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Abstract

A molecular application is introduced for calculating quantum statistical mechan­

ical expectation values of large molecules at non-zero temperatures. The torsional 

path integral Monte Carlo (PIMC) technique applies an uncoupled winding number 

formalism to the torsional degrees of freedom in molecular systems. The internal 

energy of the molecules ethane, n-butane, n-octane, and enkephalin are calculated 

at standard temperature using the torsional PIMC technique and compared to the 

expectation values obtained using the harmonic oscillator approximation and a vari­

ational technique. All studied molecules exhibited significant quantum mechanical 

contributions to their internal energy expectation values according to the torsional 

PIMC technique. The harmonic oscillator approximation approach to calculating 

the internal energy performs well for the molecules presented in this study but is 

limited by its neglect of both anharmonicity effects and the potential coupling of 

intramolecular torsions.
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Chapter 1

Introduction

1.1 Background

The realisation that theoretical methods yield results useful for the understanding 

of biomolecular activity has caused computational studies of proteins and other large 

biomolecules to become increasingly common in modern chemistry.

Theoretical analysis enables the calculation of structural properties, thermodynamic 

properties, and the electronic structure of a wide range of biochemical systems. Stud­

ies regarding the folding and unfolding of proteins in solvent, protein docking at a 

functional site, and the modelling of ion transfer channels are now pubhshed with 

regularity, and the range of biomolecular reaction processes accessible to theoretical 

analysis continues to expand in breadth and variety. Also, computational techniques 

perform a critical role in facilitating the interpretation of incomplete or ambiguous 

experimental data. Common examples of theoretical contribution to experimental 

analysis are found in the fields of crystallographic and NMR spectroscopy.^ '̂
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A particularly promising direction of research in theoretical biochemistry is 

the calculation of kinetic and thermodynamic properties of large systems. Thermo­

dynamic quantities, and free energy in particular, describe the tendency of molec­

ular systems to associate and react, whereas kinetic quantities determine the rate 

at which they do so.̂  ̂ Reliable and efhcient dynamical simulations would enable 

the prediction of molecular solvation, ligand binding to proteins and nucleic acids, 

sequence-dependent stabilities of proteins and nucleic acids, and environmental ef­

fects on reactions in solutions.

Most biochemical simulations assume the validity of the Born-Oppenheimer 

(BO) approximation, in which electrons and nuclei move in different time scales. 

It is therefore assumed that electrons can be modelled in the environment of fixed 

nuclei, and nuclei can be modelled in the mean held of the electrons. Apphcation 

of the BO approximation allows treatment of the electronic part of a system to be 

separated from treatment of the nuclear motion.

Upon application of the Born-Oppenheimer approximation, biochemical sim­

ulation may be broken into two parts: (1) the method for simulating the electronic 

degrees of freedom or electronic potential energy surface (PES) of the system and 

(2) the method for simulating the nuclear degrees of freedom or dynamics of the 

system. Practically all techniques of biochemical simulation involve the application 

of a potential energy surface and a dynamical technique. The quality of these two 

factors determines the quality of the calculated results.

Determination of an electronic potential energy surface is the domain of elec­

tronic structure theory. For applications on the biological scale, the highest-quality 

calculations performed in modern quantum chemistry generally utilise density func­

tional theory methods and wavefunction methods based upon the Hartree-
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Fock mean-electron-field approximation. Fully quantum treatments that

scale linearly with the system size have been developed and applied to biochemi­

cal Although impressive in accuracy, these

techniques generally require a substantial investment of computational resources 

to obtain the energy of just a single structure. More affordable electronic struc­

ture techniques are based on the eigenfunctions of an experimentally parametrized 

Hamiltonian operator. These semi-empirical quantum chemistry methods include 

the AMI, PM3, and MNDO techniques in which orbital interactions are chosen to 

fit reliable data.^^’"̂ ’̂^̂ ^

The most affordable and straightforward potential energy surfaces are gener­

ated from molecular mechanics force field calculations. This approach is entirely 

empirical and does away with solution of the Schrodinger equation. The force field 

potential is defined as an analytical function of the nuclear coordinates and adjusted 

to reproduce experimental observations or higher-level calculations. In their sim­

plest implementations, force fields potentials are a sum of uncoupled energy terms 

that correspond to bond lengths, bond angles, torsional angles. Van der Waals inter­

actions, and electrostatic i n t e r a c t i o n . ^ ^ ' T y p i c a l l y ,  a harmonic approx­

imation is used for the bond length and bond angle terms and a sinusoidal potential 

is used for the torsional angles. A Lennard-Jones 6-12 potential is used to describe 

the Van der Waals interaction and Coulomb’s law is used for the electrostatic term. 

The parameters in the energy terms are individually selected for each possible atom 

combination, resulting in a great many (usually between 10 and 100) variables that 

are chosen to perform as well as possible. Prominent examples of molecular me­

chanics force fields include MM2, MM3, AMBER, CHARMM, YETI, GROMOS, 

OPLS, and T i P 3 p T - 9>25, 42,95, i i o , n i , i i 4, i i 5, i 87, 192,194,195 Because each force field is
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parametrized in a unique fashion to a unique source of reference data, it is critical 

for users to exercise great care in selecting a potential for calculations intended to 

produce numerical accuracy.

It is worthwhile to note that a class of hybrid electronic structure theory 

techniques is enjoying increasing application to protein systems. These QM/MM 

techniques treat the majority of the biochemical system with a molecular mechan­

ics force field and use a higher level of theory for the chemically interesting por­

tion. 67-69,71,74,76,132,155,156,165,193 q̂ ^̂ gse techniques are particularly appro­

priate for reaction dynamics calculations in which accurate description of the tran­

sition state is essential.

In additional to the potential energy surface, a biomolecular simulation re­

quires the utilisation of a dynamical technique. That is, a description of the nuclear 

motion must be established. Historically, this nuclear component has been treated 

primarily with classical mechanics.®’̂ ®’ For most calculations of real-time molecu­

lar dynamics in biochemical systems, the nuclear degrees of freedom are propagated 

via numerical integration of the classical equations of motion. Considerable care 

must be taken in this process to ensure time reversibility and the conservation of 

energy in long calculations.^®’ Techniques for the evaluation of classical thermo­

dynamic quantities in biochemical systems include molecular dynamics and Monte 

Carlo approaches. These methods enable the calculation of ensemble averages by 

sampling a sufficient portion of the total geometric configuration space. Classical 

determination of important biological quantities such as the relative free energy of 

solvation and protein-ligand binding have been performed. Other im­

pressive early studies examined biological catalysis and the impact of amino acid 

sequence on the function and stability of proteins and enzymes.®̂ ’ Cal-
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d ila t io n s  o f th is  sort generally  em ploy free energy perturbation , th erm od yn am ic  

in tegration , or slow  grow th  ap proxim ations in w hich free energy differences are re­

p ea ted ly  eva lu ated  for configurations th a t differ on ly  very sligh tly  a long th e  sim u-

lation pathw ay.93.94,101,102,136,141,142,146,184-186

T h e ap pearan ce o f q uan tu m  m echanics in to  large-scale m olecu lar sim u lation s  

b eg a n  w ith  im provem ent o f th e  p o ten tia l energy surface. P rim arily  for ap p lica tion  

to  reaction  d ynam ics, tech niq ues th a t coup led  sem i-em pirical or crude q uan tu m  

m ech an ica l d escr ip tion s o f th e  electron ic w avefunction  w ith  a c lassica l m echanical 

m o d el o f th e  nuclear m otion  were first d e v e l o p e d . ^3,44, ei, 66,72,73,76 x h e s e  tech n iq ues  

g en era lly  require sp ecifica tion  o f a reaction  coord in ate and th e ev a lu a tio n  o f a  p o ­

ten tia l o f m ean  force (P M F ) th a t is re lated  to  th e free energy o f a c tiv a tio n  o f th e  

ensem ble o f p ossib le  tran sition  s t a t e s . 172-174 Y he P M F  is o b ta in ed  by av­

eraging over all coord in ates a long th e  reaction  pathway. U m brella  sam p lin g  and  

free energy  p ertu rb ation  tech niq ues are u sually  em ployed in th e  ev a lu ation  o f th e  

P M F .131.201

T ran sition  s ta te  th eory  techniques based  on eva lu ation  o f th e  p o ten tia l o f m ean  

force have b een  d evelop ed  in m an y w ays to  include th e  quantum  b eh aviou r o f nu­

clear coord in ates. In p articu lar, a quan tu m  harm onic oscilla tor ap p rox im ation  to  

nuclear v ib ra tio n s has b een  em ployed.^“ ’̂^3,77 im proved  ca lcu la tion s o f th e  P M F  

u sin g  th e  centroid  p ath -in tegra l d ynam ics m eth o d  have also b een  a ttem p ted  for en ­

zym es.3i. ̂ 3,88,90,91,113,128,166,189 q^he centrold  p ath -in tegral form alism  has a lso  b een

u tilised  in  th e  q u an tu m -classica l p a th  (Q C P ) m eth od  in w hich  a c lassica l free en­

ergy ca lcu la tio n  is first perform ed and  th en  adjusted  to  include q u an tu m  m echan­

ics.^^' 88,89,188 p in a lly , new  techniques for th e  ex ten sion  o f q uan tu m  d escr ip tion  to  

th e  en tire rea ctio n  coord in ate  have b een  rep orted .3-̂ ^̂  M any of th ese  ap p lica tion s
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underline the important role of quantum mechanics in reaction dynamics.

Although transition state theory has clearly proven to be an important tool 

for the quantum analysis of chemical reactivity, it is not a particularly general tech­

nique. Defining the reaction coordinate is a necessary and nontrivial inconvenience 

unique to each application. Molecular dynamics techniques in which the system is 

propagated in real time is a more general approach to analysing chemical behaviour. 

As was previously mentioned, real-time molecular dynamics calculations originally 

employed a molecular mechanics force-held and a classical description of the nuclear 

motion.

Introduction of quantum mechanics to the electronic portion of a real-time 

molecular dynamics simulation can be achieved with Car-Parrinello molecular dy­

namics CPMD combines a plane-wave density functional descrip­

tion of the electronic structure with a classical description of the nuclear motion. 

Originally developed for solid-state applications, CPMD has yielded impressive re­

sults in applications to bulk molecular s y s t e m s . T o  a limited number of systems, 

real time molecular dynamics in which a quantum description is provided for the nu­

clear motion has been performed using centroid path integrals.

This technique, however, tends to fail for asymmetric potentials at low tempera­

tures.

Finally, several modern techniques have been utilised to calculate equilibrium 

quantities of general molecular systems using a quantum description of the nuclear 

motion. For non-zero temperature applications, these techniques employ a path 

integral formulation of statistical mechanics that establishes an isomorphism be­

tween the thermodynamics of a quantum particle and the thermodynamics of a 

related classical p o l y m e r . W i t h i n  the isomorphism, most simulations have been
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performed using classical molecular dynamics t e c h n i q u e s . H o w e v e r ,  path 

integral molecular dynamics (PIMD) calculations of this sort are generally slowed 

by the fact that they require force evaluations, and an alternative path integral 

Monte Carlo approach is available. Nonetheless, the PIMD technique has recently 

been extended to include a Car-Parrinello description of the electronic portion of the 

system. 121- 124, i7s q^pese ab initio path integral molecular dynamics calculations 

have led to new insights to the role of quantum mechanics in the nuclear motion of 

condensed small molecule systems.^^^’^̂ ’̂^̂ ^

In the aforementioned work, transition state theory studies have shown that 

inclusion of quantum mechanical effects in the nuclear motion at the transition state 

is important for large m o l e c u l e s . A l s o ,  it was mentioned that the ab initio 

PIMD technique has led to new understanding of bulk small molecule dynamics via 

the inclusion of a quantum description of nuclear m o t i o n . H o w e v e r ,  few 

studies have proposed and applied general techniques for the quantum description of 

nuclear motion to large molecules, so the importance of this factor in thermodynamic 

quantities remains u n c l e a r . T h i s  research will focus on the contributions to the 

thermo dynamic internal energy arising from the quantum mechanical behaviour of 

nuclei.

1.2 Selection of a Dynamical Technique

Because this thesis focuses on obtaining molecular internal energies, it is critical 

tha t the theoretical techniques employed are suited to the analysis of equilibrium 

thermodynamics. For a large molecular system, myriad excited states of the nu­

clear motion are thermally accessible at room temperature. Explicit calculation of
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each excited stated for the extraordinarily complicated potential energy surface of a 

large molecule would be an impossible task. Thankfully, with the help of statistical 

mechanics it is also an unnecessary task. The strategy of statistical mechanics is 

to calculate equilibrium expectation values for a system from the known probabil­

ity that the system can be found in a particular state. It is assumed, at thermal 

equilibrium, that a chemical system can be found in a particular state of energy E  

with probability ~  e“ ^ ,  where T  is temperature and /c is a constant. It is also 

assumed that the system will move throughout this state space fast enough that any 

expectation value for the system will simply be a sum weighted according to these 

probabilities.

The path integral formulation of quantum mechanics developed by Feynman 

offers a singularly convenient approach to the calculation of quantum statistical me­

chanical expectation v a l u e s . T h e  general strategy exploits an observation by 

Dirac about the relationship between the infinitesimal quantum mechanical transi­

tion amplitude and the value of the classical a c t i o n . T h i s  path integral rela­

tionship between classical and quantum mechanics enables the formulation of exact 

quantum mechanical expectation values in terms of the classical expectation values 

of a slightly modified physical system.

The general idea behind incorporating quantum mechanics via path integrals 

is shown schematically in Figure (1.1). Given a particular physical particle, say 

an electron or atom, classical mechanics requires that both the position and mo­

mentum are simultaneously defined. That is, the classical expectation values are 

calculated while representing the particle in position space as a single well-defined 

point. However, to calculate the quantum statistical mechanical expectation values 

of the physical particle within path integral theory, the physical particle is replaced
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Classical Quantum
1

4

Figure 1.1: Path integral theory incorporates the effects of quantum mechanics by 
replacing each classical particle in the system by a ring of Trotter beads.

by a ring of classical points, called Trotter beads, and the classical expectation value 

is again calculated. This change in representation of the physical system, called the 

classical isomorphism, was presented by Chandler and Wolynes.^ It enables the 

simulation of the quantum particle with a ring of classical beads. In the limit of 

many Trotter beads, the classical isomorphism becomes a mathematically exact 

model for the quantum behaviour of the original particle. To obtain a desired level 

of accuracy, highly quantum mechanical particles must be replaced by a ring with 

more beads than is required for a less quantum mechanical system.

Qualitatively, the inclusion of quantum effects via such a change of repre­

sentation makes sense. Rudimentary quantum mechanics immediately dispels the 

simplistic notion of a particle with finite momentum represented as a point in po­

sition space. The Heisenberg Uncertainty Principle states that the certainty with 

which the momentum and position of a particle can simultaneously be known is 

bounded from a b o v e .T h a t  is, for a particle of finite mass and velocity, any reli­

able quantum mechanical model must incorporate the broadening of the distribution 

function of the particle in position space. By replacing the quantum particle with a
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ring of classical beads, path integral theory introduces this broadening effect in an 

especially tangible fashion.

The diffusion Monte Carlo (DMC) technique has long been regarded as an al­

ternative to path integrals for the calculation of quantum behaviour in large molec­

ular This technique has been used to calculate struc­

tural properties and the zero-point energy in the quantum ground state for small 

p ro te in s .H o w e v e r, despite some progress in applying the technique to excited 

states, DMC is primarily applicable only to the analysis of ground states.

In molecular systems held at biochemically interesting temperatures, many excited 

states of the nuclear wave function are occupied and potentially important in the 

evaluation of chemical properties. The inability of the DMC technique to incorpo­

rate these excited states curtails its utility for analysing statistical thermodynamic 

quantities.

Other common approaches to the evaluation of statistical mechanical proper­

ties in large molecules are founded on the techniques of molecular dynamics.

These approaches assume that a sufficiently long trajectory will explore the state 

space in the same fashion as Monte Carlo sampling. Unfortunately, these techniques 

tend to be less efhcient than path integral Monte Carlo approaches because of the 

need to calculate forces or potential gradients in order to perform the dynamics.

For the specific objectives of this research, it is expected that the path integral 

Monte Carlo (PIMC) technique using the quantum statistical mechanics formulation 

of path integrals described above will be the most practical method to employ. The 

research in this thesis will focus on the development of the PIMC approach and its 

applications to biomolecules.
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1.3 Selection of a Potential Energy Surface

Having decided upon using the path integral Monte Carlo technique for the calcu­

lation of quantum statistical expectation values of molecular systems, the question 

remains as to how the actual molecules will be represented. We need to select a 

model for describing the geometry and electronic structure of the molecules.

It was discussed previously that wavefunction methods are accurate and in­

creasingly computationally accessible, but the fact remains that each evaluation of 

the molecular potential energy for a given set of nuclear positions is a costly en­

deavour. For statistical sampling techniques, such as the path integral Monte Carlo 

method we intend to employ in this thesis, thousands and millions of energy evalua­

tions will need to be performed. Therefore, it will be necessary to select a molecular 

model for which energy evaluations can be executed more quickly.

At the other end of the spectrum of molecular models are those for which large 

portions of the molecular structure are represented by single units whose interactions 

are parametrized either to experiment or to more sophisticated calculations. For 

example, in large biochemical calculations, the protein structure will be defined 

in terms of its amino acid sequence or in terms of connected units of prescribed 

secondary structure. Some path integral Monte Carlo calculations on biochemical 

systems preceding the work in this thesis used this sort of simplified structural 

model.^^’^̂ ®’ ®̂̂

Lee and Berne employ path integrals in the formulation of a quantum thermal 

annealing technique for locating the global minimum of p r o t e i n s , a n d  Dewey 

derives a statistical mechanical treatment of large biomolecules utilising the sequence 

information as an internal coordinate.H ow ever, techniques based on such dramati­

cally simplified structural models risk introducing non-physical manifestations while



1.3 Selection  of a Potential Energy Surface 19

neglecting subtle, yet important, aspects of reality.

The benefit, of course, of using such simple structural models is that the num­

ber of degrees of freedom in the calculations is reduced, and so is the required 

computational time. However, a more appealing strategy for reducing the number 

of degrees of freedom in biochemical calculations has been proposed.^^ Upon noting 

how successful previous calculations had been upon separating the low-frequency 

and high-frequency motions in quantum mechanical simulations. Clary reduced the 

coordinate space of an all-atom structural model only to the torsional degrees of 

freedom.

In this approach, a standard ball-and-stick molecular mechanics model us­

ing a generic parametrized all-atom potential energy surface is employed, but the 

intra-molecular bond stretches and angle distortions are forbidden. The molecule is 

held rigid except for twisting motions about the torsional degrees of freedom. These 

twisting modes are known from basic spectroscopy theory to be the lowest-frequency 

internal degrees of freedom in the m olecule.Furtherm ore, the torsional modes are 

expected to be the most important degrees of freedom for biomolecular simulation 

because their low frequencies facilitate substantial variation in molecular configu­

ration at typical temperatures.'^^ Therefore, the inclusion of an all-atom structural 

model with a reduced torsional configuration space is an appropriate compromise 

between chemical accuracy and computational feasibility. It will be the structural 

model employed in this research.
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1.4 This Research

The objective of this thesis is to apply the path integral Monte Carlo technique to 

torsional degrees of freedom of large molecular systems for the purpose of calculating 

quantum mechanical internal energies at non-zero temperatures. All path integral 

Monte Carlo calculations, variational calculations, and harmonic oscillator calcula­

tions reported in this study are performed with code written by the author in the 

c programming language. The only codes utilised throughout the entire study that 

were not written by the author are for the single-point energy calculations and the 

coordinate transformations between internal- and xyz-coordinates, both of which 

were obtained from the TINKER molecular mechanics program.

A theoretical obstacle emerges upon the application of the path integral tech­

nique to systems, such as torsions, that exhibit periodic boundary conditions. Al­

though PIMC has never, to our knowledge, been applied to the torsions of molec­

ular bonds, numerous path integral Monte Carlo studies have been performed on 

the free rotation of small molecules and the rotation of small molecules on sm-  

faces.^°’^̂ ’̂^̂ °’^̂  ̂ It emerges from these studies that an additional factor, termed 

the winding number, must be included if an accurate path integral Monte Carlo 

result is to be o b t a i n e d . A n o t h e r  primary objective of this research is to in­

vestigate the contribution of the PIMC winding number term to molecular torsions 

and evaluate its importance.



Chapter 2

Translational Path Integral Theory

2.1 Introduction

The path integral Monte Carlo (PIMC) method combines the distinct techniques of 

path integral theory and Monte Carlo t h e o r y . I n  this chapter, the ideas 

regarding path integrals previously discussed in conjunction with Figure (1.1) are 

formalised and developed. The contribution of Monte Carlo theory to the PIMC 

method is largely numerical, and discussion of Monte Carlo techniques are put off 

until the following chapter.

Much like the Schrodinger equation or the Heisenberg equation, Feynman’s 

path integrals are an independent and complete formulation of quantum mechan- 

ics 58,60 However, with an eye to our objectives, the formalism is presented within the 

framework of statistical mechanics. The chapter begins with a postulated definition 

of the density matrix operator and knowledge of Boltzmann statistics. It concludes 

with a computationally useful expression for the canonical partition function and a

21
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strategy for the calculation of quantum mechanical ensemble averages.

In this chapter, we consider only a single quantum mechanical particle not con­

strained by periodic boundary conditions. Although application to large molecular 

systems will require a many-particle torsional formalism, discussion of this exten­

sion is delayed until Chapter 4. For the time being, the physical scenario will be 

simplified as much as possible.

2.2 Theoretical Basics

Any quantum system is completely described by a density matrix operator p such 

that

P = ^Wi\( f) i)  {<t)i\ (2.1)
i

and the following four conditions are obeyed.

1. The set \(j)i) is a complete orthonormal set of vectors.

2 . Wi >  0 .

3. E i  =  1-

4. The expectation value of an operator A  is (A) =  Tr pA.

Upon observing that

(A) -  Tr pA = Y^{^i\pA\(j)i)
i

= {(f)i\(f)j) {(f)j\A\(l)i) = J 2 w i  ((pi\A\(l)i) , (2.2)
i  j  i

it follows from conditions (2) and (3) that the W i  can be interpreted as the probability 

that the system is in state
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However, the probability that a system with Hamiltonian H  can be found in 

the state corresponding to eigenvalue Ei is

(2.3)

where Q = and ^  is the partition function of the system. Therefore,

for such a system, the density matrix operator is

P == Q ^  6 \4>i) {(f)i\. (2.4)

Since H  \(f)i) = Ei \(/)i), it follows that

p =  \(pi) {M -  - Q -  (2.5)

and

Q = ^  ^  =  ' ^ ( (p i \ e~ ^^  |(̂ %) =  Tr e"^^. (2.6)
i i i

That is, the partition function Q is written as the trace of the unnormalised density 

matrix operator. For systems described in x-coordinate space, the position trace of 

the unnormalised density matrix operator assumes the form

Q = Tt = Jdx {x\ \x) = Jdxp{x,x, P ) . (2.7)

The position matrix element p{x, x \p )  of the unnormalised density matrix operator 

will henceforth be referred to simply as the density matrix element. We can now 

proceed to develop the single-particle path integral formalism.

2 .2 .1  P ro p er ty  o f  D en sity  M atrix  E lem en ts

Before moving on, we pause briefly to explore a very useful property of density 

matrix elements. Because the Hamiltonian trivially commutes with itself, it follows
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that

p (T, /)) =  (a;| |T )̂. (2.8)

Finally, using the completeness property > <  =  1, we obtain the rela­

tionship

p (T, a;'; /?) =  (a;| |a;'') |a;'). (2.9)

This crucial property illustrates that a density matrix element can be written in

terms of a hnked pair of density matrix elements corresponding to twice the tem­

perature. It will be very useful in our derivation of path integrals.

2.2.2 Free P article D en sity  M atrix  E lem ent

It will be illustrative at this point and useful shortly to explicitly calculate the 

density matrix element for a particle in one dimension experiencing zero potential. 

For this case, the Hamiltonian fif is simply equivalent to the kinetic energy operator

H = f  = (2.10)
2m 2m

where m is the mass of the particle. We assume initially that the particle is conhned 

within a one dimensional box over the interval [—Z//2, Z//2]. For finite I/, the system 

exhibits discrete states

1 T̂TTl
L  =  (2.11)

which correspond to energies

Fn =  (2.12)
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We can then write the following expression for the free particle density matrix ele­

ment:

p o ( x , x \ / 3 ) =  ( x \ e ~ ^ ^ \ x ' )

= i^\(t>n) (ÿn { ( p n 'W )
n n'

=  (2.13)
n

Now, allowing the length L  to extend so that L ^  oo, the discrete wave numbers 

kn approach the continuous variable /c, and

Stt
dk ~  A/c =  /^n+i — ■ (2.14)

By rewriting Equation (2.13), we then arrive at the analytical expression for the

density matrix element of the free particle

Po{x,x',P) =
J — oo

rrr-l ~\ 2 m i x  — x ' Ÿ '

e ~ ^ ^ .  (2.15)
27r(dh?

2.3 Single-Particle Translational Path Integrals

As will be seen in the subsequent derivation, the path integral technique is re­

markable for its suitability to problems of quantum statistical m e c h a n i c s . O u r  

derivation of path integrals proceeds largely by analogy to classical statistical me­

chanics. We begin with the expression for the canonical partition function from 

Equation (2.7),

Q{P)=Jdx (x\e~^^\x) = Jdxp{x ,x ,p)  (2.16)
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where (3 = l / k T .  Throughout this entire chapter, all integrals run from —oo to 

oo. Equation (2.16) utilises the density matrix element p[x,x',(3) introduced in

Equation (2.7). It is clear that Q[P) is the position trace of the Boltzmann-like

operator and is a function only of temperature via (3. This simple functional 

dependence of the partition function on temperature is a feature that is preserved 

throughout the development of path integrals and exemplifies their applicability to 

quantum statistical mechanics.

The following property was proven in Section (2.2.1);

p(T,z';/)) =  ^j;''p(a;,T'';/?/2)p(3:'%a:';;d/2). (2.17)

By inductively applying Equation (2.17) to Equation (2.16), we arrive at a dis­

cretized form of the canonical partition function

p  p

Q{P)= Y{[ d X m ] Y [ p ( x t , X t + ù P / P )  (2.18)
m= l  d t = l

where Xi =  xp+i. Thus far, all manipulations have preserved mathematical exact­

ness. However, the physical interpretation of the new form of Q is worth considering. 

By comparing the integrands of Equations (2.16) and (2.18), it is clear that the orig­

inal density matrix element has been split into P  new density matrix elements whose 

starting and ending points are consecutively linked. These new density m atrix el­

ements correspond to the links between Trotter beads depicted in Figure (1.1), so 

P  is equal to the number of Trotter beads introduced through the classical iso­

morphism. Each of the new density matrix elements corresponds to a fractionally 

smaller value of (3 or, equivalently, larger value of the temperature. The strategy 

of path integral theory is to accurately approximate these high temperature path 

segments to evaluate the quantum partition function.
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2.3 .1  D erivation  o f th e  P a th  In tegral A p p rox im ation

The Trotter product formula applied to the unnormalised density matrix operator 

p{P/P)  yields, assuming H  = T  \/;i62,i63,i69

p(/)/P ) =  ^  [(/)/P)^] . (2.19)

Moreover, the Trotter theorem states that^°°

p{P/P) = jim  [e-W2^’g -m P g -W 2 P j^  _ (2.20)

Taking the position matrix element of p in Equation (2.20) and substituting it into

Equation (2.18) leads to the result

P r f  1 P
Q{ P)  =  JJ dXm JJ p(Xn,  X n + u P / P )  (2.21)

m=l f n —1

where Xi = Xp+i and

p{xn,Xn+i,P/P) =

=  (2 .22)

Note from the error term in Equation (2.19) that approximation of the matrix 

element p(x„, /3/P) with p{xn,Xn+i, P/P)  improves with higher temperature

or larger numbers of Trotter beads. The function pq in Equation (2.22) is the free 

particle density matrix element and was found in Section (2.2.2) to have the exact 

form^^’

m
27rPh?

(2.23)po{x,x',p)  =  (i„ |e  '” ’|x„+i) =

Substitution of Equations (2.23) and (2.22) into Equation (2.21) finally yields the 

completed path integral representation of the canonical partition function

j - P i V i n t  +  V e x t )
/  m p \  •P/2 P r /■

(w )  n^ ^ m = l  •-

(2.24)
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where Xi = xp+i and with

m P  ^  1 ^
^ in t  ~  2^2^2 ^  V (̂ 71 ~  2^n+l) S-Hd V gxt ~  ~p ^  ] ^ (^ n )  • (2.25)

n = l  n —1

The path integral approximation arises from the practical selection of some finite 

number of Trotter beads P. Chandler and Wolynes pointed out that the integrand 

in Equation (2.24) is analogous to the classical Boltzmann factor for a particular 

ring polymer with P  monomers linked by a quadratic interaction (Vint) and subject 

to the influence of an external potential iVext)-^^

Note that throughout this development, the entire impact of temperature is 

conveniently contained in the parameter (5. Also note that the capacity to describe 

quantum behaviour can literally be modulated with an adjustment of the number 

of Trotter beads.



Chapter 3

M onte Carlo Theory

3.1 Introduction

Equations (2.24) and (2.25) arrived at in the previous chapter comprise an appealing 

expression for the canonical partition function Q. However, it has yet to be explained 

how this intimidating multi-dimensional integral can actually be computed or how 

useful physical properties will be extracted. These feats require the employment of 

the useful Monte Carlo method.^'^’̂ ®’®̂’ ®̂̂

Monte Carlo techniques comprise a varied and important class of numerical 

methods for solving statistical problems in chemistry and p h y s i c s . F r e q u e n t l y ,  

as in the case of path integrals, a chemical problem can be formulated with relative 

ease, but the complicated nature of the expression prohibits exact calculation.^^ It 

is in this venue that Monte Carlo methods find their greatest utility. Although the 

following discussion corresponds generally to the excellent introduction to Monte 

Carlo theory by Newman and Barkema, it has been adapted in this presentation to

29
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the specific application of PIMC techniquesP^'^

Consider, momentarily, the expectation of some quantity A of a system of 

discrete states in thermal equilibrium,

=  (3.1)

The practical difficulty in calculating {A) with this simple expression is that the 

number of states available to the system may exceed that which can be readily 

computed. However, the form of the summand in Equation (3.1) suggests a more 

tractable approach. States high in energy will make vanishingly small contribu­

tions to the total expectation value because of the Boltzmann weighting term 

and may thus be excluded from the summation. For most physically relevant sys­

tems, relatively few states are low enough in energy to contribute significantly to 

the expectation value. Therefore, it seems likely that statistical properties of such 

systems at thermal equilibrium can be accurately obtained by sampling only the 

lowest-energy states.

The strategy of Monte Carlo (MC) methods is just that: to obtain reliable 

statistical calculations of systems in thermal equilibrium by sampling relatively few 

of the total number of states conceivably occupied by the system. Although 

an astonishing variety of MC techniques have been derived and implemented in 

virtually every discipline that utilises numerical analysis, each method evolves from 

the same general idea. The equilibrium process is simulated for a model system. 

The system is allowed to move through its various states in such a fashion that each 

state appears with its appropriate probability. Quantities of interest will be sampled 

during this simulated dynamical process to yield the desired expectation values. For 

the model system, the probability distribution of the states will be known a priori, 

and the rules for transferring between states during the simulation will be subject



3.2 P ath  Integral Probability D istribution 31

to the constraint that this probability distribution is reproduced.

3.2 Path Integral Probability Distribution

The a priori distribution for systems in thermal equilibrium at temperature T  is 

generally the Boltzmann distribution^^^

(3.2)

where Q is the partition function. However, we will consider the version of this 

distribution subjected to path integral discretization^^

(f) =  ^^-mnt+Ve.t) (3.3)

from Equation(2.24). Note that the path integral probability distribution is a func­

tion of the coordinate vector of the P  Trotter beads. The terms Vint and V^xt are 

also functions of x  and are defined in Equation (2.25).

3.3 Path Integral Energy Estimator

Some care must be taken with regard to the calculation of observable quantities in 

light of the fact that the path integral probability distribution varies from the exact 

Boltzmann distribution. For example, we evaluate the internal energy expectation 

value {E) using the exact Boltzmann distribution simply according tô '̂̂

=  (3-4)

However, it is incorrect to assume that substituting VmtPVext for in the preceding 

equation will yield the same internal energy expectation value (E). An internal
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energy estimator must be derived such that^^

(3.5)
m—1  ̂ -*

Using the path integral representation of the canonical partition function in Equation

(2.24) and the fact that

m  (3.8)

we obtain the following form for the path integral energy estimator^'^

^ è  + p ^  (3.7)2/) 2/)W zLv^ " p
n = l  n = l

or

(f) — —  — Vint +  Vext- (3.8)

The path integral energy estimator presented here is often referred to as the Kinetic 

Energy E s t i m a t o r . A n o t h e r  popular path integral energy estimator is the Virial 

Energy Estimator which is often found to give better numerical convergence for path 

integral simulations requiring a large number of Trotter beads .However ,  it is not 

found that the coupled molecular torsion problem requires large numbers of Trotter 

beads, so since the Virial Energy Estimator requires the computationally expensive 

task of determining energy gradients, we discuss only the Kinetic Energy Estimator 

in this study.

3.3 .1  R ela tio n sh ip  o f  P a th  In tegrals to  C lassica l M ech an ics

As a brief (but interesting and important) side note, we display in this section the 

simple manner in which the path integral formalism may be utilised to perform 

a classical simulation. The classical energy estimator is first derived in the same 

fashion as the path integral energy estimator.
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Again utilising the relationship,

(3.9)

we insert the classical partition function, yielding

{E) = - — jdxjdp  e-«^(p)+^W), (3.10)

where C is a normalisation constant for the partition f u n c t i o n . I t  is assumed that 

the kinetic energy T\p) =  ^  is a function only of the momentum and the potential 

energy V{x) is a function only of the position. Standard manipulations then yield

fixjdp

fiP y(z) jÜp

fip  f ix  f ix  fip  e ~ ^ è

We then cancel like terms to obtain

,p \ fip  f i x  V{x)
 ̂  ̂ "  fip  e - ^ è  +  f i x e - m ^ ^  ■

The first term on the right-hand side of Equation (3.12) is immediately iden­

tified as the average kinetic energy for a free classical particle. It can be

evaluated analytically to yield ( Finally,

f  dx -I- V"(a;)̂  e

so the classical energy estimator is

   (3.13)

£.cia.3icai ^  1 y
Z j j

and the probability distribution utilised in the MC simulation is

^classical ^  g - ^ x )  ( 3 .1 5 )
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Note that classical Equations (3.14) and (3.15) recover the path integral Equations

(3.8) and (3.3) when the number of Trotter beads P  is set to 1 in Equation (2.25). 

That is, a classical simulation may be performed within the path integral formalism 

by simply setting the number of Trotter beads P  to 1.

3.4 Importance Sampling

The discretized form of Equation (3.5) may be written as

n L i [E .J (f,) 
n L i  [E .J(^) =  "p rL  ̂ L, '------■ (3 16)

The best possible estimate of (P) upon truncation of Equation (3.16) is then

n i l  f c i ]
(^ ) “  1 . . 1 ................

n i l (£,) p ( i , ) ' ’

n .
P ŷ A/m p{xt) ^

where p {xt) is an arbitrary distribution function that may be chosen to have any 

form.^ "̂  ̂ Judicious selection of this a priori distribution function may dramatically 

reduce the necessary size of the elements in M  by avoiding the inclusion of states too 

high in energy to contribute to the expectation value. Importance sampling is the 

process of including states according to the probability of a particular distribution 

function.

Suppose we choose p (xt) to take the form of the Boltzmann-like path integral 

distribution function

p — P { V i n t  +  V e x t )

P^^ {x) =   j= n------------------. (3.18)n t'
m = l  — i

Q—PiVint + Vext)

Inserting Equation (3.18) into Equation (3.17) we arrive at a much simplified form



3.5 M arkov Processes 35

for the expectation value:

A Markov process is employed to ensure that the Monte Carlo simulation generates 

states according to the selected a priori distribution probability.

3.5 Markov Processes

Monte Carlo simulations require a means of selecting states according to a given 

probability distribution. That is, a sequence of states must be generated such that, 

given a long enough sequence, the probability distribution of the generated states 

is equal to the a priori probability distribution. This task is accomplished with the 

aid of a Markov process.

A Markov process is a mechanism which, given a state /i of a particular system, 

generates another state u of the same system. The new state is selected randomly. 

The same input state does not always yield the same output state, and the two states 

may even be identical.

A Markov process is defined in terms of a set of transition probabilities P{fi u) 

which are required to obey several p r o p e r t i e s . I n  addition to being independent 

of time, the P{fi u) depend only on the properties of the current states /i and 

p. The Markov transition probabilities must be entirely unaffected by the past and 

future of the system’s pathway.

Another property of the transition probabilities is that

(/) =  !. (3.20)
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Equation (3.20) requires that the total probability of finding the particle after tran­

sition from state is unity or, equivalently, that the particle does, in fact, go some­

where.

Markov processes are required to fulfil the condition of ergodicity. This condi­

tion ensures that the system will reach every state of non-zero probability if enough 

state transitions are generated. Naturally, this has to be the case if an a phori 

probability distribution is to be reproduced. A state generating mechanism can 

hardly be expected to return a non-zero probability for a state to which it prohibits 

transition. However, ergodicity does not require that every P (^  —> z/) be non-zero. 

It merely states that for two states there exist at least one transition pathway of 

non-zero probability.

The final requirement of the Markov transition probabilities is that they obey 

detailed balance,

—>%/)= —» //) (3.21)

where and are the probabilities of the system existing, respectively, in states p 

and f/. Detailed balance basically ensures that a system obeying the dynamics of a 

particular Markov process ultimately reaches equilibrium. The rate of change from 

a state p to another state i/ is the same as the rate in the other direction.

Equation (3.21) also provides the means by which a Markov process may be 

obtained for a given problem. By rearranging this equation and recalling the a 

pyioTi path integral probability distribution, we conclude that Markov transition 

probabihties for a path integral Monte Carlo simulation must obey

f  (P f/) P;; P (f,y) e (3.22)
P(f/ p) p,, p (f^)

Within these given constraints, any set of transition probabilities may legit­

imately be employed. All of the elements necessary to perform a Monte Carlo
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simulation have now been described. However, it remains an unfortunate reality 

that the task of finding an efficient Markov process that obeys Equation (3.22) is 

often a nontrivial process.

3.6 Acceptance Ratios

For many problems physical problems, the a priori selection of a Markov process 

tha t exactly obeys the condition of Equation (3.22) can be a difficult task. Fortu­

nately, a very convenient solution to this problem accompanies the introduction of 

an acceptance r a t i o . A s s u m e  P{pi —> v) takes the form

P{pL ^  i/) =  g{pi v) A{fi u) (3.23)

where g{p %/) is called the selection probability and A{fi u) is the acceptance 

ratio. The term g { p L  —» z/), much like P(/x z/), is the probability that the system 

will consider proceeding to state v from the current state p. However, the selection 

probability g{p z/) is not constrained to obey Equation (3.22). The acceptance 

ratio A(/i —> I/) determines the probability that the system will actually accept a 

transition from state pi to state u proposed hy g{p z/). The acceptance ratio is eas­

ily chosen so that the entire transition probability produces the correct probability 

distribution.

It is important to expand on the fundamental change in strategy introduced 

with the acceptance ratio. Prior to the consideration of Equation (3.23), the system 

invariably performed the transition to the state selected by the Markov process. 

However, the acceptance probability simplifies the responsibilities of the state gen­

eration mechanism by allowing the system to actually perform state transitions only 

as often as is necessary to reproduce the desired probability distribution.
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Although the introduction of the acceptance ratio greatly reduces the difficulty 

of selecting a valid Markov process for the Monte Carlo simulation, an important 

factor must still be considered. In order for the system to efficiently sample the 

states of the system, state transitions must be accepted as frequently as possible. 

That is, the selection probability and acceptance ratio should be chosen so that 

A[fi p) is as close to unity as possible. In this study, we employ a very common 

form of the acceptance ratio known as the Metropolis algorithm.

3.7 M etropolis Algorithm

Suppose we choose our selection probabilities so that the systems changes from 

a state /i to a state u with a probability equal to that of transition in the other 

direction. That is,

gifj' î ) = giy /̂ ) • (3.24)

This is a very convenient approach for PIMC. It is very easy to simply allow the 

beads to move in an arbitrary direction. Then, the acceptance ratio is chosen so 

that

=  {Vint +  Vext ~  {Vint ( /̂x) +  Vext (^/x)) (3.25)

A(/, z/) = j   ̂  ̂ ^ ° (3.26)
I 1 otherwise

Note that A(/i —> p) will assume unity for half of the transition performed by the 

system. This will lead to facile exploration of expectation values. It is easily verified 

that, using the Metropolis algorithm,

^  ^  MlJ- -*  ^  t') ^  97',
P{u ^  fi) g{u ^  ji) A { p -* ii) 

as required by Equation (3.22).



Chapter 4

Torsional PIM C Theory

4.1 Introduction

In Chapter 2, a thorough derivation was performed of the path integral formalism 

for a single particle not subjected to periodic boundary conditions. However, the 

objective of this research is to use the PIMC technique to model the many torsional 

degrees of freedom that exist in large molecules. The molecular problem will require 

a formalism for a many-particle system, and each particle must conform to a periodic 

boundary condition on the interval [0, 27t).

4.2 M any-Particle Torsional Path Integrals

The derivation of many-particle torsional path integrals in this section will be ob­

tained by extending the single-particle translational case provided in Section (2.3).

39
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For a system of N  torsions, the kinetic energy operator T  takes the form

j  =  l  J 3

where Ij is the moment of inertia of the torsion. The N  dimensional position 

vector 9^ where 9j G [0, 27t) comprise the eigenfunctions of the potential operator 

V  with eigenfunctions . These changes lead to the following form for the exact 

partition function

/ p  \Nf/2 p N

w)=iL“ ( ^ )  '̂Tin
 ̂  ̂ t —l  7 — 1

/-27T

nj,t=-oo ”

where P  is the number of Trotter beads for the system, 9j î = =

n C i  and with

4 "  =  ^  E  E  (g;, -  and ^  v[ë ,)  . (4.3)

Clearly, Equations (4.2) and (4.3) are the many-particle torsional analog of Equa­

tions (2.24) and (2.25). However, the complicated nature of these current equations 

warrants some discussion. The classical isomorphism for the many-particle case re­

quires each particle j  to be replaced by a ring polymer of size P. The terms 

and in Equation (4.3) maintain the same form as in Equation (2.25), except 

for the appearance of integer Uĵ t in the equation for This integer term is a

manifestation of the constraint that the 6ĵ t he in the interval [0, 27t). It accounts 

for the fact that the distance between two consecutive Trotter beads for a particle 

j ,  namely 9ĵ t and Oj t̂+i, may assume not only the explicit value 9ĵ t ~  but all 

of the values 9ĵ t ~  ^j,t+i +  That is, in travelling from one Trotter bead to the

next, the chain may wrap around the [0, 27t) interval riĵ t times.
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4 .2 .1  W in d in g  N u m b er R ep resen ta tion

A variable transformation is now performed to a more compact set of variables. 

Substituting

== ^j,i 

^,2 =  ĵ,2 — 27rnj_i

~  2 'ï ïT ij^ i —  27rnj_2 (4.4)

t-i
— ĵ,2 — 27t ^  riĵ t'

t ' = i

leads to a cancellation of all of the 27Triĵ t terms for t — 1 , . . . ,  P  — 1:

— ^j,t+i +  2'ïïrij^tŸ ~  • (4.5)

However, the term yields

{^j,p ~~ ^j,P+i +  T̂TTT-ĵ p)̂  —> (̂ Oĵ p — Oj t̂+p +  2 7 m (4.6)

where rij — Tij,t' is known as the winding number. This new set of variables is

known as the Winding Number Representation and leads to the following form for

/  p  \ N P / 2  N  oo p2n ^  r noo 1

«<«%"5.(w) '“’n E %4,n («)
 ̂  ̂ j = l r i j  ——oo t —2 ̂

with

V t  =  ' and v [ l )  . (4.8)

The periodicity of the potential renders the expression for unchanged from 

Equation (4.3). The winding number rij in this representation is a property of the
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entire ring of Trotter beads for a given particle j .  It represents the net number of 

times tha t the ring loops around the interval [0,27t). Introduction of the winding 

number in this fashion frees all particles from the [0, 2 t t ) boundary constraint, except 

for particle j  = 1. The Winding Number Representation for rotational path integrals 

has been utilised extensively by Marx and coworkers in the study of dimers rotating 

on a surfaced

4 .2 .2  U n co u p led  W in d in g  N u m b er R ep resen ta tio n

Another change of variables is still necessary before we arrive at the path integral 

formulation most readily applicable to molecular torsions. The following variable 

substitution was first suggested by Cao.^°

P
(4.9)

Transformation to the Uncoupled Winding Number Representation leaves the fol­

lowing computationally useful form of the partition function:
/  p  \N P/2 jN_ ^27T

Q { l 3 )  =  lim
P —>C<3

rl-K   /*oo ^  . .

(4.10)

The terms and assume the form

P
N

y i n t  _

t=i

Viext 27rn {t — 1)
, and

%w in d
n (4.11)

j = l
The Uncoupled Winding Number Representation is a tremendously useful formu­

lation of torsional PIMC theory, largely because of its strong similarities to the
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formalism of translational PIMC. Note that the expressions for and are 

virtually unchanged from their form for the case of translational PIMC in Equation

(2.25). Also, the winding number terms rij in Equation (4.10) are, aside from the 

coordinate shift in decoupled from the angular coordinates. Computation­

ally, of course, the expression for Q in Equation (4.10) is implemented by choosing 

maximum values of P and rij. Suitable maximum values of the rij are apparent 

from the uncoupled expression because the entire winding number contribution for 

a given particle falls away exponentially with Ij and rij. A final computational boon 

of the uncoupled representation regards selection of a suitable Monte Carlo sam­

pling distribution. Equation (4.10) suggests that, just as in translational PIMC, a 

probability distribution of p — ) may be appropriate.



Chapter 5

Calculation D etails

5.1 Introduction

The molecular systems considered in this study were ethane, n-butane, n-octane, 

and the peptide enkephalin. These molecules include, respectively, 1, 3, 7, and 33 

internal torsions.

Two potentials are employed in this study. The first is an analytical potential 

used only for the ethane molecule. The analytical ethane potential is a 1-D sinusoidal 

function of the torsional angle 6, Parametrizing the maxima of the potential to 

the MM3Pro force field yielded the function V{6) = C  (cos(3^) +  1), where C = 

1.33 kcal m oC \^ The second potential was used for all of the molecules studied. 

This latter potential is the MM3Pro atom-atom force field as implemented in the 

TINKER molecular mechanics package.^’

The torsional moment of inertia about a bond between atoms k and I was 

defined in terms of the moments of inertia, Ik and //, of two unsymmetrical tops

44
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that rotate with respect to one another about the bond.^^’ That is,

li = . (5.1)
h  +  J/

Each of the two tops correspond to the molecular moieties attached to the atoms 

terminating the bond, so

2

j>l

r-ji • Tki
\rki\ J

2'
(5.2)

j<k

In Equation (5.2),

-  n , (5.3)

fk is the position vector of atom k with mass ruk, and the atoms are indexed in 

a fashion appropriate to their connectivity. In this study, the torsional moments 

of inertia are calculated only once and assumed to remain constant throughout the 

simulation. The moments of inertia are calculated using the starting geometry of 

the molecule at the global minimum of the potential energy surface. Although this 

approach is consistent with previous studies, it should be pointed out that moments 

of inertia will, in general, vary as a function of the torsional angle vector.

The exchange of indistinguishable hydrogen atoms arising from the three-fold 

symmetry of the methyl torsions requires, in principle, the consideration of nuclear 

exhange symmetry. These rotations only allow even permutations of the fermionic 

hydrogens, so the total nuclear-rotational wavefunction must be totally symmetric. 

Although the effects of nuclear exchange symmetry can be relevant in methyl torsions 

at very low temperatures, they are expected to be negligible at the temperatures of 

interest in this study and are not further considered.

The internal energy was determined for a variety of molecular systems us­

ing three different methodologies. The remainder of the chapter is dedicated to 

discussing these techniques.
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5.2 PIM C M ethod

Although the formal theory of torsional PIMC has been thoroughly discussed, no 

general summary of the algorithm has thus far been presented. In the following 

section, we include an outline of the torsional PIMC algorithm implemented in our 

code. The PIMC code is currently capable of calculating the internal energy of any 

system of coupled torsions.

5 .2 .1  A lg o r ith m  Sum m ary

The probability distribution that is sampled in our implementation of the Uncou­

pled Winding Number Representation of torsional PIMC was originally proposed in 

Section (4.2.2).^°

P =  1 (5,4)

where

and
t=i

y r  = (55)

Starting with a given configuration of beads a new configuration of beads is 

proposed according to an appropriate selection probability. The selection probability 

g[ji v) employed in this study for molecular torsions allows each bead to move 

arbitrarily within the range of adjustable chain and bead step sizes. This mechanism 

of generating new configurations obeys Equation (3.24).

It is then necessary to determine whether to accept the proposed configuration 

step so that the sampled probability distribution in Equation (5.4) is achieved. This
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is done by calculating the term

= ( y - '  ( f ,)  +  ( f ,) )  -  ( y - '  (T^) +  vy"' ( 4 ) )  (5.6)

from Section (3.7) and employing the Metropolis Algorithm. If the configuration 

change is accepted, set Otherwise, remains unchanged.

Now use the configuration and an appropriate torsional PIMC energy es­

timator to sample the internal energy of the configuration. The many-particle tor­

sional PIMC analog of the Kinetic Energy Estimator presented in Section (3.3) is

E
Nn

;=i
(5.7)

where is the maximum winding number for a given particle j ,  and

A& p  ( [ y " '  +  \ / f  ‘ +  V'/'"'*] -  [ y " ‘ +  +  Vj*"'"''] )

0  ( v » ' +  -  rç-"‘)
P N

(5.8)
;=i

and

(5.9)

The equations for y^^\ and were provided in Equation (4.11). Also,

calculate the weight of the configuration

N

- = n
j=i

^max
-A& (5.10)

The average internal energy expectation value is

{E)
E con/iga

^ p i

E con/iga W
(5 .11)
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The scaling of the method is dominated by the term:
N

[2n™“* + 1] (5.12)
j  =  l

where is the number of steps in the Monte Carlo simulation.

5 .2 .2  S im p lification  o f W in d in g  N u m b er Term

As was noted in Section (4.2.2), an advantage of the Uncoupled Winding Num­

ber Representation is the easily determined influence of winding numbers in the

evaluation of expectation values for a given system. Equation (5.7) displays that 

contributions to the internal energy from a given torsion in a given configuration 

fall away exponentially with the term

l^ v r '‘ = ^ 4  • (5.13)

However, for even the lightest molecular torsions the term Ij will be of the order 10  ̂

in atomic units. Thus, at reasonable temperatures,

(2.n,)^ -  20nJ. (5.14)

Clearly, therefore, the only exponential terms large enough to contribute to the 

expectation value will thus correspond to rij — 0 , so we can reliably set Umax =  0  

for molecular calculations. This dramatically improves the scaling of the method, 

as is clear from Equation (5.12).

5 .2 .3  P aram eter  D iscu ssion

The following is a list of all computational parameters that emerge in our imple­

mentation of the torsional PIMC code. The considerations employed in selecting 

the numerical value of each parameter are described.
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Beta: This parameter determines the temperature at which the calculation 

is performed since (5 =  1/kT.  For all calculations in this study, a temperature of 

273.15 K was employed.

P ath  Integral Parameters:

Number of Trotter Beads: The number of Trotter beads is equivalent to the 

number of path segments approximating the trace in the path integral discretized 

canonical partition function. As shown in Equation (2.19), the path integral ap­

proximation improves with the number of Trotter beads P. However, even the facile 

torsional degrees of freedom are not expected to exhibit the amount of quantum 

behaviour that requires very large numbers of Trotter beads. This arises from the 

simple fact tha t the torsional moments of inertia, even for methyl groups and small 

substituents, are too large to exhibit massive quantum behaviour. The “appropri­

ate” value of this quantity is explored extensively in this study as it is directly 

proportionate to the computational cost of the method.

Maximum Winding Number: As described in Section (5.2.2), this parameter 

can be confidently set to zero. All numerical tests corroborated this supposition.

M onte Carlo Parameters:

Chain and Bead Step Sizes: In compliance with the selection probability em­

ployed for PIMC calculations in this study, a new configuration is obtained for a set 

of torsions after both the relative position of the beads for each ring and the total 

position of the ring are altered in a random fashion. The bead step size controls 

the change in the relative bead positions. During a configuration step, each bead 

is allowed to move, with equal probability, by any angle less than that defined by 

the bead step size. The chain step size controls the subsequent change in the total 

position of the ring of beads. In this step, every bead in the ring is moved by the
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same angle chosen randomly but constrained to be smaller than that defined by the 

chain step size. At the beginning of a PIMC calculation, a chain and bead step 

size must be chosen for each torsion in the molecular system, a nontrivial process 

that will be discussed in Section (5.2.4). The selected bead and chain step sizes are 

held fixed throughout the PIMC calculation to ensure that the MC simulation obeys 

detailed balance.

Number of Calculation Cycles: Before a PIMC calculation is performed, a 

geometry optimisation is performed to obtain the lowest energy geometry of the 

molecular system. At the beginning of the PIMC calculation, the positions of the 

beads are determined with respect to this geometry. The first bead of every ring is 

allowed to take the optimal position. The rest of the beads in each ring are then 

randomly scattered within the neighbouring angles defined by the bead step size.

It is potentially problematic to perform an entire PIMC calculation as one, 

long, single trajectory. Conceivably, the molecule could work itself into a local 

minimum and be unable to get out, resulting in the calculation of an artificially 

high internal energy and likewise damaging other calculated expectation values. 

To prevent this possibility, the PIMC calculation is performed in a series of cycles. 

After each cycle, the geometry is reset to the lowest-energy structure, and the PIMC 

calculation is restarted. At the start of the new cycle, all step size information 

remains unchanged. Naturally, the number of cycles required for a PIMC calculation 

is necessarily related to the probability of the system getting hung in an bad region 

of configuration space and also to the number of configuration steps performed in 

each cycle. The calculations in this study were each performed for 20 cycles, a value 

large enough to give reasonably small variance in the calculated values.

Number of Steps per Cycle: This parameter controls the total number of con­
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figuration steps that will be performed within a given PIMC cycle. Its value must be 

chosen to be large enough to yield equilibrated Monte Carlo results. The criterion 

we employed to evaluate this convergence was the variance in the expectation values 

calculated within each PIMC cycle. A value of 10  ̂was found to be large enough for 

most PIMC calculations performed in this study.

Sampling Frequency. Monte Carlo simulations hinge, via the employment of 

a Markov process, on the random generation of configurations or states. However, 

consecutively generated configurations in the PIMC simulation are more likely to 

exhibit similar properties than two configurations taken at substantially different 

points in the calculation. To prevent correlations of this sort, a sampling frequency 

is defined so that the calculation will only sample the property of interest after a 

certain number of cycles has been performed. In this study, the internal energy is 

sampled only once in every 2 0  cycles.

5.2.4 C hain  and B ead s S tep  S ize D eterm in a tio n  P ro cess

P was noted in Section (5.2.3) that the determination of the chain and bead step 

s.zes for a given system could prove a very difficult task. Although one suspects that 

tie  magnitude of these terms should correlate with the magnitude of the moments 

of inertia, the actual relationship is related to the complex potential energy hyper- 

sirface of the system. Selecting reasonable step sizes are critical to the efficiency of 

tie  MC simulation. If the step sizes are too large, a large proportion of the steps 

vill lead to unreasonable structures rejected by the Metropolis algorithm. If the 

&ep sizes are too small, the simulation will be slow in exploring the state space. 

I, is common in metropolis MC algorithms to choose step sizes that facilitate an 

acceptance rate of approximately 0.5.
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The step size determination process is divided into two parts. The hrst opti­

mises the bead and chain step sizes of each torsion with respect to the step sizes 

of the other torsions. The second part holds step sizes of the torsions in relative 

proportion and simply adjusts their magnitude to obtain an acceptance ratio of 0.5. 

In both parts, we run a set of normal PIMC steps and meanwhile adjust the bead 

and chain step size parameters. However, the steps are then discarded, so no MC 

samples are recorded during this step size optimisation process.

For the hrst step size determination part, each torsion is assigned to one of 

several groups according to its moment of inertia. Torsions with similar moments 

of inertia are placed in the same inertia group. For each of these groups, starting 

guesses of the chain and bead step sizes are assigned. Then an iterative process 

is employed to, in some sense, equilibrate each parameter with respect to both its 

individual group and also the system as a whole.

For each inertia group, a particular number of Monte Carlo steps is performed 

in which one torsional degree of freedom is moved at a time. The corresponding 

bead step size and chain step size are adjusted to obtain an acceptance ration of 

0.5. One at a time, each torsion in the inertia group is treated in this fashion. If 

the diEerences between the updated and the original step size guesses fall below 

a given threshold, the procedure moves on. Otherwise, the procedure continues 

cycling over the inertia group until a satisfactory equihbration is achieved. This 

local equilibration process is performed for each inertia group.

After each inertia group has been locally equilibrated, the calculated step 

size parameters for the entire system are compared to those originally guessed. If 

the difference falls below a specified threshold, then the first part of the step size 

parameter selection process is completed. Otherwise, the local equihbration process
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described above is repeated until a satisfactory global equilibration is obtained.

For the calculations in the study, the local equilibration cycle is performed 

with a threshold of 0.1 for the local cycle. The global cycle, unfortunately, is often 

reluctant to converge so is simply performed 2 0  times.

After having optimised the bead and chain step size for each torsion with 

respect to those for the other torsions, it is important it ensure that the magnitudes 

of these parameter vectors yield the desired acceptance probability. To do so, a 

second set of discarded PIMC steps is performed in which the torsional parameters 

are held in proportion. That is, only the magnitude, not the direction, of the step 

size parameter vectors is optimised. In the study, this was done for 500 discarded 

steps, and the parameters were adjusted every 1 0  steps to maintain an acceptance 

rate of 0.5.

5.3 Variational M ethod

For simple model systems, the exact quantum result of statistical mechanical prop­

erties can be found variationally. A variational calculation was performed in this 

study for the single-torsion ethane system modelled by a potential energy surface 

depending only on the torsional angle. Using an excessively large basis set of the 

wavefunctions for a free particle subjected to periodic boundary constraints, the 

eigenfunctions and eigenvalues of the model system were obtained to high numerical 

accuracy.

The comparison of the torsional PIMC results to the exact variational results 

for small systems provides an important check of the newly implemented PIMC 

technique. It also lends clear insight to the nature of the Monte Carlo numerical
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convergence and the appropriate values for the PIMC parameters.

5.4 Harmonic Oscillator Approximation M ethod

If we assume that each molecular torsion is adequately described by a single har­

monic oscillator well, then quantum mechanical expectation values of the system 

can easily be obtained to high accuracy. This approach is employed to explore the 

degree to which the anharmonicity of the torsional degrees of freedom (which is 

correctly accounted for using the PIMC algorithm) is important in large molecu­

lar systems. The PIMC approach is considerably more costly than employing the 

harmonic oscillator approximation, so it is worth while to determine whether the 

additional computational expense is necessary.

By performing a Taylor expansion about the local minimum of each torsion, 

we readily obtain the spring constant kj for the harmonic oscillator corresponding 

to the molecular torsion j.

where Emin is the energy of the system corresponding to the local minimum of 

each torsion, and and E~ are the energies of the system for which only the 

torsions have been, respectively, displaced from their local minima by the small 

angular distance h.

Now, defining n to be the vector of quantum numbers for the harmonic oscil­

lators representing the torsional system, we obtain the energy for a given state Eft 

according to
^  /  l \

Efi  =  ^  { u j  +  2 j  (5.16)
7 =  1 ^ ^
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where N  is the number of torsions, ujj = y  7 ,̂ and Ij is the moment of inertia for 

the torsion.

Conveniently, the partition function and internal energy expectation value may 

be obtained analytically for the system of uncoupled harmonic oscillators. Repeated 

application of the summation formula

n = 0

0 < o  < 1. (5.17)

yields for the partition function

N

Q=n E
n , = 0

TV —0hui
e 2
  p—Phw (5.18)

The internal energy expectation value is then derived from the partition function:

(5.19)/ r \  _  C*logQ _  fkOj huijC
W -  ^  -  2 ^  —  +

j= l 3 = 1
dp -phbj

Note that, in addition to neglecting the anharmonicity of the molecular tor­

sions, this formulation of the harmonic oscillator approximation neglects the cou­

pling between the individual oscillators.



Chapter 6

R esults and Discussion

6.1 Introduction

In this study, the internal energies of the molecules ethane, n-butane, n-octane, and 

enkephalin were determined using the methods described in Chapter 5. Whereas 

the PIMC technique and the harmonic oscillator approximation were utilised for 

each molecule, the exact variational technique was employed only for the ethane 

molecule.

6.2 Simple Ethane M odel

The ethane molecule served as a simple, yet realistic, system with which the various 

methods could be tested and compared. The PIMC technique, the variational tech­

nique, and the harmonic oscillator approximation were all employed for the simple 

ethane model. The analytical potential energy surface used for ethane was describe

56
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in Section (5.1). A comparison of the PIMC technique and a quasi-harmonic tech­

nique for crystalline polyethylene has been previously r e p o r t e d . H o w e v e r ,  the 

torsional path integral formulation employed in this study is computationally less 

expensive and will ultimately enable the study of larger molecular systems.

Figure (6.1) displays the numerical results for the internal energy at 273.15K 

obtained with the various methods. For the analytical potential, the variational 

result was easily obtained to high accuracy, and the reported variational value of 

0.870 kcal mol~^ is presumed to be exact for the model. The PIMC algorithm was 

performed using one, two, three, four, five, and ten Trotter beads. As explained in 

Section (3.3.1), the PIMC method performed with one Trotter bead yields the clas­

sical statistical mechanics results. The one-bead PIMC result of 0.585 kcal mol“  ̂

is accordingly labelled in the figure. Also included in Figure (6.1) is the value 

0.883 kcal mol~^ of the internal energy predicted with the harmonic oscillator ap­

proximation.

Two important features of Figure (6.1) require discussion. The first is that, as 

required, the internal energy calculated using the PIMC algorithm converged with 

the increase of Trotter beads to the exact variational result. Whereas the majority 

of the quantum contribution to the internal energy is recovered upon inclusion of 

a second Trotter bead, greater than five beads is required, for this simple ethane 

model, to recover the exact result. Using ten Trotter beads, the PIMC method has 

converged to within numerical accuracy for the simple problem.

Of the entire alkane series, ethane is, in a sense, the most quantum mechanical. 

It is a standard result from the theory of quantum mechanical tunnelling that the 

wavefunction of a particle in a classically forbidden region diminishes exponentially 

with the square root of the mass of the p a r t i c l e .T rans l a t i ng  this observation to
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the current application, we note that the degree of quantum behaviour of torsions 

with large moments of inertia is expected to be drastically smaller than that of tor­

sions with small moments of inertia. Suppose that Ii and I 2 are the moments of 

inertia of two substituent groups about the bond that connects them. The moment 

of inertia about this torsion is then Presume, momentarily, that only the ter­

minal methyl groups are small enough in an unbranched alkane to exhibit quantum 

behaviour. Define Im to be the moment of inertia for a methyl substituent, and de­

fine Ix to be the considerably larger moment of inertia for the rest of the molecule. 

Therefore, for all unbranched alkanes longer than ethane, the molecule will exhibit 

two torsions with moment of inertia I  tor = /"Vr ~  =  Im- On the other hand,

the lone torsion in ethane will exhibit a moment of inertia equal to that of I f .  This 

single torsion in the ethane molecule is expected to contribute more to the quantum 

mechanical portion of the internal energy than the combined contributions of the 

two methyl torsions in a longer alkane chain.

Of course, the above analysis of moments of inertia is approximate, but it does 

lend credence to the likelihood that larger molecules will not require as many Trotter 

beads as the simple ethane model required for the PIMC value to converge to the 

exact quantum mechanical result. For larger systems, the PIMC value of internal 

energy is reported for the same array of Trotter beads, and we note the number of 

beads necessary to observe the plateau of convergence.

A second important feature of Figure (6.1) is that the harmonic oscillator per­

forms very well in comparison to the exact variational result. As one might have 

predicted from a comparison of the harmonic and sinusoidal potentials, the steeper 

walls of the harmonic potential drive the calculated internal energy above the exact 

variational result. However, the relationship between the harmonic approximation
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and variational internal energies is more complicated than this result suggests. In 

Figure (6.2), the calculated internal energies for the simple ethane model are pre­

sented as a function of temperature. In this figure, the PIMC results are obtained 

with 15 Trotter beads, and the classical results are obtained from the PIMC tech­

nique by utilising a single Trotter bead.

For both the low and high temperature extremes, the harmonic approximation 

behaves as expected. In the low temperature extreme, only the ground state of 

the system is occupied. The steeper curvature of the harmonic potential increases 

the approximated ground state energy with respect to the exact result. Figure

(6.2) shows that the harmonic approximation internal energy of 0.7928 kcal mol“  ̂

overestimates the exact variational result of 0.7212 kcal mol~^ as T —> 0. Note that, 

as predicted by the Trotter product formula in Equation (2.19), the PIMC result 

does not converge to the variational result in the low temperature extreme. Both the 

PIMC and classical results converge to the classical result of 0 kcal mol~^ as T  —> 0. 

For any value of temperature greater than absolute zero, however, the PIMC result 

can be made to recover the variational result simply by increasing the number of 

Trotter beads in the calculation.

In the high temperature limit, the harmonic and variational results naturally 

diverge as the harmonic approximation of the sinusoidal potential deteriorates. W ith 

increasing quantum number, the exact wavefunctions of the sinusoidal potential con­

verge to those of the free particle, not the harmonic oscillator. Increased thermal 

population of the high energy oscillator states in the harmonic approximation drive 

the approximated internal energy steadily higher than the exact result. Both the 

PIMC and classical results correctly converge to the exact result in the high tem­

perature extreme as the error term in Trotter product formula goes to zero. As seen



6.2 Simple Ethane M odel 61

I
w

c

3

2.5

2

1.5

1

Variational
Harmonic

TPIMC
Classical

0.5

0
0 200 400 600 800 1000 1200 1400

Temperature (K)

Figure 6.2: Internal Energ}' for Ethane Model Calculated at Various Temperatures



6.2 Sim ple Ethane M odel 62

in Figure (6.2), the variational, PIMC, and classical internal energies all approach 

the value of 2.553 kcal mol“  ̂ at 1500 K.

There exists in Figure (6.2) an intermediate temperature range for which the 

internal energy calculated with the harmonic approximation falls below the exact 

result. This temperature range is expanded in Figure (6.3). Also presented in Figure

(6.3) are the harmonic approximation and exact variational results for the ethane 

model in which all of the hydrogen atoms have been replaced with deuterium atoms.

For the simple ethane model, the harmonic approximation falls below the exact 

internal energy between 300A and 600A. Although the energies of the harmonic os­

cillator states are regularly spaced, such is not the case for the eigenfunctions of the 

sinusoidal potential. These exact eigenfunctions become more dense with increasing 

energy. Thus, there may exist a temperature range for which the increased num­

ber of energetically accessible quantum states in the sinusoidal potential raises the 

exact variational internal energy in excess of the harmonic approximation internal 

energy. Interestingly, this effect becomes more pronounced with increasing moments 

of inertia. It may be seen in Figure (6.3) that the temperature range for which the 

deuterated ethane exact and harmonic internal energies are inverted is extended to 

between 200A and 700A. Figure (6.3) suggests that the harmonic approximation 

will become increasingly weak for larger moments of inertia.

It is worthwhile to note that in Figure (6.2), the PIMC results accurately 

reproduce the exact internal energies for all temperatures except those in the low- 

energy extreme. Performance of the PIMC technique at low temperatures can be 

improved by simply increasing the number of Trotter beads.

Using the PIMC technique, it is straightforward to obtain geometric informa­

tion regarding the torsional angle distribution. In particular, quantum deviation
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from the classical distribution is of interest. Although a more thorough analysis of 

the impact of quantum mechanics on intramolecular structure will be performed in 

our future research, a useful illustration can be provided here. Consider a harmonic 

oscillator potential fit to one of the three equivalent minima on the model ethane 

potential energy surface. Elementary expressions enable analytical calculation of 

both the classical and quantum root mean square (rms) values of the torsional angle 

position for this simplified system. This rms angle provides a measure of the spread­

ing of the torsional angle distribution away from its mean value at the bottom  of 

the potential well. The classical and quantum rms angles are 12.2 degrees and 15.5 

degrees, respectively. The quantum tunnelling is expected to be even larger for the 

realistic periodic potential that exhibits coupled minima. This considerable torsional 

spreading provides evidence for the importance of quantum effects in intramolecular 

torsions.

6.3 Larger M olecules

In this section, we report the torsional PIMC and harmonic approximation results 

for the four molecules: ethane, n-butane, n-octane, and enkephalin. The MMSPro 

force field was used for the potential of these molecules, and energy evaluations were 

performed by interfacing the TINKER molecular mechanics code to our torsional 

PIMC program.^’ Geometry optimisations were performed using TINKER to 

obtain suitable structures for the start of the PIMC calculations. In no case was a 

lower energy structure found during the course of the Monte Carlo simulation. The 

moments of inertia for each molecule were calculated at the beginning of the PIMC 

code and assumed to remain unchanged throughout the Monte Carlo simulation.
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Table 6.1: Calculated Moments of Inertia of Ethane, n-Butane, and n-Octane in 

a.u. X 10^

Ethane n-Butane n-Octane

1 2.99 5.70 5.94

2 34.8 65.3

3 5.70 104

4 177

5 104

6 65.3

7 5.94

The unbranched alkanes ethane, n-butane, and n-octane exhibit, respectively, 

one, three, and seven torsions. The calculated values of these moments of inertia 

are reported in Table (6.1). Note, in agreement with the suggestion in the previous 

section, the diminutive magnitude of the moment of inertia of ethane in comparison 

to those of the other molecules.

Enkephalin is a considerably larger molecule than the three considered alkanes. 

Displayed in Figure (6.4), it contains 75 atoms comprising 33 torsional degrees of 

freedom. However, only three of these torsions have moments of inertia less than 

10'̂  a.u. This feature portends less dramatic quantum mechanical behaviour for 

enkephalin than would be expected for more heavily branched molecules exhibiting 

a greater number of terminal methyl groups.

The internal energies of ethane, n-butane, n-octane, and enkephalin calculated



6.3 Larger Molecules 66

Figure 6.4: Structure of the Enkephalin Molecule
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6.2: Calculated nternal Energies” at 273.15 K in kca

P Ethane n-Butane n-Octane Enkephalin

1 0.594(1) 1.97(2) 4.99(5) 17.9(2)

2 0.758(1) 2.27(2) 5.26(8) 19.1(1)

3 0.810(1) 2.33(2) 5.32(8) 19.0(3)

4 0.830(2) 2.32(2) 5.34(7) 19.4(1)

5 0.841(2) 2.37(2) 5.35(7) 19.5(1)

10 0.855(4) 2.43(2) 5.34(8)

mol ^

“Numbers in parentheses indicate standard deviation in last significant digit.

with the torsion PIMC method are reported in Table (6.2). All calculations were 

performed at a temperature of 273.15AT, and the values are reported in kcal mol“ .̂ 

For the three alkanes, PIMC calculations were performed with one, two, three, four, 

five, and ten Trotter beads. The enkephalin internal energies were determined with 

only one, two, three, four, and five Trotter beads.

First of all, it is important to compare the results obtained for ethane with the 

MMSPro potential implemented in TINKER, as opposed to the sinusoidal potential 

parametrized to MMSPro discussed in the previous section. For the true MMSPro 

potential, the PIMC method predicts classical and quantum energies of 0.594 kcal 

mol“  ̂ and 0.86 kcal mol“ \  respectively, which are in reasonable agreement with 

the values of 0.585 kcal mol~^ and 0.875 kcal mol“  ̂ reported for the model poten­

tial. This suggests correct implementation of the PIMC code for general molecular 

systems.

For each model, we note the number of beads required before the calculated
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internal energy remains constant (within numerical accuracy) with respect to an 

increase in the number of beads. As observed for the model ethane system, at least 

five Trotter beads are required for the ethane internal energy to reach convergence. 

The other molecules, however, are more classical in behaviour. Neither n-butane, 

n-octane, nor enkephalin exhibit numerically significant changes in internal energy 

beyond the third Trotter bead. That is, a calculation with one Trotter bead is 

performed to obtain the classical internal energy, and another calculation with only 

two or three Trotter beads is needed to obtain the quantum internal energy.

Despite the small number of required Trotter beads, there is a substantial 

quantum contribution to the internal energy for every studied molecule. The quan­

tum  mechanical contributions to the internal energy of ethane and n-butane are, 

respectively, seen to comprise 31% and 19% of the total calculated internal energies. 

The significance of this proportion diminishes rapidly with the size of the molecules, 

however, and both n-octane and enkephalin are seen to have quantum contribu­

tions of only ~  7%. Nonetheless, the 1 kcal mol“  ̂ of quantum internal energy in 

enkephalin is far from negligible and strongly suggests the need for consideration of 

quantum mechanical behaviour in large biomolecules.

In the study of large molecular systems, it is useful to know when the inclusion 

of a quantum mechanical description of nuclear motion is necessary. The de Broglie 

thermal wavelength \ j  of a given torsion provides such an indication of the relevance 

of quantum effects,

Classical mechanics is sufficient when the de Broglie thermal wavelength is small 

in comparison to the characteristic length scale of the p o t e n t i a l . F o r  the ethane 

torsion and a representative methyl torsion, the respective standard temperature
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Table 6.3: PIMC and Harmonic Oscillator Approximation Internal Energies for 
Ethane, n-Butane, n-Octane and Enkephalin at 273.15K in kcal mol“^

Ethane n-Butane n-Octane Enkephalin

PIMC 0.86 2.43 5.3 19.5

Harm. Osc. 0.86 2.08 4.27 19.14

wavelengths of 1.56 radians and 1.10 radians confirm the need for quantum mechan­

ics. Equation (6.1) suggests that even torsions corresponding to substantially larger 

moments of inertia will require consideration of quantum mechanics at standard 

temperature.

Another comparison of the PIMC technique and the harmonic oscillator ap­

proximation is possible with the data presented in Table (6.3), which includes the 

PIMC results for ethane, n-butane, and n-octane with ten Trotter beads and the 

PIMC result for enkephalin with five Trotter beads. Also displayed are the results 

obtained with the harmonic oscillator approximation.

Similarly to the results reported in Figure (6.1) for the simple ethane model, 

the harmonic oscillator results in Table (6.3) perform well in comparison to the 

PIMC results. Nonetheless, as the size of the molecules increase, the larger moments 

of inertia lead the harmonic approximation to underestimate the actual internal 

energy (see Figure (6.3)). Although the impact of the deviation of the harmonic 

approximation is still relatively small for the molecules presented in Table (6.3), the 

systematic error could become more significant for larger molecules.
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Conclusions and Future Work

In this research, we successfully apply the uncoupled winding number formulation of 

path integral Monte Carlo theory to the torsional degrees of freedom in the molecules 

ethane, n-butane, n-octane, and enkephalin. This torsional PIMC technique offers a 

significant reduction in computational cost for systems in which vibrational degrees 

of freedom may be safely neglected. Employment of the PIMC method is simplified 

by the observation that contributions to calculated properties will be negligible for 

winding numbers greater than zero. For a simple ethane model potential, the PIMC 

result recovers the exact internal energy value obtained with a variational technique. 

For n-butane, n-octane, and enkephalin, the PIMC converged to the quantum me­

chanical limit with only two or three Trotter beads. All studied molecules exhibited 

significant quantum mechanical contributions to their internal energy expectation 

values according to the PIMC technique.

Although the harmonic oscillator approximation method for calculating the 

internal energy performs well for the molecules presented in this study, there exists 

a tendency in larger molecules for this approximation to underestimate the results

70
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obtained with the more rigorous PIMC technique. It was illustrated with the sim­

ple ethane model that this underestimation is related to the size of the molecular 

moments of inertia, suggesting a systematic shortcoming in the application of the 

harmonic oscillator approximation to larger systems. Moreover, the harmonic ap­

proximation does not readily consider the coupling between torsions intrinsically 

accounted for with the PIMC technique.

Having confirmed the utility and applicability of the torsional PIMC technique 

to large molecular systems, extension of the approach to new applications is now 

conceivable. Firstly, the author intends to develop a Monte Carlo sampling algorithm 

tha t will enable the calculation of quantum free energies. Free energy is more difficult 

to calculate than the internal energy because it relies on the explicit evaluation of 

the canonical partition function, but the importance of free energies makes effort in 

this direction worthwhile.

Improved Monte Carlo convergence is another aspect of our calculations that 

will require improvement. The data regarding PIMC calculations of the enkephalin 

molecule clearly indicated that numerical accuracy was deteriorating at a disturbing 

rate. W ithout improvements in convergence, larger calculations will not be feasible. 

Encouragingly, some possible improvements are already being considered. Namely, 

the essentially “free-particle-like” or “harmonic-oscillator-like” behaviour of partic­

ular torsions suggests that an importance sampling scheme based on these a priori 

probability distributions will bear fruit. Also, it is recognised by the author that 

Monte Carlo convergence will improve with the reduction of Monte Carlo param­

eters being adjusted in the simulation. Replacement of the bead and chain step 

size parameters with a single step size parameter could go a long way to reducing 

statistical uncertainty.
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Improved Monte Carlo convergence will bring numerous chemical problems 

within grasp. Obvious examples include single-molecule quantum free energy cal­

culations on small proteins. By trivially constraining the motion of unimportant 

torsions, even larger proteins will be tractable. Straightforward extension of the 

torsional path integral Monte Carlo code to enable multi-molecular systems will al­

low calculations on ligand-docking and solvation effects. Consideration of quantum 

effects on torsional degrees of freedom will be particularly important for chemical 

problems such as these in which bonding connectivity is not altered but the confor­

mational constraints on molecules are altered.
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