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Abstract

“Computations on the Infra-red Spectra of Triatomic Molecules” is a write-up of two 

projects in the field of computational spectroscopy. The first is the calculation of the 

opacity of hot water vapour.

The water molecule is one of the most im portant absorbers in the infra red spec­

trum  and it has been studied at length. Perhaps surprisingly, there is little  reliable data 

on hot water (above ~  1000 K) available. The m ajor source of experimental data  is 

around twenty-five years old and is flawed. It is both inaccurate and imprecise. Another 

source for molecular data  is the HITRAN database. The HITRAN data gives very accu­

rate results for water at low tem peratures but is unreliable at the higher tem peratures 

encountered, for example, in the atmospheres of cool stars.

It was clear th a t the available data for hot water was somewhat lacking. Since there 

is interest in modelling cool stellar atmospheres it was necessary to calculate a more 

comprehensive list of molecular data. The results of those calculations are presented 

including a comparison with the previously available sources of data. Subsequent devel­

opments in this area and possible future work are discussed.

The second project is the calculation of an effective potential energy surface for the 

ground electronic state of nitrogen dioxide. Nitrogen dioxide has a somewhat unusual 

electronic structure which makes it a particularly interesting molecule. This also creates 

difficulties peculiar to nitrogen dioxide. Another reason for working on this molecule is 

that it is a significant atmospheric pollutant and absorber. There have been a number 

of attem pts to determine an accurate ground state potential energy surface for nitrogen 

dioxide. These attem pts are described and their deficiencies discussed. The method with 

which the new surface was determined is presented. Rovibrational calculations on the



surface are compared with observations and possible future work is considered.
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Chapter 1

Introduction

1.1 Introduction  to M olecular Spectroscopy

Spectra, the absorption or emission of light at characteristic wavelengths, have long been 

known to provide accurate fingerprints of molecular species. Spectroscopy is routinely 

used for characterising samples even when in complex mixtures. It can also be used 

to help determine tem perature and isotopic abundances. This is particularly useful in 

astronomy where molecular spectroscopy gives a unique handle on the conditions within, 

for example, molecular clouds and the atmospheres of planets and cool stars.

The detailed information contained in the spectrum of a molecule is a sensitive re­

flection of the underlying interactions within tha t molecule. The rotational transitions 

are a guide to the molecular geometry; vibrational transitions contain information about 

how the atoms within a molecule interact and thus can give detailed information about 

these interactions.

The nuclear motion within a molecule, or the interaction of the atoms, is described 

by a potential energy surface. These surfaces also contain information about reaction dy-



namics, transport properties and interactions in the liquid and solid states. For molecules 

larger than diatomics, it is not possible to directly invert spectroscopic data to obtain a 

potential surface. See below for more information on the construction of potential energy 

surfaces.

1.2 M otivation  for m olecular spectroscop ic data

Spectra of polyatomic molecules are generally complicated sometimes containing thou­

sands of lines. Assigning these spectra, i.e. determining the upper and lower states 

for each transition, can be difficult. This process can be greatly aided by calculations. 

Similarly, computed predictions of the locations of transitions can help the search for a 

particular species.

One im portant area for infra red spectroscopy is the modelling of the E arth ’s atm o­

sphere particularly in relation to the Greenhouse effect. The opacity (the total absorption 

as a function of wavelength) of the atmosphere in the infra red region is critically impor­

tan t. The value of work towards computed opacities for atmospheric molecules is thus 

clear.

1.3 N eed  for, and construction  of, p o ten tia l energy  

surfaces

The Born-Oppenheimer approximation [1] proposes th a t due to the greatly differing 

masses of the nuclei and electrons, their motions can be considered separately. That is, 

nuclei move very much more slowly than electrons so it can be assumed that the electrons
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instantaneously relax to any changes in position of the nuclei.

If the Born-Oppenheimer approximation is correct, it is possible to create an elec­

tronic potential surface (for a particular electronic state) and use this to solve the ro­

vibrational properties of a molecule.

This potential may be created by ab initio calculations at a grid of points fitted to an 

appropriate functional form. It is also possible to create a potential surface by the more 

empirical method of determining the surface with reference to observed spectroscopic 

data. Such a surface may be refined by comparing computed results generated from it to 

observations. As the differences between the calculated and observed data are minimised, 

the surface is improved. For this to be possible, observed data must be available and 

understood. It should be noted that a surface constructed in this way may not be the 

Born-Oppenheimer surface. Any non-Born-Oppenheimer character of the molecule will 

be reflected in the observed data and thus the final surface will include tha t character.

1.4 Structure o f th is T hesis

Presented here are two separate projects. The first (see Chapter 2) is the calculation of 

the opacity of water up to high temperatures. The second (see Chapters 3 and 4) is the 

production of an effective ground electronic state potential energy surface for NO2. W hat 

follows in this chapter is a general introduction to the field of molecular spectroscopy 

and to some of the theory behind the work presented later.
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1.5 M eth od s o f com puting m olecular spectra

Given a potential surface for a molecule, one must devise a m ethod for calculating wave- 

functions and energy levels on it.

Low-lying states of small molecules are usually considered to undergo small-amplitude 

vibrations about some equilibrium geometry. Their rotations can be considered as those 

of a (near) rigid body. If interaction between vibrational and rotational motion is dis­

counted in such a system, the vibrational wave-functions are the products of harmonic 

oscillators [2] and the rotational wave-functions are found by solving for a rigid rotor 

model [3].

This is of course inaccurate and can be improved by the use of perturbation theory 

[4, 5] This theory considers a system in terms of one with known solutions which has been 

slightly perturbed. Applied to the model of molecular vibrations, perturbation theory 

yields values for the derivatives of the potential at the molecule’s equilibrium geometry. 

This gives a very good representation of the potential at equilibrium but not necessarily 

at any other arbitrary geometry.

1.5.1 The Hamiltonian Operator

In this section a discussion of the Hamiltonian operator for the nuclear motion (i.e. 

assuming the Born-Oppenheimer approximation) of a triatom ic molecule in a generalised 

set of internal co-ordinates [6] is presented. These co-ordinates describe the relative 

motions of the nuclei. Each internal co-ordinate can be thought of as one of the system ’s 

degrees of freedom. Internal co-ordinates are generally considered to be advantageous 

as they lend themselves naturally to the distinction between rotations and vibrations. 

Certain com putational advantages are also apparent.
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Figure 1.1: Triatomic co-ordinate system. Ai represents atom  i. The co-ordinates in this 

work are given by ri = A 2 — R, r 2 = A\ — P  and 6 = A 1 Q A 2 .

For an A^-body system, the number of internal co-ordinates is 3N  — 6. These are 

arrived at by taking the 3N  absolute co-ordinates then subtracting 3 for translational 

motion of the whole system and then another three which are associated with the com­

plete rotational motion of the system. Note tha t for a linear molecule one of its possible 

rotations is trivial so there are 3N  — 5 internal co-ordinates.

A highly generalised set of internal co-ordinates for a triatom ic molecule is shown in 

figure 1.5.1. The system is defined in terms of two lengths and an included angle.

It is possible to define parameters gi and § 2  as [6]:
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Subsets of this generalised system include scattering co-ordinates where gi = ,

^2 =  0; bondlength-bondangle co-ordinates where gi = Q2 = 0; and Radau co-ordinates 

where </, =  ! -  ÿj =  1 -  where, a  = and 0

For a three-body system the Hamiltonian, H, is given by

^  ^  E  (1.2)
 ̂ 1=1

where V^(xj) is the Laplacian operating on the zth particle of mass i, and V  represents 

the potential energy of the system. The axis frame in this form for the Hamiltonian can 

be regarded as arbitrary since the potential energy is invariant to translation or rotation.

It is necessary to remove the translational motion from this operator and also to trans­

form the Hamiltonian after a particular axis embedding. Each tim e a new co-ordinate 

system or axis embedding is required, it is necessary to construct a new Hamiltonian for 

the system. A general method for deriving these Hamiltonians has been developed by 

Sutcliffe [7].

Unfortunately, the process of choosing internal co-ordinates and axis embedding in­

troduces geometries into the Hamiltonian where it is badly behaved i.e. singular. For 

example these badly behaved geometries are often encountered when a molecule becomes 

linear. In this case, as mentioned above, the system has 3N  — 5 instead of 3N  — 6 vibra­

tional modes. Thus special care is required for any bent molecule which samples linear 

geometries.
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1.5.2 Variational Calculations

The variational principle [8, 9] allows one to construct and diagonalise a Hamiltonian

m atrix which is defined in terms of m atrix elements linking some set of basis functions. It

can then be shown tha t the better the representation offered by the set of basis functions, 

the lower the calculated energies will be [10]. Hence, in a series of calculations, as one 

enlarges and/or improves the basis set, the energies approach from above the ‘exact’ 

values.

For the ground state of a system consider:

e =  J  (j)*H(f)dv, (1.3)

where ^ is an arbitrary, normalised wave-function which is single-valued, finite and 

continuous in the accessible space, and H  is the full Hamiltonian operator of the system. 

If (f) is set equal to the true ground state of the system, ?/o, then

J  i/^QÈil^odv = Eq. (1.4)

Now, ({) can be w ritten as an expansion in the true wave-functions, of the system

oo

(j) =  ^  ̂ (l.h)
n = 0

The true wave-functions form an orthonormal set and so we have the additional 

condition,

oo

'y y ^mn* (1.6)
n ,m = 0

Substituting this into (1) gives

15



J  . (1.7)
n,m =0

Since the are the true wave-functions of the system, we have,

Hll^n = Eni^n (1.8)

and

e = ^ a l a n E n .  (1.9)

Subtracting (̂ u^ uE q from each side of (7) and using

^ a !^ a n E Q  =  E o '^ a '^ a n  =  Eo  ( 1. 10)

leads to

OO

e — Eq = ^  a'^an{En — Eq). (1.11)
n = 0

The product is either zero or positive. Thus, since Eq corresponds to the energy 

of the lowest state of the system. E n  must be greater than or equal to E q . Therefore it 

is true th a t

e > E o .  (1.12)

So using this method it is possible to minimise e thus achieving the closest possible 

approxim ation to E q for the original functions ÿ. This variational m ethod can be ex­

tended to give a similar result for the energy of an excited state provided tha t the trial
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function (j) is made orthogonal to all the energy eigenfunctions corresponding to states 

having a lower energy than the level being considered.

Consider energy levels in ascending order: E q ,E i ,E 2 , . . .  and let the trial function,

ÿ, be orthogonal to the energy eigenfunctions =  0, 1, . . .  z), i.e.

=  0, 72 =  0, 1 , . . . 2 (1.13)

Then if we expand (j) in the orthonormal set {z/̂ n} as in equation 1.5, we have

Un =  =  0, 72 =  0, 1, . . .  2 (1.14)

and E{(j>) becomes

E{4>) = (1.15)

SO that

Ei+I < E{(j)) (1.16)

As an example, suppose that the lowest energy eigenfunction, t/iq, is known. Let (f) 

be a trial function. Now, the function

^  = <l> -  i ’o i'^o\4>) (1.17)

is orthogonal to 'ipo (i.e. =  0) and can therefore be used to obtain an upper

limit of E l , the exact energy of the excited state.

In many practical situations the lower energy eigenfunctions 7/>„,(72 =  0 , 1 , . . .  2) are not 

known exactly so only approximations of these functions are available. In this case the
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orthogonality condition (equation 1.13) cannot be achieved exactly and thus equation 

1.16 is violated. For example, suppose that the (normalised) function <̂o is an approxi­

mation to the true ground state eigenfunction ÿo- If is a trial function orthogonal to 

(f)Q (i.e. ((/!>o|</>i) =  0) it may be shown that

E\ — €q{E\  — E q) <  E[(j)i) (1.18)

where cq is the positive quantity given by

=  1 “  I i'̂ l̂ o\(f>o) 1̂ (1.19)

Thus E{(f>i) does not provide a rigorous upper bound to Ei. However, if <ÿo is a good 

approximation to •0o then eq will be small and the violation of Ei < E{(f)i) will be mild.

1.5,3 FB R

For triatom ic molecules ro-vibrational energy levels are frequently found by using basis 

set expansions and the variational principle. Given an internal coordinate system, Q, 

and a Hamiltonian the next step in the variational approach is to choose basis functions

to represent the motion of the nuclei. Vibrational motion can be expressed as products

of suitable one-dimensional functions, F (Q ), so tha t the wavefunction of a vibrational 

state i can be w ritten

E  4i,-....^^Wi)ft(Q2)a((33)... (1.20)

where the expansion coefficients c* are obtained by diagonalising the secular m atrix 

constructed in terms of the basis functions. This method is known as the finite basis

18



representation (FBR). The term  finite is used to stress th a t in practice it is necessary to 

truncate what should in principle be an infinite expansion.

Suitable basis functions include harmonic oscillators (Hermite polynomials), Morse 

oscillators (Laguerre polynomials) and related functions, and free rotor functions (Legen­

dre polynomials). Harmonic [11] and Morse [12] oscillator functions contain parameters 

tha t can be optimised using the variational principle to obtain compact one-dimensional 

basis sets.

For a given basis set it is necessary to integrate over all coordinates to form the 

secular m atrix. For an arbitrary potential function analytical evaluation may not be 

possible so this integration required numerical quadrature. A very satisfactory way of 

doing this is to note tha t all the basis functions mentioned above can be expressed in 

term s of orthogonal polynomials. The integrals can be evaluated numerically using the 

appropriate Gaussian quadrature scheme for each function [11, 12, 13].

Rotational motion is carried in these calculations by Wigner rotation matrices, 7 ).

Unlike the vibrational basis functions, these form a finite set. I.e. For a given value of J  

it is necessary to include only the 2J  -f 1 functions with — J  < /? <  + J ,  where k is the 

projection of J  on the molecular z axis. In practice the rotational parity can be used 

to separate this problem into ones of dimension J  = I and J  with P  =  0 and P  =  1 

respectively. In this case the overall rotational parity is given by (—l)' '̂*" .̂

The coupled rotation-vibration problem is best solved in two steps [14, 15]. Firstly 

solve J  -f 1 vibrational problems, one for each value of |A:|. The lowest solutions of these 

problems are selected as a basis for the fully coupled problem [15].
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1.5.4 D V R

One problem with using the basis set method is tha t only a small proportion of the 

solutions obtained by diagonalising the secular m atrix are of any significance. This 

means that basis set calculations perform poorly when a large num ber of energy levels 

are required.

An alternative is to use a fini te-element method such as the discrete variable repre­

sentation (DVR) [16, 17]. Although this method is not strictly variational it has strong 

links with basis set methods. This is because the formulation of the problem in a DVR 

first requires the construction of the secular m atrix in terms of appropriate (polynomial) 

basis functions. This m atrix is then transformed to a grid of points determined by the 

appropriate Gaussian quadrature scheme for each function. In the DVR it is possible to 

define hierarchy of problems which can be diagonalised and the lowest solutions selected 

and used to expand the next problem [18]. In this fashion final Hamiltonian matrices 

are constructed with a very high informational content — up to half the solutions of the 

final m atrix may be physically significant [19].

The difference between FBR and DVR is clear. In the FBR the solutions are expressed 

as coefficients of basis functions; in the DVR the solutions are expressed as the amplitudes 

of approximate solutions at a well defined set of grid points. The DVR is isomorphic to 

an FBR of the same order and where m atrix elements are evaluated using the appropriate 

quadrature on the DVR points.

The DVR method relies on successive diagonalisation and truncation in coordinate 

(or point) space. This technique is extremely effective in supplying very representative 

interm ediate bases. Indeed, it can be shown to give the optim al hierachy of adiabatic 

basis sets [17].
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The DVR has an additional advantage over FBR, By working in point space the 

method actually ‘scans’ the potential energy surface during the calculation and so pro­

vides the best possible basis all over the regions of interest on the surface. For complicated 

and strongly coupled surfaces this is very useful.

As implied by its name, the DVR is used to solve the nuclear motion problem in 

a point space rather than in the continuous function space of the FBR. The DVR is 

achieved by taking the Hamiltonian operator in the FBR and transforming it using a 

unitary similarity transform ation matrix. The m ajor advantage of the DVR is that 

one can successively construct and diagonalise reduced dimension Hamiltonian matrices, 

and use a contracted set of these interm ediate solutions as a basis to solve the next 

higher dimension Hamiltonian. This results in a final Hamiltonian of much reduced size 

(compared to an equivalent FBR calculation) and of very high informational content. 

Another im portant (computational) advantage is that, to a very good approximation, 

the DVR theory makes the potential energy function totally diagonal in the DVR grid 

points.
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Chapter 2

Com puted infra red absorption  

properties of hot water vapour

2.1 In trod uction

The water molecule is one of the most im portant absorbers in the infra red spectrum 

and it has been studied at length. Perhaps surprisingly, there is little  reliable data on hot 

water (above ~  1000 K) available. Ludwig [20] provides one source with his measure­

ments of the absorption of water between 1000 and 3000 K. Ludwig quoted values for 

absorption coefficients of water in frequency bins with a width of 25 cm"^. Ludwig’s data 

has been extensively used for constructing water band profiles, atmospheric modelling, 

laser modelling, flame models and the analysis of cool stellar atmospheres.

Jones et al [21] analysed the atmospheres of M dwarfs. These stars have relatively low 

effective tem peratures ( <  4000 K ) allowing the presence of molecular species. W ater 

is the m ajor absorber, other significant species being TiO, VO, FeH, and CH4.  Jones 

et al used Ludwig’s data in their attem pts to calculate accurate effective tem peratures.
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Alexander et al [22] and Plez et al [23] developed, using the opacity sampling method, a 

table of randomly distributed water lines derived from Ludwig’s experimental data. This 

work was then used by B rett et al [24] in their models of M dwarfs but this treatm ent 

failed to reproduce the infrared spectra of these stars [25].

Yoshida et al [26] performed an analysis of radiative heat transfer in a nonisothermal 

and nonhomogeneous atmospheric boundary layer. Specifically they investigated the 

effect of aerosols which they considered to em it, absorb and scatter radiation energy. 

They investigated the effect of aerosol diameter and found tha t in some cases the effect 

of aerosols is strong. They used Ludwig as their source of water absorption data.

Fowler [27] worked on a method for powering rockets. His m ethod involves the use 

of a ground based high-power laser to transm it energy to a rocket. This energy has to 

be absorbed by the rocket and imparted to the fuel. To do this, a seed molecule can 

be placed in the H] fuel creating a mix eg H2O in H2. The tem perature dependence of 

the coupling molecule’s absorption coefficient (at the laser’s frequency, while immersed 

in H2) is thus of interest. Fowler refers to Ludwig for “spectroscopic properties” of H2O.

Sources of hot water data other than Ludwig are less useful. Phillips [28] used a 

Fourier-transform spectrom eter to obtain transmission spectra for water vapour at 300- 

1000 K over a lim ited range of the infra red spectrum. The high resolution data were 

averaged over a 25 cm “  ̂ ’’bandpass” and band-model param eters were then determined 

by means of a nonlinear least-squares fit. There are other examples of less comprehensive 

data  [29, 30] and only earlier work by Ludwig et al [30] investigated high tem peratures. 

All of these studies used a resolution no greater than 25 cm~L

The HITRAN database [31] is a frequently used source for molecular data. This 

contains 30,117 individually measured lines for H2O, although it should be noted that
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some of the intensities were calculated rather than measured. The HITRAN data should 

lead to very accurate absorption coefficients at 300 K (for which it is primarily designed) 

but the database contains too few high lying levels to be reliable at high tem perature.

It was clear tha t the available data for hot water was somewhat lacking. Since we 

are interested in modelling cool stellar atmospheres it was necessary to  calculate a more 

comprehensive line list. Use of this line list has shown tha t the very coarse resolution of 

Ludwig’s results is a m ajor problem.

2.2 D ata

This section and the following one contain some more detailed information concerning 

the sources of the data used in this work.

Ludwig measured the absorption coefficients of water at high tem peratures experi­

mentally using a flame apparatus. This consisted of a series of flattened tubes manifolded 

together. Each alternate tube supplied oxygen and hydrogen which were ignited to form 

hot water vapour. A regulated blackbody source was positioned at one end of the flame 

with a monochromator opposite it at the other end. Ludwig quoted results for absorption 

coefficients at seven tem peratures between 300 K and 3000 K. The range of frequencies 

covered was 0 -  9300 cm~^. Critically, this range was broken down in to large “bins” 

with a width of 25 cm “ .̂ It is this low-resolution which is one of the main problems with 

using his data.

The high-resolution transmission molecular absorption database (HITRAN) is a com­

pilation of spectroscopic data for im portant atmospheric molecules. We used the absorp­

tion data for H^^O from the 1986 edition (which is essentially unchanged in the 1992 and 

1996 editions) to compare to our calculated line list and Ludwig. The database contains
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30,117 lines in which it quotes values for:

J '  Ka' Kc' F ' S ym ' J ” K a" Kc" F ” Sym "  and for the natural abundance weighted 

transition probabilities, in Debye^ (for each transition frequency, oj).

To calculate the integrated absorption intensity, in cm “  ̂ atm~^, for each transition 

we used the expression:

,a.„

where Q is the partition function (see equation 2.2), w is the transition frequency in 

cm~^ , g is the nuclear spin degeneracy factor and the constant of proportionality, C, 

has the value 11.152 for the particular combination of units and natural abundance of 

atomic isotopes used in HITRAN.

The HITRAN database should give very accurate absorption coefficients at around 

300 K. However, the database does not contain enough high-lying rotational levels and 

hot bands to be a reliable source at much higher tem peratures.

2.3 C alcu lation  o f th e Line List

Due to the lack of comprehensive data on hot water absorption, it was necessary to 

calculate a line list. The primary motivation was the need for such data to study cool 

stellar atmospheres [32]. The line list of infrared water transitions was generated using 

first principles quantum  mechanics. This list has been used to model the atmosphere of 

the cool M dwarf star VBIO [33]. When this model was compared to result calculated 

with Ludwig’s absorption data, it was found to be significantly different. This difference 

was the motivation for a more detailed comparison between the line list and Ludwig, 

using the HITRAN data as a further comparison.
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The water line list was calculated using first principles quantum  mechanics to find 

the rotation-vibration energy levels, wave-functions and associated dipole transition 

strengths. The calculation was performed using the TRIATOM  [34] program which 

finds exact variational solutions for a given potential (within the Born-Oppenheimer 

approximation) using an FBR procedure.

The calculations were performed on the best, at the tim e, water potential available 

[35] due to Jensen [36]. Transition intensities were found using the D1P0LE3 program 

[37, 38] and the dipole surfaces of Wattson and Rothm an [39]. The potential energy 

and dipole surfaces were constructed by optimising ah initio surfaces to reproduce high 

resolution spectroscopic results.

Detailed comparison of all the observed vibrational band origins calculated with those 

calculated using Jensen’s potential shows a standard deviation of 6.4 cm~^ [35]. However 

for the bands of interest here, the calculations reproduce the band origins with a standard 

deviation of only 0.9 cm ” .̂ For low lying rotational levels Jensen’s potential reproduces 

the observed rotational term  values with a standard deviation of only 0.14 cm“  ̂ [35]; but 

calculations for high lying rotational states ( J  ~  20) show errors as large as 10 cm “  ̂ [40]. 

Comparisons of individual line-strengths with those tabulated on the HITRAN database 

have been performed by W attson and Rothman [39] and Lynas Gray et al [37] who 

found tha t most of the strong transitions were reproduced within the 10% error quoted 

in HITRAN.

The initial line list ( “M T” line list), reported by Miller et al [41] (who give details 

of the calculations) was extended by Allard et al [33]. It is this line list tha t we use 

in this work. The line list is based on calculations performed for rotational levels up to 

J  =  30. Although convergence was good for states with J  <  20 it deteriorated to about
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10 cm “  ̂ for states with J  =  30. All levels up to 11,000 cm~^ above the ground state 

are included as well as many, but not all, higher ones. Transitions were calculated using 

only rigorous selection rules concerning angular momentum (A J  =  0, ±1) and parity

[42]. 8.4 X 10  ̂ transitions were calculated and 6.2 x 10^, with line strengths greater than 

10~̂ ® (Debye squared), were retained in the line list used here. In part this procedure 

was used to remove spurious orthoe-^para transitions discussed below.

One of the problems with the line list is tha t the calculations do not distinguish 

between wave-functions of the ortho and para states ([43]) of water. This is due to 

technical reasons originating from the choice of coordinates in the TRIATOM program. 

We therefore weighted ortho and para transitions with a nuclear spin degeneracy factor 

of ^ =  2. Of course the weighting should be ^ =  3 for ortho states and ^ =  1 for 

para states but this approximation is reliable at high tem peratures since most of the 

high-lying rotational levels occur in (nearly) degenerate o rtho-para  doublets.

At low tem peratures this approximation is not so good. Therefore we identified the 

25,894 transitions associated with the vibrational ground state (in rotational levels up 

to J  =  10) and gave each of them their correct nuclear spin factor. Detailed comparison 

with HITRAN data at 300 K showed that this procedure greatly improved our predicted 

absorption parameters at 300 K and made little difference at 3000 K. A similar procedure 

(i.e. assigning nuclear spin statistics by hand to low-lying levels) was found to give 

reliable partition functions for [44].

2.4 C alcu lation  o f the A bsorption  C oefficients

In equation 2.1, Q is the partition function. The partition function used here was was 

calculated directly from the MT line list ro-vibrational energy levels by explicit summa­
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tion

<5 =  p 2 /  +  l ) 5 i e x p ( ^ )  (2.2)

where i runs over all the computed levels with rotational quantum  number J ,  J  values 

considered ran from 0 to 30 and, for reasons discussed above, g = 2  for all levels which 

had not been identified as ortho [g — 3) or para {g =  1). This is obtained as a sum over 

all available calculated levels. Clearly it is necessary to truncate the sum so the values 

for Q are a lower limit. Convergence tests [45] suggest th a t the error is less than 1% 

even at 3000 K. Our values for Q are in good agreement with those from other sources 

including HITRAN.

However, this definition of the partition function differs from that generally used 

in astrophysical calculations [46, 47]. The discrepancy stems from a difference in the 

value used for the atomic nuclear spin for H. The tendency in astronomy is to use 

Q{atomic) =  2 / 4- 1  where 7 = 1 / 2  for hydrogen, whereas amongst non-astronomers the 

use of Q(atomic) =  1 is often favoured. So this difference works through as a factor of 

(2 / -f 1)^ =  4 for water (remembering that for 7 =  0).

In order to compare our calculated absorption coefficients (and those calculated from 

HITRAN) with Ludwig’s data, initially we binned our results by frequency into bins 

of 25 cm~^. No consideration to line-shape was given in this process. Estimates of the 

Doppler and pressure broadening half widths (based on formulae from Phillips [28]) show 

th a t these effects are negligible for our purposes; the self-broadening Lorentz half width 

is never greater than 0.5 cm “  ̂ for pressures up to 1 atmosphere.

A smaller bin size of 5 cm “  ̂ was also used. This clearly showed up how Ludwig’s 

da ta  smears out much of the structure in absorption profile.
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2.5 R esu lts and D iscussion

Over the frequency range considered, at 300 K, (25 cm “  ̂bins) all three data sets produce 

similar results for the absorption coefficients (see figure 2.1).

At 3000 K (25 cm~^ bins), see figure 2.2, the absence of high J  lines and bands 

arising from vibrationally excited states, together with the lim ited number of bands 

covered causes serious gaps in the HITRAN absorption coefficients. Ludwig’s absorption 

coefficients above 4000 cm “  ̂ appear to be larger than the others. A discrepancy between 

the Ludwig results and other measurements of the bands at 1.4 ^m  and 1.1 jjim has 

already been noted [48]. We also find a similar mismatch with these new calculations of 

the 1.9 /im band and suggest tha t Ludwig’s results overestimate the absorption coefficient 

of water over the entire 1 - 2  fim  region at higher tem peratures. The only other, even 

older, absorption coefficients available for this region at high tem perature, due to Ferriso 

et al [30], give results very similar to Ludwig’s and will not be considered further here.

Displaying our results and those from HITRAN in 5 cm~^ bins shows the huge effect 

of Ludwig’s coarse 25 cm~^ bins. They clearly result in extremely poor resolution data 

since much more structure can be seen from HITRAN and our calculated coefficients. 

Examining the pure rotation spectrum at 300 K illustrates this point well, see figure 2.3. 

Ludwig seems to give a reasonable average value but clearly loses a great deal of the 

structure.

The presence or absence of structure is very im portant for considering radiative trans­

port properties such as the opacity of a stellar atmosphere. Photon escape through gaps 

in the water spectrum  can be very im portant and this effect increases the importance of 

any other absorbers that might fill the gaps.

At 3000 K, figure 2.4 Ludwig’s results are blue shifted by about 100 cm"^ although
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the general shape and magnitude of the band are satisfactory. We can see at 3000 K the 

deficiencies of the HITRAN database. The absorption band is too small and is truncated.

Exam ination of the stretching overtone at around 7200 cm ”  ̂ shows up some more 

interesting features. At 300 K, (figure 2.5) the magnitude of the absorption band is 

approxim ately equal for each of the sources of data. However, on closer examination it 

can be seen that a peak in the Ludwig data at 7200 cm~^ coincides with a dip in the 

absorption given by HITRAN and our calculations on the MT line list. . At 3000 K 

(figure 2.6) Ludwig overestimates the absorption as noted earlier. The general absorption 

profile is similar to ours. Again we can see that HITRAN does not contain sufficient 

lines to produce accurate absorption coefficients at high tem perature. The bend-stretch 

combination around 1.9 fim  shows similar comparisons.

2.6 C onclusions and Subsequent W ork

We have shown that the MT line list can be used to produce the absorption coefficients 

for water, particularly at high tem perature. These coefficients have been compared to 

those of Ludwig [20], but can be used in a more flexible and realistic m anner to allow for 

the many gaps tha t appear in the infra red spectra of a light molecule such as water. 

In addition, using standard formulae (for example those quoted by Phillips [28]) line 

profiles can be generated for a range of tem peratures, pressures and compositions.

The MT line list was their first attem pt at the comprehensive treatm ent of the 

rotation-vibration spectrum  of a triatom ic system. There is no doubt that the accu­

racy and extent of the line list can be improved. In particular, new and significantly 

more accurate potential energy surfaces for water are now available [40, 49, 50] and the 

new 3D DVR code [38] not only resolves the problem with the ortho-para nuclear spin
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statistics discussed above, but also should allow the generation of reliable results for 

higher lying states. A new water linelist, taking advantage of these improvements, is 

currently being generated by Viti [51].

Subsequent to publication of this work, these results were commented on and used 

by other researchers. Jones et al [52] performed a comparison of observed and synthetic 

water spectra in a range of M dwarfs. The comparison shows good agreement. The 

effective tem peratures found are similar to those of previous work. A definitive effective 

tem perature scale was not determined. It is hoped that with the next generation water 

line list and a more complete understanding of molecular line broadening that this will 

be possible in the future.

Allard et al [33] presented results of model atmosphere calculations for cool M dwarfs. 

They compare the results of calculations performed using the MT line list and using 

Ludwig’s experimental results. The calculations performed with the MT line list fit 

observations significantly better, thus demostrating the superiority of using the line list 

for modelling cool stellar atmospheres.

Subsequent to the work presented here, an extension of HITRAN was compiled: 

HITEM P [53, 54]. It is a m ixture of measured an calculated transitions which includes 

some additional data for calculating opacities for higher tem peratures. It has not yet 

been made generally available. There has been a new linelist published by Partridge and 

Schwenke [55] (PS). PS contains 300 million transitions and so offers a good database 

for high tem perature computations.

Worden et al [56] took infrared spectrometer readings of wildfires in the western 

United States. In order to model the data tha t they had measured they required a 

background spectrum  for hot water (amongst other molecules). They used data from
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HITRAN for this purpose but found tha t they were unable to reproduce certain strong 

lines from their spectra. The work of Schryber et al [57] was used to highlight the fact 

tha t the HITRAN database was not sufficient for their requirements and tha t the initially 

unreproducible lines were from hot water.
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Chapter 3

Critical R eview  of Potential Energy 

Surfaces for the State o f N O 2

3.1 In trodu ction

There are several reasons for attem pting to create an accurate ground electronic state 

potential energy surface for NO2. There is a full set of observed vibrational energy levels 

available [58]. The problem is interesting as quantum  chaos sets in at higher energies [59, 

60]. Also, a ground state  PES is needed to study the problems involved with the coupling 

with the higher electronic state and to study the breakdown of the Born-Oppenheimer 

approximation. There is additional interest in NO2 as it is an atmospherically im portant 

molecule, notably being involved in atmospheric ozone chemistry [61].

One of the reasons th a t the NO2 molecules a ttracts considerable interest is its complex 

infra-red spectrum . This is caused to some degree by the crossing of its ^Ai ground state 

and its ^ 8 2  excited states (see figure 3.1).

The Ai state has a conical intersection with the A'^B2 state  and forms a Renner pair
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[43] with the É ^B i  state at linear geometries. The A ^B 2 state  has an energy relative to 

the ground state minimum of around 10,000 cm “  ̂ at its equilibrium geometry, so clearly 

the potential surfaces described here are only an accurate representation of the ground 

state up to around tha t energy.

There have been a number of attem pts to determine an accurate ground state po­

tential energy surface for NO2 These will be described in this chapter. Each of them  

is somewhat different from the others but all of them  were suspect in one way or an­

other. Problems with the surfaces include poor accuracy, spurious m inim a and a lack of 

comparison of calculated rotational data ( J  >  0) with observations.

3.2 E xperim ental data

In 1991, Delon and dost [58] published the full set of 191 vibrational levels below 10,000 

cm~^ and some levels up to 12,000 cm~^. The method they employed was the Laser 

Induced Dispersed Fluorescence Spectroscopy of jet cooled NO2. See next chapter for 

further details.

3.3 H irsch, Buenker and Petrongolo

Hirsch, Buenker and Petrongolo (HBP) and co-workers have w ritten a series of six papers 

on the vibronic structure of NO2. Only the first four had been published at the outset 

of this work.

In paper 1 [63], they calculated potential surfaces for the two lowest states of 

NO2. They used the MRD-CI method to calculate the surfaces.

Paper 2 [62] describes the non-adiabatic coupling between the two previously calcu­
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lated state  and the construction of a diabatic representation for the states. The diabatic 

representation was determined by transforming the adiabatic Cl wavefunctions.

HBP go on to produce both diabatic and adiabatic potential functions for the two 

lowest states in part 3 [64] of their series. From these functions they find values for 

various features of the two states: equilibrium geometry, location of the crossing seam, 

excitation energy of the A^A' state and an estim ate of the vibrational freqencies of the 

ground state.

In a Research Note [65], HBP considered the path from the ^B 2 stationary point to 

the m inim um  of the lowest surface.

P art 4 [66] contains further calculations of the vibrational energy levels of the the 

electronic ground state of NO2 in both the diabatic and adiabatic representations, HBP 

et al performed large-scale variational calculations and produced values for vibrational 

levels up to 18,000 crn~^ for the diabatic surface and compared levels up to 5,000 cm “  ̂

of the adiabatic surface with experimental observations.

P art 5 [67] is a study of the nonadiabatic vibronic states of the X'^Ai/À '^B 2 coni­

cal intersection of NO2. HBP et al computed 1500 nonadiabatic levels of the conical 

intersection up to 18,700 cm “ .̂

The accuracy of H B P’s calculated values for vibrational term  values (computed nona­

diabatic band energies) is very good for ab initio calculations. However, these type of 

calculations cannot produce spectroscopically accurate results for a molecule of this com­

plexity. Indeed, the standard deviation for their calculated levels is around 18 cm~^ which 

is similar to the spacings between the levels. Many levels are tens of wavenumbers from 

the observed values. This resulted in HBP having difficulty in unambiguously matching 

calculated and observed levels. Note tha t the chaotic nature of the system can make
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quantum  num ber assignments somewhat arbitrary for the higher excited states.

3.4 Tashkun and Jensen

The first a ttem pt to produce a spectroscopic potential for this system was made by 

Tashkun and Jensen [68]. T J employed the MORBID [69] (Morse Oscillator Rigid Bender 

Internal Dynamics) computer program which approximates the kinetic energy term  of 

the Hamiltonian. They used MORBID to refine the potential energy function for the 

X ^ A i  ground state of NOg. They optimized an analytical representation of the potential 

function using data  due to Delon and Jost. They considered the ground state surface 

to be independent of the any excited states. As they acknowledged this is not the case. 

At higher energies the interaction with the excited states will influence the energy level 

structure of the ground state.

The potential energy function used by T J was originally given by Jensen [36]. This 

form was chosen as MORBID evaluates integrals exactly (analytically). All subsequent 

flts (see table 3.1) have also used this form:

y ( A r i ,  A r s ,  p) =  Vo(p)  +  ^ j ( p ) y j  +  ^j k( p)y j y / c
j

T  ^  ] ^jkm{p}yjykym T  ^  y ĵkmn{p)yjykymyn'> (J - i )
j < k < m  j < k < T n < n

where all of the indices j ,  m, and n assume the values 1 or 3. The quantity yj in Eq. 

(3.1) is given by

yj = l -  e xp { - a j Ar j )  (3.2)

where the Uj are molecular constants and Ar j  = — =  1 or 3, is defined as

a displacement from the equilibrium value r j of the distance rj between the “outer”

nucleus j  =  1 or 3 and the “center” nucleus 2. The quantity p is the instantaneous value
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of the bond angle supplement The Fjkm... expansion coefficients of Eq. (3.1) are functions 

of p and defined as

PiiP) =  -  cos^)', (3.3)y (.)

i = \

and

Fjk...{p) = ffk... + E  /jlL(cos/)e -  COS^)’ (3.4)
i = l

where pe is the equilibrium value of p and the are expansion coefficients. The 

function Fj k{ p )  has A/’=3, Fjki {p)  has N=2,  and Fjkim{p)  has N = l .  The function Vo[p) is 

the potential energy for the molecule bending with bond lengths fixed at their equilibrium 

values, and here we parameterize it as

ho(^) =  Y ^ f^ ' \c o s p e  -  cosp )\  (3.5)
1 = 2

where the are expansion coefficients.

T J used observations by Delon and Jost [58] to optimise their potential function. In 

their fit, T J included levels only up to 9,500 cm “  ̂ due to the possible perturbation of 

the ground state  by its conical intersecton with the A ^B 2 state. For the same reason 

they gave the levels between 9,000 cm~^ and 9,500 cm~^ a much lower weighting.

In order to determ ine the equilibrium geometry, T J supplemented the vibrational 

term  values of Delon and Jost with a small number of rotational levels (computed by 

Kozin [70]). These levels were Pauli-allowed states with #  <  5 in the vibrational ground 

state  and the ni, z/g, z/g and 2i/i states. Since MORBID does not account for spin-rotation 

interactions and hyperfine effects, it was necessary to calculate the “deperturbed” ro ta­

tional spacings for NO2 as the eigenvalues of a standard asymm etric rotor Hamiltonian.

The input data were reproduced with an RMS deviation of 0.2984 cm “  ̂ for the 

rotational data  and 2.20 cm “  ̂ for the vibrational spacings. Note tha t the approximation 

of the MORBID kinetic operator introduces further systematic errors on top of this [35].
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The T J potential gives a reasonable description of the potential surface for NO2 

near the minimum. However, as can be seen from figure 3.2, it has spurious minima or 

“holes” away from the true minimum which is located at ~  2.2 Bohr and ~  2.3 radians. 

Note the large hole at short bond-lengths and bond-angles and the more serious hole at 

~  1.8 Bohr and ~  3.0 radians. T J suggest th a t this problem is not severe as the holes 

have a sufficiently high barrier to them (100,000 cm “ )̂ and th a t they can be removed 

by adding walls to the potential. This, however is somewhat artificial and leaves the 

potential function with discontinuities. These discontinuities gave us problems in using 

the potential in our codes, in particular with the Gaussian quadrature, when trying 

to calculate rovibrational energies. Leaving holes in a potential causes even greater 

problems.

3.5 X ie and Yan

The T J potential was refined by Xie and Yan (XY) [71] contemporaneously to the work 

presented in this thesis. They used a variational method employing the exact vibrational 

Hamiltonian to calculate NO2 energy levels. They fit their results to the 142 levels below 

9,000 cm “  ̂ using the Delon and Jost data. They optimized param eters for the potential 

function by minimizing a weighted least squares function:

F  =  (3.6)
n

This sum runs over the energy levels to be fitted. are the observed values,

£;(ca/) the calculated values and Wn is the weighting function I /

The derivatives of the calculated energies with respect to the potential param eters.
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dEn/dp^  can be calculated by using the Hellmann-Feynman theorum  (see Section 4.3.1):

dpdp

where d V/ dp  is the derivative of the potential with respect to a param eter and 

are the wavefunctions of the energy levels.

The result of this weighted least squares fit was a reduction in the standard deviation 

from 14.28 cm “  ̂ to 2.08 cm “ .̂

The final potential still contained holes. We attem pted to test XY’s surface but 

were unable to perform sensible variational calculations on it as published because of 

the presence of two separate holes. The less serious hole occurs when one bondlength is 

compressed below 1.3 Bohr. A more serious and extensive hole occurs in the symmetric 

stretch; its closest approach to equilibrium being where r ~  2.00 Bohr 0 ~  2.0 radians. 

Figure 3.3 shows the XY potential in the asymmetric stretch and illustrates the former 

of these holes. The more serious hole is clearly shown in a picture of the symmetric 

stretch (figure 3.4). We removed the effects of these minima by flattening the potential 

over the regions where they occurred. That is, in the regions where holes were evident 

we gave the potential the same value as that near top of the barrier into the holes.

XY did not use any rotational data in their fit nor did they quote any rotational data 

in their paper. A previous water potential due to XY [72] gave very poor results for 

rotations as shown by Polyansky and Tennyson (see Schryber et al [73]). This suggested 

th a t their NO2 potential might also reproduce rotational levels poorly. It is dangerous to 

produce a potential energy function without reference to rotational data. It can lead to 

the incorpration of an inaccurate equilibrium geometry and thus an unphysical potential 

from which it it impossible to calculate reliable rotational data. In fact XY’s potential
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reproduces rotational term  values reliably (see table 3.2 for a selection of rotational 

results using XY’s potential).

3.6 V ilanove and Jacon

Vilanove and Jacon (VJ) [74] achieved a modest improvement of the T J potential. They 

used a DVR m ethod to calculate the energy levels of the electronic ground state of NO2 

up to 7,000 cm~^. Their potential is not terribly accurate with a standard deviation of 

9.8 cm~^ for a group of 78 levels. It also suffers from the same problem of having holes as 

does the T J potential. See figure 3.5 for an illustration of this potential. Note tha t one 

of the potential param eters tha t they altered changes the equilibrium geometry. Thus 

we expect tha t the potential would give very poor rotational results. However, as we 

were unable to perform sensible nuclear motion calculations on this potential, we could 

not test this.

3.7 C onclusions

It is notable tha t although T J used rotational data to help them  determine their po­

tential, all the subsequent spectroscopic determinations of the potential considered only 

vibrational term  values. In view of the experience with water discussed above, such an 

approach must be viewed with caution. In particular, VJ chose to vary the param eter 

which T J had fixed as zero. fixes the first derivative of the potential with re­

spect to stretching coordinates at the expansion point. Resetting from zero has the effect 

of shifting the equilibrium geometry of the potential. Performing such a shift without 

reference to rotational data must be regarded as particularly dangerous. The need for a
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new potential is clear as the others available each have their flaws.
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Param eter T J XY VJ This work
fOJo 78903 78904.36 79528 78259.20740
f(3)Jo -88508 -88177.07 -88508 -107129.99582
f(4)Jo 220230 217879.76 220230 225437.38541

0 0 -3 0 0

/ f * -9174 -9096.57 -11174 -9514.44438
-58601 -56772.84 -58601 -33493.10799

y f 6626 18552.63 6626 -3080.26035
134673 118263.42 134673 0
26978 26964.43 26978 27019.00973

f(i) 
VII 0 0 0 16052.75505
f(2)
/ l l 0 0 0 652.42584
f(3)
/ l l 184828 168337.50 184828 0
f(0)
J l 3 8927 8852.32 8927 9106.89156
/■(I)

J l 3 29335 21809.35 29335 1094.98984
f(2)

J l 3 0 0 0 7446.65832
A3)

J l 3 -425168 -462164.45 -425168 0
AA

/ i l l 9550 7252.81 9550 0
f(0)

/ l l 3 0 0 0 -410.29378
AA

J U 3 3762 -593.46 3762 -1567.88852
f(2)
/ l l 3 213811 182066.42 213811 0
f(0)
/ l l l 3 1854 4059.13 1854 4507.28671
AA

J 1 1 1 3 -46694 -58337.72 -46694 -1841.45757

pe r 46.233 46.233 46.233 46.233
r ;  /Â 1.18724 1.18724 1.18724 1.18724

/Â -1 3T848 3.1848 3.1848 3.1848

Table 3.1: Values of NO2 potential parameters (in cm for potentials by: Tashkun and 
Jensen; Xie and Yan; Vilanove and Jacon; this work (see Chapter 4).



Level 0,0,0 
Obs o-c XY

Level 0,1,0 
Obs o-c XY

Level 1,0,0 
Obs o-c XY

Level 0,2,0 
Obs o-c XY

Ooo

2q2
220
822
4q4
422

0.0 0.0 0.0
2.53 -0.03 -0.03

32.81 -0.42 -0.109
35.34 -0.45 -0.139

8.44 -0.09 -0.098
38J2  -0^4  -0J78

440 129.06 -1.67 -0.447
42^4 -0^4  -0^29

542 133.23 -1.76 -0.496

Ooo

2o2
220
822
4q4
422
440
624
642

749.65
2.53

34.29
36.81

8.43
40.19

134.82
44.41

139.04

-0.24
-0.03
0.04
0.01

- 0.10

-0.03
0.15

-0.09
0.09

-0.04
0.03
0.09
0.06

-0.09
0.02
0.31

-0.03
0.26

Ooo

2o2
220
822
4o4
422
440
624
64 2

1319.79
2.52

33.17
35.69

&39
39.05

130.47
43.24

134.67

-1.84
- 0.02

-0.52
-0.55
-0.08
-0.58
-2.06
-0.62
- 2.10

-0.29
-0.03
0.04
0.01

-0.09
0.02
0.06

-0.07
0.02

Ooo

2q2
220
8 2 2

4o4
422
524

1498.34 -1.84 -0.11
2.53 -0.02 -0.03

35.89 -0.52 0.21
38.42 -0.55 -0.19

8.42 -0.08 -0.01
41.79 -0.58 0.15
46.00 -0.62 0.10

Table 3.2: Obs-calc’s for a selection of rotational energy levels (in cm for work pre­
sented here ( “o-c” ) and for XY potential (XY).



LU

- 0 .3 5 -

0.00

- 0.01  ■

160 P / °120100 1408 0

Figure 3.1: Calculated potential energy curves [62] for the lowest two electronic states 

of the NO; molecule in both the diabatic (solid curves) and adiabatic (dashed curves) 

representations with fixed values of r, = r,(%) = 2.2739400459 ao and r; =  2.47 Uo- 

Note that the scale for the lower part of the figure is five times greater than that in the 

upper part.
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Figure 3.2: Contour plot of T J NO2 potential; symmetric stretch. The bondlengths are 

set to be equal. The energy scale is in Hartrees.
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Figure 3.3: Contour plot of XY NO2 potential; asymmetric stretch. The bond angle is 

frozen at equilibrium.
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Figure 3.4: Contour plot of XY NO2 potential; symmetric stretch.
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Figure 3.5: Contour plot of VJ NO2 potential; symmetric stretch. The bondlengths are 

set to be equal.
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Chapter 4

A N ew  F itted  Potential for the

Electronic Ground State o f N O 2

4.1 T he P oten tia l Energy Function

For the potential energy function used in this work see 3.4.

4.2 E xperim enta l D ata

The vibrational term  values used here were obtained by Delon and Jost [58] using Laser 

Induced Dispersed Fluorescence Spectroscopy (LIDFS) of je t cooled NO2. They recorded 

the complete set of 191 vibrational levels below 10,000 cm “  ̂ and some levels up to 12,000 

cm “ .̂ The first electronically excited state lies at about 9,734 cm “  ̂ above the vibrational 

ground state [58, 67].

The LIDFS of jet cooled NO2 in emission from 11 different vibronic levels located 

between 22,006 and 23,625 cm~^ was recorded. These levels were 10 B 2 vibronic levels
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and the È'^Bi (0,8,0) level. For each band the iC =  0, =  1, J  =  3/2  upper rotational

level was selected as it was the brightest in the excitation spectrum . Also, it could be 

resolved rotationally and for fine structure (spin-splitting). The corresponding variety 

of Franck-Condon accesses allowed the observation of the complete set of 191 lowest 

vibrational levels of the X"^Ai ground state located up to 10,000 cm “ h The vibrational 

band origins were measured to within typically 0.3 cm“ \  assigned ( n i , 7̂ 2, 723) and fitted 

with a 24 coefficient Dunham expansion giving a typical residual error of 0.5 cm “ .̂ 

Furtherm ore, the vibrationless A ^B 2 level was probably also observed at 9737 cm "F A 

perturbative model of the A i-À ^B 2 vibronic interaction was used in order to calculate 

the energy shift of the high vibrational levels (around 10,000 cm “ )̂ of the X ^A i  state.

D ata on the rotationally excited states is available for a num ber of low-lying vibra­

tional states [75, 76]. However our calculations do not consider spin interaction effects 

and so we have used the deperturbed rotational data  (see below) calculated by Kozin [70] 

for T J. This data consists of rotational term  values with N  < 5 for the (0,0,0), (0,1,0), 

(1,0,0), (0,2,0) and (0,0,1) vibrational states.

The total angular momentum, J ,  of a state is given by

J = i V - f F ,  (4.1)

where N_ is the rotational angular momentum and F is the spin angular momentum. 

In this case, 5  =  1/ 2. So, deperturbed levels are levels quoted with e.g. /V =  2 rather 

than  J  =  5 /2 ,3 /2 .
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4.3 C alcu lations

Calculations of the vibrational terms were performed using the exact kinetic energy 

(EKE) DVR3D program [38]. For these calculations we used Radau coordinates, sym­

metrised radial grids based on Gauss-Laguerre quadrature with 37 DVR points and an 

angular grid using Gauss-Legendre quadrature with 115 DVR points. The dimension of 

the final Hamiltonian used to calculate the band origins was 1800.

Rotational calculations were performed using the R0TLEV3B program which is part 

of the DVR3D suite. R0TLEV3B performs the second step of a two-step variational 

calculation for the rovibrational states of triatom ic molecules using an axis embedding 

which bisects the radau angle [6, 77]. Tests on both the vibrational and rotational steps 

of the calculation suggested tha t the basis sets used were actually somewhat larger than 

was required to obtain adequate convergence of the energy levels.

The derivatives of the potential constants with respect to changes in the energy 

levels were calculated using the Heilman-Feynman theorem. A new module, XPECT3, 

was w ritten to perform this task within a DVR framework. See Subsection 4.3.1.

We attem pted to use the original surface of T J for EKE calculations of the band 

origins of NO2. These calculations failed due to the presence of holes in certain areas of 

the potential. Analysis of T J ’s potential suggested that these holes were caused by the 

large negative values of the parameters and (see table 3.1).

Therefore, these param eters were reset to zero and a new fit, using the MORBID 

program , was attem pted. There is a discrepancy between energy levels calculated using 

MORBID and those using an EKE operator due the approximation in the kinetic en­

ergy employed by MORBID. It has been noted previously [78] th a t the discrepancy is 

essentially constant with respect to changes in the potential param eters. Thus it was
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possible to use the corrected MORBID levels for fitting once the correction factor had 

been determined. Using this technique a potential was constructed which had a similar 

standard deviation to T J ’s but no spurious minima in physically im portant regions. This 

new potential was used as the starting point for fits using the EKE operator.

A least-squares fitting procedure was then implemented to find the optim um  values 

for the potential param eters. These fits used a m ixture of the sophisticated Interactive 

Non-Linear Least Squares (1-NoLLS) [79] program suite and a simpler Gauss-Newton 

m inimization procedure.

4.3.1 The Hellmann-Feynman Theorem

The Hellmann-Feynman theorem states:

dH
dp ) , (4.2)

where d H /d p  is the derivative of the Hamiltonian with respect to a potential pa­

ram eter, p, and 'Fyi are the wavefunctions of the energy levels. In fact this is only true 

where are the exact wavefunctions. It was therefore necessary initially to test the 

derivatives calculated using the Hellman-Feynman theorem by comparing them  with nu­

merically calculated derivatives. I.e. comparison with derivatives calculated by changing 

one param eter at a tim e by a small amount. The comparison showed that the derivatives 

calculated with the Hellman-Feynman theorem were highly accurate.

In this case,

H  = K  + V. (4.3)
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As K  will not change with respect to the potential param eters, this means that 

equation 4.2 becomes:

dEr,
dp

d V
dp

The potential, V, can be described as.

(4.4)

^  ~  î.jkEjjkiQl  ̂^2 ; ^3 )
i j k

where Cijk are the potential parameters. So, equation 4.4 can be written.

(4.5)

dp = \E^jk\ . (4.6)

Since in a DVR scheme the wavefunction is simply given as an amplitude at each 

(A ,/),7 ) grid point,

P-,l) —  ^ a ,/3 ,7 5

equation 4.6 can be written as a simple sum over all grid points:

(4.7)

(4.8)

X PECT3 evaluates this expression using quadrature at the DVR points. This method 

of calculating derivatives is thus very rapid. It means that derivatives can be calculated 

for all potential param eters even if ultim ately many of these will be frozen in the fit.
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4.3.2 Least-Squares Fitting

A least-squares fitting procedure was implemented to find the optim um  values for the 

potential param eters.

Least-squares fitting can be defined as the minimisation of

yf’ - yr'̂ ipi ■■■ Pm) (4.9)
i = l

where are observed values, are the corresponding calculated values, cr* are the 

uncertainties associated with the data points and pi .. .pm &re the adjustable parameters.

To begin considering how to improve a trial p, first express as a Taylor series 

expansion about the current p

+ x) =  +  j x  + . . .  (4,10)

where a; is a small change in p. The n x m  m atrix J is the ‘Jacobian’ m atrix of first

partial derivatives of the calculated properties with respect the model parameters:

• (4.11)

Define the vector of differences thus,

d =  f " '  -  */“ ''(? ) =  -  y(p). (4.12)

For a weighted least-squares fit a diagonal m atrix  G with non-zero elements is defined

Gii — —. (4.13)
(Ti
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If we assume tha t the model function y(p) is locally linear in p then we may neglect 

all but the first two term s in the expansion 4.10 and re-express problem 4.9 as: minimise,

\ \A x - h \ \ l  (4.14)

where A  — G J  and b = Gd and the notation ||.||2 denotes the Euclidean length of a 

vector. Therefore the objective is to find an optimum vector x  describing a step through 

param eter space, x is the param eter step corresponding to the well-known Gauss-Newton 

algorithm  [80].

The method of performing a least-squares fit for this potential is, in itself, not unusual. 

However, each iteration is very expensive in computer time. It is therefore very im portant 

to minimise the number of iterations used.

We used more than one fitting routine to try  to optimise our potential. One of the 

programs used was I-NoLLS [79]. This stands for Interactive Non-Linear Least Squares. 

The interactive nature of the program allows the user to exercise greater control over 

the fit than  is usually possible. I-NoLLS allows the exclusion of any data points or 

param eters from the fit producing trial values for the subsequent iteration. The user 

can then conveniently choose which is the best way to proceed. Another advantage of 

I-NoLLS is tha t it is designed to cope with non-linear problems. Using a standard Gauss- 

Newton least squares algorithm [80] the step in param eter space would be correct only 

for a linear problem. Physical problems such as the fitting of a PES are certainly not 

linear. One solution to this problem is just to scale down the Gauss-Newton step by some 

factor in order to avoid taking too large a step in param eter space and thus overshooting, 

possibly greatly, the correct values. A superior method for non-linear problems is used 

by I-NoLLS. It uses Singular Value Analysis [81] which essentially breaks down the

61



Gauss-Newton step into several components in param eter space some of which are better 

defined than others. The I-NoLLS user can thus choose to take a param eter step along 

only the better defined “singular directions” . This would not actually minimise the sum 

of squares of errors for a linear problem but for a non-linear problem it often provides a 

large reduction for a small step in param eter space. This reduces the chance of taking a 

non-physical param eter step (possible due to non-linearity) or of reaching a non-physical 

part of param eter space. I-NoLLS also has other features and uses further techniques 

to fits of non-linear problems as described in [79]. Since I-NoLLs only became available 

while the work presented here was being executed, a simpler Gauss-Newton based fitting 

routine was mainly used.

4.3.3 Convergence

Convergence tests were performed on the calculation of the band origins and on the 

rotational calculations. In table 4.1, the column “Original value” lists the values for 

various input param eters used to calculate the energy levels. The table shows values for 

a num ber of DVR3D [38] parameters that were altered to test convergence. NPNT2 is 

the num ber of DVR points in r2 from Gauss-(associated) Laguerre quadrature. NALF is 

the num ber of DVR points in 9 from Gauss-(associated) Laguerre quadrature. MAX3D 

is the m aximum size of the final Hamiltonian, and De are morse param eters for the r l  

coordinate. NVIB is the number of vibrational levels from DVR3D used by R0TLEV3B 

for each k to be read in the second variational step. IB ASS is the number of vibrational 

levels selected by an energy ordering criterion in ROTLEVB. The assignments for the 

vibrational levels, in energy order, are (0,1,0), (0,0,4) and (2,4,2). As can be seen from 

the table, the results from using these parameters were, if anything, over-converged.
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Even approaching 10,000 cm  ̂ it is clear tha t there are no convergence problems.

4.4 R em oval o f poorly fitted  levels

We initially tried to determine the potential using all 114 even levels and 77 odd levels 

below 10,000 cm “ h F itting of the NO2 surface is complicated by the intersection be­

tween the ground electronic state and the first excited state which is at approximately 

10,000 cm“ .̂ The interaction between these two states perturbs the energy levels of the 

ground state. During the fitting procedure we removed several levels from the fit as they 

appeared not to be improving. It was assumed tha t this was because of the interactions 

with the higher state.

Most of the states removed, which are labelled in tables 4.3 and 4.4, have the common 

feature tha t they have a large value for It is also notable tha t in the region covered 

by XY’s calculations, the levels we removed are those which are systematically too low 

in their calculation. Above about 9,500 cm “ ,̂ many even levels were removed. It is 

clear from LPHB’s calculation (see fig. I ll  of ref [67]) that nearly all states in this region 

are strongly perturbed by vibronic interactions. Conversely we found it unnecessary to 

remove any odd states below the (4,0,3) level at 9531 cm~^. The work of LPHB shows 

tha t the lower odd states are much less sensitive to vibronic effects than  the corresponding 

even states, and tha t the (4,0,3) state is indeed the first one to be strongly perturbed.

4.5 A dding o f additional p oten tia l param eters

The constants tha t were initially fitted were:

f i l l  / i iL  / i i i 3- We reached the limit of the improvements tha t could be made by fitting
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Param eter Original value Param eter Change Level cm ^ Change in Level cm ^
NPNT2 37 +2 750.17209674 -0.00000001

6279.18426584 +0.00000001
8551.37079266 -0.00002090

NALF 115 +20 750.17209674 -0.00000005
6279.18426584 +0.00000051
8551.37079266 +0.00002721

MAX3D 1800 +200 750.17209674 -0.00000014
6279.18426584 -0.00000018
8551.37079266 -0.00000281

re 2.81 -0.01 750.17209674 -0.00000003
6279.18426584 -0.00000002
8551.37079266 +0.00002620

-0 .04 750.17209674 -0.00000004
6279.18426584 -0.00000004
8551.37079266 +0.00033012

De 1.3 +0.1 750.17209674 -0.00000003
6279.18426584 -0.00000007
8551.37079266 -0.00000095

IBASS/NVIB 750/150 +750/+50 4.267174731 -0.000000000
34.94004943 -0.000000000
754.1591906 -0.0000000
6911.244466 -0.000018

Table 4.1; Convergence tests. This table shows values for a num ber of DVR3D [38] 
param eters tha t were altered to test convergence. See section 4.3.3 for an explanation 
on the parameters.



these param eters. However, these constants were well determ ined and the correlation 

between them  was very low, we therefore investigated whether the potential could be 

improved by allowing more higher order constants in the potential to float during the fit.

We were able to determ ine the additional constants f [ l \  f [ l \  f [ l \  f[^\ and 

Of these seventeen potential parameters, f i \ \  was found to be very poorly determined 

so it was discarded from the list of parameters tha t we tried to fit. We also tried to fit 

fo ^ \  / i l l  ^nd /j° ii  but found tha t we could not determine meaningful values for them.

Final values for the optimized potential constants are given in table 4.2. The errors 

given in this table are the statistical errors found in the last iteration of the fit. They 

therefore give some idea as to how well individual constants have been determined by the 

fit. Of course these errors make no allowance for any systematic errors in the procedure 

tha t we employed.

4.6 Levels above 10,000 cm - 1

After fitting the potential as well as possible to the data available up to 10,000 cm“ ,̂ we 

tried to fit it to the available data up to 12,000 cm “ .̂ Scatter plots in figures 4.1 and 4.2 

show the values of the obs-calcs for our best potential for the ranges 0-10,000 cm “  ̂ and 

0-12,000 cm “  ̂ respectively. The second plot clearly shows the difficulty of reproducing 

the levels above 10,000 cm “ .̂ Even when we removed the levels with the worst agreement 

we were unable to make any significant reduction in the standard deviation. We believe 

tha t this problem stems from the interaction of the ground state  with higher electronic 

states and non-Born-Oppenheimer effects.. However, despite these problems associated 

with NO2, figure 4.2 demonstrates that it is possible to do meaningful calculations for 

this molecule using a single surface. See Section 4.8 for further comments.
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4.7  T he F inal P oten tia l

The final version of the potential is illustrated in figures 4.3 and 4.4. Figure 4.3 is a 

contour plot of the symmetric stretch. Figure 4.4 is a similar plot in the asymmetric 

stretch. As can be seen in this figure there are holes in our potential but they are not 

close to any meaningful areas and have not prevented any com putations on the surface.

4.8 C om parison W ith  E xperim ental D ata

Before the final fitting procedure the standard deviation of the levels included in the fit 

at th a t tim e was 8.0 cm “ .̂ The final standard deviation achieved after fitting, and after 

the levels listed were removed, was 2.8 cm “h

As mentioned above, the experimental data we used for fitting and comparison pur­

poses was that of Delon and Jost [58]. For a comparison of our calculated vibrational 

term  values with those of Delon and Jost see tables 4.3 and 4.4. As can be seen from the 

asterisked levels, most of those that were removed from the fit remained poorly fitted. 

The values for levels (4,2,2) and (0,9,2) improved considerably. It is not particularly sur­

prising th a t some of the removed levels became much better determined. The criterion 

for the removal of a level was tha t it was poorly determined. Levels were not removed 

because of any other characteristic.

The reason for the poor reproduction of some of the higher lying levels is unclear. It 

is difficult to be certain whether the large obs-calc values are due only to deficiencies of 

the potential or if they are due to the pertubing effect of interactions with excited levels.

Tables 4.5 and 4.6 quote the observed-calculated values for levels above 10,000 cm"^ 

for which we were able to make reasonable assignments. It is clear th a t calculations with
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the new potential above 10,000 cm“  ̂ are much less good than those at lower energy.

It is equally clear tha t below 10,000 cm"^ a good fit has been achieved with exper­

imental observations (see tables 4.3 and 4.4.) This has been accomplished using only 

one effective potential energy surface. Due to the way tha t the surface was constructed 

(i.e. by fitting to observed results), it “contains” (i.e. takes into account) non-Born- 

Oppenheimer effects.

We used our optimized potential to calculate rovibrational levels up to =  5. We 

used the vibrational and rotational term  values quoted by Tashkun and Jensen [68] for 

purposes of comparison. The agreement of these levels with experiment was good. The 

error in observed minus calculated energies was found to vary from 0.008 cm~^ to around 

2 cm “ ,̂ see table 4.7.

4.9 C onclusions and Further Work

Tests on previous spectroscopically determined potentials have shown th a t some of these 

have problems. In particular a seemingly excellent water potential was found to give 

unacceptably poor results for rotationally excited states, while several ground state NO2 

potentials were found to contain unphysical minima (‘holes’).

We have significantly improved the spectroscopically determ ined potential for the 

electronic ground state  of NO2 constructed potential for the electronic ground state of 

NO2 constructed by Tashkun and Jensen [68]. This improvement has been achieved by 

use of a Hamiltonian based on the use of an exact kinetic energy operator and by taking 

care to eliminate artificial holes from physical regions of the potential.

Unlike most previous spectroscopic determinations of NO2 potentials [67, 71, 74] 

and Xie and Van’s recent water potential [72], we have tested our new potential against

67



rotational term  values for NO2. We regard this step as vital for proving tha t the potential 

obtained is indeed physical.

Finally one must remember tha t NO2 is actually a classic case of Born-Oppenheimer 

failure. In this work we have performed our fits to a single potential function, representing 

the electronic ground state of the system. However non-adiabatic calculations on this 

system by Hirsch, Buenker and Petrongolo [64, 67] strongly suggest th a t many vibrational 

states lying 5,000 cm “  ̂ or more above the vibrational ground state  are perturbed by 

interactions with the low-lying A ^ 8 2  state. As the m ajority of the vibrational levels 

used in this work lie in this perturbed region, the resulting potential energy surface must 

be regarded as an effective one which in some part includes contributions from these 

non-adiabatic interactions.

Future work on NO2 would be to consider such non-Born-Oppenheimer effects. This 

would require a surface for each of the lowest three electronic states of NO2. Off-diagonal, 

non-Born-Oppenheimer coupling elements (eg from Petrolongo et al [63, 62, 64, 66, 67] 

would also be require to construct the Hamiltonian matrix. The ultim ate aim would be 

to determ ine true surfaces (rather than an effective ground state  surface) for the ground 

and excited electronic states.
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Obs-cdcs: 0-10,000 wavenumbers
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2 -

- 4 -

—6 —

Figure 4.1; Scatter plot of obs-calcs for the new NO2 potential. Levels up to 10,000 cm  ̂

are plotted on the x-axis against obs-calc in cm~^.
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Obs-calcs: 0-12,000 wavenumbers
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Figure 4.2: Scatter plot of obs-calcs for the new NO2 potential. Levels up to 12,000 cm  ̂

are plotted on the x-axis against obs-calc in cm “ .̂
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Figure 4.3: Symmetric stretch for new NO2 potential, r l and r2 have been frozen equal 

and plotted against the bond angle.
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SPJT: Asymmetric stretch
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Figure 4.4: Asymmetric stretch for new NO2 potential showing against T2 (in Bohr) 

with the bond angle fixed at equilibrium. Holes can be seen but they are not in a 

significant region of the potential.
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Param eter Value /cm  ^ Error /cm  ^

Jo 78259.20740 51
f(3)
Jo -107129.99582 358

225437.38541 307
-9514.44438 107

-33493.10799 467
-3080.26035 325

f(0)
/ l l 27019.00973 14
/•(I)
i l l 16052.75505 271
r(2)

/ l l 652.42584 236
f(0)
/ l 3 9106.89156 40
/•(I)
/ l 3 1094.98984 570
f(2)

J l 3 7446.65832 802
f(0)
/ l l 3 -410.29378 142

/ l l 3 -1567.88852 514
r(0)

J 1II3 4507.28671 26
r(l)
/ 1II3 -1841.45757 159

Pe r 46.233
rl /  Â 1.18724
Oi /Â -1 3T848

Table 4.2; Non-zero NO2 potential parameters determined in our final least squares fit.



Obs 0 - C Obs 0 - C Obs 0 - C
0,1,0 749.64 -0.24 5,0,0 6475.05 2.18 5,3,0 8623.34 3.55
1,0,0 1319.79 -1.85 1,7,0 6497.60 0.58 2,0,4 8652.27 -1.87
0,2,0 1498.34 0.22 1,3,2 6616.53 1.29 1,10,0 8690.72 7.98*
1,1,0 2063.12 -2.39 4,2,0 6653.54 -0.53 1,6,2 8758.28 -0.26
0,3,0 2246.04 0.98 0,9,0 6705.23 -0.72 4,5,0 8809.81 4.12
2,0,0 2627.34 -2.70 0,5,2 6823.80 0.45 4,1,2 8817.61 -0.36
1,2,0 2805.60 -2.37 3,4,0 6837.75 -&36 1,2,4 8868.35 -0.82
0,4^ 2993.00 2.05 3,0,2 6921.67 2.41 0,12,0 8911.29 -4.89
0,0,2 3201.44 -4.17 0,1,4 6979.21 -3 J 8 7,0,0 8968.55 8.78*
2,1,0 3364.57 -3.10 2,6,0 7029.48 -0.09 0,8,2 8982.08 0.81
1,3,0 3547.10 -1.95 2,2,2 7125.60 3.11 3,7,0 9003.53 9.70*
0,5,0 3738.60 2.68 5,1,0 7193.35 2.84 3,3,2 9031.81 0.57
3,0,0 3922.61 -1.98 1,8,0 7231.06 2j^ 0,4,4 9082.71 -2.32
0,1,2 3929.12 -2.92 1,4,2 7332.45 1.19 6,2,0 9151.35 &21
2,2,0 4100.58 -3.46 4,3,0 7374.57 -0.40 2,9,0 9203.99 15.59*
1,4,0 4286.82 -1.84 0,10,0 7443.09 -1.92 0,0,6 9226.23 -3.78
1,0,2 4461.07 0.53 1,0,4 7478.02 1.24 2,5,2 9247.78 -0.84
0,6,0 4482.57 2.55 0,6,2 7544.62 0.65 5,0,2 9295.48 -8.76*
3,1,0 4652.00 -2.16 3,5,0 7562.47 0.18 5,4,0 9334.06 5.25
0,2,2 4656.34 -1.95 3,1,2 7627.14 3T# 2,1,4 9341.17 -4.85
2,3,0 4835.05 -3.77 0,2,4 7681.49 -3.16 1,11,0 9416.05 12.66*
1,5,0 5025.20 -1.47 6,0,0 7730.08 5 j# 1,7,2 9468.38 -0.71
1,1,2 5180.54 0.84 2,7,0 7757.29 3.63 4,2,2 9511.96 0.30*
4,0,0 5205.81 -0.42 2,3,2 7834.97 2.00 4,6^ 9524.14 fb94
0,7,0 5224.55 1.38 5,2,0 7909.46 2.89 1,3,4 9561.06 -3 ^ 6
0,^2 5377.91 -1.07 1,9,0 7962.27 4.73 0,13,0 9640.29 -6.60
3,2,0 5384.41 -2.47 1A2 8046.44 0.64 7,1,0 9672.18 9.97*
2,4,0 5568.41 -3.22 4,4,0 8093.61 1.04 0,9,2 9696.16 1.83*
2,0,2 5701.41 2T9 4,0,2 8120.70 -0.90 3,8,0 9716.70 12.72*
1,6,0 5762.23 -0.65 1,1,4 8174.27 0.97 3,4,2 9731.72 -0.50
1,2,2 5898.94 0.95 0,11,0 8178.27 -&68 0,5,4 9780.98 -2.99
4,1,0 5930.66 -0.19 0,7,2 8264.28 0.83 3,0,4 9796.80 -15.01*
0,8,0 5965.61 0.38 3,6,0 8284.17 3.74 6,3,0 9855.68 7.63*
0,4J 6101.80 0.09 3,2,2 8330.35 2.06 0,1,6 9904.99 8.33*
3,3,0 6112.11 -2.59 0,3,4 8382.64 -2 ^ 4 2,10,0 9920.43 10.15*
0,0,4 6275.98 -4.04 6,1,0 8441.44 6.69* 2,6,2 9950.41 -2.24
2,5,0 6299.70 -2 ^ 4 2,8,0 8482.12 8.52* 5,1,2 9984.14 - 6 j #
2,1,2 6414.16 3.27 2,4,2 8542.25 0.40

Table 4.3: Observed even symmetry vibrational term values [58] and observed minus 
calculated values /c m “ .̂ An asterisk indicates tha t a level was removed from the fit.



Obs 0 - C Obs 0 - C (f i,1/2,1/3) Obs 0 - C
0,0,1 1616.85 -2.78 3,2,1 6872.10 2J6 4,3,1 8797.95 3.21
0,1,1 2355.15 -2.44 0,3,3 6897.37 -1.35 1,4,3 8816.65 0.57
1,0,1 2906.07 -0.69 2,4,1 7072.23 0.92 1,0,5 8941.28 0.63
0,2,1 3092.48 -1.51 2,0,3 7192.23 1.89 0,10,1 8944.50 -1.65
1,1,1 3637.84 -0.56 1,6,1 7277.83 1.13 3,5,1 9008.77 1.48
0,3,1 3829.34 0.16 4,1,1 7386.33 4.74 0,6,3 9029.44 -0.70
2,0,1 4179.94 1.34 1,2,3 7403.04 1.97 3,1,3 9065.47 -1.05
1,2,1 4369.10 0.26 0,8,1 7492.23 1.69 6,0,1 9101.27 -2.80
0,4,1 4564.22 0.87 3,3,1 7587.04 2 ^J 0,2,5 9148.84 -3.17
0,0,3 4754.21 -4.59 0,4,3 7609.57 -0.46 2,7,1 9220.73 &62
2,1,1 4905.52 1.86 0,0,5 7766.28 -3.86 2,3,3 9281.74 2.20
1,3,1 5098.00 -0.04 2,5,1 7791.18 1.24 5,2,1 9310.32 -0.81
0,5,1 5298.16 1.54 2,1,3 7888.16 3.76 1,9,1 9436.85 1.23
3,0,1 5437.54 3.11 5,0,1 7903.54 1.17 1,5,3 9500.17 2.42
0,1,3 5469.66 —3.69 1,7,1 8000.93 1.84 4,4,1 9518.26 —3.11
2,2,1 5630.36 2.64 4,2,1 8093.10 3.90 4,0,3 9531.08 -16.26-"
1,4,1 5826.29 0.41 1,3,3 8110.13 1.09 1,1,5 9623.58 -1.66
1,0,3 5984.71 1.06 0,9,1 8218.84 -0.43 0,11,1 9654.17 -16.46*
0,6,1 6030.71 1.73 3,4,1 8299.45 1.96 3,6,1 9713.52 0.23
3,1,1 6156.25 3.87 0,5,3 8320.00 —0.55 0,7,3 9736.30 -2.30
0,2,3 6183.61 -2.94 3,0,3 8374.58 -&83 3,2,3 9753.30 -2.49
2,3,1 6351.40 0.99 0,1,5 8457.15 -4.53 6,1,1 9797.03 -4.99
1,5,1 6552.84 0.66 2,6,1 8507.33 1.57 0,3,5 9836.38 —5.00
4,0,1 6676.86 4J# 2,2,3 8585.54 3.44 2,8,1 9928.47 2.35
1,1,3 6693.12 0.52 5,1,1 8608.92 1.31 2/b3 9976.50 0.86
0,7,1 6761.44 1.09 1,8,1 8721.11 2T8

Table 4.4: Observed odd symmetry vibrational term  values [58] and observed minus 
calculated values /c m “ .̂ An asterisk indicates tha t a level was removed from the fit.



Obs 0 - C (^1,^2,1/3) Obs 0 - C (z/l,Z/2, '̂s) Obs 0 - C
2,2,4 10025.10 -11.96 6,0,2 10445.42 -36.71 0,15,0 11071.05 -21.08
5,5,0 10043.14 11.13 3,1,4 10478.49 -24.75 6,1,2 11096.84 37.94
1,12,0 10132.49 14.51 0,6,4 10486.21 -61.41 3,6,2 11126.61 2T3
8,0,0 10184.66 7.97 6,4,0 10557.69 -31.72 3,2,4 11170.56 -8.99

10203.86 2T08 0,2,6 10582.51 -94.01 0,7,4 11218.66 7&26
4 J J 10231.98 25.27 2,11,0 10632.76 36.76 6,5,0 11259.79 69.76
1,4,4 10251.59 37.01 5,6,0 10746.29 19.80 0,3,6 11251.48 12.01

0,14,0 10352.09 -10.21 1,13,0 10850.34 2&42 5,3,2 11290.61 22.95
7,2,0 10375.23 -0.71 1,9,2 10876.58 6.03 2,8,2 11347.04 0.16
1,0,6 10399.71 5.61 4,4,2 10900.00 21.18 2,12,0 11364.34 63.90

0,10,2 10415.48 -1.61 1,5,4 10963.15 56.66 9,0,0 11376.13 13.16
3,5,2 10425.39 -5.05 1,1,6 11041.86 90.23 5,7,0 11440.88 69.18
3,9,0 10435.41 -29.62 7,3,0 11063.22 -15.90

Table 4.5: Observed even symmetry vibrational term  values [58] and observed minus 
calculated values /c m “  ̂ for levels above 10,000 cm “ .̂ There are problems with assigning 
the levels correctly and it is unlikely tha t all the levels in the table are correctly assigned.

,^2,̂ /3) Obs 0 - C (yi,i/2,1/3) Obs 0 - C (f/l,I/2,!/3) Obs 0 - C
5,3,1 10007.48 -4.87 0,12,1 10363.42 -28.40 2,5,3 10663.33 -33.23
2,(h5 10081.20 -9.27 0,8,3 10436.26 -9.60 5,4,1 10697.01 -13.33
1,10,1 10161.31 13.01 6,2,1 10488.24 -&83 2,1,5 10763.15 -6.40
1,6,3 10200.29 2.56 0,4,5 10522.92 -7.07 1,11,1 10864.15 8.43
4,1,3 10214.37 -9.51 2,9,1 10630.89 2.28 4,6,1 10916.81 9.20
7,0,1 10270.88 43.94 5,0,3 10649.59 -10.88
1,2,5 10304.69 17.78 0,0,7 10659.32 -10.24

Table 4.6: Observed odd symmetry vibrational term  values [58] and observed minus 
calculated values /cm~^ for levels above 10,000 cm “ .̂ There are problems with assigning 
the levels correctly and it is unlikely tha t all the levels in the table are correctly assigned.



Level 0,0,0 
Obs 0 - C

Level 0,1,0 
Obs 0 - C

Level 1,0,0 
Obs 0 - C

Level 0,2,0 
Obs 0 - C

Level 0,0,1 
Obs 0 - C

Ooo 0.0 0.0 Ooo 749.65 -0.24 Ooo 1319.79 -1.84 Ooo 1498.34 -1.84 Ooo 1616.85 -1.84
111 8.41 - 0.11 111 8J 8 - 0.01 111 8.50 -0.13 111 9.18 -0.13 loi &84 -0.13
2q2 -0.03 2q2 2.53 —0.03 2q2 252 - 0.02 2o2 2.53 - 0.02 lio &20 -0.13
2ii 10.15 -0.06 2ii 10.52 0.06 2ii 10.92 0.62 2ii 10.92 0.62 2i2 &a3 - 0.02
220 3 2 a i -0.42 220 34 j# 0.04 220 33.17 -0.52 220 35.89 -0.52 221 31.90 0.62
3i 3 12.57 -0.15 813 12.94 -0.04 813 12.64 -0.17 813 13.33 -0.17 803 5.03 -0.52
822 35.34 -0.45 822 36.81 0.01 822 35.69 -0.55 822 38.42 -0.55 812 12.45 -0.17
831 73.07 -0.94 831 76.36 0.09 831 73.88 -1.16 831 79.94 -1.16 821 34.41 -0.55
4q4 -0.09 4o4 8.43 - 0.10 4q4 8.39 -0.08 4o4 &42 -0.08 830 71.02 -1.16
4i3 16.14 0.04 4i 3 16.50 0.16 4i3 16.18 0.03 4i3 16.90 0.03 423 37.77 -0.08
422 38.72 -0.49 422 40.19 —0.03 422 39.05 —0.58 422 41.79 —0.58 432 74.38 0.03
4si 76.45 -0.98 431 79.74 0.05 431 77.24 - 1.20 431 83.31 - 1.20 441 125.43 -0.58
440 129.06 -1.67 440 134.82 0.15 440 130.47 -2.06 524 46.00 -0.62 5o5 12.58 - 1.20
bl5 20.07 -0.24 bl5 20.42 -0.13 5i5 20.08 -0.24 533 87.52 -1.24 5i4 41.96 -2.06
624 4Z94 -0.54 524 44.41 -0.09 524 43.24 -0.62 bsi 219.08 - 2.10 523 78.58 -0.24
633 80^8 - 1.02 533 83^5 - 0.00 533 81.43 -1.24 532 129.63 -0.62
542 133.23 -1.76 642 139.04 0.09 542 134.67 - 2.10 541 194.92 - 2.10
bsi 200.55 -2.59 5si 209.41 0.20

Table 4.7: Rotational term  values /cm   ̂ and observed minus calculated for new NO2 
potential
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