

(j about 1.9. At around epoch 1200, both low and medium valued a(0) value runs

have the same cr and their values of X are very similar. The final weightspace plots

for these two runs are also very similar, with perhaps the medium valued run having

the edge.

In contrast, the run using the high a(0) value has a final weightspace plot tha t

is quite crumpled, although topologically intact. The X{t) plot shows tha t the

system rapidly develops a maximum sized weight vector envelope and makes many

transitions to smaller learning parameters to overcome the large a value. However,

in reducing a, cr will have shrunk more rapidly than required for a good mapping.

Since we have varied a(0), it is instructive to plot a (t) for the three cases. This

is shown in Figure 3.16. It can be seen th a t all three runs have reached the same

value by around epoch 600. Note tha t the low a(0) run underwent a further series of

transitions from about epoch 1100 to epoch 1200. Due to the already small learning

rate, the amount of useful learning that could be achieved was apparently very httle

and so the system made transitions to a ttem pt further improvements.

Sum m ary

In summary, the value a(0) does not appear in practice to drastically affect the

mapping ability of the model. However, as might be expected, lower end values do

give better results in terms of the quality of the mapping produced.

3.9. RESULTS OF SIMULATIONS. 81

0.9
low alpha

medium alpha
high alpha0 . 8

0.7

0 . 6

0.5

0 . 4

0.3

0 . 2

0 . 1

0
1500 2500 3C00 3500 4000 4500 50000 500 1 0 0 0 2000

Epoch

Figure 3.16: Evolution of a for different values of # (0)

82 CHAPTER 3. A D A P T IV E P A R A M E T E R S

3.10 A n Im proved M easure For Identify ing S ta

b le S ta tes

The average value of the squared weight lengths (call this is a coarse, although

still effective, measure of a stable state. It can be prone to very large ‘false minima’

and hence prem ature labelling of stable states.

A greatly superior measure is one which would compare the relative separation

of weight vectors between topologically close nodes on the output layer.

T — 1 C— 1

t = i j = i

where r is the number of rows in the output layer and c is the number of columns

i.e. T c nodes in total. Figure 3.17 shows the geometric meaning of the measure:

it is the sum of the squares of all adjacent weight vector separations running both

along rows and columns (i.e. all contributions Hke -f 6 ̂ + and + z^).

This measure, as was the case for Mw'^t has nothing to say about avoiding twisted

mappings since such locally (but not globally) optimal maps will still form stable

states.

The reason for the greatly improved performance of this measure is straightfor

ward: it is calculating relative distances between weights, and is thus translation

invariant and rotation invariant with respect to the geometry of the output layer.

This is of great importance in the early stages of network evolution, when the whole

weightspace can be shifted owing to very large initial neighbourhood sizes. Fur

thermore, it provides an easier way to compare behaviours under different starting

conditions for a network, as these will affect the orientation of the topographic m ap

ping (i.e. a left to right mapping can be compared directly with a right to left

etc).

Figure 3.18 shows the evolution of the measure for a unit-square learning ex

ample. Plot (a) shows the averaged value of the raw measure value in plot (b).

3A0. A N IM PROVED M EASU RE FOR ID ENTIFYIN G STA B LE ST A T E S 83

W4

W6
W7

W8

10
W9 Wll

W12

W15 W16
W13

Figure 3.17: Geometric meaning of the new measure

where the average is over the time window since the the start of the last transition.

Transitions are externally imposed every 800 epochs.

Note how visually apparent the stable states are. This should be compared with

the same run, using the old measure (See Figure 3.19(a) and (b)). Here the stable

states are much less apparent.

There is a point worth noting about this measure; it is sensitive to widely sep

arated initial weight vectors. The distance between weights in such a case may be

very large and will thus affect the initial average value of the measure ie. during the

ordering phase of the map. This shortfall can easily be overcome by ensuring tha t

the initial weights are closely clustered, even though still random; this is in any case

the usually recommended practice [37].

3 .10 .1 A M ore P ra c tica l E x a m p le

The above simulations show the dynamic method working on very simple bench

mark training data. However, if it is to be of general use, then it should also be

84 CHAPTER 3. A D A P T IV E P A R A M E T E R S

1 . 8
M e a s u r e : new m e a s u r e

1 . 6

1.4

1 . 2

1

0 . 8

0 . 6

0.4

0 . 2

0
5000 1000 1500 2000 2500 3000 3500 4000 50004500

E p o c h
(a)

1 . 8

1 . 6

1.4

0 . 8

0 . 6

0.4

0 . 2

u n a v e r a g e d M : new m e a s u r e

500 1000 1500 2000 2500 3000 3500
E p o c h

4000 4500 5000

(b)

Figure 3.18; Plots of M and X for the new measure M l (forced transitions).

3.10. A N IM PRO V ED M E A SU R E FO R ID E N T IF Y IN G STA B LE ST A T E S 85

70
M e a s u r e : o l d m e a s u r e

60

50

40

30

20

10

4000 4500 50002000 2500 3000 35000 500 1000 1500
E p o c h

(a)

100
u n a v e r a g e d M ; o l d m e a s u r e

90

80

70

60

50

40

30

20 -

10

50001000 1500 2000 2500 3000 3500 4000 45000 500
E p o c h

(b)

Figure 3.19: Plots of M and X for the old measure (forced transitions).

86 CHAPTER 3. A D A P TIV E P A R A M E T E R S

applicable to mapping high-dimensional data onto a 2-d output grid.

In this final simulation, an example is taken from Kohonen’s book [37], where

the map generates a topographical representation of a minimal spanning tree. The

data used is the same artificial set used by Kohonen but is a clear example of the

map in operation.

The training data consists of a set of 32 5-d vectors. They are given the labels

A,B,C,..,Y ,Z,1,2,

(1,0,0.0,0) A (3,4,0,0,0) I (3,3,7,0,0) Q (3,3,6,3,0) Y

(2,0,0,0,0) B (3,5,0,0,0) J (3,3,8,0,0) R (3,3,6,4,0) Z

(3,0,0,0,0) C (3,3,1,0,0) K (3,3,3,1,0) S (3,3,6,2,1) 1

(4,0,0,0,0) D (3,3,2,0,0) L (3,3,3,2,0) T (3,3,6,2,2) 2

(5,0,0,0,0) E (3,3,3,0,0) M (3,3,3,3,0) U (3,3,6,2,3) 3

(3,1,0,0,0) F (3,3,4,0,0) N (3,3,3,4,0) V (3,3,6,2,4) 4

(3,2,0,0,0) G (3,3,5,0,0) 0 (3,3,6,1,0) W (3,3,6,2,5) 5

(3,3,0,0,0) H (3,3,6,0,0) P (3,3,6,2,0) X (3,3,6,2,6) 6

As described in [37], if a hierarchical cluster analysis of the data above was

performed, the m inimal spanning tree of Figure 3.20 would result.

Simulations were carried out on the above data for exponential decay of pa

rameters and for the dynamic scheme. In all cases, the output grid was 10 by 7

neurons. The learning ra te and neighbourhood size were a(0) = 0.35, tr(0) = 5.0.

The simulations were allowed to run for 4000 epochs.

For the dynamic model, the other parameters were <5̂ = 0.8 and A = 0.7 and for

the standard model, T1 / 2 = 1200

Figures 3.22 and 3.23 show the labelled state of the output layer for the standard

model and the dynamic model respectively. At the end of the training session, each

label was assigned to the unit th a t generated maximum response to it. It can be seen

tha t the basic topographical relations of the tree in Figure 3.20 have been preserved.

The branches of the tree, of course, are not straight.

3.10. A N IM PRO VED M EASU RE FO R ID E NTIFYIN G STA BLE STA TE S 87

© © ©(e) ©
©
©
© © © © © © © © ©
© © ©
© ©

©
©

© © © © © © ©
©
©

Figure 3.20: Minimal spanning tree of simulation data.

4500
s t a n d a r d m o d e l ------

d y n a m ic m o d e l ------
4000

3500

3000

0)
3
I

2500

2000

1500

1000

500

4000 45003 000 35002 5001500 2000500 10000
E p o c h

Figure 3.21: Evolution of M for standard and dynamic models (hierarchical data

simulation).

88 CH APTER 3. A D A P T IV E P A R A M E T E R S

z Y # R Q # # A B #

X # p 0 # # C D

1 # W # N # # # E

2 # # # # M # F

3 # # # S # L # G

4 # # # # # K # H

6 5 # V u T # # I J

Figure 3.22: Labelled output layer for standard model.

6 5 # R # o N M # J

4 # Q # # # L # I

3 # # # p # # # K H

2 # w # # S # G

1 # # # T # # P

X # u # # # 0 B

Z Y # # V # E D # A

Figure 3.23: Labelled output layer for dynamic model.

3.10. A N IM PROVED M E ASU RE FOR ID E NTIFYIN G STA B LE STA TE S 89

X Z # # V # # # # A

#

1 # # # s # # # # #

2 # # # # # # # # G

H

3 # # # # # # # # K

6 # # # # N M # L J

i: Labelled snapshot at t = 1000 for stanc

6 # # R # 0 N # # J

5 4 # # p # # # # I

3 # w # # M L K H

2 # # # s # # # G

1 # # T # # # F

X # U # # # # B

Z Y # # V # # E C A

Figure 3.25: Labelled snapshot at t = 1000 for dynamic model

Figure 3.21 shows M vs Epoch for the simple and dynamic case. The upper

curve is the dynamic model. This would suggest tha t the dynamic model converges

quicker in this example.

We can give a qualitative comparison of convergence speed by looking at the

output clustering early on in training and see how this compares with the measure

M being employed to monitor performance.

Figures 3.24 and 3.25 show the labeUing results for the standard and dynamic

model respectively. The snapshot was taken after 1000 epochs of training. The

dynamic model clearly shows more clustering structure at this point in the simulation

90 C H APTER 3. A D A P TIV E P A R A M E T E R S

and also the value of M is larger and more stable. This suggests tha t M is indeed a

good measure of convergence.

3 .1 0 .2 E x ten sio n s and Im p ro v em en ts ; Further W ork O n

T h e D y n a m ic M o d el

It has been seen tha t the new dynamic model copes well in a variety of scenarios.

The formalism could be improved by looking for a dynamic control of the magnitude

of a param eter change at a transition i.e a control of the parameter a in Equation 3.7.

A likely candidate for this is the variance of the measure M during a stable state.

Clearly this variance diminishes as the system converges.

3.11 O ther D yn am ic V ariants On T he SO M

A number of other schemes have been introduced which aim to improve performance

of the SOM in some respect, whether it be convergence rate or the way in which the

map represents the input probability distribution.

3 .11 .1 A N o v e l A pp roach To Im p rov in g L earning S p eed

An interesting attack on the convergence speed problem is presented by Rodrigues

and Almeida [63] The approach is based on the idea of starting the map with just

a few nodes and then progressively increasing tha t number until the map reaches

its final state. New units are added by interpolation of the weights of the old units

(See Figure 3.26).

The method works by the initial ordering and unfolding stage being handled by

just a few neurons. Only a rough gauge of the input space is required at this point.

There is clearly a m ajor saving in time both from calculating similarity between

input vector and weight for each node and from the searching for the winning node.

In the early stages, as there are only a few nodes to check.

3.11. O TH ER D Y N A M IC V A R IA N T S ON THE SOM 91

Figure 3.26: Adding new units by interpolating the weights of the old units.

The paradigm also uses a constant neighbourhood size. The reason for this is that

when the network has only a few nodes, the initial chosen neighbourhood is large

in comparison with its dimension. The neighbourhood can thus unfold the map.

As the number of nodes is increased, the relative scale of neighbourhood size to

net size reduces, thus effectively shrinking the neighbourhood, but from a different

perspective.

Rodrigues and Almeida report an order of magnitude improvement in CPU time

required to run simulations, with particularly large improvements for big networks

(e.g. 384x384).

3 .1 1 .2 D y n a m ic M S T N eig h b o u rh o o d s.

Dynamically defined neighbourhoods based on Minimal Spanning Tree (MST) topolo

gies represent a new approach to the mapping of probabdity density functions in

the input space th a t have a prominent, peaked regions [30]. In this scheme, nodes

are assigned to a particular neighbourhood by defining MST arcs between nodes, so

th a t all nodes in the neighbourhood are connected by single links and the sum of

92 CHAPTER 3. A D A P T IV E P A R A M E T E R S

the lengths of these arcs is minimized. These ‘lengths’ are the EucHdean distance

between the weight vectors of the nodes in the tree.

Neighbourhoods are initially large, which corresponds to following through more

arcs off the winning node. These are then shrunk as per the original algorithm, by

traversing less arcs. It is not necessary to recalculate the MST neighbourhood after

each epoch, only after between 10 and 100 epochs. This is because the map has

temporally smooth adaptation.

MST neighbourhoods have the advantage of allocating nodes to non-zero regions

of probability density in the input space. This is however not so good for more

symmetric distributions. They can also adapt to dynamic changes in the input

distribution with remarkable flexibihty [30].

This scheme does not however address the issue of the rate of decrease of learning

parameters. The dynamicism is employed to allocate the nodes to better follow the

input distribution.

3 .11 .3 A d a p tiv e , T ensoria l W eigh tin g

This method, also presented in [30], dynamically modifies the distance function used

to determine the winner. The impetus for this extended model is the fact tha t when

the variances of the components of the input vector x = z (t) are not of the same

order of magnitude, then the resultant mapping has an obhque orientation (See

Figure 3.27); there needs to be scaling of the different components.

A better orientation can be achieved by introducing the following weighted Eu-

chdean distance measure into the winner competition:

[z(t), mi{t)] = Y, ̂ ij - PijWŸ (3.8)
3=1

Here, the are the components of z, the fiij are the components of the (the

weight vectors) and the are the component weightings from input Hue j to node

i. Note tha t each synapse has an associated weighting factor.

3.11. OTHER D Y N A M IC V A R IA N T S ON THE SOM 93

Figure 3.27: Final weightspace plots for two 4 x 4 networks with different variances

in input dimensions

The main thrust of the method is to estim ate the values of recursively i.e.

on the fly during the learning process such th a t the effects of variance disparity are

balanced. Each node is thus made to store 6ij, a backwards weighted exponential

measure of the error defined as

(3.9)

where is a small scalar.

The value of Sij is then averaged over all the inputs j to a node and the system

is made to maintain the same average level of weighted errors over all the inputs.

A geometric interpretation of this weighting procedure is given in [30]. The

equidistant surface around a particular node then becomes elliptic in N dimensions.

The scheme has been shown to work well in practice.

3 .11 .4 G row ing C e ll-S tru c tu res

Fritzke has introduced the notion of self-organising maps tha t have problem depen

dent cell structure [17] [18]. In the extended model, the system can dynamically

follow an input signal distribution more accurately by inserting or deleting nodes

94 CH APTER 3. A D A P T IV E P A R A M E T E R S

from its structure. The system starts with a small number of cells, new cells are

added successively, using dynamically gathered information about the underlying

probabihty distribution to determine where additions/ deletions should take place.

The modifications are arranged such that the topology-preserving and distribution-

preserving properties of the self-organising map are retained.

3.12 Sum m ary o f C hapter 3

We have briefl.y reviewed the “rules of thum b” that define the parameters of the

Kohonen self-organising map, including some theoretical bounds on the learning rate

and also experimental results on the effect of the neighbourhood function profile.

We recapitulated the standard form of learning in the SOM, whereby the time-

course of learning param eter decay is set arbitrarily in advance. We then presented

evidence from simulations tha t the map forms stable weightspace configurations

when the learning parameters are held constant and the network is driven by input

vectors presented randomly and according to the input vector probabihty density

function. An experimental gauge of these stable states, the sum of the norms of all

the weights was discussed, together with how this measure could be used to trig

ger a reduction in learning parameters. This would produce a sequence of states,

experiment ally observed to be stable, each state correlated with a set of learning

parameters. This sequence of states was seen to converge towards an optimal so

lution. Three sets of simulations were then presented to show the new model in

operation. These showed that the new model performed as weU as or better than

the original fixed timecourse model with regard to convergence rate. An experimen

tal investigation of the dependence of model behaviour on model parameters was

then presented.

An improved measure for identifying stable states, based on weight vector sepa

rations of topologically adjacent nodes, was presented and compared by simulation

to the original. This new measure was shown to be a much better indicator of the

3.12. S U M M A R Y OF C H A P TE R 3 95

presence of stable states.

We concluded the chapter by reviewing some other dynamic models based on

the basic Kohonen model.

96 C H APTER 3. A D A P T IV E P A R A M E T E R S

C hapter 4

T em poral K ohonen M aps

97

98 CHAPTER 4. TEM PO RAL KOHONEN M A PS

4.1 R ep resen tin g T im e In N eural N etw orks

All neural networks are to some extent temporal in operation, ie there are identifiable

steps in the computation procedure tha t lead on to the next. Temporal Neural

Networks deal with inputs th a t are explicit functions of time and so thus process

temporal sequences of patterns.

The ‘traditional’ approach to processing temporal patterns in neural networks

has followed one of two routes:

• Combining a sequence of spatial patterns by concatenating them, so called

time delay networks.

• Using recurrent networks i.e. feedback

4 .1 .1 T im e -D e la y N etw ork s

A time-delay neural network (TDNN) works on the principle of representing a tem

poral sequence by concatenating the individual patterns of a sequence at times

t = 1,2, . . r into a larger one [71] [70]. Figure 4.1 shows a generalized architecture

for the input layer of a TDNN.

The time-delay aspect comes into effect as patterns are arranged to have different

transmission velocities along the connections to the separate parts of the input

layer’s output vector. Hence at < = 0 the section of this concatenated vector with

zero transmission time has the current pattern vector as its output. At the next

time step, the old pattern has propagated to the section of the vector which has

transmission tim e of 1 time unit and the zero transmission section has the new

pattern vector etc etc. In this way, an input layer’s output vector comprised of N

blocks of n units can hold a complete record of an n-dimensional temporal input

sequence over the past N time steps.

The idea is then to classify this concatenated vector in some standard way, i.e.

as a static pattern .

4.1. REPRESENTING TIME IN NEURAL NETW ORKS 99

Concatenated Output Vector
delay = 0 delay = 1 delay = 2

Input

Figure 4.1: Input layer of a time-delay network.

The major drawback of this scheme is that the architecture has to change for

different lengths of sequence. Here, the time-window manifests itself as the number

of delay lines needed in the preprocessing stage. It is thus inflexible and biologically

unrealistic in its operation. This form of network will also suffer from temporal

translation problems i.e. recognition should be independent of when the pattern

occurs in time. Scaling is also a problem in that concatenating a large number of

pattern vectors will make the introduction of temporal translations during a pattern

sequence very significant to performance.

In [71] the temporal translation problem was addressed. A network was con

structed with TDNN-units that scan an input token over time in order to find local

clues. This is as opposed to one large-network being presented with the whole input

pattern. In [71] this is achieved by multiple hidden layers. The first layer concate

nates three out of fifteen frames. A five frame window then combines the outputs

of the first layer. This method forces the hidden units to develop short term ab

100 CHAPTER 4. TEM PORAL KOHONEN M A P S

stractions, but is heavily dependent on the architecture being clocked i.e. the first

hidden layer only classifies after filling a three time step shift-register, the second

after filling a five time-step shift-register etc.

4.2 R ecu rrent N etw orks

4.2 .1 W h y R ecu rren t N etw orks?

Networks which have recurrent connections, together with suitable learning algo

rithms, can implement dynamical systems of arbitrary complexity (given a sufficient

number of hidden units). Such networks have important capabihties tha t are not

found in feedforward networks. These include:

• A ttractor dynamics.

• The abihty to store information for later use i.e. there is state preservation in

some form.

The la tter property is vital in difficult temporal tasks that may require state

preservation over potentially unbounded periods of time.

Figure 4.2 shows a general architecture for a recurrent backpropagation network.

The network has a set of N nodes, n of which comprise the output vector y . The

remaining m = N — n nodes are hidden tha t is they are not part of the external

output, but are used in forming internal representations. Call the fuU set of node

states y and call the external input vector x. Then the concatenated training input

that the network sees is z = (y, x)

4 .2 .2 F ix ed P o in t N etw ork s

A number of studies of networks which settle to stable states or fixed points have

been studied e.g. Hopfield’s model [26], but the majority have been extensions

of the recurrent backpropagation model developed independently by Pineda and

4,2. RECURRENT NETW O RK S 101

Output Vector y

Hidden Nodes

External Input
Vector X

/

Concatenated
Training Vector I

Figure 4.2: Recurrent back-propagation architecture.

102 CHAPTER 4. TEMPORAL KOHONEN MAPS

w

Figure 4.3: Energy landscape in a network with fixed points.

AImeida[54][2]. For such ‘fixed point’ networks, a particular problem is given to the

network in the form of initial conditions or a constant external input and the the

result is defined by the state of the network once a fixed point has been reached [52].

The learning algorithm in such cases is a rule or dynamical equation which changes

the fixed points to encode information [54] i.e. perform gradient descent on some

suitable energy function and have patterns represented by minima of this function.

These networks are interesting in that they can solve classes of problems like con

straint satisfaction and associative memory tasks. However, the requirement that

both the actual and desired network dynamics have only point attractors and that

the form of the input is as described above, puts severe limitations on the practical

uses of such networks.

The problem with fixed points is discussed lucidly by Pearlmutter [52]. Figure 4.3

shows a schematic energy function T = where w is the weight matrix of the

system. It is possible for initial weight conditions a and b to be infinitesimally close

but still map to different fixed points. Similarly, boundaries between two different

4.2. R E C U R R E N T N E T W O R K S 103

attractors may be changed by an infinitesimal change to the weights during learning.

The point c (See diagram) may under similar circumstances change from being a

fixed to a non-fixed point.

Such networks can thus run into serious problems when faced with generalisation.

Pearlm utter has developed extensions of recurrent back-propagation th a t can

learn state space trajectories [53]. The network learns to minimize an energy function

E (y) = Stgiyit) — f { t) Y dt and thus y im itates the function / . Such networks can

learn to replicate circular and figure-of-eight 2-d orbits as well as the more mundane

exclusive-or type benchmark examples.

4 .2 .3 R e a l-T im e R ecu rren t L earn ing

In most work with recurrent networks, the weights are assumed to be fixed over

presentation of the tem poral pattern x and generation of the corresponding output

sequence y and contributions to VJ^(w) are integrated over the duration of the

sequence x. This condition can be relaxed, in a similar fashion to non-recurrent

backpropagation, so tha t weight changes are made as the network is running. This

removes the constraint of running ‘batches’ over the duration of the sequence x. This

scheme is called real-time recurrent learning [75]. There is the usual requirement

th a t the learning ra te must be sufficiently small so th a t errors introduced by not

following the true gradient are kept small.

4 .2 .4 T each er-F orced R ea l-T im e R ecu rren t L earn ing

W illiams and Zipser [75] describe the process of replacing the feedback of the actual

output ^ (t) by the teacher signal dj^(t), whenever it is known, as teacher forcing.

The correct value of is then used in subsequent computation of network be

haviour. This technique can only be applied in a discrete time formalism. Changing

the state of an output unit at (potentially) each tim e step only makes sense under

this restriction [52]. However, Pearlm utter has reported that teacher forcing with

104 CHAPTER 4. TE M PO R AL KOHONEN M A P S

large numbers of hidden units has caused difficulties [52].

Williams and Zipser have performed interesting simulations using real-time re

current learning [74]. Theses include complex tasks such as:

• L ea rn in g to B e a T u rin g M ach ine The network observed the actions (but

not the internal state) of a finite state controller of a Turing Machine that

had to decide whether an arbitrary length tape of left and right parentheses

was balanced. This demonstrates very strikingly the preservation of state

information over very long periods.

• L e a rn in g to O scilla te This included training a 2-unit net so tha t one of the

units produced approximately sinusoidal oscillations of a period on the order

of 25 tim e steps.

Clearly, recurrent networks are very powerful, drawing on their ability to preserve

state information and to deal with time-varying input or output through their own

natural temporal operation.

4.3 A d ap tin g T he Self-O rganising M ap To T em

poral P rob lem s

4.3 .1 T h e P h o n e tic T y p ew r iter

The phonetic typewriter was discussed in Chapter 2. It is an application of the self-

organising map, which in its original form classifies static patterns, to a temporal

domain where context is crucial i.e. speech recognition. The input uses sampling

over fixed temporal windows, so th a t this a form of time-delay neural network.

Kohonen got around the context problem by using a rule-based system to correct

errors of statically classified speech data [32] [33]. However, this approach requires

in excess of 15000 rules to work correctly.

4.3, SOM AD A PTA TIO N S FOR TE M PO R AL PR O BLE M S 105

4 .3 .2 A llo g ra p h o to p ic M aps

Morasso has applied the self-organising map to the problem of cursive script hand

writing recognition [48]. The problem domain is represented by a set of three con

tinuous variables: x = x{t) jy = y{ t) , z = z[t) with {x ,y) being the coordinates of

the path followed by the pen and z is the pen pressure (a binary up/dow n signal).

The signals are segmented into ‘strokes’ i.e. pen traces delimited by points of mini

mum velocity, with each stroke being represented by a 5-point polygonal curve. A

sample of cursive script writing is then coded into a set of ten-dimensional ‘stroke

descriptors’ which are self-organised to form a graphotopic map.

As per speech recognition, this problem domain has context dependent features,

arising from the physical movements tha t the pen has to make to link up with pre

vious and following strokes. Morasso approached this problem by using an array

of separate maps, one for each of a possible set of sequence lengths e.g. ‘receptive

fields’ between 2 and 7 strokes [49]. These are Allographotopic maps. The origi

nal graphotopic map used only single strokes. A segmentation module separates

allographic patterns and sends them to the appropriate network for th a t sequence

length. During recognition, there is competition between the arrays of maps in order

to build a tree of feasible segm entations/interpretations from which a list of the best

matches is matches is extracted. At this point, linguistic post-processing takes over

to select the overall winner eg by ruling out nonsense words.

Using arrays of maps in this way does introduce a limited notion of context, but

simply on the grounds of the number of patterns in a sequence and the segmentation

is performed in supervised (even user-interactive) way. Furthermore, the system still

needs substantial post-processing to determine the correct result, as per the phonetic

typewriter.

4 .3 .3 K o h o n en ’s H y p erm a p A r c h ite c tu r e

Another approach to solving temporal problems has been introduced by Koho-

106 CHAPTER 4. TEMPORAL KOHONEN M APS

I pattern

context

_________ time

Figure 4.4: Context timescale in the hypermap.

Context Domain (Subset) S

oooooQOdbo
OOOOOODQQOO

O O O O O O O Q ^ O O
OOOOOOOÜOOO

Figure 4.5: Activated subset of nodes in the hypermap.

nen, called the hypermap architecture [38]. The idea revolves around a two phase

classification procedure and two sets of weights, a context vector and pattern

vector

• The system is presented with This is formed from the concatenation

of pattern vectors occurring within the same timescale as the pattern vector

(See Figure 4.4). The network produces an activated subset of nodes which

responded maximally within some constraint i.e. nodes corresponding to some

certain class of context remain activated (See Figure 4.5). AU other nodes are

de-activated.

• ^patt is then presented and only the activated subset from the first phase can

4.3. SOM A D A PTA TIO N S FOR TE M PO R AL PRO BLEM S 107

take place in the competition. This subset thus represents the set of those

nodes whose pattern vectors occur within a context similar to the one just

seen. The formation of subsets can proceed down to any desired level, hence

the hypermap name, maps formed within the previous level map.

The learning algorithm has multiple stages:

• Period 1 Unsupervised training of context weights

• Period 2 Adaptation of pattern weights. This follows the two-stage sequential

presentation of context then pattern vectors: The winning context subset is

chosen. Then the subset nodes’s pattern vectors are updated, according to the

winner of the now presented pattern vector.

A further sub-period of supervised learning is then required to label the nodes.

The hypermap was designed to be apphed to the co-articulation problems of

speech. Unfortunately, it still suffers from the same problems of time-windowing i.e.

the selection of the context window around the pa ttern vector which forms x ^ ^ .

It also requires, in exactly the same way as time-delay schemes, a different set of

context weights for each level of context. Furthermore, the learning algorithm is

very complicated, being divided into many stages.

Kangas has extended the notion of subset formation to occur in a single map [29].

The same set of inputs are thus used for the subset (pre-active) region as for the

final selection of the winner. The pre-active area is defined to be an environment

of the previous best-matching units, for example. The next best match can only be

selected from the close neighbourhood region of the previous best match. The next

best m atch then defines the centre of the next pre-active region and so on. In this

way, the centres of the pre-active regions define a curve tha t moves around on the

surface of the map.

108 CH APTER 4. TE M P O R A L KOHONEN M A P S

This model has. several attractive properties:

• It utilises a single weightspace

• It reduces to the standard map by having the entire map as the pre-active

region

• The map can be divided into separate regions with separate inputs, but the

active area can pass over the boundary regions ie the subset forming mecha

nism is continuous and the input connections are not. ‘A ttention Shifting’ can

thus occur between different signal sources and is driven by the signal itself.

• The map can monitor multiple signals in parallel with autom atic combination

of the representation of these signals by the lateral connections th a t form the

subsets.

Although there is no explicit discussion in [29], it appears as though the weight

space must have a globally non-topographic structure; there can be multiple loca

tions, A-areas, on the map tha t are sensitive to a signal J , but only the one enclosed

within the pre-active area P can respond to it. This surely means tha t weight

adaptation only occurs within the pre-activated region P.

It is not clear how the map returns to a ‘ground-state’ i.e. the case where the

pre-active area is the entire map. It states in [29] th a t “...the pre-active area is

(usually) changed after every new sample...”

4 .3 .4 R esp o n se In teg ra tio n , D a ta A v era g in g and P a tte r n

C o n ca ten a tio n M o d els

Kangas has discussed three models for time-dependent self-organising maps [27] [28] :

• R esp o n se In te g ra tio n M o d e l. A response is defined as the vector of output

layer activities y(t). This vector is then integrated according to

= Py{^) + (1 - - 1) (4.1)

4.4. L E A K Y IN T E G R A T O R NEU RO NS 109

where /? is a constant controlling the retention of the response. This equation

is the same form as for a leaky integrator neuron (see next section), but in this

case the whole n e t’s activity is held in the ‘memory vector’ This vector is

then classified by a second net.

• P a t t e r n C o n c a te n a tio n This is time-delay used in conjunction with the

basic map formalism.

In the speech data experiments discussed in [28], it is reported tha t the response

integration model is between 4 and 7 percentage points better in recognition accuracy

than the old model and tha t concatenation is between 6 and 1 0 percentage points

better.

4 .4 L eaky In tegrator N eu ron s

It is a known property of biological neurons th a t they retain activity on the cell-

membrajie, i.e. charge leaks away from the cell over a period of time. The neuron

thus acts as a leaky integrator and combines previous (decayed) activity with new

activity. The cell thus has a history of its recent interaction with input stimuli.

This opens the way to the construction of artificial neural networks that have an

intrinsic tem poral character; in such networks, the need for time-delay architectures

is removed.

In discrete time, a general equation describing the time-evolution of the activity

for a single neuron is given by

Ai{t + 1) = dAi(t) + f{w {t) , L{t)) (4.2)

where d is a tim e constant of the neuron, w is a weight vector associated with the

neuron i, 7 is an input vector arriving at i and / is a function describing how the

neuron processes an input for a given weight vector (e.g. weighted summation).

This model omits other biological phenomena such as cell geometry, various ionic

110 CH APTER 4. TEM PO RAL KOHONEN M A P S

channels, an active membrane which produces non-hnear terms etc [69] which affect

the temporal behaviour of the neuron.

Temporal Sequence Storage (TSS) using leaky integrators has been investigated

by Taylor and Reiss [56], together with the effect of introducing ionic channels.

They employed a network model having neurons with a range of time constants

which learn to correlate a pattern with the one next in a sequence. It also preserves

tem porahty i.e. correctly reproduces the lengths of the times tha t each pattern in

the sequence was presented. It was shown tha t leaky integrator neurons could store

a temporal sequence directly, holding the incoming activity long enough to learn the

transitions between the different patterns in a sequence.

4.5 T h e T em poral K oh on en M ap

Chappell and Taylor have included leaky integrator neurons in the basic Kohonen

network [9]. The activity of each neuron is defined by

Ai[t + 1) = dAi[t) — 1/2 |Z(t) — (4.3)

= m?ix{Ai(t)} (4.4)

This activity law is such th a t the node which wins with greatest (i.e. most

positive) activity A^in{t) will be the time aggregate winner of the minimum distance

competition. Note th a t the model reduces to the basic map by setting d = 0

In short, if a node’s weight vector is similar to the pattern presented at time

t, then the contribution to the integrated activity will be small. The converse will

be true for a node with weight very different from the presented pattern and hence

such a node will be less likely to win at the next presentation of a pattern.

4.5. THE TEM PO R AL KOHONEN M A P H I

4 .5 .1 V ir tu a l T rain ing V ectors

For the moment, consider a “ready prepared” example weightspace. Suppose we

wish the network to be able to discriminate between all the binary pair sequences of

length two i.e. all sixteen permutations of the set {(0 , 0), (0 , 1), (1 , 0), (1 , 1)}. Call

this set S^.

Equation 4.3 is effectively selecting winners which have best matching virtual

weight vectors. They are positions in the weightspace tha t he between the actual

training vectors tha t the network sees. For our example, the real vectors he at the

corners of the unit square. We can then choose to partition the unit square so tha t

there will be a unique winner for all sequences 3 6 5^, i.e.

m j = ((^ - l) /3 , (j - l) /3) (4.5)

where i and j are the row and column positions of the nodes on the output layer

and both run from 1 to 4 for a total of sixteen nodes.

We can now consider the time evolution of A» for each node i. We can plot this

as a histogram at each row and column position on the output layer of the network.

Call this activity m atrix C{j and assume tha t at t = 0 , C = 0.

Figure 4.6(a) shows the activity profile of the network after presentation of the

pattern (1 ,1). It can be seen that comer node corresponding to C4 4 has the most

positive activity and is thus the winner of the distance competition. The node

diagonally opposite i.e. has weight vector (0 ,0) and hence has the most negative

activity.

Figure 4.6(b) shows the activity profile at the next time-step, after having pre

sented the pattern (0,0). If there were no history then the state would be the

opposite of the first time-step ie the node at C n would have zero activity. The

retention of activity means that instead, the node at C22 wins as it is close to (0 ,0)

but was closer than node C n to the pattern (1 ,1) at the previous time-step.

112 CH APTER 4. TE M PO RAL KOHONEN M APS

winner

(a)

winner

(b)

Figure 4.6: Activity levels in the TKM leading to the selection of a context depen

dent winner.

4.5. THE TEM PORAL KOHONEN M A P 113

2 2 32 23 33

0 2 1 2 03 13

2 0 30 2 1 31

0 0 1 0 0 1 1 1

Figure 4.7: Labelled output layer of the TKM.

4 .5 .2 N a tu re o f th e C lu ster in g

In our example, we can now label the output layer with sequences comprised of the

S^. If we call the individual patterns (0 , 0) = 0 , (0 , 1) = 1 , (1 , 0) = 2 and (1 , 1) = 3

then the sequence (0 ,0)(1 ,1) can be w ritten succinctly as ‘03’. The result of giving

all sixteen nodes such labels is shown in Figure 4.7.

We can see that clustering occurs according to the most recently presented p a t

tern i.e. there are four groups of four nodes, one per pattern . This is exactly what

we would expect from Equation 4.3 as the most recent p a tte rn vector has the largest

contributing term in the activity equation.

4 .5 .3 R o llin g P rop erty ; C la ss ifica tio n W ith o u t a C o n te x t

W in d ow

One of the most attractive features of the TKM formalism is the fact th a t no context

window has to be decided in advance. The sensitivity to particular sequence lengths

is determined completely by the decay param eter d in Equation 4.3. This could be

described as the ‘rolling property’ of the model. It means th a t if the network is

trained to be sensitive to sequences of length two, say, and we present the patterns

A and B, if we then present a third pattern C, the network will classify the pattern

sequence BC. There will of course be noise in the activity from the pa ttern A and

any other patterns tha t have been presented in the past history, but these are all

114 CHAPTER 4. TEM PORAL KOHONEN M A P S

weighted by increasingly large powers of d. The value of d is chosen such that

sequences of length two are responded to in preference to longer sequences and thus

noise from previous patterns should not affect classification for a suitably trained

weightspace.

Thus, there is no requirement for sequences to have ‘beginnings’ and ‘ends’ and

hence no external context window that has to scan through the input pattern stream.

Context sensitivity is built into the network dynamics.

4 .5 .4 L earn ing Law; In sta b ility and W eight B u n ch in g

The above discussion of the classification was based on the a-priori weightspace

defined by 4.5. We must now ask ‘How should this weightspace be learned?’

The learning law used in [9] is the same as the standard algorithm, i.e. rotate

the neighbourhood of the winner towards the current input vector. Unfortunately,

using this law leads to an unstable weightspace because the only data the network

is able to train against are the actual training patterns; virtual vectors tha t exist

between the real patterns are not represented in the update law.

A simulation was performed to see whether an 8 x 8 TKM could correctly learn

to distinguish sequences of length three. The parameters used were <r(0) = 5 ,T i / 2 =

1800, a (0) = 0 .2 , d = 0.4. The simulation ran for a total of 8000 epochs. The

labelled output layer at epochs 5000 and 8000 are shown in Figure 4.8 (a) and (b)

respectively. The corresponding weightspace plots axe shown in Figure 4.9(a) and

(b).

It can be seen from Figure 4.9(a) tha t after 5000 epochs, the weightspace is very

distorted. This ‘distortion’ is the typical effect observed when a Kohonen network

is used to map a discrete weightspace and the number of training vectors is less

than the number of available nodes. The map algorithm correctly reproduces the

probabihty distribution i.e. ^-functions located at each pattern vector value, the

strengths of which are determined by the frequency of presentation of tha t pattern.

4.5. THE TE M PO R AL K O H O N EN M A P 115

000 100 # #

200 # # # # 110 101 Oil

220 120 # # 300 310 301 #

302 102 # 320 330 201 # 111

022 122 312 003 321 311

222 # 032 # 303 013 231 131

132 323 033 # 313

322 232 223 233 333 # 133

000 # 310 #

301

320 # # # # # # #

302 # 330 # # 111

303 321 #

222 # # # # # # #

333 # # 313

322 # # 323 # # # #

(a)

(b)

Figure 4.8: Labelled output layer snapshots: (a) t = 5000 (b) t = 8000 for binary

pair sequences of length three.

116 CHAPTER 4. TEM PO RAL KOHONEN M A PS

1

0.9

0 . 8

0.7

0 . 6

0.5

0.4

0.3

0 . 2

0 . 1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a)

1

0.9

0 . 8

0.7

0 . 6

0.5

0.4

0.3

0 . 2

0 . 1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(b)

Figure 4.9: Weight bunching snapshots in the TKM: (a) t = 5000 (b) t = 8000.

4.5. THE TEM PO RAL KOHONEN M A P 117

This is observed as ‘bunching’ of nodes’ weight vectors around the isolated patterns.

For our simulation, we see from Figure 4.9(b) tha t by 8000 epochs, the network has

drawn in all available weight vectors to map the corners of the unit square, because

the neighbourhood has shrunk to where only the winning node is affected.

From Figure 4.8(a), we can see tha t at 5000 epochs, 39/64 sequences were clas

sified. By 8000 epochs, this has dropped to 14/64.

W ith regards to the TKM, the neighbourhood cannot be allowed to tend to a

small size i.e. one only affecting a small fraction of the to tal number of nodes. There

is only a shallow basin of attraction where the learning law adequately interpolates

the weightspace to form virtual vectors and there is sufficient accuracy of these

virtual vectors for correct classification. For the sequences of length two example,

the balance between these two opposing requirements can produce a solution. For

sequences of length three, only ‘tweaking’ of learning parameters and training time

can produce any degree of classification. In either case, there is no ultim ate stable

state where the weights can be arbitrarily, accurately self-organised and bunching

effects to have not started to appear. A more generally apphcable learning law is

thus required.

4 .5 .5 U sin g T h e T K M for S y n ta c tic A n a ly s is

Chappell and Taylor also looked at using the TKM for classifying the context of

words in simple sentences i.e. occurrences of the same word but in different contexts

should be mapped to different/nodes or regions but within some enclosing set which

represents all uses of tha t word. A simulation was presented in which the effect

of position of a word in a particular sentence could not give artificial assistance

to disambiguating different contextual meanings to th a t word i.e. verbs and nouns

frequently occur at fixed locations within a sentence). The following set of sentences

was thus used as training data:

1. My hair is dry now.

118 CHAPTER 4. TEM PO RAL KOHONEN M A P S

START 0000

my 0001

hair 0010

is 0011

dry 0100

now 0101

I 0110

comb 0111

must 1000

off 1001

Figure 4.10; Training data for semantic map simulation

2. I comb my dry hair.

3. My hair must dry off

Clearly, all three sentences have the word ‘dry’ as the fourth word, but acting in

different contexts e.g. as a verb in the last example. Each word was encoded on four

binary inputs and the sequences were presented randomly to an 8 x 8 TKM, each

one separated by the START symbol (all hnes off). The training vectors are shown

in Figure 4.10 Figure 4.11 shows the resulting labelled map, the number(s) attached

to each word giving the number of the sentence to which the word was a part of. It

can be seen th a t the three instances of the word ‘dry’ form a clear cluster and th a t

the mapping for dry from sentences 1 and 3 occupy adjacent nodes. This reflects

that these two sentences are the same bar one word at the point ‘dry’ is seen by the

network. The TKM is thus able to perform disambiguation in longer sentences.

4.6. USING VIRTU AL VE C TO RS IN TR AIN IN G 119

must . . hair Is
(3) (1,3) (1)

• • • h^ir • . • •
(2)

off start I . . .
(3) (2)

dry . comb
(1) (2)

dry .
(3)

dry
(2)

now
(1)

my my
(1.3) (2)

Figure 4.11: Semantic map of words presented in training

4.6 U sin g V irtu a l V ectors In Training

Virtual vectors have already been defined as the optimal positions in weightspace of

sequence representations. We can identify two types of virtual vector for the case of

sequences of length two.

1. Representations of sequences tha t are composed of different pa tte rn vectors

e.g. 23 or 10

2. Representations of sequences tha t are repeated copies of one pa tte rn e.g. 11

or 33

The la tte r type have virtual vectors which coincide with the single patte rn vector.

How might we go about constructing virtual vectors which can be used to perform

training for all times? We might try and construct them so th a t they lie on the line

120 C H APTER 4. TEM PORAL KOHONEN M A PS

between two patterns A and B i.e. fulfill the criteria of existing between the real

vectors. We could try

+ 1) = R.{i) + (1 G)

for a sequence of two patterns A and B, i.e. use the current pattern shifted towards

the old pattern. This recipe will provide suitable values for training, but defeats

the main purposes of the TKM of being a biologically plausible extension of the SOM

and of being context-window free. Externally producing the is no better than

a time-delay network, as the A and B have to be held somewhere.

Instead, we might consider somehow directly integrating the training vectors and

not some activity measure.

v{t+i)=mt)+m (4.7)

However, this cannot be done directly within our artificial neurons as they can

only retain a scalar history.

4.7 F orm ation o f V irtu a l V ectors U sing Traces

4.7 .1 W h a t are T races?

Traces are models of synapses th a t can store a history of input signals tha t they are

exposed to. This is in contrast to such a history summing mechanism only being

present on the cell body where individual weighted inputs are combined, i.e. leaky

integrators. Traces have been used in difficult, learning control problems, such as

pole balancing [4]. In this example, traces implement so Ccdled ‘efigibihty’. Basically,

there is a pairing between input on a particular pathway and output of a neuronlike

device at some later time. A weight on this pathway is modified in relation to

whether its effect in the future was good or bad i.e. there is reinforcement learning.

4.7. FO R M ATIO N OF VIRTUAL V E C TO R S USING T R A C E S 121

but the eligibility for modification should die away rapidly to preserve the context

of the pairing.

The synaptic trace model presented here allows for the mapping of sequences

in a way which incorporates context information automatically, as in the Temporal

Kohonen Map (TKM), but is rigidly stable when neighbourhood and learning rate

become arbitrarily small. We wiU see tha t such models can map longer sequences.

4 .7 .2 L earn ing Law and T ra in ing D a ta

The most desirable property of the TKM is tha t sequences of input signals are

classified without the need to take exphcit account of context. This is in contrast to

time-delay schemes and any model requiring a time-window. The problem with the

TKM is tha t no history of the actual patterns is retained, only the nodes’ relatively

similar response over time. So although with a ready prepared suitable weightspace,

the discrimination function works perfectly, it is by no means clear as to how this

weightspace can be learnt during training.

This trace model uses activities on each line, i.e. a t each synapse, to provide

a history of the actual components of each training vector as it is presented. The

‘rolling property’ of the TKM is preserved i.e. if three patterns constitute a sequence

and then a fourth is presented, a new sequence is seen by the network, comprising

of the new pattern , the two most recent and noise from any previous patterns th a t

have been seen (if decay parameters are chosen appropriately).

In the TKM work, binary pairs were randomly presented to the networks. In

this work, bipolar pairs are adopted for reasons which will be discussed below.

4 .7 .3 T race A rch itec tu re

Consider an input vector 7 of dimension n. Each line i of the n Hnes is summed

leakily:

Ai{t -f 1) = drAiij,^ -f 7i(t) (4.8)

122 C H APTER 4. TEM PO RAL KOHONEN M APS

where A{ is a trace activity on line i, dx is the decay rate on the Hne and li is the

corresponding input component.

4.8 A n alysis o f Trace A ctiv ity

Let us consider the activity A of a. single synapse, i.e. drop the index i in Equa

tion 4.8, when a sequence of 1-dimensional patterns is presented to it. Let us

furthermore assume that the initial value of A i.e. A(0) is set to be the reset value.

W hat we mean by the reset value is the average of our possible pattern space (see

the end of this section for fuU description). The reset value is the value of >1(0) tha t

corresponds to an infinite stream of random patterns having being presented at tha t

synapse.

Let the pattern sequence presented to our synapse be called Pi{t) and let it be

m time-steps in duration. Here, Z is a label which refers to a specific temporal

sequence. At time t = m , A will have m terms, i.e. the backwards exponentially

weighted values of Pi at times t = 1 ,2 , . . . ,m . Call this value of A (m) the synaptic

history Si of the temporal sequence /. We can thus write

m

S, = ' £ P l (t) - d T ' " - ‘ (4.9)
t = l

N oise and Error Bandvsridth

In general, the value of A(0) will not be the reset value. To preserve the rolling

property of the TKM, we must ensure th a t a particular synaptic history Si can still

be classified uniquely, no m atter what the noise at a particular synapse is. It should

be independent of the value A(0) that resulted from an arbitrary presentation of

patterns in the past.

Let Si be the value of Si containing arbitrary interference from A(0). We can

write for a sequence I of length m

Si = 5/ + 0 (d r ^)

4.8. A N A LYSIS OF TR A C E A C T I V IT Y 123

= Si A Em (4.10)

where Em is an error term. We can calculate the worst possible effect tha t this

term can have. This occurs when all inputs I (t) for t = —o o ,. . . ,0 have the same

direction, e.g. for the bipolar case, all +1 or all -1. Equation 4.10 is a geometric

series. If we take Em as the sum of all terms excluding the first n, then the first

term is a = d r” and the ratio of terms is r = d r.

(411)d r

This gives a measure of the effect of a non-zero A(0) in the worst case, which we

call the error bandwidth. For any sequence of length m, \Em\ must be less than the

smallest separation between any two adjacent synaptic histories, or else interference

from activity at t = 0 will be too great to allow the necessary discrimination.

Trace R eset Value and B inary versus B ipolar D ata

If we are using a trained network to classify a sequence, the reset value of the traces

has to be considered. Call this reset value A r . This value is not simply the average

of the basis vectors i.e. for binary data it is not 0.5. We need to find the centre of

the state-space i.e. the range of the integrated synapse values. For binary data, the

range of the state space is

1
0 , (1 - dr)_

and hence

A r =
2 • (1 — dr)

For bipolar values, the reset value is always zero. Bipolar da ta thus has a shght

practical advantage in tha t A r need not be calculated.

124 C H APTER 4. TEM PORAL KOHONEN M A P S

4.9 E xp erim en ta l R esu lts

4.9 .1 A n E x a m p le - P a ir S eq uences o f L ength T h ree

We first present a practical example to elucidate the analysis of the previous section.

A simulation was performed to record pattern-density statistics, final convergence

state of the weight-space and sequence labelling for a network learning the complete

set of 64, 2-D, length three sequences of bipolar training vectors. The pattern

statistics are shown for one input line only, but the weight-space plot shows no

coupling effects between lines (i.e. due to poor random number generation) in this

simulation.

The trace decay value used was dr = 0.45. The neighbourhood was Gaussian

with initially <7 = 5, initial learning rate a = 0.35 and an exponential decay of

learning parameters, T1 / 2 = 1800. The to tal training time was 8500 epochs.

According to Equation 4.9, the set of 8 noiseless (A(0) = 0) synaptic histories

for the set of 1-dimensional bipolar sequences of length three is

Si e {-1.6525, -1.2475, -0.7525, -0.3475,0.3475,0.7525,1.2475,1.6525} (4.12)

calculated by taking all possible permutations of inputs thus:

{{^(1) = ~ l> f(2) = —l,f (3) = —1}, • • •, { /(I) = -hi) 7(2) = 4-1,7(3) = 4-1}}

Figure 4.12 shows the probability distribution, in one dimension, of formed train

ing vectors for the simulation. The black arrows mark the values of Si from 4.12.

The clusters are clearly evident and are labelled 1 through 8. Note tha t the centres

of the clusters are in agreement with the values of 5/.

Of note is the bandwidth of the clusters, which is a key factor in the network

being able to form a correct mapping. This is the problem that any Kohonen

network faces when trying to map an input space formed of discrete vectors. If

this accumulated error giving rise to the bandwidth is not present during training,

then the mapping in general wiU not converge to a correct solution and is instead

4.9. EXPERIMENTAL RESULTS 125

50.00

! 640.00

I
i l

10.00

- 2.00 1.00 2.00- 1.00 0.00

Trace decay 0.45
Sampling width 0.01
Sequence length 3
Training time 6500 steps

Figure 4.12: Pattern probability distribution for a single synapse.

126 CHAPTER 4. TEMPORAL KOHONEN MAPS

1.0 0 !

0.50

0.00

-0.50

- 1.00

-1.50

1.00 1.50-1.50 - 1.00 -0.50 0.00 0.50

Figure 4.13: Final weightspace plot for bipolar sequences of length three.

distorted, particularly in the much lower density regions of the map which occur in

the centre.

The bandwidth measured from the results is ±0.16. This agrees very well with

the calculated value of \Em\ = 0.1657

Figure 4.13 shows the final state of the weight-space for the simulation. There

is good correspondence between node points and the values for Si.

The labelling for the nodes is shown in Figure 4.14. Each three digits in paren

thesis is the label for sequences made up of the four patterns [0 = { —1 ,—1},1 =

{ - 1, ± 1},2 = {±1, - 1},3 = {±1, ± 1}]

It can be seen that the clustering is of the same form for the TKM i.e by most

recently presented pattern e.g. bottom-right 16 nodes are the sequences terminating

4.9. E X P E R IM E N TA L RESU LTS 127

(111)(311)(131)(331)(113)(313)(133)(333)

(011)(211)(031)(231)(013)(213)(033)(233)

(101)(301)(121)(321)(103)(303)(123)(323)

(001)(201)(021)(221)(003)(203)(023)(223)

(110)(310)(130)(330)(112)(312)(132)(332)

(010)(210)(030)(230)(012)(212)(032)(232)

(100)(300)(120)(320)(102)(302)(122)(322)

(000)(200)(020)(220)(002)(202)(022)(222)

Figure 4.14: Labelled output layer for bipolar sequences of length three,

in pattern 2.

4 .9 .2 L earn in g S eq u en ces o f L en g th Four

The above simulation was repeated for sequences of length four, using a square

network of 256 nodes with param eters o"(0) = 8.5, o:(0) = 0.35, dx = 0.475 and

a training time T = 25000 epochs. It was found, over the course of numerous

simulations (around 50), th a t the best result was one where the network classified all

but 11 of the 256 sequences (a success rate of 95.7 %). Figure 4.15(a) shows the final

weight space plot, which shows a few ‘crinkles’ in the positive quadrant responsible

for the misclassifcations. It seems th a t with suitable param eter ‘tweaking’ tha t all

sequences could be captured, but it is likely, th a t the lim it for what can be easily

achieved in a single layer is sequences of length four. This is born out by the

‘crowded’ pattern spectrum for a single synapse shown in Figure 4.15(b).

Clearly, classification of sequences longer than four will have to be tackled by

multilayer networks. This will be discussed in Chapter 5.

128 CH APTER 4. TE M PO R AL KOHONEN M A P S

2

1 . 5

1

0 . 5

0

0 . 5

1

1 . 5

2
1 . 5 0 . 5 0 0 . 5 1 1 . 5 22 1

(a)

1 6 0

s i n g l e s y n a p s e p a t t e r n s t a t i s t i c s

1 4 0

120

100

80

60

40

20

0 . 51 . 5 1 0 0 . 5 1 1 . 5 2- 2

(t)

Figure 4.15: (a) Final weightspace plot and (b) single synapse pattern statistics for

sequences of length four.

4.10. IM PO RTAN CE OF N O ISE 129

4 .10 T he Im p ortan ce o f N o ise In M ap F orm a

tion

We have seen tha t the random accumulated noise at each synapse performs a crucial

role in providing a suitable weightspace to be mapped. In the simulations above, a

trace decay value of around 0.45 was used which is biologically unrealistic.

Another simulation was carried out, using a trace value of 0.35. It can be seen

th a t the weightspace is somewhat distorted with resultant misclassihcation.

The main point is tha t noise improves the exploration of the state space [68].

We could thus alter the model to have noisy synapses, which would remove the need

for such slow decay rates for the trace histories.

4.11 C om parison O f Trace M od el W ith K a n g a s’

D a ta A verag in g M od el

Kangas has discussed a model which is mathematically equivalent to the trace ar

chitecture discussed in the previous section [27]. A memory vector ^ (t) is defined

as forming the average of the input patterns over time.

= (1 - w)x^{ t - 1) + wx{t) (4.13)

Kangas described this model as being expected to have better tolerance in a

noisy environment as the averaging afforded by Equation 4.13 wiU compensate for

additive noise. But more im portantly, he says tha t the model was “not expected to

produce very good representations fo r sequential data, because the following patterns

will effectively shadow the preceding ones”.

His test system was a simulated object moving in a two dimensional space on a

figure of eight shaped track with the facility for adding various degrees of noise. The

problem was to determine which direction the object was traveUing, particularly in

130 CHAPTER 4. TEM PO RAL KOHONEN M A PS

the cross over region. He reported that in experiments, the classification accuracy

was improved by data averaging, but tha t there was poor tolerance on the param eter

w.

Kangas is quite correct to say that shadowing of past patterns will occur in a

continuous input pattern space. This is however not the case for the discrete (bipolar)

patterns tha t have been discussed in this chapter. They are in fact guaranteed not

to overshadow previous patterns.

4.12 Sum m ary o f C hapter 4

We began by reviewing methods of representing time in neural networks i.e. pattern

vector concatenation and recurrent architecture models. The advantages and dis

advantages of such approaches were discussed. We then reviewed work which had

adapted the Kohonen model to temporal applications.

The leaky integrator model of the neuron was then reviewed and discussed in

the context of the Temporal Kohonen Map of Taylor and Chappell. The problem of

weightspace instabiHty when using the standard Kohonen update law with the TKM

was discussed and a simulation presented showing the model attem pting to map the

complete set of binary pair sequences of length three. A new model which moved

the site of leaky integration from the cell body to the synapses was then introduced.

This new model was shown to retain a history of the actual training patterns which

allowed the map to more easily form a stable weightspace and thus map longer

sequences. An analysis of the properties of a single synapse was presented which lead

to the idea of ‘error bandwidth’ of the representation of a single sequence. Bounds on

the synapse trace decay were given so th a t the non-overlapping of representations

was assured. The importance of having a large noise term was demonstrated by

simulation; this is because the SOM performs much better when mapping quasi-

continuous input distributions than quasi-discrete ones.

C hapter 5

H ierarchical M aps

131

132 CHAPTER 5. HIERARCHICAL M A P S

5.1 H ierarchical C lassification o f Tem poral

Sequences

We have investigated the classification abihty of a single layer network. The amount

of training required and the accuracy of the weightspace discriminations needed in

evitably Hmit the useful abstraction that can be performed in a single layer. The next

logical step is to consider how multilayer systems can cope with longer sequences.

We wiU use both binary and bipolar variables interchangeably in this section.

5.1.1 C o n n ectio n s B e tw een Layers

In the standard formalism, the output of the Kohonen layer is a unary vector, with

the one active line corresponding to the winning node. Such an output vector is

not of much use when trying to relate topographic relationships between layers. For

example, we would expect a 4x4 output layer to have a similar output for say the

node at row 3, column 3 and the node at row 2, column 3. The corresponding unary

output vectors might be (0,0, • • •, 0 ,0 ,0 ,0 ,1) and (0,0, • • •, 1 ,0 ,0 ,0 ,0) respectively.

These can hardly be considered similar! There is thus little tha t a static Hierarchical

map can do unless it has graded response outputs. How might the graded response

Pi for each neuron i be defined? Possibilities are

• Some function of similarity i.e. a variajit o fy = l/(e -f /?) where f t =

and D is the Euclidean distance between input / and weight vector w. This

then produces a ^spectrum' of activities, with the winner having the output

value 1. This is what Kangas calls a ‘response’ [28] [27]. Kangas used a mul

tilayer strategy to make a ‘more orthogonal’ representation of the raw input

vectors which could then be integrated according to Equation 4.13 and then

self-organised by another map. In all cases, he reports tha t using pattern

concatenation gives superior results.

5.1. H IERARCH ICAL CLASSIFICATION 133

• Some output layer topology variant of the above. This might be a gaussian set

of outputs on the output layer, centred at the winning node. The winner thus

has output 1 and other nodes are given outputs according to their distance

from the winner.

5 .1 .2 S im u la tin g T op ograp h ic L o ca tio n by C o -o rd in a te

P a ssin g

We cau circumnavigate having to feed forward a very large output vector and the

associated problems of giving the vector a topographic meaning, by arranging the

output layer to pass forward the location on the grid of the winning node directly.

Such a mechanism was employed by W hittington et al [73] in their Hierarchical

Adaptive Kohonen Feature Map Model (HAKFM). In this case, the coordinates

were concatenated by a shift register i.e. a tim e delay model and then this vector is

classified by a higher layer.

Co-ordinate passing can be achieved by an arrangement of two weights per node,

each weight having a value linearly related to the particular coordinate (See Fig

ure 5.1). The input to the next layer then consists of ICîLi ^iW.i for all the n nodes

in the feeding layer which is just for a unary output vector z and winning

node win.

This obviously preserves topological information and means that the need for a

large interconnecting weightspace is sidestepped. Of course, this does not make any

biological sense as real layers of neurons are unlikely to be doing this. Having said

this, the model has simplicity on its side and the dimension of the interconnecting

weights, namely two, is the same for all subsequent layers.

5 .1 .3 C o -o rd in a te P a ss in g W ith T race A rc h itec tu re

Co-ordinate passing works well with the trace architecture, with the caveat tha t the

trace decay value dr must be less than the smallest inter-pattern separation e.g. if

134 C H A P TE R S. HIERARCHICAL M A P S

Positional
W eights '

input Terminals
Of Next Layer

Output Layer

Figure 5.1: Weight arrangement for coordinate passing.

a 1 dimensional array of four points is represented by the set { 0.0, 0.3, 0.7 and 1.0

}, then the boundary condition is

< 0.3

that is, the worst case scenario would be an infinite string of value 1.0, followed by

0.0. The above condition must be met if the trace value is not to overlap with the

first pattern value 0.3.

5 .1 .4 C lock in g o f C o n n ec ted Layers

Suppose we are trying to train a hierarchical layer B from the output of a previously

trained layer A. If layer A classifies sequences of length two, say, then we might

naturally want layer B to classify a sequence of length four i.e. detect two win

ners from layer A. Of course, layer A generates winners at every time-step. If we

want there two be just two isolated events on layer A, we have to choose to count

that there have been two groups of two. The layers thus have to have some form

5.1. H IERARCH ICAL CLASSIFICATION 135

70
S y n a p s e s t a t i s t i c s f o r c o - o r d i n a t e p a s s i n g ------

60

50

40

30

20

10

0.5 1.5 20 11.5 0.5- 2 1

Figure 5.2: Single synapse statistics for coordinate passing example (16 x 16 grid).

of synchronisation or clocking to guarantee tha t learning only occurs at the right

times [72].

A simulation was carried out using clocking on a two layer system, using the

coordinate set {—1.5, —0 .5 ,+ 0 .5 ,-f 1.5}. The single synapse statistics for this set is

shown in Figure 5.2. The first layer was trained to respond to sequences of length

two and then the second layer was trained on the coordinate data of the first layer.

This correctly classified all 256 sequences, as predicted.

5 .1 .5 L earn in g at E very T im e -S tep

There is no reason why a two-layer feed-forward system, where the first layer is

classifying sequences of length two, has to have a clocking mechanism as described.

There is no requirement for it to segment the sequences into chunks of length two.

In the hierarchical stack of Kohonen maps used by Tatersall et al, there is learning

136 CHAPTER 5. HIERARCHICAL M APS

at every time-step [67] [66].

Suppose in our two-layer system, we have feed-forward at every time-step. W hat

will the second layer actually be classifying?

Consider a 1-dimensional first layer (a hnear chain) which has been trained on

one dimensional bipolar data and the decay rate of the traces is such that sequences

of length two are classified. Now consider that the state of this layer is such that it

has just been presented with the sequence A A. This wül have produced a winner at

node 1, say. Then assume that a third pattern is now presented and that it is a B.

Node 3 will then respond as layer 1 will have correctly classified the sequence AB

(preceded by AA at the previous time-step). The output vector therefore at times

t and t -f 1 will be (-f 1,-1,-1,-1) and (- l ,- l ,- f l ,- l) respectively. Hence, if layer 2 is

also classifying sequences of length two, it will actually classify sequences of length

three from the two patterns presented from layer 1.

W ith learning at every-time step, a co-ordinate passing two layer system easily

maps the set of 64, length three sequences onto a second layer of 8 x 8 nodes.

5.2 Fully C on nected Tw o-Layer S ystem s

We want to investigate other forms of communicating co-ordinate information be

tween layers th a t does not require multivalued neuronal outputs, but equally impor

tantly has an intrinsic topographic structure. The most obvious choice to investigate

is the full pass forward of all outputs of the feeding layer i.e. for a 4 x 4 feeding layer,

this output is a 16-d unary coded vector. We would expect some hmited clustering

abihty due to the integrated trace values i.e. the output vector will no longer appear

to be unary coded to the second layer. We wiU look at learning at every time-step

for the second layer.

A simulation was performed where layer 1 was first trained on two-dimensional

bipolar sequences (sensitive to length 2, i.e. there were 16 neurons arranged in a

square grid). The sixteen dimensional output of this layer was then used to train a

5.2. FULLY CONNECTED T W O -L A Y E R SY S T E M S 137

113 213 # 212 012 112 # 111 O il # 301 201

013 313 # 312 # # 311 211 # # 001 101

#

131 331 # 133 333 # # 130 230 # 110 010

031 231 # 233 033 # 330 # # # 210 310

030 # # ■#

021 # # # 332 032 # 303 # # 322 122

121 321 # 132 # # # # 003 # # 222

221 # # # # # 203 103 # # 022 #

232 # # # # # # #

020 320 # # 323 # # 102 002 # 200 300

120 220 # 223 123 023 # 302 202 # 100 000

Figure 5.3: Labelled output layer for fully connected two-layer system.

12x12 layer 2. The output of the first layer was arranged to be bipolar also i.e. +1

for the winning node and -1 otherwise. A 12x12 grid was used for the second layer

due to the extrem e dimensional reduction the layer was expected to form. It was

found to be impossible to compress the patterns on to anything smaller.

Figure 5.3 shows the labelled output layer at the end of the run. All sixty-four

patterns have been captured and it can be seen th a t each group of four patterns

terminating in a particular pair (eg XOO at the bottom right) are locally correct in

their clustering. However, global clustering is not good.

5.2 .1 A n E n forced O u tp u t S p e c tru m For P r e se r v in g T o p o

lo g ica l In fo rm a tio n

We have seen th a t there is no connection between particular elements of the output

vector and th a t this vector is very sparse. For a network of n nodes there is only a

138 CHAPTER 5. HIERARCHICAL MAPS

Activated ‘patch’

o o q'Oo o o o
o e e # o o o o
o # e ®o o o o
o e ®e o o o o
o o o o o o o o
o o o o o o o o
o o o o o o o o
o o o o o o o o

Figure 5.4: Use of activated patch to represent topology.

1/n chance of that node being a winner (assuming that the nodes have mapped the

input distribution correctly). Consider that we now choose to enforce some structure

on the nature of the output (as described above). Say that a winner has been found

in response to some pattern/ pattern sequence. Instead of the output being -f 1 for

this node and -1 for all others, that there is an ‘activated patch’ that surrounds the

position of the winning node (See Figure 5.4)

Each output yi might be defined along the lines of

yi = exp (-R i I2(t^) for Hi < R^ut (5.1)

yi = —1 otherwise

where a = n /4 , n is the number of nodes in the (square) output grid, R{ is the

physical distance between the winning node and the node i and Rcut = 2<r is a

cut-off distance beyond which nodes are ‘off i.e. have output -1.

We repeat the simulation of the previous section, utilising the above form for y{.

For a 4x4 network, this results in just a cross-shape of activity around the winning

5.2. FULLY CONNECTED TWO-LAYER SYSTEM S 139

120

102 302 112

012 123 323

023 223

203 003

303 033 233

333
'

133

221 031 013^

131

113

Figure 5.5: Clustering using gaussian profile activated patch.

node. But this simple correlation of topologically close outputs produces a dramatic

improvement in the global clustering properties exhibited by layer 2. Figure 5.5

shows the output state of layer2 which has been divided up to show the clusters. All

sixteen clusters are present as before, but now they are ail topologically correctly

positioned as per the topology of layer 1. The outer ring of twelve clusters are easy

to follow round and the positions of the inner four are also correct (of course, the

layer does not look perfect because of dimensional reduction).

Although each cluster is formed and is in a globally correct position, we can see

that there is no structure internal to each class. If we extend the cutoff range to

Rcut = 3(j, we note significant improvement of local performance in clustering i.e. 0

in the top left, 1 in the top right, 2 in the bottom left and 3 in the bottom right of

140 CHAPTER 5. HIERARCHICAL MAPS

200 300

220 320

120

002102

202 302

r:

112 312

103

2 2 3 # ^

031 131

133

Figure 5.6: Clustering using an activated patch with extended cut-ofF range.

most clusters (See Figure 5.6). The subdivision is not perfect, however, within the

central 4 clusters. This can be accounted for by recognising that interior nodes on

the feeding layer have a higher probability of having a positive output i.e. making an

active contribution to the output vector. They have physically more nodes around

them to force them to be part of the output spectrum.

5.3 G rey-C ode R epresentation o f Topology

An alternative approach to communicating topological information that does not re

quire continuous values (and hence should be much more applicable to the synaptic

trace model) is one where the topographic position of a node on the grid is repre-

5.3. GREY-CODE REPRESENTATION OF TOPOLOGY 141

Input Terminals
Of Next Layer

Greycode
Positional
Weights

Output Layer

Figure 5.7: weight organisation for greycoding of a 4 x 4 layer

sented as a ‘grey-code’ [3]. This means that there is a fixed number of bits available

to represent each of the x and y coordinates. For example, a 4 x 4 square layer

requires 2 bits for both x and y dimensions, so that each node requires a total of

four bits or weights. The arrangement of weights seen by the next layer is shown in

Figure 5.7

In general, an M x M grid wiU require 21og2(M) weights per node. The training

vector for the next layer is the concatenation of the greycodings for the x and y

components i.e. (^ , ^)

Figure 5.8 shows the codings for each node. Moving along either the x or the y

direction, we can see that each node’s weight vector differs by 1 bit and that this

arrangement is topological e.g. the two highlighted weights in the diagram. This

code is topological with respect to the Hamming distance metric [24].

Simulations were carried out on a 4 x 4 initial layer and an 12 x 12 final layer as

before, with the greycode weights shown in Figure 5.8.

We can see from Figure 5.9(b) that coarse grouping by last pattern presented

142 CHAPTERS. HIERARCHICAL MAPS

00 01 11 10

: g § g g y - - '
O O 0 ; C ^ (10,10)

1^0 0 O l© i^

Figure 5.8: x and y greycode components for a 4 X 4 grid

has occurred, but that the fine structure of the map is fairly poor. Why should this

be the case?

5.3.1 M apping Four D im en sion al G rey-C ode V ectors On

A Single Layer

We can simplify the question of why the grey code model does not live up to ex

pectation by choosing to map an explicit set of 4-dimensional training vectors on

to a single layer. There is now no confusion as to what the layer is attempting to

map i.e. we can distinguish between any errors in implementing the grey-code model

and the coding scheme itself. The following set of training vectors was used in the

simulation:

(0,0,0.0) 00 (0,1,0,0) 10 (1,1,0,0) 20 (1,0,0,0) 30

(0,0,0,1) 01 (0,1,0,1) 11 (1,1,0,1) 21 (1,0,0,1) 31

(0,0,1,1) 02 (0,1,1,1) 12 (1,1,1,1) 22 (1,0,1,1) 32

(0,0,1,0) 03 (0,1,1,0) 13 (1,1,1,0) 23 (1,0,1,0) 33

Here, each training pattern is followed by a label formed from the (x, y) coordinate

of the node we might ideally like the pattern to represent (subject of course to the

usual rotation and reflection transformations of the self-organising map). We can

use these vectors just to test the topographic properties of the greycode scheme used

5.3. GREY-CODE REPRESENTATION OF TOPOLOGY 143

1 40
one synapse statistics for greycoding

120

100

80

60

40

20

20 0 . 5 1 1 . 5

30. 30. . . .

-...
30) 1

(a)

(b)

Figure 5.9: Single synapse statistics and clustering diagram for grey coding.

144 C H APTER 5. HIERARCHICAL M A P S

ie we use single time step sequences consisting of each of the above pattern set. Two

typical results are:

30 00 10 20 33 32 02 03

33 03 13 23 23 22 12 13

32 02 12 22 20 21 11 10

31 01 11 21 30 31 01 00

It can be seen th a t there is some locally correct (but this is not consistent from sim

ulation to simulation), but not globally correct topographic structure. The reason

for this is tha t vectorially, the separation between the vector with label 00 and that

with label 01 is the same as tha t between 00 and 30. In such a binary coded case,

the Hamming distance and the EucHdean distance are the same. Hence EucHdean

distance relationships between vectors with real components (our co-ordinates in

this casé) are not preserved in their grey-code representation. The meaning of the

position of a particular vector component is not taken into account by the distance

matching algorithm as the Hamming distance can only measure the number of places

in which two vectors differ [24]. Topological information is thus not preserved and

there are multiple correlations between vectors which should ideally not have such

correlations.

5.4 ^Triangular’ C oding o f Topology

We want a coding scheme tha t is similar to the grey-coding, but which has an

unambiguous global form. This coding must have a restricted set of correlations

between vectors tha t we want to be topologically close. Consider now the following

coding for (z, y) positions of a 4 x 4 grid, based on a higher dimensional weightspace

of six bits, three per dimension:

5.4. ‘T R IA N G U L A R ’ CODING OF TO P O LO G Y 145

(0,0,0,0,0,0) (0,0) (0,0,1,0 ,0 ,0) (1,0)

(0,0,0,0,0,1) (0,1) (0,0,1,0,0,1) (1,1)

(0,0,0,0,1,1) (0,2) (0,0,1,0,1,1) (1,2)

(0,0,0,1,1,1) (0,3) (0,0,1,1,1,1) (1,3)

(0,1,1,0,0,0) (2,0) (1,1,1,0,0,0) (3,0)

(0,1,1,0,0,1) (2,1) (1,1,1,0,0,1) (3,1)

(0,1,1,0,1,1) (2,2) (1,1,1,0,1,1) (3,2)

(0,1,1,1,1,1) (2,3) (1,1,1,1,1,1) (3,3)

This is a 2-d concatenated form of so called thermometer coding [3] [21]. Now,

each position representation has a greatly restricted number of nearest neighbours

e.g. the corner position (0,0) has a representation tha t is (equally) topologically

close to (0,1) and (1,0). These are exactly the two vectors th a t it should be adjacent

to. Similarly, an interior point such as (2, 2) has only four nearest neighbours:

(2,3),(1,2),(2,1) and (3,2). This coding thus preserves the Euclidean to Hamming

transformation. The results of self-organising these vectors on to a 4 X 4 network is

(3,3) (2,3) (1,3) (0,3)

(3,2) (2,2) (1,2) (0,2)

(3,1) (2,1) (1,1) (0,1)

(3,0) (2,0) (1,0) (0,0)

i.e. a perfect mapping. The number of weights required is 0 (M) = 2(M — 1)

per node which is much more preferable to the O(M^) weights used in the fuUy

connected model.

5.4 .1 Iso m o rp h ic C od in gs

The 3-bit coding scheme is one of a set of equivalent coding schemes for representing

4 topological scalars. They are generated from the following rules:

146 C H APTER 5. HIERARCHICAL M A PS

(0,0,0)

/ 1 \
(1,0,0) (0,1,0) (0,0,1)

(1,0,1 (1,1,0)

Figure 5.10: Triangular coding isomorphisms.

1. Start with the vector (0,0,0)

2. Generate all vectors th a t differ from the parent by 1 bit.

3. Form a further generation by changing another bit. Do not repeat any previ

ously generated vector from any part of the tree above.

The partially completed tree of vectors generated by this algorithm is shown in

Figure 5.10. In this instance, the path ending in the second terminal represents the

familiar triangular coding. AU six codings can be generated by permuting the three

column vectors (0 ,0 ,0 ,1)^ , (0 ,0 ,1 ,1)^ and (0 ,1 ,1 ,1)^ .

5 .4 .2 H ierarch ica l C la ssifica tio n U sin g T riangular C od in g

We now consider sequences of length two, comprised of the above set of 6-d training

vectors. Some initial simulations carried out on a 16 x 16 grid for aU 256 possible

sequences showed only a mapping success ra te of 58%. A simpler training set was

used (sixteen, length two sequences comprised of (0,0) and each of the above set) to

investigate this poor result and it was found th a t a rectangular grid of 4 x 6 neurons

produced a near perfect topological mapping of this reduced set of sequences (See

Figure 5.11).

5.4. ‘T R IA N G U L A R ’ CODING OF TO P O L O G Y 147

(00,33) (00,32) (00,31) (00,30)

(00,23) (00,22) (00,21) (00,20)

(00,13) (00,12) (00,11) (00,10)

(00,03) (00,02) (00,01) #

#

(00,00)

Figure 5.11: Labelled output layer for reduced set of sequences.

4 5 0 0

4 0 0 0

3 5 0 0

3 0 0 0

2 5 0 0

2000

1 5 0 0

1000

5 0 0

t r a i n i n g v e c t o r p r o b a b i l i t y

0 . 2 0 . 4 0 . 6 0 . 1 . 2 1 . 4

Figure 5.12: Single synapse statistics for triangular coding.

148 CH APTER 5. HIERARCH ICAL M APS

The reason for the increased difficulty in mapping sequences of this coding is that

the different synapses are not equiprobahle to receive an on signal. Thermom eter

coding is not an equal weight code [24] meaning tha t representations of increasing

magnitude scalars have increasing number of set bits, and these bits remain on.

A particular synapse will have the elements of one of the coding’s three column

vectors (recall these are (0 ,0 ,0 ,1)^ , (0 ,0 ,1 ,1)^ and (0 ,1 ,1 ,1)^) as its training set.

For example, lets say the training set is {0,0,0,1}. Thus P (l) = 1/4 and P(0) =

3/4. The probabilities for possible sequences of length two are thus P({0 ,0}) =

9 /16 ,P ({0 ,l>) = 3 /1 6 ,P ({ l,0 >) = 3/16 and P({1,1}) = 1/16 i.e. in the ratio

9 : 3 : 3 ; 1. Figure 5.12 shows the pattern density statistics of a single synapse

exposed to the training set of our example. The measured ratios in this simulation

were 9.07 : 3.11 : 3.11 : 1.00 (trace decay value was 0.3). The symmetry used in

the trace analysis of the previous chapter (which assumed a 50% probability of an

active input) is thus broken with a resultant ‘strain’ on the weightspace. Clearly, if

the four patterns were presented with the above frequency, then there would need

to be sixteen nodes to produce the correct mapping.

When the geometry of the 16 x 16 grid was changed to 30 x 20 (i.e. an increase

in the number of nodes by a factor 2.34) the capture rate of sequences of length two

rose to 74%. This rose to 88% for a grid of 40 x 30 nodes (4.69 times the desired

number of nodes for the job).

5.5 Super-L attice N etw orks

It is clear that complete feedforward of large dimensionality vectors to increasingly

large networks is a poor strategy for abstraction. It is unreasonable to expect one

single self-organising layer to be able to accurately process a geometric increase in

the number of training patterns at each level of abstraction. Each layer is essentially

duplicating the information from the previous layer.

A very interesting approach to the use of hierarchical Kohonen maps is the

5.5. SU PER-LATTICE N E T W O R K S 149

. 0 0 0 0 0 0 0 0
Super-Lattice . - 'OOOOOOOO

\ O O O O O O O O
V / O O O O O O O O

O O O O O O O O §§8§§88§
0 0 0 0 0 0 O/O ..g§§§8§§§
0 0 0 0 0 0 O'O" /
O O O O O O O O
O O O O O O O O
O O O O O O O O
O O O O O O O O
O O O O O O O O

Figure 5.13: The super-lattice architecture.

‘super-lattice’ of M artinetz and Schulten tha t they appHed to controlling a robotic

arm and its gripper [43] [62].

The form of the network consists of a normal lattice (in the robot learning

example a three-dimensional one) to which each node is assigned a sub-lattice (See

Figure 5.13). The main or super-lattice self-organises its weights in the normal way,

but then the training vector is also transferred to the winning node’s sub-lattice.

The sub-lattice then provides a local expansion of the weight space in the vicinity

of the super-lattice weight vector value.

The big advantage of this scheme is the searching procedure scales in a much

less time-expensive way. For example, if N,uper is the number of nodes along one

dimension of the super-lattice and Ng-ub is the number of nodes along one dimension

of each sub-lattice, then the search time will be

t.,arch ~ (5.2)

150 C H APTER 5. H IERARCH ICAL M A PS

where p is the dimensionality of the super-lattice and q is the dimensionality of each

sub-lattice. If all nodes were in one network, then the search time would scale as

^super ’ ^Bub' ^ f course, each sub-lattice could potentially have a sub-lattice of its

own.

The learning algorithm is altered to reflect the new hierarchical structure; there is

a neighbourhood defined for the super-lattice and a second for all neurons p in each

sub-lattice s. Furthermore, the set p is allowed to contain neighbouring subnets’

neurons so tha t there is topographic continuity in the subnets. The effect of the

winner on these other neurons is scaled by distance accordingly, determined by the

super-lattice neighbourhood. The super-lattice and and sub-lattices are thus learnt

concurrently.

This kind of structure would be eminently applicable to the synaptic trace model.

The sequence length limit of four for the single layer model would not apply in such

a tree-structured network as the theoretical separation of sequences in pattern space

could be expanded by progressively more localised sub-lattices.

Interestingly, similar hierarchical structures exist in the visual cortex of higher

animals [62] [51]

5.6 Sum m ary o f C hapter 5

Different strategies for coding the information passed between hierarchical layers

that would retain topographic information were discussed and reviewed. These

included co-ordinate passing and Kangas’ ‘response’. The role of clocking was dis

cussed, along with the meaning of learning at every time step. The results of a naive

fully connected system were then shown by simulation to be poor.

An enforced output spectrum model was then presented, whereby the output

activity around the winning node forms a ‘patch’ which is used to train a higher

layer. This was shown by simulation to give much improved clustering performance.

A ‘grey-code’ encoding was then presented and its failure discussed in terms of

5.6. SU M M A R Y OF C H APTER 5 151

the Hamming-distance vs Euclidean-distance preservation conflict. A concatenated

form of ‘therm om eter code’ was then presented which has the desired Euclidean-

distance preserving properties, but is not an equal-weight code which would ideally

be required for the trace architecture.

A discussion of the super-lattice model of R itter and Schulten was then presented,

together with the suggestion that this would be a good basis for an hierarchical trace

architecture model due its local expansion of the weightspace.

152 C H A PTE R S. H IERARCH ICAL M A P S

C hapter 6

D iscu ssion and C onclusions

153

154 C H APTER 6. DISCUSSION AND CONCLUSIONS

The self-organising map is a very successful neural network algorithm; it has been

applied to many problem domains, including speech recognition, optimisation and

robot control. Its primary strengths are its simpHcity of definition and its robustness

under a wide variety of learning parameters. These are made even more attractive

by the observation that it displays many of the properties of biological topographic

mappings.

Kohonen himself has in the past described using ‘rules of thum b’ for the initial

learning parameters of the self-organising map, and for their rates of change dur

ing learning. These are usually gleaned from experience of using the SOM. We have

presented here an extended model of the SOM which addresses the problem of learn

ing param eter time course and how this may be determined dynamically. We have

developed this in terms of a sequence of stable states. These states are reached dur

ing learning periods of constant parameter values (learning rate and neighbourhood

size), these parameters restricting the ‘volume’ of pattern space that can currently

be effectively mapped. A simple metric was then used to identify the stable states

and allow a transition to a new, smaller learning rate and neighbourhood size. We

then showed how this model performs under standard tests of the self-organising

map through simulations. Furthermore, we have shown that the new parameters,

the transition decay constant A and the smoothing constant introduced by the

model are more general than the parameter (an externally imposed time scale Î 1 / 2)

tha t they replaced. They can be taken ‘off the shelf’ and applied unchanged to a

variety of scenarios, both performing benchmark examples Hke mapping the unit-

square and more complicated inputs requiring dimensional reduction.

A ttem pts in the past to introduce temporality into the Kohonen model have

primarily consisted of pattern concatenation. The Temporal Kohonen Map of Taylor

and Chappell overcame many of the problems of such a time-delay model, primarily

through simplicity of architecture and removal of an explicit time-window. The

leaky-integrator neurons employed in this scheme utilised a known property of real

neurons, tha t of integration of cell body activity, decaying over a short period of time.

155

We have shown here that the application of the standard Kohonen law (i.e. rotation

of the neighbourhood to the most recently seen pattern) to such tem poral nets is

not general enough to cope with producing a suitably accurate enough weightspace

configuration for binary pair sequences longer than two time steps and th a t even then

the weightspace cannot tolerate the neighbourhood size and learning rate tending

to zero at long times.

We have highlighted the need for the system to maintain a history of the actual

pa ttern vectors th a t comprise a pattern sequence and not ju st the nodes’ scalar

activity in response to those presented patterns in the past (as in the model of

Taylor and Chappell). We thus provided the motivation to include the integration

of incoming signals at the synapses of every node in the network. This forms the

‘trace architecture’ temporal Kohonen map. We have shown by simulation tha t

the binary pair problem has a stable weightspace even as the learning param eters

tend to zero with this model. We have also shown tha t in principle such traces can

distinguish binary sequences to any desired length, although in practice the SOM

algorithm itself severely restricts what can be done (in term s of the information

overload of dimensional reduction). We presented the case of a 16 x 16 SOM th a t

learnt almost the complete set of 256 sequences of length four bipolar pairs.

We have investigated ways of implementing multilayer tem poral topographic

mappings, as a means of further extending the model so th a t longer sequences can

be more easily claasified. Various coding schemes have been used to represent the

topographic nature of the feeding layer. Coordinate passing was found to be the

easiest and most obvious route, but is biologically implausible. We found th a t

imposing a structure on the otherwise unary output vector of the feeding layer

m et with some success, but was too close to being real valued to provide effective

discrimination of temporal sequences.

156 CH APTER 6. DISCUSSION AND CONCLUSIONS

The triangular coding scheme has certain desirable properties

• It is binary valued

• It is unique (subject to a simple set of transformations) for a given number of

bits

• It has an unambiguous topographic meaning

We savy however, tha t necessarily the coding scheme has different probabihty spec-

trum s on the different synapses (for equiprobable occurrence of a particular topo

graphic position). This means tha t the weightspace is distorted to reflect this new

probability spectrum and hence more nodes are required to produce a more complete

mapping.

Feedforward to ever larger layers seems to be a poor pohcy for abstraction.

Instead, some architecture along the lines of the Super-Lattice of M artinetz and

Schulten seems appropriate. Such an architecture frees any particular layer from

having to cope with too much information to accurately self-organise and scales well

with regard to searching. Work is under way to implement such a model.

In conclusion, the Kohonen map remains a focus of interest because of its Hnks

to observed biological organisation and information processing. It is the most bi

ologically plausible of the popular artifical neural network algorithms. This work

has presented two ways in which the algorithm could be extended in the direction

of increasing flexibihty and biological plausibility: the replacement of an externally

imposed time scale for learning parameters and the inclusion of temporal features.

The temporal Kohonen map has aspects still to be explored, but seems hkely to play

a role in biological information processing, since some mappings of this kind must

be used whenever it is necessary to transform temporal information into a spatial

representation. In any case it is a worthwhile topic for future research into artifi

cial neural systems, being a significant conceptual extension of Kohonen’s original

model.

A p p en d ix A

A n O b ject-O rien ted E n viron m en t

For R esearch In N eu ra l N etw ork s

157

158 AP PE ND IX A. A N OBJECT-ORIENTED EN V IRO N M EN T

A .l O bject-O riented P rogram m ing

for N eu ra l N etw orks

A .2 In trod u ction

T he S p ectru m of ‘N eurosoftw are’

The huge interest in neural networks over the past few years has spawned much

so called neurosoftware, that is programs or programming environments aimed at

simulating neural networks.

Much of this software has been aimed at the business community. A package

might consist of a graphical front end through which the user can select one of a fixed

number of neural network models to analyse his/her data. Financial institutions

are interested in such topics as credit risk or share prices. Hence, such packages

are restricted to being data-processing tools, and do not offer the researcher the

flexibilty of constructing and exploring new neural network models.

Programming environments exist to provide a ‘toolkit’ approach to research into

neural networks. They may offer the researcher libraries of algorithms and a way of

specifying network topology, for example. AXON, the proprietary language of HNC

Ltd, provides such an environment [23]. It is essentially the C language augmented

by data structures and programming constructs tailored for modeUing neural net

works. It however suffers from the following problems:

• It is proprietary - another researcher will need to buy AXON before software

can be exchanged. Therefore relatively few people will use the language, unlike

C-f—f , for example which is much more widespread.

• Each model has to specified from scratch. There is no incremental modification

in AXON.

The PYGMALION environment is an ambitious project aimed at producing a

A.2. INTRO DU CTIO N 159

full neural network environment, or platform. It is aimed at both the appHcation

user and also the researcher/developer. It suffers in trying to be too general and as

a result is extremely complicated - it has for example two separate languages, one

for high level neural network programming called N and a separate neural network

specification langauge called nC[44][55].

A .2.1 W h y O b ject-O rien ted ?

Object-oriented programming offers many advantages to the designer of a software

system. These include

• A vehicle for abstraction

• Inheritance and the re-use of code

• Polymorphism

• Information hiding

We will look briefly at what the above offer a programmer trying to write sim u

lations and more specifically neural network simulations.

A bstraction

Most programming languages provide the facility for some kind of abstraction. Even

modern BASIC allows for writing functions and procedures. This could be called

functional abstraction. However, these functions are Hmited to processing built-in

types i.e. integers, strings, arrays of these simple types etc. Functions in languages

such as BASIC and FORTRAN must therefore process data expHcitly at the level

of the primitive data types.

Data-abstraction allows grouping of primitive types to form a new data-structure

e.g. a complex number which might consist of two real numbers. This facility

is typified by the C language’s ‘structure’ which permits such aggregates. The

160 APPEND IX A. A N OBJECT-ORIENTED EN V IRO N M EN T

programmer wiU then develop a suite of functions which can operate on this structure

e.g. functions to return real and imaginary parts from our complex number.

This is all well and good for such simple examples. However, let us return to our

basic question: How should we model neural networks? We could go along the path

of our complex number, developing structures and associated functions for different

parts of a neural network. But we would then find that these elements would not fit

together. They would all be stand-alone. If we want them to communicate, i t ’s back

to functions passing built-in types again. We want to be able describe the building

blocks of our simulation, be they neurons or layers etc, in a generic way.

Inheritance and C ode R e-u se

Inheritance is the lynchpin of object-oriented design. It is a framework which allows

us to model some entity in a generic way and then to go on and describe specific

instances of tha t entity. In our problem domain of neural networks, it allows us

to define a neuron and what data and functions wiU in general be associated with

neurons. These functions are called virtual functions, meaning tha t they only need

to be declared as belonging fundamentally to our generic definition. Each specialized

form of neuron, derived from our generic neuron, can then provide a definition of

what these functions do, or it can inherit the definition from the generic neuron if

it is provided.

Virtual functions thus provide an invariant interface to a set of related (derived)

data-types. If you know this interface, you can communicate with any subsequent

version of the type. For example, we can form Hsts of different types of neuron

and then treat them in a homogeneous way. In C-I--I-, this is achieved by impHcit

conversion to base-type of pointers, objects and references of derived types i.e. a

derived class can be assigned to any of its pubHc base-classes without requiring an

exphcit cast [40, pp298]. W hat this means is tha t it is safe to say that an integrating

neuron, for example, is just a neuron. This is because the integrating neuron wiU

A.2. IN TRO D U C TIO N 161

automatically have an ordinary neuron as part of its internal structure. If then our

generic neuron has a function foo associated with it, then so wiU the integrating

neuron. The C + + language automatically matches up the correct version of foo to

use on the type of neuron being considered.

Inheritance means that anything that is unchanged in a derived type is auto

matically carried through to that new type. Thus, if we are deriving from a class

tha t has ten functions and we want to change the operation of one of them, then we

only have to provide the code for th a t one function. All the rest are automatically

included in their original form. This means lots less typing! New types can easily

be created from ‘off the shelf’ ones and tailored for individual use.

Polym orphism

Polymorphism is the facility for a language to have consistent syntax and semantics

for different types. For example, we can say a+b where a and b are two reals, or

integers or strings or two anything. AU we need to remember is tha t we can add

these types together. This extends to the whole spectrum of operators and user-

defined functions e.g. s q r t can be d e fin e d to have a meaning for real numbers,

complex numbers etc. The top level source code is thus vastly more comprehensible

by humans and aUows the programmer to concentrate on the logic of the program

rather than the implementation details.

Inform ation H iding

The C + + language aUows the programmer to control the visibility of data members

and member functions within a class. This means tha t the end user can be ‘shielded’

from the internal representation of a data structure and be denied access to state

tha t might be dangerous to access directly. Furthermore, provided the interface to

a class remains invariant, then the internal structure and internal functions can be

changed without having to rewrite further code th a t depends on tha t interface.

162 A P PE ND IX A. A N O BJECT-ORIENTED E N V IR O N M E N T

S u m m ary

The features of an object-oriented language discussed above provide a powerful and

descriptive framework for modelling neural networks. There can be a close semantic

mapping between say the model of a neuron and its class description [14].

Furthermore, the incremental specification change th a t inheritance can provide to

gether with invariant interfaces makes for more readable and intuitive code and code

that is easier to write and maintain. In the following section we will explore in more

detail an object-oriented model for describing neural networks.

A 3 B asic A b straction M od el

A .3 .1 Layers and N eu ro n s A s A B a s ic B u ild in g B lock

A lot of neural networks can be discussed productively in terms of layers i.e. a

collection of neurons tha t have a clear role in the computation process (e.g. input

layer, hidden layer, output layer) and sets of inputs and outputs. Networks can then

be defined in terms of a suitably connected set of such layers. Hecht-Nielsen calls

such building-blocks slabs [23]. Figure A .l shows a basic model for describing neural

networks, in terms of generic layers tha t contain generic neurons and a connection

protocol for linking these layers. A collection of layers will thus constitute a neural

network.

We will now examine how to model neurons, layers, networks and other objects

associated with performing a neural network simulation. AU implementation is in

C + + .

A .3 .2 D efin in g A n A b stra c t S u p er-C la ss for ‘N eu ro n s’

W hat are the defining properties of our generic neuron?

Data connected with the neuron might be:

A.3. BASIC A B STR A C TIO N MODEL 163

LayerB

Connection Weights

Layer A

Neural Network

Abstraction Model
For Layers

Neurons

Figure A.l: Abstraction Model For Neural Networks

164 A P PE ND IX A. A N OBJECT-ORIENTED E N V IR O N M E N T

• An activity

• An output

• A threshold value

• A description of its inputs

Functions connected with the neuron might be:

• A calculation function e.g. weighted summation of its inputs

• A transfer function

• Functions to access the neuron’s state

• A reset function i.e. clear activity etc

So, in C-f—H we have

class Neuron

{
protected:

double activity;
double output;
double threshold;
Layer* parent;

int NeuronID;
// etc

public:
virtual void Update() = 0;
virtual double Transfer(VectorA I, Vectorft W) = 0;
double GetOutput();

A.3. B A SIC A B S T R A C T IO N MODEL 165

// etc

};

where Update and T ra n s fe r are pure virtual functions i.e. the abstract class

provides declarations of these functions, but provides no default implementation,

p a re n t is a pointer to the Layer where the node is situated. NeuronID is just a

tag-number that is used in locating the neuron’s weight vector.

U p d a te and Transfer Function D efin itions

The current implementation is such tha t each neuron has a pointer to its parent

layer. The neuron then runs through each set of connections of the parent and

appHes the transfer function to the relevant weight and input vector.

Here is an example of the Update and T ra n s fe r functions for a weighted sum

m ation binary decision node, here called BDNJIeuron:

void BDN_Neuron::Update()
{

Sitelterator list(parent); // Declare iterator
Site* site; // Site object from iterator
activity =0; // clear current activity

while (site = listO) // weighted sum from connected layers
activity +=

Transfer(site->InputVector() -
site->weight[NeuronID]

);

output = Threshold(activity); // perform threshold

166 APPE ND IX A. A N OBJECT-ORIENTED E N V IR O N M E N T

double BDN_Neuron::Transfer(Vectorft I, Vectorft W)

return I*W; // returns dot product
}

A .3.3 Layer class d efin ition

A L ayer class is the container for a collection of neurons. It is comprised either

of a hnk-Hst or array of Neuron pointers (and the number of nodes), but more

im portantly defines the following virtual functions:

void Train0 ;
void RunO ;
Site* ConnectFrom(Layer* from_layer);

These functions implement the learning algorithm^ the operating algorithm and

the connection protocol. T ra in and Run call the updating and transfer rules on all

neurons in the layer.

Layer C onn ection P rotoco l and S ite O bjects

The CoimectFrom function provides a connection from the supphed layer to the

calling layer and returns a pointer to an object of type S ite . A S i t e contains

the from Jayer pointer and also a connection weight M atrix object. It has access

functions for these relevant objects. Each layer maintains a hst of S i t e objects so

tha t on a training or run cycle, there is complete access to all relevant weights and

inputs. A weight m atrix may be read in from a file if required.

Currently, the default connection produces complete connectivity^ but there is no

requirement for this. The implementation is being altered to read in a connectivity

matrix from an is tream .

A.3. B A S IC A B S T R A C T IO N M ODEL 167

The protocol allows s elf-connection i.e. recurrent networks to be specified in this

way.

E pilogue and Prologue

Each L ayer can specify an E p ilo g u e and P ro logue function. These functions per

form housekeeping functions at the beginning and end of a simulation e.g. opening

data files, checking for and initialising connection weights etc. The default operation

for both of these functions is to do nothing.

A .3.4 N etw ork c la ss d e fin itio n

A Network is the container for collections of layers. The principle functions th a t the

class declares are

void T r ainO ;

void R i m O ;
void RunSimulationO ;

The T ra in and Run methods call the corresponding layer methods for each layer in

the network, in the order th a t layers were added to the network i.e. the order of the

components in the network determines information propagation between layers.

R unS innilation is the top level function of the simulation environment. It man

ages structured training sessions (see Section A.5.2 below) and calls the epilogue

and prologue functions on all constituent layers.

A Network maintains a list of its component layers. Each layer is added along

with a tag-name to allow associative manipulations to be performed e.g. Network

implements a S ite * Connect (S trin g ft to L a y e r , S tr in g ft from Layer) function,

where the arguments are the tag-names of the layers to be connected together.

Duphcation of tag-names when adding a new layer causes the simulation to exit in

error state.

168 A P P E N D IX A. A N O BJECT-ORIENTED E N V IR O N M E N T

A .4 T he L E D A Package

The implementation described in the previous section is somewhat inefficient, as

each neuron has to go through its parent layer to find its weight. It also assumes

complete connectivity between layers which makes the model much less general.

The implementation is currently being updated along the same fines as Naher’s

LEDA (Library of Efficient D ata types and Algorithms) package [50]. This is a

general purpose set of classes, implementing basic structures such fink-fists, sorting

algorithms etc, but more importantly, a set of classes for modelling graphs. The

package has been used by Fritzke to implement the ‘growing cell structure’ Kohonen

maps described in [17] [18].

Fritzke [19] makes the obvious mapping between graphs and neural networks:

edge weight

vertex ^ neuron

graph neural-network

Following this framework, each neuron should maintain a fink-fist of weights which

in turn contain à pointer to the neuron feeding it. The weightspace is thus stored

directly as edges in a graph and the there is no need to consider their storage in the

layer structure itself. A rbitrary connectivity is thus natural to this model.

A .5 C lasses for S im ulation Support

A .5 .1 D a ta S ources an d In p u t Layers

The simulator is of little use without specifying a source of input patterns. The

D ataSource class specifies the form to which data is supplied to a network, typically

via an Inpu tL ayer (See Figure A.2).

A D ataSource supplies a stream of patterns, one for each cycle of the network.

These may originate from ‘hard-wired’ generators or present sets of patterns read

A.5. CLASSES FOR SIMULATION SUPPORT 169

InputLayer

Abstract DataSource

Discrete
Distribution
DataSource

Continuous
Distribution
DataSource

Temporal
Sequence
DataSource

Arbitrary
DataSource

Figure A.2: Data Presentation Model

from an i stream . The DataSource is designed to deal with temporal data i.e.

it presents sequences of patterns. Hard-wired sources usually present just single

patterns according to some probabihty distribution function and the DataSource

can be interrogated to see whether the data actually has any temporal structure

associated with it.

An InputL ayer is a derived class of Layer and serves as the interface between

a D ataSource and the rest of the network i.e. it makes sure that the data stream is

updated, but otherwise provides the same functionaHty of a normal layer.

A .5.2 Training Sessions

A network has a hst of TrainBlocks. These specify what action should be performed

on a particular layer i.e. one of

1. train

170 APPEND IX A. A N OBJECT-ORIENTED EN V IRO N M EN T

2, run

3. dormant

where dormemt means that the particular layer should be ignored in this training

session. This is useful for training hierarchical networks where later layers may not

be used in training the earher ones.

The T rainB lock also specifies the d u ra t io n of the training session in epochs.

The simulation will abort if there is not at least one valid TrainB lock.

A .6 A n E xam ple: D efin ing A Layer To M od el

K oh on en N etw orks

In this section, we examine a programming model of a Kohonen layer. The exten

sions to the basic Layer type required are: A description of the geometry i.e. rows

and columns and a function to index the linear hst of the basic layer type, a function

tha t implements the competitive search for a winner and suitable training algorithm

function.

The basic Neuron also needs to be modified. Its T ra n s fe r function will be one

tha t sets the neuron’s activity to some function of the EucHdean distance between

input vector and weight vector.

void KohonenNeuron::Update()
{

Sitelterator list (parent) ; // Declaire iterator
Site* site = listO; // only one connection allowed

activity =
Transfer(site->InputVector() -

site->weight[NeuronID]
);

A.6. A N EXAM PLE: DEFINING A KO HO NEN L A Y E R 171

double KohonenNeuron::Transfer(Vectorft I, Vectorft W)

return mod_sqrd(I-W); // mod_sqrd calculates
// modulus squared

}

The connection protocol is changed so th a t a Kohonen layer can only have one

set of connections in keeping with the specific meaning of weights in a self-organising

map. Thus, each simple Kohonen layer must have one and only one Connect From

call made on it. The P ro logue function for the Kohonen layer then checks th a t a

weightspace exists and initialises it to small, random values.

P rocessing Order

The processing of a Kohonen layer thus takes the following course:

1. Each node calculates its separation from the input vector. This is then defined

as the activity.

2. Select the winning node for the competition. Set the output of the winner to

1, all others to 0.

3. If training, adjust all weights towards the winner.

A .6.1 L ab ellin g F u n ction

The KohonenLayer class provides a function A ttach L ab e ls which is invoked by

KohonenLayer: : E p ilogue i.e. at the end of a simulation run. It communicates

with a specified In p u tL ay e r and interrogates th a t layer’s D ataS ource to check for

discrete patterns th a t have a label associated with them . If the data is of this

labelled form, then A ttach L ab e ls assumes control of the entire network and replays

172 APPEND IX A. A N OBJECT-ORIENTED E N V IR O N M E N T

the entire sequence set of the D ataSource, attaching the label of each sequence to

the maximally activated node.

A .6 .2 D er iv in g a T em p ora l K oh on en Layer

It is now a trivial m atter to form a TKM from a standard Kohonen layer. AU that

needs to be changed is: addition of a decay rate to Kohonen neurons and change

their Update functions to integrate their activity. We wiU thus derive the classes

• class TerapKohonenNeuron:public KohonenNeuron

• class TempKohonenLayerrpublic KohonenLayer

and the new Update function becomes

void TempKohonenNeuron::Update()
{

Sitelterator list(parent); // Declare iterator
Site* site; // Site object from iterator
double new_activity =0; / / a veuriable for new input activity

while(site = list()) // weighted sum from connected layers
new_activity +=

Transfer(site->InputVector() -
site->weight[NeuronID]
);

activity = decay_rate*activity
+ new.activity; // integrate

}

The constructor for the temporal Kohonen class then just needs to supply the

layer "with temporal Kohonen neurons. The basic F indW inner,T rain and Run func

tions are aU identical and can simply be inherited. The modifications require only

A .7. BUILDING A FRONT-END FOR SIM ULATION 173

about twenty lines of code (the tem poral classes must supply access functions for

the new decay rate param eter).

A .7 B u ild in g a Front-E nd for S im u lation

A .7.1 T h e T w o L evels o f S im u la tio n S u p p ort

The construction of derived Layer classes as described above provides a consistent

and reusable m ethod of programming simulations. However, having to hand code

a complete simulation in C + + can still be a lengthy and error prone task. For

example, if we wrote a simulation for running a TKM connected to an input layer,

we would need not only to construct these layers, but then to set ail the relevant

param eters such as network geometry, learning rate, neighbourhood size etc. These

param eter values need to change in the course of performing many experiments. We

can thus identify two levels at which a researcher will interact with the development

of a simulation:

• Macroscopic This is the development of new C + + types.

• Microscopic This is the setting of run time values for particular parameters.

It is the job of the front-end to provide the microscopic interaction level. It allows

the rapid exploration of a model through easy access to its param eters.

A .7.2 P a rsin g M em b er F u n ctio n A p p roach

Suppose we want to be parse the param eter values for a Kohonen layer. AU we wiU

specify are values for the learning ra te and the neighbourhood size. We wiU ignore

aU other param eters for the purpose of clarity. The form of the scriptfile which

contains this information might be:

KohonenLayer example

174 A P PE ND IX A. A N OBJECT-ORIENTED E N V IR O N M E N T

{
alpha = 0.2;
radius = 4.0;

}

Suppose that this scriptfile is lexically split up into the following token stream:

‘KohonenLayer’, ‘example’, ‘{’, ‘alpha’, ‘=’, ‘0.2’, ‘;’, ‘radius’,‘=’, ‘4.0’, ‘;’ and

We can imagine defining two virtual functions, one for the header ‘KohonenLayer

example’ and one for the body part, i.e. the parameter settings inside the curly

brackets (the opening and terminating brackets are matched by the non-virtual

Ib ra c k e t and rb ra c k e t functions). A function peurse to parse the parameters

would then consist of calling these virtual functions on the t h i s pointer:

Layer::parse(TokenList TL)

{

header(TL);

Ibracket(TL);

body(TL);
rbracket(TL);

}

Thus, the header function would check tha t the type of the layer was correct and to

ascertain the tag-name of the layer for connection purposes. It would then call any

relevant functions to set the tag-name etc. The body part would then continue to

m atch input tokens for the parameters until a terminating brace was encountered.

A derived class would reimplement both header and body functions. The former

would alter the type check and the latter may typically call its namesake in the base

class eg.

A. 7. B UILDING A FRONT-END FOR SIM ULATION 175

Derived: :body(TokeiiList TL,int offset = 0)

{
int pos = this->Base::body(TL);

int offset;

. // class specific code goes here

return offset;

}

where the argument pos serves to pass on the position in the token Hst reached.

Thus, in this methodology, inheritance of parsing behaviour is achieved by the

derived class expHcitly calHng a namesake function in the base class. Having the

p a rs e function as a member of class Layer is fine for a fixed network structure i.e.

one layer of type A, one layer of type B etc which the parsing function is explicitly

invoked upon. W hat we want, however, is to be able to specify the order and type of

simulated network components as part of the microscopic level, tha t is at run time.

Rules for adding layers must thus be capable of being applied in variable order and

the scheme discussed does not offer a route to achieving this. Furthermore, we want

to be able to perform functions other than just construction of a layer, such as

specification of layer inter-connections, in a homogeneous fashion. We thus look to

abstracting the microscopic level in terms of very general network rules.

A .7.3 N etw o rk R u les

We introduce a N etRule abstract class which matches a set of internal patterns and

then performs an operation on a Network. Our top-level simulation program then

consists of creating a bare network, reading in a scriptfile from the outside world

and then applying all possible rules in a rulebase to the network, according to th a t

scriptfile. In this way, different combinations of layers and simulation param eters

176 APPEND IX A. A N OBJECT-ORIENTED E N V IRO N M EN T

can all be specified at run time. Because all NetRules operate on a Network object,

they can perform any function tha t a Network understands. If further rules are

written, all tha t needs to happen is an update of the rulebase. We shall see that

inheritance of behaviour follows very naturally in this approach.

A .7.4 R u les for R u n -T im e B u ild in g o f N etw ork Layers

The key idea behind a software-engineering approach to rule parsing is tha t each

Layer has a LayerRule associated with it. A LayerRule is an abstract class derived

from NetRule, specifically tailored for setting a collection of parameters associated

with a particular layer.

Subsequent derivations of a Layer use analogous derivations of the corresponding

LayerRule for that layer. For instance, in our TKM model, we would expect the

parsing procedure to be identical to the basic Kohonen layer, except for the addition

of a rule to determine the activity decay rate. We note that this rule structure exists

outside the Layer classes themselves. It does not make sense tha t each instance of

a particular layer carries around a complete copy of the parsing information - once

constructed, the layer needs no further use for it.

Rules are built up from a few simple primitives. These are F ix e d P a tte m s which

attem pt to match an exact copy of themselves, and V ar< class T>, a tem plate class

parameterised by T which must have a global function Convert defined for it. This

conversion function parses a string and decides whether it has a valid interpretation

for tha t type. Instances for the three usual types of S t r in g , in t and double are

provided by default. A variable of type T must be passed to the constructor of each

Var<T> which wiU then hold the matched and converted value associated with tha t

rule.

CompoundRules contain other primitive rules including other compound rules,

allowing for recursive pattern matching. UnBlocks are derived from compound rules

and allow for matching of blocks of rules in an unstructured manner i.e. sub rules

A. 7. BUILDING A FRONT-END FOR SIM ULATIO N 177

can appear in any order.

The input to rules is in the form of segmented strings i.e. input is read from an

is tre a m and simple lexical analysis is performed by segmenting at the symbols ‘ ’

(space character), ‘:’,V a,nd at brackets and newlines. This crude process is all

tha t is required.

Each rule implements an ApplyRule function which attem pts to m atch from a

given location in the input hst. If it matches, then it returns the position in the Hst

where the matching process concluded i.e. the next unused string, and returns -1

otherwise. For vahd values, the rules are called recursively on all sub rules. If a vahd

value reaches the top-level, then the rule parse was successful and all the variables

passed into Veir objects will have values ready to be used in the construction of a

new layer.

A .7.5 Layer R u les

A LayerR ule is the basic building block for parsing instructions about the run time

setup of a particular neural network layer. Its structure is simple, consisting of a

header and a body enclosed by braces. The body is a rule of type UnBlock so tha t

param eters can be specified in any order.

<Type>Layer <TagName>

{

. // the 'body'

Each new rule derived from this basic structure can insert a sub-rule into the body

of the main rule using a function AppendToBody. In this way inheritance of parsing

information is achieved. The deriving rule can also elect to call a RemoveSubRule

function for any inherited access to state tha t is redundant in the derived layer.

178 APPEND IX A. A N OBJECT-ORIENTED E N V IR O N M E N T

This function takes a string argument and removes a sub-rule which has that string

as its first component (each type of rule has a virtual string comparison operator

i n t o p era to r= = (S tr in g * a) which returns false for non-fixed rules).

E x am p le S u b -R u le

Say we want to m atch the construct ‘a lp h a = 0 .2 ; ’, where a lp h a is a learning

rate for example. The constructor for our particular LayerRule would then have an

entry

AppendToBody (new CompoundRule (new FixedPatt e m ("alpha") ,
equals,
new Var<double>(alpha),
semicolon

)

);

which assumes th a t the rule has a variable called a lpha. After a successful ApplyRule

call, a lp h a wiU hold a valid value for this parameter and can be used in the con

structor/access function of the target layer, eq u a ls and sem icolon are macros to

produce rules th a t must match ‘= ’ and respectively.

A .7.6 O th er K in d s o f R ule

Other kinds of rule, derived from the NetRule class, perform more specific oper

ations. These include a rule to connect two named layers together and a rule to

specify training sessions.

A .7.7 E x a m p le Script F ile

In this subsection we give an example file used to run a simulation of an input layer

connected to a tem poral Kohonen map.

A.7. BUILDING A FRONT-END FOR SIM ULATION 179

#Coniments may begin a line or terminate them

#declare an InputLayer
InputLayer layerl

neurons = 2;
seq.Iength = 3;
bipolar = 0;
seed = 29;

#number of neurons
#provide sequences of length 3
#use binary data, not bipolar
#seed for random number

pattem_fiIe_name=none ; #use hard wired DataSource
}

#declare a TempKohonenLayer i.e. TKM
TempKohonenLayer Iayer2
{

cols = 8;
rows = 8;
radius = 5;
half_life = 1800;
alpha = 0.2;
aIpha_offset = 0.08;
patt.Ien = 3;
IabeI_Iayer = layerl;
weight.seed = 22;
decay_rate=0.4;
}

#8 columns
#8 rows
#neighbourhood size of 5
#parameter half life 1800 epochs
♦learning rate of 0.2
♦learning rate residual of 0.08
♦sequences of length three
♦labels from layerl's DataSource
♦seed for weight initialisation
♦cell body activity decay rate

Connect{layerl,layer2l ♦join input layer and TKM layer

♦declare a training session

180 APPEND IX A. A N OBJECT-ORIENTED E N V IR O N M E N T

TrainBlock T1
{

epochs = 5000; #diiration of 5000 epochs
layerl: run; #layeri will use Run()
layer2: train; #layer2 will use Train()
}

A .7.8 A u to m a tic R u le C om p ila tion

A compiler is being designed tha t generates LayerRule classes directly from Layer

header files. The basic idea is tha t the programmer will put comments after par

ticular access functions in a header file to indicate these functions wiU need to be

accessed by the simulation driver. These will all have to conform to the naming

scheme Set_<VarName>. The compiler will then generate a sub-rule for a variable

called ‘alpha’ of type ‘double’. In the processing function, the compiler will generate

the call to Set .a lp h a (a lp h a) on an object of the correct type.

class FooLayer:public <Bar>Layer
{

protected:
double alpha;
// etc

public :
/ /
void Set.alpha(double a); // <ACCESS>

};

class FooRule:public <Bair>Rule
{

protected:

A. 7. BUILDING A FRO NT-END FOR SIM U LATIO N 181

double alpha;
ProcessVariablesO ;

// etc

};

void FooRule::ProcessVariablesO

{

FooLayer* layer = new FooLayer();

// etc
layer->Set.alpha(alpha);

}

The compiler currently is no further than the drawing board stage. Clearly,

much care will need to be taken over such issues as inheritance and data hiding.

182 APPENDIX A. A N OBJECT-ORIENTED ENVIRONMENT

B ib liography

[1] Igor Aleksander. An Introduction to Neural Computing. Chapman and Hall,

1990.

[2] Luis B Almeida. A learning rule for asynchronous perceptrons with feedback

in a combinatorial environment. In IE E E First International Conference on

Neural Networks^ volume II, pages 609-618. IEEE, 1987.

[3] A Badii, M J Binstead, Antonia J Jones, T J Stonham, and Christine L Valen

zuela. Applications of n-tuple sampling and genetic algorithms to speech recog

nition. In Igor Alekscinder, editor. Neural Computing Architectures: The Design

of Brain-like Machines. North Oxford Academic, 1989.

[4] Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike

adaptive elements tha t can solve difficult learning control problems. IEEE

Transactions on systems, man and cybernetics., (5):834-846, 1983.

[5] Russell Beale and Tom Jackson. Neural Computing: A n Introduction. Adam

Hilger, 1990.

[6] George Bolt. Fault tolerance of lateral interaction networks. In IJC N N Singa

pore 91, volume III, pages 1918-23. IEEE, 1991.

[7] George Bolt. Operational fault tolerance of the adam neural network system.

In IJC N N Singapore 91, volume I, pages 1-6. IEEE, 1991.

183

184 B IB LIO G R A P H Y

[8] Eduardo R Caianiello. Outline of a theory of thought - processes and thinking

machines. Journal o f Theoretical Biology^ (204), 1961,

[9] Geoffrey J Chappell and John G Taylor. The temporal kohonen map. Neural

Networks, 6:441-445, 1993.

[10] Paul M Churchland. Matter and Consciousness. Bradford MIT Press, 1988;

[11] David A Critchley. Stable states, transitions and convergence in kohonen self-

organising maps. In Artificial Neural Networks, 2, volume I, pages 281-284.

North-Holland, 1992.

[12] Hubert L Dreyfus and Stuart E Dreyfus. Making a mind versus modelling the

brain: artificial intelligence back at a branch point. In M argaret A Boden,

editor. The Philosophy o f Artificial Intelligence. Oxford, 1990.

[13] R Durbin and D Willshaw. An analogue approach to the travelling salesman

problem using an elastic net method. Nature, (326):689-691, 1987.

[14] Gary Entsminger. An object-oriented neural network. A I Expert, pages 19-23,

February 1991.

[15] E Erwin, K Obermayer, and K Schulten. Convergence properties of self-

organising maps. In Artificial Neural Networks, pages 409-414. Elsevier Science,

1991.

[16] Jerome A Feldman. Connections - massive parallelism in natural and artificial

intelligence. B Y T E , pages 277-284, April 1985.

[17] Bernd Fritzke. Let it grow - self-organizing feature maps with problem de

pendent cell structure. In Artificial Neural Networks, pages 403-408. North

Holland, 1991.

B IB L IO G R A P H Y 185

[18] Bernd Fritzke. Growing cell structures - a self-organizing network in k di

mensions. In Artificial Neural Networks, volume II, pages 1051-1056. North

Holland, 1992.

[19] Bernd Fritzke. Using a library of efficient data structures and algorithms as a

neural network research tool. In Artificial Neural Networks, volume II, pages

1273-1276. North Holland, 1992.

[20] Denise Corse, Trevor G Clarkson, and John G Taylor. From wetware to hard

ware - reverse engineering using probabilistic rams. Journal o f Intelligent Sys

tems, 2:1-4, 1992.

[21] Peter J B Hancock. D ata representation in neural nets: an empirical study. In

Proceedings o f the 1988 Connectionist Models Sum m er School. Morgan Kauf-

m ann Publishers Inc., 1988. ISBN: 0-55860-015-9.

[22] Donald O Hebb. The Organisation o f Behaviour. John Wiley and Sons, 1949.

[23] Robert Hecht-Nielsen. Neurocomputing. Addison-Wesley, 1990.

[24] Raymond Hill. A First Course in Coding Theory. Oxford University Press,

1986.

[25] Andrew Hodges. Alan Turing : the enigma. Vintage, 1983.

[26] John J Hopfield. Neural networks as physical systems with emergent collective

com putational abilities. Proc. National Academy o f Sciences, 79:2554-2558,

1982.

[27] Jari Kangas. Time-delayed self-organising maps. In International Joint Con

ference on Neural Networks, volume II, pages 331-336. IEEE, 1990.

[28] Jari Kangas. Time-dependent self-organising maps for speech recognition. In

Artificial Neural Networks, pages 1591-1594. Elsevier Science (N orth Holland),

1991.

186 B IB LIO G R A P H Y

[29] Jari Kangas. Temporal knowledge in locations of activations in a self-organising

map. In Artificial Neural Networks^ volume II, pages 117-120. Elsevier Science,

1992.

[30] Jari A Kangas, Teuvo K Kohonen, and Jorm a T Laaksonen. Variants of self

organizing maps. IEEE Transactions On Neural Networks^ 1(1), March 1990.

[31] Teuvo Kohonen. Self-organized formation of topologically correct feature maps.

Biological Cybernetics, (43):59-69, 1982.

[32] Teuvo Kohonen. Dynamically expanding context, with application to the cor

rection of symbol strings in the recognition of continuous speech. In Proc. Eighth

International Conference on Pattern Recognition, pages 1148-1151. IEEE Com

puter Society, 1986.

[33] Teuvo Kohonen. Self-learning inference rules by dynamically expanding context.

In IE E E First International Conference on Neural Networks, volume II, pages

3-9. IEEE, 1987.

[34] Teuvo Kohonen. State of the art in neural computing. In International Con

ference on Neural Networks, pages 1-12. IEEE, 1987.

[35] Teuvo Kohonen. An introduction to neural computing. Neural Networks, 1:3-

16, 1988.

[36] Teuvo Kohonen. The neural phonetic typewriter. IEEE Computer, March 1988.

[37] Teuvo Kohonen. Self Organisation and Associative Memory. Springer-Verlag,

1989.

[38] Teuvo Kohonen. The hypermap architecture. In Artificial Neural Networks,

pages 1357-1360. Elsevier Science, 1991.

B IB L IO G R A P H Y 187

[39] Teuvo Kohonen, Gyorgy Barna, and Ronald Chrisley. Statistical pa ttern recog

nition with neural networks: Benchmarking studies. In Proc. International

Conference on Neural Networks, volume I, pages 61-68. IEEE Com puter Soci

ety, 1988.

[40] Stanley B Lippman. C++ Primer. Addison Wesley, 1989.

[41] Richard P Lippmann. An introduction to computing with neural nets. IE EE

ASSP Magazine, pages 4-22, April 1987.

[42] Zhen-Ping Lo and Benham Bavarian. Improved rate of convergence in kohonen

neural network. In IJCNN, volume II, pages 201-206. IEEE, 1991.

[43] Thomas Martinetz and Klaus Schulten. Hierarchical neural net for learning

control of a robot’s arm and gripper. In IJCNN-90, volume III, pages 93-100.

IEEE, 1990.

[44] M.Azema-Barac, M.Hewetson, M.Recce, J.Taylor, P.Treleaven, and M.Vellasco.

PYGMALION neural network programming environment. In International

Neural Network Conference (INNC), pages 709-712, 1990.

[45] James L McClelland, David E Rum elhart, and The PD P Research Group. Par

allel Distributed Processing: Explorations in the Micro structure o f Cognition.

MIT Press, 1986.

[46] W arren S McCuUoch and W alter Pitts. A logical calculus of the ideas imm anent

in nervous activity. Bulletin o f Mathematical Biophysics, 5:115-133, 1943.

[47] Marvin Minsky and Seymour Papert. Perceptrons: A n Introduction to Compu

tational Geometry. MIT Press, 1969.

[48] Pietro Morasso. Neural models of cursive script handwriting. In International

Joint Conference on Neural Networks, volume II, pages 539-542. IEEE, 1989.

188 B IB LIO G R A P H Y

[49] Pietro Morasso, Self-organising feature maps for cursive script recognition. In

Artificial Neural Networks, volume II, pages 1323-1326. North-Holland, 1991.

[50] Stefan Nàher. L.E.D .A. User Manual Version 3.0. M ax-Planck-Institut fiir

Informatik, Im Stadtwald D-6600 Saarbriicken.

[51] K Obermayer, G G Blasdel, and Klaus Schulten. A neural network model for

the formation and for the spatial structure of retinotopic maps, orientation-

and occular dominance columns. In Artificial Neural Networks, volume I, pages

505-511. North Holland, 1991.

[52] Barak A Pearlm utter. Dynamic recurrent neural networks. Technical Re

port CMU-CS-90-196, Carnegie Mellon University, School of Computer Science,

Pittsburgh, PA 15213, 1989.

[53] Barak A Pearlm utter. Learning state space trajectories in recurrent neural

networks. Neural Computation, (l):263-269, 1989.

[54] Fernando J Pineda. Generalization of back-propagation to recurrent neural

networks. Physical Review Letters, 59(19):2229-2232, 1987.

[55] M. Recce, P. V. Rocha, and P. C. Treleaven. Neural network programming

environments. In Artificial Neural Networks, 2, volume II, pages 1237-1244.

North-HoUand, 1992.

[56] Mark Reiss and John G Taylor. Storing temporal sequences. Neural Networks,

4:773-787, 1991.

[57] H R itter and K Schulten. On the stationary state of kohonen’s self-organizing

sensory mapping. Biological Cybernetics, (54), 1986.

[58] H. R itter and K. Schulten. Convergence properties of Kohonen’s topology pre

serving maps: fluctuations, stabiHty, and dimension selection. Biological Cy

bernetics, 60(l):59-71, 1988.

B IB L IO G R A P H Y 189

[59] H. R itter and K. Schulten. Kohonen self-organizing maps: exploring their

computational capabihties. In Proceedings o f IE EE International Conference

on Neural Networks, volume I, pages 109-116, 1988.

[60] Helge R itter and Teuvo Kohonen. Self-organizing semantic maps. Biological

Cybernetics, (61):241-254, 1989.

[61] Helge R itter and Teuvo Kohonen. Learning ‘semantotopic m aps’ from context.

In IJCNN-90-WASH-DC, pages 23-26, 1990.

[62] Helge R itter, Thomas M artinetz, and Klaus Schulten. Neural Computation and

Self-Organizing Maps. Addison-Wesley, 1992.

[63] Joaquim S Rodrigues and Luis B Almeida. Improving the learning speed in

topological maps of patterns. In International Neural Network Conference,

pages 813-816. IEEE, 1990.

[64] Frank Rosenblatt. The Principles o f neurodynamics. Spartan, 1962.

[65] H P Siemon. Selection of optimal parameters for kohonen self-organising feature

maps. In Artificial Neural Networks, 2. Elsevier Science, 1992.

[66] Graham Tatersall. Neural map apphcations. In Igor Aleksander, editor. Neural

Computing Architectures: The Design o f Brain-like Machines. North Oxford

Academic, 1989.

[67] Graham Tatersall, Paul Linford, and Bob Linggard. Neural arrays for speech

recognition. British Telecom Technology Journal, pages 140-163, April 1988.

[68] John G Taylor. Spontaneous behaviour in neural networks. Journal o f Theo

retical Biology, 36:513-528, 1972.

[69] John G Taylor. Temporal patterns and leaky integrator neurons. In IN N C 90,

pages 952-955. Kluwe Academic, 1990.

190 B IB LIO G R AP H Y

[70] Alex Waibel. Modular construction of time-delay neural networks for speech

recognition. Neural Computation^ 1:39-46, 1989.

[71] Alex Waibel, Toshiyuki Hanazawa, Geoffrey Hinton, Kiyohiro Shikano, and

Kevin Lang. Phoneme recognition using time-delay neural networks. IEEE

Transactions on Acoustics, Speech and Signal Processing, 37(3):328-339, March

1989.

[72] Gary W hittington and Tim Spracklen. The appHcation of a neural network

model to sensor data fusion. In Applications o f Artificial Neural Networks,

volume 1294, pages 276-283. SPIE, 1990.

[73] Gary W hittington, Tim Spracklen, Jon Haugh, and Helen Faulkner. Automated

radar behaviour analysis using neural network architectures. In Applications of

Artificial Neural Networks, volume 1965, pages 44-59. SPIE, 1993.

[74] Ronald J WiUiams and David Zipser. Experimental analysis of the real-time

recurrent learning algorithm. Connection Science, 1(1):87-111, 1989.

[75] Ronald J Williams and David Zipser. A learning algorithm for continually

running fully recurrent neural networks. Neural Computation, (l):270-280,

1989.

[76] David Willshaw and Cristoph von der Malsburg. How patterned neural connec

tions can be set up by self-organisation. Proc. R. Soc. London B, 194:431-445,

1976.

