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ABSTRACT

There is a long standing controversy concerning the structure of 

vitreous B2O 3. Some experiments have suggested that the boroxol ring 

(6 -membered ring) is a dom inant structure feature. However, molecular 

dynamics simulations using the empirically-derived pair-potentials have 

failed to demonstrate the presence of boroxol ring. This difficulty seems 

to be due to the complexity of boron-oxygen bonding, which includes not 

only the partial covalency, but also allows the boron coordination 

num ber to change depending on its environment.

In the first half of this thesis, it is shown how quantum-mechanical 

calculations using a range of techniques (including periodic ab-initio 

Hartree-Fock and LDF) explain the nature of the structure and bonding 

in boric oxide. A lthough these calculations each have their limitations, 

their results are in accordance with accumulated concepts regarding the 

nature of the structure and bonding in boric oxide.

In the latter half of this thesis, we develop a new m any-body 

potential model which can reproduce the structures of crystalline and 

vitreous boric oxide. As a transferable many-body potential could not 

reproduce the vitreous structure of B2 O 3 , we developed a potential in 

w hich the pair terms were changed depending on the environm ent, in 

o rder to reproduce not only internal coordinates but also the relative 

stability (i.e. the difference in total energies) of the two phases of the 

crystalline material. The inclusion of a dependence of the pair-potential 

term s on the coordination num ber agrees w ith classical concepts of 

chemical bond strength. Parameters for this potential model are derived 

for crystalline boric oxide and adapted to the vitreous phase. The 

sim ulated structural m odel is checked by comparison w ith X-ray and



neutron scattering data. We find that this final theoretical study not only 

confirms the existence of the boroxol ring, but also leads to proposals for 

structural aspects of the intermediate-range order in boric oxide.
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1. INTRODUCTION

Boric oxide (B2 O3 ) and its compounds (borates) form an im portant 

class of minerals. They have a great range of structural types (oligomer, 

ring and chain polym ers are all found) and exhibit a num ber of 

peculiarities in their structures and properties. Although some analogies 

w ith silicate systems are applicable for borate systems, they are limited 

ow ing to the existence of boron in both three-fold and four-fold 

coordination. Therefore, they are of m uch in terest in struc tu ra l 

chemistry as well as in geology.

The m ost im portant fields of application, how ever, for borate 

materials are in the glass and ceramics industries. Boric oxide plays a key 

role in num erous glasses of high technological importance. It promotes 

chemical resistance, although being strongly hygroscopic itself. It reduces 

therm al expansion in glasses, despite having itself a high coefficient of 

therm al expansion. However, it keeps its high fluidity and glass-forming 

properties when a component of glasses, thus improving the meltability 

and glass-form ing ability of m ulti-com ponent systems. The liquidus 

tem perature is moreover strongly reduced by the introduction of B2 O 3 

into a glass.

Borosilicate glasses are also of considerable technological 

importance. They constitute a large proportion of industrial glasses (for 

example, laboratory glasses, neutral glasses for pharmacy, sealing glasses 

for electronics, microporous glasses, glasses for fertilizers). Despite their 

industrial and fundamental interest the structures of vitreous borates are 

far from clear. Moreover, the existing structural concepts for crystalline 

and vitreous borates are not fully compatible.
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W hat is the difficulty of understanding the structure and bonding 

in borate materials? Some of the peculiarities of these systems are as 

follows:

i. The high field strengths of and (‘̂ )B coming from the NMR 

chemical shift data indicate that the B-O bond is very strong. However, 

the viscosity of B2 O3  is much lower than Si02. B2 O 3  acts as a very good 

efficient flux. (Volf 1984)

ii. The alkali borate glasses have been of considerable interest 

because of the so-called "boron oxide anomaly", which concerns the 

existence of maxima and minima in some of the physical properties w ith 

increase in the alkali metal oxide content, at tem peratures below about 

900“C. Such maxima and m inima are not observed in m ost common 

boron-free glasses. (Griscom 1978)

iii. The vitreous boric oxides are though t to contain high 

concentrations of boroxol rings B3 O 6 (a hexagonal ring of three boron 

atoms and three oxygen atoms w ith three corner oxygen atoms outside 

the ring), although such a structural unit is not found in B2 O 3  crystals 

and its existence in the glassy materials is still controversial. (Griscom 

1978)

A possible clue to the solution of these problem s lies in the 

complexity of the boron-oxygen bond. It has partial covalency, and the 

latter is believed to be stronger than the silicon-oxygen bond. Its n- 

bonding strength varies with its environment, as pointed out by Pauling 

(1960) and Coulson (1968). Another factor of great significance is that the 

structural unit is easily changed from B03-planar to B04-tetrahedral, or 

vice versa, depending upon its environment.

19



In view of these complexities, the starting point of this thesis is the 

investigation of the nature of boron-oxygen bonding in crystals and 

molecules, using theoretical techniques. At the present time no single 

comprehensive theoretical method exists. Therefore, different points of 

view  and m ethods are em ployed in a com plem entary m anner as 

discussed in chapters 3 and 4. All these techniques are, however, based 

on the same basic quantum  mechanical theory.

In view of the success of computer modelling of inorganic materials 

(see e.g. Catlow and Mackrodt 1982; Price and Parker 1988; Vessal et al 

1989), and using the knowledge obtained from the first half of this thesis, 

we proceed to develop new many-body potential models for crystalline 

and vitreous boric oxide, which are consistent w ith the classical concept 

of chem ical bonding. We then em ploy M olecular Dynam ics (MD) 

simulations, w ith this new potential model, which confirm the existence 

of the boroxol ring, in contrast to the previous MD studies based on pair 

potentials.

Indeed, one of the main achievements of this thesis is that this new 

potential model reproduces for the first time not only the two different 

crystal structures but also the boroxol ring content of the glassy material.
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CHAPTER 2 STRUCTURE AND BONDING 

IN BORATE MATERIALS

2.1 CRYSTAL STRUCTURES OF BORON TRIOXIDE

Crystals of boron trioxide do not exist naturally. Two different 

crystal phases have been synthesized and their structures determ ined 

(see Figure 2.1).

Crystalline boron trioxide (B2 O3 -I) was first isolated by Kracek et al 

(1938). Berger (1952,1953) first determ ined its structure by an X-ray 

diffraction techniques. He concluded that oxygen atoms in B2 O 3 -I form 

tw o different distorted tetrahedra around the boron atoms w ith B-O 

distances ranging from 1.31 to 2.14 Â.

Later Strong and Kaplow (1968) showed from an X-ray diffraction 

study that all borons in B2 O3 -I are in planar trigonal configurations and 

that they consist of ribbons of interconnected BO3 triangles, thereby 

dem onstrating that Berger's structure is incorrect. G urr et al (1970) 

subsequently corrected the structure of Strong and Kaplow, by using a 

single crystal sample, though it was pointed out later by Strong et al 

(1971) that the two structures are essentially the same, being related by 

transform ation of an axis.

The other crystalline polymorph B2 O3 -II was studied by Prewitt and 

Shannon (1968). B2 O 3 -II was obtained at high pressures (>20 Kbar) and 

tem peratures in excess of 400 °C. It consists of a network of corner-linked 

BO4  tetrahedra.

B2 O 3 -I has a trigonal structure with a= 4.336 A, c= 8.340 A, Z= 3, p= 

2.56 gcm"^, space group= P3 (Gurr et al 1970; see Figure 2.2). Its average B- 

O bond length is 1.372 A and it agrees well w ith 1.365 A for a bond of 

strength' 1.0 calculated by Zachariasen (1963). It is known that the crystal

21



cannot easily be prepared. It has been impossible to grow crystals of B2 O3 

at atomospheric pressure from a dry B2 O 3  melt, even when the melt was 

seeded with B203-I crystals (Kracek 1938). A possible reason for the 

difficulty in crystallizing B2 O 3 -I from the melt, as discussed by Ulmann 

et al (1967), may stem from the necessity of opening boroxol rings to form 

the ribbons of B2O3 -I.

B2 O3 -II has an orthorhombic structure with a= 4.163 Â, b=7.803 Â, 

c= 4.129Â, Z= 4, p= 3.11 gcm'^, space group Ccm2 (Prewitt 1968; see Figure 

2.3). The BO4  tetrahedron is very distorted; one short B-O bond length is 

1.373 Â and the other three long B-O bond lengths are 1.507, 1.506 and 

1.512 Â, although the average B-O bond length is 1.475 A, exactly that 

proposed by Zachariasen (1963). The oxygen associated with the short B-O 

bond is coordinated by only two boron atoms, whereas the others are 

coordinated by three boron atoms. Prew itt (1968) concluded that the 

distortions are necessary to balance the variations in the electrostatic 

potential in the crystal.

Finally, it is in teresting  to note no crystalline polym orph  

comprising boroxol rings is found, although, as noted, these have been 

suggested to be im portant in the glassy phases, and are observed in a 

number of borate crystals as discussed below.

1200

^ 1000
UQUiD

w 800
' B-Oj-n

Figure 2.1. The phase diagram of B2O3 0 20 40 60 80
(MacKenzie and Claussen 1961) PRESSURE (kilobors)
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Figure 2.2. The B2 O3 -I structure 
(Gurr et al 1970)
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Figure 2.3. The B2 O3-II structure 
(Prewitt et al 1968)
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2.2 CRYSTAL STRUCTURES OF BORIC ACID AND BORATES

Many X-ray analyses of crystal structures of boric acids and borates 

have been reported.

Boric acid and the whole H2 O-B2 O3  system is important, because 

B2 O 3  is strongly hygroscopic and nearly all borate minerals are attacked 

by aqueous solutions. It is also significant in relation to the volatilization 

of B2 O 3  w ith w ater vapour, which takes place during  glass melting. 

Kracek et al (1938) studied the solubility diagram for the system H 2 O- 

B2 O 3 (see Figure 2.4). Metaboric acid has three polym orphs, and it is 

interesting to note that only the orthorhombic metaboric acid (HBO2 -III) 

contains boroxol rings and exhibits the same 808 cm '^ Raman line as 

v itreous B2 O 3 (Galeener et al 1980). The least stable m etaboric acid 

(H B O 2 -I) is also interesting because it prom otes nucléation of the 

anhydrous B2 O3 (Kracek 1938).

LE FOU WEKISCAL

400

300

200
HBOi

100

Mole P e r c e n t  of 0

40 50 60 70 80 90

Figure 2.4. The solubility diagram for the system, H 2 O-B2 O3 

(Kracek et al 1938)
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On the other hand, it is known that crystalline borates are built up 

of large borate groups (see Figure 2.5) and in vitreous borates these 

groups are thought to be retained to some extent. The crystal-chemical 

classification is review ed by Bokii and  Kravchenko (1966), w ho 

distinguished borates by two structural criteria. One approach classifies 

structures in term s of (1) ringless borates, (2) one-ring, tw o-ring and 

three-ring borates and (3) borates with mixed polyions and borosilicates. 

Another classification is in terms of (1) island borates (isolated polyions 

and dimers), (2) chain borates, (3) sheet borates and (4) network borates. 

On the other hand, Christ and Clark (1977) propose another classification 

based on different criteria and which has special reference to hydrated 

borates (see Appendix A).

It is also interesting to note that sodium metaborate NagBgO^ (Fang 

1938, Marezio et al 1963) and potassium metaborate K3 B3 O6 (Zachariasen 

1937, Schneider 1970) have boroxol rings and exhibit the same 808 cm '^ 

Raman line as vitreous B2 O 3  (Bril 1976). Cesium enneaborate, C s20  - 

9 B2 O 3 , the borate w ith the highest molar fraction of boron oxide, also 

contains boroxol rings (Krogh-Moe and Ihara 1967).
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Figure 2.5. Boron-oxygen structure groupings 
(Konijnendijk 1975)
( a ) the boroxol ring in vitreous B2O3
(b) the pentaborate group in the compounds a-K20-5B203 and P-K2O 5B2O3
(c) the tetraborate group in the compound Na2 0  4B2O3
(d) the triborate group in the compound Cs2 3B2O3
(e) the diborate group in the compound Li2 0  2B2O3
(f) the diborate group in the compound K2O 2B2O3
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Figure 2.5.(continued) Boron-oxygen structure groupings

(g) the di-pentaborate group in the compound N a20 2B2O3
( h ) the triborate group with one non-bridging oxygen in the compound Na20 2B2O3
( i ) the ring-type metaborate group in the compounds N a20 B2O3 and K2O B2O3
(j) the chain-type metaborate in the compound Li20 B2O3
(k) the pyroborate group in the compounds 2MgO B2O3 and 2 CaO B2O3
(1) the orthoborate group in the compounds 3MgO B2O3 and 3CaO B2O3
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2.3 STRUCTURE OF VITREOUS BORIC OXIDE 

AND BORATES

The random  netw ork model, proposed by Zachariasen (1932) is 

am ongst the m ost well-known m odels for the structures of glassy 

materials. For example, in vitreous silica, Si04 tetrahedra provide the 

fram ew ork (so-called Network-former), in which the silicon atom  is 

tetrahedrally surrounded by four oxygen atoms and each oxygen atom is 

bonded to two silicon atoms. Although the first coordination shell is the 

same as that of the crystalline structure, the tetrahedra are rearranged in 

a non-periodic m anner in three dimensions; that is they have no long- 

range order.

For boric oxide glass, the simpler random  network model, consists 

of planar BO3 triangles, as also proposed by Zachariasen (1932). However, 

several serious objections to this model have been raised, as reviewed in 

the volum e of proceeding edited by Pye et al (1978) and also by Johnson 

(1982).

Since Zachariasen's model (1932) was published, several rules about 

vitreous structures of borates (Abe 1952, Eversteijn 1960, Huggins 1957) 

have been form ulated, although subsequently disproved, and several 

structural models have been published.

Historically, the random  netw ork model containing no boroxol 

rings (Zachariasen 1932), the boroxol ring model (Krogh-Moe 1969), the 

quasicrystalline model (Borelli and Su 1963) and the model based on the 

B4 O 6 molecule (Fajans and Barber 1952) have been proposed (see Figure 

2.6). From the considerable am ount of data accumulated and analyzed, 

the former two models are now favoured.

As for the coordination of boron in B2 O 3 , the hypothesis that 

almost all the borons have three-fold coordination is supported by all the
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experimental data and is widely accepted. A nd the phenomenon of the 

coordination change of the three-fold coordinated triangle (BO3 ) to a 

four-fold coordinated tetrahedron (BO4 ) in binary alkaline borate glasses 

has been studied in order to explain so-called "boron oxide anomaly".

H ow ever, the m ode of connecting the BO3 triangles is still 

controversial. Goubeau and Keller (1953) first suggested the existence of 

boroxol groups in B2 O3  glass in order to explain the extremely sharp line 

in the Raman spectrum of 808 c m 'l. Krogh-Moe (1969) analyzed NMR 

data, infrared and Raman spectroscopic data. X-ray diffraction data, 

density data, energy data and viscosity data. He concluded that a random  

three-dim ensional netw ork of BO3 triangles w ith a comparatively high 

fraction of boroxol rings gives the best explanation of the available data.

In contrast, Elliot (1978) claim ed that the continuous random  

network (C.R.N.) model containing no boroxol rings, modified from the 

structure of three-fold coordinated amorphous arsenic, can reproduce the 

radial distribution functions of the X-ray study of Mozzi and W arren 

(1970). However, the problem with this model is that the density is some 

30% lower than that observed experimentally.

The boroxol ring model has, however, the same problem. Although 

it can give a satisfactory account of the Radial D istribution Function 

(RDF) obtained from the X-ray diffraction data at small interatom ic 

separations, it does not necessarily reproduce the m easured density 

correctly (Bell and Carnevale 1981). The latter authors proposed a locally 

layered random  netw ork model, in which adjacent layers are weakly 

bonded by the occasional overlapping of boroxol rings rotated relative to 

each other by 60°.

To sum m arize  these s tru c tu ra l m odels, a w ide range of 

experimental data favours the boroxol ring model. However, there is no
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conclusive evidence for rejecting the continuous random  netw ork 

model containing no boroxol rings. However, all the above approaches 

based purely  on topological considerations seems to have serious 

limitations. More detailed models are required.

(b)

(c) (d) O Oxygen 

•  Boron

Figure 2.6. Schematic representation for structural models 
of vitreous boric oxide (Krogh-Moe 1969)
(a) the random  network model
(b) the boroxol ring model
(c) the quasicrystalline model
(d) B4 O6 molecule model
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2.4 EXPERIMENTAL APPROACHES

2.4.1 X-RAY DIFFRACTION STUDIES

X-ray diffraction techniques have of course been used to determine 

structures of crystalline borates, but they also give im portant RDF data 

for vitreous borates.

Mozzi and W arren (1970) rigorously interpreted X-ray data for 

vitreous B2 O 3 in terms of pair functions (see Figure 2.7). They pointed 

out that there are definite peaks in the experimental curve for distances 

out to about ~ 6  A, which requires that there is a structural un it in 

vitreous B2 O3  which is larger than the randomly oriented BO3 groups. 

They assum ed a random  network of boroxol groups B3 O 6 . They also 

assumed that all the B-O-B angles outside the rings are 130° and all the B- 

O-B angles within the rings are 120°. They concluded that there is very 

good agreem ent w ith the experim ental curve w ith  regard to peak 

positions, but the peaks and dips in the calculated curve are a little too 

pronounced. They suggested that this may indicate that they should have 

allowed for a little more distance variation; alternatively not all of the 

structure is in the form of boroxol groups.

Further clues may come from X-ray diffraction studies of m olten 

B2 O 3 , which m ay explain the peculiarities of the glassy state, as the 

structure of vitreous state is generally said to be very closely related to 

that of the liquid from which it is quenched. However, Fajans and Barber 

(1952) observed that at 1260 °C the viscosity of boron oxide is smaller 

than that of silica by a factor of 10"^ -̂ .̂ Therefore, the concept of a random  

netw ork w ith a strong boron-oxygen bond is said to be difficult to 

reconcile with the comparatively low viscosity of boron oxide melts.

The change of density with temperature (Macedo et al 1966) and the 

change of heat capacity with tem perature (Shmidt 1966) are also of some
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interest. These data exhibit an abrupt change in slope at the glass 

transition tem perature (Tg) and above Tg a structural change may take 

place progressively with rising tem perature (Krogh-Moe 1969). On the 

other hand, structural models in the molten state, which are different 

from the vitreous state, were proposed by Mackenzie (1959), Riebling 

(1966), and Sperry and Mackenzie (1968). From X-ray studies in molten 

states Zarzycki (1974) observed structural changes at high temperatures 

of 1200 °C and 1600 °C: a very pronounced decrease of the first 

coordination num ber amounting to more than 30% was found at 1600 

°C. This m ay suggest that three-fold coordinated  and two-fold 

coordinated boron atoms coexist in molten states.

2000

(A)

1000

21 63 4 5 r

Figure 2.7. Analysis of X-ray diffraction data using boroxol model: 
Curve (A): the measured PFD for glassy B203;
Curve (B): the sum of computed contribution to the PFD for a model 

of randomly linked boroxol rings;
Curve (C): the difference (A) - (B)
(Mozzi and W arren 1970)
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2.4.2 NMR STUDIES

As Griscom (1978) points out, one of the tru ly  ou tstand ing  

achievements of solid state NMR is the m easurem ent of the fraction of 

boron atom s which are in four-fold coordination, N b 04- The large 

d isparity  between the coupling constants for trigonal and tetrahedral 

boron permits the resonances of each to be separated and quantitatively 

m easured even in materials containing both types of units.

H isto rica lly , Bray and  O 'Keefe (1963) p u b lish ed  N b Q 4 

determ inations for the entire glass forming ranges of all five alkaline 

borate system s (see Figure 2.8). Jellison et al (1977) analyzed the 

env ironm ent of and 1 ^ 0  nuclei w ith in  the glass. They

concluded that their data are in agreement with the boroxol ring model 

and from the spectra are able to deduce the fraction of oxygen atoms 

included in boroxol rings. They estimated the fraction of the boron atoms 

forming part of boroxol rings (0.82+0.08) and hence the ratio of boroxol 

rings to independent BO3  triangles to be -  1.5 : 1. The NMR data also give 

information on the B-O-B angles for the oxygen atoms not included in 

boroxol rings. These have a narrow  distribution (rms deviation -  1.7°) 

centred around either 134.6° or 128.1°, close to the average experimental 

value of 130° in borate crystals.
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Figure 2.8. Variation of the number of tetrahedral boron sites, Nb04/ 
w ith alkali-oxide content, as obtained from NMR experiments 
(Bray and O'Keefe 1963)
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2.4.3 RAM AN SCATTERING STUDIES

Historically, Goubeau and Keller (1953) first provided evidence 

from Raman spectroscopy for the existence of boroxol groups in B2 O 3  

glass, explaining the extremely sharp line at 808 cm'^.

Next, Bril (1975) and K onijnendijk (1975) repo rted  several 

im portant Raman studies. Bril undertook Raman investigations of a 

num ber of metaborate crystals and alkaline borate glasses, carrying out a 

norm al coordinate analysis of the resulting spectra. He concluded that 

the strong peaks of the Raman spectrum  of vitreous alkaline borate at 

806 cm "l and 770 cm"^ are assigned to the ring breathing (v2 ) of 

respectively the boroxol group and a group containing a six-membered 

ring w ith at least one BO4  or BO3 " unit. Figure 2.9 shows three Raman- 

active symmetric vibrational modes of B306^"- Figure 2.10 shows the 

change in Raman spectra by adding the sodium oxides. It is interesting to 

note that his Raman data, obtained as a function of tem perature, are 

unchanged on passing from the glass to the melt (up to 800K).

Konijnedijk reported com prehensive Raman scattering and IR 

investigations of borate and borosilicates glasses. He concluded for the 

binary alkali-borate glasses as follows: in the concentration range 0 to 

about 25 mol% alkali oxide , the boroxol groups, originally present in 

vitreous B2 O 3 , are replaced by six-membered borate rings w ith one BO4  

tetrahedron which to a certain extent are ordered to tetraborate groups. In 

the range 20 to 35 mol% alkali oxide, six-membered borate rings with two 

paired BO4  tetrahedra are gradually formed which to a certain extent are 

condensed to diborate groups. Unmixed sodium- and potassium -borate 

glasses cannot be made in the range above about 40 mol% alkaline oxide. 

In mixed alkaline-borate glasses w ith 40 to 50 mol% alkali oxide the
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presence of orthoborate , pyroborate and ring-type metaborate groups is 

indicated, together with diborate groups.

Galeener et al (1980) analyzed their Raman data on vitreous B2 O3 in 

terms of a model based on a nearest-neighbour, central-force network 

dynamics model and concluded that their data are inconsistent with an 

idealized random  netw ork of BO3 triangles with a random  dihedral 

angle, and favoured a structural model containing a large fraction of 

boroxol rings.

As for the tem perature dependence of Raman intensities, Walrafen 

et al (1980) studied Raman data for vitreous B2 O3 and molten B2 O3 from 

-196 to 1594 °C. They concluded that vitreous B2 O 3  is com posed 

predom inantly  of boroxol rings, but the boroxol ring concentration 

decreases with increasing tem perature in the melt, and becomes small at 

tem perature above 1600 °C.

Recently Kamitsos and Chryssikos (1991) studied Raman spectra of 

several alkali borate glasses and concluded that their results point to the 

strong dependence of the netw ork modification on the nature of the 

cation modifier.

Figure 2.9. Symmetric vibrational modes of the "free" metaboric 
anion, B306^‘. All three are Raman active and polarized. 
(Griscom 1978)
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Figure 2.10. Raman spectra of sodium borate glasses: 
xN aiO  • (1-x)B203 (Konijnendijk 1975)
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2.4.4 NEUTRON SCATTERING STUDIES

Johnson et al (1982) performed neutron diffraction investigations of 

vitreous B2 O 3 . The neutron scattering length for is slightly greater 

than that for oxygen, so that neutrons should be more sensitive than X- 

rays to the presence of boroxol groups. They fitted Elliot's model and the 

boroxol ring model to Mozzi and W arren's X-ray data and their neutron 

data. They concluded that the X-ray data of Mozzi and W arren and the 

neutron diffraction data of Johnson et al are consistent w ith a structure 

for vitreous B2 O 3 containing a proportion of 0 .6 +0 .2  of the boron atoms 

in boroxol rings (see Figures 2.11 and 2.12).

In another approach, Hannon et al (1988) studied inelastic neutron 

scattering from vitreous B2 O3 . They showed the boroxol ring breathing 

m ode is a relatively small feature in the VDOS (vibrational density of 

states) of vitreous B2 O 3 and the m atrix elem ent for this m ode is 

enhanced for both the HH and the HV Raman spectra. Despite this, they 

find that their ball-and-stick model containing a high concentration of 

boroxol rings is consistent with their inelastic neutron scattering data.
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Figure 2.11. (left) The neutron total correlation function as a 
function of the fraction, f, of the boron atoms in boroxol rings. Full 
curve, experiment; dashed curve, model and dotted curve, residual. 
(Johnson et al 1982)

Figure 2.12. (right) Component correlation functions for a boroxol 
ring model w ith f=0.6 (Fixed distances only). Full curve, model; 
dashed curve, experiment; and dotted curve, residual.
(Johnson et al 1982)

39



2.5 COMPUTER SIMULATION

2.5.1 QUANTUM  MECHANICAL STUDIES

Q uantum  mechanical techniques provide the m ost fundam ental 

approach for explaining the nature of electronic structure, and its 

relation to structure and bonding.

For silicate systems, molecular orbital (MO) calculations have been 

reported for various clusters (see O'Keeffe and Navrotsky eds. 1981). 

These calculations on m olecular clusters have been used to study  

potential energy surfaces and obtain interatomic potentials for Si0 2  

(Lasaga and Gibbs 1988,1991; Tsuneyuki et al 1988; Beest et al 1990). In 

addition, periodic Hartree-Fock method (Nada 1990; Silvi 1991) and Local 

Density Functional method (Allan and Teter 1987) have been applied for 

Si0 2  polymorphs.

The first MO calculations for borate systems were perform ed by 

Coulson (1964) and Coulson and Dingle (1968). Variations in the B-O 

bond length have been thought to be due to n bonding, since the early 

suggestion of Pauling (1960) and Zachariasen (1963). To investigate the 

nature of the bonding, they calculated the n bond order for several 

metaborate ions using the Hiickel method.

Snyder et al (1976) performed the first ab-initio calculation (STO-3G) 

of small clusters, B(OH)3  and BHg. They found that there is a strong 

relationship  betw een the quadrupole coupling param eter and the 

molecular environment. Later Snyder (1978) discussed the structure, the 

heat of formation and the resonance energy of the n electron system, 

using small clusters. He concluded that the resonance energy of the 

boroxol ring (lKcal±4 Kcal/m ol) is a negligible driving force for the 

condensation-dehydration reaction.
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Gupta and Tosell (1981,1983) and Zhang et al (1985) performed ab- 

in itio  calculations (STO-3G and 6-31G*) of m olecu lar clusters 

(monomers, dimers and trimers), following a successful sim ulation of 

S i02- They both concluded that these calculations are adequate for 

reasonable predictions of bond angles and bond distances for borate 

minerals, although the crystal field effect is disregarded. Tossell showed 

that modified electron-gas (MEG) ionic model calculations based on 

and OH" ions also give reasonable accurate B-O bond distances. These 

calculation results were reviewed by Tossel and Vaughan (1992) (see 

Table 2.1).

On the other hand, Uchida et al (1985,1986) used a semi-empirical 

SCF-MO m ethod employing the MNDO technique on small clusters. 

They discussed the structure, the heat of formation, the k electron system 

and the electronic structures. They concluded tha t the resonance 

stabilization effect of the n electron system is not so large as to control the 

geometry and reactions, as had been previously found by Snyder (1978).

They also discussed the "hardness and softness" of basicity in the 

binary borate system. The other studies of the basicity in alkali borate 

glasses were also discussed by Kawazoe et al (1978). They use a new 

quantity "Sparkle Affinity" as a measure of the hard basicity of borate 

anion clusters. The sparkle is a virtual chemical species whose behaviour 

is expected to be similar to the alkali or alkaline earth metal cation. The 

sparkle affinity is defined as the energetic gain when one sparkle is set 

near a borate  anion cluster. They concluded th a t the four-fold 

coordinated boron unit BO^" is a rather hard base and the non-bridging 

oxygen is a rather soft base. The also concluded that a proton binds to one 

oxygen atom with high covalency, in contrast to alkali m etal ions, the 

latter coordinating several oxygen atoms via the Coulombic interactions.
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The discrete B2 O 3 molecule has been presum ed to be the dom inant 

species in molten B2 O 3 . Accurate calculations have been perform ed on 

gas-phase B2 O 3 , establishing clearly that the equilibrium  geom etry is 

planar and V shaped with C2v symmetry (Sellers et al 1981; Barone et al 

1981) and that the bipyram idal Dgh structure is of m uch higher energy 

(Snyder and Wasserman 1980).

Finally, it is interesting to note that the lowest energy form  of 

(0H )2B 0B (0H )2 has a nonplanar C2 geometry with a 60“ dihedral angle 

between the two BO3 groups (Zhang et al 1985), and that boroxol rings in 

large clusters are connected by bridging oxygens in a tw isted m anner 

(Uchida et al 1985,1986).

2.5.2 MOLECULAR DYNAMICS SIMULATION

Since the pioneering study of W oodcock et al (1976) on the 

sim ulation of vitreous silica. Molecular Dynamics (MD) sim ulations 

have been recognized as a very useful tool for the study of structural and 

rheological properties of glasses. However, compared to the m any studies 

of silicates, there are few investigations of borate glasses. Because of the 

complexity of the boron-oxygen bonding, both the experim ental and 

m odelling techniques seem to be insufficient and there is still a 

considerable discrepancy between experimental data and simulations.

The first modelling studies of borate glasses were initiated by Soules 

(1979,1980) and Soules and Varshneya (1981). They calculated the 

structures of vitreous B2 O 3 and sodium borosilicate glass. They showed 

that in vitreous B2 O 3 boron atoms are trigonally coordinated to oxygen 

atoms, while in sodium  borosilicate glasses the trigonal to tetrahedral 

conversion of boron atoms accompanies the addition of sodium  atoms.
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These two aspects of their results agree well with the experimental data. 

However, no boroxol group formation is observed in their simulation.

A series of more detailed studies were carried out by Soppe et al 

(1988), Soppe and H artog (1988), Soppe and H artog (1989). Their 

consistent result is that they do not find any boroxol rings. They found 

that for both non-pressure scaled and pressure scaled systems, and for a 

variety of different quench rates, oxygen atoms have no tendency to 

become equiplanar with adjacent BO3 triangles. They also attem pted an 

interesting simulation in which half of the num ber of B-O-B and O-B-O 

angles were constrained at 120°. Even w ith such artificial constraints, 

they do not find any boroxol rings. They concluded that their continuous 

random  netw ork  structure  w ithout any boroxol rings reasonably  

reproduced the RDF of X-ray data.

Am ini et al (1981), Abramo et al (1986), Xu et al (1988) also 

perform ed MD simulations on B2 O 3 , and on silver borate and sodium  

borate glasses. In none of these studies were boroxol groups found.

All of these studies have two limitations. The first is that very rapid 

quenching rates (10^^ ~ 10^^ K /sec) have to be used. Even w ith 

supercom puters, simulated quench rates are still far from the rates (less 

than 1 0 ^ K /sec) in the real process. However, in spite of such rapid 

quench rates, several sim ulations of silica glass have succeeded in 

reproducing the structures of the vitreous material.

The second lim itation is the use of pair-potential m odels w ith 

formal charges. Pair-potential models succeed in modelling m any ionic 

m aterials and all the pioneers in this field em ployed such models. 

How ever, such pair-potentials may not be sufficient to express the 

structure and bonding of materials with partial covalency.

43



In order to account for covalency, Hirao and Soga (1985) applied a 

new potential with the extra term -A exp[-C (r-0.239)2] (r is the distance 

between boron atoms) for B-B interactions to sodium borate glasses. They 

presum ed that their structure may include boroxol groups from the 

calculated population of B-O-B angles at = 120°.

The MD study of Inoue et al (1987) included three body effects and is 

the only one that generates boroxol rings in B2 O 3  glass and diborate 

groups in sodium borate glass. They put ghost atoms (G) on the centre of 

gravity of both BO2  and B2 O triangles. A positive point charge w ith a 

Born-Mayer type short-range potential is assumed to exist at G when the 

G-O potential is calculated, and a negative point charge with a different 

Born-Mayer type short-range potential is assumed to exist at G when the 

G-B potential is calculated. These ghost atoms thus provide O-B-O and B- 

O-B three body potentials. Boron and oxygen atoms have formal charges, 

and all the other potential param eters are derived from the potential 

energy of H 3 BO3  by the INDO (interm ediate neglect of differential 

overlap) method.

They concluded that their "pseudo-atom" three-body type of model 

reproduces the RDF of Mozzi and W arren (1970) w ith the presence of 

boroxol rings. However, the ratio of boron atoms present in the boroxol 

rings is less than 22.5% and smaller than that reported (82+8% by Jellison 

et al 1977 and 60+20% by Johnson et al 1982). This result is encouraging 

in that it shows that structures with boroxol rings can be reproduced by 

three body potentials, even if a rapid quench rate is used. It is, moreover, 

interesting to note that calculated B-O-B bond angles are distributed 

around 120°. In contrast, all pair-potential studies show B-O-B angles of -  

160°. The NMR data of Jellison et al (1977) give information on the B-O-B 

angles for oxygen atoms not included in boroxol rings. The NMR result
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shows a narrow distribution centred around either 134.6° or 128.1°, close 

to the value of 130° used by Mozzi and Warren (1970).

On the other hand, recently Verhoef and Hartog (1992) carried out 

MD sim ulations of B2 O 3  glass, using different sets of pair-potentials 

(Born-Mayer-Huggins type) and in some cases three-body, bond-bending 

terms were applied. For the latter a simple harmonic form was used. The 

equilibrium angle was set as 120° for O-B-O and 130° for B-O-B. The force 

constant for O-B-O was fixed so as to obtain the correct energy for the 

high-frequency mode in the simulated infrared spectrum.

Their first conclusion is that all the models investigated generate 

continuous random  network glass structures w ithout any boroxol rings, 

even if three body bond-bending term s are added. Their second 

conclusion is that all the models reproduce the experim ental data 

reasonably well, although there are detailed discrepancies mainly w ithin 

the distance range of 2 - 4 A in the RDF. Their third conclusion is that the 

peak at 805 cm"l in the experimental Raman spectra can be assigned to a 

breathing m ode of the three oxygen atoms w ithin each BO3  triangle. 

However, no peak at around 805 cm '^ is experim entally observed in 

borate crystals which consist of BO3 triangles. Their fourth conclusion is 

that three body interactions are necessary to reproduce the high- 

frequency modes in the simulated infrared spectra and density of state.

To summarize the results of all the MD simulations;

(1) Pair-potential models can reproduce the short-range data of X-ray 

and N eutron  scattering well. H ow ever, discrepancies rem ain for 

m edium  range distances. B-O-B angles are far from the average of the 

experim ental values of 130° estimated from NMR data. Pair-potential 

m odels always generate continuous random  netw orks w ithout any 

boroxol rings.

45



(2) Three-body potential m odels can reproduce boroxol rings, 

a lthough  this is not always the case. They can reproduce some 

characteristics of the medium-range order which are similar to Mozzi 

and W arren's model. The inclusion of the three-body potential affects 

not only the generation of boroxol rings bu t also the vibrational 

properties of the simulated vitreous material.

The work reported later in this thesis will advance the description 

of the interatomic potential models for B2 O3  and will achieve improved 

agreement with experiment compared with the results discussed above.
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Bond lengths 
[R(B-O) in Â] Ab initio calculated values Experimental values

STO-3G 4-31G 6-31G*̂ MEG MNDO
cluster basis basis basis method method Average Range

BO3 - 1.419 1.435 — — — 1.37 1.34 -1.40
B(0H )3 1.364 1.364 1.358 1.37 1.371 1.361 1.353 - 1.365
B(0H )4- 1.48 — 1.474 1.53 ~ 1.47 1.478

Bond angles 
[B-Obr-B in degrees]

Ab initio calculated values 

STO-3G 4-31G 6-31G*

Experimental values

Cluster basis basis basis Average Range

[(0H )2B]0
(0H )3B -0-B (0H )2'
H (0H )3B -0-B (0H )3H

130

123

180 131.3 134 128 -153 
118 -128

119

Ab initio calculated values Experimental values
B3 O6 H3

STO-3G 6-31G 3-21G* MNDO Average V-B2 O3

R(B-0 )br (A) 1.374 1.390 1.371 1.389 1.401 1.36
R(B-0 )nbr (A) 1.289 1.351 1.351 1.354 1.322
B-Obr-B (deg) 121 123.8 119.9 120 122.7 121

Table 2.1. Calculated and experimental geometries in borate polyhedra 

and protonated boroxol ring B3 O6H 3  (Tossel and Vaughan 1992)
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CHAPTER 3 BORATES AS MINERALS

. . .  a geologist's view and a solid state chemist's view

3.1 INTRODUCTION

The beauty and variety of the crystal structures of minerals has long 

fascinated scientists, and many crystal structures have been determ ined 

including several borate structures. These accum ulated data helped 

geologists and solid state chemists to establish empirical concepts of 

structure and bonding in borates and to develop ideas of the underlying 

behind them.

On the other hand, the quantum-chemical theory (e.g. Szabo and 

Ostlund 1989) has its origin in physics. It has helped material scientists to 

understand  complex phenom ena w ith  a m inim um  of em piricism . 

A lthough there is no direct equivalence between the empirical concept 

and the quantum-chemical theory, both approaches can supplem ent one 

another and can be used to explain the structure and bonding  of 

m aterials.

As for quantum-chemical approaches in the sim ulation of borates, 

there have been several cluster-type or m olecule-type sim ulations, 

which have been used not only to discuss the n electron system and the 

basicity of borates, but which have also succeeded in reproducing bond 

lengths and bond angles in the crystalline state (see Section 2.5.1). 

However, such simulations have generally neglected crystal field effects, 

which are generally thought to be necessary in discussing solids more 

realistically.

Therefore, in this chapter we present the first results of quantum - 

chemical calculations on borate crystals in the crystalline state. First, we
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explain periodic ab-initio Hartree-Fock methods, which are suitable for 

the quantum -chem ical sim ulation of crystalline systems, is explained. 

Next, quantum -chem ical results are presented, w ith em phasis on the 

M ulliken population analyses (Mulliken 1955), for a variety of crystal 

structures of borates. These results are then discussed and compared with 

empirical concepts (for example, Pauling 1960). Finally, we show that 

these calculations accord well w ith empirical concepts regarding to the 

structure and bonding of borates.
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3.2 THEORETICAL METHOD

In order to perform the quantum  chemical calculations, we used the 

periodic ab-initio Hartree-Fock code CRYSTAL-92. As the program  uses 

basis sets constructed from atomic orbital (AO) as w ith  standard  

m olecular orbital p rogram s (for exam ple, GAUSSIAN, GAMESS, 

HONDO, MOP AC, AMP AC), it is easy for chemists to use. Furthermore, 

calculated properties, such as electron charge density maps and Mulliken 

charges, can be analyzed using chemical concepts. The details of the 

theory are described in the monograph of Pisani et al (1988). Here, some 

com putational assum ptions and restrictions especially w hen applying 

the method to borate crystals are mentioned.

3.2.1 SELECTION OF A MODEL

In solid state physics, plane waves (PW) are usually used as a basis 

function of crystalline orbitals ly which satisfy Bloch's theorem:

ij/(k;r+g) = \i/(k;r) exp(ik g) (3.1)

where r is real-space vector, k is wavevector, and g is a direct lattice 

vector of the crystal.

Instead  of PWs, CRYSTAL-92 uses Bloch functions (|)|i(k), 

constructed from a limited num ber of local functions 5C (̂r):

4)p(k;r) = Eg %p(r-g) exp(ik g) (3.2)

The "generating" functions X|x are centred at the atomic nuclei and 

are expressed as a linear combination of Gaussian-type atomic orbitals 

(GTOs), similar to molecular quantum  chemistry techniques.

G enerally speaking, the larger num ber of GTOs w hich are 

employed, the more accurate becomes the calculated result w ithin the 

Hartree-Fock (HF) limit. However, in contrast to the calculation on 

molecular groups, diffuse Gaussian orbitals (exponent of the order of 0.2
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a.u. or less) play a crucial role in crystalline-state calculations and cause 

two problems (Pisani et al 1988).

The first is that the num ber of integrals to be explicitly calculated 

increases dramatically with a decreasing exponent. The second is that on 

decreasing the exponent the risks of pseudo-linear dependence increase 

rapidly, dem anding higher precision in order to avoid "catastrophic" 

behaviour.

However, such very diffuse AOs are much less im portant in three- 

dimensional densely packed crystals than in atoms and molecules, where 

they serve to describe the tails of the electronic distribution tow ard 

vacuum. Therefore, except for the case of the minimal basis set (STO-3G), 

starting from the standard Pople's basis set (Pople and Binkley 1975), the 

exponent of the outermost shell is reoptimized.

Furthermore, in the present version of CRYSTAL-92, large systems 

cannot be simulated, except at the minimal basis set level, because of 

restrictions related to the size of vectors and matrices. Therefore, several 

different basis sets are applied for simulation of small B2 O 3 system s, 

while only a minimal basis set is applied for other larger systems.

In order to overcome the lim itation of system  size in the all

electron calculations, pseudopotentials techniques have been developed 

(Hay and W adt 1985; Durand and Barthelat 1975; Bouteiller et al 1988). 

This technique has also been tested for the B2 O3 systems.

The other possible problem associated with our m ethod may come 

from electron correlation which can only be represented using post 

Hartree-Fock techniques (Hehre et al 1986). In addition, however, several 

correlation correction schemes are available for the HF energy. Here, 

these precise corrections are not required in this chapter, because only the 

relative orders in energies or charges are mainly discussed.
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3.2.2 OPTIMIZATION OF STRUCTURE

The experimental determination of crystal structures has, of course, 

associated errors. For example, the positions of hydrogen atoms in boric 

acid crystals determined by X-ray techniques have errors of as much as 0.1 

Â. For this, and for other reasons, it is desirable in sim ulations to relax 

not only unit cell dimensions but also internal coordinates. To relax the 

structure means to search for the structure which has the m inim um  

total energy. However, the automatic relaxation of cell dim ensions or 

internal coordinates is not available in the present version of CRYSTAL. 

A lthough m anual optim ization is possible point by point, it is not 

efficient.

Therefore, in B2 O3 crystals cell dimensions and internal coordinates 

are varied in a point by point manner and the variations in energy are 

tabulated. These potential energy surface data are also used for modelling 

interatomic potentials in Chapter 5. In contrast, the calculations on the 

other borate crystals are carried out using fixed (experim entally  

determined) cell dimensions and atomic positions. We note that a full 

relaxation treatm ent using ab-initio, LDA techniques is possible 

employing the code CASTEP, as discussed in Chapter 4.

3.2.3 MULLIKEN POPULATION ANALYSIS

It may be useful to define the total electronic charge on a particular 

atom in order that quantitative meaning may be given to such concepts 

as electron w ithdraw ing or donating ability. The M ulliken population 

analysis is one of such methods, and it is often used for discussing the 

relative covalency and ionicity of materials.
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A lthough M ulliken population  analysis is em ployed in this 

chapter, some caution is required.

One problem  concerns the definitions of 'ionicity' and 'covalency', 

as discussed by Catlow and Stoneham (1983). There is a considerable 

arbitrariness in their nature and different charge partitioning schemes 

exist. Another concerns the high sensitivity of the M ulliken charges to 

the basis-set (Hehre et al 1986) A third difficulty is that the charges are 

often not comparable with effective charges obtained from experimental 

studies, and indeed the absolute value may be meaningless.

In this chapter, only the relative order in the M ulliken charges at 

different sites and among a variety of structures are used in order to 

discuss relative degrees of "ionicity' or "covalency".
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3.3 PERIODIC AB-INITIO HARTREE-FOCK SIMULATION

3.3.1 MODELS FOR BORON-QXYGEN BONDING

The boron atom has the gas-phase electron configuration: Isf,

2 p i. The chief oxidation state of boron is +3 and boron norm ally 

combines w ith oxygen (of electron configuration Is^, 2s^, 2p^) to form 

three triangular-planar bonds by sp^ orbital hybridization. The boron- 

oxygen radius ratio is 0.20 and from spatial considerations alone, boron 

w ould be expected to occur in three- or four-fold coordination. The 

transition to tetrahedral sp^ orbital hybridization is facilitated by the easy 

acceptance of an electron pair from a base into the low-energy fourth 

orbital of the boron valence shell. The m easured B-O bond distances in 

trigonal borates range from 1.28 to 1.44 Â and the mean is 1.37 A. The 

m ean tetrahedral bond length is 1.48 A and the individual values vary 

from 1.42 to 1.54 A. For refined structures having an experimental error 

of <0.05 A, the difference between trigonal and tetrahedral bond lengths 

of 0.1 A is significant (Ross and Edwards 1967).

The calculated trigonal B-O bond length, which is the theoretical, 

single covalent B-O bond distance, is slightly less than 1.43 A (Pauling 

1960); its discrepancy with the measured lengths has been attributed to 

about 20% double bond character. The m easured B-O bond distances in 

some borate crystals are shown in Table 3.1. The structure and bonding in 

these crystals are discussed later in this chapter.
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Compound B-O (A) 
Triangular BO3

B-O (A)
Tetreihedral BO4

Boron Trioxide
B2 O3 -I 1.337, 1.366, 1.404

B2 O3 -II
1.336, 1.384,1.401

1.373, 1.506, 1.507, 1.512

Potassium metaborate
KBO2 1.331 (in-ring)

1.398, 1.398 (out-of-ring)
Sodium metaborate 

NaB0 2 1.280 (in-ring)
1.433, 1.433 (out-of-ring)

Kotoito
Mg3(B03)2 1.376, 1.392,1.392

Magnesium Pyroborate 
Mg2 B2 0 5 -lI 1.35, 1.38, 1.38

Calcium Metaborate 
CaB2 0 4 -I

1.33, 1.33,1.37 

1.326, 1.385,1.401
Sinhalite

AlMgB04 1.442, 1.483, 1.483,1.586

Orthoboric acid
B(0H )3 1.356,1.365,1.365

Metaboric acid 
HBO2 -I

HBO2 -II

HBO2 -III

1.353, 1.359, 1.365

1.345,1.371, 1.386 
1.356,1.366, 1.378

1.433, 1.451,1.452, 1.553 

1.436, 1.465, 1.482,1.505

1.373, 1.377,
1.391, 1.353,
1.372, 1.372 (in-ring)
1.351, 1.367, 1.347 (out-of-ring)

Table 3.1. B-O bond distances in borate minerais (References are found 
in the text.)
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3.3.2 BORON TRIOXIDE CRYSTALS

The outline of B2 O3 crystal structures is reviewed in Section 2.1.

3.3.2.1 BASIS SET EFFECTS

The basis set plays a crucial role in the description of crystalline 

orbitals. Starting from the standard Pople's basis sets, the exponents of 

ou ter shell are reoptim ized. The reoptim ized exponents and the 

Mulliken charges are compared in Table 3.2 and 3.3.

i. Minimal basis set

As generally recognized, the Mulliken charges obtained employing 

STO-3G tend to be smaller than with other basis sets (Hehre et al 1986). 

The bigger problem is that the STO-3G result in B2 O3 -II is not consistent 

w ith the results of the other basis sets. The M ulliken charge on 0(2) 

seems to be too small and that on 0 (1) is larger than expected. 0 (1) is 

two-fold coordinated by boron which is the same in B2 O 3 -I, while 0(2) 

has three-fold coordination (see Figure 2.3). The two charge distributions 

are expected to be different, which is difficult to express by using minimal 

basis set. Therefore, caution is needed w hen a m inim al basis set is 

applied to three-fold coordinated oxygen or four-fold coordinated boron.

ii. S-plit-valence and polarization function

As even B2 O3 crystals represent a large system, basis set better than 

6-21G, such as 8-51G, are not possible in the present version of CRYSTAL. 

For both polymorphs, the 6-21G basis set may be assumed to be good basis 

set, as Dovesi et al (1987) and Nada (1990) suggested for Si02. The 3-21G 

basis set gives almost the same result as that for 6-21G.

We investigated the effect of adding a single G aussian d-type 

function to boron, because such a polarization function proved to be 

useful in Si0 2  for describing the distortion of cation orbitals in the 

different environm ents (Nada 1990). However, in B2 O 3 -I crystal the
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M ulliken charges are reduced unexpectedly. The reason for this trend 

could be the BSSE (Basis Set Superposition Error ) (see, for example, 

Clark 1985). That is, the extra orbitals on boron are used to improve the 

description of the charge distribution around oxygen.

iii. Pseudopotentials

All electron calculations restrict the feasible system size. In order to 

overcome this problem, several types of pseudopotentials have been 

developed. In these pseudopotential techniques the role of core electrons 

are substituted by the effective core potentials and only the orbitals of 

valence electrons are calculated. Here only one available set, PS-31G 

(Bouteiller 1988), is tested. The original PS-31G sets were optim ized for 

atoms and tested only on small molecule. Therefore, the exponents of 

outerm ost shell were reoptimized. The Mulliken charges turned out to 

be larger than those calculated with the all electron cases. This m ay be 

due to electron rich second shells, which are com posed of three 

gaussians, whereas the second shell in the other all-electron calculations 

w ere com posed of two gaussians. The order of the charges seems 

reasonable, but it is difficult to evaluate these pseudopotentials, because 

they have not been fully tested for the crystalline state. However, these 

results show that the pseudopotential technique is promising. If refined 

these pseudopotentials could become a powerful tool for calculations on 

larger systems.

3.3.2.2 GEOMETRY OPTIMIZATION

In order to check the accuracy of our calculations, un it cell 

dimensions were optimized using the 3-21G basis set. The experimental 

lattice param eters and atomic param eters are given in Table 3.4. The 

interatomic distances and interbond angles are also reported in Table 3.5,
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while the calculated energies are summarized in Table 3.6. The errors in 

the unit cell volume are 1.5% for B203-I and 1.5% for B2 O 3 -II. The errors 

in the lattice param eters are 1% for either crystal structure. The atomic 

param eters are also varied in a point by point m anner using the 3-21G 

basis set. The calculated results are shown Table 3.7. Regarding to the B-O 

bond lengths, only the error in B-O(l) bond (the shortest B-O bond) of 

B2 O 3 -II is 10% and all the other errors are within 5%. On the other hand, 

all the errors in O-B-O bond angles are within 5%. W hen the general 

accuracy of 3-21G basis set is taken into account, these calculations 

reproduce both crystal structures well. The optimized geometry is also 

discussed in Chapter 4.

3.3.2.3 DISCUSSION

The average experimental B-O bond distance of 1.372 A in B2 O 3 -I 

agrees well with the length assumed by Zachariasen (1963) for a bond of 

strength' 1.0  (1.365 A), and also with a value of 1.37+0.02 A which was 

quoted as the mean B-O distance for three-coordinated boron by W augh 

(1968).

When the charges of three different oxygen in B2 O3 -I are compared, 

the charge of 0(3) is larger than those of the other two oxygens. Gurr et al 

(1970) distinguished 0(3) for the other oxygen atoms by using the term ' 

higher coordination' of 0(3) through which adjacent ribbons are linked, 

although 0(3) is two-fold coordinated as well as 0(1) or 0(3). Here, 

M adelung potentials (i.e. the total Coulomb contributions from all 

atoms) are calculated as -66.42, -65.49 and -67.18 for 0(1), 0(2) and 0(3). 

The M adelung potential of 0(3) is larger than those of the other oxygens. 

In agreement w ith Gurr's interpretation, it is the obvious explanation for 

the large Mulliken charge of 0(3).
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Regarding B2 O3 -I, the near planar shape of the BO3  triangle and the 

small Mulliken charges emphasize the partially covalent character, while 

the distortion of the triangle and the larger M ulliken charge of 0(3) 

indicate the presence of some ionic character.

On the other hand, the average B-O distance for B2 O 3 -II is 1.475 Â, 

exactly that proposed by Zachariasen (1963) as an average tetrahedral B-O 

distance. However, the tetrahedron is very distorted, w ith one short B- 

0(1) distance of 1.373 Â and three long B-0(2) distances of 1.507, 1.506 and 

1.512 A. 0 (1) is two-fold coordinated, while 0 (2 ) is three-fold coordinated.

Prewitt and Shannon (1968) calculated electrostatic bond strengths 

in B2 O 3 -II using Zachariasen's table of bond strength versus B-O bond 

length (Zachariasen 1963). The calculated net bond strength  is 3.01 

around B, 1.96 around 0(1), and 2.03 around 0(2). They concluded that 

the distortions are necessary to balance the electrostatic charge in the 

crystal.

When the Mulliken charges of the four different oxygens in B2 O3 -II 

(except in the case of minimal basis set) are compared, the charge of 0 (1) 

is found to be much smaller than the others. It is also interesting to note 

that the 0 - 0  distances of the four oxygens are almost same, although the 

distance of B and 0(1) is shorter than the others. This means that the 

tetrahedral arrangem ent of the four oxygens is not very distorted; but 

rather w ithin the tetrahedron, B approaches to 0(1). Therefore, it seems 

reasonable to assume that the difference in coordination num ber around 

oxygen chiefly changes B-O bond strength rather than the 0 - 0  repulsion 

in the interatomic potential model for the system. To check w hether the 

distortion can be explained in terms of charge transfer betw een boron 

and oxygen atoms, we performed lattice energy minim izations using a 

sim ple rigid ion model. Such a model, which assigns the M ulliken
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charge to each atom, cannot, however, explain the short B-O(l) bond 

length, because the B-O(l) distance becomes longer, if the charge of 0(1) is 

set to be smaller since the attraction between B and 0(1) is reduced. 

However, the other interpretation namely that B-B repulsion shortens 

the B-O bond length is also possible. But the results of a perfect lattice 

relaxation simulation, discussed in Chapter 5, show that the change in 

the B-O bond strength can reproduce the detailed structure better than 

can be achieved by changing the B-B repulsive term.

Next, the bond lengths in B2 O 3 -I and B2 O 3 -II are com pared. As 

Johnson et al (1982) pointed out, one short bond B-O(l) distance (1.373 A) 
in B2 O 3 -II (1.373 A) is close to the average B-O distance in B2 O 3 -I (1.372 

A) and in B2 O3  glass (1.37A). The calculated Mulliken charges also show 

that the charge of 0(1) in B2 O 3 -II (-0.708 with ST03-21G) is close to the 

average oxygen charge in B2 O3 -I (-0.698 with ST03-21G). Regarding the 

two B2 O3 crystal structures, it is interesting to note that the coordination 

num ber of boron around oxygen seems to affect the B-O distance much, 

more than the coordination around the boron.

To sum up, B2 O3 -II is more ionic than B2 O3  -I, which is compatible 

w ith the idea that a high-pressure form or high-coordination form is 

generally thought to be more ionic. The difference in the M ulliken 

charges agrees w ith Pauling's electrostatic valence sum rule in term s of 

the explanation of the short B-O bond length in B2 O 3 -II. This acquired 

knowledge will be utilized in the development of interatomic potentials 

in Chapter 5.
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basis set boron oxygen

3-21G 0.15 0.40

3-21G* 0.15, 0.60

6-21G 0 .12 0.40

PS31G 0.21 0.30

Table 3.2. Reoptimized exponents of outer shell for B2 O3 -I and B2 O3 -II

B2 O3 -I

basis set B (l) B(2) 0 (1 ) 0 (2 ) 0 (3) E (a.u./B20'

boron/oxygen

STO-3G/3G +0.664 +0.661 -0.439 -0.435 -0.451 -270.6795

3-21G/3-21G +1.048 +1.046 -0 .6 8 8 -0.685 -0.721 -272.8511

3-21GV3-21G +0.792 +0.693 -0.446 -0.473 -0.466 -272.9254

6-21G/6-21G +1.010 +1.005 -0.661 -0.660 -0.694 -273.9886

PS31G/PS31G +1.404 +1.405 -0.925 -0.925 -0.959 ----

B2 O3 -II

basis set B (l) 0 (1 ) 0 (2 ) E(a.u./B2 0 3

boron/oxygen

STO-3G/3G +0.659 -0.488 -0.415 -270.7587

3-21G/3-21G +1.164 -0.708 -0.810 -272.8709

6-21G/6-21G +1.128 -0.677 -0.790 -274.0111

PS31G/PS31G +1.569 -0.947 -1.095

Table 3.3. Net Mulliken charges and total energies for B2 O3 -I and B2 O3 -II
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B2 O3 -I space group P3i (trigonal)

a = b = 4.339 Â, c = 8.340 Â

X y z

B (l) 0.2229 0.3926 -0.0198

0(1 ) 0.5468 0.3972 0.0

0 (2 ) 0.1485 0.6004 0.0775

0 (3 ) 0.0045 0.1608 -0.1291

B2 O3 -II space group Ccm2i (orthorhombic)

X y z

B (l) 0.1646 0.1606 0.4335

0 (1 ) 0 . 0.3475 0.5

0 (2 ) 0.2911 0.3698 0.5802

Table 3.4. Experimental lattice param eters and atomic param eters in 
B2 O3 -I and B2 O3 -II (Gurr et al 1970; Prewitt et al 1968)
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B2 0 3 -I B2 O3-II
Distances (Â) Distances (Â)

B (l)-0 (1 ) 1.404 B (l)-0 (1) 1.373
-0 (2 ) 1.366 -0 (2) 1.507
-0(3) 1.337 -0 (2)' 1.506

B (2)-0 (l) 1.336 -0 (2 ") 1.512
-0 (2 ') 1.400 0 (1 )0 (2 ) 2.364
-0(3') 1.384 -0 (2 ’) 2.440

0 ( l) -0 (2 ) 2.387, 2.388 0 (2 ") 2.409
0 (2 )-0 (3 ) 2.409, 2.333 0 (2 )-0 (2 ) 2.428
0 (3 )-0 ( l) 2.309, 2.408 -0 (2 ") 2.394
B(l)-B(2) 2.489, 2.489, 0 (2 ')-0 (2 ") 2.388

2.498 B (l)-B (l') 2.569
-B(l") 2.664
-B(l'") 2.664
-B(l"") 2.592

Angles (deg)
0 ( l) -B (l) -0 (2 ) 119.0 0 (l)-B (l)-0 (2 ) 11 0 .2

0 (3 ) 114.7 0 (2 ') 115.8
0 (2 )-B (l)-0 (3 ) 126.1 0 (2 ") 113.1
0 (l)-B (2 )-0 (2 ) 121.5 0 (2 )-B (l) -0 (2 ) 107.4

0 (3 ) 124.6 0 (2 ") 104.9
0(2)-B (2)-0(3) 113.8 0 (2 ')-B -0 (2”) 104.7
B(l)-0(1)-B(2) 130.5 B (l)-0(1)-B (l') 138.6

0(2)-B(2) 128.3 -0(2)-B(l") 123.8
0(3)-B(2) 133.4 -0(2")-B(l"') 123.8

-0(2')-B(l"") 118.7

Table 3.5. Interatomic distances and interbond angles for B2 O 3 -I and 
B2 O3 -II (Gurr et al 1970; Prewitt et al 1968)
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B 2O 3- I B 2O 3- I I

1) ( v / v o ) l / 3

A E ( a . u . / B 2 0 3 ) A E ( a . u . / B 2 0 3 )

1 .0 8 + 0 .0 5 5 7 5

1 .0 6 + 0 .0 3 1 5 0

1 .0 4 + 0 .0 1 3 4 8

1.02 + 0 .0 0 2 6 1

1.01 + 0.00021 - 0.00021

1 .0 0 5 - 0 .0 0 0 1 9  @ - 0 .0 0 0 4 4  @

1.0 0 0

0 .9 9 5 + 0 .0 0 0 7 7 + 0.00100

0 .9 9 + 0.00210 + 0 .0 0 2 7 3

0 .9 8 + 0 .0 0 6 6 1

0 .9 6 + 0 .0 2 2 9 9

Table 3.6. Potential energies with different lattice parameters for B2 O3 -I 
and B2 O 3 -II (@ indicate the minimum point)
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B 2O 3 - I B 2O 3- I I

A E ( a . u . / B 2 0 3 ) A E ( a . u . / B 2 0 3 )

2) a / a o

1.02 + 0 .0 0 1 3 6 - 0 .0 0 0 6 6

1.01 + 0.00002 - 0 .0 0 0 7 2  @

1.0 0 @ 0

0 .9 9 + 0 .0 0 1 2 8 + 0 .0 0 1 5 4

0 .9 8 + 0 .0 0 3 9 5

3 ) b / b o

1 .0 4 + 0 .0 1 2 8 1

1.02 + 0 .0 0 0 5 0

1.01 - 0.00002 @

1.0 0

0 .9 9 + 0 .0 0 0 5 2

0 .9 8 + 0 .0 0 1 5 8

4 )  c/cQ

1 .0 3 + 0.00022

1.02 + 0 .0 0 0 1 3 + 0 .0 0 1 3 6

1.01 - 0.00020  @ + 0.00002

1.0 0 0 @

0 .9 9 + 0 .0 0 1 2 8

0 .9 8 + 0 .0 0 1 1 9

Table 3.6.(continued) Potential energies with different lattice param eters 
for B2 O 3 -I and B2 O 3 -II (@ indicate the minimum point)
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B2 0 3 -I AE (a.u./B203)

change of bond length (A)
-1 0 % -5% +5% +1 0 %

R (B-0(3)) 1.337 +0.03754 +0.01590 +0.00166 +0.01341

R (B-O(l)) 1.404 +0.02061 +0.00318 +0.00823 +0.02614

R (B-0(2)) 1.366 +0.02740 +0.00685 +0.01691 +0.00406

change of bond angle (deg)

-1 0 ° -5° +5° +1 0 °

Z 0(l)-B -0(3) 114.8 +0.00711 +0.02535

Z 0(2)-B-0(3) 126.1 +0.02398 +0.00326

Z 0(l)-B -0(3) 114.8 +0.00702 +0.02985

Z 0(2)-B -0(l) 119.0 +0.05140 +0.01452

Z 0(2)-B-0(3) 126.1 +0.00669 +0.03270

Z 0(2)-B -0(l) 119.0 +0.01016 +0.03480

B2 O3 -II AE (a.u./B203)

change of bond length (A)
-1 0 % -5% +5% +1 0 %

R (B-O(l)) 1.373 +0.00111 -0.00003

R (B-0(2)) 1.507 +0 .01001 +0.00814

change of bond angle (deg)

-1 0 ° -5° +5° +1 0 °

Z 0(2)-B-0(2)" 104.9 +0.00769

Z 0(2)-B -0(l) 110.2 +0.01064

Table 3.7. Potential energies w ith different internal coordinates for 
B2 O3-I and B2 O3 -II
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3.3.3 ALKALI BORATES

Only a minimal basis set was applied in the modelling of sodium 

m etaborate (NaB02) (Fang 1938; Marezio et al 1963) and potassium  

metaborate (KBO2 ) (Zachariasen 1937; Schneider and Carpenter 1970). It 

is interesting to note that these isostructural com pounds contain the 

m etaborate ion BgO^^" (see Figure 2.9). The interatomic distances are 

shown in Table 3.8. The calculated Mulliken charges are shown in Figure

3.1 and 3.2.

In order to explain the observed deform ation w ithin  the BO3 

triangles (that is, the distance of B-O(l) outside the ring is longer than 

that of B-0(2) in the ring), Zachariasen (1937) pointed out that in the 

covalent interpretation BgO^^" has resonates' between three electronic 

structures (one structure is stronger than the other two), while in the 

ionic in te rp re ta tion  the repu lsion  betw een boron  ions m ay be 

responsible. Schneider and Carpenter (1970) used the interpretation of 

Pauling (1945) that the fourth orbital of boron is used to form a double 

bond formation.

From the Mulliken analysis, the charge on the oxygen outside the 

ring (Ol) is larger than that in the ring (02). It seems reasonable to 

assume that the charge transfer from the alkali atom to 0 (1) tightens the 

B-O(l) bonding outside the ring rather than B-0(2) bonding inside the 

ring. When the results on NaB02 are compared with those on KBO2 , we 

can propose that the B-O(l) n bonding is strengthened while the B-0(2) n 

bonding is weakened. It is also found that 0 (l)-0 (2 ) distances are almost 

the same in the two compounds, although the 0 (2 )-0 (2 ) distances are a 

little different. The changes in boron-oxygen bonding seems to be able to 

explain the features of these structures better than changes in the oxygen- 

oxygen or boron-boron repulsion.
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The comparison of the Mulliken charges with those calculated for 

the B2 O 3 crystals (Table 3.3) shows that the oxygen ions becomes more 

ionic while the charges on the borons are reduced by the introduction of 

the alkali metal oxide. The charges on the oxygens increase in the order:

B2 O3 -I < B2O3-II < alkali borates 

However, some knowledge of the acid-base relationships in alkali 

borate glasses suggested the following changes in the structure of the 

borate lattice on increasing the alkali m etal oxide content (see, for 

example, Paul 1982):

2 B(Oi / 2)3 --> 2 B(Oi / 2)4" - > 2B(Oi / 2)0 "

\  \
o  0 0 0

\  \  /  \
B — O --> B —> B — 0 “

/  /  \  /
o  0 0 0

/  /

The order of the calculated M ulliken charges agrees w ith the above 

models.

M = Na or K NaB0 2 KBO2
Distances (Â) Distances (Â)

B-O(l) xl 1.280 1.331
B-0(2) x2 1.433 1.398
0 ( l) -0 (2 ) x2 2.383 2.381
0 (2 )-0 (2 ) xl 2.410 2.389
M-O(l) xl 2.461 2.849
M -O(l) x2 2.474 2.801
M-O(l) x2 2.607 2.835
M -0(2) x2 2.482 2.775

Table 3.8. Interatomic distances in NaB02 and KBO2 (Marezio et al 1963; 
Schneider and Carpenter 1970)
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3.3.4 ALKALINE-EARTH BORATES

We have used a minimal basis set to study a num ber of alkaline- 

earth  borates; M g3(B03)2 (Kotoito) (Effenberger and Pertlik 1984), 

M g2B205-II (Takeuchi 1952), CaB204-I (Marezio 1963) and AlMgB04 

(Fang and N ew nham  1965; H ayw ard 1993). These com pounds have 

different structural units. They consist of discrete BO3 , discrete B2 O 5 , 

in fin ite  BO3  chains and discrete BO4  un its respectively . Their 

interatom ic distances are given in Table 3.9 and 3.10. The calculated 

Mulliken charges are shown in Figure 3.4 to 3.6.

When the geometry of the BO3 unit in Mg3(B03)2 is compared with 

that in N aB 02, the difference in the B-O distances is small, bu t the 

difference in the 0 - 0  distances is larger, that is, the BO3 triangle is more 

distorted. The calculated Mulliken charges of the oxygens in Mg3(B03)2 

are larger than in B2 O3 -I and in the two alkali borates. This suggests that 

this com pound is m ore ionic. This appears to be reasonable w hen the 

modifier oxide ratio is taken into account, M g0 /B 203  (mole ratio) is 3 in 

M g3(B03)2, while N a 2 0 /B 2 0 3  or K2 O /B 2 O 3  is 1 in NaB02 or KBO2 . 

Generally speaking, the larger the proportion of modifier oxide, the more 

ionic the compound. The distortion of the BO3 triangle m ay be explained 

using the ionic model from which we would expect that the shared edge 

between the BO3 triangle and the M g06 octahedron is distorted.

For Mg2B205-II, the M g0 /B 203  mole ratio is 2 and the charges of 

the oxygen atom s are reduced a little, relative to M g3(B 03)2- The 

Mulliken charge of the bridging oxygen 0(3) is smaller than the others, 

because 0 (3 ) is coordinated by one magnesium atom, while the other 

oxygens are coordinated with two or three magnesium atoms.

In CaB2 0 4 -I crystal, the non-bridging B-O(l) distance (1.325 A) is 

much shorter than the bridging B-0 (2 ) distance (1.385 A) and the B-0 ( 2  )
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distance (1.401 Â). The Mulliken analysis shows that the 0(1) charge is 

larger than the 0(2) charge. Therefore, B-O(l) bonding m ay have double 

bond character, as shown in the case of alkali borates. In common with 

Mg3 (BOs)2  we find that the BO3  triangle is distorted.

AlM gB04 is made up of BO4  tetrahedra, AlO^ octahedra and MgO^ 

octahedra. It is interesting to note that one B-0(2) distance is much larger 

than the other B-O distances. Hayward (1993) concluded that the long B-O 

bond  length  is due to the repu lsion  betw een boron  and tw o 

neighbouring alum inium s. How ever, another in terpretation  is also 

possible when the analysis posed on the structures of B2 O 3  crystals are 

taken into account, where the calculated oxygen charges are almost same. 

The geometry suggests that charge is more easily transferred from A1 and 

Mg to 0(2) than to 0(1) or 0(3). Therefore, in order to balance the oxygen 

charges, B-O(l) or B-0(3) bonds may become stronger and shorter than B- 

0 (2 ) bonding.

Compared with B2 O3  crystals, the alkaline-earth borates show some 

ionic features, that is, not only is the B-O distance changed, but also the 

B O 3 triangle or BO4  tetrahedra are distorted. Furtherm ore, as the 

m odifier oxide ratios increase, the M ulliken charges show  higher 

charges. This corresponds w ith the increasing tendency for the 'borate' 

structural unit to become discrete unit as the num ber of non-bridging 

oxygens increases. In the glass field, similar behaviour is observed w hen 

the B-O network becomes depolymerized by the introduction of modifier 

oxide.
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3.3.5 BORIC ACID CRYSTALS

Four crystal structures of boric acid have been determined. The first 

is B(0H)3, orthoboric acid (Zachariasen 1934; Zachariasen 1954). It is built 

up of B(0H)3 molecules ( Figure 3.3). The other three are HBO2 , 

metaboric acid. HBO2 -I consists of a three-dimensional netw ork of BO4  

tetrahedra (Zachariasen 1963); HBO2 -II consists of infinite zigzag chains 

[B304(0H)(0H2)]oo (complex of BO3  group) (Zachariasen 1963); HBO2 -III 

consists of planar B3 O6 groups (Tazaki 1940; Peters and Milberg 1964). It is 

interesting to note that B(OH)3  and HBO2 -IH have layer-type structures, 

while HBO2 -III is based on boroxol rings. The interatomic distances and 

the Mulliken charges are shown in Table 3.11 to 3.12 and in Figure 3.7 to 

3.10. Only the HBO2 -I could not be simulated because of the restrictions 

of the code related to the size of vectors and matrices.

B(0H)3 is similar to B2 O3 -I, except that B(OH)3  molecules are linked 

together by hydrogen bonds. When we compare its M ulliken charges 

with those of B2 O3 -I, B(OH)3  has larger oxygen charges. Therefore, it may 

be said that hydrogen has the same role as alkali metals and alkaline- 

earth metals as a electron donor.

FIBO2 -III is similar to NaB02 or KBO2 , w ith B-O distances outside 

the ring shorter than those in the ring. The reason is that B-O bonding 

outside the ring has a double bonding character, as in the case of alkali 

borates.

H BO 2 -II has a more complex structure. 0(5) and 0 (6 ) are a little 

different from the other oxygens. They are connected to only one boron, 

while the other oxygens are connected to two borons. 0(5) is thought to 

be the oxygen of a hydroxyl group and 0 (6 ) is thought to be the oxygen of 

a water molecule (Zachariasen 1963). These features are compatible with 

the largest oxygen charge in case of 0(5) and a smallest oxygen charge in
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case of 0(6) in the Mulliken analysis. However, as long as a minimal 

basis set is employed, it is difficult to obtain more details.

To summarize, boric acid crystals have an ionic character which is 

interm ediate between these of B2 O 3 and alkali borates from the view 

point of the effective charges given by the Mulliken population analysis.

B(0H )3
Distances (Â)

HBO2 -I
Distances (Â)

B (l)-0 (1 ) 1.365 B-O(l) 1.436
B (l)-0 (2 ) 1.365 B-O(l') 1.465
B (l)-0 (3 ) 1.365 B-0(2) 1.505
B(2)-0(4) 1.365 B -0 (2 ’) 1.482
B(2)-0(5) 1.353 0 (1 )-0 (1 ') 2.413
B(2)-0(6) 1.359 0 ( l)-0 (2 ) 2.431
0 ( l) -0 (2 ) 2.351 0 ( l) -0 (2 ') 2.360
0(2 )-0 (3 ) 2.359 0 (l')-0 (2 ) 2.381
0 (3 )-0 ( l) 2.366 0 (l')-0 (2 ') 2.421
0(4 )-0 (5 ) 2.339 0 (2 )-0 (2 ) 2.412
0(5 )-0 (6 ) 2.360 H ...O (l) 1.43
0(6 )-0 (4 ) 2.362 H -0 (2 ”) 1.06
0(1)-H (1) 0.83 0 ( l) . . .H -0 (2 ”) 2.487
0(2)-H (2) 0.96
0(3)-H (3) 0.90
0(4)-H (4) 0.83
0(5)-H (5) 0.80
0(6)-H (6) 0.96
0(1)-H (1)...0(5) 2.727
0(2)-H (2)...0(4) 2.716
0(3)-H (3)...0(6) 2.715
0(4)-H (4)...0(3) 2.722
0(5)-H (5)...0(2) 2.734
0(6 )-H (6 )...0 (l) 2.707

Table 3.11. Interatomic distances in B(OH)3  and HBO2 -I (Zachariasen 
1954,1963)
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HB0 2 -II HBO2 -III
Distances (A) Distances (A)

B (l)-0 (1 ) 1.345 B (l)-0(2) 1.373 (in-ring)
B (l)-0 (2 ) 1.371 B (l)-0(4) 1.377 (in-ring)
B (l)-0 (3 ) 1.386 B(2)-0(2) 1.391 (in-ring)
B(2)-0(3) 1.378 B(2)-0(5) 1.353 (in-ring)
B(2)-0(4) 1.354 B(3)-0(4) 1.372 (in-ring)
B(2)-0(5) 1.366 B(3)-0(5) 1.372 (in-ring)
B (3)-0 (l') 1.433 B (l)-0(1) 1.351
B(3)-0(2) 1.452 B(2)-0(3) 1.367
B(3)-0(4) 1.451 B(3)-0(6) 1.347
B(3)-0(6) 1.553 0 (l) -0 (4 ) 2.376
0 ( l) -0 (2 ) 2.335 0 ( l)-0 (2 ) 2.340
0 (2 )-0 (3 ) 2.392 ' 0 (2)-0 (4) 2.385
0 ( l) -0 (3 ) 2.380 0(3)-0 (2) 2.410
0(3 )-0 (4 ) 2.378 0(2)-0 (5) 2.384
0(3 )-0 (5 ) 2.350 0(6)-0 (4) 2.381
0(4 )-0 (5 ) 2.368 0(6)-0 (5) 2.335
0 ( l ’)-0 (6 ) 2.423 0(4)-0 (5) 2.367
0 (l')-0 (2 ) 2.449 0(1)-H (1) 0.90
0 ( l') -0 (4 ) 2.333 0(3)-H(2) 0.80
0 (2 )-0 (4 ) 2.423 0(6)-H(3) 0.92
0 (2 )-0 (6 ) 2.386 0(3)-H (2)...0 (l) 2.680 (in-layer)
0 (4 )-0 (6 ) 2.325 0(6)-H (3)...0(3) 2.748 (in-layer)
H (l)-0 (6 ) 0.87 0(1)-H (1)...0(6) 2.827 (in-layer)
H (l)...0 (5 ) 1.84 0(1)...H (2) 1 .88 (in-layer)
0 (6 )-H (l)...0 (5 ) 2.676 0 (3 )...H(3) 1 .88 (in-layer)
H (2)-0(5) 0.89 0 (6 )...H (l) 1.91 (in-layer)
H (2)...0(4) 1.80
0(5)-H (2)...0(4) 2.685
H (3)-0(6) 1 .10
H (3)-0(2) 1.57
0(6)-H (3)...0(2) 2.683

Table 3.12. Interatomic distances in HBO2 -II and HBO2 -III 
1963; Peters and Milberg 1964)

(Zachariasen
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Figure 3.8 The crystal structure of HB02-
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3.4 CONCLUSION

The follow ing general features concerning the structure  and 

bonding in borate crystals have been suggested by the quantum-chemical 

calculations reported in this chapter.

i. W hen borate crystal include m odifier oxide (alkali, alkaline- 

earth  or water), they show a variety of structural units Generally 

speaking, as the content of modifier oxide increases the oxygen charges 

become more ionic.

ii. When the borate' structural unit is a BO3  triangle, it shows 

some covalent character, especially w hen charge is transferred from 

modifier cations to oxygens; B-O bonding of non-bridging oxygens can be 

assum ed to be strengthened. In other w ords, it has a double bonding 

character. It is interesting to find that the 'floppy' boron moves rather 

than the oxygen frame being distorted. This trend is not noticeable in 

silicates.

iii. W hen the ' borate' structural unit is a BO4  tetrahedron, it 

shows some ionic character. The tetrahedron is often distorted, because 

its edges are shared with the other polyhedra. On the other hand, one B- 

O distance often becomes longer or shorter than the other B-O distances. 

Pauling's electrostatic valence sum rule or the distortion of the shared 

edge between different polygons can explain this phenomena.

This variety of structure and bonding in borates may suggest a 

possibility for other polymorphs of B2 O3 crystal and also the existence of 

boroxol ring in B2 O3 glasses. The knowledge obtained from this analysis 

will be utilized in developing interatomic potential models discussed in 

Chapter 5 and 6 .
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CHAPTER 4 BORON TRIOXIDE AS CRYSTALLINE SOLID

. . .  a solid state physicist's view

4.1 INTRODUCTION

N either form of crystalline boron trioxide occurs na tu ra lly . 

Furtherm ore, it is not easy even under special conditions to prepare 

crystals and  m easure their p roperties. In such cases com puter 

simulations can play a important role in determining the structural and 

physical properties. This is because advances in the state of electronic 

structure calculations make it possible to calculate total energies w ith 

high accuracy and computer simulations from first-principles are now 

possible. These computer sim ulation techniques are currently used to 

study not only static but also dynamical structures in both the crystalline 

and am orphous states, although there are still considerable lim itations 

on the size of system (e.g. the num ber of independent atoms in unit cell) 

that can be studied because of the constants im posed by com puter 

resources.

In this chapter we discuss how the structures and bulk m oduli of 

B2 O 3  crystals have been determ ined em ploying the LDF electronic 

structure m ethods rather than the Hartree-Fock techniques described in 

Chapter 3. Calculations were perform ed employing the code CASTEP 

(Payne et al 1992), which is a powerful program  code for total energy 

pseudopotential calculation. CASTEP has two distinctive features: one is 

that the internal coordinates can be automatically relaxed so that the 

structure with the minimum total energy is obtained; the other is that it 

has the option of ab-initio Molecular Dynamics sim ulation (Car and 

Parrinello 1985), although this was not applied to B20s^ as it would have 

required an enormous amount of computer resources.
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First, we explain the contrast between the theoretical approaches 

adopted in this chapter compared w ith the quantum-chemical m ethod, 

described in Chapter 3. Next, we apply the LDF techniques to optimizing 

the lattice param eters and internal coordinates of B2 O 3 . After their 

optim ized structures of both phases have been identified, the total 

energies of several points with different cell volumes are calculated and 

bulk m oduli are estim ated for subsequent use in the developm ent of 

interatom ic potentials for B2 O 3  crystals and glasses as discussed in 

Chapter 5 and 6 . Furthermore, the results of these calculations provide 

the first suggestion  of an im portan t m echanism  for s tru c tu ra l 

transformation between B2 O3 polymorphs.
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4.2 THEORETICAL METHOD

CASTEP (Payne et al 1992) is a powerful tool for calculating the 

quantum  mechanical total energy and then minimizing it w ith respect to 

its electronic and nuclear coordinates. Com pared w ith the quantum - 

chemical method, CASTEP uses three distinctly different approaches;

i. Density functional theory (Hohenberg and Kohn 1964) and local 

density approximation (LDA) (Kohn and Sham 1965) are em ployed to 

m odel the electron-electron interactions. The difference in form ulation 

between Hartree-Fock (HE) theory and density functional theory (DFT) is 

shown as follows (see, for example, Wimmer 1991):

DFT

E = E[p,R] (4.1)

E = T[p] + U[p] + Exc[p] (4.2)

p(r) = locc I Vi(r) 12 (4.3)

8E /  3p = 0 (4.4)

[-1/2V2 + Vc(r) + Hxc(r)] Vi = eivi (4 5)

HF

E = E[\j/,R] (4.6)

E = J v*[Xihi + Xi>jl/rij]v 8r  (4.7)

\|/= I v(l)/V(2),-vV(n)] (4.8)

a E / 3 v  = 0 (4.9)

[-1/2V2 + Vc(r) + M.^(r)l v i = eivi (4.10)

where E is total energy, \}f is wave vector, p is electron density, R or r is 

coordinate for nucleus or electron, h is hamiltonian, T is kinetic energy, 

U is electrostatic or Coulomb energy term, pxc or gx is a many-body term  

or exchange term and e is the eigenvalue.
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The biggest difference between the two theories is in the term  |ixc or 

Hx' In HF theory the exchange term |Xx only describes exchange effects 

and is calculated from all the wavefunctions based on the orbitals.

H&(r) = -Sj 8 (ci,aj) x

[Vi*(r)Vj*(r') 1 / I r-rV \|fj(r)\)fi(r')dr'] /  [\|/i*(r)\|/i(r)] (4.11)

where a  is the spin.

On the other hand, in DFT theory |ixc contains all the m any-body 

effects and it is calculated from the total electron density.

lixc(r) = ôExc[p] /  dp(r) (4.12)

Further, LDA provides a good approximation,

Exc[p] = J p(r)exc[p(r)]dr (4.13)

w here £xc[p] is the exchange-correlation energy per electron in an

interacting electron system of constant density p, and

|ixc(r) = Exc[p(r)] + p(r) {ôExc[p(r}] /  dp(r)) (4.14)

This approxim ation is generally know n to yield only sm all 

percentage error both  in the total energy and in the struc tu ra l 

param eters. However, cohesive energies can be in error by m ore than 

10%.

ii. Pseudopotential theory (Phillips 1958; Heine and Cohen 1970) is 

used to model the electron-ion interactions. The strong electron-nuclear 

potential is replaced by a much weaker pseudopotential, and plane waves 

are used as basis functions to approximate the potential outside the core 

region. This p seudopo ten tia l technique m akes the so lu tio n  of 

Schrodinger's equations m uch simpler. The im portant point is that the 

selection of the pseudopotential is as crucial as the selection of the basis 

set in the quantum-chemical calculation. Lin et al (1993) have developed 

an efficient and general procedure to generate optimized and transferable
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non-local separable ab-initio pseudopotentials. Another point is that the 

cut-off energy, i.e. the number of plane waves, has to be large enough so 

that the total energy is converged. For oxides a larger num ber of plane 

w aves are necessary than in semiconductors, to express the complex 

charge density distribution.

iii. The counterpart to the SCF (self-consistent field) m ethod in the 

quantum-chemical terms is the use of the conjugate gradients technique,

i.e. one of the new iterative diagonalization approaches (Car and 

Parrinello 1985; Payne et al 1986; Gilan 1989; Teter et al 1989), is employed 

to relax electronic coordinates. It provides an efficient m ethod to 

minimize the Kohn-Sham energy functional for large systems and it is 

applicable to oxide materials.
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4.3 STRUCTURAL SIMULATION FROM FIRST-PRINCTPLES

4.3.1 SELECTION OF MODEL

The pseudopotentials for boron (BOO potential*) and oxygen (0020 

potential*) were generated using Lin's scheme (Lin et al 1993) by Lee (Lee 

1992) in the Cavendish laboratory. For both crystal structures of B2 O3 , the 

same cut-off energy of 500 eV for the plane wave basis set was used to 

achieve a reasonable convergence of the total energy. The num ber of 

plane waves used was 3459 for the B2 O3 -I system (15 atoms) and 1890 for 

B2 O3 -II (10 atoms).

The other im portant factor is the k-point sam pling. The Bloch 

theorem  changes the problem  of calculating an infinite num ber of 

electronic wavefunctions to calculating a finite num ber of electronic 

wavefunctions at an infinite num ber of k-points. However, it is possible 

to represent the electronic wavefunctions over a region of k-space by the 

wavefunctions at a single k-point. Several m ethods (Chadi and Cohen 

1973; M onkhorst and Pack 1976) have been devised for obtaining an 

accurate approximation for the total energy w ith a very small num ber of 

k-points. Generally speaking, the denser the set of k-points sampled, the 

more accurate is the result. However, both the unit-cells for B2 O 3  crystals 

are too large for the calculation w ith m ulti k-points. Therefore, several 

single k-points were investigated, and among them  the single k-point, 

which gives the smallest cell stress and internal force, was selected. The 

resulting k-point was (1/3, 1/3, 1/4) for B2 O 3 -I and (1/4, 1 /4 , 1/4) for 

B2 O 3 -II. This difference results from the difference in crystal symmetry 

between the two polymorphs, (see Section 2.1 and Table 3.4).

* These pseudo potentials are catalogued in the data base of the Cavendish 

laboratory.
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4.3.2 OPTIMIZATION OF STRUCTURE

At first, the relation betw een cell volum e and total energy was 

calculated under the condition that the internal coordinates rem ained 

fixed (see Table 4.1). When the optim ized structure (i.e. the structure 

w ith minimum total energy) is compared w ith experiment, the error in 

the lattice constant is -2.0% for B2 O3 -I and -2.5% for B2 O3 -II. The error in 

volume is converted into -5.9% for B2 O 3 -I and -7.3% for B2 O 3 -II. This 

result is satisfactory, considering that a common pseudopotential set for 

boron and oxygen was used for both polymorphs, and only one k-point 

was sampled.

As the second step, internal coordinates were relaxed, w ith  the 

constraint that the optim ized cell param eters rem ain fixed. The final 

total energies, bond lengths and angles are shown in Tables 4.2 and 4.3.

As for crystal stability between two polymorphs, the total energy of 

B2 O 3 -II is lower than that of B2 O 3 -I, regardless of the relaxation of 

internal coordinates. CRYSTAL calculations also show the same result 

(see Table 3.3). However, the phase diagram  of B2 O 3 system show n in 

Table 2.1 suggests that B2 O3 -I is more stable than B2 O3 -II under ambient 

conditions. Maybe more sophisticated calculations are required in order 

to reproduce the small difference in total energy in either m ethod. 

CRYSTAL calculations need better basis set as Nada et al (1990) showed 

for quartz and stishovite. On the other hand, CASTEP calculations may 

need more dense set of k-points sam pling and higher cut-off energy. 

Entropie factors may also be significant.

When the calculated bond lengths and bond angles are compared 

w ith the experimental values, the errors in the bond lengths and bond 

angles are within 0.055A and 3.5°. Both calculated structures reproduce 

the corresponding experimental structures well. It is interesting to note
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the change of the B(l)-0(1) bond length in B2 O 3 -IL In the CRYSTAL 

calculations the B(l)-0(1) bond is elongated by 10% w ith the constraint 

that all the other atomic positions are fixed. On the other hand, the B(l)- 

0(1) bond is shortened by 4% in the same manner as the other B-O bonds 

w hen all the atomic positioned are relaxed. Therefore, the full relaxation 

of internal coordinates is almost certainly im portant for discussing the 

detailed structure.

4.3.3 ESTIMATION OF BULK MODULUS

As discussed in Chapter 5, to construct an interatom ic potential 

model from empirical sources, we need not only structural data but also 

data on other properties, for example, bulk moduli, elastic constants and 

phonon dispersion curves. However, there is no such data available for 

either crystal. Therefore, an estim ation of the bulk m odulus was 

obtained using the total energy calculation technique. The procedure 

used was based on M urnaghan's equation (M urnaghan 1944). Several 

values for the total energy as a function of cell volume were fitted using 

least square technique to Murnaghan's equation (Yin and Cohen 1982);

Etot (V) = BoV/Bo' [(Vo/V)B07(Bo'-1) +1] + const (4.15)

where Bo and Bo' are the bulk m odulus and its pressure derivative at the 

equilibrium  volume Vo; both Bq and Bq' were fitted.

As each calculation of ionic relaxation requires a large am ount of 

CPU time, only six points were calculated for either polymorph. The cell 

volume was isotropically varied and then internal coordinates relaxed in 

each case. The relation between the cell volumes and the corresponding 

total energies is shown in Table 4.4. The calculated bulk m oduli and the 

curve fitted to M urnaghan's equation are shown in Table 4.5 and Figure
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4.1. The estimated bulk modulus is 26 [GPa] for B2 O3 -I and 126 [GPa] for 

B203 -H.

An alternative approach to determining the bulk m odulus K(=Bo) 

comes by employing the empirical equation between the density and the 

bulk m odulus (see, for example, Poirier 1991).

V0  = -1.75 + 2.36p (4.16)

and

th en

V0  = V (K/p) (4.17)

V (K/p) = -1.75 + 2.36p (4.18)

where V0  is velocity propagating the material and p is the density of the 

material. The estimated values are shown in Table 4.5.

There are considerable difference between the results of the two 

m ethods. The prediction of the bulk m odulus or elastic constant is 

generally more difficult than that of lattice constants, and it is also very 

difficult to evaluate the error of these estim ations. For the CASTEP 

calculation, the cell volume is only varied isotropically. Furthermore, a 

higher cutoff energy, a more dense set of k-points w ould im prove its 

accuracy. For the empirical equation detailed structural information is 

not taken into consideration. However, these estimated values, even if 

they are rough, are very useful for constraining the interatom ic 

potentials in Chapter 5 and 6 .

4.3.4 STRUCTURAL TRANSFORM ATION

The m anner of ionic relaxation under different cell volumes can be 

used as one of methods of studying the structural transformation.

The optimized cell volume was changed by -40, -20, +10, +20, +30%, 

+70% and +100% for B2 O3 -I, and changed by -40, -20, +10, +20 and +30%
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for B2 O 3 -II. Their relaxed bond lengths and angles are sum m arized in 

Tables 4.6 and 4.7.

The structural features in B2 O 3 -I are discussed for three ranges of 

the cell volume as follows.

i. relative cell volume = 0.80 ~ 1.30

For the initial configuration all the B-O bond lengths are varied in 

the same proportion as the cell volume change. After optim ization the 

inter-triangle angles (O-B-O) do not change much, but the connecting 

angles (B-O-B) change considerably. The shape of the BO3 triangle does 

not change much. Moreover, the B-O bonds expand by 5%, so that they 

come loose to the uncom pressed values. The change in volum e is 

accommodated largely by the change in the B-O-B connecting angles. 

Among the contributions to the volume change, the change in the B-O 

bond lengths contributes 28%, while the change in the connecting angles 

contributes 72%. Therefore, near the stable structure, the change in the B- 

O-B connecting angles dominates the deformation of the structure.

ii. relative cell volume « 0.60

The most interesting result is that the BO3  triangle structural unit 

in the 60% cell volume turns into a BO4  tetrahedron. This corresponds 

to a pressure-induced phase transition. Although the original cell is only 

isotropically compressed and the final structure is not completely the 

same as B2 O 3 -II, it agrees w ith the phase diagram in that the four-fold 

BO4  structural unit is more stable than three-fold BO3  structural unit at 

high pressure (see Figure 2.1).

In the case of B2 O 3 -II, the structure at 130% volum e does not 

exactly show the reverse structural transform ation, bu t it shows the
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fourth B-O bond becoming m uch larger than  the other B-O bonds. 

Therefore, this suggests that this transformation is probably reversible at 

zero Kelvin. On the other hand, it is interesting to note tha t no 

tran sfo rm ation  from  B2 O 3 -II to B2 O 3 -I has been ever observed 

(Uhlmann et al 1967). This fact suggests that entropie factors may affect 

such transformation considerably.

We now consider the m anner of the transformation. We note first 

that it was found that the original structure of B2O3-I is not far from that 

of B2O3-II. When the B-O bond length is assumed to be w ithin 1.51Â in 

B2O3-II, that is, only the first three shortest B-O distances participate in 

the B-O bonding, all boron atoms become 3-fold coordinated and all the 

oxygen atoms become 2-fold coordinated. These coordination num bers 

are the same as for B2O3-I. Conversely, when B-O bonding is assum ed to 

be w ithin 2.7Â in B2O3-I, that is, the first four shortest B-O distances 

participate in B-O bonding, all the boron atoms become 4-fold coordinate, 

and one-third of the oxygen atoms become 2 -fold coordinated and the 

rem aining tw o-third become 3-fold coordinated. These coordination 

num bers are the same as for B2O3-II. It is interesting that Berger's data 

(1952,1953) which was shown by Strong and Kaplow (1968), and by Gurr 

et al (1970) to be incorrect (see Section 2.1), has the same distribution of 

coordination numbers if the cut-off in the B-O bonding is assumed to be 

1.8Â. Therefore, Berger's data is not far from those of the other two 

authors, a lthough Berger concluded that B2O3-I consists of BO4 

tetrahedra.

With this background we can explain the observed m anner of the 

transform ation in B2 O 3 -I as follows. As its cell volume is reduced, the 

0(1) or 0(2) atom approaches the third new boron atom, B(2') or B(l'), 

which lies on the other ribbon, and the oxygen and boron atoms start to
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bond. However, the 0(3) atom, which cross-links the different ribbons of 

the BO3  triangle, keeps its coordination. The change in the B-O bond 

distances are show n in Figure 4.2. The pa ttern  of the struc tu ra l 

transform ation is shown in Figure 4.3 (see also the crystal structure in 

Figure 2.2).

The B-O coordination num ber changes from three to four smoothly 

w ithout breaking any B-O bonds. It is interesting to note that Tsuneyuki 

(1990) also observed the smooth structural transform ation from Si04 

tetrahedron into Si06 octahedron in his MD study.

W hat is the driving force for this transformation? It is useful to 

analyze the individual energy contributions to the total energy, as was 

show n by Yin and Cohen (1982). These are show n in Table 4.8, and 

Figures 4.4 and 4.5. The contribution of the Coulombic energy (Ec) is 

m uch larger than that of the others. When the cell volume is reduced, 

the Coulombic energy is also reduced, since as is well know n this 

Coulombic energy favours high coordination. On the other hand, when 

the cell volume increases, the electronic kinetic energy (Ek), the electron- 

electron Coulomb energy (Eh) and nonlocal pseudopotential energy (Enl) 

are reduced. This means that in the lower coordination state the valence 

electrons prefer to be uniformly distributed and to generate covalent 

bonding. Finally, on com paring all the contributions the Coulombic 

contribution is judged to be the driving force for this transformation.

iii. relative cell volume ~ 2.0

The 170% cell volume corresponds to the volum e in the 1500K 

m olten state. However, even in the case of 200% cell volum e, the 

structure still keeps the same structural units and the boroxol ring is not 

observed. It is interesting to note that one of the longest B-O bonds is
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elongated, while the other two bonds begin to be shortened. A lthough 

the longest bond is still thought not to be broken, its bonding  is 

weakened and the other two bonds are strengthened. This means that 

the bonding state is changing from three-fold into two-fold coordination. 

This feature may simulate some features of the molten state.

The w ell-know n therm odynam ic theorem  is th a t the phase 

transformation should occur when the Gibbs free energy,

G = E + PV - TS (4.19)

becomes equal between the two phases. These total energy calculations at 

zero-tem perature shows that the structural transform ation betw een 

three-fold and four-fold coordination occurs due to the PV term. On the 

other hand, the fact that no boroxol-ring is observed du rin g  the 

calculations, although they have some restrictions (e.g. cell shape, 

num ber of atoms), may show that entropy effects may be im portant for 

the structural transformation into the real vitreous structure.
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4.4 CONCLUSION

The application of first-principles total energy calculations to B2 O3  

has given the following important results:

i. A common set of pseudopotentials for boron and oxygen can 

reproduce two different crystal structures (B2 O3 -I and B2 O3 -II) very well. 

W ith this pseudopotential, not only lattice param eters but also internal 

coordinates are well modelled.

ii. The bulk m odulus is estimated as 26 [GPa] for B2 O 3 -I and 126 

[GPa] for B2O3-II.

iii. When the cell volume is reduced, the structural transform ation 

from the BO3  triangular structural unit into the BO4  tetrahedral unit is 

observed. The manner of its transformation has also been elucidated.

The CASTEP program  can be used for MD. In the near future, the 

structure of a large system, that is a super cell of a disordered system, will 

be perform ed. At the moment the feasible num ber of atoms w ould be 

50-60 and it seems that it would be difficult to reproduce realistically the 

vitreous structure. However, the observed phenom enon that boron 

trioxide prefers the vitreous to the crystal structures suggests that the 

first-principles simulation, even if the num ber of atoms is not big, may 

reproduce the structural unit of glass, if the TS term in the Gibbs free 

energy is taken into account.
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B 2 0 3 -I

(v/vO)**^/^
1.005

1.0

0.995

0.990

0.985

0.980

0.975

total energy (eV /0 .2 B2 O3 )

-288.568

-288.578

-288.585

-288.593

-288.594

-288.595

-288.591

B2 O3-II
( v / v O ) * * l / 3

1.0

0.99

0.98

0.975

0.97

total energy (eV /0 .2B2 O3 )

-288.625

-288.644

-288.651

-288.652

-288.647

Table 4.1. Relation between cell volume and calculated total energy in 
B2 O3-I and B2 O3 -II

B2 O3 -I

El (eV /0 .2 B2 O3 ) 

before relaxation 

-288.595

E2 (eV /0 .2 B2 O3 ) 

after relaxation 

-288.612

E2 -E l(eV /0 .2 B2 O3 )

difference

-0.017

B2 O3 -II -288.652 -288.716 - 0.020

Table 4.2. Effect of cell volume on total energy 
(v/vO)**^/^ = 0.980 or 0.975 for B2 O3 -I or B2 O3 -II
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B203-I B203-II

Distances (Â) experiment calculation experiment

calculation

B (l)-0 (1 ) 1.404 1.354 B (l)-0 (1) 1.373 1.358

0 (2 ) 1.366 1.329 -0 (2 ) 1.507 1.461

-0(3) 1.336 1.338 -0 (2 ') 1.506 1.451

B (2)-0 (l) 1.336 1.329 -0 (2 ") 1.512 1.507

-0 (2 ') 1.400 1.355 0 ( l)-0 (2 ) 2.364 2.313

-0(3') 1.384 1.337 -0 (2 ') 2.440 2.365

0 ( l) -0 (2 ) 2.387 2.327 -0 (2 ") 2.409 2.408

2.388 2.329 0 (2 )-0 (2 ) 2.428 2.366

0 (2 )-0 (3 ) 2.409 2.331 -0 (2 ") 2.394 2.351

2.333 2.284 0 (2 ')-0 (2 ") 2.389 2.350

0 (3 )-0 ( l) 2.309 2.285

2.409 2.343

Angles (deg)

0 -B ( l) -0 119.0 120.3 0 -B ( l) -0 110 .2 110 .2

114.7 116.2 115.8 114.6

126.2 122 .8 113.1 113.7

0 -B (2 )-0 121.5 120.4 107.4 108.7

124.6 123.0 104.9 104.3

113.9 116.1 104.7 104.7

B-0(1)-B 130.5 131.2 B-0(1)-B 138.6 135.1

128.3 131.2 -0 (2 )- 123.8 1 21 .2

133.3 133.5 -0 (2 ')- 114.7 115.7

-0 (2 ")- 118.9 118.9

Table 4.3. comparison of bond lengths and angles between experimental 
structures and calculated structures in B2 O3 -I and B2 O3 -II
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B2 O3 -I B2 O3 -II

volume ratio total energy difference total energy differ

(eV /0 .2 B2 O3 ) (eV /0 .2 B2 Os)

0 .6 -288.13 +0.48 -287.62 +1.05

0 .8 -288.49 +0 .12 -288.53 +0.14

1.0 -288.61 ± 0 -288.67 ± 0

1.1 -288.60 +0.01 -288.62 +0.05

1 .2 -288.55 +0 .02 -288.50 +0.17

1.3 -288.47 +0.14 -288.37 +0.30

Table 4.4. Relation between cell volume and total energy in B2 O 3 -I and 
B2 O 3  "II (Each relative cell volume is the ratio to the corresponding optimized cell 

volume.)

B2 O3 -I (1) B2 O3 -II (2) Glass (3)

density (g/cm3) 2.56 3.11 1.84-1.91

bulk modulus

(GPa)

CASTEP 26 126 —

empirical 47 97 15

experiment --------- --------- 15

Table 4.5. Experimental density and calculated bulk m oduli in B2 O 3 -I 
and B2 O3 "II (1 : Gurr et al 1970; 2 : Prewitt et al 1968; 3: Mazurin 1983)
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volume ratio 0.60 0.80 1 .00 1.10 1 .2 0 1.30 1.70 2 .0 0

lattice ratio 0.84 0.93 1.00 1.03 1.06 1.09 1.19 1.26

exp. cal. cal. cal. cal. cal. cal. cal. cal.

distance (Â)

B (l)-0 (1 ) 1.404 1.340 1.319 1.354 1.379 1.407 1.439 1.535 1.655

-0 (2 ) 1.366 1.387 1.315 1.329 1.343 1.357 1.370 1.387 1.368

-0(3) 1.336 1.290 1.308 1.338 1.355 1.372 1.389 1.399 1.380

-0 (2') 2.616 1.422 2.099 2.524 2.670 2.807 2.931 — ---------

B (2)-0 (l) 1.336 1.338 1.314 1.329 1.344 1.358 1.371 1.390 1.368

-0 (2 ) 1.400 1.340 1.320 1.355 1.379 1.407 1.440 1.542 1.656

-0(3') 1.384 1.289 1.305 1.337 1.354 1.371 1.388 1.398 1.379

-0 (1") 2.636 1.423 2.119 2.529 2.675 2.812 2.935 — ---------

0 ( l) -0 (2 ) 2.387 2.175 2.252 2.327 2.371 2.414 2.457 2.606 2.727

2.388 2.176 2.254 2.329 2.372 2.417 2.460 2.618 2.727

0(2 )-0 (3 ) 2.409 2.271 2.332 2.331 2.346 2.414 2.457 2.373 2.387

2.333 2.034 2.184 2.284 2.337 2.388 2.439 2.503 2.503

0 (3 )-0 ( l) 2.309 2.030 2.184 2.285 2.339 2.372 2.441 2.504 2.502

2.409 2.273 2.335 2.343 2.347 2.358 2.370 2.375 2.387

angle (deg)

0 -B ( l) -0 119.0 105.8 117.5 120.4 121.1 121.7 122 .0 126.1 128.7

114.7 101.1 112.5 116.2 117.7 118.6 119.4 117.0 110.7

126.2 116.1 125.6 122 .8 120 .8 119.5 118.5 116.8 120 .6

0 -B (2 )-0 121.5 105.8 117.7 120.4 121 .2 121 .8 122 .2 126.4 128.6

124.6 116.3 126.1 123.0 120.9 119.5 118.4 116.9 120 .6

113.9 101.3 112 .6 116.3 117.6 118.5 119.2 116.7 110 .8

B-0(1)-B 130.5 116.1 122.4 131.2 134.5 137.4 139.7 149.4 152.7

-0 (2 )- 128.3 116.3 122.4 131.2 134.5 137.2 139.1 149.2 152.8

-0(3)- 133.3 110.4 127.0 133.5 135.8 137.2 139.2 139.1 138.5

Table 4.6. Comparison of bond lengths and angles at different cell 
volumes in B2 O3 -I (Relative cell volume is the ratio to the optimized cell volume.)

98



volume ratio 0.60 0.80 1.00 1 .10 1 .20 1.30

lattice ratio 0.84 0.93 1 .00 1.03 1.06 1.09

exp. cal. cal. cal. cal. cal. cal.

distance (Â)

B (l)-0 (1 ) 1.373 1.274 1.328 1.358 1.376 1.396 1.416

-0 (2 ) 1.507 1.335 1.406 1.461 1.498 1.535 1.561

-0 (2 ') 1.506 1.314 1.390 1.451 1.484 1.517 1.542

-0 (2 ") 1.512 1.367 1.447 1.507 1.568 1.636 1.725

0 ( l) -0 (2 ) 2.364 2.142 2.234 2.313 2.376 2.446 2.507

-0 (2 ') 2.440 2 .202 2.305 2.365 2.402 2.450 2.499

-0 (2 ") 2.409 2.205 2.319 2.408 2.464 2.530 2.604

0 (2 )-0 (2 ) 2.428 2.125 2.257 2.366 2.428 2.489 2.539

-0 (2 ") 2.394 2.179 2.281 2.351 2.403 2.466 2.525

0 (2 ')-0 (2 ") 2.389 2.080 2.230 2.350 2.415 2.489 2.567

angle (deg)

0 -B ( l) -0 1 10 .2 110.4 109.6 110 .2 111.5 113.0 114.6

115.8 116.6 115.9 114.6 114.2 114.5 115.3

113.1 111.7 113.3 113.7 113.5 112 .8 111 .6

107.4 106.7 107.6 108.7 109.0 107.7 109.9

104.9 107.5 106.2 104.3 103.3 102.1 100.4

104.7 101.8 103.6 104.7 104.6 104.2 103.5

B-0(1)-B 138.6 104.5 117.6 135.1 141.7 145.4 148.9

-0 (2 )- 123.8 112.1 117.0 121 .2 121.5 121 .8 119.4

-0 (2 ')- 114.7 111.1 114.3 115.7 115.7 115.8 116.0

-0 (2 ")- 118.9 107.1 113.2 118.9 120.4 121 .6 123.2

Table 4.7. Com parison of bond lengths and angles at different cell 
volumes in B2 O3 -II (Relative cell volume is the ratio to the optimized cell volume.)
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B2 0 3 -I

volume ratio

(eV /0 .2 B2 O3 ) 

0 .6  0 .8 1 .0 1.1 1 .2 1.3 1.7

total kinetic energy 198.59 191.88 188.16 186.50 184.97 183.55 181.17

local pot. energy -236.58 -248.47 -256.40 -258.88 -260.76 -262.17 -268.29

nonlocal pot. energy 45.40 45.86 46.13 46.36 46.61 46.86 47.22

Hartree energy -54.11 -70.22 -85.73 -92.32 -98.17 -103.33 -127.12

exchange-correlation 22.09 21.53 2 1 .2 2 21.08 20.95 20.83 20.61

Coulombic energy -267.22 -231.86 -204.20 -193.35 -184.01 -175.91 -143.09

pseudopot. core energy 3.70 2.78 2 .2 2 2 .0 2 1.85 1.71 1.31

total energy -288.13 -288.49 -288.61 -288.60 -288.55 -288.47 -288.19

B2 O3 -II (eV /0 .2 B2 O3 )

volume ratio 0 .6 0 .8 1.0 1.1 1.2 1.3

total kinetic energy 203.57 193.86 188.83 186.31 183.73 181.58

local pot. energy -225.78 -237.79 -246.26 -248.38 -249.56 -250.61

nonlocal pot. energy 45.65 46.28 46.74 47.10 47.52 47.87

Hartree energy -40.48 -56.04 -72.61 -78.34 -82.09 -85.45

exchange-correlation 22.53 21.79 21.36 21.16 20.94 20.76

Coulombic energy -297.72 -260.06 -229.47 -218.96 -211.36 -204.63

pseudopot. core energy 4.58 3.434 2.75 2.50 2.29 2 .11

total energy -287.62 -288.53 -288.67 -288.62 -288.50 -288.37

Table 4.8. Comparison of various contributions to the total energy in 
B203"I and B2 O3 -II (Relative cell volume is the ratio to the optimized cell volume.)
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Figure 4.1. Calculated "Mumaghan" curve for B2 O3 -I and B2 O3 -II 
(The relative cell volume is the ratio to the optimized B2O3 -I cell volume.)
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Figure 4.4. Various energy contributions to the total energy in B2 O3 -I 

(Ek = total kinetic energy; El = local psedopotential energy; Enl = non-local pseudopotential 

energy; Eh = Hartree energy; Eexcor = exchange-correlation energy correction; Ec = 

Coulombic energy; Ecore = core energy)
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Figure 4.5. Various energy contributions to the total energy in B2 O3 -II 

(Ek = total kinetic energy; El = local psedopotential energy; Enl = non-local pseudopotential 

energy; Eh = Hartree energy; Eexcor = exchange-correlation energy correction; Ec = 

Coulombic energy; Ecore = core energy)
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CHAPTER 5 COMPUTER MODELLING OF CRYSTALLINE B2Q3

5.1 INTRODUCTION

Several interatomic potentials have been reported for the study of 

vitreous structures of B2 O 3 . However, no attem pts have been m ade to 

model the crystal structures of B2 O3 . The consistent philosophy in this 

thesis is that crystal structures have much information on bonding and 

that it is necessary to derive such interatomic potentials that reproduce 

several different crystal structures before proceeding to model vitreous 

m aterials.

First, we review the field of atomistic sim ulation techniques and 

interatom ic potential m odels, w ith an em phasis on the difference 

betw een them  and the quantum -m echanical techniques discussed in 

Chapter 3 and 4. Next, in order to overcome the difficulties in deriving 

interatom ic potentials, a new deriving procedure know n as the LP 

fitting m ethod is developed. The newly derived potentials obtained 

using the LP fitting method are applied to the two crystal structures of 

B2 O 3 and are then compared with the potentials previously reported for 

vitreous B2 O 3 by the other authors. Finally, the new potentials are 

applied  to other possible polym orphs and also possible v itreous 

structural units of B2 O3 . We are able to propose not only new candidates 

for polymorphs but also a new structural unit for vitreous B2 O3 .
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5.2 ATOMISTIC SIMULATION TECHNIQUES

Com puter sim ulation techniques have m ade great progress in 

recent years and are increasingly explaining or predicting the structures 

and properties of solids (Catlow and Price 1990). These techniques may be 

classified into two groups: the first starts from the Schrodinger's equation 

and calculates the electronic structure of the system; the latter models 

interatomic potentials and applies the resulting potentials to the system 

under study.

The first approach is often referred to by the terms 'ab initio' or 

'first-princip les', because it is based on the quantum -m echanical 

calculations w ith the least empirical assumptions. In Chapter 3 and 4, 

these techniques were applied to borate crystals and they led to a detailed 

description of the structures and bonding in borate crystals. The results 

agreed well with the existing empirical concepts.

The second approach is often referred to by the term  'simulation'. 

Interactions betw een atoms are replaced by the interatom ic forces 

calculated from effective potentials', which are applied to a variety of 

simulation techniques, based on both static and dynamic methods.

On comparing the two approaches, we note that the first is more 

fundam ental. However it requires large computational resources and it 

is still not possible to model large and complex systems. On the other 

hand, the latter approach can deal straightforwardly w ith such systems. 

H ow ever, the construction of 'effective interatom ic potentials ' has 

associated uncertainties. Therefore, it is crucial to test the interatom ic 

potentials thoroughly and make sure that they are valid for the system 

studied.

The sim ulation studies reported in this thesis are of two m ain 

categories. The first is Lattice Simulation. The form ulae used in this
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m ethod are given in detail by Catlow and Norgett (1976). They comprize 

tw o parts. Static sim ulations which determine the structure w ith  the 

m inim um  energy, allowing both the un it cell dim ensions and the 

internal coordinates to be relaxed until its energy is m inimized. These 

techniques predict not only the stable structure  bu t also several 

properties (e.g. bulk modulus, elastic constants and dielectric constants) 

at zero Kelvin. Lattice dynam ics sim ulations calculate v ibrational 

properties of the energy-m inim ized structure, based on the quasi

harm onic approxim ation . This approxim ation  assum es th a t the 

vibrational motions in the solid are comprised of independent quantized 

harm onic oscillators whose frequencies vary w ith cell volum e. This 

sim ulation gives the phonon frequencies and several therm odynam ical 

properties (e.g. vibrational energy, entropy, free energy and heat capacity). 

Furthermore, it is possible to minimize the free energy and predict the 

s tru c tu re  and the therm al expansion  coefficient at the  fin ite  

tem peratures, as long as anharmonic effects are negligible and the quasi

harmonic approximation is valid (Parker and Price 1989). We note that 

these techniques are inheren tly  lim ited in th a t tim e-dependen t 

phenom ena (for example, transport coefficients) cannot be sim ulated 

directly.

The other approach is the Molecular Dynamics (MD) m ethod. In 

MD simulations, the dynamical trajectories of the interacting atoms are 

followed at finite tem peratures. The total force acting on each atom  is 

evaluated at a given time and used to determine its new position at time 

t+At. This m ethod is particularly appropriate for m odelling the liquid 

and vitreous states. The details of this approach are discussed in Chapter 

6 .
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5.3 INTERATOMIC POTENTIAL MODEL

Many studies have been reported concerning interatomic potentials 

for oxide materials (see Catlow and Mackrodt eds. 1982; Catlow et al 1988). 

We now discuss the functional forms and the m ethods used to derive 

appropriate parameters.

5.3.1 POTENTIAL FUNCTION

Oxides have been mostly described by the ionic m odel w ith formal 

or partial ionic charges assigned to point entities which also interact with 

short-range terms. The interactions between point charges come from 

long-range electrostatic Coulombic forces between ions, while the short- 

range interactions come from the overlap of the electron charge clouds of 

the interacting ions.

The simplest and most widely used short-range form is the central- 

force pair-potential:

V(ri,r2,...,rn) = S  Vij ( I ri-rj I ) (5.1)

The total potential energy V is sum m ed over all the pair interaction 

terms, each of which is dependent only on the distance between the ions.

The most w idely used function form of this pair-potential for ionic 

solids is the Born-Mayer or Buckingham potential:

V(rij) = Aexp(-rij/pij) - Crij-6 (5.2)

The second term  is often added to express dispersion and attractive 

term s.

The other functional form, w hich is said to be suitable for 

modelling the effect of the covalent bonding is the Morse potential:

V(rij) = Dij {exp[-2Pij(rij-ro)] - 2exp[-Pij(rij-ro)]} (5.3)

A lthough these pair-potentials have reasonably reproduced not 

only structures but also properties of oxide materials, more sophisticated
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models are used to include polarization or covalent bonding effect more 

precisely.

Polarizability is described effectively using the shell m odel (Dick 

and Overhauser 1958). An ion is described as a massless shell of charge Y, 

a core in which mass is concentrated and a harm onic spring which 

connect the shell with the core. This model has improved the calculation 

of dielectric, lattice-dynamical and defect properties of ionic solids.

On the other hand, in order to express covalent effects, a three-body 

term  is added. The most common form is the simple-harmonic, bond- 

bending form;

V(0 ) = l/2KB(0-eo)2 (5.4)

w here Kg is the bond-bending force constant and 0 0  is the equilibrium  

bond angle.

For crystalline silicates, pair-potential models (Tsuneyuki et al 1988; 

Beest et al 1990), and shell models with three-body potential (Sanders et 

al 1984; Price et Parker 1984) have successfully been employed to model 

structures and properties.

5.3.2 DERIVATION OF INTERATOMIC POTENTIAL

Interatomic potentials have been derived by two main procedures.

The first is the so-called empirical method. The param eters in the 

potential model are fitted so that they can reproduce the experimental 

structures a n d /o r properties (e.g. elastic constants, dielectric constants or 

vibrational properties) as well as possible. This method may be applied 

even w hen the only data available are the crystallographic param eters. 

But care m ust be taken w hen such potentials are applied to related 

structures which are different from the fitted structure. And in general it
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is crucial to use as many data as possible for fitting and testing potential 

m odels.

The other approach is to use non-em pirical or sem i-em pirical 

m ethods, em ploying quantum -m echanically calculated data  for the 

potential energy surface. In the electron gas m ethod (Gordon and Kim 

1972), electron densities are calculated for the isolated interacting atoms, 

and then the Coulomb interactions, the kinetic energy, exchange and 

correlation contributions to the interacting energy are calculated. On the 

other hand, ab-initio methods may be employed on clusters or periodic 

arrays of atoms. For example, using ab-initio, periodic Hartree-Fock 

techniques. Gale et al (1992) reproduced the structure and elastic 

constants of a-A l2 0 3  from using the calculated potential energy surface 

obtained using the CRYSTAL code. In the case of cluster calculations, the 

im portance of crystal field effects m ust be stressed. For exam ple, 

M ackrodt and Stew art (1979) in troduced  the M adelung po ten tial 

appropriate to the crystal w hen the wavefunctions were solved, and 

Tsuneyuki et al (1988) and Beest et al (1990) were obliged to use 

experimental data on elastic constants to determine the partial charge 

values.

One of the most im portant aspects concerning a potential model is 

its transferability. Some potentials (for example. Price and Parker 1984; 

Tsuneyuki and al 1988) successfully reproduced the structures of several 

polym orphs using the same potentials. However, several potentials are 

not transferable between polymorphs. However, potentials fitted to the 

crystal structure and properties of Si02 were applied to vitreous states 

and they reproduced successfully the experimental RDFs (Vessal et al 

1989). However, it is still not clear to w hat extent such potentials can
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reproduce highly distorted structures using the potentials which are 

fitted to a particular crystal structure and its properties.
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5.4 APPLICATION OF PREVIOUSLY REPORTED POTENTIALS 

TO CRYSTALLINE B2O3

As noted earlier several potential m odels have been reported 

specifically for vitreous B2 O3 . The details of these potentials are given in 

Appendix B. Among them, seven potentials (Verhoef and H artog 1992), 

which have more general functional forms, are now applied to B2 O 3  

crystals.

Lattice energy minimizations are perform ed with these potentials, 

starting from the experimental structure of B2 O3 -I or B2 O 3 -II, using the 

GULP code (Gale 1993). As the original potentials were not applied for 

four-fold coordinated boron atoms, the equilibrium angle 0o in the O-B- 

O three-body interactions is set to be 109.47° in B2 O 3 -II. The calculated 

results are shown in Table 5.1 and Table 5.2 (see also Appendix B). They 

are summarized as follows:

i. For the structure of B2 O 3 -I, potentials v4,v5,v6, and v7 reproduce 

the experimental lattice param eters, B-O bond lengths and O-B-O bond 

angles reasonably. However, none of them can reproduce the B-O-B bond 

angles. Even for the potential v4, which includes the B-O-B three-body 

term, the B1-01-B2 angle is still 8 ° larger than the experimental value. 

This behaviour suggests why the B-O-B bond angles were always large 

w hen  these po ten tia ls  w ere app lied  to MD calculations. The 

reproduction of the B-O-B bond angles is crucial for reproducing the 

m anner of connection of the BO3 triangles. It is interesting to note that 

potentials w hich cannot reproduce the B-O-B bond angles cannot 

reproduce the experimental density of B2 O3 -I, even if they can reproduce 

the experimental bond lengths.

ii. None of the potentials can reproduce the structure of B2 O 3 -II, 

indicating that the bonding for the four-fold coordinated boron atom is
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different from that for the three-fold coordinated. Even potential v5, 

w hich used the crystal structure of the alkaline borate KB5 O 8 which is 

comprised of BO4  tetrahedra, cannot reproduce the structure reasonably. 

The explanation is possibly in the difference in the bonding, because it is 

show n in Chapter 3 that a considerable difference exists in the ionicity 

and the nature of the bonding between B2 O 3 -II and the alkaline borates. 

It is interesting to note that these potentials may prevent the generation 

of a B04~type environm ent in molten B2 O 3 . Such a mechanism for the 

structural transform ation in the same stoichiom etry m ay be different 

from the trigonal to tetrahedral conversion of a boron atom  w ith the 

addition of alkaline oxide. This point will be discussed further in Chapter 

6 .
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B2 0 3 -I

exD.

potential sets 

vl v2 v3 v4 v5 v6 v7

i. lattice energy (eV/B2 0 3 )

before relaxation -179.34 -80.40 -80.20 -80.19 -202.26 -24.78 -24.48

after relaxation -182.25 -81.70 -81.70 -80.80 -203.91 -24.98 -24.96

ii. structure (after relaxation)

volume (%) ± 0 +79.49 +73.99 +74.12 +6 .10 +8 .6 6 +8.64 +6.84

a (%) ± 0 +9.96 +8.84 +8.92 +2.62 +6 .12 +6 .11 +5.07

b(%) ± 0 +9.96 +9.96 +8.92 +2.62 +6 .1 2 +6.11 +5.07

c(%) ± 0 +48.44 +46.89 +46.78 +0.76 -3.52 -3.52 -3.22

bond length (A)

B l-O l 1.404 1.378 1.364 1.364 1.394 1.348 1.348 1.376

- 0 2 1.366 1.378 1.364 1.364 1.370 1.406 1.406 1.375

-03 1.337 1.372 1.358 1.358 1.383 1.408 1.408 1.408

B2-01 1.336 1.378 1.364 1.364 1.370 1.406 1.406 1.375

- 0 2 1.400 1.378 1.364 1.364 1.394 1.348 1.348 1.376

-03 1.384 1.372 1.358 1.358 1.383 1.408 1.408 1.408

bond angle (deg)

O l-B l- 0 2 119.0 119.8 119.8 119.9 119.7 120 .2 124.1 120 .0

01-B 1-03 114.7 120.1 120.1 120 .0 121.4 124.1 124.1 120.4

02-B 1-03 126.1 120.1 120.1 120 .0 118.6 115.4 115.4 119.3

01-B 2-02 121.5 119.8 119.8 119.9 119.7 120 .2 120 .2 120 .0

B1-01-B2 130.5 179.1 179.1 179.1 136.6 150.3 150.3 146.0

B1-02-B2 128.3 179.1 179.1 179.1 136.6 150.3 150.3 146.0

Table 5.1. Static simulation in B2 O3 -I using reported potentials
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B2 O3 -I potential set

____________ exp. vl_________ 38_______v4_______\ 6 _______v6_______v7_

ill. property (after relaxation) 

elastic constant (GPa)

E (l,l) 167.8 77.99 107.4 162.5 183.6 22.5 30.3

E(l,2) —  71.8 33.0 37.3 45.0 31.7 3.9 -1 .1

bulk modulus (GPa)

103.8 47.9 60.7 84.2 82.3 10.1 9.4

static dielectric constant (experiment :: 3.0 ~ 3.5)

eo (l/l) —  2.14 2.17 1.90 2.64 2.78 2.78 1.83

eo(2 ,2 ) 2.14 2.17 1.90 2.64 2.78 2.78 1.83

eo(3y3) 2 .1 2 2.18 1.58 6.40 3.49 3.49 2.53

Table 5.1.(continued) Static simulation in B2 O3 -I using reported

potentials
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B2 0 3 -II

exD.

potential sets 

vl v2 v3 v4 v5 v6 v7

i. lattice energy (eV/B2 0 3 )

before relaxation -179.39 -80.39 -80.07 -79.38 -201.36 -24.67 -24.18

after relaxation -182.20 -81.67 -80.98 -80.04 -204.71 -25.08 -24.84

ii. structure (after relax)

volme (%) ± 0 +119.13 +116.72 +17.82 +15.15 +30.50 +38.48 +15.65

a (%) ± 0 +29.02 +28.98 +2.28 +2.26 +10.13 +10.13 +3.03

b(%) ± 0 +29.02 +28.98 +2.28 +2.26 +10.13 +10.13 +3.03

c(%) ± 0 +15.34 +14.16 +8.27 +6.73 +8.74 +8.74 +5.81

bond length (A)

B l-O l 1.373 1.374 1.360 1.360 1.371 1.363 1.363 1.412

- 0 2 1.506 1.378 1.363 1.559 1.538 1.399 1.399 1.546

- 0 2 1.508 1.378 1.363 1.577 1.542 1.399 1.399 1.547

- 0 2 1.512 — — 1.603 1.656 --------- — 1.558

bond angle (deg)

O l-B l- 0 2 110 .2 120 .2 120 .2 111.4 108.1 120.9 120.9 110 .1

O l-B l- 0 2 115.8 120 .2 120 .2 110.3 112.4 120.9 120.9 1 1 0 .0

O l-B l- 0 2 113.1 — --- 110.0 111 .0 --- --- 109.9

0 2 -B1 - 0 2 107.4 — --- 109.7 110.5 --- --- 109.2

B l-O l-B l 138.6 180.0 180.0 164.8 146.1 180.0 180.0 161.2

B1-02-B1 118.7 180.0 180.0 121.4 118.6 180.0 144.7 121.4

Table 5.2. Static simulation in B2 O3 -II using reported potentials
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B2 0 ?-II potential sets 

exp. vl v2 v3 v4 v5 v6 v7

ill. property (after relaxation)

elastic constant (GPa)

E (l,l)  —  480.6 217.6 418.7 406.2 2043. 250.3 326.8

E(l,2) —  2.6 1.0 57.0 6.3 -42.1 -5.2 46.6

bulk modulus (GPa)

161.9 73.2 177.5 139.6 652.9 80.0 140.0

static dielectric constant (experiment :: 3.0 ~ 3.5)

£0(1,1) —  2.13 2.17 2.26 2 .0 2 2 .0 0 2 .0 0 1.44

£0(2,2) —  2.11 2.05 2.29 1.83 3.33 3.33 1.29

£0(3,3) —  2.16 2.20 2.34 1.82 2.71 2.71 1.29

Table 5.2.(continued) Static simulation in B2 O3 -II using reported

potentials
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5.5 NEW POTENTIAL DERIVATION METHOD  

(LP FITTING METHOD)

5.5.1 PROBLEMS OF EXISTING FITTING METHOD

We first review  the common m ethod for fitting interatom ic 

potentials, as in the widely used codes (THBREL and GULP) which have 

been successfully applied to many systems. The general algorithm  in 

such fitting procedures is as follows:

i. Give the experimental structures, properties and initial potential 

param eters

ii. Calculate cell strains (e(i); i= l~ 6 ), in ternal strains (eij(i,j); 

i=l~N,j=l~3) and properties (C(i); i=l~m)

iii. Calculate the weighted square sum of the errors S

S = I i  w ii • 8(i)2 + l i j  W2ij • 8ij(i,j)2 + wgi - (C(i)-C(i))2 (5.5) 

w here w ii ,w 2 ij and wgi are weighting factors to control the fitness of 

each value.

iv. Change the potential param eters tow ard the direction which 

reduces the residual S

V .  Iterate from i. to iv. until S converges

This algorithm can be used for a wide range of fitting problems; and 

especially, w hen the reasonable initial potential param eters exist, the 

procedure is easily applied or refined.

However, when this method was applied for B2 O3  crystals starting 

from  either reported potential param eters or from m odified ones, 

reasonable potentials were not obtained. In m ost cases, the 'best fit' 

potential distorts the experimental structure excessively.

The reason for this problem is thought to be as follows:
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i. If an initial param eter set is poor, the least squares fitting 

procedure will go to the nearest local minimum which is not always the 

desired solution. One alternative way is to try as m any initial sets as 

possible, bu t such a procedure may require a lot of trial and error. 

Obviously if possible one borrows good initial param eters from other 

studies, but this is not practical when no study has been done before.

ii. The weighting factors affect S very much and they easily change 

the shape of S, and may lead to an undesirable local minimum. In the 

case of a layered system, even if quite small residuals of strain  are 

obtained, they are enough to distort its structure very much. The other 

problem  is that com pletely different types of m easurem ents (e.g. 

structure and properties) are expressed in the unique formula of S, and it 

is not always easy to set up the proper weighting factors to unify such 

different data.

iii. If the initial potential functions are suitable for describing the 

potential surface, a good solution will be obtained finally, despite 

problems such as (i) and (ii) above. However, when good solution is not 

obtained because of the poor potential function, it is not easy to analyze 

the reason.

5.5.2 NEW FITTING METHOD (»LP FITTING METHOD*)

The LP fitting method is designed to fit to ab-initio surfaces with the 

added  constraint of requiring observed experim ental structures to 

reproduced. Some ideas are proposed in order to overcome the problems 

described in Section 5.5.1.

First, regarding the problem of finding the global m inimum, if the 

problem  can be linearized, the global m inim um  can be found w ithin a 

finite num ber of iterations. The second point is that separating the
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criterion of crystal stability from the evaluation of properties can make 

the fitting problem much easier. It is also desirable that the experimental 

data (such as the structural stability conditions) should be separated from 

the ab-initio potential energy data as components of the cost function. On 

the other hand, w hen common potentials that can reproduce several 

different structures at the same time are desired, the introduction of 

independent sets of structural stability conditions is more reasonable 

than the use of a unique formula of S. The third point is that it is very 

helpful to know whether a solution of the problem is feasible or not, and 

also which condition obstructs the solution. In particular, it is not clear 

how well the B2 O 3 system with covalent bonding can be described with 

the existing potential functions.

These ideas lead to new potential fitting m ethod based on the 

Linear Program m ing (LP) method. The LP m ethod is a w ell-know n 

technique in the field of economics and mathematics (see Duntzig 1963).

Several special considerations are given in order to adap t the 

potential fitting problem to the general LP problem as follows:

i. All the conditions are separated into two categories: one is 

several sets of inequality equations; the other com ponent is a cost 

function which should be minimized. The fitting problem  is replaced 

w ith the problem which finds the optim um  solution that minimizes the 

cost function w ithin the solution space that satisfies all the inequality 

equations.

ii. The conditions of structural stability are defined in the form of 

inequality equations. Here, the term 'structural stability' means that the 

relaxed structure does not distort much from the experimental structure. 

The lattice energy in the experimental structure is thought to be the 

m inimum point in the configurational space (3N-dimension) of energy.
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The lattice energy E is defined:

E = E (xi,x2, • • •, xn), (5.6)

where the xi show the position vectors of the i-th atom.

3 E /a x i = 0 ; a2E /3x i2> 0  (5.7)

at the experimental structure (x i= x ie ,. . ,  xn=xne)* 

then '^Axi :

E (xie, X2e, • •, xie+Axi,. . ,  Xne) > E (xie,x2e, • •, x ie ,. . ,  Xne) (5.8)

and

E (xie, X2e/ • - , xie -Axi,. . ,  Xne) > E (x%e,x2e, • •, xie, • • / Xne) (5.9) 

m ust be satisfied. When lattice parameter a,b,c,a,P and y (6 variables) and 

n atomic positions (n x 3 variables) are taken into account, total (6n + 12) 

inequality conditions are generated.

iii. The weighted sum of the residuals between the ab-initio data 

on the potential energy surface and the estim ated values using the 

unknow n variables of potential param eters is defined as the cost 

function. Therefore, the LP m ethod tries to find the solution which 

realizes the global m inim um  residual w ithin the solution space that 

satisfies the structural stability conditions. How ever, there are two 

lim itations for applying the LP method. One is that it is not easy to 

im plem ent the evaluation of various physical properties as the cost 

functions, because w ithin the LP scheme the complex form of such 

properties m ust be linearized using the potential param eters. The other 

is that the cost function m ust be the linear weighted sum  of potential 

param eters instead of the square weighted sum of them. But there is 

little difference between two ways of summation.

The most im portant point of the LP m ethod is that the structural 

stability conditions are not included in the cost function, bu t in the 

inequality equations. Therefore, the merit of this m ethod is that, even if

120



the potential functions are poor in describing the structure, it finds a 

solution w hich m aintains the structure in equilibrium , otherw ise it 

returns the message saying that there is no feasible solution.

iv. Once the problem is described w ithin the frame of LP, the 

solution is quickly solved even by a personal com puter. The m ost 

significant problem with this method is that the fitting problem m ust be 

linearized regarding the potential parameters. Inevitably some parts (e.g. 

p param eter in Buckingham form in (5.2), or pij and ro param eters in 

Morse form in (5.3)) cannot be linearized simply and m ust remain fixed 

as constants during one solution cycle. However, each solution cycle is 

very quick, allowing a thorough search of a variety of combinations of p, 

Dij or pij to be easily performed, in order to find the global minimum.

The algorithm used by the LP fitting method is shown as below:

i. Linearization of each of the term s of which the total lattice 

energy E is comprised:

E = Ec + E2  + E3 + E4  (5.10)

where Ec, E2 , Eg and E4  are the contribution of Coulombic energy, pair- 

potentials, three-body terms and four-body terms.

For Coulombic terms, they are calculated only from the crystal 

structure w hen the charge values are fixed, and they are dealt as 

constants in inequality equations.

In case of Buckingham form,

E2 = Si>j (Aexp(-rij/p) - C /rij6 }

= A • Ei>j exp(-rij/p)} - C • {Ei>j l/rij^} (5.11)

The values in the parentheses { } are calculated only from the crystal 

structures, and are independent of the unknow n variables A and C, 

when p is fixed.
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In case of Morse form,

E2 = Dij • Si>j [exp{2Pij(rij-ro)} - 2exp{Pij(rij-ro)}] (5.12)

Once more the value in the parenthesis [ ] is calculated only from the 

crystal structures, and is independent of the unknow n param eters Dij 

when pij and ro are fixed.

For the simple harmonic-type three-body terms,

E3 = Kb • Ei>j >k(l/2 (0ijk - 00)2} (5.13)

The value in the parenthesis { } is again calculated only from the crystal 

structures, and is independent of the unknow n param eters Kb w hen Go 

is fixed. Four-body terms are dealt in the same way as the three-body 

term s.

ii. To set up the inequality conditions for the structural stability:

E (x ie ,. . ,  xie±Axi,.. ,xne) > E (xie, • •, xie, • • / xne) (5.14)

The coefficients of the unknown variables (A, C, Dij and Kb etc.) are

calculated for each structural configuration, and (6n+12) sets of inequality 

equations are generated. For example,

C14 • Db_o + C1,2 • Ao-O - Cl,3- Co-O + Ci,4 • Ko-B-O > 0

C2,l • Db-O + C2,2 • Ao-O - C2,3 • Co-O + ^2,4 * Ko-B-O > 0

C6n+12 ,l  ' Db-O + C6n+12 ,2  * Ao-O ‘ C6n+12,3 • Co-O + Cén+UA ' Ko-B-O > 0 

In the case of the B2 O 3  system, the Morse form for the B-O interaction,

the Buckingham form for the 0 - 0  interactions, and the three-body term  

for the O-B-O interactions are used, and there are four variables (Dg- 

O/AO-O/CO-O and KQ-B-O)* Among the inequality equations, twelve 

come from the variations of the cell parameters (a±Aa, b±Ab, c±Ac, a±Aa, 

p±Ap, 7±Ay), and 6n come from tha variations of internal coordinates 

(xi±Axi, yi±Ayi, zi±Azi).
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iii. To define the cost function S:

The deviation between the ab-initio data on the potential energy 

surface and the corresponding value estimated from the linearized sum 

of the parameters are summed up as the cost function S.

S = I iW i- lEiab-Eies I (5.15)

w here w , is the weighting factor, and Ei®b and Ei^s are the energies 

derived from the ab-initio calculations and the estimated energies as the 

linear sum of the potential parameters. Usually all the weighting factors 

are set to 1, and do not need to be changed.

iv. To add the extra inequality conditions if necessary:

For example, if the total lattice energy is restricted w ithin some 

specific range (for example, Emin < E and E < Emax are given), two 

inequality equations are added in the same m anner as in (ii). It is also 

very easy to specify the difference of energies between several different 

structures (for example, w hen the energy differences AE12 and AE23 

between three polymorphic structures are given, E% + AE12  < E2  and E2  

+ AE23  < Eg are ad d ed ).

V .  To apply the general LP algorithm:

The coefficients calculated from i. to iv. generate the general matrix 

elements for LP and the variables are solved so that they minimize the 

cost function S at the finite calculation steps.

vi. Iterate from (i) to (v), changing the non-linear parts (e.g. p, p, or 

ro) to yield the solution which realize the global m inimum. As many 

com binations as possible of the unknow n param eters are applied  

systematically.

We may compare this LP fitting m ethod w ith the other general 

algorithms as follows:

123



The strengths of the method are:

i. It is especially suitable for the ill-conditioned problem, where the 

crystal structure is apt to move tow ard a catastrophic change (for 

exam ple, in the case of layered or p lanar structure). Because the 

structural stability conditions are absolutely satisfied during the solution, 

it can always prevent the distortion of its structure. The m ethod is also 

suitable for the simultaneous fitting among several structures, because 

all the structural stability conditions are satisfied independently  and 

sim ultaneously.

ii. When the linearised coefficients are output, the potential energy 

surface which depends on the variables (A, C, Dij and Kb) can be easily 

analyzed, because it is simply the linear sum of each term. In particular, 

when a satisfactory potential cannot be obtained, it is straightforward to 

find which stability condition obstructs the solution.

iii. The global m inim um  can be obtained w ith a very m odest 

computer resources. There is no problem about setting initial conditions 

or the weighting factors, and no empirical adjustments necessary.

The weak points of this method are;

i. The method cannot be applied generally. The requirem ent that 

all the conditions m ust be linearized is very restrictive. Therefore, 

features including fitting to crystal properties or use of the shell model 

cannot be included at the moment. In such cases it is possible to refine 

the LP-fitted param eters by using more general fitting program s. It is 

in teresting  to note that this LP m ethod is based  on linearized  

optim ization with constraints, while the other general m ethod is based 

on non-linear optim ization w ithout constraint. In fu ture, w hen LP 

m ethod is iteratively solved on one hand and the other general m ethod
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adds the constraint conditions on the other hand, both m ethods will 

approach one another.
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5.6 APPLICATION OF LP FITTING METHOD TO B2O3 CRYSTALS

We now apply the new LP fitting m ethod to the derivation of 

interatomic potentials for B2 O3 crystals.

5.6.1 FITTING TO B2O3-I STRUCTURE

The experimental structural data of B2 O 3 -I are used to obtain the 

structural stability conditions (thirty-four structural configurations), 

while the ab-initio potential energy data (nine structural configurations) 

derived  from  CRYSTAL calculations (see C hapter 3) are used as 

components of the cost function.

The fitted potentials and the resulting static simulations are shown 

in Tables 5.3 -  5.5.

The Morse potential in the B-O interactions can com pensate for 

some part of the lattice energy that is lost on reducing the effective 

charges, so a 90% ionicity model is used instead of the formal charge in 

potential a l to potential a3. Buckingham potentials are used for the 0 - 0  

and B-B interactions. Potential a l includes pair, three-body plus four- 

body terms, potential a2  includes pair and three-body terms and potential 

a3 includes only pair-potential terms. In potential a4 and potential a5 

charges are reduced to 50% and 40% ionicity. For the four-body term, the 

O-B-O-O type torsion on the BO3  triangle is taken into account:

V = K4  • (1 - cos (2(|))), (5.16)

where K4  is a force constant and <|) is the torsion angle. This term  works 

to keep the BO3  triangle planar.

The fitted results are summarised as follows:

i. W hen the Buckingham  po ten tia l w as used  for the B-O 

interactions, no acceptable solution was obtained. Therefore, the Morse 

potential was subsequently employed.
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ii. When the results of potential a l, potential a2 and potential a3 are 

compared, it is found that the pair-potential model (potential a3) is very 

poor in describing the B-O-B bond angles and the cell volum e (or 

density), as shown in Section 5.4. It is interesting to note that the fitting 

O-B-O force constant is zero both for potential a l and for potential a2 . It 

m ay mean that the effects of the O-B-O interactions can be mimiced by 

the 0 - 0  interactions, while the B-O-B interactions cannot be easily 

replaced w ith the B-B interactions.

iii. It is interesting to note that the potentials which are fitted only 

using the data of B2 O3 -I can reproduce the structure of B2 O3 -II well.

iv. Even if charges are varied, the experimental structure can be 

reproduced with the short-range potentials being refitted, but the elastic 

constants or bulk m odulus are dependent upon the charge values. 

Generally speaking, the more ionic model has the larger bulk m odulus. 

W hen the bulk modulus (30~50 [GPa] for B2 O3 -I and 100—130 [GPa] for 

B2 O 3 -II) calculated in Chapter 4 are taken into account, ionicity of 40% or 

less may be appropriate (see Chapter 4). lonicities of this m agnitude also 

agree with the Mulliken charge (qB « =+1.2) calculated in Chapter 3.

iv. For the rigid ion model, the calculated static dielectric constants 

are smaller than the experimental values (3.0 ~ 3.5) as expected. If the 

shell model is used, such problems may be overcome.

5.6.2 FITTING TO BOTH B2O3-I A N D  B2O3-II STRUCTURES

Next, in order to reproduce better the structures of both B2 O 3 -I and 

B2 O 3 -II, sim ultaneous fitting is perform ed. For B2 O 3 -I, th irteen  

structural configurations and twelve ab-initio data are used for the 

structural stability conditions and as components of the cost function; 

while for B2 O 3 -II, seven structural configurations and twelve ab-initio
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data are used for the structural stability conditions and as components of 

the cost function. The fitted potential (potential b l)  and the resulting 

static simulations are shown in Tables 5.6 ~ 5.8.

Potential b l  can reproduce both crystal structures very well. With 

the sim ultaneous fitting, both structures can be equally reproduced. 

However, two problems still remain. The first is that the difference in 

the B-O bond lengths of B2 O 3 -II is not well reproduced. As discussed in 

Chapter 3, the coordination num bers around 0 1  and 0 2  are two and 

three, and their difference is thought to be one of the reasons for 

changing the B-O bond lengths. The second problem  is that the lattice 

energy of B2 O 3 -II is sometimes lower or almost same as that of B2 O 3 -I. 

This trend which becomes stronger as the ionic charges are reduced 

clearly causes problems concerning the relative stabilities of the different 

structures.

In order to overcome these problems, we have developed a new 

approach. We recall from Chapter 3 that the B-O bond strength changes 

according to its coordination number. Moreover, in the case of B2 O3 , the 

coordination  num ber around the oxygen atom s seem s especially 

im portant. Therefore, different Morse and Buckingham potentials are 

assigned for two-fold and three-fold coordinated oxygen. In order to keep 

the energy of B2 O3 -I lower than that of B2 O3 -II, one inequality condition;

E B203-I < E B203-II (5.17)

is added during fitting. The fitted potential (potential cl and potential c2) 

and the resulting static sim ulations are show n in Tables 5.6 ~ 5.8. 

Potential c l is fitted with charges corresponding to 40% ionicity, while 

potential c2 is fitted w ith 30% ionicity. Both potentials reproduce not 

only the lattice parameters but also the bond lengths and bond angles in
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the two crystals, while keeping the energy of B2 O3 -I lower than that of 

B2 O3 -II. These potentials will be applied to MD calculations in Chapter 6 .
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parameters potential sets

a l a2 a3 a4 a5

Charge

q(B) +2.7 +2.7 +2.7 +1.5 +1.2

q(0 ) -1 .8 -1 .8 -1 .8 -1 .0 -0 .8

Morse potential for B-O

D[eV] 2.580 1.549 1.344 0.466 0.326

p[i/A] 2.5 2.7 2.7 2.7 2.7

ro[A] 1.55 1.59 1.59 1.59 1.59

Buckingham potential for 0 - 0

A[eV] 2229. 6317. 5878. 795. 727.

P[Â] 0.36 0.35 0.35 0.35 0.35

C [eV-A6 ] 0 .0 935.2 662.2 60.9 80.9

Buckingham potential for B-B

A[eV] 0 . 0 . 0 . 0 . 0 .

P [Â] 0.35 0.35 0.35 0.35 0.35

C [eV-A6 ] 314.9 0 . 456.3 9.1 19.4

three-body term for O-B-O (Gq == 120  for three-fold; Gq = 109.47 for four-fo

k [eV/rad^] 0 . 0 . 0 . --------- ---------

three-body term for B-O-B (Gq == 1 2 0 )

k [eV/rad^] 8.08 4.79 — 6.63 2.53

four-body term for O-B-O-O

k[EV] 0.85

Table 5.3. Fitted potentials using B2 O3-I structure and ab-initio data
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B2 0 3 -I

exp.

potential sets 

a l a2 a3 a4 a5

i. lattice energy (eV/B2 0 3 )

before relaxation -182.47 -183.95 -181.11 -52.99 -34.81

after relaxation -182.76 -184.81 -181.70 -53.05 -34.90

ii. structure (after relaxation)

volume (%) ± 0 +1.89 -3.60 +2.05 -2.92 -5.48

a(%4 ± 0 +1.49 +0.79 +2.54 +0.19 +0.04

b(%,) ± 0 +1.49 +0.79 +2.54 +0.19 +0.04

c(%4 ± 0 -1.09 -5.09 -2.94 -3.29 -5.55

bond length (Â)

B l-O l 1.404 1.386 1.375 1.372 1.405 1.393

- 0 2 1.366 1.358 1.384 1.374 1.357 1.371

-03 1.337 1.366 1.384 1.373 1.374 1.381

B2-01 1.336 1.358 1.385 1.374 1.356 1.371

- 0 2 1.400 1.386 1.375 1.372 1.404 1.392

-03 1.384 1.366 1.384 1.373 1.375 1.382

bond angle (deg)

O l-B l- 0 2 119.0 120.3 118.6 119.1 119.3 118.7

01-B 1-03 114.7 117.7 121.4 120.7 115.4 117.6

02-B 1-03 126.1 122.0 119.9 120 .2 125.2 123.6

01-B 2-02 121.5 120.3 118.5 119.1 119.3 118.7

B1-01-B2 130.5 134.7 134.6 140.1 130.4 131.1

B1-02-B2 128.3 134.7 134.6 140.1 130.4 131.2

Table 5.4. Static simulation in B2 O3 -I using fitted potentials (al ~ a5)
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potential sets

exp. a l a2 a3 a4 a5

iii. property (after relaxation)

elastic constant (GPa)

E (l,l)  —  473.9 642.7 488.5 176.5 116.7

E(l,2) —  122.8 157.9 96.4 52.3 32.4

bulk modulus (GPa)

239.8 319.5 227.1 93.7 60.5

static dielectric constant (experiment :: 3.0 ~ 3.5)

eo (l/l)  —  1.64 2.08 2.17 1.80 1.84

£Q(2/2) —  1.64 2.08 2.17 1.80 1.84

8q(3,3) —  1.68 4.05 2.77 2.41 2.57

Table 5.4.(continued) Static simulation in B2 O 3 -I using fitted potentials 

fal ~ a5)
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B2 0 3 -II

exp.

potential sets 

a l a2 a3 a4 a5

i. lattice energy (eV/B2 0 3 )

before relaxation -183.74 -183.89 -179.54 -54.08 -35.70

after relaxation -184.12 -184.20 -180.08 -54.29 -35.77

ii. structure (after relaxation)

volme (%) ± 0 +0.52 +4.12 +5.15 +3.83 +0.56

&(%,) ± 0 +0.24 +0.94 +2.11 +0.48 -0.38

b(%,) ± 0 +0.24 +0.94 +2.11 +0.48 -0.38

c(%4 ± 0 -0.33 +2.03 +1.12 +1.82 +0.96

bond length (Â)

B l-O l 1.373 1.429 1.398 1.445 1.393 1.406

- 0 2 1.506 1.450 1.492 1.509 1.439 1.462

- 0 2 1.508 1.471 1.540 1.510 1.470 1.497

- 0 2 1.512 1.532 1.555 1.521 1.672 1.553

bond angle (deg)

O l-B l- 0 2 110 .2 107.1 110.3 111 .0 104.1 106.8

O l-B l - 0 2 115.8 113.6 114.4 110 .8 117.0 115.2

O l-B l - 0 2 113.1 111.3 111.7 111 .8 112.5 111 .8

02-B 1-02 107.4 109.3 110 .6 108.1 109.3 110.4

B l-O l-B l 138.6 138.6 138.7 142.0 131.5 134.7

B1-02-B1 118.7 119.3 118.5 117.7 119.3 118.7

Table 5.5. Static simulation in B2 O3 -II using fitted potentials (al -  a5)
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B2 OW I potential sets

exp. a l a2 a3 a4 a5

iii. property (after relaxation)

elastic constant (GPa)

E (l,l)  —  1429.6 1339.7 1179.3 257.0 265.7

E(l,2) —  167.2 217.2 89.9 -26.9 45.3

bulk modulus (GPa)

588.0 591.4 453.0 67.8 118.7

static dielectric constant (experiment : 3.0 ~ 3.5)

80(1,1) —  2.33 2.24 3.09 2 .0 2 2.19

80(2,2) —  2.45 3.45 4.58 1.83 3.35

80(3,3) —  2.43 3.16 5.78 1.82 2.40

Table 5.5.(continued) Static simulation in B2 O3 -II using fitted potentials 

(al-a5)
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parameters potential sets

bl cl c2

Charge

q(B) +1.2 +1.2 +0.9

q(0) -0 .8 -0 .8 -0 .6

Morse potential for B-O

for two-fold oxygen atom 0 2

D[eV] 2.322 1.84 1.79

p[i/A] 2.5 2.7 2.7

ro[A] 1.35 1.35 1.35

for three-fold oxygen atom 0 3

D[eV] 2.322 10.98 0.96

P[i/A] 2.5 2.7 2.7

ro[A] 1.35 1.475 1.475

Buckingham potential for 0 - 0

A [eV] for 02 -02 2231.5 1990.8 485.8

A [eV] for 02 -03 2231.5 1650.9 422.9

A [eV] for 03-03 2231.5 692.3 193.4

p[Â] 0.30 0.30 0.30

C [eV-A6 ] 0 .0 0 .0 0 .0

Buckingham potential for B-B

A[eV] 0 . 323.1 0 .0

P [Â] 0.30 0.30 0.35

C [eV-A6 ] 0 .0 0 .0 0 .0

Table 5.6. Fitted potentials using both crystal structures and ab-initio data
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parameters potential sets

bl cl (2

three-body term for O-B-O (Gq == 120  for three-fold; Gq = 109.47 for four-f

for three-fold boron atom

k [eV/rad2] 2.0 0 . 3.24

for four-fold boron atom

k [eV/rad^l 2.0 1 .66 1.94

three-body term for B-O-B (Gq == 1 2 0 )

for two-fold oxygen atom

k [eV/rad2] 5.58 6.38 4.60

for three-fold oxygen atom

k [eV/rad^] 5.58 4.22 4.53

four-body term for O-B-O-O

k [eV/rad2] 0.02

Table 5.6.(continued) Fitted potentials using both crystal structures and 

ab-initio data
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B2 0 3 -I

exD.

potential sets 

bl cl (2

i. lattice energy (eV/B2 0 3 )

before relaxation -44.74 -42.05 -27.16

after relaxation -44.83 -42.11 -27.24

ii. structure (after relaxation)

volume (%) ± 0 +0.30 +1.87 +1.32

a (%») ± 0 +0.89 +0.87 +0.83

b(%,) ± 0 +0.89 +0.87 +0.83

c(%4 ± 0 -1.47 +0 .12 -0.34

bond length (A)

B l-O l 1.404 1.396 1.409 1.398

- 0 2 1.366 1.358 1.346 1.367

-03 1.337 1.365 1.362 1.364

B2-01 1.336 1.358 1.346 1.367

- 0 2 1.400 1.396 1.409 1.398

-03 1.384 1.365 1.362 1.364

bond angle (deg)

O l-B l- 0 2 119.0 120.3 120.1 120.4

01-B 1-03 114.7 116.6 115.3 116.1

02-B 1-03 126.1 122.7 124.0 121.7

01-B 2-02 121.5 120.3 120.1 120.4

B1-01-B2 130.5 131.9 131.4 130.7

B1-02-B2 128.3 131.9 131.4 130.7

Table 5.7. Static simulation in B2 O3 -I using fitted potentials (bl, cl and 

c2 )
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B 2 0 3 -I

exD.

potential sets 

bl cl a
iii. property (after relaxation)

elastic constant (GPa)

E (l,l) 223.4 191.6 138.6

E(l,2) 58.9 52.4 38.5

bulk modulus (GPa)

--- 113.8 98.8 71.9

static dielectric constant (experiment ;: 3.0 ~ 3.5)

E0(1,1) 1.44 1.60 1.40

eo(2,2) 1.44 1.60 1.40

6 0 (3 ,3 ) 2.13 2.38 2.59

Table 5 .7.(continued) Static simulation in B2 O3 -I using fitted potentials

(bl, c l and c2)
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B 2 0 3 - I I

exD.

potential sets 

bl cl (2

i. lattice energy (eV/B2 0 3 )

before relaxation -44.50 -40.70 -25.77

after relaxation -44.73 -40.84 -25.84

ii. structure (after relaxation)

volme (%) ±0 +1.52 -2.53 -1.96

±0 +0.09 -0.27 -0.79

b (% ,) ±0 +0.09 -0.27 -0.79

c (% 9 ±0 +0.75 -0.49 +0.42

bond length (A)

B l-O l 1.373 1.419 1.346 1.367

-02 1.506 1.449 1.476 1.489

-02 1.508 1.469 1.502 1.501

-02 1.512 1.597 1.564 1.543

bond angle (deg)

O l-B l- 0 2 110.2 105.8 110.6 109.5

O l-B l- 0 2 115.8 113.5 117.9 116.1

O l-B l- 0 2 113.1 112.3 115.2 114.3

02-B 1-02 107.4 109.3 107.5 108.3

B l-O l-B l 138.6 133.5 134.1 133.2

B1-02-B1 118.7 118.8 120.0 119.7

Table 5.8. Static simulation in B2 O3 -II using fitted potentials (bl, c l and 

c2 )
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potential sets 

exD. bl cl c2

iii. property (after relaxation)

elastic constant (GPa)

E (l,l)  —  531.4 577.4 403.2

E(l,2) —  -3.0 83.2 65.7

bulk modulus (GPa)

175.1 248.0 178.2

static dielectric constant (experiment :; 3.0 ~ 3.5)

e o ( l , l )  —  1.67 1.59 1.32

eo(2,2) —  1.56 1.65 1.34

£Q(3,3) —  1.57 1 .68 1.40

Table 5.8 .(continued) Static simulation in B2 O 3 TI using fitted potentials 

(bl, cl and c2 )
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5.7 COMPARISON OF CRYSTALLINE POTENTIALS 

WITH MOLECULAR POTENTIALS

5.7.1 POTENTIALS DERIVED FROM MOLECULAR CLUSTERS

For the S1O2  system, several sets of interatomic potentials derived 

from ab-initio calculations on the related molecular clusters have been 

applied to crystalline and vitreous states. In the B2 O3  system, Gupta and 

Tossell (1981,1983), Gibbs et al. (1981) and Zhang et al. (1985) showed that 

molecular clusters mimic the geometry of poly anions in borate minerals. 

In order to obtain several potential energy surfaces of molecular clusters, 

ab-initio calculations were performed on the monomer HBO3 , the dimer 

H 4 B 2 O 5  and the trim er H 3 B3 O 6 using a 6-31G* basis set in the 

GAUSSIAN-90 program. The schematic diagrams of the three structures 

are show n in figure 5.1. For HBO3 , its structure is optim ized w ith Ci 

sym m etry. After optim isation, the B-O bond lengths (the optim ised 

value of which is 1.374 A) are varied from 1.0  [A] to 2 .0  [A] and the O-B-O 

bond angles are varied from 105° to 135°. For H4 B2 O 5 , the structure is 

optim ized w ith C2 symmetry. After the optim ization, the B-O-B bond 

angle (the optim ized value of which is 134.5°) is varied from 120° to 

150°. For H 3 B3 O6 , its structure is optimised with C3 h and the O-B-O and 

the B-O-B angles remain fixed at 120°. The optimized B-O bond length is 

1.384 [A] for in-ring bonds and 1.358 [A] for out-of-ring bonds.

There are several assum ptions m ade in deriving the resulting 

potentials. In order to keep charge neutrality, the charge of the hydrogen 

atom (qH) is varied, with the charges of boron atom (qB) and oxygen (qO) 

being changed so as to keep the relations: 

qB = 3 • qH and qO = -2 • qH 

Hydrogen atoms are derived solely in terms of the point charge (qH) and 

the interactions between oxygen atom and hydrogen atom bonded to it
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Figure 5.1. Molecular clusters used for deriving potentials
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are assum ed to be unchanged, because the H-O bond lengths rem ain 

fixed.

The general least-square fitting procedure is employed, varying the 

charge qH. We used partial charge model w ith Buckingham potentials 

for the B-O and 0 - 0  interactions and three-body terms for the O-B-O and 

B-O-B interactions. The fitted potentials are shown in Table 5.9. Potential 

d l  or potential d2 is fitted using the long-range B-O data (1.0Â < R(B-O) < 

2.0Â) or the short-range B-O data (1.15Â < R(B-O) < 1.55Â).

When used in modelling the B2 O3 -I crystal, both potentials d l  or d2 

results in an expansion of the cell volume by 35% or 17%. Several other 

fittings were perform ed (for example, using a Morse potential or with 

different charges), but none of them could reproduce the B2 O3 structure 

w ell. This d ifficulty  m eans that the effects of the crystalline  

env ironm ents are not sim ply expressed by the add ition  of the 

electrostatic Madelung potential; and it may suggest that the short-range 

term s m ust be varied according the change in the slope of charge 

distribution. More detailed discussion is given in the following chapter.

parameter potential dl Dotential d2

Charge q(B) q(0) 

+1.11 -0 .74

q(B)
+1.11

q(0 )
-0 .7 4

Buckingham potential for B-O 

A[eV] p[Â] C[eVA6 ] A[eV] p[A] C[eVA6 ]

1843.0 0.169 0 . 592.4 0.192 0 .

Buckingham potential for 0 - 0  

A[eV] p[Â] C[eVA6 ] A[eV] p[A] C[eVA6 ]

1919.8 0.284 0 . 8207.0 0.235 0 .

Three body terms for O-B-O (Gq=120) and B-O-B (0 0 =1 2 0 )

k(O-B-O) k(B-O-B) k(O-B-O) k(B-O-B)

0.0004 1.625 1.675 1251

Table 5.9. Fitted potentials using ab-intio data on molecular clusters
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5.7.2 POTENTIALS DERIVED BOTH FROM CRYSTALS 

A N D  MOLECULAR CLUSTERS

In the previous chapter, the simple application of the potentials 

derived from the ab-initio data on the m olecular clusters failed to 

rep roduce  the B2 O 3 -I structure. Is there any com m on po ten tial 

transferable for both crystal structures and molecular clusters?

Here, several simultaneous LP fitting calculations were perform ed 

using both the crystal structural and the molecular cluster data. LP fitting 

is very suitable for this sort of study, because the conditions for 

molecular clusters and crystals are dealt with independently and equally. 

The input conditions used for the LP fitting are shown in Table 5.10. A 

total of seven fits were perform ed which differ in the data that were 

used; the fitted potentials and the resulting static simulations are shown 

in Tables 5.11-5.13.

The calculated results are discussed as follows;

i. Before investigating the models based on 40% and 20% ionicity 

(potentials el~e7), several other charge values were tested. In general, the 

models with higher ionicity (>30%) are good for reproducing the crystal 

struc tu res, w hile the low er ionicity m odel (<2 0 %) is good for 

reproducing the molecular structures. 40% ionicity (qB=+1.2, qO=-0.8) is 

close to the M ulliken charge (qB=+l.l) in B2 O 3 -I calculated by the 

CRYSTAL codes (ST03-21G basis set), and 20% ionicity (qB=+0.6, qO=-0.4) 

is close to that (qB=+0.65) in HBO3 calculated by the GAUSSIAN-90 code 

(MP2/6-311G**). The aim of the present fitting is to explore the 

possibility of a common potential for both crystals and molecules, so a 

common charge value is used in the LP fitting, although the crystal is 

clearly more ionic than the molecules.
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ii. W hen all the conditions are used at the same time in the LP 

fitting, no feasible solution existed. Therefore, several combinations of 

conditions are used in the LP fitting.

iii. Potential e3 and potential e6 show the case where only ab-initio 

data and the stability conditions of the molecules are used w ithout data 

on the crystals. It is interesting to note that the D param eter in the B-O 

Morse potential is larger than those of the other cases, and this seems to 

lead to the sm aller cell volum e in B2 O 3 -I. We also find tha t the 

experimental B-O bond lengths in the crystalline states are alm ost the 

same as those calculated from the ab-initio simulations in the molecular 

states (see Table 3.1 and Table 5.13). Thus in the molecular state there are 

no crystal effect^ (due to long-range electrostatic forces), and the effects of 

B-O covalent bonding on the Morse term  are stronger than  in the 

crystalline states.

iv. Potential e l and potential e4 refer to the case where the ab- 

initio data on the molecules are used as components of the cost function, 

while the stabilisation conditions of the crystals are used. The fitted 

results give a smaller D value in the B-O Morse potential and a larger 

force constant (K) of the B-O-B interactions, compared with the results of 

potential e3 and potential e6 . The smaller D value suggests that in the 

crystalline states the crystal field can substitute some part of the B-O 

attractive terms. Regarding the larger K value, a possible reason m ay be 

that in the crystalline state the bond interactions between the B and O 

atoms m ay be reduced because of the reduction of the charge overlaps, 

while the B-B Coulombic repulsive interactions in this ionic m odel are 

too large to express the former interactions, and finally only the B-O-B 

term  can compensate for such difference, as long as the same charge
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values are used. Therefore, the role of the B-O-B three-body term  seems 

to be very important in the ionic model of the crystalline system.

V .  Potential e l and potential e5 show the case where only ab-initio 

data and the structural stability conditions of crystals are used. As for 

potential e l, both crystal structures are reproduced very well, while it 

does not reproduce m olecular structures. In contrast to the case of 

potential e3 and potential e6 , the D param eter in the B-O Morse potential 

has a small value corresponding to the crystalline state. However, the 

potential behaves poorly for the molecular states and results in long B-O 

bond lengths. Moreover, potential e5 fails to reproduce the structure of 

B2 O 3 -I; the relaxed structure , using po ten tial e5, has four-fold 

coordination around boron atoms. In general, the smaller charge value is 

used, the more difficult becomes the simultaneous fitting of B2 O 3 -I and 

B2 O 3 -II, and small charge models cannot reproduce both structures at 

the same time. One of the reasons may be that the latter m odel has 

nothing to compensate the difference in the M adelung potential caused 

from the structural differences between polymorphs.

vi. Potential e7 shows the case where both the molecular and the 

crystal data are used, except the data of B2 O 3 -II. There is no feasible 

solution for 40% or higher charge model, or in the case when the data for 

B2 O3 -II is added. However, potential e7 reproduces the B-O bond lengths 

for the three molecules and the cell volumes in both crystals reasonably 

at the same time, except the B-O-B bond angles in B2 O3 -I. It suggests that 

it is difficult to reproduce both molecular and crystalline structures 

precisely w ith the common potential, but that the 2 0 % charge model can 

reproduce them both to some extent.

vii. There are two problems remaining in applying these potentials 

to MD simulations. One is the large C value in the 0 - 0  interactions fitted
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in the 20% ionicity model. It generates too large an attractive force when 

the 0 - 0  distance becomes short. The other is the energy difference 

between B2 O3 -I and B2 O3 -II. In the cases of potentials e l, e2, e3, e6  and e7, 

the energy of B2 O3 -II is lower than that of B2 O 3 -I. During the LP fitting, 

one inequality condition shown in (5.17) can be added, bu t it is very 

difficult to find an acceptable solution for the smaller charge m odels 

(20% or less) with reproducing both structures. The MD simulations will 

be discussed in Chapter 6 .

To sum m arize, it is difficult to find such transferable potential 

models that reproduce the two crystal structures and the three molecular 

structures at the same time. Even the best model often fails to reproduce 

the order of the lattice energies. When compared w ith the 'molecular' 

potentials, the 'crystalline' potentials prefer to the higher charge models, 

then if the same charges as for the m olecular' potentials, the B-O 

attractive term s are w eaker and the force constant of the B-O-B 

interactions is larger.

Finally, it is interesting to note that although the bond lengths and 

bond angles are very similar for the molecular states and the crystalline 

states, the potentials parameters are different fitted so that the bonding 

and the crystal field effects compensate each other.
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ab-initio data structural stability data

M o n o m e r  H B O 3 10 configurations 2  configurations

E(R(B-0 )/ 0(O-B-O)) 
optimized value 
R(B-0)=1-374 

6(0-B-0)=120.

E(1.374, 120.), E(1.3, 120.), 
E(1.35, 120.), E(1.40, 120.), 
E(1.45, 120.), E(1.50, 120.),
E(1.374, 110.), E(1.374, 115.), 
E(1.374, 125.), E(1.374,130.)

E(1.384, 120.) > E(1.374, 120.) 
E(1.364, 120.) > E(1.374, 120.)

D im e r  H 4 B2 O 5 7 configurations 2  configurations

E(0(B-Obr-B)) 
optimized value 
R(B-Obr)=l-365 
R(B-Onbr)=l-355 
0(O-B-O)=134.5

E(134.5), E(120.), 
E(125.), E(130.), 
E(140.), E(145.), 
E(150.)

E(139.5) > E(134.5) 
E(129.5) > E(134.5)

T r im e r  H 3 B 3 0 6 no data used 4 configurations

E(R(B-Obr)/R(B-Onbr)) 
optimized value
R(B-Obr)=1.384
R(B-Onbr)=1.358

E(1.374, 1.358) > E(1.384, 1.358) 
E(1.364, 1.358) > E(1.384, 1.358) 
E(1.384, 1.368) > E(1.384, 1 .358) 
E(1.384, 1.348) > E(1.384, 1.358)

B 2 O 3 - I  c r y s ta l 9 configurations 12 configurations

exp = experimental 
structure

E(exp),
E(a,b,c:+4%), E(a,b,c 
E(a,b,c:-4%), E(a,b,c 
E(c:+3%), E(c:-2%), 
E(a:+2%), E(a:-1%)

::+2 %),
:-2 % ),

E(a:+17oor-l%) > E(exp) 
E(b:+17oor-17o) > E(exp) 
E(c:+17oor-l%) > E(exp) 
E(a:+2.5°or-2.5°) > E(exp) 
E(P:+2,5°or-2.5°) > E(exp) 
E(y;+2.5°or-2.5°) > E(exp)

B 2 O 3 - I I  c r y s ta l no data used 12  configurations

exp = experimental 
structure

E(a:+17oor-l%) > E(exp) 
E(b:+17oor-17o) > E(exp) 
E(c:+l%or-l%) > E(exp) 
E(a:+2.5°or-2.5°) > E(exp) 
E(|3:+2.5°or-2.5°) > E(exp) 
E(y:+2.5°or-2.5°) > E(exp)

Table 5.10. Input conditions used for LP fitting
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parameters

potential sets 

e l e2 e3 e4 e5 e6 e7

Charge

q(B) +1.2 +1.2 +1.2 +0.6 +0 .6 +0 .6 +0 .6

q(0) -0 .8 -0 .8 -0 .8 -0.4 -0.4 -0.4 -0.4

Momomer

ab-initio data @ @ @ @ @

stability data @ @ @

Dimer

ab-initio data @ @ @ @ @

stability data @ @ @

Trimer

stability data @ @ @

B2 O3 -I

ab-initio data @ @ @

stability data @ @ @ @ @

B2 O3 -II

stability data @ @ @ @

Table 5.11. Input table for LP fitting 

(@ means its data is used during LP fitting.)
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parameter

potential sets 

e l e2 e3 e4 e5 e6 e7

Charge

q(B) +1.2  +1.2 +1.2 +0 .6 +0 .6 +0.6 +0 .6

q(0) -0 .8  -0 .8 -0 .8 -0.4 -0.4 -0.4 -0.4

Morse potential for B-O

D[eV] 2.48 2.53 4.05 2.65 3.90 4.28 4.09

P[i/A] 2.7 2.7 2.7 2.9 2.7 2.7 2 .8

ro[A] 1.35 1.35 1.30 1.28 1.28 1.28 1.28

Buckingham potential for 0 - 0

A[eV] 2250. 2286. 1679. 1632. 2245. 2371. 2447.

p[A] 0.30 0.30 0.30 0.30 0.30 0.30 0.30

C[eV-Â6 ] 0 . 0 . 0 . 0 . 0.1 37.1 42.0

Buckingham potential for B-B

A[eV] 0 . 0 . 440.8 0 . 0 . 1348. 1290.

p[A] 0.30 0.30 0.30 0.30 0.30 0.30 0.30

C[eVA6] 0 . 0 . 0 . 0 . 0 . 0 . 0 .

three-body term for O-B-O (k3,0o=12O for three-fold; k4,0o==109.47 for four-fold)

k3 [eV/rad^] 0 . 0 . 0.93 1.09 0 . 0.08 0 .01

k4 [eV/rad^] 5.00 1.78 --------- 7.47 17.79 — 1.04

three-body term for B-O-B (0 0 =1 2 0 )

k [eV/rad^l 1.37 4.47 0.50 0.14 0 .0 2 0 .8 8 1.04

Table 5.12. LP fitted potentials using molecular data and crystal data 

(el~e7)

150



parameter exp.

potential sets 

e l e2 e3 e4 e5 e6 e7

Monomer R[Â]

R(B-O) 1.374 1.374 1.464# 1.374 1.384 1.394 1.374 1.374

Dimer R[Â], 6 [deg]

R(B-Obr) 1.365 1.455# 1.455# 1.365 1.395 1.385 1.365 1.365

0(B-Obr-B) 134.5 131.5 127.5 132.5 132.5 144.5# 132.5 133.5

Trimer

R(B-Obr) 1.384 1.459# 1.455# 1.374 1.384 1.384 1.394 1.394

R(B-Onbr) 1.358 1.458# 1.458# 1.368 1.388 1.398 1.368 1.368

B2 O3 -I cell volume [%], lattice energy [eV/B2 0 3 ]

energy — -46.21 -46.11 -57.69 -20.38 -26.60 -29.76 -28.39

cell volume ± 0 +9.8# +0.9 -25.8# +1 1 .0# -5.29 -4.46 +0.93

0(B-O-B)av 130. 140.1# 132.4 126.7 138.5# ## 136.5# 138.5#

B2 O3 -II

energy — -46.31 -46.16 -59.87 -20.14 -26.48 -30.44 -28.64

cell volume ± 0 +2.1 +0.4 -15.1# -1.55 +0.50 -2.33 -1.27

Table 5.13. Static simulation using fitted potentials (el~e7) 

(# means its result is away from the experiment.)
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5.8 ’COMPUTER SYNTHESIS* OF NEW POSSIBLE POLYMORPHS 

A N D  POSSIBLE STRUCTURAL UNIT OF VITREOUS B2O3

We now investigate whether it is possible to construct polymorphs 

based  on boroxol-rings type. We will repo rt several com puter 

experiments which were performed in order to explore new structures 

for B2 O 3 . The starting point is to look for the starting structures which 

seem to be closest to the new polym orphs or the vitreous structures, 

am ong the borate crystals. It was shown in Chapter 2 and 3 that the 

structure of B2 O 3 is far from the borate structures which have a high 

content of m odifier oxides; and as the content of m odifier oxides 

increases, a three-dimensional type of infinite netw ork changes into a 

assembly of isolated structural units w ith non-bridging oxygen atoms. 

Therefore, it is desirable to start from the structure with the least content 

of m odifier oxides found in the borate minerals. Cesium enneaborate 

C s20  • 9 B2 O 3  (Krogh-Moe and Ihara 1967) is the first starting structure. 

This structure has two three-dim ensional interlocking, tw in netw orks 

base on B-O bonds (see Figure 5.2). The topology is such that it is not 

possible to pass from the one network to the other. The network consists 

of two kinds of basic unit, a triborate group (containing a six-membered 

ring, bu t w ith one of the boron atoms coordinated tetrahedrally  by 

oxygen atoms) and a boroxol group in the ratio one to two. We recall that 

the vitreous structure of B2 O 3 is claimed to have a high fraction of 

boroxol rings, and such a structure as metaboric acid HBO2 -III (Peters and 

Milberg 1964), which comprises only boroxol rings, w ith only a small 

effect due to H 2 O, is another good starting structure. The structure is 

hydrogen  bonded w ith  sheets of trim eric HBO2  m olecules (six- 

membered rings) loosely stacked to form a mica-like, platey crystal in the 

orthorhombic system (Peters and Milberg 1964) as shown in Figure 5.3.

152



5.8.1 CONSTRUCTION OF NEW POLYMORPHS FROM HBO2-ITT

It is necessary to dehydrate HBO2 -III, for which there are several 

possible routes. One is that some of the hydrogen bonding between layers 

may be easily rearranged. Two of the three hydroxyl groups, -0(3)H(3) 

and -0(6)H(6), are almost directly above and below the BO3 groups of the 

boron atoms B(l) and B(2), while the remaining -0(1)H(1) group interacts 

to a lesser degree with its centre related counterpart (Peters an Milberg 

1964; see figure 5.3). At first, all the 0(1) atoms are extracted w ith all the 

H (l) hydrogen atoms. Next, half of the 0(3) and 0(6) atoms, and all the 

H(3) and H(6 ) atoms are extracted. The 0(3) or 0(6) atoms m ust be 

extracted alternately in the vertical direction so that the bonding of B(l)- 

0(6) or B(2)-0(3) can be generated.

After the extraction of the hydrogen and oxygen atom s, the 

remaining 0(3) and 0(6) atoms are moved to the m iddle point between 

the two neighbouring boron atoms which are expected to bond to the 

0(3) and 0(6) atoms. Next, the static simulations are performed using the 

potential c2 potential. Before the expected bondings are generated, the B- 

O Morse D param eter is set to be five times its norm al value and is 

restored to the original value after the generation of the bonding.

The resulting completely relaxed structure (B20g-a) is as follows: its 

unit cell includes six molecules; its lattice parameters are a= 13.63 [Â], b= 

5.73 [A], c= 7.79 [A], a= 86.0  [deg], p= 98.7 [deg], y= 99.8 [deg]; and its density 

is 1.17 [g/cm^]. It comprises 100% boroxol rings with no independent BO3  

triangle. It is interesting to note three points. The first point is that this 

structure is similar to the vitreous structure, because the average B-O 

bond length is 1.36 [A] and the average B-O-B bond angle outside boroxol 

rings is 128 [deg]. The other point is that its density is much higher than 

that of the glass (1.84 [g/cm^]), in line with previous claims that the 100%
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boroxol m odel cannot reproduce the glass density (see, for example. 

Cooper 1978; Elliot 1978). The third point is that although its original 

structure is layered, its final structure turns out to be close to the two 

three-dim ensional interlocking type of networks, found in the crystal 

structure of Cs20 9B2O3 .

Next, in order to get such higher density as the experim ental 

vitreous density, a final change was made to this structure: half of the 

B3 O 6 un it are replaced w ith a BO3 unit. After this change, static 

simulations were performed using the potential c2  potential in the same 

m anner as for B2 0 3 -a.

The completely relaxed structure of (B2 0 3 -b) is as follows: its unit 

cell includes four molecules; its lattice parameters are a= 10.22 [Â], b= 5.71 

[A], c= 6.13 [A], a= 78.2 [deg], P= 87.3 [deg], 7^ 94.6 [deg]; and its density is 

1.33 [g/cm ^]. It comprises of 100% boroxol rings w ith no independent 

BO3  triangle. All the B-O bond lengths and bond angles are almost same 

as B203-a, while the density increases by 14% compared w ith that for 

B203-a. The results show that the final density is strongly affected by the 

intermediate-range structure However, they may suggest that it would be 

difficult to construct such crystal structure that comprises 1 0 0 % boroxol 

rings, keeping the experimental glass density.

5.8.2 CONSTRUCTION OF NEW POLYMORPHS FROM  

C s20 ' 9B2Ü3

The first problem  here is again how to extract C s2 0  from the 

original crystal structure. We m ust check whether reasonable new B-O 

bonded structures can be generated or not, after the oxygen atoms have 

been extracted. One of the obvious routes is to extract half of the 0(3) 

atoms so that the 0(3)-0(5') bonding is disconnected and new B(2)-0(3)
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bonding is generated in the m anner that the network above is connected 

w ith the network below (see Figure 5.2). After these m anipulations, static 

sim ulations are perform ed using the potential c2 in the same way as 

with B2 0 3 -a.

The completely relaxed structure (B2 O3 -C) is as follows: its unit cell 

includes eighteen molecules; its lattice parameters are a= 7.99 [A], b= 10.05 

[A], c= 16.20 [A], a= 94.4 [deg], p= 90.0 [deg], 90.0 [deg]; and its density is 

1.60 [g/cm^], which is only 15% smaller than that of B2 O3 glass. The ratio 

of B3 O 6  units to BO3  units is 2 : 3, that is a fraction of 66.7% of the boron 

atoms are in boroxol rings. The basic structure comprises interlocking 

three-dimensional networks which is the same as the structure of Cs2 0  • 

9 B2 O 3 , but one BO3  unit connects two neighbouring networks together. 

In the same network, three BO3 units are connected in series. One BO3  is 

connected with two B3 O 6 units, while the other two units are connected 

w ith one B3 O 6 unit. The m anner of connecting the BO3 units is shown 

in Figure 5.4. The average B-O bond length is 1.36 [A] and the average B- 

O-B bond angle outside the boroxol rings is 128 [deg].

Next, in order to get a density as high as the experimental vitreous 

density, a final change was made to this structure: two BO3  units, (B(2), 

0(3), 0(4), 0(8')) and (B(2'), 0(8), 0(4'), 0(5')) were replaced with one BO3 

unit simply by topological manipulations. After the m anipulation, static 

simulations were performed with the potential c2 in the same m anner as 

the case of B2 0 3 -a. The completely relaxed structure (B2 0 3 -d) is as 

follows: its unit cell includes sixteen molecules; its lattice param eters are 

a= 7.94 [A], b= 8.58 [A], c= 16.55 [A], a= 96.1 [deg], p= 85.0 [deg], y= 88.0  [deg]; 

and its density is 1.72 [g/cm ^], which is only 6.9% smaller than that of 

B2O3 glass.
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The ratio of B3 O6  units to BO3 units is 1 : 1, this comprises a fraction 

75% of the boron atoms are in boroxol rings. The basic structure 

comprises two interlocking three-dim ensional netw orks w ithout any 

connection betw een them, which is same as C s20  • 9 B2 O 3 . Two BO3 

units are connected in series and each BO3 unit is connected w ith two 

B3 O 6 units. The m anner of connection of the BO3 units is show n in 

Figure 5.5.

5.8.3 DISCUSSION

It is interesting to note that all four new structures have almost the 

same B-O bond lengths and B-O-B bond angles outside the boroxol rings 

the same as those of B2 O 3 -I and vitreous B2 O 3 . A lthough there is no 

known crystal structure containing boroxol rings, the calculated lattice 

energies of these four structures are lower than that of B2 O 3 -I, and even 

if they are metastable at finite temperatures, it seems possible that they 

are candidates for a new polymorph.

On the other hand, for vitreous B2 O3 , it has been claimed that there 

is no structure model w ith the experimental density and a high fraction 

of boron atoms in boroxol rings w ithout layered rings. Artificially, 

crystals constructed in the manner of the layer model proposed by Bell 

and Carnevale (1981) were generated and the static sim ulations were 

performed. However, the calculated distances between the layers became 

longer and longer, and a stable structure could not be obtained. Our 

potential model show that boric oxide does not favour a layer structure.

Structures B203-d as well as B2 O3 -C could be structural units in the 

vitreous B2 O3 . Thus they have as much as a 75% fraction of boron atoms 

in boroxol rings; this figure agrees w ith that estimated for the vitreous 

material by Jellison et al (1977) and Johnson et al (1982). In addition they
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not only have reasonable B-O bond lengths and B-O-B bond angles, but 

they also have a reasonable density, although it is still smaller than that 

observed for vitreous B2 O 3 . Thirdly we note that the structure has a 

three-dimensional network without layered rings.

The most realistic structure for vitreous B2 O3 is thought to be that 

in which B2 0 3 -d and B2 0 3 -e are random ly connected and also some 

B3 O 6  units are replaced w ith BO3  units in order to reproduce the 

experimental density. The most characteristic feature of such structures is 

that the three-dimensional networks are interlocking, and two or three 

BO3 units are the main connecting parts between B3 O6  units, so that the 

density of the vitreous B2 O 3 can be reproduced. The new  structures 

constructed in this chapter will be compared w ith the vitreous structures 

obtained employing the MD method in chapter 6 .
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Figure 5.2 Crystal structure of Cs20 • 9B2O3 
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Figure 5.3.(a),(b),(c) Crystal structure of HB02-III (Peters and Milberg 1964)
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Figure 5.4 Connecting of B3O 6 units w ith BO3 units in B2O 3 -C
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Figure 5.5 Connection of B3 O 6 units w ith  BO3 units in B 203-d
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5.9 LATTICE DYNAMICS SIMULATION

The strong peak of the Raman spectrum of B2 O3  glass at 806 cm'^ is 

one of the strongest pieces of evidence for the existence of boroxol rings.

Verhoef and Hartog (1991,1992) performed MD simulations of B2 O3  

glass. Although their structures comprised of only BO3 triangles without 

boroxol groups, they concluded that the vibrational m odes of adjacent 

BO3 triangles are decoupled sufficiently and a local breathing mode can 

occur; indeed the peak at 806 c m 'l in the experimental Raman spectra 

was assigned to such a breathing mode of three oxygen atoms w ithin 

each of the BO3 triangles.

On the other hand, Bronswijk and Strijks (1977) com pared the 

experimental Raman spectrum of vitreous B2 O 3 w ith that of crystalline 

B2 O 3 . They concluded that the spectrum  of crystalline B2 O 3  does not 

show a strong, sharp and polarized band around 806 cm“l  (see Figure 5.6).

Since the structures discussed in the previous chapter contain a 

high percentage of boroxol rings, lattice dynamics sim ulations were 

perform ed for the B2 O 3 -I crystal, and for B2 0 3 -a and B2 0 3 -d pseudo 

super crystals using potential c2 employing the GULP program  (Gale 

1993). The calculated vibrational densities of states at 300K are shown in 

Figure 5.7. As it is not easy to calculate their Raman spectra, only 

experimental peaks both in B2O3 -I crystal and that of B3 O6  (v2; see Figure 

2.9) are compared with the calculated spectra.

In the spectrum of B2 O3 -I, there is a sharp peak at around 750 cm"l 

(see the position A in Figure 5.7 (a)). It can be assigned to a bending 

mode in the chain structure (Kamitsos and Chryssikos 1991), and is close 

to the experimental wavenum ber of 720 cm"^. There is no peak at 806 

cm "l; however, in the spectrum  of B 203-a, the peak at ~ 750 c m 'l  

disappears and is replaced by a new peak at ~ 820 cm'^ (see position B in
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Figure 5.7 (B)). It can be assigned to the breathing mode of B3 O 6 (v2), and 

is close to the experimental wavenum ber 806 cm '^. In the spectrum  of 

B203"d, which may be closest to the vitreous B2 O 3 , there is no peak at 

around 750 cm 'l, although the structure includes BO3 units. It shows the 

peak at ~ 820 cm"l, although it is a little weaker than in the case of B2 O3 -

a.

Therefore, these results support the hypothesis that the peak at 806 

cm"^ in the experim ental Raman spectrum  in vitreous B2 O 3  can be 

assigned to the breathing mode of B3 O 6 units, although there are two 

problem s remaining. The first is that the potential used (c2) was not 

adjusted in order to reproduce the vibrational frequencies and there is 

therefore a small off-set in the calculated wavenum ber. Secondly the 

structure of the pseudo super crystal (B2 0 3 -d) m ust of course differ from 

the vitreous structure of B2 O 3 . However, even if this structure were 

m ore distorted , its vibrational character is assum ed not to be too 

different, as long as the same fraction of boroxol rings exist in the 

structure.
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Figure 5.6. Experimental Raman spectra

(a) vitreous B2 O3

(b) crystalline B2 O3-I 

(Bronswijk and Strijks 1977)
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Figure 5.7. Calculated densities of states

(a) crysta llin e  B2 O 3 -I

(b) p se u d o  su p er  crystal B2 0 3 -a

(c) p se u d o  su p er crystal B2 0 3 -d
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5.10 CONCLUSIONS

In  o r d er  to  o v e r c o m e  th e  d iff ic u lty  o f  d e r iv in g  th e  in te r a to m ic  

p o te n tia ls  for B2 O 3  crysta ls, a n e w  LP fittin g  m eth o d  h a s b e e n  d e v e lo p e d .  

T h is  m e th o d  h a s  b e e n  s u c c e s s fu lly  a p p lie d  to  c r y sta ls  an d  m o le c u la r  

c lu sters  o f  B2 O 3 ; an d  sev era l se ts  o f  p o ten tia ls  w h ic h  can  rep ro d u ce  b o th  

crysta l stru ctu res h a v e  b e e n  d er iv ed .

T h is LP m e th o d  s h o w s  th at th e  p artia l ch a rg e  m o d e l w ith  a B-O  

M o r se  p o te n t ia l  a n d  a B -O -B  b o n d -b e n d in g , th r e e -b o d y  ter m  ca n  

rep ro d u ce  b o th  crysta l stru ctu res v e r y  w e ll. It is  a lso  fo u n d  th a t th e  B-O  

M o rse  p o te n tia l an d  th e  force  co n sta n t for B-O -B is  d iffe r en tly  f itted  for  

th e  c r y sta l s ta te s  a n d  for  th e  m o le c u la r  s ta te s  in  a m a n n e r  w h ic h  

c o m p e n sa te s  crysta l f ie ld  e ffec ts . T he c o m p a riso n  o f  th e  la ttice  e n e r g ie s  

b e tw e e n  tw o  stru c tu res  s u g g e s ts  th a t d iffe r e n t sh o r t-r a n g e  p o te n tia ls  

m u s t  b e  d e f in e d  to  r e p r o d u c e  th e  ord er  o f  th e ir  e n e r g ie s , a n d  n e w  

p o te n t ia l  s e ts  (p o te n tia l c l  a n d  p o te n tia l  c2 ) w h ic h  d e p e n d  o n  th e  

c o o r d in a tio n  n u m b er  a ro u n d  th e  o x y g e n  a to m s h a v e  b e e n  d e v e lo p e d .  

T h ese  p o te n tia ls  can  rep rod u ce  n o t o n ly  th e  stru ctu res b u t  a lso  th e  order  

o f  th e  la ttice  en erg ies .

F in a lly , sev era l n e w  p o ss ib le  p o ly m o r p h s  o f  B2 O 3  are o b ta in ed  b y  

p e r fo r m in g  s ta tic  s im u la t io n s  u s in g  th e  p o te n t ia l  c2  p o te n t ia l .  In  

p a r t ic u la r , B 2 Û 3 -d  is  th e  first stru ctu ra l m o d e l for th e  b a s ic  u n it  o f  

v itr e o u s  B2 O 3 , w h ic h  can  rep ro d u ce  n o t o n ly  th e  B-O  b o n d  le n g th s  an d  

th e  B-O -B b o n d  a n g le s , b u t a lso  th e  d e n s ity , w ith  75% o f b o ro n  a to m s in  

b o r o x o l r in gs. T he la ttice  d y n a m ic  s im u la tio n s  u s in g  th is  s tru ctu re  an d  

th e  p o te n tia l  c2 a lso  s h o w s  th a t th e  p e a k  o f  th e  e x p e r im e n ta l R am an  

p e a k  at 806 cm "l can  b e  a ss ig n e d  to  th e  b rea th in g  m o d e  o f  th e  b o r o x o l  

r in g s . T h e im p o r ta n t  fea tu r e  in  th is  s tr u c tu r e  is  th o u g h t  to  b e  th e
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in te r lo c k in g  th r e e -d im e n s io n a l n e tw o r k s  w ith  tw o  or th ree  B O 3 u n its  

c o n n e c tin g  th e  B3 O 6  u n its.

S in ce  th e  tran sferab le  p o te n tia l m o d e ls  o b ta in ed  e m p lo y in g  th e  LP 

f it t in g  m e th o d  h a v e  e lu c id a te d  se v e r a l fea tu r e s  in  th e  s tr u c tu r e  a n d  

b o n d in g  o n  th e  cry sta llin e  B2 O 3 in  th is  ch ap ter, th e se  w il l  b e  a p p lie d  to  

v itr e o u s  stru ctu res e m p lo y in g  the M D  m eth o d  in  C h ap ter  6 .
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6. COMPUTER MODELLING OF VITREOUS B2Q3

6.1 INTRODUCTION

In Chapter 5 several sets of potentials which can reproduce both 

crystal structures of B2 O3 were developed. In this chapter we use the MD 

method with these potentials to investigate the vitreous states of B2 O3 .

First, we discuss the particular features of the MD m ethod, w hen 

used to study glassy materials. Our MD calculations were perform ed 

em ploying the modified version of the code FUNGUS (Walker 1982; 

Vessal 1991; H ernandez 1993). The po ten tial m odel (e l), w hich 

reproduces both crystal structures of B2 O3 was applied to the simulated 

melting and quenching of the B2 O3 -I crystal. Next, new potential models 

(m odification of potentials c l and c2 ), which can overcom e some 

problem s apparen t in the calculations em ploying the prev ious 

po ten tials, w ere developed. These new  m odels vary  param eters 

automatically depending on the coordination number. The results of the 

MD calculations using these potentials are com pared w ith the X-ray 

diffraction data and the neutron scattering data. These results not only 

confirm  the existence of the boroxol rings, b u t also give som e 

inform ation about the interm ediate-range order and the structural 

transformations in the vitreous structures. Finally, the ratio of the boron 

atoms contained in the boroxol rings are estimated.
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6.2 THE MOLECULAR DYNAMICS (MD) METHOD

In m odelling crystal structures, conventional lattice statics and 

dynamics are powerful tools. However, w hen vitreous structures are 

m odelled, the M olecular Dynamics technique, which treats dynamic 

effects explicitly and includes anharmonic effects, is the appropriate 

m ethod.

As noted in Chapter 2, since vitreous structures do not have long- 

range order, it is difficult for experimental techniques to determine their 

de ta iled  structures. M oreover, the final v itreous s truc tu res  are 

considerably affected by their thermal history including the quench rate, 

which it is difficult to investigate experimentally. MD sim ulations can 

therefore provide valuable com plem entary inform ation concerning 

these complex phenomena. Theoretical and technical aspects of the MD 

m ethod are given in detail in many books (for example, Ciccotti and 

Hoover 1986; Ciccotti et al 1987; Allen and Tildesley 1987; Soules 1990). 

Here, we sum m arize the special features of the MD m ethod w hen 

applied to the structures and properties of vitreous materials.

6 .2.1 THEORETICAL OUTLINE

The basis of the method is the calculation of the classical trajectories 

of the interacting ions. The total force acting on each ion is evaluated 

from the interatomic potentials at a given time and used to determine 

new positions at time t + At. An initial set of ionic positions, x(0) may be 

chosen random ly or taken from the crystallographic coordinates. An 

initial set of velocities is usually taken from a Boltzmann distribution of 

velocities.

First, the forces acting on each ion is calculated by evaluating the 

gradient of the interatomic potentials:
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Fi(t) -  -qi • S]V:i qj/ (rij)^

- Xj?ti[Vi • V2ij( I ri-rj I )] - Sk?iiXj>i[Vi • V3ijk(0ijk)] (6.1) 

w here fi(t) is the force acting on atom i at time t. The first term  is the 

long-range Coulombic interaction corresponding to the interaction 

between the effective charges qi and qj. The second and the third are the 

pair and the three-body potentials.

In o rder to deal w ith  an infinite lattice, periodic boundary  

conditions are usually implemented; the sim ulation box is replicated 

throughout space. In the course of the simulation, as an ion moves in 

the original box, its periodic image in each of the neighbouring boxes 

m oves in exactly the same way. The typical num ber of ions in the 

sim ulation box is 100 ~ 1000. It is im portant to consider w hether the 

properties of such a small, infinite, periodic system and the macroscopic 

system which it represents, are the same.

To calculate the long-range Coulombic interactions, the Ewald sum 

has been used (Ewald 1921). This technique efficiently sum s the 

interactions between an ion and all its periodic images. It transforms the 

slowly convergent summation into two rapidly convergent series: one in 

real and the other in reciprocal space.

For the short-range interactions, the 'm inimum image convention' 

is usually implemented: ion i interacts with all the ions whose centres lie 

within such region that is w ith the closest periodic images of the other 

N-1 atoms. The details of the potentials is discussed in the following 

section.

After the force (fi(t)) acting on each ion is computed, the positions of 

all ions are updated using a finite-difference discretization of Newton's 

equations:

xi(t) = m f  1 • fi(t) (6 .2 )
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w here mi is the mass of atom i. The m ost widely used m ethod of 

integrating the equations of motion is the scheme initially adopted by 

Verlet (1967). The equation for advancing the positions are as follows: 

xi(t+At) = 2 • xi(t) - xi(t-At) + (At^/mi) • fi(t), (6.3)

vi(t+At) = (xi(t+At) - xi(t)) /  At (6.4)

w here vi is the velocity of the ion i. A small time step is required for 

stability of the integration scheme (usually Ifs = lO'^^s). This time step 

m ust be considerably shorter than the smallest period of oscillation of 

any ions moves around. It is im portant to note that the com puter 

resources strongly restrict the period of real time sam pled in MD 

simulations (at most Ins).

Finally, properties as lattice energy (U), kinetic energy (KE), 

tem perature (T) and pressure (F) in the system are evaluated at each time 

step.

U = -Ij^i qiqj/rij

+ XjTtil V2 ij( I ri-rj I )] + Ek^iSj>i[ V3ijk(0ijk)] (6.5)

KE = 1/2  • Xi mivi • Vi (6 .6 )

T = 2 /3  • (KE) /  (kN) (6.7)

P = 1 / (3V) • (Xi mivi • Vi - xi • fi) (6 .8 )

w here k is the Boltzmann constant and V is the volume of sim ulation 

box.

MD simulations always have two stages: an equilibration phase in 

which the simulated system attains a full thermal distribution of kinetic 

energy and equipartition between potential and kinetic energy; secondly 

a p roduction  phase in w hich the tim e evolution of the system  is 

monitored. The first stage takes typically 5-20 ps; while production stage 

can extend by up to -1  ns in m odern calculations. In sim ulating glasses, 

we first meet a crystalline phase. These MD sim ulations are usually
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carried out at tem peratures which are much higher than the m elting 

tem perature so that all ions can diffuse sufficiently enough to generate 

the equilibrium  state. Then the system is cooled by rem oving kinetic 

energy, following the desired cooling schedule. After the equilibrium  

state is obtained, such properties as discussed in Section 6.2.4 are 

calculated.

6 .2.2 POTENTIAL MODELS FOR GLASSES

The most widely used potential function is the pair-potential, fully 

ionic m odel, as explained in Section 5.3.1. Such potentials can be 

efficiently implemented in simulation codes and are easily applied to 

m ulti-com ponent systems. Partial charge m odels may be superior in 

reproducing the structures and properties of individual system s, but 

some care m ust be taken when they are applied to m ulti-com ponent 

systems especially in preserving charge neutrality.

Com pared w ith static or lattice dynam ics sim ulations, several 

approxim ations are usually m ade in MD sim ulations because of the 

restrictions of computer resources. The first is that the rigid ion model is 

norm ally used, although it is possible to im plem ent the shell m odel 

(Lindan and Gillan 1993). Regarding covalent effects, three-body terms 

are often used provided that the coordination num bers do not change 

much. Vessal et al (1989) dem onstrated that the three-body term s can 

reproduce the detailed structure of vitreous Si0 2  as well that of the 

crystalline a-quartz structure.

The second approxim ation is to construct a look-up table for 

calculations of potentials and forces. Spline functions are used for 

interpolation between these values. When the size of the sim ulation box 

is not changed, the construction of the table is only set up once, while
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w hen the size of sim ulation box is varied, it m ust be reconstructed 

frequently and its efficiency is therefore reduced.

6.2.3 SELECTION OF STATISTICAL ENSEMBLE

Since MD m ethod simulates systems of finite tem perature. It is 

im portant to define the ensemble of the system. Two schemes are often 

used separately or together: first, the constant-temperature and second is 

constant-pressure (see, for example, Allen and Tildesley 1987 for more 

details).

The constan t tem pera tu re  m ethod is used  to contro l the 

tem pera tu re  of an MD ensem ble. Several techniques have been 

proposed. The most widely used technique is to scale the velocities of all 

ions at each time step by the factor V (Tq/T), which ensures that the total 

kinetic energy of the system corresponds to the desired tem perature Tq 

(Woodcock 1971). The constant-tem perature m ethod is essential in 

simulating the glass formation process. The system is kept in the molten 

state for some interval after which it is slowly quenched.

Several techniques have been proposed for constant pressure 

sim ulations. In the m ethod proposed  by A ndersen  (1980), the 

su rroundings behave like a linear elastic volum eric p iston  w hich 

oscillates in time and exerts an external pressure, Pext/ on the system. 

The system finally approaches a steady state at which P = Pext- In the 

FUNGUS code, the m ethod proposed by Berendsen (1984) is adopted, 

because it does not drastically alter the dynamic trajectories, although the 

appropriate ensemble has not been identified. The system  is m ade to 

obey the equation

d P /d t = (Po-P)/tp (6.9)
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w here Pq is the desired pressure and tp is a time constant. At each step, 

the volum e of the sim ulation box is scaled by a factor %, and the 

molecular centre-of-mass coordinates by a factor

r' = 5C /̂^r (6.10)

w here

X= 1 - pT • A t/tp (Po-P). (6.11)

Here, Pt is the isothermal compressibility and At the sim ulation time 

step. The constant-pressure method is necessary in modelling structural 

transformations. In particular, the extended constant-pressure algorithm, 

which allows the simulation box shape to change, has been successfully 

used to model phase transformations in solids (Parrinello and Raman 

1982). However, the m ethod often results in large distortions of the 

simulation box in the molten state and high-pressure m ust be applied to 

the simulation box in such cases.

6.2.4 ANALYSES OF CALCULATED RESULTS

MD sim ulations yield a large am ount of data (for exam ple, see 

Appendix C). As vitreous structures do not have long-range order, the 

Radial D istribution Functions (RDFs) contain the m ost im portan t 

information about their structures. The calculated RDFs are com pared 

w ith those from the X-ray or neutron studies. The positions of the peaks 

in the RDFs and coordination num bers are also used. Bond Angle 

Distributions (BADs) are helpful in examining the bonding topology.

Diffusion coefficients can also be calculated directly from the results 

of MD simulations. This is achieved very simply, from plots of the mean 

displacement (MSD) of the appropriate particles which increases linearly 

with time if diffusion is occurring.
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6.2.5 LIMITATIONS OF M D METHOD

There are three main limitations w ith present MD m ethods. The 

first is provided by finite-size effects, although compared with quantum - 

mechanical simulations, classical MD methods can simulate much larger 

systems. W hen the simulated system is a perfect crystal or its structure 

has only short-range order, this lim itation m ay not be too serious. 

However, w hen the system is disordered, the sim ulation box m ust be 

large enough so that the artificial periodicity does not significantly affect 

the results. For the Lennard-Jones type potentials the calculations with as 

m any as one million particles may be possible. However, for the case of 

oxide m aterials the more sophisticated potentials needed for accurate 

simulations do not allow such large calculations. The main reason is that 

for ionic materials the calculation of the long-range Coulombic terms is 

computationally expensive, although the efficient m ethod of the Ewald 

sum is now generally used. The other reason is that in order to express 

covalent effects the potentials have to include three-body and in some 

cases four-body terms; and these terms require much larger num bers of 

interactions.

The second lim itation is the finite real tim e sam pled in the 

simulations, which is at most - In s  and typically 20 -  lOOps in m odern 

simulations. Most physical properties are calculated by averaging over 

the simulation. But the period of real time sampled m ay be insufficient 

to m odel the processes occurring in the real system. Thus, in glass 

form ation, the quench rate is crucial in controlling the final vitreous 

structures. MD quench rates are several orders of m agnitude greater than 

the real rates, nevertheless it still appears possible to sim ulate the 

structures of vitreous materials by these techniques.
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The th ird  lim itation is the accuracy and transferability  of the 

potential model. In MD sim ulations of vitreous states there are two 

procedures: in the first, potentials are estimated so as to reproduce the 

experim ental RDF in a trial-and-error m anner and in the other the 

potentials are fitted so as to reproduce the crystal structure or to 

reproduce the ab-initio potential energy surfaces of molecular clusters; 

the latter procedure is used in this thesis. The experimental RDF gives 

only "one-dim ensional" inform ation and several d ifferent sets of 

potential models m ay reproduce it reasonably. The latter m ethod is 

clearly to be preferred, provided sufficient data are available. Generally, 

the more data for different structural configurations are used, the more 

transferable are the potentials so derived. The ab-initio MD m ethod (Car 

and Parrinello 1985) is clearly promising, because it does not require 

interatomic potentials. However, it requires a very large am ount of CPU 

time and it cannot easily overcome the first and second limitations. Ab- 

initio MD simulations may replace classical MD in studying relatively 

small systems, while the classical MD will continue to be the only viable 

technique for large complex systems.
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6.3 APPLICATION OF TRANSFERABLE POTENTIAL B1 TO MD

Here we apply potential b l derived in Chapter 5, which reproduces 

both crystal structures of B2 O3 to simulating the melting and quenching 

process of B2 O3 .

The calculated conditions are as follows. The total num ber of atoms 

was 480 (192 boron atoms and 288 oxygen atoms). The time step in the 

calculation was 1 fs. When we started MD simulations, two problem s 

occurred. The first is that when the system was heated to a tem perature 

higher than 1500K in the constant pressure calculations using am bient 

pressures, the simulation box expanded to become several times larger 

than the original size and reasonable dimension could not be restored. 

The second is that when the constant volume method was used, a large 

fraction of four-fold coordinated boron atoms was generated, w hich 

remained even at the 300K. Therefore, we adopted the constant pressure 

method using ambient pressures and a maximum tem perature of 1500K.

The detailed procedure was as follows. The crystal of B2 O 3 -I was 

kept at 1500 K for 10,000 steps. The system was then quenched dow n to 

300 K in 100 K intervals each of 3000 steps and kept at 300 K for 10,000 

steps. This melting and quenching process was repeated once more. To 

check the rate of atomic diffusion during  the m elting, the rate  of 

disruption of the B-O bonds was counted. In this case, 17% of the initial 

bonds were broken and rebonded w ith another partner. A lthough the 

atom ic diffusion is sm all, it is encouraging that the sim ula tion  

reproduced the change in density. Further studies of diffusion processes 

are reported in Section 6.5.

The calculated coordination numbers, ring sizes, and densities are 

given in Tables 6.1 -  6.3. The results show that 17 six-membered rings, 

were generated (that is, 27% of boron atoms are present in six-membered
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rings), a lthough  the p roportion  is sm aller than  th a t estim ated  

experim entally (see Chapter 2). It is interesting to note that even the 

am bient pressure sim ulation gave a reasonable density, in contrast to 

m ost of the published constant pressure calculations w hich require 

extremely high pressures in order to reproduce the experimental density.

The Pair D istribution Functions (PDFs) and the Bond angle 

Distributions (BADs) are shown in Figures 6.1 ~ 6.4. The assignments of 

the peaks are shown in Figure 6.5 (Mozzi and W arren 1970). Although 

the volume of the simulation box expanded about 1 0 % in the ambient 

pressure simulation, the positions of the peaks of B-O, 0 - 0  and B-B 

seems to be reasonable. It is interesting to note that there are several 

peaks (for example, G and H) which suggest the existence of boroxol rings 

and which are not present in the calculated results based on pair- 

potentials. There is also a major difference in the BADs. All the pair- 

potential models exhibited a broad distribution of the B-O-B bond angles 

around ~ 160°, while the present calculation shows a sharp distribution 

around 120~130°. As explained in Chapter 5 the B-O-B bond angles were 

im portant for reproducing the crystal structure of B2 O 3 -I, and they also 

seem im portant in the case of the vitreous structures. The average B-O-B 

bond angle in the borate crystals is approximately 130° and the quantum- 

chemical calculations on the molecular clusters suggested around 135°. 

Therefore, it is unlikely that the B-O-B angles are around 160° in the 

vitreous structures. However, if the potential favours w ide B-O-B bond 

angles, it may prevent the generation of the boroxol rings. The pair- 

potential model with the full ionic charge results in excessive repulsion 

betw een the B-O bonds, as explained in Chapter 5. This is alm ost 

certainly one of the reasons why previous MD studies could not generate 

the boroxol rings. Inclusion of the three-body terms, combined w ith the
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partial charge and the Morse potential, seems to be very effective in 

m odelling partial covalency in com pounds such as B2 O 3 . In order to 

check the calculated structures and discuss the more detailed structural 

features, the comparisons w ith X-ray diffraction data and the neutron 

scattering data are useful, and they will be given in Section 6.5.

The next step was to relax this calculated structure to equilibrium at 

zero Kelvin using the THBREL program. No significant changes in the 

dimensions of the simulation box occurred during the constant pressure 

runs. The calculated bulk m odulus was 11.4 GPa, com pared w ith the 

experimental value of = 15 GPa, and the calculated Young's m odulus was

15.4 GPa, compared with the experimental value of « 17 GPa.

Although all these results seems to be very satisfactory, there is one 

problem : 9 four-fold coordinated boron atom s and 9 three-fold  

coordinated oxygen atoms were observed. Many experiments suggest that 

almost all the boron atoms are three-fold coordinated (see Chapter 2). 

Furtherm ore, half of the six-membered rings contain more than  one 

four-fold coordinated boron atoms, that is, they are not true boroxol rings 

which are defined to have only three-fold coordinated boron atoms. The 

observations may be associated with the fact that the lattice energy of 

B2 O 3 -II is calculated to be lower than that of B2 O 3 -I, thus this potential 

w ou ld  favour four-fold coordination  ra ther than  the three-fo ld  

coordination in some environm ents. We attem pt to overcom e this 

problem in the next section.

Finally, we attempted to include the aromatic stabilization effects of 

boroxol rings in our MD simulations. As explained in Section 2.5, the 

quantum -m echanical calculations suggested that such stabilization 

effects would not be so large as to control the geometries and networks. 

We roughly estim ated the energy differences in the B-O bond in the
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m onom er, d im er and trim er(boroxol ring), from  the quan tum - 

mechanically calculated energies, and expressed it w ith the additional 

attractive Buckingham terms between the B-O interactions. These terms 

were only added to the B-O interactions present in boroxol rings. Even 

w ith  these extra term s, there was no significant difference in the 

structures. The aromatic stabilization effects do not therefore appear to 

have a significant effect on the simulated structure.
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2 -fold 3-fold 4-fold

boron 0 % 96% 4%
oxygen 97% 3% 0 %

Table 6.1. Distribution of coordination numbers in calculated glass
(constant pressure calculations using potential bl)

ring size 4 6 8 10 12
num ber 1 17 5 9 14

Table 6.2. Distribution of ring sizes in calculated glass
(total number of atom = 480; constant pressure calculations using potential bl)

300K crystal 1500K melt 300K glass [g/cm3]

experim ent 2.56 1.51 1.80
calculation --- 1.52 1.63

Table 6.3. Experimental and calculated densities
(constant pressure calculations using potential bl; experimental data from : Macedo et al 

1966)
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Figure 6.1. Calculated B-O PDF for B2O3 glass at 300K
(Potential b l is used.)
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Figure 6.2. Calculated 0 - 0  PDF for B2O3 glass at 300K
(Potential b l is used.)
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Figure 6.3. Calculated B-B PDF for B2O3 glass at 300K
(Potential b l is used.)
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Figure 6.4. Calculated O-B-O and B-O-B bond angle distribution 
for B2 O3  glass at 300K 
(Potential b l is used.)
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Peak Kind of atoms Designation on figure Tnteratom

D B-O 1 -2 1.37 Â
E 0 - 0 1-3 2.37
F B-B 2-4, 2-5 2.43
G B-O 2 -6 2.74
H B-O 2-7 Variable
I B-O 2-7 3.63
J 0 - 0 3-8 4.10
K 0 - 0 3-7 Variable
L 0 - 0 1 -8 4.75
M B-O 4-6 5.25
N B-O 5-7 Variable
0 B-O 4-8 Variable

Figure 6.5. Assignment of peaks in X-ray RDF for B2 O 3  glass 
(Mozzi and W arren 1970)
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6.4 NEW POTENTIAL MODEL (TCP POTENTIAL»)

FOR POLYMORPHIC A N D  VITREOUS STRUCTURES

We recall that the transferable potentials which could reproduce the 

two different crystal structures for B2 O 3 often failed to reproduce the 

difference in the lattice energy. In considering this difficult problem, the 

following points discussed in Chapter 5 should be considered.

i. The LP sim ultaneous fittings w ere applied  to tw o B2 O 3 

polym orphs after imposing the inequality conditions of their energies. 

But there was no feasible solution obtained as long as a transferable 

potential form was used.

ii. Experimental data show that bond lengths strongly depend on 

coordination num ber. But not all the transferable' po tentials can 

reproduce such differences well. In the case of B2 O 3  crystals, the 

variation in the B-O bond lengths with the coordination num ber around 

the boron atoms is reproduced well by the transferable potential, while 

the dependence of the bond lengths on the oxygen coordination are not 

expressed well by the transferable potential. We note that potentials may 

be explicitly formulated so as to depend on the coordination num ber in a 

way similar to the bond strength concept defined by Pauling (1960).

iii. W hen the B-O potential alone was allowed to depend on the 

coordination num ber, there was no better solution than  w ith  the 

original transferable potential. However, when both the B-O and the 0 - 0  

potentials were modified, better solutions (potential c l and cl) were 

found.

In view of these difficulties and observations we have developed 

new potential which depends on the coordination number. The concepts 

of this "TCP potential" (developed by Takada, Catlow and Price) are as 

follows;
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i. The TCP potential as noted depends on the coordination. At first,

in order to express the wide range of coordination states including the

transient state around a bond breaking or rebonding state, the bonding 

state function' Fb is defined for each interaction.

Fb = 1 r < (R-D)

= {l-sin(7c(r-R)/2 D) (R-D) < r < (R+D) (6.12)

= 0 (R+D) < r

where r is the distance between an oxygen atom and a boron atom. The 

range R-D to R+D represents the distances over which bond formation 

and breaking occur. At distances r<(R-D) full B-O bonding is generated. 

For (R-D)<r<(R+D) the extent of B-O bonding varies. When (R+D)<r, the 

B-O bonding is broken. The first derivative of this function is continuous 

when r=R-D and r=R+D.

ii. Next, the coordination function' Fc is defined for each atom; 

F c = I i F b i  (6.13)

w here i is the sequential num ber of the B-O interactions around the 

atom concerned. When there is no transient bonding state, Fc is the same 

as the coordination num ber. In this sense Fc can be said to be an 

"extended" coordination number.

iii. When the structure concerned has no transient bonding, we use 

the potential set corresponding to the appropriate coordination state. 

H ow ever, w hen the structu re  has some transien t bond ing , we 

interpolate betw een the two coordination states. The interpolation 

factor' a  is introduced, a  is defined so that it becomes zero for one 

coordination state, while it becomes one for the other state. The simplest 

procedure is to make a  proportion to Fc- For exam ple, w hen the 

potential V in the transient state is interpolated from the potential V2 in
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the two-fold coordinated state and the potential V3 in the three-fold 

coordinated state, V become;

a  = Fc - 2 (6.14)

and

V(r) = (l-a)V2(r) + aV3(r) (6.15)

iv. These procedures are generally applied to the coordination 

environments of cations an d /o r anions. In the case of the B2O 3  system, it 

is found that the change in the cation coordination can be expressed via 

the 0 - 0  interaction, while the change in the anion coordination cannot 

be well expressed w ith the B-B interaction. Therefore, only the changes 

in oxygen coordinations are expressed via the TCP potential form. For 

the three-body interactions, the respective three-body terms are applied 

to each coordination state.

V .  For the pair-potential term for the B-O interactions, the potential 

V(r) (the Morse form) and its force 9V(r)/9r are calculated as follows:

V(r) = (l-a)V2(r) + aV3(r) (6.16)

9V(r) /  3r = {(1-a) • 9V2(r)/9r + a  • 9V3(r)/9r)

+ 9 a /9 r • (-V2(r) + V3(r)) (6.17)

w here V2(r) and V3(r) are the pair-potential term  for the two-fold 

coordinated oxygen and for the three-fold coordinated oxygen, 

and

9 a /9 r = -ti/(4D) • cos{7c(r-R)/2D} (6.18)

when r < R-D or r > R+D 

9 a /9 r = 0 (6.19)

when R-D < r < R+D 

vi. For the pair-potential term for the 0 - 0  interactions, the potential 

V(r) (Buckingham form) and its force 9V(r)/9r are calculated as follows.
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First, the general Buckingham form for the two oxygen atoms w ith the 

same coordination function Fc is :

V(r) = A(Fc) • exp{-r/ p(Fc)} (6.20)

8V(r) /  Or = OA(Fc)/Or • exp{-r/ p(Fc)}

+ A(Fc) • 0[exp{-r/ p(Fc)}]/3r (6.21)

A(Fc) = (l-a)A 2 + oA3 (6 .2 2 )

p(Fc) = (l-a)p2  + ap3 (6.23)

where A2, A3, p2 and p3 are the A parameters and p param eters for two

fold or three-fold coordinated oxygen atoms. In the case of the B2 O 3  

system, there are three interactions in the material: two-fold coordinated 

oxygen interacts w ith a second two-fold coordinated oxygen; two-fold 

coordinated oxygen with a three-fold coordinated oxygen; and three-fold 

coordinated oxygen w ith a second three-fold coordinated oxygen. These 

three sets of potential param eters can be derived  from  the two 

polym orphic structures of B2 O 3 . After several tests of the LP fitting, it 

was found only A(Fc) should be varied, p(r) being fixed in this system. 

V(r) = A(Fc) • exp(-r/ p) (6.24)

9V(r) /  9r = 9A(Fc)/9r • exp(-r/ p)

- A (F c) • exp(-r/ p)/p  (6 .25)

A (F c ) =  ( l - a ) A 2  + aA3 (6 .26)

In the next step, the Buckingham form for the two oxygen atoms 

w hich have in term ediate  coordination is derived . As the sim ple 

geom etric average did  not w ork well as reported  by Pertsin  ad 

K itaigorodsky (1987), a new interpolating function was introduced. 

W hen one atom has the coordination function Fc-i and the A param eter 

A -i, and the other atom has the coordination function Fc-2  and A 

param eter A-2, the potential for the interaction between these two atoms 

is defined as follows;
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A-1&2 = V (A-1 • A-2) [{(max(A-i,A-2)/m in(A-i,A-2)-l)-l} k + 1 ] (6.27) 

V(r) = A-1&2 • exp(-r/p) (6.28)

where k is the interpolating factor; k can be derived from the three sets of 

0 - 0  param eters as explained above. When both oxygens have the same 

Fc-3 and A-3, V(r) has a simple form of A-3 • exp(-r/p).

In this case the force BV(r)/9r is approximated as follows:

3V(r) /  3r = - A-1&2 * exp(-r/ p)/p  (6.29)

To summarize the TCP potential, has two main features. The first is 

tha t the change in the coordination environm ent affects the bond 

strength between atoms. It seems quite reasonable that as the num ber of 

the bonds increases, the bond strengths are reduced, as the Tersoff's 

potential expresses (Tersoff 1986; see Appendix D). The second is that the 

pair-potential terms change continuously between the two coordination 

states and the shape of the potential energy surface in the transient 

region can be adjusted smoothly by varying the R and D param eters, 

independent of the energy difference between the two polymorphs.
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6.5 APPLICATION OF TCP POTENTIALS TO MD

6.5.1 SELECTION OF POTENTIAL MODEL

Two TCP potential models which were modified from potentials cl 

and c2 were used in MD simulations of the structures of vitreous B2 O3 . 

In order to apply the crystal potentials, c l and c2 (see Chapter 5), to the 

vitreous states, some param eters which were defined in the previous 

section were fixed as follows; R=1.8  Â, D=2 .0  A, k=0.320 and 0.295 for 

potentials cl and c2 respectively, as discussed Section 6.4.

The total num ber of atoms was 270 (108 boron atom s and 162 

oxygen atoms). Although several runs with 480 atoms were undertaken, 

there was not any significant difference in the structures found. The time 

step in the calculations was Ifs. To ensure more diffusion than the case 

described in Section 6.3, the melting tem perature was set at 5000 K.

For the melting and quenching process, the initial crystal structure 

was kept at 5000 K for 10,000 steps. The system was quenched down to 

1500 K in 500 K intervals, each of 1800 steps, after which it was quenched 

to 300K in 100 K intervals, each of 900 steps. Finally, the system was kept 

at 300 K for 10,000 steps. 98% of the initial bonds were broken and 

rebonded with the other partners.

At first, constant pressure sim ulations (using am bient pressures) 

were undertaken. The calculated coordination num bers, ring sizes and 

densities are show n in Tables 6.4 -  6 .6 . Both potential m odels give 

sim ulated structures w ith a higher proportion of boroxol rings: 53% 

(potential cl) or 36% (potential c2) of boron atoms are present in boroxol 

rings, which values are around the lower lim it (40%) suggested by 

Johnson (1982). As the new potential models favours three-fold rather 

than four-fold coordination (i.e. energy of B2 O 3 -I is lower than that of 

B2 O 3 -II), the four-fold coordinated boron atoms are no longer present.
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However, one new problem appears: the final calculated density is too 

low  com pared w ith  the experim ental one. Thus, a lthough  these 

potential models successfully generate boroxol rings, it would still appear 

to be difficult for the present MD m ethod to reproduce the whole 

s tru c tu ra l tran sfo rm ation  du rin g  the m elting  p rocess at h igh  

tem peratures so as correctly to reproduce the density.

Next, therefore, the constant volume method was applied using the 

same potential sets, in order to study the structural transform ations 

keeping the experimental density. The calculated coordination num bers 

and ring sizes are shown in Tables 6.7 and 6 .8 .

The percentage of the boron atoms consisting of the six-membered 

rings (25% for potential c l; 42% for potential c2) was lower than that 

observed w ith  the constant p ressure  calculations, and  four-fold 

coordinated boron atom s were observed in the sim ulations using 

potential c2 .

To sum m arize, using the constant pressure m ethod these new 

potentials generated almost the same percentage of boroxol rings as that 

estimated from the experiment, but they resulted in a lower density (i.e. 

they m ay have different in term ediate ordering) W hile under the 

constant volume m ethod the results could not reject the generation of 

four-fold boron atoms, although they necessarily kept the experimental 

density. Therefore, it is not easy to realize both the high proportion of the 

boroxol rings and the experimental density at the same time in the MD 

sim ulations.
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1-fold 2 -fold 3-fold 4-fold

potential
boron

cl
0 % 1 % 99% 0 %

oxygen 1% 99% 0 % 0 %

potential
boron

c2

0 % 1 % 99% 0 %
oxygen 2% 96% 2 % 0 %

Table 6.4. Distribution of coordination numbers in calculated glass
(constant pressure calculations using potentials cl and c2 )

ring size 4 6  8 10 12

potential
num ber

cl
0 13 3 0 2

potential
num ber

c2

2 19 4 2 2

Table 6.5. Distribution of ring sizes in calculated glass
(total number of atom = 270; constant pressure calculations using potentials cl and c2)

experim ent calculation [g/cm^]

potential c l potential c2

2.56 1.43 1.15

Table 6 .6 . Experimental and calculated densities at 300K
(constant pressure calculations using potentials c l and c2 ; experimental data from 

Macedo et al 1966)
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1-fold 2 -fold 3-fold 4-fold

potential
boron

cl
0 % 1 % 99% 0 %

oxygen 1 % 98% 1 % 0 %

potential
boron

c2

0 % 0 % 94% 6 %
oxygen 4% 89% 7% 0 %

Table 6.7. Distribution of coordination numbers in calculated glass
(constant volume calculations using potentials c l and c2)

ring size 4 6 8 10 12

potential
num ber

cl
0 9 8 2 9

potential
num ber

c2

0 15 7 5 10

Table 6 .8 . Distribution of ring sizes in calculated glass
(total number of atom = 270; constant pressure calculations using potentials cl and c2)
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6.5.2 COMPARISON WITH X-RAY DIFFRACTION 

AND NEUTRON SCATTERING DATA

In order to examine the calculated vitreous structures, we m ade the 

comparison with the X-ray diffraction data of Mozzi and W arren (1970) 

and the neutron  scattering data of Johnson et al (1982). From the 

calculated structures using potentials c l and c2, the RDFs and 

in terference functions w ere sim ulated and com pared w ith  those 

obtained from the experimental data. In order to compare w ith the latter, 

the same filtering and conversion procedures were used.

For the X-ray diffraction data, two points m ust be carefully noted. 

The first is that the peak at 2.8A in the X-ray RDF data in the original 

paper of Mozzi and W arren (1970) appeared to be absent after a 

retransform ation  of the interference function using a w indow , as 

Johnson et al (1982) pointed out. Therefore, the com parison w ith the 

interference function may be better than that with the RDF. The other is 

that the atomic form factors are dependent on the X-ray wave length and 

the atomic charge state, and it is not easy to use precise values. Verhoef 

and Hartog (1992) demonstrated that the difference in the approximation 

of the atomic form factors considerably affected the height of the first and 

second peaks w ith in  6 Â in the interference functions. H ere, the 

interpolating function appropriate for neutral atoms was used from the 

International Tables for X-ray Crystallography (1974).

For the neutron scattering data, the atomic scattering factors are 

independent of q (wavevector), and the experim ental intensity  was 

m easured up to 40 A "l. The neutron data may be m ore suitable for 

comparison with the calculated results, and therefore more emphasis is 

placed on neutron data in this chapter.
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The calculated RDFs and the interference functions for the X-ray 

diffraction data are shown in Figures 6.6 and 6.7; those for the neutron 

scattering data are shown in Figures 6.8 and 6.9.

The calculated RDFs and the interference functions for both  

potentials agree reasonably w ith both X-ray and neutron experimental 

data. For the calculated RDF appropriate to the neutron scattering data, 

the peaks at 1.37Â, 2.37Â agree with experiment, although their heights 

are still a little too large. However, two small and broad peaks around 3Â 

in distance cannot be distinguished. This is possibly due to the small 

proportion of boroxol rings, as it is certain that boroxol rings result in 

these two peaks (G and H), as the PDF of B-O demonstrated in Figure 6.1.

For the interference function of the neutron scattering data, the 

shapes of branches in the peaks around lOA'l and 15A" ̂  agree very well 

w ith the experimental data. All these features seem to be related to the 

structures of boroxol rings and to originate from the intermediate-range 

rather than the short-range order. This point is discussed further in the 

following section.
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Figure 6 .6. X-ray RDF for B2O3 glass at 300K
(a) potential cl; (b) potential c2
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Figure 6.7. X-ray interference function for B2O3 glass at 300K
(a) potential cl; (b) potential c2
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Figure 6.8 . Neutron RDF for B2O3 glass at 300K
(a) potential cl; (b) potential c2
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Figure 6.9. Neutron interference function for B2O3 glass at 300K
(a) potential cl; (b) potential c2
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6.5.3 SHORT-RANGE A N D  INTERMEDIATE-RANGE ORDER

O ur calculated results show ed that the existence of the six- 

m em bered rings can reproduce the X-ray and neutron scattering data 

well, as many experimentalists have previously suggested. However, it is 

very difficult to discuss the intermediate-range order present in vitreous 

structures using only experimental data. In contrast, not only the short- 

range but also the intermediate-range order is available from analyzing 

the calculated structures.

First, the O-B-O and the B-O-B Bond Angle Distributions (BADs) at 

300 K in the cases of potentials cl and c2 are shown in Figure 6.10. As 

their peaks are more easily distinguished and compared at zero Kelvin, 

all the BAD data are calculated at zero Kelvin (i.e. after energy 

minim ization) and are shown in Figures 6.11 ~ 6.13. For the sake of 

comparison the experimental structures (B2 O3 -I and C s20 • 9 B2 O 3 ) and 

the calculated structures (pseudo super crystals and the MD results) are 

shown. They exhibit several peaks around 120° for the O-B-O bond 

angles, and two groups of peaks around 120° and 128° for the B-O-B bond 

angles. For the latter it is interesting to note that the peak around 120° 

corresponds to the angles within the boroxol rings, while that around 

128° corresponds to the angles outside the rings. The latter value agrees 

w ith that estimated from the NMR experiment by Jellison (1977); the B- 

O-B angles for the oxygen atoms not included in the boroxol rings have a 

narrow  distribution (rms deviation -1.7°) centred around either 134.6° 

or 128.1° (which cannot be distinguished by experiment). This value, 

which contrasts with the much larger angles calculated from the pair- 

potential models, almost certainly implies the presence of the boroxol 

rings, as explained in Section 6.3.
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The existence of boroxol rings and the B-O-B angles of 128° outside 

the boroxol rings is clearly dem onstrated. H ow ever, if these are 

random ly  connected, the struc tu ra l m odel cannot reproduce the 

experimental density (see Section 2.3). In order to analyze the topology of 

the connections, we need the Torsion Angle D istribution (TADs) 

betw een the BO3  triangles, and between the BO3  triangle and the B3 O 6  

ring, or betw een the BO3 triangle and the B3 O 6  ring. (To define the 

torsion angles between two planes, we consider each plane as defined by 

the three oxygen atoms present in the BO3 triangles w hether w ithin or 

outside the B3 O 6  rings.) The BO3  triangles with more than one four-fold 

coordinated boron atoms were excluded from the analysis. The calculated 

results are shown in Figure 6.14 ~ 6.20. It must be noted that all the peaks 

are sharp, because they are calculated at zero Kelvin and confined to 

several equilibrium values.

The TAD in the crystal of B2 O 3 -I has two peaks of 7° and 74° 

(Figure 6.14). It is interesting to note that two triangles even on the same 

chain are twisted by 7°, while those on the different chains, by 74°, which 

is close to the perpendicular, these contrast with the quantum-chemically 

calculated value of 29.4° for the (H0)2B-0-B(0H)2 molecule (Uchida et al 

1985). For the TAD in the crystal of C s20 • 9 B2 O3 , two of the peaks are 

almost the same as those in B2 O 3 -I and the other has a peak around 44° 

(Figure 6.14). The latter value is close to the quantum -chem ically 

calculated value of 32.2° obtained for (H 0 )2 B 3 0 3 -0 -B 3 0 3 (0 H )2  by 

Uchida et al (1985). These two results may mean that the B2 O 3  systems 

do not favour a layer structure and they prefer the large torsion angle 

which does not appear in the molecular state and is probably caused by 

crystal effects.

201



The calculated structures of pseudo super crystals also have large 

torsion angles (Figures 6.15 ~ 17); and the structures calculated by the MD 

m ethod similarly exhibit large torsion angles, although they also have 

other peaks at the lower region (Figures 6.18 and 6.19). It is interesting to 

note that in the calculated structures the torsion angles within the B3 O 6  

rings exhibit the twisted angles from 10“ to 30 “ (Figure 6.20); this means 

that the three oxygen atoms outside the B3 O 3  rings do not lie on the 

same plane as the B3 O3  rings and that they are easily distorted.

The hypothesis that a considerable proportion of the torsion angles 

w ould be as large as 74° and that the oxygen atoms outside the rings do 

not lie in the same plane as those w ithin the rings m ay explain the 

experimental density, in contrast to the lower density obtained from the 

models base on the random ly connected boroxol rings. Appreciation of 

this point, w hich w as also explained using the term  'interlocking 

structure' for Cs20 • 9 B2 O3 in Section 5.5, may lead to accurate models for 

the intermediate-range order in vitreous B2 O3 structures.
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Figure 6.10. Bond angle distribution in calculated vitreous structures
at 300 K
(a) potential c l (b) potential c2
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Figure 6.11. Bond angle distribution in B2 O3-I and Cs20 • 9 B2O3 crystals 

at 0 K
(a) B2O3 -I (b)Cs2 0 - 9B2 0 3
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Figure 6.12. Bond angle distribution in pseudo super crystal at 0 K
(a) B2O3 -C (b) B2 0 3 -d

(Potential c2 is used.)
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Figure 6.12. (continued) Bond angle distribution in pseudo super

crystals
at 0 K

(c) BiOg-a (1 0 0% boroxol ring model)

(Potential c2 is used.)
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Figure 6.13. Bond angle distribution in calculated vitreous structures
at OK

(a) potential cl (b) potential c2
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F ig u re  6.14. T orsion  a n g le  d is tr ib u tio n  in  B2 O 3 -I an d  C s 2 0  • 9 B2 O 3

crysta ls at 0 K

(a) B2O 3 -I (b) C s2 0  • 9 B2O 3
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Figure 6.15. Torsion angle distribution in pseudo super crystal B2 O3 -C 

at 0 K
(a) between BO3 triangles
(b) between BO3 triangle and B3 O6  ring 

(Potential c2 is used.)
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Figure 6.16. Torsion angle distribution in pseudo super crystal BzOs-d 

at 0 K
(a) between BO3 triangles
(b) between BO3 triangle and B3 O6 ring

(Potential c2 is used.)
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Figure 6.17. Torsion angle distribution in pseudo super crystal BiOg-a 

at 0 K
Angles smaller than 45" are all between the same B3O6  rings.

Angles larger than 45" are all between the different B3 O6  rings.

(Potential c2 is used.)
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Figure 6.18. Torsion angle distribution in calculated vitreous structure
using potentials cl and c2 at 0 K
All angles are between BO3 triangles.
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Figure 6.19. Torsion angle distribution in calculated vitreous structure
using potentials cl and c2 at 0 K
All angles are between BO3  triangle and B3 O6  ring.

(a) potential cl (b) potential c2
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Figure 6.20. Torsion angle distribution in calculated vitreous structure 
using potentials cl and c2 at 0 K 
All angles are within B3 O 6 rings.

(a) potential cl (b) potential c2
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6.5.4 LATTICE DYNAMICS SIMULATION

The vitreous structure calculated using potential c2 was energy- 

m inim ized  and  its lattice dynam ical p roperties w ere calculated 

employing the GULP program  discussed in Chapter 5 (Gale 1993). The 

calculated vibrational densities of states at 300K are shown in Figure 6.20 

(see also Section 5.9). They have two peaks at 740 cm '^ and 805 c m 'l  

which correspond to peak (A) in B2 O 3 -I and peak (B) in B203-a, and the 

structure appears to have intermediate features between these of B2 O3 -I 

and the B203-a. Furthermore, they have the other higher peak (C) of 775 

cm"l, which does not exist either in the B2 O3 -I or B203-a. This calculated 

structure still contains several BO4  tetrahedra, and peak (C) is assigned to 

a vibration of the six-membered rings with one or two BO4  tetrahedra, as 

noted by Konijnendijk and Stevels (1978) in their study of the spectra of 

the alkali-borate crystals.
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Figure 6.21. Vibrational density of states in calculated vitreous structure 
using potential c2 at OK
(See text for (A), (B) and (C).)
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6.5.5 STRUCTURAL TRANSFORMATION IN THE GLASS 

FORMATION

In Chapter 4 the structural transformation from the BO3 triangular 

structural un it to the BO4  tetrahedral un it was observed to occur 

sm oothly w ithout breaking any B-O bonds. However, such a smooth 

transform ation  w ithout bond breaking seems to be topologically 

impossible between the independent BO3  triangular structural unit and 

the B3 O6  boroxol ring unit.

Here, we investigated the nature of the structural transform ations 

in the melting and quenching simulations. Two types of transformations 

were observed. In the first at 1500K, two-thirds of the boron atoms have 

the two-fold coordination, and as the system is quenched, the two-fold 

coordinated boron atoms bond with the non-bridging or the two-fold 

coordinated oxygen atoms (see Figure 6.22 (a) and (b)). In the latter case, 

after the generation of a six-membered ring, one original B-O bond is 

broken. In the second below lOOOK the three-fold coordinated boron 

atoms bond with the fourth oxygen atom. The transient state has four

fold coordinated boron and three-fold coordinated oxygen atoms (see 

Figure 6.22 (c)). Then after the generation of a six-membered ring, two 

new B-O bonds are created.

It is interesting to note that Mackenzie (1959) proposed non-bridging 

-B = 0  groups were present as higher energy species in m olten B2 O 3 , 

while Krogh-Moe (1960) proposed four-fold coordinated boron and three

fold coordinated oxygen atom s. Both hypotheses w ere proposed  

independently. However, they correspond to our results and we can now 

distinguish between them; the first is the 'high tem perature structural 

transform ation ', while the second is the 'low -tem perature structural 

transform ation'. It is also interesting to note that the latter hypothesis
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m ay explain one of the reasons w hy a proportion of the four-fold 

coordinated boron was always observed in our MD sim ulations even 

w hen the TCP potential model was used; the transient structures would 

be frozen before finding the appropriate bonding partners because of the 

rapid quench rates.
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(a) 2  fold coordmated boron + non-bridging oxygen

Y " °

(b) 2 -fold coordinated boron + 2  fold coordinated oxygen

'  X / '

(c) 3 fold coordinated boron + 2 fold coordinated oxygen

Figure 6.22. Schematic diagram for structural transformation observed 
in MD simulations

219



6.6 ESTIMATION OF THE RATIO OF BOROXOL RINGS 

TO INDEPENDENT B03 UNITS

One of the major concerns in our MD simulations is the ratio of the 

boroxol rings to the independent BO3  units. As explained in Chapter 2, 

the NMR study (Jellison et al 1977) and the neutron diffraction study 

(Johnson et al 1982) estimated the fraction of the boron atoms included 

in the boroxol rings as 82±8 % and 60±20% respectively The MD 

sim ulated structures contained 30-50 % fraction of the boroxol rings. 

How ever, we m ust note that there are still several lim itations in the 

latter techniques as explained in Section 6.2.

One of the most useful clues in unravelling these complexities may 

be the glass density which strongly depends on the structure. After the 

construction of the possible polymorphs shown in Section 5.8, we now 

have one experimental density for B2 O 3 -I and four sim ulated densities 

for B 20g-a, B 203-b, B2 O 3 -C and B203-d. The relation betw een the 

fractions of the boron atoms contained in the boroxol rings and the 

densities are plotted in Figure 6.23. We note that the bond lengths and 

angles in these structures are all very similar. So the changes in density 

are due to changes in the interm ediate-range order. There is a clear 

correlation between the density and the boroxol ring content, although 

there is appreciable variance in the correlation. However, the fraction 

w hich corresponds to the glass density can be estim ated as 50-64%. 

W hen the calculated structures explained in Chapter 5 and 6  are taken 

into account, one of the possible crystalline analogues for vitreous B2 O3  

may be the disordered structure based on B2 O3 -C and B2 0 3 -d, with some 

B3O 6  rings replaced w ith BO3 triangular units.
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Figure 6.23. Relation between fractions of boron atoms contained in 
boroxol rings and densities
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6.7 CONCLUSIONS

In applying the transferable potential model which can reproduce 

both  crystal structures of B2 O 3 to the m elting and quenching MD 

simulations, we obtained a vitreous structure containing six-membered 

rings (with 27% of the boron atoms), but is also containing several four

fold coordinated  boron atom s w hich is inconsistent w ith  m uch 

experim ental data. The problem  m ay be related to the fact that the 

difference betw een the lattice energies of two polym orphs cannot be 

reproduced by this potential.

Next, in order to overcome this problem, the new potential model 

(the TCP potential) was developed and used in the MD simulations. In 

the constant pressure calculations this new potential model successfully 

reduced the proportion of the four-fold boron atoms and increased the 

proportion of the six-membered rings closer to the lower limit (40%) of 

that estim ated by the neutron study, although the calculated densities 

became too large. In the constant volume calculations, the proportion of 

the six-membered rings was reduced and the four-fold boron atoms 

appeared. However, the calculated structures agree w ith the RDFs and 

interference functions derived from the X-ray diffraction data and with 

the neu tron  scattering data. It is interesting to note that all these 

s tru c tu ra l m odels have one im portan t fea tu re  concerning  the 

intermediate-range order, namely, that a considerable proportion of the 

torsion angles between the BO3 triangles, between the BO3  triangle and 

the B3 O 6 ring, and between the B3 O 6 rings are around 74% although the 

MD sim ulated structures contain sm aller torsion angles. This feature 

seems to be im portant in reproducing the experimental density w ithout 

the presence of four-fold coordinated boron atom.
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Regarding the vibrational properties, as the calculated structure 

contained four-fold coordinated boron atoms, the lattice dynam ics 

sim ulation of the structure exhibited two characteristic peaks seen in the 

Raman spectra; the first is at 805 cm"l and is due only to the boroxol ring 

w ith BO3 triangles; and the other is at 775 cm"l and corresponds to the 

six-membered ring with one or two BO4  units.

These MD studies using the new potential m odel dem onstrate 

struc tu ra l transform ation in the glass form ation and confirm  the 

existence of the boroxol rings, in contrast w ith the other MD studies 

em ploying the pair-potentials. However, there are several four-fold 

coordinated boron atoms rem aining and the proportion of the boroxol 

rings is still smaller than that estimated by experiments. There are three 

possible explanations: the first concerns the effect of the finite simulation 

tim e explained in Section 6.2.4. A lthough our new potential m odel 

favours the three-fold coordinated environm ent rather than the three

fold one, the simulation m ust have sufficient time for the structure to 

rearrange during the quench process, and the present time scale w ould 

not be sufficient. The second is the finite size effect explained in Section 

6.2.4. As the B2 O 3 system has m uch more pronounced interm ediate- 

range order than in the other oxide materials, the sim ulation box may 

need to be much larger. The third concerns the accuracy of the potential 

models. The new potentials could reproduced two crystal structures well, 

bu t it may require still further improvem ent using spectroscopic data 

and properties of the molten state.

Several MD simulations which started from the structure of pseudo 

super crystal B 203-d (good candidate for vitreous B2 O 3 ) were also 

performed. The system was melted and then quenched in the same way 

as explained in Section 6.5. The final vitreous structure turned out to be
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almost same as those calculated in Section 6.5. An improvement was not 

observed, because the system probably lost most of its initial structure. 

However, further work based on the pseudo super crystal structures may 

lead to the possibility of simulating more realistic vitreous structures.

Finally, we estimated the fraction of boron atoms present in boroxol 

rings as 50-64%, from the relation between the calculated structures and 

densities for polymorphs.
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7. SUMMARY. CONCLUSIONS AND SUGGESTIONS FOR 

FUTURE STUDY

As we have proceeded through the sim ulations reported in this 

thesis, we have realized the complexities in structure and bonding in 

borate materials. We now attempt to summarize the results and insights 

obtained in this thesis.

The starting  po in t for our w ork  was the experim ental and 

com putational studies previously reported in the field of the B2 O 3  

materials which were reviewed in Chapter 2. We saw that none of these 

provided single comprehensive m ethods to elucidate the structure and 

bonding in these materials and that it is essential to employ them in a 

com plem entary m anner.

In our first theoretical approach, we employed quantum-chemical 

calculations based on periodic ab-initio Hartree-Fock m ethods on borate 

crystals in the crystalline state. Our calculated results highlighted both 

ionic and covalent features in the bonding, and they showed that such 

features accord well with empirical concepts regarding the structure and 

bonding of borates. Future applications of these techniques to the other 

borate m inerals should explain common and different features among 

borates more systematically.

O ur second approach  w as the first-p rincip les to ta l energy 

calcu lations on the tw o B2 O 3  crystals em p loy ing  the LDA, 

pseudopotential techniques. The calculated results obtained by the full 

optimization of the structures reproduced not only lattice param eters but 

also internal coordinates. Using the optim ized structures, the bulk 

m oduli for B2 O3 -I and B2 O3 -II were estimated for subsequent use in the 

developm ent of interatomic potentials for B2 O3  crystals. Furtherm ore,
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w hen  the sim ula tion  cell volum e w as reduced , the  stru c tu ra l 

transform ation from the BO3 triangular structural unit into the BO4  

tetrahedral unit was observed and the manner of its transform ation was 

also elucidated.

Using the inform ation gained from these fundam ental study of 

structure and bonding, we proceeded to the com puter m odelling of 

crystalline B2 O 3 . In contrast to the previous two quantum -mechanical 

approaches, we employed atomistic simulation techniques. First, in order 

to overcome the difficulties in deriving interatomic potentials, the new 

procedure known as the LP fitting method was developed. By using this 

m ethod several sets of potentials which can reproduce both crystal 

structures were derived. The fitted potentials showed that the partial 

charge model w ith a B-O Morse potential and a B-O-B bond-bending, 

three-body term can reproduce both structures well. It is interesting to 

note that the crystalline and m olecular potentials yielded different 

parameters. The best potentials, which reproduce the order of the lattice 

energies betw een the polym orphs, were found to have pair-potential 

terms which varied depending on the coordination numbers.

Next, these potentials were applied to other possible polym orphs 

containing boroxol rings and also possible structural units for vitreous 

B2 O3 . The pseudo super crystal structure (B203-d) which was obtained by 

perform ing static simulations is the first structural model for the basic 

un it of vitreous B2 O 3 , which can reproduce not only the B-O bond 

lengths and the B-O-B bond angles, bu t also the density, w ith 75% of 

boron atoms in boroxol rings. The lattice dynamic simulations using this 

structure also showed that the peak of the experimental Raman peak at 

806 cm"l can be assigned to the breathing mode of the boroxol rings. It is 

interesting to note that the important feature in this structure is thought
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to be the interlocking three-dimensional networks with two or three BO3  

units connecting the B3 O 6 units. More extensive 'com puter synthesis' 

will enable us to obtain further possible candidates for polym orphs and 

vitreous structures.

Using the potentials which had been successfully derived for the 

crystal structures, we applied the MD m ethod to vitreous B2 O 3 . To 

overcome the problem that the transferable potentials are often favour 

four-fold coordinated boron atoms, we developed a new model (the TCP 

potential model) which varies param eters automatically depending on 

the coordination number. In the constant pressure calculations this new 

m odel reduced the proportion of the four fold coordinated boron atoms 

and increased the proportion of the six-membered rings close to the 

lower limit (40%) of that estimated by the neutron study, although the 

calculated density became too large. In the constant volume calculations 

the proportion of the six-membered rings was reduced and the four-fold 

boron atoms reappeared. However, the calculated structures agree w ith 

the RDFs and the interference functions derived from the X-ray and 

neutron diffraction data.

In order to analyze the intermediate-range order, the torsional angle 

distributions (TADs) were calculated for the experimental and calculated 

structures. These calculated results suggested that a considerable 

proportion of the torsion angles between the BO3 triangles, between the 

BO3 triangle and the B3 O 6 ring, and between the B3 O 6 rings m ust be 

~74° in order to produce the experim ental density. The structu re  

obtained from the MD sim ulations show ed that it has reasonable 

frequencies in the vibrational density of states. The m anner of the 

structural transformations in the glass formation at finite tem peratures 

was proposed. It is interesting to note that from the structures and the
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densities simulated in Chapter 5 we estimated the fraction of the boron 

atom s contained in the boroxol rings (50-64%). Further studies will 

investigate the alkali borates, alkaline-earth borates and borosilicate 

glasses.

The structural properties of crystalline and vitreous borates are 

clearly highly complex. This thesis shows, however, that computational 

m ethods, w hen used in conjunction w ith experim ent, can m ake an 

im portant contribution to their study.
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APPENDIX A

CHRIST’S POSTULATION ON THE STRUCTURES OF BORATE

MINERALS

Christ postulated several rules regarding to formation of hydrated 

borate polyanions (Christ 1960; Christ and Clark 1977).

His rules are as followings:

i. Boron will link either three oxygens to form a triangle or four 

oxygens to form a tetrahedron.

ii. Polynuclear anions are formed by corner sharing only of boron- 

oxygen triangles and tetrahedra in such a manner that a compact insular 

group results.

iii. In the hydrated borates, protonatable oxygen atoms will be 

protonated in the following sequence: protons are first assigned to free 

Q2- ions to convert these to free OH" ions; additional pro tons are 

assigned to tetrahedral oxygens in the borate ion; protons are next 

assigned to triangular oxygens in the borate ion; and finally any 

remaining protons are assigned to free OH" ions to form H 2 O molecules.

iv. The hydrated insular groups may polymerize in various ways by 

splitting out water; this process may be accompanied by the breaking of 

boron-oxygen bonds within the polyanion framework.

V .  Complex borate polyanions may be modified by attachment of an 

individual side group, such as (but not lim ited to) an extra borate 

tetrahedron, an extra borate triangle, 2  linked triangles, an arsenate 

tetrahedron, and so on.

vi. Isolated B(OH)3  groups, or polymers of these, may exist in the 

presence of other anions.
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APPENDIX B

THE REPORTED POTENTIALS FOR B2O3

There are several potential models reported specifically for vitreous 

B2 O3 . The details of these potentials are explained as follows.

i. Soules's potential (1980.1981)

The effective pair-potentials V were assum ed to be purely ionic 

(form al charge m odel) and their param eters w ere dete rm ined  

empirically.

Vij(r) = Aij exp(-r/0.29) + (qiqje^/r) erfc(r/0.35L) (A2.1)

Aij = 0.338*10-12 [erg] • (1+zi/ni + zj/nj)

• exp(ri + rj/0.29) (A2.2)

w here r is interatomic distance, L is size of sim ulation box; for boron 

atom ri is 0.74 [A], qi is +3 and ni is 2 ; for oxygen atom ri is 1.42 [A], qi is -2  

and ni is 8 .

This potential was applied to B2 O 3  glass and sodium  borosilicate 

glasses. It successfully reproduced the trigonal to tetrahedral conversion 

of boron w ith the addition of sodium  in agreem ent w ith  the NMR 

results. But the glass studied showed no tendency to form boroxol 

groups. In B2 O 3  glass, the broad distribution of B-O-B bond angles 

peaking near 155° was observed, similar to that found in vitreous silica. 

Soules stressed the absence of directional covalent bonding  as the 

limitation. This potential was also used for B2 O 3  glass by Soppe et al 

(1988) and for silver borate glass by Abramo and Pizzimenti (1986).

ii. Amini's potential (1981)

A  power-type force law was used in the study. The charge values, 

+1.125 and -0.75 for boron and oxygen atoms, were determ ined so that
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the MD sim ulation can reproduce reasonably the glass transition  

tem perature of ~ 600K (physical value of 540K, Ubbelohde 1978). The 

force law is

F(rij) = qiqj/rij^ [ 1 + sgn(qiqj) {(si+sj)/rij}n ] (A2.3)

w here F is force, rij is interatomic distance, n  is 8 ; for boron atom, s is 

0.153 [A], q is +1.125; for oxygen atom, s is 1.07 [A], q is -0.75.

This potential was applied to B2 O3  glass and gave pair correlation 

functions w hich agree w ith X-ray and neutron  diffraction results. 

However, no boroxol groups were observed. The distribution of B-O-B 

angles was very broad w ith an average of 154° suggesting that higher

fold rings were predom inant in the system.

iii. Hirao's potential (1985)

A  new potential V b-b of the form -A exp[-C(r-0.239)^] was added to 

the regular m odified Born-M ayer-Huggins-type potentials, V b -B/ to 

account for the directional tendency of the borate network structure. For 

B-B, B-O and 0 - 0  interactions we have;

Vij(r) = qiqje2/r + (1 + q i/n i + qj/nj) b exp{(ai+aj-r)/p} (A2.4) 

while only for B-B interactions, we add the following term,

VB-B(r) = Vij(r) -A exp[-C(r-0.239)2] (A2.5)

where r is the interatomic distance, b = 0.338*10"^^ [J], p = 0.029 [nm], A = 

6.94*10"^^ U], C = 7.62, for boron atom, a  = 0.074 [A], q = +3 and n = 2 ; for 

the oxygen atom, a  = 0.142 [A], q = -2  and n = 8 . The parameters A and C 

were chosen so that the B-B distance and the population of B-O-B angles 

in B2 O 3  glass becam e sim ilar to those ob tained  from  X-ray 

m easurem ents.

This potential was applied to sodium  borate glasses containing a 

small am ount of EU2 O 3 to investigate the local structures of cations in
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the glass. It reproduced both the radial distribution of the sodium borate 

glasses observed by small-angle X-ray diffraction and the change in 

coordination num ber of boron with sodium content obtained by NMR. 

They observed a high proportion of B-O-B bond angles at ~ 120° and a 

sm aller num ber at 145°. They suggested that the population at 120° 

m ight come from the connection of boroxol groups.

iv. Inoue's potential (1987)

This pseudo three-body model is explained in Chapter 2.5.2.

Three types of potentials were used.

1) Born-Mayer-type pair-potential for B-O (> 0.2 nm), 0 - 0  and B-B 

pairs. The potential parameters are described in Table B.l.

Vij(r) = B exp(-r/p) + (qiqje^/r) (A2.6)

2) Pair-potentials calculated by the in term ediate  neglect of 

differential overlap (INDO) method, for the B-O bond ( < 0.2nm).

3) As with the three-body effects, the interaction between the ghost 

atoms and the other atoms are supposed to be of the Born-Mayer type, 

and the param eters were determined so that the sum of these potentials 

was a minimum when the bond lengths and bond angles of the triangles 

took the value in Table B.2.

This potentials were applied to B2 O 3 glass and N a20-2B203 glass, 

and reproduced boroxol rings and diborate groups. In B2 O 3  glass, O-B-O 

and B-O-B bond angles have sharp distributions around 120°. However, 

the ratio of boron atoms present in boroxol rings in the simulated B2 O 3 

glass is 22.5% and smaller that reported ( see Chapter 2).
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B ( x10-16 J) p(nm)

N a-N a 1.49 0.03
N a-B 0.62 0.03
B-B 3.08 0.03
Na-B 6.33 0.03
B-O (>0.2 nm) 2.13 0.03
0 - 0
For O-B-O in BO3

G-O 19.64 0.015
G-B 1.39 0.015

For O-B-O in BO4
G-O 22.56 0.015
G-B 1.92 0.015

For B-O-B
G-O 1.46 0.015
G-B 24.53 0.015

Table B.l Parameter in the Inoue's potential (Inoue et al 1987)

Angle (deg) B-O distance tnml
O-B-O in BO3 120 0.137
O-B-O in BO4 109 0.148
B-O-B 120 0.144

Table B.2 Shapes of BO2  and B2 O triangles at the minimum potential 
energy (Inoue et al 1987)

y. Xu's potential (1988)

This potential was determined so that the MD calculations of B2 O 3  

and KB5 O 8 crystals could reproduce well the experim entally derived
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crystal structures. The pair-potential used is the Busing approximation of 

Born-Mayer-Huggins' form w ithout the dispersion terms and is purely 

ionic.

V(rij) = qiqje2 /rij

+ fo • (hi +bj) • exp[ (ai + aj - rij) /  (hi + bj) ] (A2.7)

where rij is the interatomic distance, fo is 6.9472 *10"^  ̂ N; for the boron 

atom, q = +3, a = 0.720 and b = 0.080; for oxygen, q = -2, a = 1.629 and b = 

0.085.

This potential was applied to B2 O3 glass and sodium borate glasses, 

and it was shown that the calculated compositional dependence of the 

fraction of the boron ions having tetrahedral coordination is in good 

agreem ent w ith the results measured by NMR. However, in B2 O 3  glass 

the B-O-B bond angle distribution has a broad peak around 160° and no 

boroxol ring was observed.

vi. Verhoef's potentials (1992)

Soules's potential (VI) and Xu's potential (V5) were modified. All 

the seven potentials have the same Born-Mayer-Huggins form

Vij(r) = Aij exp(-r/pij) + q iqje^/r (A2.8)

The V2 po ten tial w as m odified so tha t correct v ib rational 

frequencies were obtained. The V3 potential has the same pair-potential 

component as the V2  potential and supplemented with the O-B-O three- 

body bond-bending term of the form

Vijk (6 ) = 1 / 2  Kijk (6  - 0o)2 (A2.9)

w here Go is 120° for O-B-O and 130° for B-O-B. The force constant Kijk 

was determined so that the correct energy for the high frequency mode in 

the simulated infrared spectra was obtained. The B-O-B three-body term 

w as also added in the V4 potential. In the same m anner, the pair-
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potential parts of the V6  and V7 potentials were modified from the V5 

potential to obtain correct frequencies, and the B-O-B three-body term 

was added to the V7 potential. The potential param eters are given in 

Table B.3.

These potentials were applied to B2 O3 glass, and the structural and 

dynam ical properties of the sim ulated systems w are com pared w ith 

experimental neutron diffraction. X-ray, Raman and infrared data. They 

concluded that in all cases no boroxol ring was present, but the potentials 

w ith  the three-body term s reproduced the experim ental vibrational 

m odes.

case ABB ABO 
[10*3KJ/mol]

AGO pBB
[Â]

pBO poo qB qO KO-B-O KB-O-B 
[ÎQ /  (mol rad^)]

VI 13.4 78.63 182.3 0.29 0.29 0.29 3.0 -2.0 0 0
V2 9.614 33.72 79.63 0.29 0.29 0.29 2.0 -1.333 0 0
V3 9.614 33.72 79.63 0.29 0.29 0.29 2.0 -1.333 1000 0
V4 6.614 33.72 79.63 0.29 0.29 0.29 2.0 -1.333 1000 500

V5 5.424 1052 149700 0.16 0.165 0.17 3.0 -2.0 0 0
V6 0.6645 128.8 18330 0.16 0.165 0.17 1.050 -0.7 0 0
V7 0.6645 128.8 18330 0.16 0.165 0.17 1.050 -0.7 1500 0

Table B.3 Pair-potential and three-body parameters
in Verhoef's potentials (Verhoef and Hartog 1992)
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APPENDIX C
PHYSICAL PROPERTIES OBSERVED IN MD SIMULATION
(Kimura and Yonezawa 1983)

p] Structural properties
1) g(r) : Fair distribution function
2) S(q) : Structure factor 

[H] Thermodynamic properties
1) PvT Equation-of-state data (isobars in vT plane)
2) ap  : Isobaric thermal expansion coefficient
3) H : Enthalpy
4) Cp : Specific heat at constant pressure
5) Cv : Specific heat at constant volume
6 ) KX : Isothermal compressibility

[III] Dynamical properties
1) v|f(t) : Velocity autocorrelation function (VAF)
2) f(co) : Power spectrum

[IV] Transport properties
1) D : Diffusion constant (from VAF and from mean square

displacement)
2) T| : Shear viscosity (from stress autocorrelation function)

[V] Microscopic information of the atomic distributions
1) g(r) : Pair distribution function of time-averaged atomic

positions
2) Distribution of volumes of Voronoi polyhedra
3) Distribution of shape parameters of Voronoi polyhedra
4) Distribution of selected types of Voronoi polyhedra
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APPENDIX D

TERSOFFS POTENTIAL

An empirical interatomic potential for covalent systems such as Si 

was proposed by Tersoff (1986).

A pair potential is used:

E = XEi = 1 /2  • Vij (D.l)

Vij = fc(rij) [ Aij exp(-Xirij) - Bij exp(-^2rij)] (D.2)

w here E is the total energy of the system, Ei is the site energy for site i

(introduced to make the asymmetry of Vij more intuitively), Vij is the 

interaction energy between atoms i and j, rij is the distance betw een 

them , and A, B, X%and X2 are all positive, w ith X\ > X2- (The Morse 

potential is defined by X\ = ^2 -) Fc is an optional cutoff function to restrict 

the range of the potential. The first term in (D.2) is repulsive. The second 

term  is interpreted as representing bonding. Bij therefore im plicitly 

includes the bond order and m ust depend on the local environment. All 

deviations from a simple pair potential are ascribed to the dependence of 

Bij on the local environment. Specifically, the bonding strength Bij for 

the pair ij should be a monotonically decreasing function of the num ber 

of competing bonds, the strength of the competing bonds, and the cosines 

of the angles w ith the competing bonds. These three factors have been 

incorporated in the following simple trial potential:

Bij = Bo exp( -zij/b ) (D.3)

zij = [ w(rik)/w(rij) • [ c + exp(-d cosGijk ) ]'^ (D.4)

where w(r) is the "bare" bonding potential, w(r) = fc(r)exp(-^2 r). Here zij 

is a weighted measure of the num ber of bonds competing w ith the bond 

ij, and b determ ines how rapidly  the bond strength falls off w ith 

increasing effective coordination. The first term in (D.3) is just the ratio
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of the unsealed bond strengths of the bonds ik and ij, raised to the power 

n. The param eter n  thus determines how m uch the closer neighbours 

are favoured over the more distance ones in the competition to form 

bonds. The final term  gives the dependence on bond angle, w hich is 

taken as a function of cos(0ijk) to insure the proper analytic behaviour. 

0ijk is the angle between bonds ij and ik. Note that this form ulation is 

not symmetric, i.e., Vij Vji.

This model accurately described bonding and geometry for m any 

structures of Si, including highly rebonded surfaces.
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