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Electrical control of magnetism of a ferromagnetic semiconductor offers exciting 

prospects for future spintronic devices for processing and storing information. Here, we 

report observation of electrically modulated magnetic phase transition and magnetic 

anisotropy in thin crystal of Cr2Ge2Te6 (CGT), a layered ferromagnetic semiconductor. 

We show that heavily electron-doped (∼1014 cm-2) CGT in an electric double-layer 

transistor device is found to exhibit hysteresis in magnetoresistance (MR), a clear 

signature of ferromagnetism, at temperatures up to above 200 K, which is significantly 

higher than the known Curie temperature of 61 K for an undoped material. Additionally, 

angle-dependent MR measurements reveal that the magnetic easy axis of this new ground 

state lies within the layer plane in stark contrast to the case of undoped CGT, whose easy 

axis points in the out-of-plane direction. We propose that significant doping promotes 

double-exchange mechanism mediated by free carriers, prevailing over the 

superexchange mechanism in the insulating state. Our findings highlight that 
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electrostatic gating of this class of materials allows not only charge flow switching but 

also magnetic phase switching, evidencing their potential for spintronics applications. 

 

Ferromagnetic semiconductors are an attractive platform to realize simultaneous 

electrical control of charge and spin degrees of freedom1, 2. Recent discovery of magnetic order 

in atomically thin ferromagnetic semiconductors such as CrI3 (Ref. 3), CrBr3 (Ref. 4) and 

Cr2Ge2Te6 (CGT)5 motivated studies on the effect of electric field on magnetism, leading to 

intriguing phenomena including ferromagnetic-antiferromagnetic switching3, 6, tunable 

magnetization loop7, enhanced tunnelling magnetoresistance8, 9 and magnon-assisted 

tunnelling4. These phenomena offer exciting prospects for novel spintronic devices. For 

practical device implementations, electrical control of magnetism at or near room temperature 

is desirable1. However, these layered ferromagnetic semiconductors exhibit Curie temperatures 

(TC) well below 100 K (Ref. 10). Modulation of TC by electric field has been demonstrated but 

with limited enhancement6. In this Article, we report electrical control of ferromagnetism in 

CGT with a giant enhancement in TC and alteration in magnetic anisotropy. 

CGT is a van der Waals layered ferromagnetic semiconductor with a band gap of ~0.7 

eV (Ref. 11). It shows a ferromagnetic order below its TC of 61 K, with a small coercivity of 

~3.4 mT (Ref. 12). The ferromagnetic order in CGT is governed by the intra-layer 

superexchange13 coupling through a Cr-Te-Cr bond with ~90° bond angle (Fig. 1a), which is 

well explained by Goodenough-Kanamori rule14, 15, and a weak interlayer ferromagnetic 

coupling5. CGT exhibits a strong magnetic anisotropy with out-of-plane easy axis12. The 

magnetic order persists when the material is thinned down to bilayer limit despite with reduced 

TC (Ref. 5). Recently, electrostatic control of magnetism in CGT in a field-effect device 

geometry has shown remarkable enhancement of saturation magnetization but with no changes 

in TC (Ref. 7). This strongly contrasts with the case of electric field effect in Fe3GeTe2 (FGT), 
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a metallic analogue of CGT, where TC was increased by 200 K by electrochemical doping, 

which induced high electron density of ~1014 cm-2 (Ref. 16). This contrasting behaviour of CGT 

and FGT suggest the importance of high-density doping. Recent report on significantly 

enhanced TC of a hybrid superlattice of CGT and tetrabutyl ammonium (TBA) further suggests 

strong doping dependence of this material17. However, the effect of carriers on magnetic order 

in CGT in the high density regime is largely unexplored.  

 

Figure 1. Characterization of CGT. (a) Ball-and-stick model of the CGT crystal structure (left) and a 
schematic illustration of the superexchange coupling established via virtual hopping of the electrons 
through the Cr-Te-Cr 90° bonding (right); (b) Schematic of an EDLT device based on CGT (left) and 
carrier density distribution along the thickness direction (right). Application of the positive gate bias VG 
drives cations in ion gel towards the surface of CGT, thus forming an electric double-layer. Most of 
potential drop occurs at the EDLT interface. The accumulation layer in CGT occupies only a few top-
most layers; (c) Typical ambipolar transfer curve of the device at VDS = 25 mV and T = 250 K; an optical 
micrograph of the ~20 nm thin CGT flake with Pd/Au contacts is shown in the inset (scale bar is 5 μm); 
(d) Rs-T curves at different VG. The sheet resistance, is reduced by an order of magnitude at T = 200 K 
when VG was increased from 2.6 V to 3.9 V. At these gate biases, CGT shows metallic behaviour in 
stark contrast with the undoped (VG = 0) regime. 
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To achieve high doping levels in CGT, we utilized the EDLT geometry with a polymer 

gel18 based on ionic liquid (DEME-TFSI) that provides a high-density carrier accumulation at 

the gel/semiconductor interface due to its ultra large capacitance (~10 µF/cm2)19. This 

electrolyte was previously used to induce interfacial superconductivity in transition metal 

dichalcogenides20, 21 and magnetism in cobalt-doped titanium dioxide22. Due to strong 

screening effects, the induced carriers are confined in a few topmost layers (Fig. 1b), thus 

effectively creating a 2D electron gas (Ref. 19, Supplementary Section 4). A multi-probe device 

with a mechanically exfoliated CGT flake (~ 20 nm) was covered with an ion gel as 

schematically illustrated in Fig. 1b. Figure 1c shows the transfer characteristic of a typical 

device at 250 K. The ambipolar character of CGT is evident with electron current increasing 

rapidly with gate bias (VG) above ~3 V and hole current emerging below ~-2V. Decreasing VG 

below ~-3.5 V led to irreversible degradation of the material most likely due to electrochemical 

reaction. On the other hand, the device was stable in the electron-doped regime. For VG between 

2.6 and 4.0 V, the sheet resistance, Rs, of the device decreases with decreasing temperature, 

indicating the metallic character of the heavily doped CGT (Fig. 1d). This is in clear contrast 

to undoped (VG = 0 V) and weakly doped material,7, 23 where the resistance quickly diverges 

with decreasing temperature, indicating insulating behaviour. We conducted in-situ Raman 

spectroscopy to verify that the onset of the high conductivity regime is not accompanied by 

any structural changes (Supplementary Section 2). Thus, the observed metal-insulator 

transition24 reflects the effective filling of the band edge states. From Hall effect measurements, 

we estimate the electron density to be ~ 4×1014 cm-2 for VG = 3.9 V (Supplementary Section 

3). 
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Figure 2. MR hysteresis. Magnetoresistance (𝑀𝑅 = (𝑅𝑠(𝐻) − 𝑅𝑠(0))/𝑅𝑠(0)) curves for T = 180 K (top), 
120 K (middle) and 60 K (bottom) and VG = 3.9 V (device #1). The background is removed for clarity. 
The magnetic field is applied in the out-of-plane direction. Unprocessed data are shown in the insets. 

Here, we monitor the longitudinal resistance change as a function of applied magnetic 

field to probe the magnetic state of the material. Figure 2 shows the MR curves at 60, 120, and 

180 K with magnetic field applied normal to the plane. Remarkably, the MR exhibits a clear 

hysteresis with abrupt changes in resistance at low fields. This MR hysteresis, similar to the 

recently observed hysteresis in magnetic PdSe2 (Ref. 25), strongly indicates the presence of 

spontaneous magnetization and magnetic anisotropies (Supplementary Section 5). Most 

devices consistently exhibited MR hysteresis at these temperatures when sufficiently large 

doping was achieved, indicating that doping induces magnetic order well above TC of undoped 

CGT. The microscopic origin of the complex resistance changes is unclear, but a series of steps 

suggests the presence and depinning behaviour of magnetic domains with sizes smaller than 

the device channel. We further conducted angle-dependent MR to identify the origin of 

resistance changes (Fig. S5). However, the results could not be explained by the conventional 

model, suggesting that multiple mechanisms are at play. Nevertheless, the abrupt resistance 

steps are highly reproducible (Fig. S6) and occur at the same magnetic fields, indicating that 

the observed MR hysteresis reflects the magnetization switching mechanism of the material. 
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Remarkably, we found that not only TC but also the magnetic anisotropy of CGT is 

altered by the application of electric field. Figure 3a shows the MR hysteresis measured with 

different tilt angles 𝛾 between the applied magnetic field and the plane of CGT crystal. It is 

evident that it requires a significantly larger magnetic field to complete magnetisation 

switching for out-of-plane fields (See Fig. S6 for temperature dependence of in-plane MR). To 

discuss this quantitatively, we define the effective saturation field Hsat to be the field where the 

magnetisation switching completes, i.e. the field at which the hysteresis disappears. Figure 3b 

shows that Hsat rises sharply as the tilt angle approaches 90 degrees. This is a typical 

characteristic of magnetisation switching associated with domain walls 26, 27 that explains 

magnetic switching behaviours in various systems28, 29, 30. It provides the angle dependence of 

the depinning field 𝐻dep (𝛾) of domain walls from the easy and hard axes as 𝐻dep (γ) =  
𝐻dep

0

cos 𝛾
 

where 𝐻dep
0  is the depinning field along the easy axis. This model shows an excellent fit to our 

experimental results, indicating that the dominant switching mechanism is the domain-wall 

motion. Note that the small deviation of the peak from 90° (∆𝛾 = 2.5°) is due to backlash of 

the rotation probe in our experimental setup. This model further verifies that the magnetic easy 

axis is along the in-plane directions for heavily doped CGT, in contrast to the out-of-plane easy 

axis of undoped CGT. The observed magnetic anisotropy is similar to that of TBA/CGT 

superlattice16. We highlight that the induced anisotropy in our device is not due to ion-

intercalation but due to surface doping. 
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Figure 3. Angle dependence of magnetoresistance. (a) MR curves at different angles  between 2D 

plane and the magnetic field. Insets in middle and bottom panels highlight the persistent hysteresis in 

the small field regime; (b) Extracted saturation field (Hsat) as a function of   where solid curve represents 

the fit based on the domain wall depinnig model. 

To investigate the role of carrier density in inducing ferromagnetic order in CGT, we 

conducted temperature dependent MR measurements at different gate voltages through 

multiple cooling cycles. Figures 4a-c show colour plots of ∆MR = |MR↑ − MR↓|  as the 

function of the applied out-of-plane magnetic field and temperature for three different gate bias 

conditions of a single device. Here, MR↑  (MR↓ ) is the magnetoresistance measured from 

negative to positive (positive to negative) fields. Transition from ferromagnetic to 

paramagnetic phase is evident from the disappearance of ∆MR at higher temperatures. TC for 

VG = 2.6 V condition is higher than that of pristine CGT by a factor of two, and an increase in 

VG from 2.6 to 3.9 V further enhances TC by nearly 80 K. We conducted gate bias dependent 

measurements on two different devices and both were found to exhibit the same trend (Fig. 

S8). 



 8 

 

Figure 4. Carrier density dependence of ferromagnetism. Colour plots of ∆𝑀𝑅 = |𝑀𝑅↑ − 𝑀𝑅↓| for 

(a) VG = 2.6 V, (b) 3.1 V and (c) 3.9 V, where 𝑀𝑅↑ (𝑀𝑅↓) is the magnetoresistance curve measured with 

increasing (decreasing) field; (d) Hu, defined as (𝐻𝑠𝑎𝑡
⊥ − 𝐻𝑠𝑎𝑡

∥ ),as a function of the gate bias. Square 

symbols represent values measured for a pristine bulk sample (data are taken from Ref. 31), while the 
round filled (clear) symbols depict the data from the EDLT device #1 (device #2). Inset highlights the 
dependence of TC on VG. (e) Calculated MAE as a function of electron density. Change of EAFM-EFM at 
different doping densities is shown in the inset. The solid lines are guide to the eye. 

We further conducted in-plane field MR to extract the uniaxial magnetic anisotropy 

fields 𝐻u(= 𝐻sat
⊥ − 𝐻sat

∥ ) for different VG as shown in Figure 4d. For undoped CGT, 𝐻u was 

obtained by ferromagnetic resonance experiments31. Note that 𝐻𝑢 < 0 and 𝐻𝑢 > 0 correspond 

to the magnetic easy axis lying in the out-of-plane and in-plane directions, respectively. For all 

gate biases, |𝐻u| decreases with increasing temperature and approaches zero. We estimate TC 

from the intercept with the 𝐻u = 0 line. The trend for undoped bulk CGT is the same except 

that the sign of 𝐻u is opposite to that of the doped CGT. The increasing trend of TC with VG is 
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consistent for the two devices (Fig. 4d, inset). The switching of the magnetic easy axis indicates 

the sign change in the magnetic anisotropy energy (MAE). Figure 4e shows MAE of CGT for 

different carrier densities obtained by density functional theory (DFT) calculations. For pristine 

undoped CGT, the positive MAE of 0.48 meV per formula unit (f.u.) indicates that out-of-plane 

spin orientation is more stable than the in-plane orientation, in agreement with the previous 

study32. With increasing electron density, MAE decreases, continuing the previously calculated 

trends in the low density regime7, and becomes negative for electron density above 3×1014 cm-

2. This general trend is in accordance with our experimental observation of easy axis switching 

for heavily doped CGT. 

From DFT calculations, we further obtained the difference between the total energy of 

ferromagnetic and anti-ferromagnetic spin states (𝐸AFM − 𝐸FM). This quantity is proportional to 

the magnitude of the exchange interaction energy since 𝐸(A)FM = 𝐸0 − (+)𝐸ex where 𝐸0 is the 

non-magnetic free energy component and Eex is the exchange energy. The calculated 𝐸AFM −

𝐸FM as a function of electron density (Fig. 4e, inset) reveals the increasing trend of the total 

exchange energy, implying that TC increases with doping, consistent with our experimental 

observations. The relationship between 𝐸AFM − 𝐸FM and doping density is in a linear fashion 

to the first order, and therefore explains that no distinct TC enhancement was observed in the 

recent study where doping density was of the order of 1012 cm-2 (Ref. 7). 

We now consider the origin of doping-induced magnetic order in CGT. The large 

carrier densities achieved in our samples suggest that the exchange interaction between 

magnetic Cr ions could depart from the superexchange mechanism, which requires the well-

isolated Cr3+ states, i.e. electrically insulating states. When some of the Cr3+ ions are replaced 

with Cr2+ ions by local electron doping (Fig. S9), the double-exchange interaction mechanism, 

where the spin of electrons is preserved during hopping across Cr3+-Te-Cr2+ links, can further 

stabilize the ferromagnetic order33. This carrier-mediated indirect exchange mechanism 



 10 

explains the emergence of ferromagnetism in several non-itinerant magnetic systems by 

chemically-induced doping34, 35. Electrostatically-induced carriers in CGT can act in a similar 

manner to cause the enhancement of TC by this mechanism. We use the electron transport 

parameters to model the hopping rate through Cr3+-Te-Cr2+ links and evaluate the energy scale 

of the exchange interaction (Supplementary Section 6). This phenomenological model 

estimates the magnitude of the exchange interaction 𝐸ex to be ~175 meV for VG = 3.9 V, which 

is of the same order of magnitude as 𝐸AFM − 𝐸FM obtained by DFT calculations (Fig. 4e, inset). 

Although this model only provides us with a crude estimate of 𝐸ex, the fair agreement of the 

energy scale supports the role of the double-exchange mechanism. 

In summary, we have demonstrated the emergence of ferromagnetic order with 

significantly enhanced TC in CGT crystals in an EDLT geometry. Heavy electron doping not 

only enhances TC but also changes the sign of the magnetic anisotropy energy, resulting in the 

change of the magnetic easy axis from out-of-plane to in-plane. Our analysis suggests that the 

carrier-mediated indirect exchange mechanism prevails over the superexchange mechanism 

upon doping. We envision that this approach is applicable to other insulating ferromagnets or 

even non-magnetic systems in a vicinity of magnetic order. Further studies will underpin the 

detailed role of electric field in controlling magnetism by the route presented in our study.  Our 

findings show that layered ferromagnetic semiconductors are an exciting platform for 

investigating electrically tunable exchange interactions and exploring novel spintronic device 

concepts with electric field. 

 

Methods 

Methods and additional references are available at the Supplementary Information. 
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