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Abstract 

When facing decisions to approach rewards or to avoid punishments, we often 

figuratively go with our gut. While the impact of metabolic state such as hunger on 

motivation is well documented, the role of vagal feedback signals originating from the 

gut in adjusting instrumental actions is still largely elusive. Consequently, we 

investigated the effect of non-invasive transcutaneous vagus nerve stimulation 

(tVNS) vs. sham (randomized cross-over design) on approach and avoidance 

behavior using an established go/no-go reinforcement learning paradigm (Guitart-

Masip et al., 2012) in 39 healthy, overnight-fasted participants. First, mixed-effects 

logistic regression analysis of choice accuracy showed that tVNS acutely impaired 

learning, p = .045, regardless of the required action or valence of the reward. 

Second, in line with mixed-effects results, computational reinforcement learning 

models showed that tVNS acutely reduced the learning rate (∆𝛼 = -0.092, pboot = 

.002) and these changes were more pronounced for trials incurring punishment 

(∆𝛼Pun = -0.081, pboot = .012 vs. ∆𝛼Rew = -0.031, p = .22). However, tVNS had no effect 

on go biases, pavlovian response biases or response time indicating that changes in 

performance were not driven by changes in action execution, but speed of 

contingency learning. To conclude, our results highlight a novel role of vagal afferent 

input in modulating reinforcement learning by tuning the learning rate according to 

homeostatic needs.  
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Introduction 

To survive, organisms must procure energy by approaching options that pay 

off while avoiding costly options, potentially incurring punishments. Fundamental 

learning mechanisms have evolved to support this vital optimization of instrumental 

actions [1–4]. One key challenge is to balance short-term and long-term goals of 

reward-related behavior. For example, being patient in light of temptation to receive 

bigger returns in the future is often beneficial to maximize long-term outcomes. 

However, forfeiting immediate rewards during a hungry state [5] in the same manner 

may put an individual at risk of starvation [1]. Likewise, increasing the thriftiness of 

actions may help to promptly improve the energy balance even though one might fail 

to explore an option that could be much better in the long run [6]. Although it seems 

imperative to adjust value-based decisions and learning according to homeostatic 

needs, little is known about the neurobiological mechanisms subserving such 

adaptations in humans to date. One plausible candidate for modulatory input onto 

circuits involved in reward learning would be a caloric feedback signal [7] originating 

from the gut.   

Signals about metabolic and homeostatic state are largely transmitted via the 

vagus nerve which connects peripheral organs such as the gut with the brain. Vagal 

afferents terminate in the nucleus tractus solitarii, NTS, [8] a hub further relaying 

metabolic information to the mid- and forebrain [8,9] including to dopaminergic 

neurons in the substantia nigra. Within that pathway, vagal afferents have been 

shown to modulate dopaminergic [10,11], but also noradrenergic [12], and cholinergic 

signaling [13]. Accordingly, endogenous stimulation of the gut with nutrients evokes 

dopamine responses in the dorsal striatum tracking caloric value [14,15]. These 

dopamine signals are critical for appetitive conditioned learning [10,16,17] as well as 
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motivated behavior [18,19]. Similarly, vagal afferent signalling regulates food intake 

[16] and stimulation of the vagus nerve has been associated with reduced food intake 

and decreased weight gain [20]. More broadly, episodic and spatial memory function 

[21] as well as cognitive flexibility [22] and mood [23] are also influenced by vagal 

signaling. Collectively, these results suggest that vagal signals conveying the 

metabolic state influence a wide variety of behaviors including appetitive learning via 

alterations in dopaminergic signaling.  

Until recently, research in humans has been limited by the invasive nature of 

cervical vagus nerve stimulation (VNS). Still, VNS has been related to a broad range 

of behavioral effects such as enhancing cognitive functioning [24] and memory 

retention [25,26]. Additionally, VNS has repeatedly been shown to reduce depressive 

and anxiety symptoms [25]. Lately, non-invasive transcutaneous VNS (tVNS) has 

become feasible, opening new avenues for research and treatment. It is commonly 

applied via the ear targeting the auricular branch of the vagus nerve, which has been 

shown to affect projections to the NTS in preclinical studies [27]. Comparably, studies 

using tVNS with concurrent fMRI have revealed enhanced activity in the NTS and 

other interconnected brain regions including the dopaminergic midbrain and nucleus 

accumbens [28,29]. Moreover, tVNS had similar positive effects on depressive 

symptoms [30,31], memory retention [32,33], and cognitive performance [34,35] as 

implanted cervical VNS. Despite the recent progress, detailed understanding of the 

link between vagally mediated metabolic signaling and reward-related alterations, 

which could explain anti-depressant effects, is lacking. 

Previous studies investigating the effects of (t)VNS mainly focused on 

processes predominantly associated with the noradrenergic system such as cognitive 

control, fear learning and extinction. Nonetheless, since vagal signals also modulate 
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dopaminergic transmission, reward learning and motivation should also be influenced 

by vagal stimulation. While response vigor has been linked to tonic dopamine 

concentration [36] potentially reflecting average reward rates, learning via reward 

prediction errors (RPE) has been linked to phasic dopamine signals [37,38]. The 

magnitude of RPEs and subsequent learning is in turn influenced by tonic dopamine 

levels [39,40]. Perhaps counterintuitively, high dopamine tone may reduce the 

constraint of actions imposed by previous rewards [40] as phasic signals are then 

proportionally smaller (value theory, [41]) or choices rely less on learned values (thrift 

theory, [2]). Moreover, learning is differentially supported by the dopamine circuitry 

depending on the specific task [42], with distinct but interacting circuits underlying 

learning from rewards or punishment. Consequently, vagal feedback may lead to 

alterations in reward learning, response vigor, and action selection mediated by 

dopaminergic signaling and mapping the effects of tVNS onto these motivational 

facets would shed new light on the endogenous modulation of reward seeking.  

In the present crossover study, we therefore applied tVNS (vs. sham) to mimic 

metabolic signaling via vagal afferents and tested its effects on reward learning, 

which may be mediated by changes in dopamine levels. Reward learning  was 

probed with a valence dependent go/no-go learning paradigm established by Guitart-

Masip et al. [42] delineating instrumental action learning and pavlovian control. In line 

with the value and thrift theories of dopamine, we hypothesized that participants’ 

performance during tVNS would be impaired, as increased tonic dopamine levels 

reduce the impact of phasic RPEs. We then used computational reward learning 

models to investigate specific valence or action dependent changes in performance. 

In a previous study, Guitart-Masip et al. [43] reported a decrease in pavlovian bias by 

increased dopamine levels (after L-DOPA administration) thereby improving 
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performance in incongruent action-valence combinations while reducing performance 

in congruent action-valence combinations. Hence, we expected tVNS to lead to a 

similar attenuation of the pavlovian influence on instrumental learning. In addition, we 

explored potential effects of tVNS on greater go response rates or faster response 

time, which would be indicative of a heightened response vigor.   
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Methods 

Participants 

In total, 44 individuals participated in the study. They were physically and 

mentally healthy, German speaking, and right-handed, as determined by a telephone 

interview (24 female; Mage= 25.5 years ± 3.7; MBMI= 23.0 ± 3.0; 17.93 - 30.9 kg/m2). 

For the current analysis, five participants had to be excluded (n=4: did not complete 

both sessions of the task, n=1: did not make any go response). The final sample 

included 39 participants (23 female, Mage= 25.5 years ± 4.0; MBMI= 23.0 ± 3.0). The 

institutional review boards of the University of Tübingen approved the study and we 

obtained informed consent from all participants prior to taking part in the experiment. 

Experimental procedure 

Participants were required to fast overnight (i.e., >8h hours prior to the visit) for 

both experimental sessions. Sessions were conducted in a randomized, single-blind 

manner as the experimenter was not blind to the stimulation condition (for information 

on the device, see SI). Nevertheless, participants were close to chance in guessing 

the correct condition (60%; pbinomial = .049) suggesting that blinding was effective. 

Sessions started between 7.00 am and 10:15 am and lasted about 2.5h in total. After 

participants arrived for the first session, they provided written informed consent. Next, 

we collected anthropometric and state-related information (see SI) before the tVNS 

electrode was placed on the left ear to target the auricular branch of the vagus nerve. 

In line with the stimulation procedure by Frangos et al. [28], the electrode was located 

at the left cymba concha for tVNS and at the left earlobe for sham stimulation. Stripes 

of surgical tape served to secure the electrode in place. Individual stimulation 

strength was assessed for every session separately using pain VAS ratings (“How 
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intensely do you feel pain induced by the stimulation?” ranging from 0 (“no 

sensation”) to 10 (“strongest sensation imaginable”). Stimulation was initiated at an 

amplitude of 0.1 mA and increased by the experimenter by 0.1-0.2 mA at a time. 

Participants rated the sensation after every increment until ratings settled around the 

value 5 (corresponding to “mild prickling”). Then, the stimulation continued 

throughout the task block according to the default stimulation protocol of the device 

(i.e., alternating blocks of stimulation on and off for 30s each). Within this block, 

participants completed a food-cue reactivity task (~20 min), an effort allocation task 

(~40 min), and the instrumental learning task (~15 min). 

After completing state-related questions, participants received their monetary 

rewards according to task performance (Mpaid = 5.79€ ± 2.41; 0.70-10.06) and 

compensation (either monetary as a 32€ fixed amount or partial course credit). Both 

visits followed the same standardized protocol. 

Paradigm 

We hypothesized that tVNS would affect reinforcement learning via changes in 

dopaminergic neurotransmission. However, increases in dopaminergic transmission 

are not universally translated into increases in performance as expected changes 

critically depend on the nature of the task. Due to the well-known characteristics of 

the dopaminergic circuit [44,45], we sought to disentangle effects of the stimulation 

on action- or valence-dependent learning. To this end, we used a previously 

established go/no-go reinforcement learning task [46–48]. In this task, participants 

learn state-action contingencies and receive rewards or punishments. Each trial 

consisted of three stages (Figure 1). First, participants saw a fractal cue (state) out of 

a set of four different fractals per session. These fractals were initially randomized to 

one of the four possible combinations of the go ✕ win two-factorial design of the task. 
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Second, participants had to do a target detection task by pressing a button (go) or 

withholding their response (no-go). Third, they saw the outcome of the state-action 

combination, which was either a win (5 cents), omission (no win/punishment, 0 

cents), or a loss (-5 cents). Using trial and error, participants had to learn which 

action following each fractal was best in terms of maximizing wins or minimizing 

losses. 

To facilitate reinforcement learning, the outcomes were presented 

probabilistically. Thus, participants had 80% chances to win after correct state-action 

sequences, 20% chances to win after incorrect sequences for rewarded trials as well 

as 80% chances to avoid losses after correct and 20% chances to avoid losses after 

incorrect sequences for punished trials. Participants were instructed about the 

probabilistic nature of the task and that either go or no-go responses could be the 

correct response for a given fractal. There was no change in the contingencies over 

time. To ensure that participants understood the task, they were queried before 

starting the experiment. In total, the task included 240 trials (60 trials per condition) 

and took about 15 min to be completed.  
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Figure 1: Schematic summary of the go/no-go reinforcement learning task. To 
maximize the total payoff, participants had to learn which action (go vs. no-go) during 
the target detection stage following a given fractal was associated with the best 
possible outcome (i.e., receiving reward or avoiding impending punishment). These 
contingencies were randomly assigned and had to be learned by trial and error. S2 = 
Session 2 

 

Data analysis 

Behavioral data 

Full mixed-effects analysis of the go/no-go reinforcement learning task 

To estimate the effects of tVNS on choice accuracy, we defined a full mixed-

effects analysis as implemented in HLM 7 [49]. Effects of the conditions were 

modeled by predicting if a given choice (Bernoulli distribution) was correct based on 

the regressors go (dummy coded), win (dummy coded), and the interaction term go ✕ 

win in a generalized linear model. To assess tVNS effects, the model included terms 

for the stimulation condition (dummy coded, 0 = sham, 1 = tVNS) and interactions of 
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the stimulation term with the condition regressors (i.e., stimulation ✕ go, stimulation 

✕ win, stimulation ✕ go ✕ win). Furthermore, we included a trial regressor capturing 

improvements in accuracy across trials, which was transformed by the natural 

logarithm and mean centered. At the participant level, we calculated two models that 

included random effects for all intercepts and slopes: model 1 controlled only for 

order whereas model 2 additionally controlled for gender, and BMI. We also tested an 

additional interaction term stimulation x ln(trial), but found that the coefficient estimate 

was highly correlated with the stimulation main effect. Thus, we excluded this term to 

avoid redundancy. All other random effects were complementary and showed 

significant between-subject variance (p < .001). Analogous to using expectation 

maximization in the computational model, we obtained empirical Bayes estimates, 

which take the distribution at the group level into account as individual estimates of 

the stimulation effects. 

Reinforcement learning model 

To dissociate which facet of instrumental action learning was altered by tVNS, 

we fit reinforcement-learning models to participant’s behavior starting with the 

winning model detailed in Guitart-Masip et al. [42,46] as standard model. Here, 

participants learn stimulus (s) specific action (a) values (Q) that are updated at each 

trial t according to the Rescorla-Wagner rule as follows:    

𝑄!(𝑠! , 𝑎!) 	= 	𝑄!"1(𝑠! , 𝑎!) + 𝛼(𝜌𝑟! 	− 	𝑄!"1(𝑠! , 𝑎!)), 

with learning rate alpha (α ϵ [0,1]), reward sensitivity rho, a positive free 

parameter quantifying the individual importance of reward and obtained rewards rt 

coded as -1 in case of punishment, 1 in case of reward and 0 if participants received 
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neither reward nor punishment. Further, agents learn action-independent values (V) 

of each state updated after the same rule indicating if a stimulus is associated with 

punishments or rewards.   

𝑉(𝑠!) 	= 	𝑉!"1(𝑠!) + 𝛼(𝜌𝑟! 	− 	𝑉!"1(𝑠!)), 

Action values (Q) and stimulus values (V) at each trial are used to compute 

action weights as follows:  

𝑊!(𝑎, 𝑠) = 	 {𝑄!(𝑎, 𝑠) 	+ 𝑏	 + 	𝜋𝑉!(𝑠),			𝑎 = 𝑔𝑜	𝑄!(𝑎, 𝑠), 𝑒𝑙𝑠𝑒	 

Where b is a free parameter that reflects a constant bias to choose the go 

option. The influence of pavlovian tendencies (e.g. increased go behavior in 

potentially rewarding situations and avoidance in aversive situations) is 

parameterized by	𝜋, a positive free parameter. The pavlovian parameter inhibits the 

go tendency in conditions that are associated with punishments and thus have 

negative learned state-values (V), while it increases go tendencies in conditions 

associated with reward and positive state-values. Consequently, this leads to 

impaired learning in incongruent (e.g. go-to-avoid punishment) trials.  

The action at each trial is selected based on action probabilities that are 

estimated by passing action weights (𝑊) through a softmax function (Eq. x) and 

adding a noise parameter (𝑙𝑎𝑝𝑠𝑒, 𝜉	 ∈ [0,1]) modulating the influence of learned 

expectations on subsequent decisions. 

𝑝(𝑠!) = <
𝑒𝑥𝑝 𝑒𝑥𝑝	>𝑊(𝑠!)?	

∑# 𝑒𝑥𝑝	(𝑊(𝑎′|𝑠!B
(1− 𝜉) +

𝜉
2	

Subsequently, we fit three further models to disentangle possible effects 

depending on reward valence by estimating either learning rate, learning rate and 
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reward sensitivity, or learning rate, reward sensitivity and pavlovian bias for reward 

and punishment conditions separately.  

Model fitting and selection  

Models were fit using hierarchical expectation maximization (EM) as described 

by Huys et al. [50]. In this approach, individual parameters as well as the underlying 

group distribution parameters are estimated iteratively. The current group 

distributions were used as priors to estimate individual level parameters using 

Laplace approximation in the E-step. Consequently, in the M-step, group-level 

distributions were updated based on the new individual parameter estimates and 

their uncertainty. Repeated sessions were treated as independent measurements 

and one underlying distribution was fit over all participants and measurements. 

Reward sensitivity and pavlovian bias parameters were log transformed and learning 

rate and noise parameters were transformed using the inverse sigmoid function to 

ensure theoretical parameter constraints. 

Model fit was assessed using group-level integrated BIC (iBIC, [50]) where 

model fit and model complexity across all measurements are taken into account. As 

better group-level fit may be driven by large improvements in few participants, we 

additionally used likelihood ratio tests to determine the best fitting model for each 

participant. The winning model not only had to be parsimonious, but parameter 

estimates had to be stable in order to reliably quantify stimulation effects. We 

therefore tested stability of parameter estimates over 10 EM initializations and 

subsequently used mean parameters for further analysis. Furthermore, recovery of 

observed behavior based on simulations with estimated parameters was assessed.  
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Statistical analysis and software 

We assessed all tVNS effects using a statistical significance threshold of p < 

.05 (two-tailed) and corrected for multiple comparisons across the five parameters in 

the standard computational model analysis. We also planned to correct across the 

condition-specific interaction terms in the mixed-effects model, but they did not reach 

uncorrected significance. To account for non-normal distributions of parameters from 

the computational model, differences in parameter estimates between the sham and 

tVNS condition were tested using bootstrapping (n = 1000 resamples). We performed 

all data analyses with Matlab v2016a (computational model) or HLM v7 (mixed-

effects models) and data visualisation with R v5.0.1 and R Deducer [51].   
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Results 

tVNS reduces choice accuracy across conditions 

We first analyzed the performance of participants by estimating effects of 

reward valence, required action, and stimulation on accuracy in a full mixed-effects 

model. In line with previous studies, overall accuracy was higher in conditions 

requiring a go response (t = 5.93, p < .001), whereas reward valence only influenced 

accuracy in interaction with the required action (valence: t = 0.83, p = .412, valence ✕ 

action: t = 7.198, p < .001). In other words, participants performed worse in the go-

punishment and no-go-win conditions in which pavlovian biases (e.g. approach 

reward and avoid punishment) and required behavior were incongruent.  

Next, we assessed main and interaction effects of tVNS vs. sham stimulation 

on choice accuracy. Across conditions, tVNS reduced accuracy (t = -2.08, p = .045; 

model uncorrected for BMI and sex: t = -1.98, p = .055). However, we observed no 

interaction effects with action (t = -0.46, p = .646) or valence (t = 0.78, p = .44).  

Nevertheless, order of stimulation (sham/tVNS first) did influence stimulation effects 

(t = -3.60, p < .001) with stronger impairments in overall performance if tVNS was 

applied first. Consequently, we controlled for stimulation order in the analyses. 

Notably, acute tVNS-induced reduction in performance did not lead to deficits in the 

second session with higher day-to-day improvements in the group that received tVNS 

first, t = 2.05, p = .048. 
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Figure 2: Choice accuracy is reduced in the tVNS condition compared to sham 
stimulation. A: Mean choice accuracy for tVNS and sham stimulation in each session 
and condition. Error bars depict 95% confidence intervals. B: Choice accuracy for 
tVNS and sham stimulation over trials separated by session indicate stronger tVNS-
induced reduction of choice accuracy in session 1. C: Choice accuracy for tVNS and 
sham stimulation over trials separated by condition do not suggest action- or valence-
specific effects of tVNS. 

 

tVNS reduces the learning rate in a computational model of behavior 

To further characterize which learning processes were affected by tVNS 

leading to impaired performance, we then fitted a computational reward-learning 

model (Guitart-Masip et al. 2012) using an expectation maximization algorithm to 

regularize parameter estimates. We estimated five parameters controlling choice 

behavior over time: learning rate, reward sensitivity, go bias, pavlovian bias, and 

noisiness of choices for each session and calculated differences between tVNS and 
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sham sessions. Average data generated based on individually estimated parameters 

corresponded well with observed data (Figure S?) and parameter estimates were 

sufficiently stable (see SI).   

Impaired performance during tVNS was mainly reflected in a reduced learning 

rate alpha (Δɑ = -0.092, p = .009, pboot = .002, corrected for stimulation order: t =  -

2.741 p = .009). Additionally, participant’s choices in the tVNS condition were ‘noisier’ 

and less dependent on learned action values (Δξ = 0.035, p = .086, pboot = .05), 

although only nominally significant before correction for multiple testing. Stimulation 

effects on performance were also recovered in the simulated data based on 

individual parameter estimates (Figure 3C-D, t = , p=?).  
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Figure 3: Reduced choice accuracy in the tVNS condition is driven by a reduced 
learning rate, α, and increased choice stochasticity in the 5-parameter computational 
model. A: Bootstrapped density plots of the differences in individual parameter 
estimates between tVNS and sham stimulation. Lines indicate 95% confidence 
intervals. B: Individual changes in the learning rate indicate mainly a reduction of high 
baseline learning rates after tVNS. Stimulation in session 1: blue = sham, red = tVNS 
C: Choices simulated from individual parameter estimates recover participants’ 
choice patterns and stimulation effects for sessions. D: Recovered choice patterns 
indicate no difference in stimulation effects depending on valence or action. LL = 
Log-Likelihood, GoB = Go-bias, PavB = Pavlovian Bias (π), RewS = Reward 
sensitivity (ρ)  
 

Valence-specific effects of tVNS may be captured by modeling separate 

parameters for rewards and punishments. Therefore, we also built an extended 6-

parameter model assuming separate learning rates. The 6-parameter model provided 

a better model fit on the group level (ΔiBIC = 263), although on an individual level, 

model fit was only significantly improved for 27 out of 78 runs. Nonetheless, stability 

of individual parameter estimates was sufficient (SD = 0.0028 - 0.5043). Subsequent 

estimation of tVNS effects revealed that the slower learning rate during tVNS 

stimulation was predominantly driven by a decrease of the learning rate in the 

punishment condition (Δɑpun = -0.081, p = .019 , pboot = .012, corrected e2for order: t 

= -2.516, p = .016) while decreases of alpha in reward conditions were less 

pronounced and non-significant (Δɑrew = -0.031, p = .219 pboot = .21, corrected for 

order: t = -1.244, p = .211). However, the interaction between stimulation ✕ valence 

for the learning rate was not significant (F(1,37) = 1.975, p = .168), indicating only 

weak specificity of the tVNS effect on punishment learning. In contrast to the 5-

parameter model, tVNS did not affect choice stochasticity in the extended model (Δξ 

= -0.0031, p = .863, pboot = .941). Again, stimulation effects on performance were 

recovered in the averaged simulated data (Figure 4B-C, t = -1.984 p = .055).     
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Figure 4: Reductions in learning rate are driven by slowed learning in punishment 
conditions. A: Bootstrapped density plots of the differences in individual parameter 
estimates between tVNS and sham stimulation. Lines indicate 95% confidence 
intervals. B: Choices simulated from individual parameter estimates recover 
participants’ choice patterns and stimulation effects for sessions. C: Recovered 
choice patterns indicate no difference in stimulation effects depending on valence or 
action. LL = Log-Likelihood, GoB = Go-bias, PavB = Pavlovian Bias (π), RewS = 
Reward sensitivity (ρ)  
 

We then explored more complex models by additionally separating reward 

sensitivity and/or pavlovian bias for reward and punishment as previously described 

[52]. However, across multiple iterations, individual estimates became increasingly 

volatile (SD = ) precluding their use to reliably estimate within-subject stimulation 

effects (for details, see SI). 
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tVNS effects depend on baseline characteristics 

Behavioral effects of dopamine increases are known to depend on baseline 

dopamine levels and one well-established indicator of baseline dopamine tone is BMI 

[53,54]. Indeed, tVNS effects on general accuracy (t = 1.987, p = .055), as well as 

learning rate( t = 2.351, p = .024) depended partly on participants’ BMI. More 

specifically, tVNS reduced the speed of acquisition more strongly in participants with 

a low (healthy) BMI, who have a higher dopamine tone in the striatum compared to 

overweight participants. Furthermore, tVNS effects on the learning rate were strongly 

dependent on the intercept (i.e., average learning rate across both sessions) as 

shown by a strong correlation( r = -0.886, p < .001) between the tVNS main effect 

and the intercept in a mixed-effects model accounting for regression to the mean 

(Figure 3b).  

tVNS does not affect response time 

Lastly, we estimated effects of tVNS on response time as an indicator of 

alterations in response vigor. However, no significant changes in reaction time  were 

observed( t = 0.826, p = .414 (Figure S.1)), further corroborating that impaired 

performance was mediated by slowed learning and not altered action selection.  
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Discussion 

The vagus nerve rapidly transmits metabolic state signals to the brain and 

thereby modulates the dopamine system. Here, we investigated changes in 

instrumental reinforcement learning, which is critically dependent on dopamine, after 

emulating vagal feedback signals using tVNS. Importantly, we found that tVNS 

reduced overall accuracy of choices driven by a slowed acquisition of action 

contingencies, predominantly for punishments. In contrast, action- or valence-specific 

biases were unaffected by tVNS. In line with the value hypothesis of dopamine 

[40,41], the observed attenuation of the learning rate may be explained by an 

increase in dopamine tone leading to a lower signal-to-noise ratio of phasic 

dopamine signals [40,41]. Thus, using the novel non-invasive stimulation of the 

vagus nerve, our results provide evidence that metabolic feedback signals may alter 

reward learning by tuning the speed of acquisition according to homeostatic need.  

 Vagal feedback signals evoked by tVNS acutely impaired choice accuracy in 

valenced go-/no-go learning. This general impairment of performance in the tVNS 

condition was mirrored by lower learning rates. This is in agreement with the value 

theory of dopamine and further studies showing that the impact of phasic RPE 

signals on actions depends on dopamine tone [40,41]. In short, increased dopamine 

tone leads to a comparably smaller signal-to-noise ratio if phasic signals are 

unaffected. Thereby, learning from phasic signals evoked by action outcomes might 

be slowed. Accordingly, reduced learning after L-DOPA administration has been 

reported in patients with Parkinson’s disease [55,56] as well as healthy participants 

[57]. Similarly, reduced learning rates are in line with the dopamine overdose 

hypothesis [58], especially as stimulation effects were dependent on indicators of 

baseline dopamine tone. For instance, tVNS markedly reduced learning rates when 
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they were high overall, indicative of a low dopamine tone independent of the 

stimulation. Moreover, tVNS reduced learning rates more strongly in healthy weight 

participants, who were previously shown to have a medium dopamine tone in the 

striatum that is relatively higher compared to overweight and obese individuals 

[53,54]. Taken together, this indicates that tVNS-induced increases in tonic dopamine 

led to reduced learning rates predominantly in participants with high (or “ideal”) 

baseline dopamine function.  

 In addition to a slower learning rate, impaired performance in the task may 

also be caused by an increase in choice stochasticity as predicted by the thrift 

hypothesis of dopamine [2]. Here, increased tonic dopamine would indicate 

heightened average reward and energy availability [36], consequently leading to 

more exploration reflected in an uncoupling of learned value and choice [59]. In 

agreement with this account of dopamine functioning, we did find that tVNS was 

associated with an increase in decision noise [60,61]. However, the increase was not 

significant after correction for multiple testing and not consistent across models 

suggesting limited effects at best. These discrepancies may partly be explained by 

different parameterizations of the computational models. Whereas choice 

stochasticity is often captured with the temperature parameter in the softmax 

function, this parameter is separated in the common task model proposed by Guitart-

Masip et al. to differentiate reward sensitivity from actual decision noise. Comparably, 

Guitart Masip et al. [43] did not report changes in the noise parameter in the same 

task using the same parametrization after L-DOPA administration. Collectively, these 

results suggest that tVNS primarily affects action contingency learning and not solely 

noise in value-based decisions. 
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In contrast to our hypothesis, tVNS did neither affect response-specific biases 

such as go or pavlovian biases nor response times in any condition. In previous 

studies, pharmacologically-induced increases in tonic dopamine modulated pavlovian 

[43] or motivational biases [62] and differentially affected learning from rewards 

versus punishments [63,64]. Whereas we also observed that punishment learning 

was more affected than reward learning, there was no significant interaction between 

valence-dependent learning rates and tVNS effects. Thus, tVNS-induced effects were 

generally independent of valence or the required action, which is not in line with 

previous pharmacological interventions increasing dopaminergic transmission. One 

possibility is that tVNS affects multiple transmitter systems and their interplay may 

therefore lead to different behavioral alterations. However, many dopaminergic drugs 

such as L-DOPA also act on other transmission systems [65] suggesting that this is 

an insufficient explanation. Another possibility is that modulatory effects of tVNS are 

more confined within the motivational circuit compared to systemic drug 

administration. For example, it is conceivable that tVNS could alter the balance 

between fast reinforcement learning, primarily linked to the amygdala, and slow 

reinforcement learning, primarily linked to the striatum. It has been shown that 

chronic tVNS increases functional connectivity between the amygdala and the 

prefrontal cortex in depressed patients [31] whereas repetitive VNS acutely reduces 

amygdala-evoked responses in the prefrontal cortex of rats [66]. Thus, future 

research may help to resolve these questions by detailing corresponding alterations 

in motivational circuits as our study leads to testable predictions about shifting the 

balance more towards slow striatal reinforcement learning [67]. To conclude, tVNS 

appears to reduce the speed of contingency learning without altering action-related 

processing, but more research is needed to establish differences in these processes 

between endogenous versus exogenous modulations of dopaminergic transmission. 
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 While behavioral effects of tVNS including reduced accuracy and learning 

rates can be explained by a modulation of the dopaminergic system, the study has 

several limitations. First, the vagus nerve projects to multiple brain areas and tVNS is 

not specific, affecting various transmitter systems. Most prominently, tVNS is also 

associated with heightened noradrenergic signaling mediated by projections to the 

locus coeruleus. Increased noradrenaline signaling during tVNS has mainly been 

associated with improved memory performance mediated by increased arousal and 

attention [33]. Nonetheless, phasic noradrenaline (NA) signals have also been shown 

to track unsigned prediction errors or, in other words, surprise [68,69]. Surprise 

signals are critical for learning and, accordingly, treatment with an NA reuptake 

inhibitor was associated with comparable baseline-dependent changes in learning 

rate as reported here [70]. Since action contingencies are fixed throughout the task, it 

is not possible to clearly dissociate dopaminergic and noradrenergic processes acting 

via signed (reward) or unsigned (surprise) prediction errors, respectively. Moreover, 

as dopamine is the precursor of noradrenaline, future studies disentangling both 

systems are necessary. Second, the within-subject cross-over design offers 

increased statistical power to detect stimulation effects, especially considering 

baseline dependence. Nonetheless, repeated completion of the task may have 

affected performance and therefore modulated stimulation effects. We accounted for 

order effects in the statistical analyses, but replication in independent groups would 

be preferable. 

To summarize we showed that vagal signals impair choice accuracy by 

acutely reducing learning speed in a reinforcement learning task. These findings 

indicate that vagal afferents modulate dopamine signaling and, in accordance with 

the value theory of dopamine function, slower acquisition may be due to a reduced  
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signal-to-noise ratio of evoked phasic dopamine. We conclude that how much we 

learn from rewards and losses may therefore depend on the metabolic state signaled 

by the vagus nerve. Thereby, rapid learning which actions in a given state lead to 

future reward or punishment could be facilitated  during a hungry state compared to a 

less deprived state. Critically, this behavioral flexibility with respect to the current 

metabolic state seems to be less pronounced in overweight participants with a lower 

baseline dopamine tone, which is in line with the reported reduced sensitivity to 

peripheral metabolic feedback [71]. Furthermore, reported anti-depressant effects of 

tVNS may partly rely on reduced learning, especially from punishments, as this may 

compensate for the reported increased punishment sensitivity in depressed patients 

[52,72]. More broadly, reduced learning and dependence on learned contingencies 

may also offer the possibility to prevent over-reliance on learned action-outcome 

combinations and encourage exploring changes in behavior. In turn, this could lead 

to greater behavioral flexibility that may be advantageous in many environments.  
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