
2806377332

Development of Integrity Policies for Network

Management

Thesis submitted for the degree of Doctor of Philosophy in

Electronic and Electrical Engineering

Ognjen Prnjat

UCL
University College London

ProQuest Number: U642233

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest U642233

Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

R 0 V55gr

Abstract

Modem telecommunications systems are becoming complex due to technological advances,

increased interconnection, and market demands. In this context, the crucial issue is the

ability of systems to retain high integrity and low risk. Currently, there are no established

methodological approaches to managing integrity, and there is a lack of integrity-preserving

techniques.

Here, we pin-point the integrity attributes of telecommunications systems, and develop a

complete methodological framework for integrity management throughout the system

lifecycle. The methodology is based on our original ODP-UML model, and focuses on the

analysis of integrity requirements, and specification of integrity-preserving techniques -

policies. This methodology is appropriate for any telecommunications system, while its

application was explored in the context of management systems developed by ACTS

projects TRUMPET and FlowThru.

In this context, we focus on the development of two integrity policies.

The first policy is based on object-oriented software metrics, which yield the

complexity/coupling measurements of system classes. These measurements are related to the

integrity/risk status of the classes, thus being able to pin-point potential risk areas in the

design. We demonstrate the applicability of this policy through three experiments involving

TRUMPET and FlowThru. Experiments show that a specific suite of seven object-oriented

metrics can be used as the integrity indicator early in the development lifecycle; and that the

highest risk for management systems' operation is exhibited at the interconnection points

between either administrative domains or stand-alone components. Moreover, we uncover a

strong ordinal relationship between the individual metrics within the suite.

The second policy focuses on the testing of integrity aspects of management systems'

interconnection across domains and is based on the concept of the Xuser Test-MIB. The

applicability of this policy is demonstrated through a brief case study of the TRUMPET

Xuser interface, the outcome indicating how complex inter-domain interactions might appear

sensitive to the introduction of additional sophisticated security features.

Acknowledgements

The research work discussed in this thesis was supported by the British Council's Overseas

Research Studentship and the EPSRC grant M 26091. The additional source of funding was

the ACTS project TRUMPET (DGXIIIB, AC 112).

I would like to thank the following people.

My supervisor, Dr. Lionel E. Sacks, for constant professional and personal support.

Prof. Chris Todd of University College London, for introducing me to the field and for the

much needed early support.

Prof. George Pavlou of University of Surrey for constructive comments given regarding my

transfer thesis, as well as the final thesis.

Prof. Laurie Cuthbert of Queen Mary College for the suggestions given regarding the final

thesis.

David Griffin of University College London for revisions of network and service

management technical background.

Marcus Wittig and Oliver Schitko (formerly of Forschungszentrum Informationstechnik

GmbH - GMD), for the help in the implementation of the support testing infrastructure.

A number of anonymous reviewers for comments regarding the research work published.

Céline for all the personal support.

My family.

To my parents, for all their love, understanding and support.

Table of Contents

1 INTRODUCTION... 12

1.1 M o tiv a tio n ...12

1.2 T he pro blem field and t h e a p pr o a c h .. 15

2 STATE OF THE ART... 18

2.1 INTEGRITY: THE CONCEPT... 18

2.1.1 Integrity defin itions ... 18

2.1.2 Integrity m easures ..19

2.1.2.1 Outage measures...19

2.1.2.1.1 Cochrane Richter scale..20

2.1.2.1.2 User Lost Erlang...20

2.1.2.1.3 ATIS outage index..20

2.1.2.2 Pre-emptive measures... 21

2.1.2.3 R isk ...22

2.1.3 Computing legacy: dependability and safety ..22

2.1.4 Sum m ary ..23

2.2 Integ rity assurance and t e c h n iq u e s .. 24

2.2.7 State o f the a r t ...24

2.2.2 Sum m ary ... 26

2.3 N etw ork and serv ice m a n a g em en t ..26

2.3.1 Relationship between m anagem ent and in tegrity ... 27

2.3.2 Architectures.. 30

2.3.3 Technologies.. 32

2.3.4 D evelopm ent m ethodologies and modelling no ta tions ..34

2.3.5 Discussion and fu tu re d irections ..35

2.4 C hapter sum m ary and d is c u s s io n ... 36

3 INTEGRITY: DEFINITION AND METHODOLOGY..39

3.1 D efinition o f the c o n c ept : integrity a ttr ib u tes ... 39

3.2 M et h o d o l o g y ..42

3.2.1 P rediction .. 43

3.2.1.1 Methodology requirements...45

3.2.1.1.1 System development approach...45

3.2.1.1.2 Measurement.. 49

3.2.1.2 Integrity analysis... 52

3.2.1.3 Integrity design: integrity policies...58

3.2.1.4 Integrity implementation.. 59

3.2.2 Testing ...61

3.2.3 M aintenance ... 62

3.3 P ractical is s u e s ...63

5

3.3.1 Integrity methodology and cost-benefit analysis.. 64

3.3.2 Applying integrity methodology in multi-domain environments...65

3.4 F o c u s ON POLICY DEVELOPMENT...66

3.4.1 Formal methods: verification, validation and fault removal...66

3.4.2 Formal methods and behaviour simulations...68

3.4.3 Safety-critical approach.. 70

3.5 C ha pter sum m ary and research c o n t r ib u t io n s ... 72

RESEARCH PLATFORM: ACTS PROJECTS.. 75

4.1 T R U M P E T ..75

4.1.1 Security architecture... 76

4.1.2 Management architecture... 80

4.1.2.1 Overview...80

4.1.2.2 Development methodology... 83

4.1.2.3 Design and implementation details of the domains...89

4.1.2.3.1 CPN .. 89

4.1.2.3.2 VAS?... 90

4.1.2.3.3 PNG.. 92

4.2 F lowT h r u ... 93

4.2.1 Subscription management component... 95

4.3 C hapter su m m a r y and research c o n t r ib u t io n s ... 99

METRICS - RISK CONTROL..102

5.1 M etrics : th e p o lic y ...102

5.1.1 Software metrics background... 102

5.1.2 Metrics and integrity: overview o f the policy... 107

5.1.3 Designing the policy: a metric suite.. 110

5.1.4 Summary... 114

5.2 M e tr ic s : ca se s t u d ie s .. 115

5.2.1 TRUMPET system ... 115

5.2.1.1 Approach.. 115

5.2.1.2 Assessment... 116

5.2.1.3 Summary.. 124

5.2.2 FlowThru system ... 125

5.2.2.1 Analysis model.. 125

5.2.2.1.1 Approach.. 125

5.2.2.1.2 Assessment...125

5.2.2.1.3 Summary... 132

5.2.2.2 Design model... 133

5.2.2.2.1 Approach.. 133

5.2.2.2.2 Assessment... 133

5.2.2.2.3 Summary... 142

5.2.3 Discussion..143

5.2.3.1 Statistical analysis...143

5.2.3.2 Lessons learnt.. 147

6

5.3 C h a p t e r s u m m a r y a n d r e s e a r c h CONTRIBUTIONS...150

6 MANAGEMENT INTERCONNECTION TESTING... 154

6.1 T e s t i n g : t h e p o l i c y .. 154

6.1.1 Testing background.. 155

6.1.1.1 Core network and control plane testing..155

6.1.1.2 Management interconnection and OSI-SM testing principles...155

6.1.2 X interface integrity requirements: analysis.. 156

6.1.3 Integrity design: integrity policies.. 159

6.1.3.1 Overview.. 159

6.1.3.2 Testing approach: design..161

6.1.3.2.1 Testing requirements and methodology... 161

6.1.3.2.2 Phase 1 - specifying the Xuser interface behaviour... 162

6.1.3.2.3 Phase 2 - testing without security...166

6.1.3.2.4 Phase 3 - testing with security.. 167

6.1.4 Comparison with OSTSM testing principles... 167

6.1.5 Summary...168

6.2 C a s e s t u d y : TRUMPET..169

6.2.1 Approach... 169

6.2.2 Assessment...170

6.2.3 Discussion... 172

6.3 C h a p t e r s u m m a r y a n d r e s e a r c h c o n t r i b u t i o n s ...173

7 CONCLUSION... 177

7.1 D i s c u s s i o n ..177

7.2 F u t u r e w o r k ..179

8 AUTHOR’S PUBLICATIONS..182

9 REFERENCES...184

10 ACRONYMS...197

Table of Figures

F igure 1 - T h e en v ir o n m en t ..13

F igure 2 - F low o f resea rch w o r k .. 16

F igure 3 - Integrity bands [Mont9 7] .. 22

F ig ure 4 - N etw ork m an a g em en t as a control p r o b l e m .. 28

F igure 5 - M an a gem ent and in teg r ity ..29

F ig ure 6 - Integ rity strategy and system dev elopm ent l if e c y c l e ...44

F igure 7 - Integ rity lifec y c le .. 45

F ig ure 8 - ODP view points w ith m a p p in g s .. 47

F ig ure 9 - ODP <-a U M L m appings [Kand9 8] ..49

F ig ure 10 - C orrelation versus function al representation [Hen d9 6] .. 51

F ig ure 11 - 3D integrity a n a l y s is ..52

F ig ure 12 - Integrity requirem en ts cla ssific a tio n ... 53

F ig ure 13 - T ypical integrity requirem ents on the o per a tio n a l lev el .. 54

F igure 14 - T ypical integrity requirem ents on th e system l e v e l ... 55

F ig ure 15 - T ypical integrity requirem ents on th e su b -system l e v e l ...56

F ig ure 16 - T ypical integrity requirem ents on the u n it l e v e l ... 57

F igure 17 - Integrity policy im plem en ta tio n ... 60

F ig ure 18 - M ain ten a n ce ... 62

F igure 19 - C ost-benefit analysis pr o c ess ... 64

F igure 20 - Integrity contracts in federated en v ir o n m en ts ...66

F ig ure 21 - R eference security ar c h itec tu r e , open m a n a g em en t platform [0 lne97]............78

F ig ure 22 - R eference security ar c h itec tu r e , closed m a n a g em en t platform [0 lne97]....... 79

F igure 23 - R eference security a r c h itec tu r e : d eta il [0 ln e9 7]..79

F ig ure 24 - R eference m ana gem ent architecture [Au ta97]... 81

F igure 25 - TM N layers and T R U M P E T .. 82

F ig ure 26 - TRUM PET service v ie w s ... 82

F ig ure 27 - TRUM PET class d iagram enterprise pa c k a g e [Ka n d9 8].. 85

F ig ure 28 - U se case diagram [Pr n j9 7] ..85

F ig ure 29 - C lass diagram [Prnj9 7] ..86

F ig ure 30 - C lass diagram o f com pu tatio nal objects [Ka n d9 8] ...86

F ig ure 31 - C lass diagram describing in terfaces [Prnj9 7] ..87

F ig ure 32 - Co llaboration diagram [Pr n j9 7] ... 87

F igure 33 - Sequ ence diagram [Ka n d 98].. 88

F ig ure 34 - CPN com pu tatio nal objects [Prnj9 7] ...90

F igure 35 - VASP basic stru ctu re [Prnj97].. 91

F igure 36 - PNO inform ation m odel [Prnj9 7] ... 92

F ig ure 37 - VASP / PNO OSs and interfaces [Sa ck98].. 93

F ig ure 38 - T he consolidated analysis class diagram [Flo w -h ttp] ... 96

F igure 39 - Analysis collaboration diagram [Flo w -h ttp] ... 97

F ig ure 40 - D esign class diagram [Fl o w -h ttp] ...98

F ig ure 41 - Integrity requirem ents cla ssific a tio n : co m plex ity a nd c o u pl in g109

F ig ure 42 - Integ rity-m etrics policy im plem en ta tio n ..110

F ig ure 43 - M etrics distributions per class (TR U M PE T)..117

F ig ure 44 - W hitm ire com plexity histo g ra m (TR U M PET).. 119

F ig ure 45 - W hitm ire com plexity b oxplot (T R U M PE T)... 119

F igure 46 - CBO histogram (TR U M PET).. 120

F ig ure 47 - CBO boxplot (TR U M PET)... 120

F igure 48 - M PC histogram (T R U M P E T)... 121

F igure 49 - M PC boxplot (TR U M PET)... 121

F ig ure 50 - RFC histogram (T R U M P E T).. 122

F igure 51 - RFC boxplot (TR U M PET)...122

F ig ure 52 - Interface com plexity h istog ra m (TR U M PE T)... 123

F igure 53 - Interface com plexity boxplot (T R U M P E T).. 123

F igure 54 - M etrics distributions per class (Flow T hru a n a ly sis) .. 126

F igure 55 - W hitm ire com plexity histog ra m (Flow Thru a n a ly sis) ..128

F igure 56 - W hitm ire com plexity b oxplot (Flo w T hru ana lysis) ..128

F igure 57 - CBO histogram (FlowT h ru ana lysis) ..129

F igure 58 - CBO boxplot (Flow T hru an a ly sis) ...129

F igure 59 - M PC histogram (FlowT h ru a na lysis) ..130

F igure 60 - M PC boxplot (FlowT hru a n a ly sis) ...130

F igure 61 - RFC histogram (Flow T hru ana lysis) ... 131

F igure 62 - RFC boxplot (Flow Th ru ana lysis) ..131

F igure 63 - M etrics distributions per class (Flow T hru d esig n) ... 136

F igure 64 - W hitm ire com plexity histog ra m (Flow T hru d esig n) ...138

F igure 65 - W hitm ire com plexity b oxplot (Flow T hru d esign) ...138

F ig ure 66 - CBO histogram (FlowT hru desig n) ...139

F igure 67 - CBO boxplot (Flow Thru desig n) ...139

F igure 68 - RFC histogram (FlowTh ru desig n) .. 140

F igure 69 - RFC boxplot (Flow T hru d esign) ...140

F igure 70 - Interface com plexity histog ra m (Flow T hru design) ...141

F igure 71 - Interface com plexity boxplot (Flo w T h ru d esig n) ... 141

F ig ure 72 - Scatter plot of CBO versus RFC (Flo w Th ru a n a ly sis) ...144

F igure 73 - R esiduals versus RFC (response is C B O)..145

F igure 74 - N orm al probability plot o f the r e sid u a l s .. 145

F igure 75 - In tegrity requirem ents c la ssific a tio n ; s e c u r it y ..157

F igure 76 - C om m unications integrity r equirem en ts c l a s sific a t io n ..159

F igure 77 - TRUM PET security a r c h itec tu r e : o v e r v iew ..160

F igure 78 - C orrect operation to be pr e s e r v e d ...162

F igure 79 - X user Test-MIB and the m ana ger-a g en t c h a in ..163

F igure 80 - X user Test-MIB im plem en ta tio n ...165

F igure 81 - SDL behavioural pa tter n : various tim e d e l a y s .. 165

F ig ure 82 - T esting configuration (w ith o u t secu rity) .. 166

F igure 83 - A ssocia tion delays w ith and w ith o u t a u t h e n t ic a t io n ..171

F igure 84 - Opera tion delays w ith and w ithout s e c u r it y ...171

F igure 85 - String-leng th d ependent delay for secu red and unsec u r ed com m unications 172

10

Table of Tables

T able 1 - M etrics and system dev elopm ent m a p p in g s ... 113

T able 2 - TRU M PET m etrics v a l u e s ... 116

T able 3 - W h itm ire com plexity statistics (T R U M P E T)...119

T able 4 - CBO statistics (T R U M PE T)... 120

T able 5 - M PC statistics (TR U M PET)... 121

T able 6 - RFC statistics (TR U M PET).. 122

T able 7 - In ter fa c e com plexity statistics (T R U M P E T)..123

T able 8 - F low T h ru analysis metrics v a l u e s .. 126

T able 9 - W h itm ire co m plex ity statistics (Flow T h ru ana lysis) ..128

T able 10 - CBO statistics (FlowT hru a na lysis) ... 129

T able 11 - M PC statistics (FlowT hru a na lysis) .. 130

T able 12 - RFC statistics (FlowT hru a na lysis) ... 131

T able 13 - F low T h r u design m etrics v a l u e s ...136

T able 14 - W h itm ir e com plexity statistics (Flo w T hru desig n) .. 138

T able 15 - CBO statistics (Flow T hru design) .. 139

T able 16 - RFC statistics (FlowT hru desig n) .. 140

T able 17 - Inter fa c e com plexity statistics (Flo w T hru design) ...141

T able 18 - M etrics rank correlation c o effic ien ts : T R U M P E T .. 146

T able 19 - M etrics r a n k correlation c o effic ien ts : F low Th r u a n a l y s is146

T able 20 - M etrics ra n k correlation co efficien ts : F low T hru d esig n ..147

T able 21 - Secu rity su b -requirem ents c la ssific a tio n ... 158

T able 22 - B eh a v io u r a l pa tter n s ... 164

11

1 INTRODUCTION

In the introductory chapter, we discuss the motivation for this work, outline the problem

field and describe the approach taken in this thesis to address the issues identified. Section

1.1 presents the motivation: it describes the current telecommunications environment, in

terms of its market dynamics, regulatory initiatives and the technological advances; factors

which all contribute to the core problem that the thesis is focusing on: network and systems

integrity. Section 1.2 elaborates on the integrity problem field; describes the approach to the

research work undertaken; and gives the overview of the thesis.

1.1 M o t iv a t io n

The current telecommunications environment is characterised by a number of factors that are

profoundly changing its historical role and structure.

Primary factor is the growing business and residential demand for sophisticated services.

These services range from the classic narrow-hand voice telephony, through broadband

streams supported by the Synchronous Digital Hierarchy (SDH) and the Asynchronous

Transfer Mode (ATM) technologies, to highly interactive dynamic services encompassing

multi-party, multimedia and mobile features, increasingly supported by Internet Protocol (IP)

technology. Demands for services are diversifying, and the requirements on performance and

functionality intensify as the telecommunications services become mission critical for

business and industrial processes.

In order to provide and operate these sophisticated services, the individual components in the

core telecommunications networks have to interact more closely with each other, as well as

with a number of support systems for advanced call control. Intelligent Network (IN),

network and service management, etc.

In the Broadband Integrated Services Digital Network (B-ISDN) Reference model [1.321], as

described in [Pavl98], the operations needed for service provision and maintenance are

divided into three planes. The User Plane is effectively the core network, supporting the

transfer of user information. The Control Plane is responsible for the establishment,

operation and termination of the calls/connections. For the bearer services (such as basic

telephony), the control plane provides this support through the Signalling System Number 7

(SS7) [Q.700]. The support for the enhanced services such as IN - based telephony and the

Telecommunications Information Network Architecture (TINA) multimedia services is

provided for through the intelligence located outside the core network. Finally, the B-ISDN

12

Reference model defines the Management Plane, responsible for the management of both

user and control planes. The management plane provides support for planning, installation,

operations and maintenance of the infrastructure of the other two planes (as quoted in

[Pavl98]).

Complex interactions are thus occurring between the network elements and the

computational resources residing in the control and management planes. With the advance of

IT-inspired applications in the customer premises, the degree of interaction increases even

more. The convergence of IT and telecommunications, introduction of the sophisticated

management, control and support systems, and the advances in the Common Channel

Signalling (CCS) [Mant9I] / SS7, make the telecommunications network resemble a large,

complex distributed software system.

This complexity is further increased under the pressure of regulatory forces [Walk97].

Initiatives such as the European Commission’s Open Network Provision (ONP) are calling

for the established Public Network Operators (PNOs) to open their networks to Other

Licensed Operators (OLOs) and third-party. Value Added Service Providers (VASPs). These

initiatives are targeted to stimulate fair competition and to increase market dynamics.

However, they greatly add to the complexity of the telecommunications environment by

forcing the autonomous players to interwork without having the full assurance that the

invulnerability of their domain will not be compromised as a consequence of the

interconnection.

Complex
software " ».
systems \

Sophisticated
services

C ustom er
prem ises
netw ork

OLO - Core transport networkPNO - Core transport network

Support
systems

Service platform

Netw ork and
service

m anagem ent

N etw ork and service
m anagem ent

OLO - infrastructure

V A SP dom ain - infrastructurePNO dom ain - infrastructure

I

Interconnection

Figure 1 - The environment

The three key shaping factors in the modern telecommunications world, as highlighted in the

above discussion, are depicted in the schematic diagram of Figure I.

13

As a result of the above factors, an environment of highly complex telecommunications

systems, where a number of software-based components from different domains interact

closely together to provide and maintain the end-user services, is emerging. In such an

environment, it is becoming increasingly difficult to specify, develop, test and interconnect

these complex, heterogeneous distributed telecommunications systems. Moreover, it is

becoming almost unattainable to guarantee the correct and proper functioning of these

systems: i.e., their integral operation.

Integrity was initially focused on the core transport network, and it was defined in the

context of the public network operation as: “the ability of the network to retain its specified

attributes in terms of performance and functionality” [UCL94] [Ward95]. However, in the

emerging environment we described above, where a network is effectively a conglomeration

of software systems, network integrity becomes inseparable from telecommunication

system integrity. Any flaw in the integrity of a telecommunication system has a potential of

impacting the integrity of the network, which the system is part of.

The classical and most serious example of things going wrong is reflected in the events of

January 1990 brownout of the AT&T American network [McDo94][Hatt97]. A control

mutation, originating in the switching system (and due to a single software error) propagated

through the signalling (SS7) network causing degradation of the operation and ending in a

total shutdown. The whole eastern seaboard of the US lost telephone connections for nine

hours, the financial loss amounting to 1 billion dollars. A number of similar integrity

breaches followed in Pacific Bell and Bell Atlantic networks in the two subsequent years

[Hoan93]. Another recent example is the 1998 integrity breach in the AT&T Chicago frame

relay network, due to a few faulty lines of code, which effected thousands of corporate

customers across the US [Meht98]. The latest example is the brownout in the BT network in

February 2000, which blocked millions of calls [BBCOO].

These examples illustrate how vulnerable the telecommunications networks can be to

initially small and isolated failures. They consequently highlight the need for serious

consideration of the integrity issues by all players in the telecommunications market: the

sheer scale of the financial loss incurred by an integrity breach is convincing enough. In the

modem wired world, increasingly reliant on effective high-speed communications, any

malfunction in telecommunications systems operation can have dire consequences. A serious

failure can, in the present competitive environment, cause financial threats to both network

operators and service providers - ranging from the loss of revenue to the decrease in their

customer base. Similarly, customers who depend on the availability of telecommunications

services can be at risk as well.

14

The issues of integrity will increasingly be of crucial importance in future

telecommunications scenarios, where multiple operators, service providers, third party

retailers and other players on the market will undoubtedly have to collaborate and interwork,

on the core transport as well as control and management levels, while having to be confident

that this interworking will not jeopardise the correct and proper functioning of their domain.

The concept of integrity has to be well understood; and methods, tools and techniques for

managing integrity throughout the system and service lifecycle have to be developed.

Finally, factors influencing integrity need to be measured, because: “what you cannot

measure, you cannot control” [DeMa82].

1.2 T h e p r o b l e m f ie l d a n d t h e a p p r o a c h

The problem field that this research work focuses on is that of telecommunications system

integrity. This field is still nascent, with the majority of research and industrial initiatives

focusing on the integrity of the traditional telephony network with limited capabilities and

support systems. Understanding of the term integrity is similarly out-of-date. The industrial

approach for managing integrity is focusing on extensive system pre-launch testing to ensure

correct and proper functioning, while some attempts were made recently in academia to

develop a broader framework for tackling the integrity issues. Moreover, to the author's

knowledge, there is no evidence of the research into integrity of management systems as

such.

The problem statement can be summarised as follows: "The fie ld o f integrity assurance is

heavily under-researched, the two main flaws being the lack o f a structured framework fo r

tackling the integrity issues throughout the telecommunications system lifecycle, and the lack

o f pre-emptive techniques fo r ensuring integrity".

Our research recognises the need for an up-to-date analysis of the concept of integrity,

influenced by the factors discussed in section 1.1. Moreover, it acknowledges the lack of and

need for a coherent framework for understanding the integrity issues, and techniques for

managing the integrity issues, throughout the telecommunications system lifecycle. Finally,

it advocates the measurement of factors influencing integrity, for the purpose of deeper

understanding, effective comparison, and better management.

Our approach represents a mixture of theoretical and practical work. The theoretical work

focused on the study of the concept of integrity, its analysis in the context of the modem

software-oriented distributed telecommunications systems, and its decomposition in a

number of related issues. In parallel, a methodology for management of integrity issues

throughout the telecommunications system development lifecycle was developed.

15

The practical research platform was provided by two European Commission (EC) -

sponsored “Advanced Communications Technologies and Services” (ACTS) projects in the

field of network and service management: TRUMPET [TRUMPET] and FlowThru

[FlowThru]. Management systems developed by these projects provided an ideal research

context, since they are strongly focusing on the three key factors influencing the modem

telecommunications environment, identified in section 1,1: sophisticated service provision

and management, accomplished through the inter-domain collaboration of distributed

sojhvare-based management systems. These projects were used to some extent as case

studies for the application of the integrity methodology, but primarily for the development

and validation of integrity management techniques - integrity policies. Two distinct integrity

policies were developed, and they are presented in this thesis. The flow of the research work

is depicted in Figure 2.

2 distinct policies

Define the concept: integrity

Study the real systems Develop methodology:
based on policies

Figure 2 - Flow of research work

Although the initial theoretical research is applicable to a wide range of distributed

telecommunications systems, the later stages of the research are strongly focusing on

network and service management systems, which provided the main practical research

platform. This is also reflected in the structure of the thesis.

Chapter 2 presents the background in the three key areas relevant for the research. First, the

current understanding of the term integrity is discussed, the existing integrity measures are

presented, and the computing concepts related to integrity are introduced. Next, the state of

the art in integrity assurance is discussed - this includes both the industrial and research

initiatives. Finally, the need for the integrity of the management plane is stressed, and the

current trends in network and service management in terms of architectures, technologies,

development methodologies and notations are discussed. The aim of this chapter is not just

to present the state of the art, but also to pin-point the lack of expertise in the relevant areas

and thus stress the motivation and give the justification for the novel research work

conducted for this thesis.

16

In Chapter 3, the core theoretical research work is presented. First, our interpretation of

integrity is given, represented as a set of lower-level attributes. Next, we present our

methodology for management of integrity throughout the telecommunications system

development lifecycle. This methodology is geared towards the network and service

management systems; however, it is applicable to any distributed telecommunications

software system of a given level of complexity. This chapter also introduces the concept of

the integrity assurance technique - i.e., integrity policy, and discusses some candidate

integrity policies for network and service management systems.

In Chapter 4, the ACTS projects TRUMPET and FlowThru are presented, with the emphasis

on TRUMPET, which represented the main research platform.

Chapter 5 presents the first integrity policy developed during this research: that of the

complexity and risk reduction early in the telecommunications system development

lifecycle, based on software metrics. It also presents three case studies of this policy: one of

the TRUMPET management system and two of the FlowThru management system.

Chapter 6 presents the second integrity policy developed during the research: the inter­

domain interconnection testing policy. A brief example of the application of this policy in

the context of the TRUMPET management system is also given in this chapter.

In Chapter 7, we give the discussion and conclusions concerning the research work

undertaken, and briefly reflect on the potential future work.

Chapter 8 contains author’s publications. Chapter 9 the references and Chapter 10 the

acronyms.

At the end of each chapter discussing novel research, a summary of our contributions to the

research area is given.

Note that throughout the thesis, “we” is used instead of “I” - 1 just prefer the style.

17

2 STATE OF THE ART

The aim of this chapter is to give the background for the research work presented in the rest

of this thesis. Moreover, it aims to highlight the lacks of expertise in the research areas dealt

with, and thus to provide both the motivation and justification for the novel research

conducted.

First, in section 2.1 we discuss the understanding of the concept of integrity, and highlight

the need for an up-to-date definition of the term. Next, in section 2.2, we critically reflect on

the existing integrity research and current industrial techniques for ensuring and maintaining

integrity. Following this, in section 2.3 we elaborate on the relationship between the network

and service management systems and the underlying control and core network planes, in the

integrity context, and accentuate the need for integrity of management systems. Moreover, in

this section we discuss the current state of the art in the area of network and service

management.

2.1 In t e g r it y : t h e c o n c e p t

This section deals with the interpretation of the concept of integrity. Section 2.1.1 briefly

critically reflects on the two main prose definitions of integrity. In section 2.1.2, the existing

integrity measures are described, and the related concept of risk is reflected on. The related

computing concepts of dependability and safety are presented in section 2.1.3, followed by

the discussion in section 2.1.4.

2 .1 .1 I n t e g r it y d e f in it io n s

The understanding of the term integrity is typically very nebulous. There are no unified

concepts, agreed definitions or recommendations. Integrity is traditionally related to data: in

the realm of data systems, data integrity refers to the incorruptibility of stored data; in the

realm of security, data integrity refers to the ability to avoid modification, insertion or

duplication of data both stored and in transit.

Two principal definitions of network integrity are coming from the US and the UK; from the

industry and academia, respectively. As reported in [McDo94], the definition of integrity as

understood in Bellcore is “the ability of a network provider to deliver high-quality,

continuous service while gracefully absorbing, with little or no customer impact, failures of

or intrusions into the hardware or software of network elements". The alternative definition,

given in [UCL94] [Ward95], is “the ability of the network to retain its specified attributes in

terms of performance and functionality”.

18

The problem of defining integrity is already visible in the first definition. A number of issues

are identified: high quality of service delivery, continuity of the service, robustness to

failure, ability to prevent malicious human intervention (intrusion). Both customer

perception and the responsibility of the network provider are also mentioned. Second

definition possibly narrows down the problem; integrity is a set of attributes, either

functional or performance-related, that need to be retained at their satisfactory levels.

Both definitions are vague. Both imply the existence of a certain subset of concepts. Both

focus on the integrity of the core transport network. And both assume the two main pre-

regulatory players on the telecommunications market: network operators, and their

customers.

These definitions do not state clearly what the exact integrity attributes are, what are the

phenomena effecting integrity or what are the desirable features of a high-integrity network

(apart from "the ability to gracefully absorb failures"). These definitions acknowledge

neither the new view of the telecommunications network: the "network of systems", nor the

implications of the deregulated market. However, by pointing out that integrity is a higher

level measure, and by mentioning the attributes, they do automatically imply the need for a

framework: an issue that will be further discussed in section 2.2.

2 .1 .2 I n t e g r i t y MEASURES

This section presents the three existing integrity outage measures (section 2.1.2.1), discusses

a pre-emptive integrity measure (section 2.1.2.2), and presents the related concept of risk

(section 2.1.2.3).

2.1.2.1 O u tage m ea su r es

The research into the integrity concept to date, prompted by the 1990-92 US network

integrity breaches (discussed in chapter 1, section 1.1), resulted in a number of measures that

are targeted to quantify the outages. Service outage is defined by the Network Reliability

Council (established by the US Federal Communications Commission - FCC, in order to

obtain technical advice on a variety of telecommunications issues) as "the state of a service

when network failures impair the initiation of new requests for service and/or continuous use

of the service, and the service outage parameters exceed their corresponding thresholds"

[TAlA-93]. This definition is effectively a post-mortem integrity definition. The following

measures (already discussed in [UCL94] and [Mont98]) were proposed to quantify the

outages.

19

2.1.2.1.1 Cochrane Richter scale

This definition quantifies the network integrity breaches in customer-effected terms: loss of

traffic. This definition categorises the outages like earthquakes, on the logarithmic, Richter

scale. Total network information capacity outage, D, is thus:

D = log 1 0 (N X T) (1)

Where N is the total number of customer circuits effected, and T the total down time, in

hours.

2.1.2.1.2 User Lost Erlang

A similar measure, proposed in [McDo92] is the User Lost Erlang (ULE). This measure is

also based on the logarithmic scale:

ULE = log 1 0 (E X H) (2)

Where E is estimated average user traffic lost during the time of the integrity breach in

Erlangs, and H is the outage duration, in hours.

2.1.2.1.3 ATIS outage index

The US Alliance for Telecommunications Industry Solutions (ATIS) T1 Standards

Committee (T lA l) proposed a general framework for quantifying outages, from the user

perspective. This framework is composed of three main parameters:

• Unservability (U), defined as a fraction of service that cannot be provided, as a result of

a failure.

• Duration (D)\ the length of time of a failure, during which the unservability was above a

certain limit.

• Extent (E), the measure of the geographic area and population effected by the outage,

when the unservability was above a certain limit.

The severity of an outage can be represented as a (U, D, E) triplet: the outages can be

categorised as falling into minor, major or catastrophic regions.

Further work by the T lA l targeted the need to enable a meaningful summation of the

individual outage index values over time periods, for comparison and monitoring purposes.

The second requirement was the ability to take into account the relative importance of a

' Note that Duration D is different from total network information capacity outage, D, of equation (1).

20

particular service effected by the outage. A more sophisticated outage index was thus

proposed, with the basic property that the index of an outage is the sum of the indices of

multiple services. Weighting functions in the shape of s-curves were introduced, and for any

single service the outage index is the product of the three weighting functions. The total

outage index is:

KO)=rj=l(W,(j)Wd(i)Wm(j)) (3)

Total outage is thus the aggregation of services j = 1, N; W& is the service weight, Wd is

the duration weight, and is the magnitude weight. Both the duration weight and the

magnitude weight are calculated with the help of the s-curves, while the service weight is

allocated depending on the type of the service.

2.1.2.2 P r e -e m ptiv e m easu res

All of the measures presented up to now are post-mortem measures, targeting to assess the

impact of an integrity breach that already occurred. The Cochrane Richter Scale and the ULE

are both understandable, but relatively simple measures: they take into account only the

outage duration, and the number of customers effected or traffic lost, respectively. Cochrane

scale does not take into account the customer usage of the service: business or residential,

daytime or night-time. ATIS outage index is much more sophisticated, targeting to overcome

the above deficiencies. In order to perform a calculation of the ATIS weighing functions for

the three basic parameters, a number of other factors have to be taken into account: time of

outage, lines effected/blocked calls, duration, types of services effected, etc. Here, an

important benefit of the ATIS index can be seen: that of the decomposition of issues, and of

a structured approach to address them. Still, however, all of the above measures are post­

mortem, with no possibility of determining the current level of integrity, or quantifying a

probability, threat or risk of an outage taking place.

The first attempt to formulate a ""pre-mortem” integrity measure is given in

[Mont97][Mont98]. Integrity is perceived here as a “high-level measure, influenced by a

number of factors”. Network integrity is then represented as a set of integrity bands, or

integrity states, that the network can assume.

Figure 3 shows the variation of integrity from 0% (any malfunction resulting in complete

failure) to 100% (network absolutely robust to failure), through a number integrity bands.

This work envisages that each operator will define their own criteria for integrity bands. This

would involve the identification of parameters/attributes that influence integrity, and the

21

thresholds of these parameters would imply the transition points between the bands.

However, no concrete parameters/attributes or thresholds are identified.

100% Integrity 0% Integrity

High integrity Low integrity
regions regions

Decreasing degree of integrity

Figure 3 - Integrity bands [Mont97]

This integrity definition, as well as the two established ones presented in section 2.1.1,

stresses that integrity is a higher-level measure, encompassing a number of attributes and

influenced by a number of factors.

2.1.2.3 R isk

A concept closely related to the previously described outage measures is that of risk. An

established definition of risk, in the computing arena (see further section 2.1.3), is; “a

measure that combines both the likelihood that the system hazard will cause an accident and

the severity of that accident” [lEEEStd 1228-94] (while a hazard is “a system/software

condition that is a prerequisite to an accident”). Similarly, risk = (probability of

unsatisfactory outcome) x (loss if the outcome is unsatisfactory) [Boeh91].

2 .1 .3 C o m p u t in g l e g a c y : d e p e n d a b i l i t y a n d s a f e t y

Two terms used in the field of computing bear a strong resemblance with the

telecommunications-related term integrity: dependability and safety. Due to the convergence

between telecommunications and computing, these two terms must be taken into account

when considering integrity.

Dependability is a broad field of computing research, encompassing reliability assessment,

security measures, etc. The first similarity between dependability and integrity is the lack of

non-unified definitions, concepts and standards. A number of definitions of dependability

exist fPras95]:

• Trustworthiness of a computer system such that reliance can be justifiably placed on the

service it delivers [Lapr92j.

• The loss arising from using a system in a particular context: dependable systems are

targeting to minimise risk [McDe94j.

22

• The collective term used to describe the availability performance and its influencing

factors [Musa87].

• Ability of an entity to perform one or several required functions under given conditions

[Vill92].

The above indicates that no unifying definition of dependability is established in the

literature. However, all the key authors in the field hint that dependability is a collective term

for a number of desirable system attributes: this is another overlap with the understanding of

the term integrity.

Safety, defined as “freedom from hazards” [lEEEStd 1228-94], or “degree of freedom from

risk in any environment” [Leve95], is another collective term for desirable system attributes.

Safety research is mainly related to deduction of the possible causes of system hazards. The

areas of interest are fault identification, backtracking and prevention.

The important thing to note is that, when discussing dependability and safety, it is often

identified that the concept is inseparable from the management process: i.e.,

dependability/safety is not just a term or an attribute: it is a notion that encompasses

decomposition in lower-level attributes, and frameworks and methodologies to understand

and manage them.

2 .1 .4 S u m m a r y

As we have seen, the traditional definitions of the term integrity suffer from a number of

drawbacks. The definitions are vague, in the sense that they do not sign-post to measurable

quantities; and are generally concerned with the integrity of the core transport network, not

taking into account the impact of the proliferation of the complex computational software

systems supporting the sophisticated services. The existing integrity measures focus on the

assessment of the integrity breaches, and as such are strictly post-mortem.

On the other hand, the research in the concept of integrity does imply that it is a complex

measure, influencing and influenced by a number of factors. However, the existing research

does not clearly identify these factors. We believe that there is a strong need to pin-point

the integrity attributes. This needs to be done by considering both the integrity aspects of the

core network, but also taking into account the software and system science, which are one of

the leading shaping factors in the new telecommunications world. Our contribution to this

aspect of the research is given in chapter 3, section 3.1.

23

Existence of a number of integrity factors also implies a need for a structured framework in

which to understand and manage these factors. Our contribution to this aspect of the research

is given in chapter 3, section 3.2.

The following section discusses the state of the art in the approaches for tackling the

integrity of networks and systems.

2.2 In t e g r it y a s s u r a n c e a n d t e c h n iq u e s

This section discusses the existing research and industrial initiatives in the field of integrity,

and summarises the current techniques for assuring and maintaining integrity in

telecommunications networks and systems.

2 .2 .1 S t a t e OF THE ART

The first wave of integrity research, taking place in the US, was triggered off by the 1990-91

SS7 brownouts (see chapter 1, section 1.1). This research focused on the definition of the

outage measures, resulting with the ATIS outage index (section 2.1.2.1.3), and the integrity

analysis limited to the SS7 features: a number of SS7 integrity threats were identified.

However, after this first wave of research, there were no advances.

In the meantime, the established operators started to take practical measures for intra-domain

integrity preservation, as well as for the protection of their networks from the outside threat.

The first issue is addressed through the extensive pre-launch system/service testing, which

itself is preceded by a detailed technical design overview. In the industry the usual practice is

that the tests are performed manually: the selection of test suites is done by the test engineer

who is well acquainted with the system under test. The most thorough testing approach is

taken by Bellcore, which operates the Network Services Test System (NSTS). This test-bed

can be used for auditing and testing the stand-alone systems, as well as for testing multi­

supplier equipment interoperability, and inter-network interoperability. Bellcore, together

with a number of other players in the US industry, took another step towards the inter­

network testing: the Inter-network Interoperability Test Plan (HTP) [Lewi94]. The IITP is

focusing on the interoperability testing for interconnected Common-Channel Signalling

(CCS) networks, and is especially geared towards the integrity problems. In the UK, BT

conducts similarly rigorous interconnect testing [Maso97]. The first phase encompasses

system (software or hardware) conformance testing, to SS7 standards. Second phase is the

interworking/interoperability testing in the test environment: the BT integration facility (test

network) features switches which are not connected to the live network. Finally, the

commission testing focuses on testing of new routes/circuits as they are introduced, and

24

encompasses functional testing of software/hardware. The test-beds such as the BT test

network and the Bellcore NSTS are of crucial importance for the integrity assurance. Apart

from catering for a wide range of test scenarios, these test-beds also remove the risks of

testing the new systems/services against a "live" network.

In the US, the approach for the Plain Old Telephone Service (POTS) inter-network integrity

protection during runtime is the use of screening at the interconnect: the incoming messages

are checked for validity. Likewise, mediation devices are envisaged to be used in the future

complex IN-based services, where the interconnection is taking place at the Service Control

Point (SCP) level. Mediation devices adapt the messages at the interconnect so as to achieve

compatibility. Similar measures, but to a far lesser extent, are taken by the operators in

Europe: in the UK, some screening at the signalling level is taking place at the interconnect

[UCL94].

However, the current approaches have a number of drawbacks. Pre-launch testing tends to be

too exhaustive, and is thus often assessed as being expensive. In this context, it is also seen

as a factor slowing down the system/service rollout. Moreover, it is impossible to test the

combinations of all the interactions that might impact the integrity of the system/service.

Screening and mediation solve some of the run-time problems that might arise at the

interconnect, but are relatively tedious.

The research initiatives in Europe were encouraged by the European Commission, resulting

in a comprehensive study of network integrity in the Open Network Provision (ONP)

environment: given in [UCL94]. This study contains a set of recommendations to the EC. A

number of open issues were identified, such as the need for:

• System/service complexity measures.

• Integrity assessment and risk-oriented predictive models.

• Studies of the impact o f collaborative network management on network integrity.

However, there are no recent research initiatives and calls for improvement recorded.

Overall, the main shortfall of the research work and the industrial initiatives to date is the

heavy focus on testing, and the lack of a structured approach for tackling integrity issues,

especially in the context of the system/service pre-launch integrity management. One piece

of work to address this drawback was conducted in academia: [Mont97]. This approach

recognised the need for a coherent framework, and divided the integrity management actions

into two basic groups: static and dynamic actions. Static actions are done prior to service

launch. A number of pre-launch issues that need to be considered are discussed. These

include improvement o f development methodologies for better design coherence and

25

understanding; use o f formal methods for rigorous system development; modelling as a tool

for understanding, detecting and resolving possible integrity problems; risk analysis, which

analyses, categorises and documents risks to integrity; as well as testing', use o f previous and

expert experience and the use o f knowledge-based systems. Dynamic actions are taken after

the system launch, and include monitoring of system integrity parameters, risk analysis,

restoration actions and documentation o f information. However, this approach does not

identify the flow of these actions, and a clear way of demonstrating how they integrate in the

sy stem/service development lifecycle.

2 .2 .2 S u m m a r y

As we have seen, both the industrial and research initiatives tackling the problems of

integrity management suffer from a number of drawbacks. The main shortfall in the

industrial context is the strong focus on testing: there is a lack of pre-testing techniques for

integrity assurance. In the context of academic research, some advances were made in the

direction of the provision of a structured framework for tackling the integrity issues

throughout the system/service development lifecycle. However, no clear flow of integrity-

preserving actions is defined, and the relationship with the development lifecycle is not

strong enough.

Thus, there are two main key issues in the current approach to integrity management: lack of

a structured framework, and the lack of pre-emptive techniques for producing highly

integral systems. This is particularly true in the field of network and service management,

where, to author's knowledge, there are no reports on the consideration of integrity issues.

Our contribution to the framework-oriented aspects of the research are given in chapter 3,

while in chapters 5 and 6 we present two pre-emptive integrity assurance techniques.

In the next section, we highlight the need for the consideration of integrity issues in network

and service management systems, and discuss the state of the art in the field of network and

service management.

2.3 N e t w o r k a n d s e r v ic e m a n a g e m e n t

As we have seen (sections 2.1, 2.2), the majority of the integrity research to date focused on

the integrity of the core transport network. Some issues concerning the integrity of the

control plane were also tackled (see section 2.2.1): namely, the integrity features of the SS7.

The test-beds for pre-launch integrity assurance exist in both UK and the US, focusing on the

core and control networks. In contrast, integrity of management systems is an under­

26

researched area. Management was mentioned only as a solution to the integrity problem

[UCL94], not as a source of integrity problems in its own right. However, we argue that the

integrity of the management systems is tightly coupled to the integrity of the underlying

control plane and the core transport network. With the growing sophistication of

management services, increasing level of interconnection between management systems in

separate administrative domains, and diversity of management architectures and

technologies, integrity threats on the management level are becoming a reality.

The relationship between management systems and the underlying managed resources, in the

integrity context, is discussed in section 2.3.1. Next, the current state of the art in network

and service management, characterised by the diversity of architectures, frameworks,

technologies, development methodologies and modelling notations, is summarised in

sections 2.3.2 - 2.3.4. This state of the art is given to some extent in the context of the

European Commission - sponsored “Advanced Communications Technologies and Services”

(ACTS) and “Research in Advanced Communications in Europe” (RACE) projects, which

are seen as the flagship research initiatives in the field. Moreover, this state of the art does

not aim to be exhaustive, but rather to cover the background necessary for the research work

described in the rest of the thesis. Section 2.3.5 then discusses the future directions in

network and service management.

2.3 .1 R e l a t io n s h ip b e t w e e n m a n a g e m e n t a n d in t e g r it y

Management refers, as stated in the Open Systems Interconnection Systems Management

(OSI-SM) framework document [X.700], to the activities which control, co-ordinate and

monitor the use of resources. Network and service management is thus concerned with

planning, installation, operations, administration, provisioning, and maintenance of networks

and services (as quoted in [Pavl98]). As discussed in chapter 1, section 1.1, in the context of

the B-ISDN Reference model [1.321], the management plane manages both the core network

resources, and the support control systems outside the network.

OSI Systems Management (OSI-SM) [X.700][X.701] defines five distinct functional areas of

management: fault, configuration, accounting, performance and security - referred to as

FCAPS. Fault management deals with detection of faults in network operation, and their

correction. The basic activities are alarm correlation, fault identification and testing.

Accounting management deals with the identification of the costs of the use of network

resources and services, and with charging for their use. Configuration management is

responsible for planning, initialisation, continuous provision, and termination of

communication services. Performance management is responsible for gathering and storing

statistical data concerning network/service performance for the purpose of evaluation of the

27

network/service effectiveness. Security management deals with both securing the

management applications and their communication, and provision of security for the

managed resources.

Network and service management can be essentially envisaged as a control (in the traditional

sense of the word, not in the B-ISDN Reference model terminology) problem, as depicted in

Figure 4 (expanded from [Mamd96]). The management system is effectively a set of

software components that manage the network, which can be seen as a set of switches,

routers, connections, signalling, and control equipment. Note that in Figure 4 the control and

the user planes, as defined in the B-ISDN model, are merged into one entity - labelled as “the

managed system (network)”.

Target
operation

Actual
operationManagement

actions

Estimated
operation

Disturbance

Management
(control)

algorithms

Estimation
algorithms

Monitoring
system

Managed
system

(network)

Figure 4 - Network management as a control problem

The management system performs a set of management actions, defined via management

(control) algorithms, which are applied to the network so as to achieve and preserve the

desired operation. The actual operation of the network is monitored, and the monitored

operation is used to estimate the current operation of the network. The estimated operation is

compared to the target operation and then required management actions are applied.

The control view of network management that we present here is applicable to all the

FCAPS areas, with the exception of accounting management. In the other four areas, the

interaction between the management system and the network being managed can be

represented as in Figure 4. For example, considering configuration and fault management, if

the link fails, the fault management system will diagnose the fault, choose the appropriate

remedy action, and apply it, for example by notifying the configuration management to

change the topology as required. Accounting management cannot be viewed as a direct

control loop; however, the higher-level control-like relationships will appear, due to the

impact of the operator’s long-term business policies.

28

This "control" view (of Figure 4) implies that the problem space of the relationship between

integrity and network and service management is two-fold. First, there is the issue of

management of network integrity (where network integrity is as defined in section 2 .F I,

related to the integrity of the core network and the control for bearer services). This issue

relates to the provision of management functions that deal with management of network

integrity as such. The second issue is that of the integrity of management systems. This

concerns actions focusing on the development and maintenance of highly integral

management systems.

The relationship between network integrity in the traditional sense and management systems

integrity can be seen from Figure 4. Any disturbance in network integrity, i.e. the actual state

of switching and signalling in the network layer, can influence the operation of the

management system. This can happen if the disturbances in network operation cause the

monitoring system to provide the management system with incoherent information and thus

jeopardise its integrity status. Similarly, any disruption in the operation of the management

system, i.e. any breach of management system integrity, can propagate, through management

actions, to the actual network. This problem is magnified when multiple management

systems are expected to share management information and interwork. As mentioned before

(chapter 1, section 1.1), the Open Network Provision (ONP) stimulates the interconnection

between management systems within different domains. However, this interconnection can

pose an extra threat to the stability, i.e. integrity of the whole system if it is not carried out in

a fully integral way or if separate systems themselves have a low degree of integrity. Thus,

the high level of integrity of the management systems can be seen as being of paramount

importance in the correct operation of the actual network.

Managing integrity of systems

, Integrity o f interaction
I between management

^ systems
Integrity o f management

systems
 ►

Integrity o f the network

 ►

M anagement system BManagement system A

Core network and control

Figure 5 - Management and integrity

The issues of network integrity, management system integrity and the integrity of the

management systems interconnection are depicted in Figure 5. In this thesis, we focus on the

29

issues of management of integrity of systems, more specifically network and service

management systems.

Consideration of integrity issues in network and service management is also becoming

critical as the highly heterogeneous management plane is taking shape. The following

sections thus discuss the current trends in network and service management, in terms of

architectures, technologies, development methodologies and modelling notations.

2 .3 .2 A r c h it e c t u r e s

Architecture can be defined as: "a term applied to both the process and the outcome of

thinking out and specifying the overall structure, logical components, and the logical

interrelationships of a system" [What-is].

The most well established architectural standard in the problem field of telecommunications

management is the Telecommunications Management Network (TMN) architecture

[M.3010], promoted by the International Telecommunications Union (ITU). TMN

management principles are based on OSI Systems Management (OSI-SM) [X.700][X.70I],

while recently CORE A [CORBA] is increasingly promoted as the base technology.

TMN is a logically separate network, which is effectively overlaid over the core network

being managed, interfacing it at a number of points. TMN covers five distinct functional

areas: fault, configuration, accounting, performance, and security management, as initially

defined in [X.700] (for more detail refer to section 2.3.1). Although TMN primarily aims at

management of networks and services, it is also to some extent used in service provision,

namely for Virtual Private Network (VPN) - an example of service provision which was

exploited by a number of RACE and ACTS projects.

TMN is a hierarchical, distributed management structure, where the management

applications are organised in four distinct layers: element, network, service and business

management layers. The element management layer is concerned with managing the vendor-

specific functionality of individual network elements. The network management layer

manages the interaction/communication between multiple network elements; providing the

network view. The service management layer manages the aspects directly relevant to the

users, such as Quality of Service (QoS), user subscription to services, etc. The business

management layer manages the telecommunications enterprise: it is concerned with the

strategic management, rather then with the technical/operational management as the other

layers are. The management applications residing in any of these management layers can

assume, using the OSI-SM terminology, both manager and agent roles.

30

As such, TMN aims to provide an architecture which enables the co-operation between

management applications, as well as interactions with the resources they manage. This is

done by specifying three dimensions of the architecture [M.3010]; functional, information

and physical. Functional architecture decomposes the management functionality into

functional blocks, which communicate through reference points. Physical architecture gives

a lower level of abstraction by specifying how functional blocks can be mapped to the

physical ones, implemented in pieces of equipment. Functional blocks thus become building

blocks (physical equipment), and reference points become interfaces: for example, the x

reference point between the two autonomous TMN Operations System Functions (OSFs)

maps to the TMN X interface between two autonomous Operations Systems (OSs) in two

separate administrative domains. Information architecture models the managed resources as

managed objects, and specifies the ways of managing them, based on OSI-SM. A managed

object is characterised by its attributes (properties - effectively, state), operations that can be

performed on it, behaviour exhibited in response to the operations, and notifications that the

object emits.

As reported in [Pavl98], the first hierarchical TMN system with fully compliant interfaces

was constructed in the RACE NEMESYS (Network Management using Expert Systems)

[Pavl91] project, while some of the most complex systems were developed in the RACE

ICM (Integrated Communications Management) [Grif96] and PREPARE (Pre-Pilot in

Advanced Resource Management) [Hall96] projects. Following the RACE projects, the

ACTS projects MISA (Management of Integrated SDH and ATM Networks) [GaliOO] and

TRUMPET (Inter-domain Management with Integrity) [Sack98], amongst others, continued

the research into TMN systems.

For more detail about TMN see [Pavl98] [Slom94a].

Another architecture for telecommunications management is the Telecommunications

Information Network Architecture (TINA), developed by the TINA-Consortium. TINA is

based on the existing concepts of TMN and IN. TINA aims to integrate management and

control into a unified logical open distributed software architecture. TINA-C envisaged that

each TINA function should be represented as a generic software object with its own

integrated management and control mechanisms included. TINA architecture focuses on four

distinct areas: service, network, management and computing. The TINA modelling approach

is a layered one. The TINA business model [TINA-BM] presents a general business model

and reference points between the autonomous players. The TINA service architecture

[TINA-SA] aims to support for a wide range of services (communication, broadband, multi­

party, multi-media, mobile) through a set of generic re-usable components. By defining the

31

session model, TINA service architecture fully separates the service support functionality

and the physical connectivity. The TINA computing architecture is focused on structuring

the software and providing for the distribution. The services/applications are represented as a

set of distributed objects, or Computational Objects (CO), with well-defined interfaces,

communicating over a Distributed Processing Environment (DPE). The network architecture

aims to provide the connectivity service needed to support the TINA applications, by

defining the network resource information model [TINA-NRIM]. The management

architecture deals with service, connection, FCAPS and DPE management.

TINA is strongly object-oriented (0 0) and largely based on the general Open Distributed

Processing (ODP) [ODP] principles. ODP provides a broad architectural framework that

distributed systems aiming to operate in the multi-provider environment must conform to

throughout their development. ODP is not focusing solely on the telecommunications

systems, but on the general distributed systems. For more details on ODP, see sections

3.2.1.1.1 (chapter 3) and 4.1.2.2 (chapter 4).

ACTS projects VITAL (Validation of Integrated Telecommunications Architecture for the

Long-term) [Pavo97] and REFORM (Resource and Fault Restoration and Management)

[Geor99], amongst others, conducted telecommunications network management research

work using the TINA architectural principles.

An alternative approach to management is the policy-driven management [Slom94b], where

the manager performs activities, specified through management policies, on target objects.

The policies are interpreted by automated agents. The policies can be either authorisation

policies, specifying what activities a manager is permitted/forbidden to perform, and

obligation policies, specifying what a manager must/must not do on target objects.

2 .3 .3 T e c h n o l o g ie s

Technology can be understood as a mechanism enabling the functioning of a particular

system. Network and service management systems are inherently distributed, and the

distribution is supported by computing platforms based on a range of technologies. The

TeleManagement Forum’s (TMF; formerly the Network Management Forum, NMF)

Technology Map [NMF-TM] captures a number of technologies: CMIS/P [X.710] [X.711],

SNMP [RFC1157], JAVA [JAVA], CORBA [CORBA], Web-based technologies, etc. These

technologies provide access to management information and enable communication between

management applications.

32

Common Management Information Service / Protocol (CMIS/P) and Simple Network

Management Protocol (SNMP) are the established protocol-based technologies for

management. Both are based on the manager-agent model. The OSI-SM and the supporting

CMIP/S are used as the base technology for TMN. SNMP is a commonly used technology

for Internet and private network management.

In the recent years, the general distributed object technologies, such as CORBA, JAVA, etc.

are emerging as an alternative. These are based on the client-server relationships between

distributed objects, where the communications is taking place through a well-defined

Applications Programming Interface (API). CORBA defines a system that caters for the

interoperability between objects in a heterogeneous distributed environment, in a manner

transparent to the applications user/programmer. CORBA objects are specified in an abstract

language that can be mapped to a number of object-oriented programming languages such as

JAVA, C+-I-, etc. CORBA is increasingly used for the TMN service level applications, while

the TINA computing architecture is based on CORBA. JAVA has a Remote Method

Invocation (RMI) facility that supports distribution: however, only JAVA objects are

supported.

Object Management Architecture (OMA) [OMA] is a general software architecture proposed

by the Object Management Group (OMG). OMA is a high-level view of a distributed

software environment. OMA is based on four sets of components: Object Request Brokers

(ORBs), Object Services, Application Objects and Common Facilities. ORB is the heart of

OMA, and in the OMG interpretation the ORB is effectively Common Object Request

Broker Architecture (CORBA). ORBs enable the communication between distributed

objects, independent on the implementation techniques and the platforms on which these

objects reside. The Object Services support the object lifecycle management, object

relocation, access control, etc. Common Facilities provide for generic application

functionality, such as database access, printing, and email. Application Objects perform the

user-specific functionality. OMA is a general distributed software architecture, rather then a

specific management architecture, and as such will not be further discussed in this thesis.

The WWW technologies can also be used for management. In this scenario, the browser-

based Graphical User Interface (GUI) is offered to the human manager, which can send the

CMIP/SNMP messages in a string format over Hypertext Transfer Protocol (HTTP)

[RFC2068] to the agent, which is capable of translating these messages, and is located next

to the resource.

33

The diversity of technologies and the need for interworking drive the development of the

technology gateway solutions, also discussed in [NMF-TM], such as CORBA-CMIS and

CORBA-SNMP gateways. In the majority of the network and service management ACTS

projects, more than one management technology was used. The examples of technology

gateways are the ICM CMIP/SNMP [McCa95] and VITAL/REFORM CORBA/CMIS

[Pavl97] gateways.

2 .3 .4 D e v e l o p m e n t m e t h o d o l o g ie s a n d m o d e l l in g n o t a t io n s

Another dimension of diversity apparent in the area of network and service management is

that of the system development methodologies and notations.

Development methodology is a set of rules of how to group the design information and

refine the system from its specification to the actual implementation. Notation is a way,

either textual or graphical, of describing the information about the system structure and

functionality, throughout the development process.

TMN recommendation M.3020 [M.3020] describes the TMN interface specification

methodology. Starting from the target management services that need to be developed,

management service components are defined, followed by management functions, and

finally resulting in the definition of managed objects needed to support the management

services. RACE projects ICM and PREPARE followed and contributed to this methodology.

The development of TINA systems is typically driven by the ODP viewpoint-based

methodologies. ODP specifies a way of grouping the system development information into

five distinct viewpoints: enterprise, information, computational, engineering and technology

viewpoints (for more detail refer to chapter 3, section 3.2.1.1.1). An example of the ODP-

influenced approach is the modelling of the management systems in the RACE project

PRISM (Pan-European Reference Configurations for EBC Services Management) [Berq96].

The TeleManagement Forum (TMF) has specified guidelines for developing agreements on

management interfaces [Vinc97]: the approach is use-case driven. Similarly, some ACTS

projects, such as PROSPECT (A Prospect of Multi-Domain Management in the Expected

Open Services Market) [Lewi97], adopted the use-case driven management system

development methodology [Wade98], based on the Object-Oriented Software Engineering

(OOSE) [Jaco92] approach. ACTS project TRUMPET also adopted a use-case driven

methodology, structured around the ODP viewpoints [Kand98].

34

A variety of documentation styles are used to capture the functionality and structure of

management system being developed, although the natural language does prevail in some

cases.

Guidelines for the Definition of Managed Objects (GDMO) [X.722] is typically used in the

context of TMN to describe the managed object classes, while the General Relationship

Model (GRM) [X.725] is used to capture the relationships. TINA modelling is conducted via

ODP viewpoints, notation used being sequence diagrams and Object Modelling Technique

(OMT) [Rumb91] class diagrams; although natural language is used for the large part of

documentation. CORBA computational object interfaces are specified in Interface Definition

Language (IDL), while the TINA computational object interfaces are specified in Object

Definition Language (ODL) [TINA-ODL], superset of IDL. The TMF approach relies on the

OMT class and sequence diagrams.

Recently, Unified Modelling Language (UML) [UML] is emerging as the notation of choice,

becoming a de-facto standard notation for software modelling in general. UML was used in a

number of ACTS projects such as FlowThru, TRUMPET, PROSPECT, etc. Working groups

such as ITU, TMF and OMG are considering its adoption.

2 .3 .5 D is c u s s io n a n d f u t u r e d ir e c t io n s

As we have seen, there is a breadth of standards and technology frameworks that are

applicable to open management system development. This situation suggests the future

direction towards a fairly loose, unifying management system architecture. Likewise, in

[Pavl98], it was identified that one of the main future challenges is the integration of all

distributed telecommunications software, such as TMN, IN and TINA: both management

and service control.

Similarly, there is an increasing need for a common methodology, or guidelines, as well as

unifying notation, for development of management systems. An adoption of such an unifying

approach would aid a wide range of parties involved in the development of management

systems to understand and exchange ideas and documentation. Moreover, it was argued

[Lew99a] [Lew99b] that such common development and modelling technique could greatly

aid reuse, which is seen as one of the key requirements of future management components.

A first step towards a unifying, loose architecture / technology framework was done in

[Pavl98]. Here, an approach to marry the TMN and ODP concepts was presented, and

CORBA was suggested as a base technology for TMN, instead of OSI-SM. This might be

seen as a step towards common middleware: undoubtedly, CORBA, as an implementation of

35

the ODP distributed object framework, is becoming the alternative management technology.

However, implications are wider: network management is going in the direction of lax

architectures, with the architectural concepts of TINA and TMN overlapping through a

common distributed object framework - ODP - where CORBA is the technology of choice.

The second key future issue is that of the common management system development

approach and the corresponding notation. The object-oriented modelling is a strong pre­

requirement. Telecommunications management nowadays cannot be perceived without

object-oriented information modelling - one of the key requirements for TMN - as well as

object-oriented, interface-based computational models in the context of TINA and ODP. The

emerging unifying notation seems to be UML. UML is a third-generation object-oriented

modelling language with considerable expressive power, which is becoming the de-facto

standard in the software industry. UML, however, lacks a clear development methodology,

especially in the context of management systems. A strong candidate framework for

structuring the UML modelling information in the context of management systems is ODP -

considering its applicability in both TMN and TINA scenarios.

The overall indication is that the transition from protocol-based technologies towards

distributed system technologies is taking place. We thus believe that the future is likely to

see a use-case driven management system development methodology, where the UML

models will be structured in an ODP viewpoint framework, describing lax architectures, in

the form of a melange of TMN and TINA concepts.

2 .4 Ch a p t e r s u m m a r y a n d d is c u s s io n

This chapter dealt with three key background areas relevant for our research: definition and

understanding of the term integrity; existing integrity-preserving techniques and frameworks;

and state of the art in network and service management - on which our integrity research is

focusing.

First, we tackled the concept and understanding of the term integrity. We discussed and

critically reflected on the two main prose definitions of network integrity. Both defined

integrity as a higher-level notion, encompassing a number of attributes relating to network

operation and performance, but without defining what these attributes are. We then presented

a survey of the existing integrity measures. The outage measures were discussed, and

assessed as post-mortem measures lacking capability to determine neither the current level of

integrity, nor the risk of a future outage. A single existing pre-mortem definition of integrity

was then discussed. This definition also identified the existence of a number of attributes and

factors effecting network integrity, however, without clearly pin-pointing what they are.

36

Finally, two terms were reflected upon, used in the field of computing, and bearing a strong

resemblance with integrity: dependability and safety.

Considering the above, we pin-pointed the lack of a clear definition of integrity and of the

identification of integrity attributes as one of the obstacles to effective dealing with the

issue. Our contribution to this aspect of the research is given in chapter 3, section 3.1.

The second topic considered was that of the existing research and industrial activities in the

field of integrity assurance. Most of the initiatives focus on the integrity of the core transport

network, while some steps were also taken towards tackling the integrity of the control

plane. There is no reported research in the integrity of the management plane.

In practice, the operators rely on the exhaustive pre-launch system/service testing as a means

of integrity assurance. In this context, the existence of the test-beds for the core/control

networks is of high importance. During runtime, the only integrity-preserving mechanisms in

place are screening and mediation devices at the interconnect between autonomous domains.

On the other hand, there is a shortfall of the pre-emptive integrity preserving techniques.

The academic research to date was generally high-level and analytical, pin-pointing the

under-researched areas and producing recommendations for issues to be considered. Some

attempts were made to provide a structured framework for tackling the integrity issues

throughout the system/service development lifecycle: however, no obvious flow of integrity-

preserving actions is defined, and the relationship with the system development lifecycle is

not strong.

Considering the state of the art in integrity management, we identified two shortfalls: lack of

a structured framework, and the scarcity of pre-emptive techniques for producing

highly integral systems.

Next, we highlighted the need for integral operation of the management plane. To argument

this, we captured the integrity relationship between the management plane and the

underlying managed network in the form of the control problem. We identified the need for

managing the integrity of telecommunications systems, specifically management systems,

as the key focus of our work.

Thus, we then presented a brief overview of the state of the art in network and service

management, in terms of architectures, technologies, development methodologies and

notations. This state of the art represents a necessary background in a number of ways. First,

37

any consideration of integrity of management systems needs to take into account both the

architectural aspects of the management system, as well as technologies used to implement

it. Moreover, integrity issues need to be considered throughout the management system

development lifecycle: thus, the development methodology deployed, and the modelling

notation used, will both be of paramount importance when tackling the pre-launch integrity

issues. Since we already identified the lack of pre-emptive techniques for providing highly

integral systems as one of the shortfalls of the current approach to integrity assurance, the

issues of development methodologies and modelling notations must be considered even more

closely.

The open issues we identified in this chapter are tackled throughout the thesis.

First, in chapter 3, section 3.1, we introduce our understanding of the term integrity,

represented as a set of lower-level attributes. In chapter 3, we then present our integrity

management methodology (section 3.2), which aims to structure the integrity-preserving

actions, and overcome the deficiencies and unify the expertise of both industrial and

academic approaches that we discussed in this chapter. Moreover, we consider a number of

pre-emptive techniques, or integrity policies, that can be used as a tool for producing highly

integral systems. Some candidate policies are discussed in section 3.4, while the two central

policies in this thesis are presented in chapters 5 and 6. These two policies were developed

using the two ACTS network and service management projects, TRUMPET and FlowThru,

as research platforms. The overview of these projects will thus be given in chapter 4.

38

3 INTEGRITY: DEFINITION AND METHODOLOGY

This chapter presents the core theoretical work conducted for the thesis: the novel

interpretation of the concept of integrity; and the development of the framework for

management of integrity issues throughout the system development and operational

lifecycle.

Our analysis of the concept of integrity, which is represented as a set of lower-level

attributes, is given in section 3.1. In the central section of this chapter, section 3.2, we

present our integrity management methodology and discuss its pre-requirements and phases

in detail. We also discuss practical issues concerning the cost-effectiveness of the

methodology and its applicability in the inter-domain environments, in section 3.3. In section

3.4, we elaborate on some integrity-preserving policies that can be considered in the context

of developing highly integral management systems. We conclude this chapter with the

summary and overview of research contributions in section 3.5. Some of the material in this

chapter has been published in [Pmj99a] and [PmjOOa].

In this chapter the integrity features of distributed telecommunications systems are discussed

in general terms. Nevertheless, all of the integrity concepts, strategies, and policies discussed

apply to the management systems as well, since management systems are just a

specialisation of a classical distributed system.

3.1 D e f in it io n o f t h e c o n c e p t : in t e g r it y a t t r ib u t e s

In this thesis, we adopt the established prose definition of integrity as given in [UCL94]

[Ward95] (see chapter 2, section 2.1.1), and adapt it to define telecommunications system

integrity as: ''the ability o f the system to retain its specified attributes in terms o f

performance and functionality''.

Next, we recognise the need to identify these “specified attributes”. This is not a simple task

since integrity is a broad term, encompassing a variety of issues concerning system structure,

functionality and behaviour. What follows is a breakdown of integrity attributes, and issues

that need to be considered when managing integrity. These attributes are identified through

consideration of both the dependability and safety concepts (chapter 2, section 2.1.3), and the

issues specific to the integrity of telecommunications systems (see chapter 2, section 2.1.1,

2.1.2).

39

Robustness, which can be defined as “the ability of the system to handle unexpected events”

is proportional to integrity - the more robust the system is, the more likely it is to retain a

high level of integrity within its operational environment. A system that is robust can cope

with all eventualities and continue operations (doesn’t ‘halt’ except when required to). The

opposite of robust is brittle. A system is brittle if it is likely to fail when the operational

environment (e.g. accessible data, requested commands, timing constraints etc.) is very

narrowly defined; more narrowly than is likely to be true in all circumstances.

Availability, defined as “percentage of time during which the system is operational and

conforms to its specification” [Vill92], is proportional to the integrity of the system - a

system that loses its integrity will suffer a loss of availability as well. Availability means that

a system can always respond to all requests made on it, within a required or specified time

window. Availability is sometimes expressed as A=MTTF/(MTTF+MTTR), where MTTF is

the mean-time-to-failure and MTTR is the mean-time-to-repair.

Performance: The throughput of the system. This is often traded off against functionality

since the more a system tries to do, the lower its throughput. Any degradation of system

performance can, if magnified, significantly effect system’s overall integrity status.

Data Coherence: Information copied or distributed through the system needs to remain

consistent through time and change of circumstances. ACID requirements: Atomicity,

Consistency, Isolation and Durability have to be fulfilled. Atomicity requires that a

transaction be either executed fully, or not at all. Consistency means that a data transaction

should take the system from one internally self-consistent state to the other. Isolation ensures

that an incomplete data transaction can never reveal its partial changes or internal state to

other transactions before its fully executed. Failure to ensure isolation can jeopardise the

system operation by providing it with inconsistent or false data. Durability refers to the

ability of the system to ensure that the result of a successful data manipulation can never be

lost. Any corruption of data manipulated by the system can endanger its operation. If data

coherence is lost, a system can gradually lose its integrity.

Liveness: Ability of the system to stay live at all times. A system might not remain live

because it is in a state of either deadlock or livelock. Deadlock is the state of a system in

which it is expecting a message or an event, which will not or can not occur. Livelock is the

state of the system where it oscillates between a closed set of states that it cannot leave.

Complexity: There are several established notions of complexity. It may be an assessment

of how long (how many iterations or cycles) an operation takes - known as time complexity.

Computational complexity relates to how well a given procedure can be analytically

40

described or determined. Data complexity refers to the complexity of data structures and

their interdependencies. With the advent of object-oriented culture, understanding of

complexity has acquired a somewhat different meaning, being understood as "a characteristic

of software that requires effort to design, understand, or code" [Hend96]. A high level of

complexity, unless it is there to increase robustness, poses more threats to system operation

and thus to integrity.

A high level of coupling (sometimes considered as a form of complexity) between system

components indicates a high level of interdependence: a change in a system component will

ripple through the system via the coupling paths. Similarly, a failure, or an integrity breach,

may propagate in such a way through the system, effecting its integrity.

Feature Interaction: When two or more systems/services, each with well-defined and

understood behaviour, result in unforeseen (and possibly unforeseeable) behaviour when

operated together. This is a well-known phenomenon, especially in the context of IN services

[Came93]: a classical example is the interaction between Call Screening and Call

Forwarding where the screened number X can be obtained if user A calls user B and B

forwards the call to X. The feature interaction issue can arise due to the other factors

influencing the integrity status of the systems, such as increased computational complexity

exhibited when systems are interconnected, or lack of data coherence.

Scalability: The impact on performance as more entities (processes, devices etc.) are added

to the system. The way a system scales is, in great part, a function of its computational, data

and time complexity.

Resilience: That a system can recover from faults. This term is often used, for example, in

networks where a resilient network can recover from link faults.

Reliability is defined as [Reib91]: “probability of a system performing its purpose

adequately for the period of time intended under the operation conditions encountered”.

Reliability estimation is focusing on prediction of mean-time-to-failure (MTTF), based on

testing experience and operational profile of the system in use. For a detailed survey of

reliability prediction, see [Dens98].

Security: Secure systems are more likely to stay in the correct operational state, since they

are able to detect and avoid intentional external (human) attack. Typical security sub­

requirements are authentication, access control, data integrity, confidentiality and non­

repudiation. Authentication refers to the mutual recognition of the communicating parties.

41

Access control ensures that an external party can access just a certain subset of

functionality/data of the system being secured, according to the contract. Data integrity

means that data in transit must be protected against modification, insertion, and repetition.

Confidentiality means that data content must not be disclosed, while in transit, to

unauthorised parties. Non-repudiation refers to the resolution of the dispute where one party

denies that communication took place.

A distinct sub-attribute of integrity is risk. Definitions of risk, as established in the

computing arena, were introduced in chapter 2, section 2.1.2.3. In our framework, we view

risk essentially as inverse to integrity, i.e. the higher the risk, the lower integrity.

The topics described above are all interrelated. For example, a system with poor scalability

will lose performance as the number of entities it involves grows. This would reduce

availability. Loss of performance and availability can impact on the timing of dependent

systems, for example in impacting on the data coherence or liveness constraints. Also, a high

level of security in the system ensures that the correct operation can not be jeopardised

through intentional misuse, but the computational overhead introduced by security

mechanisms can lower system availability and performance.

The number of integrity attributes and a high level of their interdependence imply a need for

a coherent framework for tackling these issues throughout the telecommunications system

lifecycle. A second step in the theoretical work discussed in this thesis is thus concerned

with developing an integrity management methodology, and is presented in the following

section.

3.2 M e t h o d o l o g y

An efficient integrity methodology must embrace all stages of the system life span: the

development process, testing, integration, and maintenance while operational. Without a top-

down integrity methodology that encompasses all stages of system development, integration

in the environment and its real-time operational features the problem cannot be fully

understood and managed, and threats to integrity cannot be identified and removed. Three

basic steps of the integrity methodology developed here are prediction, testing, and

maintenance.

Prediction is a pre-emptive activity, assessing the relevant integrity features and the overall

system integrity status prior to its introduction in the environment. It is aimed at locating and

removing integrity risk areas - hotspots during system development, thus producing a robust

system; and conducting actions, i.e. integrity policies, that ensure integrity preservation.

42

Testing is conducted not only during system development, but also after the implementation

of the system and before its introduction in the environment. The aim of this phase is to test

the correct operation of the system prior to its deployment in the operational environment.

Testing here thus refers to the final validation and integration tests performed during system

integration in the environment and prior to its full operational launching.

Maintenance is conducted after the system deployment and aims at detecting any

malfunction or degradation in system operation that might pose a risk to system integrity.

Maintenance encompasses the measurement of integrity-relevant features of the operational

system, diagnostics of the cause of degradation of integrity, and the application of the

relevant response. Response is a reaction to degradation of system integrity so as to preserve

the highly integral operation of the active system.

The emphasis in this thesis is given to system development and integration - the prediction

and testing stages of the integrity methodology. It is expected that by introducing appropriate

integrity design and testing issues early in the development lifecycle the threats to integrity

in later stages of the system life-span will be minimised.

Note that since the system can be perceived as a set of distributed objects providing a certain

service, the following methodology is applicable to systems as well as services: both can be

seen as a set of collaborating distributed components.

3 .2 .1 P r e d ic t io n

As an illustration of how to start to synthesise integrity strategy into system development an

example system engineering lifecycle is taken from the Hierarchical Object-Oriented Design

(HOOD) [Robi92] approach: this is illustrated in Figure 6. Many other formulations of

lifecycles exist, but this one is considered for its clarity. This model should not be confused

with the ‘waterfall’ model as it does not dictate how each phase should be managed with

respect to the next: instead, it describes how each phase should be mapped to the

development activities. In the HOOD lifecycle, five basic development phases are defined

and these are mapped onto a testing activity which matches each level in an appropriate way.

Figure 6 describes the engineering lifecycle and shows how the testing and integrity

activities to be considered are mapped to the development phases. Thus, for example, during

user requirements development phase, the focus is on the operational integrity and the

necessary integrity-related activities are conducted at this level.

43

Developm ent Integrity level Testing

A rchitectu ral
design

Operational
integrity

S ystem
requ irem en ts

V alidation
tests

S u b system
integrity

V erification
tests

D etailed
design

System
integrity

U nit
tests

Unit
integrity

C onstruction
phase

In teg ra tion
tests

U ser/o p era tio n a l
req u irem en ts

Figure 6 - Integrity strategy and system development lifecycle

In the testing hierarchy, the activities at each phase are clearly distinct and support the phase

above. The integrity hierarchy is different, not only do the activities at each phase support

those above; but also they inform those above. For example, at the unit level, the timing of

any action can be specified and verified. This then defines timing tolerances and

dependencies at the sub-system level.

As illustrated in Figure 6, the integrity-related activities are correlated to and performed

throughout the conventional system development process. These integrity development

activities can be perceived as a development lifecycle of its own, a lifecycle to be re-iterated

throughout the conventional lifecycle. Thus, the integrity sub-cycle has three basic stages:

integrity analysis, integrity design and integrity implementation. These three integrity

stages are iterated throughout system development.

First, integrity analysis of the system under development is conducted: the integrity-related

requirements are identified throughout the system development lifecycle. In order to

accomplish this, there is a need for an analysis framework in which to focus on different

kinds o f integrity issues: this is discussed in section 3.2.1.2. Each of the integrity concepts

outlined in section 3.1 can be located within different levels of integrity analysis. At this

point it should be noted that the results of integrity analysis, which is being conducted

throughout the system development (Figure 7) are correlated within different levels of

development and thus feedback and overlaps will almost certainly occur.

According to the integrity requirement classification conducted during analysis, the integrity

design is specified, i.e., integrity can be modelled into systems by defining integrity-

preserving policies that should be deployed during the system development lifecycle at the

44

relevant stages. The final bit of the predictive phase of the integrity methodology is how to

actually apply these policies during system development - integrity implementation.

Integrity
analysis

Integrity
design

Integrity
analysis

Integrity
design

Integrity
implementation

Integrity
implementation

Operational integrity

System integrity

Figure 7 - Integrity lifecycle

Prior to considering the prediction phase of the integrity methodology in detail, a suitable

system development process supporting basic requirements of a coherent development

approach must be defined. Moreover, the integrity-related attributes should ideally be

measured so as to allow comparison, assessment and improvement of the integrity features

of the system under development. The next section discusses these two issues.

3.2.1.1 M ethodology REQUIREMENTS

There are two requirements for the integrity management methodology to be effective: a

coherent system development approach, and measurement of the integrity-related attributes.

3.2.1.1.1 System development approach

There are three basic issues concerning the system development process:

• Specification - System Analysis and Design: The baseline definition of integrity

(correct and proper functioning) requires that it is possible to understand what the correct

functioning of a system is. Thus the start of the consideration of integrity attributes is in

the process of system requirements capture. A system has some chance of realising its

original requirements if there is a reasonably well-defined procedure for translating the

original requirements into a system design and then into a working system. Thus it can

be seen that the subject of system and software analysis and design is material to the

understanding of integrity issues.

45

• T racing and M apping: This requirement is based on the need that the entities (software

classes, modules, components) occurring in one domain of system development can be

identified/mapped when they occur in another, and that they do so correctly {e.g. a

software module defined in the detailed architecture is implemented correctly in the

code). The use of CASE tools and (semi) formal techniques is often used to ensure that

the identity of an object can be traced through the different phases of development.

Traceability is a classic requirement of good practice - forming, more or less, the

backbone of quality control systems such as IS09000 [IS09000].

• Integrity-friendly: The development process must be able to support the integrity

analysis and assessment of the system under development.

No definitive way of fulfilling these requirements exists as yet in the conventional

distributed processing world. The following describes one approach [Kand98] which

combines the Open Distributed Processing (ODP) [ODP] framework with the Unified

Modelling Language (UML) [UML] notation. This approach was adopted here due to its

general applicability for distributed telecommunications systems, and specifically for its

suitability for network and service management system development, as discussed in chapter

2, section 2.3.5. Moreover, this approach was co-invented by the author of this thesis, and

was successfully applied in the TRUMPET project, which was the main research platform

(see chapter 4, section 4.1) for the investigation of integrity issues in this thesis.

ODP provides a general architectural framework that distributed systems aiming to operate

in the multi-provider environment must conform to throughout their development. The bases

of this architectural framework are the five distinct viewpoints, which allow different

participants in system development to observe the system from a different perspective and

from a different level of abstraction. The ODP methodology incorporates five distinct

viewpoints; enterprise, information, computational, engineering and technology viewpoints.

The Enterprise Viewpoint represents an overview of the system and its aims and

functionality as seen by the enterprise and the user. This viewpoint describes the required

system capabilities, models the basic system decomposition into components, identifies

actors, policies and domains, and describes the general scenarios of the system use. The

Information Viewpoint provides a consistent and common view of all the information

handled by the system. Both the static view - the information objects, their structure and

relationships; and the dynamic view - how this information evolves - are given. The

Computational Viewpoint focuses on algorithms and data flows within the system. It

identifies system components, or computational objects, that provide the functionality of the

distributed system. The Engineering Viewpoint describes the actual realisation of the

mechanisms used to support the distribution of the components in the system. The

46

Technology Viewpoint describes the choice of implementation technologies used to bring the

design accomplished through the four previous viewpoints to life. This viewpoint depicts the

configuration of the hardware and software on which the distributed system relies.

The viewpoints are partial views of the complete system specification, and the description of

the same component can exist in different viewpoints. This gives rise to the viewpoint

consistency issue, referring to the consistency of specifications across different viewpoints

and consistency of different languages (notations) used in different viewpoints [Bowm96].

ODP recommendations do not advocate which languages to use in each viewpoint. Thus it is

possible to describe some data entities in the information viewpoint, and some processing on

those entities in the computational viewpoint, without being necessarily able to know that the

information being used in each case is identical. Thus part of the mapping requirement in

this context is that objects in each viewpoint can be clearly identified and related to each

other as required, as illustrated^ in Figure 8.

Enterprise

Possible
mapping^

I Possible
jmapping

\ ComputationalInformation
System

/Possible
/ mapping

EngineeringTechnology

Figure 8 - ODP viewpoints with mappings

It is worth noting that the general ODP "star" diagram of Figure 8 does not effectively

capture the relationships between the viewpoints from the system development perspective.

Typically, system development would start with the specification of the enterprise viewpoint,

then the information and computational viewpoints would be elaborated in parallel, followed

by the engineering viewpoint and finally the technology viewpoint.

Different semi-formal and formal languages may be used for specifying different ODP

viewpoints. Formal descriptions are deployed in the ODP framework with the aim to enable

precise, unambiguous, abstract definition and interpretation of ODP standards. However, the

approaches to languages and notations used nowadays have many drawbacks. Usually,

 ̂This is just and illustration of the possible mappings between the viewpoints, not aimed at detailed

elaboration of the mappings.

47

different languages are used for different viewpoints, causing poor viewpoint consistency

and mapping/traceability between system components through viewpoints. Many languages

lack the ODP-inherent object-orientation, as well as the tools support. Here, one single

viewpoint language is suggested for the description of all the ODP viewpoints: the Unified

Modelling Language, UML.

UML is a third generation object-oriented language that builds up on the established

techniques such as OMT [Rumb91], the Booch technique (Object-Oriented Design - OOD)

[Booc94], and the Jacobson technique [Jaco92], by offering some extensions to the notation

so as to provide a richer semantics and higher coherency of models. It is envisaged that it

will become a standardised object-oriented modelling language, and it is supported by a

variety of CASE (Computer Aided Software Engineering) tools.

UML provides a set of diagrams, each depicting a different perspective of the model of the

system under development. Class Diagrams describe the static structure of the object classes

in the system. They can depict the stand-alone object classes; relationships between classes,

such as association, aggregation (containment relationships) and inheritance (parent-child

relationships); as well as class interfaces. Use Case Diagrams describe how the system is to

be used - they depict the high-level functionality of the system. Collaboration Diagrams

depict how the scenarios of the system use are realised through interactions between object

instances. A realisation of a particular scenario is conducted via message exchange between

object instances: a client object, requesting an operation to be performed by a server object,

initiates operation invocation. Precedence rules are used to define the sequence of operations

performed. Sequence Diagrams complement collaboration diagrams. Sequence diagrams

depict the same scenarios as collaboration diagrams in a time dimension - object interactions

are arranged in a time sequence. State Diagrams depict dynamic behaviour of object classes.

They describe a set of states that an object goes through its lifetime. Component Diagrams

model the development view of system components and their relationships. Activity

Diagrams describe the order in which activities are performed, depicting parallelism and

synchronisation. Deployment Diagrams show the organisation of the hardware devices and

their particular interfaces, and software as related to the physical devices.

It is not necessarily possible to use the same notation for all the viewpoints, however, the

ODP enterprise, computational, information and to some degree engineering viewpoints can

all be described using UML. Since UML defines, to some extent, how different kinds of

descriptions should relate to each other, there is some possibility of producing the required

mapping. A possible usage and mapping [Kand98] is shown in Figure 9. Note that the

technology viewpoint is not described using UML, and appears in the diagram purely for

48

completeness and to illustrate its relationship with other viewpoints. For the details of the

ODP-UML mappings and relationships, refer to chapter 4, section 4.1.2.2.

Information Viewpoint Computational Viewpoint

C lass D iag ram S equence D iag ram

C lass D iag ramS ta te D iagram

D iag ramC ollabo ra tion

Enterprise Viewpoint
A ctiv ity D iag ram

U se C ase D iag ram

C o m p o n en t D iag ram , ^
C lass D iag ram

Technology Viewpoint Engineering Viewpoint

D ep lo y m en t D iag ram

Figure 9 - ODP <-> UML mappings [Kand98]

UML, as a single and unifying viewpoint language, eases the migration between ODP

viewpoints, enabling viewpoint consistency and thus the consistency, coherence and

completeness of the design itself. Tracing of the classes/components through the design and

mapping between the different viewpoints is made possible [Kand98][Pmj97][Pmj98b].

Finally, this development gives a sound basis for deploying the integrity methodology.

For the details of the ODP-UML mappings of Figure 9, the description of the application of

this approach for the development of a real-life management system, as well as for the

practical assessment of this approach, refer to the overview of the TRUMPET project -

chapter 4, section 4.1.2.2.

3.2.1.1.2 Measurement

The second requirement on the integrity methodology is the need to quantitatively assess the

integrity attributes of the system under development, i.e. the need to measure different

aspects of systems’ structure and operation that can have an impact on the integrity of that

system. This can be seen more as a desirable feature of the methodology, than as a

requirement, since not all of the integrity attributes (defined in section 3.1) are quantifiable.

Without quantitative information, i.e. without measurement, the entity under observation

cannot be fully assessed, managed, and improved. Without measurement, we cannot make an

objective statement concerning quality of the product that we engineer. Finally, a
49

quantitative measure of integrity-related parameters is crucial so as to allow a wide range of

parties that take part in the development of heterogeneous systems and in inter-domain

interconnections to understand and demonstrate to each other that their systems operate

correctly and in highly integral fashion.

Measurement can be defined as “the process by which the numbers or symbols are assigned

to attributes of entities in the real world in such a way as to describe them according to

clearly defined rules” [Fent91]. By entity we refer to the object under observation, in our

case, the telecommunications system and its components. The attribute is the property of the

entity under observation.

When measuring the attributes of things, measurement requires the identification of the

intuitively understood attributes of clearly defined entities. Measurement is then the

assignment of numbers or symbols to these entities in a way that captures our intuitive

understanding of the attribute [Fent91]. To measure the attribute we need to have a

corresponding relation in a number system, and measurement is then the assignment of

numbers to entities so that the empirical relationships between these entities are preserved

[KranVl]. This requirement, that the relationships which exist in the empirical system must

be preserved in the numerical system, is called the representation condition. There are a

number of ways in which the representation condition can be satisfied, depending on the way

in which we assign numbers to entities. Hence, there are different scales, depending on the

approach to number assignment. For different scale types, there are different statistics

applicable to measurements. There are five types of scales [Kran71]: these are listed below,

together with the corresponding statistics that can be applied to measurements, and the

examples of scales:

• Nominal scale, like simple labelling. The valid statistics are mode and frequency.

• Ordinal scale, like preference. The additional valid statistic is ranking: only the ordering

is implied.

• Interval scale, like degrees Celsius. The valid statistics are ranking, addition and average.

• Ratio scale, like degrees Kelvin. The valid statistics are as for the above, plus ratio.

• Absolute scale, like simple counts (number of days in a year). Full range of statistics is

applicable.

The attributes measured can be internal and external [Fent94]. Internal attributes are those,

which can be measured objectively and directly and only in terms of the actual entity on

which measurement is focused. External attributes are those which can only be measured

with respect to how the entity under observation relates to its environment. Integrity, as

stated before, is a subjective measure, and also an external attribute, since it is assessed not

50

only via internal attributes but also through its relationship with the environment. External

attributes are notoriously difficult to measure, they are often not well defined, and thus we

are forced to make contrived definitions of external attributes in terms of some other

attributes that are measurable. This is especially valid in our case, where the external

attribute is integrity, which is a complex, higher level attribute, and thus not directly

measurable. In other words, we are forced to measure the internal attributes to support

indirect measurement of the external one - integrity. The need for measurement of internal

attributes was similarly pointed out in [Fent94].

Thus, focus throughout the integrity management process should be to measure internal

attributes (those which are measurable) of systems and relate them to the target external

attribute, i.e. integrity. The aim is to use a metric, or a defined measurement technique

yielding comparable measurements (on which meaningful statistics can be applied) of

internal attributes, and relate them to integrity.

This can be done in two ways (Figure 10); by measuring an internal attribute and then

estimating the external characteristics by coirelation (route A), or measuring the internal

attribute and using a model to estimate the external attribute (route B) [Hend96]. The first

approach is more feasible and considerably more widespread in the various branches of

research. The second approach is more complex since there is a need for a strong scientific

rationale for expecting that there is a functional relationship between the two variables.

Using either of the two approaches we can claim that there is an estimate of the external

attribute gained from the measurement of the internal attribute.

M easured
A____

Estim ated
internal B

external
attribute attribute

M odel

Figure 10 - Correlation versus functional representation [Hend96]

Measurement, in the context of the integrity management methodology, is of particular

importance during both prediction and maintenance phases. In the prediction phase, there is a

need to measure attributes of the system structure so as to allow estimation of its integrity

features, both for pre-launch integrity management and for overall integrity assessment.

During maintenance, there is a need to measure the aspects of system operation and relate

them to system integrity status so as to be able to decide which remedial policies need to be

applied and when.

51

3.2.1.2 In te g r it y ANALYSIS

As stated in the preceding discussion, integrity analysis deals with identifying integrity-

related issues and requirements throughout the conventional system development lifecycle.

In order to be able to effectively define policies for integrity design, there is a need for a

coherent framework for integrity requirements classification. Here a three-dimensional

framework to accomplish this is presented. The three dimensions are:

• Integrity attributes (as defined in section 3.1).

• Integrity levels: operational, system, sub-system and unit (as defined in section 3.2.1).

• System development viewpoints, as defined by the ODP model (as discussed in section

3.2.1.1.1).

First, the wide range of attributes influencing or being influenced by the integrity status of a

system, as defined in 3.1, must be considered. Once the relevant attributes are identified, it

must be established which aspect of system structure and operation, i.e., which viewpoint,

they apply to. Each of the integrity attributes discussed above can be identified within a

certain ODP viewpoint of the system development. Some of the attributes can appear within

multiple viewpoints, with different meanings. Classifying integrity attributes according to

viewpoints would narrow down the problem and help focus on the attribute within the

viewpoint of interest. Finally, these attributes can also be classified according to the system's

integrity level through which the problem is perceived. Thus, an attribute can be identified

within the system operational integrity level, within system integrity, sub-system integrity or

unit integrity. The attribute can also be defined within more than one level: it can be

perceived from a different perspective.

Thus, a three-dimensional space (Figure 11) is defined, where each integrity attribute can

find its mapping in an ODP viewpoint and in the integrity level.

Integrity
attribute

Integrity
level

System
viewpoint

Figure 11 - 3D integrity analysis

52

Thus, an attribute can for example be found in the ODP information viewpoint on the system

level, as well as on the unit level. Also, an attribute can appear in two different integrity

levels, but the context of the attribute can be different according to the ODP viewpoint. The

whole set of attributes, viewpoints and integrity levels is shown in Figure 12.

(" Integrity
level

Operational

System

Sub-system

Unit

System
viewpoint

Enterprise

Computational

Information

Engineering

Technology

^ Integrity ^
attribute

Robustness
Resilience

Availability
Performance
Scalability

Data coherence
Liveness

Feature interaction
Complexity

Coupling
Security

Reliability

Figure 12 - Integrity requirements classification

From this diagram, starting with an attribute, it can be decided, prior or during system

development, what are the integrity requirements, in which viewpoint they should be

considered, and in which integrity level they belong. Different integrity requirements will

have different weight, depending on the kind of the system being developed.

In the following, some typical integrity requirements are discussed, taking for the reference

axis system's integrity level. Note that the integrity requirements on the higher integrity

levels are directly supported by the ones identified in the lower levels. For this support to be

effective, a clear development methodology must be adopted, supporting mapping and

traceability (as discussed in section 3.2.1.1.1).

Operational Level;

This concerns the specific details of what is expected of the system from the user and overall

operational point of view. It also takes into account how the system under consideration

should work with its environment - i.e. other systems already in existence. This level of

perception maps to the ODP enterprise viewpoint, and should capture the operational

integrity requirements which must be supported through the lower level system, sub-system

and unit requirements. Some typical integrity requirements on the operational level are

depicted in Figure 13.

53

f Integrity
level

Operational

System

Sub-system

Unit

^ System
viewpoint

Enterprise

Computational

Information

Engineering

Technology

Integrity
attribute

Robustness
Resilience
Availability
Performance
Scalability

Data coherence
Liveness

Feature interaction
Complexity
Coupling
Security

Reliability

Figure 13 - Typical integrity requirements on the operational level

• Security: The integration of a system into an open environment may require that a

certain set of security measures be in use.

• Resilience: The ability of a system to retain integral operation depends, to some degree,

on the threat level from its operational environment, and system's ability to recover.

• Feature Interaction: A perfectly well-constructed and operating system may produce

unexpected and unwanted effects in its operational environment due to its interactions

with other systems: feature interaction issues must be analysed in detail.

System Level;

At the system level, the concern is the characteristics of the system developed in a stand­

alone context; and with the parameters as defined by the operational environment. These

issues can be taken into account within the ODP computational, information and

engineering viewpoint. Some typical integrity requirements on the system level are depicted

in Figure 14.

• Performance: This defines how well the system performs both in its base line operation

(how quickly, for example, is one interaction processed) and as the system is extended.

Thus this area includes consideration of scalability factors. Scalability itself can be

understood through the more theoretical concepts, including timing complexity analysis.

Performance issues support the resilience and feature interaction requirements on the

operational level.

• Liveness: As the system is built up, the interaction between components becomes

increasingly more complicated. This can jeopardise the liveness of the system due to

possible occurrences of livelock or deadlock. It may also be the case that messages and

commands occur in the system which are mis-handled or not handled at all. That all

messages and commands which occur within the system are well handled is a

54

robustness feature. The liveness and robustness requirements at the system level have

an impact on the higher level, operational requirements of resilience and feature

interaction.

Availability: The combined effect of good performance and liveness contribute to the

overall availability of the system. On the system level some considerations must be

understood such as network capacity (for communications) and platform processing

capacity.

Data Coherence: In a distributed system, information is gathered from many sources

before decisions can be made. This takes time and there is often a possibility that not all

the data is valid by the time it has all been gathered and a decision made. Equally,

actions which need to be performed over a distributed system may take effect at various

time intervals (depending on the degree to which the system is asynchronous) so that

ordering of actions or the storage of data can be reasonably difficult.

Complexity of the system and individual components has to be kept to a minimum:

highly complex modules/classes within the system have to be decomposed and

redesigned so as to avoid high dependency on the availability of a component. Also,

coupling between system components/sub-systems has to be cut down to a minimum so

as to decrease the probability of failure propagation.

^ Integrity
level

Operational

System

Sub-system

Unit

^ System
viewpoint

Enterprise

Computational

Information

Engineering

Technology

Integrity
attribute

Robustness
Resilience

Availability
Performance

Scalability
Data coherence

Liveness
Feature interaction

Complexity
Coupling
Security

Reliability

Figure 14 - Typical integrity requirements on the system level

Sub-svstem Level:

The sub-system level concerns sub-systems of the total system, composed of collections of

units, which have the validity as a self-standing system. Thus many of the system level

considerations above have a degree of validity at this level. As with testing, ensuring that

things work at the sub-system/integrated level reduces the complexity of testing at the

55

verification level; but does not replace it. This level of perception maps to the ODP

computational, information and engineering viewpoints. Some typical integrity

requirements on the sub-system level are depicted in Figure 15.

Integrity
level

Operational

System

Sub-system

U n it

System
viewpoint

Enterprise

Computational

Information

Engineering

Technology

Integrity
attribute

Robustness
Resilience

Availability
Performance

Scalability
Data coherence

Liveness
Feature interaction

Complexity
Coupling
Security

Reliability

Figure 15 - Typical integrity requirements on the sub system level

• Performance: How the individual units are composed into a sub-system will effect the

performance of that sub-system. For example, the same units can be combined into a

synchronous or asynchronous system, may be in a ring or in a tree. Even though the

performance characteristics of the individual units remains constant, the sub-systems'

performance - in all respects - will vary. Also, performance of a sub-system will effect

the overall performance on the system level.

• Robustness: Robustness at this level is more than the sum of the unit elements’

robustness. The sub-system must be able to cope with degrees of failure of individual

units. Robustness at the sub-system level effects the performance and liveness integrity

requirements on the system level.

• Complexity: The complexity issues considered on the system level are still of interest on

the sub-system level. Understanding the complexity on the level of the sub-system

supports the complexity assessment on the system level. For example, a high level of

data and coupling complexity on the sub-system level might effect data and state

coherence at the system level. Also, a high level of timing complexity at this level will

influence the system performance at the higher integrity level.

Unit Level;

The system is, at the end of the day, composed of individual functional components,

connected with a communications network (itself a set of elemental components). If these

have poor characteristics, then the higher level has little chance of performing well. Some

56

typical integrity requirements on the unit level are depicted in Figure 16. The typical

integrity requirements on the unit level match closely to those on the sub-system level -

however, their meaning is dependent on the integrity level on which they are perceived, as

explained below.

Integrity
level

Operational

System

Sub-system

Unit

System
viewpoint

Enterprise

Computational

Information

Engineering

Technology

^ Integrity
attribute

Robustness
Resilience

Availability
Performance

Scalability
Data coherence

Liveness
Feature interaction

Complexity
Coupling
Security

Reliability

Figure 16 - Typical integrity requirements on the unit level

• Performance: As mentioned above, unit performance directly effects sub-system and

thus system performance. If a unit is in an inner loop in some sense {i.e. is used very

often) small changes in performance characteristics can be amplified greatly in the

integrated (sub) system.

• Robustness: Equally to performance, the robustness of individual components can effect

the robustness of the integrated (sub) system; and can be amplified.

• Complexity issues on the unit level equally effect the complexity, performance, data

coherence and robustness at the sub-system level.

• Reliability of the system components, in terms of the mean-time-between-failures, is

directly influencing the overall system integrity status.

The above discussed some typical integrity requirements on different levels of system

development, and the interrelations between them. These will depend on the kind of system

that is being developed.

This section has outlined a high-level integrity analysis framework, without suggesting any

particular techniques or approaches with which to tackle these issues. The important thing at

this stage is to form an awareness of the issues that exist and to be able to identify risk areas

within the system development context. Once the integrity requirements are defined and

located in the three-dimensional space, the focus can be shifted to developing the integrity

57

design policies, according to defined requirements and knowing where to concentrate. The

integrity design policies should ensure that integrity requirements are met.

3.2.1.3 I n t e g r i t y d e s ig n : i n t e g r i t y p o l i c i e s

Once the integrity requirements are identified within different viewpoints and within

different integrity levels, the integrity design has to be accomplished. Integrity design

encompasses the definition of the policies to be carried out during system development so as

to be able to meet the integrity requirements.

The term policy here is used to depict an integrity-preserving action. The policies can take

the form of either; integrity-focused design recommendations', specification of the integrity-

preserving mechanisms that need to be implemented; or they can give rise to the definition of

testing recommendations. It should be noted that the term "policy" it is not used in the

context of policy-based management (details of which can be found in [Slom94b]). The term

policy is used in its dictionary meaning: "definite course or method of action selected from

among alternatives and in light of given conditions to guide and determine present and future

decisions" [MW-http].

According to the integrity requirements, the integrity policies are developed. Some example

policies, addressing a subset of typical integrity requirements, identified in section 3.2.1.2

and classified according to system's integrity level, are given in the following.

Operational Level:

• If the integrity requirement is security on the operational level (enterprise viewpoint),

this requirement will be further analysed at lower levels of system development. For

example, the confidentiality requirement will be met by designing a required encryption

policy within the engineering viewpoint.

• A high level of resilience and robustness can be achieved by performing extensive test in

the test-beds that simulate the possible behaviour of the environment.

• If the integrity requirement is to avoid the feature interactions, thorough

interconnection and interoperability testing should be conducted, based on a defined

set of scenarios.

• A number of ways to resolve feature interactions in IN systems were proposed, a

summary of which can be found in [Keck98].

System Level:

• If the integrity requirement is the liveness on the system level, i.e., avoidance of livelock

and deadlock, the UML notation schemes depicting the behaviour of the system can be

58

complemented with more sophisticated behavioural modelling techniques such as SDL

[Z.lOO] and others. On the basis of these, reachability analysis and livelock/deadlock

detection techniques can be conducted in the computational viewpoint, not just on the

system level, but also on the sub-system level (see section 3.4.2 for more detail).

• Data Coherence requirement might be fulfilled by implementing rigorous data

coherence policies supporting atomicity, consistency, isolation and durability of

transactions on data. Example of such a policy is the Transaction Service for network

management applications [Ranc98].

• If the requirement for system development methodology is the ability of the rigorous

system development and formal proofing between the phases, UML notation schemes

can be expanded and formal methods (see section 3.4.1 for more detail) can be applied

as a design integrity policy. There are, however, issues of mapping between UML and

fully formal notations.

Sub system Level;

• If the aim is to minimise complexity and coupling, the adapted software metrics

[PmJ99b] can be used as a tool to even out the complexity and thus risk level of

individual components. This can be done not only on sub-system but also on unit and

system levels, considering the computational and information viewpoint.

Unit Level;

• Extensive performance measurements can be carried out so as to assess whether the

desired level of performance is achieved. This can be done on the sub-system and system

levels as well.

The above briefly discussed some integrity policies that can be applied during system

development. We see the development of novel integrity policies as one of the crucial issues

in integrity management. Thus, some of the policies are further discussed in detail in section

3.4, and chapters 5 and 6 of the thesis focus on two distinct policies.

Once an integrity design policy is developed, it has to be carried out, i.e. implemented.

3.2.1.4 In te g r it y im pl em e n ta t io n

The policies identified in the integrity design stage must now be implemented and applied

during system development. Some policies can be implemented during the “conventional”

system development. For example, developing and coding a module that performs

authentication, so as to support the security requirement, or a transaction manager [Ranc98]

to ensure the distributed data coherence.

59

Other policies need to be implemented more carefully. If, for example, the requirement is a

low level of coupling, this level must be measured so that it can be shown that it fits the

requirements. In such cases, there is a need to have a closed loop whereby the integrity

features of the design of the system under development can be measured, the system

operation can be predicted, and, according to the design integrity policy, a response, i.e.,

redesign can be applied. Thus, a control loop must be introduced, implementing a particular

policy, as shown in Figure 17.

Target
operation

Current
designResponse

Predicted
operation

Integrity
control

Prediction
algorithms

Measurement
system

System
under

development

Figure 17 - Integrity policy implementation

The closed, control loop represents the high-integrity development step in the overall system

development lifecycle. The relevant integrity requirements, identified during integrity

analysis, are measured and then used as a basis for prediction of system operation, which is

in turn used as feedback information for applying the relevant response. This is the

“reactive” loop of the prediction phase. On the other hand, all of the information gathered in

this phase is analysed and documented so as to assess the overall system integrity and risk

status. All the information gathered needs to be well-documented and used for defining and

implementing the maintenance policies.

As seen from Figure 17, there are three constitutive parts of the “integrity implementation”

system:

• Measurement system, by means of which quantifiable information about system under

development can be gathered. Without a quantitative insight, this approach can not be

automated. Moreover, the measurements must be comparable and understandable.

• Prediction algorithms, which process these measurements so as to predict system

operation.

• Integrity control algorithms, which analyse predicted operation and apply necessary

response (in form of re-design activities), as defined by the integrity policy, to the

system under development.

60

3 .2 .2 T e s t in g

Testing, although an integral part of the development process, is considered here as a

separate phase of integrity methodology since it can be perceived as the final verification of

the integral system operation. This is particularly relevant in the heterogeneous multi-domain

environments where testing is crucial prior to interconnection.

Stand-alone system testing takes place throughout the system development and

implementation. As separate components are developed, they are tested independently to

verify their integral operation. Once the whole set of components is developed, they are

integrated so as to make up the whole system. The stand-alone system testing is then

performed, so as to verify correct system operation. Finally, the validation tests are

performed so as to test whether the system conforms to the user requirements. The testing

phases described above form a testing methodology depicted in the software engineering

lifecycle derived from Hierarchical Object-Oriented Design [Robi92] (Figure 6, page 44).

Once the stand-alone system testing (that depicted in Figure 6) is performed, it is crucial to

carry out the testing of the system when integrated in the operating environment. This stage

takes place on two levels - the ‘local’, intra-domain testing and ‘global’, inter-domain

testing, including interconnects [Ward95]. The aim of intra-domain testing is to test how

well the system integrates in the environment within its own operational domain. The aim of

inter-domain testing is to exercise the behaviour of the operational system when

interconnected with the systems in other autonomous domains. This can be seen as the

crucial part of the testing phase in the context of the Open Network Provisioning (ONP). At

this stage, a certain level of performance tests can be carried out so as to predict and measure

any possible degradation of performance that might cause the loss of integrity.

Testing is the most widespread integrity management activity that is currently deployed in

the industry (see “state of the art” chapter 2, section 2.2, page 24). Although testing is

sometimes heavy-handed, the initiatives such as NSTS and HTP are a very significant step

forward in the integrity-related testing.

Testing itself could introduce integrity risks if the system is tested against another “live”

system. However, test-beds for core and control networks exist, such as the Bellcore test-bed

(NSTS), and the BT test network, and which include a wide range of elements encountered

in the real environments, and a set of test scenarios including the failure ones. In chapter 6 of

this thesis we present an approach for testing the inter-domain interconnection between

autonomous management systems over the TMN Xuser interface, and introduce the concept

of the management test-bed.

61

3 .2 .3 M a in t e n a n c e

The maintenance phase of the integrity management methodology starts after the system is

launched into operation. An efficient integrity maintenance process requires monitoring and

measurement of system integrity features throughout the system operation, and actions that

help the preservation of highly integral operation.

Approaching the problem of integrity management from the point of view of control

systems, the maintenance step can be depicted as in Figure 18 (effectively analogous to

Figure 4, page 28).

operation Integrity
control

algorithms

Response

Estimated
operation

Operational
system

Current
operation

►

Estimation Monitoring/

algorithms 4------------------------------------ measurement
system

Figure 18 - Maintenance

The closed, control loop of Figure 18 depicts dynamic integrity-preserving actions conducted

during system operation. The relevant integrity features are monitored and measured during

system operation and then used as a basis for estimation of system operation which is in turn

used as feedback information for performing the relevant integrity-preserving control

actions, or response. This is the “reactive” loop of the maintenance phase. On the other hand,

all of the information gathered from measurement, estimation algorithms and response is

analysed and documented so as to assess the overall system integrity and risk status. This

information also needs to be documented so that it can be exploited for the future use and

integrity research.

As seen from Figure 18, there are three constitutive parts of the integrity maintenance

system:

• Monitoring/measurement system, by means of which quantifiable information about

system operation can be gathered.

• Estimation algorithms, which process these measurements so as to estimate system

operational features relevant to the integrity status.

• Integrity control algorithms, which analyse the estimated operation and apply the

necessary response.

62

The aim of the monitoring/measurement system is to detect any malfunction or degradation

in system operation that might pose a risk to the integral system operation. Thus, both the

types of measurements that have to be taken and how they can be taken must be clearly

specified. These measurements must also quantitatively relate to the integrity status of the

system and as such be used for diagnostics (the exact definition of the malfunction in

question), which is performed by the estimation algorithms. In order to correctly configure

both the measurement and estimation systems, all the data gathered during the prediction

phase of the integrity methodology (such as information on integrity hotspots), as well as the

testing phase, must be used. Also, measurement mechanisms could be dynamically

configured so as to adapt to the actual system operation.

The data collected by the monitoring/measurement system is used as the input to estimation

algorithms. There are a number of possible integrity policies that these algorithms might be

based on. The functionality of the estimation algorithms might be based on whether the

integrity parameters measured exceed certain values - the approach similar to the one

proposed in [Mont98]. Alternatively, the measurements might be processed in the deductive

fashion by the FMECA - like algorithms (see section 3.4.3 for details of FMECA) so as to

anticipate the occurrence of a possible catastrophic failure. On the other hand, if the

measurements instantly indicate a catastrophic failure, the estimation algorithms might be

based on the inductive FTA-like technique (see section 3.4.3 for details of FTA) so as to

diagnose the set of causes that led to it and thus suggest the appropriate remedial action.

A complementary policy during this phase could be based on the periodical re-iteration of

tests established during the testing phase so as to verify that system performance, availability

and integrity are not degrading.

Finally, an additional, purely experimental activity can be conducted in parallel with

maintenance. This activity would comprise the verification of correctness and efficiency of

all the measurements and integrity preserving policies carried out during the prediction

phase, against the working system. The predictive integrity policies can thus be proven

correct through experimentation.

3.3 P r a c t ic a l ISSUES

There are two key practical issues concerning the integrity management methodology. First,

the application of the methodology must be proven to be financially justifiable, through the

use of the cost-benefit analysis. Second, the issues of how to apply the integrity methodology

in multi-domain environments have to be tackled.

63

3 .3 .1 I n t e g r i t y m e t h o d o l o g y a n d c o s t - b e n e f i t a n a l y s i s

Integrity methodology covers all phases in the system lifecycle: from specification through

to testing, followed by system operation monitoring and remedial policies. The aim of the

methodology is to produce highly robust systems, which have a high tolerance to unexpected

perturbations and minimal possibility of failure - i.e., high integrity. The reason for

employing a rigid integrity methodology is simple - any loss of integrity might cause a

significant financial loss to the telecommunications company operating this system. On the

other hand, the application of integrity policies during the prediction and maintenance steps

must be financially justifiable. If a company is in deficit Just for the reason of building

fractionally small amount of extra robustness into a system whose failure rate is small, there

is no financial justification in doing so. Thus, every policy must be assessed by a cost-benefit

analysis, as shown in Figure 19.

Estimate
risk

reduction

Estimate
extra cost of the
integrity policyIdentify financial

benefît of risk
reduction

Estimate
cost of

integrity breach

Determine
final
cost

Identify
policy

Identify
risk to

integrity

Figure 19 - Cost-benefit analysis process

Hence, if a risk to integrity and a corresponding policy were identified, a financial

justification must be given for applying that policy. The financial benefit of applying the

policy so as to avoid a breach in system integrity must be compared to the cost of applying

the policy. If this final cost is financially viable, the policy is applied.

There are number of operational trade-offs involved in the cost-benefit analysis. Factors that

need to be considered encompass the following: increase in reliability versus decrease in

performance; increase in robustness versus decrease in availability; decrease in complexity

versus decrease in robustness, etc. Note that all these attributes should be described

quantitatively, so as to be able to make meaningful judgements concerning the trade-offs.

64

Even if it is shown that applying a certain integrity policy is financially beneficial, there is a

second issue to consider: that of how to apply the integrity policy in a multi-domain

environment.

3 .3 .2 A p p l y in g in t e g r it y m e t h o d o l o g y in m u l t i-d o m a in

ENVIRONM ENTS

Enforcing integrity policies in multi-domain environments is both necessary and complex.

There is a need to establish a certain level of trust between network operators, service

providers, and other parties which might want to interconnect their systems. Parties need to

be assured that they are not exposed to integrity risk due to interconnection. However,

rigorous integrity policies for system development and interconnection might discourage

new service providers and system manufacturers from introducing their services or systems

in the market. This would have a negative effect from that envisaged by the ONP. Integrity

policies need to keep the highly integral operation of interconnected services and systems,

while still stimulating interconnection.

As a baseline for potential interconnection parties involved would need to formulate their

integrity requirements during system development. The output of the integrity analysis

performed by parties involved in the interconnection could be consolidated in terms of these

requirements. The (quantitative) output of the autonomous domains’ integrity

implementation would then determine the level of risk and threshold criteria determining the

systems’ acceptability for the interconnection. The threshold criteria would then have the

form of: “if a certain integrity-related parameter exceeds x, than it is considered as a threat

and thus not acceptable” [Ward95]. If a party involved in the interconnection is re-using the

system for this purpose, then a thorough review and integrity assessment of design

specifications and extensive stand-alone testing, according to the integrity methodology

presented here, would determine the acceptability for the integration/interconnection.

Thus, it is envisaged that an effective way of applying integrity policies in multi-domain,

heterogeneous environments is to establish service-level integrity agreements (SLAs), or

integrity contracts, between parties in autonomous domains. In federated environments

consisting of multiple autonomous players, common integrity policies can be established

during development and for testing, and integrity contracts can be exercised prior to the

interconnection. This approach is more lax in the sense that the integrity policies and

contracts can be established solely by parties involved in the interconnection. Alternatively,

global, regulatory conditions based on quantitative integrity/risk notions can be established

by standardisation bodies and imposed by regulatory bodies - similar to the approach

envisaged in [UCL94].

65

Domain A

Federation X
Community

“Telecoms world’

Domain B

Federation Y

Domain C

Figure 20 - Integrity contracts in federated environments

The two approaches discussed above are represented in Figure 20, using the ODP

terminology. Here, domains are represented by small ellipses, depicting autonomous players.

Federations, the medium ellipses, represent groupings of autonomous players with a

common objective. The community representing the whole telecommunications community

is marked by the large ellipse. The first approach discussed above advocates the use of

different service-level integrity contracts (marked by black lines) between domains that form

a federation. Federation is based on a certain integrity contract - a set of rules that implement

the agreed integrity policies and acceptability criteria. Alternatively, global regulatory

conditions based on integrity/risk notions, and governing the integrity-related

interconnection contracts between any two parties, can be established by standardisation

bodies and imposed by regulatory bodies.

3 .4 F o c u s ON POLICY DEVELOPMENT

So far we presented the integrity management methodology, aimed at development and

maintenance of highly integral telecommunications systems. This was seen as a necessary

step towards improving thé current approach to integrity management. The methodology

advocated the need for the development of pre-emptive integrity policies, another open area

of integrity research (as discussed in chapter 2, section 2.2). Chapters 5 and 6 of the thesis

focus on the development of two distinct integrity policies. However, a number of other

policies were considered during the theoretical research (see also section 3.2.1.3), and three

of those are presented in this section in more detail.

3 .4 .1 F o r m a l m e t h o d s : v e r i f i c a t i o n , v a l i d a t i o n a n d f a u l t

REMOVAL

The first policy described here is based on the elaboration of the UML model of the system

under development with fully formal models. Formal Description Techniques (FDTs), or

66

formal languages, are notations and descriptions of the system with a sound basis in

mathematics. They utilise mathematical concepts and notations to precisely define theories

and models of system structure, functionality and behaviour. Examples are Vienna

Development Method (VDM) [Jone90], Z [ZArch], LOTOS [LOTOS] and others.

Formal languages capture system functionality with accuracy, as compared to semi formal

languages such as UML, which show structure only. Benefits of such a rigorous formalism

are multi-fold: precision, abstraction, clarity and conciseness [Barr93]. All of these benefits

allow the main feature of the formal languages to be exploited - that of manipulability.

Formal methods allow different levels of manipulation of the system under development

throughout the lifecycle.

First, some formal languages (like Z) can be used for rigorous high-level specification and

requirements analysis. Before indulging in system design, specifications can be checked for

global coherence and consistency - i.e., validation can be performed. Formal methods at this

stage provide mechanisms for performing validation and derivation of properties using

rigorous mathematical proofs. Proofs are conducted to confirm the required properties of the

system. Many fundamental incoherences and bugs in system specification can thus be

removed early in the lifecycle, preventing them to propagate further through the design. If

bugs are not removed at this early stage, they can cause catastrophic faults culminating in the

complete loss of service.

Next, formal languages such as VDM or LOTOS can be applied to the development process,

using a set of rules - a design calculus - that allows stepwise refinement of the operations and

data structures in the specification to an executable program. By using rigorous proofs,

validation is possible at all steps. Also, verification, in the sense of formal checks of

consistency between successive development stages, is possible. Some formal methods, such

as LOTOS, also allow generation and testing of prototypes at all stages of system

development, as well as inclusion of rigorous timing conditions.

Finally, formal methods allow, at the most rigorous level, verification of the system

implementation versus the formal specification of the system (which can be understood as a

conformance check). Verification is a formal proof of structural and behavioural properties

expected from the implementation - a proof of correctness of the implementation.

Thus, in the context of the predictive integrity policy, formal methods can be used as an

integrity-focused design recommendation to increase confidence in the correctness,

completeness and overall integrity of the system under development. They can prevent fault

67

occurrence and fault introduction during system construction, and hence can be used for

reduction of risk. Formal methods are essentially predictive, fault-avoidance techniques,

enabling early error detection and fault removal in the form of re-design actions. In this

form, formal methods do not allow any direct measurement of the relevant integrity

attributes - they are only used for documentation, step-wise refinement and as fault removal

mechanisms.

Formal methods are not one hundred percent reliable and effective. As all methods, they are

subject to human error, they require excessive workforce training due to their mathematical

complexity, and were shown to slow down the development process significantly. Thus, the

use of formal methods incurs very high cost which might prove unnecessary when weighted

against the improvements they might offer to the overall system integrity status (see section

3.3.1).

Although formal languages are being extensively standardised, and some initiatives [Bate96]

[Pick97] were taken to integrate them with semi-formal description techniques so as to make

them more approachable, there is not much evidence of their use in the industry [Barr93]. A

rare field of application is within the safety-critical system design (systems such as space

shuttle) where the extra cost of their use is acceptable [Bowe92]. On the other hand, it was

shown that it is actually not possible to measure how much exactly the formal methods add

to safety improvement [Bowe92], and that they are not particularly effective unless

combined with testing [Hatt97] and fault tolerance metrics (discussed in section 3.4.3).

It seems that the above drawbacks of formal methods, with an emphasis on high complexity

and cost, overweigh their benefits as an integrity policy. Also, in the context of the

development of a distributed application such as a network management system, formal

description techniques are not particularly effective since they are based on closed-world

assumptions.

On the other hand, behaviour-oriented formal methods, such as Specification and

Description Language (SDL) and Message Sequence Charts (MSCs), provide an ability to

simulate and exercise behaviour of a distributed system during design in a more lightweight,

effective, real-time fashion. These are considered as a separate integrity policy and discussed

in the following section.

3 .4 .2 F o r m a l m e t h o d s a n d b e h a v io u r s im u l a t io n s

A number of formal languages, such as Specification and Description Language (SDL)

[Z.lOO] and Message Sequence Charts (MSCs) [Z.120], provide the description of solely

68

behavioural aspects of system operation. These languages allow specification and design of a

concurrent, distributed system to be represented in terms of real-time asynchronous

communication between independent distributed entities. Behaviour is a vital aspect of the

operation of distributed telecommunications systems; it is also complex and difficult to

describe.

SDL provides a clear and comprehensive behaviour description by representing the system

as a set of communicating Finite State Machines (FSMs), or processes. SDL can be used

throughout the development lifecycle: for specification, design, and as a model used as a

basis for implementation and testing. Similarly to the formal methods described in the

previous section, the system specification described in SDL can be validated, it can be used

as a basis for stepwise refinement that can be subjected to verification of successive designs,

and the final implementation can be verified against the specification. The main advantage of

SDL as compared to the other Formal Description Techniques (FDTs) described in the

previous section is that it can also be used for a full-blown simulation of system operation in

order to extensively exercise system behaviour. Behaviour can be exercised so as to check

whether the system stays within its specified behavioural envelope; to perform reachability

analysis in order to see whether all specified behavioural paths are traversed; and to conduct

deadlock and livelock detection. Moreover, it can be used for multi-system interaction

simulation.

MSCs are essentially a complementary technique to SDL (and to some extent LOTOS),

although they are a standardised FDT [Z.120] and can be used independently. MSCs are a

trace language which in its graphical form provides a particularly intuitive representation of

system runs (where one MSC depicts one scenario of system use), focusing on message

interchange between communicating entities and their environment [Ekka95]. MSCs

essentially depict communications between processes (FSMs) defined by SDL. They can be

used for system specification and then for automatic generation of the SDL specification,

and its simulation and consistency checks. As a stand-alone modelling technique, MSCs

support top-down system development from specification and design through to

implementation and selection of test cases [Grab93]. Since they focus on the message

interchange between system components and depict scenarios of system use, they can be

used for efficient real-time modelling of time-critical scenarios and system properties. Thus,

they can prove useful in identifying time-related integrity hotspots in system operation.

As discussed above, the behaviour-oriented FDTs allow a wide range of integrity-critical

aspects of system operation to be explored: they tackle liveness, time complexity and other

issues. Thus, they have a strong potential as a predictive integrity policy. Simulation

69

techniques offered by these FDTs could act as a powerful integrity policy during system

development: various aspects of the real-time system behaviour can be analysed. Faults and

inconsistencies in system operation can be detected throughout the development and

integrity control actions (see section 3.2.1.4) can be applied in the form of redesign

activities. Also, a set of measures could be possibly developed concerning the time-critical

operation, thus introducing a quantitative aspect in the policy. Moreover, the information

gathered during simulation can be used to define the maintenance policies and pin-point

aspects of system operation to be closely monitored.

The distributed, real-time model that can be developed using the behaviour-oriented FDTs is

suitable for describing and analysing distributed telecommunications systems, such as

network and service management systems. The drawback again is the scale of the

management applications, where the large inter-domain applications would be hard and

time-consuming to develop, thus proving the use of such techniques financially unjustifiable

(see section 3.3.1).

The use of SDL during this research work was narrowed down to aid the specification and

development of test suites designed to be applied over the inter-domain management

system's interconnection points (see chapter 6).

3 .4 .3 S a f e t y - c r i t i c a l a p p r o a c h

Safety-critical analysis and design is an established research area in the production of safety

critical systems, predominantly hardware [Redm91]. It is used throughout system

development so as to remove faults, to ensure the implementation of a highly safe system,

and to aid argumentation about system safety. Basic safety-critical approaches are both based

on fault trees.

First approach is the FMECA (Failure Modes, Effects and Criticality Analysis) technique.

This type of analysis starts with a known set of causes, and attempts to extrapolate toward

their ultimate effect upon the system by building a failure propagation, or fault, tree. The

failure modes {i.e., mean-time-between-failures, MTBF) of individual components need to

be known before the analysis is performed.

Fault Tree Analysis (FTA) approach complements the FMECA technique - it determines

causes of hazardous events. Starting from the undesired top event (system failure) it derives

one or more sets of potential causes. Model (fault tree) is thus built from top down in

deductive fashion - and/or combinations are used to structure the event space down to the

leaf events. Probabilistic methods are then used to determine the probability of the top,

70

catastrophic event occurring. As in FMECA, failure modes of components need to be known

to determine the probabilities of leaf events and thus that of the catastrophic top event.

The Failure Propagation and Transformation Notation (FPTN) [Fene93] offers a unified

framework for using FTA and FMECA. It provides a convenient way for representing and

abstracting the notations and structures used by FTA and FMECA. It can be deployed as a

separate, “safety modelling” tool which can be used as an aid to design and implementation

of safe systems.

The use of the safety-critical approach as an integrity policy can be as follows. The internal

attributes such as MTBF can be gathered, i.e., measured, during system development and

then subjected to the prediction algorithms derived from FMECA, FTA or FPTN. The

predicted operation has the form of a set of catastrophic faults and their probabilities. If

failures are many, and probabilities are high, the response needs to be applied to the system

under development in form of redesign. If the failure scenarios and their probabilities are

acceptable, there is no response applied and the gathered information is used to define the

maintenance policies and the corresponding run-time integrity-preserving response. FMECA

technique can be also used during maintenance (see section 3.2.3). In case of a failure, this

technique can be used for building the failure tree so as to pin-point the cause of the

catastrophic failure.

The major drawback of the safety-critical approach is that the mean-time-between-failures,

mean-time-to-failure and similar reliability-related internal attributes, which are crucial for

prediction, cannot be easily measured early in the software development lifecycle. It was

also pointed out that it is notoriously difficult to measure failure rate of software components

[Conn92]. These failure probabilities can be only measured when conducted in parallel with

experimentation on the real-time, running system. Some authors [Butl95] argue that even in

this case it is impossible to accurately quantify software reliability metrics. Similarly, in the

telecommunications world, big players such as Bellcore do not recognise software reliability

prediction as being a mature technique [Bell93] (quoted from [Male98]).

Thus, the safety-critical approach can be at best used for argumentation about safety of the

systems built out of well-defined components with failure rates already measured and known

early in the development lifecycle. For the relatively new software systems such as service

provisioning and management systems, this approach can not be useful during design.

Moreover, this approach is not fully effective for such large distributed systems where

failures can be conspicuous in the sense that a failure of a component can be manifested as a

continuous degradation in system operation and performance, rather then being a cause of a

71

full-blown integrity failure. However, as stated above, this candidate integrity policy can be

used to a certain degree during maintenance (see section 3.2.3).

3.5 Ch a p t e r s u m m a r y a n d r e s e a r c h c o n t r ib u t io n s

This chapter dealt with the closer definition/analysis of the concept of integrity, and with the

development of a framework for management of integrity issues throughout the

telecommunications system development lifecycle.

The first main research contribution of this chapter is the novel understanding of the term

integrity. As the analysis of the state of the art (chapter 2, section 2.1) has pointed out, the

current understanding and definition of integrity is dated and incomplete. Although we

adapted an existing definition of integrity to formulate telecommunications system integrity

as "Hhe ability o f the system to retain its specified attributes in terms o f performance and

functionality", we identified what these attributes - or issues - are. In our interpretation,

integrity is represented as a set of lower-level attributes encompassing a variety of issues

concerning system structure, functionality and behaviour. These attributes were defined

taking into account the understanding of the term integrity as established in the

telecommunications sector, but also considering the dependability and safety concepts (see

chapter 2, section 2.1.3) originating in software and system science.

This number of attributes come together to build a set of concerns to be tackled while

building a telecommunications system, integrating it in the environment and during the

system operational lifetime. These attributes have various manifestations and degrees of

importance depending on how and why the system is being constructed. Thus an integrity

strategy, or methodology, must be formulated to guide the designers and implementers of

systems; the integrity issues and integrity methodology should be incorporated into the

engineering process. A second step in the theoretical work discussed in this chapter was

concerned with developing such an integrity management methodology.

The integrity management methodology presented here aims to structure the integrity

actions, and overcome the deficiencies and unify the expertise of both industrial and

academic approaches that we discussed in the "state of the art" - chapter 2, section 2.2. The

methodology presented here is envisaged to be applicable to any distributed

telecommunications system, however here the focus is on the network and service

management systems.

Three basic phases of the integrity methodology developed here are prediction, testing, and

maintenance. Emphasis was on prediction, the system pre-launch integrity methodology

72

phase. We demonstrated how to integrate the integrity-related actions in the system

development lifecycle. This is accomplished through iterative carrying out of the integrity

analysis, design and implementation throughout the lifecycle. Integrity analysis identifies the

integrity-related requirements: each of the integrity attributes can be located within different

levels of integrity analysis. According to the integrity analysis, integrity design is specified,

i.e., integrity can be modelled into systems by defining integrity-preserving policies that

should be deployed during the system development lifecycle at the relevant stages. The final

bit of the predictive phase is how to actually apply these policies during system development

- i.e. integrity implementation.

The integrity methodology is based on two key requirements: existence of a coherent system

development approach, and measurement of integrity-related attributes. We presented a

development approach based on ODP and UML, and discussed the issues related to the

measurement of integrity attributes. Moreover, we reflected on the practical issues

concerning the integrity methodology, in terms of the cost-benefit analysis and

methodology’s applicability in multi-domain environments. Finally, we considered a number

of candidate integrity policies in the context of development of network and service

management systems.

We see as the central contribution of this chapter the development of the integrity

methodology - a framework for categorising and tackling integrity issues throughout the

telecommunications system lifetime. The lack of such a framework is seen as a gap in the

integrity research, as well as in the industrial practice (see chapter 2, sections 2.1.1, 2.1.2.2,

2.2). We do not envisage this methodology to be the ultimate answer to management of all

integrity problems, but rather see it as an example of how to start categorising the integrity

issues, analysing them and formulating techniques for preservation of integrity during

system development. This methodology, although aimed at the systems to be developed in

the future, also provides a framework for the assessment of existing systems. This can be

accomplished by the thorough review of the design documents of the existing system,

whereby the integrity requirements could be assessed and thus the system operator can be

provided with an insight to the integrity level of the system.

Integrity issues are inevitably related to the system development approach and the supporting

notation. A number of system development methodologies and notations exist (see state of

the art in chapter 2, section 2.3.4) in the field of distributed systems and network and service

management system development. Our integrity methodology is founded on the development

approach based on ODP and UML. The author was one of the core creators of the ODP-

UML management system development approach [Kand98], which is seen as a strong

73

and distinct research contribution. We believe that ODP is emerging as a structured

framework for development of network and service management systems: apart from being a

general framework for development of distributed systems, TINA systems are based on

ODP, and recent advances to marry TMN and ODP concepts have been made [Pavl98].

Similarly, UML is becoming a de-facto standard for system development, including the

management systems [Lew99a] [Lew99b]. Thus, we see the ODP-UML framework as a

suitable base for integration of the integrity methodology, especially in the case of

management systems. If an alternative system development approach is adopted, the

integrity methodology presented here, being relatively lightweight, could possibly be

adapted to other system development frameworks and notations. Another advantage of using

a specific system development framework as a basis for the integrity methodology, is that of

modelling. As discussed in chapter 2, section 2.2, a number of authors [Mont97][UCL94]

prescribed modelling and analysis as a useful tool in understanding and managing integrity

issues. In our methodology, these activities are not performed stand-alone, but as a part of

the development process itself.

The fourth key contribution of this chapter is the introduction of the concept of integrity

policy. Integrity policy is essentially an integrity-preserving action that can take the form of

either integrity-focused design recommendation, specification of the integrity-preserving

mechanism that needs to be implemented, or definition of a testing strategy/approach.

Currently, very few pre-emptive techniques are used to tackle the integrity issues prior to

system testing and integration (current techniques are discussed in chapter 2, section 2.2). In

this chapter, we discussed a number of candidate integrity policies, including use of formal

methods, behavioural simulators, fault-location and prevention techniques, and other.

In the remainder of this thesis, we focus on two distinct integrity policies, dealing with the

development and testing of highly integral network and service management systems. The

policies are the metrics policy for risk control early in the development lifecycle (chapter 5),

and the policy for testing the inter-domain interconnection between autonomous

management systems (chapter 6).

But first, in the next chapter we discuss the network and service management systems

developed within two ACTS projects: TRUMPET and FlowThru. These projects were used

as case studies for exploration of integrity issues, defined in this chapter, and provided a

ground for further research.

74

4 RESEARCH PLATFORM: ACTS PROJECTS

This chapter presents an overview of the two European Commission - sponsored “Advanced

Communications Technologies and Services” (ACTS) network and service management

projects, TRUMPET and FlowThru, which were used as research platforms for the

investigation of the integrity issues in distributed telecommunications systems, more

specifically management systems. The focus is on TRUMPET, a project which the author

was working on for more than two years and which was consequently the main research

platform.

4.1 TRUMPET

The TRUMPET Technical Annex states that TRUMPET "aims to develop and verify, by

means of trials in real environments, mechanisms which will ensure the required integrity of

inter-domain access to TMN based management systems" [TRUMPET-TA]. Although

initially concerned with integrity issues, the TRUMPET consortium narrowed down its

research to the inter-domain security for management systems. As stated in chapter 3, section

3.1, security is a sub-attribute of integrity: a wide range of security threats such as

unauthorised access to resources or data corruption and modification via intentional external

attack, can jeopardise the correct and proper operation and thus the integrity of the system.

On the other hand, the threat to integrity posed by systematic faults in systems operation and

communications between system components was neglected by the consortium, which took

the stand that all the potential integrity problems due to the inter-domain interactions can be

solved by introducing security mechanisms.

The focus of the TRUMPET project thus was the development of the security architecture

for the TMN X interfaces (for a short introduction to TMN refer to chapter 2, section 2.3.2).

The beginning of the project saw the specification of the particular security policies for the

TMN X interfaces [Mail96], and the development of the security architecture needed to

support these policies [01ne97]. After the initial security development, a need arose to

develop a management system that would be a suitable and realistic platform to implement

the security policies on. Thus, the service management architecture [Pmj97][Sack98] was

developed, using an original development methodology [Pmj97][Kand98], to support the

implementation of the TRUMPET security architecture. Moreover, a set of trials was

established so as to evaluate both the management and security architectures in real

operational environments.

75

The author’s personal interests in the project focused at bringing back some of the pure

integrity issues in network and service management into light. However, a number of

contributions were made in direct line with the project, such as contributions to the security

architecture, the management architecture, and the management systems development

methodologies - these three aspects are further discussed in the following sections. The

material in these sections is to some extent based on [Pmj97] [Pmj98b] [Sack98] and

[Kand98] - material that author strongly contributed to.

4 .1 .1 S e c u r it y ARCHITECTURE

As stated above, the key goal of the project was to secure the inter-domain management

communication between autonomous TMN domains - i.e., the X interfaces. For the basic

definition of the security concepts see section 3.1. The security services in the context of

inter-domain management are:

• Authentication, referring to the mutual recognition of the communicating management

parties.

• Access control, ensuring that an external party (manager) can access only a certain

subset of management functionality/data of the system being secured, according to the

contract.

• Data integrity, meaning that the management data (stored or in transit) must be

protected against modification, insertion, and repetition.

• Confidentiality, meaning that management data content (stored or in transit) must not

be disclosed to unauthorised parties.

• Non-repudiation, referring to the ability to resolve the dispute when one management

party denies that the communication took place.

Two additional security services are those providing for the security context negotiation

and security audit and alarm.

First, an in-depth security analysis [Mail96] was conducted, taking into account the various

types of interactions between the autonomous TMN domains: X interface between two

Public Network Operators (PNGs) or two Value Added Service Providers (VASPs), the X

interface between a PNG and a VASP, and the interface between the customer premises and

a VASP or a PNG. This analysis resulted in the definition of the suitable security policies, or

so-called security Functional Classes (FCs) for different types of inter-domain interactions.

A Functional Class is effectively a set of specified security services. Four kinds of FCs were

identified.

76

The nil-security class, FCO, is defined simply for the sake of completeness: it does not

specify any security services. FC l provides for the integrity and confidentiality of stored

management data. The security services provided include the authentication of the initiating

management application, management resource and management association access control,

and security alarm and audit. FC2 adds to FC l the services ensuring the integrity and

confidentiality of the data in transfer: security mechanisms need to be in place, ensuring that

the data in transit cannot be modified, inserted, or disclosed. FC3 adds to FC2 requirements

for advanced security services such as non-repudiation of origin and non-repudiation of

delivery.

The next step was to develop the security architecture suitable for supporting the services

defined through the FCs. The project considered two distinct cases: that of the open, and that

of the closed OSI-based TMN management platform. The open management platform is a

platform where the lower layers of the supporting OSI stack are open to manipulation. In the

closed management platform, only the interface to the CMIS [X.710] can be accessed. The

commercial management platforms are typically closed-stack.

Initially, both cases were considered. Some security services, namely data integrity, data

confidentiality, non-repudiation, and security negotiations can be entirely provided only by

adding extra security functionality to the supporting OSI stack. In the case of the open

management platform. Transport Layer Security Protocol (TLSP) [X.274] (OSI layer 4) was

recommended for provision of management data integrity and confidentiality in transit.

Moreover, the Security Exchange Service Element (SESE) (OSI layer 7) [X.831][X.832]

was recommended for security context negotiations - i.e., for the establishment of session

keys which are used for the calculation of the cryptographic seals and / or for encryption.

The reference security architecture for the management platform with an open stack is shown

in Figure 21 [01ne97]. The security-specific components and interfaces are shown in dotted

lines: the main component providing the security services is the Security Support

Component (SSC). The full lines indicate the components/interfaces available in a typical

TMN management platform.

77

SESECMISE

ROSE ACSE

MIB handler

Management
application

Transport (TLSP)

Layers 1-3

Presentation

Session

SSC

 Existing interfaces

 New interfaces

I I Existing components

1^ -3 New or modified components

Figure 21 - Reference security architecture, open management platform [01ne97]

Since TRUMPET opted for the use of a commercial TMN management platform - HP

Open View (HP-OV) - the architecture of Figure 21 had to be adapted to the closed

management platform, where no modifications of the OSI stack can be done. Security

transformations can thus be performed only on the application data. The reference security

architecture for the closed management platform is shown in Figure 22. Figure 23 conveys

the same information in more detail. The main security module within the SSC is the

SMASC - the Secure Management Association Support Component, which performs

security transformations on the application data and establishes the security context between

the two communicating management parties. There are two basic requirements for the

successful transfer of security data in the case of this architecture. First, the authentication

field of the Association Control Service Element (ACSE) [X.227] must be supported, in

order to establish the security context and for authentication. Second, the access control field

of CMIP [X.711] operations must be supported to transfer the security-related information.

78

CMISE ACSE

SSC

MIB handler

OSI stack

Management
application

(MAE)

Existing platform interfaces

Interfaces implemented by TRUMPET

Existing platform components

Components implemented by TRUMPET

Figure 22 - Reference security architecture, closed management platform [01ne97]

The security architecture developed for a commercial management platform cannot fully

support some of the security services. Integrity and non-repudiation of data introduced by

ACSE, CMIS and the lower layers cannot be guaranteed: only the application data is

secured. According to this architecture, encryption for confidentiality takes place above

CMIS, and this encrypted data must be inserted in one of the CMIS management operation

fields: however, most of these fields do not support the encrypted data type, with the

exception of the access control field - the approach which was not considered reasonable.

Hence, this architecture does not fully support integrity and confidentiality of data in transit -

thus effectively implementing a security functional class between FC l and FC2.

SMASCMIB handler Connection
management
application

Sec Audit

Management API
SMIB

AccessControI

ACSECMISE

OSI stack

Figure 23 - Reference security architecture: detail [0Ine97]

79

4 .1 .2 M a n a g e m e n t a r c h it e c t u r e

4.1.2.1 O v er v iew

The security architecture discussed above needs a realistic management architecture on

which it can be deployed and scenarios through which its functionality can be demonstrated.

There are three basic requirements on the management architecture.

First, in order to fully investigate the security requirements and to deploy the security

policies (functional classes) defined, a suitable inter-domain scenario, in the framework of

the ONP, needs to be defined. The architecture in this context should encompass a range of

autonomous players, namely a Customer Premises Network (CPN), Value Added Service

Provider (VASP) and a Public Network Operator (PNG), operating within distinct

administrative domains. The interfaces between these players, aiming to be secured, must be

clearly defined.

The second requirement on the management architecture is that it should be visibly

functional, i.e. be able to support, in the operational environment, a set of user requirements

focusing on the establishment and maintenance of the end-to-end broadband connections

between two end users.

The third requirement is to develop a realistic architecture: the aim was to construct not only

an administratively distributed environment, but also a technologically heterogeneous

environment, focusing not solely on CMIS - based TMN implementations, but also on the

other emerging management technologies, such as JAVA and CORE A. Although CMIP/S is

the prevailing network management protocol technology, evolving price and versatility

requirements of the new entrants into the market drive the need for exploration of alternative

communications technologies. Both consumers and providers may be smaller and less

willing to invest in large-scale high-end platforms. Also, with more competitors in the

market, product differentiation becomes critical to a company’s survival: to maintain a

differentiated product, it is necessary for a company to be able to implement new services

quickly.

These three aims were accomplished through the definition of the TRUMPET reference

management architecture, shown in Figure 24. The architecture involves several

administratively separate players (marked as boxes in bold): two (or more) PNGs, a VASP,

and a number of customers at various sites - CPNs.

80

V A S P

Custom er2 / end-user

C ustom erl / end-user

C P N

PN O
os

^usiom cr Prem ises N etw ork I

C ustom er P rem ises N etw ork I

P N OP N O A

Figure 24 - Reference management architecture [Auta97]

The interfaces between the autonomous players are the TMN X interfaces [M.3010]: the

physical realisations of the x reference points located between Operations Systems Functions

(OSF) of different TMN domains. There are two types of TMN X interfaces: the Xcoop and

the Xuser interface. The Xcoop interface is the interface between the management systems

with a symmetric relationship: both management systems can take the role of the consumer

and the provider. This is the interface between either two PNGs or two VASPs. Xuser is the

interface between the two management parties whose communication is hierarchical: one

party is providing the management service, while the other is consuming it. This consumer-

provider relationship can take place either between a VASP and a PNO, CPN and a VASP,

or CPN and a PNO. Further, as previously defined by the ACTS project MISA [GaliOO], the

Xuser’ interface is the Xuser interface between a VASP and a PNO, and the Xuser” interface

is the Xuser interface between a CPN and a VASP or a PNO. These interfaces are depicted

in Figure 24 as bold dashed lines between the autonomous domains. In the context of

deploying the security policies, however, the particular interfaces used in the TRUMPET

architecture (VASP-PNO, PNO-PNO and Customer-VASP) are essentially the same. Any of

the parties involved in the interconnection over these interfaces may require any level of

security (i.e., any security FC as defined in section 4 .1.1). Thus, the TRUMPET security

policies apply to any kind of X interface. In practice, they were applied only to the Xuser

interface between the VASP and the PNO.

The management systems of the above players form a TMN-based service management

system for provision and maintenance of broadband Asynchronous Transfer Mode (ATM)

network connections between two customers/end users. Each of the players has an

independent management system (marked as a grey box in Figure 24) under its control. CPN

is an actor that has a contract agreement with the VASP regarding the use of the service by

81

one or more authorised end-users. The VASP management system provides network

connectivity to customers, on contractual basis, by utilising the resources of one or more

Public Network Operators. The VASP is responsible for the service offered, and allows

customers to create, modify and delete end-to-end connections, thus providing the Virtual

Private Network (VPN) service to the customers. PNGs provide the VASP with the physical

infrastructure and connectivity capabilities, by operating basic switching and transmission

capabilities.

Within the TMN layered framework, TRUMPET management system is operating on the

service management layer (where all the X interfaces are located), and to some extent the

network management layer (Figure 25).

Business management

Service management
TRUMPET

Network management

Element management

Network elements

Figure 25 - TMN layers and TRUMPET

The customer is presented, by the VASP service, with a connection between the end-points

o f his various CPNs. VASP provides this end-to-end service by using the services from

many independent PNGs. VASP is presented only with the end-to-end connection within the

PNG domain {i.e., PNG service view) by each respective PNG service management system.

PNGs have the full knowledge of the structure of the network within their domains, which is

controlled by their network layer management GSs (Figure 26).

VASP service layer view

PNO service layer view

PNO network layer view

PNO 1 PNO 2 PNO 3

Figure 26 - TRUMPET service views

A number of technologies were used to implement the TRUMPET management architecture.

The interface between the CPN and the VASP was developed using the JAVA based GRB -

82

Voyager [Obje97]. On the other hand, the interface between the VASP and the PNGs is

CMIS based. With this mixture of technologies, it was also proven necessary that a light­

weight CORBA gateway between the JAVA and the CMIS worlds should be deployed

(effectively, JAVA binding to CORBA).

4.1.2.2 D evel o pm e n t m eth o d o lo g y

As discussed in the previous section, the TRUMPET service management and provisioning

system is a complex, inter-domain, technologically heterogeneous system. Motivations for

specifying a suitable development methodology for TRUMPET were many-fold. In general,

designing and implementing complex distributed systems in large international consortia is

complicated. The main issue in this context is that all the developers need to understand the

scope of their work, the work of their partners, and the relationship between the two. Thus, a

coherent methodology and notation scheme has to be adopted. This would also yield the in-

depth documentation about system structure and design decisions. This documentation

supports not only the maintenance of the system, but also captures the functionality and roles

of the system that need to be presented to the users in the context of their business practice.

Another important drive for a coherent development approach is the need to enable close

analysis of the design to ensure, early in the development lifecycle, that the system is

complete in meeting its requirements and consistent in its operation. This should render

coherent and consistent designs and robust, highly engineered products.

The development of the TRUMPET system considered the criteria for the convergence (see

chapter 2, section 2.3.5) of the TMN-based and distributed object models and

methodologies, resulting in the “three-dimensional” approach, which took into account: the

TMN architecture models, the ODP Viewpoint framework, and the UML notation schemes.

The methodology was essentially use-case driven.

The only strong architectural requirement on the system was the full-featured CMIS-based

TMN X interface between the VASP and the PNO, since the security policies were applied

to this interface. The rest of the system did not need to adhere to any particular standards:

however, the TMN architecture was central to the system development since the system is

essentially targeted at the world of large-scale commercial public network management.

ODP framework was used to structure the development information, which was itself

depicted through the UML diagrams. The fusion of ODP and UML was already presented in

chapter 3, section 3.2.1.1.1. To briefly reiterate, ODP provides a general architectural

framework that distributed systems aiming to operate in the multi-provider environment

should conform to throughout their development. The bases of this architectural framework

83

are the five distinct viewpoints (enterprise, information, computational, engineering and

technology), which allow different participants in system development to observe the system

from a different perspective and from a different level of abstraction. ODP recommendations

do not prescribe any particular notation to be used to describe the information captured in the

viewpoints. However, since the description of the same component can exist in different

viewpoints, there is a strong requirement that these specifications are consistent. Similarly,

components in each viewpoint must be clearly identified and related to each other as

required. Thus, it is favourable to use one single language for all the viewpoints. In chapter

3, section 3.2.1.1.1, we depicted how UML can be used to describe the ODP enterprise,

computational, information and to some degree engineering viewpoints. UML provides a set

of diagrams, has rich semantics and defines, to some extent, how different kinds of diagrams

should relate to each other. Thus, it offers a possibility for providing for consistency and

coherence of ODP specifications [Kand98]. The usage of the UML in the ODP framework,

and the required mappings, adopted in TRUMPET, are shown in Figure 9, page 49.

Thus, the TRUMPET development methodology [Pmj97] is based on this ODP-UML

framework and is essentially use-case driven (similar to that of the RACE project PRISM

[Berq96]), where the development of the system starts with defining the management

services as use cases, on the basis of which the core system components and their

functionalities are defined. The enterprise viewpoint is presented first, providing the high-

level specifications, and defining the core players (CPN, VASP and the PNOs). Next, the

high-level overview of the implementation - the technology viewpoint - is given, with

respect to the target technologies to be used, software and hardware. Following the high-

level design, information and computational viewpoints are reiterated for each component

defined in the enterprise viewpoint so as to give the low-level, detailed designs. Finally, the

engineering viewpoint is given which elaborates on the underlying infrastructure for

communication of the components, and their distribution.

The enterprise viewpoint is described using the UML use case diagram that depicts the

desired functionality of the system through scenarios of the management system use; and the

high-level class diagram presenting the main actors as packages within autonomous

domains. The TRUMPET system incorporates three domains (or enterprise objects in the

ODP terminology): the CPN, the VASP, and the PNO. The PNO domain is further

subdivided into PNO Service Layer and PNO Network Layer. These four entities were

modelled as UML packages with interdependencies, using UML class diagram notation as

shown in Figure 27.

84

« c o m m u n ity »
T rumpetManagementSystem

« d o m a in »
PNO

^ PNOService
Management

« d o m a in »
VASP

« d o m a in »
CPN

Figure 27 - TRUMPET class diagram enterprise package [Kand98]

The TRUMPET scenarios were specified using the UML use case diagram, depicting the

actors, sets of use cases (ellipses) within a system, and associations between actors and use

cases - illustrated in Figure 28. Note that the UML stereotype « c o m m u n i t y » is used to

classify the high-level enterprise object “TrumpetManagementSystem” as community in the

sense of ODP. Figure 28 depicts the functionality (or Management Functions) identified in

the VASP management service as use cases, and the interaction of the different users with

the use case package. As shown, there are six use cases. Customers/end users are capable of

reserving end-to-end connections (of a given duration and desired Quality of Service, QoS),

modifying them (changing duration, QoS, or both), and releasing, i.e., deleting these

connections. PNOs are capable of notifying the users via the VASP of connection activation,

or notifying the users of the connection release due to a segment/link failure. The use cases,

or scenarios, can be further elaborated on using the high-level sequence charts.

« u s e r »

« C o m m u n ity »
T rumpetManagementSystem

Reserve
connection

connection

Status
request

Notify
activation

onnection
release

notification

« p n o »

Figure 28 - Use case diagram [Prnj97]

The information object classes within the information viewpoint are described using the

class diagrams, depicting the structure of object classes and their relationships (Figure 29).

The class relationships include inheritance (parent-child relationships), associations (general

relationships) and aggregations (containment relationships).

85

is connected toth rows
{a la rm lis t}

containscontains

te rm ina tionP o in t

is terminated b y

throws
{a la rm lis t}

a ddr : Port
Ident : Int

seg id : Segid
Ident : Pnold
bdw : Bandw idth
s ta tus : Status

V aspV pS egm ent

vas pi d ; VaspVpId
custid : C ustid
targetid ; C ustid
s ta tus : Status

VaspVpConn

cpnC onnId : C pnC onnId
custid : C ustid
bdw : Bandw idth

C ustE ndP o int

Figure 29 - Class diagram [Prnj97]

The computational viewpoint describes how the management functions, identified via

enterprise use cases, are performed by the management system. Each management function

is described in terms of computational objects and computational activities, the latter

representing sequences of operations invoked on computational objects. As a starting point

for the computational design, the components identified in the enterprise viewpoint can be

mapped to computational objects which provide an abstract, course grain computational

view of the management system. Each component can then be broken further down into a set

of computational objects representing the detailed computational object model. At this level,

the UML class diagrams were used to describe the structure of computational objects, their

interrelationships and interfaces (Figure 30).

Y a s o Y B n M a n a a e f F a s a d s
S e r v l c e l n t e r f a

C u s ! o m e r - C P N

< < i n l e r f a c e > >
V P C o n n S e r v E v e n l H a n d l e r

S e r v i c e l n l e r f F a c t o r y

V P C o n n S e r v E H F a c t o r y

< < a b s t r a c t > 5
V A S P - V P N M n g r V P N S e r v i c e l n t f F a c t o r y

■7T
Y a s B Y B n M a n a a a r l m B l I

V A S P - V P N M n g r P n o C o n n e c t l o n M a

C u s t o m e r E n d P o i n t

V A S P - V P . S e g m e n t

Figure 30 - Class diagram of computational objects [Kand98]

At the higher level of abstraction, class diagrams were used to describe the interfaces of the

stand-alone object classes (Figure 31). Class diagrams describe computational objects’

86

external interfaces, which offer a set of services. Using these computational object-like

diagrams as a basis. Interface Definition Language (IDL) files can be written easily.

C ustom erS e rve r V P N S erv ice

-D O -

V P C onnS ervE ven tH and le r

o

V A S P -V P N -M a na g e r

« V P N S e rv ic e In te r fa c e »
reserveC onne tion ()
m od ify()
getS ta tus()
re le a se C o n ne c tio rt)
« V P C o n n S E H In te r fa c e »
a c tiva te C o n ne c tio n N o tify)
re le a se C o n ne c tio n N o tify)
co nn e c tio nN o tif\(

Figure 31 - Class diagram describing interfaces [Prnj97]

Next, the computational activities are described. Computational activities are the interactions

between the computational objects in order to perform the management functions defined

through use cases in the enterprise viewpoint. Interaction between computational objects is

described in terms of an operation invocation initiated by a client object requesting an

operation to be performed by a server object. Precedence rules are used to define the

sequence of operations performed when an interaction takes place. To describe the

computational objects' interactions UML collaboration diagrams (Figure 32) and sequence

diagrams (Figure 33) are used.

1: m od ifyC o n ne c tio n (u se rld , v p id , ...)

3: m o d ifyG B C C o n ne c tio n (use rld , v p Id , ...)

2; que ryU se rR e co rd (u se rld)

\5: m odify(...)
^ 4: subne tw o rk

M o d ifv C o n n e c tio n (v p ld ,...)

:V A S P -V P N M nar

:VP C onnec tion

:U se r R ecord H and le r

:P N O N etw ork M anage r

:VP C onnec tion H an d le r

:P N O C onnection M a nage r

Figure 32 - Collaboration diagram [Prnj97]

87

•C ustom er :VASP-VPN-
S erv er M anaaer

:RouteFinder :VASP-VP-Gonn iPnoC onnetion :V A SP-V P-Seg :C ustom er-C P :C ustom er
M anager m ent N EndPoint

|;eserveConnect[o(i{)

2: findeR oute(Custld , C ustid)

3: create(V aspld , C ustid , C us
1
Id, Duration, Bw.)^

4: reserveC onnectlon(V aspld , V asp

u
d. A ccess P, A ccès ;P , Duration, B w)^

5: crea te ((îonnid. A ccess P, At c e s s P , Bw)
1

6: a llocateC onne :tlon(Vaspld, Vaspit 1, A c cessP , A ccess F , Duration, Bw)

7: crea te (C ust Id, C PN ConnId, Acc is sP , Bw)

Figure 33 - Sequence diagram [Kand98]

The engineering viewpoint was elaborated through the component and deployment

diagrams: the component diagram shows the organisations and dependencies among runtime

modules, while the deployment diagram shows how components and objects are distributed

and moved around the system. No UML diagram proved to be suitable to describe the

technology viewpoint.

The combination of ODP and UML proved to be effective in many ways.

This approach inherently supports the object-oriented design process (both UML and ODP),

and the design of reusable components which make up a distributed system (ODP). UML

and ODP fit naturally, both being object-oriented in their essence, and their symbiosis

proved to be efficient for modelling distributed, object-oriented systems, such as the

TRUMPET management system. The outcome was a coherent design of a distributed

management system, and the supporting developers’, implementers’ and users’

documentation.

As discussed in chapter 3, section 3.2.1.1.1, UML, as a single and unifying viewpoint

language, eases the migration between ODP viewpoints, enabling viewpoint consistency and

thus the consistency, coherence and completeness of the design itself. Tracing of the

components/classes through the design and mapping between the different component

viewpoints is made possible [Kand98][Pmj97][Pmj98b]. Conversely, ODP proved to be an

efficient way to manage the potential complexity of a wide range of UML diagrams.

Also, this approach had the power to embrace some TMN concepts [Sack98], and proved

efficient in mapping and implementing some ODP functionalities in IDL.

Although the UML notation is an attractive choice for use in the design of a distributed

system, it also has some drawbacks. Some of the ODP concepts are not directly supported by

UML. In such situations, UML introduces the concept of stereotypes to provide for

extensibility. In the example diagrams of this section, stereotypes were used extensively to

map ODP concepts that did not have a direct counterpart in the UML notation, such as

enterprise objects, communities, etc. Moreover, although the concept of an interface is part

of UML, its description uses the same notation as for a class. Again a stereotype,

« i n t e r f a c e » , was used to differentiate between the class and the interface descriptions.

This use of the same notation to express different concepts leads to a certain level of

ambiguity. In a pictorial notation the core entities of a model (ODP) should have individual

representations as to be readily distinguished from one another. Also, UML did not prove to

have enough power to fully describe the ODP concept of the computational object. During

the design, only the external interfaces provided by a component were specified, and

concepts like binding rules and lifetime aspects were not included.

From the practical point of view, adopting the ODP-UML approach in TRUMPET proved to

be an efficient development, documentation and collaboration tool. After the initial

methodology was established (which did require the consortium consensus), the work

assignment was agreed on and understood within an afternoon of discussions. After the

labour division was made and the approach was agreed and understood by all the partners,

the consortium undertook to design the system according to the approach defined. The

approach adopted in the system development provided the developers with a clear

documentation tool, where all the developers could reach a common understanding and use

others’ design documents and work together efficiently. The design was developed within

the contractual deadline, the time amounting to three months. There were 15 individuals

involved in producing the design document (150 pages) [Pmj97]. Considering the size of the

TRUMPET system, the development efforts and the quality of the output can be judged as

optimal. The documents produced in this phase were also extensively used by the

implementers as well as the trials team.

The next section concludes the description of the TRUMPET project by giving the design

and implementation details of the three principal domains in the TRUMPET management

architecture.

4.1 .2 .3 D e sig n a n d im pl em e n ta t io n d et a il s of t h e d o m a in s

4.1.23.1 CPN

The design of the management system on the customer premises focuses not only on the

basic interface to the VASP for the purpose of service provision, but also on the automation

of the interactions between the VASP and other elements within the customers premises -

89

such as local network management, local database management of accounts or usage, etc.

This requirement is based on the assumption that in realistic situations the manager at the

customer site may have to manage a bulk of connections - an operation that is much easier to

perform through a database operation rather than through a simple Graphical User Interface

(GUI). The UML class diagram of the computational objects necessary to support this is

shown in Figure 34.

CPN

CPN_LAN_IF
Alternate LAN

interface

CPN_GUI
Graphical user

interface

CPN.LIF
Local interface

CPN_SAC
Service access

control

CPN_SEC
Security
interface

CPN_IBCM
IBC comms

interface

Figure 34 - CPN computational objects [PrnJ97]

The technology chosen for the CPN management is JAVA. JAVA provides three critical

facilities: Local Area Network (LAN) management interfaces (SNMP) (some aspects

discussed in [Yama97]), distributed data transport, and versatile user interface capabilities

using its built-in GUI libraries or the WWW. The CPN equipment essentially consists of a

JAVA Virtual Machine (JVM) containing an interface with the VASP and local displays for

user interfaces and for displaying events generated at the service level from the VASP and of

relevance to the particular customer.

4.1,23.2 VASP

VASP s main role is to support the provision and maintenance of the number of end-to-end

connections for a number of customers, by using the resources of one or more PNOs. This is

achieved by designing the three main components of the VASP: Customer Server, Control

Server (or VASP-VPN-Manager), and the VASP Management Information Base (MIB) -

these are depicted in Figure 35.

The Customer Server provides for customer access to the VASP, and the Control Server

(VASP-VPN-Manager) provides for VASP access to the Public Network Operators. The

MIB-like component supports the required data models. As discussed above, the CPN is

JAVA-based, and the PNO management system is CMIS-based TMN. Thus, the MIB-like

component needs to support an information model that maintains interactions both with the

90

CPN and the PNO. This is achieved by constructing a management object model in JAVA,

based on the TMN principles, which effectively provides a standard interface both to the

PNOs and the CPN as well as giving a uniform information model across several players.

« V A S P Information View »

MIB

Vasplnfo

ActorsMIBConnectionMIB

ControlServer CustomerServer

Figure 35 - VASP basic structure [Prnj97]

The VASP MIB contains managed objects that hold all the information about the resources

that VASP needs to manage. It has the facility for selection of managed objects based on

their properties and ensures that these objects are persistent. This is provided for by having

the structure of the TMN-like MIB reflected by a Directory structure stored in a LDAP

Directory Server, accessed through the Lightweight Directory Access Protocol, LDAP

[RFC 1777]. The LDAP entries hold the Distinguished Names (DNs) of the managed objects

they represent, as well holding attributes for use in filtering and scoping operations.

Persistence is provided for through making the managed objects Serializable (JAVA

terminology) and storing the information in a database.

The structure of the MIB is as follows. The Customer MIB contains information pertaining to

the VASP customers, their respective service profiles, and the terms of their subscriptions. A

corresponding MIB exists for the PNOs whom the VASP is dealing with. These MIBs are

rather static, in the sense that the information they contain is seldom updated. The

Connection MIB contains information about all the connections that the VASP is currently

supporting. Furthermore, its structure reflects the view that the VASP has of a connection,

i.e., a connection consisting of segments individually supported by a PNO. This MIB is

being constantly updated (therefore dynamic) as requests for new Virtual Private

Connections (VPCs) and change/release of the existing ones are received from the

customers.

The communication between the CPN and the VASP is done through ObjectSpace’s

Voyager ORB package [Obje97]. First, the CPN establishes the association with the

Customer Server, after which it can call CMIS-like operations (GET, SET, DELETE,

91

ACTION) on the managed objects selected. The main managed object class in the VASP

domain is the VASP VPConnection. The objects of this class are created to represent an end

to end connection between two Customer Premises Networks. Attributes contained represent

connection information such as bandwidth, schedule and Quality of Service. For more details

of the relationships between VASP managed object classes, see Figure 29, page 86.

Hence, by using the TMN interoperability notions, based on manager-agent interaction and

the MIB concept, coupled with Voyager and LDAP technology, the TRUMPET management

architecture provides integration and flexibility between the customer (CPN) and VASP

domains.

VASP is fully implemented in JAVA: however, the interface between VASP and the PNO is

CMIS-based. Thus, the management architecture also encompasses a lightweight CORBA

gateway that interfaces the Control Server (VASP-VPN-Manager) to CMIS.

4.1.2.33 PNO

The interface between the VASP CORBA gateway and the PNO service management layer

(the PNO_Connection_Manager) component is the Xuser interface initially defined by the

ACTS project MISA collaboration [MISA-X]. The TRUMPET Xuser interface

implementation is based on the MISA implementation, so as to ease interworking and joint

trials. The information model for the Virtual Path (VP) connection management, supported

at each PNO site, is shown in Figure 36.

has

maintains

has has

0 ..*

0 ..*

references

adm inistrativeA ddress : A dm inistrativeA ddress

VP Serv ice Provider

accessP o in tId : A ccessPoin tId
e164A ddress : E 164A ddress
c o n n e c tio n R r : C onnectionP tr
q osU m itsS eq : Q oS L im itsS equence

A ccess Point

userA dm inA ddress : Adm inistrativeA ddress
u serid : Identifier
userC a tegory : U serC ategory

VP U ser

reservationD uration : Duration
routingCriteria : RoutingCriteria
connectionid : C onnectionid
a c ce ssP o in tP tr : A ccessPoin tP tr
listOtDestAddr : ListOfDestAddr

VP C onnection

Figure 36 - PNO information model [Prnj97]

92

The VP Service Provider is the entity within the PNO domain, which is responsible for the

provisioning of the VP connectivity service. This service is provided to many customers

represented by instances of class VP User: in the TRUMPET case, the VP user is the VASP.

The VP user has one or more VP connections, provided by the VP Service Provider. The VP

user is also associated with a number of access points representing network access points of

the public network which provide interfaces to adjacent network domains.

The network layer functionality in the PNO domains is not in full scope of TRUMPET: it is

expected it would be provided at the project trial sites. In the trials, the implementation of the

ATM-Forum M4 [ATM-M4] interface for ATM network management was used to provide

for the element support.

The overall model of the main elements discussed in this and the VASP section is shown in

Figure 37, this time depicted in the TMN fashion as a set of GSs and interfaces. The full

manager-agent chain thus consists of the Customer Server - Control Server

(VASP_VPN_Manager) - CORBA Gateway - Xuser OS (PNO_Connection_Manager) - M4

Gateway - NM Function - Sub-NM Function - Element Function.

MF:
C o rb a PNOO SC o n tro l

MF ^
G atew ay

M4 y

C u sto m er

X jav a

C M IP
N M

F u n c tio n
L D A P

M 4 N V
C N = T R U M P E T

S u b -N M
F u n c tio nC N = U SE R "1 C N = P N O

C N = U ser2 M4NEVC N = U se r l

E lem en t
F u n c tio nVASP

Figure 37 - VASP / PNO GSs and interfaces [Sack98]

4.2 F l o w T h r u

The FlowThru project focuses on the reuse and integration of a number of components

developed by the other ACTS projects, including PROSPECT, REFORM, and VITAL, while

MISA, TRUMPET and RETINA (An Industrial-quality TINA-compliant realtime DPE)

[Dang96] projects were initially considered but later excluded from the scope of FlowThru.

The aim is to demonstrate integrated multi-domain service and network management using a

93

number of re-used components, demonstrate integration technology at work, and specify

development guidelines for reusable management components.

First, a development methodology, focused on building the reusable management

components, and building systems from reusable components, was specified

[Lew99a][Lew99b]. The reuse was incorporated in the development lifecycle through

specification of reusable components not only on the basis of their design and software, but

also by including component’s analysis model. In such a manner, flexibility is achieved

whereas the component is more self-contained and as such does not necessarily have to be a

part of any distinct framework. The component reuse model is that of a façade [Jaco92].

Moreover, means of mapping between the façade and the ODP viewpoint models are

specified. The notation used is UML.

Components specified in this manner provide a basis for developing a management system

satisfying the target business process requirements. FlowThru identified three distinct trial

business systems, based on the TeleManagement Forum’s (formerly the Network

Management Forum, NMF) Telecom Operations Map (TOM) process areas [NMF-TOM]:

fulfilment business system, assurance business system, and accounting business system. The

components constituting these systems, in the FlowThru scenario, form the management

system responsible for provision and maintenance of the ATM connectivity services.

The fulfilment business system aims at provision of the services to the customers. It consists

of subscription management component, configuration management component and network

planning management component. The subscription management component is responsible

for introduction of new services available to the customer, and withdrawal of these services.

Moreover, it enables both the service provider administrators and the customers to manage

the end-user access to the service capabilities. Configuration management deals with

network provisioning: it performs the configuration of network elements according to

customer demands. Network planning component performs Virtual Path (VP) and route

planning, considering the anticipated network traffic and customer demands.

The assurance business system is the in-service system, dealing with the in-service problems

that are encountered: it focuses on fault management. Service Level Agreement (SLA)

violations, and the like. A number of components are encompassed, including service level

accounting, TINA trouble ticketing, ATM accounting, and subscription management

components.

94

The accounting business system focuses on the accounting processes for the connectivity

provider and the third party service provider. The TINA-based components include access

session, service session, subscription, accounting, ATM accounting and connection

management components.

In the next section, we focus on the subscription management component, which was the

subject of the integrity study in this thesis (chapter 5). For more details on the FlowThru

development methodology see [Lew99a][Lew99b], while for the general RowThru system

overview and details of integration consult [Lew99c].

4 .2 .1 S u b s c r ip t io n MANAGEMENT c o m p o n e n t

The design of the FlowThru subscription management component is based on the

subscription model specified in the TINA service architecture [TINA-SA]; and was further

refined, implemented and reused a number of times in the ACTS project PROSPECT.

The subscription management component is located in the service provider’s domain, and its

basic role is to manage the subscription aspects of the service-level interactions between the

service customer and the service provider. It is accessed by both the service provider’s

domain administrators and the customer’s administrators.

This component manages the view of the services offered to the user: i.e., the definition and

the list of available services. Secondly, it manages the subscribers’ profile: it deals with the

creation and deletion of subscribers, with the details of the subscribers, and the details of

subscriber’s network sites and user groups. Finally, it manages the process of customer’s

subscription to the services offered: creation and deletion of subscriptions, management of

subscription details, and authorisation of the end-users access to the services.

Thus, the subscription management component has the full knowledge of the classes of

service provided, and the SLAs and service records that are part of the service offered.

Additionally, it stores the information about the service subscribers (customers). Customers

can create a new subscription contract, they can modify an existing contract, modify a

Service Usage Group (SUG) associated with an existing contract, and cancel an existing

contract.

The analysis-level modelling of the subscription management component was conducted

using the FlowThru methodology [Lew99a][Lew99b]. Since this component was already

implemented, and its design already specified, the analysis model was developed post-facto,

and from scratch. However, the existing component design was not followed in detail; rather,

95

the generic requirements on this component were considered when building the analysis

model.

S ubscrip tion S e rv ice

A cco u n tin g
M anagem ent

In te rfa ce
C ustor 1er

M anage nent

in te rfi ice

sue;
M anage nent

In te rfi ice

S u b sc ri 3(tion
M anage nent

In te rfiic e

S e rv ce
M anage nent

In te rfiic eC usto mer
A c c)unt

M ansger

S ubscrip tion
M anagerMans ger

S e n

Mane

ice

ler

U ser
M anagem ent

In te rface

User

S e rv ice

T a riff

S ubscrip tion

N e tw o rk
A d d re s s

S e rv ice

B ounds

S e rv ice
R ecord

QoS
Criteria

SUG
Details

V io la tion

T a riff

Custom er
A c c o u n t

Custom er
Details

S ubscrip tion
C on tract

S ubscrip tion
U sage G roup

S e rv ice Leve l
A geem ent

Figure 38 - The consolidated analysis class diagram [Flow-http]

The scenarios of the use of the subscription management component were modelled through

the UML use case diagrams, depicting the interactions between the actors and the

component. These diagrams were complemented with the UML class diagrams depicting the

interrelationships between the analysis-level object classes: boundary objects (handling the

communication between the component and the outside world), control objects (performing

the use case specific behaviour) and entity objects (representing the information within the

component) [Jaco92].

96

The consolidated analysis diagram is shown in Figure 38. This diagram does not depict the

interactions between the Provider Administrator (PA) and the Customer Administrator (CA)

with the subscription management component.

The analysis-level control and boundary objects correspond to the ODP computational

objects (COs) and their interfaces, respectively. The main computational objects used to

manage the services offered, the customer’s subscriptions to these services, the customer

profiles, and the service usage groups, are the Service Manager, Subscription Manager,

Customer Account Manager and the Service Usage Group (SUG) Manager, respectively.

The most complex interactions within the component were modelled using the UML

collaboration and sequence diagrams. An example collaboration diagram is shown in Figure

39.

PMUAP: PA
Interface

[6] [5]

^ « a s s o c ia t io n »
:elect_ServiceO---------------------------?

« a s s o c ia tio n »
select _SLAC)-----------------------------^

SerMI : Service
Management

Interface

« a s s o c ia tio n » [1 . 1 , 1 . 2 , 1 . 3]

create Subscription()

assign Service RecordsQ

assign SLAQ

"create Contracte)

SubMI
Subscription
Management

Interface

o c ia tio n »

« a s s o c ia tio n »

[4.1 - 7 . 1]

create_New_Subscription()

C AUAP:
CA inteface

« a s s o c ia t io n »

lotifyO

{n e w }
Sub :

Subscription

SubM

.« a s s o c ia tio n »

[8]
Subscription

Manager

«assoc ia tion^:

^<association»

select_Service/SLA()

« a s s o c ia t io n »

Manager

updateO

« a s s o c ia t io n »

AMI : Accounting
Management

Interface

{n e w }
Contract :

Subscription
Contract

Figure 39 - Analysis collaboration diagram [Flow-http]

The design and implementation of the subscription management component already existed

prior to component’s use in the FlowThru scenario. Thus the design-level model of the

component was simply re-documented using UML. The design model is comprised of the
97

“static” model and the “computational” model. The static model is a set of UML class

diagrams representing in more detail the entity objects from the analysis model, and

depicting their relationships. These entity objects are referred to as t-type objects in the

FlowThru design. The computational model shows the core functional units - computational

objects (mapped from the analysis model control objects), represented as packages which

export the interface (i-type) objects (which in turn are mapped from the analysis model

boundary objects). The entity objects are linked to functional units that manage and use

them. The example class diagram is shown in Figure 40.

« ID L »
t_Subscription

-max_assign _groups: short
-rtiax_group_size: short

t_Subscriptionld
« ID L »

mon t SvcComrnonëâta

Figure 40 - Design class diagram [Flow-http]

While most of the analysis to design mappings were reported [Lew99a] to be one-to-one, in

some cases the one-to-many (when an object is decomposed in the design phase) and many-

to-one (when two or more objects in the analysis were identified, having similar

functionality) mappings also occurred.

Although the FlowThru development methodology is strongly based on the façade concepts,

we can claim, considering the above discussion, that the mapping between the FlowThru

analysis/design model and the ODP viewpoint model is relatively straightforward (some of

the mappings were discussed in [Lew99b]).

The analysis and design level entity objects correspond to ODP information objects. The

FlowThru analysis level control objects, which can be mapped to the UML packages in the

FlowThru design model, correspond to the ODP computational objects. These packages in

the FlowThru design model export the interface objects, which originate from the FlowThru

98

analysis model boundary objects. These interface/boundary objects correspond to the ODP

computational object interfaces. Thus, the FlowThru analysis and design models effectively

cover both the ODP information and computational viewpoints.

The analysis and design diagrams of the FlowThru subscription management component

presented in this section were taken from the publicly available version of the model [Flow-

httpj.

4.3 Ch a p t e r s u m m a r y a n d r e s e a r c h CONTRIBUTIONS

This chapter gave an overview of the two ACTS projects that were used as a basis for the

study of integrity issues. The TRUMPET project was the main research platform: the

description of TRUMPET was thus given in full detail.

As we have seen, the TRUMPET system consists of two distinct entities: the security

architecture and the management architecture. The security architecture was designed to

secure the inter-domain TMN interactions, focusing on the Xuser interface between the two

distinct administrative entities: the Value Added Service Provider (VASP) and the Public

Network Operator (PNG). Mutual authentication, managed object access control, and

integrity of data in transit are provided for. As such, the security architecture tackles a subset

of integrity attributes (those related to security) defined in chapter 3, section 3.1.

The core aim of the management architecture is to support the deployment and

demonstration of the security architecture. The service management architecture spans three

separate administrative domains: Customer Premises Network, Value Added Service

Provider and the Public Network Operator. The autonomous management systems of these

players collaborate so as to provide and maintain the end-to-end ATM connections for the

end-users.

Apart from just providing a platform for the application of the security architecture, a

number of other questions were addressed through the construction of the TRUMPET

service management and provisioning system.

Basic issue in the open network management and provisioning in the emerging market is that

of the integration of the legacy TMN-based protocols and models with the emerging

distributed object techniques which are aiming at standardised service provisioning. The

future is more likely to see the customers moving from the heavy-weight TMN solutions to

the more accessible CORE A and JAVA approaches. On the other hand, the major players

will not be willing to discard their existing TMN systems. The TRUMPET management

99

architecture allows flexible customer access to the PNO CMIS-based management services

via the third-party retailer (VASP). The customer has access to the services provided by the

VASP through the managed object model developed in JAVA, which is compatible with the

TMN architecture. In turn, the JAVA-based VASP accesses the CMIS-based PNO service

management systems via the CORBA-based gateway.

Also, this management architecture was designed using a novel management system

development approach. This approach aimed to unite the TMN and distributed object

concepts, by specifying a use-case driven methodology, based on the ODP viewpoints,

where the TMN architectural concepts are described using the UML notation. The approach

proved to be flexible and effective.

The integrated TRUMPET system was validated in real operational environment during

three trials [Pmj98b]. The first trial offered a platform for initial top-down system

integration, and the TRUMPET service management system was deployed to successfully

provide broadband connectivity between a number of medical sites, using the EXPERT test­

bed in Basle. The second trial scenario concerned the provisioning, through the service

provider, of connections between end-users across the network of an established provider -

Scottish Telecom. The last trial took place within the “Network Society” event in the

Eurescom premises in Sophia Antipolis, and similarly involved the establishment of ATM

VPCs with specified Quality of Service parameters between the host sites. Some experiments

also offered an opportunity to integrate the open interface of the TRUMPET VASP with a

non-TRUMPET PNO: that developed by the MISA consortium.

The author's contributions to the concepts described above were manifold. Firstly, the

contribution to the security architecture included discussions and contributions to design

decisions, and document revisions. The contribution to the security aspect of the project

further formed a basis for the development of the testing integrity policy for interconnected

inter-domain management systems, discussed in chapter 6. Secondly, the author was one of

the core creators of the ODP-UML management system development approach [Kand98],

which was further refined and exploited in the context of the integrity management

methodology - as discussed in chapter 3, section 3.2.1.1.1. In this context, the approach is

seen as one of the key requirements forming a basis for consideration of integrity issues.

Finally, the author contributed to the specification, design and implementation of the

TRUMPET service management system [Pmj97].

The second project that was used as a research platform for the investigation of the integrity

issues in network and service management was the ACTS project FlowThru. FlowThru

100

project dealt with the component reuse and integration issues in inter-domain network and

service management scenarios. The issue of reuse strategy was addressed through the

specification of a methodology for both the development of management systems out of

reusable components, and for the development of the reusable components as such.

Methodology is based on the specification of reusable components through not only their

design model and software, but also the analysis model. The methodology is heavily based

on UML, and exploits the concept of the façade.

A range of components from a number of other ACTS projects was used. In our description

of the FlowThru project, we focused on the subscription management component, which was

central in our further work concerning the investigation of integrity issues in network and

service management. This component is responsible for introduction and withdrawal of new

services available to the customer, and enables service provider administrators and the

customers to manage the end-user access to the service capabilities.

We described the analysis and design UML models of the subscription management

component. The analysis model of the component, addressing the component generic

requirements, was specified using UML use case and class diagrams. The design model,

based on the existing design, was reverse-documented through UML class diagrams

depicting the structure and interrelationships between information objects, computational

objects, and computational object interfaces. We then elaborated on the mappings between

the FlowThru analysis and design models and the ODP viewpoints, concluding that the

FlowThru analysis and design effectively specify the ODP information and computational

viewpoints.

The background information concerning the FlowThru project is based on the FlowThru

papers, deliverables and web presentations, as referred to, since the author did not participate

directly in this project.

Both of the ACTS projects discussed here were used as a basis for the development of the

integrity-metric s policy presented in chapter 5 (illustrated by three case studies involving

these projects), while the TRUMPET project was the sole research platform for the

development of the interconnection testing integrity policy discussed in chapter 6.

101

5 METRICS - RISK CONTROL

This chapter presents a predictive integrity-preserving policy to be applied during the

development of distributed telecommunications systems, and its application in three case

studies. The policy is based on the quantitative notions of system and class complexity and

integrity, and is developed through exploration of the semi-formal model of the system under

development and the adapted software measurement techniques (software metrics).

In section 5.1, we present this integrity-metrics policy, while in section 5.2 we demonstrate

its applicability in three case studies concerning network and service management systems.

One case study relates to the design of the TRUMPET management system, while the other

two case studies relate to the FlowThru subscription management component: the analysis

and the design model are considered separately. Section 5.3 concludes this chapter, and

highlights the research contributions.

Some of the material in this chapter has been published in [Pmj96] and [Pmj99b].

5.1 M e t r ic s : t h e p o l i c y

This section introduces the integrity-preserving policy based on object-oriented (0 0)

software metrics, which yield complexity and coupling measurements of the system classes.

These measurements are correlated with the integrity status of the system classes, and thus

have the ability to pin-point potential risk areas in the telecommunications system design.

In section 5.1.1, we give the background concerning software metrics. In section 5.1.2, we

argument the relationship between the complexity/coupling measures and the integrity/risk

status. Moreover, we discuss the general applicability of this policy in the context of the

integrity methodology presented in chapter 3. Section 5.1.3 elaborates on the policy by

presenting our metric suite, and maps out the position of each metric in the ODP-UML

framework (introduced in chapter 3, section 3.2.1.1.1) of the integrity methodology. Section

5.1.4 briefly summarises the theoretical work presented.

5.1.1 S o f t w a r e m e t r i c s b a c k g r o u n d

Software measurement (for the fundamentals of measurement as such refer to chapter 3,

section 3.2.1.1.2) is a branch of software science dealing with the measurement of various

attributes of software. The main aim of software measurement is to "acquire control over

software processes, products and resources" [Fent91]. Process measurement deals with

measuring the attributes of any software activity that has a time factor, such as the software

102

analysis phase, design phase, implementation phase, etc. Product measurement focuses on

measuring the attributes of the outputs of the processes: the actual software itself,

deliverables/documentation etc. Resource measurement deals with the measurement of the

inputs to processes, such as personnel, materials, tools, etc. Software measurement can be

used for assessment {e.g., amount of money spent during the project) or for prediction {e.g.,

measurement of resources/personnel to predict software project duration).

As already discussed in chapter 3, section 3.2.1.1.2, the software attributes to be measured

can also be grouped into two distinct sets: internal and external attributes. Internal attributes

are measured only in terms of the actual entity under observation, and they are measured

directly, i.e., independently [Fent94]. Examples are number of bugs, time, or effort that has

been spent during the software project. The external attributes are measured in terms of how

the entity relates to its environment, and they are measured indirectly - i.e., measures of other

attributes must exist so as to obtain the measure of a particular external attribute. Examples

of the external attributes are cost effectiveness, productivity, usability, etc. Through analogy,

the internal attributes are measured in the context of assessment, and external through

prediction. Note that integrity, being a complex attribute (see chapter 3, section 3.1), is also

an external one.

Although a considerable amount of research was done in the field, software measurement is

rarely applied in the industry. As reported in [Your96], only between 1 and 2 percent of

software organisations are on the maturity level where they actually use metrics in the

development process. Usually, metrics applications in the industry deal with process

prediction, and strongly focus on cost, productivity and effort estimation [Well94].

Process predictions are performed early in the development lifecycle, and in this context the

predictions focus on the cost-benefit feasibility analysis of the whole project. Later in the

development lifecycle, cost prediction supports the project planning with respect to effort

and duration. The cost is expressed in terms of duration (project elapsed time), or in terms of

effort, which is normally calculated in Man-Months.

There are a number of software measurement techniques, or metrics, used in process

predictions. The most established prediction model is the Constructive Cost Model

(COCOMO) [BoehSl], which gives the prediction of effort as:

Effort = a ♦ (size)* ̂ (4)

103

Where size is given in thousands of lines of code (KLOC) and a and b are parameters

varying between 1 and 3.6, depending on the environment. COCOMO can be used during

the requirements capture (referred to as the basic COCOMO); when the major components

are already defined (referred to as the intermediate COCOMO); and when the details of

software modules are defined (referred to as the detailed COCOMO). The problem with this

model is that the size (KLOC) is difficult to measure early in the lifecycle, especially if

diagrammatic techniques are used for analysis and design. The two popular alternative

measures for size are Albrecht’s Function Points (FPs) [Albr79], and the DeMarco's BANG

measure [DeMa82].

Albrecht’s FPs measure can be obtained early in the lifecycle, and it is technology

independent. Thus, it is widely accepted in the industry, and many cost estimation models

have been built on it. FPs can be used to measure the size of the software, as a weighted sum

of external inputs, external outputs, external inquires, external files and internal files. The

drawback of this measure is that it requires full system specification to be available. Also, it

is a subjective measure and as such cannot be fully automated and, likewise, it is not

independent of the design method used.

The DeMarco BANG measure classifies systems as function-strong and data-strong. For

function-strong systems, BANG is actually the number of bubbles in a Data Flow Diagram.

For data strong systems, BANG is defined as the number of entities in an Entity Relationship

Diagram. BANG was not fully validated, but it is relatively widespread.

As we have seen, there a number of software metrics measuring the size of software, from

which, through a suitable model, the process predictions can be made (for overview see

[Kitc85] and more recently [Garm96]). Another set of software metrics focuses on

measuring the internal structure of software. These metrics aim to capture the software

complexity: that of the software modules (classes) and their interdependencies.

A number of the pre-object-oriented complexity measures exist [Shep93]. The control-fiow

family (as discussed in [Zuse90]) of software metrics is based on the graph theory. The

program is represented as a set of statements, which are represented as edges (e), and which

are connected through the control flow between them (vertices - v). The typical control-fiow

measure is the McCabe’s cyclomatic complexity [McCa76], given as a difference between

edges and vertices, plus 2.

The data complexity is measured through a number of simple metrics [Fent91] such as

number of variables, constants, etc. Information flow between modules (where a module is

104

effectively a continuous sequence of program statements, separately compileable) can be

quantified through calculating the squared product of the fan-in and the fan-out of the

modules. Fan in is the number of local flows terminating at the module, plus the number of

data structures from which information is retrieved by the module. Fan out is the number of

local flows that emanate from the module, plus the number of data structures that are

updated by the module. Local flow means that one module invokes another. This metric is

referred to as the IF4 metric [HenrSl].

With the evolution of the object-oriented (OO) analysis and design, a number of new

complexity metrics emerged. The old metrics are not applicable to the OO paradigm, where

the data and algorithms are bound closely together in a class, and a software program is

really a number of collaborating objects. In the context of this new paradigm, complexity is

generally considered to involve a human factor. Thus, we refer to psychological or cognitive

complexity, where complexity of a program or a class relates to how difficult it is for a

programmer to comprehend the problem, or to successfully develop a class [Zuse90].

Complexity can then be loosely defined as "a characteristic of software that requires effort to

design, understand, or code" [Hend96]. Since in this thesis we are not directly interested in

programmer characteristics, we are left with the issue of the OO structural complexity as the

main factor influencing the psychological complexity.

The OO metrics are presumed to be collectable early in the development lifecycle [Chid98]

[Kami99], considering the analysis and design documents developed through a diagrammatic

notation such as OMT [Rumb91] or UML [UML]. A number of 0 0 metrics exist (for a

slightly out-of-date overview see [Hend96]).

The sheer scale of the 0 0 system can be assessed using the number of use cases [Mink97]

and the number of packages [Mink97] metrics. The inheritance complexity is measured

using the Depth of Inheritance Tree (DIT) [Chid91][Chid94] and the Number of Children

(NOG) [Chid91][Chid94] metrics. The complexity of the inter-class relationships can be

measured using the number of relationships [Lore94] metric. Stand-alone class complexity is

assessed using the Weighted Methods per Class metric (WMC) [Chid91][Chid94], and the

interface complexity metric [Hend96]. The interrelationship between classes can also be

measured using the Coupling Between Objects (CEO) [Chid91][Chid94], Message-Passing

Coupling (MPC) [Li93][Lore94] and Response For a Class (RFC) [Chid91][Chid94] metrics.

Whitmire complexity metric [Whit97] quantifies the overall relationship complexity,

including associations, aggregations, inheritance and message passing. The Lack of

Cohesion of Methods (LCOM) [Chid91][Chid94] measures the amount of cohesion in a

class. The DIT, NOC, CEO, RFC, WMC and LCOM are collectively known as CK

105

(Chidamber-Kemerer) metrics. These, and some other of the OO metrics mentioned above,

are discussed in detail in section 5.1.3.

The CK-metrics were suggested, in the research arena, as a basis for prediction of external

process attributes, such as productivity, re-work effort and design effort [Chid98]; testing

effort and reuse [Chid94]; as well as maintenance effort [Li93]. It is worth noting that for

[Li93], the maintenance effort data was gathered throughout 3 years to enable the

development of a model linking the maintenance effort and the CK metric values. In these

three studies, it was indicated that the metrics are effective for the assessment of these

economic variables. As such, these metrics are generally considered as a managerial tool,

envisaged to aid project managers in effort allocation and project planning. Also, in [Chid94]

these metrics were suggested as a means to identify the design flaws and areas of re-design:

however, no details were given.

Currently, the studies mentioned above are the key ones that dealt with the actual practical

applications for the object-oriented metrics. Another family of studies [Bria98] [Kami99]

[Basi96] dealt with another aspect of the OO metrics application: their relationship with

fault-proneness. The most notable study is that of [Basi96], which demonstrated that the CK

metrics are more successful in predicting fault-proneness of the classes then other existing

metrics. The metrics counts were related through a mathematical model to the binary value

of fault-proneness: the class was detected during testing as either with a fault, or not. The

metric counts were collected from the final code, while the faults were recorded during

testing. The data sample was the student C-n- programs.

Generally, there are few reported studies dealing with empirical OO measurements. In

[Chid98], three commercial systems, containing 45, 27 and 25 classes, were considered. The

metrics data source in two case studies was the source code, while in the third case study

metrics were collected from the design documentation. In [Chid94], two systems were

assessed: a graphical user interface (GUI) of 634 classes originating from two C++ libraries;

and a piece of Smalltalk software for VLSI circuits, consisting of 1459 classes. In [Basi96],

eight medium sized information systems, developed in C++, were subjected to

measurements. In [Bria98], eight systems assessed consisted of a total of 180 classes. [Li93]

assessed two commercial software products developed in Classic-Ada. [Kirs99] collected

measurements from student programs consisting of 15 JAVA classes. In all these studies, the

CK metrics were collected directly from the code. Apart from one of the three studies

presented in [Chid98], the only other reported study where it was attempted to collect the

metrics from the analysis and design documents is [Cart96]. Here, a telecommunications

system consisting of 32 C++ classes was assessed. However, most of the metrics proved to

106

be difficult to collect from the analysis and design documents without having access to the

system implementation, with the exception of DIT and NOC. In [Kami99], use of metrics

was suggested early in the development lifecycle; however, the source code of a mail

delivery system consisting of 141 classes was used for metrics collection.

5 .1 .2 M e t r ic s a n d in t e g r it y : o v e r v ie w o f t h e p o l ic y

This section represents a step towards designing an integrity policy based on the 0 0 metrics,

and towards the realisation of its implementation. Thus, this section also positions this policy

in the methodology framework presented in chapter 3.

Since the early years of software engineering [Cons79] through to the modem days of OO

software engineering [Bem93][Riel96] an axiom was established stating that good internal

structure of software implies good external attributes of software.

First, good software should have low coupling between classes (or modules, in the pre-OO

terminology). Coupling is a measure of the degree of interdependence between classes. Two

object classes are coupled if and only if at least one of them acts upon the other: A is said to

act upon B if the history of B is influenced by A [Vess84]. History is a set of chronologically

ordered states that an object goes through in time. Or, the alternative way to define coupling

would be: "two classes are coupled if there is evidence that methods defined in one class use

methods or instance variables defined in another class" [Chid94]^.

Second, the stand-alone object classes of a good piece of software should have high cohesion

and low internal complexity. Cohesion is the extent to which the class (module) is geared

towards performing a coherent task: "how tightly bound or related internal module elements

are to one another" [Cons79]. Internal class complexity could be concerned with either class

internal structure (such as complexity of its control flow) or the complexity of the class as

seen from the outside: effectively, the complexity of its interface.

To summarise, good software design has low class complexity, low coupling between

classes and high cohesion: this good internal structure of software implies good external

attributes. In the context of OO metrics, this point was supported by relating the

complexity/coupling measures to external attributes such as maintainability [Li93], fault-

proneness [Basi96][Bria98], and reuse [Chid94], as discussed before.

 ̂However, note that using instance variables in another class is generally bad programming practice.

107

Here we suggest that the 0 0 metrics can be used as the integrity/risk indicators early in the

telecommunications system development lifecycle (note that in system is considered to be a

set of interacting distributed objects providing a certain service). Integrity is an external

attribute, and also a complex one, influenced by and influencing a number of diverse

attributes, as discussed in section 3.1. As such, integrity cannot be measured directly. Thus,

we cannot establish a direct functional relationship between complexity/coupling measures

and integrity, i.e. we cannot build a full-scale mathematical model (as already discussed in

chapter 3, section 3.2.1.1.2). However, we can state that there is a positive correlation

between complexity/coupling measures and the integrity status of the telecommunications

system.

The 0 0 metrics single out the most complex and coupled classes in the design.

The higher the class complexity, the more difficult it is to design, implement, test, and

maintain, and more likely it is that it will be designed or implemented incorrectly. As such,

the class is more likely to fail, and more risk it poses to the integral system operation.

Ideally, the complexity levels of individual classes should be evened out, so as to avoid the

risk being focused on few points of failure.

High level of coupling between system classes indicates a high level of interdependence: a

change in one of the system classes will ripple through the system via the coupling paths.

Similarly, a failure, or an integrity breach, may propagate through the system, effecting its

integrity.

Thus, the higher the class complexity and coupling, the higher the risk it poses to system

operation, and thus lower its integrity:

class complexity ~ class risk ~ l/(class integrity) (5)

class coupling ~ class risk ~ l/(class integrity) (6)

Singling out the most complex/coupled classes is supported by the widely accepted rule of

thumb, which states that if the modules/classes are ordered according to the number of faults,

the top 20% of the classes will contain 80% of faults (as pointed out in [Sidd94]). Or, as was

suggested from the early days of software engineering, in the context unrelated to metrics,

but still relevant: "complexity ... is one of the major causes of unreliable software"

[Myer76].

108

In the framework of the integrity methodology presented in chapter 3, the typical integrity

analysis (discussed in chapter 3, section 3.2.1.2) of a telecommunications system would

identify the integrity requirement of minimising and evening out the class complexity and

coupling in the design. This can be done on the unit, sub-system and system integrity levels,

and considering the information and computational viewpoints of the system under

development - the viewpoints where the class semantics and communication with other

classes are defined. Thus, the integrity requirements classification diagram, presented in

chapter 3, section 3.2.1.2, Figure 12, page 53, would in this case have the form as depicted in

Figure 41.

Integrity
level

Operational

System

Subsystem

Unit

^ System
viewpoint

Enterprise

Computational

Information

Engineering

Technology

Integrity
attribute

Robustness
Resilience

Availability
Performance

Scalability
Data coherence

Liveness
Feature interaction

Complexity
Coupling
Security

Reliability

Figure 41 - Integrity requirements classification: complexity and coupling

Then the integrity design (discussed in section 3.2.1.3) would identify which metrics are to

be used to assess the complexity and coupling levels of the classes in the system. Finally, the

integrity implementation (discussed in section 3.2.1.4) would specify how to realise this

policy. The implementation of this integrity-metrics policy is based on measurement and

comparison of the complexity and coupling of system classes: these measurements indicate

the high-risk areas of the design and imply the risk-reduction actions: redesign.

Referring to Figure 17, page 60, chapter 3, section 3.2.1.4, depicting the implementation of

an integrity policy, the integrity-metrics policy implementation would have the form as

shown in Figure 42. The measurement system is provided through OO metrics, which

measure the complexity and coupling level of the classes in the system design. The system is

specified in a semi-formal modelling notation such as OMT or UML. The

complexity/coupling measurements, as mentioned before, are positively correlated to the

integrity/risk status of the system classes. Thus, by pin-pointing the high-risk areas (hot­

spots) in the design through a prediction algorithm which is effectively correlation, the

109

candidate redesign areas in the system under development are identified, and the response

action, i.e. redesign, is applied. In the later stages of development, the response action can be

also the extensive testing of the high-risk area in the implementation.

Target
complexity/

risk level

Current
design

Response:
redesign

Integrity/risk
assessment

r̂
Complexity

measurements
Prediction
algorithm:
correlation

Integrity
control

OO metrics

System
under

development:
semi formal

Figure 42 - Integrity-metrics policy implementation

Moreover, per class values of the metrics can be summed up to yield the system-level

measurements. Thus, the overall complexity of alternative designs can be compared and

hence the choice between alternative designs based on their integrity/risk levels can be made.

Finally, all of the information gathered from measurement, prediction algorithms and

response is analysed and documented so as to assess the final system integrity and risk

status, and for the definition of maintenance (see chapter 3, section 3.2.3) policies.

Using the terminology defined in chapter 3, sections 3.2 and 3.2.1.3, this integrity policy

belongs to the prediction phase of the integrity methodology and effectively gives rise to the

integrity-preserving design recommendations.

5 .1 .3 D e s ig n in g t h e p o l ic y : a m e t r ic s u it e

In the previous section, we gave the overview of the integrity policy based on metrics, and

discussed its position in the integrity methodology, by illustrating what integrity analysis,

design and implementation would consist of in the context of this policy.

This section presents the detailed design of the integrity policy based on the 0 0 metrics.

This activity involves the definition of the integrity-focused metric suite.

Our integrity metrics suite (published in [Pmj99b]) consists of seven distinct 0 0 metrics:

Depth of Inheritance Tree (DIT) [Chid91][Chid94], Number of Children (NOC)

[Chid91][Chid94], Coupling Between Objects (CEO) [Chid91][Chid94], Message-Passing

Coupling (MPC) [Li93], Response For a Class (RFC) [Chid91][Chid94], interface

complexity metric [Hend96], and Whitmire complexity metric [Whit97]. All of the above

110

metrics are class-level metrics, and the measurements they yield are ranked on the interval

scale [Hend96] (for the scale types see chapter 3, section 3.2.1.1.2).

DIT [Chid91][Chid94] is the depth of the inheritance tree, given by

DIT = Inheritance level number; (0 - N), N > 0. (7)

In the case there is multiple inheritance, it is calculated as a maximum length from the node

to the root of a tree. Deeper trees constitute greater design complexity, and the deeper a class

is in the inheritance hierarchy, more methods it inherits and more complex it becomes.

NOC [Chid91][Chid94]is defined as the number of immediate sub-classes subordinated to a

class in the class hierarchy:

NOC = number of direct sub-classes; (0 - N), N > 0 (8)

The classes with high NOC count are more complex - they effect more classes.

CBO [Chid91][Chid94]is a count of a number of other classes that a class is coupled to. If a

method in class A uses a method or an instance variable in class B, then A is coupled to B.

CBO is independent of the number of references that A makes to B. There is some

disagreement about how to calculate CBO. The original definition would yield that both

classes A and B have the CBO count of 1 (i.e., the directionality of arrows does not count).

However, generally it is accepted that the calculation of CBO should be unidirectional: thus,

class A would have a CBO of 1 and B a CBO of 0.

CBO = number of collaborating classes; (0 - N), N > 0 (9)

As mentioned before, high coupling is undesirable: it makes a class highly dependent on

other classes and thus more vulnerable to error propagation and less reliable.

MPC [Li93] is, in contrast to CBO, dependent on the number of references that class A of

the above example makes to the class B. MFC is defined as

MFC = number of send statements in a class; (0 - N), N > 0 (10)

111

where the number of send statements in a class is effectively the number of remote method

invocations. Large MPC count implies large dependency on other classes. Classes with high

MPC effectively have higher coupling and thus pose more risk to system operation.

RFC [Chid91][Chid94] is defined as a set of all methods that can be invoked in a response to

a message received by an object of a class. In other words, this is the number of methods

potentially available to the class:

RFC = NLM + number of methods called by local methods; (0 - N), N > 0 (11)

where NLM is the number of local methods. Large RFC indicates large complexity - tracing

of the interdependencies becomes more difficult, and the coupling paths more intricate.

The interface complexity metric [Hend96] assesses the stand-alone complexity of the class.

The interface can be specified as the set of services: queries (returning an object) and

commands (not). A query can be perceived as a "get"-type operation, while command is a

"set"/"do"-type operation. Interface complexity is given as the sum of weighted commands

and queries, where the weight factor is the number of arguments required for the

query/command. Hence, the equation is:

C total — (C + 2 j= lC arg list(j)) + (q ^ ^ i= lC a rg lis t(i)) (1 2)

where c is the number of commands, q number of queries, and CargiistO) is the cardinality of

the argument list for the j^ service. The larger the interface size, the more difficult it is to

select and correctly use the service provided by the class.

The Whitmire complexity metric [Whit97] assesses the total class coupling within the

design. It is a four-dimensional metric, where the four dimensions are sets of inheritance (set

Ag), association (As), aggregation (A&) and message passing (Am) arrows related to the

particular class. The magnitudes in each dimension are given by the cardinality of the

corresponding set of arrows. The metric is additive, and thus the overall class coupling

complexity is given by:

Ctotal = Card(Ag) -t- Card(As) + Card(Aa) + Card(Am) (13)

where Card(X) denotes the cardinality of set X.

112

The set of OO metrics discussed here can be calculated from semi-formal analysis and

design documents (if those are reasonably complete). DIT and NOC metrics can be

calculated very early in the development lifecycle, considering the UML class diagrams

depicting the inheritance hierarchy in the system. The CBO, MPC, RFC and Whitmire

complexity can be calculated once the interrelationships between classes have been

identified. To calculate these metrics, the UML class diagrams depicting associations and

aggregations must be available, as well as the collaboration diagrams illustrating the message

exchange between the collaborating objects. The interface complexity metric can be

calculated once the stand-alone class interface has been specified, including the full set of

parameters. As can be seen from the metrics formulae, all the metrics are relatively simple to

calculate.

When placed in the ODP viewpoint framework (as discussed in chapter 3, section 3.2.1.1.1),

the metric suite has the form as shown in Table 1. Here, each metric is presented in relation

to the UML diagram it is calculated from, ODP viewpoint depicted by this UML diagram,

and the integrity level (as discussed in section 3.2.1) at which the metric can be perceived.

Metric UML diagram ODP viewpoint Integrity level

DIT Class Information System

NOC Class Information System

CBO Class, Collaboration Information,

Computational

System/Sub-system

MPC Class, Collaboration Information,

Computational

System/Sub-system

RFC Class, Collaboration Information,

Computational

System/Sub­

system/Unit

Interface Class Information,

Computational

Unit

Whitmire Class, Collaboration Information,

Computational

System/Sub-system

Table 1 - Metrics and system development mappings

The metrics making up our metric suite were chosen as a representative set for the

assessment of the analysis/design complexity of the system under development. We believe

these metrics effectively capture the complexity of the design, tackling both the stand-alone

class complexity (in terms of the interface complexity), as well as different forms of inter­

class coupling, ranging from inheritance coupling, through general relationship coupling

such as association and aggregation, to message-passing oriented coupling which reflects the

113

amount of interaction on the detailed level. Moreover, this metric set is representative

because it includes the key metrics suggested in the software measurement research arena.

We omitted the stand-alone class cohesion measures (such as LCOM [Chid91] [Chid94]),

since those strongly depend on the low-level class internal detail, available only through

code-level information such as details of specification of procedures (methods) and the

interdependencies between them [Biem98]. As such, these measures do not prove useful

when considering the analysis and design information, which we are proposing to measure.

5 .1 .4 S u m m a r y

In the preceding sections, we presented a predictive integrity-preserving policy based on 0 0

software metrics.

First, we reflected on the state of the art in software measurement, pointing out that its focus

nowadays is the process prediction as related to project management.

Then, we suggested the OO metrics as the risk/integrity indicators early in the

telecommunications system development lifecycle. We argumented the relationship between

complexity/coupling measurements and the risk/integrity status of system classes: the highly

complex/coupled classes have lower integrity status.

We then discussed the position of this integrity-metrics policy in the integrity methodology

presented in chapter 3. Integrity analysis in this case identifies the target to minimise and

even out complexity and coupling of the stand-alone classes, integrity design involves the

definition of the metric suite used for complexity/coupling measurements, while the integrity

implementation conceptually automates the control loop.

Next step was the definition of the metrics making up the suite: these are the seven distinct

OO metrics. We also showed how each of the metrics relates to the UML diagram it is

calculated from, ODP viewpoint depicted by this UML diagram, and the integrity level (as

discussed in chapter 3, section 3.2.1) at which the metric can be perceived.

The development of this integrity-metrics policy is seen as one of the main contributions of

the research work, and as such will be discussed in detail in the final conclusive discussion

of this chapter.

To test the efficiency of this integrity-metrics policy, we applied it to three case studies: that

of the TRUMPET service management system design, the FlowThru subscription

114

management component analysis model and the FlowThru subscription management

component design model. These case studies are discussed in the following sections.

5.2 M e t r ic s : c a s e s t u d ie s

In order to illustrate the application of the proposed integrity-metrics policy, three case

studies were undertaken. In section 5.2.1, we report on the assessment of the TRUMPET

service provisioning and management system using our proposed metric suite. In section

5.2.2, the assessment of the FlowThru subscription management component is presented;

both FlowThru analysis and design models were assessed, since these were developed

independently (as discussed in chapter 4, section 4.2.1). Thus, effectively, three distinct

analysis/design entities were assessed. For each experiment, we first elaborate on the

approach taken to metrics collection in that particular study, followed by the details of the

measurements, and ending with the brief summary of the results. Then, in section 5.2.3 we

discuss in detail the results of the case studies, present the statistical analysis of the results,

and reflect on the lessons learnt.

5.2.1 TRUMPET SYSTEM

5.2.1.1 A ppr o a c h

The TRUMPET service provisioning and management system was presented in detail in

chapter 4, section 4.1.2. As mentioned before, the design was conducted using the ODP-

UML approach. The metrics data source - the design documentation [Pmj97] - consisted of

150 pages of text and UML diagrams, drawn manually. The design was developed by 15

collaborators over 3 months.

In what follows we assessed only the classes in the Value Added Service Provider (VASP)

and the Public Network Operator (PNO) domains, since the documentation for the Customer

Premises Network (CPN) management system was incomplete. The design of the VASP and

the PNO domains consisted of 32 classes.

Each of the metrics forming the metric suite, apart from DIT and NOC, was applied within

an ODP viewpoint and on relevant UML diagram(s) describing that viewpoint, as suggested

before in Table 1, page 113. The designers of the TRUMPET system did not use inheritance

at all. Thus, DIT and NOC metrics, measuring the inheritance complexity, are not applicable

in this case. The metrics data collection was performed manually.

115

5.2 .1 .2 A ssessm en t

The metric values of the classes are shown in Table 2. The table is sorted with respect to

decreasing Whitmire complexity (last column).

Class

number

Class CBO MFC RFC Interface Whitmire

1 V ASP_ VPN_Manager 6 23 30 31 27

2 PNO_Conn_Manager 3 9 14 29 10

3 PNO_VP_Conn_Handler 3 9 14 21 9

4 PNO_atm_Subnetwork 1 6 12 6 8

6 PN 0_N w_Manager 2 7 17 20 7

5 VASP_Customer_Server 1 4 8 16 7

8 V ASP_ VP_Connection 2 2 11 14 6

7 Vasp_Top 0 0 0 0 6

9 VASP_Connection_MIB 0 0 0 0 4

10 V ASP_Customer_MIB 0 0 0 0 4

11 VASP_MIB 0 0 0 0 4

12 VASP_PNO_MIB 0 0 0 0 3

19 PNO_ VP_Corm_Manager 1 2 4 7 2

15 VASP_Customer_End_Point 0 0 3 9 2

17 PNO_VP_Conn 0 0 2 10 2

13 V ASP_ Actors_MlB 0 0 0 0 2

14 VP_User 0 0 0 0 2

16 PNO_VP_Service_Pro vider 0 0 0 0 2

18 PNO_ATM_subnetworkConnection 0 0 0 0 2

21 PNO_Access_Point 0 0 3 10 1

22 V ASP_VP_Segment 0 0 3 10 1

20 VASP_Access_Point 0 0 0 0 1

23 ATM_NW_Access_Point 0 0 0 0 1

24 PNO_VP_User_Record_Handler 0 0 3 5 0

25 Route_Finder 0 0 1 3 0

26 CustID 0 0 0 0 0

27 CustServProf 0 0 0 0 0

28 Pnoid 0 0 0 0 0

29 Pnoserprof 0 0 0 0 0

30 Pnostatus 0 0 0 0 0

31 Sec_Profile 0 0 0 0 0

32 Conn_Profile 0 0 0 0 0

Table 2 - TRUMPET metrics values

116

Figure 43 graphically depicts the metrics distributions per class. On average, the most

complex classes are the VASP_VPN_Manager and the PNO_Conn_Manager. These two

classes are the main computational object classes operating on the X interface between the

VASP and the PNO domains. The two classes that follow are the PNO_VP_Conn_Handler,

and the PNO_Nw_Manager, the other two computational object classes in the PNO domain,

on the service and network levels, respectively. Next is the VASP_Customer_Server, the

computational object class in the VASP domain which is operating at the interface with the

CPN domain. Following these is a set of purely information object classes representing the

key data entities in both the VASP and the PNO domains.

M e tric Va lue

□ CBO

W hitm ire

□ RFC

□ Interface

W hitm ire

Interface

C lass N um ber

Figure 43 - Metrics distributions per class (TRUMPET)

In what follows we discuss the complexity measurements as per metric. For each metric, we

present the basic summary statistics (mean, median, standard deviation, minimum,

maximum), the histogram of the distribution of metric values, and the boxplot of metrics

values. The boxplot essentially depicts the centre and variation of the data set, effectively

marking the outliers. The boxplot is constructed from the three summary statistics: median

(value m for which half the values of data set are smaller then m and half are bigger), the

upper fourth (value u which is the median of values larger than m), and lower fourth (value I

which is the median of values smaller than m). Values m, u and / split the data into quarters.

The box length is d = u - 1, and upper tail value is u + 1.5 d. The outliers are marked with a

star. Thus, the boxplot shows the skewness of data, by the position of the median in the box,

and by the length of the tail. A more detailed statistical analysis over the whole set of metrics

is given in section 5.2.3.1.

117

Table 3 gives the basic descriptive statistics for the Whitmire complexity measurements, and

Figure 44 depicts the histogram of the distribution of the Whitmire complexity values.

Figure 45 shows the boxplot of the complexity values: in this case, the median is off-set of

the centre and the tail lengths are unequal (left being non-existent); the data set is strongly

skewed to the left. The Whitmire complexity metric identifies the two X interface

computational object classes as the most complex.

Table 4 gives the descriptive statistics for the CBO measurements. Figure 46 the histogram

of the distribution of the CBO values, and Figure 47 the CBO boxplot. CBO measures

appear distinctly low, indicating that the interconnection between classes is kept at a

reasonable level. As seen from the histogram, most of the classes have the CBO count

between 0 and 2, with only a few classes having higher CBO (up to 6). Highest CBO is

exhibited by the X interface computational object classes in both domains, and the other two

main computational object classes in the PNO domain.

Table 5 gives the descriptive statistics for the MFC measurements. Figure 48 the histogram

of the distribution of the MFC values, and Figure 49 the MFC boxplot. As seen from the

histogram, most of the classes have the MFC count between 0 and 2, with only a few classes

having higher MFC (up to 23). MFC values follow the distribution of the Whitmire

complexity and the CBO values, with both X interface computational classes in the two

domains distinctly standing out. MFC counts of the information object classes are 0.

Table 6 gives the descriptive statistics for the RFC measurements. Figure 50 the histogram of

the distribution of the RFC values, and Figure 51 the RFC boxplot. RFC follows previously

discussed complexity measurements for the computational object classes: however, now the

most important information object classes exhibit a complexity increase as compared to the

previous measurements. This is an expected result, since RFC measures the methods

available to the class, which even in the case of a moderately interacting class can be high

due to the high number of methods within a class itself.

Table 7 gives the descriptive statistics for the interface complexity. Figure 52 the histogram

of the distribution of the interface complexity values, and Figure 53 the interface complexity

boxplot. Interface complexity follows the CBO and MFC for the computational object

classes: however, now the most important information object classes exhibit a complexity

increase as compared to the CBO and MFC measurements, the rationale for this following

that of the RFC.

118

c
<D3
Cr(D

Mean 3.531

Median 2

Standard deviation 5.187

Minimum 0

Maximum 27

Table 3 - W hitmire complexity statistics (TRUMPET)

1 0 -

o - J

Whitmire complexity

Figure 44 - W hitmire complexity histogram (TRUMPET)

Whitmire complexity

Figure 45 - W hitmire complexity boxplot (TRUMPET)

119

Mean 0.594

Median 0

Standard deviation 1.316

Minimum 0

Maximum 6

Table 4 - CBO statistics (TRUMPET)

2 0 -

> sü
c
(D3
cr
03 1 0 -

3

CBO

Figure 46 - CBO histogram (TRUMPET)

0 61 2 3 4 5

CBO

Figure 47 - CBO boxplot (TRUMPET)

120

Mean 1.937

Median 0

Standard deviation 4.683

Minimum 0

Maximum 23

Table 5 - MPC statistics (TRUMPET)

2 0 -

O3O"
2
U-

1 0 -

0 -

0 10 20

M P C

Figure 48 - MPC histogram (TRUMPET)

MPC

Figure 49 - MPC boxplot (TRUMPET)

121

Mean 3.906

Median 0

Standard deviation 6.907

Minimum 0

Maximum 30

Table 6 - RFC statistics (TRUMPET)

2 0 -

><
ü
c
CD
DO"
ïÜ_

1 0 -

0 -

RFC

Figure 50 - RFC histogram (TRUMPET)

RFC

Figure 51 - RFC boxplot (TRUMPET)

122

Mean 5.969

Median 0

Standard deviation 8.899

Minimum 0

Maximum 31

Table 7 - Interface complexity statistics (TRUMPET)

20-1

I 1 0 -
CTO

LL

0 -

0 10 20 3 0

In te rfac e co m p le x ity

Figure 52 - Interface complexity histogram (TRUMPET)

Interface complexity

Figure 53 - Interface complexity boxplot (TRUMPET)

123

5.2.1.3 Su m m ar y

The assessment of the TRUMPET system involved five metrics out of the seven proposed in

the suite: DIT and NOC metrics were not applicable since inheritance was not used in the

TRUMPET design. Although the design team consisted of professionals, this omission of

inheritance suggests that the team was relatively unaccustomed to the OO design.

As already discussed in section 5.1.1, the one of the only two reported studies that involved

the collection of metrics from design documents [Cart96] argued that only the DIT and NOC

measurements can be obtained at this stage of the development. We showed that the CBO,

MPC, RFC, interface and Whitmire complexity metrics can also be calculated early in the

development lifecycle. However, we cannot claim that all of the measurements are 100%

complete since the TRUMPET design, like any other, does not guarantee completeness of

design information.

All of the five metrics used to assess the TRUMPET management system indicate that the

computational object classes operating at the interfaces between the VASP and the PNO

domains exhibit the highest level of complexity in the design. These two classes are the

VASP_VPN_Manager (in the VASP domain) and the PNO_Conn_Manager (in the PNO

domain). During development and testing of the TRUMPET software, no detailed testing or

failure data was collected. However, this feature was confirmed during the software

integration on the trial sites, where these two classes represented the main source of pitfalls

[PmJ98b].

This assessment also indicates that the points of highest risk are those located at the

interconnection points of autonomous management systems, as was suggested by the

discussions found in [Ward95] [UCL94].

The boxplots of the metrics indicate that all the distributions of all the metrics are non­

normal: they are strongly left-skewed, with a few outliers distinctly standing out. The

histograms of all the metric distributions clearly show that the majority of classes exhibit low

complexity counts - with a large number having 0 complexity. Moreover, the CBO counts

are distinctly low, indicating that the general coupling is kept at a very low level, which is a

desirable feature. The MPC counts for the information object classes are 0 - indicating that

the information objects are effectively the communication sinks, as expected.

A more comprehensive statistical analysis of the results is given in section 5.2.3.1.

124

5.2.2 Flow Thru SYSTEM

5.2.2.1 A n a ly sis m o d el

5.2.2.1.1 Approach

The FlowThru subscription management component was presented in detail in chapter 4,

section 4.2.1. As mentioned before, the analysis model was developed post-facto,

considering the generic requirements for the component. The analysis model is based on

[Jaco92] framework, and is represented by a set of 24 UML diagrams [Flow-http]. As

discussed in section 4.2.1, the analysis model UML diagrams effectively capture the GDP

computational and information viewpoints: the analysis model boundary and control objects

correspond to GDP computational objects and their interfaces, while the analysis model

entity objects correspond to the GDP information objects. Thus, the metric suite framework

shown in Table 1, page 113, is still applicable, and each of the metrics was applied to the

appropriate UML diagram(s) describing the relevant viewpoint.

There is no inheritance in the FlowThru analysis model, and thus the inheritance metrics,

DIT and NOC, are not applicable. The interface complexity metric is also not applicable,

since although the interface methods were defined, the parameters were not.

The FlowThru analysis model consists of 28 classes. The data collection was performed

manually.

5.2.2.1.2 Assessment

The metric values of the classes are shown in Table 8. The table is sorted with respect to

decreasing Whitmire complexity (last column).

Class

n u m ber

Class CBO MFC RFC W h itm ire

1 PA Interface 4 19 19 19

2 Subscription Manager 9 9 24 9

3 SUG Manager 5 5 5 5

4 Service Manager 4 4 12 4

5 Customer Account Manager 4 4 9 4

6 Subscription Usage Group 0 0 1 4

7 Service Record 0 0 1 4

8 Customer Account 0 0 1 4

9 Subscription Management Interface 1 3 17 3

125

10 QoS Criteria 0 0 0 3

11 Subscription 0 0 0 3

12 CA interface 2 2 8 2

13 Service 0 0 0 2

14 Service Level Agreement 0 0 0 2

15 Service Management Interface 1 1 9 1

16 Customer Management Interface 1 1 6 1

17 SUG Management Interface 1 1 1 1

18 Accounting Management Interface 0 0 3 0

19 User Management Interface 0 0 2 0

20 Network Address 0 0 0 0

21 User 0 0 0 0

22 Subscription Contract 0 0 0 0

23 Customer Details 0 0 0 0

24 Service Bounds 0 0 0 0

25 Violation Tariff 0 0 0 0

26 Tariff 0 0 0 0

27 SUG Details 0 0 0 0

28 SA Interface 0 0 0 0

Table 8 - FlowThru analysis metrics values

M etric V alue I

□ C B O

M PC

□ R F C

□ W hitm ire

W hitm ire

0 / M FC

C la ss N um ber
24 25 26 27

Figure 54 - Metrics distributions per class (FlowThru analysis)

Figure 54 graphically depicts the metrics distributions per class. On average, the most

complex class is the Provider Administrator (PA) interface - the boundary/interface class of

126

the provider management application, which controls the subscription management

component. Next, the four control/computational object classes follow: the Subscription

Manager, Service Manager, Customer Account Manager and the SUG Manager. The

boundary/interface object classes are next on the complexity scale, the Subscription

Management Interface exhibiting particularly high complexity. Finally, the purely

information (entity) object classes representing the key data entities follow.

In what follows we discuss the complexity measurements as per metric. For each metric, we

present the basic summary statistics, the histogram of the distribution of metric values, and

the boxplot of metrics values. A more detailed statistical analysis over the whole set of

metrics is given in section 5.2.3.1.

Table 9 gives the descriptive statistics for the Whitmire complexity measurements. Figure 55

the histogram of the distribution of the Whitmire complexity values, and Figure 56 the

Whitmire complexity boxplot. This metric identifies the PA interface as the most complex,

followed by the four main control/computational classes - Subscription Manager standing

out.

Table 10 gives the descriptive statistics for the CBO measurements, Figure 57 the histogram

of the distribution of the CBO values, and Figure 58 the CBO boxplot. As in the case of

TRUMPET, CBO counts are low: most of the classes have the CBO count between 0 and 2.

Highest CBO is exhibited by the Subscription Manager class, followed by the other

control/computational classes and the PA interface. Entity objects CBO counts are 0.

Table 11 gives the descriptive statistics for the MPC measurements. Figure 59 the histogram

of the distribution of the MPC values, and Figure 60 the MPC boxplot. Similarly to the

TRUMPET case study, most of the classes have the MPC count between 0 and 2, with only a

few classes having higher MPC (up to 19). MPC values follow the distribution of the

Whitmire complexity values, with the PA interface exhibiting the highest complexity,

followed by the four main control/computational classes. Subscription Manager standing out.

Entity objects MPC counts are 0.

Table 12 gives the descriptive statistics for the RFC measurements. Figure 61 the histogram

of the distribution of the RFC values, and Figure 62 the RFC boxplot. RFC follows

previously discussed complexity distribution for the control/computational objects: however,

now the boundary/interface objects exhibit a complexity increase as compared to the

previous measurements - due to the high count of local methods.

127

Mean 2.536

Median 1.5

Standard deviation 3.892

Minimum 0

Maximum 19

Table 9 - W hitmire complexity statistics (FlowThru analysis)

1 0 -

5 -

0 -

T T T
6 8 10 12

W h itm ire c o m p le x ity

1 4 1 6 1 8

Figure 55 - W hitmire complexity histogram (FlowThru analysis)

Whitmire complexity

Figure 56 - W hitmire complexity boxplot (FlowThru analysis)

1 2 8

Mean 1.143

Median 0

Standard deviation 2.155

Minimum 0

Maximum 9

Table 10 - CBO statistics (FlowThru analysis)

2 0 -

c<D3cr
CD

1 0 -

0 -

CBO

Figure 57 - CBO histogram (FlowThru analysis)

CBO

Figure 58 - CBO hoxplot (FlowThru analysis)

129

Mean 1.750

Median 0

Standard deviation 3.987

Minimum 0

Maximum 19

Table 11 - MPC statistics (FlowThru analysis)

2 0 -

oco
=3cr

1 0 -

0 -

10
I

12 14 16 18

MPC

Figure 59 - MPC histogram (FlowThru analysis)

MPC

Figure 60 - MPC hoxplot (FlowThru analysis)

130

Mean 4.214

Median 1

Standard deviation 6.602

Minimum 0

Maximum 24

Table 12 - RFC statistics (FlowThru analysis)

1 5 -

>«
^ 10
O3
c r(D

0 -

~ T 1- - - - - - - - - - 1- - - - - - - - - - 1--------- 1- - - - - - - - - - 1- - - - - - - - - - 1- - - - - - - - - - 1- - - - - - - - - - 1- - - - - - - - - - 1- - - - - - - - - - r ~
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0

RFC

Figure 61 - RFC histogram (FlowThru analysis)

RFC

Figure 62 - RFC boxplot (FlowThru analysis)

131

5.2.2.1.3 Summary

The assessment of the FlowThru analysis model involved 4 metrics out of the 7 proposed in

the suite: DIT and NOC metrics were not applicable since inheritance was not used; and the

interface complexity was not assessed due to the undefined method parameters in the

interface.

Similarly to the TRUMPET case study, this study also demonstrated that all the metrics

making up our metric suite could be collected early in the development lifecycle, in contrast

to the established practice (as discussed in section 5.1.1), The exception is the interface

complexity metric, which is a relatively late-lifecycle measure, requiring full interface

elaborations. However, we again cannot claim that all of the measurements are complete due

to the inherent incomplete nature of any analysis/design. This is especially true in the case of

the MFC values, due to the incompleteness of collaboration diagrams.

The four metrics used to assess the FlowThru management component indicate that the two

most complex classes are the PA interface - the interface from the provider management

application to the subscription management component, and the Subscription Manager - the

main control/computational class in the component. This result just reinforces the

TRUMPET results: the highest complexity is exhibited at the interfaces between domains,

or, in the FlowThru case, stand-alone components.

As was the case in TRUMPET, the boxplots of the metrics indicate that all the metric

distributions are non-normal: they are strongly left-skewed, with a few outliers distinctly

standing out. The histograms of all the metric distributions clearly show that the majority of

classes exhibit low complexity counts - with a large number having 0 complexity. Also, the

CBO counts are again distinctly low, indicating that the general coupling is kept at the very

low level, which is a desirable feature. The MPC counts for the information objects are 0 -

again indicating that the information objects are effectively the communication sinks, as

expected.

A more comprehensive statistical analysis of the results is given in section 5.2.3.1.

132

S.2.2.2 D esig n m o d el

5.2.2.2.1 Approach

The FlowThru subscription management component was presented in detail in chapter 4,

section 4.2.1. As mentioned before, the design model was simply reverse-documented using

UML on the basis of the existing implementation. The design model consists of 108 UML

diagrams [Flow-http]. As discussed in section 4.2.1, the design model UML diagrams

effectively capture the ODP computational and information viewpoints: design-model

packages exporting the interface (i-type) objects depict the computational viewpoint, while

the entity (t-type) objects depict the information viewpoint. Thus, the metric suite framework

shown in Table 1, page 113, is still applicable, and each of the relevant metrics was applied

to the appropriate UML diagram(s) describing the suitable viewpoint.

There is no inheritance in the FlowThru design model, and thus the inheritance metrics, DIT

and NOC, are not applicable. The MPC metric is also not applicable, since collaboration

diagrams illustrating the message exchange between the collaborating objects are not

included in the design documents.

The FlowThru design model consists of 103 classes. The data collection was performed

manually.

5.2.2.2.2 Assessment

The metric values of the classes are shown in Table 13. The table is sorted with respect to

decreasing Whitmire complexity.

Class

number

Class CBO RFC Whitmire Interface

1 i_DB_sag 16 20 16 36

2 LsubscrnlnfoQuery 16 7 16 13

3 i_subscrnCntrl 10 6 10 12

4 i_DB_profile 10 5 10 9

5 i_DB_subs 9 6 9 11

6 i_subscription 9 3 9 4

7 i_setReference 9 2 9 4

8 LsaglnfoQuery 8 3 8 6

9 i_DB_subscriber 7 6 7 10

10 LsagMgmt 7 5 7 10

11 LsubscrnMgmt 7 5 7 10

133

12 i_DB_subCtrct 7 4 7 8

13 i_DB_sth 7 4 7 4

14 t_AssignGroupSelection 0 0 6 0

15 t_SvcTemplate 0 0 6 0

16 i_DB_portfolio 5 3 5 6

17 LsbrlnfoQuery 5 3 5 5

18 i_s vcT mpltlnfoQuery 5 3 5 4

19 LportfolioMgmt 4 3 4 6

20 LsubscrnNotif 4 2 4 4

21 i_svcT mpltMgmt 4 2 4 2

22 i_svcFctryRefQuery 4 1 4 1

23 t_Subscription 0 0 4 0

24 t_SubscriptionContxact 0 0 4 0

25 i_sbrMgmt 3 3 3 5

26 Lsalnit 3 2 3 2

27 i_DB_accountList 3 1 3 2

28 i_DB_serviceList 3 1 3 2

29 t_SvcProfile 0 0 3 0

30 t_Configuration 0 0 3 0

31 t_Subscriber 0 0 3 0

32 t_SagItem 0 0 3 0

33 i_srlnit 2 2 2 4

34 LsaMgmt 2 1 2 1

35 Lsubscrn Verify 2 1 2 1

36 t_SLA 0 0 2 0

37 t_SelectionKey 0 0 2 0

38 t_SvcSelection 0 0 2 0

39 t_SubscriptionPortfolio 0 0 2 0

40 t_AvailableSvc 0 0 2 0

41 t_DBAssignlnfo 0 0 2 0

42 t_QoSCriterion 0 0 2 0

43 i_smlnit 1 1 1 1

44 t_SvcIdList 0 0 1 0

45 t_S vcCommonData 0 0 1 0

46 t_AccountList 0 0 1 0

47 t_IntRefList 0 0 1 0

48 t_SagList 0 0 1 0

49 t_SvcProfileIdList 0 0 1 0

50 t_S ub scription Assi gnmentGroup 0 0 1 0

51 t_AvailableSvcList 0 0 1 0

52 t_DBAssignList 0 0 1 0

134

53 t_DbSagUserList 0 0 1 0

54 t_AuthLimit 0 0 1 0

55 t_DbSagUser 0 0 1 0

56 t_NapIdList 0 0 1 0

57 t_QoSCriteriaList 0 0 1 0

58 t_SLAList 0 0 1 0

59 t_SvcRecord 0 0 1 0

60 t_SvcRecordList 0 0 1 0

61 t_SvcRefList 0 0 1 0

62 t_TermIdList 0 0 1 0

63 t_UserIdList 0 0 1 0

64 t_QoSCriterionId 0 0 1 0

65 LsmMgmt 0 0 0 0

66 LsrMgmt 0 0 0 0

67 i_sthlnit 0 0 0 0

68 i_sthMgmt 0 0 0 0

69 e_subAccessDenied 0 0 0 0

70 t_SvcId 0 0 0 0

71 e_subInvaIidAccountNo 0 0 0 0

72 e_subDBcorrupted 0 0 0 0

73 e_subInvalidSvcTempIate 0 0 0 0

74 t_SagId 0 0 0 0

75 t_SvcProfileId 0 0 0 0

76 e_subDBkeyMissing 0 0 0 0

77 e_subDBParsingFailed 0 0 0 0

78 e_subDBkeyExists 0 0 0 0

79 e_subInvaIidSAG 0 0 0 0

80 t_UserId 0 0 0 0

81 e_subInvalidSvcProfiIe 0 0 0 0

82 t_IntRef 0 0 0 0

83 t_SubscriptionId 0 0 0 0

84 t_SvcType 0 0 0 0

85 t_NapId 0 0 0 0

86 t_TermId 0 0 0 0

87 t_SubscriberDetails 0 0 0 0

88 t_DateTime 0 0 0 0

89 t_NapType 0 0 0 0

90 t_TariffId 0 0 0 0

91 t_TermType 0 0 0 0

92 t_EndUserDomain 0 0 0 0

93 e_sublnvalidltem 0 0 0 0

135

94 e_subInvalidPortfolio 0 0 0 0

95 e_subInvalidUser 0 0 0 0

96 t_Account 0 0 0 0

97 t_Person 0 0 0 0

98 t_PresentationSupport 0 0 0 0

99 t_SLAId 0 0 0 0

100 t_SvcProviderId 0 0 0 0

101 t_SvcRef 0 0 0 0

102 t_Credit 0 0 0 0

103 t_DbUserStatus 0 0 0 0

Table 13 - FlowThru design metrics values

M etric Value

RFC

□ In terface

□ C BO

□ W hitm ire

W hitm ire

- ^ ^ G? .

C la ss N um ber

Figure 63 - Metrics distributions per class (FlowThru design)

Figure 63 graphically depicts the metrics distributions per class. Classes with all the metric

values of 0 are not included in the diagram. On average, the most complex class is the

i_DB_sag, the main Database interface class. However, in the following discussion we will

omit all the Database (DB) interface classes, and concentrate on the classes directly relevant

for the realisation of the design target functionality. Now, the most complex class on average

is the LsubscrnlnfoQuery, the interface class derived from the analysis-level Subscription

Management Interface. Next on the average complexity scale are a number of other interface

classes derived from analysis-level Subscription Management Interface, followed by the

interface classes derived from the SUG Management Interface and the Service Management

Interface analysis classes. Finally, the purely information (t-type) object classes representing

the key data entities follow.

136

In what follows we discuss the complexity measurements as per metric. For each metric, we

present the basic summary statistics, the histogram of the distribution of metric values, and

the boxplot of metrics values. A more detailed statistical analysis over the whole set of

metrics is given in section 5.2.3.1.

Table 14 gives the descriptive statistics for the Whitmire complexity measurements. Figure

64 the histogram of the distribution of the Whitmire complexity values, and Figure 65 the

Whitmire complexity boxplot. This metric identifies LsubscrnlnfoQuery, the interface class

derived from the analysis-level Subscription Management Interface, as the most complex

one. Next on the Whitmire complexity scale are a number of other interface classes derived

from analysis-level Subscription Management Interface, followed by the interface classes

derived from the SUG Management Interface. Following these are the information objects

corresponding to the analysis-level SUG and Service information objects.

Table 15 gives the descriptive statistics for the CBO measurements. Figure 66 the histogram

of the distribution of the CBO values, and Figure 67 the CBO boxplot. The CBO counts, as

compared to the FlowThru analysis and the TRUMPET case studies, are marginally higher

on average, while still most of the classes have the CBO count between 0 and 2. Highest

CBO is exhibited by the interface classes derived from the analysis-level Subscription

Management Interface, SUG Management Interface and the Service Management Interface,

with the LsubscrnlnfoQuery still being the most complex class.

Table 16 gives the descriptive statistics for the RFC measurements. Figure 68 the histogram

of the distribution of the RFC values, and Figure 69 the RFC boxplot. Highest RFC is

exhibited by the interface classes derived from the analysis-level Subscription Management

Interface, SUG Management Interface and the Service Management Interface, with the

LsubscrnlnfoQuery still being the most complex class.

Table 17 gives the descriptive statistics for the interface complexity measurements. Figure

70 the histogram of the distribution of the interface complexity values, and Figure 71 the

interface complexity boxplot. Highest interface complexity is exhibited by the interface

classes derived from the analysis-level Subscription Management Interface, SUG

Management Interface and the Service Management Interface, with the LsubscrnlnfoQuery

still being the most complex class.

137

Mean 2.320

Median 1

Standard deviation 3.264

Minimum 0

Maximum 16

Table 14 - W hitmire complexity statistics (FlowThru design)

4 0 - r

3 0 -

Üg 2 0 -

crQ)
LL

1 0 -

0 -

0 5 10 15

Whitmire complexity

Figure 64 - W hitmire complexity histogram (FlowThru design)

5 10 15

Whitmire complexity

Figure 65 - W hitmire complexity boxplot (FlowThru design)

138

Mean 1.670

Median 0

Standard deviation 3.379

Minimum 0

Maximum 16

Table 15 - CBO statistics (FlowThru design)

8 0 -1

7 0 -

6 0 -

2 0 -

1 0 -

0 -

0 5 10 15

CBO

Figure 66 - CBO histogram (FlowThru design)

CBO

Figure 67 - CBO hoxplot (FlowThru design)

139

Mean 1.019

Median 0

Standard deviation 2.516

Minimum 0

Maximum 20

Table 16 - RFC statistics (FlowThru design)

ü
c0)
=3
c r
Q)

8 0 -

7 0 -

6 0 -

5 0 -

4 0 -

3 0 -

2 0 -

1 0 -

0 -

I
10

RFC

I
12 14 16 18 20

Figure 68 - RFC histogram (FlowThru design)

0 10 20

RFC

Figure 69 - RFC boxplot (FlowThru design)

140

Mean 1.777

Median 0

Standard deviation 4.563

Minimum 0

Maximum 36

Table 17 - Interface complexity statistics (FlowThru design)

8 0 -

7 0 -

6 0 -

g ' 5 0 -

I 4 0 -
cr
2

2 0 -

1 0 -

0 -

0 10 20 30 40

Interface complexity

Figure 70 - Interface complexity histogram (FlowThru design)

— * * * * * * * * *

Interface complexity

Figure 71 - Interface complexity hoxplot (FlowThru design)

141

S.2.2.2.3 Su m m a ry

The assessment of the FlowThru design model involved four metrics out of the seven

proposed in the suite: DIT and NOC metrics were not applicable since inheritance was not

used; and MPC was not assessed since the collaboration and message passing was not

depicted in the FlowThru design. As before, we do not claim that all of the measurements are

complete due to the inherent incomplete nature of any design.

All four metrics used to assess the FlowThru management component design indicate that

the most complex class is the LsubscrnlnfoQuery, the interface class derived from the

analysis-level Subscription Management Interface, as the most complex one. All of the

metrics next point out the other interface classes derived from analysis-level Subscription

Management Interface, followed by the interface classes derived from the SUG Management

Interface and the Service Management Interface analysis classes. The purely information (t-

type) object classes representing the key data entities exhibit much lower complexity counts.

Considering this result, we can note that the complexity of the design-level packages,

derived from the analysis-level control/computational classes, is hidden behind the interfaces

they export. This was not the case in the analysis model, where the interface complexities

were trailing after their corresponding control/computational class counterparts. However,

the complexity measurements do propagate evenly through the development phases. In the

design, the interface classes derived from the analysis Subscription Management Interface

are the most complex. This is analogous to the analysis model situation, where the most

complex class, apart from the PA interface which is not described in the design, was the

Subscription Manager. Similarly, the most complex design-level information object class (or

t-type class in the FlowThru design terminology) is the t_AssignOroupSelection, derived

from the most complex information object class in the analysis: the Subscription Usage

Group.

The most complex class, LsubscrnlnfoQuery, is the outside interface to the main

control/computational class in the component. Thus, the complexity measurements of the

FlowThru design again re-iterate the point raised in the TRUMPET and FlowThru analysis

studies: the highest complexity is exhibited at the interfaces between domains (as is case in

TRUMPET), or, in this case, the stand-alone components.

Again, the boxplots of the metrics indicate that all the metric distributions are strongly left-

skewed, with a few outliers distinctly standing out. Similarly, the histograms of all the metric

142

distributions clearly show that the majority of classes exhibit low complexity counts, large

number of them having the complexity value of 0.

A more comprehensive statistical analysis of the results is given in section 5.2.3.1,

5 .2 .3 D is c u s s io n

In the preceding sections, we presented three case studies dealing with the assessment of

management systems using the integrity-focused metric suite defined in section 5.1.3. The

FlowThru case study involved the assessment of the analysis and design models separately,

and the TRUMPET case study focused on the assessment of the design model. The metrics

data was collected manually from the UML analysis and design documents.

The metrics data presented in the preceding sections exhibits a range of distinctive features,

including non-normal distributions and apparent multicollinearity. Thus, we conducted a

statistical analysis of measurements, presented in section 5.2.3.1, so as to trace interesting

trends in the data. Section 5.2.3.2 includes a more general discussion of the experiments.

5.2.3.1 S ta tistic a l a n a ly sis

As we have seen, all the metrics distributions, in all three experiments, are strongly left-

skewed, with a few outliers distinctly standing out. This feature can be seen from both the

boxplot diagrams and the histograms. This left-skewed outlier-heavy distribution appears to

be the typical metrics distribution.

Since the metrics distributions are non-normal, the basics statistics such as mean and the use

of parametric statistical methods do not accurately capture the distribution features and the

interrelationships between the distributions. In the case of non-normal distributions the use

of robust statistics (such as median and ranks) and nonparametric statistical methods is

advocated [Schn92][Fent91]. The assumptions for the use of nonparametric statistical

methods are much less restrictive then for the parametric methods (which usually assume

normal distributions, equality of variances across samples, etc.). However, the nonparametric

methods are as rigorous, and allow the analysis of order relations [Schn92].

The metrics distributions for all the metrics are very similar, and there seems to be a strong

relationship between the metrics in all three experiments. This strong relationship between

the whole set of metrics is a problem referred to as multicollinearity. Thus, we concentrated

on investigating the associations between the metrics.

143

First, we investigated the linear association between the metric values, by calculating r, the

lin e a r (P ea rso n) correla tion coe ffic ien t between each pair of metrics. The linear correlation

coefficient is a descriptive measure of the linear (straight-line) relationship between two

variables. This is the typical approach to testing for metrics interrelationships, commonly

reported in literature [Chid98] [Li93]. The linear correlation coefficients for TRUMPET,

FlowThru analysis, and FlowThru design measurements are high for each pair of metrics

within one isolated experiment. The correlation coefficients fall in the range between 0.631

and 0.993. The majority of coefficients are higher than 0.8. Similar result was reported in

[Chid98J, where the correlation between the metrics was mostly higher than 0.8.

These results should indicate that the regression equations linking each pair of metrics are

highly suitable for making predictions of one metric on the basis of the other (i.e ., one metric

should be a good linear predictor of the other). Then, the co e ffic ien t o f determ in a tio n , or r ̂

(where r is the linear correlation coefficient), would give the quantitative measure

(percentage) of the amount of variation of one metric (response va r ia b le) explained by the

variations in the other metric (p red ic to r variab le).

O
00o

RFC

Figure 72 - Scatter plot of CBO versus RFC (FlowThru analysis)

However, by examining the scatter plots we concluded that the data points are actually very

weakly scattered about a straight line: one of the scatter plots is shown in Figure 72 (CBO

plotted against RFC for the FlowThru analysis experiment). Once this is the case, we cannot

make definitive statements concerning the usefulness of one metric as a linear predictor of

the other. The assumption for both the linear correlation coefficient and for finding the

regression equation is that the data points are clearly scattered about the straight line

[Weis99]. Also, regression is sensitive to the presence of outliers, which appear to be a

distinctive feature (legitimate data points) of metrics distributions (as discussed above) and

as such can not be Justifiably removed.

144

Moreover, we can say that we definitely can not use regression inferences because the two

basic conditions supporting the assumptions for regression inferences are not met. The first

condition is that the plot of the residuals against the values of the predictor variable (residual

plot) should fall in a horizontal band centred and symmetric about the x-axis. The second

condition is that the normal probability plot of the residuals should be linear. Residual is the

difference between the observed and predicted value of the response variable. The plot of the

FlowThru analysis CBO residuals against the RFC values is shown in Figure 73. Clearly, the

residuals do not fall in a horizontal band. The normal probability plot of the residuals is

shown in Figure 74: the plot is not straightforwardly linear. Thus, we conclude that the

assumptions for regression inferences are violated.

4 -

3 -

2 -

03
1 -

3
"O
(/) U
CD

ÛC -1 -

- 2 -

- 3 -

- 4 -

RFC

Figure 73 - Residuals versus RFC (response is CBO)

2 -

1 -

m 0 -

-1 -

- 2 -

Residual

Figure 74 - Normal probability plot of the residuals

145

Considering the weak linearity of scatter plots, and the violations of the regression inferences

assumptions, we conclude that we cannot claim that any pair of metrics can be used to

determine the regression equation (linking the two metrics) from which meaningful

predictions can he made. In other words, we can say that there is enough statistical

evidence to doubt the possibility that the magnitude ordering of one metric directly implies

the linear magnitude ordering of the other, and that the intervals between the two values of

one metric are proportional to the intervals between the values of the other metric, for any

pair of adjacent classes that these measurements refer to.

An alternative approach to determine the relationship between the metrics is through the use

of nonparametric statistical methods. As discussed before, the nonparametric methods can be

used to avoid rigorous assumptions such as linearity.

The nonparametric method equivalent to linear correlation is the calculation of the rank

(Spearman's) correlation coefficient between paired values (from same classes) of the two

metrics. This procedure effectively lowers the metrics scale from interval to ordinal,

avoiding the magnitude-related relationships between metrics [Schn92]. This procedure uses

ranks of metrics rather than the metrics values themselves. This loosens up assumptions

about data relationships (linearity), while still giving a valid measure - ranking of classes

according to the metrics value. The rank correlation coefficients for TRUMPET, FlowThru

analysis, and FlowThru design measurements are shown in Table 18, Table 19, Table 20,

respectively. All the rank correlation coefficients are significant at the 95% confidence level.

CBO MFC RFC Interface Whitmire

CBO 1

MFC 0.995 1

RFC 0.835 0.837 1

Interface 0.779 0.775 0.975 1

Whitmire 0.712 0.719 0.555 0.532 1

Table 18 - Metrics rank correlation coefficients: TRUMPET

CBO MFC RFC Whitmire

CBO 1

MFC 0.993 1

RFC 0.846 0.859 1

Whitmire 0.614 0.626 0.626 1

Table 19 - Metrics rank correlation coefficients: FlowThru analysis

146

CBO RFC Whitmire Interface

CBO 1

RFC 0.994 1

Whitmire 0.749 0.742 1

Interface 0.993 0.998 0.741 1

Table 20 - Metrics rank correlation coefficients: FlowThru design

The metrics rank correlation coefficients are high. This indicates that there is a strong

ranking relationship between the metrics, for the same set of classes. Thus, effectively, we

can say that there is enough statistical evidence to say that each metric could he useful in

predicting the ranks of the other metrics (more or less, depending on the value of the rank

correlation coefficient).

Consistently, through all three studies, exceptionally high (>0.95) rank correlation

coefficient is exhibited between CBO and MPC, and between RFC and interface complexity.

This indicates that any combination of: CBO or MFC; RFC or interface complexity; and

Whitmire complexity metrics would form a set of three complementary metrics. Thus, in any

hypothetical model linking metrics and integrity, one of these alternative combinations of

three metrics should be used instead of all five metrics together. However, as noted before

(section 5.1.2), such a model cannot be built since integrity is a complex attribute which is

not directly measurable.

The identification of the underlying dimensionality of the set of correlated metrics could

have been also done using the principal component analysis: however, we regarded one

method as being sufficient. We also considered assessing the equality of metrics distributions

using the chi-squared test. However, the nature of data - small, discrete values, and many

null values, rendered the tests invalid. Finally, the robust, nonparametric regression

approaches (discussed in [Spre89]) could have been used to develop the regression equations

linking the metrics. However, this was not done since there is a shortfall of tools that are

capable of performing such nonparametric statistical calculations. The calculations presented

here were performed using the Minitab statistical package [Minitab].

S.2.3.2 L esso n s lea r nt

We consider the TRUMPET and FlowThru metrics experiments to be an empirical research

contribution in their own right. As discussed in section 5.1.1, there are few reported studies

dealing with the practical system evaluation using the OO metrics. In the majority of

reported studies, the metrics (CK) were collected from code, despite the fact that they were

originally envisaged [Chid94], and later advertised [Kami99], as earlier lifecycle measures.

147

The one of the only two reported studies involving the design documents [Cart96] reported

problems with metrics collection - only DIT and NOC were collected successfully.

Moreover, metrics were never applied to network and service management systems.

Our three experiments are the first to assess management systems using metrics. Although

the systems assessed originate from the research projects, we consider them as representative

since a number of professional organisations participated in the design. The systems were

chosen due to the public availability of design documentation, which is not the case in the

industrial organisations.

The experiments demonstrated that the metrics collection from the analysis and design

documents is possible. However, not all of the metrics can be collected early in the

development lifecycle: the analysis-level documentation allows collection of Whitmire

complexity, CBO, MPC, RFC, NOC and DIT; while the interface complexity can be

collected only at the detailed design stage - as demonstrated by the FlowThru case study. It is

also generally believed that the ability of metric collection to some extent depends on the

development framework and the notation used. However, we demonstrated that through

thorough use of established diagrammatic techniques such as UML metrics collection

becomes easy. Moreover, by assessing two different systems - one developed in the ODP

[ODP] framework and the other through the Jacobson [Jaco92] framework - we showed the

independence of metrics from the development technique.

A number of general observations can be made concerning the results of our case studies.

First, none of the systems contained any inheritance. This might be due to either the fact that

the design teams were not accustomed to the OO design philosophy, or it could be a

reflection of the size of the systems, which can be considered as small-scale. However,

surprisingly low inheritance measures (DIT and NOC) were also reported in a number of

earlier studies [Chid98] [Cart96] [Basi96].

Second observation is that the CBO counts appear distinctly low, as compared to the MPC,

RFC and Whitmire complexity counts, which also depict the coupling between objects. This

is mainly due to the fact that these other three coupling measures actually include the amount

of collaboration between classes, while the CBO accounts for the number of collaborating

classes. However, the CBO counts are still much lower than in previous studies reported in

the literature, which can be due either to the size of our systems, or the fact that the

designers, using the design heuristics, aimed at minimising the number of collaborating

classes.

148

Next, as already discussed in the previous section, all the metrics, in all three experiments,

have a typical distribution: strongly left-skewed, with a few outliers distinctly standing out.

Also, metrics are highly correlated in terms or ranking of the classes. Particularly high rank

correlations are exhibited between CBO and MFC; and RFC and interface complexity.

The final observation is that the majority of classes have distinctly low metric counts -

between 0 and 2. In case of TRUMPET, 61% of the classes have the average complexity

between 0 and 2, in FlowThru analysis 53%, while in the HowThru design this number rises

to 76%.

All of the metrics used thus identify a subset of classes as distinct from others in terms of

complexity. These classes are most usually the main computational object classes in the

system, performing a manger-control task. Also, the highly complex classes can be the most

important information object classes in the system.

The most complex classes singled out in our case studies were the classes operating at the

interfaces between administrative domains (as in TRUMPET), or at the interfaces between

the stand-alone management components (as in FlowThru). These most complex classes

were singled out by all of the metrics making up our metrics suite. Considering our integrity

viewpoint, these measurements indicate that the highest risk for the systems' integral

operation is exhibited at the major interconnection points. This argument in the integrity

context was already pointed out in [UCL94] - however, it was not empirically justified. In

the case of TRUMPET, the two classes operating at the X interface between the VASP and

the PNO domains - that were singled out as the most complex in design - did prove to be the

most difficult to design, implement and test, and were the main source of pitfalls during the

project trials.

In the context of the integrity framework, we demonstrated, in our previous discussion

(section 5.1.2), how the integrity-metrics policy fits conceptually in the integrity

methodology presented in chapter 3. The case studies did not demonstrate this in practice,

since the re-design, or the integrity-preserving response, was not applied during the systems

development. This was not done because the systems were assessed post-facto. Thus, the

metric suite, in the integrity context, was used simply as an analysis tool for assessment, i.e.

diagnostics of the most complex classes. These classes are then labelled as the classes with

lowest integrity, or highest risk, according to our prediction rationale described in section

5.1.2.

149

5.3 C h a p t e r s u m m a r y a n d r e s e a r c h c o n t r ib u t io n s

In this chapter, we presented a predictive integrity-preserving policy based on the 0 0

software metrics. The theoretical bases of this policy were further empirically demonstrated

through three distinct experiments. In what follows, we summarise the research work, and

highlight our achievements in bold.

The theoretical part of the work focused on the development of the integrity-metrics policy.

This activity included:

• Assessment of the current use of 0 0 metrics.

• Elaboration on the alternative use of GO metrics - in the integrity context.

• Positioning of the integrity-metrics policy in the integrity methodology framework.

• Definition of the integrity-oriented metric suite.

First, we discussed the current state of the art in software measurement, presenting a number

of traditional software measures, as well as the emerging OO metrics - the most

representative of which are the five measures collectively known as CK metrics. We pointed

out that software measurement is a nascent field: its focus nowadays is the prediction of

economic variables such as project effort, duration, re-work and maintenance effort.

Software metrics are generally considered as a managerial tool, envisaged to aid project

managers in effort allocation and project planning. Few studies suggested metrics for an

alternative purpose. In [Chid94] an additional feature of CK metrics was mentioned -

identification of the design flaws - however, no details were given. Amongst other studies in

fault-proneness, in [Basi96] CK metrics were shown to be more successful in predicting

fault-proneness of the classes then other existing metrics.

We then suggested that the OO metrics could be used as the integrity/risk indicators

early in the telecommunications system development lifecycle by pointing out the most

complex/coupled classes. We elaborated on the positive correlation between the class stand­

alone complexity, as well as class coupling, and the risk level of the class. Classes of higher

complexity and coupling are more difficult to develop and test correctly, and as such pose

more risk to integral system operation, i.e., these classes have lower integrity. Further, the

strong coupling paths give way to the propagation of the integrity breach through the system.

This positive correlation is the sole relationship that can be formed between the

complexity/coupling measurements and the integrity/risk levels, since integrity is a complex

external attribute that cannot be measured. Thus, a direct functional relationship between

150

complexity/coupling measures and integrity cannot be established; i.e. a full-scale

mathematical model cannot be built.

Next, we positioned this integrity-metrics policy in the framework of the integrity

methodology presented in chapter 3. The typical integrity analysis in this context would

have as the requirement the need to minimise and even out the complexity/coupling levels of

individual classes so as to avoid the risk being focused on a few points of failure. The

integrity design would involve the definition of the metric suite used to measure the

complexity/coupling levels of the system classes. Integrity implementation focuses on the

actual realisation of the policy, by conceptually automating a control loop. In this loop, the

complexity/coupling measurements are taken from the semi-formal model of the system

under development, correlated with the integrity/risk status of the system classes, and then

on the basis of this the adequate redesign actions are taken. Using the terminology defined in

chapter 3, the integrity-metrics policy belongs to the prediction phase of the methodology

and has effectively the form of an integrity-focused design recommendation.

We then elaborated on the design of this integrity policy through the specification of a

metric suite consisting of seven distinct metrics: four out of five CK metrics (DIT, NOG,

CBO and RFC), the MPC, the interface complexity and the Whitmire complexity metrics.

Finally, in the context of the integrity methodology presented in chapter 3, we illustrated

how each of these metrics relates to the UML diagram it is calculated from, GDP

viewpoint depicted by this UML diagram, and the integrity level (as discussed in chapter 3,

section 3.2.1.2) at which the metric can be perceived.

To test the efficiency of this integrity policy, we assessed two distinct management systems

using our integrity-metrics suite: the TRUMPET service provisioning system and the

FlowThru subscription management component. The FlowThru case study involved separate

assessment of analysis and design documents, thus the total number of experiments was

three. As we mentioned earlier in section 5.1.1, there are few reported studies dealing with

empirical 0 0 measurements. In all but two [Cart96][Chid98] of the reported studies the 0 0

{i.e. CK) metrics were collected directly from the code, and in [Cart96] the measurements

were highly incomplete (only inheritance measures were collected). Moreover, metrics were

never applied to network and service management systems.

Thus, we consider the experiments presented in this chapter not only as a vehicle for

validation of our integrity-metrics policy, but also as an empirical research contribution in

its own right. In this context, as already discussed in section 5.2.3, the research

contributions are:

151

• Our case studies are the first to assess management systems using metrics. These

systems were chosen due to the public availability of the documentation, and are

considered as representative since they were developed by a number of professional

organisations.

• We demonstrated that metrics collection from the analysis and design documents is

possible, despite the usual practice. Some metrics can be collected early in the analysis,

while some only on the level of detailed design.

• We demonstrated that metric collection is easy through use of UML, and is

independent of the development framework used: the FlowThru system was developed

in the Jacobson framework, while the TRUMPET system in the ODP framework.

During the assessment of the systems using our metric suite, we also came across a number

of interesting observations. First, the systems did not use any inheritance: this was also

reported in a number of previous studies in the literature, and in our case can be explained

through the inexperience of design teams and relative small scale of the projects.

Next, the CBO counts are low: this is due both to the nature of this metric (which assesses

simply the number of collaborating classes) as well as the size of the system.

From the statistical point of view, all the metrics, across all the experiments, exhibit the same

typical distribution: strongly left-skewed, with a few outliers distinctly standing out. To

assess the relationship between the metrics, we considered a number of statistical tests. We

demonstrated that the metrics interrelationships cannot be assessed through linear

correlation, and that no meaningful linear regression equations linking any two pair of

metrics can be developed. The nonparametric statistical test for determining the rank

correlation coefficient between the metrics proved to be more suitable, since no linearity is

assumed. All the metrics rank correlations are high, especially the CBO-MPC and RFC-

interface complexity correlation coefficients. Thus, we concluded that any combination of:

CBO or MFC; RFC or interface complexity; and Whitmire complexity can be used as a

three-metric set instead of using all of these five metrics.

Final observation is that the majority of classes have distinctly low metric counts - between 0

and 2: in TRUMPET this number is 61%, FlowThru analysis 53%, and RowThru design

76%.

Thus, our metric suite identifies a subset of classes, which have high complexity/coupling

counts. In our case studies, these classes are the most important computational object classes.

Also, these classes can be the most important information object classes in the system. The

152

single most complex classes in our experiments were the classes located either at the

interfaces between the administrative domains (as in TRUMPET), or at the interfaces

between the stand-alone management components (as in FlowThru). These classes were

singled out by all of the metrics making up our metrics suite.

Hence, our case studies empirically demonstrated that the highest risk for the systems’

integral operation is exhibited at the major interconnection points. In the integrity

context, this argument was already raised in [UCL94] - however, it was not empirically

justified. In the case of TRUMPET, the two classes operating at the X interface between the

VASP and the PNO domains - that were singled out as the most complex in design - did

prove to be the most difficult to design, implement and test, and were the main source of

pitfalls during the project trials.

The shortfall of our case studies is that they do not fully illustrate how the integrity-metrics

policy fits, in practice, in the integrity methodology framework. Since the trial systems were

assessed post-facto, no integrity-preserving actions could be taken during development, as

recommended by the integrity methodology framework. The metric suite was thus used

simply as an analysis tool for assessment i.e. diagnostics of the most complex classes. The

discriminative power of the metrics was used to pin-point the highly complex/coupled

classes, which were then labelled as the classes with lowest integrity, or highest risk,

according to our prediction rationale described in section 5.1.2.

We believe that the integrity-metrics policy developed in this chapter has a number of

attractive features. The main advantage of this policy lies in the fact that minimising the risk

to integral operation early in the telecommunications system development lifecycle

(analysis/design stage) would greatly reduce the cost of removing risks at the later stages of

system implementation, testing, interconnection and maintenance. Through the case studies

involving management systems, we demonstrated that the metrics can be used as early

risk/integrity indicators. We also demonstrated that the metrics are easy to calculate, on the

basis of established diagrammatic techniques (UML) and system development

methodologies. Finally, the integrity policy developed in this chapter fits smoothly in the

overall integrity methodology developed in chapter 3, and strongly supports the

measurement requirement as prescribed in section 3.2.1.1.2.

153

6 MANAGEMENT INTERCONNECTION TESTING

This chapter presents the second integrity policy developed in the course of the research

work: the inter-domain management system interconnection testing policy. This policy was

developed specifically in relation to the TRUMPET project - however, some concepts are

envisaged to be applicable in other scenarios of management system interactions as well.

Effectively, the work carried out for this policy encompasses review and development of

testing principles for the management interconnections, focusing on the integrity issues.

In section 6.1, we present the testing policy, in the context of the TRUMPET project. In

section 6.2, we present the application of this testing policy to the TRUMPET inter-domain

management system. This case study was restricted due to limited time and resources, and

thus has a form of a brief illustration of the implementation. Section 6.3 concludes the

chapter, and highlights the research contributions.

Some of the material in this chapter has been published in [Pmj98a], [Pmj99c] and

[PmjOOa].

6.1 T e s t in g : t h e p o l ic y

This section introduces the testing policy aimed at the integrity aspects of the management

systems' interconnection across administrative domains. This policy was developed in the

context of the TRUMPET project: thus, the core theoretical discussion is also focused on

TRUMPET.

Since this policy is tightly coupled with the TRUMPET project, the structure of this section

slightly differs from that of our first integrity policy description in the previous chapter.

Section 6.1.1 re-visits the background in integrity-related testing, and addresses the open

issues in the management systems' interconnection testing. Section 6.1.2 addresses the

integrity requirements as related to the inter-domain management system interconnection: in

the context of the integrity methodology presented in chapter 3, this is the integrity analysis.

Section 6.1.3 then elaborates on the testing approach/policy developed to support these

integrity requirements: in the context of the integrity methodology, this is the integrity

design. Section 6.1.4 compares our testing policy to the OSl-SM recommendations which

focus on testing. Section 6.1.5 briefly summarises the theoretical work presented.

154

6 .1 .1 T e s t in g BACKGROUND

This section gives a brief overview of the testing background. Section 6.1.1.1 summarises

the state of the art in core network and control plane testing, while section 6.1.1.2 addresses

the issues in management systems testing, with the emphasis on the OSI-SM testing

principles.

6.1.1.1 C ore n et w o r k a nd c o n tr o l pla n e t est in g

It is generally accepted [Ward95] that the network interconnection increases the threat to

network integrity (see chapter 1, section 1.1). As discussed in chapter 2, section 2.2.1, the

main focus of the industrial integrity assurance is thorough testing of the system/service prior

to operational launching. Regarding the integrity-oriented testing of the core transport

network and the control plane, Bellcore leads the way in the US with its Network Services

Test System (NSTS). This test bed is used for auditing and testing the stand-alone systems,

as well as for testing multi-supplier equipment interoperability, and inter-network

interoperability. Another industry-led initiative in the US, the Inter-network Interoperability

Test Plan (IITF) [Lewi94], focuses on the interoperability testing for interconnected

Common-Channel Signalling (CCS) networks. The interconnect testing as carried out in BT

encompasses: systems conformance testing (software or hardware) to SS7 standards,

interworking/interoperability testing in test environments, and commission testing (involving

functional testing of software/hardware as new routes/circuits are introduced) [Maso97]. The

interworking/interoperability testing takes place in the test environment: the BT integration

facility (test network). Test environments for the core network and the control plane, such as

NSTS and BT test network, are seen as of high importance for integrity assurance. Apart

from accommodating a wide range of elements and scenarios that the new systems/services

can be tested against, these test-beds effectively remove the integrity risks that can be

introduced if the systems/services are tested against other “live” systems.

In our integrity methodology presented in chapter 3, testing is a distinct phase of the

methodology, viewed as of high importance, particularly in the multi-domain environments

where interconnection is taking place. Testing in our methodology encompasses a number of

stand-alone system testing stages, followed by the intra-domain and inter-domain integration

tests (chapter 3, section 3.2.2). The inter-domain testing, exercising the behaviour of the

operational system when interconnected with the systems in other autonomous domains, is

seen as the crucial testing stage.

6.1.1.2 M a n a g e m e n t in t e r c o n n e c t io n a n d O SI-SM t e s t i n g p r in c ip le s

In the context of the management systems' inter-domain communications, the critical point

of the interconnection is the Telecommunications Management Network (TMN) X interface,
155

such as Xuser between a Value Added Service Provider (VASP) and the Public Network

Operator (PNO) and Xcoop between the two PNOs (or VASPs).

As discussed above, integrity-related testing for core and control network interconnection is

relatively established in industry. In contrast, there is little evidence of management system

interconnection testing with respect to integrity features. Some ACTS projects, such as

MISA, performed a certain level of X interface testing, but only restricted to the provision of

management functionality [MISA-D9].

On the other hand, OSI - Systems Management specifies two recommendations focused on

testing: [X.737] and [X.745]. [X.745], Test Management Function, specifies a model and

generic managed objects for the invocation of tests on real remote resources included in an

open system. Test conductor is an entity initiating the tests and the test performer is an entity

which applies the tests. The Test Objects (TOs) facilitate controlled test invocation, while the

Managed Objects Referring to Test (MORTs) are objects used to refer to particular

functionalities, of the real resources, which are being tested. [X.737], Confidence and

Diagnostic Test Categories, specifies a range of tests focused at the generic aspects of testing

of the real resources. In this context, a number of test are specified, targeted to test the

generic aspects of the real resources: echo, loop-back, data integrity, resource, and protocol

integrity.

In the following sections we develop an integrity policy focused on testing the integrity

features of the management systems' interconnection over the X interface. The policy is

developed in the context of the TRUMPET project, and to some extent overlaps with the

testing principles defined in [X.737] and [X.745] - however, our policy was developed

independently of these existing recommendations (for details see 6.1.4).

6 .1 .2 X INTERFACE INTEGRITY REQUIREMENTS: ANALYSIS

As discussed in chapter 4, section 4.1, the TRUMPET project focused on the inter-domain

security of management. As stated in chapter 3, section 3.1, security is a sub-attribute of

integrity: security threats can jeopardise the correct and proper operation and thus the

integrity of the system. In contrast, other integrity-related attributes concerning management

systems’ operation and communications between system components were not considered in

the project. Considering this fact, we can group the integrity requirements on the X interface

in two sets:

• First set comprises the security measures between autonomous organisations within the

TRUMPET management system. Security measures must be in place to avoid malicious

human intervention and illegal use of resources by a party.

156

• The second set comprises those requirements not considered in the main line of the

project: liveness, performance, availability, etc. We collectively refer to these as

communications integrity requirements, since they focus on the integrity of the

communications mechanism and infrastructure supporting the interactions between the

management systems in autonomous domains.

Now, we can further elaborate on these two sets of requirements via the three-dimensional

analysis space defined in Figure 12, page 53, chapter 3, section 3.2,1.2. Note that the

analysis of the security requirement is reverse-engineered, since our study was conducted

late in the project when the security mechanisms were already developed.

Integrity
level

Operational

System

Sub-system

Unit

System
viewpoint

Enterprise

Computational

Information

Engineering

Technology

^ Integrity ^
attribute

Robustness
Resilience

Availability
Performance
Scalability

Data coherence
Liveness

Feature interaction
Complexity

Coupling
Security

Reliability

Figure 75 - Integrity requirements classification: security

The security requirement is primarily tackled at the operational level, since it concerns the

system interactions within its operational environment. Following the same rationale, this

attribute is located within the enterprise viewpoint: see Figure 75. The security requirement

identified in the enterprise viewpoint at the operational integrity level can be further refined

during the system implementation at the lower integrity levels. Five basic security sub­

requirements are:

• Authentication, which refers to the mutual recognition of the communicating parties.

• Access control to managed objects, which ensures that the managing party can access

only a certain set of objects on the agent party side, according to the contract.

• Data integrity, meaning that the management data must be protected against

modification, insertion, and repetition.

• Confidentiality, meaning that the management data content must not be disclosed, while

in transit, to unauthorised parties.

157

• Non-repudiation, providing mechanisms for the resolution of the dispute where one party

denies that communication took place.

These security requirements can be further analysed as shown in Table 21. The detailed

analysis of the security topic can be found in chapter 4, section 4.1.1.

Integrity level System viewpoint Security sub-requirement

Operational Enterprise Authentication

Sub-system Enterprise Access control

Sub-system Engineering Data integrity

Sub-system Engineering Non-repudiation

Sub-system Engineering Confidentiality

Table 21 - Security sub-requirements classifîcation

The communications integrity requirements are considered at the operational level (since

they are concerned with the interactions between autonomous domains) and, being focused

on the communications mechanism itself, appear in the engineering and to some extent

computational viewpoints (Figure 76). Correct and high-integrity operation is essential

between the OSs over the X interface. This means that the management systems and

communications infrastructure have to retain their correct attributes in terms of functionality

and performance. We can further elaborate on the communications integrity requirements as

follows:

• Liveness of the communications mechanism and infrastructure supporting the

interactions between parties in autonomous domains has to be preserved. Situations such

as deadlocks (system being blocked awaiting a message that cannot be emitted) and

livelocks (system oscillating between a certain number of states that it cannot leave)

have to be avoided, so that availability is maintained.

• Robustness: the management applications need to be able to handle all possible states of

their environment: unexpected messages, duplicate messages, etc/, i.e., the management

system needs to be robust and stay operational in these circumstances.

• Sequencing: proper sequencing of actions has to be preserved over the management

communications mechanism.

• Data Integrity: the data exchange between two OSs has to be correct. Data should not

be corrupted or lost by the conununications stack and software, and conversely,

performance of the communications mechanism should not be influenced by the data

content. Thus, the data integrity requirement is a performance-related requirement as

well as a functional one.

158

Time sensitive performance: timing of the operations has to stay within well-defined

limits - the communications mechanism between two OSs should not jeopardise the

correct timing. Increased response time may cause processes to slow down, collapse, or

decrease availability.

Throughput/Rate: the communications mechanism has to support a certain throughput;

and the rate of signal exchange should not in any way impact the operation of the

applications.

Integrity
level

Operational

System

Sub-system

Unit

System
viewpoint

Enterprise

Computational

Information

Engineering

Technology

^ Integrity ^
attribute

Robustness
Resilience

Availability
Performance

Scalability
Data coherence

Liveness
Feature interaction

Complexity
Coupling
Security

Reliability

Figure 76 - Communications integrity requirements classifîcation

The above requirements can be grouped into two sets: liveness, robustness and sequencing

are focused on the functionality aspect of communications integrity, while the timing and

throughput are performance aspects. Data integrity requirement is concerned with both, as

outlined above.

If the management system (and the supporting communications mechanism) loses its

liveness, starts performing outside its time limits, or cannot deal with unexpected messages;

or if sequencing is distorted or data exchange is corrupted, then system performance is

degrading and functionality might be lost. In other words, the integrity of that system is at

stake.

6 .1 .3 In t e g r it y d e s ig n : in t e g r it y p o l ic ie s

6.1.3.1 O v er v iew

The two sets of X interface integrity requirements identified during analysis give rise to the

development of two integrity policies.

159

The first policy is security for the TMN X interface. The security policies were central to the

TRUMPET project, and as such were neither central to our work, nor developed through our

integrity methodology presented in this thesis - the integrity analysis given in the previous

section was only an illustration. In TRUMPET, security policies [Mail96] were implemented

through the security architecture consisting of a set of security modules performing mutual

authentication, access control, and data integrity [Gagn97] [01ne97]. Security mechanisms

(residing in the Security Support Component, SSC) are implemented so that they are

conceptually used as a part of the stack (CMIS [X.710j) by the applications, while

effectively being implemented above the stack, thus being an OSI layer-7 add-on feature to

the TMN applications (Figure 77). This means that security may be turned on and off during

management communication.

CMISE A C SE

SSC

MIB handler

OSI stack

Management
application

Figure 77 - TRUMPET security architecture: overview

In the framework of our integrity methodology, security policies belong to the prediction

phase, since they were implemented during system development, and effectively give rise to

the implementation of an integrity-preserxnng mechanism (using the classification given in

chapter 3, sections 3.2 and 3.2.1.3, respectively). For the details of the security policies and

the security architecture, refer to the TRUMPET security section (4.1.1) in chapter 4.

The second policy, based on the analysis outlined in the preceding section, was developed to

check whether the communications integrity requirements over the X interface were satisfied

both with and without the presence of security mechanisms. This policy is to be applied prior

to the interconnection of autonomous TMN OSs, and it is based on a testing regime to be

deployed as a communications integrity verification policy. Effectively being an

interconnection testing integrity policy, in the framework of our integrity methodology (for

the terminology refer to chapter 3), this policy belongs to the testing phase of the

methodology. This policy is the second integrity policy developed in the course of the

research work presented in this thesis.
1 6 0

The following section describes the design and implementation of this testing integrity

policy in detail, while in section 6.2 we present its application in TRUMPET. In the

following discussion we focus on the Xuser interface between the TRUMPET VASP and the

PNO: however, all the concepts are targeted to apply to any X interface between two

administrative domains.

6.1.3.2 T e stin g a pp r o a c h : d esig n

6.1.3.2.1 Testing requirements and methodology

The interconnection testing methodology must exercise and establish that both

communications integrity and security requirements are fulfilled over the Xuser interface

[Pmj98a]. They might also be conflicting: some security mechanisms require a pre­

transaction overhead, availability of specific information at both sides of the association, etc.

The lack of synchronisation and coherence of the security-related information, or the

introduction of significant security overhead, might disrupt the basic operation, and degrade

the performance of the management system - it can jeopardise its integrity status. Even if the

functionality is preserved, the possible degradation of performance of the management

system can prove to be a costly drawback of the introduction of security policies. Thus, the

first aim of testing is to establish that security and communications integrity requirements are

not conflicting, i.e., that the behaviour of the interaction has not changed after the

implementation of the security policies, and that the performance is not significantly

effected. This requires the system behaviour to be perceived in a concrete way so as to

establish the baseline stand-alone behaviour that might be compared to the behaviour when

the security policies are introduced. The second aim of testing in TRUMPET is the proof that

the security policies themselves are correctly implemented, and function under both normal

circumstances and security breaches. Our integrity policy focuses on testing the impact of

introduction of security mechanisms on communications integrity requirements. There are

three phases within this aspect of testing.

• Phase 1: the basic behaviour of the applications’ interaction over the Xuser interface

must be established, in terms of management infrastructure and support object

functionality.

• Phase 2: this behaviour must be tested over the communications mechanism, so as to

ensure proper functioning of the communications (without security) and satisfactory

performance.

• Phase 3: it must be shown that the introduction of the security mechanisms in different

domains does not jeopardise the communications integrity requirements - the proper and

correct functioning of the management system communications infrastructure. It has to

be shown that the introduction of security mechanisms does not push the system outside

161

its time limits, that it does not distort the sequencing of the messages, that it does not

cause deadlock or livelock situations, etc. The basic behaviour of the interaction over the

Xuser interface established in phase 1 must be preserved. Also, the performance must be

satisfactory. These two factors would imply that the basic level of communications

integrity is preserved.

Xuser
manager

Correct operation
required

Xuser
agent

Security

/
/
/
//
/
/

Figure 78 - Correct operation to be preserved

Figure 78 illustrates this. The aim of this phase of testing is to demonstrate that the

functionality of the management infrastructure (stack) has not changed after the introduction

of security (shaded boxes), which is conceptually done within the stack. If the behaviour of

the interaction of two management entities can be established, and if it can be shown that this

behaviour has not changed after deploying security in the stack, the task is accomplished.

Also, performance of the communications mechanism, recorded during phases 2 and 3,

would give a level of understanding of the impact of introducing security in the Xuser

interface implementation.

6.1.3.2.2 Phase 1 - specifying the Xuser interface behaviour

The behaviour of the Xuser interface is specified through the Xuser Test-MIB (Management

Information Base), a set of managed test-objects on the agent side. The Xuser Test-MIB can

be used to implement basic, abstract, and finite behaviour visible to a party acting through a

Xuser interface. This name was chosen since the focus is on the manager/agent interaction

that can be seen, in the true management sense, as a manager controlling a set of objects

through an agent - this set being a part of the shared management knowledge. The Xuser

Test-MIB can thus be implemented as a set of managed object classes representing some

typical behaviour, accommodating the integrity requirements defined in section 6.1.2. Such a

behavioural envelope can be presented to an application as a simulation of the basic Xuser

interface behaviour.

1 6 2

The place of the Xuser Test-MIB in the TRUMPET manager-agent chain (for the

TRUMPET details refer to chapter 4, section 4.1.2) is shown in Figure 79 (extended from

[M.3010]). The hollow objects represent the objects of the Xuser MIB, i.e., the information

model provided by system B (PNO) to system A (VASP). In the real world, some operations

performed by system B on the managed objects in its MIB (on behalf of the system A) will

involve further operations on the objects in system C, while others will not. This will depend

on the actual MIB configuration in the agent model. The idea of the Xuser Test-MIB (dark

objects) is to implement a few objects that can simply imitate the behaviour of the system

B ’s information model, instead of representing the actual MIB. The manager calls on the

Xuser Test-MIB do not propagate further as those on the Xuser do (Figure 79). These calls

are processed in the “behavioural” OS. The behaviour of the Xuser Test-MIB objects is a

superset of the possible behaviour of the Xuser. Thus, Xuser Test-MIB can be used without

interfering with the operation of the “live” system. In this sense, the Xuser Test-MIB can be

seen as the management-level equivalent of the established interconnection test-beds (such

as the Bellcore NSTS or the BT test network) for the core network and the control plane.

Xuser
manager

Shared
manage ment
knowle Ige

O Xuser
00
^ 0 0

Test-MIB Behavioural OS

Managing
system A

Managing/
managed
system B

Managed
system C

Figure 79 - Xuser Test-MIB and the manager-agent chain

The typical way of representing behaviour is by modelling it using the Finite State Machine

(FSM) approach. This approach is based on modelling behaviour as a set of states that the

system can be in. The transitions between these states can occur as a response to external

stimuli, such as the FSM receiving a particular signal (in our case, the CMIS M-Get, M-Set,

M-Action calls) while being in a correct state, or as a response to internal stimuli, such as a

particular operation within a FSM being completed or an internal timer timing out.

Possible inconsistencies in the operation of a system modelled by a FSM can occur when, for

example, a system is in a state where it cannot respond to a particular input signal - an

external stimulus. This can lead to the malfunction of the system, since no behaviour is

specified as a response to that input signal. Now, the sender of that signal might be expecting

163

the receiving system to be in a state in which it would be if it did respond to that input signal.

Also, if a system is in a state, or oscillating between a number of states, awaiting a signal that

can never be received, its operation is corrupt - the system is in a state of deadlock or

livelock, respectively. If a system is designed in a such way that all possible inconsistencies

are avoided, it is robust to failure. This is optimistic, especially for the time-dependent

system where the transitions between states may depend on correct timing of external and

internal stimuli. In any real-time system of considerable level of complexity, a wide range of

problems will arise and the correct modelling of behaviour will be of paramount importance.

As pointed out in the above discussion, the two main issues in behavioural modelling are:

• Ability of a system to deal correctly with input signals while being in a particular state.

• Timing of operations performed by the system and timing of transitions between the

states.

These two factors were taken as a baseline for the abstraction of the Xuser Test-MIB objects’

behaviour. Five basic behavioural patterns were identified. These are shown in Table 22,

compared to the integrity requirements they address and the corresponding concrete

behaviour of the Xuser.

Behavioural pattern Integrity

requirement

Example corresponding Xuser behaviour

Various time delays Time-sensitive

performance

Modification of the connection parameters

which takes variable amounts of time

Rate-critical behaviour Throughput - rate Set of successive operations on the Xuser

Various values of input

signals

Data integrity Various values of parameters of the Xuser

data

Time-critical behaviour Timing-sequencing-

liveness

Set of concurrent operations on the Xuser

Sequencing of

operations performed on

the Xuser Test-MIB

Correct sequencing Well-defined sequence of operations needed

to reserve a connection

Table 22 - Behavioural patterns

The implementation of the Xuser Test-MIB is shown in Figure 80. The behaviour of the

Xuser Test-MIB objects is provided to the Xuser agent through an Application Programming

Interface (API). This behavioural code can be seen as a stand-alone TMN OS (a

"behavioural” OS). The behavioural code is thus independent of the platform, and accessed

through the API via defined operations. Xuser Test-MIB objects (defined in GDMO [X.722]

164

and ASN.l [X.208]) implement a set of actions which represent calls to the Behaviour-API.

So, if a CMIS M-Action call is received, it is translated into a call to the Behaviour-API.

This can also be done for other CMIS calls, such as M-Set and M-Get.

Public
Network
Operator

API

Xuser
agent

Behavioural OS
SDL-C

Platform independent

HP-OV platform

T est-M IB
object

Figure 80 - Xuser Test-MIB implementation

Ready

Delay(STR

DelayState

DelayTimei

D elayPeriod++

Delay period = 1

Set(Now+DelayPeriod,
DelayTimer)

DCL STR Charstring
DCL DelayPeriod
Duration
Tim er DelayTim er

Figure 81 - SDL behavioural pattern; various time delays

The behaviour at the specification stage is defined using UML [UML] state diagrams, and

the Specification and Description Language (SDL) [Z.IOO], while the implementation is

done in the C [Kern88] programming language, since both manager and agent applications in

165

TRUMPET were implemented using C. An example behavioural pattern described in SDL is

shown in Figure 81. This pattern describes the case where the Xuser Test-MIB exhibits

incrementing time delays (the first behavioural pattern from Table 22). This situation reflects

the concrete behavioural pattern of the Xuser, the case when the modification of connection

parameters takes various amounts of time to be completed.

6.1.3.2.3 Phase 2 - testing without security

After establishing the basic behaviour on the agent side, the next step is to develop a set of

test cases initiated from the other side of the Xuser interface to test this behaviour over the

stack. The testing configuration shown in Figure 82 classifies, using the conformance testing

methodology [IS09646-1] terminology, as the remote testing method. The only Point of

Control and Observation (PCO) is situated on the Xuser manager’s API (marked in black).

This test-API provides an interface similar to the CMIS M-Action interface, which enables

the test M-Action calls to be invoked on the Xuser Test-MIB objects on the agent side.

Testing
system

Test-MIB

PCO

Xuser
manager

Xuser
agent

Figure 82 - Testing configuration (without security)

Knowing the behaviour of the Xuser Test-MIB (Table 22, page 164), a set of test cases

targeted to exercise this behaviour over the management support machinery and the stack is

specified in the Tree and Tabular Combined Notation - TTCN [IS09646-3] language. The

behavioural part of the test cases is derived from the Xuser Test-MIB specification. Hence,

when running the test, both the ordering of the events to be observed at the PCO and the

timing of these events can be established and measured. These two dimensions of the test

cases give an observational framework for testing the behaviour and quantitatively

comparing the performance when the security mechanism is active. Applying the set of test

cases on the Xuser Test-MIB over the communications stack thus provides two sets of

information. First, it ensures the proper and correct functionality of the communications

stack (without security). Second, it allows the measurement of the time-related performance

166

parameters, such as delay. Thus, quantifiable integrity-related information, based on

functionality and performance, can be gathered.

6.13.2.4 Phase 3 - testing with security

Having tested the correct functioning and measured the management infrastructure

performance, the next step is to prove that the introduction of the security mechanism does

not adversely effect the behaviour of the management system and significantly degrade the

performance. I.e., the addition of the security mechanism should not jeopardise the

communication integrity requirements over the Xuser interface: it should not change the

behaviour of the Xuser interface. The system should still perform within its time limits, and

its behaviour should stay the same: liveness should be maintained; sequencing of particular

operations should not change; data integrity should be preserved; and performance should

not degrade significantly.

The TRUMPET security mechanism consists of a set of security functionalities added below

the management functionality. Thus, the management calls are expanded to the level of the

secure management calls. The testing configuration still has the structure as on Figure 82,

only now the manager and agent applications are effectively expanded with extra security

functionality.

The proof that the stack functionality and performance did not change with the introduction

of security is done by executing the test cases from the phase 2 testing step (postulating that

the security is transparent to the management applications, which is the case in TRUMPET),

and by observing the verdicts and analysing the results. The behaviour (ordering of events at

the PCO) has to stay the same as in phase 2, and the system should not block. The timing,

however, can be different, since the security mechanism is expected to introduce some delay.

Only if all the test cases established in the phase 2 are passed successfully, can it be stated

that the behaviour of the Xuser did not change with the introduction of the security

mechanism.

6 .1 .4 C o m p a r is o n w it h OSI-SM t e s t in g p r in c ip l e s

Some of our principles developed in the preceding sections are related to the testing concepts

specified in [X.737] and [X.745] (discussed in 6.1.1.2): however, our testing policy was

developed independently.

These recommendations specify a testing framework and a range of tests focused at the

generic aspects of testing of the real resources. The tests, including echo, loop-back, data

integrity, resource, and protocol integrity, are targeted at testing the real resources in the

167

open environments - to quote, “a suspected cable break” [X.737]. A set of generic test

objects is specified to allow for testing of these particular functionalities of real resources. In

contrast, in our testing regime we aim, through the Xuser Test-MIB, to abstract out the

behaviour of the Xuser interface and test it over the stack so as to verify the correct operation

both with and without security.

Our communications integrity requirements, identified in 6.1.2, to some extent match the

generic tests on real resources, specified in [X.737]. Thus, instead of using the Xuser Test-

MIB and our associated concepts, an alternative way for partially testing our integrity

requirements over the TMN X interface would be to apply the principles specified in [X.737]

and [X.745] to the X interface, which would then be seen as just another real resource.

Thus, our testing policy can be seen as an alternative approach to the OSI-SM testing

principles. However, it has a number of additional features. These include abstraction of the

behaviour through the Xuser Test-MIB, protection of real resources during X interface

testing (as discussed in 6.1.3.2.2), relative simplicity, and platform independence (achieved

through the “behavioural OS”, as discussed in 6.1.3.2.2). We believe that our approach is a

valid alternative to the OSI-SM testing principles, and that it adds to these a direct focus on

the issues related exclusively to integrity of the most critical management interface.

6 .1 .5 S u m m a r y

In the preceding sections we presented an approach for testing the integrity requirements

over the TMN X interface - the interconnection point between two autonomous management

systems. This integrity policy is developed in the context of the TRUMPET project.

First, we reviewed the current approaches for integrity-related interconnection testing. For

the core/control network, the test environments enable the pre-launch integrity assurance.

The management system interconnection testing is not as advanced, while recommendations

exist specifying generic testing functionalities, in OSI-SM environments, targeted at real

resources.

Then, following our integrity methodology, we conducted the integrity analysis and the

integrity design for the TMN X interface. The integrity analysis identified two sets of

requirements, both through our three-dimensional analysis space: security and

communications integrity requirements. The latter encompass liveness, robustness,

sequencing, timing, throughput and data integrity. The two distinct sets were formed since

the security requirements were considered in detail by the TRUMPET project, and as such

were not of direct interest for our research.

168

The integrity design involved the development of two integrity policies. The security

requirements were met through the definition of the security architecture, which was

developed by the TRUMPET project. This policy is thus not of the central interest for this

thesis. The second integrity policy, the interconnection testing policy, was developed to

exercise and establish that the communications integrity requirements are satisfied both with

and without security mechanisms deployed. The policy encompasses three phases:

• Definition of the behaviour of the Xuser interface on the agent side via a number of

behavioural patterns accessible through the ‘test’ managed objects - the Xuser Test-MIB.

• Testing of this behaviour from the manager side, without the presence of the security

mechanisms, so as verify that the communications integrity requirements, in terms of

performance and functionality, are satisfied.

• Repeating the tests with security switched on, to verify whether the communications

integrity requirements are still satisfied and to measure any degradation of performance.

In the following we present the application of our testing policy to the TRUMPET Xuser

interface.

6 .2 C a s e s t u d y : T R U M P E T

6 .2 .1 A p p r o a c h

The TRUMPET management applications (VASP and PNO), have been implemented as

single-threaded, and communicate in a fully blocking fashion over the Xuser interface.

Hence, neither the performance integrity requirement of the throughput/rate nor the

functional integrity requirement of sequencing are applicable in this case.

Thus, only two behavioural patterns out of five given in Table 22 (page 164) were

implemented: the Xuser Test-MIB exhibited various time delays in the first case (Figure 81,

page 165), and was made to be sensitive to the values of the input signals in the second case.

These behavioural patterns were implemented in the behavioural OS accessible through the

Behaviour-API of a single Xuser Test-MIB object (Figure 80, page 165). The behavioural

patterns, as discussed in section 6.1.3.2.2, were specified in SDL - using the Telelogic Tau

tool SDT 3.5 [Tau3.5], and implemented in the C [Kem88] programming language.

Although this tool had the power of translating SDL specifications into C, this was not done,

since the code produced by the tool was very intricate and proved to be difficult to integrate

with the agent application. Since both SDL specification code and C code written from

scratch were relatively simple, we feel that the consistency between the specifications and

implementation was not compromised.

169

The test-cases were specified in TTCN and implemented in C. Although the testing tool,

Telelogic Tau ITEX 3.5 [Tau3.5], could translate the TTCN test specifications into C, this

was not done, for the same reasons as outlined above for the SDL tool. The test cases

implemented had two purposes. First was the demonstration of the robust operation and

functionality, in terms of data integrity and liveness. The second purpose was to get a feel of

the impact of security features on the Xuser interface performance. However, since the

statistical conditions were not stable, the measurements were not considered as

representative. Instead, the measurements are presented simply in the graphical form, as an

illustration.

Generally, the application of the testing policy to the TRUMPET system was highly

restricted due to limited time and resources, and thus has a form of a brief illustration. Note

that in what follows we refer collectively to the TRUMPET security mechanisms as the

"security package".

6 .2 .2 A s s e s s m e n t

The functionality, in terms of liveness and data integrity, was preserved both with and

without the security mechanism deployed. Data was not corrupted or lost by the

communications stack and software. The system was live at all times, independent of the

data size or content. Performance was captured in an illustrative way on a number of levels:

the overview is given in the following.

200 samples of the time taken to perform the management association with and without

mutual authentication between the test manager and the test agent were taken. Figure 83

shows two curves: the top one depicts the management association establishment delays with

authentication, and the bottom one the delays without authentication. The association delays

for the secured management association are not just considerably larger, but also the

fluctuations seem to be remarkably more drastic.

500 samples of the time taken to perform the secured and the unsecured management

operation (M-Action, with the simple one-string parameter) between the test manager and

agent were taken. Figure 84 shows the delays for the secured management operations (top)

and the delays for the unsecured ones (bottom). Delays for the secured management

operations are higher, and the fluctuations are larger.

170

Figure 83 - Association delays with and without authentication

Figure 84 - Operation delays with and without security

Next, the delays exhibited when performing management operations, which take various

amounts of time to be completed by the agent, were recorded. The aim was to detect possible

agent-delay dependent jitter, resulting from differing processing times, both with and without

security. The agent (i.e., the Xuser Test-MIB) was implemented so as to exhibit 500 delays,

in even increments. The overall delay was recorded on the test-manager side. If there was no

agent-delay dependent jitter, the expected delay would be equal to the sum of the

management operation delay and the Xuser Test-MIB in-built delay, and it would be equal to

the recorded delay. The recorded delay followed the expected. Thus, the agent-simulated

delay did not seem to influence the performance of the management communications

mechanism, both with and without security.

171

Figure 85 - String-Iength dependent delay for secured and unsecured communications

Finally, effect of different operation argument lengths on the performance of the

communications mechanism, in terms of the string-length-dependent delays, was captured.

The test case was run 1000 times, with string lengths 1 to 1000, both over the secured and

unsecured management communications. Data integrity was preserved in both cases: the

communications mechanism did not corrupt the data, and liveness was preserved. The delays

for the secured and unsecured management operations are shown in Figure 85 (top and

bottom curves, respectively). In both cases the delays increase steadily as the string length

increases, and there is a step increase in the delay as the string length reaches 440. This

increase is possibly due to the memory allocation on the management platform on which the

implementation was running. Before the increase, the fluctuations for the secured operations

are as drastic as for the fixed-length parameter secured management operation delays

discussed before. However, after the increase in the delay, the fluctuations settle down,

becoming comparable with the unsecured operations case.

6.2 .3 D i s c u s s i o n

In the previous sections, we presented an application of our interconnection testing policy to

the TRUMPET Xuser interface. Generally, the case study was highly restricted due to

limited time and resources, and thus has a form of a brief illustration.

The application of the proposed approach was also restricted due to the fully synchronous,

blocking manager-agent communications between the TRUMPET domains. Thus, not a full

set of behaviours was developed. The test cases implemented had two purposes. The first

purpose was the proof of the robust operation and functionality, in terms of data integrity and

liveness. The second purpose was the visualisation of the impact of the security mechanisms

on the performance of the management communication mechanism.

172

The functionality, in terms of liveness and data integrity, was preserved both with and

without security mechanisms deployed. Data was not corrupted or lost by the

communications stack and software. The system was live at all times, independent of the

data size or content. Performance was captured on different levels. However, since the

statistical conditions were not stable, the measurements were not considered as

representative, and were used only for comparison. The association and operation delays

were compared with and without security deployed. The delays are not just comparatively

higher in the secured case, but also arbitrary fluctuations in the delays seem to be appearing.

Also, effect of the increasing operation argument length on the delays was recorded: in both

secured and unsecured cases, there is a step delay increase when string length reaches 440. In

the secured case, the fluctuations settle down after the step increase.

Overall, the results of the case study show many anomalies. Although the apparent arbitrary

delays seem to be a feature solely of the security package, the step increase appears also in

the off-the-shelf software (HP-OpenView). The anomalies thus could be a compound effect

of the management platform, security software and the testing software. Tracing back these

flows would require a lot of effort. Moreover, the design improvements could not be

conducted, since the experiment was carried out during the final stages of the project. The

core achievement of the case study would thus be that we demonstrated how complex inter­

domain interactions might appear sensitive to the introduction of additional sophisticated

features.

6.3 C h a p t e r s u m m a r y a n d r e s e a r c h c o n t r ib u t io n s

In this chapter, we presented an integrity policy focused on the testing of the TMN X

interface integrity requirements. This policy was developed in the context of the TRUMPET

project. Effectively, the work carried out for this policy encompassed review and

development of testing principles for the management interconnections, focusing on the

integrity issues. The application of the policy was briefly illustrated through the TRUMPET

case study. In what follows, we summarise the research work, and highlight our

achievements in bold.

The theoretical part of the work focused on the development of the management system

interconnection testing policy. This activity included:

• Assessment of the current state of the art in interconnection testing.

• Identification of the integrity requirements for the TM N X interface, in the

framework of the integrity methodology.

• Detailed design of the testing integrity policy.

173

The last two steps effectively represent integrity analysis and integrity design in the

framework of our integrity methodology developed in chapter 3. The integrity policy

developed, using the terminology defined in chapter 3, has the form of a testing

recommendation and belongs to the testing phase of the integrity methodology.

First, we reflected on the current approaches for integrity-related interconnection testing. For

the core/control network, the industrial test environments enable the pre-launch integrity

assurance, by providing a range of test elements/scenarios, but also by eliminating risk of

testing against ’’live” systems. The management system interconnection testing is not as

advanced, while recommendations exist specifying generic testing functionalities, in OSI-

SM environments, targeted at real resources.

Then, following our integrity methodology, we conducted the integrity analysis and the

integrity design for the TMN X interface. First, we identified the integrity requirements

over the X interface. We grouped these in two sets: security requirements and

communications integrity requirements. The latter encompass liveness, robustness,

sequencing, timing, throughput and data integrity. These two sets were made distinct since

the security requirements were considered directly by the TRUMPET project, while the other

integrity requirements were not. We demonstrated how these two sets of requirements can be

identified in the three-dimensional analysis space defined in the context of the integrity

methodology (chapter 3, section 3.2.1.2).

On the basis of these requirements two integrity policies were considered. The security

policies were catered for in the TRUMPET project through construction of security

mechanisms, and thus were not of central interest for our work. To cater for the

communications integrity requirements, we developed an interconnection testing policy.

This policy aims to exercise and establish that the communications integrity requirements are

satisfied both with and without security mechanisms deployed. This is done in three phases.

First, the behaviour of the Xuser interface is established on the agent side, through a number

of abstract behavioural patterns accessible through the ‘test’ managed objects - the Xuser

Test-MIB. Next, this behaviour is tested from the manager side, without the presence of the

security mechanisms, to verify that the communications integrity requirements, in terms of

performance and functionality, are satisfied. The third step involves running the same tests

with security switched on, so as to verify whether the requirements are still satisfied and to

measure performance impact of the introduction of security features in the implementation of

the TMN Xuser interface and the supporting CMIS-based stack.

174

The central feature of this policy is the concept of the Xuser Test-MIB. Its implementation

would allow the players involved in the interconnection to avoid exposing their real

resources and particular information models during testing of the communications

mechanism and the management infrastructure. Instead, they could use the Xuser Test-MIB

and the “behavioural” OS as a test-bed that aims to provide a superset of the possible

behaviours exhibited by the shared information model (Xuser interface). This approach

distinguishes the stack and infrastructure testing from the application-specific testing (which

would include the full, detailed testing of the information models and their particular

behavioural aspects mapped 1:1 with these information models [Eber97]). The testing results

would ensure the required level of integrity of the communications stack and infrastructure -

the possible integrity-related behavioural problems would be restricted to the incorrect

specification of the particular X interface information models. Thus, the Xuser Test-MIB

can be seen as the first step towards the specification of the management-level equivalent of

the established interconnection test-beds for the core network and control planes.

The testing policy developed here was applied to the TRUMPET Xuser interface. Generally,

the case study was restricted due to limited time and resources, and thus had a form of a brief

illustration. The case study was also restricted due to the synchronous, blocking manager-

agent communications between the TRUMPET domains, and thus only a subset of proposed

behaviours and test-cases was implemented.

The communication integrity requirements, in terms of liveness and data integrity, were

preserved both with and without security mechanisms deployed. Different aspects of

performance impacts of security mechanisms were captured. Since the statistical conditions

were not stable, the measurements were not considered as representative, and were used only

for comparison. The association and operation delays were compared with and without

security deployed. The delays are not just higher in the secured case, but also fluctuations in

delays are manifested. Also, effect of the increasing operation argument length on the delays

was recorded: in both secured and unsecured cases, there is a step delay increase when string

length reaches 440. In the secured case, the fluctuations settle down after the step increase.

Overall, the results of the case study show a number of anomalies. Although the apparent

arbitrary delays seem to be a feature solely of the security package, the step increase appears

also in the off-the-shelf software (HP-OpenView). The anomalies thus could be a compound

effect of the platform, security software and the testing software. Tracing back these flows

would require a lot of effort, and the design improvements could not be conducted since the

experiment was carried out during the final stages of the project.

175

The achievement of this case study was that we demonstrated how complex inter-domain

management interactions might appear sensitive to the introduction of additional

sophisticated features. The arbitrary delays appear to be a feature of the security package

and, as such, could possibly have an impact on the integral operation of concurrent, real-life

management applications communicating in an asynchronous fashion. We showed how the

integrity requirements, especially security and performance, could be closely interlinked. As

such, the integrity requirements must be considered throughout the system development

lifecycle, starting from requirements capture down to implementation, to avoid not just

possible inconsistencies in system operation, but also the need to re-engineer the applications

post facto. Thus, through a very brief case study, we showed that the integrity requirements

demand detailed consideration during system development, as suggested by the integrity

management methodology presented in chapter 3.

176

7 CONCLUSION

In this chapter, we give a conclusive overview of the thesis, pointing out the novel research

contributions to the field, in section 7.1. In section 7.2, we briefly discuss some advanced

research carried out in the framework of potential future work.

7.1 D is c u s s io n

In this thesis, we identified that the telecommunications systems are becoming increasingly

complex, both in their internal construction and the degree of interconnection and

interdependence between systems. This is due to technological advances characterised by the

convergence of telecommunications and computing, growing demands for sophisticated

services, and the pressure of regulatory forces stimulating the inter-domain interconnections.

In this context, the key issue is that of the ability of systems to retain high integrity and low

risk. The number of integrity issues is vast, and currently there is no coherent approach to

understanding and managing these issues throughout the system lifecycle. Moreover, there is

a shortfall of techniques for pre-launch integrity assurance.

Thus, in this thesis we explored the concept of telecommunications system integrity, the

methodological frameworks for managing integrity throughout the telecommunications

system lifecycle, and the techniques for insuring integrity during system development.

We pin-pointed the integrity attributes of modem telecommunications systems, taking into

account the specific telecommunications engineering topics as well as software and system

science. These attributes encompass issues regarding system functionality, structure and

behaviour.

We developed a complete methodological framework for managing these integrity attributes

throughout the telecommunications system lifecycle. The methodology presented

encompasses three distinct phases: prediction, testing and maintenance. The focus is on

prediction, the system pre-launch methodology phase. This predictive phase of the

methodology is based on the ODP-UML model of the system. The author was one of the

core creators of the ODP-UML management system development approach, which is seen as

a strong and distinct research contribution.

In the integrity methodology developed here, the integrity-related actions are integrated in

the system development lifecycle through iterative carrying out of the integrity analysis,

design and implementation. Integrity analysis identifies the integrity-related requirements,

177

integrity design specifies the integrity-preserving action - the integrity policy, and integrity

implementation focuses on the techniques needed for realising the integrity policy. Integrity

policy can have the form of; an integrity-focused design recommendation; specification of an

integrity-preserving mechanism to be implemented; or definition of a testing strategy.

The integrity methodology developed in this thesis is envisaged as a tool for categorising,

analysing and tackling the integrity issues throughout the system lifecycle. This

methodology is applicable to any distributed telecommunications system, while its

application was explored through the consideration of network and service management

systems, with two ACTS projects - TRUMPET and FlowThru - representing the main

research platform.

In this context, we focused on the detailed development of two distinct integrity policies.

Moreover, through the case studies of TRUMPET and FlowThru, we demonstrated that the

theoretical integrity concepts developed in this thesis are applicable to real advanced

management systems.

The first integrity policy is based on the object-oriented software metrics, and has the form

of an integrity-focused design recommendation. We used seven existing software measures

to form a metric suite which yields the complexity/coupling measurements of the system

classes, and suggested that this metric suite can be used as the integrity/risk indicator early in

the telecommunications system development. We elaborated on the positive correlation

between the class stand-alone complexity, as well as class coupling, and the risk level of the

class. Classes of higher complexity and coupling are more difficult to develop and test

correctly, and as such pose more risk to integral system operation, i.e., these classes have

lower integrity. Further, the strong coupling paths give way to the propagation of the

integrity breach through the system.

We demonstrated the usefulness and applicability of the metrics policy through three distinct

experiments: one of the TRUMPET service management system and two of the FlowThru

subscription management component. These experiments showed that the specific suite of

object-oriented metrics can be used as the integrity indicator early in the telecommunications

system development lifecycle (at the design stage), by pin-pointing the highly

complex/coupled classes in the design. They also empirically demonstrated that the highest

risk for the management systems' operation is exhibited at the major interconnection points

between either administrative domains or stand-alone components. Finally, these

experiments assessed the nature of the interrelationship between the individual metrics

within the metrics suite, uncovering a strong ordinal relationship between the metrics.

178

The second integrity policy developed focused on the testing of the integrity aspects of the

management systems' interconnection across administrative domains (the TMN X interface).

Effectively, the work carried out for this policy encompassed review and development of

testing principles for the management interconnections, focusing on the integrity issues. The

policy was developed in the context of the TRUMPET project, and aims to exercise and

establish that a set of integrity requirements is satisfied both with and without TRUMPET

security mechanisms deployed in the TMN Xuser interface implementation. The policy is

based on the concept of the Xuser Test-MIB (Management Information Base), which

accommodates a set of abstract behavioural patterns that can be exercised over the interface

during testing.

The applicability of the interconnection testing integrity policy was demonstrated through

the case study of the TRUMPET Xuser interface. Generally, the case study was restricted

due to limited time and resources, and thus had a form of a brief illustration. The approach

was additionally limited due to the synchronous manager-agent communication over the

interface. The outcome of the study demonstrated how the complex inter-domain interactions

between management systems might appear to be sensitive to the introduction of additional

sophisticated features.

Thus, through a mixture of theoretical and practical work, we investigated a range of

integrity concepts of interest in the modem telecommunications systems. The theoretical

research, involving the analysis of the integrity attributes and the development of the

integrity methodology, was practically deployed in real case studies involving advanced

network and service management systems. Moreover, two integrity assurance techniques -

integrity policies - were developed and deployed on these management systems, yielding a

range of results and practical experiences as discussed above.

7.2 F u t u r e WORK

The integrity concepts developed in this thesis also provided a basis for the future research

focusing on the integrity of the programmable networks.

Integrity issues will be of increasing importance in the future telecommunications scenarios

involving programmable networks. By exploiting the programmable network technologies,

third party application developers and end-users will have the access to the considerably

lower level of network control and infrastructure, traditionally operated and run by the

dominant network operators. Network operators will have little knowledge of the logic of the

applications deployed over their control plane, the active packets travelling through their

networks, or the pieces of mobile code deployed on their equipment. However, they will

179

require the assurance from the application developers that their applications will operate in a

fully integral way and will not harm the operation of the operators' control systems or the

network as a whole.

There are numerous approaches to programmable networks. The initial active network

concepts are based on the data packets which travel through the network carrying programs

in their header which can run on network devices such as switches or routers [Tenn96].

These concepts progressed through active bridging [Alex97], where packets carry only the

flag indicating the desirability of running a program. The latest initiative in this area is the

application-level active networking [Mars99]. Mobile agents are another big arena of

research and development, telecommunications [Karm97] applications including IN-based

service provisioning, network management [Gold98] [GrifOO] and personal communication

services. Finally, the network programming interfaces provide an open access for service

developers to the service components and network control in the operator domain [Laza97].

Using these interfaces, service providers can develop their own applications using the

underlying control and network infrastructure provided by the operator. Main initiatives in

the area of programming interfaces are those led by the IEEE Project P1520, which aims at

standardising the programming interfaces for networks [Bisw98], and the industry-led Parlay

group, which is specifying and developing a new open network application programming

interface [ParlOO]. Parlay specification provides an object-oriented open interface, the Parlay

Application Programming Interface (API), to the network generic services in the operator

domain. Common feature of these interfaces is that they essentially specify the

interconnection point between the two autonomous domains: network operator and service

provider domains. These interfaces can be compared to the ConS and Xuser interfaces in

TINA [TINA-BM] and TMN [M.3010] architectures respectively.

The integrity concepts developed in this thesis were discussed in the perspective of the

network programming interfaces, more specifically the Parlay interface, in [PmjOOb]. The

integrity attributes identified in this thesis and seen as relevant in the Parlay context were

reflected on. The integrity methodology was suggested for managing the appropriate

integrity issues in network programming interface scenarios, and some integrity preserving

policies were discussed in this context. The majority of the policies were envisaged to be

enforced by the integrity gateway, the component in the operator domain implementing the

required integrity mechanisms. This work represented the core of a larger project proposal.

Moreover, the author participated in the development of the specific integrity policy for the

Parlay API, published in [Kolt99][KoltOO]. This policy takes the form of an integrity-focused

design recommendation, and involves the use of behavioural techniques (Specification and

180

Description Language - SDL) (as discussed in chapter 3, section 3.4.2) in specifying not just

the logic, i.e. the behaviour of the Parlay API-based application, but also the behaviour of the

API offered, in the operator domain. Current Parlay API specification has the form of

Unified Modelling Language (UML) class diagrams and shows neither the behaviour of the

objects implementing the interface, nor the relationships between objects. Some simple UML

state diagrams describe the behaviour of few complex objects, and sequence diagrams are

specified to guide the developers. This is not enough for specifying and enforcing the correct

sequencing and timing of method invocations on the API, and cannot guarantee the

preservation of liveness and the robustness of the interface. In the integrity policy developed,

SDL is suggested for the in-depth modelling of the behaviour of the API. The SDL

behaviour models would further allow the developers and network operators to analyse,

validate and test the new applications with respect to their integrity features, with the help of

widely available SDL support tools. Service verification and validation can be performed,

and deadlock, livelock and feature interaction detection can be conducted prior to service

launch.

This further work conducted reflects our belief that the integrity issues will need to be even

more closely considered in the future telecommunications scenarios which point in the

direction of open, flexible, and dynamic network and service configuration and provision. It

also demonstrates the applicability of the concepts developed in this thesis to these future

scenarios.

181

8 AUTHOR’S PUBLICATIONS

[Kand98] M. M. Kande, S. Mazaher, O. Pmjat, L. Sacks, M. Wittig, "Applying UML to

Design an Inter-Domain Service Management Application", Proceedings of the UML '98

International Conference, June 1998. Also published in the LNCS volume " « U M L '9 8 » :

Beyond the Notation", Springer-Verlag, 1998.

[Kolt99] M. Koltsidas, O. Pmjat, L. Sacks, "Design and Development of the Customer's

Applications Based on the Parlay API", Proceedings of the London Communications

Symposium, July 1999.

[KoltOO] M. Koltsidas, O. Pmjat, L. Sacks, "Development of Parlay-based Applications

Using UML and SDL", Proceedings of the 3"̂ ̂ IFIP/IEEE Intemational Conference on

Management of Multimedia Networks and Services (MMNS'2000), September 2000.

[Pmj96] O. Pmjat, L. Sacks, “Adaptation of Software Metrics to Telecommunications

Networks”, Proceedings of the UCL Communications Research Symposium, July 1996.

[Pmj97] O. Pmjat, L. Sacks (Eds.), "Detailed Component and Scenario Designs", ACTS

Project ACl 12 TRUMPET, Deliverable 8, June 1997.

[Pmj98a] O. Pmjat, L. Sacks, H. Hegna, "Testing the Integrity vs. Security Requirements on

the TMN X Interface", EUNICE '98 Network Management and Operation Summer School,

September 1998.

[Pmj98b] O. Pmjat, L. Sacks (Eds.), "Trials and Technology Assessment", ACTS Project

A C l 12 TRUMPET, Deliverable 15, December 1998.

[Pmj99a] O. Pmjat, L. Sacks, "Integrity Methodology for Interoperable Environments",

IEEE Communications, Special Issue on Network Interoperability, Vol. 37, No. 5, pp. 126-

139, May 1999.

[Pmj99b] O. Pmjat, L. Sacks, "Telecommunications System Design Complexity and Risk

Reduction Based on System Metrics", Proceedings of the 10th European Workshop on

Dependable Computing (EWDCIO), May 1999.

[Pmj99c] O. Pmjat, L. Sacks, " Impact of Security Policies on the TMN X Interface Integrity

and Performance", Proceeding of the First IEEE Latin American Network Operations and

Management Symposium (LANOMS'99), December 1999.

[PmjOOa] O. Pmjat, L. Sacks, "High Integrity Inter-Domain Management", in A. Galis (Ed.),

"Multi-Domain Communication Management Systems", CRC Press - USA, ISBN:

084930587X, June 2000 [GaliOO].

182

[PmjOOb] O. Pmjat, L. Sacks, "Inter-domain Integrity Management for Programmable

Network Interfaces", Proceedings of the 3"̂ ̂IFIP/IEEE Intemational Conference on

Management of Multimedia Networks and Services (MMNS'2000), September 2000,

[Sack98] L. Sacks, O. Pmjat, M. Wittig, M. M. Kande, B. Bhushan, C. Autant, "TRUMPET

Service Management Architecture", Proceedings of the 2° ̂Intemational Enterprise

Distributed Object Computing Conference (EDOC '98), November 1998.

183

9 REFERENCES

[Albr79] A. J. Albrecht, “Measuring Application Development Productivity”, IBM

Application Development Joint SHARE/GUIDE Symposium, Monterey, CA, pp. 83-92,

1979.

[Alex97] Alexander et. al., "Active Bridging", Computer Communications Review, Vol. 27,

No. 4, pp. 101-111, 1997.

[ATM-M4] The ATM Forum, Technical Committee, “Network Management, M4 Network

View Interface, Requirements and Logical MIB”, March 1996.

[Auta97] C. Autant (Ed.), "The Nil-Security Prototype", ACTS Project A C l 12 TRUMPET,

Deliverable 6, February 1997.

[Barr93] L. M. Barroca, J. A. McDermid, “Formai Methods: Use and Relevance for the

Development of Safety Critical Systems”, in P. A. Bennett (Ed.), "Safety Aspects of

Computer Control" pp. 96-153, Butterworth Heinemann, 1993.

[Basi96] V. R. Basili, L. C. Briand, W. L. Melo, “A Validation of Object-Oriented Design

Metrics as Quality Indicators”, IEEE Transactions on Software Engineering, Vol. 22, pp.

751-761, 1996.

[Bate96] B. W. Bates et. al., “Formalising Fusion Object-Oriented Analysis Models”, First

IFIP Intemational Workshop on Formai Methods for Open Object-Based Distributed

Systems (FMOODS), Chapman and Hall, March 1996.

[BBCOO] BBC News, "BT Network Fault Fixed", 26*̂ February 2000, http://news.bbc.co.uk

[Bell93] Bellcore, “Generic Requirements for Software Reliability Prediction”, GR-2813-

CORE, Issue 1, December 1993.

[Bem93] E. V. Bernard, “Essays on Object-Oriented Software Engineering”, Prentice-Hall,

1993.

[Berq96] K. Berquist, A, Berquist, (Eds.), “Managing Information Highways. The PRISM

Book: Principles, Methods and Case Studies for Designing Telecommunications

Management Systems”, Lecture Notes in Computer Science, Vol. 1164, Springer-Verlag,

Berlin Heidelberg New York, 1996.

[Biem98] J. M. Bieman, B. Kang, "Measuring Design-Level Cohesion", IEEE Transactions

on Software Engineering, Vol. 24, No. 2, pp. 111-124, Febmary 1996.

[Bisw98] J. Biswas et. al., "The IEEE P1520 Standards Initiative for Programmable

Interfaces", IEEE Communications Magazine, pp. 64-72, October 1998.

184

http://news.bbc.co.uk

[BoehSl] B. W, Boehm, “Software Engineering Economies”, Prentice-Hall, 1981.

[Boeh91] B. W. Boehm, “Software Risk Management: Principles and Practices”, IEEE

Software, Vol. 8, pp. 32-41, January 1991.

[Booc94] G. Booch, “Object-Oriented Analysis and Design with Applications”, Benjamin

Cummings, 1994.

[Bowe92] J. P. Bowen, V. Stavridou, “Safety-Critical Systems, Formai Methods and

Standards”, Technical Report PRG-TR-5-92, Programming Research Group, Oxford

University Computing Laboratory, 1992.

[Bowm96] H. Bowman et. al., “Viewpoint Consistency in ODP, a General Interpretation”,

Proceedings of the First IFIP Intemational Workshop on Formal Methods for Open Object-

Based Distributed Systems (FMOODS), Chapman and Hall, March 1996.

[Bria98] L. C. Briand, J. Daly, V. Porter, J. Wust, "A Comprehensive Empirical Validation

of Design Measures for Object-Oriented Systems", Proceedings of the Fifth Intemational

Software Metrics Symposium, pp. 246-257, 1998.

[Butl95] R. W. Butler, G. B. Finelli, “The Unfeasibility of Quantifying the Reliability of

Life-Critical Real-Time Software”, Software Engineering Notes, Vol. 16, No. 5, pp. 66-76,

1995.

[Came93] E. J. Cameron, H. Velthuijsen, “Feature Interactions in Telecommunications

Systems”, IEEE Communications Magazine, pp. 18-23, August 1993.

[Cano71] W. J. Canover, "Practical Nonparametric Statistics", John Wiley & Sons, New

York, 1971.

[Cart96] M. Cartwright, M. Shepperd, “An Empirical Investigation of Object-Oriented

Software in Industry”, Technical Report TR96/01, Boumemouth University, 1996.

[Chid91] S. R. Chidamber, C. F. Kemerer, “Towards a Metric Suite for Object-Oriented

Design”, Proceedings 00PSLA '91, pp. 197-211, 1991.

[Chid94] S. R. Chidamber, C. F. Kemerer, “A Metrics Suite for Object-Oriented Design”,

IEEE Transactions on Software Engineering, Vol. 20, No. 6, pp. 476-493, 1994.

[Chid98] S. R. Chidamber, D. P. Darcy, C. F. Kemerer, “Managerial Use of Metrics for

Object-Oriented Software: An Exploratory Analysis”, IEEE Transactions on Software

Engineering, Vol. 24, No. 8, August 1998.

[Conn92] J. O ’Connor, D. T. Patrick, “Practical Reliability Engineering”, 3’̂'̂ edition, J.

Wiley, 1992.

[Cons79] L. Constantine, E. Yourdon, “Stmctured Design”, Prentice-Hall, 1979.

185

[CORBA] Object Management Group, “The Common Object Request Broker (CORBA) -

Architecture and Specification”, 1995.

[Dang96] F, Dangtran, V. Pervaskine, J. B. Stefani, B. Crawford, A. Kramer, D. Otway,

"Binding and Streams: the ReTINA Approach", TINA ’96 Conference, September 1996.

[DeMa82] T. DeMarco, “Controlling Software Projects: Management, Measurement and

Estimation”, Prentice-Hall, 1982.

[Dens98] W. Denson, “The History of Reliability Prediction”, IEEE Transactions on

Reliability, Vol. 47, No. 3, pp. 321-345, September 1998.

[Eber97] R. Eberhardt, S. Mazziotta, D. Sidou. “Design and Testing of Information Models

in a Virtual Environment”, The 5th IFIP/IEEE Intemational Symposium on Integrated

Network Management “Integrated Management in a Virtual World”, May 1997.

[Ekka95] R. Ekkart et. al., “Tutorial on Message Sequence Charts”, in O. Haugen (Ed.),

“SDL 95 with MSC in CASE”, September 1995.

[Fene93] P. J. Fenelon, J. A. McDermid, “An Integrated Toolkit for Software Safety

Analysis”, Journal of Systems and Software, July 1993.

[Fent91] N. E. Fenton, “Software Metrics - A Rigorous Approach”, Chapman and Hall,

1991.

[Fent94] N. E. Fenton, “Software Measurement: A Necessary Scientific Basis”, IEEE

Transactions on Software Engineering, Vol. 20, No. 3, March 1994.

[Flow-http] http://www.cs.ucl.ac.uk/research/flowthru/models/

[FlowThru] ACTS Project FlowThru, AC335, “Co-operative Secure Management of Multi

Technology and Administrative Domain Network and Service Management Systems”.

[Gagn97] F. Gagnon et. al., “A Security Architecture for TMN Inter-Domain Management”,

Proceedings of the 4* Intemational Conference on Intelligence in Services and Networks,

Springer-Verlag, Berlin, 1997.

[GaliOO] A. Galis (Ed.), "Multi-Domain Communication Management Systems", CRC Press

- USA, ISBN: 084930587X, June 2000.

[Garm96] D. Garmus, D. Herron, "Effective Early Estimation", Software Development, Vol.

4, No. 7, pp. 57-65, July 1996.

[Geor99] P. Georgatsos, D. Makris, D. Griffin, G. Pavlou, S. Sartzetakis, Y. T'Joens, D.

Ranc, "Technology Interoperation in ATM Networks: The REFORM System," IEEE

Communications, Special Issue on Network Interoperability, Vol. 37, No. 5, pp. 112-118,

May 1999

186

http://www.cs.ucl.ac.uk/research/flowthru/models/

[Gibb71] J. D. Gibbons, "Nonparametric Statistical Inference", McGraw-Hill, New York,

1971.

[Gold98] G. Goldszmidt, Y. Yemini, "Delegated Agents for Network Management", IEEE

Communications Magazine, Vol. 36, No. 3, pp. 66-70, March 1998.

[Grab93] J. Grabowski et. al., “Test Case Generation with Test Purpose Specification by

MSC”, in “SDL ’93 - Using Objects”, North-Holland, October 1993.

[Grif96] D. Griffin et. al., “ATM Virtual Path Connection and Routing Management”, in D.

Griffin (Ed.), “Integrated Communications Management of Broadband Networks”, Crete

University Press, pp. 73-145, 1996.

[GrifOO] D. Griffin, G. Pavlou, P. Georgatsos, "Providing Customisable Network

Management Services Through Mobile Agents," Proceedings of the 7th Intemational

Conference on Intelligence in Services and Networks, Springer-Verlag, Berlin, 2000.

[Hall96] J. Hall (Ed.), “Modelling and Implementing TMN-based Multi-domain

Management”, Springer-Verlag, 1996.

[Hatt97] L. Hatton, “Software Failures: Follies and Fallacies”, lEE Review, pp. 49-52,

March 1997.

[Hend96] B. Hendson-Sellers, “Object-Oriented Metrics, Measures of Complexity”,

Prentice-Hall, 1996.

[Henr81] S. Henry, D. Kafura, “Software Stmcture Metrics Based on Information Flow”,

IEEE Transactions on Software Engineering, Vol. 7, No. 5, pp. 510-518, 1981.

[Hoan93] B. Hoang, D. J. Bastien, B. Le win, “Common Channel Signalling Network

Integrity Experiences from the US”, Proceedings of the IEEE Conference on

Communications (ICC’93), Vol. 2, pp. 644 - 649, 1993.

[1.321] ITU Rec. 1.321, "B-ISDN Protocol Reference Model and its Application", 1991.

[lEEEStd 1228-94] IEEE Standard for Software Safety Plans, Std 1228-1994.

[IS09000] Intemational Standards Organisation, lSO-9000 family of standards, 1991.

[1S09646-1] ISO/lEC 9646, “Open Systems Interconnection - Conformance Testing

Methodology and Framework - Part 1: General Concepts", 1992.

[1S09646-3] ISO/IEC 9646, “Open Systems Interconnection - Conformance Testing

Methodology and Framework - Part 3: The Tree and Tabular Combined Notation (TTCN)”,

1992.

[Jaco92] 1. Jacobson, “Object-Oriented Software Engineering - A Use-Case Driven

Approach”, Addison-Wesley, 1992.

187

[JAVA] J. Gosling, B. Joy, G. Steele, "The Java Language Specification, Version 1.0",

Addison-Wesley, http://java.sun.com/docs/books/jls/index.html

[Jone90] C. B. Jones, “Systematic Software Development using VDM”, Prentice-Hall

Intemational, 1990.

[Kami99] T. Kamiya, S. Kusumoto, K. Inoue, "Prediction of Fault-proneness at Early Phase

in Object-Oriented Development", Proceedings of the 2“*̂ IEEE Intemational Symposium on

Object-Oriented Real-Time Distributed Computing (ISORC '99), pp. 253-258, 1999.

[Kand98] M. M. Kande, S. Mazaher, O. Pmjat, L. Sacks, M. Wittig, "Applying UML to

Design an Inter-Domain Service Management Application", Proceedings of the UML '98

Intemational Conference, June 1998. Also published in the LNCS volume " « U M L '9 8 » :

Beyond the Notation", Springer-Verlag, 1998.

[Karm97] A. Karmouch, "Mobile Software Agents for Telecommunications", IEEE

Communications Magazine Guest Editorial, Vol. 36, No. 7, 1997.

[Keck98] D. O. Keck, P. J. Kuehn, "The Feature and Service Interaction Problem in

Telecommunications Systems: A Survey", IEEE Transactions on Software Engineering, Vol.

24, No. 10, October 1998.

[Kem88] B. W. Kemighan, D. M. Ritchie, "The C Programming Language", Second

Edition, Prentice-Hall, 1988.

[Kirs99] C. Kirsopp, M. J. Shepperd, S. Webster, "An Empirical Study Into the Use of

Measurement to Support GO Design", Proceedings of the 6* IEEE Intemational Metrics

Symposium, IEEE Computer Society, 1999.

[Kitc85] B. A. Kitchenham, N. R. Taylor, “Software Development Cost Estimation”, Joumal

of Systems and Software, Vol. 5, pp. 67-78, 1985.

[Klei78] D. G. Kleinbaum, L. L. Kupper, "Applied Regression Analysis and other

Multivariable Methods", Duxbury Press, Boston, 1978.

[Kolt99] M. Koltsidas, O. Pmjat, L. Sacks, "Design and Development of the Customer's

Applications Based on the Parlay API", Proceedings of the London Communications

Symposium, July 1999.

[KoltOO] M. Koltsidas, O. Pmjat, L. Sacks, "Development of Parlay-based Applications

Using UML and SDL", Proceedings of the 3"̂ ̂IFIP/IEEE Intemational Conference on

Management of Multimedia Networks and Services (MMNS'2000), September 2000.

[Kran71] D. H. Krantz et. al., "Foundations of Measurement", Vol. 1, Academic Press, 1971.

[Lapr92] J. C. Laprie (Ed.), “Dependability: Basic Concepts and Terminology: in English,

French, German, Italian and Japanese”, Springer-Verlag, Wien, 1992.

188

http://java.sun.com/docs/books/jls/index.html

[Laza97] A. Lazar, "Programming Telecommunication Networks", IEEE Network, pp. 2-12,

October 1997.

[Leve95] N. G. Leveson, “Safeware: System Safety and Computers”, Addison-Wesley,

1995.

[Lew99a] D. Lewis, C. Malbon, A. DaCruz, "Modelling Management Components for

Reuse using UML", Proceedings of the 6* Intemational Conference on Intelligence in

Services and Networks, Springer-Verlag, Berlin, 1999.

[Lew99b] D. Lewis, "A Software Development Methodology for Service Management",

Published in Telecom'99 Forum.

[Lew99c] D. Lewis, C. Malbon, G. Pavlou, C. Stathopoulos, E. Jaen, “Integrating Service

and Network Management Components for Service Fulfilment”, in Active Technologies for

Network and Service Management: Proceedings of the 10* IFIP/IEEE Intemational

Workshop on Distributed Systems: Operations and Management (DSOM '99), R. Stadler, B.

Stiller, (Eds.), pp. 49-62, Springer-Verlag, October 1999.

[Lewi94] B. Le win, D. Branflick, ’’Future Directions for National Interoperability Testing

for Network Integrity”, IEEE Globecom’94, Vol. 1, pp. 222-226, 1994.

[Lewi97] D. Lewis, T. Tiropanis, A. McEwan, C. Redmond, V. Wade, R. Bracht,

"Experiences in Integrated Multi-Domain Management", Proceedings of the IFIP/IEEE

Intemational Conference on Management of Multimedia Networks and Services, 1997.

[Li93] W. Li, S. Henry, “Object-Oriented Metrics that Predict Maintainability”, Joumal of

Systems and Software, Vol. 23, pp. 111-122, 1993.

[Lore94] M. Lorenz, J. Kidd, “Object-Oriented Software Metrics”, Prentice-Hall, 1994.

[LOTOS] LOTOS Virtual Tutorials at http://wwwtios.cs.utwente.nl/lotos/

[M.3010] ITU Rec. M3010, "Principles for a Telecommunications Management Network",

1996.

[M.3020] ITU Rec. M3020, "TMN Interface Specification Methodology", 1995.

[Mail96] D. Maillot (Ed.), "Inter-TMN Security Policies", ACTS Project A C l 12

TRUMPET, Deliverable 2, June 1996.

[Male98] H. A. Malec, “Communications Reliability: A Historical Perspective”, IEEE

Transactions on Reliability, Vol. 47, No. 3, pp. 333-345, September 1998.

[Mamd96] E. Mamdani, "Lecture Notes in Network and Service Management", University

College London Telecommunications M.Sc., 1996.

189

http://wwwtios.cs.utwente.nl/lotos/

[Mant91] R, J. Manterfield, “Common-Channel Signalling”, Peter Peregrinus Ltd., London,

1991.

[Mars99] I. W. Marshall, et. al., "Application-level Programmable Network Environment",

BT Technology Joumal, Vol. 17, No. 2, April 1999.

[Maso97] P. J. Mason, "Ensuring Network Integrity", lEE Colloquium on "How to Compete

and Connect: Understanding the Engineering of Telecommunications Network

Interconnection", pp. 11/1 - 11/7, 1997.

[McCa76] T. J. McCabe, “A Complexity Measure”, IEEE Transactions on Software

Engineering, Vol. 2, No. 4, pp. 308-320, 1976.

[McCa95] K. McCarthy, G. Pavlou, S. Bhatti, J. N. DeSouza, "Exploiting the Power of OSI

Management for the Control of SNMP-capable Resources Using Generic Application Level

Gateways", in Integrated Network Management IV, Proceedings of the IFIP/IEEE

Symposium on Integrated Network Management (ISESfM '95), Santa Barbara, USA, A.

Sethi, Y. Raynaud, F. Faure-Vincent, eds., pp. 440-453, Chapman & Hall, 1995.

[McDe94] J. A. McDermid, T. O. Jackson, I. C. Wand, M. A. Wilkins, “Final Report on the

Project: Dependability Measurement of Safety Critical Systems”, Technical Report

No.1.94.116 ISEI/IE/2776/9, University of York, 1994.

[McDo92] J. C. McDonald, “Public Networks - Dependable?”, IEEE Communications

Magazine, April 1992.

[McDo94] J. C. McDonald, “Public Network Integrity - Avoiding a Crisis in Tmst”, IEEE

Joumal on Selected Areas in Communications, Vol. 12, No. 1, pp. 5-12, January 1994.

[Meht98] S. N. Mehta, “AT&T is Seeking Cause of a Big Outage in Data Network Used by

Corporations”, The Wall Street Joumal, Wed, 15* April 1998, p B15.

[Minitab] Minitab Statistical Analysis Package, Version 13, http://www.minitab.com

[Mink97] A. Minkiewicz, “Objective Measures”, Software Development, Vol. 5, No. 6, pp.

43-50, June 1997.

[MISA-D9] ACTS Project MISA Deliverable 9, “Implementation of the MISA Testing

System”, June 1998.

[MISA-X] ACTS Project MISA Deliverable 3, Annex A, “Initial MISA High Level Design,

Annex A: Xuser Interface Definition”, September 1996.

[Mont97] V. Monton, K. Ward, M. Wilby, R. Masson “Risk Assessment Methodology for

Network Integrity”, BT Technology Joumal, Vol. 15, No. 1, pp. 223-234, January 1997.

190

http://www.minitab.com

[Mont98] V. Monton, “Investigation of the Maintenance of Integrity in Télécommunication

Networks Using Formal and Heuristic Methodologies”, Ph.D. Thesis, Dept, of Electronics

and Electrical Engineering, University College London, 1998.

[Musa87] J. D. Musa, A. lannino, K. Okumoto, “Software Reliability, Measurement,

Prediction, Application”, McGraw-Hill, 1987.

[MW-http] Merriam-Webster Collegiate Dictionary Online, http://www.m-w.com/cgi-

bin/dictionary

[Myer76] G. J. Myers, "Software Reliability - Principles and Practices", John Wiley and

Sons, New York, 1976.

[NMF-TM] Network Management Form, Technology Map, NMF GB909 Draft, July 1998.

[NMF-TOM] Network Management Form, "Telecoms Operations Map", NMF GB9I0,

Stable Draft 0.2b, April 1998.

[Obje97] ObjectSpace, “Voyager: Agent-Enhanced Distributed Computing for Java”, User

Guide, Version 1.0, http://www.objectspace.com, July 1997.

[ODP] ITU Draft Recommendation X.90I-X.904, "Basic Reference Model of Open

Distributed Processing"; Part I: "Overview and Guide to Use", 1995; Part 2: "Foundations",

1995; Part 3: "Architecture", 1995; Part 4: "Architectural Semantics", 1995.

[01ne97] J. 01nes (Ed.), "Security Policies & System Architecture Specification", ACTS

Project A C l 12 TRUMPET, Deliverable 7, April 1997.

[OMA] Object Management Group, "A Discussion of the Object Management Architecture",

1997, http://www.omg.org/library/omal .html

[ParlOO] The Parlay Group, "Version 2.0 Parlay Specification", http://www.parlay.org/

[Pavl91] G. Pavlou, A. Mann, "Quality of Service Management in Integrated Broadband

Communications : an OSI Management / TMN Based Prototype", Proceedings of the 5*

Intemational TMN Conference, November 1991.

[Pavl97] G. Pavlou, D. Griffin, "Realizing TMN-like Management Services in TINA",

Joumal of Network and System Management (JNSM), Special Issue on TINA, Vol. 5, No. 4,

pp. 437-457, Plenum Publishing, December 1997.

[Pavl98] G. Pavlou, "Telecommunications Management Network: a Novel Approach

Towards its Architecture and Realisation Through Object-Oriented Software Platforms",

Ph.D. Thesis, Dept, of Computer Science, University College London, March 1998.

[Pavo97] J. Pavon, T. Mota, G. Pavlou, L. Veillât, P. Palavos, "The VITAL Network

Resource Architecture", Proceedings of the TINA '97 Conference on Global Convergence of

191

http://www.m-w.com/cgi-
http://www.objectspace.com
http://www.omg.org/library/omal
http://www.parlay.org/

Telecommunications and Distributed Object Computing, pp. 130-138, IEEE Computer

Society, 1997.

[Pick97] S. Pickin et. al., “Introducing Formal Notations in the Development of Object-

Based Distributed Applications”, in E. Najm and J. B. Stefani (Eds.), “Formal Methods for

Open Object-Based Distributed Systems”, Chapman and Hall, 1997.

[Pras95] D. Prasad, J. McDermid, I. Wand, “Dependability Terminology: Similarities and

Differences”, Proceedings of the 10* Annual Conference on Computer Assurance

(COMPAS’95), pp. 213-221, 1995.

[Pmj96] O. Pmjat, L. Sacks, “Adaptation of Software Metrics to Telecommunications

Networks”, Proceedings of the UCL Communications Research Symposium, July 1996.

[Pmj97] O. Pmjat, L. Sacks (Eds.), "Detailed Component and Scenario Designs", ACTS

Project A C l 12 TRUMPET, Deliverable 8, June 1997.

[Pmj98a] O. Pmjat, L. Sacks, H. Hegna, "Testing the Integrity vs. Security Requirements on

the TMN X Interface", EUNICE '98 Network Management and Operation Summer School,

September 1998.

[Pmj98b] O. Pmjat, L. Sacks (Eds.), "Trials and Technology Assessment", ACTS Project

ACl 12 TRUMPET, Deliverable 15, December 1998.

[Pmj99a] O. Pmjat, L. Sacks, "Integrity Methodology for Interoperable Environments",

IEEE Communications, Special Issue on Network Interoperability, Vol. 37, No. 5, pp. 126-

139, May 1999.

[Pmj99b] O. Pmjat, L. Sacks, "Telecommunications System Design Complexity and Risk

Reduction Based on System Metrics", Proceedings of the 10th European Workshop on

Dependable Computing (EWDCIO), May 1999.

[Pmj99c] O. Pmjat, L. Sacks, " Impact of Security Policies on the TMN X Interface Integrity

and Performance", Proceeding of the First IEEE Latin American Network Operations and

Management Symposium (LANOMS'99), December 1999.

[PmjOOa] O. Pmjat, L. Sacks, "High Integrity Inter-Domain Management", in A. Galis (Ed.),

"Multi-Domain Communication Management Systems", CRC Press - USA, ISBN:

084930587X, June 2000 [GaliOO].

[PmjOOb] O. Pmjat, L. Sacks, "Inter-domain Integrity Management for Programmable

Network Interfaces", Proceedings of the 3'̂ '̂ IFIP/IEEE Intemational Conference on

Management of Multimedia Networks and Services (MMNS'2000), September 2000.

[Q.700] ITU Rec. Q.700, "Introduction to CCITT Signalling System No. 7", 1993.

192

[Ranc98] D. Ranc, S. Sedillot, “Use of Transactions in Network Management Applications”,

Proceedings of 5th Intemational Conference on Intelligence in Services and Networks,

Springer-Verlag, Berlin, 1998.

[Redm91] F. Redmill, T. Anderson, “Safety-Critical Systems - Current Issues, Techniques

and Standards”, Chapman and Hall, 1993.

[Reib91] A. L. Reibman, M. Veeraraghavan, “Reliability Modelling: an Overview for

System Designers”, IEEE Computer, April 1991.

[RFC1157] RFC 1157, "Simple Network Management Protocol", 1990.

[RFCI777] RFC 1777, “Lightweight Directory Access Protocol”, 1995.

[RFC2068] RFC 2068, "Hypertext Transfer Protocol - HTTP/1.1", 1997.

[RFC2078] RFC 2078, “Generic Security Service Application Program Interface”, Version

2, 1997.

[Riel96] A. J. Riel, “Object-Oriented Design Heuristics”, Addison-Wesley, 1996.

[Robi92] P. J. Robinson, "Hierarchical Object-Oriented Design", Prentice-Hall, 1992.

[Rumb91] J. Rumbaugh et. al., “Object-Oriented Modelling and Design”, Prentice-Hall,

1991.

[Sack98] L. Sacks, O. Pmjat, M. Wittig, M. M. Kande, B. Bhushan, C. Autant, "TRUMPET

Service Management Architecture", Proceedings of the 2“̂ Intemational Enterprise

Distributed Object Computing Conference (EDOC '98), November 1998.

[Schn92] N. F. Schneidewind, "Methodology for Validating Software Metrics", IEEE

Transactions on Software Engineering, Vol. 18, No. 5, pp. 410-422, May 1992.

[Shep93] M. Shepperd, “Software Engineering Metrics, Vol. 1”, McGraw-Hill, 1993.

[Sidd94] R. Siddhartha, "Controlling the Software Development Process", IEEE Joumal on

Selected Areas in Communications, Vol. 12, No. 1, pp. 33-39, January 1994.

[Slom94a] M. Sloman (Ed.), “Network and Distributed Systems Management”, Addison-

Wesley, 1994.

[Slom94b] M. Sloman, "Policy-driven Management for Distributed Systems", Joumal of

Network and Systems Management, Vol. 2, No. 4, 1994.

[Spre89] P. Sprent, "Applied Nonparametric Statistical Methods", Chapman and Hall, 1989.

[TAlA-93] Committee T1-Telecommunications, “A Technical Report on Network

Survivability Performance”, Document T1A1.2/93-001R3, Technical Report No. 24,

November 1993.

[Tau3.5] Telelogic Tau 3.5, SDT and ITEX Tools, http://www.telelogic.se
193

http://www.telelogic.se

[Tenn96] D. Tennenhouse, D. Wetherall, "Towards an Active Network Architecture",

Computer Communications Review, Vol. 26, No. 2, 1996.

[TINA-BM] H. Mulder (Ed.), "Business Model and Reference Points", Version 4.0,

http : // WWW. tinac.com/specifications/specifications. htm

[TINA-NRIM] N. Natarajan (Ed.), "Network Resource Information Model", Version 3.0,

http://www.tinac.com/specifications/specifications.htm

[TINA-ODL] A. Parhar (Ed.), "ODL Manual", Version 2.3,

http://www.tinac.com/specifications/specifications.htm

[TINA-SA] L. Kristiansen (Ed.), "Service Architecture", Version 5.0,

http ://WWW. tinac .com/specifications/specifications, htm

[TRUMPET] ACTS Project TRUMPET, A C l 12, "TMN’S Regulations and Multiple

Providers Environment; Inter-domain Management with Integrity”.

[TRUMPET-TA] ACTS Project TRUMPET, Technical Annex, 1996.

[UCL94] A. Galis, C. Todd, K. Ward, M. Wilby, “Final Report of a Study Entitled Network

Integrity in an ONP Environment for the Commission of European Union”, November 1994.

[UML] Rational Software Corporation, Unified Modelling Language,

http://www.rational.com/

[Vess84] I. Vessey, R. Weber, "Research on Structured Programming: An Empiricist's

Evaluation", IEEE Transactions on Software Engineering, Vol. 10, pp. 394-407, 1984.

[Vill92] A. Villmeur, “Reliability, Availability, Maintainability and Safety Assessment, Vol.

1: Methods and Techniques”, John Wiley and Sons, 1992.

[Vinc97] A. Vincent, C. Hall, “Modelling/Design Methodology and Template”, NMF

Internal Document, Draft 4, October 1997.

[Wade98] V. Wade et. al., "A Design Process for the Development of Multi Domain Service

Management Systems", in S. Rao (Ed.), "Guidelines for ATM Deployment and

Interoperability", pp. 88-103, 1998.

[Walk97] P. Walker, "How to Compete and Connect: Setting the Business and Regulatory

Context", in IFF Colloquium on "How to Compete and Connect: Understanding the

Engineering of Telecommunications Network Interconnection", Digest No: 1997/179, 1997.

[Ward95] K. Ward, “Impact of Network Interconnection on Network Integrity”, British

Telecommunications Engineering, Vol. 13, pp. 296-303, January 1995.

[Weis99] N. A. Weiss, "Introductory Statistics", Addison-Wesley, 1999.

194

http://www.tinac.com/specifications/specifications.htm
http://www.tinac.com/specifications/specifications.htm
http://www.rational.com/

[Well94] E. F. Weller, "Using Metrics to Manage Software Projects", IEEE Computer, Vol.

27, No. 9, pp. 27-33, 1994.

[What-is] "Whatis" Knowledge Exploration Tool, http://whatis.com

[Whit97] S. A. Whitmire, “Object-Oriented Design Measurement”, John Wiley and Sons,

1997.

[X.208] ITU Rec. X.208, "Abstract Syntax Notation One - Basic Notation", 1988.

[X.217] ITU Rec. X.217, “Association Control Service Element - Service Definition”, 1992.

[X.227] ITU Rec. X.227, “Association Control Service Element - Protocol Definition”,

1993.

[X.274] ITU Rec. X.274, “Transport Layer Security Protocol”, 1994.

[X.700] ITU Rec. X.700, "OSI Management Framework", 1992.

[X.701] ITU Rec. X.701, "System Management Overview", 1992.

[X.710] ITU Rec. X.710, "Common Management Information Service Definition (CMIS)",

1992.

[X.711] ITU Rec. X.711, "Common Management Information Protocol Specification

(CMIP)", 1992.

[X.722] ITU Rec. X.722, "Structure of Management Information: Guidelines for the

Definition of Managed Objects", 1992.

[X.725] ITU Rec. X.725, "Structure of Management Information: General Relationship

Model", 1995.

[X.737] ITU Rec. X.737, "Systems Management: Confidence and Diagnostic Test

Categories", 1995.

[X.745] ITU Rec. X.745, "Systems Management: Test Management Function", 1993.

[X.831] ITU Rec. X.831, “Generic Upper Layers Security - Part 2: Security Exchange

Service Element (SESE) Service Definition”, 1995.

[X.832] ITU Rec. X.832, “Generic Upper Layers Security - Part 3: Security Exchange

Service Element (SESE) Protocol Definition”, 1995.

[Yama97] T. Yamamura, T. Tanahashi, M. Hanaki, N. Fujii, “TMN-Based Customer

Network Management for ATM Networks”, IEEE Communications, Vol. 35, No. 10, pp. 46-

52, October 1997.

[Your96] E. Yourdon, "Rise and Resurrection of the American Programmer", Prentice-Hall,

1996.

195

http://whatis.com

[Z.lOO] n u Rec. Z.lOO, "Specification and Description Language (SDL)", 1993.

[Z.120] ITU Rec. Z.120, "Message Sequence Charts (MSC)", 1994.

[ZArch] University of Oxford Z Archive,

http://www.comlab.ox.ac.Uk/archive/z.html#archive

[Zuse90] H. Zuse, "Software Complexity: Measures and Methods", Walter de Gruyter,

Berlin, 1990.

196

http://www.comlab.ox.ac.Uk/archive/z.html%23archive

10 ACRONYMS

ACID Atomicity/Consistency/Isolation/Durability

ACSE Association Control Service Element

ACTS Advanced Communications Technologies and Services

API Application Programming Interface

ASN.l Abstract Syntax Notation 1

ASP Abstract Service Primitive

ATIS Alliance for Telecommunications Industry Solutions

ATM Asynchronous Transfer Mode

ATS Abstract Test Suite

B-ISDN Broadband Integrated Services Digital Network

BT British Telecom

CA Certification Authority

CA Customer Administrator

CASE Computer Aided Software Engineering

CBO Coupling Between Objects

CCS Common Channel Signalling

CK Chidamber-Kemerer (metric suite)

CMIP Common Management Information Protocol

CMIS Common Management Information Service

CMIS/P Common Management Information Service/Protocol

CMISE Common Management Information Service Elements

CO Computational Object

COCOMO Constructive Cost Model

CORBA Common Object Request Broker Architecture

CPN Customer Premises Network

DB Database

DIT Depth of Inheritance Tree

DN Distinguished Name

DPE Distributed Processing Environment

EC European Commission

EPF Ecole Polytechnique Federate

ETS Executable Test Suite

EC Functional Class

FCAPS Fault - Configuration - Accounting - Performance -

197

FCC Federal Communications Commission

FDT Formal Description Technique

FMECA Failure Modes, Effects and Criticality Analysis

FP Function Point

FPTN Failure Propagation and Transformation Notation

FSM Finite State Machine

FTA Fault Tree Analysis

GDMO Guidelines for the Definition of Managed Objects

GRM General Relationship Model

GUI Graphical User Interface

HOOD Hierarchical Object-Oriented Design

HP-OV HP OpenView

HTTP Hypertext Transfer Protocol

IDL Interface Definition Language

IEEE Institute of Electrical and Electronics Engineers

IFIP Intemational Federation for Information Processing

IITP Inter-network Interoperability Test Plan

IN Intelligent Network

IP Internet Protocol

IS Intelligent Services

ISO Intemational Standards Organisation

IT Information Technology

ITU Intemational Telecommunications Union

JVM Java Virtual Machine

KLOC Thousand Lines Of Code

LAN Local Area Network

LCOM Lack of Cohesion of Methods

LDAP Lightweight Directory Access Protocol

MAE Management Application Entity

ME Management Function

MIB Management Information Base

MORT Managed Object Referring to Test

MSC Message Sequence Chart

MTBF Mean Time Between Failures

MTTF Mean Time To Failure

MTTR Mean Time To Repair

NL Network Layer

NLM Number of Local Methods

198

NM Network Management

NMF Network Management Form

NMS Network Management System

NOC Number of Children

NSTS Network Services Test System

ODL Object Definition Language

ODP Open Distributed Processing

OLO Other Licensed Operator

OMA Object Management Architecture

OMG Object Management Group

OMT Object Modelling Technique

ONP Open Network Provision

0 0 Object-Oriented

OOD Object-Oriented Design

OOSE Object-Oriented Software Engineering

ORB Object Request Broker

OS Operations System

OSF Operations System Function

OSI Open Systems Interconnection

OSI-SM Open Systems Interconnection - Systems Management

PA Provider Administrator

PCO Point of Control and Observation

PDU Protocol Data Unit

PNO Public Network Operator

POTS Plain Old Telephone Service

PTN Public Telecommunications Network

QoS Quality of Service

RACE Research in Advance Communications in Europe

RFC Request For Comments

RFC Response For a Class

RMI Remote Method Invocation

ROSE Remote Operations Service Element

SCP Service Control Point

SDH Synchronous Digital Hierarchy

SDL Specification and Description Language

SESE Security Exchange Service Element

SL Service Layer

SLA Service Level Agreement

199

SM

SMASC

SMS

SNMP

SP

SP(N)

SS7

ssc
SUG

TINA

TINA-C

TLSP

TMF

TMN

TO

TO

TOM

TTCN

TTP

ULE

UML

VASP

VDM

VLSI

VP

VPC

VPN

WMC

WWW

Systems Management

Secure Management Association Support Component

Service Management System

Simple Network Management Protocol

Service Provider

Security Profile (N)

Signalling System No.7

Security Support Component

Service Usage Group

Telecommunications Information Network Architecture

Telecommunications Information Network Architecture

Consortium

Transport Layer Security Protocol

TeleManagement Forum

Telecommunications Management Network

Telecommunications Operator

Test Object

Telecom Operations Map

Test and Tabular Tree Notation

Trusted Third Party

User Lost Erlang

Unified Modelling Language

Value Added Service Provider

Vienna Development Method

Very Large Scale Integration

Virtual Path

Virtual Private Connection

Virtual Private Network

Weighted Methods per Class

World Wide Web

2 0 0

