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ABSTRACT

There is a long standing controversy concerning the structure of
vitreous B2O3. Some experiments have suggested that the boroxol ring
(6-membered ring) is a dominant structure feature. However, molecular
dynamics simulations using the empirically-derived pair-potentials have
failed to demonstrate the presence of boroxol ring. This difficulty seems
to be due to the complexity of boron-oxygen bonding, which includes not
only the partial covalency, but also allows the boron coordination
number to change depending on its environment.

In the first half of this thesis, it is shown how quantum-mechanical
calculations using a range of techniques (including periodic ab-initio
Hartree-Fock and LDF) explain the nature of the structure and bonding
in boric oxide. Although these calculations each have their limitations,
their results are in accordance with accumulated concepts regarding the
nature of the structure and bonding in boric oxide.

In the latter half of this thesis, we develop a new many-body
potential model which can reproduce the structures of crystalline and
vitreous boric oxide. As a transferable many-body potential could not
reproduce the vitreous structure of BpO3 we developed a potential in
which the pair terms were changed depending on the environment, in
order to reproduce not only internal coordinates but also the relative
stability (i.e. the difference in total energies) of the two phases of the
crystalline material. The inclusion of a dependence of the pair-potential
terms on the coordination number agrees with classical concepts of
chemical bond strength. Parameters for this potential model are derived
for crystalline boric oxide and adapted to the vitreous phase. The

simulated structural model is checked by comparison with X-ray and



neutron scattering data. We find that this final theoretical study not only
confirms the existence of the boroxol ring, but also leads to proposals for

structural aspects of the intermediate-range order in boric oxide.
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1. INTRODUCTION

Boric oxide (B203) and its compounds (borates) form an important
class of minerals. They have a great range of structural types (oligomer,
ring and chain polymers are all found) and exhibit a number of
peculiérities in their structures and properties. Although some analogies
with silicate systems are applicable for borate systems, they are limited
owing to the existence of boron in both three-fold and four-fold
coordination. Therefore, they are of much interest in structural
chemistry as well as in geology.

The most important fields of application, however, for borate
materials are in the glass and ceramics industries. Boric oxide plays a key
role in numerous glasses of high technological importance. It promotes
chemical resistance, although being strongly hygroscopic itself. It reduces
thermal expansion in glasses, despite having itself a high coefficient of
thermal expansion. However, it keeps its high fluidity and glass-forming
properties when a component of glasses, thus improving the meltability
and glass-forming ability of multi-component systems. The liquidus
temperature is moreover strongly reduced by the introduction of B2O3
into a glass.

Borosilicate glasses are also of considerable technological
importance. They constitute a large proportion of industrial glasses (for
example, laboratory glasses, neutral glasses for pharmacy, sealing glasses
for electronics, microporous glasses, glasses for fertilizers). Despite their
industrial and fundamental interest the structures of vitreous borates are
far from clear. Moreover, the existing structural concepts for crystalline

and vitreous borates are not fully compatible.
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What is the difficulty of understanding the structure and bonding
in borate materials? Some of the peculiarities of these systems are as
follows:

i. The high field strengths of 3B and )B coming from the NMR
chemical shift data indicate that the B-O bond is very strong. However,
the viscosity of B2O3 is much lower than SiO2. B2O3 acts as a very good
efficient flux. (Volf 1984)

ii. The alkali borate glasses have been of considerable interest
because of the so-called “boron oxide anomaly”, which concerns the
existence of maxima and minima in some of the physical properties with
increase in the alkali metal oxide content, at temperatures below about
900°C. Such maxima and minima are not observed in most common
boron-free glasses. (Griscom 1978)

iii. The vitreous boric oxides are thought to contain high
concentrations of boroxol rings B3Og (a hexagonal ring of three boron
atoms and three oxygen atoms with three corner oxygen atoms outside
the ring), although such a structural unit is not found in B2O3 crystals
and its existence in the glassy materials is still controversial. (Griscom

1978)

A possible clue to the solution of these problems lies in the
complexity of the boron-oxygen bond. It has partial covalency, and the
latter is believed to be stronger than the silicon-oxygen bond. Its -
bonding strength varies with its environment, as pointed out by Pauling
(1960) and Coulson (1968). Another factor of great significance is that the
structural unit is easily changed from BO3-planar to BO4-tetrahedral, or

vice versa, depending upon its environment.
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In view of these complexities, the starting point of this thesis is the
investigation of the nature of boron-oxygen bonding in crystals and
molecules, using theoretical techniques. At the present time no single
comprehensive theoretical method exists. Therefore, different points of
view and methods are employed in a complementary manner as
discussed in chapters 3 and 4. All these techniques are, however, based
on the same basic quantum mechanical theory.

In view of the success of computer modelling of inorganic materials
(see e.g. Catlow and Mackrodt 1982; Price and Parker 1988; Vessal et al
1989), and using the knowledge obtained from the first half of this thesis,
we proceed to develop new many-body potential models for crystalline
and vitreous boric oxide, which are consistent with the classical concept
of chemical bonding. We then employ Molecular Dynamics (MD)
simulations, with this new potential model, which confirm the existence
of the boroxol ring, in contrast to the previous MD studies based on pair
potentials.

Indeed, one of the main achievements of this thesis is that this new
potential model reproduces for the first time not only the two different

crystal structures but also the boroxol ring content of the glassy material.
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CHAPTER 2 STRUCTURE AND BONDING
IN BORATE MATERIALS

21 CRYSTAL STRUCTURES OF BORON TRIOXIDE

Crystals of boron trioxide do not exist naturally. Two different
crystal phases have been synthesized and their structures determined
(see Figure 2.1).

Crystalline boron trioxide (B2O3-I) was first isolated by Kracek et al
(1938). Berger (1952,1953) first determined its structure by an X-ray
diffraction techniques. He concluded that oxygen atoms in B2O3-I form
two different distorted tetrahedra around the boron atoms with B-O
distances ranging from 1.31 to 2.14 A.

Later Strong and Kaplow (1968) showed from an X-ray diffraction
study that all borons in B2O3-I are in planar trigonal configurations and
that they consist of ribbons of interconnected BO3 triangles, thereby
demonstrating that Berger's structure is incorrect. Gurr et al (1970)
subsequently corrected the structure of Strong and Kaplow, by using a
single crystal sample, though it was pointed out later by Strong et al
(1971) that the two structures are essentially the same, being related by
transformation of an axis.

The other crystalline polymorph B203-II was studied by Prewitt and
Shannon (1968). B2O3-II was obtained at high pressures (>20 Kbar) and
temperatures in excess of 400 °C. It consists of a network of corner-linked
BO4 tetrahedra.

B203-I has a trigonal structure with a= 4.336 A, c=8340 A, Z= 3, p=
2.56 gem™3, space group= P3 (Gurr et al 1970; see Figure 2.2). Its average B-
O bond length is 1.372 A and it agrees well with 1.365 A for a bond of

'strength’ 1.0 calculated by Zachariasen (1963). It is known that the crystal
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cannot easily be prepared. It has been impossible to grow crystals of B2O3
at atomospheric pressure from a dry B2O3 melt, even when the melt was
seeded with B203-I crystals (Kracek 1938). A possible reason for the
difficulty in crystallizing B2O3-I from the melt, as discussed by Ulmann
et al (1967), may stem from the necessity of opening boroxol rings to form
the ribbons of BoO3-1.

B2O3-II has an orthorhombic structure with a= 4.163 A, b=7.803 A,
c= 4.129A, Z= 4, p= 3.11 gem™3, space group Ccm?2 (Prewitt 1968; see Figure
2.3). The BO4 tetrahedron is very distorted: one short B-O bond length is
1.373 A and the other three long B-O bond lengths are 1.507, 1.506 and
1.512 A, although the average B-O bond length is 1.475 A, exactly that
proposed by Zachariasen (1963). The oxygen associated with the short B-O
bond is coordinated by only two boron atoms, whereas the others are
coordinated by three boron atoms. Prewitt (1968) concluded that the
distortions are necessary to balance the variations in the electrostatic
potential in the crystal.

Finally, it is interesting to note no crystalline polymorph
comprising boroxol rings is found, although, as noted, these have been
suggested to be important in the glassy phases, and are observed in a

number of borate crystals as discussed below.
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2.2. The B203-I structure

et al 1970)

Figure

(Gurr

Figure 2.3. The B2O3-1II structure
(Prewitt et al 1968)
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2.2 CRYSTAL STRUCTURES OF BORIC ACID AND BORATES

Many X-ray analyses of crystal structures of boric acids and borates
have been reported.

Boric acid and the whole H20-B203 system is important, because
B203 is strongly hygroscopic and nearly all borate minerals are attacked
by aqueous solutions. It is also significant in relation to the volatilization
of BoO3 with water vapour, which takes place during glass melting.
Kracek et al (1938) studied the solubility diagram for the system H20-
B20O3 (see Figure 2.4). Metaboric acid has three polymorphs, and it is
interesting to note that only the orthorhombic metaboric acid (HBO2-III)
contains boroxol rings and exhibits the same 808 ¢cm-l Raman line as
vitreous B203 (Galeener et al 1980). The least stable metaboric acid

(HBO2-I) is also interesting because it promotes nucleation of the

anhydrous B203 (Kracek 1938).

203040 %0 60 70 0
UL —lg 1
SCALE FOR WEIGHT PERCENT OF B0+
L
40 //

300
/

HEO,|T |

80,
We0s T,

200 L

/ \/ \;}*\

i

Mole Percent of B, 0y
10 20 30 40 SO 60 70 80 90

Figure 2.4. The solubility diagram for the system, H20-B203
(Kracek et al 1938)
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On the other hand, it is known that crystalline borates are built up
of large borate groups (see Figure 2.5) and in vitreous borates these
groups are thought to be retained to some extent. The crystal-chemical
classification is reviewed by Bokii and Kravchenko (1966), who
distinguished borates by two structural criteria. One approach classifies
structures in terms of (1) ringless borates, (2) one-ring, two-ring and
three-ring borates and (3) borates with mixed polyions and borosilicates.
Another classification is in terms of (1) island borates (isolated polyions
and dimers), (2) chain borates, (3) sheet borates and (4) network borates.
On the other hand, Christ and Clark (1977) propose another classification
based on different criteria and which has special reference to hydrated

borates (see Appendix A).

It is also interesting to note that sodium metaborate Na3zB3Og¢ (Fang
1938, Marezio et al 1963) and potassium metaborate K3B30g (Zachariasen
1937, Schneider 1970) have boroxol rings and exhibit the same 808 cm-1

Raman line as vitreous B2O3 (Bril 1976). Cesium enneaborate, Cs20 -

9B203, the borate with the highest molar fraction of boron oxide, also

contains boroxol rings (Krogh-Moe and Ihara 1967).
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Figure 2.5. Boron-oxygen structure groupings
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(a) the boroxol ring in vitreous B2O3

(b)  the pentaborate group in the compounds o-K20-5B203 and B-K20-5B203

(c)  the tetraborate group in the compound Na»0-4B203
(d) the triborate group in the compound Cs-3B203

(e) the diborate group in the compound Li2O-2B203

(f)  the diborate group in the compound K20-2B203
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Figure 2.5.(continued) Boron-oxygen structure groupings
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(k)
(1)

the di-pentaborate group in the compound Na0-2B203

the triborate group with one non-bridging oxygen in the compound Na20-2B203
the ring-type metaborate group in the compounds Na20-B203 and K20-B203
the chain-type metaborate in the compound Li2O-B203

the pyroborate group in the compounds 2MgO-B203 and 2Ca0-B203

the orthoborate group in the compounds 3MgO-B203 and 3Ca0O-B203
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2.3 STRUCTURE OF VITREOUS BORIC OXIDE

AND BORATES

The random network model, proposed by Zachariasen (1932) is
amongst the most well-known models for the structures of glassy
materials. For example, in vitreous silica, SiO4 tetrahedra provide the
framework (so-called Network-former), in which the silicon atom is
tetrahedrally surrounded by four oxygen atoms and each oxygen atom is
bonded to two silicon atoms. Although the first coordination shell is the
same as that of the crystalline structure, the tetrahedra are rearranged in
a non-periodic manner in three dimensions; that is they have no long-
range order.

For boric oxide glass, the simpler random network model, consists
of planar BO3 triangles, as also proposed by Zachariasen (1932). However,
several serious objections to this model have been raised, as reviewed in
the volume of proceeding edited by Pye et al (1978) and also by Johnson
(1982).

Since Zachariasen's model (1932) was published, several rules about
vitreous structures of borates (Abe 1952, Eversteijn 1960, Huggins 1957)
have been formulated, although subsequently disproved, and several
structural models have been published.

Historically, the random network model containing no boroxol
rings (Zachariasen 1932), the boroxol ring model (Krogh-Moe 1969), the
quasicrystalline model (Borelli and Su 1963) and the model based on the
B40Og molecule (Fajans and Barber 1952) have been proposed (see Figure
2.6). From the considerable amount of data accumulated and analyzed,
the former two models are now favoured.

As for the coordination of boron in B203, the hypothesis that

almost all the borons have three-fold coordination is supported by all the
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experimental data and is widely accepted. And the phenomenon of the
coordination change of the three-fold coordinated triangle (BO3) to a
four-fold coordinated tetrahedron (BO4) in binary alkaline borate glasses
has been studied in order to explain so-called "boron oxide anomaly".

However, the mode of connecting the BO3 triangles is still
controversial. Goubeau and Keller (1953) first suggested the existence of
boroxol groups in B2O3 glass in order to explain the extremely sharp line
in the Raman spectrum of 808 cm-1. Krogh-Moe (1969) analyzed NMR
data, infrared and Raman spectroscopic data, X-ray diffraction data,
density data, energy data and viscosity data. He concluded that a random
three-dimensional network of BO3 triangles with a comparatively high
fraction of boroxol rings gives the best explanation of the available data.

In contrast, Elliot (1978) claimed that the continuous random
network (C.R.N.) model containing no boroxol rings, modified from the
structure of three-fold coordinated amorphous arsenic, can reproduce the
radial distribution functions of the X-ray study of Mozzi and Warren
(1970). However, the problem with this model is that the density is some
30% lower than that observed experimentally.

The boroxol ring model has, however, the same problem. Although
it can give a satisfactory account of the Radial Distribution Function
(RDF) obtained from the X-ray diffraction data at small interatomic
separations, it does not necessarily reproduce the measured density
correctly (Bell and Carnevale 1981). The latter authors proposed a locally
layered random network model, in which adjacent layers are weakly
bonded by the occasional overlapping of boroxol rings rotated relative to
each other by 60°.

To summarize these structural models, a wide range of

experimental data favours the boroxol ring model. However, there is no
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conclusive evidence for rejecting the continuous random network
model containing no boroxol rings. However, all the above approaches
based purely on topological considerations seems to have serious

limitations. More detailed models are required.

(a) (b)

(C) (d) O Oxygen

@ Boron

Figure 2.6. Schematic representation for structural models
of vitreous boric oxide (Krogh-Moe 1969)

(a) the random network model

(b) the boroxol ring model

(c) the quasicrystalline model

(d) B4Og molecule model
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2.4 EXPERIMENTAL APPROACHES

2.4.1 X-RAY DIFFRACTION STUDIES

X-ray diffraction techniques have of course been used to determine
structures of crystalline borates, but they also give important RDF data
for vitreous borates.

Mozzi and Warren (1970) rigorously interpreted X-ray data for
vitreous B203 in terms of pair functions (see Figure 2.7). They pointed
out that there are definite peaks in the experimental curve for distances
out to about ~ 6 A, which requires that there is a structural unit in
vitreous B2O3 which is larger than the randomly oriented BO3 groups.
They assumed a random network of boroxol groups B3Og. They also
assumed that all the B-O-B angles outside the rings are 130° and all the B-
O-B angles within the rings are 120°. They concluded that there is very
good agreement with the experimental curve with regard to peak
positions, but the peaks and dips in the calculated curve are a little too
pronounced. They suggested that this may indicate that they should have
allowed for a little more distance variation; alternatively not all of the
structure is in the form of boroxol groups.

Further clues may come from X-ray diffraction studies of molten
B203, which may explain the peculiarities of the glassy state, as the
structure of vitreous state is generally said to be very closely related to
that of the liquid from which it is quenched. However, Fajans and Barber
(1952) observed that at 1260 °C the viscosity of boron oxide is smaller
than that of silica by a factor of 10-116. Therefore, the concept of a random
network with a strong boron-oxygen bond is said to be difficult to
reconcile with the comparatively low viscosity of boron oxide melts.

The change of density with temperature (Macedo et al 1966) and the

change of heat capacity with temperature (Shmidt 1966) are also of some
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interest. These data exhibit an abrupt change in slope at the glass

transition temperature (Tg) and above Tg a structural change may take

place progressively with rising temperature (Krogh-Moe 1969). On the

other hand, structural models in

the molten state, which are different

from the vitreous state, were proposed by Mackenzie (1959), Riebling

(1966), and Sperry and Mackenzie (1968). From X-ray studies in molten

states Zarzycki (1974) observed structural changes at high temperatures

of 1200 °C and 1600 °C: a very pronounced decrease of the first

coordination number amounting

to more than 30% was found at 1600

°C. This may suggest that three-fold coordinated and two-fold

coordinated boron atoms coexist in molten states.
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Figure 2.7. Analysis of X-ray diffraction data using boroxol model:

Curve (A): the measured PFD for glassy B203;

Curve (B): the sum of computed contribution to the PFD for a model
of randomly linked boroxol rings;

Curve (C): the difference (A) - (B)

(Mozzi and Warren 1970)
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242 NMR STUDIES

As Griscom (1978) points out, one of the truly outstanding
achievements of solid state NMR is the measurement of the fraction of
boron atoms which are in four-fold coordination, NBQ4. The large
disparity between the coupling constants for trigonal and tetrahedral
boron permits the resonances of each to be separated and quantitatively
measured even in materials containing both types of units.

Historically, Bray and O'Keefe (1963) published NBQO4
determinations for the entire glass forming ranges of all five alkaline
borate systems (see Figure 2.8). Jellison et al (1977) analyzed the
environment of 10B, 11B and 170 nuclei within the glass. They
concluded that their data are in agreement with the boroxol ring model
and from the 170 spectra are able to deduce the fraction of oxygen atoms
included in boroxol rings. They estimated the fraction of the boron atoms
forming part of boroxol rings (0.82+0.08) and hence the ratio of boroxol
rings to independent BO3 triangles to be ~ 1.5 : 1. The NMR data also give
information on the B-O-B angles for the oxygen atoms not included in
boroxol rings. These have a narrow distribution (rms deviation ~ 1.7°)
centred around either 134.6° or 128.1°, close to the average experimental

value of 130° in borate crystals.
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Figure 2.8. Variation of the number of tetrahedral boron sites, NBO4,

with alkali-oxide content, as obtained from NMR experiments
(Bray and O’Keefe 1963)
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24.3 RAMAN SCATTERING STUDIES

Historically, Goubeau and Keller (1953) first provided evidence
from Raman spectroscopy for the existence of boroxol groups in B2O3
glass, explaining the extremely sharp line at 808 cm-1.

Next, Bril (1975) and Konijnendijk (1975) reported several
important Raman studies. Bril undertook Raman investigations of a
number of metaborate crystals and alkaline borate glasses, carrying out a
normal coordinate analysis of the resulting spectra. He concluded that
the strong peaks of the Raman spectrum of vitreous alkaline borate at
806 cml and 770 cm-1 are assigned to the ring breathing (v2) of
respectively the boroxol group and a group containing a six-membered
ring with at least one BO4 or BO3~ unit. Figure 2.9 shows three Raman-
active symmetric vibrational modes of B30g3-. Figure 2.10 shows the
change in Raman spectra by adding the sodium oxides. It is interesting to
note that his Raman data, obtained as a function of temperature, are
unchanged on passing from the glass to the melt (up to 800K).

Konijnedijk reported comprehensive Raman scattering and IR
investigations of borate and borosilicates glasses. He concluded for the
binary alkali-borate glasses as follows: in the concentration range 0 to
about 25 mol% alkali oxide , the boroxol groups, originally present in
vitreous B20O3, are replaced by six-membered borate rings with one BO4
tetrahedron which to a certain extent are ordered to tetraborate groups. In
the range 20 to 35 mol% alkali oxide, six-membered borate rings with two
paired BO4 tetrahedra are gradually formed which to a certain extent are
condensed to diborate groups. Unmixed sodium- and potassium-borate
glasses cannot be made in the range above about 40 mol% alkaline oxide.

In mixed alkaline-borate glasses with 40 to 50 mol% alkali oxide the
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presence of orthoborate , pyroborate and ring-type metaborate groups is

indicated, together with diborate groups.

Galeener et al (1980) analyzed their Raman data on vitreous BoO3 in
terms of a model based on a nearest-neighbour, central-force network
dynamics model and concluded that their data are inconsistent with an
idealized random network of BO3 triangles with a random dihedral
angle, and favoured a structural model containing a large fraction of
boroxol rings.

As for the temperature dependence of Raman intensities, Walrafen
et al (1980) studied Raman data for vitreous B2O3 and molten B2O3 from
-196 to 1594 °C. They concluded that vitreous B2O3 is composed
predominantly of boroxol rings, but the boroxol ring concentration
decreases with increasing temperature in the melt, and becomes small at
temperature above 1600 °C.

Recently Kamitsos and Chryssikos (1991) studied Raman spectra of
several alkali borate glasses and concluded that their results point to the

strong dependence of the network modification on the nature of the

cation modifier.

V1 Vz V3

Figure 2.9. Symmetric vibrational modes of the "free" metaboric
anion, B30g3-. All three are Raman active and polarized.
(Griscom 1978)
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Figure 2.10. Raman spectra of sodium borate glasses:
xNa20 - (1-x)B203 (Konijnendijk 1975)
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2.4.4 NEUTRON SCATTERING STUDIES

Johnson et al (1982) performed neutron diffraction investigations of
vitreous BpO3. The neutron scattering length for 11B is slightly greater
than that for oxygen, so that neutrons should be more sensitive than X-
rays to the presence of boroxol groups. They fitted Elliot's model and the
boroxol ring model to Mozzi and Warren's X-ray data and their neutron
data. They concluded that the X-ray data of Mozzi and Warren and the
neutron diffraction data of Johnson et al are consistent with a structure
for vitreous B2O3 containing a proportion of 0.6+0.2 of the boron atoms
in boroxol rings (see Figures 2.11 and 2.12).

In another approach, Hannon et al (1988) studied inelastic neutron
scattering from vitreous B2O3. They showed the boroxol ring breathing
mode is a relatively small feature in the VDOS (vibrational density of
states) of vitreous B2O3 and the matrix element for this mode is
enhanced for both the HH and the HV Raman spectra. Despite this, they
find that their ball-and-stick model containing a high concentration of

boroxol rings is consistent with their inelastic neutron scattering data.
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Figure 2.11. (left) The neutron total correlation function as a
function of the fraction, f, of the boron atoms in boroxol rings. Full
curve, experiment; dashed curve, model and dotted curve, residual.

(Johnson et al 1982)

Figure 2.12. (right) Component correlation functions for a boroxol
ring model with f=0.6 (Fixed distances only). Full curve, model;
dashed curve, experiment; and dotted curve, residual.

(Johnson et al 1982)
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2.5 COMPUTER SIMULATION

2.5.1 QUANTUM MECHANICAL STUDIES

Quantum mechanical techniques provide the most fundamental
approach for explaining the nature of electronic structure, and its
relation to structure and bonding.

For silicate systems, molecular orbital (MO) calculations have been
reported for various clusters (see O'Keeffe and Navrotsky eds. 1981).
These calculations on molecular clusters have been used to study
potential energy surfaces and obtain interatomic potentials for SiO2
(Lasaga and Gibbs 1988,1991; Tsuneyuki et al 1988; Beest et al 1990). In
addition, periodic Hartree-Fock method (Nada 1990; Silvi 1991) and Local
Density Functional method (Allan and Teter 1987) have been applied for
SiO2 polymorphs.

The first MO calculations for borate systems were performed by
Coulson (1964) and Coulson and Dingle (1968). Variations in the B-O
bond length have been thought to be due to © bonding, since the early
suggestion of Pauling (1960) and Zachariasen (1963). To investigate the
nature of the bonding, they calculated the m bond order for several
metaborate ions using the Hiickel method.

Snyder et al (1976) performed the first ab-initio calculation (STO-3G)
of small clusters, B(OH)3 and BH3. They found that there is a strong
relationship between the quadrupole coupling parameter and the
molecular environment. Later Snyder (1978) discussed the structure, the
heat of formation and the resonance energy of the n electron system,
using srﬁall clusters. He concluded that the resonance energy of the
boroxol ring (1Kcalt+4 Kcal/mol) is a negligible driving force for the

condensation-dehydration reaction.
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Gupta and Tosell (1981,1983) and Zhang et al (1985) performed ab-
initio calculations (STO-3G and 6-31G*) of molecular clusters
(monomers, dimers and trimers), following a successful simulation of
SiO2. They both concluded that these calculations are adequate for
reasonable predictions of bond angles and bond distances for borate
minerals, although the crystal field effect is disregarded. Tossell showed
that modified electron-gas (MEG) ionic model calculations based on B3+
and OH- ions also give reasonable accurate B-O bond distances. These
calculation results were reviewed by Tossel and Vaughan (1992) (see
Table 2.1).

On the other hand, Uchida et al (1985,1986) used a semi-empirical
SCF-MO method employing the MNDO technique on small clusters.
They discussed the structure, the heat of formation, the © electron system
and the electronic structures. They concluded that the resonance
stabilization effect of the m electron system is not so large as to control the
geometry and reactions, as had been previously found by Snyder (1978).

They also discussed the "hardness and softness" of basicity in the
binary borate system. The other studies of the basicity in alkali borate
glasses were also discussed by Kawazoe et al (1978). They use a new
quantity "Sparkle Affinity" as a measure of the hard basicity of borate
anion clusters. The sparkle is a virtual chemical species whose behaviour
is expected to be similar to the alkali or alkaline earth metal cation. The
sparkle affinity is defined as the energetic gain when one sparkle is set
near a borate anion cluster. They concluded that the four-fold
coordinated boron unit BO4- is a rather hard base and the non-bridging
oxygen is a rather soft base. The also concluded that a proton binds to one
oxygen atom with high covalency, in contrast to alkali metal ions, the

latter coordinating several oxygen atoms via the Coulombic interactions.
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The discrete B2O3 molecule has been presumed to be the dominant
species in molten B2O3. Accurate calculations have been performed on
gas-phase B203, establishing clearly that the equilibrium geometry is
planar and V shaped with Cyy symmetry (Sellers et al 1981; Barone et al
1981) and that the bipyramidal D3p structure is of much higher energy
(Snyder and Wasserman 1980).

Finally, it is interesting to note that the lowest energy form of
(OH)2BOB(OH)2 has a nonplanar C; geometry with a 60° dihedral angle
between the two BO3 groups (Zhang et al 1985), and that boroxol rings in
large clusters are connected by bridging oxygens in a twisted manner

(Uchida et al 1985,1986).

2.5.2 MOLECULAR DYNAMICS SIMULATION

Since the pioneering study of Woodcock et al (1976) on the
simulation of vitreous silica, Molecular Dynamics (MD) simulations
have been recognized as a very useful tool for the study of structural and
rheological properties of glasses. However, compared to the many studies
of silicates, there are few investigations of borate glasses. Because of the
complexity of the boron-oxygen bonding, both the experimental and
modelling techniques seem to be insufficient and there is still a
considerable discrepancy between experimental data and simulations.

The first modelling studies of borate glasses were initiated by Soules
(1979,1980) and Soules and Varshneya (1981). They calculated the
structures of vitreous B2O3 and sodium borosilicate glass. They showed
that in vitreous B2O3 boron atoms are trigonally coordinated to oxygen
atoms, while in sodium borosilicate glasses the trigonal to tetrahedral

conversion of boron atoms accompanies the addition of sodium atoms.
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These two aspects of their results agree well with the experimental data.
However, no boroxol group formation is observed in their simulation.

A series of more detailed studies were carried out by Soppe et al
(1988), Soppe and Hartog (1988), Soppe and Hartog (1989). Their
consistent result is that they do not find any boroxol rings. They found
that for both non-pressure scaled and pressure scaled systems, and for a
variety of different quench rates, oxygen atoms have no tendency to
become equiplanar with adjacent BO3 triangles. They also attempted an
interesting simulation in which half of the number of B-O-B and O-B-O
angles were constrained at 120°. Even with such artificial constraints,
they do not find any boroxol rings. They concluded that their continuous
random network structure without any boroxol rings reasonably
reproduced the RDF of X-ray data.

Amini et al (1981), Abramo et al (1986), Xu et al (1988) also
performed MD simulations on B203, and on silver borate and sodium
borate glasses. In none of these studies were boroxol groups found.

All of these studies have two limitations. The first is that very rapid
quenching rates (1013 ~ 1015 K/sec) have to be used. Even with
supercomputers, simulated quench rates are still far from the rates (less
than 103 K/sec) in the real process. However, in spite of such rapid
quench rates, several simulations of silica glass have succeeded in
reproducing the structures of the vitreous material.

The second limitation is the use of pair-potential models with
formal charges. Pair-potential models succeed in modelling many ionic
materials and all the pioneers in this field employed such models.
However, such pair-potentials may not be sufficient to express the

structure and bonding of materials with partial covalency.
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In order to account for covalency, Hirao and Soga (1985) applied a
new potential with the extra term -Aexp[-C(r-O.239)2] (r is the distance
between boron atoms) for B-B interactions to sodium borate glasses. They
presumed that their structure may include boroxol groups from the
calculated population of B-O-B angles at = 120°.

The MD study of Inoue et al (1987) included three body effects and is
the only one that generates boroxol rings in B2O3 glass and diborate
groups in sodium borate glass. They put ghost atoms (G) on the centre of
gravity of both BO2 and B20 triangles. A positive point charge with a
Born-Mayer type short-range potential is assumed to exist at G when the
G-O potential is calculated, and a negative point charge with a different
Born-Mayer type short-range potential is assumed to exist at G when the
G-B potential is calculated. These ghost atoms thus provide O-B-O and B-
O-B three body potentials. Boron and oxygen atoms have formal charges,
and all the other potential parameters are derived from the potential
energy of H3BO3 by the INDO (intermediate neglect of differential
overlap) method.

They concluded that their "pseudo-atom" three-body type of model
reproduces the RDF of Mozzi and Warren (1970) with the presence of
boroxol rings. However, the ratio of boron atoms present in the boroxol
rings is less than 22.5% and smaller than that reported (82+8% by Jellison
et al 1977 and 60+20% by Johnson et al 1982). This result is encouraging
in that it shows that structures with boroxol rings can be reproduced by
three body potentials, even if a rapid quench rate is used. It is, moreover,
interesting to note that calculated B-O-B bond angles are distributed
around 120°. In contrast, all pair-potential studies show B-O-B angles of ~
160°. The NMR data of Jellison et al (1977) give information on the B-O-B

angles for oxygen atoms not included in boroxol rings. The NMR result



shows a narrow distribution centred around either 134.6° or 128.1°, close
to the value of 130° used by Mozzi and Warren (1970).

On the other hand, recently Verhoef and Hartog (1992) carried out
MD simulations of B2O3 glass, using different sets of pair-potentials
(Born-Mayer-Huggins type) and in some cases three-body, bond-bending
terms were applied. For the latter a simple harmonic form was used. The
equilibrium angle was set as 120° for O-B-O and 130° for B-O-B. The force
constant for O-B-O was fixed so as to obtain the correct energy for the
high-frequency mode in the simulated infrared spectrum.

Their first conclusion is that all the models investigated generate
continuous random network glass structures without any boroxol rings,
even if three body bond-bending terms are added. Their second
conclusion is that all the models reproduce the experimental data
reasonably well, although there are detailed discrepancies mainly within
the distance range of 2 - 4 A in the RDF. Their third conclusion is that the
peak at 805 cm™1 in the experimental Raman spectra can be assigned to a
breathing mode of the three oxygen atoms within each BO3 triangle.
However, no peak at around 805 cm-1 is experimentally observed in
borate crystals which consist of BO3 triangles. Their fourth conclusion is
that three body interactions are necessary to reproduce the high-
frequency modes in the simulated infrared spectra and density of state.

To summarize the results of all the MD simulations;

(1) Pair-potential models can reproduce the short-range data of X-ray
and Neutron scattering well. However, discrepancies remain for
medium range distances. B-O-B angles are far from the average of the
experimental values of 130° estimated from NMR data. Pair-potential
models always generate continuous random networks without any

boroxol rings.
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(2) Three-body potential models can reproduce boroxol rings,
although this is not always the case. They can reproduce some
characteristics of the medium-range order which are similar to Mozzi
and Warren's model. The inclusion of the three-body potential affects
- not only the generation of boroxol rings but also the vibrational
properties of the simulated vitreous material.

The work reported later in this thesis will advance the description
of the interatomic potential models for B2O3 and will achieve improved

agreement with experiment compared with the results discussed above.
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Bond lengths

[R(B-O) in A] Ab initio calculated values Experimental values
STO-3G 4-31G  6-31G* MEG MNDO

cluster basis basis basis method method Average Range

BO3~ 1.419 1.435 --- 1.37 1.34 -1.40

B(OH)3 1.364 1.364 1.358 1.37 1.371 1.361 1.353 - 1.365

B(OH)4~ 1.48 --- 1.474 1.53 ~147 1478

Bond angles Ab initio calculated values Experimental values

[B-Obr-B in degrees]
STO-3G 4-31G 6-31G*

Cluster basis basis basis Average Range
[(OH)2B]O 130 180 131.3 134 128 - 153
(OH)3B-O-B(OH)2" 118 - 128
H(OH)3B-O-B(OH)3H 123 119
initio calcul Experimental values

B306H3

STO-3G 6-31G  3-21G* MNDO Average v-B203
R(B-O)br (A) 1.374 1.390 1.371 1.389 1.401 1.36
R(B-O)nbr (A) 1.289 1.351 1.351 1.354 1.322
B-Obr-B (deg) 121 123.8 119.9 120 122.7 121

Table 2.1. Calculated and experimental geometries in borate polyhedra

and protonated boroxol ring B30gH3 (Tossel and Vaughan 1992)

47



CHAPTER 3 BORATES AS MINERALS

... a geologist's view and a solid state chemist’s view

3.1 INTRODUCTION

The beauty and variety of the crystal structures of minerals has long
fascinated scientists, and many crystal structures have been determined
including several borate structures. These accumulated data helped
geologists and solid state chemists to establish empirical concepts of
structure and bonding in borates and to develop ideas of the underlying
behind them.

On the other hand, the quantum-chemical theory (e.g. Szabo and
Ostlund 1989) has its origin in physics. It has helped material scientists to
understand complex phenomena with a minimum of empiricism.
Although there is no direct equivalence between the empirical concept
and the quantum-chemical theory, both approaches can supplement one
another and can be used to explain the structure and bonding of
materials.

As for quantum-chemical approaches in the simulation of borates,
there have been several cluster-type or molecule-type simulations,
which have been used not only to discuss the © electron system and the
basicity of borates, but which have also succeeded in reproducing bond
lengths and bond angles in the crystalline state (see Section 2.5.1).
However, such simulations have generally neglected crystal field effects,
which are generally thought to be necessary in discussing solids more
realistically.

Therefore, in this chapter we present the first results of quantum-

chemical calculations on borate crystals in the crystalline state. First, we
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explain periodic ab-initio Hartree-Fock methods, which are suitable for
the quantum-chemical simulation of crystalline systems, is explained.
Next, quantum-chemical results are presented, with emphasis on the
Mulliken population analyses (Mulliken 1955), for a variety of crystal
structures of borates. These results are then discussed and compared with
empirical concepts (for example, Pauling 1960). Finally, we show that
these calculations accord well with empirical concepts regarding to the

structure and bonding of borates.
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3.2 THEORETICAL METHOD

In order to perform the quantum chemical calculations, we used the
periodic ab-initio Hartree-Fock code CRYSTAL-92. As the program uses
basis sets constructed from atomic orbital (AO) as with standard
molecular orbital programs (for example, GAUSSIAN, GAMESS,
HONDO, MOPAC, AMPAC), it is easy for chemists to use. Furthermore,
calculated properties, such as electron charge density maps and Mulliken
charges, can be analyzed using chemical concepts. The details of the
theory are described in the monograph of Pisani et al (1988). Here, some
computational assumptions and restrictions especially when applying

the method to borate crystals are mentioned.

3.2.1 SELECTION OF A MODEL

In solid state physics, plane waves (PW) are usually used as a basis
function of crystalline orbitals y which satisfy Bloch's theorem:

v(kr+g) = y(k;r) exp(ik-g) (3.1)
where r is real-space vector, k is wavevector, and g is a direct lattice

vector of the crystal.

Instead of PWs, CRYSTAL-92 uses Bloch functions ¢p(k),
constructed from a limited number of local functions Xy (r):

ou(kr) = ZgXpu(r-g) exp(ik-g) (3:2)

The "generating” functions Xy, are centred at the atomic nuclei and
are expressed as a linear combination of Gaussian-type atomic orbitals
(GTOs), similar to molecular quantum chemistry techniques.

Generally speaking, the larger number of GTOs which are
employed, the more accurate becomes the calculated result within the
Hartree-Fock (HF) limit. However, in contrast to the calculation on

molecular groups, diffuse Gaussian orbitals (exponent of the order of 0.2
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a.u. or less) play a crucial role in crystalline-state calculations and cause
two problems (Pisani et al 1988).

The first is that the number of integrals to be explicitly calculated
increases dramatically with a decreasing exponent. The second is that on
decreasing the exponent the risks of pseudo-linear dependence increase
rapidly, demanding higher precision in order to avoid "catastrophic"
behaviour.

However, such very diffuse AOs are much less important in three-
dimensional densely packed crystals than in atoms and molecules, where
they serve to describe the tails of the electronic distribution toward
vacuum. Therefore, except for the case of the minimal basis set (STO-3G),
starting from the standard Pople's basis set (Pople and Binkley 1975), the
exponent of the outermost shell is reoptimized.

Furthermore, in the present version of CRYSTAL-92, large systems
cannot be simulated, except at the minimal basis set level, because of
restrictions related to the size of vectors and matrices. Therefore, several
different basis sets are applied for simulation of small B2O3 systems,
while only a minimal basis set is applied for other larger systems.

In order to overcome the limitation of system size in the all-
electron calculations, pseudopotentials techniques have been developed
(Hay and Wadt 1985; Durand and Barthelat 1975; Bouteiller et al 1988).
This technique has also been tested for the B2O3 systems.

The other possible problem associated with our method may come
from electron correlation which can only be represented using post
Hartree-Fock techniques (Hehre et al 1986). In addition, however, several
correlation correction schemes are available for the HF energy. Here,
these precise corrections are not required in this chapter, because only the

relative orders in energies or charges are mainly discussed.
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3.2.2 OPTIMIZATION OF STRUCTURE

The experimental determination of crystal structures has, of course,
associated errors. For example, the positions of hydrogen atoms in boric
acid crystals determined by X-ray techniques have errors of as much as 0.1
A. For this, and for other reasons, it is desirable in simulations to relax
not only unit cell dimensions but also internal coordinates. To relax the
structure means to search for the structure which has the minimum
total energy. However, the automatic relaxation of cell dimensions or
internal coordinates is not available in the present version of CRYSTAL.
Although manual optimization is possible point by point, it is not
efficient.

Therefore, in B2O3 crystals cell dimensions and internal coordinates
are varied in a point by point manner and the variations in energy are
tabulated. These potential energy surface data are also used for modelling
interatomic potentials in Chapter 5. In contrast, the calculations on the
other borate crystals are carried out using fixed (experimentally
determined) cell dimensions and atomic positions. We note that a full
relaxation treatment using ab-initio, LDA techniques is possible

employing the code CASTEP, as discussed in Chapter 4.

3.2.3 MULLIKEN POPULATION ANALYSIS

It may be useful to define the total electronic charge on a particular
atom in order that quantitative meaning may be given to such concepts
as electron withdrawing or donating ability. The Mulliken population
analysis is one of such methods, and it is often used for discussing the

relative covalency and ionicity of materials.

52



Although. Mulliken population analysis is employed in this
chapter, some caution is required.

One problem concerns the definitions of 'ionicity' and 'covalency’,
as discussed by Catlow and Stoneham (1983). There is a considerable
arbitrariness in their nature and different charge partitioning schemes
exist. Another concerns the high sensitivity of the Mulliken charges to
the basis-set (Hehre et al 1986) A third difficulty is that the charges are
often not comparable with effective charges obtained from experimental
studies, and indeed the absolute value may be meaningless.

In this chapter, only the relative order in the Mulliken charges at
different sites and among a variety of structures are used in order to

discuss relative degrees of ‘ionicity’ or ‘covalency’.
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3.3 PERIODIC AB-INITIO HARTREE-FOCK SIMULATION

3.3.1 MODELS FOR BORON-OXYGEN BONDING

The boron atom has the gas-phase electron configuration: 1s?, 2s?,
2pl. The chief oxidation state of boron is +3 and boron normally
combines with oxygen (of electron configuration 1s2, 2s2, 2p*) to form
three triangular-planar bonds by sp? orbital hybridization. The boron-
oxygen radius ratio is 0.20 and from spatial considerations alone, boron
would be expected to occur in three- or four-fold coordination. The
transition to tetrahedral sp3 orbital hybridization is facilitated by the easy
acceptance of an electron pair from a base into the low-energy fourth
orbital of the boron valence shell. The measured B-O bond distances in
trigonal borates range from 1.28 to 1.44 A and the mean is 1.37 A. The
mean tetrahedral bond length is 1.48 A and the individual values vary
from 1.42 to 1.54 A. For refined structures having an experimental error
of <0.05 A, the difference between trigonal and tetrahedral bond lengths
of 0.1 A is significant (Ross and Edwards 1967).

The calculated trigonal B-O bond length, which is the theoretical,
single covalent B-O bond distance, is slightly less than 1.43 A (Pauling
1960); its discrepancy with the measured lengths has been attributed to
about 20% double bond character. The measured B-O bond distances in
some borate crystals are shown in Table 3.1. The structure and bonding in

these crystals are discussed later in this chapter.
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Compound

B-O (A)
Triangular BO3

B-O (A)
Tetrahedral BO4

Boron Trioxide
B20O3-1

B20O3-11

Potassium metaborate
KBO2

Sodium metaborate
NaBO»>

Kotoito

Mg3(BO3)2
Magnesium Pyroborate

Mg2B205-11
Calcium Metaborate

CaB20gy4-1
Sinhalite

AlMgBO4

Orthoboric acid
B(OH)3

Metaboric acid
HBO»>-1

HBO>-11

HBO»-III

1.337, 1.366, 1.404
1.336, 1.384, 1.401

1.331 (in-ring)

1.373, 1.506, 1.507, 1.512

1.398, 1.398 (out-of-ring)

1.280 (in-ring)

1.433, 1.433 (out-of-ring)

1.376, 1.392, 1.392

1.35,1.38, 1.38
1.33, 1.33, 1.37

1.326, 1.385, 1.401

1.356, 1.365, 1.365

1.353, 1.359, 1.365

1.345, 1.371, 1.386

1.356, 1.366, 1.378

1.373, 1.377,
1.391, 1.353,

1.372, 1.372 (in-ring)

1.442, 1.483, 1.483, 1.586

1.433, 1.451, 1.452, 1.553

1.436, 1.465, 1.482, 1.505

1.351, 1.367, 1.347 (out-of-ring)

Table 3.1. B-O bond distances in borate minerals (References are found

in the text.)
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3.3.2 BORON TRIOXIDE CRYSTALS

The outline of B2O3 crystal structures is reviewed in Section 2.1.

3.3.2.1 BASIS SET EFFECTS

The basis set plays a crucial role in the description of crystalline
orbitals. Starting from the standard Pople's basis sets, the exponents of
outer shell are reoptimized. The reoptimized exponents and the
Mulliken charges are compared in Table 3.2 and 3.3.

i. Minimal basis set

As generally recognized, the Mulliken charges obtained employing
STO-3G tend to be smaller than with other basis sets (Hehre et al 1986).
The bigger problem is that the STO-3G result in B2O3-II is not consistent
with the results of the other basis sets. The Mulliken charge on O(2)
seems to be too small and that on O(1) is larger than expected. O(1) is
two-fold coordinated by boron which is the same in B2O3-I, while O(2)
has three-fold coordination (see Figure 2.3). The two charge distributions
are expected to be different, which is difficult to express by using minimal
basis set. Therefore, caution is needed when a minimal basis set is
applied to three-fold coordinated oxygen or four-fold coordinated boron.

ii. Split-valence and polarization function

As even B20O3 crystals represent a large system, basis set better than
6-21G, such as 8-51G, are not possible in the present version of CRYSTAL.
For both polymorphs, the 6-21G basis set may be assumed to be good basis
set, as Dovesi et al (1987) and Nada (1990) suggested for SiO2. The 3-21G
basis set gives almost the same result as that for 6-21G.

We investigated the effect of adding a single Gaussian d-type
function to boron, because such a polarization function proved to be
useful in SiO2 for describing the distortion of cation orbitals in the

different environments (Nada 1990). However, in B2O3-I crystal the
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Mulliken charges are reduced unexpectedly. The reason for this trend
could be the BSSE (Basis Set Superposition Error ) (see, for example,
Clark 1985). That is, the extra orbitals on boron are used to improve the
description of the charge distribution around oxygen.

iii.  Pseudopotentials

All electron calculations restrict the feasible system size. In order to
overcome this problem, several types of pseudopotentials have been
developed. In these pseudopotential techniques the role of core electrons
are substituted by the effective core potentials and only the orbitals of
valence electrons are calculated. Here only one available set, PS-31G
(Bouteiller 1988), is tested. The original PS-31G sets were optimized for
atoms and tested only on small molecule. Therefore, the exponents of
outermost shell were reoptimized. The Mulliken charges turned out to
be larger than those calculated with the all electron cases. This may be
due to electron rich second shells, which are composed of three
gaussians, whereas the second shell in the other all-electron calculations
were composed of two gaussians. The order of the charges seems
reasonable, but it is difficult to evaluate these pseudopotentials, because
they have not been fully tested for the crystalline state. However, these
results show that the pseudopotential technique is promising. If refined
these pseudopotentials could become a powerful tool for calculations on

larger systems.

In order to check the accuracy of our calculations, unit cell
dimensions were optimized using the 3-21G basis set. The experimental
lattice parameters and atomic parameters are given in Table 3.4. The

interatomic distances and interbond angles are also reported in Table 3.5,
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while the calculated energies are summarized in Table 3.6. The errors in
the unit cell volume are 1.5% for B203-I and 1.5% for B2O3-II. The errors
in the lattice parameters are 1% for either crystal structure. The atomic
parameters are also varied in a point by point manner using the 3-21G
basis set. The calculated results are shown Table 3.7. Regarding to the B-O
bond lengths, only the error in B-O(1) bond (the shortest B-O bond) of
B203-II is 10% and all the other errors are within 5%. On the other hand,
all the errors in O-B-O bond angles are within 5%. When the general
accuracy of 3-21G basis set is taken into account, these calculations
reproduce both crystal structures well. The optimized geometry is also

discussed in Chapter 4.

3.3.2.3 DISCUSSION

The average experimental B-O bond distance of 1.372 A in BpO3-I
agrees well with the length assumed by Zachariasen (1963) for a bond of
'strength' 1.0 (1.365 A), and also with a value of 1.3740.02 A which was
quoted as the mean B-O distance for three-coordinated boron by Waugh
(1968).

When the charges of three different oxygen in B2O3-I are compared,
the charge of O(3) is larger than those of the other two oxygens. Gurr et al
(1970) distinguished O(3) for the other oxygen atoms by using the term '
higher coordination' of O(3) through which adjacent ribbons are linked,
although O(3) is two-fold coordinated as well as O(1) or O(3). Here,
Madelung potentials (i.e. the total Coulomb contributions from all
atoms) are calculated as -66.42, -65.49 and -67.18 for O(1), O(2) and O(3).
The Madelung potential of O(3) is larger than those of the other oxygens.
In agreement with Gurr's interpretation, it is the obvious explanation for

the large Mulliken charge of O(3).
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Regarding B203-I, the near planar shape of the BO3 triangle and the
small Mulliken charges emphasize the partially covalent character, while
the distortion of the triangle and the larger Mulliken charge of O(3)
indicate the presence of some ionic character.

On the other hand, the average B-O distance for BO3-II is 1.475 A,
exactly that proposed by Zachariasen (1963) as an average tetrahedral B-O
distance. However, the tetrahedron is very distorted, with one short B-
O(1) distance of 1.373 A and three long B-O(2) distances of 1.507, 1.506 and
1.512 A. O(1) is two-fold coordinated, while O(2) is three-fold coordinated.

Prewitt and Shannon (1968) calculated electrostatic bond strengths
in B2O3-II using Zachariasen's table of bond strength versus B-O bond
length (Zachariasen 1963). The calculated net bond strength is 3.01
around B, 1.96 around O(1), and 2.03 around O(2). They concluded that
the distortions are necessary to balance the electrostatic charge in the
crystal.

When the Mulliken charges of the four different oxygens in B2O3-1I
(except in the case of minimal basis set) are compared, the charge of O(1)
is found to be much smaller than the others. It is also interesting to note
that the O-O distances of the four oxygens are almost same, although the
distance of B and O(1) is shorter than the others. This means that the
tetrahedral arrangement of the four oxygens is not very distorted; but
rather within the tetrahedron, B approaches to O(1). Therefore, it seems
reasonable to assume that the difference in coordination number around
oxygen chiefly changes B-O bond strength rather than the O-O repulsion
in the interatomic potential model for the system. To check whether the
distortion can be explained in terms of charge transfer between boron
and oxygen atoms, we performed lattice energy minimizations using a

simple rigid ion model. Such a model, which assigns the Mulliken
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charge to each atom, cannot, however, explain the short B-O(1) bond
length, because the B-O(1) distance becomes longer, if the charge of O(1) is
set to be smaller since the attraction between B and O(1) is reduced.
However, the other interpretation namely that B-B repulsion shortens
the B-O bond length is also possible. But the results of a perfect lattice
relaxation simulation, discussed in Chapter 5, show that the change in
the B-O bond strength can reproduce the detailed structure better than
can be achieved by changing the B-B repulsive term.

Next, the bond lengths in B2O3-I and B2O3-II are compared. As
Johnson et al (1982) pointed out, one short bond B-O(1) distance (1.373 A)
in BoO3-II (1.373 A) is close to the average B-O distance in BpO3-I (1.372
A) and in B2O3 glass (1.37A). The calculated Mulliken charges also show
that the charge of O(1) in B203-II (-0.708 with STO3-21G) is close to the
average oxygen charge in B2O3-I (-0.698 with STO3-21G). Regarding the
two B20O3 crystal structures, it is interesting to note that the coordination
number of boron around oxygen seems to affect the B-O distance much,
more than the coordination around the boron.

To sum up, B2O3-1I is more ionic than B2O3 -I, which is compatible
with the idea that a high-pressure form or high-coordination form is
generally thought to be more ionic. The difference in the Mulliken
charges agrees with Pauling's electrostatic valence sum rule in terms of
the explanation of the short B-O bond length in B2O3-II. This acquired
knowledge will be utilized in the development of interatomic potentials

in Chapter 5.
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basis set boron

3-21G 0.15
3-21G* 0.15, 0.60
6-21G 0.12
PS31G 0.21

Table 3.2. Reoptimized exponents of outer shell for B2O3-I and B2O3-11

B20O3-1

basis set B(1) B(2) o) 0(2) 0(3) E (a.u./B203)
boron/oxygen

STO-3G/3G  +0.664 +0.661 -0.439 -0.435 -0.451 -270.6795
3-21G/3-21G  +1.048 +1.046 -0.688 -0.685 -0.721 -272.8511
3-21G*/3-21G  +0.792 +0.693 -0.446 -0.473 -0.466 -272.9254
6-21G/6-21G  +1.010 +1.005 -0.661 -0.660 -0.694 -273.9886
PS31G/PS31G  +1.404 +1.405 -0.925 -0.925 -0.959 ----

B2O3-11

basis set B(1) o(1) 0(2) E(a.u./B203)
boron/oxygen

STO-3G/3G  +0.659 -0.488 -0.415 -270.7587
3-21G/3-21G +1.164 -0.708 -0.810 -272.8709
6-21G/6-21G  +1.128 -0.677 -0.790 -274.0111
PS31G/PS31G  +1.569 -0.947 -1.095 e

Table 3.3. Net Mulliken charges and total energies for B2O3-I and B2O3-1I
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B20O3-1 space group P31 (trigonal)
a=b=4339A,c=8340A

X y z

B(1) 0.2229 0.3926 -0.0198

Oo(1) 0.5468 0.3972 0.0

0(2) 0.1485 0.6004 0.0775

O(3) 0.0045 0.1608 -0.1291

B2O3-11 space group Ccm21 (orthorhombic)
X y z

B(1) 0.1646 0.1606 0.4335

O(1) 0. 0.3475 0.5

0(2) 0.2911 0.3698 0.5802

Table 3.4. Experimental lattice parameters and atomic parameters in
B203-I and B2O3-II (Gurr et al 1970; Prewitt et al 1968)
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B203-1 B03-11

Distances (A) Distances (A)

B(1)-O(1) 1.404 B(1)-O(1) 1.373
-0(2) 1.366 -0(2) 1.507
-0(3) 1.337 -0(2)' 1.506
B(2)-O(1) 1.336 -0(2") 1.512
-0(2) 1.400 0(1)-0(2) 2.364
-0(3) 1.384 -0(2) 2.440
0(1)-0(2) 2.387,2.388 -0(2") 2.409
0(2)-0O(3) 2.409,2333  O(2)-0(2") 2.428
0(3)-0(1) 2.309, 2.408 -0(2") 2.394
B(1)-B(2) 2.489,2.489, 0O(2")-0(2") 2.388
2.498 B(1)-B(1') 2.569
-B(1") 2.664
-B(1") 2.664
-B(1"™) 2.592

Angles (deg)
O(1)-B(1)-O(2) 119.0 O(1)-B(1)-0(2) 110.2
-0(3) 114.7 -0O(2) 115.8
0O(2)-B(1)-0O(3) 126.1 -O(2") 113.1
O(1)-B(2)-O(2) 121.5 0(2)-B(1)-0(2") 107.4
-0O(3) 124.6 -O(2") 104.9
0(2)-B(2)-O(3) 113.8 0O(2')-B-0O(2") 104.7
B(1)-O(1)-B(2) 130.5 B(1)-O(1)-B(1") 138.6
-O(2)-B(2) 128.3 -O(2)-B(1") 123.8
-0(3)-B(2) 133.4 -O(2")-B(1") 123.8
-0(2')-B(1"™") 118.7

Table 3.5. Interatomic distances and interbond angles for B2O3-I and
B203-1II (Gurr et al 1970; Prewitt et al 1968)
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B203-1 B203-I1

AE(a.u./B203) AE(a.u./B203)

1) (vivg)l/3

1.08 +0.05575

1.06 +0.03150

1.04 +0.01348

1.02 +0.00261

1.01 +0.00021 -0.00021

1.005 -0.00019 @ -0.00044 @

1.0 0 0

0.995 +0.00077 +0.00100

0.99 +0.00210 +0.00273

0.98 +0.00661

0.96 +0.02299

Table 3.6. Potential energies with different lattice parameters for B2O3-1
and B203-II (@ indicate the minimum point)
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2) alag
1.02
1.01
1.0
0.99
0.98

3) b/bg
1.04
1.02
1.01
1.0
0.99
0.98

4) c/cg
1.03
1.02
1.01
1.0
0.99
0.98

B203-1
AE(a.u./B203)

+0.00136

+0.00002
0 @

+0.00128

+0.00022

+0.00013

-0.00020 @
0

+0.00119

B203-11
AE(a.u./B203)

-0.00066
-0.00072 @
0
+0.00154
+0.00395

+0.01281
+0.00050
-0.00002 @
0
+0.00052
+0.00158

+0.00136
+0.00002

0 @
+0.00128

Table 3.6.(continued)

Potential energies with different lattice parameters
for B2O3-I and B2O3-II (@ indicate the minimum point)
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B203-1 AE (a.u./B203)
change of bond length (A) .
-10% -5% +5% +10%

R (B-O(3)) 1.337 +0.03754  +0.01590 +0.00166  +0.01341
R (B-O(1)) 1.404 +0.02061  +0.00318 +0.00823 +0.02614
R (B-O(2)) 1.366 +0.02740 +0.00685 +0.01691  +0.00406
change of bond angle (deg)

-10° -5° +5° +10°
£ 0O(1)-B-0O(3) 114.8 +0.00711  +0.02535
£ 0(2)-B-O(3) 126.1 +0.02398  +0.00326
£ O(1)-B-O(3) 114.8 +0.00702  +0.02985
Z 0O(2)-B-O(1) 119.0 +0.05140  +0.01452
Z 0O(2)-B-0O(3) 126.1 +0.00669  +0.03270
£ 0O(2)-B-0(1) 119.0 +0.01016  +0.03480
B20O3-11 AE (a.u./B203)
change of bond length (A)

-10% -5% +5% +10%
R (B-O(1)) 1.373 +0.00111 -0.00003
R (B-O(2)) 1.507 +0.01001  +0.00814
change of bond angle (deg)

-10° -5° +5° +10°
£ 0O(2)-B-0O(2)" 104.9 +0.00769
£ 0(2)-B-0(1) 110.2 +0.01064

Table 3.7. Potential energies with different internal coordinates for
B203-1 and B2O3-1I
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3.33 ALKALI BORATES

Only a minimal basis set was applied in the modelling of sodium
metaborate (NaBO2) (Fang 1938; Marezio et al 1963) and potassium
metaborate (KBO2) (Zachariasen 1937; Schneider and Carpenter 1970). It
is interesting to note that these isostructural compounds contain the
metaborate ion B3Og3- (see Figure 2.9). The interatomic distances are
shown in Table 3.8. The calculated Mulliken charges are shown in Figure
3.1 and 3.2.

In order to explain the observed deformation within the BO3
triangles (that is, the distance of B-O(1) outside the ring is longer than
that of B-O(2) in the ring), Zachariasen (1937) pointed out that in the
covalent interpretation B3Og3- has 'resonates' between three electronic
structures (one structure is stronger than the other two), while in the
ionic interpretation the repulsion between boron ions may be
responsible. Schneider and Carpenter (1970) used the interpretation of
Pauling (1945) that the fourth orbital of boron is used to form a double
bond formation.

From the Mulliken analysis, the charge on the oxygen outside the
ring (O1) is larger than that in the ring (O2). It seems reasonable to
assume that the charge transfer from the alkali atom to O(1) tightens the
B-O(1) bonding outside the ring rather than B-O(2) bonding inside the
ring. When the results on NaBO2 are compared with those on KBO2, we
can propose that the B-O(1) & bonding is strengthened while the B-O(2) &
bonding is weakened. It is also found that O(1)-O(2) distances are almost
the same in the two compounds, although the O(2)-O(2) distances are a
little different. The changes in boron-oxygen bonding seems to be able to
explain the features of these structures better than changes in the oxygen-

oxygen or boron-boron repulsion.
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The comparison of the Mulliken charges with those calculated for
the B2O3 crystals (Table 3.3) shows that the oxygen ions becomes more
ionic while the charges on the borons are reduced by the introduction of
the alkali metal oxide. The charges on the oxygens increase in the order:

B2O3-I < B203-I < alkali borates

However, some knowledge of the acid-base relationships in alkali
borate glasses suggested the following changes in the structure of the
borate lattice on increasing the alkali metal oxide content (see, for

example, Paul 1982):

2B(01/2)3 -> 2B(O1/2)¢” --> 2B(01,2)O"
N\ B AN
O O O (@)
AN N\ / AN
B— O —> B —> B—O"
O d O/ \O O/
J/ /

The order of the calculated Mulliken charges agrees with the above

models.
M=NaorK NaBO2 KBO2
Distances (A) Distances (A)

B-O(1) x1 1.280 1.331
B-O(2) x2 1.433 1.398
O(1)-0(2) x2 2.383 2.381
0(2)-0(2) x1 2.410 2.389
M-O(1) x1 2.461 2.849
M-0O(1) x2 2.474 2.801
M-O(1) x2 2.607 2.835
M-0(2) x2 2.482 2.775

Table 3.8. Interatomic distances in NaBO2 and KBO2 (Marezio et al 1963;
Schneider and Carpenter 1970)
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Figure 3.1 The net Mulliken charges in NaBO2

\
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+0.514 -0.468
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Figure 3.2 The net Mulliken Charges in KBO2
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3.34 ALKALINE-EARTH BORATES

We have used a minimal basis set to study a number of alkaline-
earth borates; Mg3(BO3)2 (Kotoito) (Effenberger and Pertlik 1984),
Mg2B205-1II (Takeuchi 1952), CaB204-1 (Marezio 1963) and AIMgBO4
(Fang and Newnham 1965; Hayward 1993). These compounds have
different structural units. They consist of discrete BO3, discrete B2Os5,
infinite BO3 chains and discrete BO4 units respectively. Their
interatomic distances are given in Table 3.9 and 3.10. The calculated
Mulliken charges are shown in Figure 3.4 to 3.6.

When the geometry of the BO3 unit in Mg3(BO3)2 is compared with
that in NaBO?, the difference in the B-O distances is small, but the
difference in the O-O distances is larger, that is, the BO3 triangle is more
distorted. The calculated Mulliken charges of the oxygens in Mg3(BO3)2
are larger than in B2O3-I and in the two alkali borates. This suggests that
this compound is more ionic. This appears to be reasonable when the
modifier oxide ratio is taken into account, MgO/B203 (mole ratio) is 3 in
Mg3(BO3)2, while Na2O/B203 or K2O/B203 is 1 in NaBO2 or KBO2.
Generally speaking, the larger the proportion of modifier oxide, the more
ionic the compound. The distortion of the BO3 triangle may be explained
using the ionic model from which we would expect that the shared edge
between the BO3 triangle and the MgOg octahedron is distorted.

For Mg2B205-1I, the MgO/B203 mole ratio is 2 and the charges of
the oxygen atoms are reduced a little, relative to Mg3(BO3)2. The
Mulliken charge of the bridging oxygen O(3) is smaller than the others,
because O(3) is coordinated by one magnesium atom, while the other
oxygens are coordinated with two or three magnesium atoms.

In CaB2O4-I crystal, the non-bridging B-O(1) distance (1.325 A) is
much shorter than the bridging B-O(2) distance (1.385 A) and the B-O(2')
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distance (1.401 A). The Mulliken analysis shows that the O(1) charge is
larger than the O(2) charge. Therefore, B-O(1) bonding may have double
bond character, as shown in the case of alkali borates. In common with
Mg3(BO3)2 we find that the BO3 triangle is distorted.

AlMgBO4 is made up of BO4 tetrahedra, AlOg octahedra and MgOg
octahedra. It is interesting to note that one B-O(2) distance is much larger
than the other B-O distances. Hayward (1993) concluded that the long B-O
bond length is due to the repulsion between boron and two
neighbouring aluminiums. However, another interpretation is also
possible when the analysis posed on the structures of B2O3 crystals are
taken into account, where the calculated oxygen charges are almost same.
The geometry suggests that charge is more easily transferred from Al and
Mg to O(2) than to O(1) or O(3). Therefore, in order to balance the oxygen
charges, B-O(1) or B-O(3) bonds may become stronger and shorter than B-
O(2) bonding.

Compared with B2O3 crystals, the alkaline-earth borates show some
ionic features, that is, not only is the B-O distance changed, but also the
BOg3 triangle or BO4 tetrahedra are distorted. Furthermore, as the
modifier oxide ratios increase, the Mulliken charges show higher
charges. This corresponds with the increasing tendency for the 'borate’
structural unit to become discrete unit as the number of non-bridging
oxygens increases. In the glass field, similar behaviour is observed when
the B-O network becomes depolymerized by the introduction of modifier

oxide.
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Mg(2) +0.966

02
-0.615

Mg(1) . ¢ B
. O - O ¢ 10.403 + T\
+0.945 /

/ 0(1) /

20611 0@) (~ |

Figure 3.3 The net Mulliken charge in M g3(B03)2

A Mg(2) 40.973

0(2) -0.605
0(4) -0.598 (2)
B(2) +0.468 B (1) +0.455
0(5) -0.607 0(1)-0.598

0(3) -0.508

Mg(l) +1.021

Figure 3.4 The net Mulliken charges in M g2B205-11
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Ca +0.783
0(2)-0.451

B+0.546

0(1) -0.487 0(2)

Figure 3.5 The net Mulliken charges in CaB204-1

0(2) -0.636
Mg +0.960
AL +1.150
B+0.411
\
\
0(3) -0.633
0(3)
0ch
\
-0.620

Figure 3.6 The net Mulliken charges in AIMgB04
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3.3.5 BORIC ACID CRYSTALS

Four crystal structures of boric acid have been determined. The first
is B(OH)3, orthoboric acid (Zachariasen 1934; Zachariasen 1954). It is built
up of B(OH)3 molecules ( Figure 3.3). The other three are HBO3,
metaboric acid. HBO?2-I consists of a three-dimensional network of BO4
tetrahedra (Zachariasen 1963); HBO2-II consists of infinite zigzag chains
[B304(OH)(OH2)]w (complex of BO3 group) (Zachariasen 1963); HBO2-III
consists of planar B3Og groups (Tazaki 1940; Peters and Milberg 1964). It is
interesting to note that B(OH)3 and HBO2-III have layer-type structures,
while HBO2-III is based on boroxol rings. The interatomic distances and
the Mulliken charges are shown in Table 3.11 to 3.12 and in Figure 3.7 to
3.10. Only the HBO2-I could not be simulated because of the restrictions
of the code related to the size of vectors and matrices.

B(OH)3 is similar to B2O3-I, except that B(OH)3 molecules are linked
together by hydrogen bonds. When we compare its Mulliken charges
with those of B2O3-I, B(OH)3 has larger oxygen charges. Therefore, it may
be said that hydrogen has the same role as alkali metals and alkaline-
earth metals as a electron donor.

HBO2-III is similar to NaBO2 or KBO2, with B-O distances outside
the ring shorter than those in the ring. The reason is that B-O bonding
outside the ring has a double bonding character, as in the case of alkali
borates.

HBO2-II has a more complex structure. O(5) and O(6) are a little
different from the other oxygens. They are connected to only one boron,
while the other oxygens are connected to two borons. O(5) is thought to
be the oxygen of a hydroxyl group and O(6) is thought to be the oxygen of
a water molecule (Zachariasen 1963). These features are compatible with

the largest oxygen charge in case of O(5) and a smallest oxygen charge in
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case of O(6) in the Mulliken analysis. However, as long as a minimal
basis set is employed, it is difficult to obtain more details.
To summarize, boric acid crystals have an ionic character which is

intermediate between these of B2O3 and alkali borates from the view

point of the effective charges given by the Mulliken population analysis.

B(OH)3 HBO-1
Distances (A) Distances (A)

B(1)-0O(1) 1.365 B-O(1) 1.436

B(1)-O(2) 1.365 B-O(1") 1.465

B(1)-0O(3) 1.365 B-O(2) 1.505

B(2)-O(4) 1.365 B-O(2") 1.482

B(2)-O(5) 1.353 O(1)-0O(1") 2.413

B(2)-O(6) 1.359 O(1)-0(2) 2.431

O(1)-0(2) 2.351 0O(1)-0(2") 2.360

O(2)-0(3) 2.359 0O(1')-0(2) 2.381

0O(3)-0(1) 2.366 O(1)-0(2") 2.421

0O4)-0(5) 2.339 0(2)-0(2") 2.412

O(5)-0(6) 2.360 H...O(1) 1.43

O(6)-0(4) 2.362 H-O(2") 1.06

O(1)-H(1) 0.83 O(1)...H-0(2") 2.487

0O(2)-H(2) 0.96

O(3)-H(3) 0.90

O(4)-H(4) 0.83

O(5)-H(5) 0.80

O(6)-H(6) 0.96

O(1)-H(1)...0(5) 2.727

0(2)-H(2)...0(4) 2.716

O(3)-H(3)...0(6) 2.715

0O(4)-H(4)...0(3) 2.722

O(5)-H(5)...0(2) 2.734

O(6)-H(6)...0(1) 2.707

Table 3.11. Interatomic distances in B(OH)3 and HBO2-I (Zachariasen
1954,1963)
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HBO-II

B(1)-O(1)
B(1)-O(2)
B(1)-O(3)
B(2)-O(3)
B(2)-O(4)
B(2)-O(5)
B(3)-O(1")
B(3)-0(2)
B(3)-O(4)
B(3)-O(6)
0(1)-0(2)
0(2)-0(3)
O(1)-0(3)
0(3)-0(4)
0(3)-0(5)
0(4)-0(5)
0(11)-0(6)
0(1')-0(2)
O(1')-O(4)
0(2)-0(4)
0(2)-0(6)
O(4)-0O(6)
H(1)-O(6)
H(1)...0(5)
O(6)-H(1)...0(5)
H(2)-O(5)
H(2)...0(4)
O(5)-H(2)...0(4)
H(3)-0(6)
H(3)-0(2)
O(6)-H(3)...0(2)

Distances (A)
1.345
1.371
1.386
1.378
1.354
1.366
1.433
1.452
1.451
1.553
2.335
2.392
2.380
2.378
2.350
2.368
2.423
2.449
2.333
2.423
2.386
2.325
0.87
1.84
2.676
0.89
1.80
2.685
1.10
1.57
2.683

HBO-11I

B(1)-O(2)
B(1)-O(4)
B(2)-O(2)
B(2)-O(5)
B(3)-O(4)
B(3)-O(5)
B(1)-O(1)
B(2)-O(3)
B(3)-O(6)
O(1)-O(4)
O(1)-0(2)
0(2)-0(4)
0(3)-0(2)
0(2)-0(5)
0(6)-0(4)
0(6)-O(5)
O(4)-O(5)
O(1)-H(1)
O(3)-H(2)
O(6)-H(3)
O(3)-H(2)...0(1)
O(6)-H(3)...0(3)
O(1)-H(1)...0(6)
O(1)...H(2)
0O(3)...H(3)
O(6)...H(1)

Distances (A)

1.373
1.377
1.391
1.353
1.372
1.372
1.351
1.367
1.347
2.376
2.340
2.385
2.410
2.384
2.381
2.335
2.367
0.90

0.80

0.92

2.680
2.748
2.827
1.88

1.88

1.91

(in-ring)
(in-ring)
(in-ring)
(in-ring)
(in-ring)
(in-ring)

(in-layer)
(in-layer)
(in-layer)
(in-layer)
(in-layer)
(in-layer)

Table 3.12. Interatomic distances in HBO2-II and HBO2-III (Zachariasen
1963; Peters and Milberg 1964)
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H(5) +0.314
0(6) -0.433

0(5) -0.471
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H(6) +0.257 (2)+0.599 O\ 0(1) -0.508
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Figure 3.7 The net Mulliken charges in B(OH)3
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Figure 3.8 The crystal structure of HBO2-|
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H(1) +0.355
0
AN 0(6) -0.420
\' \
o) A 53 H(3) +0.320
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Figure 3.9 The net Mulliken charges in HBO2-I
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Figure 3.10 The net Mulliken charges in HBO2-lll
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34 CONCLUSION

The following general features concerning the structure and
bonding in borate crystals have been suggested by the quantum-chemical

calculations reported in this chapter.

i.  When borate crystal include modifier oxide (alkali, alkaline-
earth or water), they show a variety of structural units Generally
speaking, as the content of modifier oxide increases the oxygen charges
become more ionic.

ii. When the 'borate' structural unit is a BO3 triangle, it shows
some covalent character, especially when charge is transferred from
modifier cations to oxygens; B-O bonding of non-bridging oxygens can be
assumed to be strengthened. In other words, it has a double bonding
character. It is interesting to find that the 'floppy' boron moves rather
than the oxygen frame being distorted. This trend is not noticeable in
silicates.

iii. When the ' borate' structural unit is a BO4 tetrahedron, it
shows some ionic character. The tetrahedron is often distorted, because
its edges are shared with the other polyhedra. On the other hand, one B-
O distance often becomes longer or shorter than the other B-O distances.
Pauling's electrostatic valence sum rule or the distortion of the shared

edge between different polygons can explain this phenomena.

This variety of structure and bonding in borates may suggest a
possibility for other polymorphs of B2O3 crystal and also the existence of
boroxol ring in B2O3 glasses. The knowledge obtained from this analysis
will be utilized in developing interatomic potential models discussed in

Chapter 5 and 6.
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CHAPTER 4 BORON TRIOXIDE AS CRYSTALLINE SOLID

... a solid state physicist’s view

4.1 INTRODUCTION

Neither form of crystalline boron trioxide occurs naturally.
Furthermore, it is not easy even under special conditions to prepare
crystals and measure their properties. In such cases computer
simulations can play a important role in determining the structural and
physical properties. This is because advances in the state of electronic
structure calculations make it possible to calculate total energies with
high accuracy and computer simulations from first-principles are now
possible. These computer simulation techniques are currently used to
study not only static but also dynamical structures in both the crystalline
and amorphous states, although there are still considerable limitations
on the size of system (e.g. the number of independent atoms in unit cell)
that can be studied because of the constants imposed by computer
resources.

In this chapter we discuss how the structures and bulk moduli of
B203 crystals have been determined employing the LDF electronic
structure methods rather than the Hartree-Fock techniques described in
Chapter 3. Calculations were performed employing the code CASTEP
(Payne et al 1992), which is a powerful program code for total energy
pseudopotential calculation. CASTEP has two distinctive features: one is
that the internal coordinates can be automatically relaxed so that the
structure with the minimum total energy is obtained; the other is that it
has the option of ab-initio Molecular Dynamics simulation (Car and
Parrinello 1985), although this was not applied to B2O3, as it would have

required an enormous amount of computer resources.
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First, we explain the contrast between the theoretical approaches
adopted in this chapter compared with the quantum-chemical method,
described in Chapter 3. Next, we apply the LDF techniques to optimizing
the lattice parameters and internal coordinates of B2O3. After their
optimized structures of both phases have been identified, the total
energies of several points with different cell volumes are calculated and
bulk moduli are estimated for subsequent use in the development of
interatomic potentials for B2O3 crystals and glasses as discussed in
Chapter 5 and 6. Furthermore, the results of these calculations provide
the first suggestion of an important mechanism for structural

transformation between B2O3 polymorphs.
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4.2 THEORETICAL METHOD

CASTEP (Payne et al 1992) is a powerful tool for calculating the
quantum mechanical total energy and then minimizing it with respect to
its electronic and nuclear coordinates. Compared with the quantum-

chemical method, CASTEP uses three distinctly different approaches;

i. Density functional theory (Hohenberg and Kohn 1964) and local
density approximation (LDA) (Kohn and Sham 1965) are employed to
model the electron-electron interactions. The difference in formulation
between Hartree-Fock (HF) theory and density functional theory (DFT) is

shown as follows (see, for example, Wimmer 1991):

DFT
E=E[p,R] (4.1)
E =T(p] + Ulp] + Exclp] (4.2)
p(r) = Xoce | Wi(r) 12 (4.3)
0E /dp=0 (44)
[-1/2V2 + V(r) + pxc(r)] Wi = €ivi (4.5)

HF
E=E[yR] (4.6)
E = [ y*[Sihi + Zisj1/ijly 81 @7
v = ly(1),y(2),...,yn)] (4.8)
JE /oy =0 (4.9)
[-1/2V2 + V() + pix(r)] i = &iyi (4.10)

where E is total energy, y is wave vector, p is electron density, R or r is
coordinate for nucleus or electron, h is hamiltonian, T is kinetic energy,

U is electrostatic or Coulomb energy term, pxc or ix is a many-body term

or exchange term and ¢ is the eigenvalue.
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The biggest difference between the two theories is in the term pxc or
ix. In HF theory the exchange term px only describes exchange effects
and is calculated from all the wavefunctions based on the orbitals.
wix(r) = -3 8(o,0j) x
Dy @) 1/ 1r-r'/ Wi wi)dr'] / [y wi)] (4.11)
where 6 is the spin.
On the other hand, in DFT theory pxc contains all the many-body

effects and it is calculated from the total electron density.

Hxc(r) = 8Exclp] / dp(r) (4.12)
Further, LDA provides a good approximation,
Exclp] =/ p()exclp(®)ldr (4.13)

where exc[p] is the exchange-correlation energy per electron in an
interacting electron system of constant density p, and
Hxc(r) = exclp(r)] + p(x) {8Exc[p(r)] / dp(r)} (4.14)
This approximation is generally known to yield only small
percentage error both in the total energy and in the structural
parameters. However, cohesive energies can be in error by more than

10%.

ii. Pseudopotential theory (Phillips 1958; Heine and Cohen 1970) is
used to model the electron-ion interactions. The strong electron-nuclear
potential is replaced by a much weaker pseudopotential, and plane waves
are used as basis functions to approximate the potential outside the core
region. This pseudopotential technique makes the solution of
Schrodinger's equations much simpler. The important point is that the
selection of the pseudopotential is as crucial as the selection of the basis
set in the quantum-chemical calculation. Lin et al (1993) have developed

an efficient and general procedure to generate optimized and transferable
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non-local separable ab-initio pseudopotentials. Another point is that the
cut-off energy, i.e. the number of plane waves, has to be large enough s0
that the total energy is converged. For oxides a larger number of plane
waves are necessary than in semiconductors, to express the complex

charge density distribution.

iii. The counterpart to the SCF (self-consistent field) method in the
quantum-chemical terms is the use of the conjugate gradients technique,
i.e. one of the new iterative diagonalization approaches (Car and
Parrinello 1985; Payne et al 1986; Gilan 1989; Teter et al 1989), is employed
to relax electronic coordinates. It provides an efficient method to
minimize the Kohn-Sham energy functional for large systems and it is

applicable to oxide materials.
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4.3 STRUCTURAL SIMULATION FROM FIRST-PRINCIPLES

4.3.1 SELECTION OF MODEL

The pseudopotentials for boron (BOO potential*) and oxygen (0020
potential*) were generated using Lin's scheme (Lin et al 1993) by Lee (Lee
1992) in the Cavendish laboratory. For both crystal structures of B2O3, the
same cut-off energy of 500 eV for the plane wave basis set was used to
achieve a reasonable convergence of the total energy. The number of
plane waves used was 3459 for the B2O3-I system (15 atoms) and 1890 for
B203-1II (10 atoms).

The other important factor is the k-point sampling. The Bloch
theorem changes the problem of calculating an infinite number of
electronic wavefunctions to calculating a finite number of electronic
wavefunctions at an infinite number of k-points. However, it is possible
to represent the electronic wavefunctions over a region of k-space by the
wavefunctions at a single k-point. Several methods (Chadi and Cohen
1973; Monkhorst and Pack 1976) have been devised for obtaining an
accurate approximation for the total energy with a very small number of
k-points. Generally speaking, the denser the set of k-points sampled, the
more accurate is the result. However, both the unit-cells for B2O3 crystals
are too large for the calculation with multi k-points. Therefore, several
single k-points were investigated, and among them the single k-point,
which gives the smallest cell stress and internal force, was selected. The
resulting k-point was (1/3, 1/3, 1/4) for B2O3-I and (1/4, 1/4, 1/4) for_
B203-1I. This difference results from the difference in crystal symmetry

between the two polymorphs. (see Section 2.1 and Table 3.4).

* These pseudo potentials are catalogued in the data base of the Cavendish

laboratory.
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4.3.2 OPTIMIZATION OF STRUCTURE

At first, the relation between cell volume and total energy was
calculated under the condition that the internal coordinates remained
fixed (see Table 4.1). When the optimized structure (i.e. the structure
with minimum total energy) is compared with experiment, the error in
the lattice constant is -2.0% for B2O3-I and -2.5% for B2O3-II. The error in
volume is converted into -5.9% for B2O3-I and -7.3% for B2O3-II. This
result is satisfactory, considering that a common pseudopotential set for
boron and oxygen was used for both polymorphs, and only one k-point
was sampled.

As the second step, internal coordinates were relaxed, with the
constraint that the optimized cell parameters remain fixed. The final
total energies, bond lengths and angles are shown in Tables 4.2 and 4.3.

As for crystal stability between two polymorphs, the total energy of
B20O3-1II is lower than that of B2O3-I, regardless of the relaxation of
internal coordinates. CRYSTAL calculations also show the same result
(see Table 3.3). However, the phase diagram of B2O3 system shown in
Table 2.1 suggests that B2O3-I is more stable than B2O3-II under ambient
conditions. Maybe more sophisticated calculations are required in order
to reproduce the small difference in total energy in either method.
CRYSTAL calculations need better basis set as Nada et al (1990) showed
for quartz and stishovite. On the other hand, CASTEP calculations may
need more dense set of k-points sampling and higher cut-off energy.
Entropic factors may also be significant.

When the calculated bond lengths and bond angles are compared
with the experimental values, the errors in the bond lengths and bond
angles are within 0.055A and 3.5°. Both calculated structures reproduce

the corresponding experimental structures well. It is interesting to note
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the change of the B(1)-O(1) bond length in B2O3-II. In the CRYSTAL
calculations the B(1)-O(1) bond is elongated by 10% with the constraint
that all the other atomic positions are fixed. On the other hand, the B(1)-
O(1) bond is shortened by 4% in the same manner as the other B-O bonds
when all the atomic positioned are relaxed. Therefore, the full relaxation
of internal coordinates is almost certainly important for discussing the

detailed structure.

4.3.3 ESTIMATION OF BULK MODULUS

As discussed in Chapter 5, to construct an interatomic potential
model from empirical sources, we need not only structural data but also
data on other properties, for example, bulk moduli, elastic constants and
phonon dispersion curves. However, there is no such data available for
either crystal. Therefore, an estimation of the bulk modulus was
obtained using the total energy calculation technique. The procedure
used was based on Murnaghan's equation (Murnaghan 1944). Several
values for the total energy as a function of cell volume were fitted using
least square technique to Murnaghan's equation (Yin and Cohen 1982);

Etot (V) = BoV/Bo' [(Vo/V)B0'/(Bo'-1) +1] + const (4.15)
where Bo and Bo' are the bulk modulus and its pressure derivative at the
equilibrium volume Vo; both By and By' were fitted.

As each calculation of ionic relaxation requires a large amount of
CPU time, only six points were calculated for either polymorph. The cell
volume was isotropically varied and then internal coordinates relaxed in
each case. The relation between the cell volumes and the corresponding
total energies is shown in Table 4.4. The calculated bulk moduli and the

curve fitted to Murnaghan's equation are shown in Table 4.5 and Figure
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4.1. The estimated bulk modulus is 26 [GPa] for B2O3-I and 126 [GPa] for
B20O3-I1.

An alternative approach to determining the bulk modulus K(=Bo)
comes by employing the empirical equation between the density and the

bulk modulus (see, for example, Poirier 1991).

Vg =-1.75 + 2.36p (4.16)
and

Vo =V (K/p) (4.17)
then

v (K/p) =-1.75 + 2.36p (4.18)

where Vg is velocity propagating the material and p is the density of the
material. The estimated values are shown in Table 4.5.

There are considerable difference between the results of the two
methods. The prediction of the bulk modulus or elastic constant is
generally more difficult than that of lattice constants, and it is also very
difficult to evaluate the error of these estimations. For the CASTEP
calculation, the cell volume is only varied isotropically. Furthermore, a
higher cutoff energy, a more dense set of k-points would improve its
accuracy. For the empirical equation detailed structural information is
not taken into consideration. However, these estimated values, even if
they are rough, are very useful for constraining the interatomic

potentials in Chapter 5 and 6.

4.3.4 STRUCTURAL TRANSFORMATION

The manner of ionic relaxation under different cell volumes can be
used as one of methods of studying the structural transformation.

The optimized cell volume was changed by -40, -20, +10, +20, +30%,
+70% and +100% for B2O3-I, and changed by -40, -20, +10, +20 and +30%
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for B2O3-II. Their relaxed bond lengths and angles are summarized in
Tables 4.6 and 4.7.
The structural features in B2O3-I are discussed for three ranges of

the cell volume as follows.

i. relative cell volume = 0.80 ~ 1.30

For the initial configuration all the B-O bond lengths are varied in
the same proportion as the cell volume change. After optimization the
inter-triangle angles (O-B-O) do not change much, but the connecting
angles (B-O-B) change considerably. The shape of the BO3 triangle does
not change much. Moreover, the B-O bonds expand by 5%, so that they
come loose to the uncompressed values. The change in volume is
accommodated largely by the change in the B-O-B connecting angles.
Among the contributions to the volume change, the change in the B-O
bond lengths contributes 28%, while the change in the connecting angles
contributes 72%. Therefore, near the stable structure, the change in the B-

O-B connecting angles dominates the deformation of the structure.

ii. relative cell volume = 0.60

The most interesting result is that the BO3 triangle structural unit
in the 60% cell volume turns into a BO4 tetrahedron. This corresponds
to a pressure-induced phase transition. Although the original cell is only
isotropically compressed and the final structure is not completely the
same as B2O3-II, it agrees with the phase diagram in that the four-fold
BO4 structural unit is more stable than three-fold BO3 structural unit at
high pressure (see Figure 2.1).

In the case of BoO3-II, the structure at 130% volume does not

exactly show the reverse structural transformation, but it shows the
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fourth B-O bond becoming much larger than the other B-O bonds.
Therefore, this suggests that this transformation is probably reversible at
zero Kelvin. On the other hand, it is interesting to note that no
transformation from B20O3-II to B2O3-I has been ever observed
(Uhlmann et al 1967). This fact suggests that entropic factors may affect
such transformation considerably.

We now consider the manner of the transformation. We note first
that it was found that the original structure of B2O3-I is not far from that
of B2O3-II. When the B-O bond length is assumed to be within 1.51A in
B203-1I, that is, only the first three shortest B-O distances participate in
the B-O bonding, all boron atoms become 3-fold coordinated and all the
oxygen atoms become 2-fold coordinated. These coordination numbers
are the same as for B2O3-I. Conversely, when B-O bonding is assumed to
be within 2.7A in B2O3-1, that is, the first four shortest B-O distances
participate in B-O bonding, all the boron atoms become 4-fold coordinate,
and one-third of the oxygen atoms become 2-fold coordinated and the
remaining two-third become 3-fold coordinated. These coordination
numbers are the same as for B2O3-II. It is interesting that Berger's data
(1952,1953) which was shown by Strong and Kaplow (1968), and by Gurr
et al (1970) to be incorrect (see Section 2.1), has the same distribution of
coordination numbers if the cut-off in the B-O bonding is assumed to be
1.8A. Therefore, Berger's data is not far from those of the other two
authors, although Berger concluded that B203-I consists of BO4
tetrahedra.

With this background we can explain the observed manner of the
transformation in B2O3-I as follows. As its cell volume is reduced, the
O(1) or O(2) atom approaches the third new boron atom, B(2') or B(1'),

which lies on the other ribbon, and the oxygen and boron atoms start to

91



bond. However, the O(3) atom, which cross-links the different ribbons of
the BO3 triangle, keeps its coordination. The change in the B-O bond
distances are shown in Figure 4.2. The pattern of the structural
transformation is shown in Figure 4.3 (see also the crystal structure in
Figure 2.2).

The B-O coordination number changes from three to four smoothly
without breaking any B-O bonds. It is interesting to note that Tsuneyuki
(1990) also observed the smooth structural transformation from SiO4
tetrahedron into SiOg octahedron in his MD study.

What is the driving force for this transformation? It is useful to
analyze the individual energy contributions to the total energy, as was
shown by Yin and Cohen (1982). These are shown in Table 4.8, and
Figures 4.4 and 4.5. The contribution of the Coulombic energy (Ec) is
much larger than that of the others. When the cell volume is reduced,
the Coulombic energy is also reduced, since as is well known this
Coulombic energy favours high coordination. On the other hand, when
the cell volume increases, the electronic kinetic energy (Ek), the electron-
electron Coulomb energy (Eh) and nonlocal pseudopotential energy (Enl)
are reduced. This means that in the lower coordination state the valence
electrons prefer to be uniformly distributed and to generate covalent
bonding. Finally, on comparing all the contributions the Coulombic

contribution is judged to be the driving force for this transformation.

iii. relative cell volume = 2.0

The 170% cell volume corresponds to the volume in the 1500K
molten state. However, even in the case of 200% cell volume, the
structure still keeps the same structural units and the boroxol ring is not

observed. It is interesting to note that one of the longest B-O bonds is
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elongated, while the other two bonds begin to be shortened. Although
the longest bond is still thought not to be broken, its bonding is
weakened and the other two bonds are strengthened. This means that
the bonding state is changing from three-fold into two-fold coordination.
This feature may simulate some features of the molten state.

The well-known thermodynamic theorem is that the phase
transformation should occur when the Gibbs free energy,

G =E+PV-TS (4.19)
becomes equal between the two phases. These total energy calculations at
zero-temperature shows that the structural transformation between
three-fold and four-fold coordination occurs due to the PV term. On the
other hand, the fact that no boroxol-ring is observed during the
calculations, although they have some restrictions (e.g. cell shape,
number of atoms), may show that entropy effects may be important for

the structural transformation into the real vitreous structure.
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44 CONCLUSION

The application of first-principles total energy calculations to BpO3
has given the following important results:

i. A common set of pseudopotentials for boron and oxygen can
reproduce two different crystal structures (B2O3-I and B2O3-1I) very well.
With this pseudopotential, not only lattice parameters but also internal
coordinates are well modelled.

ii. The bulk modulus is estimated as 26 [GPa] for B2O3-I and 126
[GPa] for BoO3-11.

ili. When the cell volume is reduced, the structural transformation
from the BO3 triangular structural unit into the BO4 tetrahedral unit is
observed. The manner of its transformation has also been elucidated.

The CASTEP program can be used for MD. In the near future, the
structure of a large system, that is a super cell of a disordered system, will
be performed. At the moment the feasible number of atoms would be
50~60 and it seems that it would be difficult to reproduce realistically the
vitreous structure. However, the observed phenomenon that boron
trioxide prefers the vitreous to the crystal structures suggests that the
first-principles simulation, even if the number of atoms is not big, may
reproduce the structural unit of glass, if the TS term in the Gibbs free

energy is taken into account.
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B203-1

v/ vO)**l/ 3 total energy (eV/0.2B203)
1.005 -288.568

1.0 -288.578

0.995 -288.585

0.990 -288.593

0.985 -288.594

0.980 -288.595

0.975 -288.591

B203-11

(v/v0)+1/3 total energy (eV/0.2B203)
1.0 -288.625

0.99 -288.644

0.98 -288.651

0.975 -288.652

0.97 -288.647

Table 4.1. Relation between cell volume and calculated total energy in
B203-1 and B2O3-11

El (eV/0.2B203) E2(eV/0.2B203) E2-E1(eV/0.2B203)
before relaxation after relaxation difference

B2O3-1 -288.595 -288.612 -0.017

B20O3-1I -288.652 -288.716 -0.020

Table 4.2. Effect of cell volume on total energy
(v/v0)**1/3 = 0.980 or 0.975 for BpO3-I or BpO3-II
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B203-1 B203-11

Distances (A) experiment calculation experiment
calculation
B(1)-O(1) 1.404 1.354 B(1)-0O(1) 1.373 1.358
-0(2) 1.366 1.329 -0(2) 1.507 1.461
-O(3) 1.336 1.338 -0O(2) 1.506 1.451
B(2)-O(1) 1.336 1.329 -O(2") 1.512 1.507
-O(2) 1.400 1.355 0(1)-0(2) 2.364 2.313
-0O(3") 1.384 1.337 -0(2) 2.440 2.365
0(1)-0(2) 2.387 2.327 02"  2.409 2.408
2.388 2.329 0(2)-0(2") 2.428 2.366
0(2)-0(3) 2.409 2.331 02"  2.3% 2.351
2.333 2.284 0(2)-0(2") 2.389 2.350
0O(3)-0(1) 2.309 2.285
2.409 2.343
Angles (deg)
O-B(1)-O 119.0 120.3 O-B(1)-O 110.2 110.2
114.7 116.2 115.8 114.6
126.2 122.8 113.1 113.7
0-B(2)-O 121.5 120.4 107.4 108.7
124.6 123.0 104.9 104.3
113.9 116.1 104.7 104.7
B-O(1)-B 130.5 131.2 B-O(1)-B 138.6 135.1
128.3 131.2 -O(2)- 123.8 121.2
133.3 133.5 -0O(2')- 114.7 115.7
-O(2")- 118.9 118.9

Table 4.3. comparison of bond lengths and angles between experimental
structures and calculated structures in BpO3-I and B2O3-11
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B203-1 B203-11

volume ratio total energy  difference total energy  difference
(eV/0.2B203) (eV/0.2B203)

0.6 -288.13 +0.48 -287.62 +1.05

0.8 -288.49 +0.12 -288.53 +0.14

1.0 -288.61 10 -288.67 10

11 -288.60 +0.01 -288.62 +0.05

1.2 -288.55 +0.02 -288.50 +0.17

1.3 -288.47 +0.14 -288.37 +0.30

Table 4.4. Relation between cell volume and total energy in B2O3-I and

B203 -II (Each relative cell volume is the ratio to the corresponding optimized cell

volume.)

B203-1(1) B203-11 (2) Glass (3)
density (g/cm3) 2.56 3.11 1.84~1.91
bulk modulus
(GPa)

CASTEP 26 126 ---
empirical T 47 97 15
experiment --- --- 15

Table 4.5. Experimental density and calculated bulk moduli in B2O3-I
and B2O3 -II (1: Gurr et al 1970; 2: Prewitt et al 1968; 3: Mazurin 1983)
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volume ratio 060 080 100 110 120 130 170 2.00
lattice ratio 084 093 1.00 1.03 1.06 109 119 126

exp. cal. cal. cal. cal. cal. cal. cal. cal.

distance (A)

B(1)-O(1) 1404 1340 1319 1354 1379 1.407 1439 1535 1.655
-02) 1.366 1.387 1315 1329 1343 1357 1370 1.387 1.368
-0(3) 1.336 1290 1308 1338 1355 1.372 1389 1.399 1.380
-0(2) 2616 1422 2099 2524 2670 2807 2931 --- ---

B(2)-0O(1) 1.336 1338 1314 1329 1344 1358 1.371 1.390 1.368
-0(2) 1400 1340 1320 1355 1379 1.407 1440 1542 1.656
-0(3") 1.384 1289 1.305 1337 1354 1371 1.388 1.398 1.379
-O(1") 2636 1423 2119 2529 2675 2812 2935 --- ---

0(1)-0(2) 2387 2175 2252 2327 2371 2414 2457 2606 2727

2388 2176 2254 2329 2372 2417 2460 2618 2727

0(2)-0(3) 2409 2271 2332 2331 2346 2414 2457 2.373 2.387

2333 2034 2184 2284 2337 2388 2439 2503 2503
0(3)-0(1) 2309 2.030 2184 2285 2339 2372 2441 2504 2.502

2409 2273 2335 2343 2347 2358 2370 2375 2387
angle (deg)

O-B(1)-O 119.0 105.8 1175 1204 121.1 121.7 1220 1261 1287

1147 1011 1125 1162 1177 1186 1194 1170 110.7

1262 1161 1256 122.8 1208 119.5 1185 1168 120.6

O-B(2)-O 121.5 105.8 117.7 1204 121.2 121.8 1222 1264 128.6
1246 1163 1261 123.0 1209 1195 1184 1169 120.6

1139 101.3 1126 1163 1176 1185 1192 1167 110.8

B-O(1)-B 1305 1161 1224 131.2 1345 1374 1397 1494 1527
-O(2)- 1283 1163 1224 131.2 1345 1372 139.1 1492 1528
-O(3)- 1333 1104 1270 1335 1358 1372 1392 139.1 1385

Table 4.6. Comparison of bond lengths and angles at different cell
volumes in B2O3-1 (Relative cell volume is the ratio to the optimized cell volume.)
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volume ratio 0.60 0.80 1.00 1.10 1.20 1.30
lattice ratio 0.84 0.93 1.00 1.03 1.06 1.09

exp. cal. cal. cal. cal. cal. cal

distance (A)

B(1)-O(1) 1.373 1274 1328 1358 1376 139 1416
-0(2) 1507 1.335 1.406 1.461 1498 1535 1.561
-O(2) 1506 1314 1390 1.451 1.484 1517 1.542
-O(2") 1512 1367 1.447 1507 1568 1.636 1.725

0O(1)-0(2) 2364 2142 2234 2313 2376 2446 2507
-0O(2) 2440 2202 2305 2365 2402 2450 2.499

-O(2") 2409 2205 2319 2408 2464 2530 2.604

0O(2)-0(2") 2428 2125 2257 2366 2428 2489 2539

-O(2") 2394 2179 2281 2351 2403 2466 2.525

O(2)-0(2")y 2.389 2.080 2230 2350 2415 2489 2567

angle (deg)

O-B(1)-O 1102 1104 109.6 1102 1115 113.0 114.6

115.8 1166 1159 1146 1142 1145 1153
113.1 1117 1133 1137 1135 1128 1116
107.4 106.7 107.6 108.7 109.0 107.7 109.9
1049 1075 1062 1043 103.3 1021 1004
104.7 101.8 103.6 1047 1046 1042 103.5

B-O(1)-B 138.6 1045 1176 1351 141.7 1454 1489
-0O(2)- 123.8 1121 117.0 121.2 1215 121.8 1194
-0O(2')- 114.7 1111 1143 1157 1157 1158 1160

-O(2")- 1189 1071 1132 1189 1204 1216 1232

Table 4.7. Comparison of bond lengths and angles at different cell
volumes in B2O3-II (Relative cell volume is the ratio to the optimized cell volume.)
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B203-1 (eV/0.2B203)

volume ratio 0.6 0.8 1.0 1.1 1.2 1.3 1.7
total kinetic energy =~ 19859 191.88 188.16 186.50 184.97 183.55 181.17
local pot. energy -236.58 -248.47 -256.40 -258.88 -260.76 -262.17 -268.29
nonlocal pot. energy ~ 45.40 45.86 46.13 46.36 46.61 46.86 47.22
Hartree energy -54.11 -7022 -85.73 -92.32 -98.17 -103.33 -127.12
exchange-correlation 22.09 21.53 21.22 21.08 20.95 20.83 20.61
Coulombic energy -267.22 -231.86 -204.20 -193.35 -184.01 -175.91 -143.09
pseudopot. core energy 3.70 2.78 222 2.02 1.85 1.71 1.31
total energy -288.13 -288.49 -288.61 -288.60 -288.55 -288.47 -288.19
B203-1I (eV/0.2B203)

volume ratio 0.6 0.8 1.0 1.1 1.2 1.3

total kinetic energy ~ 203.57 193.86 188.83 186.31 183.73 181.58

local pot. energy -225.78 -237.79 -246.26 -248.38 -249.56 -250.61
nonlocal pot. energy ~ 45.65 46.28 46.74 47.10 47.52 47.87

Hartree energy -40.48 -56.04 -72.61 -7834 -82.09 -85.45
exchange-correlation  22.53 21.79 21.36 21.16 20.94 20.76
Coulombic energy -297.72 -260.06 -229.47 -218.96 -211.36 -204.63
pseudopot. core energy 4.58 3.434 2.75 2.50 2.29 211

total energy -287.62 -288.53 -288.67 -288.62 -288.50 -288.37

Table 4.8.

Comparison of various contributions to the total energy in

B203-I and B2O3-II (Relative cell volume is the ratio to the optimized cell volume.)
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total energy (eV/0.2B203)

-287.0 1
] B203-I

-287.5 7 B203-1I

-288.0 7

-288.5 ] —

'289-0 v L) T Y T

0.4 0.6 0.8 1.0 1.2 1.4 1.6

relative cell volume

Figure 4.1. Calculated "Murnaghan" curve for B2O3-I and B20O3-1I
(The relative cell volume is the ratio to the optimized B2O3-I cell volume.)
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Figure 4.2. Relation between the cell volume and B-O bond length in
B203-1
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(a) relative cell volume = 1.0 (BO3 structural unit)

(b) relative cell volume = 0.6 (BO4 structural unit)

Figure 4.3. Schematic diagram for structural transformation
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energy (eV/0.2B203)
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Figure 4.4. Various energy contributions to the total energy in B2O3-I
(Ek = total kinetic energy; El = local psedopotential energy; Enl = non-local pseudopotential

energy; Eh = Hartree energy; Eexcor = exchange-correlation energy correction; Ec =

Coulombic energy; Ecore = core energy)
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Figure 4.5. Various energy contributions to the total energy in B2O3-II

(Ek = total kinetic energy; El = local psedopotential energy; Enl = non-local pseudopotential

energy; Eh = Hartree energy; Eexcor = exchange-correlation energy correction; Ec =

Coulombic energy; Ecore = core energy)

103



CHAPTER 5 COMPUTER MODELLING OF CRYSTALLINE B203

5.1 INTRODUCTION

Several interatomic potentials have been reported for the study of
vitreous structures of B2O3. However, no attempts have been made to
model the crystal structures of B2O3. The consistent philosophy in this
thesis is that crystal structures have much information on bonding and
that it is necessary to derive such interatomic potentials that reproduce
several different crystal structures before proceeding to model vitreous
materials.

First, we review the field of atomistic simulation techniques and
interatomic potential models, with an emphasis on the difference
between them and the quantum-mechanical techniques discussed in
Chapter 3 and 4. Next, in order to overcome the difficulties in deriving
interatomic potentials, a new deriving procedure known as the LP
fitting method is developed. The newly derived potentials obtained
using the LP fitting method are applied to the two crystal structures of
B203 and are then compared with the potentials previously reported for
vitreous B20O3 by the other authors. Finally, the new potentials are
applied to other possible polymorphs and also possible vitreous
structural units of B2O3. We are able to propose not only new candidates

for polymorphs but also a new structural unit for vitreous B2O3.
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52 ATOMISTIC SIMULATION TECHNIQUES

Computer simulation techniques have made great progress in
recent years and are increasingly explaining or predicting the structures
and properties of solids (Catlow and Price 1990). These techniques may be
classified into two groups: the first starts from the Schrédinger's equation
and calculates the electronic structure of the system; the latter models
interatomic potentials and applies the resulting potentials to the system
under study.

The first approach is often referred to by the terms 'ab initio' or
'first-principles’, because it is based on the quantum-mechanical
calculations with the least empirical assumptions. In Chapter 3 and 4,
these techniques were applied to borate crystals and they led to a detailed
description of the structures and bonding in borate crystals. The results
agreed well with the existing empirical concepts.

The second approach is often referred to by the term 'simulation’.
Interactions between atoms are replaced by the interatomic forces
calculated from 'effective potentials', which are applied to a variety of
simulation techniques, based on both static and dynamic methods.

On comparing the two approaches, we note that the first is more
fundamental. However it requires large computational resources and it
is still not possible to model large and complex systems. On the other
hand, the latter approach can deal straightforwardly with such systems.
However, the construction of 'effective interatomic potentials' has
associated uncertainties. Therefore, it is crucial to test the interatomic
potentials thoroughly and make sure that they are valid for the system
studied.

The simulation studies reported in this thesis are of two main

categories. The first is Lattice Simulation. The formulae used in this
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method are given in detail by Catlow and Norgett (1976). They comprize
two parts. Static simulations which determine the structure with the
minimum energy, allowing both the unit cell dimensions and the
internal coordinates to be relaxed until its energy is minimized. These
techniques predict not only the stable structure but also several
properties (e.g. bulk modulus, elastic constants and dielectric constants)
at zero Kelvin. Lattice dynamics simulations calculate vibrational
properties of the energy-minimized structure, based on the quasi-
harmonic approximation. This approximation assumes that the
vibrational motions in the solid are comprised of independent quantized
harmonic oscillators whose frequencies vary with cell volume. This
simulation gives the phonon frequencies and several thermodynamical
properties (e.g. vibrational energy, entropy, free energy and heat capacity).
Furthermore, it is possible to minimize the free energy and predict the
structure and the thermal expansion coefficient at the finite
temperatures, as long as anharmonic effects are negligible and the quasi-
harmonic approximation is valid (Parker and Price 1989). We note that
these techniques are inherently limited in that time-dependent
phenomena (for example, transport coefficients) cannot be simulated
directly.

The other approach is the Molecular Dynamics (MD) method. In
MD simulations, the dynamical trajectories of the interacting atoms are
followed at finite temperatures. The total force acting on each atom is
evaluated at a given time and used to determine its new position at time
t+At. This method is particularly appropriate for modelling the liquid
and vitreous states. The details of this approach are discussed in Chapter

6.
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5.3 INTERATOMIC POTENTIAL MODEL

Many studies have been reported concerning interatomic potentials
for oxide materials (see Catlow and Mackrodt eds. 1982; Catlow et al 1988).
We now discuss the functional forms and the methods used to derive

appropriate parameters.

5.3.1 POTENTIAL FUNCTION

Oxides have been mostly described by the ionic model with formal
or partial ionic charges assigned to point entities which also interact with
short-range terms. The interactions between point charges come from
long-range electrostatic Coulombic forces between ions, while the short-
range interactions come from the overlap of the electron charge clouds of
the interacting ions.

The simplest and most widely used short-range form is the central-
force pair-potential:

V(r1,r2,...,tn) = X Vij (1 Ii-Tj 1) (5.1)
The total potential energy V is summed over all the pair interaction
terms, each of which is dependent only on the distance between the ions.

The most widely used function form of this pair-potential for ionic
solids is the Born-Mayer or Buckingham potential:

V(rij) = Aexp(-rij/ pij) - Crij® (5.2)
The second term is often added to express dispersion and attractive
terms.

The other functional form, which is said to be suitable for
modelling the effect of the covalent bonding is the Morse potential:

V(rij) = Dij {exp[-2Bij(rijro)] - 2exp[-Bij(rij-ro)]} (5.3)

Although these pair-potentials have reasonably reproduced not

only structures but also properties of oxide materials, more sophisticated
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models are used to include polarization or covalent bonding effect more
precisely.

Polarizability is described effectively using the shell model (Dick
and Overhauser 1958). An ion is described as a massless shell of charge Y,
a core in which mass is concentrated and a harmonic spring which
connect the shell with the core. This model has improved the calculation
of dielectric, lattice-dynamical and defect properties of ionic solids.

On the other hand, in order to express covalent effects, a three-body
term is added. The most common form is the simple-harmonic, bond-
bending form; |

V(8) = 1/2 Kp (6 - 60)2 (5.4)
where Kp is the bond-bending force constant and 6¢ is the equilibrium
bond angle.

For crystalline silicates, pair-potential models (Tsuneyuki et al 1988;
Beest et al 1990), and shell models with three-body potential (Sanders et
al 1984; Price et Parker 1984) have successfully been employed to model

structures and properties.

5.3.2 DERIVATION OF INTERATOMIC POTENTIAL

Interatomic potentials have been derived by two main procedures.

The first is the so-called empirical method. The parameters in the
potential model are fitted so that they can reproduce the experimental
structures and/or properties (e.g. elastic constants, dielectric constants or
vibrational properties) as well as possible. This method may be applied
even when the only data available are the crystallographic parameters.
But care must be taken when such potentials are applied to related

structures which are different from the fitted structure. And in general it
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is crucial to use as many data as possible for fitting and testing potential
models.

The other approach is to use non-empirical or semi-empirical
methods, employing quantum-mechanically calculated data for the
potential energy surface. In the electron gas method (Gordon and Kim
1972), electron densities are calculated for the isolated interacting atoms,
and then the Coulomb interactions, the kinetic energy, exchange and
correlation contributions to the interacting energy are calculated. On the
other hand, ab-initio methods may be employed on clusters or periodic
arrays of atoms. For example, using ab-initio, periodic Hartree-Fock
techniques, Gale et al (1992) reproduced the structure and elastic
constants of a-Al203 from using the calculated potential energy surface
obtained using the CRYSTAL code. In the case of cluster calculations, the
importance of crystal field effects must be stressed. For example,
Mackrodt and Stewart (1979) introduced the Madelung potential
appropriate to the crystal when the wavefunctions were solved, and
Tsuneyuki et al (1988) and Beest et al (1990) were obliged to use
experimental data on elastic constants to determine the partial charge
values.

One of the most important aspects concerning a potential model is
its transferability. Some potentials (for example, Price and Parker 1984;
Tsuneyuki and al 1988) successfully reproduced the structures of several
polymorphs using the same potentials. However, several potentials are
not transferable between polymorphs. However, potentials fitted to the
crystal structure and properties of SiO2 were applied to vitreous states
and they reproduced successfully the experimental RDFs (Vessal et al

1989). However, it is still not clear to what extent such potentials can
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reproduce highly distorted structures using the potentials which are

fitted to a particular crystal structure and its properties.
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54 APPLICATION OF PREVIOUSLY REPORTED POTENTIALS
TO CRYSTALLINE B203

As noted earlier several potential models have been reported
specifically for vitreous B2O3. The details of these potentials are given in
Appendix B. Among them, seven potentials (Verhoef and Hartog 1992),
which have more general functional forms, are now applied to B2O3
crystals.

Lattice energy minimizations are performed with these potentials,
starting from the experimental structure of B2O3-I or B2O3-1I, using the
GULP code (Gale 1993). As the original potentials were not applied for
four-fold coordinated boron atoms, the equilibrium angle 8¢ in the O-B-
O three-body interactions is set to be 109.47° in B2O3-II. The calculated
results are shown in Table 5.1 and Table 5.2 (see also Appendix B). They
are summarized as follows:

i. For the structure of BpO3-1, potentials v4,v5,v6, and v7 reproduce
the experimental lattice parameters, B-O bond lengths and O-B-O bond
angles reasonably. However, none of them can reproduce the B-O-B bond
angles. Even for the potential v4, which includes the B-O-B three-body
term, the B1-O1-B2 angle is still 8° larger than the experimental value.
This behaviour suggests why the B-O-B bond angles were always large
when these potentials were applied to MD calculations. The
reproduction of the B-O-B bond angles is crucial for reproducing the
manner of connection of the BO3 triangles. It is interesting to note that
potentials which cannot reproduce the B-O-B bond angles cannot
reproduce the experimental density of B2O3-I, even if they can reproduce
the experimental bond lengths.

ii. None of the potentials can reproduce the structure of B2O3-II,

indicating that the bonding for the four-fold coordinated boron atom is
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different from that for the three-fold coordinated. Even potential v5,
which used the crystal structure of the alkaline borate KB50g8 which is
comprised of BO4 tetrahedra, cannot reproduce the structure reasonably.
The explanation is possibly in the difference in the bonding, because it is
shown in Chapter 3 that a considerable difference exists in the ionicity
and the nature of the bonding between B203-II and the alkaline borates.
It is interesting to note that these potentials may prevent the generation
of a BO4-type environment in molten B20O3. Such a mechanism for the
structural transformation in the same stoichiometry may be different
from the trigonal to tetrahedral conversion of a boron atom with the
addition of alkaline oxide. This point will be discussed further in Chapter

6.
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B203-1 potential sets
exp. vl v2 v3 v4 v5 vb v7

i. lattice energy (eV/B203)

before relaxation -179.34 -80.40 -80.20 -80.19 -202.26 -24.78 -24.48

after relaxation -182.25 -81.70 -81.70 -80.80  -203.91 -24.98 -24.96

ii. structure (after relaxation)

volume (%) =0 +79.49 47399 47412 +6.10 +8.66 +8.64 +6.84

a (%) 10 +9.96 +8.84 +8.92 +2.62 +6.12 +6.11 +5.07

b (%) 0 +9.96 +9.96 +8.92 +2.62 +6.12 +6.11 +5.07

c (%) 0 +48.44 +46.89 +46.78 +0.76 -3.52 -3.52 -3.22

bond length (A)

B1-O1 1.404 1.378 1.364 1.364 1.394 1.348 1.348 1.376
-02 1.366 1.378 1.364 1.364 1.370 1.406 1.406 1.375
-03 1.337 1372 1.358 1.358 1.383 1.408 1.408 1.408

B2-O1 1.336 1.378 1.364 1.364 1.370 1.406 1.406 1.375
-2 1.400 1.378 1.364 1.364 1.394 1.348 1.348 1.376
-O3 1.384 1.372 1.358 1.358 1.383 1.408 1.408 1.408

bond angle (deg)

O1-B1-O2 119.0 119.8 119.8 119.9 119.7 120.2 124.1 120.0

01-B1-O3 1147 1201 120.1 120.0 121.4 124.1 124.1 1204

02-B1-0O3 126.1 120.1 120.1 120.0 118.6 115.4 1154 119.3

01-B2-02 1215 1198 119.8 119.9 119.7 120.2 120.2 120.0

B1-O1-B2 1305 179.1 179.1 179.1 136.6 150.3 150.3 146.0

B1-O2-B2 1283 179.1 179.1 179.1 136.6 150.3 150.3 146.0

Table 5.1. Static simulation in B2O3-I using reported potentials
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B203-1 potential set

exp. vl v2 v3 vd v5 v6 v7
iii. property (after relaxation)
elastic constant (GPa)
E(1,1) --- 167.8 77.99 107.4 162.5 183.6 225 30.3
E(1,2) --- 71.8 33.0 37.3 45.0 31.7 3.9 -1.1
bulk modulus (GPa)

--- 103.8 47.9 60.7 84.2 82.3 10.1 9.4
static dielectric constant (experiment : 3.0 ~ 3.5)
€o(1,1) --- 2.14 2.17 1.90 2.64 2.78 2.78 1.83
£0(2,2) --- 2.14 2.17 1.90 2.64 2.78 2.78 1.83
€0(3,3) --- 2.12 2.18 1.58 6.40 3.49 3.49 2.53

Table 5.1.(continued) Static simulation in B2O3-I using reported

potentials
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B203-11 potential sets
exp. vl v2 v3 va v5 v6 V7.

i. lattice energy (eV/B203)

before relaxation -179.39 -80.39 -80.07 -79.38 -201.36 -24.67 -24.18

after relaxation -182.20 -81.67 -80.98 -80.04 -204.71 -25.08 -24.84

ii. structure (after relax)

volme (%) 0 +119.13 +116.72 +17.82 +15.15 +30.50 +3848 +15.65

a (%) 0 +29.02 +28.98 +2.28 +2.26 +10.13 +10.13 +3.03

b (%) 10 +29.02 +28.98 +2.28 +2.26 +10.13 +10.13  +3.03

¢ (%) 0 +15.34 +14.16 +8.27 +6.73 +8.74 +8.74 +5.81

bond length (A)

B1-O1 1.373 1.374 1.360 1.360 1.371 1.363 1.363 1.412
-02 1.506 1.378 1.363 1.559 1.538 1.399 1.399 1.546
-02 1.508 1.378 1.363 1.577 1.542 1.399 1.399 1.547
-02 1512 --- --- 1.603 1.656 --- --- 1.558

bond angle (deg)

O1-B1-02 1102 1202 120.2 1114 108.1 120.9 120.9 110.1

O1-B1-02 1158 1202 120.2 110.3 1124 120.9 120.9 110.0

0O1-B1-02 1131 --- --- 110.0 111.0 --- -—- 109.9

02-B1-O02 1074 --- --- 109.7 110.5 --- --- 109.2

B1-O1-B1  138.6 180.0 180.0 164.8 146.1 180.0 180.0 161.2

B1-O2-B1 1187 180.0 180.0 1214 118.6 180.0 144.7 121.4

Table 5.2. Static simulation in B2O3-II using reported potentials
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B20O3-11 potential sets

exp. vl V2 v3 v4 v5 v6 v7
iii. property (after relaxation)
elastic constant (GPa)
E(1,1) --- 480.6 217.6 418.7 406.2 2043. 250.3 326.8
E(1,2) - 2.6 1.0 57.0 6.3 -42.1 -5.2 46.6
bulk modulus (GPa)

--- 161.9 73.2 177.5 139.6 652.9 80.0 140.0
static dielectric constant (experiment : 3.0 ~ 3.5)
€o(1,1) --- 2.13 217 2.26 2.02 2.00 2.00 1.44
€0(2,2) --- 2.11 2.05 2.29 1.83 3.33 3.33 1.29
£0(3,3) --- 2.16 2.20 2.34 1.82 2.71 2.71 1.29

Table 5.2.(continued) Static simulation in B2O3-II using reported

potentials
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5.5 NEW POTENTIAL DERIVATION METHOD
(LP FITTING METHOD)

5.5.1 PROBLEMS OF EXISTING FITTING METHOD

We first review the common method for fitting interatomic
potentials, as in the widely used codes (THBREL and GULP) which have
been successfully applied to many systems. The general algorithm in

such fitting procedures is as follows:

i. Give the experimental structures, properties and initial potential
parameters

ii. Calculate cell strains (e(i); i=1~6), internal strains (eij(i,j) ;
i=1~N,j=1~3) and properties (C(i); i=1~m)

iii. Calculate the weighted square sum of the errors S

S = % wii - €(1)2 + Xjj waij - €(1j)? + Zi wai - (CH-C(i)?  (5.5)

where W1i,W2ij and w3j are weighting factors to control the fitness of
each value.

iv. Change the potential parameters toward the direction which
reduces the residual S

v. Iterate from i. to iv. until S converges

This algorithm can be used for a wide range of fitting problems; and
especially, when the reasonable initial potential parameters exist, the
procedure is easily applied or refined.

However, when this method was applied for B2O3 crystals starting
from either reported potential parameters or from modified ones,
reasonable potentials were not obtained. In most cases, the 'best fit'
potential distorts the experimental structure excessively.

The reason for this problem is thought to be as follows:
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i. If an initial parameter set is poor, the least squares fitting
procedure will go to the nearest local minimum which is not always the
desired solution. One alternative way is to try as many initial sets as
possible, but such a procedure may require a lot of trial and error.
Obviously if possible one borrows good initial parameters from other
studies, but this is not practical when no study has been done before.

ii. The weighting factors affect S very much and they easily change
the shape of S, and may lead to an undesirable local minimum. In the
case of a layered system, even if quite small residuals of strain are
obtained, they are enough to distort its structure very much. The other
problem is that completely different types of measurements (e.g.
structure and properties) are expressed in the unique formula of S, and it
is not always easy to set up the proper weighting factors to unify such
different data.

iii. If the initial potential functions are suitable for describing the
potential surface, a good solution will be obtained finally, despite
problems such as (i) and (ii) above. However, when good solution is not
obtained because of the poor potential function, it is not easy to analyze

the reason.

5.5.2 NEW FITTING METHOD ('LP FITTING METHOD")

The LP fitting method is designed to fit to ab-initio surfaces with the
added constraint of requiring observed experimental structures to
reproduced. Some ideas are proposed in order to overcome the problems
described in Section 5.5.1.

First, regarding the problem of finding the global minimum, if the
problem can be linearized, the global minimum can be found within a

finite number of iterations. The second point is that separating the
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criterion of crystal stability from the evaluation of properties can make
the fitting problem much easier. It is also desirable that the experimental
data (such as the structural stability conditions) should be separated from
the ab-initio potential energy data as components of the cost function. On
the other hand, when common potentials that can reproduce several
different structures at the same time are desired, the introduction of
independent sets of structural stability conditions is more reasonable
than the use of a unique formula of S. The third point is that it is very
helpful to know whether a solution of the problem is feasible or not, and
also which condition obstructs the solution. In particular, it is not clear
how well the B2O3 system with covalent bonding can be described with
the existing potential functions.

These ideas lead to new potential fitting method based on the
Linear Programming (LP) method. The LP method is a well-known
technique in the field of economics and mathematics (see Duntzig 1963).

Several special considerations are given in order to adapt the
potential fitting problem to the general LP problem as follows:

i.  All the conditions are separated into two categories: one is
several sets of inequality equations; the other component is a cost
function which should be minimized. The fitting problem is replaced
with the problem which finds the optimum solution that minimizes the
cost function within the solution space that satisfies all the inequality
equations.

ii. The conditions of structural stability are defined in the form of
inequality equations. Here, the term 'structural stability' means that the
relaxed structure does not distort much from the experimental structure.
The lattice energy in the experimental structure is thought to be the

minimum point in the configurational space (3N-dimension) of energy.
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The lattice energy E is defined:
E=E (x1,x2,...,Xxn), (5.6)
where the xj show the position vectors of the i-th atom.
0E /oxi=0 ; 0%E/dxi?>0 (5.7)
at the experimental structure (x1=x1e, - . , Xn=Xne)
then VAxi:
E (x1e, X2e, - - , Xie+AXi, . . , Xne) > E (X1e,X2e, - -, Xie, - - , Xne) (5.8)
and
E (x1e, X2e, - -, Xie -AXj, . ., Xne) > E (x1ex2e, - -, Xie, - - , Xne) (5.9)
must be satisfied. When lattice parameter a,b,c,0,B and vy (6 variables) and
n atomic positions (n x 3 variables) are taken into account, total (6n + 12)
inequality conditions are generated.

iii. The weighted sum of the residuals between the ab-initio data
on the potential energy surface and the estimated values using the
unknown variables of potential parameters is defined as the cost
function. Therefore, the LP method tries to find the solution which
realizes the global minimum residual within the solution space that
satisfies the structural stability conditions. However, there are two
limitations for applying the LP method. One is that it is not easy to
implement the evaluation of various physical properties as the cost
functions, because within the LP scheme the complex form of such
properties must be linearized using the potential parameters. The other
is that the cost function must be the linear weighted sum of potential
parameters instead of the square weighted sum of them. But there is
little difference between two ways of summation.

The most important point of the LP method is that the structural
stability conditions are not included in the cost function, but in the

inequality equations. Therefore, the merit of this method is that, even if
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the potential functions are poor in describing the structure, it finds a
solution which maintains the structure in equilibrium, otherwise it
returns the message saying that there is no feasible solution.

iv. Once the problem is described within the frame of LP, the
solution is quickly solved even by a personal computer. The most
significant problem with this method is that the fitting problem must be
linearized regarding the potential parameters. Inevitably some parts (e.g.
p parameter in Buckingham form in (5.2), or Bjj and ro parameters in
Morse form in (5.3)) cannot be linearized simply and must remain fixed
as constants during one solution cycle. However, each solution cycle is
very quick, allowing a thorough search of a variety of combinations of p,

Dijj or Bjj to be easily performed, in order to find the global minimum.

The algorithm used by the LP fitting method is shown as below:

i. Linearization of each of the terms of which the total lattice
energy E is comprised:

E=Ec+E2+E3+E4 (5.10)
where Ec, E2, E3 and E4 are the contribution of Coulombic energy, pair-
potentials, three-body terms and four-body terms.

For Coulombic terms, they are calculated only from the crystal
structure when the charge values are fixed, and they are dealt as
constants in inequality equations.

In case of Buckingham form,

E2 = Zisj {Aexp(-tij/p) - C/1ij}

= A - (Zisjexp(-ij/p)} - C - {Sisj 1/7if0) (5.11)
The values in the parentheses { } are calculated only from the crystal
structures, and are independent of the unknown variables A and C,

when p is fixed.
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In case of Morse form,

E2 = Djj - 2i>j [exp{2Pij(rij-ro)} - 2exp{Bij(rij-ro)}] (5.12)
Once more the value in the parenthesis [ ] is calculated only from the
crystal structures, and is independent of the unknown parameters Dj;
when Bij and rg are fixed.

For the simple harmonic-type three-body terms,

E3 = Kp - Tisj >k{1/2 (8ijk - 00)2} (5.13)
The value in the parenthesis { } is again calculated only from the crystal
structures, and is independent of the unknown parameters KB when 6
is fixed. Four-body terms are dealt in the same way as the three-body
terms.

ii. To set up the inequality conditions for the structural stability:

E (x1e, - - , XjetAXj, . . xne) > E (X1e, . ., Xie, - - » Xne) (5.14)

The coefficients of the unknown variables (A, C, Dj;j and Kp etc.) are
calculated for each structural configuration, and (6n+12) sets of inequality
equations are generated. For example,

c1,1- Do+ 1,2 - Ao-0-¢c13- Co-0+C14-Ko-B-0>0

c2,1-Dpo+c22-Ao-0-c23:Co-0+C24-Ko0>0

. . .
. . .

Cén+12,1 - DB-O + Cén+12,2 - A0-0 - ¢6n+12,3 - Co-0 + Con+12,4 - Ko-B-0 > 0
In the case of the B2O3 system, the Morse form for the B-O interaction,
the Buckingham form for the O-O interactions, and the three-body term
for the O-B-O interactions are used, and there are four variables (DB-
0,A0-0,CO-0 and KO-B-O). Among the inequality equations, twelve
come from the variations of the cell parameters (atAa, b+Ab, ctAc, atAc,
B+AB, ytAy), and 6n come from tha variations of internal coordinates

(xitAxi, yitAyi, zitAzj).
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iii. To define the cost function S:

The deviation between the ab-initio data on the potential energy
surface and the corresponding value estimated from the linearized sum
of the parameters are summed up as the cost function S.

S=Y;wj- |Ejab-Ejes | (5.15)
where wj is the weighting factor, and Eiab and Ej€% are the energies
derived from the ab-initio calculations and the estimated energies as the
linear sum of the potential parameters. Usually all the weighting factors
are set to 1, and do not need to be changed.

iv. To add the extra inequality conditions if necessary:

For example, if the total lattice energy is restricted within some
specific range (for example, Emin < E and E < Emax are given), two
inequality equations are added in the same manner as in (ii). It is also
very easy to specify the difference of energies between several different

structures (for example, when the energy differences AE12 and AE23

between three polymorphic structures are given, E1 + AE12 < E2 and E2
+ AE23 < E3 are added) .

v. To apply the general LP algorithm:

The coefficients calculated from i. to iv. generate the general matrix
elements for LP and the variables are solved so that they minimize the
cost function S at the finite calculation steps.

vi. Iterate from (i) to (v), changing the non-linear parts (e.g. p, B, or
rQ) to yield the solution which realize the global minimum. As many
combinations as possible of the unknown parameters are applied

systematically.

We may compare this LP fitting method with the other general

algorithms as follows:
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The strengths of the method are:

i. It is especially suitable for the ill-conditioned problem, where the
crystal structure is apt to move toward a catastrophic change (for
example, in the case of layered or planar structure). Because the
structural stability conditions are absolutely satisfied during the solution,
it can always prevent the distortion of its structure. The method is also
suitable for the simultaneous fitting among several structures, because
all the structural stability conditions are satisfied independently and
simultaneously.

ii. When the linearised coefficients are output, the potential energy
surface which depends on the variables (A, C, Djj and Kg) can be easily
analyzed, because it is simply the linear sum of each term. In particular,
when a satisfactory potential cannot be obtained, it is straightforward to
find which stability condition obstructs the solution.

iii. The global minimum can be obtained with a very modest
computer resources. There is no problem about setting initial conditions
or the weighting factors, and no empirical adjustments necessary.

The weak points of this method are;

i. The method cannot be applied generally. The requirement that
all the conditions must be linearized is very restrictive. Therefore,
features including fitting to crystal properties or use of the shell model
cannot be included at the moment. In such cases it is possible to refine
the LP-fitted parameters by using more general fitting programs. It is
interesting to note that this LP method is based on linearized
optimization with constraints, while the other general method is based
on non-linear optimization without constraint. In future, when LP

method is iteratively solved on one hand and the other general method
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adds the constraint conditions on the other hand, both methods will

approach one another.
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5.6 APPLICATION OF LP FITTING METHOD TO B203 CRYSTALS
We now apply the new LP fitting method to the derivation of

interatomic potentials for B2O3 crystals.

5.6.1 FITTING TO B203-1 STRUCTURE

The experimental structural data of B2O3-I are used to obtain the
structural stability conditions (thirty-four structural configurations),
while the ab-initio potential energy data (nine structural configurations)
derived from CRYSTAL calculations (see Chapter 3) are used as
components of the cost function.

The fitted potentials and the resulting static simulations are shown
in Tables 5.3 ~ 5.5.

The Morse potential in the B-O interactions can compensate for
some part of the lattice energy that is lost on reducing the effective
charges, so a 90% ionicity model is used instead of the formal charge in
potential al to potential a3. Buckingham potentials are used for the O-O
and B-B interactions. Potential al includes pair, three-body plus four-
body terms, potential a2 includes pair and three-body terms and potential
a3 includes only pair-potential terms. In potential a4 and potential a5
charges are reduced to 50% and 40% ionicity. For the four-body term, the
O-B-O-O type torsion on the BO3 triangle is taken into account:

V=K4-(1-cos (29)), (5.16)
where K4 is a force constant and ¢ is the torsion angle. This term works
to keep the BO3 triangle planar.

The fitted results are summarised as follows:

i. When the Buckingham potential was used for the B-O
interactions, no acceptable solution was obtained. Therefore, the Morse

potential was subsequently employed.
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ii. When the results of potential al, potential a2 and potential a3 are
compared, it is found that the pair-potential model (potential a3) is very
poor in describing the B-O-B bond angles and the cell volume (or
density), as shown in Section 5.4. It is interesting to note that the fitting
O-B-O force constant is zero both for potential al and for potential a2. It
may mean that the effects of the O-B-O interactions can be mimiced by
the O-O interactions, while the B-O-B interactions cannot be easily
replaced with the B-B interactions.

iii. It is interesting to note that the potentials which are fitted only
using the data of B2O3-I can reproduce the structure of B2O3-II well.

iv. Even if charges are varied, the experimental structure can be
reproduced with the short-range potentials being refitted, but the elastic
constants or bulk modulus are dependent upon the charge values.
Generally speaking, the more ionic model has the larger bulk modulus.
When the bulk modulus (30~50 [GPa] for B2O3-1I and 100-~130 [GPa] for
B20O3-1I) calculated in Chapter 4 are taken into account, ionicity of 40% or
less may be appropriate (see Chapter 4). Ionicities of this magnitude also
agree with the Mulliken charge (qB = =+1.2) calculated in Chapter 3.

iv. For the rigid ion model, the calculated static dielectric constants
are smaller than the experimental values (3.0 ~ 3.5) as expected. If the

shell model is used, such problems may be overcome.

5.6.2 FITTING TO BOTH B203-1 AND B203-II STRUCTURES

Next, in order to reproduce better the structures of both B2O3-I and
B203-II, simultaneous fitting is performed. For B203-I, thirteen
structural configurations and twelve ab-initio data are used for the

structural stability conditions and as components of the cost function;

while for B2O3-1I, seven structural configurations and twelve ab-initio
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data are used for the structural stability conditions and as components of
the cost function. The fitted potential (potential bl) and the resulting
static simulations are shown in Tables 5.6 ~ 5.8.

Potential bl can reproduce both crystal structures very well. With
the simultaneous fitting, both structures can be equally reproduced.
However, two problems still remain. The first is that the difference in
the B-O bond lengths of B2O3-1II is not well reproduced. As discussed in
Chapter 3, the coordination numbers around O1 and O2 are two and
three, and their difference is thought to be one of the reasons for
changing the B-O bond lengths. The second problem is that the lattice
energy of B2O3-II is sometimes lower or almost same as that of BpO3-I.
This trend which becomes stronger as the ionic charges are reduced
clearly causes problems concerning the relative stabilities of the different
structures.

In order to overcome these problems, we have developed a new
approach. We recall from Chapter 3 that the B-O bond strength changes
according to its coordination number. Moreover, in the case of B2O3, the
coordination number around the oxygen atoms seems especially
important. Therefore, different Morse and Buckingham potentials are
assigned for two-fold and three-fold coordinated oxygen. In order to keep
the energy of B2O3-I lower than that of B2O3-II, one inequality condition:

E B203-1 < E B203-11 (5.17)
is added during fitting. The fitted potential (potential c1 and potential c2)
and the resulting static simulations are shown in Tables 5.6 ~ 5.8.
Potential cl is fitted with charges corresponding to 40% ionicity, while
potential c2 is fitted with 30% ionicity. Both potentials reproduce not

only the lattice parameters but also the bond lengths and bond angles in
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the two crystals, while keeping the energy of B203-I lower than that of

B203-II. These potentials will be applied to MD calculations in Chapter 6.
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parameters potential sets
al a2 a3 a4 ab5

Charge

q(B) +2.7 +2.7 +2.7 +1.5 +1.2

q(0) -1.8 -1.8 -1.8 -1.0 -0.8
Morse potential for B-O
D [eV] 2.580 1.549 1.344 0.466 0.326
Bl1/A] 2.5 2.7 2.7 2.7 2.7
ro[A] 1.55 1.59 1.59 1.59 1.59
Buckingham potential for O-O
A [eV] 2229. 6317. 5878. 795. 727.
p [A] 0.36 0.35 0.35 0.35 0.35
C [eV-Af] 0.0 9352 6622  60.9 80.9
Buckingham potential for B-B
A[eV] 0. 0. 0. 0. 0.
p[A] 0.35 0.35 0.35 0.35 0.35
C [eV-Af] 3149 0. 4563 9.1 19.4
three-body term for O-B-O (80 = 120 for three-fold; 69 = 109.47 for four-fold)
k [eV/rad?] 0. 0. 0.
three-body term for B-O-B (6p = 120 )
k [eV/rad?] 8.08 4.79 6.63 2.53
four-body term for O-B-O-O
k[EV] 0.85 --- --- --- ---

Table 5.3. Fitted potentials using B2O3-I structure and ab-initio data
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B203-1 potential sets

exp. al a2 a3 a4 a5

i. lattice energy (eV/B203)

before relaxation -182.47 -183.95 -181.11 -52.99  -34.81
after relaxation -182.76 -184.81 -181.70 -53.05 -34.90
ii. structure (after relaxation)

volume (%) 0 +1.89 -3.60 +2.05 -2.92 -5.48

a (%) +0 +1.49 +0.79 +2.54 +0.19 +0.04
b (%) 10 +1.49 +0.79 +2.54 +0.19 +0.04
c (%) +0 -1.09 -5.09 -2.94 -3.29 -5.55
bond length (A)

B1-O1 1.404 1.386 1.375 1.372 1.405 1.393
-02 1.366 1.358 1.384 1.374 1.357 1.371
-O3 1.337 1.366 1.384 1.373 1.374 1.381

B2-0O1 1.336  1.358 1.385 1.374 1.356 1.371
-02 1.400 1.386 1.375 1.372 1.404 1.392
-03 1.384 1.366 1.384 1.373 1.375 1.382

bond angle (deg)

01-B1-O2  119.0 1203 118.6 119.1 119.3 118.7
01-B1-O3 1147 1177 1214 120.7 115.4 117.6
02-B1-O3  126.1 1220 119.9 120.2 125.2 123.6
01-B2-02 1215 1203 118.5 119.1 119.3 118.7
B1-O1-B2 1305 1347 134.6 140.1 130.4 131.1

B1-O2-B2 1283 1347 134.6 140.1 130.4 131.2

Table 5.4. Static simulation in B2O3-I using fitted potentials (al ~ a5)
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B20O3-1 potential sets

exp. al a2 a3 a4 ab

iii. property (after relaxation)

elastic constant (GPa)

E(1,1) --- 473.9 642.7 488.5 176.5 116.7
E(1,2) --- 122.8 157.9 96.4 52.3 32.4
bulk modulus (GPa)

--- 239.8 319.5 2271 93.7 60.5

static dielectric constant (experiment : 3.0 ~ 3.5)

go(1,1) - 164 2.08 2.17 1.80 1.84
£0(2,2) - 164 2.08 2.17 1.80 1.84
£0(3,3) - 168 4.05 2.77 2.41 2.57

Table 5.4.(continued) Static simulation in B2O3-I using fitted potentials

(al ~ ab)
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B>0O3-11 potential sets

exp. al a2 a3 a4 a5

i. lattice energy (eV/B203)

before relaxation -183.74 -183.89 -179.54 -54.08 -35.70
after relaxation -184.12 -184.20 -180.08 -54.29  -35.77
ii. structure (after relaxation)

volme (%) 20 +0.52 +4.12 +5.15 +3.83 +0.56

a (%) +0 +0.24 +0.94 +2.11 +0.48 -0.38

b (%) 0 +0.24 +0.94 +2.11 +0.48 -0.38

c (%) 0 -0.33 +2.03 +1.12 +1.82 +0.96

bond length (&)

B1-O1 1.373 1.429 1.398 1.445 1.393 1.406
-02 1.506 1.450 1.492 1.509 1.439 1.462
-0O2 1.508 1.471 1.540 1.510 1.470 1.497
-02 1.512 1.532 1.555 1.521 1.672 1.553

bond angle (deg)

O1-B1-O2 1102 107.1 110.3 111.0 104.1 106.8
O1-B1-O02 1158 113.6 114.4 110.8 117.0 115.2
O1-B1-O02 1131 1113 111.7 111.8 112.5 111.8
02-B1-02 1074 109.3 110.6 108.1 109.3 1104
B1-O1-B1  138.6 138.6 138.7 142.0 131.5 134.7

B1-O2-B1 118.7 1193 1185 117.7 119.3 118.7

Table 5.5. Static simulation in B2O3-II using fitted potentials (al ~ a5)
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B203-11 potential sets

exp. al a2 a3 a4 a5

iii. property (after relaxation)

elastic constant (GPa)

E(1,1) --- 1429.6  1339.7 11793 257.0 265.7
E(1,2) --- 167.2 217.2 89.9 -26.9 45.3
bulk modulus (GPa)

--- 588.0 591.4 453.0 67.8 118.7

static dielectric constant (experiment : 3.0 ~ 3.5)

go(1,1) - 233 2.24 3.09 2.02 2.19
£0(2,2) —-- 245 3.45 4.58 1.83 3.35
£0(3,3) - 243 3.16 5.78 1.82 2.40

Table 5.5.(continued) Static simulation in B20O3-II using fitted potentials

(al~ab)
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parameters potential sets

bl cl 2
Charge
q(B) +1.2 +1.2 +0.9
q(0) -0.8 -0.8 -0.6

Morse potential for B-O
for two-fold oxygen atom O2

D [eV] 2322 1.84 1.79

Bl1/A] 2.5 2.7 2.7

ro [A] 1.35 1.35 1.35
for three-fold oxygen atom O3

D [eV] 2322 1098  0.96

B[1/A] 2.5 2.7 2.7

ro[A] 1.35 1475 1475

Buckingham potential for O-O

A [eV] for O2-02 22315 19908 485.8
A [eV] for 02-O3 2231.5 16509 4229
A [eV] for O3-O3 22315 6923 193.4

p[Al 0.30 0.30 0.30
C [eV-A9] 0.0 0.0 0.0
Buckingham potential for B-B

AleV] 0. 3231 0.0
p[A] 0.30 0.30 0.35
C [eV-Af] 0.0 0.0 0.0

Table 5.6. Fitted potentials using both crystal structures and ab-initio data
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parameters potential sets
bl cl Q2

three-body term for O-B-O (8¢ = 120 for three-fold; 6g = 109.47 for four-fold)

for three-fold boron atom

k [eV/rad?] 2.0 0. 3.24
for four-fold boron atom
k [eV/rad?] 2.0 1.66 1.94

three-body term for B-O-B (6g = 120)

for two-fold oxygen atom

k [éV/rad?] 558 638  4.60
for three-fold oxygen atom

k [eV/rad?] 558 422 453

four-body term for O-B-O-O

k [eV/rad2] 0.02 - —--

Table 5.6.(continued) Fitted potentials using both crystal structures and

ab-initio data
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B203-1 potential sets
exp. bl cl @

i. lattice energy (eV/B203)

before relaxation -44.74  -42.05 -27.16
after relaxation -44.83  -42.11 -27.24
ii. structure (after relaxation)

volume (%) 0 +0.30 +1.87 +1.32

a (%) +0 +0.89 +0.87 +0.83

b (%) 0 +0.89 +0.87 +0.83

c (%) 0 -1.47 +0.12 -0.34

bond length (A)

B1-O1 1.404 1.3% 1.409 1.398
-02 1.366 1.358 1.346 1.367
-03 1.337 1.365 1.362 1.364

B2-0O1 1.336 1.358 1.346 1.367
-02 1.400 1.396 1.409 1.398
-03 1.384 1.365 1.362 1.364

bond angle (deg)

O1-B1-02 119.0 1203 120.1 120.4

O1-B1-O3 1147 116.6 115.3 116.1

02-B1-03  126.1 1227 124.0 121.7

01-B2-02 1215 120.3 120.1 120.4

B1-O1-B2  130.5 1319 131.4 130.7

B1-O2-B2 1283 1319 131.4 130.7

Table 5.7. Static simulation in B2O3-I using fitted potentials (b1, c1 and
c2)
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B>03-1 potential sets
exp. bl cl 2

iii. property (after relaxation)

elastic constant (GPa)

E(1,1) - 2234 1916 1386
E(1,2) --- 589 52.4 38.5
bulk modulus (GPa)

--- 113.8 98.8 71.9

static dielectric constant (experiment : 3.0 ~ 3.5)

£0(1,1) - 144 1.60 1.40
£0(2,2) — 144 1.60 1.40
£0(3,3) —- 213 2.38 2.59

Table 5.7.(continued) Static simulation in B2O3-I using fitted potentials

(b1, c1 and c2)
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B2O3-11 potential sets
exp. bl cl 2

i. lattice energy (eV/B203)

before relaxation -44.50 -40.70  -25.77
after relaxation -44.73 -40.84 -25.84
ii. structure (after relaxation)

volme (%) +0  +152 -253  -1.96

a (%) +0 +0.09 -0.27 -0.79
b (%) +0 +0.09 -0.27 -0.79
c (%) +0 +0.75  -0.49  +0.42
bond length (&)

B1-O1 1.373 1.419 1.346 1.367
-02 1.506 1.449 1.476 1.489
-02 1.508 1.469 1.502 1.501
-O2 1.512 1597 1.564 1.543

bond angle (deg)

01-B1-O2 1102 105.8 110.6 109.5

0O1-B1-O2 115.8 1135 117.9 116.1

O1-B1-O2  113.1 1123 115.2 114.3

02-B1-O2 1074 109.3 107.5 108.3

B1-O1-B1  138.6 1335 134.1 133.2

B1-O2-B1 1187 118.8 120.0 119.7

Table 5.8. Static simulation in B2O3-II using fitted potentials (b1, c1 and
c2)

139



B203-11 potential sets
exp. bl cl 2

iii. property (after relaxation)

elastic constant (GPa)

E(1,1) --- 531.4 577.4 403.2
E(1,2) --—- -3.0 83.2 65.7
bulk modulus (GPa)

--- 175.1 248.0 178.2

static dielectric constant (experiment : 3.0 ~ 3.5)

go(1,1) — 167 1.59 1.32
£0(2,2) —-- 156 1.65 1.34
£0(3,3) —- 157 1.68 1.40

Table 5.8.(continued) Static simulation in B2O3-II using fitted potentials

(b1, cl1 and c2)
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5.7 COMPARISON OF CRYSTALLINE POTENTIALS

WITH MOLECULAR POTENTIALS

5.71 POTENTIALS DERIVED FROM MOLECULAR CLUSTERS

For the SiO2 system, several sets of interatomic potentials derived
from ab-initio calculations on the related molecular clusters have been -
applied to crystalline and vitreous states. In the B2O3 system, Gupta and
Tossell (1981,1983), Gibbs et al. (1981) and Zhang et al. (1985) showed that
molecular clusters mimic the geometry of polyanions in borate minerals.
In order to obtain several potential energy surfaces of molecular clusters,
ab-initio calculations were performed on the monomer HBO3, the dimer
H4B205 and the trimer H3B30g using a 6-31G* basis set in the
GAUSSIAN-90 program. The schematic diagrams of the three structures
are shown in figure 5.1. For HBO3, its structure is optimized with Cq
symmetry. After optimisation, the B-O bond lengths (the optimised
value of which is 1.374 A) are varied from 1.0 [A] to 2.0 [A] and the O-B-O
bond angles are varied from 105° to 135°. For H4B20s5, the structure is
optimized with Cz symmetry. After the optimization, the B-O-B bond
angle (the optimized value of which is 134.5°) is varied from 120° to
150°. For H3B3Og, its structure is optimised with C3h and the O-B-O and
the B-O-B angles remain fixed at 120°. The optimized B-O bond length is
1.384 [A] for in-ring bonds and 1.358 [A] for out-of-ring bonds.

There are several assumptions made in deriving the resulting
potentials. In order to keep charge neutrality, the charge of the hydrogen
atom (qH) is varied, with the charges of boron atom (gqB) and oxygen (qO)
being changed so as to keep the relations:

gB=3-qH and qO=-2-qH
Hydrogen atoms are derived solely in terms of the point charge (qH) and

the interactions between oxygen atom and hydrogen atom bonded to it
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Figure 5.1. Molecular clusters used for deriving potentials
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are assumed to be unchanged, because the H-O bond lengths remain
fixed.

The general least-square fitting procedure is employed, varying the
charge qH. We used partial charge model with Buckingham potentials
for the B-O and O-O interactions and three-body terms for the O-B-O and
B-O-B interactions. The fitted potentials are shown in Table 5.9. Potential
d1 or potential d2 is fitted using the long-range B-O data (1.0A < R(B-O) <
2.0A) or the short-range B-O data (1.15A < R(B-O) < 1.55A).

When used in modelling the B2O3-1 crystal, both potentials d1 or d2
results in an expansion of the cell volume by 35% or 17%. Several other
fittings were performed (for example, using a Morse potential or with
different charges), but none of them could reproduce the B2O3 structure
well. This difficulty means that the effects of the crystalline
environments are not simply expressed by the addition of the
electrostatic Madelung potential; and it may suggest that the short-range
terms must be varied according the change in the slope of charge

distribution. More detailed discussion is given in the following chapter.

parameter potential d1 potential d2
Charge aB)  qO) aB)  q(0)
+1.11 -0.74 +1.11 -0.74

Buckingham potential for B-O
AleV]  plA] CleVA®] AleV]  plA] C[eVAS]
1843.0 0.169 0. 592.4 0.192 0.
Buckingham potential for O-O
AleV]  plA] CleVA6] Alev] p[A] CleVAS]
1919.8 0.284 0. 8207.0 0235 0.
Three body terms for O-B-O (809=120) and B-O-B (68p=120)
k(O-B-0O) k(B-O-B) k(O-B-0O) k(B-O-B)
0.0004 1625 1675 1251

Table 5.9. Fitted potentials using ab-intio data on molecular clusters
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5.7.2 POTENTIALS DERIVED BOTH FROM CRYSTALS
AND MOLECULAR CLUSTERS

In the previous chapter, the simple application of the potentials
derived from the ab-initio data on the molecular clusters failed to
reproduce the B20O3-I structure. Is there any common potential
transferable for both crystal structures and molecular clusters?

Here, several simultaneous LP fitting calculations were performed
using both the crystal structural and the molecular cluster data. LP fitting
is very suitable for this sort of study, because the conditions for
molecular clusters and crystals are dealt with independently and equally.
The input conditions used for the LP fitting are shown in Table 5.10. A
total of seven fits were performed which differ in the data that were
used; the fitted potentials and the resulting static simulations are shown

in Tables 5.11~5.13.

The calculated results are discussed as follows;

i. Before investigating the models based on 40% and 20% ionicity
(potentials el~e7), several other charge values were tested. In general, the
models with higher ionicity (>30%) are good for reproducing the crystal
structures, while the lower ionicity model (<20%) is good for
reproducing the molecular structures. 40% ionicity (qB=+1.2, qO=-0.8) is
close to the Mulliken charge (qB=+1.1) in B2O3-I calculated by the
CRYSTAL codes (STO3-21G basis set), and 20% ionicity (qB=+0.6, qO=-0.4)
is close to that (qB=+0.65) in HBO3 calculated by the GAUSSIAN-90 code
(MP2/6-311G**). The aim of the present fitting is to explore the
possibility of a common potential for both crystals and molecules, so a
common charge value is used in the LP fitting, although the crystal is

clearly more ionic than the molecules.
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ii. When all the conditions are used at the same time in the LP
fitting, no feasible solution existed. Therefore, several combinations of
conditions are used in the LP fitting.

iii. Potential e3 and potential e6 show the case where only ab-initio
data and the stability conditions of the molecules are used without data
on the crystals. It is interesting to note that the D parameter in the B-O
Morse potential is larger than those of the other cases, and this seems to
lead to the smaller cell volume in B20O3-I. We also find that the
experimental B-O bond lengths in the crystalline states are almost the
same as those calculated from the ab-initio simulations in the molecular
states (see Table 3.1 and Table 5.13). Thus in the molecular state there are
no crystal effects,(due to long-range electrostatic forces), and the effects of
B-O covalent bonding on the Morse term are stronger than in the
crystalline states.

iv. Potential el and potential e4 refer to the case where the ab-
initio data on the molecules are used as components of the cost function,
while the stabilisation conditions of the crystals are used. The fitted
results give a smaller D value in the B-O Morse potential and a larger
force constant (K) of the B-O-B interactions, compared with the results of
potential e3 and potential e6. The smaller D value suggests that in the
crystalline states the crystal field can substitute some part of the B-O
attractive terms. Regarding the larger K value, a possible reason may be
that in the crystalline state the bond interactions between the B and O
atoms may be reduced because of the reduction of the charge overlaps,
while the B-B Coulombic repulsive interactions in this ionic model are
too large to express the former interactions, and finally only the B-O-B

term can compensate for such difference, as long as the same charge
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values are used. Therefore, the role of the B-O-B three-body term seems
to be very important in the ionic model of the crystalline system.

v. Potential e2 and potential e5 show the case where only ab-initio
data and the structural stability conditions of crystals are used. As for
potential e2, both crystal structures are reproduced very well, while it
does not reproduce molecular structures. In contrast to the case of
potential e3 and potential e6, the D parameter in the B-O Morse potential
has a small value corresponding to the crystalline state. However, the
potential behaves poorly for the molecular states and results in long B-O
bond lengths. Moreover, potential e5 fails to reproduce the structure of
B203-I; the relaxed structure, using potential e5, has four-fold
coordination around boron atoms. In general, the smaller charge value is
used, the more difficult becomes the simultaneous fitting of B2O3-I and
B203-II, and small charge models cannot reproduce both structures at
the same time. One of the reasons may be that the latter model has
nothing to compensate the difference in the Madelung potential caused
from the structural differences between polymorphs.

vi. Potential e7 shows the case where both the molecular and the
crystal data are used, except the data of B2O3-II. There is no feasible
solution for 40% or higher charge model, or in the case when the data for
B203-1I is added. However, potential e7 reproduces the B-O bond lengths
for the three molecules and the cell volumes in both crystals reasonably
at the same time, except the B-O-B bond angles in B2O3-I. It suggests that
it is difficult to reproduce both molecular and crystalline structures
precisely with the common potential, but that the 20% charge model can
reproduce them both to some extent.

vii. There are two problems remaining in applying these potentials

to MD simulations. One is the large C value in the O-O interactions fitted
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in the 20% ionicity model. It generates too large an attractive force when
the O-O distance becomes short. The other is the energy difference
between B20O3-I and B2O3-II. In the cases of potentials el, €2, €3, e6 and e7,
the energy of B2O3-II is lower than that of B2O3-I. During the LP fitting,
one inequality condition shown in (5.17) can be added, but it is very
difficult to find an acceptable solution for the smaller charge models
(20% or less) with reproducing both structures. The MD simulations will

be discussed in Chapter 6.

To summarize, it is difficult to find such transferable potential
models that reproduce the two crystal structures and the three molecular
structures at the same time. Even the best model often fails to reproduce
the order of the lattice energies. When compared with the 'molecular’
potentials, the 'crystalline' potentials prefer to the higher charge models,
then if the same charges as for the 'molecular’ potentials, the B-O
attractive terms are weaker and the force constant of the B-O-B
interactions is larger.

Finally, it is interesting to note that although the bond lengths and
bond angles are very similar for the molecular states and the crystalline
states, the potentials parameters are different fitted so that the bonding

and the crystal field effects compensate each other.
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ab-initio data

structural stability data

Monomer HBOj3

E(R(B-0), 6(0-B-0))
optimized value
R(B-0)=1.374
6(0-B-0)=120.

10 configurations

E(1.374, 120.), E(1.3, 120.),
E(1.35, 120.), E(1.40, 120.),
E(1.45, 120.), E(1.50, 120.),
E(1.374, 110.), E(1.374, 115.),
E(1.374, 125.), E(1.374, 130.)

2 configurations

E(1.384, 120.) > E(1.374, 120.)
E(1.364, 120.) > E(1.374, 120.)

Dimer HygB705

E(6(B-Obr-B))
optimized value
R(B-Obr)=1.365
R(B-Onbr)=1.355
8(0-B-0)=134.5

7 configurations

E(134.5), E(120.),
E(125.), E(130.),
E(140.), E(145.),
E(150.)

2 configurations

E(139.5) > E(134.5)
E(129.5) > E(134.5)

Trimer H3B306

E(R(B-Obr),R(B-Onbr))

optimized value
R(B-Obr)=1.384
R(B-Onbr)=1.358

no data used

4 configurations

E(1.374, 1.358) > E(1.384, 1.358)
E(1.364, 1.358) > E(1.384, 1.358)
E(1.384, 1.368) > E(1.384, 1.358)
E(1.384, 1.348) > E(1.384, 1.358)

B20O3-I crystal

exp = experimental
structure

9 configurations

E(exp),

E(a,b,c:+4%), E(a,b,c:+2%),
E(a,b,c:-4%), E(a,b,c:-2%),
E(c:+3%), E(c:-2%),
E(a:+2%), E(a:-1%)

12 configurations

E(a:+1%o0r-1%) > E(exp)
E(b:+1%o0r-1%) > E(exp)
E(c:+1%o0r-1%) > E(exp)
E(a::+2.5°0r-2.5°) > E(exp)
E(B:+2.5%°0r-2.5°) > E(exp)
E(y:42.5°0r-2.5°) > E(exp)

B2O3-II crystal

exp = experimental
structure

no data used

12 configurations

E(a:+1%o0r1-1%) > E(exp)
E(b:+1%o0r-1%) > E(exp)
E(c:+1%o0r-1%) > E(exp)
E(o:+2.5°0r-2.5%) > E(exp)
E(B:+2.5°0r-2.5°) > E(exp)
E(y:+2.5°0r-2.5°) > E(exp)

Table 5.10. Input conditions used for LP fitting
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potential sets

parameters el e2 e3 ed e5 e6 e7
Charge

q(B) +1.2 +1.2 +1.2 +0.6 +0.6 +0.6 +0.6

q(O) -0.8 -0.8 -0.8 -0.4 -0.4 -0.4 -0.4
Momomer

ab-initio data @ @ @ @ @

stability data @ @ @
Dimer

ab-initio data @ @ @ @ @

stability data @ @ @
Trimer

stability data @ @ @
B20O3-1

ab-initio data @ @ @

stability data @ @ @ @ @
BO3-11

stability data @ @ @ Q@

Table 5.11. Input table for LP fitting

(@ means its data is used during LP fitting.)
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potential sets

parameter el e2 e3 ed e5 eb e7
Charge

q(B) +1.2 +1.2 +1.2 +0.6 +0.6 +0.6 +0.6
q(0) 0.8 -0.8 -0.8 -0.4 -0.4 -0.4 0.4
Morse potential for B-O

D [eV] 2.48 2.53 4.05 2.65 3.90 4.28 4.09
B[1/A] 2.7 2.7 2.7 2.9 2.7 2.7 2.8
ro[A] 1.35 1.35 1.30 1.28 1.28 1.28 1.28
Buckingham potential for O-O

A [eV] 2250.  2286.  1679.  1632.  2245.  2371. 2447
p[A] 0.30 0.30 0.30 0.30 0.30 0.30 0.30
CleV-Af] 0. 0. 0. 0. 0.1 37.1 42.0
Buckingham potential for B-B

A [eV] 0. 0. 4408 0. 0. 1348.  1290.
p [A] 0.30 0.30 0.30 0.30 0.30 0.30 0.30
CleV-Af) 0. 0. 0. 0. 0. 0. 0.

three-body term for O-B-O (k3,80=120 for three-fold; k4,60=109.47 for four-fold)

k3 [eV/rad?] 0. 0. 0.93 1.09 0. 0.08 0.01

k4 [eV/rad?] 5.00 178 - 747 1779 --- 1.04
three-body term for B-O-B (00=120)

k [eV/rad?] 1.37 4.47 0.50 0.14 0.02 0.88 1.04
Table 5.12. LP fitted potentials using molecular data and crystal data
(el~€7)
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potential sets

parameter exp. el e2 e3 ed eb eb e7
Monomer RI[A]

R(B-O) 1.374 1.374 1464# 1.374 1.384 1.394 1.374 1.374
Dimer R[A], 0[deg]

R(B-Obr) 1.365 1.455#  1.455# 1.365 1.395 1.385 1.365 1.365
0(B-Obr-B) 1345 131.5 127.5 132.5 132.5 144.5# 1325 133.5
Trimer

R(B-Obr) 1.384 1.459# 1.455# 1.374 1.384 1.384 1.394 1.394
R(B-Onbr) 1358 1.458# 1.458# 1.368 1.388 1.398 1.368 1.368
B2O3-I cell volume [%)], lattice energy [eV/B20O3]

energy -—- -46.21  -46.11 -57.69 -20.38 -26.60 -29.76 -28.39
cell volume 0 +9.8# +0.9 -25.8#  +11.0# -5.29 -4.46 +0.93
0(B-O-B)av 130. 140.1# 1324 126.7 138.5#  ## 136.5#  138.5#
ByO3-1I

energy --- -46.31 -46.16  -59.87 -20.14 -2648 -30.44 -28.64
cell volume =0 +2.1 +0.4 -15.1#  -1.55 +0.50 -2.33 -1.27

Table 5.13. Static simulation using fitted potentials (el~e7)

(# means its result is away from the experiment.)
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5.8 'COMPUTER SYNTHESIS' OF NEW POSSIBLE POLYMORPHS
AND POSSIBLE STRUCTURAL UNIT OF VITREOUS B203

We now investigate whether it is possible to construct polymorphs
based on boroxol-rings type. We will report several computer
experiments which were performed in order to explore new structures
for B2O3. The starting point is to look for the starting structures which
seem to be closest to the new polymorphs or the vitreous structures,
among the borate crystals. It was shown in Chapter 2 and 3 that the
structure of B2O3 is far from the borate structures which have a high
content of modifier oxides; and as the content of modifier oxides
increases, a three-dimensional type of infinite network changes into a
assembly of isolated structural units with non-bridging oxygen atoms.
Therefore, it is desirable to start from the structure with the least content
of modifier oxides found in the borate minerals. Cesium enneaborate
Cs20 - 9B203 (Krogh-Moe and Ihara 1967) is the first starting structure.
This structure has two three-dimensional interlocking, twin networks
base on B-O bonds (see Figure 5.2). The topology is such that it is not
possible to pass from the one network to the other. The network consists
of two kinds of basic unit, a triborate group (containing a six-membered
ring, but with one of the boron atoms coordinated tetrahedrally by
oxygen atoms) and a boroxol group in the ratio one to two. We recall that
the vitreous structure of B20O3 is claimed to have a high fraction of
boroxol rings, and such a structure as metaboric acid HBO2-III (Peters and
Milberg 1964), which comprises only boroxol rings, with only a small
effect due to H20, is another good starting structure. The structure is
hydrogen bonded with sheets of trimeric HBO2 molecules (six-
membered rings) loosely stacked to form a mica-like, platey crystal in the

orthorhombic system (Peters and Milberg 1964) as shown in Figure 5.3.
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5.8.1 CONSTRUCTION OF NEW POLYMORPHS FROM HBO2-III

It is necessary to dehydrate HBO?2-III, for which there are several
possible routes. One is that some of the hydrogen bonding between layers
may be easily rearranged. Two of the three hydroxyl groups, -O(3)H(3)
and -O(6)H(6), are almost directly above and below the BO3 groups of the
boron atoms B(1) and B(2), while the remaining -O(1)H(1) group interacts
to a lesser degree with its centre related counterpart (Peters an Milberg
1964; see figure 5.3). At first, all the O(1) atoms are extracted with all the
H(1) hydrogen atoms. Next, half of the O(3) and O(6) atoms, and all the
H(3) and H(6) atoms are extracted. The O(3) or O(6) atoms must be
extracted alternately in the vertical direction so that the bonding of B(1)-
O(6) or B(2)-O(3) can be generated.

After the extraction of the hydrogen and oxygen atoms, the
remaining O(3) and O(6) atoms are moved to the middle point between
the two neighbouring boron atoms which are expected to bond to the
O(3) and O(6) atoms. Next, the static simulations are performed using the
potential c2 potential. Before the expected bondings are generated, the B-
O Morse D parameter is set to be five times its normal value and is
restored to the original value after the generation of the bonding.

The resulting completely relaxed structure (B203-a) is as follows: its
unit cell includes six molecules; its lattice parameters are a= 13.63 [A], b=
5.73 [A], c= 7.79 [A], o= 86.0 [deg], B=98.7 [deg], y= 99.8 [deg]; and its density
is 1.17 [g/cm3]. It comprises 100% boroxol rings with no independent BO3
triangle. It is interesting to note three points. The first point is that this
structure is similar to the vitreous structure, because the average B-O
bond length is 1.36 [A] and the average B-O-B bond angle outside boroxol
rings is 128 [deg]. The other point is that its density is much higher than

that of the glass (1.84 [g/ cm3)), in line with previous claims that the 100%
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boroxol model cannot reproduce the glass density (see, for example,
Cooper 1978; Elliot 1978). The third point is that although its original
structure is layered, its final structure turns out to be close to the two
three-dimensional interlocking type of networks, found in the crystal
structure of Cs20- 9B203.

Next, in order to get such higher density as the experimental
vitreous density, a final change was made to this structure: half of the
B30¢ unit are replaced with a BO3 unit. After this change, static
simulations were performed using the potential c2 potential in the same
manner as for BpO3-a.

The completely relaxed structure of (B2O3-b) is as follows: its unit
cell includes four molecules; its lattice parameters are a= 10.22 [A], b= 5.71
[A], c= 6.13 [A], o= 78.2 [deg], B= 87.3 [deg], Y= 94.6 [deg]; and its density is
1.33 [g/cm3]. It comprises of 100% boroxol rings with no independent
BO3 triangle. All the B-O bond lengths and bond angles are almost same
as B2O3-a, while the density increases by 14% compared with that for
B203-a. The results show that the final density is strongly affected by the
intermediate-range structure However, they may suggest that it would be
difficult to construct such crystal structure that comprises 100% boroxol

rings, keeping the experimental- glass density.

5.8.2 CONSTRUCTION OF NEW POLYMORPHS FROM

Cs20 - 9B203
The first problem here is again how to extract CspO from the
original crystal structure. We must check whether reasonable new B-O
bonded structures can be generated or not, after the oxygen atoms have
been extracted. One of the obvious routes is to extract half of the O(3)

atoms so that the O(3)-O(5') bonding is disconnected and new B(2)-O(3)
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bonding is generated in the manner that the network above is connected
with the network below (see Figure 5.2). After these manipulations, static
simulations are performed using the potential c2 in the same way as
with B2O3-a.

The completely relaxed structure (B2O3-c) is as follows: its unit cell
includes eighteen molecules; its lattice parameters are a= 7.99 [A], b= 10.05
[A], c=1620[A], 0=94.4 [deg], B=90.0 [deg], = 90.0 [deg]; and its density is
1.60 [g/ cm3], which is only 15% smaller than that of B2O3 glass. The ratio
of B3Og units to BO3 units is 2 : 3, that is a fraction of 66.7% of the boron
atoms are in boroxol rings. The basic structure comprises interlocking
three-dimensional networks which is the same as the structure of Cs20 -
9B203, but one BO3 unit connects two neighbouring networks together.
In the same network, three BO3 units are connected in series. One BO3 is
connected with two B30Og units, while the other two units are connected
with one B3Og unit. The manner of connecting the BO3 units is shown
in Figure 5.4. The average B-O bond length is 1.36 [A] and the average B-
O-B bond angle outside the boroxol rings is 128 [deg].

Next, in order to get a density as high as the experimental vitreous
density, a final change was made to this structure: two BO3 units, (B(2),
0O(3), O(4), O(8") and (B(2'), O(8), O4'), O(5')) were replaced with one BO3
unit simply by topological manipulations. After the manipulation, static
simulations were performed with the potential c2 in the same manner as
the case of B2O3-a. The completely relaxed structure (B2O3-d) is as
follows: its unit cell includes sixteen molecules; its lattice parameters are
a=7.94[A], b=8.58 [A], c= 16.55 [A], a= 96.1 [deg], B= 85.0 [deg], y= 88.0 [deg];
and its density is 1.72 [g/cm3], which is only 6.9% smaller than that of
B203 glass.
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The ratio of B306 units to BO3 units is 1 : 1, this comprises a fraction
75% of the boron atoms are in boroxol rings. The basic structure
comprises two interlocking three-dimensional networks without any
connection between them, which is same as Cs20 - 9B20O3. Two BO3
units are connected in series and each BO3 unit is connected with two

B30Og units. The manner of connection of the BO3 units is shown in

Figure 5.5.

5.8.3 DISCUSSION

It is interesting to note that all four new structures have almost the
same B-O bond lengths and B-O-B bond angles outside the boroxol rings
the same as those of B2O3-I and vitreous B2O3. Although there is no
known crystal structure containing boroxol rings, the calculated lattice
energies of these four structures are lower than that of B2O3-1, and even
if they are metastable at finite temperatures, it seems possible that they
are candidates for a new polymorph.

On the other hand, for vitreous B2O3, it has been claimed that there
is no structure model with the experimental density and a high fraction
of boron atoms in boroxol rings without layered rings. Artificially,
crystals constructed in the manner of the layer model proposed by Bell
and Carnevale (1981) were generated and the static simulations were
performed. However, the calculated distances between the layers became
longer and longer, and a stable structure could not be obtained. Our
potential model show that boric oxide does not favour a layer structure.

Structures B2O3-d as well as B2O3-c could be structural units in the
vitreous B203. Thus they have as much as a 75% fraction of boron atoms
in boroxol rings: this figure agrees with that estimated for the vitreous

material by Jellison et al (1977) and Johnson et al (1982). In addition they
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not only have reasonable B-O bond lengths and B-O-B bond angles, but
they also have a reasonable density, although it is still smaller than that
observed for vitreous B2O3. Thirdly we note that the structure has a
three-dimensional network without layered rings.

The most realistic structure for vitreous B2O3 is thought to be that
in which B203-d and B2O3-e are randomly connected and also some
B30¢ units are replaced with BO3 units in order to reproduce the
experimental density. The most characteristic feature of such structures is
that the three-dimensional networks are interlocking, and two or three
BO3 units are the main connecting parts between B30g units, so that the
density of the vitreous B2O3 can be reproduced. The new structures
constructed in this chapter will be compared with the vitreous structures

obtained employing the MD method in chapter 6.
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Figure 5.2 Crystal structure of Cs20 - 9B203
(Krogh-Moe and Thara 1967)

Figure 5.3.(a),(b),(c) Crystal structure of HBO2-III (Peters and Milberg 1964)
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Figure 5.4 Connecting of B306 units with BO3 units in B203-C
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Figure 5.5 Connection of B306 units with BO3 units in B203-d
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59 LATTICE DYNAMICS SIMULATION

The strong peak of the Raman spectrum of B2O3 glass at 806 cm™1 is
one of the strongest pieces of evidence for the existence of boroxol rings.

Verhoef and Hartog (1991,1992) performed MD simulations of B2O3
glass. Although their structures comprised of only BO3 triangles without
boroxol groups, they concluded that the vibrational modes of adjacent
BO3 triangles are decoupled sufficiently and a local breathing mode can
occur; indeed the peak at 806 cm™l in the experimental Raman spectra
was assigned to such a breathing mode of three oxygen atoms within
each of the BO3 triangles.

On the other hand, Bronswijk and Strijks (1977) compared the
experimental Raman spectrum of vitreous B2O3 with that of crystalline
B203. They concluded that the spectrum of crystalline B2O3 does not
show a strong, sharp and polarized band around 806 cm-1 (see Figure 5.6).

Since the structures discussed in the previous chapter contain a
high percentage of boroxol rings, lattice dynamics simulations were
performed for the B2O3-I crystal, and for B2O3-a and B20O3-d pseudo
super crystals using potential c2 employing the GULP program (Gale
1993). The calculated vibrational densities of states at 300K are shown in
Figure 5.7. As it is not easy to calculate their Raman spectra, only
experimental peaks both in B2O3-I crystal and that of B3Og (v2; see Figure
2.9) are compared with the calculated spectra.

In the spectrum of BpO3-I, there is a sharp peak at around 750 cm-1
(see the position A in Figure 5.7 (a)). It can be assigned to a bending
mode in the chain structure (Kamitsos and Chryssikos 1991), and is close
to the experimental wavenumber of 720 cm-1l. There is no peak at 806
cm-1; however, in the spectrum of B2O3-a, the peak at ~ 750 cm-1

disappears and is replaced by a new peak at ~ 820 cm™1 (see position B in
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Figure 5.7 (B)). It can be assigned to the breathing mode of B3Og (v2), and
is close to the experimental wavenumber 806 cm-1. In the spectrum of
B203-d, which may be closest to the vitreous B2O3, there is no peak at
around 750 cm-1, although the structure includes BO3 units. It shows the
peak at ~ 820 cm-1, although it is a little weaker than in the case of B2O3-
a.

Therefore, these results support the hypothesis that the peak at 806
cm-l in the experimental Raman spectrum in vitreous B2O3 can be
assigned to the breathing mode of B3Og units, although there are two
problems remaining. The first is that the potential used (c2) was not
adjusted in order to reproduce the vibrational frequencies and there is
therefore a small off-set in the calculated wavenumber. Secondly the
structure of the pseudo super crystal (B2O3-d) must of course differ from
the vitreous structure of B2O3. However, even if this structure were
more distorted, its vibrational character is assumed not to be too
different, as long as the same fraction of boroxol rings exist in the

structure.
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Figure 5.6. Experimental Raman spectra
(a) vitreous B203
(b) crystalline B2O3-1

(Bronswijk and Strijks 1977)
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(a) crystalline B2O3-1
(b) pseudo super crystal B2O3-a
(c) pseudo super crystal B2O3-d
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510 CONCLUSIONS

In order to overcome the difficulty of deriving the interatomic
potentials for B2O3 crystals, a new LP fitting method has been developed.
This method has been successfully applied to crystals and molecular
clusters of B20O3; and several sets of potentials which can reproduce both
crystal structures have been derived.

This LP method shows that the partial charge model with a B-O
Morse potential and a B-O-B bond-bending, three-body term can
reproduce both crystal structures very well. It is also found that the B-O
Morse potential and the force constant for B-O-B is differently fitted for
the crystal states and for the molecular states in a manner which
compensates crystal field effects. The comparison of the lattice energies
between two structures suggests that different short-range potentials
must be defined to reproduce the order of their energies, and new
potential sets (potential cl1 and potential c2) which depend on the
coordination number around the oxygen atoms have been developed.
These potentials can reproduce not only the structures but also the order
of the lattice energies.

Finally, several new possible polymorphs of B2O3 are obtained by
performing static simulations using the potential c2 potential. In
particular, B2O3-d is the first structural model for the basic unit of
vitreous B2O3, which can reproduce not only the B-O bond lengths and
the B-O-B bond angles, but also the density, with 75% of boron atoms in
boroxol rings. The lattice dynamic simulations using this structure and
-the potential c2 also shows that the peak of the experimental Raman
peak at 806 cm™1 can be assigned to the breathing mode of the boroxol

rings. The important feature in this structure is thought to be the
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interlocking three-dimensional networks with two or three BO3 units
connecting the B3Og units.

Since the transferable potential models obtained employing the LP
fitting method have elucidated several features in the structure and

bonding on the crystalline B2O3 in this chapter, these will be applied to

vitreous structures employing the MD method in Chapter 6.
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6. COMPUTER MODELLING OF VITREOUS B203
6.1 INTRODUCTION

In Chapter 5 several sets of potentials which can reproduce both
crystal structures of B2O3 were developed. In this chapter we use the MD
method with these potentials to investigate the vitreous states of B2O3.

First, we discuss the particular features of the MD method, when
used to study glassy materials. Our MD calculations were performed
employing the modified version of the code FUNGUS (Walker 1982;
Vessal 1991; Hernandez 1993). The potential model (el), which
reproduces both crystal structures of B2O3 was applied to the simulated
melting and quenching of the B2O3-I crystal. Next, new potential models
(modification of potentials c1 and c2), which can overcome some
problems apparent in the calculations employing the previous
potentials, were developed. These new models vary parameters
automatically depending on the coordination number. The results of the
MD calculations using these potentials are compared with the X-ray
diffraction data and the neutron scattering data. These results not only
confirm the existence of the boroxol rings, but also give some
information about the intermediate-range order and the structural
transformations in the vitreous structures. Finally, the ratio of the boron

atoms contained in the boroxol rings are estimated.
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6.2 THE MOLECULAR DYNAMICS (MD) METHOD

In modelling crystal structures, conventional lattice statics and
dynamics are powerful tools. However, when vitreous structures are
modelled, the Molecular Dynamics technique, which treats dynamic
effects explicitly and includes anharmonic effects, is the appropriate
method.

As noted in Chapter 2, since vitreous structures do not have long-
range order, it is difficult for experimental techniques to determine their
detailed structures. Moreover, the final vitreous structures are
considerably affected by their thermal history including the quench rate,
which it is difficult to investigate experimentally. MD simulations can
therefore provide valuable complementary information concerning
these complex phenomena. Theoretical and technical aspects of the MD
method are given in detail in many books (for example, Ciccotti and
Hoover 1986; Ciccotti et al 1987; Allen and Tildesley 1987; Soules 1990).
Here, we summarize the special features of the MD method when

applied to the structures and properties of vitreous materials.

6.2.1 THEORETICAL OUTLINE

The basis of the method is the calculation of the classical trajectories
of the interacting ions. The total force acting on each ion is evaluated
from the interatomic potentials at a given time and used to determine
new positions at time t + At. An initial set of ionic positions, x(0) may be
chosen randomly or taken from the crystallographic coordinates. An
initial set of velocities is usually taken from a Boltzmann distribution of
velocities.

First, the forces acting on each ion is calculated by evaluating the

gradient of the interatomic potentials:
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Fi(t) = -qi - Zjui qj/ (rjj)2
- 2j#ilVi - V24j(11i-1j1)] - Zkeaidijil Vi - V3ijk(Bijk)] (6.1)
where fj(t) is the force acting on atom i at time t. The first term is the
long-range Coulombic interaction corresponding to the interaction
between the effective charges qj and gj. The second and the third are the
pair and the three-body potentials.

In order to deal with an infinite lattice, periodic boundary
conditions are usually implemented; the simulation box is replicated
throughout space. In the course of the simulation, as an ion moves in
the original box, its periodic image in each of the neighbouring boxes
moves in exactly the same way. The typical number of ions in the
simulation box is 100 ~ 1000. It is important to consider whether the
properties of such a small, infinite, periodic system and the macroscopic
system which it represents, are the same.

To calculate the long-range Coulombic interactions, the Ewald sum
has been used (Ewald 1921). This technique efficiently sums the
interactions between an ion and all its periodic images. It transforms the
slowly convergent summation into two rapidly convergent series: one in
real and the other in reciprocal space.

For the short-range interactions, the 'minimum image convention'
is usually implemented: ion i interacts with all the ions whose centres lie
within such region that is with the closest periodic images of the other
N-1 atoms. The details of the potentials is discussed in the following
section.

After the force (fj(t)) acting on each ion is computed, the positions of
all ions are updated using a finite-difference discretization of Newton's

equations:

Xi(t) = miL - £i(t) (6.2)
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where mj is the mass of atom i. The most widely used method of
integrating the equations of motion is the scheme initially adopted by
Verlet (1967). The equation for advancing the positions are as follows:

Xj(t+At) = 2 - xj(t) - xi(t-At) + (At2/m;j) - fi(%), (6.3)

vi(t+At) = (xj(t+At) - xi(t)) / At (6.4)
where vj is the velocity of the ion i. A small time step is required for
stability of the integration scheme (usually 1fs = 10-15s). This time step
must be considerably shorter than the smallest period of oscillation of
any ions moves around. It is important to note that the computer
resources strongly restrict the period of real time sampled in MD
simulations (at most 1ns).

Finally, properties as lattice energy (U), kinetic energy (KE),
temperature (T) and pressure (P) in the system are evaluated at each time
step.

U = -Xj#i qiqj/rij

+ il V24j(1ri1j1)] + ZkeiZjail V3ijk(8ijk)] (6.5)
KE =1/2-Y;i mjvi - vj (6.6)
T=2/3-(KE)/ (kN) (6.7)
P =1/ (3V) - (X mjvj - vi - Xj - fj) (6.8)

where k is the Boltzmann constant and V is the volume of simulation
box.

MD simulations always have two stages: an equilibration phase in
which the simulated system attains a full thermal distribution of kinetic
energy and equipartition between potential and kinetic energy; secondly
a production phase in which the time evolution of the system is
monitored. The first stage takes typically 5~20 ps; while production stage
can extend by up to ~1 ns in modern calculations. In simulating glasses,

we first meet a crystalline phase. These MD simulations are usually
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carried out at temperatures which are much higher than the melting
temperature so that all ions can diffuse sufficiently enough to generate
the equilibrium state. Then the system is cooled by removing kinetic
energy, following the desired cooling schedule. After the equilibrium
state is obtained, such properties as discussed in Section 6.2.4 are

calculated.

6.2.2 POTENTIAL MODELS FOR GLASSES

The most widely used potential function is the pair-potential, fully
ionic model, as explained in Section 5.3.1. Such potentials can be
efficiently implemented in simulation codes and are easily applied to
multi-component systems. Partial charge models may be superior in
reproducing the structures and properties of individual systems, but
some care must be taken when they are applied to multi-component
systems especially in preserving charge neutrality.

Compared with static or lattice dynamics simulations, several
approximations are usually made in MD simulations because of the
restrictions of computer resources. The first is that the rigid ion model is
normally used, although it is possible to implement the shell model
(Lindan and Gillan 1993). Regarding covalent effects, three-body terms
are often used provided that the coordination numbers do not change
much. Vessal et al (1989) demonstrated that the three-body terms can
reproduce the detailed structure of vitreous SiO2 as well that of the
crystalline a-quartz structure.

The second approximation is to construct a look-up table for
calculations of potentials and forces. Spline functions are used for
interpolation between these values. When the size of the simulation box

is not changed, the construction of the table is only set up once, while
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when the size of simulation box is varied, it must be reconstructed

frequently and its efficiency is therefore reduced.

6.2.3 SELECTION OF STATISTICAL ENSEMBLE

Since MD method simulates systems of finite temperature. It is
important to define the ensemble of the system. Two schemes are often
used separately or together: first, the constant-temperature and second is
constant-pressure (see, for example, Allen and Tildesley 1987 for more
details).

The constant temperature method is used to control the
temperature of an MD ensemble. Several techniques have been
proposed. The most widely used technique is to scale the velocities of all
ions at each time step by the factor V (Tg/T), which ensures that the total
kinetic energy of the system corresponds to the desired temperature T(Q
(Woodcock 1971). The constant-temperature method is essential in
simulating the glass formation process. The system is kept in the molten
state for some interval after which it is slowly quenched.

Several techniques have been proposed for constant pressure
simulations. In the method proposed by Andersen (1980), the
surroundings behave like a linear elastic volumeric piston which
oscillates in time and exerts an external pressure, Pext, on the system.
The system finally approaches a steady state at which P = Pext. In the
FUNGUS code, the method proposed by Berendsen (1984) is adopted,
because it does not drastically alter the dynamic trajectories, although the
appropriate ensemble has not been identified. The system is made to

obey the equation

dP/dt = (Po-P)/tp (69)
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where Py is the desired pressure and tp is a time constant. At each step,

the volume of the simulation box is scaled by a factor y, and the

molecular centre-of-mass coordinates by a factor x1/3

r=y1/3r (6.10)
where
x=1- BT At/tp -(Po-P). (6.11)

Here, Bt is the isothermal compressibility and At the simulation time
step. The constant-pressure method is necessary in modelling structural
transformations. In particular, the extended constant-pressure algorithm,
which allows the simulation box shape to change, has been successfully
used to model phase transformations in solids (Parrinello and Raman
1982). However, the method often results in large distortions of the
simulation box in the molten state and high-pressure must be applied to

the simulation box in such cases.

6.24 ANALYSES OF CALCULATED RESULTS

MD simulations yield a large amount of data (for example, see
Appendix C). As vitreous structures do not have long-range order, the
Radial Distribution Functions (RDFs) contain the most important
information about their structures. The calculated RDFs are compared
with those from the X-ray or neutron studies. The positions of the peaks
in the RDFs and coordination numbers are also used. Bond Angle
Distributions (BADs) are helpful in examining the bonding topology.

Diffusion coefficients can also be calculated directly from the results
of MD simulations. This is achieved very simply, from plots of the mean
displacement (MSD) of the appropriate particles which increases linearly

with time if diffusion is occurring.
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6.2.5 LIMITATIONS OF MD METHOD

There are three main limitations with present MD methods. The
first is provided by finite-size effects, although compared with quantum-
mechanical simulations, classical MD methods can simulate much larger
systems. When the simulated system is a perfect crystal or its structure
has only short-range order, this limitation may not be too serious.
However, when the system is disordered, the simulation box must be
large enough so that the artificial periodicity does not significantly affect
the results. For the Lennard-Jones type potentials the calculations with as
many as one million particles may be possible. However, for the case of
oxide materials the more sophisticated potentials needed for accurate
simulations do not allow such large calculations. The main reason is that
for ionic materials the calculation of the long-range Coulombic terms is
computationally expensive, although the efficient method of the Ewald
sum is now generally used. The other reason is that in order to express
covalent effects the potentials have to include three-body and in some
cases four-body terms; and these terms require much larger numbers of
interactions.

The second limitation is the finite real time sampled in the
simulations, which is at most ~Ins and typically 20 ~ 100ps in modern
simulations. Most physical properties are calculated by averaging over
the simulation. But the period of real time sampled may be insufficient
to model the processes occurring in the real system. Thus, in glass
formation, the .quench rate is crucial in controlling the final vitreous
structures. MD quench rates are several orders of magnitude greater than
the real rates, nevertheless it still appears possible to simulate the

structures of vitreous materials by these techniques.
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The third limitation is the accuracy and transferability of the
potential model. In MD simulations of vitreous states there are two
procedures: in the first, potentials are estimated so as to reproduce the
experimental RDF in a trial-and-error manner and in the other the
potentials are fitted so as to reproduce the crystal structure or to
reproduce the ab-initio potential energy surfaces of molecular clusters;
the latter procedure is used in this thesis. The experimental RDF gives
only "one-dimensional" information and several different sets of
potential models may reproduce it reasonably. The latter method is
clearly to be preferred, provided sufficient data are available. Generally,
the more data for different structural configurations are used, the more
transferable are the potentials so derived. The ab-initio MD method (Car
and Parrinello 1985) is clearly promising, because it does not require
interatomic potentials. However, it requireé a very large amount of CPU
time and it cannot easily overcome the first and second limitations. Ab-
initio MD simulations may replace classical MD in studying relatively
small systems, while the classical MD will continue to be the only viable

technique for large complex systems.
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6.3 APPLICATION OF TRANSFERABLE POTENTIAL B1 TO MD

Here we apply potential b1 derived in Chapter 5, which reproduces
both crystal structures of B2O3 to simulating the melting and quenching
process of B2O3.

The calculated conditions are as follows. The total number of atoms
was 480 (192 boron atoms and 288 oxygen atoms). The time step in the
calculation was 1 fs. When we started MD simulations, two problems
occurred. The first is that when the system was heated to a temperature
higher than 1500K in the constant pressure calculations using ambient
pressures, the simulation box expanded to become several times larger
than the original size and reasonable dimension could not be restored.
The second is that when the constant volume method was used, a large
fraction of four-fold coordinated boron atoms was generated, which
remained even at the 300K. Therefore, we adopted the constant pressure
method using ambient pressures and a maximum temperature of 1500K.

The detailed procedure was as follows. The crystal of BoO3-I was
kept at 1500 K for 10,000 steps. The system was then quenched down to
300 K in 100 K intervals each of 3000 steps and kept at 300 K for 10,000
steps. This melting and quenching process was repeated once more. To
check the rate of atomic diffusion during the melting, the rate of
disruption of the B-O bonds was counted. In this case, 17% of the initial
bonds were broken and rebonded with another partner. Although the
atomic diffusion is small, it is encouraging that the simulation
reproduced the change in density. Further studies of diffusion processes
are reported in Section 6.5.

The calculated coordination numbers, ring sizes, and densities are
given in Tables 6.1 ~ 6.3. The results show that 17 six-membered rings,

were generated (that is, 27% of boron atoms are present in six-membered
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rings), although the proportion is smaller than that estimated
experimentally (see Chapter 2). It is interesting to note that even the
ambient pressure simulation gave a reasonable density, in contrast to
most of the published constant pressure calculations which require
extremely high pressures in order to reproduce the experimental density.

The Pair Distribution Functions (PDFs) and the Bond angle
Distributions (BADs) are shown in Figures 6.1 ~ 6.4. The assignments of
the peaks are shown in Figure 6.5 (Mozzi and Warren 1970). Although
the volume of the simulation box expanded about 10% in the ambient
pressure simulation, the positions of the peaks of B-O, O-O and B-B
seems to be reasonable. It is interesting to note that there are several
peaks (for example, G and H) which suggest the existence of boroxol rings
and which are not present in the calculated results based on pair-
potentials. There is also a major difference in the BADs. All the pair-
potential models exhibited a broad distribution of the B-O-B bond angles
around = 160°, while the present calculation shows a sharp distribution
around 120~130°. As explained in Chapter 5 the B-O-B bond angles were
important for reproducing the crystal structure of B2O3-1, and they also
seem important in the case of the vitreous structures. The average B-O-B
bond angle in the borate crystals is approximately 130° and the quantum-
chemical calculations on the molecular clusters suggested around 135°.
Therefore, it is unlikely that the B-O-B angles are around 160° in the
vitreous structures. However, if the potential favours wide B-O-B bond
angles, it may prevent the generation of the boroxol rings. The pair-
potential model with the full ionic charge results in excessive repulsion
between the B-O bonds, as explained in Chapter 5. This is almost
certainly one of the reasons why previous MD studies could not generate

the boroxol rings. Inclusion of the three-body terms, combined with the
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partial charge and the Morse potential, seems to be very effective in
modelling partial covalency in compounds such as B2O3. In order to
check the calculated structures and discuss the more detailed structural
features, the comparisons with X-ray diffraction data and the neutron
scattering data are useful, and they will be given in Section 6.5.

The next step was to relax this calculated structure to equilibrium at
zero Kelvin using the THBREL program. No significant changes in the
dimensions of the simulation box occurred during the constant pressure
runs. The calculated bulk modulus was 11.4 GPa, compared with the
experimental value of = 15 GPa, and the calculated Young's modulus was
15.4 GPa, compared with the experimental value of = 17 GPa.

Although all these results seems to be very satisfactory, there is one
problem: 9 four-fold coordinated boron atoms and 9 three-fold
coordinated oxygen atoms were observed. Many experiments suggest that
almost all the boron atoms are three-fold coordinated (see Chapter 2).
Furthermore, half of the six-membered rings contain more than one
four-fold coordinated boron atoms, that is, they are not true boroxol rings
which are defined to have only three-fold coordinated boron atoms. The
observations may be associated with the fact that the lattice energy of
B203-II is calculated to be lower than that of B2O3-1, thus this potential
would favour four-fold coordination rather than the three-fold
coordination in some environments. We attempt to overcome this
problem in the next section.

Finally, we attempted to include the aromatic stabilization effects of
boroxol rings in our MD simulations. As explained in Section 2.5, the
quantum-mechanical calculations suggested that such stabilization
effects would not be so large as to control the geometries and networks.

We roughly estimated the energy differences in the B-O bond in the

177



monomer, dimer and trimer(boroxol ring), from the quantum-
mechanically calculated energies, and expressed it with the additional
attractive Buckingham terms between the B-O interactions. These terms
were only added to the B-O interactions present in boroxol rings. Even
with these extra terms, there was no significant difference in the
structures. The aromatic stabilization effects do not therefore appear to

have a significant effect on the simulated structure.
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2-fold 3-fold 4-fold

boron 0% 96% 4%
oxygen 97% 3% 0%

Table 6.1. Distribution of coordination numbers in calculated glass

(constant pressure calculations using potential b1)

ring size 4 6 8 10 12
number 1 17 5 9 14

Table 6.2. Distribution of ring sizes in calculated glass

(total number of atom = 480; constant pressure calculations using potential b1)

300K crystal 1500K melt 300K glass [g/cm3]
experiment 2.56 1.51 1.80
calculation --- 1.52 1.63

Table 6.3. Experimental and calculated densities

(constant pressure calculations using potential bl; experimental data from : Macedo et al

1966)
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Figure 6.1. Calculated B-O PDF for B20O3 glass at 300K
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Peak Kind of atoms Designation on figure Interatomic distance
D B-O 1-2 137A

E 0-0 1-3 2.37

F B-B 2-4, 2-5 243

G B-O 2-6 2.74

H B-O 2-7 Variable
I B-O 2-7 3.63

J 0-0 3-8 4.10

K 0-0 3-7 Variable
L 0-0 1-8 4,75

M B-O 4-6 5.25

N B-O 5-7 Variable
(@) B-O 4-8 Variable

Figure 6.5. Assignment of peaks in X-ray RDF for B2O3 glass
(Mozzi and Warren 1970)

184



6.4 NEW POTENTIAL MODEL ('TCP POTENTIAL")
FOR POLYMORPHIC AND VITREOUS STRUCTURES

We recall that the transferable potentials which could reproduce the
two different crystal structures for BpO3 often failed to reproduce the
difference in the lattice energy. In considering this difficult problem, the
following points discussed in Chapter 5 should be considered.

i. The LP simultaneous fittings were applied to two B203
polymorphs after imposing the inequality conditions of their energies.
But there was no feasible solution obtained as long as a transferable
potential form was used.

ii. Experimental data show that bond lengths strongly depend on
coordination number. But not all the ‘transferable' potentials can
reproduce such differences well. In the case of B2O3 crystals, the
variation in the B-O bond lengths with the coordination number around
the boron atoms is reproduced well by the transferable potential, while
the dependence of the bond lengths on the oxygen coordination are not
expressed well by the transferable potential. We note that potentials may
be explicitly formulated so as to depend on the coordination number in a
way similar to the bond strength concept defined by Pauling (1960).

iii. When the B-O potential alone was allowed to depend on the
coordination number, there was no better solution than with the
original transferable potential. However, when both the B-O and the O-O
potentials were modified, better solutions (potential c1 and c2) were
found.

In view of these difficulties and observations we have developed
new potential which depends on the coordination number. The concepts
of this "TCP potential" (developed by Takada, Catlow and Price) are as

follows;
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i. The TCP potential as noted depends on the coordination. At first,
in order to express the wide range of coordination states including the
transient state around a bond breaking or rebonding state, the 'bonding

state function' Fp is defined for each interaction.

Fpb =1 r < (R-D)
= {1-sin(n(r-R)/2D} (R-D) <r < (R+D) (6.12)
=0 (R+D) <r

where r is the distance between an oxygen atom and a boron atom. The
range R-D to R+D represents the distances over which bond formation
and breaking occur. At distances r<(R-D) full B-O bonding is generated.
For (R-D)<r<(R+D) the extent of B-O bonding varies. When (R+D)<r, the
B-O bonding is broken. The first derivative of this function is continuous
when r=R-D and r=R+D.

ii. Next, the 'coordination function' F¢ is defined for each atom;

Fe = 3 Fbi (613)
where i is the sequential number of the B-O interactions around the
atom concerned. When there is no transient bonding state, F¢ is the same
as the coordination number. In this sense F¢ can be said to be an
"extended" coordination number.

iii. When the structure concerned has no transient bonding, we use
the potential set corresponding to the appropriate coordination state.
However, when the structure has some transient bonding, we
interpolate between the two coordination states. The 'interpolation
factor' a is introduced. o is defined so that it becomes zero for one
coordination state, while it becomes one for the other state. The simplest
procedure is to make o proportion to Fc. For example, when the

potential V in the transient state is interpolated from the potential V2 in
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the two-fold coordinated state and the potential V3 in the three-fold
coordinated state, V become;

o=Fc-2 (6.14)
and

V(r) = (1-a)V2(r) + aeV3(r) (6.15)

iv. These procedures are generally applied to the coordination
environments of cations and/or anions. In the case of the BpO3 system, it
is found that the change in the cation coordination can be expressed via
the O-O interaction, while the change in the anion coordination cannot
be well expressed with the B-B interaction. Therefore, only the changes
in oxygen coordinations are expressed via the TCP potential form. For
the three-body interactions, the respective three-body terms are applied
to each coordination state.

v. For the pair-potential term for the B-O interactions, the potential

V(r) (the Morse form) and its force dV(r)/dr are calculated as follows:

V(r) = (1-0)V2(r) + aV3(r) (6.16)
oV(r) / or = {(1-a) - dV2(r)/dr + o - dV3(r)/dr}
+90./dr - (-V2(r) + V3(1)) (6.17)

where V2(r) and V3(r) are the pair-potential term for the two-fold
coordinated oxygen and for the three-fold coordinated oxygen,
and
da./or = -1/(4D) - cos{n(r-R)/2D} (6.18)
whenr <R-Dorr > R+D
do/or=0 (6.19)
when R-D < r < R+D
vi. For the pair-potential term for the O-O interactions, the potential

V(r) (Buckingham form) and its force dV(r)/dr are calculated as follows.
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First, the general Buckingham form for the two oxygen atoms with the

same coordination function Fc is:

V(r) = A(Fc) - exp{-r/ p(Fc)} (6.20)
dV(r) / or = dA(Fc)/dr - expf-r/ p(Fc)}

+ A(Fc) - dlexp{-r/ p(Fc)}]/or (6.21)
A(Fo) = (1-0)A2 + aA3 (6.22)
p(Fc) = (1-a)p2 + ap3 (6.23)

where A2, A3, p2 and p3 are the A parameters and p parameters for two-
fold or three-fold coordinated oxygen atoms. In the case of the BoO3
system, there are three interactions in the material: two-fold coordinated
oxygen interacts with a second two-fold coordinated oxygen; two-fold
coordinated oxygen with a three-fold coordinated oxygen; and three-fold
coordinated oxygen with a second three-fold coordinated oxygen. These
three sets of potential parameters can be derived from the two
polymorphic structures of B2O3. After several tests of the LP fitting, it

was found only A(Fc) should be varied, p(r) being fixed in this system.

V(r) = A(Fo) - exp(-t/ p) (6.24)
dV(r) / or = dA(Fc)/dr - exp(-r/ p)

- A(Ec) - exp(-r/ p)/p (6.25)
A(F¢) = (1-a)A2 + 0A3 (6.26)

In the next step, the Buckingham form for the two oxygen atoms
which have intermediate coordination is derived. As the simple
geometric average did not work well as reported by Pertsin ad
Kitaigorodsky (1987), a new interpolating function was introduced.
When one atom has the coordination function F¢-1 and the A parameter
A_1, and the other atom has the coordination function Fc-2 and A

parameter A-p, the potential for the interaction between these two atoms

is defined as follows;
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A182 =" (A1 - Ap) [{(max(A-1,A-)/min(A-1,A2)-1)-1} k + 1] (6.27)

V(r) = A-1&2 - exp(-1/p) (6.28)
where k is the interpolating factor; k can be derived from the three sets of
O-O parameters as explained above. When both oxygens have the same
Fc-3 and A-3, V(r) has a simple form of A-3 - exp(-r/p).

In this case the force dV(r)/dr is approximated as follows:

dV(r) / or =- A-1&2 - exp(-r/ p)/p (6.29)

To summarize the TCP potential, has two main features. The first is
that the change in the coordination environment affects the bond
strength between atoms. It seems quite reasonable that as the number of
the bonds increases, the bond strengths are reduced, as the Tersoff's
potential expresses (Tersoff 1986; see Appendix D). The second is that the
pair-potential terms change continuously between the two coordination
states and the shape of the potential energy surface in the transient
region can be adjusted smoothly by varying the R and D parameters,

independent of the energy difference between the two polymorphs.
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6.5 APPLICATION OF TCP POTENTIALS TO MD

6.5.1 SELECTION OF POTENTIAL MODEL

Two TCP potential models which were modified from potentials c1
and c2 were used in MD simulations of the structures of vitreous B2O3.
In order to apply the crystal potentials, c1 and c2 (see Chapter 5), to the
vitreous states, some parameters which were defined in the previous
section were fixed as follows; R=1.8 A, D=2.0 A, k=0.320 and 0.295 for
potentials cl and c2 respectively, as discussed Section 6.4.

The total number of atoms was 270 (108 boron atoms and 162
oxygen atoms). Although several runs with 480 atoms were undertaken,
there was not any significant difference in the structures found. The time
step in the calculations was 1fs. To ensure more diffusion than the case
described in Section 6.3, the melting temperature was set at 5000 K.

For the melting and quenching process, the initial crystal structure
was kept at 5000 K for 10,000 steps. The system was quenched down to
1500 K in 500 K intervals, each of 1800 steps, after which it was quenched
to 300K in 100 K intervals, each of 900 steps. Finally, the system was kept
at 300 K for 10,000 steps. 98% of the initial bonds were broken and
rebonded with the other partners.

At first, constant pressure simulations (using ambient pressures)
were undertaken. The calculated coordination numbers, ring sizes and
densities are shown in Tables 6.4 ~ 6.6. Both potential models give
simulated structures with a higher proportion of boroxol rings: 53%
(potential c1) or 36% (potential c2) of boron atoms are present in boroxol
rings, which values are around the lower limit (40%) suggested by
Johnson (1982). As the new potential models favours three-fold rather
than four-fold coordination (i.e. energy of B20O3-I is lower than that of

B203-1I), the four-fold coordinated boron atoms are no longer present.
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However, one new problem appears: the final calculated density is too
low compared with the experimental one. Thus, although these
potential models successfully generate boroxol rings, it would still appear
to be difficult for the present MD method to reproduce the whole
structural transformation during the melting process at high
temperatures so as correctly to reproduce the density.

Next, therefore, the constant volume method was applied using the
same potential sets, in order to study the structural transformations
keeping the experimental density. The calculated coordination numbers
and ring sizes are shown in Tables 6.7 and 6.8.

The percentage of the boron atoms consisting of the six-membered
rings (25% for potential cl; 42% for potential c2) was lower than that
observed with the constant pressure calculations, and four-fold
coordinated boron atoms were observed in the simulations using
potential c2.

To summarize, using the constant pressure method these new
potentials generated almost the same percentage of boroxol rings as that
estimated from the experiment, but they resulted in a lower density (i.e.
they may have different intermediate ordering) While under the
constant volume method the results could not reject the generation of
four-fold boron atoms, although they necessarily kept the experimental
density. Therefore, it is not easy to realize both the high proportion of the
boroxol rings and the experimental density at the same time in the MD

simulations.
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1-fold 2-fold 3-fold 4-fold

potential ¢l
boron 0% 1% 99% 0%
oxygen 1% 99% 0% 0%

potential  c2
boron 0% 1% 99% 0%
oxygen 2% 96% 2% 0%

Table 6.4. Distribution of coordination numbers in calculated glass

(constant pressure calculations using potentials c1 and c2)

ring size 4 6 8 10 12

potential ¢l
number 0 13 3 0 2
potential  ¢2
number 2 19 4 2 2

Table 6.5. Distribution of ring sizes in calculated glass

(total number of atom = 270; constant pressure calculations using potentials c1 and c2)

experiment calculation [g/cm3]

potential c1  potential c2

2.56 1.43 1.15

Table 6.6. Experimental and calculated densities at 300K
(constant pressure calculations using potentials c1 and c2; experimental data from :

Macedo et al 1966)
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1-fold 2-fold 3-fold 4-fold

potential cl
bOI‘OI‘I O‘Vo 1(70 990/0 00/0
oxygen 1% 98% 1% 0%

potential  c2
boron 0% 0% 94% 6%
oxygen 4% 89% 7% 0%

Table 6.7. Distribution of coordination numbers in calculated glass

(constant volume calculations using potentials c1 and c2)

ring size 4 6 8 10 12

potential ¢l

number 0 9 8 2 9
potential  ¢2

number 0 15 7 5 10

Table 6.8. Distribution of ring sizes in calculated glass

(total number of atom = 270; constant pressure calculations using potentials c1 and c2)
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6.5.2 COMPARISON WITH X-RAY DIFFRACTION
AND NEUTRON SCATTERING DATA

In order to examine the calculated vitreous structures, we made the
comparison with the X-ray diffraction data of Mozzi and Warren (1970)
and the neutron scattering data of Johnson et al (1982). From the
calculated structures using potentials c1 and c2, the RDFs and
interference functions were simulated and compared with those
obtained from the experimental data. In order to compare with the latter,
the same filtering and conversion procedures were used.

For the X-ray diffraction data, two points must be carefully noted.
The first is that the peak at 2.8A in the X-ray RDF data in the original
paper of Mozzi and Warren (1970) appeared to be absent after a
retransformation of the interference function using a window, as
Johnson et al (1982) pointed out. Therefore, the comparison with the
interference function may be better than that with the RDF. The other is
that the atomic form factors are dependent on the X-ray wave length and
the atomic charge state, and it is not easy to use precise values. Verhoef
and Hartog (1992) demonstrated that the difference in the approximation
of the atomic form factors considerably affected the height of the first and
second peaks within 6A in the interference functions. Here, the
interpolating function appropriate for neutral atoms was used from the
International Tables for X-ray Crystallography (1974).

For the neutron scattering data, the atomic scattering factors are
independent of q (wavevector), and the experimental intensity was
measured up to 40 A-1. The neutron data may be more suitable for
comparison with the calculated results, and therefore more emphasis is

placed on neutron data in this chapter.
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The calculated RDFs and the interference functions for the X-ray
diffraction data are shown in Figures 6.6 and 6.7; those for the neutron
scattering data are shown in Figures 6.8 and 6.9.

The calculated RDFs and the interference functions for both
potentials agree reasonably with both X-ray and neutron experimental
data. For the calculated RDF appropriate to the neutron scattering data,
the peaks at 1.37A, 2.37A agree with experiment, although their heights
are still a little too large. However, two small and broad peaks around 3A
in distance cannot be distinguished. This is possibly due to the small
proportion of boroxol rings, as it is certain that boroxol rings result in
these two peaks (G and H), as the PDF of B-O demonstrated in Figure 6.1.

For the interference function of the neutron scattering data, the
shapes of branches in the peaks around 10A-1 and 15A-1 agree very well
with the experimental data. All these features seem to be related to the
structures of boroxol rings and to originate from the intermediate-range
rather than the short-range order. This point is discussed further in the

following section.
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6.5.3 SHORT-RANGE AND INTERMEDIATE-RANGE ORDER

Our calculated results showed that the existence of the six-
membered rings can reproduce the X-ray and neutron scattering data
well, as many experimentalists have previously suggested. However, it is
very difficult to discuss the intermediate-range order present in vitreous
structures using only experimental data. In contrast, not only the short-
range but also the intermediate-range order is available from analyzing
the calculated structures.

First, the O-B-O and the B-O-B Bond Angle Distributions (BADs) at
300 K in the cases of potentials c1 and c2 are shown in Figure 6.10. As
their peaks are more easily distinguished and compared at zero Kelvin,
all the BAD data are calculated at zero Kelvin (i.e. after energy
minimization) and are shown in Figures 6.11 ~ 6.13. For the sake of
comparison the experimental structures (B2O3-I and Cs20 - 9B203) and
the calculated structures (pseudo super crystals and the MD results) are
shown. They exhibit several peaks around 120° for the O-B-O bond
angles, and two groups of peaks around 120° and 128° for the B-O-B bond
angles. For the latter it is interesting to note that the peak around 120°
corresponds to the angles within the boroxol rings, while that around
128° corresponds to the angles outside the rings. The latter value agrees
with that estimated from the NMR experiment by Jellison (1977); the B-
O-B angles for the oxygen atoms not included in the boroxol rings have a
narrow distribution (rms deviation ~1.7°) centred around either 134.6°
or 128.1° (which cannot be distinguished by experiment). This value,
which contrasts with the much larger angles calculated from the pair-
potential models, almost certainly implies the presence of the boroxol

rings, as explained in Section 6.3.
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The existence of boroxol rings and the B-O-B angles of 128° outside
the boroxol rings is clearly demonstrated. However, if these are
randomly connected, the structural model cannot reproduce the
experimental density (see Section 2.3). In order to analyze the topology of
the connections, we need the Torsion Angle Distribution (TADs)
between the BO3 triangles, and between the BO3 triangle and the B3Og
ring, or between the BO3 triangle and the B3O¢ ring. (To define the
torsion angles between two planes, we consider each plane as defined by
the three oxygen atoms present in the BO3 triangles whether within or
outside the B3Og rings.) The BO3 triangles with more than one four-fold
coordinated boron atoms were excluded from the analysis. The calculated
results are shown in Figure 6.14 ~ 6.20. It must be noted that all the peaks
are sharp, because they are calculated at zero Kelvin and confined to
several equilibrium values.

The TAD in the crystal of B2O3-I has two peaks of 7° and 74°
(Figure 6.14). It is interesting to note that two triangles even on the same
chain are twisted by 7°, while those on the different chains, by 74°, which
is close to the perpendicular, these contrast with the quantum-chemically
calculated value of 29.4° for the (HO)2B-O-B(OH)2 molecule (Uchida et al
1985). For the TAD in the crystal of Cs20 - 9B203, two of the peaks are
almost the same as those in B2O3-I and the other has a peak around 44°
(Figure 6.14). The latter value is close to the quantum-chemically
calculated value of 32.2° obtained for (HO)2B303-O-B303(OH)2 by
Uchida et al (1985). These two results may mean that the B2O3 systems
do not favour a layer structure and they prefer the large torsion angle
which does not appear in the molecular state and is probably caused by

crystal effects.
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The calculated structures of pseudo super crystals also have large
torsion angles (Figures 6.15 ~ 17); and the structures calculated by the MD
method similarly exhibit large torsion angles, although they also have
other peaks at the lower region (Figures 6.18 and 6.19). It is interesting to
note that in the calculated structures the torsion angles within the B3Og
rings exhibit the twisted angles from 10° to 30 ° (Figure 6.20); this means
that the three oxygen atoms outside the B303 rings do not lie on the
same plane as the B303 rings and that they are easily distorted.

The hypothesis that a considerable proportion of the torsion angles
would be as large as 74° and that the oxygen atoms outside the rings do
not lie in the same plane as those within the rings may explain the
experimental density, in contrast to the lower density obtained from the
models base on the randomly connected boroxol rings. Appreciation of
this point, which was also explained using the term 'interlocking
structure' for Cs20 - 9B203 in Section 5.5, may lead to accurate models for

the intermediate-range order in vitreous B2O3 structures.
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Figure 6.11. Bond angle distribution in B203-I and Cs20 - 9B20O3 crystals

at0K
(a) B203-I (b) Cs20 - 9B203
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Figure 6.12. Bond angle distribution in pseudo super crystal at 0 K
(a) B2O3-c
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Figure 6.18. Torsion angle distribution in calculated vitreous structure

using potentials c1 and c2 at 0 K
All angles are between BO3 triangles.
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6.54 LATTICE DYNAMICS SIMULATION

The vitreous structure calculated using potential c2 was energy-
minimized and its lattice dynamical properties were calculated
employing the GULP program discussed in Chapter 5 (Gale 1993). The
calculated vibrational densities of states at 300K are shown in Figure 6.20
(see also Section 5.9). They have two peaks at 740 cm-1 and 805 cm-1
which correspond to peak (A) in B2O3-I and peak (B) in B2O3-a, and the
structure appears to have intermediate features between these of BpO3-1
and the B2O3-a. Furthermore, they have the other higher peak (C) of 775
cm-1, which does not exist either in the BpO3-I or B2O3-a. This calculated
structure still contains several BO4 tetrahedra, and peak (C) is assigned to
a vibration of the six-membered rings with one or two BO4 tetrahedra, as
noted by Konijnendijk and Stevels (1978) in their study of the spectra of

the alkali-borate crystals.
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6.5.5 STRUCTURAL TRANSFORMATION IN THE GLASS
FORMATION

In Chapter 4 the structural transformation from the BO3 triangular
structural unit to the BO4 tetrahedral unit was observed to occur
smoothly without breaking any B-O bonds. However, such a smooth
transformation without bond breaking seems to be topologically
impossible between the independent BO3 triangular structural unit and
the B30g boroxol ring unit.

Here, we investigated the nature of the structural transformations
in the melting and quenching simulations. Two types of transformations
were observed. In the first at 1500K, two-thirds of the boron atoms have
the two-fold coordination, and as the system is quenched, the two-fold
coordinated boron atoms bond with the non-bridging or the two-fold
coordinated oxygen atoms (see Figure 6.22 (a) and (b)). In the latter case,
after the generation of a six-membered ring, one original B-O bond is
broken. In the second below 1000K the three-fold coordinated boron
atoms bond with the fourth oxygen atom. The transient state has four-
fold coordinated boron and three-fold coordinated oxygen atoms (see
Figure 6.22 (c)). Then after the generation of a six-membered ring, two
new B-O bonds are created.

It is interesting to note that Mackenzie (1959) proposed non-bridging
-B=0O groups were present as higher energy species in molten B203,
while Krogh-Moe (1960) proposed four-fold coordinated boron and three-
fold coordinated oxygen atoms. Both hypotheses were proposed
independently. However, they correspond to our results and we can now
distinguish between them; the first is the 'high temperature structural
transformation', while the second is the 'low-temperature structural

transformation'. It is also interesting to note that the latter hypothesis
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may explain one of the reasons why a proportion of the four-fold
coordinated boron was always observed in our MD simulations even
when the TCP potential model was used; the transient structures would
be frozen before finding the appropriate bonding partners because of the

rapid quench rates.
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6.6 ESTIMATION OF THE RATIO OF BOROXOL RINGS

TO INDEPENDENT BO3 UNITS

One of the major concerns in our MD simulations is the ratio of the
boroxol rings to the independent BO3 units. As explained in Chapter 2,
the NMR study (Jellison et al 1977) and the neutron diffraction study
(Johnson et al 1982) estimated the fraction of the boron atoms included
in the boroxol rings as 828 % and 60%+20% respectively The MD
simulated structures contained 30~50 % fraction of the boroxol rings.
However, we must note that there are still several limitations in the
latter techniques as explained in Section 6.2.

One of the most useful clues in unravelling these complexities may
be the glass density which strongly depends on the structure. After the
construction of the possible polymorphs shown in Section 5.8, we now
have one experimental density for B2O3-I and four simulated densities
for BoO3-a, BpO3-b, B2O3-c and B20O3-d. The relation between the
fractions of the boron atoms contained in the boroxol rings and the
densities are plotted in Figure 6.23. We note that the bond lengths and
angles in these structures are all very similar. So the changes in density
are due to changes in the intermediate-range order. There is a clear
correlation between the density and the boroxol ring content, although
there is appreciable variance in the correlation. However, the fraction
which corresponds to the glass density can be estimated as 50~64%.
When the calculated structures explained in Chapter 5 and 6 are taken
into account, one of the possible crystalline analogues for vitreous B2O3
may be the disordered structure based on B2O3-c and B2O3-d, with some

B30g rings replaced with BO3 triangular units.
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6.7 CONCLUSIONS

In applying the transferable potential model which can reproduce
both crystal structures of B2O3 to the melting and quenching MD
simulations, we obtained a vitreous structure containing six-membered
rings (with 27% of the boron atoms), but is also containing several four-
fold coordinated boron atoms which is inconsistent with much
experimental data. The problem may be related to the fact that the
difference between the lattice energies of two polymorphs cannot be
reproduced by this potential.

Next, in order to overcome this problem, the new potential model
(the TCP potential) was developed and used in the MD simulations. In
the constant pressure calculations this new potential model successfully
reduced the proportion of the four-fold boron atoms and increased the
proportion of the six-membered rings closer to the lower limit (40%) of
that estimated by the neutron study, although the calculated densities
became too large. In the constant volume calculations, the proportion of
the six-membered rings was reduced and the four-fold boron atoms
appeared. However, the calculated structures agree with the RDFs and
interference functions derived from the X-ray diffraction data and with
the neutron scattering data. It is interesting to note that all these
structural models have one important feature concerning the
intermediate-range order, namely, that a considerable proportion of the
torsion angles between the BO3 triangles, between the BO3 triangle and
the B3Og ring, and between the B3Og rings are around 74°, although the
MD simulated structures contain smaller torsion angles. This feature
seems to be important in reproducing the experimental density without

the presence of four-fold coordinated boron atom.
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Regarding the vibrational properties, as the calculated structure
contained four-fold coordinated boron atoms, the lattice dynamics
simulation of the structure exhibited two characteristic peaks seen in the
Raman spectra; the first is at 805 cm™1 and is due only to the boroxol ring
with BO3 triangles; and the other is at 775 cm™1 and corresponds to the
six-membered ring with one or two BO4 units.

These MD studies using the new potential model demonstrate
structural transformation in the glass formation and confirm the
existence of the boroxol rings, in contrast with the other MD studies
employing the pair-potentials. However, there are several four-fold
coordinated boron atoms remaining and the proportion of the boroxol
rings is still smaller than that estimated by experiments. There are three
possible explanations: the first concerns the effect of the finite simulation
time explained in Section 6.2.4. Although our new potential model
favours the three-fold coordinated environment rather than the three-
fold one, the simulation must have sufficient time for the structure to
rearrange during the quench process, and the present time scale would
not be sufficient. The second is the finite size effect explained in Section
6.2.4. As the B2O3 system has much more pronounced intermediate-
range order than in the other oxide materials, the simulation box may
need to be much larger. The third concerns the accuracy of the potential
models. The new potentials could reproduced two crystal structures well,
but it may require still further improvement using spectroscopic data
and properties of the molten state.

Several MD simulations which started from the structure of pseudo
super crystal B2O3-d (good candidate for vitreous B2O3) were also
performed. The system was melted and then quenched in the same way

as explained in Section 6.5. The final vitreous structure turned out to be
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almost same as those calculated in Section 6.5. An improvement was not
observed, because the system probably lost most of its initial structure.
However, further work based on the pseudo super crystal structures may
lead to the possibility of simulating more realistic vitreous structures.
Finally, we estimated the fraction of boron atoms present in boroxol
rings as 50~64%, from the relation between the calculated structures and

densities for polymorphs.
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7. SUMMARY, CONCLUSIONS AND SUGGESTIONS FOR
FUTURE STUDY

As we have proceeded through the simulations reported in this
thesis, we have realized the complexities in structure and bonding in
borate materials. We now attempt to summarize the results and insights
obtained in this thesis.

The starting point for our work was the experimental and
computational studies previously reported in the field of the B203
materials which were reviewed in Chapter 2. We saw that none of these
provided single comprehensive methods to elucidate the structure and
bonding in these materials and that it is essential to employ them in a
complementary manner.

In our first theoretical approach, we employed quantum-chemical
calculations based on periodic ab-initio Hartree-Fock methods on borate
crystals in the crystalline state. Our calculated results highlighted both
ionic and covalent features in the bonding, and they showed that such
features accord well with empirical concepts regarding the structure and
bonding of borates. Future applications of these techniques to the other
borate minerals should explain common and different features among
borates more systematically.

Our second approach was the first-principles total energy
calculations on the two B203 crystals employing the LDA,
pseudopotential techniques. The calculated results obtained by the full
optimization of the structures reproduced not only lattice parameters but
also internal coordinates. Using the optimized structures, the bulk
moduli for B2O3-I and B2O3-II were estimated for subsequent use in the

development of interatomic potentials for B2O3 crystals. Furthermore,
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when the simulation cell volume was reduced, the structural
transformation from the BO3 triangular structural unit into the BOg
tetrahedral unit was observed and the manner of its transformation was
also elucidated.

Using the information gained from these fundamental study of
structure and bonding, we proceeded to the computer modelling of
crystalline B2O3. In contrast to the previous two quantum-mechanical
approaches, we employed atomistic simulation techniques. First, in order
to overcome the difficulties in deriving interatomic potentials, the new
procedure known as the LP fitting method was developed. By using this
method several sets of potentials which can reproduce both crystal
structures were derived. The fitted potentials showed that the partial
charge model with a B-O Morse potential and a B-O-B bond-bending,
three-body term can reproduce both structures well. It is interesting to
note that the crystalline and molecular potentials yielded different
parameters. The best potentials, which reproduce the order of the lattice
energies between the polymorphs, were found to have pair-potential
terms which varied depending on the coordination numbers.

Next, these potentials were applied to other possible polymorphs
containing boroxol rings and also possible structural units for vitreous
B203. The pseudo super crystal structure (B2O3-d) which was obtained by
performing static simulations is the first structural model for the basic
unit of vitreous B2O3, which can reproduce not only the B-O bond
lengths and the B-O-B bond angles, but also the density, with 75% of
boron atoms in boroxol rings. The lattice dynamic simulations using this
structure also showed that the peak of the experimental Raman peak at
806 cm~1 can be assigned to the breathing mode of the boroxol rings. It is

interesting to note that the important feature in this structure is thought
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to be the interlocking three-dimensional networks with two or three BO3
units connecting the B30¢ units. More extensive 'computer synthesis'
will enable us to obtain further possible candidates for polymorphs and
vitreous structures.

Using the potentials which had been successfully derived for the
crystal structures, we applied the MD method to vitreous B20O3. To
overcome the problem that the transferable potentials are often favour
four-fold coordinated boron atoms, we developed a new model (the TCP
potential model) which varies parameters automatically depending on
the coordination number. In the constant pressure calculations this new
model reduced the proportion of the four fold coordinated boron atoms
and increased the proportion of the six-membered rings close to the
lower limit (40%) of that estimated by the neutron study, although the
calculated density became too large. In the constant volume calculations
the proportion of the six-membered rings was reduced and the four-fold
boron atoms reappeared. However, the calculated structures agree with
the RDFs and the interference functions derived from the X-ray and
neutron diffraction data.

In order to analyze the intermediate-range order, the torsional angle
distributions (TADs) were calculated for the experimental and calculated
structures. These calculated results suggested that a considerable
proportion of the torsion angles between the BO3 triangles, between the
BO3 triangle and the B3O¢ ring, and between the B3Og rings must be
~74° in order to produce the experimental density. The structure
obtained from the MD simulations showed that it has reasonable
frequencies in the vibrational density of states. The manner of the
structural transformations in the glass formation at finite temperatures

was proposed. It is interesting to note that from the structures and the
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densities simulated in Chapter 5 we estimated the fraction of the boron
atoms contained in the boroxol rings (50~64%). Further studies will
investigate the alkali borates, alkaline-earth borates and borosilicate
glasses.

The structural properties of crystalline and vitreous borates are
clearly highly complex. This thesis shows, however, that computational
methods, when used in conjunction with experiment, can make an

important contribution to their study.
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APPENDIX A

CHRIST'S POSTULATION ON THE STRUCTURES OF BORATE

MINERALS

Christ postulated several rules regarding to formation of hydrated
borate polyanions (Christ 1960; Christ and Clark 1977).

His rules are as followings:

i. Boron will link either three oxygens to form a triangle or four
oxygens to form a tetrahedron.

ii. Polynuclear anions are formed by corner sharing only of boron-
oxygen triangles and tetrahedra in such a manner that a compact insular
group results.

iii. In the hydrated borates, protonatable oxygen atoms will be
protonated in the following sequence: protons are first assigned to free
O2- jons to convert these to free OH- ions; additional protons are
assigned to tetrahedral oxygens in the borate ion; protons are next
assigned to triangular oxygens in the borate ion; and finally any
remaining protons are assigned to free OH- ions to form H2O molecules.

iv. The hydrated insular groups may polymerize in various ways by
splitting out water; this process may be accompanied by the breaking of
boron-oxygen bonds within the polyanion framework.

v. Complex borate polyanions may be modified by attachment of an
individual side group, such as (but not limited to) an extra borate
tetrahedron, an extra borate triangle, 2 linked triangles, an arsenate
tetrahedron, and so on.

vi. Isolated B(OH)3 groups, or polymers of these, may exist in the

presence of other anions.
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APPENDIX B
THE REPORTED POTENTIALS FOR B203
There are several potential models reported specifically for vitreous

B203. The details of these potentials are explained as follows.

i. Soules’s potential (1980,1981)
The effective pair-potentials V were assumed to be purely ionic

(formal charge model) and their parameters were determined

empirically.
Vij(r) = Ajj exp(-r/0.29) + (qiqje2 /1) erfc(r/0.35L) (A2.1)
Ajj = 0.338*10-12 [erg] - (1+zi/nj + 2j/nj)

- exp(ri + 1j/0.29) (A2.2)
where r is interatomic distance, L is size of simulation box; for boron
atom rj is 0.74 [A], qi is +3 and nj is 2; for oxygen atom rj is 1.42 [A], gjis -2
and nj is 8.

This potential was applied to B2O3 glass and sodium borosilicate
glasses. It successfully reproduced the trigonal to tetrahedral conversion
of boron with the addition of sodium in agreement with the NMR
results. But the glass studied showed no tendency to form boroxol
groups. In B2O3 glass, the broad distribution of B-O-B bond angles
peaking near 155° was observed, similar to that found in vitreous silica.
Soules stressed the absence of directional covalent bonding as the
limitation. This potential was also used for B2O3 glass by Soppe et al

(1988) and for silver borate glass by Abramo and Pizzimenti (1986).

ii. Amini’s potential (1981)

A power-type force law was used in the study. The charge values,

+1.125 and -0.75 for boron and oxygen atoms, were determined so that
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the MD simulation can reproduce reasonably the glass transition
temperature of ~ 600K (physical value of 540K, Ubbelohde 1978). The
force law is

F(rij) = qiqj/1ij2 [ 1 + sgn(qiqj) {(si+sj) /™ ] (A2.3)
where F is force, rij is interatomic distance, n is 8; for boron atom, s is
0.153 [A], q is +1.125; for oxygen atom, s is 1.07 [A], q is -0.75.

This potential was applied to B2O3 glass and gave pair correlation
functions which agree with X-ray and neutron diffraction results.
However, no boroxol groups were observed. The distribution of B-O-B
angles was very broad with an average of 154° suggesting that higher-

fold rings were predominant in the system.

iii. _Hirao's potential (1985)
A new potential Vp.g of the form -A exp[-C(r-0.239)2] was added to

the regular modified Born-Mayer-Huggins-type potentials, Vp.g, to
account for the directional tendency of the borate network structure. For
B-B, B-O and O-O interactions we have;

Vij(r) = qiqjez/ r+ (1 + qi/nj + qj/nj) b exp{(ci+oj-1r)/p} (A24)
while only for B-B interactions, we add the following term,

VB-B(r) = Vij(r) -A exp[-C(r-0.239)2] (A2.5)
where r is the interatomic distance, b = 0.338*10-19 []], p =0.029 [nm], A =
6.94*10-19 [J], C = 7.62, for boron atom, ¢ = 0.074 [A], q = +3 and n = 2; for
the oxygen atom, 6 = 0.142 [A], q = -2 and n = 8. The parameters A and C
were chosen so that the B-B distance and the population of B-O-B angles
in BpO3 glass became similar to those obtained from X-ray
measurements.

This potential was applied to sodium borate glasses containing a

small amount of Eu203 to investigate the local structures of cations in
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the glass. It reproduced both the radial distribution of the sodium borate
glasses observed by small-angle X-ray diffraction and the change in
coordination number of boron with sodium content obtained by NMR.
They observed a high proportion of B-O-B bond angles at = 120° and a
smaller number at 145°. They suggested that the population at 120°

might come from the connection of boroxol groups.

iv. Inoue’s potential (1987)
This pseudo three-body model is explained in Chapter 2.5.2.

Three types of potentials were used.

1) Born-Mayer-type pair-potential for B-O (> 0.2 nm), O-O and B-B
pairs. The potential parameters are described in Table B.1.

Vij(r) = B exp(-r/p) + (qigje2/1) (A2.6)

2) Pair-potentials calculated by the intermediate neglect of
differential overlap (INDO) method, for the B-O bond ( < 0.2nm).

3) As with the three-body effects, the interaction between the ghost
atoms and the other atoms are supposed to be of the Born-Mayer type,
and the parameters were determined so that the sum of these potentials
was a minimum when the bond lengths and bond angles of the triangles
took the value in Table B.2.

This potentials were applied to B2O3 glass and Na20O-2B203 glass,
and reproduced boroxol rings and diborate groups. In B2O3 glass, O-B-O
and B-O-B bond angles have sharp distributions around 120°. However,
the ratio of boron atoms present in boroxol rings in the simulated B2O3

glass is 22.5% and smaller that reported ( see Chapter 2).
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B(x10716])  p(nm)

Na-Na 1.49 0.03
Na-B 0.62 0.03
B-B 3.08 0.03
Na-B 6.33 0.03
B-O (>0.2 nm) 2.13 0.03
O-0
For O-B-O in BO3
G-O 19.64 0.015
G-B 1.39 0.015
For O-B-O in BO4
G-O 22.56 0.015
G-B 1.92 0.015
For B-O-B
G-O 1.46 0.015
G-B 24.53 0.015

Table B.1 Parameter in the Inoue's potential (Inoue et al 1987)

Angle (deg) B-O distance (nm)

O-B-O in BO3 120 0.137
O-B-O in BO4 109 0.148
B-O-B 120 0.144

Table B.2 Shapes of BO2 and B2O triangles at the minimum potential
energy (Inoue et al 1987)

v. Xu's potential (1988)

This potential was determined so that the MD calculations of B2O3

and KB508 crystals could reproduce well the experimentally derived
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crystal structures. The pair-potential used is the Busing approximation of
Born-Mayer-Huggins' form without the dispersion terms and is purely
ionic.
V(rij) = gigje?/ij
+fo - (bi +bj) - exp[ (ai + aj - rij) / (bi + bj) ] (A2.7)
where rij is the interatomic distance, fp is 6.9472 *10-11 N; for the boron
atom, q = +3, a = 0.720 and b = 0.080; for oxygen, q=-2,a =1.629 and b =
0.085.

This potential was applied to B2O3 glass and sodium borate glasses,
and it was shown that the calculated compositional dependence of the
fraction of the boron ions having tetrahedral coordination is in good
agreement with the results measured by NMR. However, in B2O3 glass
the B-O-B bond angle distribution has a broad peak around 160° and no

boroxol ring was observed.

vi. _ Verhoef’s potentials (1992)

Soules's potential (V1) and Xu's potential (V5) were modified. All
the seven potentials have the same Born-Mayer-Huggins form
Vij(r) = Ajj exp(-r/pij) + qigje?/ (A2.8)
The V2 potential was modified so that correct vibrational
frequencies were obtained. The V3 potential has the same pair-potential
component as the V2 potential and supplemented with the O-B-O three-
body bond-bending term of the form
Vijk (8) = 1/2 Kijk (6 - 8)2 (A2.9)
where g is 120° for O-B-O and 130° for B-O-B. The force constant Kijk
was determined so that the correct energy for the high frequency mode in
the simulated infrared spectra was obtained. The B-O-B three-body term

was also added in the V4 potential. In the same manner, the pair-
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potential parts of the V6 and V7 potentials were modified from the V5
potential to obtain correct frequencies, and the B-O-B three-body term
was added to the V7 potential. The potential parameters are given in
Table B.3.

These potentials were applied to B2O3 glass, and the structural and
dynamical properties of the simulated systems ware compared with
experimental neutron diffraction, X-ray, Raman and infrared data. They
concluded that in all cases no boroxol ring was present, but the potentials
with the three-body terms reproduced the experimental vibrational

modes.

case ABB ABO AOO pPBB pPBO poOO qB qO  KO-B-O KB-O-B

[10*3 KJ/mol] [A] [KJ / (mol rad?)]
V1l 134 7863 1823 029 029 029 30 20 0 0
V2 9614 3372 7963 029 029 029 20 -1333 0 0

V3 9.614 3372 7963 029 029 029 20 -1.333 1000 O
V4 6.614 3372 79.63 029 029 029 20 -1.333 1000 500
V5 5.424 1052 149700 0.16 0.165 0.17 3.0 -2.0 0 0
Vé 0.6645 128.8 18330 0.16 0.165 0.17 1050 -07 O 0
V7 0.6645 128.8 18330 0.16 0.165 0.17 1.050 -0.7 1500 O

Table B.3 Pair-potential and three-body parameters
in Verhoef's potentials (Verhoef and Hartog 1992)
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APPENDIX C

PHYSICAL PROPERTIES OBSERVED IN MD SIMULATION
(Kimura and Yonezawa 1983)

Structural properties

1) g(r) : Pair distribution function

2) S(q) : Structure factor

Thermodynamic properties

1) PvT Equation-of-state data (isobars in vT plane)
2) ap : Isobaric thermal expansion coefficient

3) H : Enthalpy

4) Cp : Specific heat at constant pressure

5) Cy : Specific heat at constant volume

6) xT : Isothermal compressibility

[III] Dynamical properties

[IV]

1) y(t) : Velocity autocorrelation function (VAF)

2) f(w) : Power spectrum

Transport properties

1) D : Diffusion constant (from VAF and from mean square
displacement)

2) n : Shear viscosity (from stress autocorrelation function)

[V] Microscopic information of the atomic distributions

1) g(r) : Pair distribution function of time-averaged atomic
positions

2) Distribution of volumes of Voronoi polyhedra

3) Distribution of shape parameters of Voronoi polyhedra

4) Distribution of selected types of Voronoi polyhedra
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APPENDIX D
TERSOFF'S POTENTIAL

An empirical interatomic potential for covalent systems such as Si
was proposed by Tersoff (1986).

A pair potential is used:

E = 3Ej = 1/2 - X ji Vij (D.1)

Vij = fe(rij) [ Aij exp(-A1rij) - Bij exp(-A2rij)] (D.2)
where E is the total energy of the system, Ej is the site energy for site i
(introduced to make the asymmetry of Vijj more intuitively), Vijj is the
interaction energy between atoms i and j, rjj is the distance between
them, and A, B, A1and A2 are all positive, with A1 > A2. (The Morse
potential is defined by A1 = A2.) E¢ is an optional cutoff function to restrict
the range of the potential. The first term in (D.2) is repulsive. The second
term is interpreted as representing bonding. Bij therefore implicitly
includes the bond order and must depend on the local environment. All
deviations from a simple pair potential are ascribed to the dependence of
Bijj on the local environment. Specifically, the bonding strength Bjj for
the pair ij should be a monotonically decreasing function of the number
of competing bonds, the strength of the competing bonds, and the cosines
of the angles with the competing bonds. These three factors have been
incorporated in the following simple trial potential:

Bij = Bg exp( -zij/b ) (D.3)

2ij = Sieij [ Wlrik) /wirij) I - [ ¢ + exp(-d cosbiji ) 1 (D4)
where w(r) is the "bare" bonding potential, w(r) = fc(r)exp(-A2r). Here zij
is a weighted measure of the number of bonds competing with the bond
ij, and b determines how rapidly the bond strength falls off with

increasing effective coordination. The first term in (D.3) is just the ratio
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of the unscaled bond strengths of the bonds ik and ij, raised to the power
n. The parameter n thus determines how much the closer neighbours
are favoured over the more distance ones in the competition to form
bonds. The final term gives the dependence on bond angle, which is
taken as a function of cos(6ijjk) to insure the proper analytic behaviour.
Bijk is the angle between bonds ij and ik. Note that this formulation is
not symmetric, i.e., Vij # V]'i.

This model accurately described bonding and geometry for many

structures of Si, including highly rebonded surfaces.
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