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ABSTRACT

This thesis describes the application of some of the techniques of quantum 

dynamics to chemical systems involving molecular ions which have recently been 

investigated experimentally. Each of the reactions studied requires the 

development of some aspect of the theory used for such calculations, in order to 

take into account the specific characteristics of the system involved.

The first part of the thesis concerns the evaluation of the rate constants for the 

energy transfer between a molecular ion and a neutral atom: the vibrational 

relaxation of in collision with Kr. The f l  electronic state nature of the diatomic 

molecule is considered, which requires the inclusion of two potential energy 

surfaces of differing symmetry in the calculations. The results are compared to 

those obtained by approximating the molecule to be in a 2  state, using a single 

potential energy surface.

The second part of the thesis investigates the doubly charged triatomic ion 0]^% 

created by the double ionisation of ozone, and evaluates the distribution of internal 

energy states present in the ion fragment, O2 , which is produced as a result of its 

dissociation. The potential surface for this system has a Coulomb term which, to 

be accommodated in the calculations, requires an adaptation of the existing 

methods used for such an analysis.

In order to gain insight into some of the effects of the Coulombic potential in 

collisions between ions, a simpler system is studied initially which involves the 

elastic scattering between and Cl̂ . This allows an assessment as to the 

necessity of considering the nature of the Coulombic potential when carrying out 

quantum dynamical calculations.
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INTRODUCTION

The quantum mechanical wavefunction of any system of particles contains 

within it all the information about the state of the system. The theory of quantum 

dynamics is directed at extracting some of that information from the wavefunction 

in order to study interactions which take place between the particles of the system. 

Quantum dynamics is able to derive the values of a large number of the observable 

quantities associated with the interactions and is therefore a powerful tool for 

studying many different types of reactions between particles. It is extremely 

effective at both explaining and predicting the results of a variety of experiments 

on atoms and molecules.

A quantum dynamical study of a chemical process generally consists of a 

method for solving the Schrodinger equation to determine all or part of the 

wavefunction of the system, followed by a means of deriving the desired 

observable quantities from the wavefunction. Most quantum dynamical studies 

involving the collision of particles have many aspects of the method for solving 

the Schrodinger equation in common, but differ in the choice of observable that is 

to be extracted from the wavefunction and thus in the method of its extraction.

This thesis describes research performed on some chemical processes which 

involve the collision of molecular ions, using quantum dynamical methods. The 

thesis is in two parts, with each part concentrating on a separate process and 

investigating different observable quantities. Nevertheless, much of the theory 

used is common to both parts of the thesis, to the extent that the method described 

in Part 2 is able to refer back to many of the equations derived in Part 1 and build 

upon some of the formulae previously developed.

The first part of the thesis deals with the vibrational relaxation of the diatomic 

ion O2 , as a consequence of inelastic scattering with a Kr atom. The aim of the 

investigation is to evaluate the temperature-dependent rate constant of the reaction 

and compare the results with previous experimental and theoretical studies. This
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triatomic system exhibits two types of spatial symmetry and the analysis involves 

incorporating the potential energy surfaces of both symmetries in the calculations.

The aim of the second part of the thesis is to determine the distribution of 

internal energy states of 0 2  ̂ formed as the product of the dissociation of doubly 

ionised ozone in the process:

O3 0 3 ^ ^ - ^  0 2 ^ + 0 *  .

Other observable quantities which are evaluated in Part 2 relate to the properties of 

weakly bound states of doubly charged molecules.

Due to the special nature of the systems chosen to be studied, some elements of 

the theory used in each of the parts of the thesis have never previously been 

implemented in a quantum dynamics calculation. Part 1 undertakes, for the first 

time, a fully quantum dynamical study of the vibrational relaxation of a diatom in 

a n  electronic ground state, whilst Part 2 develops existing theoretical methods to 

analyse a system involving a Coulombic interaction.
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P A R T I  

1 Introduction 

1.1 Vibrational Relaxation of O 2* with Kr

Vibrational relaxation through inelastic scattering involves the collision of a 

vibrationally excited molecule with a “quencher”, an atom or small molecule, 

such that some or all of the internal vibrational energy of the target molecule is 

transferred to translational energy (of the quencher or the target molecule) or to 

rotational energy of the target molecule or, if  the quencher is a molecule, to the 

internal energy of the quencher.

1.1.1 Background 

Experimental Studies

Experimental observation of the inelastic scattering of diatomic molecules 

reveals two major differences between the vibrational relaxation of diatomic 

molecular ions and that of most neutral diatomic molecules. As Ferguson [1, 2] 

notes, in the case of the vibrational relaxation of many neutral molecules the 

temperature dependence of experimentally measured rate constants, kg, is 

consistent with the famous Landau-Teller [3] model which predicts that:

ln ( i,)c c - ( l/T )“

where T is the temperature. Thus, for example, in systems such as CO(v) + He 

and CO(v) + H 2 it has been found [4] that, even at quite low temperatures, an 

increase in temperature (or collision energy) will yield an increase in the rate 

constant for vibrational relaxation.

In contrast, the quenching of diatomic molecular ions appears to exhibit 

negative temperature dependence of the rate constant at low temperatures 

[5, 6 ], with positive dependence at higher temperatures. For example, a 

minimum in the plot of the rate coefficient versus collision energy or 

temperature has been detected in drift tube experiments on the vibrational
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relaxation of 0%̂  with Kr [7]. Such behaviour had previously been observed in 

the case of neutrals for systems with strongly attractive electrostatic potentials 

such as HF-HF [8 ], HCl-HCl, HBr-HBr [9] and NO-NO [10].

This has led Ferguson [1] to suggest a qualitative interpretation of the 

experimental data which has subsequently been supported through the use of 

classical trajectory calculations and related graphical studies by Tosi e/ a/ [11] 

and by Ramachandran & Ezra [12]. The suggestion is that, whereas in the case 

of the majority of neutral molecules it is the dominant repulsive interaction 

which leads to vibrational energy transfer, the attractive electrostatic forces 

present in the interactions of highly polar molecules and ions result in an 

alternative mechanism for relaxation. First, an ion molecule “long-lived” 

complex is formed:

AB^(v) + Q ^  (A B ^ (v )-Q )*

then vibrational predissociation occurs, i.e. the energy in the vibrating AB^ 

bond transfers into the AB^-Q coordinate:

(AB"̂  (v) -  Q)* -> AB^ (v' < v) + Q + K.E.

Since, the longer the complex stays together the more likely it is to 

vibrationally predissociate and the lifetime of the complex decreases with 

increase in collision energy (or temperature), the negative dependence of the 

rate coefficient at low energies would be expected.

For higher energies, the direct mechanism due to the short-range repulsion 

dominates so that, the more collision energy, the closer the atom can get to the 

molecule and hence the greater the likelihood of vibrational relaxation. The 

existence of these two mechanisms thus qualitatively explains the change in 

behaviour over the collision energy range, although it has been shown [ 1 1 ] that 

both mechanisms are always present and it is just the relative dominance of the 

one over the other which causes the observed results.

14



The other characteristic of the vibrational relaxation of diatomic molecular 

ions which distinguishes it from that of neutral diatoms is the efficiency of the 

energy transfer. The rate constant for vibrational relaxation of neutral diatoms 

is generally in the range 10’’  ̂>kq>  10’^̂ cm ŝ'̂  at room temperature [13]. The 

much stronger attractive electrostatic interaction present in ion-neutral 

collisions results in the rate of vibrational energy transfer observed in such 

systems being significantly higher [6 , 7].

However, experiments performed on 0 2 ^(v) [5, 7] and NO^(v) [6 ] reveal that 

the vibrational quenching of with Kr is exceptionally efficient. Even 

though the electrostatic attraction of the / Kr system is approximately the 

same as that for the NO^ / Kr system, the former shows a rate constant of 

kg « 1 0 '̂ * cm̂ s'̂  at room temperature for the process:

(v> 1) + Kr —> O2 (v=0) + Kr

as compared to kg « 10'*̂  cm̂  s'* for the equivalent NO^ / Kr process. This 

difference has been attributed to the influence of the unfilled orbital present in 

the molecule [6 ].

Theoretical Studies

Theoretical analysis of the process:

0 2 ^ (v = l) + K r->  O2^(v= 0 ) + Kr ( 1 )

has been carried out using classical, semi-classical and quantum methods. 

Tosi, Ronchetti and Lagana [14,11] (TRL) have performed classical trajectory 

calculations based on a semi-empirical potential energy surface, created by 

adding the 0 2  ̂diatomic potential to terms representing the Kr-0 2  ̂ interaction, 

and found good agreement with the experimental data [7]. The same potential 

surface has been used to calculate cross sections as a function of the collision 

energy by means of a semi-classical approach [15].
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Goldfîeld [16] has applied a time-dependent wave packet technique to study 

the process (1) but only at two values of collision energy, 0.1 and 0.5 eV, and 

with the total angular momentum, J, equal to zero. These results were obtained 

using a slightly different potential surface developed by Ramachandran and 

Ezra (RE), who also used it to carry out classical trajectory calculations [12].

As Gianturco et al [17] point out, a fully exact time-independent quantum 

mechanical study of the rate constants of a system such as process ( 1 ), 

involving, as it does, a large number of rotational and vibrational quantum 

levels, would require enormous computational power and time. It is therefore 

necessary to find an appropriate approximate method if  meaningful results of 

time-independent quantum mechanical calculations are to be obtained.

Gianturco et al [17] found that the rotational infinite order sudden (RIOS) 

approximation [18], used on the TRL surface, fails dramatically when applied 

to the reaction ( 1 ) and could only be used for a qualitative study of pure 

rotational excitations. Also, the results [17] of restricted calculations (J = 0 and 

J = 60, only) made within an exact fully close coupling treatment suggest that 

the correct results will lie a factor of about 10"̂  above RIOS values.

Potential Energy Surface

More recently, Ramiro-Diaz, Wahnon and Sidis (RDWS) have carried out ab 

initio calculations of the O2 /K r potential energy surface [19, 20]. Projected 

valence bond configuration interaction calculations were carried out to produce 

the seven lowest adiabatic potential energy surfaces of the O2  (^T I)/K r system 

in each of ^A" and ^A’ symmetries and for a large number of geometries. They 

found the well depth of the lowest surface, 1 ^A", to hQ Vm = -  0.173 eV. The 

well depth used in the semi-empirical potentials of TRL and RE [11, 12], 

deduced from photodissociation data [21], was much larger, with Vm = -  0.33 ± 

0.1 eV. Given the fact that one vibrational quantum of O2 is 0.196 eV, it is 

suggested [19] that this discrepancy could be explained by a shift of one unit in 

the assignment of the vibrational states of the photodissociation data in 

Ref. [21].
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1.1.2 This Research

The discovery that the ab initio potential energy surface differs considerably 

from the semi-empirical surfaces used for all previous theoretical studies of 

process ( 1 ) prompts further interest in the calculation of the rate constants for 

the scattering reaction, based on this new energy surface.

The centrifugal sudden or coupled states approximation (CSA) [22, 23] is a 

quantum mechanical method which recently has been proven to be highly 

accurate in studying vibrational relaxation of diatomic ions, such as NO^ in 

collision with He [24] and with He [25]. This method allows the 

application of a quantum mechanical analysis to process ( 1 ) without incurring 

the computational expense of a fully close coupled calculation.

In addition to which, the existence of ab initio adiabatic potential energy 

surfaces of both forms of symmetry present in the 0 2 /̂K r system [20] presents 

the opportunity of incorporating two potential surfaces into the calculations. 

Until now, almost all quantum scattering calculations on vibrational relaxation 

have been made on a single potential energy surface, but to do so here would 

involve approximating the ground electronic state of the diatom to be ’S 

instead of ^H. It is now possible to check whether such an approximation 

would be justified. The aim of this part of my research was, therefore, to 

perform quantum dynamical calculations for process ( 1 ) using the centrifugal 

sudden approximation on the two lowest adiabatic potential energy surfaces of 

Ref. [20].

Confidence in the accuracy of the rate constants found will depend on an 

assurance of the applicability of the CSA to the 0%̂  / Kr system. Therefore, 

results of CSA calculations using the TRL surface are presented first, in order 

that eomparisons can be made between the CSA method and all previous 

theoretical studies.

Subsequently, the quantum dynamical calculations have been carried out on 

the ab initio RDWS potential surface and the results obtained compared with 

those observed in experiment [5, 7]. The calculations are first done using the 

lowest potential energy surface of the system [19] and then developed to take
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into account the lowest surface of the alternative symmetry [20] as well. Thus, 

an assessment of the legitimacy of approximating a system which shows two 

different symmetries through the use of just one potential energy surface can be 

made. This is the first time that vibrational relaxation calculations have been 

done on more than one potential energy surface.

The description of this first part of the thesis will initially set up the 

Schrodinger equation in a form suitable to the problem. This section is valid for 

all formulations of the / Kr system and will also be required for the second 

part of the thesis, as will be outlined in Part 2. Then, in Chapter 3, the effects of 

the various potential surfaces on the calculations are discussed, followed by the 

solution of the resultant equations in Chapter 4. Chapter 5 deals with the 

derivation of the observable quantities from the solutions of the equations. The 

final three chapters present and discuss the results and submit the conclusions 

of this part of the thesis.

The results of the calculations using the semi-empirical, TRL potential 

energy surface and those on the single ab initio potential were carried out by 

Dr. S. K. Pogrebnya, with whom I collaborated for the first part of this thesis. 

My principal task, in this part of the thesis, has thus been the extension and 

application of the theory to the Il-state description of the diatom, which uses 

the combination of both adiabatic ab initio potential surfaces of the system 

together.
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2 Method: Setting up the Schrodinger Equation

The calculation of cross sections, and thus rate constants, for a scattering interaction 

using quantum dynamics is based on an evaluation of the probability that the 

interaction will occur. According to the Copenhagen Interpretation of the Schrodinger 

equation, the wavefunction of a system at any given moment can be expressed as a 

sum of all possible outcomes of a measurement on the system, with each outcome 

weighted (i.e. multiplied) by the square root of the probability of that outcome being 

the one recorded in the measurement.

Therefore, one way to determine the probability of any given outcome of a 

measurement being the one observed is to calculate the wavefunction at any moment 

(i.e. independent of time), expressed as a linear combination of all possible outcomes, 

and ascertain the value of the square of the coefficient of the desired outcome at the 

position in space at which the measurement will take place. The measurement of a 

scattering interaction can be considered as occurring at an infinite distance from the 

position of the collision.

Hence, for this research, the method by which theoretical values of the observables 

are calculated is through the solution of the time-independent Schrodinger equation to 

obtain the wavefunction for the system in the region corresponding to infinite 

separation of the quencher and the target molecule. Since the aim is to find the 

probability of the diatom changing from one internal energy state (or ‘channel’) to 

another, the wavefunction is then expressed as a linear combination of all possible 

internal energy states of the diatom at infinite separation so that the desired 

coefficients and consequently the probabilities can be found.
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2.1 The Hamiltonian

The time-independent Schrodinger equation for an atom colliding with a diatom can 

be written in operator form as:

(2.1)

where is the nuclear scattering wavefunction for the system with the diatom

initially in a vibrational state v and rotational state j ,  with mj the projection of j  on the 

laboratory frame z-axis. E is the total energy of the system.

The Hamiltonian in space-fixed Cartesian coordinates is

H = -
2m 2m,

h‘
2m,

where the Laplacian,V , is given by:

+
dy‘ âzf

Xi, y ,, z, being the Cartesian coordinates of atom / and being its mass. V is the 

potential energy surface (PES) on which the atom and molecule move.

This is much easier to handle when transferred to centre-of-mass coordinates, where 

the motion of the centre of mass of the system is factorised out of the Hamiltonian. To 

derive this transformation, consider the Hamiltonian for a two-particle system:

A  2  A  2

A A A  P  P  A

h  = t  + v  = ^=^ + ^ ^  + v
2 /M, 2 / ^ 2

where P, is the momentum operator for particle i. Then,

T =
2 /M,/M2

A 2 A 2
m^P, +/M, ? 2

2 /M,/M2 (/M, +/W2 )
/M2 P, +W] fz  +/M,/M2 P, + E 2
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m, nij
2 (/w, +W2 )

+ ( Â ± Â ] 1

2 (m, +mj)

The right-hand term is the kinetic energy term for the composite system of 

(particle 1 + particle2). For a three-particle system, therefore, the above can simply be 

repeated, treating the two-particle composite as a single particle. Hence:

2 w, Irrij 2m̂

T  =
2 (m, + ̂ 2  ) 2(W| 4-/^2 ) 2w

w, trij
2 (w, + W2 )

A V  ( a » ,  f  A  ( £ 1  + £ 2 ) 1 ' .  ( à  +  £ 2i-1 _  f-2

^ 2  y
+

2 (w, + W2 + /«3 )
/  \  . ( 2 .3 )
(m, + 7M2 ) j 2(/w, + /«2 + /W3 )

The centre-of-mass (CM) coordinate system is defined as that in which the centre of 

mass of the total composite system (particle 1 + particle 2 + particle 3) is at rest. 

Therefore,

The CM coordinates for a system with atom. A, and diatom, BC, are:

L = Lb - L c

and K - L a  L g  —  L a

^ bLb ^ ^ cLc

rriQ+m̂ .

with representing the position vector of the centre of mass of diatom BC. 

Thus, Eqn. (2.3) becomes:

2m BC 2fj,
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where /y is the reduced mass of the whole system, given by:

+/Wc)
m^+mg+ rrif̂

and is the reduced mass of the diatomic molecule:

B̂C ~
itIb rriç 

(mg+Wc)

Given that the quantum mechanical definition of the momentum operator is:

p = - in v

the Hamiltonian for the system, in its spherical polar form, can now be expressed as:

2m 2m
(2.4)

BC

where ^'represents ( 0 , 0 ), the polar angles associated with R, and r 'represents {6, <j)), 

the polar angles associated with r. The potential energy function has here been 

separated into two parts: ^ (r) is the diatomic potential energy surface and V therefore

now refers to the remainder of the potential, that due to the interaction between the 

diatom and the atom.

The Laplacians, F /  and F /, are given by:

and

Ô 1

ÔR^ R
+

(i?sin0 )'
sin© —

a©
sin© —

a©
+

ao

( Ô 1
— + -  

dr r

\ 2

+
(rsin^y

sin
dO\ do) d(j>

or:

A  1
ÔR R

\2
l \ R l

R̂
(2.5)
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and

V? =
^ 1 —  + -  

â r  r
? ( / ) (2.6)

where I is the orbital angular momentum operator of the system and j  is the angular 

momentum operator associated with the rotations of the diatomic molecule.

Hence, the total Hamiltonian has been split up into two parts, one representing the 

Hamiltonian of the diatomic molecule (the middle two terms of Eqn. (2.4)) and the 

other representing its interaction with the atom. Since the potential energy surface for 

the interaction of the diatom with the atom is only dependent on the angle, /, between 

R and r and not on their absolute orientations in space, the final Hamiltonian can be 

written as:

âR R
l \R ' ) + r,y) (2.7)
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2.2 Close-Coupled Equations

As explained above, the aim of the calculation is to write the wavefunction for the 

system in terms of the internal states of the diatom, so as to ascertain the coefficients 

of each state. Therefore, the method used for the solution of the Schrodinger equation 

(2.1) with the Hamiltonian of Eqn. (2.7) involves expressing the wavefunction as a 

partial wave expansion over all the quantum numbers:

4̂ vjmj

Here, x̂ 'y is a rovibrational wavefunction for the diatomic molecule and is a 

diatomic rotation wavefunction. y/fm,. is an eigenfunction of the orbital angular 

momentum operators, / ̂  and ^ .

Substituting the partial wave expansion into the Schrodinger equation, multiplying 

the resulting equation on the left by y/r„'\R')(l>]-„’ {r')xl-j-[r) and integrating over r, r'

and R' gïVQS the set of coupled equations:

dR̂  R-
(2.9)

where k̂ .j. = ^ { e - g .̂j.) and is an eigenvalue of . Note that the summation 

on the right-hand side is over five quantum numbers.

These are the close-coupled equations which need to be solved to find g(R).

The most sensible method of proceeding is to uncouple the equations by 

diagonalising the matrix of elements:

(v'y" m’ I ’ m : IK I V'y' m' /'»,; ) + <5.., S , ,  6^.^. S ,,S „.„, 1 (2.10)

which is constructed from the potential energy matrix elements of the right-hand side 

of Eqns. (2.9) added to a diagonal matrix containing the second and third terms of the
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left-hand side. Such a diagonalisation would reduce the set of Eqns. (2.9) to a set of 

simple second-order differential equations.

However, if  the basis set of Eqn. (2.8) is to be sufficiently large to give convergence 

in the results of the calculation of g(R), this diagonalisation would be a mammoth task 

and would thus not be practicable. Hence, as noted in the Introduction, in order to 

reduce the amount of computational time and expense required, it is necessary to make 

some sort of an approximation.
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2.3 The Centrifugal Sudden or Coupled States Approximation (CSA)

The coupled states approximation was formulated, simultaneously and independently, 

by Pack [22] and McGuire & Kouri [23]. The approximation originally consisted of 

replacing the orbital angular momentum operator in the Hamiltonian of Eqn. (2.7) by a 

constant parameter, /, so that

/ ^ = / ( / + l )  ,

thus reducing the difficulty of diagonalising the matrix referred to above (Eqn. (2.10)).

However, it is simpler (and more effective) to apply the approximation if  the 

formulation of the Schrodinger equation is transformed fi*om space-fixed (SF) 

coordinates (i.e. the laboratory fi*ame) to the body-fixed (BF) coordinate system [26, 

27]. This system employs a rotating set of axes, defined such that the BF z-axis is 

constrained to lie along the vector R which relates the centre of mass of the diatom to 

the atom.

This means that the z component of the orbital angular momentum, mi, is zero. Thus, 

the total angular momentum, J , defined as

J = y + /

will have z component

tJ  ̂ — m,j "k /My — /My — Gl

where /My is the projection of the rotational angular momentum on the (BF) z-axis.

In order to transform the Schrodinger equation for the system fi*om the SF coordinate 

frame to the BF fi*ame, the rotation function, 91, is applied which rotates the z-axis so 

that it now lies along the vector R and the y-axis so that it now lies in the old (SF) xy- 

plane. The Schrodinger equation then becomes:

% = 0 . (2.11)

Since the potential surface, as a whole, is invariant under the rotation, the rotated 

bracket can be written simply as [22, 23] :
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^ i f  P
âR'^ R

Bt.
2R + ,̂ / )  ' (2.12)

The rotated Hamiltonian is identical to Eqn. (2.7), except for the fact that the polar 

angles r' now describe the position of the vector r with respect to the BF-axes and that 

the operator / ̂  can no longer be exactly explicitly described. Instead, the operator / ̂

is written as J - j and so the Hamiltonian becomes:

^BF  ------
â  1

■ +  —

âR R
J - j

R‘
+ +F(/?,r ,y)

2 //
^ i f  (■ /.- / , )  [ j . - j j

\âR R) R̂  R̂ R̂

2 //

\  2  /  ^  A a  A  A  A a \

+ W +7 ~ ̂ Jz Jz -  J+j- -  J-J+ ) 
âR R) R̂

+ H,c+V(R,r,r) (2.13)

where J^=J^± iJ

and j± =Jx ^ i j y  •

The SF wavefunction can be written in terms of a rotated BF waveflmction:

Y SF
vjnt: ÿ \  . (2.14)

In the SF frame, y/,̂  ̂ are the eigenfunctions of the orbital angular momentum operator, 

which are simply the spherical harmonics, such that

I mi

Thus, expressing the rotation function in terms of rotation matrices [28], Eqn. (2.14) 

becomes [29, 30]:
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SF
vjnt: Z  i (/f’,0)^,.„.(r;,)'lZvj’(r)g7;‘. (R)-

^ J v ' J ' m ' j l ’m ' , \ m ’, J \  ÇI' J

(2.15)

Since the rotation is about angles R'sf,

4;r

and hence;

Î s
v'j'm'jl'm'i 47T

V2
S  %  (R\ (/?’, 0 ) (r', ) ( r ) (/?)

V n-
=  0 .

Making use of Wigner 3-j symbols, and the fact that I + j  = J  and rnj + mi = M, the 

wavefunction can be rewritten as:

ï) ^v'frrijl'm]

(2 /' + l)-
4;r

E  z^ L K o )(2 j+ i )
/' J  Y  /  /'

YZ v ' j ’ &v'J'm'jl'm’,

(2.16)

and the Schrodinger equation therefore becomes:

{Asr - e ) -L V
R Ç i'JM  v'J'

=  0

Thus, the time-independent Schrodinger equation for the system with the diatom 

initially in vibrational state v and rotational state j  and with Q the projection of j  on the 

BF z-axis, can be expressed as:

J ÇÏ v'J'

= {H,, - £ ) X (^’. 0 ) {R,r,r j  = 0
ÇÏ

(2.17)
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for total angular momentum quantum numbers J and M. ( Note that r' are now the new 

polar angles, {6, (f)\ associated with the vector r in the BF frame and that therefore 

angle 6 is equivalent to angle x).

Substitution of the Hamiltonian of Eqn. (2.13) into the Schrodinger equation (2.17),

multiplying the result on the left by integrating over R\ gives the coupled

equations:

" £)%■'“ = 0  (2.18)

where

nU â i V  n^[j{j+\)-2Çï"  ̂+ 'f\
d R *  R

and = ------- r  J2 • (2 .2 0 )2juR

This result has made use of the relationships [22, 30]:

•̂ ± M ~ ^ T (*̂ » ̂ ) ̂  n TIM

À ,(J,Q ) = [J(J +1) -  Q(Q ± 1)]

Note that the raising and lowering operators, , in the BF frame have the opposite

effect to those in the SF frame [29].

In this coordinate system, Schatz and Kuppermann [31] recommend a variation of 

the CSA which involves simply ignoring all terms non-diagonal in Q", whilst leaving 

the diagonal terms unapproximated. This is equivalent to expressing the centrifugal 

term of the Hamiltonian as:

A /V 2 A - A ^  A A

' J - j  +7 •

Hence, the Schrodinger equation becomes:
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= 0 (2.21)

where

=  1 Z  f * / n -  i r ’)X,y  ( 0  / . y ^ -  ( ^ )
^  v ' f

(2.22)

Then, as for the SF coupled equations above (Eqn. (2.9)), multiplying the equation on 

the left by integrating over r and r' gives the set of BF coupled

equations:

dR2 R- /v'/Q' (^) “ ^ 2  S (  1̂ 1 (^)

(2.23)

with A : ,.= ÿ (£ -6 ^ 7 " )  .
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3 The Potential Energy Matrix

Prior to this research, as far as could be ascertained, all quantum mechanical studies 

of the vibrational relaxation of a diatom have assumed the diatom to have ground 

electronic state . However, the molecular orbital description of the electronic 

configuration of 0 %̂ is:

(  1 s O g ) ^  (  1 s o u * ) ^  ( 2 s G g ) ^  ( 2 s CTu * ) ^  ( 2 p 7 t „ f  ( 2 p 7 i „ ) ^  ( 2 p O g ) ^  ( 2 p r t g * ) '

meaning that the ground electronic state of 0 2  ̂is Treating 0%̂  as ‘S would entail 

an approximation in the quantum mechanical model of the physical system. As 

mentioned in the Introduction, one of the major aims of this research is to assess the 

validity of such an approximation by carrying out calculations treating the diatom both 

as and as In addition to which, another objective is to test the accuracy of the 

coupled states approximation for the / Kr system by comparing the results obtained 

using it to those obtained in classical and semi-classical studies, which used a 

semi-empirical potential energy surface.

Thus, as outlined in the Introduction, the coupled states approximation for the 

solution of the time-independent Schrodinger equation is here applied to three 

alternative descriptions of the inelastic scattering of with Kr:

a) Treating the diatom as *E and using the semi-empirical interaction potential energy 

surface of Tosi, Ronchetti and Lagana [11, 14] (TRL).

b) Treating the diatom as Ê and using the single ab initio l^A" interaction potential 

energy surface of Ramiro-Diaz, Wahnon and Sidis (RDWS) [19]. The surface for 

the wavefunction of A" symmetry has been chosen over that for the wavefiinction 

of A' symmetry since it is the lower of the two. (This is true despite the fact that, in 

the Cs symmetry group. A' is the representation of greater symmetry, since in the A' 

orientation the partly filled 7i-orbital of the diatom lies in the scattering plane and 

would thus have a greater affect on the ability of the incoming atom to interact with 

the diatom.)

c) Treating the diatom as ^fl and using both the l^A" and the l^A' interaction potential 

energy surfaces of Ramiro-Diaz, Wahnon and Sidis (RDWS) [20].
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Description c) follows the Hund’s case (a) representation for the coupling of 

diatomic angular momentum such that the spin of the electrons and the electronic 

angular momentum are coupled together along the bond-axis. Hence, if  Q is the 

projection of the total angular momentum of the diatomic molecule along the 

molecular bond-axis, A the projection of the electronic orbital angular momentum 

along that axis and S the projection of the spin angular momentum, then:

Q = A + Z .

For a molecule, A= ± 1 and Z= ± so that |Q| = V2 or

However, in this analysis, in order to simplify the equations used, the spin of the 

electrons is assumed to have a negligible effect on the calculations and is therefore 

approximated to zero. Consequently, the system in this description has, in fact, been 

treated as one where the diatom is actually of electronic ground state ^H, ignoring the 

doublet character of the diatom.

All the elements of the method discussed until now are equally applicable to all three 

descriptions of the O2 /K r system. The differences between the three versions occur in 

the evaluation of the potential matrix terms of Eqn. (2.23).
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3.1 The Diatomic Rotation Wavefunction

3.1.1 D ia to m ic s  in  E  S ta te s

The rotational part of the molecular wavefunction for a diatom with the ground 

electronic state of are the eigenfunctions that satisfy the equations:

and

which are, therefore, the normalised spherical harmonic functions, YyQ(r').

3 .1 .2  D ia to m ic s  in  n S t a t e s

The rotational part of the molecular wavefunction for a diatom with ground state of 

*n are the eigenfunctions that satisfy the equations:

i'VyQA =yO' + l)«̂ j£iA

and

J z

where MF is the molecule frame, which has the z-axis along the bond axis. Such

functions are the normalised rotation matrices, T)^av 0  •
\  Stt J

Because the value of the quantum number A can be either +1 or -1  and is dependent 

on the angular momentum of the electronic wavefunction, the partial wave expansion 

(Eqn. (2.22)) would now be either:

I A) = H  f  Z . r  i r ) f ^ y S -  iR )  D L - , ( /)  IA = 1)
V ' /  \  V
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or

v'j' \  J

dependent on the electronic angular momentum wavefunction, | A) .

Due to symmetry requirements, a linear combination of the two wavefunctions is 

actually used, so that the definite symmetry partial wavefiinction expansion for the 1 1  

diatom becomes:

k A )  =  w ( D ^ : , ( / ) | A = i ) + g ' D / _ , ( / ) | A = - i ) )  ( 3 . 1 )
v ' f e \  loTT J

where s'= ± \ .

In this research, the A-doubling is neglected and the channel energies, , are thus 

taken to be doubly degenerate with respect to e.
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3.2 Potential Energy Surfaces

3 .2 .1  S e m i-E m p ir ic a l In te ra c tio n  P o te n tia l

The TRL potential energy surface is given by the formula first published in Ref. [17]:

^ r ,^ (^ ,r ,y )= D ,e x p (-6 (;;,-r ))[e x p (-6 (;;,-;; '))-2 e x p (-A X y ,-1 3 9 " y )

+ A  exp(-è  ~ ^ * ) ) [ ~ ^ * ) )  “ 2 e x p ( - -139°) ) (3.2)

C
2R‘

where

( 1 -  tanh ( ))+ E exp ( - ci?)

R] =R^ + -  R r cos (/)

RI = R̂  + 7 '*̂  + i? r cos (/)

COS
R

The values of the constants of Eqn. (3.2) that were used are those given in Ref. [15].

They are:-

dissociation energy: Da = Di, = 0.2 eV 

Equilibrium distance: R* = 2.56 A

Angular dependence dampening function: Aa = Ab= -  —

with adjustable parameter: ^ = 2 0 °

b = 3 . 0 0  A '

C = 17.855 eV 

i?o = 15 A 

E = 800 eV 

c = 3A ‘*
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3.2.2 Ab Initio Interaction Potential

The ab initio potential energy surfaee of Ramiro-Diaz, Wahnon and Sidis [19, 20] 

was evaluated through the use of configuration interaction calculations in a basis of 

about one thousand projected-valence-bond state functions. Their calculations 

produced potential energy surface points, for both the lA" and the lA ' electronic 

states, for 30 values of R, 10 values of r and 7 values of In order to incorporate these 

points into the dynamics calculations, it is necessary to fit them to a function which 

can be used to describe the whole potential energy surface. The form of the PES 

function can be chosen to simplify the evaluation of the integrals in the potential 

energy matrix of Eqn. (2.23) by separating out the angular dependence.

Methods for incorporating a single potential energy surface into dynamics equations 

are much more common and better understood than those for multiple potential 

surfaces. However, a description of how to formulate both the A" and the A' potential 

surfaces in terms of a single function has been derived in a number of different ways 

[32-36]. This thesis will present the derivation proposed by Alexander [36] since it 

enables one to see easily how both the expression for the single potential surface, of 

the 'E treatment, and that of the double potential surface, of the ^fl treatment, are 

simply different examples of the same formulation.

The Hamiltonian of Eqn. (2.7) has been integrated over the coordinates of all the 

electrons of the system, based on the Bom-Oppenheimer approximation which allows 

separation of the wavefunction into nuclear and electronic parts. The full Schrodinger 

equation in centre-of-mass coordinates, in atomic units, with the electronic part of the 

wavefunction written explicitly is:

, V *  _  ^ T O T A Lrpnucl , rp n u d  , rp e l  , rp e l , '  J  ,

V j/  nucl ̂  nuci v j /  e/ \ ^ e l  _  q
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with f  being the kinetic energy operator and the vectors r are position vectors. The 

subscripts i and j  label any two charged particles associated with the diatomic 

molecule BC, and k and / label any two charged particles associated with the atom A. 

Zx is the charge of particle x and ‘nucl’ and ‘el’ label nuclear and electron terms, 

respectively.

Then, assuming possible electronic excitation in the molecule but not in the atom, 

multiplying on the left by * and integrating over the coordinates of the

electrons gives the set of coupled equations:

rpnucl . 
^ R

BC

f

-'PJc) + ( <
\ \Lk -Lik*i

TOTAL

+
BC

Y  î^k 
Z a \  B C  A

C -Lk
X ^ n u c l  x ^ n u c l  _  q

r r '+ ^ « c - £ + E ( 'i '« c '<
B C '* -  Lk

X^nucl vj/wac/
=  0 (3.3)

where E is the total energy of the system minus the energy of the atom. The 

Hamiltonian is now identical to that of Eqn. (2.7), but with the potential energy 

operator in that equation here expressed explicitly as a matrix.

Each of the inverse distances can be expanded as a linear combination of 

unnormalised spherical harmonics, C, [37] such that:

Z r i E ^ r  ^  ^  M ^ L ,M , \L M )  F  (r'e, (/■; )c ;„ («')
: I. **   1>* \ -I r r  T ^  A\Li -Lk

Here, are the coordinates of the particle k in the atom, relative to an origin

fixed in the atom. ,'*sc, ) r̂e the coordinates of the particle i in the molecule,

relative to an origin fixed at the centre of mass of the diatom but in an identical 

coordinate system to that for the atom. R is the vector which joins the two origins.
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The first term of the summation is a Clebsch-Gordan coefficient, which arises as a 

result of the fact that the inverse-distance is invariant under simultaneous rotation of 

rBc and R [37].

By setting the z-axis of the coordinate system to be along R i.e. as in the BF frame,

I f  the atom. A, is spherically symmetric then the only terms which will contribute to 

integration of the atomic coordinates over all of space in Eqn. (3.3) will have Ma = 0. 

Then, the requirements of the Clebsch-Gordan coefficients means that Mbc = 0 as well. 

The inverse-distance expansion therefore reduces to:

^  = I  E  (V O i.O |iO ) , (3.4)__ *• I I T F » ^Rr ^^  I ac|C/ I b̂ĉ aL

which is in the BF frame.

The molecular electronic wavefunction can be expanded as a linear combination of 

atomic orbitals. However, it is always defined in the molecule-fixed (MF) frame, 

where the z-axis is the bond-axis. So,

an J

where is the position vector of electron i from the origin in the molecule in the MF 

coordinate system. Obviously |/9,| = |cac, |' The labels n, j  and rrij for atom a are the

principal quantum number, the angular momentum quantum number and the projection 

of the angular momentum on the bond-axis, respectively.

In order to calculate the potential matrix elements of Eqn. (3.3), it is necessary to 

transform the molecular terms in the inverse distance expansion from the BF frame to 

the MF frame. This is expressed, using rotation matrices, as:

L -Lk\ ik L,cL,L
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where y is the angle between the diatomic bond-axis and the vector R, as before. The 

X-  and the y- axes in the MF frame are arbitrary and so, here, the angles of the rotation 

matrices have been chosen such that the xz-planes of the BF and MF frames coincide.

It is useful to note at this point that, if  BC is a homonuclear molecule, then it must 

follow from the above equation that the C functions associated with the electrons of 

the molecule satisfy the relationship:

(̂ SC /̂ )*
Pi

tu a ,

(̂ ac

where P!" are the associated Legendre polynomials, which exhibit the parity:

and so, for homonuclear diatomics, {Lgc + //) would be limited to even values only. 

The potential matrix elements now become:

Y
>k |L, L k

{p')dp’
i k  ^BCt* J J

J S (P ,)Z(i«cO i.O |XO )Q ^„(.;) F {R,p,rJp,^dp,'¥‘J) (3.5)
a n a 'n ' ^  ‘ ^  ' L ^ L  ^ bc

which can be shortened to:

K À R ,’-^r)='ZZDo7iOrO)V[^^(R,r) . (3.6)
a B̂c '

The first integral in Eqn. (3.5) can be calculated in terms of the Wigner 3-j symbols:

0 0 0
BC

A, p - a ;
(3.7)

y

which, in order to be non-zero, must have // = A /-  A,
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Hence, Eqn. (3.6) can be written as:

Lor i

For all electrons other than those in unfilled orbitals with non-zero A, this becomes:

i;ZZ>oV(O rO )F'^„(/î,r)= Y,D^S^(OrO)V,^,(R,r)
B̂C ' B̂C

and so, if  the diatom is taken to have ground electronic state E, where A= 0, the 

potential energy function can be expressed in the well known form:

V{R,r,r) = Y,^io{R,r) Piicosr) (3.8)

having used the identity:

DU{aJ3y) = Pi(cosfi)

The values of F/o can then be found by fitting the single ab initio potential to an 

expansion in Legendre polynomials.

I f  the diatom has ground electronic state IT, with one electron in the unfilled Ti-orbital, 

then, as previously mentioned, (Eqn. (3.1)), the definite symmetry wavefunction is 

used:

\ f f r o t \ u e l  _  
^  B C  ^  B C  ~ ^ X { D U r ' ) \ ^ )  |A=1) +sD(,_,(r')\X) |A = -l))

\07U J

where £■=±1. Here, \X) represents the product of all the electronic molecular orbitals

in the diatom other than that for the electron in the unfilled Ti-orbital, which is 

represented by the |a ) term. The potential energy matrix will therefore consist of the 

terms:

A A = ± l Z i— -BC
A = ±1 ( O y O )  ( O r  0 )  V [ l , { R , r )

Lbc Lgc

= Z^>ot(Oro)F,^„(«,/-)
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and:

A = ± l
BC

Lk

A = + l

where superscript %' refers to the single electron in the unfilled 7i-orbital and X to all 

the other electrons. This has made use of the fact that:

D 'j(0 y 0 ) = D '_ 2 (0 r 0 ) and V, .̂_^(R,r) = V, .

The second of these two identities is due to the property of the 3-j symbols that:

J\ Ji J2
m2 m ĵ — wî| — m2 — /W3

for then the first of the 3-j symbols in Eqn. (3.7) requires that j ’+ Lbc^J be an even 

number.

In order to evaluate T/o and V12 it is necessary to express these expansions in terms of 

the A" and A' potential energy surfaces that have been calculated ab initio. The A' 

wavefunction is symmetric with respect to reflection in the triatomic plane and the A" 

wavefunction is anti-symmetric. Therefore, since the angles for the rotation of the BF 

frame on to the MF frame were fixed such that the xz-planes of the two coordinate 

frames coincide, these symmetry properties will also be true in the MF fi-ame. The 

definite symmetry molecular electronic wavefiinctions:

|A = i)+ f |A) |a = - i ))

where £*= ±1, behave, under reflection in the MF xz-plane, as [38]:

cr, (xz) |  A f )  = ( - l ) ^ f | A f ) .

Consequently, it is possible to identify the A' wavefunction with the molecular 

electronic wavefunction | A - 1) in the IT-state and the A" wavefunction with | A l ) .

Thus, the A" and A' potential energy surfaces can be described by the potential 

matrix elements:
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V^.{R,r,y) = [K  1

A (^ > ''./)= (^  - 1
r -  r

A -1  ) = X  A t  (0 /0 ) -  2  A t  (0 /0 ) K ;;,(/{,r).

It is therefore apparent that:

^D^^{OrO)V,^„(R,r) = U v ,.+V ,]

and:

Transforming the rotation matrices into Legendre polynomials and associated 

Legendre polynomials, yields:

|;P,(cosr)K,„(fi,r) = i[K ,.+K ,,]
/=0

and
/= 2 (1 + 2)1

P,^{cosy)V„{R,r) = ^[V,.-V,.]

(3.9)

(3.10)

and thus reveals that the F/o terms can be evaluated by fitting the average of the A" and 

A' potential energy surfaces to an expansion in Legendre polynomials, whilst the V / 2  

terms can be evaluated by fitting one-half the difference of the two surfaces to an 

expansion in associated Legendre polynomials. Note that the sum over / in Eqn. (3.10) 

starts at /= 2  due to the requirements of the 3-j symbols in Eqn. (3.7).

This derivation has made clear that the ability to express the potential energy 

functions as linear combinations of Legendre and associated Legendre polynomial 

functions of the separation angle / ,  for both the Z treatment and the n  treatment of the 

diatom, arises from the same source -  the relative orientation of the molecular 

electronic wavefunction with respect to the inverse-distance potential energy terms.
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To construct the full 3D potential energy function then, for the Z treatment the 

potential is expanded as [39]:

N L

M=1 1=0
even I

whilst, for the IT treatment, two expressions are employed:

V,(R,r,y) = ^^AL:^(^R^r,y) = f^j;^P,(cosr}A,„(R}(r-rJ-' (3.12)
« = 1  1=0 

even I

and

( / - 2)! '
V^(R,r,y) = {R,r,y) = ^  Z

^  n = \ 1=2
even I

{I + 2)! P,\cosy)B,„(R)(r-r,y-' . (3.13)

Here, Pi (cos y ) is a Legendre polynomial; (cos y ) is an assoeiated Legendre 

polynomial; is the equilibrium molecular bond distance (r̂  = 2 . 1 1  for 0 % ); Ai„ and 

Bfji are expansion coefficients. Since the diatom in the O2 /K r system is homonuclear, 

the sum over / is for even values only, as explained above.

The expansion coefficients are found using the procedure described by Werner et al 

[39]. One can rewrite Eqns. (3.11), (3.12) and (3.13) in matrix form as:

Vo {R, '*»/) = £ 0 ; ^ 2  (^, r, y) =

where vectors p and s have the elements:

\_

Pai=Pi(cosy)  P 2 1  =  "0 ^ ' ( c o s y )  •

The matrices A(R) and 5(i?) can be expressed as:

£ R )  = P l ’ \W(R).S~' ; B(R) = Pl~'.Z(R).S~' (3.14)

where
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■Port =-P; (cos/i) P;rt — il + 2)\
P/(cos/j) Snm =('•»

« - 1

and Yk and are angles and bond distances for which the potential has been calculated 

ah initio. At each Yk and the /̂ -dependent potentials are fit independently, to the form

W,„ (R) = a[" exp(-a'"i?)(l + a',”R + a'^R̂  + a',"R̂ ) -  tanh(7?)
yR̂  R̂  R ' J

(3.15)

and

Z,„{R) = a[" exp(-a'"/?)(l + a‘,"R + a'^R̂  + a‘"R‘ )J n In  n  , n 2 , „ /m  n 3 (3.16)

The  ̂purely repulsive potential and so Zi„{R) does not contain the last

three terms of Eqn. (3.15).
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3.3 The Potential Matrix Elements

3 .3 .1  S in g le -S u rfa c e  In te ra c tio n  P o te n tia l -  i; T re a tm e n t

The TRL potential is already expressed in a functional form (Eqn. (3.2)). However, 

in order to simplify the calculation of the potential energy matrix elements (more 

specifically, the integration over angles r ')  it is advantageous to fit it, too, as an 

expansion in Legendre polynomials, as in Eqn. (3.8). The coefficients of such an 

expansion, are found by multiplying Vj^{R,r,y) of Eqn. (3.2) by each of the 

Legendre polynomials of the expansion in turn and then integrating with respect to 

cos / ,  numerically, over all y.

Thus, the potential matrix elements for the O2 / Kr system treating the diatom as 

for both the semi-empirical potential surface of TRL and the ab initio l^A" potential 

surface of RDWS, can be expressed as:

( ' ■ >  y)\ Vi„{R,r)x^j.{r) fc/r' Y}n.(r')P,(cosx)Yj.a.(r')

= È  f'loM x.A '-)if I o | /  n") ( /  01 0 | /  0)

in terms of Clebsch-Gordan coefficients, which, using 3-j symbols, is equivalent to:

0  0  0

This expression reveals a selection rule for the transition in the scattering of a 

homonuclear diatom, such as O2 . The second of these 3-j symbols, due to the 

requirement that:

h J2 73 1 _
m2 W3

f  ̂ \'/I J2 Vs
W] —mj — /Mg J

means that7  ' + / +y " must be an even number. Thus, since for a homonuclear diatomic / 

will be even, j "  and j '  must be either both even or both odd. There w ill be no coupling 

between even and odd states and so, if  the initial state of the diatom has j  even, only
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States of even j '  need be included in the basis and, for odd initial j ,  only states of odd j '  

need be included.

3.3.2 Two-Surface Ab Initio Interaction Potential -1 7  Treatment

The potential matrix elements for the treatment of the diatom as *n, using the 

combination of the ab initio l^A" and l^A' potentials of RDWS, can be expressed as;

v”j ”ç r£ ” V v f ç r s ’ ) =
16^'

X

( r ) (% ', (r')i A) + ̂ (r ') \-  A))| f |z , , , (r){d ^  , (r')| A> + e'D{^ (r')|-  A )))

which upon substitution of Eqn. (3.6) becomes:

dr [p r '(-l)" ’-' D'  ̂D^., + fV ( - l)“'*' _,]

+ Z  JZ:-y ^nXrf dr \ \d r 'e '{-\f- 'iy :„  ^ , Z% '.+ , ] i . (3.17)

This has made use of the relationship:

Converting the integrals into Wigner 3-j symbols, Eqn. (3.17) becomes:

Z  jx l-f  0 (^. '•)zv/ {r)dr

+ z  jxv-j- ('■)̂ / 2 (^. '■)/.'/ {>')dr
1 = 2

r  I J
Q" 0  -Q "

 ̂f' I f  i' I
1 0 -1 1 0 -1

J J j
-1 2 - T  -1  2 -1
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= { 2 f  + \ / ‘ (2 f  +
I

f  1 _i_ \ f  f  I f  A
0  -Q "

I / I f .
 ̂  ̂ ^jJ|;irvV('')’̂ /o (^ .''kv /(''K +^ '1^ , 2 ^ j j |^ ‘v('')^/2(^>''kv7'('')^''1 0

which has used the property of the 3-j symbols:

(3.18)

J\ J i  J i  j  _  ( _ 2 ) v i + V 2 + V 3 1  J\ J i  J i
-m, - ^ 2

This is exactly equivalent to the result given by Klar using Clebsch-Gordan 

coefficients [32].

Here too, the expression for the potential matrix elements reveals a selection rule for 

the n  treatment of a homonuclear diatomic such as O2 , since Eqn. (3.18) will only be 

non-zero for

^ V ( - l ) '^ = + l

and, if  the diatom is homonuclear, / will be an even number. Thus, since the parity of 

the molecular wavefunctions is determined by [38]

p = s { - \y ,

only basis fiinctions with the same parity are coupled.
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3.4 Discrete Variable Representation

The X\j ( )̂ basis functions of the partial wave expansion, which must be evaluated in 

order to calculate the potential energy matrix of Eqn. (2.23), are the rovibrational 

wavefunctions of the diatomic molecule, satisfying the diatomic Schrodinger equation:

H d ia to m  X v j i r )  =
2 // dr^

(3.19)

where fj. is the reduced mass of the diatom.

The diatomic potential energy surface of Eqn. (3.19) has been described using the 

functional form of Huxley and Murrell [40]:

Vjiaion, W  = + + + C ;( r - r j ') )x  exp(-c, (r -  r, ))] (3.20)

where and c, are calculated in terms of the spectroscopic constants and is the 

equilibrium bond-length of the diatom.

The parameters used in Eqn. (3.20) are:-

rg = 2.11 Go ; Cy =2.5716

C2  = 1.1022 ; Cj = 0.4846

De = 0.249145 hartree

and were found using the formulation described by Huxley and Murrell [40].

The diatomic Schrodinger equation is solved through the method of potential- 

optimised discrete variable representation (PO-DVR) [41 -  43]. This process involves 

choosing a primitive orthonormal one-dimensional basis set

{/%»(/"),M= 1 ,2 ,.... ,%  } (3.21)

from which one obtains the corresponding DVR basis functions

= . (3.22)
n=\
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M  is the matrix which diagonalises the coordinate matrix r that represents the 

coordinate operator r in the representation defined by (3.21). Hence |r^) is the

eigenfunction corresponding to the eigenvalue, of the r operator and is localised 

around that eigenvalue.

In order to obtain fiinctions that have some information about the potential energy 

surface, the one-dimensional basis set of (3.21) is chosen by means of the numerical 

solution of a one-dimensional reference Schrodinger equation:

Href 1̂ ('*) = J L A l
2 // dr + d̂iat h, (r) = e,hi (r) (3.23)

i.e. where the rotational quantum number has been taken to be zero. The eigenvalues, 

£/, can be taken as a first approximation to be (v + ̂ )^co, as for an harmonic oscillator, 

and are then refined, through a numerical algorithm, to give the actual eigenvectors 

and eigenvalues.

The hi functions are then used to obtain potential-optimised DVR localised 

functions:

’■/°) = 'Z M „h ,(r )  . (3.24)
/= !

The coefficients, M/;i, are determined by the following method:

(4 ' ('•) I ̂  I '■/“  ('•)) = {hr (r) I r, | rf° )

^  (A,, (r) I I /!, (r)) = J ]
/ /

This is an eigenfunction equation, expressed in matrix form as:

r M  = M r  (3.25)

and this can be solved to give values of the coefficients. Ma, and the eigenvalues of the 

|r^) functions, r̂ .
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Since the functions are localised around their eigenvalues, o , and are

orthogonal, any arbitrary coordinate operator matrix involving them can be considered 

to be practically diagonal:

('■» |^('')|'•»,) *  )('; k .)=  •

Hence, the intergration over r on the right-hand side of Eqn. (2.23) is made very easy 

if  the rovibrational part of the wavefunction, (r), is expressed as a linear

combination of the PO-DVR basis set:

A

for then

= . (3.26)

The coefficients, T̂ j a, are determined by a similar method to that used for Ma-

\x,,{.r)) = (r™| 6 * “" \x.^{r))

+ 7
2mrl

/ ' / 2mr‘̂

Since is the reference Hamiltonian of Eqn. (3.23) from which the \ĥ ) functions 

were derived,

{hi. \K)~

Equation (3.27) is an eigenfunction equation, expressed in matrix form as:

i ^ M H  + H  )T = Te^

and can be solved to give values of the coefficients, and the energy levels of the 

diatomic molecule, .
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The application of the PO-DVR method therefore results in an expression for the 

rovibrational terms in the potential energy matrix, Xvj , and the energy levels of the 

diatomic molecule, ê “ , both of which are required for the solution of the close- 

coupled equations (2.23).
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4 Propagation of the Wavefunction

4.1 Introduction

As mentioned at the start of Chapter 2, the method by which the rate 

constants of the inelastic scattering are calculated is through the evaluation of 

the probability of the 0 %̂ diatom being found in the scattered internal quantum 

state, after having undergone quenching through collision with a Kr atom firom 

a given initial internal state. This is achieved through the solution of the set of 

coupled Schrodinger equations:

\ j { j + \)-2Çï‘U  ] ’(]•+
dR̂  " n v" f

(4.1)

with the potential energy matrix elements on the right-hand side taking the 

form discussed in the previous chapter.

There is a separate set of these coupled equations for each initial internal state 

of the diatom, so the coupled equations can be expressed in matrix form as:

dR̂ F  =  V  F

with V having matrix elements V.j = Zj) and with each column

of F  containing the /̂ -dependent components of the wavefunction expansion

for a given initial state of the diatom.

At the asymptotic limit (i.e. at the surface of the sphere of the region of 

interaction), where the observables of the system are measured, the interaction 

potential energy can be considered to be universally zero and consequently the 

form of the matrix F  at that point can be written in terms of spherical waves

such that

(4.2)
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where /  is a diagonal matrix of incoming waves of momentum -  k^jfi, with 

elements:

= (4.3)

and 0  is a diagonal matrix of outgoing waves of momentum k ĵh, with 

elements:

= (4.4)

where n labels internal diatomic state {y, j )  and kl = ^ [ e - c is a 

constant matrix.

The S-matrix of Eqn. (4.2) is the ‘scattering matrix’ and it is this which 

contains the information about the probabilities of the transitions which occur 

due to the scattering reaction. Each column of the S-matrix consists of the 

coefficients of the partial wave expansion over internal states for a given initial 

internal state of the diatom. The square of each element in a column, therefore, 

gives the probability of the state of the diatom measured, after excitation (or 

relaxation) from the initial state of that column, being the particular internal 

state for which that element is the coefficient.

The formal definition of the scattering matrix is as follows [44]:

I f  are the eigenfunctions of the internal Hamiltonians of a system in 

collision, then the internal state of the system before or after the collision can 

be written as:

j

where:

\ U j \ ^  = probability of finding system in state y / j { s ) .

I f  the Qj coefficients are written as a column vector, A , then the scattering 

matrix is defined as:

â f =Sdi
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where Â ^Af are for the initial and final states of the colliding molecules in the

asymptotic region. The probability of a transition from state / to state j  is then 

given by

i2

Since,

j

it follows that:

where I is the identity matrix, and so the S-matrix must be unitary.

The matrix c of Eqn. (4.2) is set so that the outward flux density for the

scattering reaction is - 1  in the entrance channel, and in the other

channels, ensuring that the total flux remains constant. The flux density 

fiinction is defined by:

/ = — ('F’W - 4 'W )
-  2 // ~

and this results in the asymptotic form of the translational wavefunction being 

written as:

with k being the diagonal matrix of elements k„, where:

kl

and n labels internal diatomic state (v,y).
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In order to obtain the S-matrix at the asymptotic limit, it is necessary to solve 

the coupled equations to calculate the functions f {R)  and apply boundary 

conditions, which, at the asymptotic limit, are the boundary conditions defined 

by Eqn. (4.2). However, since the potential matrix in Eqns. (4.1) is, firstly, not 

diagonal and secondly, a function of R, the solution of these equations is not a 

simple task. Even if  the matrix could be diagonalised, which itself would not be 

easy since each element is a function rather than a constant, the resulting matrix 

would still be a function of R, making any solution very hard to compute.

One way around this problem is to divide the interaction space with respect to 

R into a set of discrete sectors. I f  the sectors are small enough, the potential in 

each sector could then be considered to be constant with respect to R, which 

would greatly facilitate the diagonalisation of the potential matrix in each 

sector. The coupled equations would then become uncoupled and, in addition, 

the potential matrix would no longer be a function of R within each sector, 

making the subsequent solution of the equations within each sector a trivial 

matter. The wavefunctions f{R) are thus calculated initially in a sector where 

the form of the wavefunction is known and then propagated out to ‘infinite’ 

distance, where the boundary conditions of Eqn. (4.2) can be applied to yield 

the asymptotic S-matrix.

The method of propagation used in this research is the R-matrix propagation 

theory. This method has long been of use in the theory of nuclear reactions and 

for about twenty years in the theory of non-reactive, inelastic scattering, the 

latter having been developed by Stechel, Walker & Light [45].

One of the major advantages of the R-matrix method is that it ensures that the 

final S-matrix produced at the end of the propagation meets the necessary 

requirement that it be a unitary matrix. For, rather than finding the S-matrix 

directly, it is easier to guarantee this condition by finding a real symmetric 

matrix which is related to the S-matrix as;

S = ( l ( l  + i« ) ,

for then the S-matrix will be unitary by definition.
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The R-matrix is defined as the inverse log-derivative of the wavefunction, 

namely

R~' =
dR

At the asymptotic limit, therefore, where

with /  and O defined by Eqns. (4.3) and (4.4) respectively, we find that

where  ̂ is a diagonal matrix of the k̂ j terms. This rearranges to

£ = + (4.6)

as desired. Thus, as long as it can be assured that the final R-matrix is real 

symmetric, the final S-matrix will be unitary.

The final R-matrix can be considered as describing the effect of the 

interaction region on the external region and Eqn. (4.5) can be written as

F , { i )  = R f,{ i)  (4.7)

where i^(/) is the value of the function at the outer surface of the interaction 

region. Since we are only interested in the asymptotic value of the S-matrix, it 

is only necessary to propagate the R-matrix, not the whole wavefunction, and 

then calculate from it the S-matrix at the asymptotic limit, where the boundary 

conditions are applied.

The next section describes the method of propagation of the R-matrix through 

the interaction space, based largely on the treatment of Stechel, Walker & Light 

[45]. The subsequent section shows the application of the method to the system 

under consideration -  the inelastic scattering of a diatom with an atom -  and 

the solution of the coupled equations (4.1).
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4.2 Propagation of the R-Matrix

Consider a set of coupled, second order differential equations of the form

gÀP)=Y.{<PÀx)\w{p)\<PA^))gAp) = Yw ,A p)gA p)  (4.8)dp

obtained from the expansion:

n'

I f  the coordinate space is split up into discrete sectors such that, within each 

sector, /, IF is assumed to be independent of p, then a transformation could be

made such that:

which would diagonalise the matrix ^  , where will also be independent of 

p. Thus, if  is the transformation matrix for sector /, which is made up of

the orthonormal eigenvectors of ^ ( p j ,  and is its transpose and inverse, 

then:

f ‘'V ( A ) r “* = , (4.9)

where ^  is the diagonal matrix of eigenvalues, This transformation is 

achieved by saying:

Thus, Eqns. (4.8) becomes:

d̂
dp‘

. (4.10)
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This is a second order, ordinary differential equation with two linearly 

independent solutions for each sector, denoted by Fj  and F2. Thus it is possible, 

without loss of generality to write

which implies that

F„=aF:+fiF,"

F '„= aF r^ p F {

We now define the sector R-matrix for boundaries p = a and p  = b (for a<b)  

using the definition of the R-matrix ( Eqn. (4.7)) :-

' F M " f

U .( 6 )J V

= 1 /MM V_2 /rtW
( c J , Vy \ - 2 y n n  J

Substituting in the definitions of and F '„, we find

' ' 'a F ; " ( a )  +  p F i ' ' ( a ) )  + (r^)„„(aF,'"(i) +Af,'" 
Pn"(a)) + {O .A a F r(b ) + p F {" m

from which we can conclude that:

F,"(«) = - ( [ , + '"(6 )

F2 («) = -  (i, )™ F ’ ” (o) + (r  ̂ Fi " (b)

f,"(6 ) = - ( :3 L f ," 'W  + (L L 'F ," '(6 ) 

F^ (6 ) = - ( ^ 3  )„„ F{ " (a) + (r ̂  F[ " (b)

(4.11)

Now, the solutions to the original differential equation (4.10) are of the forms

F" =ey.^U„py, Fj" =exp(-U„/3 )

Substituting into Eqn. (4.11) gives:

i X,b

^=4
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I f  we now introduce h, the sector width {b -  a), then, by multiplying each of 

the above equations by one of the fonctions

exp(a„a); exp(-a^a); exp(U„Z)); exp(-U^6 ) 

and solving simultaneously, we find that the diagonal matrices may be written:

(Cl

coth|Mt>| x f < Q

-|4'p'cot|Ai:)| i f > o

|4'fcsch|;!i')| i f < 0  

-|a « |‘ 'csc|m<:>| x f > o

The next step is to calculate the new global R-matrix, , from the sector R- 

matrix, , and the old global R-matrix, . The sector R-matrix carries

information about both surfaces of the sector, whilst the global R-matrix retains 

information about only a single surface (the outer one). Thus, whereas the 

sector R-matrix will be of dimension (2N x 2N), the global R-matrix will have 

dimension {N x N).

From Eqn. (4.7) we see that

(4.12)

and

^(M) (4.13)

where F  r and F  l are defined at the surfaces of each sector, R labelling the 

outer (right-hand side) surface and L labelling the inner (left-hand side) surface.

However, at the boundaries between sector i and sector (/ -  1), the values of 

gn and g' must be continuous. Hence,

= Q { i- l i)E T
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and £!«■"= e o '-i,o z :KO

where the matrix Q represents the overlap between the eigenvector bases in 

adjacent sectors and is given by

Hence,

É l = ô ( / - i ,o £ r '  = e o '- i,o r " '£ : i;
v(0

(4.14)

From Eqn. (4.11) we know that

(4.15)

Comparing Eqn. (4.14) and Eqn. (4.15) we find that

d " + QM - 1.0  Qii -  i,o] ■' £:«'

where

= O ’ + e o - i , e ( ; - i , o(/-]), (4.16)

Now, Eqn. (4.11) also gives us that

which, upon comparison with Eqn. (4.12), yields the relationship:
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■ (4.17)

This equation furnishes us with a method of calculating the global R-matrix at 

the outer surface of a sector, given the sector R-matrix and the global R-matrix 

produced from the preceding sector, thus enabling propagation of the R-matrix.

This formulation preserves the symmetry of the R-matrix, which is necessary 

in order that the final S-matrix be unitary: if  and r̂ '̂ are both symmetric,

then is also symmetric. Since is diagonal and thus trivially symmetric, it

follows that if  the R-matrix for one sector is symmetric, the R-matrix in the 

next will be as well.
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4.3 Application to Atom-Diatom Scattering

In the system under consideration, the coupled equations (Eqn. (4.1)), can be

written as:

_ 2ju 
dR̂  ~

X (vrn "fi'|K |v 7 'nv")g..^,+
V j  e

A" (  J (J + l) - 2 n'^ + /( /+ l) 'l
2 // R g  v ' f

/

(4.18)

which is of similar form to Eqn. (4.8). For each /̂ -sector, this equation can be 

decoupled by diagonalisation of the matrix, consisting of the potential

matrix elements (calculated using the value of R at the centre of the sector) 

added to a diagonal matrix containing the values of

R

so that

where e\'\ the elements of the diagonal matrix are the eigenvalues of the 

eigenvectors 

Thus, Eqns. (4.18) become

2nIdentifying ^ (E -g^^)as  the term of Eqn. (4.10) allows the application of 

the R-matrix method as detailed in the previous section.

It remains only to define the R-matrix for sector 1, so that the propagation of 

Eqns. (4.16) and (4.17) can be carried out:

For a system with a large repulsive potential near the origin, the 

wavefunction in that area will follow the relationship:
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g(i?) 0 as i? 0

and so, since {E-ef^) will be negative, the wavefunction there can be written 

as:

E{r) = A^-"'

and thus the initial R-matrix, would have elements:

« - - « IR?,} = S,̂ \ A''I

The propagation is then carried out until the boundary of the global R-matrix 

lies in the asymptotic region of the scattering potential, at which point the 

asymptotic boundary conditions, as defined by Eqn. (4.6), are applied. At the 

asymptotic region, so that = k .

Thus, the S-matrix is given by

S = (4.19)

where

W = R ‘̂"0 -O

with R "̂' being the global R-matrix determined in the last sector and:

Onq = S„qQXp(ik„R°")

O'nq = S„giknQxp(ik„R' )̂ .

The matrices

4  =S„^\kX'

are included in Eqn. (4.19) in order to conserve the flux of each channel, as 

discussed above.
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5 Total Cross Sections and Rate Constants

For a given initial internai state of the diatom, the asymptotic radial 

wavefunction for the system will be:

% { K ) = a [S,j e"'"
V / J

The total cross sections for a transition from a given initial vibrational and 

rotational state (and, for the H treatment, for a given initial value of 6 ") to 

another vibrational state will therefore be [30]:

a(v' y j { s ) ) = -  y  — E E I ( 2 J  + • (5.1)
% j \^J + V /  J n

Here, the (2y+l) term is included to account for the rotational degeneracy of the 

entrance channel and the (2J+1) is from Eqn. (2.16).

It should be noted that, the higher the initial rotational state, the greater the 

number of Q terms there will be in the partial wave expansion and that the S- 

matrix propagation must be repeated for each value of Q, as well as J.

The total cross sections are calculated over a range of collision energies and 

the rate constants for transitions from a given initial rotational and vibrational 

state are then calculated, as a function of temperature, by averaging the cross 

sections over the Maxwel 1-Boltzmann distribution, using the equation:

0

where Ec is the collision energy (i.e. E-efJ"’'") and kg is the Boltzmann 

constant.

The integration of Eqn. (5.2) has been carried out in these calculations 

through recognising that, by making the substitution:
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Eqn. (5.2) reduces to:

8
4r - v j  ( f  ) )  =  ------

\ kh  ̂ jJ

and is then of the correct form to be evaluated using, for example, the method 

of Gauss-Laguerre integration which states that:

j e - ' f ( x ) d x  =  J ^ w , f (x ^ }
0 '=1

Since this method requires calculating the function,/(x), at specific values of x 

and applying specific weighting coefficients, w, dependent on the value of «, it 

follows from Eqn. (5.3) that, at higher temperatures, evaluation of the rate 

constants would require knowledge of cross sections at larger collision 

energies.

Boltzmann averaging the results of Eqn. (5.2) over all initial j  states gives the 

vibrational relaxation rate constant:

X  (2 y  + 1)A:(v' < - v j  ( f  )) exp k T
k{v '< -v )  =  —------------------------------------J-----------■ (5 .4 )

2 ](2 y + l)expf k j
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6 Results of Calculations on O2* + Kr

6.1 Potential Fit

Since the calculations on the TRL potential and on the single, l^A", RDWS 

ab initio potential were carried out by S.K. Pogrebnya prior to my research, a 

more detailed report will be given to the results of the potential fit for the fl-  

state treatment of the system than to these.

6.1.1 SemhEmpirical Interaction Potential

The TRL potential surface was fitted to an expansion in Legendre 

polynomials as explained in Section 3.3.1. Due to the highly anisotropic nature 

of the potential surface, a large number of terms had to be included in the series 

expansion. It was found that Legendre terms up to the 24^ order were 

necessary to achieve convergence in the results of the dynamics calculations. 

This means that, despite its analytical form, calculations using this potential 

were rather costly, typically requiring about 1 hour on a Silicon Graphics 

Origin 2000 for each J evaluated.

6.1.2 Single Ab Initio Interaction Potential

The points supplied by Ramiro Diaz et al [19] for the ab initio A" potential 

surface were fitted as an expansion in Legendre polynomials using the method 

described at the end of Section 3.2.2 and taking the values of of Eqn. (3.14) 

to be:

rm = ao, 2.05 ao, 2.W ao, 2.2 ao , 2.5 ao

and the values of yk as:

;ik = 0°,30°,60°,90°

with L =A  and N  = 5.

The potential fit was tested by comparing the predictions of the potential 

expansion function created to the remaining ab initio points that were not used 

in the fitting of the expansion.
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6.1.3 Combined Ab initio A " and A ’ Potential

For the H treatment of the 0 2  ̂diatom, using the points calculated ab initio by 

Ramiro Diaz et al, for both the A" and the A' potential surfaces of Ref. [19, 20], 

the average of the two potential surfaces (Va) was fit to an expansion in 

Legendre polynomials whilst the one-half difference of the two potentials 

( V h d )  was fit to an expansion in associated Legendre polynomials, as described 

in Section 3.2.2. For both fits, the values of r,„ of Eqn. (3.14) were taken to be:

= l.S ao , 2.05 ao, 2.W ao , 2.2 ao , 2.5 ao

and the values of Yk used were:

= 0°, 30°, 60°, 90°.

Both surfaces had L = A and N = 5.

Some cross-sections of the fitted potential surfaces are shown in Figure 1 and 

Figure 2, at values of r and y which were used in the matrices of Eqn. (3.14) to 

create the potential energy functions.
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The potential fits were tested by comparing the values of Va and Vhd 

generated by the expansion functions to those provided by RDWS for values of 

r and y other than those included in the fitting procedure.

Figure 3 shows results of a test of the fitted potential expansion functions at a 

value of y which was used in the fitting procedure, but at a value of r which 

was not. Figure 4 shows results of a test of the fitted potential expansion 

functions at a value of r which was used in the fitting procedure, but at a value 

of y which was not. Finally, Figure 5 shows results of a test of the fitted 

potential expansion functions at a value of r and a value of y which were both 

not used in the fitting procedure.
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6.2 Total Cross Sections and Rate Constants

The results of all coupled-states calculations are essentially meaningless 

unless a sufficiently large basis set, and thus number of channels, is used to 

achieve convergence in the values of the probabilities and cross sections 

obtained. Naturally, the number of channels which must be made available 

would be expected to increase with an increase in the collision energy of the 

interaction and so, testing for this convergence must be done for each collision 

energy at which the calculations are carried out. Similarly, such convergence 

must be found with variation in other parameters, such as the maximum value 

of the total angular momentum, Ĵ ax , the value of R = R'̂  at which the 

boundary conditions are applied and the number of sectors, M, into which the 

propagation space is divided. Throughout this research, we have considered 

these requirements to have been reached when the results are converged to 

within 2 %.

6 .2 .1  C a lc u la tio n s  U s in g  TR L P o te n tia l

The accuracy of the CSA method has been tested by comparing the results 

obtained with it using the TRL potential energy surface with previously 

published, alternative methods which have used the same potential surface.

Thus, cross sections were calculated for (v' = 0  <- v = l,y = O) at a range of 

collision energies and are presented in Figure 6  along with the results of the 

classical trajectory calculations carried out by Tosi, Ronchetti and Lagana [14] 

and the semi-classical calculations performed by Zenevich et al [15]. The 

necessary parameters required to achieve convergence in the cross sections for 

these calculations are shown in Table 1. The basis set description (w;, m3)

means that m, rotational functions are associated with the zth vibrational level. 

It can be seen that there is very good agreement between the quantum 

dynamical and the classical trajectory results, with the semi-classical being 

about a factor of 2  lower.
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100

Classical 
Semi-classical 

Quantum CSA

§

o

0.01 0.1 1

Collision Energy <eV)

F ig u re  6  C r o s s  s e c t i o n s  ( v '  =  0  < -  v  =  l , y  =  O )  c a l c u l a t e d  w i t h  t h e  T R L  p o t e n t i a l .

Collision 
Energy (eV)

Cross Section
(V )

Jmax R C O

(ao)
M Basis

0 . 0 0 5 0 . 1 2 2 4 0 E + 0 3 9 0 2 0 2 0 0 2 8 ,  2 6 ,  6

0 . 0 1 0 . 5 8 8 4 8 E + 0 2 1 0 0 2 0 2 0 0 2 8 , 2 6 ,  6

0 . 0 2 0 . 2 5 1 9 5 E + 0 2 1 2 0 2 0 2 0 0 2 8 , 2 6 ,  6

0 . 0 5 0 . 1 1 1 2 8 E + 0 2 1 4 8 2 0 2 5 0 2 8 , 2 6 ,  6

0 . 1 0 . 6 4 2 9 9 E + 0 1 1 8 0 2 0 2 5 0 2 8 ,  3 0 ,  1 0

0 . 2 0 . 4 5 6 3 2 E + 0 1 2 3 0 2 0 2 5 0 3 2 ,  3 0 ,  1 0

0 . 3 0 . 3  7 9 0 4 E + 0 1 2 6 0 2 0 2 5 0 3 2 , 3 0 ,  1 0

0 . 4 0 . 3 3 4 6 0 E + 0 1 3 0 0 2 0 3 0 0 3 4 ,  3 4 ,  1 2

0 . 5 0 . 3 0 8 4 8 E + 0 1 3 2 0 2 0 3 0 0 3 4 ,  3 4 ,  1 2

0 . 6 0 . 2 9 4 3 5 E + 0 1 3 5 0 2 0 3 0 0 3 4 ,  3 4 ,  1 2

T a b le  1 P a r a m e t e r s  r e q u i r e d  f o r  c o n v e r g e n c e  i n  t h e  c r o s s  s e c t i o n s  o f  q u a n t u m  

d y n a m i c a l  C S A  c a l c u l a t i o n s  o f  c r ^ ^ '  ( v '  =  0  < -  v  =  l , y  =  O )  u s i n g  T R L  p o t e n t i a l  s u r f a c e .
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A fiirther test of the use of the coupled states approximation has been made 

by comparing the total cross sections obtained with those calculated using the 

fully close coupling (CC) treatment of Gianturco et al [17]. They found the 

cross sections (v' = 0  <- v = l,y = l) at the collision energy of 0.022 eV for

total angular momentum J = 0 and J  = 60. The CSA and the CC methods are, 

of course, identical for J  = 0 , but a calculation of = = = l) for

J  = 60, using the CSA, produced a cross section of 0.178 aô  as compared with 

the result of 0.115 aô  obtained by the CC method [17].

These results are very encouraging and are an assurance as to the 

applicability of the CSA to our system.

The rate constants, (v' = 0 v = l,y = O), as a function of temperature were 

found, using the coupled states approximation on the TRL surface, by 

averaging the cross sections over the Maxwell-Boltzmann distribution as 

described in Chapter 5. These results can then be compared with those obtained 

by the two experimental studies which have been carried out on the 0%̂  / Kr 

system [5, 7]. However, as has previously been pointed out [14], the energy 

distribution of reactants under the experimental conditions is not well known 

and may well fall somewhere in between a Maxwell-Boltzmann distribution 

and a delta function one. In this study, since the Maxwell-Boltzmann 

distribution has been adopted, the mean collision energy, Em , on which the 

experimental results are dependent, is given by:

where ks is the Boltzmann constant and T is the temperature.

The results are shown in Figure 7. Since the TRL potential requires a large 

number of Legendre polynomials in its expansion, as mentioned earlier, it is 

unfortunately too expensive to calculate the rate constants at high temperatures 

where a larger basis would be required. Nevertheless, Figure 7 does show that 

at low temperatures the calculations using the TRL potential surface are in fair 

agreement with the experimental data. The relationship is better for the data of
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Ref. [7] than for that o f  R e f [5], the difference between the two sets o f data 

being due to the fact that R e f [7] actually corresponds to the vibrational 

relaxation rate constants o f w ith K r where the diatom is in itia lly  in a 

mixture o f excited states, o f proportion (v = 1 ) / ( v  =  2 )  ^ 3 ,  a s  opposed

to the pure (v = 1) o f  R e f [5].

100

Temperature <K)

1000 10000
le-09

Experiment [7] 
Experiment [5] 
CSA on TRL PES

le-10

-K le-1 1

le-12
0.01 0.1 1 10

Mean Collision Energy (eV)

Figure 7 Comparison o f the calculated rate constant, k ™ '  (v' = 0 v = l,y  = O), as a 
function o f temperature and E ^ ,  with the experimentally observed rate constants for 

/ Kr inelastic scattering.
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6.2.2 C a lc u la tio n s  U s in g  Ab Initio A "  In te ra c tio n  P o te n tia l

As explained in Section 3.3.1, since 0 2  ̂is homonuclear, the basis set used for 

the E treatment of the system need include only even states of j  if  the initial-y 

state is even and only odd states if  it is odd. However, in addition, the nuclear 

spin of equals zero. This means that the nuclei are bosons and so the 

wavefunction of the diatom must satisfy the Pauli principle that

where P is the label permutation operator for the two nuclei. Since:

P'V = {a,,iyz) r “' ) r {Q (x) r " X P„uc ¥"“ ) (6.1)

where i is an inversion operator, C2 is a rotation of 180°, cr is a reflection 

operator and p permutes the states of the nuclei [46], this results in a further 

requirement for the E treatment of the system, namely that j  always be even.

The cross sections, cTj,(v' = 0<-v = l,y = 0 ), were calculated at a range of 

collision energies and are shown, along with the values of the various 

parameters required to achieve convergence, in Table 2.

Collision 
Energy (eV)

Cross Section 
(ao')

Jmax
p o o

(ao)
M Basis

0 . 0 0 1 0 . 1 5 0 4 E + 0 0 9 0 3 0 3 0 0 2 6 ,  2 4 ,  2 2

0 . 0 0 5 0 . 2 6 0 6 E - 0 1 9 0 3 0 3 0 0 2 6 ,  2 4 ,  2 2

0 . 0 1 0 0 . 1 1 5 6 E - 0 1 1 0 0 3 0 3 0 0 2 6 ,  2 4 ,  2 2

0 . 1 0 0 0 . 5 0 5 4 E - 0 2 1 3 0 3 0 3 0 0 2 8 ,  2 6 ,  2 2

0 . 2 5 0 0 . 1 8 7 3 E - 0 1 1 6 0 2 0 2 0 0 2 8 ,  2 6 ,  2 2

0 . 5 0 0 0 . 5 0 8 4 E - 0 1 2 3 0 2 0 2 0 0 3 6 ,  3 4 , 2 8

Table 2 Total cross sections, with parameters required for convergence, for CSA 
calculations of crj,(v'= 0 <—v = l,y = 0 ) using lowest, lA", ab initio potential energy 
surface.
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From these results, the rate constant, = 0  ^  v = l,y = O), was calculated as 

a function of temperature and mean collision energy, using the Maxwell- 

Boltzmann distribution as described in Chapter 5. The results are shown in 

Figure 8  along with the equivalent results using the TRL potential surface and 

the experimental results (as in Figure 7).

It appears that use of the single ab initio potential leads to rate constants 

which are more than one thousand times smaller than those found in 

experiment and through use of the semi-empirical TRL potential surface.

Temperature (K)

100 1000 10000
le-09

Experiment C7] 
Experiment [5] 
CSA on TRL RES 
CSA on lA" PESle-10

7. le- 1 1

le-12

le-13

le-14

0.01 1 10

Mean Collision Energy (eV)

F ig u re  8  R a t e  c o n s t a n t ,  =  0  < —  v  =  1 , 7  =  O ) ,  a s  a  f u n c t i o n  o f  t e m p e r a t u r e  a n d  

E,n, o n  a  s i n g l e  ab inito  p o t e n t i a l  s u r f a c e ,  c o m p a r e d  w i t h  t h a t  f o u n d  u s i n g  t h e  T R L  

s u r f a c e  a n d  t h e  e x p e r i m e n t a l l y  o b s e r v e d  r a t e  c o n s t a n t s  f o r  O 2 /  K r  i n e l a s t i c  s c a t t e r i n g .

It must be remembered that the curves of the two theoretical calculations 

depicted in Figure 8 , are the rate coefficients for the relaxation of the diatom 

from the lowest rotational state of the excited vibration only, (v = l,y  = 0 ), 

whilst the experiments measured the vibrational relaxation (v = 0  <- v = 1 ) from 

all initial rotational states. However, previous CSA calculations of vibrational
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relaxation in ion-neutral systems [24, 25] have found that is generally

only about 1.5 times smaller than and so could be expected to act as a 

good approximation to it. Nevertheless, rate constants have been calculated for 

values of initial-y up to y = 8  and the results have then been extrapolated to give 

an estimate of the total vibrational rate constant, k^{r), as shown in Figure 9. 

As expected, the ratio of k̂ ^̂  (t ) : k̂  (t ) is not greater than 1: 2.

It appears, then, that the use of the single l^A" ab initio potential energy 

surface leads to rate constants more than 1 0 0 0  times smaller than those found 

in experiment.

-13

(extrapolation)

I
Iou

-14

100 600200 300 400 500

Temperature (K)

Figure 9 The initial rotational state selected rate constants calculated on a single 
lowest, l̂ A", RDWS surface.
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6.2.3 Calculations Using Combined A " and A ' Potentials

As explained in Section 3.3.2, the selection rule for the n  treatment of the 

system, due to the diatom being homonuclear, allows only terms of same 

parity,/?, to be coupled together, where:

P = e{-'^y,

and so the basis set need only include those states of j  and e which have 

equivalent parity to that of the initial-/ and -s state of the diatom. However, 

here too the Pauli principle and Eqn. (6.1) furnish us with an additional 

requirement since, in the IT treatment of the system, [38].

Thus, only terms with even j  with f  = 1 or odd j with s = -\ can be included in 

the basis.

The cross sections, (v' = 0 <- v = 1, /  = 1, £* = - l )  (there is no / = 0 state for a 

n-state diatom), were calculated at a range of collision energies and are shown, 

along with the values of the various parameters required to achieve 

convergence, in Table 3.

Collision 
Energy (eV)

Cross Section 
(ao')

Jmax
nco

(ao)
M Basis

0 . 0 0 1 4 . 4 2 2 E - 0 1 7 0 3 8 3 2 0 4 8 ,  4 7 , 3 8

0 . 0 0 5 1 . 6 6 9 E - 0 1 1 0 0 5 0 5 1 7 4 8 , 4 7 , 3 8

0 . 0 1 0 4 . 6 8 7 E - 0 2 1 0 0 5 0 5 1 7 4 8 ,  4 7 ,  3 8

0 . 0 2 7 1 . 4 1 2 E - 0 2 1 2 5 5 0 5 1 7 4 8 ,  4 7 ,  3 8

0 . 0 3 2 1 . 2 3 7 E - 0 2 1 2 5 5 0 5 1 7 4 8 ,  4 7 ,  3 8

0 . 0 5 0 7 . 5 3 0 E - 0 3 1 5 0 5 0 5 1 7 4 8 ,  4 7 ,  3 8

0 . 0 7 2 3 . 2 8 0 E - 0 3 1 5 0 5 0 5 1 7 4 8 ,  4 7 ,  3 8

0 . 1 0 0 1 . 9 0 6 E - 0 3 2 0 0 5 0 5 1 7 4 8 ,  4 7 ,  3 8

0 . 1 2 2 1 . 7 1 6 E - 0 3 2 0 0 5 0 5 1 7 4 8 ,  4 7 ,  3 8

0 . 2 0 0 2 . 9 7 7 E - 0 3 2 5 0 5 0 5 1 7 5 5 ,  5 3 ,  4 7

0 . 3 0 0 6 . 4 6 0 E - 0 3 2 5 0 5 0 5 1 7 7 0 ,  6 3 ,  5 2 ,  5

0 . 5 0 0 1 . 6 5 8 E - 0 2 3 0 0 5 0 5 1 7 7 1 , 6 5 ,  5 9 , 7

0 . 7 0 0 2 . 7 2 3 E - 0 2 4 0 0 5 0 5 1 7 7 5 ,  6 8 ,  6 2 ,  1 7

Table 3 Total cross sections, with parameters required for convergence, for CSA 
calculations of <Jn(v' = 0 <- v = 1,/ = 1,£- = - l )  using combined, 1 A” and 1 A', ab inito 
potential energy surfaces.
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The rate constants, v = l,y = 1,  ̂= were then calculated as a

function of temperature and mean collision energy from these cross sections, 

using the Maxwell-Boltzmann distribution as described in Chapter 5. The 

results are shown in Figure 10 and compared to the equivalent rate constants 

calculated in the Z treatment, = v = l,y = 0 ) (as in Figure 8 ). The 

inclusion of the second potential surface has resulted in the rate constant at low 

temperatures being several times higher than that found using just the single, 

l^A", potential energy surface.

Temperature (K)

100 1000 10000
le-13

CSA on Combined lA" and lA ' PES 
CSA on lA" PES

le-14

0.01 0.1
Mean Collision Energy (eV>

F ig u re  10 R a t e  c o n s t a n t ,  ( v '  =  0  < —  v  =  \ , j  = \, £ =  - l ) ,  a s  a  f u n c t i o n  o f  t e m p e r a t u r e  

a n d  Em, f o r  +  K r ,  u s i n g  t h e  ab in it io  p o t e n t i a l  s u r f a c e s  o f  b o t h  s y m m e t r i e s  o f  t h e  

s y s t e m ,  c o m p a r e d  w i t h  k^{v' =  0 = \ , j  =  O )  w h i c h  u s e s  j u s t  t h e  1  A "  s u r f a c e .
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In order to evaluate  ̂ v = l ) , the rate constants were calculated for

initial- 7  up to 7 = 9  (which corresponds to the maximum of the Boltzmann 

distribution at room temperature) and the results then extrapolated to give an 

estimate of the total vibrational rate constant, It turns out that the

dependence of on initial- 7  is much stronger than that of . The rate 

constant is more than an order of magnitude higher than as can

be seen in Figure 11. This results in k^{r) being over 100 times greater than 

k^{^) in the range T = 200-400Â' (Figure 11).

Thus, the inclusion of the second potential energy surface has greatly 

increased the calculated efficiency of the vibrational relaxation. However, 

despite this significant effect, the vibrational relaxation rate constants obtained 

within the CSA approach, utilising the two adiabatic ab initio potential surfaces 

of Ref. [19, 20], are still about a factor of 10 below the reported experimental 

data [5, 7].
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Figure 11 Comparison of all the quantum dynamically calculated, temperature 
dependent rate constants for / Kr vibrational relaxation using the CSA and the 
experimentally observed results.
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7 Discussion of Resuits of Caicuiations on 0%* + Kr

One of the aims of this study is to analyse the effects that the major 

differences between the potential surface calculated ab initio [19, 20] and that 

presented by Tosi et al [14] would have on the cross sections and rate 

constants. Figure 8  shows that, when quantum calculations for the vibrational 

quenching of the 0 2  ̂ (v = 1 ) diatom with Kr, using the coupled states 

approximation, were applied to both the TRL potential and the RDWS A" 

potential, in both cases treating the diatom as having the ground electronic state 

E, the latter potential surface yielded much lower cross sections and rate 

constants than the former.

This effect was expected, since the RDWS potential surface has a shallower 

well depth and a less steep repulsive wall than the TRL potential surface. This 

results in weaker coupling between vibrational states and, therefore, less 

efficient vibrational relaxation. For example, the matrix elements

calculated with the TRL potential, were generally observed to be much greater 

than those calculated with the RDWS potential.

It should be noted that good agreement between calculations using the TRL 

potential energy surface and the experimental results of Ref. [7] is also to be 

expected (once the accuracy of the CSA method has been assured), given that 

this potential contains adjustable parameters which were designed to obtain the 

best agreement between the results of classical trajectory calculations [14] and 

the experimental vibrational relaxation rate constants [7]. In particular, varying 

the parameter which controls the angular width of the potential well, changes 

the rate constants by orders of magnitude at small and moderate collision 

energies.
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The other principal aim of this study is to contrast the results of quantum 

dynamical calculations which treat the diatom of the / Kr system as a H- 

state molecule and thus use both A" and A' ab initio potential surfaces, with 

those which treat the diatom as a E-state molecule and use only the lower, A", 

ab initio surface.

Figures 10 and 11 reveal two major differences between the f l  treatment and 

the E treatment. Firstly, the rate constants of vibrational relaxation from the 

lowest initial rotational state of the v = 1 vibration are significantly higher, at 

low temperatures, for than for . Secondly, increasing the initial

rotational state of the diatom results in the typical increase in rate constant for 

Â:̂ , with k̂  « 2 x (Figure 9), whereas k̂  shows an increase in efficiency of 

more than one order of magnitude with increase in initial-y.

In order to explain the first of these effects, it is instructive to look at the 

vibronic energy curves of the different symmetries of the 0 2  ̂ / Kr system. 

These are defined by:

C /;;(« .y )= (v |F ,(/{,r,r)|v )+e ,

and can be understood as being the effective potential for the diatom in the 

particular vibrational state, v.

Figure 12 reveals that, at certain values of y, the two vibronic curves

C /7 '(^ ,r)= (v = l|l^ .-(^ .'-,r )|v  = l) + e „ , ,

and

t /r ( ^ , r )  = (v=0|K,.(iJ,r,r)|v=0) +e„„ ,

-  i.e. the curve for the lower potential of the two symmetries, at the higher 

vibrational state and for the higher potential, at the lower vibrational state, 

respectively -  cross, at low energies. Since, in reality, the A" and A' surfaces 

are mixed to produce the true potential surfaces of the interaction, the crossing 

shown in Figure 12 does not actually occur. However, observation of this 

pseudo-crossing does suffice to offer a qualitative understanding of the extra

83



efficiency caused by the inclusion of the additional potential surface at low 

temperatures. It indicates that, at low collision energies, in the region of the 

pseudo-erossing, the probability for vibrational relaxation from the v = 1 state 

of the diatom to the v = 0 state will be high. This is a direet result of the 

existence of the two alternative symmetries of the system.

< v = 0 | V ^ ,  ( R , Y ) | v = 0 > +  

< v = l | \ ^ „  ( R , Y ) | v = 1 > + £

0.5

0 )
c
LU

0.0

- 0.5
4 6 8 1 0

R (ao)

F ig u re  12 V i b r o n i c  c u r v e s  I / ^ . '  a n d  °  a t  y  =  6 0 ° ,  w i t h  r e s p e c t  t o  o o ) .
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Thus, these calculations appear to support the suggestion, put forward in Ref. 

[6 ], that the increased efficiency of the / Kr system over that of a system 

with approximately equivalent electrostatic attraction, such as NO^ / Kr, is due 

to the open-shell of the 0 2  ̂diatom, since it is that which leads to the presence 

of the potentials of different symmetry.

The greater dependence on initial-y of the rate constants k({, than that shown 

by the rate constants can be explained by an extension of the vibronic 

energy curve pseudo-crossing observation.

The contributions given by different values of |Q| to the cross sections 

(jj; (v' = 0 <- V = 1, 7  = 9) and cTp, (v' = 0 <- v = 1, 7  = 9, £: = - l )  have been calculated 

and are shown in Figure 13 for J  = 70 and collision energy 0.05 eV. In the Z 

case, (tJ is an oscillating function with a small amplitude and each | Q | gives

practically the same contribution to the total cross section. In the f l  case, 

however, crfj has a strong tendency to peak at some value | Q | »  1 . It is this

which leads to the increase in k(  ̂ with increase in initial-y, since Q is limited to 

being never greater than the smaller of the two values ofj  -  initial-y and final-y.

The explanation for this uneven contribution of the cr̂  to at large initial-y 

becomes clear when we note that, at Q = 0  (or Q = 1 , in the f l  case) the 

interaction angle, y, will be zero whereas, for large values o f7 , as | ü | ^ 7 ,

y ->90°. Hence, Figure 13 reveals that, when the interaction angle takes the 

values 90° > y »  0°, there is a greater probability for vibrational relaxation. 

Now, the pseudo-crossing of I/^:' and 1/7°, ari example of which was seen in 

Figure 12, is observed at the geometries 30° < y < 70°. So, we would expect to 

see a maximum for cr̂  at values of Q which correspond to these configurations 

and, thus, the effects of the pseudo-crossing of the vibronic energy curves will 

be magnified at higher values of initial-7 .

85



a

O
X

D

18

16

14

12

10

8

6

4

2

0
0 2 4 6 8 10

IQ
F ig u re  13 Q - c o n t r i b u t i o n s  t o  t h e  c r o s s  s e c t i o n s  c 7 j ; ( v '  =  0 <— v  =  l , y  =  9 ) ( c i r c l e s )  

a n d  C T n ( v '  =  0 V  =  1 , 7  =  9, f  =  - l )  ( s q u a r e s )  a t . /  =  70, E c  =  0 .0 5 e V .

As the results in Figure 11 show, there is one feature which the quantum 

calculations on all the descriptions of the 0 2 ^/K r system have in common: they 

all show negative dependence on temperature for low temperatures. For 

temperatures up to T % 700K, the rate constants obtained using the TRL 

potential and all the rate constants are monotonically decreasing functions 

of temperature, whilst the rate constants obtained using the single A" RDWS 

potential surface show a minimum at about room temperature.

As discussed in the Introduction, it is suggested that this property of the 

O2 /K r system, which is observed in the experimental studies of Refs. [5, 7], is 

due to the formation of a complex at low temperatures.
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A support for this suggestion can be advanced by examining the dependence 

of the cross sections on the total angular momentum, J. Figure 14 shows the 

partial cross section = v = l,y = 0 ) as a function of J  and Figure 15 

presents a similar plot for <Jn(v' = 0  <- v = l,y = 1,^ = - l ) . Both diagrams show a 

pronounced resonance structure to be present at low collision energies, which 

disappears at higher collision energies. This behaviour strongly suggests the 

formation of a rotating complex occurring (or at least being dominant) at low 

energies and temperatures, as proposed by Ferguson [1].
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Figure 14 Partial cross sections cr̂  (v' = 0 <— v = l,y = O) at two collision energies.
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8 Conclusions of Analysis of O2* + Kr

The quantum dynamical coupled states approximation has been tested for 

applicability to the vibrational relaxation of (v = 1 ) through collision with 

Kr. It has then been performed using an ab initio potential energy surface for 

the system and compared to experimental data. The calculations were originally 

carried out on a single potential surface, but then subsequently, to take into 

account the fl-state nature of the diatom, were extended to enable the inclusion 

of both the ab initio adiabatic surfaces calculated by Ramiro Diaz et al [19, 20], 

for the two symmetries present in the system. This is the first time quantum 

scattering calculations have been done for the vibrational relaxation of a 

molecule in a f l  electronic state which includes two potential energy surfaces.

The results of the calculations on the semi-empirical TRL potential energy 

surface show that the coupled states approximation is valid for describing 

vibrational relaxation, even for the extreme case of a heavy atomic partner and 

a very anisotropic and deep interaction potential such as the TRL one.

Calculations on the single, l^A", ab initio potential surface result in rate 

constants far below experimental data. This highlights the difference between 

the semi-empirical potential energy surface of Tosi et al [14], which was 

designed to fit results of classical trajectory calculations to the rate constants 

found experimentally, and the RDWS potential surface, calculated ab initio.

The inclusion of the second ab initio potential energy surface results in an 

increase in rate constants of about 100 times, at low temperatures. In addition, 

the dependence of the rate constants on the initial rotational state of the diatom 

is much greater for this fl-state treatment of the diatom. These differences can 

be explained as being due to the pseudo-crossing of vibronic energy curves of 

different symmetry and the localisation of the wavefunction for higher initial-y 

at configurations where this pseudo-crossing is observed.

The conclusion of this study, therefore, is that calculations on vibrational 

relaxation of / Kr and similar systems should include the potential energy
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surfaces of all the various symmetries present. Approximating the diatom as 

having the ground electronic state Z, when in reality it does not, is not a good 

approximation.

The theoretical analysis of the / Kr system also leads to a support for the

complex formation mechanism at low temperatures and collision energies put 

forward by Ferguson [1], which leads to the negative dependence of the rate 

constants on temperature observed in both experimental and theoretical studies 

of the system, at low temperatures.

F u r th e r  W o rk

The rate constants calculated by means of the quantum scattering method, 

utilising the two adiabatic ab initio surfaces, are still about an order of 

magnitude lower than experimental data. Collision dynamics results are very 

sensitive to even small variations in the interaction potential and so further 

improvements to the potential energy surfaces would be very useful. In 

addition, new experiments, especially at low temperatures, would be of great 

interest.
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PART 2

9 Introduction

9.1 Dissociation of the Ozone Dication

9 .1 .1  B a c k g ro u n d

Molecules with a doubly positive charge (molecular dications) are generally 

unstable and extremely chemically reactive and are therefore of great interest, both 

theoretically and experimentally. Most molecular dications dissociate to give two 

charged ion fragments and it has been proven experimentally, by Newson and 

Price [47], that the ozone dication, 0]^% is one such example. They have carried 

out an ion-ion coincidence technique, using time-of-flight mass spectroscopy, to 

investigate the fragmentation of the cation created by the double ionisation of 

ozone through electron impact. This study is of particular interest considering the 

recent focus on the properties of ozone and its role in the atmosphere.

The process:

O3 0 3 +̂ O2* + 0 " + K.E. , (2)

detected by Newson and Price, results in the release of an amount of kinetic 

energy in the ionic products, as seen from the schematic potential energy curves 

shown in Figure 16, and a measurement of this kinetic energy release (KER), 

together with knowledge of the energies of the fragments produced, enables the 

evaluation of the double ionisation energy of O 3 .

Newson and Price [47] found the KER of process (2) by measuring the relative 

velocity of the and fragments formed and found it to be 7.5 ± 0.3 eV, giving 

a value of 34.3 ± 0.3 eV for the excitation energy of the lowest energy state of 

to dissociate to 0%̂  and O ,̂ relative to the ground state of O 3 . This result for
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the excitation energy, however, is dependent on the assumption that the O2  

fragment formed has no significant internal energy.

I

KER

Interaction Distance

Figure 16 Schematic potential energy curves for ionisation of ozone and subsequent 
dissociation of the ozone dication.

In order to verify the validity of this assumption, Newson and Price carried out 

an alternative method for determining the energy of the lowest energy state to
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decay to the fragments and which involved monitoring the yield of the

fragments produced, as a function of the energy of the impact electrons. This more 

direct, but less accurate, method gave a state energy of 34 ± 2 eV, which appears to 

confirm their supposition.

9.7.2 This Research

The distribution of internal energy states in the diatomic ion, O2 , formed from 

the dissociation of excited from neutral ozone, can be determined

theoretically using quantum dynamical methods. This product distribution can be 

calculated through the evaluation of the overlap of the wavefunction for the bound 

ground energy state of O3 with the scattering wavefunction for the process:

0 2  ̂+ 0 + 0 3 "+ , (3)

and involves much of the same theory described in Part 1 of this thesis.

Although the dication formed by the double ionisation of O3 may initially 

be created as a quasi-bound molecule before fragmenting, the excited system can 

still be described by a scattering wavefunction since the Hamiltonian for the 

dissociation of the quasi-bound state is identical to that for the scattering 

process (3). Similarly, the wavefunction for the bound O3 molecule, , is

described in this analysis using the same form of the coordinates as that employed 

for the scattering wavefunction, . As will be seen in the method, this

greatly simplifies the calculations.

An ab initio potential energy surface for process (3) has recently been developed 

by Champkin et al [48]. The current research is therefore able to span a number of 

different fields of chemistry by incorporating this new surface into quantum 

dynamical calculations, in order to facilitate the interpretation of the experiments 

carried out by Newson and Price [47]. The potential energy surface for the bound
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ozone molecule uses the harmonie oscillator model described by Barbe, Secroun 

and Jouve [49], based on the results of infrared spectra.

Just as with the scattering process of Part 1, the evaluation of the scattering 

wavefunction for process (3) requires the application of suitable boundary 

conditions which describe the system at an infinite distance from the collision. 

However, unlike the system discussed there, process (3) entails the scattering of 

two charged species, 0 2  ̂and O , and will therefore have a Coulombic term in the 

potential surface which dominates at large distances. As a result, the scattering 

particles are prevented from assuming the form of simple plane waves even at 

infinite distances. Consequently, an accurate portrayal of the wavefunction in the 

asymptotic region will involve the use of different boundary conditions to those 

used in Chapter 4.

Most calculations of this nature until now have used only the ‘regular’ boundary 

conditions, appropriate to a system without a long-range Coulombic potential, and 

so it would be of interest to investigate the necessity of using the correct 

asymptotic boundary conditions when dealing with a system which has a 

Coulombic potential. This requires the adaptation of the theory for the propagation 

of the overlapping wavefunctions, since the method used has previously only been 

illustrated for non-Coulombic systems.

The aim of the research in this part of the thesis, therefore, is to calculate the 

product distribution of 0 %̂ in the process (2 ) and to test the effects of the use of 

the more accurate, but less commonly used, asymptotic boundary conditions in the 

calculations. However, in order to gain some understanding of the differences 

resulting from the use of the alternative boundary conditions, a preliminary 

investigation has been undertaken on a simple, one-dimensional elastic scattering 

interaction which also contains a Coulomb potential energy term and this study is 

presented here first.
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9.2 Elastic Scattering with a Coulombic Potential

The system chosen to test the effects of the use of asymptotic boundary 

conditions appropriate to a Coulombic potential, instead of the more commonly 

used ‘regular’ boundary conditions, is the elastic scattering of and Cl̂ .

This system has been chosen due to its simplicity and the fact that a recently 

published paper by Bennett and McNab [50] presents the results of accurate ab 

initio calculations of the potential energy for the doubly charged molecule HCl̂ .̂ 

In addition to providing the one-dimensional potential surfaces for the four lowest 

electronic states of the dication, these authors evaluate the energies and lifetimes 

of the quasi-bound vibrational levels which are supported by those states, using 

the Numerov-Cooley algorithm [51] and a uniform semi-classical approximation. 

The potential surface of Ref. [50] is treated as that of a bound molecular dication 

which dissociates to give two charged fragments, and Cl̂ , and thus the 

metastable vibrational levels are described as quasi-bound states. However, the 

same potential could be equally seen as describing the elastic scattering of + 

c r , forming orbiting resonances (HCF^) at certain collision energies.

The aim of this study of the process

+ C f <-> HCl̂ ^

is to calculate, through R-matrix propagation, the total cross sections of the elastic 

scattering on the ab initio potential surface of Ref. [50] and to locate resonances in 

the phase shifts and cross sections as a function of collision energy, using both 

regular and Coulombic boundary conditions. The energies, widths and lifetimes of 

the orbiting resonances can be compared to the values found by Bennett and 

McNab [50].

Hence, this study allows an assessment of the requirement of theoretical studies 

of systems with Coulombic potentials to use the boundary conditions appropriate 

to such potentials when calculating a variety of observable quantities. This is.
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therefore, a useful prelude to the main investigation of this part of the thesis -  the 

double ionisation of ozone followed by its fragmentation -  which includes a 

comparison of the product distribution of the internal states of using both 

regular and Coulombic boundary conditions.

The structure of this part of the thesis is as follows: Firstly, a brief description of 

the theory of elastic scattering used in the analysis of + Cl̂  will be presented, 

showing the cause of the requirement for different boundary conditions for 

systems with Coulombic potentials than those for the regular, non-Coulombic 

systems and deriving the various observables from the solution of the Schrodinger 

equation. Since the theory of inelastic scattering is anyway an extension of the 

theory for elastic scattering, this is a useful precursor to the treatment of the O3 / 

system. The results of calculations on the elastic scattering of and Cl̂  

are then presented, followed by a discussion of the conclusions made from this 

analysis.

Chapter 11 then turns to the O3 / 0%̂  + system and describes the procedure of 

calculating the product distribution of 0 %̂ through the evaluation of the overlap 

matrix between the bound and the scattering wavefunctions. The method of 

determining each of the wavefunctions through solution of the relevant coupled 

equations is outlined, with reference to the theory discussed in Part 1, followed by 

a detailed account of the method used for calculating their overlap, using both 

regular and Coulombic boundary conditions. Chapter 12 presents the results of 

these calculations and, finally. Chapter 13 discusses the conclusions which can be 

drawn from them.
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10 Elastic Scattering of H* and Cl*

10.1 Method

The time-independent Schrôdinger equation for an atom colliding with 

another atom, with an interaction potential V(Ji), can be written as:

[V^ - [ / ( / ( ) ]  Y(g,6»,ÿi)=0 (10.1)

where ; U(J{)=^F(J()

and // is the reduced mass of the two atoms.

For an isotropic potential, the wavefiinction can be expanded as a linear 

combination of Legendre polynomials such that:

= (cosû) ( 1 0 .2 )
/=0

where / is the orbital angular momentum quantum number.

I f  the radial wavefunction is taken as

=  ^  . (1 0 .3 )

then substituting the partial wave expansion of the wavefunction into the 

Schrodinger equation (10.1), multiplying both sides by 7̂ , (cos sin^ and

integrating over Û gives the radial Schrodinger equation:

dR̂
g/(^)=0 . (10.4)

In a case where f/(/?) = 0  for all values of R, Eqn. (10.4) can be solved even 

for small R, since it becomes simply a variant of the well-known ‘Bessel’s 

equation’. Eqn. (10.4) would then have linearly independent solutions:

gi{R) = kRy. Ji{kR) and g,{R)=kR'xnf(kR),
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where ji(kR) and ni{kR) are spherical Bessel functions, which are known to 

have the properties [52]:

n,{kB̂  —y — cos 
kR

k R - ^
2 ,

k R - ^
2 /

and

1 for 1 = 0

0  for / > 0

rii{kR) 00
/? -> 0

However, since gi {R) must be well-behaved at the origin, the solution to 

Eqn. (10.4) with zero potential would be just:

g,{R) = kRji{kR) . (10.5)

In the case where the potential in the interaction region is non-zero, the form 

of gi {R) in the asymptotic region, where the potential tends to zero, would be 

expected to be similar to the asymptotic form of Eqn. (10.5) but with the 

argument of the sine function ‘shifted’ to account for the effects of the 

potential. Hence,

C s in [i/{- — + <y,̂
I, 2 '

(10.6)

where Si is called the ‘phase shift’ and carries all the information about the 

scattering due to the interaction potential. C is an arbitrary constant.

In order to check whether C is indeed a constant, Eqn. (10.6) can be written

as:
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and substituted into the radial Schrodinger equation (10.4). Taking just the 

positive exponential term for the sake of brevity, this gives:

dR̂
- u {r ) -

R-

and since.

dR‘
(c (i? ) [{C + ikC')+ik{C + ikC)\ e'**"*”* = [c" + 2ikC -k^c]

this becomes:

C" + 2ikC- U{R)+ /(/ + l)
R‘

C = 0

For large R, C can be assumed to be sufficiently close to a constant such that 

[52]:

C"«kC'

and so, neglecting the second derivative, separating the variables and 

integrating both sides gives:

2iklnC= j C/(R) +
/(/ + 1)

R̂
dR

Thus, for C to be a constant, the right-hand side of this equation must tend to a 

constant as R tends to infinity. That will be the case as long as U{R) tends to 

zero faster than MR. Hence, for systems with a potential of the order of M ^  or 

less, C will be a constant and the asymptotic form of the radial wavefiinction 

can be written as Eqn. (10.6).

In the case of the scattering of a charged species by another charged species, 

the potential energy term in the Schrodinger equation includes a term:
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where ZiS is the charge on particle /. This does not fulfil the aforementioned 

condition and consequently, for such a system, the asymptotic form of the 

radial wavefunction cannot be written simply as a sum of terms. The 

Coulombic potential is considered to have an ‘infinite’ range such that the 

scattering species is affected by it at all distances.

However, consider the function / (R), such that (again taking as an example 

only the positive exponential term):

and thus:

é iM ï = [c  + Ok + C /'l 
dR '■ '

and

= [(C” + C'ik + C f  + Cf") + [ik + / ' ]  {C + Ok + C /') ]

Substituting into the radial Schrodinger equation (10.4) this gives:

C" + C'{2ik + 2 /')+ c f / '  + 2 ik f  + { f ' f  -  U(r ) - =  0 .

Again, neglecting the second derivative of C, separating the variables and 

integrating both sides, one obtains:

dR ■ ( 1 0  7)

Now, if f(R) is defined as the function:

f(R ) = aln{bR),

then Eqn. (10.7) reduces to:
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lnC = - I» dR (a  ̂ -  a - /( /  + 1)) I r 2ika

which, for a Coulombic potential, where U{R) = p /R ,  becomes;

InC = — +
2ika -  p  

~R

In order for C to be a constant as R tends to infinity, the right-hand side must 

tend to a constant. This can be achieved if  a is defined such that:

a = - i.A
2k

for then the last bracketed term becomes zero.

Hence, for scattering over a Coulomb potential, the solution to Eqn. (10.4) is 

taken asymptotically to be [52]:

( / j )  <J/ -  /  In 2*/?) _  -y,^S,-r\n 2 /̂?) j

or

gi{R )^  Csin
y?— > 0 0

k R - ^  + S , - r \n 2kRj (10.8)

where

h V 2k

which, for scattering involving two singly charged cations, as is the case in the 

Coulombic systems studied in this thesis, becomes simply

when written in atomic units.

Both Eqn. (10.6) and Eqn. (10.8) can be written in terms of incoming and 

outgoing components:
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and

where

Si(k) = . l iS ,

is the elastic scattering equivalent of the S-matrix of Chapter 4 and represents 

the effect of the scattering potential on the relative amplitudes of the incoming 

and outgoing parts of the radial wavefunction.

Just as for the inelastic scattering in Chapter 4, Si can be calculated through 

propagation of the R-matrix by rewriting Eqn. (10.4) as

dR-
k^-U{R)- /(/ + !)■

R‘ gi (a) (10.9)

and dividing the interaction space into sectors within each of which U (R) can 

be taken to be constant, so that Eqn. (10.9) can then be written as

(10.10)

The general solution to Eqn. (10.10) is 

SO that the sector R-matrix, defined as:

VI V2
J ')  JO

V/3 '1 4  y .  g ' , % b ) ,

(10.11)

with a and b the sector boundaries (a < b \  will once again have the elements:
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« ( 0  _ .(') _ /̂l -  /̂4 -

r ( 0  _ „ ( 0  _ ,
' / 2  -  /̂3 -  ^

- | aS'̂ | cot I I  

csch|M{'̂ |

-jylS'^l CSC h?^!̂

jf):  < 0  

>0  

jf): <: 0  

ylk)' > 0

as with the inelastic scattering.

Note that Eqn. (10.11) is true even for elastic scattering with a Coulombic 

potential since, within each sector, the potential is seen as constant with respect 

to R. The effects of the Coulombic potential need only be considered later, 

when applying the asymptotic boundary conditions.

The propagation of the global R-matrix for elastic scattering is considerably 

quicker, computationally, than that for the inelastic scattering of Chapter 4, 

since all the matrices involved are reduced to a single element ( 1 x 1 matrix) 

and no diagonalisation is required. Thus,

where

and so, taking

0) _9!"' =

leads to the evaluation of .

The S-matrix and thus the phase shift is then calculated by applying the 

asymptotic boundary conditions in accordance with Eqn. (10.6), or Eqn. (10.8) 

if  the potential has a Coulombic term. Thus:

and:

riC ou! l i S f ”"'Ha, = e  ' =
\  

Rj
^ i{ k ,R -y \n 2 k ,R )

(10.12)

R) ‘ 
(10.13)

.-1
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Cross sections

The phase shift itself is not a directly observable quantity in a scattering 

reaction. Instead, the differential cross section and the total cross section are 

measured as a function of collision energy. These quantities can be related to 

the phase shift by assuming that the wavefunction in the asymptotic region, 

where the measurements are made, can be written as the sum of two 

components, each of which satisfy the Schrodinger equation (10.1); an incident 

wave moving along the z-axis with momentum hk and a scattered spherical 

wave. Hence,

^  . (10.14)

The differential cross section, defined as the number of scattered particles, per 

unit time per unit solid angle, divided by the number of incident particles, per 

unit time per unit area, is therefore:

r |V I/ 1^
UC Scattered] i i2

Since the incident plane wave is also a solution of the Schrodinger equation, 

it too can be written as a partial wave expansion such as Eqn. (10.2):

= = Y , B , î ,{R)P,{cos0 ) . (10.15)
1=0

Multiplying both sides of Eqn. (10.15) by P,,(cos ^)sin^ and integrating over 

angle 0 from 0  to ;rgives:

(10.16)

where the substitution t = cos 6 has been made. The right-hand side can be 

integrated by parts, to give:
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and further integration by parts of the second term on the right-hand side 

reveals it to be of order Thus, in the asymptotic region, Eqn. (10.16) can

be taken as:

which, since P /(l) = 1 and Pi (- 1 ) = (- 1 )̂ , gives:

Hence, Eqn. (10.15) becomes:

^ ik z  _  ^ ik R c o s 0 *ff-y lp ,(c o s  ff)

= y —̂ =—  g 
w kR 2i

P, (cos 6)

and the total asymptotic wavefunction can therefore be written as:

{2U \ ) i ‘
/=0 kR 2i

/̂ (cos 6 * )+ Z ^ e '"  . (10.17)

The partial wave expansion of the total asymptotic wavefunction, Eqn. (10.2), 

using the form of the radial wavefunction appropriate to a non-Coulombic 

potential, Eqn. (10.6), is:

'¥(R,6) ^  . (10.18)

Comparing the coefficients of e ^*in Eqns. (10.17) and (10.18) leads to the 

expression for the coefficients of the partial wave expansion of Eqn. (10.18):
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A,
' kR 2i

and then, comparing the coefficients of e'**, leads to:

/{&)=  -l)P,(cose) = P,(cos^),
1=0 1=02ik

The differential cross section is then:

and the total cross section is:

cr = I tt \— sin6ci0 = sin̂  . (10.19)
id n  6

This expression for the total cross section is only strictly valid for a system 

with a ‘regular’ potential. The infinite range of the Coulomb potential, besides 

affecting the form of the asymptotic radial wavefunction (Eqn. (10.8)), also 

prevents the description of the asymptotic wavefunction as having the two 

simple components of Eqn. (10.14). Instead a more complicated description is 

required and this, in turn, results in a much more complicated expression for 

the total cross section [52] which, at least in the case of a purely Coulombic 

potential, actually diverges to infinity.

106



Resonances

As mentioned briefly in the Introduction, the potential energy surface which 

is used to describe the elastic scattering of the two species, A  and B, is 

equivalent to that which would be used to describe the dissociation of the 

molecule AB to form fragments A and B. Hence, the amount of the internal 

energy of any bound or quasi-bound vibrational state of AB, when introduced 

instead as the collision energy for the scattering of A by B, w ill result in the 

formation of orbiting complexes of A and B. These states will exist at energies 

within the potential well of the system and, dependent on the shape of the 

potential, can break down by travelling through the potential barrier (Figure 

17).

V

R

Figure 17 Example of potential surface supporting quasi-bound levels (horizontal 
lines) in potential well. The states may dissociate by tunnelling through the potential 
barrier.
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Now, generally, the total flux of particles in a simple scattering interaction is 

conserved and this can be confirmed by evaluating the outgoing current destiny 

function, defined as:

2ju^ ^
(10.20)

Substituting the wavefunction, Eqn. (10.18), into Eqn. (10.20) gives

/ = % - i ]  

as required. Thus, the radial wavefunction

^2iS, -1

¥i

= 0

(10.21)

has incoming and outgoing components of the same magnitude.

At energies which correspond to quasi-bound states and orbiting complexes, 

however, the wavefunction must have a net incoming or net outgoing current 

density: for a system prepared as a quasi-bound state and allowed to dissociate, 

the radial wavefunction, Eqn. (10.21), will consist solely of an outgoing term, 

whereas the formation of an orbiting complex as a result of scattering would 

leave the radial wavefimction with a purely incoming term.

This lack of conservation of flux can be accounted for by introducing an 

imaginary component to the wavenumber, k [30]. Thus, if

k = k^+ ikj ,

the outgoing current density will become:

./ — ifi
J R 111

. dy/, dwi
V, dR dR

2//
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2. f i

As i? ^  0 0 , the right-hand bracketed term will be dominant and so, the outgoing 

density will be negative (i.e. net incoming flux) if  the product kik2 is positive 

and positive (i.e. net outgoing flux) if  the product kjk2 is negative.

The energy will then also be a complex number, since:

E = ~ k ^ =  — {k^-kl +2ik,k^ )
In  In  ’

and so, for the dissociation of a quasi-bound state the energy eigenvalue can be 

written as:

E,=E,-iE^  (10.22)

whilst, for the formation of an orbiting complex:

E^=E,+iE^ (10.23)

with |£̂ | = |æ:̂ | .

The quantity Si is the ratio of the outgoing component of the radial 

wavefunction to the incoming component. Hence, Si would be expected to 

become infinite as the energy tends towards the energy of the quasi-bound state 

and zero as the energy tends towards the energy of the orbiting complex. Thus, 

since for real energies |̂ J = 1 , in the region of the quasi-bound/orbiting 

complex the Si term can be written as:

E-{E, + iE ,)  
_E-{E, -iE^)

(10.24)

and, recognising that, for

y = tanx = -/•
\e +e

’
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g ' "  =
^ \ + iy^

this gives the phase shift in terms of the Breit-Wigner [53] form:

Si = + arctan (10.25)

As the energy of the system reaches Ei, therefore, the phase shift w ill increase 

by 71 at a rate determined by E]. This results in the appearance of a resonance, 

of width 2E2 (usually written as F ), in a plot of the total cross section as a 

function of collision energy, where:

4tuC7, = — {2l + \)sin^S, = ^ ( 2 /  + l) sin' Sĵ  ̂+ arctan
/y

or, writing

and using Eqn. (10.24) [54],

4;r sin' + 2 Re r
2(£ | - E ) - i T

.(10.26)

The lifetime of the quasi-bound state and orbiting complex can be determined 

by looking at the time-dependence of the wavefunction at the energy defined 

by Eqn. (10.22):

>£(/) = = e

The probability that the system remains intact is therefore:

|>p(?)|' =e-(r'/»)

and thus it decays exponentially with a lifetime, r , where

T =
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Potential Energy Surface

Bennett and McNab [50] have calculated ab initio the one-dimensional 

potential energy surface for the dissociation of HC1^\ for the four lowest 

electronic states of HCp^. They used internally contracted multi-reference 

configuration interaction calculations, based on complete active space SCF 

wavefunctions. For this research, the points supplied [50] for the potential 

surface of the lowest electronic state, X^S“, have been fit to the potential 

function:

V(/^) = ûf| exp(—ûf2 ^)(1 R^) H— .
R

and a section of the fitted surface is shown in Figure 18.

F it  —
Ab in it io  points

0 .8

0 .2

0 2 64 8 10 12 18 18 2014
R <a.u.)

F ig u re  18 P o t e n t i a l  e n e r g y  s u r f a c e  f o r  l o w e s t  e l e c t r o n i c  s t a t e  o f  H C l  +  C f
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The HR term of the Coulombic potential results in the potential surface 

decaying at a much larger value of R than that for a non-Coulombic potential 

which would have repulsive terms only of order 1/î  ̂or less. This means that it 

will be necessary to propagate the wavefunction of a Coulombic system out to 

much large distances than are required for a system with a non-Coulombic 

potential, even when the correct asymptotic boundary conditions are applied.

It is worth noting, as Bennett and McNab point out, that, whereas the 

potentials of the three excited electronic states calculated in Ref. [50] exhibit 

some crossing between states, the lowest, X^E”, state is not crossed by any 

other. Therefore, whereas resonances found using the potentials of the excited 

states may be due to electronic predissociation as much as to tunnelling through 

the potential barrier, the ground electronic state of HCl̂  ̂can only dissociate by 

tunnelling.
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10.2 Results

The phase shift, 0i, for the scattering of with Cl̂  has been calculated by 

the method of R-matrix propagation across the range of collision energies 

corresponding to the potential well in Figure 18, using both regular and 

Coulombic asymptotic boundary conditions (Eqns. (10.12) and (10.13)). Since 

the information about the quasi-bound levels published in Ref. [50] is only for 

zero angular momentum and moreover the aim of this study is just to compare 

the effects of the different boundary conditions, the calculations were carried 

out for / = 0  only.

As with the propagation of the inelastic scattering in Part 1, in order for the 

results to be meaningful it is necessary to find convergence in the results with 

respect to the width of the sectors into which the interaction space is divided 

and to the position at which the asymptotic boundary conditions are applied, 

. The phase shift can only be calculated modulo tt and so it is easier to 

detect convergence in the total cross section, cr, as defined by Eqn. (10.19). 

Although, as discussed in the method, the definition of the total cross section 

used here is not strictly valid for scattering on a Coulombic potential and thus 

not consistent with the use of the Coulombic boundary conditions, it has 

nevertheless been used throughout in order to facilitate the comparison of the 

phase shifts evaluated using both forms of boundary conditions. This means 

that the values of the cross sections found here may not be comparable to 

experimentally observed cross sections, should such a study ever be made.

Figure 19 shows the results of a test of the convergence of the total cross 

section with respect to using both forms of the boundary conditions. It can 

be seen that, whilst convergence was found when applying the Coulombic 

boundary conditions, albeit at a very large distance of R, such convergence was 

not observed at all when using regular boundary conditions.

These results reveal that it is necessary to use the Coulombic form of the 

boundary conditions when calculating theoretically the phase shifts and cross 

sections of an interaction with a Coulombic potential.

113



Coulomb b.c. —  
Regular b.c.

^  0.01

m

0.005

10000 12000 16000 180000 2000 4000 6000 8000 14000

F ig u re  19 C o m p a r i s o n  o f  c o n v e r g e n c e  o f  t o t a l  c r o s s  s e c t i o n  f o r  s c a t t e r i n g  o f  b y  

c r  w i t h  Ec =  5 e V  u s i n g  r e g u l a r  a n d  C o u l o m b i c  b o u n d a r y  c o n d i t i o n s .  F o r  c l a r i t y ,  o n l y  

s a m p l e s  o f  t h e  r e s u l t s  u s i n g  r e g u l a r  b o u n d a r y  c o n d i t i o n s  a r e  s h o w n .

Thus, in order to compare the effects of the alternative boundary conditions 

on the positions and widths of the resonances found in the scattering reaction, it 

has been necessary to choose an arbitrary value of when applying the 

regular boundary conditions. To ensure the validity of the conclusions made, 

two different values of have been used, both of which are considerably 

larger than that used for the Coulombic boundary conditions.

From Eqn. (10.25) it is seen that the presence of a resonance will result in a 

displacement of tt in a plot of the curve of the phase shift as a function of 

collision energy. Therefore, since the phase shift is calculated modulo 7t, it is 

very possible that any resonance will be mistaken for a simple cyclic shift, 

particularly when the resonance is sharp. It is therefore a lot easier to locate 

resonances in a plot of the total cross section as a function of collision energy, 

which would have the shape defined by Eqn. (10.26).
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However, it is still necessary to ensure that the grid of energy points at which 

the cross section is calculated is narrow enough to reveal any resonances 

present. Clearly, the longer the lifetime of the orbiting complex, the greater the 

resolution required in the cross section plot. A method of facilitating the 

detection of resonances has been used in this research which involves choosing 

three points along the curve of total cross section versus collision energy, Ec, 

and fitting them to a quadratic equation in Ec. This is repeated along the whole 

curve, keeping the first two points constant but varying the third. A plot of the 

coefficient of the squared term of the quadratic, as a function of E^  will then be 

much more sensitive than the total cross section itself to the presence of a 

resonance. This is because, for small (E -E ,), the second derivative with 

respect to E  of Eqn. (10.26) shows greatly increased dependence on (E -E ,).

Bennett and McNab [50] observe three resonances using the potential 

surface and report their relative energies and the tunnelling lifetimes of the 

corresponding vibrational states. The longest lived state has a resonance width 

which is less than the rounding-error of the available computers and thus could 

not be located in this study. The other two resonances were located (Figure 20), 

using both forms of the boundary conditions, and fit to Eqn. (10.26) to give the 

values of r ,  E\ and S for each resonance. The results are shown in Table 4 .

Coulombic Boundary 

Conditions

Regular Boundary 

Conditions

;("(ao) 6000 1 0 0 0 0 12500

Ex (eV) 4 . 8 4 9 8 2 2 7 5 . 0 0 7 5 2 4 5 4 . 8 4 9 8 2 2 7 5 . 0 0 7 5 2 3 6 9 4 . 8 4 9 8 2 2 7 5 . 0 0 7 5 2 6 9 5

F(eV) 8 . 0 3 4 2  E - 9 1 . 3 7 1 8  E - 4 7 . 9 2 0 6  E - 9 1 . 2 6 7 3  E - 4 7 . 9 5 2 1  E - 9 1 . 2 1 2 9  E - 4

T (sec) 0 . 8 1  E - 7 0 . 4 8  E - 1 1 0 . 8 3  E - 7 0 . 5 2  E - 1 1 0 . 8 2  E - 7 0 . 5 4  E - 1 1

^(0 ) -  0 . 5 0 4 6 - 0 . 7 1 0 2 7 - 5 0 . 5 2 7 0 . 5 8 4 2 1 - 6 8 . 2 8 5 0 . 7 8 9 5 4

Table 4 Resonance parameters for the two highest orbiting complexes formed in the 
scattering of with CF.

115



0,02

ü 0.012

M 0.01

I  0.006in
0.004

0.002

5.006 5.0065 5.007 5.0075
Collison Energy <eV)
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0.02

0.018

0.016

I  0.012
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«  0.01

Obû
0.008

0.004

0 .002

4.8498226 4.84982263 4.84982266 4.84982269 4.84982272 4.84982275 4.84982278

Collison Energy <eV)

F ig u re  20 R e s o n a n c e s  i n  t h e  t o t a l  c r o s s  s e c t i o n  a s  a  f u n c t i o n  o f  c o l l i s i o n  e n e r g y  f o r  

t h e  s c a t t e r i n g  o f  w i t h  C r  u s i n g  b o u n d a r y  c o n d i t i o n s  a p p r o p r i a t e  f o r  a  C o u l o m b i c  

p o t e n t i a l .
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As Table 4 shows, the energies and widths of the resonances found using the 

regular boundary conditions, at both values of tested, are well within the 

acceptable error range for the theoretical calculations, when compared to those 

found using the Coulombic boundary conditions. The only parameter which is 

significantly affected by the incorrect form of the asymptotic boundary 

conditions is the “background” phase-shiA term of Eqn. (10.25), which is 

independent of the resonances. It appears, therefore, that all the information 

about a resonance is decided in the region of the potential barrier and no further 

propagation of the wavefunction would be necessary in order to ascertain the 

lifetime and energy of a quasi-bound state or orbiting complex. This is 

consistent with the results of a study made on the decay of to by

Parlant et al [55], where the lifetimes of quasi-bound states, calculated using 

the lifetime matrix theory of Smith [56], were found to be insignificantly 

affected by the Coulomb tail of the potential surface.

The conclusion of this study, then, is that it is necessary to consider the 

appropriate boundary conditions for a system with a Coulombic potential when 

calculating the phase shifts and cross sections of a scattering interaction, but 

not when ascertaining the energies or the widths of any resonances present. It 

remains to be seen, however, how the alternative boundary conditions would 

affect the internal product distribution of an event, such as the dissociation of 

\  since this is only dependent on the relative probabilities of the different 

internal states rather than the absolute values.
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11 Dissociation of the Ozone Dication: Method

The aim of the final investigation in this thesis is to find the relative 

probabilities of each of the internal energy states of the diatom being 

produced as a result of the double ionisation of the bound O3 molecule. The 

double ionisation of the O 3  molecule can be considered as giving rise to a 

wavefunction which can be expressed as a linear combination of all possible 

wavefunctions of the system ()3 ^̂  <-> that have outgoing components,

in the asymptotic region, for only one internal state of the diatom [57]. 

There will be one such term of this expansion for each internal energy state of 

and the square of the coefficients of the expansion will therefore give the 

probabilities that the internal state associated with each coefficient will be 

produced.

It is possible to determine the value of these coefficients, and hence the 

product distribution of the fragment, by calculating the overlap of the 

wavefunction of the initial system with that of each of the possible final 

systems. Since the ionisation of the O3 molecule in Ref. [47] is achieved 

through electron impact, a complete theoretical model of the experiment would 

have to involve describing the wavefunctions for the molecules together with 

the free electrons. However, such a calculation would be extremely complex 

and so, in this study, a Franck-Condon approximation has been made, such that 

just the transition of the molecules is considered.

Hence, since the objective is only to find the relative probabilities of the 

internal states of the product formed, the aim of the calculations is to 

evaluate the square of the overlaps of the molecular wavefunctions, namely:

V J / /

o;+o+ 'I'o ,

for each/] where/  labels the final state of the diatom.

As mentioned in the introduction, the wavefunction for the excited system is 

described here as a scattering wavefunction, even though the initial result of the
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double ionisation of the neutral ozone molecule may well be a quasi-bound 

dication, Nevertheless, since the primary purpose of these calculations is 

to determine the distribution of internal energies of the 0 2  ̂ fragment at an 

ostensibly infinite distance from the position of the excitation, it is much more 

practicable to represent the excited system as a scattering interaction between 

and than as the dissociation of the bound molecule, The internal 

energy of the dication is therefore to be associated with the total energy of 

the scattering system of + O .̂

Another noteworthy feature of the method outlined in this chapter relates to 

the form of the wavefunction for the bound O3 molecule. Although it is 

possible to evaluate the required overlap of the scattering and bound 

wavefunctions using a description of the bound wavefunction calculated 

independently, the calculations can be simplified if  the O3 wavefunction is also 

described in terms of scattering coordinates and expanded using the same basis 

set as that of the scattering wavefunction. As will be shown below, the

precise value of the bound energy level of the O3 molecule can actually be 

determined directly through a calculation of the overlap of the two 

wavefunctions and, as a result, this method has the additional advantage of 

providing a test for the computer code used in the calculations.
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11.1 Close-Coupled Equations

Using the same notation as for Part 1, the Hamiltonian for the scattering 

wavefunction, , in the body-fixed coordinate system is:

or/o^o  ̂ -  2^ Rj
J - j

R‘
(11.2)

where is the Hamiltonian for the diatomic ion O2 \  and the scattering 

wavefunction can be expressed as a partial wave expansion:

• (113)
A  y'y

where, once again,/ labels the internal state of the fragment. The basis set 

in this expansion consists, as in Part 1, of the solutions to the diatomic 

Schrodinger equation for O2 .

Since this basis set is complete, the bound wavefunction for O3 can also be 

expanded in terms of the wavefunctions of 0 2  ̂:

R y’j
(11.4)

Thus, the calculation of the overlap of the wavefunctions, Eqn. (11.1), becomes:

R y ’ j ’

which, due to the orthonormal nature of the basis set, reduces to:

o  = } X Z  dR . (11.5)

Hence, the calculation of the product distribution can be achieved by solving 

close-coupled equations similar to those discussed in Part 1, for both the O3 and 

the 0 2 ^ /0  ̂systems, and evaluating the overlap of the solutions.
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The calculations have only been carried out for zero total angular momentum, 

and so the close-coupled equations for the O2 10  ̂system can be written as:

, [/" (r+ O T
dR R‘ (^)  = f  Z (  <^rX,-r I I  X.r )n y ' j '

(11.6)

where is the interaction potential between the atom and diatom and:

ŝv’r  ~ ^ o -)

There exists, at every value of the total energy for the scattering system, , a 

separate set of these coupled equations for each final internal state of 0 2  ̂ and 

so, as with the coupled equations in Part 1, Eqns. (11.6) can be written in 

matrix form as:

. 2  [rO "+ i)T
dR̂ ¥ T >  (

= t o t - 0  ̂ ^ (11.7)

The bound O3 molecule would generally be expected to produce O2 + O were 

it to dissociate, as shown in Figure 16. Nevertheless, it is still entirely valid to 

write the nuclear Hamiltonian for O3 in terms of the 0 2  ̂ diatom as for the 

scattering system, Eqn. (11.2), since the kinetic operator terms are independent 

of the electronic charge, as long as the potential energy operator is adapted 

accordingly. Thus,

-------2n
â 1 

■ +  —

âR R
J - j

R‘
+

or, describing the potential operator in terms of the potential surface of the 

bound O3 molecule:

â  1
• +

Y

âR R
J - j

R‘ - K M  A '
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Substituting this Hamiltonian, along with the partial wave expansion in terms 

of 0 2  ̂eigenfunctions, Eqn. (11.4), into the Schrodinger equation for the bound 

O3 molecule, leads to the close-coupled equations for the O3 system:

dR̂  R- = - K i  I ¥%(R)n v’ j"
(11.8)

where kl, j =

Unlike the coupled equations for the scattering reaction, at any given bound 

energy there exists only one possible linear combination of the basis set which 

fulfils the boundary conditions for the wavefunction of the bound molecule. 

Hence, the matrix form of the overlaps, Eqns. (11.5), would consist of the 

integration of a matrix multiplied by a vector:

o ( £ ° ’*, , (11.9)

where the square of each element of the O vector is the probability of a 

particular internal state of being detected as a result of the excitation of the 

O3 neutral in the bound state with energy to the doubly ionised 0 3 ^̂  

dication with total energy .
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11.2 The Potential Energy Matrices

The elements of the potential energy matrix,  ̂ | <!>jXvj) , of both Eqn.

(11.6) and Eqn. (11.8) involve the eigenfunction solutions to the Schrodinger 

equation for the diatomic ion O2 . The diatomic rotation wavefunctions, <!>j, are 

the normalised spherical harmonic wavefunctions, Y^o(r'), and the ro- 

vibrational terms, are calculated using the PO-DVR method described

in Part 1, Section 3.4.

11.2.1 The Potential Matrix Elements for

The ab initio potential energy surface for process (3) has been calculated by 

Champkin et al [48] using the state averaged CASSCF/MRCI method 

implemented in the program MOLPRO. The lowest potential surface is that of 

the triplet state of and that surface has been used in the present analysis. 

The grid of potential energy points, provided by Champkin, has been 

incorporated into these calculations using the same method as that of the Z 

treatment described in Part 1, Section 3.2.2.

The potential matrix elements of Eqn. (11.6) can therefore be expressed in a 

similar form as that derived in Section 3.3.1, namely:

( I I X v ' f )

( f  I r v /  /= {2f  + 1 )^ {2f  + 1)^ ̂  jdr (r) V„ {R,r)x, j. (r)
0 0 0 
(11.10)

and, as in Part 1, for the homonuclear diatom, j  takes only even values.
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11.2.2 The Potential Matrix Elements for O3

The potential energy surface for the bound O3 molecule used in this analysis 

is based upon the potential function developed by Barbe, Secroun and Jouve 

[49] to fit with spectroscopic data for For simplicity, the expansion of the 

potential in terms of the internal coordinates of O3 has been truncated to the 

quadratic terms. Thus, the potential function is written as:

^ 0 3  = + ^̂ 2)+ + ^̂ 2 )''e + T ( U T l )

O
where Ari = r i ~

A^ 2  = r2-  rie 

A0= 6 - 6e

and the subscript e refers to the equilibrium values, which are:

re = r\e = r2e= \.21\1 k  ; 6  ̂= 116.783° .

The quadratic force constants are taken as [49]:

fr =6.163 mdynes ; f r r^^ .602 mdynes A'̂

= 0.402 mdynes A'̂  ; =1.300 mdynes A'̂  .

For the purposes of these calculations, the coordinates in the potential function 

are transformed to those used for the scattering system, such that:

r \=r  ; r ,= +\yr.) -ri?cos(;r-y) 9 = cos'
rxr.

The potential matrix elements of Eqn. (11.8) are then integrated over the 

angular coordinate directly:

= ji(2 y  + l )^ (2 /  + l)^P,(cosy) V Q ^ { R , r , { c o s r ) ) - V ^ .  P j . { q o s y ) s m y d y .
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11.3 Calculating the Overlap Matrix

The solution of the coupled equations, Eqn. (11.6) and Eqn. (11.8), can be 

simplified, as explained in Chapter 4, by dividing the interaction space into 

sectors within each of which the potential surface is considered to be constant 

with respect to the translational coordinate, R. However, the integration which 

must be carried out to obtain the vector of overlaps, Eqn. (11.9), requires a 

knowledge of the actual translational wavefunctions, across the entire

interaction space, not just the asymptotic R-matrix as in Part 1. Rather than 

propagating the bound and scattering wavefunctions individually across the 

whole interaction space before determining the total overlap. Light and co

workers [58-61] have developed the R-matrix theory of Ref. [45] to enable the 

calculation of the overlap for each sector, followed by the propagation of the 

overlap itself. The precise details used in this research have been taken from 

Heather and Light, Ref. [60].

The method devised by Heather and Light has only ever been described for 

systems where the scattering wavefunction is assumed to tend to non- 

Coulombic boundary conditions in the asymptotic region. The scattering 

process, 0 2  ̂ + O ,̂ analysed in this research, however, has a Coulombic 

potential and it is therefore necessary to adapt the theory to be applicable here, 

if  the correct boundary conditions are to be taken into account.

Since one of the aims of this research is to compare the effects of the use of 

the Coulombic boundary conditions with those of the ‘regular’ boundary 

conditions, the theory will initially be presented here treating the scattering 

system as one which displays ‘regular’ behaviour in the asymptotic region, 

before discussing the necessary modifications of the theory to accommodate 

Coulombic systems.
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The method of Heather and Light [60] is predicated on the ability to 

formulate the actual translational wavefunctions, at every point, in terms of the 

local solutions to the coupled equations of any small sector of the interaction 

space which can be easily propagated across the interaction coordinate. Thus, 

the overlaps of the actual translational wavefunctions can be calculated within 

each sector as the functions are propagated from one sector to the next, and the 

sum of the overlaps of all the sectors will be the total overlap of the 

wavefunctions.

11.3 .1  S c a tte r in g  S y s te m  C o m p o n e n t o f  S e c to r  O v e rla p

For every sector, /, the coupled equations for the scattering system, Eqns.

( 1 1 .6 ), are decoupled by the diagonalisation of the matrix W, consisting of the

potential matrix elements (calculated using the value of R at the centre of the 

sector) added to a diagonal matrix containing the values of

r c r + i ) , o:

SO that

where is the transformation matrix for sector /, which is made up of the 

orthonormal eigenvectors of ^ ( rJ,  and is the diagonal matrix of 

eigenvalues, . Thus, if

the uncoupled equations can be written as:

= - / I f . ( 1 1 .1 2 )
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Since the function y/ and its derivative must both be continuous at the 

boundaries between sectors,

where Rq and are the values of R at the left-hand (i.e. closer to /? = 0) and 

right-hand boundaries of a sector, respectively. Hence, if

Q̂ ) _ ji(/)

then

k,M, )= g "  ) ; r " -"  (V o  )= g "  ) ■

The method of Heather and Light involves expressing the solutions to Eqn. 

( 1 1 .1 2 ) in the form:

F/'> = sin p t'J  + cos ))s« , (11.13)

and the derivative will therefore be:

= 4>cos ( 4 P - rP ) aI'̂  -  4^sin(4p~RP)Bf!> .

Hence, at the border between sectors i and ( / - I ) :

and 

and so:

or:

s'" + c'" ) ( 1 1  14)
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where and are the diagonal matrices with elements

sin )) and cos )), respectively, and

) .

Eqn. (11.14) provides a simple means of calculating the translational 

wavefunction in one sector given the wavefunction in the preceding sector.

In order for this propagated wavefunction to correctly describe the scattering 

system, it must fulfil the asymptotic boundary conditions for the actual 

translational wavefunction of the system. For a non-Coulombic system, these 

boundary conditions are similar to those formulated in Chapter 4 except that, 

whereas in Part 1 the inelastic scattering was described by a single incoming 

channel, the wavefunction for dissociation will be described by a single 

outgoing channel [57]. Thus, in the asymptotic region the translational 

wavefunction can be written in the form:

- T ^  ( r ^ 2 (^ )+ r^ ^ (^ )i)  (1115)

where /  is a diagonal matrix of incoming waves of momentum -  k^jh, with 

elements:

and 2  is a diagonal matrix of outgoing waves of momentum k ĵh, with 

elements:

k is the diagonal matrix of k„, where:

and n labels internal diatomic state (v, J). Each column of the wavefunction 

matrix thus consists of incoming wave components for all internal states of the 

diatom but an outgoing wave component for only one internal state.
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The S-matrix in Eqn. (11.15) is comparable to that used in Part 1 and is a 

unitary matrix. For any value of R at the asymptotic limit (written as R from 

now on), the R-matrix, defined as:

~dR

will be;

and hence the asymptotic S-matrix can be written as:

Since the S-matrix must be unitary and the R-matrix is real symmetric,

i = [ i ' T ' [ m  2 M -  &"^2(4
* r - i

- 1

I f  the propagated wavefunction is multiplied by a constant it would still be a 

solution to the coupled equations, so the asymptotic boundary conditions are 

met by first multiplying the whole translational wavefunction on the right by:

where N  labels the sector in the asymptotic region. This means that the 

solutions to the uncoupled equations for every sector, i , up to and including 

sector#will become:

where:

(11.16)
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whilst the solution in sector (#  + 1 ) will be simply:

However, at the asymptotic limit, QW ) I and w Â:, so:

l ( V ) ) = i ( ^ )  •

Writing the matrices S and C in sector (#  + 1) in terms of /  and O gives:

S = ̂ (o ( iJ ) /(^ ) - /( iî)o (« ) )  

c = ^ (o (/f)/(5 )+ /{ /? )o (^ ))  

and thus the wavefunction at the asymptotic limit, Eqn. (11.17), becomes:

Since this can be written as:

1
2i

2i

r> ^ ](o (/j)+ z W r^  ['1 2 ( ^ ) i ( ^ ) - 2 (^ )E (^ )+ ''^ (^ ) 2 (^ )r^ ^  )

k->'‘o{R)+ i (R )s ]k '^ iL{R ) + ,

the whole translational wavefunction can now easily be transformed to meet 

the requirements of Eqn. (11.15), by multiplying it on the right by D where:

-1

2 (^ )
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11.3.2 Bound System Component of Sector Overlap

The above formulation of the solutions to the coupled equations within each 

sector, Eqn. (11.16), can equally be applied to describe the translational 

wavefunction for the bound molecule. Expressing both the wavefunctions of an 

overlap in this fashion has previously been done for the calculation of 

perturbation integrals [61, 62].

The boundary conditions for the bound wavefunction are that it and its 

derivative be zero at the two ends of the potential well. This requirement is 

only met at certain discrete values of the energy and so, in order to obtain 

the overlap of the bound wavefunction for O3 with the scattering wavefunction 

of 0 2  ̂+ O ,̂ it is first necessary to determine the specific value of the energy of 

the bound state.

Gordon [63] has developed a method for obtaining the energy levels of a 

bound wavefunction via the propagation of the wavefunction and its derivative 

over the interaction coordinate and Danby [64] has proposed a similar method 

for propagation of the R-matrix, as in Part 1 of this thesis. The first step is to 

expand the bound translational wavefunction vector, as a linear

combination of orthogonal functions each of which are solutions to the coupled 

equations for the bound system, but which, individually, do not satisfy the 

necessary boundary conditions for the bound molecule. These solutions can 

therefore be written as a matrix, similar to that for the scattering wavefunction,

, and this assures the stability of the wavefunction as it is propagated

from sector to sector. The boundary conditions appropriate to the bound 

wavefunction at the two edges of the potential well are then taken as starting 

points for a simultaneous propagation of the R-matrix from both sides of the 

potential well. The energy at which the R-matrices from both propagations are 

found to be identical at the position where they coincide will then be an 

eigenvalue of the Schrodinger equation for the bound molecule.

However, when finding the overlap of the bound wavefunction with another 

wavefunction, as is done in this research, locating the bound energy level
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through simultaneous propagation from both sides is not necessary. This is due 

to consideration of the fact that the square of the overlap elements can be 

understood as the probability of measuring the amount that one wavefunction is 

found to be ‘present’ in the other. Hence, at values of for which the 

solutions to the Schrodinger equation do not meet the required boundary 

conditions for a bound molecule and therefore are not allowed to exist in 

reality, the overlap will be negligible. Only at the correct bound energy levels 

will the overlap be significant. Therefore, the energy of a bound state of the O3  

molecule, with the potential surface described in Section 11.2.2, can be 

calculated by simply locating a resonance in the spectrum of the overlaps, O ,

with respect to variation in the bound energy, .

The first step in the propagation of the bound wavefunction is to express the 

coupled equations for the O 3  system, Eqns. (11.8), in matrix form:

dR‘ B v J R‘
(11.18)

where the columns of the wavefunction matrix, , will be orthogonal

solutions to the translational Schrodinger equation for the bound system, but 

which do not necessarily satisfy the correct boundary conditions for the bound 

wavefunction. The overlap function to be calculated now becomes the matrix:

O (æ°>* , (£°>* ) y/°’ {e °’ Jj (11.19)

The coupled equations for the bound system, Eqns. (11.18), are decoupled in 

the same way as those for the scattering system, namely by adding the potential 

matrix elements for each sector, at R to the diagonal matrix of elements

and diagonalising the resulting matrix. The solutions within each sector are 

taken to be of the same form as Eqn. (11.14) but with the X defined by the

uncoupled equations for the bound system.
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11.3.3 Propagation of the Overlap

Thus, the total overlap matrix is calculated by evaluating the matrix of 

integrals:

X<'> = ] d R

for each sector, /. These sector integrals only need be calculated for the sectors 

which fall within the Franck-Condon region for the excitation, since the bound 

wavefunction will be zero outside of that area [60]. Hence, = 0  for all i at 

which is greater than the boundary of the potential well for O3 .

The sum of the contributions to the overlap matrix integral from all sectors up 

to sector i is then taken as:

which is expressed in the ( / + 1 ) uncoupled basis, and the total overlap matrix 

will therefore be:

0  = ( 1 1 .2 2 )

For a basis set of size M, each of the M  rows of the total overlap matrix 

represents the contribution from the scattering wavefunction for a different 

final state of the diatom. Each of the M  columns represents the contribution 

from a different solution to the translational Schrodinger equation for the O 3  

molecule at energy .

Since, when is one of the discrete bound state energy levels for O 3 , these 

orthogonal solutions will span the entire Hilbert space occupied by the true 

bound wavefunction (i.e. the solution to the Schrodinger equation for the O 3  

molecule which meets the required boundary conditions), it can be expressed as 

a linear combination of them. The coefficients of this expansion, however, are 

not known.
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Nevertheless, it should still be possible to obtain the product distribution of 

0 2  ̂ from the overlap matrix, even without explicit knowledge of the bound O3  

wavefunction. For, at the bound energy level, each of the columns of the

matrix, being a solution to the translational Schrodinger equation for the bound 

system, can itself be expressed as an expansion in terms of the actual bound 

wavefunction and the M -  1 functions which are orthogonal to it, as they too 

span the same Hilbert space. Since, as explained above, the overlap will be 

negligible for all wavefunctions that do not exist in reality, the only significant 

contribution to the elements of the overlap matrix made by each column of the 

matrix will therefore be from the ‘true’ bound wavefunction component of

such an expansion. The product distribution of internal energy states of the 

fragment, defined as the relative probability of each state being observed, can 

therefore be obtained by simply taking the squares of the elements in any of the 

columns of the overlap matrix and dividing them by the sum of the squares of 

the elements in that one column.

I f  this theory is correct, the results of such an operation should be near 

identical for each column of the final overlap matrix that is used or, indeed, for 

the sum of the squares of the elements of each row from any number of the 

columns, as long as the appropriate ‘total’ is chosen as the denominator. The 

validity of this hypothesis will be tested in this study.
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The Sector Integrals

The matrix of integrals within each sector, Eqn. (11.20), are calculated 

analytically using the formulation derived as follows:

*(')
jdR / ^ { ' )  'T’ (') nniO

L = o ;+ 0 +  =0^+0+ LO ] = 0 ,

k m ! Im .= 0 3  .

(ji( 0

kj -= 0 ] •

= 1  [Z o ! ] , .  b o ; . o . ] - '  É L o .  + £ o U -  Z o ;.o . K "  ' , ) ] ;

X b o îi-'s ^ ! + £ o! so,(v ..)],

so that, for every sector, dropping the / index for convenience.

} ‘̂ « iz z [z o U * L [z o ,L
k m I

))/^ f <5,+ k o u o \

sin(A°-(/Î - ) ) / / ■  Ĵ „„ + - K  ) ! / . .
\

J o , : pn
/

which becomes:
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+ e e [l ;*o*.
m I

&

4 . = 0 ] . Im

£o. dR
pn

+ y y f r  * [ r  1 [VvL=oî+o^ J/J=03 J/„ j 
k I  R

+ z z z [ l ; . o - 1 „ I z o J j  b o ;.o .l

X [ cos(aÎ ( J Î - / îJ)]„,<5

k m I

l£ o. dR

It should be noted that the X terms are not restricted to being real numbers and 

that therefore, for < 1 , the trigonometric functions will become their 

hyperbolic function equivalent.
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Defining the sector distance, (Ri,-Ra ), as h and carrying out the integration 

gives:

jn - z l ü 4 . = 0 ]  .

x f x f
sin A ? '' \h sin

y

+ lio ,.
m I

, . k L
Im

cos U - 1m ~j c o s i U ° ’ + / i;^  \ h -1

+
k I

Ik . = 0 ] .

A?> X f  -X ° ’
COS - 1

+;in'
COS \ h \ - \

+ E Z Z i L :
k m I

TIk ■ = 0 ] ■Im

L i £ o .J
X°>' -X ° ’

Sim I X ° ’ - x ° ' \ h + sini I +;i? 1/2

(11.23)

unless = ± , in which case the

1 / /  _, \ \
±A°M /2sin

±X^ "

terms are replaced by h, whilst the

cos I I ± \h 1-1

terms become zero.
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11.4 Modifications for Coulombic Potential

The description given above for the propagation of the overlap matrix is only 

accurate for a scattering system with a potential function that tends to zero as 

HR^ or faster. As explained in Chapter 10 in the context of elastic scattering, 

the wavefunction for a system with a Coulombic potential, such as + O \ 

takes a different form in the asymptotic region than that of a system with a 

‘regular’ potential, due to the infinite range of the Coulombic potential.

Thus, as an extension of the theory for the elastic scattering case, for 

dissociation, the asymptotic form of the translational wavefunction of the 

0 2  ̂+ 0  ̂scattering system is actually:

(11.24)

where ^  is the diagonal matrix consisting of terms:

= exp ( - 1 (i„ JÎ -  

and is the diagonal matrix of terms:

Oi = i x p { i { k „ R - ^ ~ r „ \ n 2 k „ R }  .

^  is the diagonal matrix of elements

where n labels internal diatomic state (v,y), and:

In an analogous fashion to the elastic scattering case of Chapter 10,

- - T

0?  ̂+ 0^ is: Z aZr=1.

since the product of the charges of the scattering species (in atomic units) for
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At the asymptotic limit, therefore, the R-matrix for the Coulombic 

waveftinction is:

2 (1 )=  [ 0 2  M +  ^  (Â)S ] ^ (« )S  ]■'(! 1.25)

and the S-matrix can be written as:

= [/[̂ ôi(̂ )2(̂ )-[£j'̂ 2i(̂ )l [ '  ̂M m (̂ )+  ̂wl ' '
In order to use the method of Heather and Light [60] accurately for a 

Coulombic system, it is necessary to express the sector solutions to the 

uncoupled equations of Eqn. (11.12) in a form which can be readily 

transformed to meet the asymptotic boundary conditions of Eqn. (11.24). 

However, this cannot be achieved by simply adjusting the form of the solutions 

within every sector, Eqn. (11.13), so that they include the required logarithmic 

term, since, within each sector, the potential is considered to be constant with 

respect to R and therefore functions of the type:

exp [i{X„R - r „  ln2/l„/?))

cannot be solutions to the uncoupled equations ( 1 1 .1 2 ).

Nevertheless, in sector N,  the sector at the asymptotic limit, it is possible to 

introduce the desired form of the solutions since, there, the Coulombic

potential energy term, of Eqn. (11.6), is small enough to be

considered as zero, which is therefore equivalent to saying that, there:

Consequently, it would be necessary to consider that the solution to the 

uncoupled equations of sector#:
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could be of the form:

since then:

dR‘ fL'Kr) = - f - %-j  F , fK R h & f ^ V , L " ’(^)R R- R

-
+ ZL 

J? fL'Kr ) + ‘- ^ \ f L"\ r )R

which, for — > 0 (and A, -> k , \  becomes:R / //

dR‘

Therefore, the method of Heather and Light is adapted to be applicable to a 

scattering system with a Coulombic potential by altering the solution to the 

uncoupled equations in sector N  (and 7V+1), such that:

F/:> = sin R

/
4 J, + cos

R B

for all i > N .  Hence, at the border between sectors i and ( /-1 ) , for sectors i > N,

and

SO that:
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^ 0 ) ^

=  Kin =

where $ 2  is the diagonal matrix with elements:

= sin
Kin J

and Ç2  the diagonal matrix with elements:

The whole wavefunction is then multiplied on the right by this Coulombic 

version of

and the solution to Eqns. (11.12) within each sector, / ,  up to and including 

sector N  becomes, once again

but with

d " \R )= gc(«) + çc(")

whereas:

for all sectors i < N .

The solution in sector (#  + 1) will now become:
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where the R-matrix is defined as in Eqn. (11.25). Writing matrices and c£ 

in terms of ^  and and rearranging the wavefunction at the asymptotic 

limit, gives the analogous result to that for the non-Coulombic system:

= ^ ( [ d ' " ' 2 i w + [ d " ^ [ d ' ' ' .

The whole translational wavefunction is then transformed to meet the 

requirements of Eqn. (11.24), by multiplying it on the right by ^  where:

/2

Since the only changes made for the Coulombic potential involve the sectors 

in the asymptotic region, which is outside of the Franck-Condon region, the 

sector integrals, Eqn. (11.23), will all remain unaffected. The total overlap 

matrix is then calculated using Eqn. (11.21) as before and applying the 

Coulombic form of the asymptotic transformation, so that:

0  = \d^Y {N)
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12 Results of Calculations on Dissociation of Oz^*

12.1 Potential Fit

The points supplied by Champkin for the ab initio potential surface for the 

process:

were fitted as an expansion in Legendre polynomials using the method 

described at the end of Section 3.2.2 and taking the values of of Eqn. (3.14) 

to be:

Vm = 1.82 Go , 2.02 Go, 2.12 Gq , 2.42 gq 

and the values of yk as:

Yk = 0°, 30°, 60°, 75°, 90° ,

with L = 5 and N  = A.

Some cross-sections of the fitted potential surfaces are shown in Figure 21 

and Figure 22, at values of r and y which were used in the matrices of Eqn. 

(3.14) to create the potential energy functions. The Coulomb term in the 

potential function dominates at large R and results in the asymptotic limit, 

where the potential can be considered as having zero magnitude, being much 

further out than for a non-Coulombic potential.

The potential well, in the region of 7? « 3ao, has a minimum at « 5.4 eV.
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F ig u re  21 C u t  o f  p o t e n t i a l  e n e r g y  s u r f a c e  f o r  0%^ +  a t  r  = 2 . 0 2  a o  ;  /  -  3 0 ° .
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F ig u re  22 C u t  o f  p o t e n t i a l  e n e r g y  s u r f a c e  f o r  a t  r  =  2 . 4 2  a o  ;  /  =  6 0 ° .
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The potential surface fit was tested by comparing the values o f  the potential 

generated by the expansion functions to those provided by Champkin for values 

o f r  and y  other than those included in the fitting  procedure. Figure 23 shows 

results o f  a test o f the fitted potential expansion function at a value o f y  which 

was used in the fitting  procedure, but at a value o f r  which was not. Figure 24 

shows results o f a test o f the fitted potential expansion function at a value o f r  

which was used in the fitting  procedure, but at a value o f y  which was not. 

Finally, Figure 25 shows results o f a test o f the fitted potential expansion 

function at a value o f r  and a value o f y  which were both not used in the fitting  

procedure.

1.5 = ab in it io  results
= results of potential expansion function

4 6 8 10 12 14 16 18 20

R  (ac)

F ig u re  23 C u t  o f  p o t e n t i a l  e n e r g y  s u r f a c e  f o r  0%^ +  a t  r  =  2 . 2 2  a o  ;  y  =  75°.
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12.2 Overlap Matrix

The method described in Chapter 11 for calculating the overlap matrix

O ) I , (12.1)

where is the total energy of the scattering system:

02^ +  03^^

and is the energy of the bound ozone molecule, was implemented to 

explore the reaction:

O3 0;^+ Oi + O’" + K.E. (2)

The purpose of this study was to provide a theoretical analysis of the process 

(2), which had previously been investigated experimentally by Newson and 

Price [47] to determine the energy and lifetime of the ozone dication produced 

from the double ionisation of O3 in its ground state.

The final aim of these calculations has been to evaluate the product 

distribution of the internal energy states of the diatom formed in process 

(2). However, the Franck-Condon excitation of O3 to 0 3 ^̂  will be most

efficient for a particular range of the total energy of the excited system, , 

and this will decide the amount of energy imparted by the impacting electron to 

the ozone molecule. Hence, in order to calculate the product distribution

observed in reality, the overlap matrix must be calculated at the value of 

found to be most efficient for the excitation. This w ill be determined by the

range of values of at which the overlap between the wavefunction for O3 

and that for the scattering system of 0 3 ^̂  <-> is maximised.

Thus, the analysis of process (2) involves three steps:

(a) To determine the bound energy of the O3 molecule.

(b) To determine the energy of the 0 3 ^̂  dication formed by the Franck-Condon 

excitation of the O3 molecule through electron impact.
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(c) To evaluate the product distribution of the internal energy levels of the O2  

diatomic cation produced by the subsequent fragmentation of the 

triatomic dication.

Each of these three steps can be achieved through the propagation of the 

overlap of the scattering and the bound wavefunctions, Eqn. (12.1), at

appropriate values of and .

An additional aim of this study has been to assess the effects of the use of the 

correct boundary conditions for a Coulombic potential when calculating the 

overlap matrix, in comparison with the boundary conditions generally used, 

which are only strictly valid for a non-Coulombic system. From the 

conclusions of the study made on the elastic scattering of + Cl̂ , Chapter 10 

of this thesis, it can be predicted that the use of the alternative boundary 

conditions will only affect step (c) of the calculations, since the earlier steps 

involve simply locating the energy of a resonance which is not dependent on 

the long-range part of the scattering potential.
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Parameters

As with the coupled-states calculations in Part 1, the results of the 

propagation of the overlap matrix need to converge with respect to the 

parameters used in the calculations, such as the size of the basis set and the 

sector width, before any meaningfiil conclusions can be made.

Generally, the larger the total energy, the greater the size of basis set 

required. Since step (b) requires the calculation of the overlap matrix over a 

range of values of the energy of the scattering system in order to locate the 

most efficient energy for the ionisation, a basis set suitable for the largest value

of studied must be used if  a re-examination of the convergence at each

value of is to be avoided. Thus, for < 8  eV the basis set used was:

v = 0 - 7 , y = 0 - 5 8

V = 8 , 7  = 0 -  46

V = 9, 7  = 0 -  22

where v is the vibrational quantum number and j  is the rotational quantum 

number of the © 2  ̂ diatom. As mentioned in the method, only even values of j  

were employed.

The requirement to use such a large basis set (276 states), as a result of the 

considerable total energies of the scattering system that were to be studied, 

meant that the calculations were very costly. This is particularly true due to the 

fact that the method used for the calculation of the overlap, described in 

Chapter 11, involved using the same basis set for both the bound and scattering 

systems. Furthermore, the Coulomb term of the potential for the scattering 

system means that the asymptotic boundary conditions are only valid at 

extremely large values of R. It was therefore important to find ways of 

economising the amount of computer time and power that was required for the 

calculations and these involved optimising the values of the other parameters of 

the propagation, so that no unnecessary sectors were included in the 

propagation.
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Consequently, for convergence with respect to the sector width, the 

interaction space was divided into three areas, based on the different sensitivity 

of the overlap matrix to the potential surface in each area, and convergence 

tests were carried out in each area independently. The area and sector widths 

for which convergence was found were:

^(ao) Sector width (ao)

2.38-4.48 0.0075 (280 sectors)

4.48-100.48 0.05 (1920 sectors)

100.48- 0 . 1

For small R, the sector width used must be very thin in order to adequately 

consider the presence of the shallow well in the potential surface which is 

found in that area.

Optimisation of the distance over which the overlap matrix is propagated 

could severely reduce the amount of computer time required, given the large 

size of the basis set being used. The value of R out to which the matrix need be 

propagated is different for each of the three steps involved in the calculation 

and will therefore be discussed along with the results for each step presented 

below.
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12.2.1 Determining the Energy of the Bound State

The conditions of the experiment of Newson and Price [47], which this 

theoretical analysis is attempting to recreate, had the bound O3 molecule in its 

ground state prior to ionisation to . The potential surface of Barbe, Secroun 

and Jouve [49] for the O3 molecule, which has been used in this research, was 

developed based on the three spectroscopically observed harmonic frequencies 

of ^̂ 0 3 :

hcô  = 1134.9 cm'̂  

hcoj =716.0 cm’^

= 1089.2 cm '\

The ground energy of the O3 molecule should therefore be:

E°' = = 1470.05 cm '' = 0.18226 eV.

As explained in section 11.3.2, the precise value of the bound energy levels 

for the potential surface used in the present calculations can be ascertained by 

locating a sudden increase in the magnitude of the overlap matrix. Hence, a 

search for a resonance in the sum of the squares of all the elements of the

overlap matrix as a function of was made, for a fixed value of , in the

region of » 0.18 eV.

Since the wavefunction for the bound molecule will tend to zero for large 

values of R, the overlap matrix need not be propagated much further than the 

outer wall of the well in order to locate the bound energy. It is not necessary for 

the scattering wavefiinction to reach the asymptotic region, since the actual 

product distribution is not required in this step of the calculations. 

Consequently, the propagation was halted at = 3.64 ao , at which point the 

minimum value of is much greater than 0.18 eV.

The bound state was found, as shown in Figure 26, at:

=0.182408 eV.
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The small difference between this value and the harmonic value o f 0.18226 eV 

is most like ly due to the truncation o f the potential function o f  Ref. [49] to just 

the quadratic terms, as described in Section 11.2.2. The success in finding the 

bound energy o f the ground state o f O 3 is a good test for the proficiency o f  the 

computer code being used and this provides some reassurance as to the valid ity 

o f the rest o f  the calculations.
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0.345

0.34

0.182 0.1822 0.1824 0.1826
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0.1828 0.183

F ig u re  26 R e s o n a n c e  i n  p l o t  o f  t h e  s u m  o f  t h e  s q u a r e s  o f  t h e  e l e m e n t s  o f  t h e  o v e r l a p  

m a t r i x  a s  a  f u n c t i o n  o f  t h e  t o t a l  e n e r g y  o f  t h e  b o u n d  s y s t e m .  T h e  e n e r g y  o f  t h e  

r e s o n a n c e  d e n o t e s  t h e  g r o u n d  e n e r g y  l e v e l  o f  t h e  O3 m o e l c u l e .
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12.2.2 Determining the Energy of the Ozone Dication Formed

The second step of the calculations is to ascertain the energy of the 

dication formed from the double ionisation of O3 in its ground energy state, 

which is equivalent to finding the total energy of the excited scattering system, 

+ O ,̂ for which the ionisation is most efficient. This Franck- 

Condon zone can be determined by setting the energy of the bound system, 

, to the value of the ground energy level of O3 found in the previous stage 

and then calculating the overlap matrix, O ), over a range of values

of , until a resonance in the sum of the squares of the elements of the 

matrix is observed.

The task of locating the resonance in the curve of the sum of the squares of 

the overlap matrix elements as a function of the energy of the scattering 

system, was facilitated by applying the method described in section 1 0 .2 ,

which involves repeatedly fitting to a quadratic in two fixed points of the 

curve together with every subsequent point. A plot of the coefficients of the

squared term of the quadratic (C3) as a function of will then exhibit much 

greater sensitivity to the presence of a resonance.

Since the probability density of the wavefiinction for the scattering system is 

generally concentrated in the area where E is small, it should not be necessary 

to propagate the overlap matrix too far in order to observe the resonance in the 

plot of the overlap matrix versus As discussed earlier, keeping the

distance over which the propagation was performed to a minimum was crucial 

in this analysis, due to the sizeable basis set being used. This was especially 

true for this step of the calculations, since the overlap matrix had to be 

calculated over a large range of energies in order to find the resonance with 

respect to the energy of the scattering system. Thus, the propagation was halted 

at/? = 5.38 ao-

However, the further out that the overlap matrix is propagated, the greater the 

amount of the scattering wavefunction that would be considered in the overlap
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and, as a result, the exact energy o f the resonance was found to change slightly 

when the distance o f the propagation was increased, until about R  =  200 ao. 

Furthermore, it was found that, for values o f a lot less than , many 

resonances were observed in the plot o f the sum o f the squared elements o f  the

overlap matrix as a function o f (Figure 27), rather than just the single 

resonance representing the Franck-Condon zone. This was attributed to the fact 

that the nu llification o f the overlap o f the scattering wavefunction at values o f 

other than those in the Franck-Condon range would be incomplete, as a 

result o f the truncation o f the propagation. Most o f these ‘ false’ resonances 

were able to be discounted through the use o f the method mentioned above for 

facilitating the detection o f resonances by fitting  the overlap matrix to a series 

o f quadratic equations (Figure 28). The single resonance representing the actual 

Franck-Condon region for the excitation could then be identified by 

propagating the overlap matrix to a greater value o f R ,  since only the ‘ true’ 

resonance would be observed consistently at all propagation distances (Figure 

29^

(cV)

F ig u re  27  P l o t  o f  t h e  s u m  o f  t h e  s q u a r e s  o f  t h e  e l e m e n t s  o f  t h e  o v e r l a p  m a t r i x  a s  a  

f u n c t i o n  o f  t h e  t o t a l  e n e r g y  o f  t h e  s c a t t e r i n g  s y s t e m .  T h e  o v e r l a p  m a t r i x  h a s  o n l y  b e e n  

p r o p a g a t e d  o u t  to R =  5 . 3 8  a o  a n d ,  a s  a  r e s u l t ,  m a n y  r e s o n a n c e s  a r e  o b s e r v e d .
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F ig u re  28 Plot o f the coefficient o f the squared term o f a quadratic-equation fit to 
Figure 27, as a function o f the total energy o f the scattering system. The resonance for 
the Franck-Condon excitation was later identified as being the one on the left.
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F ig u re  29 Plot o f the sum o f the squares o f the elements o f the overlap matrix as a 
function o f the total energy o f the scattering system, with the matrix propagated out to 
two different values o f R .
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Thus, the total energy of the scattering system of for

which the double ionisation of the ground state O3 molecule was found to be 

most efficient was:

= 7.403 eV.

The lifetime of the dieation formed from the double ionisation can be 

evaluated by measuring T, the width at half-height of the resonance, which, 

from Figure 30, is seen to be T= 1.1 x 10“  ̂ eV. The lifetime of the dieation 

before it dissociates to O2 + is therefore:

r = -  = 5.98 X 10"'" s.
r

The position and the lifetime of the resonance were found to be independent of 

the form of the asymptotic boundary conditions.

7.402991 7.402993 7.402995 7.402997 7.402999 7.403001 7.403003 7.40300

gol' (eV)

F ig u re  30 P l o t  o f  t h e  s u m  o f  t h e  s q u a r e s  o f  t h e  e l e m e n t s  o f  t h e  o v e r l a p  m a t r i x  a s  a  

f u n c t i o n  o f  t h e  t o t a l  e n e r g y  o f  t h e  s c a t t e r i n g  s y s t e m ,  w i t h  t h e  m a t r i x  p r o p a g a t e d  o u t  t o  

R — \ 0 0 . 4 8  a o .
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12.2.3 Evaluating the Product Distribution of O2

After having obtained the values of the ground energy state of the ozone 

molecule and the most efficient total energy of the scattering system for its 

double ionisation, the product distribution of the diatomic ion produced 

from the dissociation of the dication could then be calculated. This

required propagating the overlap matrix, Eqn. (12.1), out to the asymptotic 

region, using the values of and determined from the two previous 

steps of the calculations.

The probability of each internal energy state of 0 2  ̂being produced from the

reaction: O 3  ^

is: K'ï'oî.o-l'ï'o,)! .

where f  labels the final state of the diatom. As discussed in section 11.3.3, each 

row of the total overlap matrix corresponds to one product state of the 0 2  ̂

diatom. So, to determine the product distribution of the internal energy states of 

the 0 2  ̂fragment, the elements of the total overlap matrix were squared and the 

sum of the squared elements of each row were then divided by the sum of the 

squares of all the elements of the matrix.

It was proposed in section 11.3.3 that an equivalent result for the product 

distribution should be obtained were the squared elements within a single

column to be divided by the total of the squared elements within that one

column, independent of which column of the overlap matrix was chosen. This 

supposition was tested by comparing the relative values of the squared 

elements of three different, arbitrarily chosen columns (1, 2 and 87) of the 

overlap matrix, with the relative values of the sums of the squares of all the 

columns of the matrix. The propagation of the matrix was halted at 17.7 ao for 

the purposes of this test. Figure 31 shows that a plot of these relative values, 

P{n), as a function of each row, n, of the overlap matrix does indeed prove the 

hypothesis.
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P(n)

0.08

0.07

0.06

0.05

0.04
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0.02
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0
0

(ill ^
i 'I

 I---------------I—

Sum of a l l  columns 
Column 1 
Column 2 

Column 87

U-à
20 40 GO 80 100 

n
120 140 160 180 200

Figure 31 Comparison of the square of the elements of each of the n rows of the 
overlap matrix divided by the sum of the squared elements, for different columns of 
the matrix.

The total overlap matrix, O j, at energies = 0.182408 eV and

= 7.403 eV, when propagated out to 7?“ , should predict the outcome of 

the dissociation of the dieation formed from the double ionisation of O3 in 

the ground state and, for this step of the calculations, the requirement of the use 

of the correct boundary conditions for a Coulombic system was tested. In order 

to accurately predict the product distribution of the O2 fragment formed, O

must be converged with respect to the value of R at which the asymptotic 

boundary conditions are applied. Thus, both the Coulombic and the ‘regular’ 

asymptotic transformations described in Chapter 11 were applied to the 

propagated overlap matrix at regular intervals and the results were tested for 

convergence.
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Generally, rotational product distributions are very sensitive to slight changes 

in R and so, rather than try to find convergence in the distribution over 

rotational states, the probabilities for all the rotational states within each 

vibrational state were added together to give the product distribution over the 

vibrational states of the diatomic ion.

As with the elastic scattering of Chapter 10, the Coulomb tail of the potential 

for the process means that the value of R at which the

asymptotic boundary conditions can be applied is much larger than would be 

usual for a non-Coulombic system. Consequently, the propagation of the 

overlap matrix in this study took several weeks of computer time before any 

convergence of the product distribution with respect to was observed.

Even so, convergence was only found when the Coulombic boundary 

conditions were used (Figures 32 and 33). As predicted, the energy of the 

Franck-Condon excitation and the width of the resonance shown in Figure 30 

were found to be independent of the form of the asymptotic transformation that 

was employed. However, the distribution of the final internal states of the 

diatom was discovered to be very different for the two types of boundary 

conditions, at every value of tested.

Due to the sensitivity of the product distribution to R, even the convergence 

obtained using the Coulombic boundary conditions is imperfect. However, it is 

sufficient to reveal that some vibrational excitation in the diatomic ion 

produced from the fragmentation of the doubly ionised O3 molecule would be 

expected, with vibrational quantum number v = 5 being observed most strongly. 

This is equivalent to an internal energy of the product diatom in the region 

o f l .2 - l .4 e V .
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0.4
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0.25
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I I I

Propagated to: R= 4403.03 bohr
R= 4502.43 bohr
R= 4800.63 bohr -B -
R= 4949.73 bohr
R= 5049.13 bohr -A-
R= 5198.23 bohr

3 4 5 6
Vibrational Quantum Number, v

Figure 32 P r o d u c t  d i s t r i b u t i o n  o v e r  v i b r a t i o n a l  s t a t e s  o f  f o r m e d  f r o m  t h e  d o u b l e  

i o n i s a t i o n  o f  O3, u s i n g  t h e  C o u l o m b i e  f o r m  o f  t h e  a s y m p t o t i c  b o u n d a r y  c o n d i t i o n s .

P(v)

I--------------------------1 I

Propagated to: R= 4403.03 bohr 
R= 4502.43 bohr 
R= 4800.63 bohr 
R= 4949.73 bohr 
R= 5049.13 bohr 
R= 5198.23 bohr

3 4 5 6
Vibrational Quantum Number, v

Figure 33 P r o d u c t  d i s t r i b u t i o n  o v e r  v i b r a t i o n a l  s t a t e s  o f  f o r m e d  f r o m  t h e  d o u b l e  

i o n i s a t i o n  o f  O3, u s i n g  t h e  ‘ r e g u l a r ’  f o r m  o f  t h e  a s y m p t o t i c  b o u n d a r y  c o n d i t i o n s .
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13 Discussion and Conclusions of Analysis of

The aim of this part of the research has been to recreate theoretically the 

experimental study of Newson and Price [49] and provide some interpretation 

of their results. Before discussing the findings of this analysis, therefore, it 

would be advantageous to summarise their investigation and the conclusions 

that they drew from it.

The experiments of Newson and Price [49] attempted to measure, using time- 

of-flight mass spectrometry, the lifetime of the dication formed from the 

double ionisation via electron impact of O3 in its ground state and to determine 

its energy. Only ions with lifetimes in the order of microseconds or more can 

be detected by mass spectrometry and they did not observe the presence of any 

0 3 ^̂  ions with such a lifetime. They thus concluded that it was unlikely that 

any stable quasi-bound state of the 0 3 ^̂  dication was formed as a result of the 

double ionisation and that therefore only repulsive regions of the potential 

energy surface of the dication could be accessed by a vertical transition from 

the neutral ozone molecule.

In order to determine the energy of the Franck-Condon zone for the 

excitation, they measured the kinetic energy released from the dissociation of 

0 3 ^̂  to 0 2  ̂+ 0  ̂ and obtained a value of 7.5 ± 0.3 eV. They then added this 

result to the asymptotic energy for forming in their ground state,

relative to the ground state of the neutral ozone molecule, which was evaluated 

using thermodynamical tables [65] to be 26.8 eV. They therefore concluded 

that, assuming that the 0 2  ̂+ fragments of the dissociation were indeed 

produced in their ground state, the excitation energy of 0 3 ^̂  from O 3  in its 

ground state was 34.3 ± 0.3 eV.

They then carried out a further test of the lowest energy state of 0 3 ^̂  to decay 

to 0 2  ̂+ by monitoring the yield of the products of the dissociation as a 

function of the energy of the electron beam used to excite the ozone neutral 

molecule. This test provided a state energy of 34 ± 2 eV.
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There has been little previous theoretical work done on . However, there 

have been two studies of 2 2  electron triatomics, investigating symmetric 

geometries [6 6 , 67]. They concluded that the ground state of was weakly 

bound and that the vertical double ionisation potential energy should lie at 

around 35-36 eV.

Turning now to the results of the present study, it should first be noted that 

the potential surface for the scattering system, 0 2  ̂ + that was

employed in these calculations had not previously been rigorously tested. 

Nevertheless, the total energy of the scattering system for which the double 

ionisation was found to be most efficient was calculated to be 7.403 eV which, 

when added to the asymptotic energy for forming in their ground state,

gives a value for the double ionisation potential energy of of 34.203 eV. 

This result is in good agreement with both the theoretical prediction [6 6 , 67] 

and the experimental observations [47].

The product distribution of the internal energy states of the diatom, 

formed fi*om the dissociation of the doubly ionised ozone molecule, was found 

to be concentrated around the v = 5 level, corresponding to an internal energy of 

about 1.2 -  1.4 eV. Consequently, these calculations would predict that the 

kinetic energy released from the fragmentation of the ion would be 

expected to be in the region of 6  -  6.2 eV. Although this is somewhat different 

to the kinetic energy release of 7.5 ± 0.3 eV found experimentally by Newson 

and Price [47], it is worth noting that their experiments actually measured a 

kinetic energy release distribution with a half-width of 4.6 eV.

Due to the multi-dimensional nature of the scattering system, a thorough 

investigation as to whether the dication formed from the double ionisation 

of the ground state ozone molecule exists in a quasi-bound state prior to its 

dissociation is a complex task. However, the lifetime of 5.98 x 10 ~ seconds, 

which was observed for the resonance in the overlap of the bound and 

scattering wavefimctions, is sufficiently large to indicate that the vertical 

transition does result in the formation of a weakly bound dication, in accord 

with the prediction of the theoretical studies [6 6 , 67]. This lifetime would still

162



be too small to be deteeted by the apparatus used in the experiment of Newson 

and Price [47].

The equilibrium position of O3 in its ground state, determined from the 

potential energy function of Eqn. 11.11, is:

R = 3.356 ao , r = 2.403 a o , / =  140.27 ° .

An examination of the fitted potential energy surface for the O2 / scattering 

system at these coordinates (Figure 34) reveals that a vertical transition from 

ground-state ozone would result in the 0 2  ̂ / system being accessed at a 

configuration for which the interaction potential energy operator has a value of 

6.19 eV, an energy which falls within the potential well of the surface.

7.5

£

6.5

5.5

3 54
R (a«)

Figure 34 C u t  o f  p o t e n t i a l  e n e r g y  s u r f a c e  f o r  a t  r  =  2 . 4 0 3  a o  ;  y  =  1 4 0 . 2 7 ° .

T h e  v e r t i c a l  a r r o w  a t / ?  =  3 . 3 5 6 a o  i n d i c a t e s  t h e  p o s i t i o n  o f  t h e  v e r t i c a l  t r a n s i t i o n  f r o m  

t h e  g r o u n d  s t a t e  O 3 m o l e c u l e .
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It is of interest to note that the energy difference between the Franck-Condon 

region determined from the calculations and this value of the interaction 

potential is 7.403-6.19 = 1.213 eV, which is similar to the amount of internal 

energy found to be most common in the fragment formed from the 

dissociation of the doubly ionised ozone molecule. The interaction potential 

surface of the atom/diatom scattering system is a measure of the amount of 

energy required for the system were the energy in the diatom to remain 

constantly in the ground state throughout the interaction. This observation 

therefore suggests that the source of the 1.2 -  1.4 eV internal energy of the 

product fragment may be as a result of the Franck-Condon overlap of the 

neutral and excited systems being greatest for a configuration of the 

dication within which the diatomic bond is vibrationally (or rotationally) active 

and remains so, with little transference of this internal energy to translational 

energy, throughout the subsequent dissociation.

A support for such a hypothesis can be found from an examination of the 

‘adiabats’ of the scattering system. The adiabats are the eigenvectors, ei{R) , of 

the effective potential energy matrix, which has elements:

Jm (y ffl 0 I

R ^

from Eqn. (11.6), and they are evaluated during the calculation of the overlap 

matrix, as described in Chapter 11, for every sector of the propagation. The 

adiabats are so called because they are a diagonalised form of the effective 

potential matrix, with one adiabat for each final internal state of the diatom, 

which do not cross with each other when plotted as a function of the interaction 

distance, R. They can be understood as a measure of the effective potential felt 

by the diatom with a particular final internal state as it dissociates from the 

atom, averaged over the r and y coordinates of the system. An analysis of the 

adiabats of the system therefore provides some information as to the

shape of the effective potential for each final state of the product.
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Figure 35 is a plot of the adiabats of the 0 2  ̂+ scattering system.

For the sake of clarity, only the adiabats corresponding to the y = 0 states of the 

diatom are shown.

9.5

v=0 —  
v=l —
v=2 -----
v=3
v=4
v=5 -----
v=G
v=7

7.5

3.6 3.8 4.2 4.43 3.2 3.4 4

R  (a«)

Figure 35 The first 8 vibrational adiabats o f the system. The vertical arrow
at = 3.356 ao indicates the position o f the vertical transition from the ground state O3 

molecule.

Figure 35 reveals that the potential well of the adiabats corresponding to the 

product states v = 4 -  6  of the diatom is centred closer to the position of the 

vertical transition from the ground state O3 molecule than it is for the adiabats 

of lower (and higher) diatomic vibrational states. This means that there could 

exist a quasi-bound ground state of the 6 ) 3^̂  dieation with an equilibrium 

position close to that of the ground state of the ozone molecule and that, were 

this state to be accessed by a vertical transition from the neutral ozone, the 

subsequent dissociation of the dication would be expected to lead to the 

fonnation of which favoured the vibrationally excited states v = 4 -  6 .
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The suggestion that there exists a quasi-bound state of with total energy 

7.403 eV relative to the asymptotic energy of ground state + O ,̂ would 

therefore explain both the relatively small width (large lifetime) of the 

resonance observed in the overlap of the O3 and wavefimctions and the 

concentration of the product distribution around an internal energy of -1 .3  eV 

in the fragment. This research therefore conforms with the results of the 

theoretical analysis of Refs. [6 6 , 67] which predicts the existence of a weakly 

bound metastable state of the dieation.

As discussed earlier, the implementation of the theory described in this 

research to the particular reaction under analysis was encumbered by several 

factors. These included the necessity of using a large basis set in order to 

adequately describe the scattering wavefunction at high total energies. 

Moreover, the same basis was simultaneously used for the wavefunction of the 

bound system. The calculations had then to be repeated for a large number of 

energies in order to detect resonances as a function of both the bound energy 

and the energy of the scattering system. Finally, the propagation had to be 

performed over an extremely large distance, due to the Coulombic nature of the 

potential for the scattering system.

However, in addition to providing some insight into the specifics of the 

double ionisation of ozone, the method that was used in this research has 

resulted in a number of important general observations regarding the 

calculation of the Franck-Condon overlap between a bound and scattering 

system. This study shows that, when calculating the overlap of the 

wavefunction of a molecule in a bound state with the wavefunction of another 

system, the energy of the bound state can be calculated without having to resort 

to a simultaneous propagation fi*om both sides of the potential well of the 

bound molecule. The ground energy of ozone was accurately determined in 

these calculations by simply searching for a sudden increase in the value of the 

overlap obtained through a one-way propagation. As discussed in the method, 

this is attributed to the fact that the solution to the Schrodinger equation of the
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bound system at any other energy will not exist as a wavefunction in reality, 

since it fails to fulfils the necessary boundary conditions of the bound 

molecule, and it will therefore have a negligible overlap with any other 

wavefunction.

Another outcome of this study relates to the extraction of the product 

distribution from the overlap. For a bound molecule at a bound energy, there 

can be only one possible expansion of the wavefunction in terms of any 

orthonormal basis set and, as a result, the overlap of its wavefunction with that 

of a scattering system, both expressed as expansions of that same basis set, 

would be simply a column vector. However, as asserted by Danby [64], in 

order to propagate a bound wavefunction it is first necessary to expand it as a 

linear combination of all possible solutions to the Schrodinger equation at that 

energy. Consequently, the overlap would become an « x « square matrix, where 

n is the size of the basis set. Nevertheless, it has been successfully shown in 

this research that, to obtain the product distribution from the matrix of the 

overlap of a bound wavefunction with a scattering wavefunction, it is only 

necessary to know the elements of a single column of the matrix and that all 

columns will yield the same result.

Perhaps most importantly, the final observation which comes out of these 

calculations involves the choice of boundary conditions. One of the aims of this 

research was to compare the effects of applying different asymptotic boundary 

conditions to the wavefunction of a scattering system which has a Coulomb 

term in its potential energy function. The results show that, just as for the 

elastic scattering case in Chapter 10, the energy and width of the resonances 

investigated were not dependent on using the boundary conditions appropriate 

to a Coulombic system. This was true despite the fact that the position of the 

resonance in the overlap of the wavefunctions as a function of the total energy 

of the scattering system was affected by increased propagation of the scattering 

wavefunction to large distances. The energy of the resonance was not wholly 

defined by the shape of the wavefunctions at small interaction distances and
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yet, nevertheless, the choice of asymptotic boundary conditions had no effect 

upon it.

However, the product distribution that was evaluated when using regular 

boundary conditions was found to be drastically different to that found using 

the Coulombic boundary conditions. Furthermore, only when the Coulombic 

boundary conditions were applied was there seen to be any convergence in the 

product distribution with respect to the value of the interaction distance at 

which the asymptotic boundary conditions were applied.

Hence, the conclusion of this study is that it is necessary to consider the 

Coulombic nature of a system such as O2 + if  one wishes to obtain 

information about the state of that system in the asymptotic region.
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Conclusion

This thesis has discussed research involving the application of quantum 

dynamical calculations to different chemical systems. All of the processes 

studied relate to the collisions of molecular ions and the different calculations 

share much of the same theory and concepts of quantum dynamics.

The first part of the thesis shows that the use of the centrifugal sudden 

approximation is justified for studying vibrational relaxation of a diatomic ion, 

even when the quencher employed is a heavy atom, such as Kr. It is valid even 

when the potential surface involved in the reaction is highly anisotropic and 

contains a deep potential well.

The theory for incorporating potential surfaces of two different symmetries 

has been implemented, for the first time, to study the vibrational relaxation of a 

diatom with H  electronic ground state using quantum dynamical methods. The 

validity of approximating such a system as one where the diatom is in a E state 

is shown to be untenable in a quantum dynamical analysis, since the resulting 

cross sections and rate constants obtained using such an approximation may be 

drastically different to those found without it. Consequently, it would seem 

advisable to include the potential surfaces of all the various symmetries present 

when evaluating the cross sections and rate constants of an inelastic scattering 

process. An analysis of the effects of the inclusion of the potential energy 

surfaces of both symmetries of the / Kr system appears to support the 

suggestion that the presence of the unfilled electron shell of the diatom is 

the major cause of the unusually efficient vibrational quenching observed 

experimentally in that system.

The study of the vibrational relaxation of a molecular ion, O] , through 

collision with an atom, Kr, that is presented here also provides some support 

for the suggested mechanism of such an interaction. The negative temperature- 

dependence of the rate constant for the reaction at low temperatures is 

accompanied by the presence of a pronounced resonance structure in a plot of 

the total cross section as a function of total angular momentum and this could
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be a result of the formation of an orbiting complex. Such resonances are absent 

at higher temperatures, where the positive dependence on temperature of the 

rate constant implies that a more direct mechanism is dominant.

The second part of this thesis reveals that the results of difficult quantum 

dynamical calculations on the dissociation of doubly ionised ozone leads to the 

suggestion that the molecular dication exists in a weakly bound state, with 

energy 34.203 eV relative to the ground state ozone molecule, prior to its 

decay. In addition, the fragment of the dissociation is predicted to have an 

internal energy distribution concentrated around an energy of 1.2 -  1.4 eV.

A method of calculating the Franck-Condon overlap between a bound and a 

scattering system without prior knowledge of the precise energy or 

wavefunction of the bound system has been discussed and developed. The 

procedure does not require a simultaneous propagation of the overlap in two 

opposite directions.

Finally, an investigation has been made into the necessity of using the 

asymptotic boundary conditions appropriate to a system with a Coulomb term 

in its potential. This required the development of existing theory which had 

previously only considered non-Coulombic systems. The study concludes that 

it does not appear necessary to include Coulombic boundary conditions in 

quantum calculations of resonances and bound states. It is necessary, however, 

to apply the Coulombic boundary conditions when extracting information 

pertaining to the state of the system in the asymptotic region.

All of the studies undertaken in this thesis involve the investigation of 

processes which have recently been studied experimentally. The research 

therefore attests to the ability of quantum dynamics to theoretically model a 

range of different types of experiments and to successfully determine many of 

the observable quantities of a collision process.

170



REFERENCES

[1] E.E. Ferguson J. Phys. Chem. 90(1986)731

[2] E.E. Ferguson Comments At. Mol. Phys. 24(1990)327

[3] L.D . Landau, E. Teller Phys. Z. Sowjetunion 10(1936)34

[4] D.J. M iller, R.C. M illikan J. Chem. Phys. 53(1970)3384

[5] H. Bôhringer, M . Durup-Ferguson, D .W . Fahey, F.C. Fehsenfeld, E.E. Ferguson J. Chem. Phys. 

79(1983)4201

[6] W. Federer, W . Dobler, F. Howorka, W. Lindinger, M . Durup-Ferguson, E.E. Ferguson J. Chem. 

Phys. 83(1985)1032

[7] M . Kriegl, R. Richter, P. Tosi, W. Federer, W . Lindinger, E.E. Ferguson Chem. Phys. Lett. 

124(1986)583

[8] J.F. Bott, N . Cohen J. Chem. Phys. 58(1973)934

[9] P.F. Zittel, C.B. Moore J. Chem. Phys. 59(1973)6636

[10

[11

[12

[13

[14

[15

[16

[17

26(

[18

[19

[20

[21

[22

[23

[24

[25

[26

[27

[28

[29

[30

[31
[32

[33

J.T. Yardley Introduction to molecular energy transfer (Academic Press, New York, 1980)

P. Tosi, M . Ronchetti, A. Lagana J. Chem. Phys. 88(1988)4814

G. Ramachandran, O.S. Ezra J. Chem. Phys. 97(1992)6322

J.D. Lambert Vibrational and Rotational Relaxation in Gases (Clarendon Press, Oxford, 1977) 

P. Tosi, M . Ronchetti, A. Lagana Chem. Phys. Lett. 136(1987)398 

V. Zenevich, W. Lindinger, G.D. Billing Chem. Phys. Lett. 197(1992)99

E. Goldfield J. Chem. Phys. 97(1992)1773

F.A. Gianturco, S. Serna, A. Palma, G.D. Billing, V . Zenevich J. Phys. B: At. Mol. Opt. Phys. 

993)1839

A.S. Dickinson Comput. Phys. Commun. 17(1979)51

B. Ramiro Diaz, P. Wahnon, V . Sidis Chem. Phys. Lett. 212(1993)218 

B. Ramiro Diaz, P. Wahnon, V . Sidis J. Chem. Phys. 104(1996)191 

M .F. Jarrold, L. Misev, M .T . Bowers J. Chem. Phys. 81(1984)4369 

R.T Pack J. Chem. Phys. 60(1974)633 and refs, therein

P. McGuire, D.J. Kouri J. Chem. Phys. 60(1974)2488 

S.K. Pogrebnya, D  C. Clary Chem. Phys. Lett. 219(1994)366

S.K. Pogrebnya, A. Kliesch, D  C. Clary, M . Cacciatore International J. Mass Spec, and Ion

Proc. 149(1995)207

M . Jacob, G.C. W ick Ann. Phys. 7(1959)404 

K.P. Lawley, J. Ross J. Chem. Phys. 43 (1965)2930

D .M . Brink, G.R. Satchler Angular momentum, 2nd Ed. (Oxford Univ. Press, London, 1975) 

R.N. Zare Angular Momentum (Wiley-Interscience Publication, USA, 1987)

M.S. Child Molecular Collision Theory (Academic Press, London, 1974)

G.S. Schatz, A. Kuppermann J. Chem. Phys. 65(1976)4642

H. Klar J.Phys. B:At. Mol. Phys. 6(1973)2139

D. Poppe Chem. Phys. Lett. 19(1973)63; Chem. Phys. 25(1977)29

171



[34] S. Green, R.N. Zare Chem. Phys. 7(1975)6

[35] R.N. Dixon, D. Field Proc. R. Soc. LondSer. A 368(1979)99

[36] M .H . Alexander Chem.Phys. 92(1985)337

[37] C.G. Gray Can. J. Phys. 54 (1976) 505

[38] M . Larsson Physica Scripta 23(1981)835

[39] H.-J. Werner, B. Follmeg, M .H . Alexander J. Chem. Phys. 89(1988)3139

[40] P. Huxley, J.N. Murrell J. Chem. Sac., Faraday Trans. 2 79(1983)323

[41] D.O. Harris, G.G. Engerholm, W .D. Gwinn J. Chem. Phys. 43(1965)1515

[42] J.C. Light, I  P. Hamilton, J.V. L ill J. Chem. Phys. 82(1985)1401

[43] J. Echave, D.C. Clary Chem. Phys. Lett. 190(1992)225

[44] J.N. Murrell, S.D. Bosanac Theory of Atomic and Molecular Collisions (John Wiley &  Sons, 

England, 1989)

[45] E.B. Stechel, R.B. Walker, J.C. Light J. Chem. Phys. 69(1978)3518

[46] P.W. Atkins Molecular Quantum Mechanics, 2"̂ * Edition (Oxford University Press, Oxford, 

1983)

[47] K.A. Newson, S.D. Price Int. J. Mass Spec. & Ion Processes 153(1996)151

[48] P. Champkin, N . Kaltsoyannis, S.D. Price J. Elect. Spec. & Relat. Phenom. 105(1999)21

[49] A. Barbe, C. Secroun, P. Jouve J. Molec. Spec. 49(1974)171

[50] F.R. Bennett, I.R. McNab Chemical Physics Letters 251(1996)405

[51] J.W. Cooley Math Comput 15(1961)363

[52] N.F. Mott, H.S. Massey The Theory o f Atomic Collisions,'h^^Ed.xixon (Oxford Science 

Publications, Oxford, 1965)

[53] G. Breit, E.P. Wigner Phys. Rev. 51(1937)593

[54] C.J. Joachain Quantum Collision Theory (North-Holland Publishing Co., Oxford, 1975)

[55] G. Parlant, J. Senekowitsch, S.V. O ’Neil, D.R. Yarkony J. Chem. Phys. 94(1991)7208

[56] F.T. Smith Phys. Rev. 118(1960)349

[57] R. Schinke Photodissociation Dynamics, Edition (Cambridge University Press, 1993)

[58] G.A. Parker, T.G. Schmalz, J.C. Light J. Chem. Phys. 73(1980)1757

[59] K.C. Kulander, J.C. Light J. Chem. Phys. 73(1980)4337

[60] R.W. Heather, J.C. Light J. Chem. Phys. 78(1983)5513

[61] K.B. Whaley, J.C. Light J. Chem. Phys. 81(1984)3334

[62] D.C. Clary J. Chem. Phys. 83(1985)4470

[63] R.G. Gordon J. Chem. Phys. 51(1969)14

[64] G. Danby J. Phys. B 16(1983)3393

[65] H .M . Rosenstock, K. Draxl, B.W. Steiner, J.T. Herron J. Phys. Chem. Ref. Data 6(1977) Suppl.l

[66] P. Pyykkô Chem. Phys. Lett. 156(1989)337

[67] P. Pyykkô, Y . Zhao J. Phys. Chem. 94(1990)7753

The following publication resulted from this research:
M . Craimer, S.K. Pogrebnya, D.C. Clary J. Chem. Phys. 111(1999)1972

172


