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Abstract The placenta has a unique structure, which enables the transfer of oxygen
and nutrients from the mother to the developing fetus. Abnormalities in placental
structure are associatedwithmajor complications of pregnancy; for instance, changes
in the complex branching structures of fetal villous trees are associated with fetal
growth restriction. Diffusion MRI has the potential to measure such fine placental
microstructural details. Here, we present in-vivo placental diffusion MRI scans from
controls and pregnancies complicated by fetal growth restriction.Wefind that after 30
weeks’ gestation fractional anisotropy is significantly higher in placentas associated
with growth restricted pregnancies. This shows the potential of diffusionMRI derived
measures of anisotropy for assessing placental function during pregnancy.

1 Introduction

Fetal growth restriction (FGR) is a condition where the developing fetus does not
reach its full growth potential in-utero [13]. It constitutes a major pregnancy compli-
cation and is associated with a high degree of fetal mortality, morbidity and life-long
complications [19]. Early onset FGR (defined as that diagnosed before 32 weeks’
gestation) affects 0.5–1% of pregnancies and late onset FGR (diagnosed after 32
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weeks’) affects 5–10% of pregnancies [6, 9]. Early diagnosis and close monitoring
are essential to optimize the outcome for pregnancies affected by FGR. Recently,
pharmacological treatments have shown promise for severe early onset FGR cases
[31]. However, while routine antenatal monitoring utilising symphysis-fundal height
and ultrasound measurements can identify a significant proportion of FGR cases
[10], detection remains a major problem—only 31% of cases were diagnosed dur-
ing a previous study [11]. Detection is crucial as FGR is a leading cause of late
unexpected stillbirth [11].

Post-delivery histopathological analysis shows a significant degree of character-
istic pathologies in FGR placentas [15, 33], emphasising its importance and involve-
ment in the cascade of events leading ultimately to sub-optimal growth. However,
while post-delivery detection or confirmation plays an important role in increasing
knowledge and possible causes of FGR, it comes too late to influence clinical care
for these pregnancies. Therefore, recent novel developments, mainly using Mag-
netic Resonance Imaging (MRI) focus on studying the placenta during pregnancy to
complement available antenatal screening.

1.1 Placental Microstructure

The placenta constitutes the key connection between mother and baby in utero and
acts as the life support system for the growing fetus. Among its many functions
are the exchange of oxygen and nutrients from the maternal blood circulation to
the fetal blood, and the removal of waste products. The placenta comprises 10–40
individual lobules each constituting one key exchange unit. The transfer relies on a
delicate and dynamically evolving microstructure within these units, focused around
the fetal villi and depicted in Fig. 1A. These tree-like structures originate from the
umbilical cord and contain fetal arteries and veins. They are bathed in maternal
blood that enters the intervillous spaces from the spiral arteries at the level of the
basal plate. A thin membrane called the syncytiotrophoblast separates maternal and
fetal circulation, and allows the transport of oxygen and nutrients through it. Sev-
eral histopathological features are associated with FGR, including elongated villous
trees without the appropriate branching patterns [21] as illustrated schematically in
Fig. 1B.

1.2 Placental MRI

Specific challenges of in-utero placental MRI include motion, such as maternal
breathing and fetal movements, various air-tissue interfaces such as amniotic fluid,
abdominal fat and bowel gas, and the suboptimal position of the imaging coil with
respect to the organ of interest, especially for placentas located on the posterior wall
of the uterus [5]. Another important limitation specifically for diffusion MRI arises
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Fig. 1 Schematic representation of single fetal villous trees in the placenta. Fetal blood flows
through the convoluted branching structures, allowing nutrient exchange with the surrounding
maternal blood. Panel A: complex branching structure of a healthy placenta. Panel B: pathological
branching structure, associated with prengancy complications such as fetal growth restriction

from the safety requirement to reduce the acoustic sound level of the sequence to
protect the fetal hearing. Therefore, typically the gradient slew rate is reduced, in
consequence increasing the read-out length and thus the echo time resulting in lower
Signal-to-Noise Ratios (SNR) [5, 16].

Diffusion MRI can reveal fine tissue microstructure details through sensitivity to
the diffusion of water. By varying the strength and direction of diffusion gradients,
the MRI sequence can be specifically tailored to microstructural features of interest.
For example, sequences with a high number of distinct gradient directions can inform
on tissue anisotropy and directionality. Such diffusionMRI sequences are commonly
used to image white matter fibre tracts in the brain, however applications elsewhere
in body exist, including in the placenta [3, 20, 27].

2 Methods

Pregnant women, recruited as part of a larger cohort for the Placental Imaging Project
(PIP), underwent an MRI scan between 20 and 40 weeks of gestation. Informed
consent was obtained (REC 14/LO/1169) and the scan was performed on a clinical
3T Philips Achieva (Best, The Netherlands) scanner using the 32-channel cardiac
coil. All women were scanned in supine position under frequent monitoring of heart
rate, saturation and blood pressure throughout the scan. Dedicated padding was
provided to increase maternal comfort and verbal interaction was maintained.

After initial structural T2-weighted sequences of the entire uterus and the fetal
brain in multiple orientations, a B0 map was acquired. An in-house developed tool
for image based shimming was employed [12] to focus the shim on the placental
parenchyma, avoiding air-tissue interfaces with bowel gas as much as possible. We
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next acquired a diffusion-prepared spin echo sequence. For some participants we
used a modified sequence which acquires additional gradient-echos after the initial
Spin Echo (e.g. [28]), although in this study we only utilised the first spin echo mea-
surement. Conventional Stejskal-Tanner diffusion preparation was performed, with
a total of 65 b-value/b-vector combinations, optimized specifically for the placenta
as previously described [17, 26], with three diffusion gradient directions at b = [5,
10, 25, 50, 100, 200, 400, 600, 1200, 1600] s/mm2, eight directions at b= 18 s/mm2,
seven at b = 36 s/mm2, fifteen at b = 800 s/mm2, and six b = 0 volumes. Further
parameters include FOV = [300–340] × 320 × 84mm, TR = 7 s, SENSE = 2.5,
halfscan = 0.6, resolution = 3mm3 for scans with additional gradient-echos and
2mm3 otherwise. The total acquisition time was 8min 30 s. Fat was suppressed with
SPIR saturation pulses. The acquisition plane was coronal to the mother, chosen to
assure that the in-plane direction coincides with the longest placental dimensions in
mostly anterior and posterior placentas.

To correct for motion, the diffusion weighted volumes were registered non-rigidly
to a common template using the ANTs multivariate template construction tool with
the cross-correlation similarity metric [1]. Subsequently, a region of interest (ROI)
comprising the whole placenta and adjacent basal placenta was manually segmented
in all slices of the first b= 0 volume.We estimated diffusion tensor, mean diffusivity
(MD), and fractional anisotropy (FA) maps—using all diffusion weightings—for the
motion corrected scans using MRTrix [32].

2.1 Recruitment

We include a total of twenty-nine participants in this study, who were categorised as
follows. Sixteen women were normal uncomplicated control pregnancies; their out-
comes were obtained and checked to ensure that no new diagnosis of pre-eclampsia,
gestational hypertension, fetal growth restrictionor gestational diabetes hadoccurred,
and their birthweight was greater than the 5th centile (by INTERGROWTH-21st).
Seven women were diagnosed with fetal growth restriction, detected from antena-
tal ultrasound assessments. We also include six women recruited as uncomplicated
control pregnancies who gave birth to a baby under the 5th centile, but did not have
a formal antenatal FGR diagnosis. Although these could simply be constitutionally
small babies, they could also be undiagnosed FGR cases, so we hence analysed them
as a separate cohort. Five of the six below the 5th centile had co-morbidities, such
as chronic hypertension in pregnancy (CHTN), or pre-eclampsia (PE). The patient
population characteristics are given in Table 1.
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Table 1 Scan details for all participants. FGR denotes participants diagnosed with fetal growth
restriction according to guidelines [13]. Under 5% denotes participants with no FGR diagnosis who
delivered a baby weighting under the 5th percentile

Participant ID Cohort Gestational age at scan

1 Control 23.86

2 Control 26.14

3 Control 26.72

4 Control 26.72

5 Control 27.14

6 Control 27.14

7 Control 28.29

8 Control 28.86

9 Control 28.86

10 Control 29.67

11 Control 29.86

12 Control 31.29

13 Control 33.43

14 Control 35.57

15 Control 36.29

16 Control 36.43

21 FGR 22.0

22 FGR 23.42

23 FGR 28.57

24 FGR 29.57

25 FGR 30.85

26 FGR 32.85

28 (Scan 1) FGR + CHTN 30.71

28 (Scan 2) FGR + PE 34.14

29 Under 5% 21.29

30 Under 5% 25.72

31 Under 5% + CHTN 38.0

32 Under 5% + CHTN 19.86

33 Under 5% + PE 28.71

34 (Scan 1) Under 5% + PE 31.42

34 (Scan 2) Under 5% + PE 33.42

3 Results

Figures 2 and 3 display FA maps, ordered by gestational age (GA) at scanning
time, for control and growth restricted participants respectively. We next examine
the evolution of FA values over gestation (Fig. 4). Finally, we compare FA values
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Fig. 2 Fractional anisotropy maps for all control participants. The boundary between the uterine
wall (higher FA) and placenta (lower FA) is clear in most placentas with gestational age less than
30 weeks
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Fig. 3 Fractional anisotropy maps for FGR and low birthweight cohorts
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Fig. 4 Mean FA across placenta and uterine wall as a function of gestational age

Fig. 5 Mean FA across placenta and uterine wall for the three cohorts, split at 30 weeks gestational
age

between control and growth-restricted pregnancies (Fig. 5), assessing the potential
of FA to inform on FGR-associated placental abnormalities.

The FA maps for all control participants (Fig. 2) show distinctive patterns in
agreement with the literature [27]—the FA is lower in the placenta, and higher in
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the adjacent uterine wall. These observations likely represent isotropic nature of
maternal blood pools and fetal villous tree branching within the placenta, and the
prevalence of anisotropic fibrous muscle tissue in the uterine wall. Another factor
in the high FA in the uterine wall may be the coherent orientation of vasculature in
these areas. On the other hand, the distinction between the uterine wall and placenta
is less clear in the growth restriction placentas (Fig. 3), and many of these maps show
areas of high FA within the placenta.

Figure 4 plots the mean FA value within the ROI comprising the placenta and
uterine wall. Control scans (Fig. 4, black dots) show an apparent decrease in mean
FA over gestation, potentially reflecting microstructural changes during normal pla-
centa maturation. On the other hand, growth restriction scans (Fig. 4, red and yellow
dots), do not show a clear trend over gestation. At early gestational ages, control
and compromised placentas have comparable mean FA values. Due to the downward
FA trend in control placentas, from around 30 weeks gestation growth restriction
placentas appear to have considerably lower FA values than control placentas. This
difference was statisically significant, both when comparing controls with the com-
bined FGR and low birth weight cohorts (p = 0.005, independent samples t-test),
and when comparing controls to these two cohorts separately (Fig. 5). We tested if
trends over GA differ between controls and growth restriction (i.e. FGR and under
5%) cohorts by calculating a linear regression to predict mean FA based on GA,
cohort, and the interaction between GA and cohort. The coefficients and p-values are
given in Table 2, and Fig. 6 visualises the fits. The coefficient of the interaction term
between GA and low birth weight is statistically significant (p = 0.002), suggesting
a different trend over gestation.

Table 2 Coefficients and corresponding statistics from linear regression to predict mean FA based
on GA, cohort, and GA × cohort (interaction term)

Coefficient Value Standard error t P > |t |
Intercept 0.8457 0.193 4.384 0.000

Cohort (FGR) −0.4541 0.313 −1.449 0.160

Cohort (Under5) −0.7159 0.259 −2.765 0.011

GA −0.0150 0.006 −2.328 0.028

GA × Cohort
(FGR)

0.0188 0.011 1.769 0.089

GA × Cohort
(Under5)

0.0299 0.009 3.412 0.002
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Fig. 6 Linear regression to predict mean FA based on GA, cohort, and GA × cohort

4 Discussion and Conclusion

This study visualizes and quantifies fractional anisotropy in placentas of both control
pregnancies and those affected by growth restriction. Encouragingly we find that the
FA is significantly different across gestation in growth restricted pregnancies com-
pared to controls. The fractional anisotropy is a coarse measurement that averages
over a number of tissue properties. There are hence a number of microstructural or
functional changes that could explain this observation. Our initial speculations of
plausible factors behind the changes in FA are as follows.

We observed a clear pattern of decreasing FA with gestational age for control
placentas, suggesting that normal placental development causes a reduction in coher-
ently orientated tissue. A consistent hypothesis is that this reduction in FA reflects
the normal onset of terminal villi formation along the surfaces of intermediate villi,
which occurs predominately during the third trimester [2]. On the other hand, we
observed higher FA for placentas associated with growth restricted pregnancies after
30 gestational weeks. This is consistent with histological findings that FGR placentas
show a lack of side-branching terminal villi [2].

In this study, we utilised an MR protocol with multiple b-values and gradient
directions. However, we only fit a relatively simple model to the data, the diffusion
tensor. This data can support more complex models, such as anisotropic IVIM-type
models, which separately consider the perfusion (i.e. low b-value) and diffusion
(high b-value) signal components (e.g. [26]), and may help disentangle the tissue
microstructure changes underlying the observed difference in FA. Another potential
approach is to use orientation distribution functions, which might reveal differences
in complexity of the orientation of villi (e.g. [23]).
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There are a number of MRI-derived biomarkers that show promise for detecting
placental dysfunction. These include: T2* relaxometry [18, 24, 25], which relates
to oxygenation levels; structural measures [7]; apparent diffusion coefficient (ADC)
[4, 14, 30], relating to global tissue structure; and intravoxel incoherent motion
(IVIM) MRI perfusion fraction [8, 22, 29], which relates to blood flow. Thus far,
dMRI-derived potential biomarkers (ADC and perfusion fraction) have considered
tissue to be isotropic. Our results strongly suggest that the FA is also sensitive to
placental dysfunction, and hence that quantifying tissue anisotropy is an additional
important avenue for assessing placental health. It may be the case that multiple
biomarkers need to be combined in order to best assess the health of an individual
placenta. The fact that we see higher FA values for placentas with birth weight
under the 5th percentile, as well as those diagnosed with FGR is interesting and
merits further investigation. It is likely that a significant proportion of cases under
the 5th percentile are undiagnosed FGR. Our results suggest that quantifying tissue
anisotropy in the placenta could have a role to play in the detection of FGR, We will
investigate this by combining further scanning with post-delivery placental histology
to test the ability to distinguish FGR cases from small but otherwise healthy babies.
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