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ABSTRACT

During normal human pregnancy there is a gradual rise in plasma progesterone and 
oestrogen levels with a steep rise in oestriol concentrations a few weeks before term. 
Taken in conjunction with the known effects of progesterone and oestrogens on the 
myometrium these changes suggest that the regulation of the production of these 
steroids by the placenta may be important in maintaining uterine quiescence and in 
initiating labour, respectively.

The aim of this study was to assess the effect of corticotrophin releasing hormone, 
adrenocorticotrophic hormone and the insulin like growth factors I and II, on the 
placental production of progesterone and oestrogens. Placental minces and isolated 
cytotrophoblast cells were incubated with various steroid precursors at 37°C 
with/without these substances. The production of progesterone, oestrone, oestradiol and 
oestriol was measured by radioimmunoassay.

The effects of these substances on the enzyme systems, cholesterol side chain cleavage, 
3 P-hydroxysteroid dehydrogenase, aromatase and 17p-hydroxysteroid dehydrogenase 

were studied. There was very little cholesterol side chain cleavage activity in isolated 
cells when 25-hydroxycholesterol was used as a precursor but 3 p-hydroxy steroid 
dehydrogenase, aromatase and 17 p-hydroxy steroid dehydrogenase were active when 
pregnenolone, androstenedione and 16a-hydroxyandrostenedione respectively were 

used as precursors. Androstenedione inhibited the production of oestriol by isolated 
cells when 16a-hydroxyandrostenedione was used as a precursor.

The addition of NADPH to placental tissue explants resulted in significantly raised 
progesterone and oestradiol production but not oestrone or oestriol. The results suggest 
that the energy supply to the enzyme systems responsible for the production of 
progesterone and oestradiol is rate limiting for the overall reaction.

There was no consistent significant effect of corticotrophin releasing hormone, 
adrenocorticotrophic hormone or the insulin like growth factors on progesterone, or 
oestrogen production in either tissue explants or isolated cytotrophoblast cells under the 
experimental conditions used in this study.
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Introduction

1.1. Historical perspective

Knowledge about steroid synthesis in human pregnancy has burgeoned since the 

beginning of this century. Increasingly sophisticated experimental techniques have 

enabled the isolation and characterization of the steroids present during gestation, whilst 

the development of radioactive tracers and the perfusion of isolated placentae have 

helped in the elucidation of the biosynthesis and metabolism of these compounds.

At the beginning of the century it was known that destruction of the corpus luteum in 

the rabbit resulted in pregnancy loss. This suggested that the corpus luteum was 

secreting a compound necessary for the maintenance of pregnancy. In 1929 Comer and 

Allen obtained a crude extract from the sow corpus luteum and showed that it was 

capable of maintaining pregnancy in ovariectomised rabbits (Corner and Allen 1929; 

Allen and Corner 1929). This hormone was later purified and characterized as 

progesterone by a number of researchers (cited by Davis, Plotz, LeRoy, Gould and 

Werbin 1956). Later studies showed that progesterone was converted to pregnanediol 

glucuronide, a substance which had previously been isolated from the urine of pregnant 

women (Browne, Henry and Venning 1937; Venning and Browne 1940). Pregnanediol 

levels in the urine of pregnant women were found to rise with advancing gestational age 

and to fall after parturition (Browne et al 1937; Bacman, Leekly and Hirschmann 1940; 

Bradshaw and Jessop 1953; Appleby and Norymberski 1957), suggesting that the fetus 

or placenta was involved in the production of progesterone.

Evidence that the increasing progesterone produced during pregnancy was secreted by 

the placenta came from a variety of sources. Pregnant women who had Addison's 

disease or had been adrenalectomised were known to produce normal levels of this 

compound, indicating that the maternal adrenal was not involved in the production of
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progesterone (Samuels, Evans and McKelvery 1943; Knowlton, Gilbert, Mudge and 

Jailer 1949; Venning, Sybulski, Poliak and Ryan 1959). Other studies showed that after 

the first few weeks of gestation very little progesterone arises from the ovaries or corpus 

luteum (Browne et al 1937; Tulsky and Koff 1957). Although progesterone had been 

isolated from human placentae and research showed that progesterone could be 

produced by this tissue this was not conclusive evidence that it was the major site of 

production. (Diczfalusy 1952; Pearlman and Cerceo 1952; Salhanick, Noall, Zarrow 

and Samuels 1952; Pearlman, Cerceo and Thomas 1953). Evidence for the important 

role of the placenta in progesterone production came from experiments on in situ 

placenta. The observation that pregnanediol excretion continued to rise for several 

weeks after a child had been removed from the womb, whilst the placenta was left in 

situ , strongly suggested that this endocrine tissue and not the fetus was the origin of 

this compound (Allen 1953). In 1959 Cassmer confirmed this with the finding that 

pregnanediol levels remained elevated when fetal death had been induced, but the 

placenta had been left in situ, and continued to be elevated until the placenta was 

removed.

In 1945 the precursor for progesterone was shown to be cholesterol (Bloch 1945); 

however the placenta was found to have very limited capacity to produce cholesterol de 

novo. These findings indicated that the precursor for progesterone must be produced 

elsewhere and later in 1970 maternal plasma cholesterol was shown to be the principal 

precursor for progesterone production by the placenta (Hellig, Gattereau, Lefebvre and 

Boité 1970).

Allen and Doisy (1923) found that an extract of fluid from Graafian follicles was 

capable of inducing oestrous behaviour in ovariectomised animals and the finding that 

human pregnancy urine contained large quantities of this substance (Ascheim and 

Zondek 1927) stimulated research which led to the isolation and characterization of the 

oestrogens.
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Oestrone was first isolated in human pregnancy urine by Doisy and colleagues in 1929 

(Doisy, Veller and Thayer 1929). Oestriol was also isolated around this time (Marrian 

1929 and 1930) but it was a further five years before oestradiol was isolated from the 

follicular fluid of sows' ovaries (MacCorquodale, Thayer and Doisy 1935) and it was 

identified in human pregnancy urine in 1940 (Huffman, MacCorquodale, Thayer, 

Doisy, Smith and Smith 1940).

From the mid 1930s to the late 1950s the experimental techniques available indicated 

that there was a steady increase in urinary excretion of the oestrogens oestrone, 

oestradiol and oestriol with that of oestriol being quantitatively greater than the other 

oestrogens, rising by up to 1000 fold compared to non pregnant women (Cohen, 

Marri an and Watson 1935; Stimmel 1946; Bradshaw and Jessop 1953; Brown 1956). 

This increase was not due to maternal ovarian production (see references cited by 

Diczfalusy and Troen 1953). It was also shown that it was not due to maternal adrenal 

production as pregnant patients with Addison's disease had relatively normal pregnancy 

oestrogen levels (Samuels et al 1943; Knowlton et al 1949). The rapid decline in 

oestrogens after delivery (Cohen et al 1935; Bradshaw and Jessop 1953; Brown 1956) 

indicated that the placenta or fetus was involved in the production of these hormones.

At the beginning of the 1960s oestrogens were found to be low in women pregnant with 

an ancephalic fetus indicating that the fetus played a role in oestrogen formation 

(Fransden and Stakeman 1961). However, experiments showed that after ligation of the 

umbilical cord the precipitous drop in oestrogen secretion that would usually occur 

could be prevented by perfusion of the in situ placenta with maternal blood (Cassmer 

1959). Women with hydatidiform moles were also shown to produce relatively high 

levels of oestrogens (Siiteri and MacDonald 1963) suggesting a role for the placenta in 

oestrogen production during pregnancy.

Although oestrogens had been isolated from placental tissue (Westerfeld, 

MacCorquodale, Thayer, and Doisy 1938; Huffman, Thayer and Doisy 1940) this was
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not conclusive proof that it was the site of oestrogen synthesis. In the 1950s the major 

C19 steroid circulating in plasma was found to be a conjugate of 

dehydroepiandrosterone (DHEA) (Migeon and Plager 1954) and was later identified as 

dehydroepiandrosterone sulphate (DHEAS) (Baulieu 1960). The subsequent findings 

that DHEAS could be hydrolysed to DHEA by the sulphatase enzyme abundant in 

placental tisssue but not fetal tissue (Pulkkinen 1961; Warren and Timberlake 1962), 

and that placental tissue was capable of converting DHEA to oestrogens (Ryan 1959a), 

was suggestive that this sulphate could serve as a precursor for oestrogen synthesis in 

the pregnant woman. Further research followed which demonstrated that DHEAS was 

in fact a precursor for oestrone and oestradiol synthesis but that oestriol was formed 

through a different pathway. (Siiteri and MacDonald 1963; Baulieu and Dray 1963, 

Boité, Mancuso, Eriksson, Wiqvist and Diczfalusy 1964a; Boité, Mancuso, Eriksson, 

Wiqvist and Diczfalusy 1964b; Warren and Timberlake 1964; MacDonald and Siiteri 

1965). These findings indicated that the placenta obtains steroid precursors from the 

mother and fetus and converts them to oestrogens.

Thus it was apparent that the production of progesterone and the oestrogens in human 

pregnancy involved an interplay between mother, fetus and the placenta. The synthesis 

of progesterone and the oestrogens in the fetal placental unit are shown 

diagrammatically in figure 1.1.
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Figure 1.1. Production of the oestrogens and progesterone in the human placenta from fetal and maternal 

precursors.
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1.2. General introduction: the role of steroids in pregnancy and parturition

Numerous complex interactions take place between the mother and fetus during the 

course of gestation, ultimately resulting in parturition. Steroid hormones are synthesized 

by the fetus and placenta during pregnancy and are important components both in 

maintaining uterine quiescence and in the initiation of labour. In the sheep and rat the 

onset of labour is preceded by a sharp rise in maternal plasma oestrogen levels and a fall 

in progesterone production which results in an increase in the oestrogen [progesterone 

ratio (Bassett, Oxborrow, Smith and Thorburn 1969; Csapo and Wiest 1969; 

Yoshinaga, Hawkins and Stocker 1969; Challis 1971). These changes appear to 

modulate certain factors such as gap junction formation, oxytocin receptors and 

prostaglandin synthesis and release which are associated with an increase in uterine 

activity. The release of oxytocin that occurs after vaginal distension in sheep is 

inhibited by progesterone but potentiated by oestrogen and an increase in the number of 

oxytocin receptors during labour has been attributed to stimulation of receptor synthesis 

by the rising oestrogen levels in rats (Roberts and Share 1969; Alexandrova and Soloff 

1980; Soloff, Fernstrom, Periyasamy, Soloff, Baldwin and Wieder 1983). Progesterone 

withdrawal in sheep enhances prostaglandin production (Liggins, Fairclough, Grieves, 

Kendall and Knox 1973; Ledger, Webster, Anderson and Turnbull 1985) and oestradiol 

administration in several species increases uterine prostaglandin synthesis (Caldwell, 

Tillson, Brock and Speroff 1972; Liggins et al 1973; Ryan, Clark, Van Orden, Farley, 

Edvinsson, Sjoberg, Van Orden and Brody 1974; Demers, Yoshinaga and Creep 1974; 

Ham, Cirillo, Zanetti and Kuehl 1975; Castracane and Jordan 1975).

Co-ordinated uterine muscle activity is essential for delivery of the fetus and appears to 

be dependant upon the formation of gap junctions which facilitate the spread of 

electrical activity throughout the uterus (Garfield, Sims and Daniel 1977; Garfield, 

Sims, Kannan and Daniel 1978). These myométrial gap junctions have been 

subsequently shown to be formed of clusters of a protein, connexin-43 (Beyer, Kistler, 

Paul, Goodenough 1989; Lang, Beyer, Schwartz and Gitlin 1991; Risek, Guthrie, 

Kumar and Gilula 1991). Rising oestrogens and decreasing progesterone levels increase
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the number and size of gap junctions in the myometrium of rats and sheep (Garfield, 

Rabideau, Challis and Daniel 1979a; Garfield, Kannan and Daniel 1980; Mackenzie and 

Garfield 1985). They are also present in the myometrium of women during late 

pregnancy and those undergoing labour and have been found to correlate with the 

degree of cervical dilation (Garfield, Rabideau, Challis and Daniel 1979b; Garfield and 

Hayashi 1981; Balducci, Risek, Gilula, Hand, Egan, and Vintzileos 1993). The 

messenger ribonucleic acid (mRNA) encoding the human myométrial gene for 

connexin-43 is elevated during late pregnancy and labour (Chow and Lye 1994). This is 

suggestive of a role for the oestrogens and progesterone in their synthesis and 

experiments have been performed which support this. Progesterone has been shown to 

decrease whilst oestradiol stimulates the transcription of connexin-43 in rat 

myometrium (Lye, Nicholson, Mascarenhas, MacKenzie and Petrocelli 1993; Petrocelli 

and Lye 1993). Connexin-43 gap junctions have also been shown to form spontaneously 

in primary myométrial cell cultures when oestradiol is present (Anderson, Grine, Eng, 

Zhao, Barbieri, Chumas and Brink 1993).

Free calcium is also important in the mechanism of muscular excitation-contraction. 

Contractions result from the phosphorylation of muscle myosin causing it to interact 

with actin. As the myosin and actin filaments slide past one another cross-bridges form 

between the two proteins which generate the contractile force of labour. The enzyme 

responsible for the phosphorylation of myosin requires the protein calmodulin which in 

turn is activated by calcium. The uncoupling of excitation and contraction in the rabbit 

uterus has been shown to be prevented by the presence of progesterone, and it is 

thought that this steroid modulates the intracellular calcium levels, thereby maintaining 

the uterus in a quiescent state prior to parturition (Currie and Jeremy 1979).

Human pregnancy is also characterised by rising levels of uterine prostaglandins and 

receptors for oxytocin in the myometrium and decidua which rise progressively in 

concentration throughout pregnancy (Fuchs, Fuchs, Husslein and Soloff 1984). 

However in humans the oestradiohprogesterone and oestrone:progesterone ratio do not
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rise very much towards term (Tulchinsky, Hobel, Yaeger and Marshall 1972; Mathur, 

Landgrebe and Williamson 1980; Anderson, Hancock and Oakey 1985), but it has been 

shown that the onset of labour is proceeded by a rise in the oestriol:progesterone ratio 

(McGarrigle and Lachelin 1984; Darne, McGarrigle and Lachelin 1987). The effects of 

the oestrogens and progesterone on myométrial activity, prostaglandin and oxytocin 

synthesis in other species suggest that the ratio of oestriol:progesterone at term in 

human pregnancy may be of some importance in determining the onset of labour.

Factors which may control the enzyme systems responsible for synthesising oestrogens 

and progesterone are thus important in evaluating how the onset of human labour is 

governed.

1.3. The biosynthesis of progesterone hy the placenta.

The steroid hormones have a basic strucutre of three cyclohexane rings and one 

cylcopentane ring which can be seen in figure 1.3.1. The four rings are designated by 

letters whilst carbon atoms on the steroid ring are numbered. Any groups substitued on 

the ring are identified by the number of the carbon atom to which they are attached. If 

there is a double bond present it is identified by the lower of the carbon number of the 

atoms sharing the bond.
21

Figure 1.3.1. The basic structure of a steroid with the accepted numbering of carbon atoms and labelling 

of rings.
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Synthesis of all steroid hormones commences with the precursor molecule cholesterol 

(Bloch 1945). The placenta has only a limited ability to produce cholesterol de novo 

and mainly obtains it from the maternal circulation (Woolever, Goldfien and Page 1961; 

van Leusden and Villee 1965; Zelewski and Villee 1966; Hellig et al 1970). The 

principal source of cholesterol utilised by the placenta is thought to be low density 

lipoprotein (LDL) (Winkel, Synder, MacDonald and Simpson 1980). Its uptake is 

mediated by specific high affinity receptor sites on the cytotrophoblast cell surface 

(Winkel, Gilmore, MacDonald and Simpson 1981), the number of which have been 

found to be regulated by these cells in primary culture (Winkel, MacDonald, Hemsell 

and Simpson 1981). Receptors for LDL are detectable as early as 6 weeks gestation in 

microvillus membranes (Alsat, Bouali, Goldstein, Malassiné, Berthelier, Mondon and 

Cedard 1984).

Cholesterol is converted first to pregnenolone (Saba, Hechter and Stone 1954; Staple, 

Lynn and Gurin 1956) through a series of reactions known as cholesterol side chain 

cleavage (CSCC). An enzyme system capable of cleaving cholesterol was first isolated 

in mammalian tissue in 1954 (Lynn, Staple and Gurin 1954) and later localized to the 

mitochondria in this tissue (Halkerston, Eichom and Hechter 1959; Halkerston, Eichorn 

and Hechter 1961; Constantopoulos and Tchen 1961a, Constantopoulos and Tchen 

1961b). Further studies on porcine adrenals located it to the inner mitochondrial 

membrane (Yago and Ichii 1969; Yago, Kobayashi, Sekiyama, Kurokawa, Iwai, Suzuki 

and Ichii 1970).

Experiments on bovine adrenal mitochondrial extracts have suggested that there are 

several intermediates in the conversion of cholesterol to pregnenolone, 22R- 

hydroxycholesterol, 20a-hydroxycholesterol, and 20a, 22R-dihydroxycholesterol 

(Roberts, Bandy and Lieberman 1969; Burstein, Byon, Kimball and Gut 1976; Bur stein 

and Gut 1976; Hume and Boyd 1978; Hume, Kelly, Taylor and Boyd 1984). 

Subsequent studies on human placental mitochondria indicate that these intermediates 

are also formed in this tissue (Tuckey 1992).
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Studies on other steroid transforming enzymes have helped in the understanding of the 

nature of the enzyme system involved in CSCC. Initial work in the 1950s indicated that 

21 hydroxylation in adrenal microsomes is reversibly inhibited by carbon monoxide 

(Ryan and Engel 1957). The finding that a pigment of unknown function in liver 

microsomes reversibly binds carbon monoxide (CO) with the resulting complex having 

an absorption at 450 nanometers (nm) initiated subsequent studies on 21p-hydroxylase 

and llp-hydroxylase (Garfinkel 1957, Klingenberg 1958). Both these enzyme systems 

were subsequently found to have this characteristic absorption at 450 nm (Bstabrook, 

Cooper and Rosenthal 1963; Harding, Wong, Nelson 1964; Harding, Wilson, Wong and 

Nelson 1965). As the pigment involved in binding carbon monoxide in these enzymes 

was found to be a haemoprotein it was called cytochrome P-450 (Omura and Sato 

1962). Purification of the 11 p-hy droxy lase enzyme system in mitochondria showed that 

it was composed of three fractions, a flavoprotein (adrenodoxin reductase), a non iron- 

haem protein (adrenodoxin) and a fraction consisting of cytochrome P-450 (Omura, 

Sato, Coope, Rosenthal and Estabrook 1965). These researchers suggested that electron 

pairs could pass through an electron transport chain comprised of the flavoprotein and 

non-haem iron protein to cytochrome P-450. Studies on bovine adrenal cortex 

implicated the involvement of P-450 in CSCC (Simpson and Boyd 1966; Simpson and 

Boyd 1967). The enzyme requires both molecular oxygen and reduced 

diphosphopyridine nucleotide (NADPH) (Halkerston et al 1959; Constantopoulos and 

Tchen 1960; Constantopoulos and Tchen 1961; Halkerston et al 1961), with three 

molecules of oxygen and NADPH being consumed in the production of pregnenolone 

from cholesterol (Shikita and Hall 1974). Kinetic and electrophoretic studies indicate 

that the enzyme system involves one catalytic site (Duque, Morisaki and Ikekawa 

1978).

A role for this cytochrome P-450 (P-450cscc) in mitochondrial fractions in human term 

placental tissue has been confirmed (Meigs and Ryan 1967; Meigs and Ryan 1968; 

Mason and Boyd 1971), and the gene structure encoding the enzyme has been isolated
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(Morohashi, Sogawa, Omura and Fujii-Kuriyama 1987). Figure 1.3.2 illustrates 

mitochondrial electron flow to cytochrome P-450cscc.

cholesterol "I

P450
Fe^

NADPH

NADP+

P450 + cholesterol 
Fe^

oxidised 
FP-

reduced 
F̂ ^

"FP-
reduced

Fê  
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ADRENODOXIN ADRENODOXIN 
REDUCTASE

P450 + cholesterol 
Fe2+

. P450-cholesterol 
Fê 'Oz

P450-cholesterol
Fe^02

pregnenolone + side chain + H ,0

FP-flavoprotein

Figure 1.3.2. Mitochondrial electron flow to cytochrome P-450cscc. The cytochrome interacts with 

cholesterol and then reduction of cytochrome P-450 (Fe^+) to cytochrome P-450 (Fê "̂ ) occurs. Molecular 

oxygen then interacts with this reduced form of cytochrome resulting in hydroxylation of cholesterol and 

subsequent cleavage of the side chain.

The end product of CSCC is pregnenolone and its conversion to progesterone (figure 

1.3.3) has been demonstrated in studies with the human placenta (Pearlman et al 1953; 

Sobrevilla, Hagerman and Villee 1964). Pregnenolone is a delta 5-3 p-hy droxy steroid 

and in order for it to be converted to the delta 4-3 ketosteroid progesterone the C3 

hydroxyl group must be oxidised to form a ketone. The enzyme responsible for this was 

first demonstrated in various endocrine tissues, including rat placenta, in the early 

1950s (Samuels, Helmreich, Lasater and Reich 1951). It requires diphosphopyridine 

nucleotide (NAD-b) to accept hydrogen produced by oxidation (Samuels et al 1951). 

Conversion of the hydroxysteroid to its respective ketone also involves the migration of 

a double bond from C5 to C4. The overall conversion thus involves oxidation and 

isomerization. The enzyme complex is called 3 P-hy droxy steroid deydrogenase 

isomerase (3p-HSD). It was first localized in bovine adrenal cells, and later in the 

human placenta, in the microsomes and mitochondria (Beyer and Samuels 1956; Koide 

and Torres 1965). It is present in both cytotrophoblast cells and syncytiotrophoblast 

cells of the human placenta (Mason, Ushijima, Doody, Nagai, Naville, Head, Milewich,
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Rainey and Ralph 1993). The placenta expresses a type of 3p-HSD (type I) that is 

different from the type expressed in the adrenals and gonads (type II) (Rhéaume, 

Lachance, Zhao, Breton, Dumont, de Launoit, Trudel, Luu-The, Simard and Labrie 

1991).

Purification, kinetic studies of the dehydrogenase and isomerase substrates and 

molecular analysis of the amino acid sequencing in human placenta have determined 

that 3p-HSD comprises a single protein which can metabolise all the main substrates 

(Thomas, Berko, Faustino, Myers and Strickier 1988; Luu-The, Lachance, Labrie, 

Leblanc, Thomas, Strickier and Labrie 1989; Luu-The, Takahashi and Labrie 1990; 

Lorence Murry, Trant, Mason 1990). This is also the case in other mammalian tissue 

(Ishii-Ohba, Inano and Tamaoki 1987; Rutherford, Chen and Shivley 1991) unlike that 

of Pseudom onas bacteria in which the dehydrogenase and isomerase activities are 

carried out by separate enzymes (Talalay and Wang 1955). The enzyme in the 

microsomes and mitochondria appears to be identical (Thomas, Myers and Strickier 

1989). Although some researchers using affinity labeling experiments suggest that both 

the activity of 3p-hydroxy-5-ene steroid dehydrogenase and the isomerase are expressed 

at a single catalytic site in human placental microsomes (Thomas et al 1988; S trickier 

and Thomas 1993), others have suggested that the isomerase reaction occurs at a 

separate site (Luu-The, Takahashi, de Launoit, Dumont, Lachance and Labrie 1991).
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HOHO
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Figure 1.3.3. Conversion of cholesterol to progesterone.
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1.4. The biosynthesis of oestrogens by the placenta

The production of progesterone by the placenta does not require any fetal involvement 

but this is not the case with the synthesis of the oestrogens. In the late fifties and early 

sixties it was recognized that although the placenta was involved in oestrogen formation 

the levels were lower in women pregnant with anencephalic fetuses which led to the 

conclusion that the fetus also played an important role in oestrogen formation (Fransden 

and Stakeman 1961).

The initial steps in the transformation of pregnenolone to oestrogens are its sulphation 

and 17a-hy droxy lation by 17a-hy droxy lase. There appears to be no human placental 

17a-hydroxylase activity and these reactions are carried out in the fetal adrenals 

(Sobrevilla et al 1964; Solomon 1966; Jaffe, Pérez-Palacios and Lamont 1968). A 

microsomal 17,20 lysase enzyme catalyses the conversion of 17a-hydroxypregnenolone 

sulphate to dehydro-epiandosteronesulphate (DHEAS) which has been shown to be the 

principal precursor for oestrone and oestradiol synthesis by the placenta (Siiteri and 

MacDonald 1963; Baulieu and Dray 1963; Boité et al 1964a; Warren and Timberlake 

1964; MacDonald and Siiteri 1965; Siiteri and MacDonald 1966). The conversion of 

pregnenolone to DHEAS is illustrated in figure 1.4.1.
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DEHYDROEPIANDROSTERONE
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Figure 1.4.1. The conversion of pregnenolone to DHEAS.

In order that the placenta can utilise DHEAS, the sulphate moiety must be removed by 

the sulphatase enzyme which is abundant in placental tissue but absent in fetal tissue

46



(Pulkkinen 1961; Warren and Timberlake 1962). Immunohistochemical studies have 

localized sulphatase to the endoplasmic recticulum of the syncytiotrophoblast of the 

placenta (Salido, Yen, Barajas and Shapiro 1990). Dehydroepiandrosterone is then 

converted to androstenedione, an obligatory intermediate in oestrone and oestradiol 

production (Ryan 1959a) although oestradiol may also be produced to a lesser extent 

directly through testosterone (Anderson and Lieberman 1980) (figure 1.4.2.). In the 

human approximately half of the oestrone and oestradiol produced by the placenta at 

term is derived from maternal adrenal DHEAS and the rest from fetal DHEAS 

(MacDonald and Siiteri 1966).
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Figure 1.4.2. The conversion of DHEAS to oestrone and oestradiol.

OESTRADIOL

Research in the 1960s established that oestriol synthesis occurs via a separate pathway 

to that of the other oestrogens (Baulieu and Dray 1963; Siiteri et al 1963; Boite et al 

1964a; Boite et al 1964b). The main pathway for oestriol production in the placenta is
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through 16a-hydroxyDHEAS formed in the fetal liver (MacDonald and Siiteri 1965; 

MacDonald and Siiteri 1966; Kirschner, Wiqvist and Diczfalusy 1966; Easterling, 

Simmer, Dignam, Frankland and Naftolin 1966; Siiteri and MacDonald 1966). The 

sulphate moiety is removed by the placenta where it is converted mainly to 16a- 

hydroxyandrostenedione and 16a-hydroxyoestrone (Ryan 1959b; Magendantz and 

Ryan 1964; Numazawa, Osada and Osawa 1985; Yoshida and Osawa 1991) before 

finally being converted to oestriol (figure 1.4.3).
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Figure 1.4.3. The conversion of DHEAS to oestriol.
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The final conversion of the precursors to the oestrogens is called aromatization. In the 

late fifties Ryan (1958) first described the ability of placental microsomal fractions to 

aromatize androstenedione to oestrone with the utilization of NADPH and oxygen and 

it was suggested that a cytochrome was involved. Further studies on placental 

microsomes showed that the aromatization of androstenedione was insensitive to carbon 

monoxide, whilst other research suggested that the aromatization of 1 6 a -  

hydroxytestosterone was reversibly inhibited by CO, casting some doubt on whether the 

enzyme system involved a cytochrome or whether more than one enzyme system 

existed (Meigs and Ryan 1968; Meigs and Ryan 1971; Thompson and Siiteri 1974a; 

Thompson and Siiteri 1974b; Canick and Ryan 1975; Canick and Ryan 1976). However 

experiments using inhibitors against cytochrome P-450, an antibody raised against 

porcine hepatic NADPH P-450 reductase and carbon monoxide inhibition have 

confirmed that the enzyme complex is a cytochrome (P-450arom) with the electron 

transport chain consisting of a NADPH reductase (Thompson and Sitteri 1973; 

Thompson and Siiteri 1974a; Siiteri and Thompson 1975; Thompson and Siiteri 1976).

Three moles of oxygen and three moles of NADPH are required for each mole of 

oestrogen that is formed indicating that three hydroxylations are required to convert 

androstenedione to oestrone (Meigs and Ryan 1971; Thompson and Siiteri 1974a; 

Thompson and Siiteri 1975). The first hydroxylation occurs at the C19 position 

producing 19-hydroxy androstenedione (Meyer 1955) which in turn is sequentially 

hydroxylated to produce 19-dihydroxyandrostenedione or its dehydrated form 19- 

oxoandrostenedione (Akhtar and Skinner 1968; Skinner and Akhtar 1969). The last step 

appears to be non-enzymatic with the intermediate being unstable (Townsley and 

Brodie 1968; Hosoda and Fishman 1974; Cole and Robinson 1988).

In 1975 Canick and Ryan postulated that separate sites or even distinct species of 

cytochrome P-450 aromatase are involved in the synthesis of oestradiol and oestriol in 

the human placenta. These researchers concluded from further studies that there are two 

populations of aromatase present in placental microsomes, one capable of binding
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androstenedione only and the other both 16a-hydroxytestosterone and androstenedione 

(Canick and Ryan 1976). Two placental aromatase populations, a major form capable of 

binding androstendione only and a minor (less abundant form) capable of binding both 

androstendione and 16a-hydroxyandrostenedione have since been isolated (Osawa, 

Tochigi, Higashiyama, Yarborough, Nakamura and Yamamoto 1982). A unique, new 

form of aromatase present within placental microsomes has more recently been reported 

by Harada (1988) which is different to those previously purified and described (Osawa 

et al 1982; Mendelson, Wright, Evans, Porter and Simpson 1985; Nakajin, Shinoda and 

Hall 1986; Tan and Muto 1986). Other researchers have investigated the kinetics of the 

aromatization of androstenedione, testosterone, 15a- and 16a-hydroxylated androgens 

and concluded that 16a-hydroxylated androgens are metabolised by a seperate 

aromatase (Cantineau, Kremers, De Graeve, Giellen and Lambotte 1982). A purified 

form of aromatase that failed to aromatise 16a-hydroxyandrostenedione or 16a- 

hydroxytestosterone but was capable of catalysing both androstenedione and 

testosterone has been reported, suggesting that multiple enzymes are involved in 

aromatization (Hagerman 1987). A molecular study suggested the existence of two 

genes for human placental aromatase but the reserchers did not ascertain whether both 

were actually expressed (Chen, Besman, Sparkes, Zollman, Klisak, Mohandas, Hall and 

Shively 1988). Other investigators, however, have concluded that a single enzyme is 

responsible for all the aromatase reactions (Kelly, Judd and Stolee 1977; Kellis and 

Vickery 1987; Vickery and Kellis 1987). A number of reports suggest that aromatase is 

encoded by a single gene and a single polypeptide chain capable of aromatizing 

androstenedione, testosterone and 16a-hydroxyandrostenedione has been isolated 

(Corbin, Graham-Lorence, McPhaul, Mason, Mendelson and Simpson 1988; Means, 

Mahendroo, Corbin, Mathis, Powell, Mendelson and Simpson 1989; Harada, Yamada, 

Saito, Kibe, Dohmae and Takagi 1990).

In addition to the lack of consensus regarding the number enzymes involved in 

aromatization there is disagreement as to whether the hydroxylations of 

androstenedione take place at a single catalytic site or at separate sites on one enzyme
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(Kelly et al 1977; Fishman and Goto 1981). The aromatization of 16a-hydroxy 

androgens has been suggested to take place at a different catalytic site to that of 

androstenedione but more recent research indicates that although the sites are separate 

they are interactively linked (Canick and Ryan 1976; Purohit and Oakey 1989).

Although most research has been on microsomal aromatase the enzyme system has also 

been located to the mitochondria (Shaw, Dalziel and O'Donnell 1969; Renwick and 

Oliver 1973). Immunocytochemical studies have localized microsomal aromatase to the 

endolplasmic recticulum in fractions of human placentae, in particular to the 

syncytiotrophoblast, but have failed to localise mitochondrial aromatase suggesting that 

this might be due to contamination from the microsomes (Fournet-Dulguerov, 

MacLusky, Leranth, Todd, Mendleson, Simpson and Naftolin 1987; Kitawaki, Inoue, 

Tamura, Yamamoto, Noguchi, Osawa and Okada 1992).

The inter-conversion of oestrone-oestradiol and androstenedione-testosterone is carried 

out by 17(3-hydroxysteroid deydrogenase (17|3-HSD). An enzyme system capable of 

this reaction was first described in human tissue (including placental tissue) by Ryan 

and Engel (1953). It was later partially purified and characterised in human placental 

tissue by Langer and Engel (1958). To date a number of enzymes have been cloned for 

this system (Andersson, Geissler, Patel and Wu 1995). Kinetic and molecular studies 

indicated that four of these forms of 17p-HSD exist in human placental tissue 

(Blomquist, Linderman and Hakanson 1985; Blomquist, Linderman and Hakanson 

1987; Adamski, Normand, Iffinders, Monté, Begue, Stehelin, Jungslut, de Launoit 

1995; Luu-The et al unpublished observations cited by Labrie, Luu-The, Lin, Labrie, 

Simard, Breton, Bélange 1997). Most research has centered on two types 17|3-HSD 

located in the cytosol and microsomes. Purification of a cytosolic 17(3-HSD showed that 

two mRNAs coded for this enzyme which originated from one gene (Luu-The, Labrie, 

Zhao, Couët, Lachance, Simard, Leblanc, Côte, Berube, Gagné and Labrie 1989; Luu- 

The, Labrie, Simard, Lachance, Zhao, Couët, Leblanc and Labrie 1990) whilst more 

recently a gene encoding a microsomal 17p-HSD has been cloned (Wu, Einstein,
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Geissler, Chan, Elliston and Anderson 1993). These two forms of 17|3-HSD have been 

designated type I and type II respectively. Type I is present mainly in the cytosol and is 

highly reactive with C l8 steroids such as the oestrogens, oestrone and oestradiol, whilst 

type II, present in microsomes, is highly reactive with both oestradiol and the androgen 

testosterone (Wu et al 1993; Geissler, Davis, Wu, Bradshaw, Patel, Mendonca, Elliston, 

Wilson, Russell and Andersson 1994; Beaudoin, Blomquist and Tremblay 1995; 

Blomquist, Bealka, Hensleigh and Tagatz 1994). Type II 17p-HSD also has 20a-HSD 

activity (Blomquist et al 1985; Wu et al 1993; Andersson et al 1995). The human 

placental type I enzyme utilizes both NAD(H) and NADP(H) whilst type II activity 

appears to be preferentially oxidative and utilises NAD+ as the cofactor (Warren and 

Crist 1967; Wu et al 1993; Andersson et al 1995). Although two other forms of 17(3- 

HSD, nominated type IV and type V, have been found to be present in the human 

placenta, their importance in the production of the oestrogens in this tissue is unknown, 

with relatively little type IV being found in comparison to the type I and type II 

enzymes. The abundance of the type V enzyme in human placental tissue has not yet 

been reported (Adamski et al 1995). It is thought that the type IV enzyme may convert 

E2 to El as its amino acid structure is similar to that of the porcine type IV 17p-HSD 

enzyme which preferentially catalyses this reaction in the oxidative direction (Leenders, 

Adamski, Husen, Thole and Jungblut 1994; Adamski et al 1995). The type V enzyme 

however, has a higher affinity for andostendione, catalysing the reaction in the reductive 

direction towards testosterone (Labrie et al 1997).

Although placental tissue has been shown to have high levels of both type I and II 17|3- 

HSD activity (Martel, Rhéaume, Takahashi, Trudel, Couet, Luu-The, Simard and 

Labrie 1992; Wu et al 1993) type II has been shown to decrease over time in placental 

cell cultures (Beaudoin et al 1995) suggesting that the mechanisms regulating their 

expression are different.

The microsomal type II enzyme has been located to the syncytiotrophoblast in first 

trimester and term placentae and although it was also found to be transiently expressed
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by cytotrophoblast cells from placentae of 10-13 weeks gestation it was not located to 

these particular cell types at term (Foumet-Dulguerov et al 1987; Dupont, Labrie, Luu- 

The and Pelletier 1991). More recently mRNA for the type I enzyme has been isolated 

in both freshly isolated cytotrophoblast cells and syncytiotrophoblast cells, but very 

little type II activity has been found to be present in isolated cytotrophoblast cells and it 

was undetectable in syncytiotrophoblast cells cultured from term placentae (Beaudoin et 

al 1995).
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1.5. The regulation of steroid synthesis

1.5.1. Corticotrophin releasing factor and adrenocorticotrophic hormone and 

placental steroid synthesis

While it has been established that mother, fetus and placenta act co-operatively to 

produce steroid hormones it is still uncertain how parturition is regulated in the human. 

Corticotrophin releasing factor (CRF) has been suggested to be important in the timing 

of parturition. It is a neuropeptide produced by the hypothalamus and is widely 

recognised to modulate the production of adrenocorticotrophic hormone (ACTH) from 

the anterior pituitary. It was at first detected only during the third trimester of pregnant 

women (Sasaki, Liotta, Luckey, Margioris, Suda , Krieger 1984) but with the advent of 

more sensitive assays has since been found to rise in maternal serum throughout human 

gestation, being at its highest in the weeks preceeding labour (Goland, Wardlow, Stark, 

Brown and Frantz 1986; Sasaski, Shinkawa, Margioris, Liotta, Sato, Murakami, Go, 

Shimizu, Hanew and Yoshinaga 1987; Laatikainen, Virtanen, Raisanen and Salminen 

1987; Campbell, Linton, Wolfe, Scraggs, Jones and Lowry 1987). It has also been 

found to be elevated several weeks before delivery in pregnancies associated with 

preterm labour (Campbell et al 1987; Warren, Patrick and Goland 1992). Levels of CRF 

decrease within a few hours of delivery suggesting a placental origin for this hormone 

(Sasaski et al 1984; Goland et al 1986; Sasaski et al 1987; Laatikainen, et al 1987; 

Okamoto, Takagi, Makino, S ata, Iwata, Nishino, Mitsuda, Sugita, Otsuki and Tanizawa 

1989).

Immunoreactive and bioactive CRF bave been shown to be present in human placentae, 

as well as mRNA for CRF, which has been shown to increase more than twenty fold 

five weeks before the onset of labour (Shibasaki, Odagiri, Shizume and Ling 1982; 

Petraglia, Sawchenko, Rivier and Vale 1987; Sasaki et al 1987; Grino, Chrousos and 

Margioris 1987; Sasaki, Tempst, Liotta, Margioris, Hood, Kent, Sato, Shinkawa, 

Yoshinaga and Krieger 1988; Frim, Emanuel, Robinson, Smas, Adler and Majzoub
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1988; Saijonmaa, Laatikainen and Wahlstrom 1988; Riley, Walton, Herlick and Challis 

1991; Cooper, Brooks, Miller and Greer 1994).

The immunohistochemical localization of a CRF like peptide in human placentae first 

reported it to be present in the cytotrophoblast cells of tissue obtained at term but more 

recent studies have localized it mainly to the syncytiotrophoblast of term placentae 

(Petraglia et al 1987; Riley et al 1991 ; Cooper et al 1994; Warren and Silverman 1995).

This peptide has also been reported to stimulate the production of ACTH from 

placental tissue (Petraglia et al 1987). The bioactivity of CRF is regulated by a CRF 

binding protein (Orth and Mount 1987). Messenger RNA for this binding protein has 

been isolated in human placental tissue and has been located in the syncytiotrophoblast 

(Potter, Behan, Fischer, Linton, Lowry and Vale 1991; Petraglia, Potter, Cameron, 

Sutton, Behan, Woods, Sawchenko, Lowry and Vale 1993). It has been suggested that 

the levels of this binding protein are sufficient to inactivate most of the CRF present in 

pregnancy which would account for the fact that maternal ACTH levels are only 

slightly raised above those of non pregnant women (Rees, Burke, Chard, Evans and 

Letchworth 1975). However recent studies indicate that CRF binding protein levels fall 

a few weeks before term, thereby increasing the amount of bioavailable CRF prior to 

delivery (Linton, Perkins, Woods, Bken, Wolfe, Behan, Potter, Vale and Lowry 1993; 

McLean, Bisits, Davis, Woods, Lowry and Smith 1995). There is some evidence that 

CRF has a role to play in parturition. The contractile response of the myometrium to 

oxytocin can be primed and potentiated by CRF (Quatero and Fry 1989). The synthesis 

of prostaglandins has also been shown to be enhanced by CRF (Jones and Challis 1989; 

Jones and Challis 1990) and whilst CRF mRNA transcription is stimulated by 

glucocorticoids in placental primary cell culture (Robinson, Emanuel, Frim and 

Majzoub 1988), immunoreactive CRF has been shown to be inhibited by progesterone 

in mixed placental cell preparations (Jones, Brooks and Challis 1989). Thus it is thought 

that local withdrawal of progesterone might increase CRF, which could affect placental 

ACTH production and fetal adrenal ACTH production.
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Adrenocorticotrophic hormone is synthesised in the human pituitary as part of a large 

precursor pro-opiomelanocortin (POMC) of approximately 35,000 daltons (Miller, 

Johnson, Baxter and Roberts 1980) which is post translationally processed into smaller 

peptides one of which is ACTH. Adrenocorticotrophic hormone like compounds in 

human placental tissue were reported as early as the 1950s and it was suggested and 

later confirmed that the site of production was the placenta itself (Jailer and Knowlton 

1950; Assali and Hamermesz 1954; Allen, Cook, Kendall and McGilvra 1973; 

Miyakawa and Maeyama 1974). Further studies show that both immunassayable and 

bioassayable ACTH are present in placental tissue (Genazzani, Fraioli, Hurlimann, 

Fioretti and Felber 1975; Rees et al 1975; Liotta, Osathanondh, Ryan and Krieger

1977). Bioactive ACTH has been shown to be released by perifused human placenta 

from both early and late gestation (Waddell and Burton 1993) and it has been 

immunohistochemically localized to the syncytiotrophoblasts and intermediate 

trophoblast cells (Al-Timimi and Fox 1986). The peptides produced by the placenta 

from the processing of placental POMC include a melanocyte stimulating hormone and 

a  and P lipotropins and p endorphins (Nakai, Nakao, Oki and Imura 1978; Odigari, 

Sherrell, Mount, Nicholoson and Orth 1979; Liotta and Krieger 1980; Laatikainen, 

Saijonmaa, Salminen and Whalstrom 1987; Margioris, Grino, Protos, Gold and 

Chrousos 1988).

For some time it was recognised that ACTH modulated adrenal steroid synthesis at the 

step involving the conversion of cholesterol to progesterone (Stone and Hechter 1954) 

and later the site of action of ACTH was restricted to that part of the pathway involving 

the conversion of cholesterol to pregnenolone (Halkerston, Eichhom and Hechter 1961, 

Karaboyas and Koritz 1965). Various sources of cholesterol exist for pregnenolone 

synthesis. Within the cell itself there is thought to be a small pool of metabolically 

active cholesterol which is rapidly turning over. Input into this pool comes from three 

sources, endogenous synthesis of cholesterol, hydrolysis of cholesterol esters and 

uptake by the cell of LDL. In order to assert its stimulatory effects and increase 

pregnenolone synthesis, ACTH theoretically could effect any or all of these to increase
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the availability of free cholesterol to the enzyme system present within the 

mitochondria.

Kinetic studies, light absorption and electron paramagnetic resonance spectroscopy 

show that the effect of ACTH is to stimulate an increase in the amount of substrate 

bound to P-450cscc and that it is the rate limiting step in the reaction. This acute effect 

of ACTH occurs within seconds or minutes and increases the amount of cholesterol 

available to the mitochondria (Koritz and Kumar 1970; Simpson, Jefcoate, Brownie and 

Boyd 1972; Brownie, Simpson, Jefcoate, Boyd, Orme-Johnson and Beinert 1972; 

Brownie, Alfano, Jefcoate, Orme-Johnson, Beinert and Simpson 1973; Alfano, 

Brownie, Orme-Johnson and Beinert 1973; Jefcoate, Simpson and Boyd 1974; Jefcoate 

and Orme-Johnson 1975; Williams-Smith, Simpson, Barlow and Morrison 1976; Koritz 

and Moustafa 1976; Simpson, McCarthy and Peterson 1978).

The finding that the administration of ACTH to rats resulted in cholesterol ester stores 

in the adrenals being depleted, suggested that ACTH was stimulating the conversion of 

esterified stores into free cholesterol (Davis and Garren 1966). It had already been 

shown that incubation of beef adrenal slices with ACTH resulted in an increase in the 

levels of cyclic 3', 5'-adenosine monophosphate (cAMP) in adrenal cells (Haynes 1958) 

which suggested a role for this compound in the ACTH stimulation of pregnenolone 

synthesis. It is now known that binding of ACTH to specific receptors on the plasma 

membrane stimulates cAMP which then activates protein kinase (Gill and Garren 1969; 

Gill and Garren 1971). Cholesterol ester hydrolase exists in an inactive 

dephosphorylated form and protein kinase phosphorylates it to the active form thereby 

increasing production of free cholesterol (Trzeciak and Boyd 1973; Naghshineh, 

Treadwell, Gallo and Vahouny 1974; Beckett and Boyd 1977; Naghshineh, Treadwell, 

Gallo and Vahouny 1978). Thus in the adrenal the initial response to ACTH is 

utilization of cholesterol from a readily available pool which in turn is replenished by 

hydrolysis of cholesterol ester stores.
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The stimulatory action of ACTH in vivo was found to be blocked by the protein 

inhibitors puromycin and cycloheximide (Garren, Ney and Davis 1965). This and a later 

study which showed that when the protein inhibitor cycloheximide was injected into 

hypophysectomized rats it prevented an increase in pregnenolone synthesis despite an 

increase in the conversion of esterified cholesterol to free cholesterol suggested that this 

protein facilitates the availability of cholesterol to the enzyme system (Davis and 

Garren 1966). Further studies showed that a protein was involved with the actual 

association or binding of cholesterol to the enzyme system. When ACTH was injected 

with cycloheximide into rats the mitochondria obtained from these animals contained a 

greater amount of cholesterol than those of controls but the actual synthesis of 

pregnenolone was similar to controls (Arthur, Mason and Boyd 1976; Simpson et al

1978). More recent experiments indicate that a protein is involved in the actual transfer 

of cholesterol from the outer to the inner mitcochondrial membrane (Privalle, Crivallo 

and Jefcoate 1983). A protein has now been characterized in the adrenals which is 

involved in the mobilization of cholesterol from lipid stores to P-450cscc and is known 

as the steroidogenic acute regulatory protein (StAR protein) (Clark, Wells, King and 

Stocco 1994; Stocco and Clark 1997). However, this StAR protein does not appear to 

be present in the human placenta (Sugawara, Holt, Driscoll, Strauss, Lin, Miller, 

Patterson, Clancy, Hart, Clark and Stocco 1995).

In addition to the hydrolysis of esterified cholesterol this pool of cholesterol may also 

be supplied to the pool via endogenous synthesis of cholesterol and cellular uptake of 

serum LDL. Experiments on human fibroblasts showed that the enzyme activities 

responsible for cholesterol ester formation (acylCoAxholesterol acyltransferase 

(ACAT)) and that of de novo cholesterol synthesis (3-hydroxy-3-methylglutaryl 

coenzyme A reductase (HMG CoA reductase)) are regulated in a reciprocal manner 

with the uptake of LDL suppressing de novo synthesis of cholesterol but stimulating 

cholesterol acyltransferase activity (Brown, Dana and Goldstein 1973; Brown, Dana 

and Goldstein 1974; Goldstein, Dana and Brown 1974; Brown, Faust and Goldstein 

1975; Brown, Dana and Goldstein 1975). This suppression of HMG CoA and
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stimulation of ACAT also occurs in bovine adrenals and mouse adrenals (Faust, 

Goldstein and Brown 1977; Kovanen, Faust, Brown and Joseph 1979). Lipoprotein 

endocytosis into cells is stimulated by ACTH which increases the number of lipoprotein 

receptors on the cell surface (Kovanen et al 1979). It has been proposed that if ACTH 

stimulus is prolonged in the adrenal that cholesterol ester hydrolysis ceases, de novo 

synthesis declines and the output of cholesterol from the pool is balanced by an uptake 

of plasma lipoproteins due to an increase in the number of LDL receptors. If the supply 

of LDL to the cell is normal and the number of LDL receptors adequate then the cellular 

content of cholesterol esters is dependent upon the steroid output. If the stimulus ceases 

then the lipoprotein uptake would exceed steroid output and the number of LDL 

receptors would be suppressed (Brown, Kovanen and Goldstein 1979).

The production of pregnenolone and the action of ACTH in the adrenal is shown in 

figure 1.5.1.

ACTH
LDL ATP

1  CAMP 

inactive protein kinase

+ve
inactive esterase active protein kinase+ lysosomes

active esterase-ve
labile protein factor

cholesterol esters

^holesterol+ free fatty a c i^
Choiesterol+ free fatty acids+ amino acids

steroidsP-450

cholesterol
cholesterol esters

mitochondria+ve,
ACAT

free cholesterol poolHMG CoA —
de novo synthesis

HMG CoA, 3-hydoxy-3-methylglutaryl Co A; ACAT, acyl-CoA-cholesterol acyltransferase.

Figure 1.5.1. The regulation of cholesterol metabolism in the adrenal.
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The acute action of ACTH on pregnenolone production however, does not appear to 

take place in the placenta. Uptake and utilization of LDL by human choriocarcinoma 

cells occurs in a similar manner to that of fibroblast cells (Simpson, Porter, Milewich, 

Bilheimer and MacDonald 1978; Simpson, Bilheimer, MacDonald and Porter 1979). 

The de novo production of cholesterol in the placenta however is low, which has been 

postulated to be due to suppression of HMG CoA reductase by LDL and the 

concentration of progesterone present within trophoblast cells also appears to inhibit 

ACAT activity preventing the sequestration of cholesterol in its storage form as esters 

(Simpson, Porter et al 1978; Simpson and Burkhart 1980a; Simpson and Burkhart 

1980b; Winkel et al 1981). The main source of substrate for cytochrome P-450cscc is 

thought to be in the the form of a continuous supply of maternal LDL (Simpson, Porter 

et al 1978; Simpson, Bilheimer et al 1979; Winkel, Snyder et al 1980). The rate of LDL 

uptake and hence progesterone synthesis is thought to be determined by the number of 

LDL receptors on the cell surface and the number of trophoblast cells (Simpson, 

Bilheimer et al 1979; Simpson and Burkhart 1980b; Winkel, Gilmore et al 1980; Winkel 

et al 1981; Simpson and MacDonald 1981).

The production of pregnenolone and its regulation by progesterone in the human 
trophoblast can be seen in figure 1.5.2.
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Figure 1.5.2. The regulation of cholesterol metabolism in the placental trophoblast.

The acute response to ACTH in the adrenal is followed by a long term stimulatory 

effect. The initial findings that the stimulatory effect of ACTH correlated with an 

increase in the cytochrome concentration of the mitochondria indicated that the long 

term stimulatory effect of ACTH might be due to increased synthesis of the enzymes 

involved in steroid production (Kimura 1969; Purvis, Canick, Mason, Estabrook and 

McCarthy 1973). Further studies support this hypothesis with ACTH stimulation 

resulting in an increase in these steroid producing enzymes including cytochrome P- 

450cscc and 3p-HSD (Dubois, Simpson, Kramer and Waterman 1981; Funkenstein, 

McCarthy, Dus, Simpson and Waterman 1983; Kramer, Rainey, Funkenstein, Dee, 

Simpson and Waterman, 1984; Zuber, Simpson, Hall and Waterman 1985; Mason, 

Ushijima, Doody, Nagai, Naville, Head, Milewich, Rainey and Ralph 1993). Molecular 

analysis suggests that the binding of ACTH to its receptor initiates an increase in 

transcriptional activity in the nucleus providing further evidence that the chronic effect 

of ACTH on the P-450cscc is to increase the quantity of enzyme available to transform
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cholesterol (Dubois et al 1981; John, John, Ashley, MacDonald, Simpson and 

Waterman 1984; John, John, Boggaram, Simpson and Waterman 1986).

Most studies on the action of ACTH on pregnenolone formation have been on rat and 

bovine adrenals. The role of ACTH in the human placenta remains uncertain. Although 

it has been proposed that an increase in ACTH is not essential for the initiation of 

labour in humans (Winters, Oliver, Colston, MacDonald and Porter 1974) it has been 

shown to stimulate production of oestradiol and progesterone in human placental 

minces suggesting that it may have a modulatory role (Barnea, Lavy, Fakih and 

Dechemey 1986).

1.5.2. Insulin like growth factors and placental steroid synthesis

During the last trimester of pregnancy normal women show insulin resistance with 

enhanced insulin production (Lind, Billewicz and Brown 1973) and this increased 

production of insulin parallels the rising levels of plasma progesterone and oestradiol 

(Johansson 1969; De Hertogh, Thomas, Bietlot, Vanderheyden and Ferin 1975; Frienkel 

1980), suggesting a possible relationship between steroid synthesis in pregnancy and 

insulin production (Friekel 1980). Compounds that mimicked the biological actions of 

insulin, with growth promoting activités, but which failed to cross react with an 

antibody to insulin were extracted from human blood in 1963 (Froesch, Burgi, 

Ramseier and Bally and Labhart 1963). Subsequently two polypeptides that have a 

structural homology to insulin were isolated and named insulin-like growth factors I 

and II (IGF-I and IGF-II), (Rinderknecht and Humbel 1976a; Rinderknecht and Humbel 

1976b; Rinderknecht and Humbel 1978a; Rinderknecht and Humbel 1978b).

Levels of IGF-I increase in maternal serum during pregnancy and are highest during the 

third trimester (Furlanetto, Underwood, Van Wyk and Handwerger 1978; Wilson, 

Bennett, Adamson, Nagashima, DeNatale, Hintz and Rosenfeld 1982; Gargosky,
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Moyse, Walton, Owens, Wallace, Robinson and Owens 1990; Gaufriez, Frankenne, 

Englert, Golstein, Cantraine, Hennen and Copinischi 1990). As levels of both IGF-I and 

IGF-II decline rapidly after delivery there is some indication that the placenta produces 

these peptides. (Furlanetto et al 1978; Wilson et al 1982; Hall, Enberg, Hellem, Lundin, 

Ottosson-Seeberger, Sara, Trygstad and Ofverholm 1984). Both these insulin like 

growth factors have been found to be synthesized in the placenta along with specific 

high affinity binding proteins to which they usually form a complex before being 

cleared from the circulation (Mills, D'Ercole, Underwood and Ilan 1986; Shen, Wang, 

Nelson, Jansen and Ilan 1986; Shen, Daimon, Wang, Jansen and Ilian 1988; Fant, 

Munro and Moses 1986; Voutilainen and Miller 1987; Fant, Munro and Moses 1986; 

Zhou and Bondy 1992; Giudice, Dsupin, Jin, Vu and Hoffman 1993; Han, Bassett, 

Walton and Challis 1996). Two types of receptors for these insulin-like growth factors 

have also been localized in placental tissue (Marshall, Underwood, Voina, Foushee and 

Van Wyk 1974; Bhaumick, Bala and Hollenberg 1981; Massague and Czech 1982; 

Bhaumick and Bala 1984; Fant et al 1986; Casella, Han, D'Ercole Svoboda and Van- 

Wyk 1986; LeBon, Jacobs, Cuatrecasas, Kathuria and Fujita-Yamaguchi 1986; Fujita- 

Yamaguchi, LeBon, Tsubokawa, Henzel, Kathuria, Koyal and Ramachandran 1986; 

Giudice et al 1993).

Various studies indicate that IGF-I can act to enhance steroidogenic activity. Incubating 

cultured swine granulosa cells with IGF-I stimulates synthesis of P-450cscc (Veldhuis, 

Rodgers, Dee and Simpson 1986). The conversion of DHEAS to oestradiol was shown 

to be inhibited by IGF-I in human choriocarcinoma cells (Ritvos 1988), whilst 

aromatase activity has been shown to be stimulated by IGF-I in human granulosa and 

human granulosa luteal cells (Erickson, Garzo and Magoffin 1989). The stimulatory 

action of ACTH on steroidogenesis also appears to be be potentiated by IGF-I. The 

stimulation of cortisol by ACTH is enhanced by IGF-I in cultured bovine adrenal cells 

(Penhoat, Jaillard and Saez 1989) and ACTH stimulation of 17a, 21a and l ip  

hydroxylase activities were augmented by pretreatment with IGF-I in human 

adrenocortical cells (Pham-Huu-Trung, Villette, Bogyo, Duclos, Fiet and Binoux 1991).
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This potentiating action on ACTH has also been observed with insulin-like growth 

factor II which has been shown to increase the abundance of ACTH stimulated mRNAs 

for P-450cscc and 3p-HSD and 17a hydroxylase/17, 20 lysase, in human fetal adrenal 

cell cultures (Mesiano and Jaffe 1993). A role for these growth factors in human 

placental steroid synthesis has also been suggested. Experiments on purified human 

term placental cytotrophoblasts indicate that aromatase activity is inhibited and that 

cytochrome P-450cscc and 3p-HSD are stimulated by insulin, IGF-I and IGF-II (Nestler 

and Williams 1987; Nestler 1989; Nestler 1990).

1.6. Reasons for undertaking the present study

There is a scarcity of information regarding CRF and any modulatory role that it may 

have in placental steroidogenesis and although ACTH has a role in adrenal 

steroidogenesis little is known of its possible role in placental steroid production. Other 

reports have suggested that IGF-I and IGF-II have a role to play in steroid regulation in 

numerous endocrine tissues including the human placenta. In view of these findings and 

the lack of information concerning CRF and ACTH action on human placental tissue it 

was decided to design a series of experiments to explore any effects that CRF, ACTH 

and the insulin-like growth factors might have on steroid production by the human 

placenta.

The studies so far on placental tissue explants or purified cells have concentrated on 

progesterone, oestradiol or "oestrogens" (total oestrone and oestradiol) but there appear 

to be no reports of the effects of various peptides on the synthesis of oestriol. In view of 

the rise in the oestrioliprogesterone ratio in women during the last few weeks of 

pregnancy it was decided that factors modulating oestriol production should also be 

included in this study.
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1.7. Design of the present study

The study is divided into two parts. The initial work involved looking at possible effects 

of CRF, ACTH IGF-I on the production of oestrone, oestradiol, oestriol and 

progesterone in placental tissue minces. The aim was to study the pattern of production 

at timed intervals during the first three hours of incubation and then at twenty four 

hours, to see whether any of these peptides had an effect on the production of these 

steroids. In this way it would be possible to determine whether or not any short term 

effects are apparent in the first few hours of incubation and if so whether they were still 

apparent at 24 hours.

The second part of the study was designed so that for purposes of comparison, placental 

tissue explants and isolated purified placental cytotrophoblast cells were utilized from 

the same placenta providing two separate models for studying any effects that CRF, 

ACTH, IGF-I and IGF-II might have on oestrone, oestradiol, oestriol and progesterone 

production.

It was hoped that these two experimental models would further the understanding of 

how progesterone and oestrogen production is modulated in the human placenta so 

providing a clearer understanding of the regulation of these hormones and their possible 

roles in the process of parturition.
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Materials and Methods

2.1. Materials

2.1.1. Chemicals, reagents and buffers

Adrenocorticotrophic hormone (ACTH), 1-39 from porcine pituitary, Sigma 

16a-hydroxyandrostenedione (16a-OHA), (4-Androstene-16a-oI-3, 17-dione), Sigma 

16a-hydroxytestosterone (16a-OHT), (4-Androstene-16a, 17(3-diol-3-one), Sigma 

16a-hydroxyoestrone (16a-OHEl), (3,16a-Dihydroxy-l, 3, 5 ( 10)-estratrien-17-one), 

Sigma

16a-hydroxydehydroepiandrosterone (16a-OHDHEA), (5-Androstene-3p, 16a-diol- 

17-one), Sigma

Androstenedione (A), (4-Androstene-3, 17-dione), Sigma 

Bovine calf serum. Sigma 

Cholesterol, (5-cholesten-3p-ol), Sigma

25-hydroxycholesterol (25-OHcholesterol), (5-cholesten3-3p, 25-diol), Sigma 

Corticotrophin releasing factor (CRF), human and rat ; synthetic. Sigma 

Dehydroepiandrosterone (DHEA), (5-Androsten-3p-ol- 17-one), Sigma 

Dehydroepiandrosterone-3-sulphate (DHEAS), (5-Androsten-3p-ol-17-one-sulphate). 

Sigma

Deoxyribonuclease (DNase ), type IV, Sigma

Dulbecco's modified Eagles medium without L-glutamine, with sodium pyruvate, 

(DMEM), Sigma 

Eosin Y, Sigma 

Gentamycin sulphate. Sigma

Hanks balanced salt solutions, without magnesium and calcium (HESS), Sigma 

Harris's haematoxylin, BDH Laboratory Supplies
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Hydrochloric acid, BDH Laboratory Supplies 

Hepes buffer (pH 1.2-1 A), Sigma 

L-glutamine, Imperial Laboratories Europe Ltd.

Low density lipoprotein (LDL), Sigma

P-Nicotinamide adenine dinucleotide tetrasodium salt (NADPH), Grade 3, Sigma 

Percoll, Sigma

Pregnenolone (5-pregnen-3p-ol-20-one), Sigma

Recombinant insulin-like growth factor-I (IGF-I), human (N-met"), Bachem 

Recombinant insulin-like growth factor-II (IGF-II), human (N-mef), Bachem 

2.5% Trypsin in HBBS without phenol red. Imperial Laboratories 

Sodium hydrogen carbonate (NaHCOg), BDH Laboratory Supplies 

Trypan blue solution (0.4%), Sigma

2.1.2. Laboratory equipment

Baffled flasks, polycarbonate (250 ml), BDH Laboratory Supplies

CO2  incubator

Flasks, flat bottomed (25 ml)

Gelair flow cabinet 

Meat grinder 

Metal sieve

12 ml sterile centrifuge tubes

24 well tissue culture plates, 16 mm diameter. Costar 

Polypropylene centrifugation tubes (50 ml), Greiner 

Polypropylene tubes, 12 by 75 mm
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2.1.3. Kit for protein estimation

Protein assay kit (Sigma) containing the following reagents; 

Aqueous solution of sodium deoxycholate (DOC), 1.5 mg/ml 

Aqueous solution of trichloroacetic acid (TCA), 72% w/v 

Bovine serum albumin, Fraction V 

Folin and Ciocalteu's phenol reagent 

Modified Lowry reagent

2.1.4. Assay kit for human chorionic gonadotrophin (HCG) determination

HCG production was determined in medium collected from isolated placental cell 

cultures using a radioisotopic assay kit containing avidin coated beads, iodinated HCG 

standards, controls and wash solution. The kit was purchased from Nichols Institute 

Diagnostics Ltd.

2.1.5. Assay kit for human placental lactogen (HPL) determination

HPL was assayed in medium collected from isolated placental cell cultures using a kit 

purchased from Diagnostics Products Corporation containing HPL antibody coated 

tubes, iodinated HPL, standards and wash solution.

2.1.6. Assay kit for ACTH determination

ACTH was assayed in medium collected from isolated cell preparations using a kit 

containing avidin coated beads, iodinated ACTH, standards, controls and wash 

solution. The kit was purchased from Nichols Institute Diagnostics Ltd.

68



2.1.7. Steroid assays.

Progesterone (?)

Oestrone (El)

Oestradiol (E2)

Oestriol (E3)

The above steroids were obtained from Steraloids Ltd.

1 mg/ml stock solutions of each steroid in ethanol were diluted 1 in 1000 to obtain 

solutions of 1 iLig/ml and further diluted 1 in 1000 to give 1 ng/ml.

2.1.8. Solvents

Ethanol, AnalaR Grade, BDH Laboratory Supplies.

Diethyl ether, AnalaR Grade, BDH Laboratory Supplies.

2.1.9. Solutions 

Assay Buffer

Di-sodium hydrogen orthophosphate (Na2HP0 4 ), 8.74 g

BDH Laboratory Supplies

Sodium dihydrogen orthophosphate (Na2HP04.2H20), Fisons 6.00 g

Sodium chloride (NaCl), BDH Laboratory Supplies 9.00 g

Gelatine, Fisons 1.00 g

Sodium azide (NaN3), BDH Laboratory Supplies 1.00 g

All were dissolved in 1 litre of deionized water.
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Carbonate Solution

Sodium carbonate, anhydrous (Na2 C0 3 ) 152.0 g

Sodium hydrogen carbonate (NaHCOg) 245.0 g

Dissolved in 1 litre of deionized water.

2.1.10. Radioactivity

1, 2, 6,-^H progesterone, Amersham.

2, 4, 6,7 -^H oestrone, Amersham.

2, 4, 6, 7 -^H oestradiol, Amersham.

2, 4, 6, 9 -^H oestriol, Amersham and DuPont NEN, DuPont (U.K.) Ltd. 

Oestriol iodinated 125, Amerlex-m-Lifescreen Ltd.

2.1.11. Antisera

Sheep anti progesterone antibody, Bioclin 

Sheep anti oestrone antibody, Steranti Research Ltd.

Sheep anti 17p-oestradiol, Bioclin

Anti-oestriol-6(cmo)-bovine serum albumin-antiseru, Steranti

Theses were all supplied freeze dried and reconstituted in assay buffer in 100 pi 

aliquots and stored at -40°C until required.
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2.1.12. Dextran coated charcoal solution

Activated charcoal, BDH Ltd. 0.50 g

Dextran grade C, BDH Ltd. 0.05 g

Suspended in 100 ml of assay buffer.

2.2.13. Scintillation counting

Ultima Gold Liquid Scintillation cocktail, Packard. 

Packard Tri-Carb 4000 series Liquid Scintillation counter.

2.1.14. Glassware

Extraction tubes 1 by 16 cm.

Reaction tubes 1 by 12 cm.

All glassware was rinsed and soaked in Decon 75 for at least 12 hours. It was then 

rinsed and left to soak in 1 % hydrochloric acid for at least 1 hour before being rinsed 

6 times in deionized water and dried for a minimum of 2 hours at 300°C.

2.1.15. Pipettes

Finn pipettes with disposable plastic tips 

Glass pipettes

Sterile 3 ml plastic Pasteur pipettes
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2.1.16. Addresses of product suppliers

Amersham, Little Chalfont, Buckinghamshire, England

Amerlex-m-Lifescreen Ltd., Watford, England

Bachem, Saxon Biochemicals, California

Bioclin, Cardiff, Wales

BDH Laboratory Supplies, Poole, England

Costar, Cambridge, England

Diagnostics Products Corporation, Glyn Rhonwy, Caernarfon, Gwynedd, Wales 

DuPont NEN, DuPont (U.K.) Ltd., Stevenage, Hertfordshire, England 

Fisons, Loughborough, Leicestershire, England

Imperial Laboratories Europe Ltd, West Portway, Andover, Hampshire, England

Nichols Institute Diagnostics Ltd., Newport, Essex, England

Packard, 9371 Groningen, Holland

Steranti Research Ltd., St Albans, Hertforshire, England

Steroloids, Croydon, Surrey, England
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Methods

2.2. Preparation of placental tissue and isolation of cytotrophoblast cells

2.2.1. Collection and processing of placental tissue

Ethical permission for this study was granted by the joint UCH/UCL committee on the 

ethics of clinical investigations.

Placentae were collected immediately after delivery from women who had gone into 

spontaneous labour.

2.2.2. Incubation of placental tissue explants

Cotyledons were dissected and rinsed in 0.5 1 ice cold saline before being minced and 

collected in a fine metal sieve. The tissue was then rinsed thoroughly in 1.5 1 of ice 

cold saline, weighed and re suspended in ice-cold DMEM. Several aliquots were taken 

to obtain baseline values. Approximately 300 mg of tissue was transferred to each 

flask which contained 3 ml of DMEM with one of the following reagents.

CRF (100 nmol/1)

ACTH (10 nmol/1)

IGF-I (20 ng/ml)

IGF-I ( 400 ng/ml)

IGF-II (20 ng/ml)

IGF-II ( 400 ng/ml)

NADPH (1 mmol/1)
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A total of six replicate flasks were prepared for each experiment with each reagent. As 

preliminary experiments showed that NADPH enhanced production of some of the 

steroids a series of experiments containing the above reagents with/without NADPH 

was conducted.

The flasks were incubated at 37°C in 5% carbon dioxide for a total period of 24 hours. 

At fixed time intervals 110 pi aliquots were taken and frozen at -40°C until the 

respective radioimmunoassays were carried out.

At the end of the experiment the tissue was centrifuged 1200 RCF for 10 minutes and 

any supernatant aspirated off. This procedure was repeated twice more with the 

addition of 10 ml of saline in order to remove any remaining culture medium. The 

pellet was then frozen at -40°C until protein estimation could be performed.

2.2.3. Isolation of cytotrophoblast cells

The isolation of cytotrophoblast cells was performed using the method of Kliman, 

Nestler, Sermasi, Sanger and Strauss (1986).

Fragments of cotyledons were dissected from the maternal side of the placenta and 

rinsed in 500 ml of ice cold saline. The tissue was then placed in a sieve, cut into 

small pieces with scissors and then rinsed in 1 1 of ice cold saline. Between 60 g and 

80 g of villus tissue was collected in this way, divided and transferred to two 250 ml 

baffled flasks containing 150 ml HBBS, 0.125% trypsin solution, and 30 mg DNase 

(1600-1700 Kunitz units/mg solid. One Kunitz is defined as that amount of enzyme 

which produces a change in absorbancy at a wavelength of 260 nm of 0.001 per min , 

per ml, at pH 5.0 and at 25°C, using DNA as a substrate) which had previously been 

warmed at 37°C. The flasks were then placed in a preheated water bath at 37°C and 

shaken at 180 strokes per minute for 30 minutes. Each flask was then placed at an
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angle in the flow cabinet so that the tissue could settle and the supernatant 

(approximately 100 ml) could be collected. A further 100 ml HBSS, 0.125% trypsin 

solution and 20 mg DNase were then added to each flask and incubated for a further 

30 minutes. After the incubatory period was complete the supernatant (approximately 

100 ml) was once again removed and 75 ml warmed HBSS, 0.125% trypsin solution 

and 15 mg DNase were added to the tissue. The flasks were then incubated for a final 

30 minute period. At the end of the final incubation as much supernatant as possible 

was removed without taking up any of the tissue.

After each successive incubatory period the supernatant which had been removed was 

layered over 1.5 ml bovine calf serum in four 50 ml centrifuge tubes and spun at 1000 

RCF for ten minutes. The supernatant was discarded and the pellets were resuspended 

in 1ml DMEM containing 25 mM Hepes by sucking up and down with a sterile plastic 

Pasteur pipette. All pellets were pooled in a 50 ml tube. Once all the incubations were 

complete and the cells resuspended they were divided between two 50 ml centrifuge 

tubes which were filled with DMEM and spun at 1000 RCF for 10 minutes. The 

supernatant was discarded and the pellets were each resuspended in 6 ml DMEM. 

Approximately 3 ml of cell suspension was then layered onto four respective 

gradients. The gradients were made by layering the stock solutions given in table

2.2.3.
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Percoll
concentration ( % )

Percoll (ml) Water (ml) lOx HBSS (ml) Volume 
in each 1

70 13.125 3.750 1.875 2.00

60 6.000 3.000 1.000 2.00

55 5.500 3.500 1.000 4.00

50 5.000 4.000 1.000 2.00

45 4.500 4.500 1.000 2.00

40 4.000 5.000 1.000 2.00

35 3.500 3.500 1.000 2.00

30 6.000 12.000 2.000 2.00

20 2.000 7.000 1.000 2.00

10 1.000 8.000 1.000 3.00

Table 2.2.3. The volumes of reagents taken to obtain the Percoll gradient used to isolate 

cytotrophoblast cells.

The tubes were then centrifuged at 1200 RCF for 30 minutes. The solution above the 

35% band was removed before the bands containing the cytotrophoblast cells (35% - 

55%) were pipetted off and transferred to two 50 ml tubes. The tubes were filled with 

DMEM and shaken vigorously before spinning at 1000 RCF for 10 minutes. The 

resulting pellets were each resuspended in 1 ml of DMEM and pooled.

2.2.4. Morphology and the estimation of count and viability of isolated cells

A small volume of cell suspension was removed from the cell pool and transferred to 

several slides so that smears could be made and then allowed to air dry. The cells were 

stained using the following procedure.

The slides were;

a) immersed in Harris's haematoxylin for one minute and rinsed with deionized water,

b) immersed in acid alcohol (containing 30 parts 99.5% ethanol, 10 parts distilled 

water and 2 parts concentrated hydrochloric acid) for 15 seconds and rinsed with 

deionized water,
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c) immersed in 2% sodium bicarbonate and rinsed with deionized water,

d) stained in 0.5% eosin Y solution for 10 seconds and rinsed in deionized water.

The slides were allowed to air dry before examination under high power oil 

immersion.

In order to determine the count and viablity an equal volume of cell suspension was 

added to an equal volume of trypan blue, vortexed and counted on a haemocytometer 

so that the percentage viability of the cell suspension was recorded at the same time as 

the count.

Estimation of contamination with granulocyes, using the method of Yam, Li and 

Crosby (1971), was kindly performed by Dr Ian Addison.

Cell preparations were incubated as described in section 2.2.6. and isolated cells were 

also incubated with 20% calf serum at 37®C and 5% CO2 for up to 96 hours to assess 

steroid production, as well as the production of HCG, HPL and ACTH, of these cell 

preparations in two placentae.

2.2.5. Precursors

Preliminary experiments indicated that the cytotrophoblast cells produced very little 

steroids unless appropriate substrate precursors were present. Cell preparations from 

two placentae were incubated for 24 hours with several precursors. Isolated cells were 

incubated with either DHEAS, DHEA, A and T at a concentration of 1 pmol/1 to 

assess E l and E2 production. In order to assess E3 production cells were incubated 

with either 16a-OHDHEA, 16a-0HA, 16a-0HT or 16a-OHEl at a concentration of 

1 p.mol/1. The production of P by isolated cytotrophoblast cells incubated with either 

cholesterol (5|imol/l), 25-OHcholesterol (5|imol/l), LDL (1.5 mg/ml) or pregnenolone
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( 1 |imol/l) was also measured. The precursors chosen to assess aromatase activity in 

cytotrophoblast cells were A and 16a-OHA. Due to the low levels of P production by 

cell preparations incubated with either cholesterol, 25-OHcholesterol or LDL, 

pregnenolone was chosen as the precursor for P formation.

Preliminary pilot studies were performed to assess the effects of the different 

precursors on each steroid. All precursors were added individually and in combination 

to isolated cell preparations from each placenta. On the basis of these preliminary 

experiments it was decided to add the precursors separately rather than in 

combination.

2.2.6. Cell and tissue incubates

Cell preparations obtained from each placenta were plated into 1 ml of DMEM 

containing 4 mmol/1 glutamine, 50 )Lig/ml gentamycin sulphate and the appropriate 

steroid precursor with or without one of the following:

CRF (100 nmol/1)

ACTH (10 nmol/1)

IGF-I (20 ng/ml)

IGF-I (400 ng/ml)

IGF-II (20 ng/ml)

IGF-II (400 ng/ml).

A minimum of 100,000 viable cells were plated per well. Baseline levels were 

obtained by plating out 3 wells which were immediately placed in the freezer at 

-40®C, for each separate experiment. A further 6 wells containing cell preparations 

from each individual placenta were used for each separate experiment. For purposes 

of comparison tissue minces were also prepared from three of the placentae from
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which the cytotrophoblast cells were also isolated. Approximately 200 mg portions of 

these minces were transferred to wells containing 2 ml of the same buffer solutions 

used for the cell incubates. The culture dishes were placed in a humidified incubator at 

37°C and 5% CO2 for 24 hours. At the end of this period the culture dishes containing 

the cell preparations were frozen at -40°C. An aliquot was taken from any wells 

containing tissue which was also frozen at -40°C. Tissue from each well was then 

transferred to a labelled 12 ml conical centrifuge tube and the well was rinsed twice 

with saline. These saline rinses were added to the tube and the tissue was then washed 

in exactly the same way as described in section 2.2.2 and frozen at -40®C until the 

protein content was analysed.

2.3. Protein estimation

The kit used for the estimation of protein content was purchased from Sigma and was 

based on a procedure of Lowry modified by Peterson (1977). Lowry reagent solution 

and Folin and Ciocalteu's working solution were made up with deionized water in 

accordance with the dilution information provided with the kit.

Duplicate standards were prepared by diluting BSA with deionized water to a volume 

of 1ml so that the final concentrations were 50, 100, 200, 300 and 400 |ag/ml. Blank 

tubes contained 1 ml water. All placental pellets and controls were diluted with 1 ml 

water before 100 |il of DOC solution was added to every assay tube. The tubes were 

vortexed and left to stand at room temperature prior to the addition of 100 |il TCA 

solution then vortexed once again before centrifugation at 1000 RCF for 10 minutes. 

The supernatant was aspirated off and 1ml Lowry reagent solution was added to the 

blanks and standards. To tubes containing plasma or placental protein a total of 10 ml 

Lowry reagent solution was added. The tubes were then placed on a rotary mixer and 

the protein was allowed to dissolve over 48 hours.
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After all the protein was visibly dissolved an appropriate volume of the placental 

protein solution (50 |xl - 200 jil) was added to duplicate tubes and made up to 1 ml 

with Lowry reagent solution. The tubes were then separated into appropriately sized 

batches containing a blank, duplicate standards, controls and samples.

All assay tubes were then diluted with 1 ml water, vortexed and allowed to stand at 

room temperature for 20 minutes. Each tube was then vortexed and 500 |xl of Folin 

and Ciocalteu's working solution was added whilst the solutions were being mixed. 

The colour was allowed to develop for 30 minutes. The blank and a standard or 

sample were then transferred to two respective plastic 3 ml cuvettes and the 

absorbance was measured at 750 nm on a spectrophotometer. All readings were 

completed within twenty minutes.

A calibration curve was then plotted of absorbance of the standards versus their 

concentrations and the unknown protein concentrations determined from this.

The intra-assay variability was determined by calculating the variation between 

duplicates of 50 different samples taken from 20 different assays using the formula 

described in section 2.6.5 and was found to be 4.7%. The inter-assay variation was 

calculated from the control values obtained from 20 different assays and was 6.1%.

2.4. Assays for steroids produced by tissue incubates

P, E2 and E3 levels were measured in all placental preparations. Due to the small 

volume taken at each time point it was not always possible to measure E l levels.

All assays contained two controls. The samples from one time period were always 

assayed on the same day with equal numbers of the different conditions being assayed 

in the same batch.
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2.4.1. Assay for P produced by tissue incubates

A standard curve containing triplicate concentrations of 0, 31.8, 63.6, 127.2, 254.4,

508.7, and 1017.5 pmol/1 P was prepared by pipetting out the required volumes of 

stock solution into glass test tubes and drying down at 40°C with an air pump. After 

all the ethanol had evaporated 400 pi of assay buffer was pipetted into each tube and 

the tubes were vortexed for 5 minutes.

An appropriate volume of the frozen aliquot was pipetted into glass test tubes and the 

total volume made up to 500 pi with assay buffer. The tubes were vortexed and 

duplicate aliquots transferred to labelled test tubes and the volume made up to 400 pi 

with assay buffer. Four tubes containing only buffer solution (and precursors when 

present) were also included in the assay along with two tubes to show non-specific 

binding. Tritiated P (100 pi containing 10,000 counts/minute (cpm)) and 100 pi 

antiserum were pipetted into all tubes except those designated to non-specific binding 

where 100 pi assay buffer was substituted for the antiserum. The tubes were vortexed 

for a few seconds and incubated in a water bath at 37°C for one hour. The tubes were 

then incubated overnight at 4°C.

The following day the tubes were placed in ice-water at 0°C for one hour. A solution 

of charcoal coated dextran was prepared and mixed continually with a magnetic stirrer 

in an ice-water bath at 0°C for 30 minutes before use. The charcoal suspension was 

then added (200 pi) to batches of 16 tubes which were quickly vortexed. This 

procedure was repeated until all the tubes contained charcoal. To reduce assay drift 

charcoal was added to the standard curve when approximately half the tubes in the 

assay had had charcoal added to them. The assay was then left at 0°C for twenty 

minutes before centrifuging at 2000 RCF for 10 minutes at 0°C. After centrifugation 

the tubes were transferred back to the iced water and 500 pi of the supernatant was 

pipetted into scintillation vials containing 1.75 ml scintillation cocktail in the same
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order that the charcoal had been added. The vials were then shaken vigorously and 

were each counted for 5 minutes on a liquid scintillation counter.

The amount of steroid present was then computed by logit/log transformation. The 

steroid concentration present in each well was then expressed as the amount secreted 

per mg protein present in the flask. As aliquots were taken off at various time intervals 

and the same volume replaced with fresh medium the results were adjusted to take 

into account the dilution effect of replacing the medium in the flasks.

2.4.2. Assay for E l produced by tissue incubates

A standard curve containing triplicate concentrations of 0, 18.5, 37.0, 74.0, 147.9,

295.9, 591.7 and 1183.4 pmol/1 El was prepared as previously described for the P 

assay in section 2.4.1.

The E l assay was carried out in the same way as the P assay except that appropriate 

duplicate aliquots were pipetted into appropriately labelled test tubes and the volume 

made up to 400 pi before addition of tritiated E l (100 pi containing 10,000 cpm) and 

100 pi E l antiserum.

2.4.3. Assay for E2 produced by tissue incubates

A standard curve containing triplicate concentrations of 0, 18.2, 36.4, 72.9, 145.8,

291.6, 583.1 and 1166.2 pmol/1 E2 was prepared as previously described for the P 

assay in section 2.4.1.

The E2 assay was carried out in the same way as the P assay except that appropriate 

duplicate aliquots were pipetted into appropriately labelled test tubes and the volume
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made up to 400 |xl before addition of tritiated E2 (100 pi containing 10,000 cpm) and 

100 pi E2 antiserum.

2.4.4. Assay for E3 produced by tissue incubates

A standard curve containing triplicate concentrations of 0, 17.3, 34.7, 69.4, 138.7,

277.4, 554.8 and 1109.6 pmol/1 E3 was prepared as previously described for the P 

assay in section 2.4.1.

The E3 assay was carried out in the same way as the P assay but using tritiated E3 

(100 pi containing 10,000 cpm) and 100 pi E3 antiserum. During the course of this 

study tritiated E3 no longer became available and iodinated E3 was used in its place. 

The assays were performed in an identical manner with the exception that 100 pi of 

iodinated E3 contained 7,000 disintegrations/minute and after addition of the charcoal 

solution the aliquots were transferred to labelled plastic tubes and not scintillation 

vials. These tubes were then counted for 3 minutes on a RIAStar gamma counter, and 

the results were computed by logit/log transformation.

2.5. Assays for steroids produced by isolated cytotrophoblast cells

2.5.1. Assay for P produced by isolated cytotrophoblast cell incubates

Triplicate tubes were prepared for a standard curve containing 0, 31.8, 63.6, 127.2,

254.4, 508.7, and 1017.5 pmol/1 P and dried down at 40°C using a stream of air 

produced by a pump.
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Appropriate volumes were taken from the culture wells and pipetted into glass 

extraction tubes with the addition of a suitable volume of carbonate buffer (1:1 

carbonate buffer to sample) and diethyl ether was then added to the tubes such that the 

ratio of diethyl ether to sample was at least 20:1. A series of tubes was prepared which 

contained only the carbonate buffer solution and diethyl ether. All tubes were 

vortexed for 10 minutes and frozen at -20°C for 20 minutes. The supernatant was then 

carefully decanted into an appropriately labelled test tube and dried down at 40^C 

with an air pump. The supernatants of those tubes containing only carbonate buffer 

and diethyl ether were decanted into blank tubes. Five hundred |xl assay buffer was 

added to all tubes before vortexing for 5 minutes. Appropriate aliquots were taken 

from each sample tube. The same volume was transferred from the blank tubes to 

those containing the standards. The volumes in all the tubes were then standardized to 

400 jj.1 with assay buffer. The tubes containing the standards were then vortexed for 5 

minutes and the radioactivity and antiserum were added to all the tubes as described 

previously in section 2.4.1.

2.5.2. Assay for E l produced by isolated cytotrophoblast cell incubates

Duplicate volumes were taken from the wells and transferred to labelled glass 

extraction tubes and diethyl ether was added in a ratio of at least 20:1 (diethyl ether to 

sample). A number of tubes containing just diethyl ether were also included. All tubes 

were vortexed for 10 minutes and frozen at -20°C for 20 minutes. The supernatant 

was then decanted into labelled glass reaction tubes. Those tubes containing diethyl 

ether alone were decanted into tubes containing the E l standards, in triplicate, at 

concentrations of 18.5, 37.0, 74.0, 147.9, 295.9, 591.7, 1183.4 pmol/1. After drying 

down at 40°C 400 |il buffer was added and the tubes were vortexed for 5 minutes. The 

assay procedure was then carried out as previously described in section 2.4.2.
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2.5.3. Assay for £2  produced by isolated cytotrophoblast cell incubates

Duplicate volumes of the samples were pipetted into labelled extraction tubes and 

carbonate buffer was added in a ratio of 2:1 (buffer to sample). Diethyl ether was 

added in a ratio of at least 20:1 (diethyl ether to sample). The tubes were vortexed for 

10 minutes, frozen at -20°C for 20 minutes and then the supernatants were decanted 

into the respective tubes. The tubes containing only carbonate buffer and diethyl ether 

were decanted into the tubes containing the E2 standards, in triplicate, at 

concentrations of 0, 18.2, 36.4, 72.9, 145.8, 291.6, 583.1 and 1166.2 pmol/1. All the 

tubes were dried down and 400 pi assay buffer added. All the tubes were vortexed for 

5 minutes and the assay procedure was identical to that described for the tissue 

incubates in section 2.4.3.

2.5.4. Assay for E3 produced by isolated cytotrophoblast cell incubates

Appropriate volumes of samples were pipetted into labelled glass extraction tubes and 

carbonate buffer was added in a ratio of at least 2:1 (buffer to sample). Certain tubes 

to be decanted into the tubes containing the standards contained only carbonate buffer. 

Diethyl ether was added in ratio of at least 20:1 (diethyl ether to sample) and the tubes 

were vortexed for 10 minutes before being frozen at -20°C for 20 minutes. The 

supernatants were decanted into the respective tubes. The tubes containing only 

carbonate buffer and diethyl ether were decanted into the tubes containing E3 

standards, in triplicate, at concentrations of 0, 17.3, 34.7, 69.4, 138.7, 277.4, 554.8 and 

1109.6 pmol/1. All the tubes were dried down and 400 pi assay buffer added. The 

supernatants were decanted, dried down and 400 pi assay buffer was added. All the 

tubes were vortexed for 5 minutes and the assay procedure was then identical to that 

described for the tissue incubates in section 2.4.4.
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2.5.5. Assay for HCG produced by isolated cytotrophoblast cells

The assay was performed in accordance with the information provided with the kit 

and all reagents were made up accordingly. All standards, controls and samples were 

assayed in duplicate.

The standard curve (concentrations 0 ,5 , 10, 25, 100 and 300 mlU/ml) was prepared 

by pipetting 50 pi of the standards provided to the bottom of polypropylene tubes. 

Two controls provided with the kit were included in each assay. Appropriate aliquots 

were taken from the medium in which the cells had been incubated and pipetted into 

labelled polypropylene tubes. The volume was then made up to 50 pi with DMEM. 

Iodinated antiboby solution (200 pi) was added to each standard, sample and control. 

The tubes were vortexed and an avidin coated bead was added to each. The tubes were 

then incubated at room temperature for one hour. During the incubatory period the 

tubes were shaken by hand 100 times every 15 minutes. After incubation the beads 

were washed twice in a solution provided with the kit and the liquid aspirated from 

each tube. The tubes were counted on a gamma counter for one minute and the 

amount of HCG was computed by logit/log transformation.

2.5.6. Assay for HPL produced by isolated cytotrophoblast cells

The assay was performed in accordance with the information provided with the kit 

and all reagents were made up accordingly. All standards and samples were assayed in 

duplicate.

A standard curve was prepared by pipetting 50 pi of the standards provided 

(concentrations 0.0, 0.025, 0.1, 0.25, 0.5 and 1.0 pg/ml) to the bottom of duplicate 

polypropylene tubes. Aliquots (50 pi) of the medium in which the cells had been 

incubated were pipetted into appropriately labelled tubes. Iodinated HPL (1 ml) was

86



added to each standard and sample. The tubes were vortexed and incubated at 37°C 

for three hours. The liquid from each tube was decanted simultaneously. Each tube 

was counted on a gamma counter for one minute and the amount of HPL was 

computed by logit/log transformation.

2.5.7. Assay for ACTH produced by isolated cytotrophoblast cells

The assay was performed in accordance with the information provided with the kit 

and all reagents were made up accordingly. All standards, samples and controls were 

assayed in duplicate.

A standard curve was prepared by pipetting (200 )il) of the standards provided 

(concentrations 0, 5, 14, 50, 140, 465 and 1400 pg/ml) to the bottom of labelled 

polypropylene tubes. Two controls provided with the kit were also pipetted in the 

same manner. Aliquots (200 pi) were taken from the medium in which the cells had 

been incubated and pipetted into labelled polypropylene tubes. Iodinated ACTH 

antiboby solution (100 pi) was added to each standard, sample and control. The tubes 

were vortexed and an avidin coated bead was added to each. The tubes were then 

incubated at room temperature for twenty hours. After incubation the beads were 

washed twice in a solution provided with the kit and the liquid aspirated from each 

tube. The tubes were counted on a gamma counter for one minute and the amount of 

ACTH was computed by logit/log transformation.
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2.6. Validation of the hormone assays

2.6.1. Recoveries for assays involving extraction procedures

The percentage recovery for each steroid was calculated by adding 10,000 cpm of the 

dissolved tritiated steroid in 100 ml DMEM to twenty glass extraction tubes. The 

mixture was then extracted and assayed in the same way as for the sample aliqouts 

taken for assay as previously described. The following values are the percentage 

recovery obtained for each steroid. All results were adjusted to allow for the 

percentage recovery.

P 94%

El 90%

E2 95%

E3 90%

2.6.2. Blank values for the steroid assays

There were no significant differences between the values measured in tubes 

containing DMEM alone and the zero tubes of the standard curve.

2.6.3 Sensitivities of the steroid assays

The lower limits of sensitivity of each of the assays per tube have already been 

established previously in the laboratory and are as follows;

El 10 fmol.

E2 10 fmol
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E3 12 fmol 

P 14 fmol

2.6.4. Precision of the steroid assays

Precision profiles are used to asses the performance of an assay throughout a 

concentration range and determine the working range for the assay. The acceptable 

range for this study was that the % CV should be less than 10%.

A precision profile was determined for E2. A series of tubes was prepared containing 

different concentrations of the steroid in 50 |il buffer and 100 |il carbonate buffer. The 

number of tubes for each concentration was 5 and the known concentrations were 9.1,

18.2, 36.4, 72.9, 145.8, 291.6, 583.1, 801.8, 1020.4 and 1166.2 pmol/1 for E2. An 

additional number of tubes containing the assay buffer and carbonate buffer were also 

prepared for the standard curve. A total of 4.4 ml of diethyl ether was added to each 

tube. All tubes were vortexed for 10 minutes. The tubes were then placed at -20°C for 

20 minutes until the aqueous layer had frozen.The supernatant was then carefully 

decanted into an appropriately labelled test tube. Those tubes prepared for the 

standard curve were decanted into tubes containing known amounts of E2 dissolved in 

ethanol which consisted of the following duplicate concentrations; 0, 31.8, 63.6,

127.2, 254.4, 508.7, 1017.5 pmol/1. All the tubes were dried down at 40®C using an air 

stream supplied by an air pump.

After the tubes had dried 400 |il of assay buffer was pipetted into each tube and the 

tubes were vortexed for two minutes. Tritiated E2 (10,000 cpm) and antiserum (100 

|il) were added to each tube with the exception of two tubes into which assay buffer 

(100 |il) was added in place of the antiserum. These two tubes were used to determine 

the non-specific binding of the assay. All the tubes were vortexed and placed in a 

water bath at 37°C for 1 hour. The assay was then kept at 4°C overnight and placed in
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iced water the following morning for 1 hour. A charcoal solution was kept mixing in 

an ice-water bath during this period and 2 0 0  jil of this mixture was added to each tube. 

The tubes were vortexed and left in ice-water for 20 minutes after which time they 

were centrifuged at 2000 RCF for 10 minutes. 500 |Lil of the supernatant was 

transferred from each tube into a scintillation vial containing 1.75 ml scintillation fluid 

and the vials were shaken thoroughly and then counted on a scintillation counter for 5 

minutes each.

The actual values of the replicates were then computed from the standard curve by 

logit/log transformation. The mean, SD and the % CV were then calculated for each 

set of 5 replicates and a precision profile curve was plotted as shown in figure 2.6.4. 

The working range as determined by the precision profile was 150 to 1100 pmol/1.

30-

%CV
20 -

10- -

500 12500 250 750 1000

E2 concentration pmol/1

Figure 2.6.4. The precision profile curve for E2. The dashed line indicates the acceptable precision and 

defines the working range for the assay. The arrows indicate the working range of the assay.

A similar procedure was undertaken for P with the exception that the volume of assay 

buffer and carbonate buffer added to each tube was 50 |Lil and the volume of diethyl 

ether used for extraction was 2.2 ml. The standard curve for P consisted of the 

following concentrations; 0, 31.8, 63.6, 127.2, 254.4, 508.7, 1017.5 pmol/1 and the 

known concentrations were 15.9, 31.8, 63.6, 127.2, 254.4, 508.7, 699.5, 890.3 and
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1017.5 pmol/1. The working range as determined by the precision profile was 60 to 

700 pmol/1.

These profiles were very similar to precision profiles previously determined in the 

laboratory, and on this basis the previously determined working ranges for the E l and 

E3 assays were used, which were 140 to 1000 pmol/1 and 150 to 900 pmol/1.

The volume of the aliquots taken from the incubation media for the tissue and isolated 

cytotrophoblast cell experiments were chosen so that the values would fall within the 

working range of each standard curve.

2.6.5. The intra-assay and inter-assay coefficient of variation for the steroid

assays

Intra-assay determination was calculated by one of two ways.

Method 1

Intra-assay variability can be assessed by measuring the variation between duplicate 

samples covering the whole range of concentrations obtained from different assays. 

Fifty such duplicates were chosen at random from different assays for each steroid and 

the resulting CV was calculated using the formula

CV =
2

:d
2 n

where d = the percentage difference between duplicates and n = the number of pairs of 

duplicate determinations. Using this method the % CV for each steroid is listed below 

in table 2.6.5a.
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E l

E2

E3 (tritiated) 

E3 (iodinated) 

P

Method 1

72%
5.5%

7.8%

8 .0%

82%

Table 2.6.5.a The % CV of steroid assays in the present study determined by using method 1.

Method 2

Three pools were prepared by mixing the excess DMEM taken from a number of 

tissue explant experiments which contained low, medium and high concentrations of 

each of the steroids. The volumes used for assay were chosen to fall within the range 

defined by the precision profile. Twenty replicates were assayed for each pool and the 

coefficient of variation for each pool was calculated. The values for the % CV are 

given in table 2.6.5b.

E l

E2

E3 (tritiated)

E3 (iodinated)

mean

sd

%CV

mean

sd

%CV

mean

sd

%CV

mean

sd

%CV

mean

sd

% C V

Low pool

165.8

13.4 

12.7%

170.5

17.9

9j%

161.8

16.5 

9^%

165.8

19.5 

8j%

137.7

12.3

11.2%

Method 2 

Medium pool

508.7

63.6

&0 %

622.0

73.2

&5%

447.3 

55.9

8 .0%

454.4 

59.8

7.6%

276.0

333

83%

High pool

805.0 

80.5 

10.0%

853.4

123.7

64%

805.6

115.1 

7.0%

798.9

84.9

9.4

565.7 

43.2 

13.1%

Table 2.6.5.b The % CV of steroid assays in the present study determined by using method 2. The 

number of replicates per pool was 20. The mean values given are in fmoles/tube.
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The inter-assay variability was determined from medium controls (n = 20) used in 

different assays and the % CV obtained for each steroid is listed below in table

2.6.5.C.

assay medium control 

fmol/tube

SD % CV

E l 525 72.9 72%

E2 617 59.3 10.4%

E3 (tritiated) 452 61.1 7.4%

E3 (iodinated) 457 57.1 8.0%

P 272 18.9 14.4%

Table 2.6.5 c The inter-assay variability for each steroid assay.

2.6.6. Cross reactivities of the steroids assayed

Table 2.6.6 gives the percentage cross reaction of various steroids with the four 

antisera used in this study. As the table shows the cross reactivities of the precursors 

used in this study were negligible with the exceptions of those experiments in which 

pregnenolone was used. There was measurable cross reactivity of the progesterone 

antiserum with pregnenolone in these experiments. All assays contained tubes with 

the appropriate concentration of precursor in DMEM. The values for P levels in these 

cases were adjusted by subtracting the levels obtained in these tubes from all other 

tubes in the assay.
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Anti-El
antiserum

Anti-E2
antiserum

Anti-E3
antiserum

Anti-P
antiserum

E l 100 2.2 0.02 nt

E2 0.5 100 1.3 nt

E3 0.1 1.1 100 nt

P <0.01 <0.01 <0.01 100

A 0.02 <0.01 <0.01 nt

DHEA 0.01 0.10 0.10 nt

pregnenolone 1 pmol <0.01 <0.01 <0.01 2.3%

pregnenolone 10 fimol <0.01 <0.01 <0.01 5.4%

pregnenolone 20 pmol <0.01 <0.01 <0.01 7.9%

17-OHP <0.01 <0.01 <0.01 0.3

16a-OHA nt nt <0.2 nt

16a-hydroxyoestrone nt nt <1.0 nt

16a-hydroxytestosterone nt nt <0.2 nt

cortisol <0.01 <0.01 <1.0 0.1

corticosterone nt nt nt 0.8

testosterone <0.01 <0.01 <0.01 <0.01

11 -deoxycorticosterone nt nt nt 0.9

11-deoxy cortisol nt nt nt « 0 .0 1

T able 2.6.6. The percentage cross reactivities of E l, E2, E3 and P antisera with other steroids (nt = not 

tested).

2.6.7. Recoveries of HCG, HPL and ACTH assays

The recoveries for the HCG, HPL and ACTH assays are as described in the 

information provided with the appropriate kits. In all kits sera were spiked with 

known amounts of the respective hormone. The recovery was determined by dividing 

the recovered or observed values by those levels which were expected.

The recovery for HCG ranged from 95.5-107.7% in three spiked serum samples.

The recovery for HPL ranged from 100-110% in six serum samples spiked with 10 

pg/ml HPL.
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The recovery for ACTH ranged from 89-109% in plasma samples with endogenous 

ACTH <1 pg/ml spiked with 18-3 pg/ml ACTH and was 92-100% in samples with 

endogenous levels of 8  pg/ml spiked with 25-50 pg/ml ACTH.

2.6.8. Sensitivities of HCG, HPL and ACTH assays

The sensitivity for each assay is that as described in the information provided with the 

respective kit.

The sensitivity of the HCG assay is defined as the smallest single value which can be 

distingushed from zero at the 95% confidence limit and is 0.5 mlU/ml.

The sensitivity of the HPL assay is defined as the apparent concentration two standard 

deviations below the counts at maximum binding and is 0 . 0 2  |ig/ml.

The sensitivity of the ACTH assay is defined as the smallest single value which can be 

distingushed from zero at the 95% confidence limit and is 1.0 pg/ml.

2.6.9. Precision of HCG, HPL and ACTH assays

The intra-assay variance and inter-assay variance of the HCG, HPL and ACTH assays 

were as defined in the information provided with the kits and are given below.

The intra-assay variance for the HCG assay was calculated from replicate 

determinations on each of two human serum pools (n=20) in a single assay. The intra­

assay % CV for the two serum pools with mean values of 22.4 and 45.6 mlU/ml was 

4.3% and 4.8% respectively. Inter-assay variance was calculated from data obtained 

from different assays on two human serum pools with mean values of 23.8 (n=39) and 

44.6 mlU/ml (n=25), and was 7.6% and 7.5% respectively.
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The intra-assay % CV for the HPL assay was calculated for 20 pairs of tubes in a 

single assay whilst the inter-assay % CV was calculated for each replicate tubes in 20 

different assays. The intra-assay % CV for two serum pools with means of 140 ng/ml 

and 870 ng/ml was 4.7% and 3.3% respectively. The inter-assay % CV for two serum 

pools with means of 160 ng/ml and 940 ng/ml was 8 .6 % and 6.7% respectively.

The intra-assay % CV for the ACTH assay was calculated from replicates of 20 pairs 

of controls in a single assay whilst the inter-assay % CV was calculated from two 

controls assayed 62 times. The intra-assay % CV for a pool with a mean of 35 pg/ml 

was 3.0%. The inter-assay % CV for a serum pool with a mean of 36 pg/ml was 

7.8%.

2.6.10. Cross reactivities of HCG, HPL and ACTH assays

The information provided with the kits details the cross reactivities of HCG, HPL and 

HCG. There was no measurable cross reactivties between any of the hormones HPL, 

HCG or ACTH.

2.7. Statistical analysis of data

Parametric tests are used for statistical analyses when data is normally distributed 

whereas non-parametric tests make no assumption as to the form of data distribution. 

Due to the small numbers used in each experiment in this study it was difficult to 

determine whether the results were normally distributed. On this basis the Mann 

Whitney U test, a non parametric test, was chosen for use in the statstical analysis. 

When comparing means, an independent t test may be used for normally distributed 

data, whereas the Mann Whitney U test may be used as an equivalent non parametric
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test that analyses data according to ranks rather than means. All data were analysed 

using the Quick Statistica 3.0a package for the Apple Macintosh.
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Results

3.1. Preliminary experiments on the validation of the isolated cytotrophoblast cell 

type and the production of hormones hy these isolated cells

3.1.1. Morphology, viability and production of hormones by isolated cell 

preparations

The cells isolated in this study when plated were small, round and mononuclear as seen 

under phase contrast microscopy and after staining with haematoxylin and eosin. When 

cultured without bovine calf serum very few of the cells aggregated and they appeared 

similar in appearance at 24 hours to those plated at the start of the experiment. Cells 

cultured in 20% bovine serum had begun to aggregate by 24 hours and by 96 hours the 

majority of cells had formed syncytia; these cells produced HCG and HPL which had 

risen after incubation for 96 hours (see table 3.1.1). ACTH was also measured and was 

approximately 1-2 pg/100,000 viable cells at both 24 and 96 hours. These ACTH levels 

were not affected by addition of CRF (100 nmol/1 and 1 pmol/l) to the culture medium.

HCG (inIU/100,000 viable cells) HPL (ng/100,000 viable cells)

Experiment 1 Experiment 2 Experiment 1 Experiment 2

24 hours 20.44 ± 1.00 7.35 ± 0.38 381.0 ± 17.52

96 hours 6227.8 ±740.1 271.7 ±60.22 1053.6 ±  33.08 79.46 ± 1.93

Table 3.1.1. Mean ±  SE values for HPL and HCG levels produced by cytotrophoblast cells cultured for 

96 hours in 20% bovine calf serum (~ levels below sensitivity of assay).

Viability of the cytotrophoblast cells obtained from each placenta in this study was 

determined with trypan blue and was found to be more than 90%. Contamination with 

granulocytes of the purified cytotrophoblast cells obtained from three placentae was less 

than 1 0 %.
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3.1.2. Choice of precursors for E l, E2, E3 and P production

Although tissue explants incubated in DMEM alone produced measurable levels of E l, 

E2, E3 and P, isolated cytotrophoblast cell preparations did not produce detectable 

levels of these steroids without the addition of appropriate steroid precursors. A number 

of precursors, DHEA, DHEAS, A and T were added to the cells to assess the production 

of both E l and E2. The production of E l and E2 did not generally appear to be altered 

by the precursor used in the experiment. The precursor chosen for further experiments 

was A as this allows the activity of both aromatase and 17p-HSD to be observed. The 

mean (± SE) values for the levels of El and E2 produced by the cells are given in table 

3.1.2a

Experiment 1 Experiment 2

Precursor E l E2 E l E2

DHEA 161.6 ± 6.96 376.9+ 19.99 44.16 ± 5 .10 163.46 ± 12.37

DHEAS 199.8 ±30.19 416.8 ±38.19 41.44 ± 3 .24 150.34 ± 8.06

A 203.5 ± 14.02 532.7 ± 22.98 41.06 ±  6.36 146.59 ± 15.89

T 181.6 ± 26.26 454.4 ± 25.45 30.72 ±  1.64 127.85 ± 7.90

Table 3.1.2a. Mean ± SE values for E l and E2 levels (pmol/100,000 viable cells/24 hours) produced by 

cytotrophoblast cells isolated from two placentae and incubated for 24 hours with the respective precursor 

at a concentration of 1 pmol/l (number of wells per experiment for each precursor = 4).

Several precursors, 16a-OHDHEA, 16a-OHA, 16a-OHT and 16a-OHEl were chosen 

to assess the production of E3 by cytotrophoblast cells isolated from two placentae and 

incubated for 24 hours. There were no significant differences when 16a-OHA was used 

as a precursor compared to those incubated with 16a-0HDHEA. However E3 levels 

produced by cytotrophoblast cells isolated from both placentae were significantly lower 

when 16a-0HT was used as a precursor compared to cells incubated with 16a-0HA (p 

< 0.03). The levels of E3 produced by isolated cytotrophoblast cells from both placentae 

were significantly higher when 16a-0HEl was used as a precursor compared to those 

cells incubated with 16a-OHA (p < 0.03). Table 3.1.2b gives the mean values for E3 

levels produced by isolated cytotrophoblast cells incubated with the various precursors 

for 24 hours.
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Precursor Experiment 1 Experiment 2

16a-OHDHEA 353.6 ± 19.52 55.54 ± 2.88

16a-OHA 262.8 ± 43.39 53.28 ±  3.58

16a-OHDT 117.0± 4.21 32.71 ± 3.54

16a-OHEl 972.3 ± 16.12 1288.4 ±59.60

Table 3.1.2b. Mean ±  SE values for E3 levels (pmol/100,000 viable cells/24 hours) produced by isolated 

cytotrophoblast cells obtained from two placentae and incubated with respective precursors at a 

concentration of 1 |imol/l for 24 hours (number of wells per experiment for each precursor = 4).

One precursor originally chosen to assess P production in placental cells was 25- 

hydroxycholesterol as this was chosen by Nestler and Williams (1987) and Kliman 

(1986) in their studies on cytotrophoblast cells. The initial studies however indicated 

that addition of 25-hydroxy cholesterol (5 |imol/l) had little effect on P output by the 

cells as there was no significant increase in P levels beween those cells incubated with, 

and those cells incubated without 25-hydroxycholesterol (mean values from two 

placentae are given in table 3.1.2c). Further studies indicated that increasing the 

concentration of 25-hydroxycholesterol to 80 jimol/l had no effect on P production. 

Cholesterol and LDL were also used as potential precursors, but no measurable levels of 

P were obtained from cells cultured with cholesterol alone, and although P levels 

measured after incubating with 1.5 mg/ml LDL were higher than those values obtained 

from incubating cells alone, they were only approximately 30% of those measured in 

cell preparations incubated with l|imol/l pregnenolone and only double those of cells 

incubated without precursors (mean values are given in table 3.1.2d). It was decided 

therefore to use pregnenolone as the substrate for P production.

Precursor Experiment 1 Experiment 2

(n=6) (n=5)

cells only 176.5 ±  67.92 509.6 ±  87.96

25-hydroxycholesterol (5 pmol/1) 125.3 ± 15.07 593.8 ±64.82

Table 3.1.2.c. M ean ± SE values for P levels (pmol/100,000 viable cells/24 hours) produced by 

cytotrophoblast cells incubated with/without 25-hydroxycholesterol (5 pmol/1) for 24 hours (n= number 

of wells used in each experiment with each precursor).
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Precu rso r P

cells only 0.82 ± 0 .1 0

LDL 1.42 ± 0 .0 9

Pregnenolone 4.02 ± 0.25

T ab le  3.1.2.d. M ean ± SE values for P levels (pmol/100,000 viable cells/24 hours) produced by 

cytotrophoblast cells isolated from one placentae, incubated with/without LDL (5mg/ml) or pregnenolone 

(l|im ol/l) for 24 hours. Number of wells in each case = 5.

Several experiments were conducted on cytotrophoblast cells to assess the effects of 

substrate concentrations of the chosen precursors on steroid production. Cell 

preparations from two placentae, containing 1 0 0 , 0 0 0  viable cells per well were plated in 

triplicate in 1 ml of DMEM containing the relevant precursor and incubated for 24 

hours. Cell preparations from the same two placentae were used for all the experiments 

conducted in sections 3.1.3 to 3.1.5.

3.1.3. Choice of precursor concentration for E l and E2 production

The aromatase enzyme system appeared to reach saturation at concentrations greater 

than 600 nmol/1 (figures 3.1.2a and 3.1.2b) with the experimental conditions used, 

although there appeared to be a peak of activity in cell preparations obtained from each 

placenta for both El and E2 production at concentrations of 400 nmol/1 (placenta 1) and 

200 nmol/1 (placenta 2). A concentration of approximately 700 nmol/1 A was chosen for 

all experiments as approximately l%-2% of A was converted to these oestrogens at this 

concentration in 24 hours and the enzyme system appeared to be saturated. Mean ± SE 

E l and E2 levels produced by these cell preparations are given in tables 3.1.3a and 

3.1.3b respectively. The same concentration of A was chosen for use in those tissue 

explant preparations incubated at the same time as the isolated cells.
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Figure 3.1.3a. Production of E l by cytotrophoblast cells isolated from two placentae and incubated with 

various concentrations of A for 24 hours.

E l

A nmol/1 Placenta 1 Placenta 2

25 2.00 ± 0.09 2.66 ± 0.41

50 2.53 ± 0.25 3.60± 0.091

100 2.58 ±0.57 3.88 ± 0 .40

200 4.33 ±0.69 5.97 ± 0.68

400 4.64 ±0.10 4.97 ± 0.25

800 4.13 ±0.45 5 .14±0.11

1600 4.44 ± 0.64 4.25 ± 0.59

3200 4.56 ±0.35 5.44 ± 0.64

Table 3.1.3a. Mean ± SB values for E l levels (pmol/100,000 viable cells/24 hours) produced by isolated 

cytotrophoblast cells incubated with various concentrations of A.

E2
pmol/100,000 

viable cells
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Figure 3.1.3b. Production of E2 by cytotrophoblast cells isolated from two placentae and incubated with 

various concentrations of A for 24 hours.
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E2

A nmol/1 Placenta 1 Placenta 2

25 4.03 ± 0.08 1.74 ±0.15

50 4.72 ± 0.42 2 .31+ 0 .13

100 6.18 ±  0.54 2.96 ±0.17

200 6.87 ± 0.86 3.61 ±0.28

400 8.54 ±  0.69 2.68 ±0.17

800 6.46 ± 0.86 3.42 ± 0.86

1600 6 .12±  0.37 3.20 ± 0.20

3200 6.55+  0.12 2.90 ±  0.06

Table 3.1.3b. Mean ± SE values for E2 levels (pmol/100,000 viable cells/24 hours) produced by isolated 

cytotrophoblast cells incubated with various concentrations of A.

3.1.4. Choice of precursor concentration for E3 production

The aromatase enzyme appeared to be saturated at around 800 nmol/1 (figure 3.1.3). A 

precursor concentration of 1 0 0 0  nmol/1 was chosen for all experiments as there was 

between 0.3-1% conversion of 16a-OHA to E3 at this concentration and the enzyme 

system appeared to be saturated. The mean ± SE values for E3 levels produced by these 

cell preparations are shown in table 3.1.4. The same concentration of 16a-0HA was 

chosen to be used in the tissue explant preparations incubated at the same time as the 

isolated cells.

9.0

8.0 -

7.0 _
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E3
pmoV100,000 

viable cells
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3.0 -

2.0

1 . 0

0.0
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Placenta 2

16-cc hydroxyandrostenedione nmol/1

3.1.4. Production of E3 by cytotrophoblast cells isolated from two placentae and incubated with various 

concentrations of 16a-0H A  for 24 hours.
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E3

16a-OHA nmol/1 Placenta 1 Placenta 2

25 1.12 ±0.72 0.72 ± 0 .19

50 2.11 ±0.31 0.49 ±  0.03

100 2.97 ± 0.90 0.78 ±0.15

200 6.50 ± 0.36 1.22 ± 0 .14

400 6.60 ±0.01 2 .16± 0 .15

800 8.40 ±6.88 2.49 ±  0.46

1600 5.73 ± 0.97 2.26 ±  0.62

3200 7.55 ±0.79 2.00 ±0.21

Table 3.1.4. Mean ± SE values for E3 levels (pmol//100,000 viable cells/24 hours) produced by isolated 

cytotrophoblast cells incubated with various concentrations of 16a-0H A .

3.1.5. Choice of precursor concentration for P production

In placenta 1 the 3 p -H S D  enzyme system appeared to become saturated at a 

concentration of pregnenolone of 2 0  |imol/l but saturation did not occur in placenta 2 , 

with production still increasing at concentrations of pregnenolone of 80 pmol/1 (see 

figure 3.1.4). However even at concentrations as low as 5 |Limol only around 10% of the 

precursor was being transformed to P with the percentage dropping to about <5% at 

concentrations of 1 0  pmol/l and 2 0  pmol/l, which is in agreement with the results of 

Nestler (1989). The mean ± SE values for levels of P produced by these cell 

preparations are shown in table 3.1.5. It was decided to use 3 concentrations of 

pregnenolone precursors for further experiments (1  pmol/1, 1 0  pmol/l and 2 0  pmol/1). 

The lower concentration was used for experiments involving tissue minces as this was 

thought to approximate to more physiological levels.
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Figure 3.1.5. Production of P by cytotrophoblast cells isolated from two placentae incubated with various 

concentrations of pregnenolone for 24 hours.

Pregnenolone fimol/l Placenta 1 Placenta 2

0.5 89.9 ± 2.7 106.8 ±  9.0

1.0 155.8 ± 32.9 193.8 ± 14.0

5.0 244.8 ± 24.5 365.5 ± 16.4

10.0 262.4 ±58.1 424.0 ± 16.4

20.0 329.7 ± 14.3 542.8 ± 39.2

40.0 318.1 ±27 .6 631.6 ± 35.4

80.0 292.5 ± 7.4 848.4 ± 177.3

Table 3.1.5. Mean ± SE values for P levels (pmol/100,000 viable cells/24 hours) produced by isolated 

cytotrophoblast cells incubated with various concentrations of pregnenolone.

3.1.6. Steroid hormone production by isolated cells incubated for 96 hours

The 3p-HSD and aromatase activity were assesed at 24 and 96 hours using the chosen 

precursor concentrations, 20-|imol/ pregnenolone, 700 nmol/1 A and 1000 nmol/1 16a- 

OHA. The levels of E l, E2, E3 and P were generally higher at 96 hours than those 

measured at 24 hours with the exception of El levels measured in experiment 2 which 

were not significantly different. The levels of steroids produced by placentae incubated 

for 96 hours are shown in table 3.1.6.
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E l (pmol) E2 (pmol) E3 (pmol) P (nmol)

24 hours

experiment 1 9.31 ± 1.52 16.37 ± 1.20 78.41 ± 20.62 1.12 ±0.77

experiment 2 270.42 ±25.66 449.37 ± 13.00 318.25 ±  23.22 8.65 ±0.11

experiment 3 35.93 ±  2.13 154.82 ± 4.17 59.32 ±  3.22 4.35 ±0.53

96 hours

experiment 1 17.29± 4.41 60.70± 6.37 146 .79± 31 .12  2.71 ±0.21

experiment 2 242.18 ±21.87 462.55 ±16.47 417.78 ± 37.55 15.07 ±0.51

experiment 3 126.68 ± 19.90 355.30 ±  29.32 226.57 ±  20.98 10.47 ± 0.28

Table 3.1.6. The mean ± SE values for E l, E2, E3 and P levels (/100,000 viable cells/24 hours) produced 

by trophoblast cells incubated with 20% bovine calf serum and a respective precursor.
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3.2. Preliminary note on the graphical representation of data

Each placenta in this study has been assigned an individual character and number, for 

example placenta A1 shown in figure 3.3.2 is the same placenta A1 as that shown in 

figure 3.6.2.

Due to the large variation between levels of steroids produced by individual placentae 

all the results (see raw data in the appendix) have been expressed in graphic form as 

percentage differences between the means of the steroid levels obtained from those 

tissue explants or cells incubated with either CRF/ACTH/IGF-I/IGF-II or NADPH, and 

the mean values obtained from the control (100%) for each individual placenta. In the 

case of the experiments involving tissue minces the controls consisted of explants 

incubated with DMEM alone, whereas the controls for the isolated cell experiments 

were those cells incubated in DMEM and the appropriate steroid precursor.

Statistically significant differences obtained between controls and tissue explants/ 

isolated cytotrophoblast cells incubated under the relevant experimental conditions are 

represented in the graphs as ; * significant difference p < 0.05, ** significant difference

p < 0 .0 1 .

3.3. The effects of CRF and ACTH on E2 production by tissue explants

In a study on 3 placentae incubated in DMEM alone (controls) or with the medium 

containing CRF there was a significant increase in E2 in one placenta A2, at 40 minutes 

(p < 0.05, see figure 3.3.1), compared to the control for this placenta. However in 

placenta A4 there was a significant decrease in E2 levels produced at 20 minutes (p <

0.05) when compared to the control. These effects were not consistent throughout the
%

experiment and overall there was no effect of CRF on E2 levels from placental tissue 

minces at 24 hours of incubation. The mean ± SE and median levels for E2 from the 

tissue minces incubated as controls or with CRF are given in table 3.3.1 .
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Figure 3.3.1. The effects of CRF (100 nmol/1) on E2 production by tissue explants obtained from three 

placentae compared to controls incubated with DMEM alone.

There was no effect of ACTH on tissue explants in comparison to the controls for each 

of the three placentae studied with the exception of placenta A 1 in which there was 

significant increase observed at a single time point (150 minutes, p < 0.05). Figure 3.3.2 

illustrates the changes in levels of E2 throughout the 24 hour incubatory period. The 

mean ± SE and median values for E2 levels produced by the tissue minces incubated as 

controls or with ACTH are given in table 3.3.2.
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Figure 3.3.2. The effect of ACTH (10 nmol/1) on E2 production by tissue explants obtained from three 

placentae compared to controls incubated with DMEM alone.
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Placenta A2 Placenta A3 Placenta A4
Time: (minutes) Control CRF Control CRF Control CRF

20 mean ± SE 282.1 ± 40.6 291.9 + 46.0 1114.8 + 126.7 1146.7 + 221.54 920.8 + 91.9 620.3 ± 102.0

median 280.7 265.1 1140.3 1193.8 909.1 546.6

40 mean ±  SE 263.9 ± 40.6 424.4 ± 55.5 582.0 ± 47.8 485.5 + 85.04 837.8 + 146.3 650.8 ± 96.0

median 239.7 428.4 571.7 462.1 681.0 563.3

60 mean ± SE 299.0 ± 19.0 410.3 + 56.29 561.3 ± 24.4 531.6 + 59.3 786.5 + 137.9 788.3 ± 93.5

median 292.8 388.2 561.2 544.4 705.4 764.9

80 mean ± SE 252.1 ± 15.4 266.3 + 24.3 743.2 + 131.8 547.3 ± 60.4 826.9± 84.9 702.5 + 89.7

median 244.5 246.9 652.7 482.6 757.7 628.8

100 mean ± SE 284.5 ± 17.6 323.8 + 32.6 592.8 ± 34.2 495.8 ± 66.8 866.5 ± 142.7 743.8 ± 87.0

median 278.5 329.8 574.7 479.1 776.1 695.3

120 mean ± SE 380.8 ± 53.5 432.1 ± 78.1 645.3 ± 23.2 588.7 ± 80.6 1155.9 + 142.9 853.4 ± 108.0

median 337.0 333.9 644.2 549.7 1116.3 762.3

150 mean ±  SE 314.3 ± 16.6 530.9 ± 194.3 575.2 ± 17.8 503.3 ± 46..3 1139.1 ±238.6 768.2 + 126.9

median 305.4 326.2 578.2 463.6 1001.8 674.0

180 mean ± SE 306.3 ± 16.6 345.4 + 28.4 564.2 + 33.7 472.5 + 44.9 759.5 ± 92.8 674.6 ± 77.4

median 300.5 326.2 534.6 463.6 708.5 674.0

1440 mean + SE 323.6 ± 16.0 590.9 ± 226.0 820.1 ± 42.3 773.6 ± 54.40 950.5 + 74.9 982.2 ± 112.7

median 334.3 377.4 828.2 748.7 962.7 110.7

Table 3.3.1. Mean ± SE and median values for E2 levels (fmol/mg protein) produced by placental expiants incubated with/without CRF (100 nmol/1) for 24 hours.
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Placenta A l Placenta A2 Placenta A3
Time1 (minutes) Control ACTH Control ACTH Control ACTH

20 mean ± SE 1424.8+ 441.0 579.2 ± 78.5 282.1 + 40.6 260.4 + 14.0 1144.8 + 126.7 774.9 ± 246.8

median 1224.1 587.2 266.0 229.6 1140.3 517.7

40 mean ± SE 725.7 ± 139.7 759.1 + 133.9 263.9 ± 40.1 217.0 + 7.93 582.0 ± 47.8 552.2 ± 97.9

median 593.4 741.0 239.8 223.5 571.7 462.1

60 mean ± SE 600.4 ± 70.0 655.5 ± 69.4 299.0 ± 19.0 251.9 ± 20.6 561.3 + 24.4 604.7 ± 95.6

median 590.9 668.7 292.8 270.4 561.2 544.2

80 mean ± SE 1067.1 + 423.8 655.9 + 53.0 252.1 ± 15.4 254.1 ± 23.6 743.2 ± 131.8 566.8 + 46.6

median 590.1 588.3 244.5 262.7 652.7 482.6

100 mean ± SE 644.6 ± 86.1 707.3 ± 92.5 284.6 ± 17.6 298.2 + 15.5 592.8 + 34.2 565.2 ± 57.1

median 551.2 649.6 278.3 284.7 574.7 479.1

120 mean ± SE 623.9 ± 48.5 628.7 ± 96.0 380.8 + 53.5 309.6 + 11.9 645.3 + 23.2 632.0 + 50.6

median 611.2 547.9 337.0 302.3 644.2 549.7

150 mean ± SE 727.5 ± 71.0 892.7 ± 64.9 314.3 ± 16.6 304.3 ± 22.3 575.2 + 17.8 675.7 ± 106.9

median 670.9 823.4 305.4 315.6 578.2 463.6

180 mean ± SE 728.5 + 70.3 1153.5 + 237.2 306.3 ± 16.6 300.00 + 14.2 564.2 + 33.7 519.0± 31.6

median 730.9 1159.9 300.5 300.7 534.6 456.1

1440 mean ± SE 726.8 ± 95.0 750.6 ± 117.4 323.7 ± 16.0 360.5 ± 32.6 820.1 ± 42.3 824.5 ± 36.2

median 684.8 614.34 334.2 358.8 828.2 748.7

Table 3.3.2. Mean ± SE and median values for B2 levels (fmol/mg protein) produced by placental expiants incubated with/without ACTH (10 nmol/1) for 24 hours.
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3.4. The effects of CRF and ACTH on El and E2 production by isolated

cytotrophoblast cell incubates

The effects of CRF on El production by cells prepared from seven placentae are shown 

in figure 3.4.1 and the mean ± SE and median values for El levels from those cell 

preparations incubated with A with/without CRF are given in table 3.4a. There was no 

effect on E 1 levels produced by cell preparations isolated from five placentae compared 

to controls, but El production was significantly inhibited by CRF in cell preparations 

from two placentae (B2 p < 0.01, B3 p < 0.01 ).

Figure 3.4.2 shows the effects of ACTH on El production by cytotrophoblast cells. 

There was no effect of ACTH on El production from cells in four placentae as 

compared to controls but in three placentae there was significant inhibition (B2 p < 

0.05, B3 p < 0.01, B4 p < 0.01). The mean ± SE and median values for El levels from 

those cell preparations incubated with/without ACTH are given in table 3.4a. 

l2fH- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  125.

%EI
(of control)

100-

7 5 -

50-

25-

0
Control Bl B2 B3 B4

%EI 75
(of control)

50 J

25 .

I
i

CRF
Figure 3.4.1

Control B l B2 B3 B4 
ACTH

Figure 3.4.2,

Figures 3.4.1 and 3.4.2. The effect o f CRF (100 nmol/1) and ACTH (10 nmol/1) on E l production by 

isolated cytotrophoblast cells obtained from seven placentae.

The effects of CRF on E2 production by cytotrophoblast cells compared to those 

incubated with A alone (controls) is illustrated in figure 3.4.3. In comparison to the 

controls there were no significant differences in E2 production in four of the placentae 

studied. However E2 levels were significantly higher than those of the controls in 

placental cell preparations from three placentae (B2 p < 0.01, B3 p < 0.01, B6 , p < 

0.05).
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E2 production was not significantly affected in cell preparations from five of the 

placentae studied when incubated with ACTH compared to those incubated with A 

alone, but was significantly increased in two placentae (B2 p < 0.05, B3 p < 0.01).

The mean ± SE and median levels for E2 from those cell preparations incubated 

with/without CRF or ACTH are given in table 3.4a.

(of control)
%E2

(of control)

Control Bl 82  83 84  85 86 87 Control B l 8 2  8 3  8 4  85  8 6  87

CRF ACTH
Figure 3.4.3. Figure 3.4.4.

Figures 3.4.3 and 3.4.4 The effects of CRF (100 nmol/1) and ACTH (10 nmol/1) respectively on E2 

production by isolated cytotrophoblast cells obtained from seven placentae.

The values of the levels of El and E2 produced in each well were combined and this 

value the total oestrone and oestradiol (TE) was calculated for each placenta. Figures

3.4.5 and 3.4.6 show the effects of CRF and ACTH on TE production and the mean ± 

SE and median levels for TE from those cell preparations incubated with/without CRF 

or ACTH are given in table 3.4b. In only one of the seven placentae was there a 

significant increase in TE (B3 p < 0.05) produced by cells incubated with CRF in 

comparison to the controls. Of the seven placentae incubated with ACTH, TE levels 

were significantly reduced in only one placentae (B4 p < 0.01) compared with controls .
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Figures 3.4.5 and 3.4.6. The effects of CRF (100 nmol/1) and ACTH (10 nmol/1) on TE production by 

isolated cytotrophoblast cells obtained from seven placentae.
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E l E2

Placenta Mean ± SE Median Mean + SE Median

B l Control 20.30 ± 2.04 19.73 11.80± 0.73 11.62

CRF 21.21 ± 1.53 21.25 13.18 ± 0.63 13.91

ACTH 20.92 ± 1.67 22.11 13.43+ 0.65 13.78

B2 Control 2 .30+  0.07 2.30 3.03 ± 0.11 3.10

CRF 1.83 ±  0.04 1.83 3.83 + 0.07 3.85

ACTH 2.04 ± 0.07 2.03 3 .69+  0.19 3.82

B3 Control 3.80 ± 0.08 3.78 3.81 ± 0.10 3.86

CRF 2.70 ± 0.25 2.75 5 .50+  0.20 5.40

ACTH 2.91 ±  0.09 2.85 4 .98+  0.15 4.82

B4 Control 2.08 ± 0.06 2.05 5.73 ± 0.11 5.67

CRF 2.14+  0.09 2.22 5.44 ± 0.29 5.43

ACTH 1.42+ 012 1.50 5.43 ± 0.20 5.55

B5 Control 2.64 ± 0.17 2.81 5.25 ± 0.17 5.34

CRF 2.85 ± 0.19 2.77 4.78 ± 0.28 4.95

ACTH 2.73 ± 0.23 2.74 5 .20+  0.25 5.05

B6 Control 3.58 ± 0.20 3.75 9.23 ± 1.05 9.53

CRF 3.42 ± 0.22 3.34 13.40 ±  1.29 12.37

ACTH 3.11 + 0.21 3.17 11.29+ 0.90 10.47

B7 Control 2.75 ± 0.13 2.82 6 .68+  0.18 7.78

CRF 2.61 ± 0.10 2.60 7.34 ± 0.35 6.93

ACTH 2.55 ± 0.22 2.45 8.03 ± 0.19 8.14

Table 3.4a. Mean ± SE and median values for E l and E2 levels (pmol/100,000 viable cells/24 hours) 

produced by isolated cytotrophoblast cells incubated with A alone (control) or with A and CRF (100 

nmol/l)/ACTH (10 nmol/1) for 24 hours.
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TE

Placenta Mean ± SE Median

B l Control 32.10±2.31 31.98

CRF 34.38 ± 1.66 33.41

ACTH 34.35 ± 1.61 35.55

B2 Control 5.32 ± 0.17 5.46

CRF 5.66 ± 0.09 5.70

ACTH 5.73+  0.14 5.88

B3 Control 7.61 ± 0.13 7.70

CRF 8.20 ± 0.25 7.99

ACTH 7.89 ± 0.19 7.87

B4 Control 7.81 ± 0.07 7.78

CRF 7.58 ± 0.09 7.75

ACTH 6.85 ± 0.26 7.07

B5 Control 7.89 ± 0.30 8.07

CRF 7.63 ± 0.44 7.77

ACTH 7.93 ± 0.44 7.77

B6 Control 12.81 ± 1.07 13.04

CRF 16.82 ± 1.21 15.66

ACTH 14.40+ 0.99 13.96

B7 Control 9 .43+  0.11 10.42

CRF 9.95+  0.41 9.70

ACTH 10.58 ± 0.12 10.46

Table 3.4b. Mean ± SE and median values for TE levels (pmol/100,000 viable cells/24 hours) produced 

by isolated cytotrophoblast cells incubated with A alone (control) or with A and CRF (100 nmol/1)/ACTH 

(10 nmol/1) for 24 hours.
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3.5. The effects of CRF and ACTH on El and E2 production by tissue explants as 

compared to isolated cytotrophoblast cells from the same placentae

In addition to their effects on isolated placental cells the effects of CRF and ACTH on 

E 1 and E2 were also studied on minced tissue preparations in three of the placentae B 1, 

B2 and B3. The tissue experiments were conducted under similar conditions to the 

experiments with the cytotrophoblasts. Unlike the cell preparations isolated from the 

same placentae, there were no significant differences in E l, E2 or TE production in 

tissue preparations when these were incubated with either CRF or ACTH compared 

with controls, with the exception of El and TE levels produced by tissue obtained from 

placenta B2 (see figures 3.5.2 and 3.5.6). Oestrone and TE levels produced by tissue 

explants from this placenta were significantly decreased on incubation with ACTH 

compared to controls (p < 0.05). Figures 3.5.1-3.5.6 show the comparison of cell and 

tissue incubates.

The mean ± SE and median values for El, E2 and TE produced by the tissue explants 

are shown in tables 3.5a and 3.5b .
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82 83

Cytotrophoblast cells

Figure 3.5.1. The effect of CRF (100 nmol/1) on E l production by both tissue explants and purified 

cytotrophoblast cells obtained from three placentae.
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F igu re  3.5.2. The effects of ACTH (10 nmol/1) on E l production by both tissue explants and purified 

cytotrophoblast cells obtained from three placentae.
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F igure  3.5.3. The effect of CRF (100 nmol/1) on E2 production by both tissue explants and purified 

cytotrophoblast cells obtained from three placentae.

200 -

150-4

%E2
(of control) jqq_

50-

0 -

III

150

100 -

%E2
(of control)

5 0 -

()■

I

■
Control B : B2 B3 Control Bl B2 B3

Tissue explants Cytotrophoblast cells

F ig u re  3.5.4. The effect o f ACTH (10 nmol/1) on E2 production by tissue explants and purified 

cytotrophoblast cells obtained from three placentae.
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F ig u re  3.5.5, The effect of CRF (100 nmol/1) on TE production by both tissue explants and purified 

cytotrophoblast cells obtained from three placentae.
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El E2
Placenta Mean ± SE Median Mean ± SE Median

B l Control 3 .13+  0.34 2.73 0.53 ±  0.05 0.54

CRF 2.71 + 0.35 2.45 0.46 ± 0.03 0.44

ACTH 3.94+  0.23 3.85 0.67 ± 0.02 0.66

B2 Control 25.53 ± 2.83 23.91 3.47 ± 0.40 3.43

CRF 18.74 ±4.33 16.11 2.72 ±  0.58 2.38

ACTH 16.62 ± 1.45 15.39 2.54 ±  0.20 2.40

B3 Control 4.45 ± 0.67 4.23 0.78 ± 0.07 0.72

CRF 5.95 ±  1.04 5.91 1.24 ±  0.03 1.01

ACTH 6.78 ± 1.86 5.29 1.32 ± 0.37 1.00

Table 3.5a. Mean ±  SE and median values for E l and E2 levels (pmol/mg protein/24 hours) produced by 

placental tissue expiants incubated with A alone (control) or with A and CRF (100 nmol/1)/ACTH (10 

nmol/l)for 24 hours.

TE levels

Placenta

B l Control

CRF

ACTH

Mean ± SE

3.66+  0.37 

3.17 ± 0.35 

4.60 ± 0.25

Median

3.27

2.89

4.55

B2 Control

CRF

ACTH

29.00 + 3.01 

21.46 ±4.90  

19.16± 1.61

27.22

18.70

17.64

B3 Control

CRF

ACTH

5.23 ± 0.73 

7.19+1.31 

8.10 + 2.23

4.91

6.92 

6.27

Table 3.5b. Mean ±  SF and median values for TF levels (pmol/mg protein/24 hours) produced by 

placental tissue explants incubated with A alone (control) or with A and CRF (100 nmol/l)/ACTH (10 

nmol/1) for 24 hours.
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3.6. The effects of CRF and ACTH on E3 production by placental tissue explants

There was no significant change in E3 levels in tissue incubated with CRF or ACTH 

when compared to those explants incubated with DMEM only. Figures 3.6.1 and 3.6.2 

show the effect of CRF and ACTH on three placental tissue explants as compared to 

controls.

The mean ± SE and median values for E3 levels produced by placental tissue minces 

over 24 hours when incubated in DMEM alone or DMEM and CRF or ACTH are 

shown in tables 3.6.1 and 3.6.2 respectively .
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F igure 3.6.1. The effect of CRF (100 nmol/1) on E3 production by tissue explants obtained from three 

placentae compared to controls incubated with DMEM alone.
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Figure 3.6.2. The effect of ACTH (10 nmol/1) on E3 production by tissue explants obtained from three 

placentae compared to controls incubated with DMEM alone.
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Placenta A2 Placenta A3 Placenta A4
Time (minutes) Control CRF Control CRF Control CRF

20 mean ± SE 2.28 ± 0.07 2.45 + 0.39 0.72 ± 0.12 0.67 + 0.10 1.86+ 0.38 2.02

median 2.33 2.01 0.68 0.67 1.84 1.85

40 mean ± SE 2.06 ± 0.20 2.24 ± 0.47 0.89 ± 0.09 0.77 + 0.07 2.16 ± 0.26 2.03

median 2.23 1.84 0.83 0.76 2.04 1.86

60 mean ± SE 2.26+  0.15 2 .63+  0.46 0.92 ± 0.03 0.88 ± 0.07 2.06 ± 0.19 2.17

median 2.27 2.28 0.89 0.83 1.99 1.96

80 mean ± SE 2.51.± 0.17 2.33 ± 0.18 0.94 + 0.05 0.81 ± 0.04 2 .12+  0.24 2.03

median 2.55 2.21 0.94 0.77 1.99 1.88

100 mean ± SE 2.55 ± 0.20 2.84 ± 0.39 0.92 ± 0.07 0.83 ± 0.08 2.54 ± 0.25 2.30

median 2.41 2.60 0.91 0.77 2.35 1.93

120 mean ± SE 2.58 ± 0.14 3.08 ± 0.46 0.98 + 0.05 0.99 + 0.08 2 .49+  0.27 2.38

median 2.58 2.69 1.0 0.95 2.35 2.10

150 mean ± SE 2.99 ± 0.38 3.28 + 0.59 0.90 ± 0.04 0.82+  0.06 2.28 ± 0.18 2.16

median 2.69 2.56 0.90 0.85 2.20 1.97

180 mean ± SE 2.54+  0.19 2.86 ± 0.39 1.29 ± 0.05 1.17 ± 0.11 2.66 ± 0.27 2.19

median 2.42 2.62 1.25 1.16 2.55 2.19

1440 mean ± SE 3.14+  0.34 3.24 ± 0.34 1.51 ± 0.11 1.54 ± 0.20 2.50 + 0.16 2.40

median 3.02 3.34 1.40 1.40 2.57 2.20

Table 3.6.1. Mean ± SE and median values for E3 levels (pmol/mg protein) produced by placental expiants incubated with/without CRE (100 nmol/1) for 24 hours.
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Placenta A l Placenta A2 Placenta A3
Time (minutes) Control ACTH Control ACTH Control ACTH

20 mean ±  SE 0.68 ± 0.07 0.80 ± 0.09 2.28 ± 0.07 2.14+  0.11 0.72 ± 0.12 0.62 ±

median 0.63 0.77 2.33 2.06 0.68 0.68

40 mean ± SE 0.61 ± 0.06 0.64 ±  0.08 2.06 ± 0.20 2 .02+  0.13 0.89 ± 0.09 0.79 ±

median 0.58 0.64 2.23 1.97 0.83 0.76

60 mean ± SE 0.68± 0.07 0.85 ± 0.10 2 .26+  0.15 2 .20+  0.15 0 .92+  0.03 1.01 ±

median 0.65 0.79 2.27 2.18 0.89 1.01

80 mean ± SE 0.68 ± 0.05 0 .80+  0.09 2.51 + 0.17 2.28 ± 0.15 0 .94+  0.05 0.87 ±

median 0.70 0.73 2.55 2.35 0.94 0.89

100 mean + SE 0.82 ± 0.05 0.93 ± 0.10 2.55 ± 0.20 2.38 ± 0.27 0.92 ± 0.07 0.81 ±

median 0.83 0.91 2.41 2.39 0.91 0.81

120 mean + SE 0.73 ± 0.07 0.81 + 0.11 2.59 ± 0.14 2.61 ±0.11 0.98 ± 0.05 0.92 ±

median 0.77 0.82 2.58 2.54 1.00 0.81

150 mean ± SE 0.80 ± 0.05 0.84 ± 0.09 2.99 ± 0.38 2.64 ± 0.98 0 .90+  0.04 0.88 ±

median 0.82 0.81 2.69 2.54 0.90 0.91

180 mean ± SE 0.85 ± 0.09 1.02 ± 0.20 2.54 ± 0.19 2.54 ± 0.09 1.29 ± 0.05 1.28 ±

median 0.76 0.90 2.42 2.53 1.25 1.32

1440 mean ± SE 1.02+ 0.09 1.16+ 0.20 3.14 ± 0.34 2.90 ± 0.38 1.45 ±0.11 1.51 ±

median 1.00 1.03 3.02 2.67 1.40 1.50

Table 3.6.2. Mean ± SE and values for E3 levels (pmol/mg protein) produced by placental expiants incubated for 24 hours with/without ACTH (10 nmol/1).
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3.7. The effects of CRF and ACTH on E3 production by isolated cytotrophoblast

cells

The effect of CRF and ACTH on E3 production in cytotrophoblast cells was studied in 

cell preparations in seven placentae. The addition of CRF had no effect in four of the 

placentae but there were significant increases in E3 levels in three of the placentae as 

compared with controls (Bl p < 0.05, B2 p < 0.01, B3 p < 0.01). These differences are 

illustrated in figure 3.7.1. In those preparations incubated with ACTH there were no 

significant changes in E3 production in five placentae in comparison to those of 

controls whereas there was a significant rise in E3 production in 2 placentae (B2 p < 

0.01, B3 p < 0.01) which can be seen in figure 3.7.2. The mean ± SE and median values 

for E3 levels produced by those cell preparations incubated with/without CRF or ACTH 

are shown in table 3.7.
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Figures 3.7.1 and figure 3.7.2. The effects of CRF (100 nmol/1) and ACTH (10 nmol/1) respectively on 

E3 production by cytotrophoblast cells isolated from seven placentae.

123



Placenta Mean ± SE Median

B l Control 1.53+ 0.06 1.51

CRF 2.51 ± 0.04 2.48

ACTH 1.82 ± 0.29 1.55

B2 Control 0.18 ± 0.01 0.18

CRF 0.31 ± 0.01 0.22

ACTH 0.22 ± 0.07 0.30

B3 Control 0.69 ±  0.01 0.69

CRF 0.92 ± 0.02 0.92

ACTH 1.01 ± 0.08 0.89

B4 Control 0 .90+  0.07 0.89

CRF 1.04 ± 0.01 1.04

ACTH 0.97 ±  0.04 0.97

B5 Control 0.70 ± 0.01 0.70

CRF 0.80 ± 0.06 0.79

ACTH 0.74+  0.02 0.75

B6 Control 3.07 ± 0.11 3.17

CRF 3.12+  0.15 3.11

ACTH 3.41 + 0.24 3.18

B7 Control 0 .99+  0.08 1.07

CRF 0.96 + 0.05 0.95

ACTH 0.93 + 0.07 0.91

Table 3.7. Mean ± SE and median E3 levels (pmol/100,000 viable cells/24 hours) produced by isolated 

cytotrophoblast cells incubated with 16a-0H A  alone (control) or 16a-0H A  and CRF (100 nmol/1) or 

ACTH (10 nmol/1) for 24 hours.

3.8. The inhibitory effect of A on E3 production by isolated cytotrophoblast cells

Initial pilot studies were undertaken to assess the effects of various possible precursors 

on steroid output from cytotrophoblast cells. It was noticed that when the cells were 

incubated with 25-hydroxycholesterol with A and 16a-0HA in combination there was a 

marked decrease in E3 production compared to levels produced by cells incubated with 

16a-0HA alone. Further studies confirmed that the steroid responsible for this was A. 

This decrease in synthesis was seen in concentrations as low as 70 nmol/1 A in all three
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placentae studied (figures 3.8.1a and 3.8.1b). The mean ± SE and median values for E3 

levels measured in these experiments are given in tables 3.8.1. The p values are 

tabulated where appropriate.
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Figure 3.8.1.a The effect of various concentrations of A on E3 production by cytotrophoblast cells 

obtained from placenta 3 and incubated with 16a-OHA.
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Figure 3.8.1b. The effect o f A on E3 production by cytotrophoblast cells obtained from three placentae 

and incubated with 16a-0H A .
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Placenta Mean Median P value

3 Control 83.53 ± 2.25 8Z89

A 70 nmol/1 73.73 ± 2.56 74.64 0.016

A 175 nmol/1 63.15 ±2.42 62.69 0.004

A 350 nmol/1 53.37 ± 1.71 54.62 0.004

A 700 nmol/1 53.38 ±3.35 52.62 0.004

4 Control 167.47 ± 8.95 171.33

A 70 nmol/1 91.81 ±4.27 91.12 0.004

A 700 nmol/1 64.22 ±9.13 72.24 0.004

5 Control 336.68 ±49.81 310.16

A 70 nmol/1 171.70 ± 17.39 180.88 0.016

A 700 nmol/1 34.49 ± 15.21 22.64 0.004

Table 3.8.1 Mean ± SE and median values for B3 levels (fmol/100,000 viable cells/24 hours) produced 

by isolated cytotrophoblast cells incubated with various concentrations of A. The p values are tabulated 

as appropriate.

In two of these placenta (4 and 5) experiments to test the effects of A on E3 production 

in placental tissue minces were also undertaken. There was no significant decrease in 

E3 levels from those minces incubated with 16a-OHA and A compared to controls 

containing 16a-OHA alone.

Tables with the mean ± SE and median values for these experiments are given in table 

3.8.2. The p values are tabulated where appropriate.

Mean E3 levels Median E3 levels

Placenta

3 Control 13.02 ± 0.94 12.90

A 700 nmol/1 11.90 ± 0.88 12.01

4 Control 2.89 ± 0.26 2.67

A 700 nmol/1 2.44 ± 0.27 2.20

Table 3.8.2. Mean ± SE and median values for E3 levels (pmol/mg protein/24 hours) produced by 

placental tissue explants incubated with 16a-0H A  and with/without A (700 nmol/1).

126



3.9. The effects of CRF and ACTH on E3 levels produced by placental tissue
expiants compared to isolated cytotrophoblast cells from the same placentae

In comparison to the isolated cells obtained from placentae Bl, B2 and B3 (discussed in 

section 3.7), there was no significant rise in E3 production by tissue explants incubated 

with CRF. On incubation with ACTH E3 levels were not significantly different from 

controls in two placentae but were significantly lower than the control in one placenta 

(Bl, p < 0.05, figure 3.9.4). The mean ± SE and median values for E3 levels produced 

by tissue minces are given in table 3.9.

%E3
(ot control)

I

200.

%E3
(of control)

100-

* » **

- ------ 1 I
is 1

Control B Control BI B2 B3

Tissue explants Cytotrophoblast cells

Figure 3.9.1. The effect o f CR F (100 nm ol/l) on E3 production by both tissue explants and 

cytotrophoblast cell preparations obtained from three placentae.
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Figure 3.9.2. The effects o f ACTH (10 nm ol/l) on E3 production by both tissue explants and 

cytotrophoblast cell preparations obtained from three placentae.
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Placenta Mean ± SE Median

B 1 Control 4.66 ± 0.08 4.02

CRF 4.13 ± 0.05 3.46

ACTH 3.13 ± 0.31 3.09

B2 Control 8.89 ± 0.67 8 ^ 6

CRF 11.05+ 0.17 9.76

ACTH 7.85 ± 0.80 7.79

B3 Control 6.06 ±  0.46 5.92

CRF 5.51 ± 0.43 5.74

ACTH 7.84 ± 0.87 7.24

T able 3.9. The mean ±  SE and median values for E3 levels (pmol/mg protein/24 hours) produced by 

placental tissue expiants incubated with 16a-0H A  or with 16a-0H A  and CRF (100 nmol/l) or ACTH 

(10 nmol/l).

3.10. The effect of CRF and ACTH on P levels produced by placental tissue 

explants

There were no significant changes in levels of P produced by tissue explants obtained 

from three individual placentae incubated with CRF or ACTH in comparison to the 

controls, with the exception of placenta A2 which showed a significant decrease in P 

production at one time point (t = 60 minutes, p < 0.01) when incubated with ACTH.

Figures 3.10.1 and 3.10.2 illustrate the pattern of P production over 24 hours in three 

placentae. The mean ± SE and median levels for those placentae incubated with/without 

CRF or ACTH are given in tables 3.10.1 and 3.10.2 respectively .
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F igure 3.10.1. The effect of CRF (100 nmol/l) on P production by tissue explants obtained from three 

placentae compared to controls incubated with DMEM alone.
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Figure 3.10.2. The effect of ACTH (10 nmol/l) on P production by tissue explants obtained from three 

placentae compared to controls incubated with DMEM alone.

129



Placenta A2 Placenta A3 Placenta A4
Time (minutes) Control CRF Control CRF Control CRF

20 mean ± SE 58.58 ± 2.13 63.87 ± 8.81 23.76 ± 1.07 21.21 ± 1.65 32.74 + 5.34 28.73 + 3.59

median 57.33 58.58 24.76 19.72 29.32 27.76

40 mean ± SE 69.42 ± 4.58 77.65 ± 9.60 16.40 + 1.44 17.73 ± 1.62 43.64 ± 5.06 37.73 ± 5.18

median 69.48 68.21 17.21 16.62 45.41 39.70

60 mean ± SE 66.20 ± 7.09 68.59 ± 7.73 24.19 + 2.23 19.37 + 2.70 43.75 + 5.25 41.01 + 6.49

median 66.27 70.88 24.26 15.79 42.48 37.06

80 mean ± SE 63.39 ± 4.71 69.86 + 5.37 25.02 ± 1.05 22.94 ± 1.65 52.21 ± 4.00 50.16 ± 9.13

median 62.71 67.48 24.73 22.43 49.42 44.84

100 mean ± SE 71.14 + 5.76 78.57 ± 9^3 27.22 + 1.05 24.65 + 4.58 56.26 + 4.55 50.72 + 6.23

median 74.51 73.62 25.27 22.81 56.92 50.21

120 mean ± SE 76.68 ± 5.63 82.38 ± 13.42 31.22 ± 2.73 29.87 ± 6.49 56.16 ± 6.14 49.91 + 7.28

median 77.24 77.78 31.79 25.17 57.18 46.69

150 mean ± SE 71.36± 4.90 79.81 ± 6.23 30.73 ± 1.88 30.63 + 6.71 62.23 + 7.05 51.00 +  7.31

median 69.90 80.55 29.91 24.63 58.19 50.02

180 mean ± SE 80.97 ± 3.69 87.62 ± 10.21 37.27 + 4.12 29.11 ± 3.37 61.66 ± 6.81 59.81 ± 9.25

median 80.42 82XW 34.88 27.16 57.27 51.02

1440 mean ± SE 81.78 ± 5.41 108.67 ± 34.41 33.22 ± 3.08 33.47 ± 3.12 62.11 ± 8.97 59.28 ± 8.40

median 77.88 77.66 32.42 33.03 59.69 56.35

Table 3.10.1. Mean ± SE and median values for P levels (pmol/mg protein) produced by placental tissue expiants incubated for 24 hours with/without CRF (100 nmol/l).
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Placenta A l Placenta A2 Placenta A3
Time (minutes) Control ACTH Control ACTH Control ACTH

20 mean ± SE 27.43 ±  4.38 23.71 ± 28 6 58.58+ 2.13 58.24 ± 3.97 23.76 ± 1.07 19.94 ± 1.23

median 25.73 2293 57.33 60.04 24.76 19.56

40 mean ± SE 32.41 ± 4.37 32.48 + 4.34 69.42 ± 4.58 68.52+ 5.60 16.40+1.44 17.83 ± 1.23

median 27.56 28.23 69.48 68.31 17.21 18.10

60 mean ± SE 28.80 ±  3.35 32.33 ± 5.97 66.20 ± 7.09 56.55 + 3.19 24.19 ± 2.24 23.36 + 1.32

median 25.95 58.79 66.27 54.44 24.26 23.09

80 mean ± SE 36.38 ±  6.78 38.33 + 8.07 63.39+ 4.71 66.63 + 2.60 25.02 ± 1.05 24.13 ± 1.98

median 33.67 30.84 62.71 65.64 24.73 23.99

100 mean ± SE 32.70 ±  5.82 33.22 ± 4.96 71.14+ 5.76 69.56 ± 4.48 27.22 + 2.37 26.13 + 1.16

median 27.39 34.32 74.51 67.13 25.27 26.21

120 mean ± SE 45.38 ±  9.03 39.01 ± 3.57 76.68 ±  5.63 77.27 ± 2.43 31.22 + 2.73 27.39 ± 0.51

median 37.48 3&43 77.24 80.01 31.79 27.29

150 mean ± SE 39.57 ± 5.06 38.70 + 4.44 71.36 ± 4.90 75.63 ± 3.42 30.73 ± 1.88 27.32 ± 1.86

median 36.94 39.96 69.89 76.26 29.91 28.17

180 mean ± SE 47.31 ±  6.80 40.28 + 4.81 80.96 ± 3.69 74.09 + 3.87 37.27 + 4.12 32.36 + 2.50

median 42.11 46.27 80.42 74.86 34.88 32.40

1440 mean + SE 52.57 ± 4.68 52.19± 4.35 81.78+ 5.41 83.91 + 3.29 33.22 + 3.08 25.29 ± 2.00

median 49.68 56.76 77.88 85.32 32.42 26.96

Table 3.10.2. Mean ± SE and median values for P levels (pmol/mg protein) produced by tissue expiants incubated for 24 hours with/without ACTH (10 nmol/l).
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3.11. The effects of CRF and ACTH on P production by isolated cytotrophoblast

cells

There was no significant change in P levels produced by cytotrophoblast cells when 

incubated with CRF compared to those levels produced by controls in seven of the 

placentae studied. However a significant decrease in progesterone synthesis was 

observed in one placenta (B4 p < 0.01) as can be seen in figure 3.11.1.

The addition of ACTH did not appear to alter the production of P in cell preparations 

from five of the placentae studied. Two placentae showed a significant increase in P 

synthesis (B2 p< 0.01 and B3 p < 0.02) but one placenta showed a significant decrease 

in synthesis (B4 < 0.01) (figure 3.11.2). The increase in synthesis occurred in cells 

incubated at a concentration of pregnenolone of 1 pmol/1 whilst those cells which 

produced less P than controls were incubated at a concentration of 10 pmol/I.

The mean ± SE and median levels for those placentae incubated with/without CRF or 

ACTH are given in tables 3.11.1. One placenta, B8 was incubated with pregnenolone at 

concentrations of 10 pmol/1 and 20 pmol/1.
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Control Bl B2 B3 Control B4 B5 B8 Control B6 B7 B8

1.0 pmol/1 10 pmol/1 20 pmol/1

Figure 3.11.1. The effect o f CRF (100 nmol/l) on P production by isolated cytotrophoblast cells 

incubated with various concentrations of pregnenolone.
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Figure 3.11.2. The effects of ACTH (10 nmol/l) on P levels production by isolated cytotrophoblast cells 

incubated with various concentrations of pregnenolone.
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Placenta M ean ± SE M edian

B l Control 1 pmol /I 44.44 ± 2.95 45.16

CRF 59.66 ± 5.45 62.42

ACTH 50.90 ± 2.72 49.29

B2 Control 1 pmol /I 35.19 + 4.08 29.34

CRF 25.43 ± 1.01 24.68

ACTH 91.24 ± 8.89 85.25

B3 Control 1 |imol /I 33.46 ± 4.66 34.24

CRF 36.57 ± 9.90 28.25

ACTH 67.10± 7.93 75.68

B4 Control 10 pmol /I 311.35:1 6.85 311.30

CRF 160.43 ± 17.19 174.81

ACTH 206.88 ± 10.51 162.81

B5 Control 10 |imol /I 160.65 ± 19.84 156.11

CRF 122.98 + 10.05 131.46

ACTH 134.27 + 6.02 133.06

B6 Control 20 pmol /I 272.55 ± 24.33 266.30

CRF 239.97 ± 9.45 233.10

ACTH 247.29 ± 21.03 233.93

B7 Control 20 |imol /I 932.56 ± 62.20 905.79

CRF 851.66 + 45.07 875.95

ACTH 884.49 ± 84.14 883.15

B8 Control 10 |imol A 306.13 + 23.22 314.90

CRF 285.45 ± 21.14 285.30

ACTH 253.57 ± 12.38 240.23

B8 Control 20 |imol /I 211.59 + 26.29 206.29

CRF 223.36 ± 13.99 213.33

ACTH 261.93 + 16.02 278.28

Table 3.11. Mean ±  SE and median values for P levels (pmol/100,000 viable cells/24 hours) produced by 

isolated cytotrophoblast cells incubated with pregnenolone alone (control) or pregnenolone with CRF 

(100 nmol/l)/ACTH (10 nmol/l).

134



3.12. The effects of CRF and ACTH on P levels produced by placental tissue

explants compared to isolated cytotrophoblast cells from the same placentae

Similar experiments on placental tissue from 3 placentae (B l, B2 and B3 from which 

cells were also isolated, see section 3.11) indicated that there was no consistent effect of 

CRF or ACTH on minced preparations (incubated with 1.0 pmol/1 pregnenolone) 

although one placenta (see figures 3.12.1, and 3.12.2) showed an increase in P 

production in the presence of CRF (p < 0.01) and ACTH (p < 0.01). The mean ± SE and 

median levels for those placentae incubated with/without CRF or ACTH are given in 

table 3.12.
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(of control)

Control Bl 82

Tissue explants

II
Control

Cytotrophoblast cells

F igure 3.12.1. The effect o f CRF (100 nm ol/l) on P production by both tissue explan ts and 

cytotrophoblast cell preparations obtained from three placentae.
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Figure 3.12.2. The effect o f ACTH (10 nm ol/l) on P production by both tissue explants and 

cytotrophoblast cell preparations obtained from three placentae.
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Placenta Mean ± SE Median

B l Control 54.25 ±  7.47 47.83

CRF 64.43 ±  5.94 59.31

ACTH 55.75+  9.19 49.93

B2 Control 133.38 ± 14.82 113.91

CRF 132.05+ 18.73 121.13

ACTH 186.90 ± 24.61 185.49

B3 Control 91.92 ± 5.82 93.21

CRF 197.19+ 58.70 120.74

ACTH 180.65 ± 1 6.22 162.75

Table 3.12. Mean ± SE and median values for P levels (pmol/mg protein/24 hours) produced by placental 

tissue expiants incubated with pregnenolone alone (control) or pregnenolone with CRF (100 nmol/l) 

/ACTH (10 nmol/l) for 24 hours.
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3.13. The effect of IGF-I on E2 production by placental tissue explants

On incubation with IGF-I (20 ng/ml) variable responses were observed in the tissue 

minces obtained from three individual placentae as can be seen from see figure 3.13.1. 

In one placenta there were no significant differences between the control explants 

incubated in DMEM alone and those incubated with IGF-I (20 ng/ml). However in 

placentae A3 and A4, levels were lower than the control throughout and there was a 

significant decrease in B2 levels produced by placenta A3 at five time points (t = 20 m p 

< 0.01; t = 40 m, p < 0.02; t = 100 m, p < 0.01; t = 120 m, p < 0.01; t = 180 m, p < 

0.05), and at one time point for placenta A4 (t = 20 m, p < 0.05). When the 

concentration of IGF-I was increased to 400 ng/ml there were no significant differences 

from control values for two of the three placentae studied but there was a significant 

decrease in levels with placenta A4 (time = 20 m, p < 0.02).

The mean ± SE and median values for E2 levels produced by those placenta incubated 

with IGF-I (20 ng/ml) or IGF-I (400 ng/ml) and those of the controls for each placentae 

are given in tables 3.13.1 and 3.13.2 respectively .
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Figure 3.13.1. The effect of IGF-I at 20 ng/ml on E2 production by tissue explants obtained from three 

placentae compared to controls incubated with DMEM alone.
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Figure 3.13.2. The effect of IGF-I at 400 ng/ml on E2 production by tissue explants obtained from three 

placentae compared to controls incubated with DMEM alone.
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Placenta A2 Placenta A3 Placenta A4
Time: (minutes) Control IG F-I Control IGF-I Control IG F-I

20 mean + SE 282.1 ± 40.6 224.8 ± 27.2 1144.8 ± 126.7 428.1 + 82.7 920.8 ± 91.9 575.1 ± 47.9

median 280.7 209.4 1140.3 344.6 909.1 570.8

40 mean ± SE 263.9 ± 40.1 236.4 + 13.8 582.0 ± 47.8 411.8 ± 20.3 837.8 ± 146.3 610.8 ± 64.5

median 239.7 223.8 571.7 436.63 681.0 602.4

60 mean ± SE 299.0 ± 19.0 253.7 ± 22.2 561.3 ± 126.7 476.8 + 32.4 786.5 ± 137.9 716.0 ± 60.4

median 292.8 257.3 561.2 478.6 705.4 671.4

80 mean ± SE 252.2 ± 15.4 263.9 ± 25.9 743.2 ± 131.8 575.3 ± 36.5 826.9 + 84.9 693.8 ± 63.1

median 244.5 255.9 652.7 576.2 757.7 688.9

100 mean ± SE 284.5 ± 17.6 332.9 ± 29.7 592.8 ± 34.2 470.8 ± 19.9 866.5 ± 142.7 690.0 ± 66.1

median 278.4 327.3 574.7 594.3 776.1 648.5

120 mean ± SE 380.8 + 46.9 353.9 ± 46.9 645.3 ± 23.2 537.5+ 17.4 1155.9 ± 142.9 900.6 ± 68.9

median 337.0 324.5 644.2 538.7 1161.3 815.7

150 mean ± SE 314.2 ± 16.6 286.2 ± 8.0 575.2 ± 17.8 494.3 + 55.8 1139.0 ±238.6 891.3 ± 67.2

median 305.4 277.7 578.2 505.6 1001.8 83&2

180 mean ±  SE 306.3 ± 16.7 297.8 ± 52.2 564.2 + 33.7 489.1+ 29.2 759.5 ± 92.8 676.6 ± 46.2

median 300.5 279.7 534.6 467.1 708.5 629.4

1440 mean ± SE 323.6 ± 16.0 418.1 ±52.9 820.1 +42.3 704.2+ 50.7 950.5 ± 74.9 806.2 ± 80.4

median 334.2 373.7 828.2 702.2 962.7 733.1

Table 3.13.1. Mean ± SE and median values for E2 levels (fmol/mg protein) produced by placental tissue expiants incubated with/without IGF-I at 20 ng/ml for 24 hours.
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Placenta A4 Placenta A5 Placenta A6
Time (minutes) Control IG F-I Control IG F-I Control IG F-I

20 mean ± SE 0.92 ± 0.09 0.59 + 0.04 1.92 ± 0.22 1.45 ± 0.21 3.88 ± 0.93 3.23 + 0.60

median 0.91 0.56 1.91 1.34 3 jG 3.30

40 mean ± SE 0.84 ± 0.15 0.62 ± 0.04 1.84 ± 0.35 1.52+ 0.28 4.36 ± 0.68 2.86+  0.70

median 0.68 0.62 1.81 1.51 4.96 2.76

60 mean ± SE 0 .79+  0.14 0.67 ± 0.09 1.12± 0.18 1.10+ 0.29 3.21 + 0.54 2.65 ± 0.55

median 0.71 0.61 0.95 0.95 2.94 2.54

80 mean ± SE 0.83 + 0.09 0.65 ± 0.06 0.88 ± 0.11 1.06+ 0.22 1.97 ± 0.24 1.81 + 0.30

median 0.76 0.67 0.77 0.87 1.80 1.66

100 mean ± SE 0.87 ± 0.14 0.60 ± 0.05 0.88 ± 0.17 1.03 ± 0.28 2.45 ± 0.47 1.74 ± 0.21

median 0.78 0.59 0.75 0.74 1.86 1.58

120 mean ± SE 1.16± 0.14 0.85 ± 0.08 1.05 ± 0.19 1.01 ± 0.28 2.31 + 0.35 1.65 ± 0.17

median 1.16 0.08 0.96 0.77 1.88 1.64

150 mean ± SE 1.14 ± 0.24 0.77 ±  0.07 1.06 ± 0.15 1.25+ 0.29 2.03 + 0.27 1.64+ 0.15

median 1.00 0.77 0.92 1.06 1.73 1.57

180 mean ± SE 0.76 ± 0.09 0.57 ± 0.08 1.26 ± 0.24 1.34 ± 0.38 2.08 + 0.33 1.76+ 0.16

median 0.71 0.51 1.08 1.12 1.74 1.84

1440 mean ± SE 0.95 ± 0.08 0.67 ± 0.11 1.32+ 0.12 1.36 ± 0.22 1.95 ± 0.28 1.73 ± 0.12

median 0.96 0.69 1.19 1.22 1.69 1.55

Table 3.13.2. Mean ± SE and median values for E2 levels (pmol/mg protein) produced by placental tissue expiants incubated with/without and IGF-I at 400 ng/ml
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3.14. The effects of IGF-I and IGF-II on El and E2 production by isolated
cytotrophoblast cells

3.I4.I. The effect of IGF-I on El production by isolated cytotrophoblast cells

There were no significant differences in E l levels produced by cells incubated with 

IGF-I (20 ng/ml) as compared to those of the controls in six of the seven placentae 

studied but a significant decrease was observed in one placenta (B2, p < 0.005, figure 

3.14.1a). At a higher concentration of IGF-I (400 ng/ml) there were no significant 

differences in E l levels produced by five of the placentae compared to levels produced 

by controls, with the exception of cells prepared from placenta B2 and placenta B3 in 

which levels were significantly decreased (p < 0.005, < 0.02 respectively, figure 

3 .14.1b). The mean ± SE and median levels for E l, are shown in table 3.14a.

%EI
(of control)

150-

m
(of control)

5 0 . I
%

Control Bl 82 B3 B4 B5 B6 B7

IGF-I 20 ng/ml IGF-I 400 ng/ml

Figure 3.14.1.a . Figure 3.14.1b.

Figures 3.14.1a and  3.14.1b. The effect of IGF-I at 20 ng/ml and 400 ng/ml respectively on El 

production by isolated cytotrophoblast cells obtained from seven placentae.

3.14.2. The effect of IGF-I on E2 production by isolated cytotrophoblast cells.

There were no significant differences in E2 levels in placental cell preparations from 

four individual placentae when incubated with IGF-I (20 ng/ml) in comparison to 

controls but E2 levels were significantly greater in 3 of the placentae studied (B 1 p < 

0.005, B2 p < 0.005, B3 p < 0.005, figure 3.14.2a). On incubating cell preparations with
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IGF-I (400 ng/ml) there were no significant differences in E2 levels in comparison to 

those produced by controls in any of the seven placentae studied (figure 3.14.2b). The 

mean ± SE and median levels for E2 are given in table 3.14a.

%E2
(of control) (of control)

Control B l B2 B3 B5 B6 B7 Control Bl 82  83 85 86  87

IGF-I 20 ng/ml 

Figure 3.14.2a

IGF-I 400 ng/ml 

Figure 3.14.2b

Figures 3.14.2a and 3.14.2b. The effect o f IGF-I at 20 ng/ml and 400 ng/ml respectively on E2 

production by isolated cytotrophoblast cells obtained from seven placentae.

3.14.3. The effects of IGF-I on TE production by isolated cytotrophoblast cells

When the total E l and E2 levels (TE) were calculated there were no significant 

differences in five of the placentae studied between isolated cell preparations incubated 

with IGF-I at 20 ng/ml compared to those levels produced by controls. However one of 

the placentae had significantly increased TE levels whilst another had significantly 

decreased TE levels when compared to those produced by the controls (B3, p < 0.002, 

B4, p < 0.05, respectively, figure 3.14.3a). Addition of IGF-I at 400 ng/ml had no 

significant effect on TE production when compared to the controls in any of the seven 

placentae studied (figure 3.14.3b.).

The mean ± SE and median levels for TE are given in tables 13.4b.
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Figure 3.14.3a. Figure 3.14.3b.

Figures 3.14.3a and 3.14.3b. The effects of IGF-I at 20 ng/ml and 400 ng/ml respectively on TE 

production by isolated cytotrophoblast cells obtained from seven placentae.

3.14.4. The effects of IGF-II on El production by isolated cytotrophoblast cells

Levels of E l produced from cell preparations Incubated with A and IGF-II at 20 ng/ml 

(figure 3.14.4a) were similar to control values in six placentae. However levels 

produced by placenta B2 were significantly lower than the controls (p < 0.01). On 

incubation with IGF-II at 400 ng/ml FI levels were not significantly different from 

those of the controls in four of the placentae studied (figure 3.14.4b). More variable 

responses were observed in three placentae with B 1 being significantly higher than the 

respective control levels (B l, p < 0.05), whilst in placenta B2 and B3 the levels of FI 

were markedly reduced in comparison to controls (B2 p < 0.005, B3 p= 0.005).

The mean ± SF and median values for F I levels produced by the placental cell 

preparations incubated with IGF-II are given in table 3.14a.
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Figures 3.14.4a and 3.14.4b. The effects o f IGF-II at 20 ng/ml and 400 ng/ml respectively on Ei 

production by isolated cytotrophoblast cells obtained from seven placentae.

3.14.5. The effect of IGF-II on E2 production by isolated cytotrophoblast cells.

In five of the placentae studied E2 levels in cell preparations incubated with either IGF- 

11 at 20 ng/ml or at 400 ng/ml were not significantly different from controls but they 

were markedly raised in placentae B2 (p < 0.005) and B3 (p < 0.005) at both IGF-11 

concentrations as can be seen in figures 3.14.5a and 3.14.5b. The mean ± SF and 

median values for these levels are given in table 3.14a.
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Figure 3.14.5a. Figure 3.14.5b.

Figures 3.14.5a and  3.14.5b The effect o f IGF-II at 20 ng/ml and 400 ng/ml respectively on E2 

production by isolated cytotrophoblast cells obtained from seven placentae.
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3.14.6. The effect of IGF-II on TE production by isolated cytotrophoblast cells

No significant differences were observed in TE levels produced by cell preparations 

incubated with IGF-II (20 ng/ml) with the exception of placentae B2 and B3 in which 

levels were significantly raised (p < 0.05 and p < 0.005 respectively) as compared to 

those of the controls (figure 3.14.6a). On incubation with IGF-II at 400 ng/ml TF levels 

were not significantly different from controls in experiments in five placenta but were 

again significantly raised in two (B2 p < 0.05, B3 p < 0.05) and are shown in figure 

3.14.6b. The mean ± SF and median values are given in table 3.14b.
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Figure 3.14.6a Figure 3.14.6b.

Figures 3.14.6a and 3.14.6b. The effect of IGF-II at 20 ng/ml and 400 ng/ml respectively on TE 

production by isolated cytotrophoblast cells obtained from seven placentae.
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El E2
Placenta Mean ± SE Median Mean ± SE Median

Bl Control 20.30 ± 2.04 19.73 11.80 ±0.73 11.62

IGF-I ( 20 ng/ml) 18.73 ± 0.93 17.94 18.19 ±0.49 18.46

IGF-I (400 ng/ml) 25.87 ± 0.86 26.42 10.82 ±0.35 11.10

IGF-II ( 20 ng/ml) 21.66 ± 0.75 22.55 12.87 ±0.42 12.60

IGF-II (400 ng/ml) 31.05 ±3.43 31.17 10.24 ±0.36 10.42

B2 Control 2.30 ± 0.07 2.30 3.03 ±0.11 3.10

IGF-I ( 20 ng/ml) 1.71 ± 0.16 1.73 4.10 ±0.17 4.15

IGF-I (400 ng/ml) 1.56± 0.13 1.61 2.69 ± 0.22 2.61

IGF-II ( 20 ng/ml) 1.62 ± 0.13 1.61 4.53 ± 0.48 4.64

IGF-II (400 ng/ml) 1.73 ± 0.09 1.76 4.09 ±0.11 4.10

B3 Control 3.80 ± 0.08 3.78 3.81 ±0.10 3.86

IGF-1 ( 20 ng/ml) 3.65 ± 0.10 3.73 4.97 ±0.12 4.89

IGF-I (400 ng/ml) 3.00 ± 0.16 2^2 4.26 ±.0.19 4.29

IGF-II ( 20 ng/ml) 3.82 ± 0.14 3.77 4.85 ±0.19 4.97

IGF-Il (400 ng/ml) 2.76 ± 0.07 2.75 5.53 ±0.17 5.67

B4 Control 2.08 ± 0.06 2.05 5.73 ±0.11 5.67

IGF-I ( 20 ng/ml) 1.74 ± 0.17 1.87 5.50 ±0.15 5.63

IGF-I (400 ng/ml) 1.92+ 0.17 1.75 5.21 ±0.32 5.04

IGF-II ( 20 ng/ml) 2.15 ± 0.17 2.18 5.94 ±0.18 5.95

IGF-II (400 ng/ml) 2.11 ± 0.15 1.90 5.77 ± 0.27 5.81

B5 Control 2.64 ± 0.17 2.81 5.25 ±0.17 5.34

IGF-I ( 20 ng/ml) 2.34 ± 0.17 2.33 5.29 ± 0.39 4.90

IGF-I (400 ng/ml) 2.94 ± 0.11 2.90 4.86 ±0.21 4.72

IGF-II ( 20 ng/ml) 2.44 ± 0.11 2.44 4.81 ±0.37 5.17

IGF-II (400 ng/ml) 2.31 ± 0.28 2.36 5.52 ±0.19 5.38

B6 Control 3.58 ± 0.20 3.75 9.23 ± 1.05 9.53

IGF-I ( 20 ng/ml) 3.09 ± 0.16 2,76 10.41 ±0.45 10.51

IGF-I (400 ng/ml) 2.85 ± 0.12 3.75 12.65 ±0.13 12.00

IGF-II ( 20 ng/ml) 3.28 ± 0.20 3.12 10.77 ±0.47 10.65

IGF-II (400 ng/ml) 3.47 ± 0.27 3.49 11.40 ±0.94 11.23

B7 Control 2.75 ± 0.13 2^2 6.68 ± 0.18 7.83

IGF-I ( 20 ng/ml) 2.63 ± 0.12 2.64 8.28 ±0.13

IGF-I (400 ng/ml) 3.00 ± 2.28 3.04 8.23 ± 0.42 8.09

IGF-II ( 20 ng/ml) 2.55 ± 1.09 2.52 7.33 ±0.22 7.55

IGF-II (400 ng/ml) 2.61 ± 0.09 2.53 7.56 ±0.27 7.38

Table 3.14a. Mean ± SE and median E l and E2 levels (pmol/100,000 viable cells/24 hours) produced by 

cytotrophoblast cells incubated with IGF-I or IGF-II and A or with A only (control).
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Placenta Mean ± SE Median

B 1 Control 32.10 ± 2.31 31.98

IGF-I ( 20 ng/ml) 36.91 ± 1.15 36.90

IGF-I (400 ng/ml) 36.68 ± 1.02 37.07

IGF-II ( 20 ng/ml) 34.53 ± 1.76 35.38

IGF-II (400 ng/ml) 41.30 ± 1.02 41.54

B2 Control 5.32 ± 0.17 54.60

IGF-I ( 20 ng/ml) 5.80 ± 0.09 31.46

IGF-I (400 ng/ml) 4.25 ± 1.55 21.61

IGF-II ( 20 ng/ml) 6.15 ± 2.30 32.83

IGF-II (400 ng/ml) 5.81 ± 0.10 32.65

B3 Control 7.61 ± 0.13 7.70

IGF-I ( 20 ng/ml) 8.62 ± 0.35 8.64

IGF-I (400 ng/ml) 7.26 ± 0.08 7.12

IGF-II ( 20 ng/ml) 8.67 ± 0.10 8j&

IGF-II (400 ng/ml) 8.29+ 0.21 8.42

B4 Control 7.81 ± 0.07 7.92

IGF-I ( 20 ng/ml) 7.24 ± 0.18 7.07

IGF-I (400 ng/ml) 7.12 ± 0.48 6.79

IGF-II ( 20 ng/ml) 8.08 ± 0.31 8.06

IGF-II (400 ng/ml) 7.88 ± 0.20 7.91

B5 Control 7.89 ± 0.30 8.07

IGF-I ( 20 ng/ml) 7.63 ± 0.50 7.24

IGF-I (400 ng/ml) 7.80 ± 0.31 7.56

IGF-II ( 20 ng/ml) 7.25 ± 0.45 7.52

IGF-II (400 ng/ml) 7.83± 0.27 8.06

B6 Control 12.81 ± 1.07 13.04

IGF-I ( 20 ng/ml) 13.50 ± 0.40 13.51

IGF-I (400 ng/ml) 15.50 ± 1.42 14.69

IGF-II ( 20 ng/ml) 14.05 ± 0.46 14.08

IGF-II (400 ng/ml) 14.87 ± 1 .10 14.84

B7 Control 9.43 ± 0.11 10.68

IGF-I ( 20 ng/ml) 10.91 ± 0.14 10.93

IGF-I (400 ng/ml) 11.23 ± 0.39 11.32

IGF-II ( 20 ng/ml) 9.88 ± 0.24 9.89

IGF-II (400 ng/ml) 10.16 ± 0.31 9.98

Table 3.14b. Mean ± SE and median values for TE levels (pmol/100,000 viable cells/24 hours) produced 

by isolated cytotrophoblast cells incubated with A (control) or A and IGF-I or IGF-II.
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3.15.1. The effects of IGF-I on El and E2 levels produced by tissue explants

compared to cell preparations obtained from the same placentae

Figures 3 .15.la -3 .15. If  show the comparison of the effects of IGF-I on E l, E2 and TE 

levels produced by cells and tissue obtained from three placentae. Levels of E l, E2 and 

TE produced by tissue minces from these three placentae were not significantly 

different compared to controls when incubated with IGF-I at 20 ng/ml or IGF-I at 400 

ng/ml unlike those of the cell preparations obtained from these same placentae B l, B2 

and B3 discussed in section 3.14.1.

The mean ± SE and median values for those levels produced by the tissue minces are 

shown in table 3.15a and 3.15b .
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Figure 3.15.1a. The effect o f IGF-I at 20 ng/ml on E l production by tissue explants and isolated 

cytotrophoblast cells obtained from three placentae.
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Figure 3.15.1b. The effect o f IGF-I at 400 ng/ml on E l production by tissue explants and isolated

cytotrophoblast cells obtained from three placentae.
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F igure  3.15.1c. The effect o f IGF-I at 20 ng/ml on E2 production by tissue explants and isolated 

cytotrophoblast cells obtained from three placentae.
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F igure 3 .15 .Id . The effect of IGF-I at 400 ng/ml on E2 production by tissue explants and isolated 

cytotrophoblast cells obtained from three placentae.
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F igu re  3 .1 5 .le .  The effect o f IGF-I at 20 ng/ml on TE production by tissue explants and isolated

cytotrophoblast cells obtained from three placentae.
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Figure 3.15.If. The effect of IGF-I at 400 ng/ml on TE production by tissue explants and isolated 

cytotrophoblast cells obtained from three placentae.

3.15.2. The effects of IGF-II on El and E2 production by tissue expiants compared 

to that of isolated cytotrophoblast cells obtained from the same placentae

The levels of E l, E2 and TE produced by tissue explants were not significantly different 

from those of controls with the exception of placenta B2 (p < 0.05) in which the TE was 

significantly lower on incubation with IGF-II at 400 ng/ml. In the cell preparations from 

this particular placenta the TE levels were significantly higher than the controls on 

incubation with IGF-II at 400 ng/ml. Figures 3 .15.2a-3.15.2f show the comparison of 

tissue and cell preparations. The mean ± SE and median values for levels of E l, E2 and 

TE produced by tissue explants incubated with/without IGF-II are shown in tables 3.15a 

and 3.15b.
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Figure 3.15.2a. The effect o f IGF-II at 20 ng/ml on El production by tissue explants and isolated 

cytotrophoblast cells obtained from three placentae.
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Figure 3.15.2b. The effect of IGF-II at 400 ng/ml on E l production by tissue explants and isolated

cytotrophoblast cells obtained from three placentae.
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Figure 3.15.2c. The effect of IGF-II at 20 ng/ml on E2 production by tissue explants and isolated

cytotrophoblast cells obtained from three placentae.
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F igu re  3.15.2d. The effect o f IGF-II at 400 ng/ml on E2 production by tissue explants and isolated 

cytotrophoblast cells obtained from three placentae.
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F igure  3.15.2e. The effect of IGE-II at 20 ng/ml on TE production by tissue explants and isolated 

cytotrophoblast cells obtained from three placentae.
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F igure  3.15.2f. The effects of IGF-II at 400 ng/ml on TE production by tissue explants and isolated

cytotrophoblast cells obtained from three placentae.

152



E l E2

Placenta Mean ± SE Median Mean ± SE Median

Bl Control 3.13 ± 0.34 2.73 0.53 ± 0.05 0.54

IGF-I ( 20ng/ml) 4.09 ± 0.66 3.85 0.94 ± 0.24 0.67

IGF-I (400ng/ml) 3.52 ± 0.50 3.38 0.65 ± 0.14 0.60

IGF-II ( 20ng/ml) 4.62 ± 1.34 3.45 0.95 ± 0.36 0.57

IGF-II (400ng/ml) 3.86 ± 0.36 4.16 0.81 ± 0.12 0.73

B2 Control 25.53 ± 0.28 23.91 3.47 ± 0.36 3.43

IGF-I ( 20ng/ml) 24.66 ± 0.36 27.80 3.29 ± 0.57 3.05

IGF-I (400ng/ml) 19.07 ± 0.31 18.89 2.96 ± 0.29 2.87

IGF-II ( 20ng/ml) 25.10± 0.70 18.13 2.92 ± 0.87 1.82

IGF-II (400ng/ml) 18.39 ± 1.65 18.45 2.58 ± 0.23 2.54

B3 Control 4.45 ± 0.67 4.23 0.78 ± 0.07 0.72

IGF-I ( 20ng/ml) 4.58 ± 0.56 4.30 1.01 ± 0.19 0.86

IGF-I (400ng/ml) 5.82 ± 1.03 5.26 1.00 ± 0.10 1.01

IGF-II ( 20ng/ml) 5.20 ± 0.65 5.11 0.97 ± 0.15 1.03

IGF-II (400ng/ml) 5.40 ± 0.72 5.14 0.94 ± 0.10 0.97

Table 3.15a. M ean ±  SE and m edian values for E l  and F2 levels (pm ol/m g protein/24 hours)

by placental tissue explants incubated with A alone (control) or A and IGF-I or IGF-II.

TE

Placenta Mean ± SE Median

Bl Control 3.66 ± 0.37 3.27

IGF-I ( 20ng/ml) 5.03 ± 0.88 4.52

IGF-I (400ng/ml) 4.17 ± 0.64 3.98

IGF-II ( 20ng/ml) 5.56 ± 1.70 4.02

IGF-II (400ng/ml) 4.68 ± 0.45 4.89

B2 Control 29.00 ± 3.01 27.22

IGF-I ( 20ng/ml) 27.95 ± 4.03 31.68

IGF-I (400ng/ml) 22.03 ± 3.23 21.97

IGF-II ( 20ng/ml) 28.02 ± 7.82 19.76

IGF-II (400ng/ml) 20.97 ± 1.74 20.77

B3 Control 5.24 ± 0.73 4.91

IGF-I ( 20ng/ml) 5.59 ± 0.74 5.16

IGF-I (400ng/ml) 6.82 ± 1.11 6.27

IGF-II ( 20ng/ml) 6.17 ± 0.79 6.14

IGF-II (400ng/ml) 6.34 ± 0.77 6.11

Table 3.15b. Mean ±  SE and median values for TE levels (pmol/mg protein/24 hours) produced by 

placental tissue expiants incubated with A alone (control) or A and IGF-I or IGF-II.
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3.16. The effect of IGF-I on E3 production by placental tissue explants

There were no significant effects of IGF-I on E3 production in comparison to those of 

the controls in tissue incubates from all three placentae incubated for 24 hours except 

for a significant decrease in E3 levels produced by placenta A4 at one time point (t = 

1 0 0  m, p < 0 .0 2 ).

The mean ± SE and median values for E3 levels produced by tissue incubated 

with/without IGF-I at 20 ng/ml and IGF-I at 400 ng/ml are given in tables 3.16.1 and

3.16.2 respectively.
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Figure 3.16.1. The effect of IGF-I at 20 ng/ml on E3 production by tissue explants obtained from three 

placentae compared to controls incubated with DMEM alone.
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Figure 3.16.2. The effect of IGF-I at 400 ng/ml on E3 production by tissue explants obtained from three

placentae compared to controls incubated with DMEM alone.
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Placenta A2 Placenta A3 Placenta A4
Time (minutes) Control IG F-I Control IG F-I Control IG F-I

20 mean ± SE 2.28 ± 0.07 2 .17+  0.06 0.72+  0.12 0.64 ± 0.04 1.86 ± 0.38 1.51 ± 0.25

median 233 2.20 0.68 0.66 1.84 1.57

40 mean ± SE 2.06 ± 0.20 1.82 ± 0.07 0.89+  0.09 0.77 ± 0.07 2.16 + 0.26 1.74 ± 0.15

median 2.23 1.78 0.83 8.22 2.04 1.69

60 mean ± SE 2.26+  0.15 2.33 + 0.15 0.92+  0.03 0.89 ± 0.06 2.06+ 0.19 1.74 ± 0.16

median 2.27 2.14 0.89 0.91 1.99 1.54

80 mean ± SE 2.51 ± 0.17 2.61 + 0.19 0.94 ± 0.05 0.88+ 0.05 2.12 ± 0.24 1.79 ± 0.20

median 2.55 2.67 0.94 0.90 1.99 1.59

100 mean ± SE 2.55 ± 0.20 2 .51+  0.12 0.92+ 0.07 0.92 ± 0.04 2.54 + 0.25 1.84 ± 0.18

median 2.41 2.50 0.91 0.94 2.35 1.82

120 mean ± SE 2.58 ± 0.20 2.31 + 0.28 0.98 ± 0.05 0.91 ± 0.04 2.49 ± 0.27 1.92 ± 0.14

median 258 2.45 1.00 CL88 2.35 2.01

150 mean ± SE 2.99 ± 0.38 2.75 ± 0.15 0.90 ± 0.04 0.85 ± 0.02 2.28 ±0.18 1.88 ± 0.15

median 2.69 2.73 0.90 0.85 2.20 1.88

180 mean ± SE 2.54 + 0.19 2.65+ 0.15 1.29+ 0.5 1.14+ 0.06 2.66 ± 0.27 2 .02 ± 0.20

median 2.42 2.73 1.25 1.12 2.55 2.20

1440 mean ± SE 3.14 ± 0.34 3.00 ± 0.42 1.45+ 0.11 1.28 ± 0.05 2.50 ±0.16 2.23 ± 0.18

median 3.02 3.12 1.40 1.26 2.57 2 3 7

d median values for E3 levels (pmol/mg protein) produced by placental tissue expiants incubated with/without IGF-I at 20
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Placenta A4 Placenta A5 Placenta A6
Time (minutes) Control IG F-I Control IG F-I Control IG F-I

20 mean ± SE 1.86 ±0.38 1.48± 0.34 5.02 ±0.79 5.57 ±0.81 9.96 ±0.98 8.23 ±

median 1.84 1.49 4.51 4.98 9.62 7.96

40 mean ± SE 2.16 ± 0 .26 1.81 ±0.25 5.36 ±0.81 5.68 ± 0.98 13.46± 1.52 9.99 ±

median 2.04 1.61 4.59 4.94 12.89 10.07

60 mean ± SE 2.06 ±0.19 1.69±0.19 5.03 ± 0.41 5.25 ±0.71 13.21 ± 1.81 9.92 ±

median 1.99 1.52 4.58 4.81 12.07 938

80 mean ± SE 2.12 ± 0 .24 1.74 ±0.22 4.49 ± 0.76 5.08 ±0.71 13.96 ± 1.54 11.18±

median 1.99 1.69 4.69 4.81 12.56 11.36

100 mean ± SE 2.54 ± 0.25 1.66 ± 0.16 5.87 ±0.74 6.06 ±0.91 14.68 ± 1.21 11.33 ±

median 2.35 1.68 539 5.40 13.79 11.30

120 mean ± SE 2.49 ± 0.27 1.89 ±0.23 5.80 ±0 .90 5.08 ±0.91 11.64± 1.02 9.85 ±

median 2.35 1.77 5.31 5.10 11.46 9.55

150 mean ± SE 2.28 ±0.18 1.83±0.14 5.23 ±0.51 5.43 ±0.71 12.75 ± 1.39 10.40 ±

median 2.20 1.74 5.12 4.99 12.25 10.31

180 mean ± SE 2.66 ± 0.27 2.02 ± 0.22 5.63 ±0.56 5.95 ± 0.86 15.45 ± 1.82 12.57 ±

median 2.55 1.82 5.29 5.62 14.36 12.40

1440 mean ±  SE 2.57 ± 0 .16 2.14±0.21 6.60 ± 0.62 7.11 ±1.07 14.65 ±2.21 12.45 ±

median 2.50 1.95 6.11 6.25 13.43 11.73

Table 3.16.2. The mean ± SE and median E3 levels (pmol/mg protein) produced by placental expiants incubated with/without IGF-I at 400 ng/ml for 24 hours.
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3.17.1. The effects of IGF-I on E3 production by isolated cytotrophoblast cells

There was no significant difference in levels of E3 produced by isolated cell 

preparations incubated with IGF-I (20 ng/ml) in comparison to those of the controls in 

three of the seven placentae studied. In the other four placentae variable responses were 

observed. Cytotrophoblast cells isolated from placenta B 1 produced significantly less 

E3 (p < 0.05), whilst placentae 32, 33, 35 had markedly increased E3 levels (p <0.01, 

p < 0 .01, p < 0.02 respectively) compared to those of the controls as can be seen in 

figure 3.17.1a. On incubation with IGF-I (400 ng/ml) there was no change in E3 levels 

measured in five placentae compared to controls whereas cells isolated from placentae 

33 and 35 showed significantly raised levels (p = 0.003 for both placentae, see figure 

3.17.1b).

The mean ± SE and median values for E3 levels incubated with IGF-I are given in table 

3.17.
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Figure 3.17.1a and 3.17.1b. The effects of IGF-I at 20 ng/ml and 400 ng/ml respectively on E3 levels 

produced by isolated cytotrophoblast cells obtained from seven placentae.

3.17.2. The effect of IGF-II on E3 production by isolated cytotrophoblast cells

It can be seen from figure 3.17.2a that the levels of E3 produced by placental cells 

incubated with IGF-II at 20 ng/ml and 400 ng/ml were not significantly different from
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those of the control levels in five placentae whereas placentae B2 and B3 had markedly 

raised E3 levels (p < 0.004 in all cases). The mean ± SE and median values for E3 

levels produced by cells incubated with IGF-II are given in table 3.17.
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%E3 >50-
(of control)
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Control Bl B2

IGF-II 20 ng/ml 

Figure 3.17.2a
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%E3
(of control) lOO.
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Control Bl B2 B3 B4 B5

IGF-II 400 ng/ml 

Figure 3.176.2b.

Figures 3.17.2a and 3.17.2b. The effect of IGF-II at 20 ng/ml and 400 ng/ml respectively on E3 

production by isolated cytotrophoblast cells obtained from seven placentae.
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Placenta Mean ± SE Median

B 1 Control 1.53 ±  0.06 1.51

IGF-I ( 20 ng/ml) 1.30+ 0.06 1.26

IGF-I (400 ng/ml) 1.46 ±  0.03 1.43

IGF-II ( 20 ng/ml) 1.54 ±  0.10 1.49

IGF-II (400 ng/ml) 1.55 ±  0.09 1.62

B2 Control 0.18 ±  0.01 0.18

IGF-I ( 20 ng/ml) 0.31 ±  0.05 0.03

IGF-I (400 ng/ml) 0.19 ± 0.01 0.20

IGF-II ( 20 ng/ml) 0.39 ± 0.02 0.38

IGF-II (400 ng/ml) 0.34 ± 0.02 0.35

B3 Control 0.69 ± 0.01 0.69

IGF-I ( 20 ng/ml) 1.00 ± 0.06 1.50

IGF-I (400 ng/ml) 0.76 ± 0.03 0.74

IGF-II ( 20 ng/ml) 1.62 ± 0.05 1.60

IGF-II (400 ng/ml) 1.16± 0.11 1.21

B4 Control 0.91 ± 0.07 0.89

IGF-I ( 20 ng/ml) 1.02 ± 0.03 1.02

IGF-I (400 ng/ml) 0.90 ± 0.04 0.91

IGF-II ( 20 ng/ml) 0.95 ± 0.03 0.94

IGF-II (400 ng/ml) 0.90 ± 0.05 0.91

B5 Control 0.70 ± 0.01 0.70

IGF-I ( 20 ng/ml) 0.82 ± 0.03 0.82

IGF-I (400 ng/ml) 0.79 ± 0.02 0.79

IGF-II ( 20 ng/ml) 0.70 ± 0.03 0.71

IGF-II (400 ng/ml) 0.76 ± 0.05 0.76

B6 Control 3.07 ± 0.11 3.17

IGF-I ( 20 ng/ml) 2.62 ± 0.13 2.69

IGF-I (400 ng/ml) 3.21 ± 0.21 3.03

IGF-II ( 20 ng/ml) 2.89 ± 0.16 2.94

IGF-II (400 ng/ml) 2.91 ± 0.17 2.78

B7 Control 0.99 ± 0.08 1.07

IGF-I ( 20 ng/ml) 0.99 ± 0.04 1.01

IGF-I (400 ng/ml) 0.95 ± 0.10 1.03

IGF-II ( 20 ng/ml) 0.97 ± 0.05 0.96

IGF-II (400 ng/ml) 1.02 ± 0.06 1.08

Table 3.17. Mean ±  SE and median values for B3 levels (pmol/100,000 viable cells/24 hours) produced

by isolated cytotrophoblast cells incubated with 16a-0H A  or 16a-0H A  and IGF-I or IGF-II.
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3.18. The effects of IGF-I and IGF-II on E3 production by tissue explants

compared to those produced by cytotrophoblast cells isolated from the same three

placentae

Whereas cell preparations from placentae Bl, B2 and B3 showed variable responses to 

both IGF-I and IGF-II there appeared to be no significant increase or decrease in E3 

production from tissue explants from these placentae incubated with either IGF-I or 

IGF-II (Figures 3.18a-3.18d). The mean ± SE and median values for E3 levels produced 

by tissue explants incubated with IGF-II are shown in table 3.18.
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Figure 3.18a. The effects o f IGF-I at 20 ng/ml on E3 production by tissue explants and isolated 

cytotrophoblast cells obtained from three placentae.
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Figure 3.18b. T he effects o f IGF-I at 400 ng/ml on E3 production by tissue explants and isolated

cytotrophoblast cells obtained from three placentae.
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Figure 3.18c. The effects o f IGF-II at 20 ng/ml on E3 production by tissue explants and isolated 

cytotrophoblast cells obtained from three placentae.
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Figure 3.18d. The effects of IGF-II at 400 ng/ml on E3 production by tissue explants and isolated 

cytotrophoblast cells obtained from three placentae.
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Placenta Mean ± SE Median

B l Control 4.66 ± 0.08 4.02

IGF-I ( 20 ng/ml) 4 .15+  0.56 3.40

IGF-I (400 ng/ml) 4.05 ± 0.43 4.08

IGF-II ( 20 ng/ml) 4.93 ± 0.29 5.03

IGF-II (400 ng/ml) 4.03 ± 037 3.95

B2 Control 8.89 ± 0.67 8.86

IGF-I ( 20 ng/ml) 8.48 ± 0.82 8.35

IGF-I (400 ng/ml) 10.73 ± 1.41 10.27

IGF-II ( 20 ng/ml) 9.61 ± 1.11 9.75

IGF-II (400 ng/ml) 8.42+ 1.03 7.76

B3 Control 6.06 + 0.46 5.92

IGF-I ( 20 ng/ml) 5.06 ± 0.44 4.69

IGF-I (400 ng/ml) 5.66 ± 1.04 4.90

IGF-II ( 20 ng/ml) 6 .10+  0.82 6.15

IGF-II (400 ng/ml) 5.17 ± 0.55 4.99

T able  3.18. Mean ± SE and median values for E3 levels (pmol/mg protein/24 hours) produced by 

placental tissue expiants incubated with 16a-0H A  or 16a-0H A  and IGF-I or IGF-II.
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3.19. The effects of IGF-I on P production by placental tissue explants

There were no significant differences in P levels produced by tissue incubated with 

IGF-I (20 ng/ml) compared to those of the controls (incubated in DMEM alone) in the 

three placentae studied with the exception of placenta A3 which had significantly lower 

levels at just one time point (p < 0.03) which can be seen in Figure 3.19.1.

When minces were incubated with IGF-I at 400 ng/ml there was no significant 

differences from control values in two of the placentae studied, whereas in the third 

placenta (A4 ) there was a significant decrease in P produced when IGF-I was present at 

various time points, as can be seen in figure 3.19.2 (t = 40, 60, 100, 120, 150 m, p < 

0.05; t = 80 m, p < 0.02). This significant decrease was not present at 24 hours.

The mean ± SB and median values for P levels produced by tissue explants incubated 

with/without IGF-I at 20 ng/ml and 400 ng/ml are shown in tables 3.19.1 and 3.19.2 

respectively.

%  p 
(o f control)
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Figure 3.19.1. The effects of IGF-I at 20 ng/ml on P production by tissue explants obtained from three 

placentae compared to controls incubated with DMEM alone.
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Figure 3.19.2. The effect of IGF-I at 400 ng/ml on P production by tissue explants obtained from three 

placentae compared to controls incubated with DMEM alone.
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Placenta A2 Placenta A3 Placenta A4
Time! (minutes) Control IG F-I Control IG F-I Control IG F-I

20 mean ± SE 58.58 +2.13 55.82 ±2.48 23.76 ± 1.07 18.78 ± 1.34 32.74 ±5.34 27.40

median 57.33 62.36 24.78 19.43 : # j 2 25.76

40 mean ± SE 69.42 ± 4.58 68.42 ±4.10 16.40 ±1.43 15.46 ±0.15 43.64 ±5.06 27.31

median 69.48 71.26 17.21 15.17 45.41 30.72

60 mean ± SE 66.20 ± 7.09 60.53 ± 5.76 24.19 ± 2 .24 19.20 ±3.40 43.75 ±5.25 33.67

median 66.27 58.35 24.26 21.31 42.48 37.46

80 mean ± SE 63.39 ±4.71 67.70 ±5.82 25.02 ±1.05 23.30 ± 1.97 52.21 ±4.00 43.19

median 62.71 63.09 24.74 23.95 49.42 42.17

100 mean ± SE 71.14 ±5.76 71.44 ±6.07 27.22 ± 2.35 25.33 ±2.39 56.26 ±4.54 47.48

median 74.51 67.35 25.27 25.22 56.92 44.17

120 mean ± SE 76.68 ±  5.63 69.72 ± 5.22 31.22 ±2.73 27.15 ±2.16 56.16 ± 6.14 41.94

median 77.24 64.68 31.79 27.63 57.18 39.97

150 mean ± SE 71.36 ±4.93 72.94 ± 6.39 30.73 ± 1.88 27.70 ±2.13 52.23 ±7.06 42.54 :

median 69.89 67.67 29.91 26.37 58.19 41.50

180 mean ± SE 80.96 ±3.69 77.38 ±5.76 37.27 ± 4 .10 33.15 ±3.56 61.66 ± 6.81 45.87:

median 80.42 71.64 34 57.27 42.80

1440 mean ± SB 81.78 ±5.41 88.63 ±5.76 33.22 ±3.08 29.67 ± 1.84 62.11 ±8.97 48.79:

median 77.88 86.81 32A2 30.59 59.69 50.31

Table 3.19.1. Mean ± SE and median values for P levels (pmol/mg protein) produced by placental tissue expiants incubated with/without IGF-I at 20 ng/ml for 24 hours.

165



Placenta A4 Placenta A5 Placenta A6
Time (minutes) Control IG F-I Control IG F-I Control IG F-I

20 mean ± SE 32.75 ± 5.34 25.51 ± 3.18 34.31 ± 6.36 36.76 ± 4.32 73.71 ± 636 73.30 ± 5.28

median 29.32 23.56 30.50 35.84 72.41 72.09

40 mean ± SE 43.63 ± 5.06 24.80 ± 3 .40 86.36 ± 17.78 75.62 ± 20.26 110.22 + 5.77 84.62 + 9.31

median 45.41 23.56 89.93 35.84 106.37 72.09

60 mean ± SE 43.76 ± 5.25 29.61 ± 2.70 91.23 + 25.03 93.78 ± 23.85 141.67 ± 18.83 102.14 ± 7.22

median 42.48 28.46 75.05 80.23 127.11 102.30

80 mean + SE 52.22 ± 4.00 36.54 ± 3.24 110.60 + 36.54 104.46 ± 26.14 132.86 + 21.27 123.38 ± 9.02

median 49.42 36.25 77.78 88.02 119.98 126.56

100 mean ± SE 56.25 ± 4.54 39.88 ± 6.26 89.58 ± 23.63 78.36 + 11.07 137.44 + 17.84 104.53 ± 9.00

median 56.92 35.74 76.00 71.26 125.71 101.70

120 mean ± SE 56.16 ± 6.14 40.23 ± 4.23 84.11 ± 15.30 75.43 + 12.66 167.52 ± 24.14 134.90 + 12.24

median 57.18 36.38 68.18 65.70 151.62 134.86

150 mean ± SE 62.23 ± 7.06 43.66 ± 6.68 85.38 + 15.53 94.16 ± 18.89 149.94 ± 17.39 119.89 + 7.79

median 58.19 39.05 69.96 77.27 150.41 118.07

180 mean ± SE 61.66 ± 6.81 43.70 ± 6.11 90.09 ± 19.02 100.11 + 18.44 159.76 ± 20.92 131.43 + 11.86

median 57.27 39.97 73.33 97.12 155.03 141.03

1440 mean ± SE 62.11 ± 8.97 48.59 ± 5.15 95.21 ± 15.90 100.58 ± 19.37 172.07 ± 17.30 135.01 ± 10.46

median 59.69 44.58 79.02 86.43 175.25 132.19

Table 3.19.2. Mean ± SE and median values for P levels (pmol/mg protein) produced by placental tissue expiants incubated with/without IGF-I at 400 ng/ml for 24 hours.
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3.20.1. The effect of IGF-I on P production by isolated cytotrophoblast cells

There were no significant differences in P levels produced by cytotrophoblast cells

incubated with IGF-I at both 20 ng/ml and 400 ng/ml in six of the seven placentae

studied. However levels produced by placenta B4 were significantly lower when cells

were incubated with IGF-I at 20 ng/ml (p < 0.005) and IGF-I at 400 ng/ml (p < 0.05) as

illustrated in figures 3.20.1a and 3.20.1b. The mean ± SB and median values for P levels

produced by cells incubated with pregnenolone alone or with the addition of IGF-I are

shown in table 3.20a-c .
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1 0 0 -

%P
(of control)

Control Bl 8 2  83

1 .0  pmol/1

Control 84 85 88 Control 86 87 88

1 0  pmol/1 2 0  pmol/1

F igure 3.20.1a. The effect of IGF-I at 20 ng/ml on P production by cytotrophoblast cells isolated from 

seven placentae and incubated with various concentrations of pregnenolone.
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F igure 3.20.1b. The effect of IGF-I at 400 ng/ml on P production by cytotrophoblast cells isolated from 

seven placentae and incubated with various concentrations of pregnenolone.
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3.20.2 The effects of IGF-II on P production by isolated cytotrophoblasts

On incubation with IGF-II (20 ng/ml) there was no significant difference in levels of P 

as compared to those of the controls in seven of the eight placentae studied whereas the 

levels produced by placenta B4 were significantly lower than those of the controls (p < 

0.005, see figure 3.20.2a). When cells were incubated with IGF-II at a concentration of 

400 ng/ml P levels were not significantly different to controls in four placentae. 

However P levels produced by cell preparations obtained from B4 and B8  incubated 

with IGF-II at 400 ng/ml and 10 pmol/1 pregnenolone, were significantly lower than 

controls (p < 0.005, p < 0.04 respectively). When the cells were incubated with IGF-II 

at 400 ng/ml and 20 pmol/1 pregnenolone, levels obtained from placenta B6  were 

significantly higher (p < 0.005, see figure 3.20.2b) but those levels produced by 

placenta B7 were significantly lower (p > 0.01) than those of controls.

The mean ± SE and median values for P levels produced by cells incubated with IGF-II 

are in table 3.20.2a-c.

i(of control)

iii
Control Bl B2 B3

1.0 jLtmol/l

Control B4 B5 B8

1 0  pmol/1

Control B6 B7 I 

2 0  pmol/1

Figure 3.20.2a.The effects o f IGF-II at 20 ng/ml on P production by cytotrophoblast cells isolated from 

seven placentae and incubated with various concentrations of pregnenolone.
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F igure 3.20.2b. The effects of IGF-II at 400 ng/ml on P production by cytotrophoblast cells isolated from 

seven placentae and incubated with various concentrations of pregnenolone.

Placenta

B 1 Control

IGF-I (20 ng/ml) 

IGF-I (400 ng/ml) 

IGF-II (20 ng/ml) 

IGF-II (400 ng/ml)

Mean ± SE

44.44 ±  2.95

48.84 ± 4.70

41.61 ± 2.01

49.02 ± 5.56

39 .9 2 ±  T57

M edian

45.16 

6Z42 

41.66 

51.59 

35^7

82  Control

IGF-I (20 ng/ml) 

IGF-I (400 ng/ml) 

IGF-II (20 ng/ml) 

IGF-II (400 ng/ml)

35 .19+  4.08 

27.47 ± 2.56 

4 7 .9 6 +  13.84 

3 ^5 3  ±  &95 

36 .5 6 ±  6.83

2 9 3 4

24.68

27.18

3833

31.71

83 Control

IGF-I (20 ng/ml) 

IGF-I (400 ng/ml) 

IGF-II (20 ng/ml) 

IGF-II (400 ng/ml)

33 .46+  4.66 

21.81 ±  4.19 

17.34+ 3.57 

34 .84+  5.71 

21.09 ±  4.30

3434

18.18

16.64 

2 9 9 9

16.64

T able 3.20a. Mean ± SE and median values for P levels (pm ol/100,000 viable cells/24 hours) produced 

by isolated cytotrophoblast cells incubated with 1.0 |imol/l pregnenolone alone (control) or pregnenolone 

and IGF-I/IGF-II.
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Placenta M ean ± SE M edian

B4 Control 311.351 6.85 311.30

IGF-I (20 ng/ml) 217 .501  13.67 228.17

IGF-I (400 ng/ml) 230.75 1  22.22 230.75

IGF-II (20 ng/ml) 189.011 20.28 201.48

IGF-II (400 ng/ml) 264 .431  9.94 260.77

B5 Control 160.651 19.84 156.11

IGF-I (20 ng/ml) 111.921 3.29 113.07

IGF-I (400 ng/ml) 125.661 9.35 131.80

IGF-II (20 ng/ml) 126.33 1  23.85 139.47

IGF-II (400 ng/ml) 142.841 14.00 141.16

B8 Control 306.131 23.22 314.90

IGF-I (20 ng/ml) 264.981  18.73 274.53

IGF-I (400 ng/ml) 273.03 1  36.77 276.12

IGF-II (20 ng/ml) 247.58 1  27.08 232.00

IGF-II (400 ng/ml) 217 .481  16.04 226.43

Table 3.20b. Mean ±SE and median values for P levels (pmol/100,000 viable cells/24 hours) produced 

by isolated cytotrophoblast cells incubated with 10 |imol /I pregnenolone alone (control) or pregnenolone 

and IGF-I/IGF-II.
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Placenta M ean ± SE M edian

B6 Control 272.55 ± 24.33 266.30

IGF-I (20 ng/ml) 250.43 + 10.70 259.52

IGF-I (400 ng/ml) 219.95 ± 18.57 229.07

IGF-II (20 ng/ml) 304.63 ± 20.89 308.21

IGF-II (400 ng/ml) 388.75 ± 19.61 400.67

B7 Control 932.56 ± 62.20 905.79

IGF-I (20 ng/ml) 731.06 ± 119.60 721.97

IGF-I (400 ng/ml) 734.89 ± 120.86 718.47

IGF-II (20 ng/ml) 712.29 ± 120.30 706.82

IGF-II (400 ng/ml) 598.40 ± 68.67 581.99

B8 Control 211.59 + 26.29 206.29

IGF-I (20 ng/ml) 190.06 ± 14.33 186.21

IGF-I (400 ng/ml) 204.36 ± 22.65 190.15

IGF-II (20 ng/ml) 189.34 ± 17.76 190.75

IGF-II (400 ng/ml) 197.02 ± 14.62 195.00

Table 3.20c. Mean ± SE and median values for P levels (pmol/100,000 viable cells/24 hours) produced 

by isolated cytotrophoblast cells incubated with 20 jLimol/1 pregnenolone alone (control) or pregnenolone 

and IGF-I/IGF-II.
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3.21 The effects of IGF-I and IGF-II on P levels produced by tissue explants

compared to cells isolated from the same three placentae

The addition of IGF-I at 20 ng/ml or 400 ng/ml had no significant effect on P levels 

produced by either isolated cell preparations or tissue minces from three placentae B 1, 

82 , 83 , which were incubated with 1 pmol/l pregnenolone. Figures 3.21.1 and 3.21.2 

show the effects of IGF-I on both tissue minces and cytotrophoblast cells obtained from 

these placentae.

Similarly in the isolated cell preparations the addition of IGF-II at 20 ng/ml had no 

effect on P levels produced by tissue minces from two placentae. However, one 

placenta, 81 , showed significantly raised P levels (p < 0.05) although no significant 

effect was observed from cells isolated from this same placentae. There were no 

significant differences in P levels produced by minces in any of the three placentae 

incubated with IGF-II at a concentration of 400 ng/ml compared with controls. Figures

3.21.3 and 3.21.4 show the effects IGF-II on P produced by both tissue minces and 

cytotrophoblast cells obtained from three placentae.

The means ± SE and median values for these P levels and those of the controls are 

given in table 3.21.
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F ig u re  3 .21 .1 . The effect o f IGF-I at 20 ng/ml on P production by tissue explants and isolated

cytotrophoblast cells obtained from three placentae.
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F igure  3.21.2. The effect of IGF-I at 400 ng/ml 
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F igu re  3.21.3. The effect o f IGF-II at 20 ng/ml on P production by tissue explants and isolated 

cytotrophoblast cells obtained from three placentae.
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F igure  3.21.4. The effect o f IGF-II at 400 ng/ml on P production by tissue explants and isolated

cytotrophoblast cells obtained from three placentae.
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Placenta Mean ± SE

B l Control 54.25 ± 7.47

IGF-I ( 20 ng/ml) 57.30+ 8.68

IGF-I (400 ng/ml) 62.08 ± 7.63

IG F-n ( 20 ng/ml) 85.97 ± 11.23

IGF-II (400 ng/ml) 79.54 ± 9.22

B2 Control 133.38 ± 14.82

IGF-I ( 20 ng/ml) 169.28 ± 25.34

IGF-I (400 ng/ml) 170.75+ 30.31

IGF-II ( 20 ng/ml) 169.90 ± 30.59

IGF-II (400 ng/ml) 167.82+ 27.22

Median

47.83

51.99

63.85

83.38

84.59

113.91

150.64

172.67

138.11

146.06

B3 Control 91.92 ± 5.83 93.21

IGF-I ( 20 ng/ml) 93.59 ± 21.88 71.42

IGF-I (400 ng/ml) 94.90 ± 7.35 98.99

IGF-II ( 20 ng/ml) 115.70+ 14.69 114.10

IGF-II (400 ng/ml) 104.38 ± 9.29 96.93

Table 3.21. Mean ± SE and median values for P levels (pmol/mg protein/24 hours) produced by placental 

tissue explants incubated with 1 |imol/l pregnenolone alone (control) or pregnenolone and IGF-I/IGF-II.
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3.22. The effects of the addition of NADPH on steroid production by placental

tissue explants

The production of E l was measured in experiments on minces from three placentae. 

Oestrone levels were not affected by the addition of NADPH in two placentae but were 

significantly raised in placenta A3 at two time points as compared to those incubated 

with DMEM alone (t = 150 minutes, p < 0.05; t 180 minutes, p < 0.01, see figure 

3.22.1).

%E1 
(of control)

Q  Control

□  A5

Q  A6

Time (minutes)

Figure 3.22.1. Production of E l by tissue explants (obtained from three individual placentae) incubated 

with NADPH compared to controls incubated with DMEM alone.

The addition of NADPH to placental explants stimulated E2 production significantly in 

four of the five placentae studied at various time points throughout the incubatory 

period. However E2 levels were not significantly different (although the levels were 

raised at most time points) to control levels for minced preparations obtained from 

placentae A5 (see figure 3.22.2).
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Figure 3.22.2. Production of E2 by tissue explants (obtained from five individual placentae) incubated 

with NADPH compared to controls incubated with DMEM alone.

Levels of E3 in all five placentae were not affected by the addition of NADPH with the 

exception of one time point in placenta A3 (t = 80 m, p < 0.05) as shown in figure

3.22.3.
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Figure 3.22.3. Production of E3 by tissue explants (obtained from five individual placentae) incubated 

with NADPH compared to controls incubated with DMEM alone.
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Progesterone production was significantly increased in four of the placentae studied 

compared to the controls following the addition of NADPH. However the addition of 

NADPH to the fifth placenta A5 had no significant effect on P production although the 

levels were raised at most time points compared with controls (see figure 3.22.4).

%P 
(of control)

□  Control

□  A5

H  A6

Time (minutes)

Figure 3.22.4. Production of P by tissue expiants (obtained from five individual placentae) incubated 

with NADPH compared to controls incubated with DMEM alone.

The addition of CRF, ACTH, and IGF-I in the presence of NADPH had no significant 

effect on the production of E l, E2, E3 or P. The mean ± SE and median values for E l, 

E2, E3 and P incubated with/without NADPH and NADPH with CRF/ACTH/IGF-I are 

given in tables 3.22.1-3.22.4 . The p values for those levels of E2 and P which were 

significantly different are tabulated in table 3.22.5 and 3.22.6 .
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Placenta A3 Placenta AS Placenta A6
Time: (minutes) Control NADPH Control NADPH Control NADPH

20 mean ± SE 2.04 ± 0.27 2.11+  0.29 2.79 ± 0.37 3.05 ± 0.43 2.86 ± 0.51 2.42 + 0.34

median 1.87 2^0 2.35 2.67 2.56 2.42

40 mean ± SE 1.61 ± 0.17 1.42+ 0.12 2.80+  0.58 3.08 ± 0.67 4.13 ± 0.74 2.95 + 0.73

median 1.62 1.45 2.42 2.53 3.50 3.12

60 mean ±  SE 2.21 ± 0.16 2.00 ± 0.13 3.66 ±  0.50 2.93 + 0.70 4.04 ± 0.51 3.21 ±  0.38

median 2.03 2.01 3.33 2.50 3.79 2.92

80 mean ± SE 2.43 ± 0.42 2.21 ± 0.49 3.38 ± 0.35 2.56 + 0.48 4.84 ± 0.82 3.45 ±  0.50

median 2.33 1.85 3.12 2.25 4.50 3.41

100 mean ± SE 2.83 ±  0.22 2.85+  0.23 3.79 + 0.52 3.07 ± 0.68 4.55 ± 0.63 3.25 ±  0.34

median 2.76 2.60 3.51 2.51 4.23 3.02

120 mean ±  SE 2.00 ± 0.19 2.47 ± 0.24 3.79 ± 0.04 3.12± 5.56 4.84 ± 0.49 3.52 + 0.36

median 1.98 2.66 3.53 2.71 4.71 3.29

150 mean ± SE 2.22 ±  0.12 2.66+  0.13 4.16 ± 0.59 3.65 ± 0.43 4 .95+  0.18 3 .76+  0.33

median 2.33 2.74 3.67 3.42 4.54 3.40

180 mean ± SE 2.29 ±  0.08 2.83 ± 0.14 4.10 ± 0.46 3.89 ± 0.51 5.09 ± 0.58 4.07 ±  0.29

median 2.27 2.71 3.69 3.76 4.94 4.03

1440 mean ± SE 2.66 ± 0 .1 1 3.22+  0.37 4.76+  0.47 4.45 ± 0.45 5.95+  0.91 5.50 ± 0.64

median 2.62 24 6 4.25 4.20 5.74 5.36

Table 3.22.1. Mean ± SE and median values for E l levels (pmol/mg protein) produced by placental tissue expiants incubated with DMEM alone (control) or with DMEM containing

NADPH for 24 hours..
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20 minutes 40 minutes 60minutes 80 minutes 100 minutes 120 minutes ISO minutes 180 minutes 1440 minutes

A1 Control 1.43 ± 0.44 0.73 ± 0.14 0.60 ± 0.07 1.07 ± 0.42 0.65 ± 0.09 0.62 ± 0.05 0.73 ± 0.07 0.73 ± 0.07 0.73 ± 0.10

A1NADPH 3.42 ± 0.59 1.51 ± 0.55 4.69 ± 0.69 4.29 ± 0.87 1j0 1 ± 2 D 5 2.03 ± 0.52 2.20 ± 0.14 2.02 ± 1.70 1.70 ± 0.16

A1 NADPH+ACTH 3.64 ± 0.76 0.93 ± 0.22 5.76 ± 0.58 3.73 ± 0.61 4.18 ±1.27 1.52 ± 0.29 2.08 ± 0.30 2.11 ± 0.45 1.74 ± 0.34

A2 Control 0.28 ± 0.05 0.26 ± 0.04 0.30 ± 0.02 0.25 ± 0.02 0.29 ± 0.02 0.38 ± 0.05 0.31 ± 0.02 0.30 ± 0.02 0.32 ± 0.02

A2 NADPH 1.17± 0.17 1.08 ± 0.10 0.82 ± 0.06 0.87 ±  0.09 0.95 ± 0.10 1.11 ±  0.16 0.48 ±  0.05 0.48 ±  0.09 0.50 ±  0.03

A2 CRF+NADPH 0.99 ±  0.15 1.02 ±  0.11 0.73 ± 0.07 0.73 ±  0.08 1.05 ±  0.08 1.30 ±  0.06 0.48 ± 0.20 0.51 ± 0.06 0.48 ± 0.03

A2ACTH+NADPH 0.79 ± 0.10 1.01 ± 0.15 0.75 ± 0.13 0.80 ± 0.11 0.86 ± 0.12 1.21 ± 0.10 0.43 ± 0.31 0.53 ± 0.12 0.47 ± 0.04

A2IGF+NADPH 1.26 ± 0.85 1.02 ± 0.89 0.82 ± 0.08 0.87 ±  0.09 1.12 ± 0.03 1.12 ±  0.18 0.51 ±  0.05 0.65 ±  0.11 0.51 ±  0.03

A3 Control 1.12±0.13 0.58 ±  0.05 0.56 ±  0.02 0.74 ± 0.13 0.59 ±  0.03 0.65 ±  0.02 0.58 ±  0.02 0.56 ± 0.04 0.82 ± 0.04

A3 NADPH 1.51 ± 0.10 1.61 ± 0.16 1.80 ± 0.15 1.78 ± 0.13 1.75 ± 0.17 1.86 ± 0.11 1.29 ± 0.17 1.08 ± 0.13 0.99 ± 0.05

A3 NADPH+CRF 1.63 ± 0.34 1.76 ± 0.26 1.48 ±  0.14 1.84 ±0.27 1.58 ±  0.20 1.55 ± 0.18 1.11 ±  0.12 0.81 ±  0.10 0.86 ±0.13

A3 NADPH+ACTH 1.13 ±  0.20 1.52 ±  0.18 1.56 ±  0.15 1.36± 0.19 1.41 ± 0.11 1.63 ±  0.19 0.91 ± 0.15 0.83 ± 0.07 0.86 ± 0.09

A3 NADPH+IGF-I 1.21+ 0.07 1.24 ± 0.12 1.43 ± 0.05 1.51 ± 0.08 1.14 ± 0.09 1.57 ± 0.15 0.94 ± 0.12 0.74 ± 0.03 0.84 ± 0.02

A4 Control 0.92 ± 0.92 0.84 ± 0.15 0.79 ± 0.14 0.83 ± 0.14 0.87 ±  0.09 1.16± 0.14 1.14 ±  0.24 0.76 ± 0.09 0.95 ±  0.08

A4 NADPH+CRF 2.42 ±  0.48 2.32 ±  5.97 1.68 ±  0.33 1.57 ±  0.33 1.17 ± 0.22 1.29 ±  0.26 1.28 ±  0.25 1.01 ± 0.20 1.19 ± 0.21

A4 NADPH+IGF-I 1.64 ± 0.38 2.19 ± 0.60 1.26 ±0.32 1.02 ± 0.16 0.99 ± 0.23 1.33 ± 0.40 1.46 ± 0.36 1.07 ± 0.24 1.08 ± 0.30

AS Control 1.92 ± 0.22 1.84 ± 0.35 1.11 ±0.18 0.88 ± 0.11 0.88 ±  0.17 1.05 ±  0.19 1.06 ± 0.15 1.26 ±  0.24 1.32 ±  0.12

AS NADPH 2.49 ±  0.529 2.16 ±  0.42 1.74 ±0.40 1.50 ± 0.33 1.69 ±  0.47 1.87 ± 0.48 1.46 ± 0.33 1.53 ± 0.39 1.22 ± 0.17

A6 Control 3.88 ± 0.09 4.36 ± 0.68 3.21 ±0.55 1.97 ± 0.24 2.45 ± 0.47 2.32 ± 0.35 2.03 ± 0.27 2.08 ± 0.33 1.95 ± 0.28

A6 NADPH 4.97 ± 0.73 5.60 ± 0.48 6.28 ± 6.66 5.76 ± 0 .5 5 6.83 ± 0.78 7.03 ± 0.66 6.92 ± 1.00 7.84 ±  0.84 3.08 ±0.33

Table 3.22.2a. Mean ± SE values for E2 levels (pmol/mg protein) produced by placental tissue expiants incubated with DMEM alone (control) or with DMEM containing NADPH

or NADPH in combination with CRF (100nmol/l)/ACTH (10nmol/l)/IGF-I (20 ng/ml) for 24 hours.
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Placenta 20 minutes 40 minutes 60 minutes 80 minutes 100 minutes 120 minutes ISO minutes 180 minutes 1440

A1 Control 1.22 0.59 0.59 0.59 0.55 0.61 0.67 0.73 0.68

A1NADPH 3.52 1.01 4.72 4.24 8.64 1.65 2.25 1.62 1.64

A1NADPH+ACTH 3.21 0.88 5.21 4.20 3.09 1.38 1.96 1.92 1.51

A2 Control 0.27 0.24 0.29 0.25 0.28 0.34 0.31 0.30 0.33

A2 NADPH 1.32 1.12 0.80 0.88 1.03 1.12 0.43 0.43 0.51

A2 NADPH+CRF 0.97 1.01 0.67 0.71 0.95 1.36 0.43 0.47 0.44

A2 NADPH+ACTH 0.79 0.89 0.64 0.83 0.93 1.30 0.41 0.44 0.45

A2 NADPH+IGF-I 1.34 1.02 0.77 0.90 1.11 1.21 0.52 0.63 0.50

A3 Control 1.14 0.57 0.56 0.65 0.57 0.64 0.58 0.53 0.83

A3 NADPH 1.44 1.62 1.61 1.73 1.74 1.78 1.23 0.98 0.98

A3 NADPH+CRF 1.30 1.62 1.54 1.76 1.61 1.47 1.05 0.82 0.83

A3 NADPH+ACTH 1.19 0.00 1.75 1.32 1.41 1.48 0.84 0.82 0.83

A3 NADPH+IGF-I 1.20 1.27 1.40 1.52 1.11 1.47 0.89 0.75 0.84

A4 Control 0.91 0.68 0.71 0.76 0.78 1.16 1.00 0.71 0.96

A4 NADPH+CRF 2.24 2.03 1.58 1.51 1.02 1.19 1.15 0.88 1.19

A4 NADPH+IGF-I 1.30 1.64 1.00 1.03 0.79 0.99 1.12 8.62 0.82

AS Control 1.91 1.81 0.95 0.77 0.75 0.96 0.92 1.08 1.19

AS NADPH 2.22 1.67 1.34 1.46 1.51 1.66 1.15 1.06 1.14

A6 Control 3.85 4.96 2.94 1.80 1.86 1.88 1.73 1.74 1.69

A6 NADPH 5.02 5.43 5.62 5.04 5.91 6.36 5.64 7.55 2.70

Table 3.22.2b. Median values for E2 levels (pmol/mg protein) produced by placental tissue expiants incubated with DMEM alone (control) or with DMEM containing NADPH or

NADPH in combination with CRP (100nmol/l)/ACTH (10nmol/l)/IGF-I (20 ng/ml) for 24 hours.
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Placenta 20 minutes 40 minutes 60 minutes 80 minutes 100 minutes 120 minutes ISO minutes 180 minutes 1440minutes

A1 Control O.68±O07 061 ±0.06 0.68±007 0.68±005 082±005 0.73 ±0.07 080±005 085 ±0.09 102±009

A1NADPH 0.70±0.11 0.70±0J89 033±008 0.78±004 086±005 0.75 ±0.06 083±006 1DI±0.16 107±0.13

A1 NADPH+ACTH 0.72±0.12 065±0.10 0.73 ±081 0.73 ±067 082±007 0.87 ±0.14 090±0.12 098±0.17 108±0.15

A2 Control 228±007 206±020 226±023 251 ±0.17 254±020 2.59 ±0.14 300±038 254±0.19 3.14±034

A2 NADPH 2.40±0.18 224±0.13 2.08±0.10 259±0.16 2.65±0.14 2.78 ±0.18 287±0.15 284±0.17 303±035.

A2 NADPH+CRF 2J28±0.16 209±0.19 250±029 2.78±008 2.65±037 2.83 ±0.34 300±0.16 2.79±0.19 335±038

A2 NADPH+ACTH 2.18±0.12 205±0.12 2.40±021 2.69±0.17 2.71 ±0.19 2.81 ±0.22 305±0.16 287±023 3.17±0.43.

A2 NADPH+IGF-I 2il±0.19 221 ±0.14 2.41 ±005 290±0.16 285±0.17 2.98 ±0.18 298±0.15 300±0.18 384±059.

A3 Control 0.72±0.12 0B9±0.09 092±003 094±005 092±007 0.98 ± 0.05 090±0m 129±005 1.45±0.11.

A3 NADPH 120±021 126±025 1.41 ±025 150±028 1.43±0.42 1.58 ±0.26 166±033 191 ±032 199±031.

A3 NADPH+CRF 0.70±0.19 100±024 1.16±0.16 1.10±0.14 099±0.15 1.09 ±0.14 100±0.16 1.40±023 150±020

A3 NADPH+ACTH QJ81±0.13 090±0.08 1.13±0.13 098±0.11 087±0.13 1.01 ±0.14 095±085 129±0.14 1.45±0.14

A3 NADPH+IGF-I 0.65 ±0.11 0.77±0.06 093±0M 088±005 0.77±005 0.88 ±0.07 081 ±067 135±024 125±055

A4 Control 1B6±038 2.16±026 2.06±0.19 2.12±024 254±025 2.49 ± 0.27 228±0.18 266±027 250±0.16

A4 CRF+NADPH 2.08±0.43 227±039 2.08±033 2.19±031 2.66 ±038 2.48 ± 0.37 234±038 254±034 265±0.42.

A4 CRF+IGF-I 191+065 230±059 191 ±038 222±037 254 ±0.46 2.42 ± 0.49 227±0.42 264±050 252±037

AS Control 5.02±0.79 536±0B1 5.03 ±0.41 4.49±0.76 587±0.74 5.80 ± 0.90 523±051 563 ±056 660±062

AS NADPH 5.19±1.10 493 ±0.79 5.07±0.79 523 ±0.67 551 ±0.76 5.83 ±0.86 531 ±067 5.43 ±0.63 683±086

A6 Control 996±098 13.46±132 1321±181 1396±154 1467±121 11.64 ± 1.02 12.75±139 15.45±182 1465±221

A6 NADPH 9.65±105 11.72±1.06 1105±1.10 1291 ±0.70 1352±1.07 11.11 ±0.83 11.77±093 14.17±133 13.79±0.13

or NADPH in combination with CRF (100nmol/l)/ACTH (10nmol/l)/IGF-I (20 ng/ml) for 24 hours.
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Placenta 20 minutes 40 minutes 60 minutes 80 minutes 100 minutes 120 minutes ISO minutes 180 minutes 1440 minutes

A1 Control 0.63 0.58 0.65 0.70 0.83 0.77 0.82 0.76 1.00

A1 NADPH 0.63 0.65 &82 0.75 0.86 0.73 0.80 0.89 1.00

A1 NADPH+ACTH 0.68 0.66 0.75 0.78 0.83 0.85 0.93 0.96 1.00

A2 Control 2.33 2.23 2.27 2.55 2.41 2.58 2.69 2.42 3.02

A2 NADPH 2.50 2.39 2.06 2.64 2.61 2.67 2.91 2.82 3.10

A2 NADPH+CRF 2.28 2.01 2.13 2.79 282 2.82 2.93 2.76 3.40

A2 NADPH+ACTH 2.12 2.04 2.37 2.69 2.58 2.67 3.05 2.72 3.30

A2 NADPH+IGF-I 2.43 2.14 2.40 2.84 2.77 3.01 2.99 2.79 3.40

A3 Control 0.68 0.83 0.89 0.94 0.91 1.00 0.90 1.25 1.40

A3 NADPH 1.05 1.14 1.12 1.24 1.05 1.39 1.42 1.64 0.19

A3 NADPH+CRF 0.59 0.78 1.10 1.01 0.85 0.99 0.89 1.20 0.13

A3 NADPH+ACTH 0.79 0.99 1.21 0.98 0.85 0.94 1.00 1.38 0.15

A3 NADPH+IGF-I 0.66 0.73 0.91 0.92 0.74 0.91 0.75 1.10 0.12

A4 Control 1.84 2.04 1.99 1.99 2.35 2.35 2.20 2.55 2.57

A4 CRF+NADPH 1.67 1.96 1.94 2.01 2.58 2^8 2.15 2.53 2.30

A4 NADPH+IGF-I 1.55 1.75 1.50 1.83 2.11 2.06 1.99 2.32 2.90

AS CONTROL 4.51 4.59 4.58 4.69 5.39 5.31 5.12 5.29 6.10

AS NADPH 4.48 4.20 4.44 4.80 5.00 5.30 4.72 4.62 5.80

A6 Control 9.62 12.89 12.07 12.56 13.79 11.46 12.25 14.36 13.43

A6 NADPH 9.74 11.09 10.45 12.61 12.71 11.66 11.54 13.75 13.00

Table 3.22.3b. Median values for E3 levels (pmol/mg protein) produced by placental tissue expiants incubated with DMEM alone (control) or with DMEM containing NADPH or

NADPH in combination with CRF (100nmol/l)/ACTH (10nmol/l)/IGF-I (20 ng/ml) for 24 hours.
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20 minutes 40 minutes 60 minutes 80 minutes 100 minutes 120 minutes ISO minutes 180 minutes 1440 minutes

A1 Control 27.43 ± 4.38 32.41 ± 4.37 28.29 1 3.35 36.381 6.78 32.701 5.82 45.3819.03 39.571 5.06 47.311 6.80 52.571 4.68

A1NADPH 43.95 ± 8 j2 74.99 ± 14.64 85.05 1 13.78 93.471 21.22 125.43131.96 140.37122.51 143.81 126.00 164.31 120.62 191.24122.02

A1 NADPH+ACTH 25.18 ± 5.34 48.81 ± 9.38 56.721 10.62 66.77 1 13.90 82.71 115.96 82.47 1 15.96 86.591 1 8.73 94.191 18.06 112.68120.45

A2 Control 58.58 ± 2.13 69.42 ± 4.58 66.201 7.09 63.39 1 4.71 71.141 5.76 76.681 5.63 71.361 4.90 80.961 3.69 81.781 5.41

A2 NADPH 61.85 ± 5.72 89.63 ± 7.66 88.001 6.14 123.081 12.08 126.16111.51 127.17111.42 124.381 8.01 160.661 15.84 164.08113.42

A2 NADPH+CRF 52.80 ± 4.13 82.15 ± 3.66 93.281 11.64 109.03 1 8.11 126.731 16.03 113.62120.00 126.16116.57 129.701 19.33 131.47115.33

A2 NADPH+ACTH 51.36± 6.58 96.06 ± 9.86 81.991 5.60 95.401 13.74 123.301 11.64 123.341 14.12 132.14113.17 144.04115.39 147.581 15.58

A2 NADPH+IGFl 61.63 ± 4.26 88.74 ± 6.20 91.551 9.32 119.021 8.17 135.021 10.88 134.031 9.22 141.091 9.29 146.13113.32 169.42116.60

A3 Control 23.76 ± 1.07 16.40 ± 1.43 24.191 2.24 25.02 1 1.05 27.221 2.35 31.221 2.73 30.731 1.88 37.271 4.10 33.221 3.08

A3 NADPH 28.02 ± 1.59 23.90 ± 1.97 35.03 1 3.12 41.561 2.19 52.121 3.75 60.041 6.23 53.581 8.74 66.58 1 6.23 69.791 8.59

A3 NADPH+CRF 27.17 ± 3.66 21.58 ± 2.23 33.731 7.44 38.91 1 3.53 46.611 6.96 50.201 6.46 55.001 8.74 62.231 9.00 67.96110.11

A3 NADPH+ACTH 20.73 ± 4.42 21.10± 3.08 30.621 2.89 37.88 1 4.04 39.521 5.66 48.751 6.46 47.481 5.50 58.041 5.02 62.711 6.23

A3 NADPH+IGF-I 21.35 ± 2.61 19.61 ± 8.81 31.201 2.73 35.461 3.28 37.141 4.29 40.761 4.99 45.371 3.37 50.55 1 3.59 56.791 5.69

A4 Control 32.74 ± 5.34 43.64 ± 5.06 43.75 1 5.25 52.21 1 4.00 56.261 4.54 56.161 6.14 62.231 7.06 61.661 6.81 62.111 8.97

A4 NADPH+CRF 39.13 ± 6.74 47.40+ 10.56 51.131 11.96 59.151 10.72 80.14112.91 73.13115.90 75.89112.78 82.861 14.85 103.62119.43

A4 NADPH+IGF-I 33.86 ± 6.20 53.14125.15 51.761 11.29 66.65 1 14.60 80.25121.02 67.361 14.06 70.821 18.03 86.621 23.09 82.03 1 14.56

AS Control 34.33 ± 6.36 86.38 ± 17.78 91.261 25.03 110.60136.54 89.57123.63 84.10115.30 85.391 15.30 90.07119.02 95.201 15.90

AS NADPH 43.33 ± 8.81 70.02 ± 20.26 98.481 32.40 117.14141.75 98.861 13.55 110.88120.45 120.20123.12 130.38126.90 139.42128.05

A6 Control 73.70 ±6.36 110.2115.77 141.65118.83 132.87121.27 137.43 1 17.43 167.52124.14 149.941 17.39 159.76120.92 172.06117.30

A6 NADPH 108.93 ± 25.28 124.921 14.98 159.391 16.85 190.581 13.01 186.771 16.66 228.95 122.48 232.41 126.01 237.36130.27 271.06131.64

Table 3.22.4a. Mean ± SE values for P levels (pmol/mg protein) produced by placental tissue expiants incubated with DMEM alone (control) or with DMEM containing NADPH or

NADPH in combination with CRF (100nmol/l)/ACTH (10nmol/l)/IGF-I (20 ng/ml) for 24 hours.

183



20 minutes 40 minutes 60 minutes 80 minutes 100 minutes 120 minutes ISO minutes 180 minutes 1440 mi

A1 Control 25.73 27.56 25.95 33.67 27.39 37.48 36.94 42.11 49.68

A1NADPH 35.14 63.60 68.72 75.62 86.72 125.74 115.88 153.75 163.93

A1 NADPH+ACTH 28.30 40.74 50.37 55.84 65.13 78.01 76.73 87.20 94.22

A2 Control 57.33 69.48 66.27 62.71 74.51 77.24 69.89 80.42 77.88

A2 NADPH 61.31 94.41 81.22 127.30 124.12 134.51 128.03 167.75 167.55

A2 NADPH+CRF 50.59 83.25 89.58 105.89 113.56 96.29 116.42 128.63 127.01

A2 NADPH+ACTH 54.60 94.51 81.15 94.32 123.03 106.85 123.07 136.23 136.90

A2 NADPH+IGF-I 58.26 86.53 92.89 121.57 148.92 131.78 140.62 142.81 176.52

A3 Control 24.76 17.21 24.26 24.73 25.27 31.79 29.91 34.88 32.42

A3 NADPH 28.62 23.25 31.51 41.44 48.56 54.22 51.67 66.02 62.65

A3 NADPH+CRF 24.65 20.54 27.25 34.98 39.75 45.79 53.01 53.90 58.73

A3 NADPH+ACTH 21.53 20.77 30.15 36.32 37.27 54.89 44.46 57.49 62.46

A3 NADPH+IGF-I 20.03 19.68 30.15 32.21 33.58 36.70 44.42 50.34 53.77

A4 Control 29.32 45.41 42.48 49.42 56.92 57.18 58.19 57.27 59.69

A4 NADPH+CRF 35.71 40.00 45.12 56.35 77.15 65.41 74.28 75.72 104.15

A4 NADPH+IGF-I 31.29 28.56 41.91 55.01 65.86 56.83 63.00 72.47 66.75

AS Control 30.50 89.93 75.05 77.78 76.00 68.18 69.96 73.33 79.02

AS NADPH 37.62 49.19 69.67 73.30 97.15 87.23 101.95 101.22 114.35

A6 Control 72.41 106.37 127.11 119.98 125.71 151.62 150.41 155.03 175.25

A6 NADPH 92.92 115.28 121.64 143.32 132.07 159.00 138.04 144.72 167.33

Table 3.22.4b. Median values for P levels (pmol/mg protein) produced by placental tissue expiants incubated with DMEM alone (control) or with DMEM containing NADPH or

NADPH in combination with CRF (100nmol/l)/ACTH (10nmol/l)/IGF-I (20 ng/ml) for 24 hours.
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Time (minutes) Placenta A1 Placenta A2 Placenta A3 Placenta A6

20 0.025 0.004 ns ns

40 ns 0.004 0.004 ns

60 0.004 0.004 0.004 0.016

80 0.010 0.004 0.007 0.004

100 0.004 0.004 0.004 0.004

120 0.004 0.006 0.004 0.004

150 0.004 0.006 0.004 0.004

180 0.004 0.010 0.004 0.004

1440 0.004 0.004 0.040 ns

Table 3.22.5. Probability levels for those placentae which had significantly greater E2 levels than those 

of the controls on addition of NADPH (ns = not significant).

Time (minutes) Placenta A1 Placenta A2 Placenta A3 Placenta A6

20 ns ns 0.037 ns

40 0.016 ns 0.016 ns

60 0.004 ns 0.016 ns

80 0.010 0.004 0.004 0.040

100 0.004 0.004 0.004 ns

120 0.006 0.004 0.004 ns

150 0.040 0.004 ns 0.016

180 0.004 0.004 0.010 ns

1440 0.004 0.004 0.004 0.016

Table 3.22.6. Probability levels for those placentae which had significantly greater P levels than those of 

the controls on addition of NADPH (ns = not significant).
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Discussion

4.1. Tissue versus cytotrophoblast studies as models for studying placental steroid 

synthesis

4.1.1. Tissue explant studies as models for studying placental function

An apparent advantage of using tissue explants rather than purified cell preparations is 

that the responses observed by minced tissue may well be more physiological than those 

of isolated cytotrophoblast cells. Tissue comprises both a mixture of cell types and the 

extracelluar matrix through which cells can communicate so that the response of cells 

within tissue as a whole may well offer a greater indication of what actually occurs in 

vivo.

There are however disadvantages in using tissue explants. It is difficult, for instance, to 

determine whether steroids which are produced by the placental explants are those that 

are being newly sythesized during incubation or are being released from pre-formed 

stores already present within the cells. It is not possible to determine the proportion of 

cells within the tissue that are actually steroid producing cells and it is also difficult to 

establish their viability. The fragments used in this study were fairly consistent in size 

(approximately 2-4mm^) but it was noticeable that mincing caused the tissue fragments 

to stick together, probably due to a release of DNA from damaged cells. In static 

cultures such as those used in this study such clumping might reduce the overall surface 

area exposed to the culture medium. This might not only affect the viability of the cells 

at the core of the tissue (which might not receive nutrients or other factors required to 

sustain them) but could also reduce the chances of any substrate such as steroid 

precursors, or peptides such as CRF, ACTH, IGF-I or IGF-II added to the medium 

reaching a particular cell type on which they might have a regulatory effect. 

Furthermore uptake of oxygen and release of carbon dioxide by the tissue is likely to be 

compromised.
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4.1.2. Purified and isolated cells as models for studying placental function

A system consisting of purified cytotrophoblast cells allows a relatively homogeneous 

population of cells to be isolated so that a fairly consistent and uniform number of the 

same cell type can be plated and studied. It is also far easier to determine the viablilty of 

isolated cells than that of tissue fragments. Percoll gradient centrifugation has been 

shown by Nestler (1987) to give greater than 95% purity of cytotrophoblast cells. The 

viability of cells isolated in this study was consistently greater than 90%. The major 

disadvantage of using purified cell lines is that they may not behave in the same manner 

as they would in vivo once they have been removed from their tissue matrix and their 

surrounding normal physiological environment.

4.1.3. Morphology and viablity of ceils in this study

The cells isolated in this study when plated were small, round and mononuclear as seen 

under phase contrast microscopy and after staining with haematoxylin and eosin. At 24 

hours a small number of cells appeared to have formed aggregates but it was not clear if 

these had fused to form syncytiotrophoblasts or whether the cells were still separate. 

The viability was still greater than 90% after 24 hours. The general morphology and 

staining for granulocytes suggest that the cells in this study were approximately 90% 

pure. In these studies the cells produced very little oestrogens or P unless a suitable 

steroid precursor was present, which strongly indicates that the levels of steroids 

measured is that which has been newly synthesized produced by the cells rather than 

released from intracellular stores. This further suggests that any effects that CRF, 

ACTH, IGF-I or IGF-II have on steroid production in the isolated cells in the present 

study are due to their action on enzymatic pathways involved in steroid synthesis. These 

hormones may modulate the enzymes synthesizing the steroids measured by either 

regulating the production of new enzymes or by enhancing or inhibiting enzymes 

already in situ .
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Cells cultured in 10% fetal calf serum or 20% calf serum for a number of days are 

thought to form a syncytium and have been shown to produce HCG and HPL (Kliman, 

et al 1986; Richards, Hartmas and Handwerger 1994; Henson, Shi, Greene and Reggio 

1996). Purified cells isolated in this study were also cultured in 20% calf serum and 

incubated up to 96 hours at 3 7 in 5% carbon dioxide. As viewed under phase contrast 

microscopy these cells had begun to aggregate by 24 hours and by 96 hours most of the 

cells had formed a syncytium, although the degree of syncytium formation varied from 

placenta to placenta. Those placentae which had a greater degree of syncytium 

formation tended to produce higher levels of all steroids. Both HPL and HCG were 

measurable in aliquots of culture medium taken from these cell cultures. Mean levels of 

HCG in this study were found to rise with increasing time in culture. The levels 

produced by one placenta at 24 hours were 7.35 mlU/100,000 viable cells rising to 

271.7 mIU/100,000 at 96 hours. In the second placenta mean levels were higher and 

were 20.44 mIU/100,000 viable cells at 24 hours and 6227.8 mIU/100,000 viable cells 

at 96 hours (number of wells assayed at each time point for each of the two placenta 

studied = 4). These results are in accordance with others who also found a gradual rise 

in HCG in placental cells cultured over a number of days (Kliman et al 1986; Henson et 

al 1996). The mean levels of HPL also rose over a four day culture. The mean levels 

were undetectable in one placenta at 24 hours but increased to 79.5 ng/100,000 viable 

cells at 96 hours. In the second placenta the levels of HCG produced by the cells were 

higher rising from 381.0 ng/100,000 viable cells at 24 hours to 1053.6 ng/100,000 

viable cells at 96 hours. Interestingly it would appear that both the pattern and levels of 

these hormones produced by placental cell cultures are dependant upon whether the 

serum that the cells are cultured in is of bovine or human origin. Cells incubated in 

serum obtained from pregnant women produced more HCG and HPL than cells 

incubated with serum from non pregnant humans or 10% fetal bovine serum. The 

pattern of HCG and HPL release by cells cultured with maternal serum and 10% fetal 

bovine serum also differed with levels of both these hormones rising at days 3-4 and 

remaining elevated up to day 1 2  of culture in cells incubated with maternal serum.
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however this pattern was absent in those cells cultured with fetal bovine serum. The 

actual batch of protease used to prepare the cell cultures also affected the amount of 

HPL and particularly HCG released by these cells in culture (Richards et al 1994).

4.2. Choice of precursors for cell studies

4.2.1. Activity of the enzyme systems P-450cscc, 3P-HSD, aromatase and 17p-HSD 

in placental cytotrophoblast cells

Cytotrophoblast cells incubated with DMEM alone produced undetectable amounts of 

the oestrogens and very little progesterone (levels which in most cases were below the 

sensitivity of the assay). It was therefore necessary to add the appropriate steroid 

precursor in order to study the production of these steroids by the cells.

4.2.2. Choice of precursor for E l and E2 production by cytotrophoblast cells

Isolated cytotrophoblast cells obtained from two placentae were incubated in DMEM 

containing 20%  calf serum with either DHEA, DHEAS, A or testosterone as precursors 

for E l and E2 production. There was no consistent difference in production of either El 

or E2 by the cells isolated from two placentae irrespective of the precursor used.

In order to measure the activity of the aromatase system in cytotrophoblast cells A was 

chosen as the preferred substrate for the synthesis of both El and E2. The concentration 

used in all experiments was 700 nmol/1 as at this concentration the enzyme system 

appeared to be saturated and the percentage conversion from A to these oestrogens 

under the conditions chosen was 1-2 % in the preliminary experiments.
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4.2.3. Choice of precursor for E3 production by cytotrophoblast cells

Isolated cytotrophoblast cells obtained from two placentae were incubated in DMEM 

containing 20% calf serum with either 16a-0HDHBA, 16a-OHA, 16a-0HT or 16a- 

OHEl as precursors for E3 production. There were no significant differences in E3 

production by cells incubated with Ipmol/l of 16a-OHA or 16a-0HDHEA. When the 

isolated cells were incubated with 16a-OHEl mean levels (9972.3 and 1288.4 

pmol/100,000 viable cells/ 24 hours for each placenta) were higher than those levels 

produced by cells incubated with the other precursors. The mean levels produced by the 

cells incubated with the other precursors were highest when 16a-OHDHEA was used as 

a precursor and were 55.5 and 353.6 pmol/100000 viable cells/24 hours (placenta 2 and 

placenta 1 respectively, values for all precursors are given in table 3.1.2b, section 3.1.2). 

In both of the placentae studied the conversion of 16a-0HT (1 |Limol/l) to E3 was 

significantly less than the conversion of 16a-OHA to E3 at 24 hours of incubation. 

Mean E3 levels in the two placentae when incubated with 16a-OHA and 16a-OHT 

respectively for experiment 1 were 262.8 and 117.0 pmol/100,000/24 hours viable cells 

and for the second experiment these levels were 53.3 and 32.7 pmol/100,000 viable 

cells/24 hours.

In order to measure the activity of the aromatase enzyme and the production of E3 in 

cytotrophoblast cells 16a-OHA was chosen as the preferred substrate. The 

concentration used in all experiments was 1 0 0 0  nmo/1 as at this concentration the 

enzyme system appeared to be saturated and the percentage conversion from 16a-0HA 

to E3 in the preliminary experiments was 0.5-1%.

4.2.4. Aromatase and 17(3 HSD acitivity

The production of E l, E2 and E3 by cytotrophoblast cells incubated with the 

appropriate precursors, which produced very low amounts of these steroids when
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incubated without precursors, confirmed that these steroids are being actively 

synthesized by the cells. Studies indicating that aromatase is located only in the 

syncytiotrophoblast of the placentae (Foumet-Dulguerov et al 1987; Kitawaki et al 

1992) are suprising in view of the present findings and those by Nestler (Nestler et al 

1987) who also demonstrated aromatase activity to be present in isolated 

cytotrophoblast cells. The levels of TE measured in this study were within a similar 

range to that of Nestler and Williams (1987), with means of controls ranging from 53.3 

pmol/million cells to 320 pmol/million cells in this study (see table 3.4b). One study has 

however shown that aromatase levels in the placenta increase progressively during 

gestation (Kitawaki et al 1992) and that the increasing levels of oestrogens observed are 

due to an increase in quantity of the aromatase enzyme being produced. In this study 

isolated cells were also cultured for 96 hours, by which time they appeared to have 

formed syncytia. Levels of all three oestrogens were generally higher when precursors 

were added at 72 hours and measured at 96 hours compared to when precursors were 

added immediately after plating and measured at 24 hours (although one placenta 

showed little differences in El or E2 levels at either time).

It is possible that the aromatase present within the cytotrophoblast cells isolated in this 

study is a discrete form of aromatase which experimental techniques to date have not 

detected or this enzyme may be inactive in term placentae and has in some way been 

activated as the cells are being isolated. The cells may begin to synthesize the enzyme 

during the isolation process or once they have been plated. This may be due to some 

external trigger such as a chemical, or a factor present in the bovine serum, used during 

the isolation procedure. It may be that in the intact placenta the cells of the syncytium 

are somehow regulating the expression of this enzyme in cytotrophoblast cells, perhaps 

by producing some inhibitory factor. Once the syncytiotrophoblast cells are removed by 

the isolation and purification procedure the aromatase enzyme may then be activated or 

synthesized in the isolated cytotrophoblast cells.
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The interconversion of E l and E2 is catalysed by 17p-HSD and as A has been shown to 

be an obligatory intermediate in the conversion of DHEA to E l (Anderson and 

Lieberman 1980) then E2 must be formed through the pathways shown in figure 4.2.4a.

17P-HSD 
DHEA ------^  A ^ ^  T

i I
17P-HSD

Figure 4.2.4a. The pathway of E2 formation from DHEA in human placental tissue.

Four forms of 17p-HSD have been isolated in the human placenta, types I, II, IV and V, 

with most research being performed on types I and II which appear to be the most 

abundant forms in this tissue (Blomquist et al 1985; Blomquist et al 1987; Adamski et 

al 1995; Labrie et al 1997). Earlier studies on the microsomal type II enzyme 

(preferentially oxidative form) have located it to the syncytiotrophoblast and not 

cytotrophoblast cells obtained from tissue taken during early or late gestation (Foumet- 

Dulguerov et al 1987, Dupont et al 1991). More recently mRNA has been isolated for 

the type I enzyme in cytotrophoblast cells (Beaudion 1995). Measurements of the 

tritiated inter-conversion of E l and E2 by purified cytotrophoblast cells have shown 

that 17p-HSD is predominantly active in the reductive direction towards E2 with 

oxidative activity ranging from 0.2 to 0.6 nmol/50,000 viable cells/4 hours and 

reductive activity ranging from 0.7 to 1.8 nmol/50, 000 viable cells /4 hours (Shepherd, 

Beckett, Marchant, Serhal and McGarrigle 1995). The mean levels of E l were lower 

than those of E2 produced by isolated cytotrophoblast cell preparations in six of the 

seven individual placentae in this study whilst the converse was true with levels 

measured from the tissue minces. This is in agreement with other studies in which the 

E2 formation by villus fragments is low (Tseng, Stolee and Gurpide 1972, Blomquist et 

al 1987). It has been found that the type 1 enzyme is equally reactive with both E l and 

E2. Type II 17p-HSD has a relatively lower affinity for E l (and A) so the reaction
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tends to be in the oxidative direction favouring the formation of E l (Blomquist et al 

1985, Blomquist et al 1987, Wu et al 1993). This may indicate that type I activity is 

predominant in the cytotrophoblast cells in short term culture whilst in tissue minces, 

which contain syncytiotrophoblast as well as cytotrophoblast cells, the type II and 

enzyme may be the more active or more abundant so that the action is predominately in 

the oxidative direction. The oxidative pathway E2 to El may also be favoured by type 

IV 17p-HSD but the relative contribution of the type IV enzyme to E l formation may 

be quite small as it is not found in the same abundance as type I and type II 17p-HSD 

(Adamski 1995). As the net E l production in placental tissue in this study was greater 

than E2 production it might have been expected that the regulation of these enzymes is 

concomitant with the formation of the syncytium and that with time in culture the ratio 

E1:E2 might increase. However, this was not the case (see table 3.1.6 for E l and E2 

levels produced by cells incubated for 24 hours and 96 hours). The activity of the type 

II enzyme has been reported to be low in the syncytiotrophoblast (Beaudoin et al 1995). 

In agreement with these findings the measurement of the tritiated inter-conversion of El 

and E2 at 96 hours by syncytiotrophoblast cells cultured from two placentae was greater 

than the oxidative activity (reductive activity 5.04-7.14 nmol/50,000 viable cells/4hrs, 

oxidative activity 0.15-0.18 nmol/50,000 viable cells/4hrs (unpublished data)).

The findings in this study with isolated cells, however, may not be reflecting what is 

actually occurring in vivo. It is possible that the isolation procedure or cell culture 

conditions have in some way inhibited the expression of type II activity or have 

stimulated type I activity (or even type IV). It cannot be ruled out that culture 

conditions or the isolation procedures have in some way affected the expression of this 

enzyme in the isolated placental cells. It is not possible to determine if the cultured cells 

are behaving in an identical way to cells in vivo or whether the expression and 

functioning of the type II enzyme may require interactions with other cell types.

There is a scarcity of information regarding the form of 17P-HSD which may be 

involved in the conversion of 16a-hydroxylated DHEA to E3 as shown in figure 4.2.2b.
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It is possible that a 17p-HSD exists which is distincte from types already characterized 

in the human placenta for the formation of E l or E2 or that one or more of the types 

already characterized are responsible for E3 formation.

16-aOH DHEA ► l 6 -aO H  A

16-aOH El "4----- ►  E3
?17p-HSD

Figure 4.2.4b. The conversion of 16a-hydroxylated DHEA to E3.

4.2.5. Inhibition of E3 production by A

Some researchers have postulated that several species of aromatase exist (Canick and 

Ryan 1975; Canick and Ryan 1976; Cantineau et al 1982; Osawa et al 1982; Hagerman 

1987; Harada 1988). However more recent research indicates that as the aromatase 

enzyme is encoded by a single copy gene, that only one enzyme is responsible for all 

the aromatase reactions (Vickery and Kellis 1987; Means et al 1989, Corbin et al 1989; 

Harada 1990). In the present study it was demonstrated that A (70 nmol/1) inhibited E3 

production in cytotrophoblast cells (see section 3.8). This suggests that either A was 

binding to a common catalytic site on the same enzyme or binding to a separate site on 

the same enzyme and altering the conformation of the catalytic site for 16a-OHA so 

that this steroid was not able to bind. The results in this study do not however rule out 

the possibilty that two or more enzymes exist one of which binds both A and 16a-0H A  

and one which binds A, as first postulated by Canick and Ryan (1975, 1976). As the 

inhibitory effect was dose dependent it suggests that the enzyme has a greater affinity 

for A than it has for 16a-0HA. At higher concentrations of A more binding sites would 

be either occupied or their conformation changed (either way less 16a-OHA would 

bind and be converted to E3) than at lower concentrations of A. The converse was not 

the case as E2 production from A did not appear to be inhibited by 16a-OHA. These
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findings are similar to those of Canick and Ryan who studied human placental 

microsomal aromatase and showed that the conversion of another 16a hydroxylated 

compound, 16a-OHT, to E3 was inhibited by A in a competitive manner, but that the 

conversion of A to E2 was not (Cannick and Ryan 1976). The results in this study are 

also in accord with the higher affinities shown by aromatase for A than 16a-OHA in 

studies on the purified microsomal enzyme system (Cantineau et al 1982; Purohit and 

Oakey 1989; Yoshida and Osawa 1991).

In contrast to the isolated cells this inhibition by A of E3 production was not apparent 

within the tissue explants studied. This may well have been due to the fact that the 

precursors which were added to the medium containing the explants were not reaching 

the appropriate cells within the tissue and that these cells were synthesizing E3 from 

readily obtainable precursors already present within the tissue. It may be the supply and 

uptake of precursors by the cells and the transport of these precursors within the cell to 

the enzyme systems which ultimately regulates the overall E l, E2 and E3 production.

These findings are interesting as they conflict with the well established observation that 

more E3 is produced in normal pregnancy than E2 or El (Brown 1956; Mujaji, Toumba 

and Oakey 1979; Fotsis 1987). In the experiments on tissue explants although E3 levels 

were sometimes higher than those of E l and E2 this was not always the case and the 

isolated cells produced invariably less E3 than El and E2. Substrate availability present 

within the placental explants might explain the variablity in the tissue experiments from 

the ratios obtained in pregnancy when less E3 is produced than El or E2, but would not 

account for the lower ratio of E3 to El and E2 produced by isolated cells incubated with 

the appropriate precursors. It is possible that a distinct form of aromatase present 

elsewhere within the cell or a form of 17p-HSD that has a higher affinity for the 16a- 

hydroxylated precursors are somehow "switched o f f  in the isolated cells due to the 

methods involved in the isolation procedure, or the culture medium in which they are 

incubated.
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4.2.6. Choice of precursor for P production by cytotrophblast cells.: P450cscc 

activity and 3p HSD activity

Cholesterol is converted to progesterone via the pathway shown in figure 4.2.6.

20a  hydroxycholesterol
cholesterol -------- 22R hydroxycholesterol — ^  pregnenolone — ^  progesterone

20a,22R dihydroxy cholesterol

P450CSCC 3P-HSD

Figure 4.2.6. Pathway of P formation from cholesterol.

It was initially intended that both the conversion of cholesterol to pregnenolone and 

pregnenolone to P would be studied. This proved impossible because the amount of P 

formed from cholesterol, 25-OHcholesterol and LDL in theses studies was insufficient 

for accurate measurement of P450cscc. The reason for the low levels of P production on 

the addition of 25-OHcholesterol even when the number of cells was raised to 

1,000,000 viable cells per well and the concentration of 25-OHcholesterol was as high 

as 80 jimol/l is uncertain. The levels of P produced by cells incubated in DMEM alone 

were not significantly different to those incubated with cholesterol or 25-OHcholesterol. 

These findings are in accord with another study which also found that cholesterol was a 

poor precursor for P production in human syncytiotrophoblast cell cultures (Paul, Das, 

Jailkhani and Talwar 1987). A possible explanation is that cholesterol or 25- 

OHcholesterol is not reaching the enzyme system either because its transfer across the 

cell membrane or its transport within the cell to the enzyme system within the 

mitochondria has been in some way affected. In the case of 25-OHcholesterol it is 

unlikely that it is the transfer across the cell membrane that is affected as this derivative 

of cholesterol has been used by other researchers because of its greater solubility than
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cholesterol in aqueous medium and has been shown to be an effective steroidogenic 

substrate in dispersed rat luteal cells (Sinensky 1981; Toaff, Schleyer, and Strauss 

1982). Indeed a study by Tuckey (1992) using isolated human placental mitchondria to 

measure P-450cscc activity has shown that 25-OHcholesterol is a poor substrate for 

pregnenolone synthesis in this cellular organelle. The other possibility is that the P- 

450CSCC enzyme system is not functioning properly in isolated cells. However, it seems 

unlikely that the enzyme system was damaged by the isolation process as both the 

aromatase sytem and 3p-HSD sytem are functioning normally. The cytotrophoblast P- 

450cscc may not be "switched on'" or it may be present within the isolated cells but 

only at very low levels. Levels of P-450cscc have been reported to be lower in cultured 

cytotrophoblast cells than in placental homogenates suggesting that the synthesis of this 

enzyme could well be induced as syncytiotrophoblasts form (Tuckey, Kostadinovic and 

Cameron 1994). Kliman and colleagues (Kliman, Nestler, Sermasi, Sanyer and Strauss 

1986) were able to show an increase in P levels produced by purified cytotrophoblast 

cells by 2-8 fold in four hours with the addition of 50 fimol/l 25-OHcholesterol. Nestler 

and Williams (1987) incubated cytotrophoblast cells with 50 |Limol/l 25-OH cholesterol 

and also obtained measurable levels of P (approximately 52 pmoles/million cells/24 

hours). In both cases much less than 1% of the substrate was converted to P in 24 hours. 

The values obtained by both sets of reseachers are very low considering the 

concentration of precursor used. The discrepancies between this study and those by 

Kliman et al (1986) and Nestler and Williams (1987) are difficult to explain. It is of 

course possible, though unlikely that the RIA assay employed in this study was not as 

sensitive as that used by Kliman et al (1986) and Nestler and Williams (1987) or it 

could be that there was an appreciable amount of cross-reactivity with other substances 

which resulted in the "measurable" levels obtained with the assays of other researchers.

The fact that LDL and 25-OHcholesterol proved to be poor precursors for P production 

in this cell system poses the possibility that the major precursor for P may well not be 

LDL but could be cholesterol sulphate, a substrate that may be readily available to 

placental cells in vivo. Indeed Tuckey et al (1994) found that cholesterol sulphate was a
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better precursor for P production by cytotrophoblast cells and mitochondria than LDL 

or other intermediates in cholesterol side chain cleavage.

Because of the low level of conversion of cholesterol to pregnenolone it was not 

possible to measure P450cscc activity in these studies. The addition of pregnenolone 

did result in P production showing that the 3p-HSD enzyme was functioning within 

these cells. The studies by Mason et al (1993) indicated that the levels of mRNA for 3p- 

HSD in cytotrophoblasts were undectable after isolation of these cells but increased 

with time in culture. However their findings do not completely accord with preliminary 

experiments in this study in which substantial progesterone formation was detectable in 

the media from cells incubated for only 2  hours with pregnenolone (mean levels from 

two placentae incubated in triplicate wells were 560 fmoles/100,000 viable cells). 

However this does not exclude the possibilty that synthesis or activation of 3P-HSD is 

occurring with time in culture. In this study cytotrophoblast cells were isolated from 

three placenta and cultured for up 96 hours. Cytotrophoblast cells from each of the three 

placentae were incubated immediately after purification with pregnenolone for 24 hours 

and then frozen. Other cell preparations from the three placentae were incubated with 

DMEM alone for 72 hours before the addition of pregnenolone to the culture medium. 

The cells were then incubated with the precursors for a further 24 hours. The levels of P 

produced by those cells incubated in DMEM alone for 72 hours before the addition of 

pregnenolone were higher (means ranged from 2.71 to 10.47 nmol/100,000 viable 

cells/24 hour) than those produced by cells incubated with this precursor immediately 

after purification (means ranged from 1.12-8.65 nmol/100,000 viable cells/24 hour), 

suggesting that the activity or the amount of enzyme is increasing in time in culture. In 

the cell preparations obtained from one of the placentae studied the enzyme system was 

not saturated even at pregnenolone concentrations of 80 pmol/l. However even at 

concentrations as low as 5 nmol only around 10% of the precursor was being 

transformed to P with the percentage dropping to about 3% at concentrations of 10 

nmol/1 which is in agreement with the results of Nestler (Nestler and Williams 1987) 

and suggests that it is the entry of pregnenolone into the cell or its transport within the
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cell that is the rate limiting factor in this cell system. On incubating cytotrophoblast 

cells at a concentration of 6  |imol/l pregnenolone Nestler obtained mean levels of 649 

pmol/million cells. In the present study mean levels of P produced by isolated 

cytotrophoblast incubated with 1 |imol/l pregnenolone were 330-440 pmol/million 

viable cells/24hours and those incubated with 10 |xmol/l pregnenolone were in the range 

1600-3110 pmol /million viable cells/24 hours (results given in table 3.11).

4.3. A role for CRF and ACTH in steroid production in the human placenta?

Despite the fact that both CRF and ACTH are synthesized in placental tissue and their 

modulatory roles on steroid synthesis in the adrenal are well known, there is a scarcity 

of information regarding any modulatory role that they might have on steroidogenesis 

in the placenta. In view of the findings that P and E2 were enhanced by addition of 

ACTH to placental minecs (Barnea et al 1986) the present study attempted to clarify 

whether or not these hormones have any regulatory function on the production of E l, 

E2, E3 and P in human placental tissue explants and isolated cytotrophoblast cells

4.3.1. The effects of CRF and ACTH on E l and E2 production

There was no consistent significant effect of added CRF on the levels of E2 production 

as compared to control values in tissue explants incubated in DMEM alone from which 

aliquots were removed at timed intervals over a 24 hour period (results section 3.3.1). 

Similarly the addition of CRF to medium containing the precursor A did not 

significantly affect E l, E2 or TE levels as compared to control values produced by 

explants incubated with DMEM and A for 24 hours (results section 3.5).

Levels of E2 were not significantly different to those of the controls (incubated in 

DMEM alone) when tissue explants were incubated with ACTH in those studies in
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which aliquots were obtained from three placentae at set time intervals over a period of 

24 hours (results section 3.3.2). Similarly in those tissue explants incubated for 24 hours 

in medium containing A, E2 was not significantly affected by the addition of ACTH in 

any of the placentae studied although E l and TE were significantly decreased in one of 

the three placentae (results section 3.5). These findings conflict with those presented by 

Bamea et al (1986) who found that ACTH stimulates the production of E2 by placental 

minces.

Overall there appears to be no consitent modulatory role for CRF or ACTH on El or E2 

production in isolated placental cytotrophoblast cells. However the levels of these 

hormones were significantly different from those of control preparations in certain 

placentae. In particular CRF and ACTH seemed to have affected steroid synthesis in 

placentae B2 and B3 (see results section 3.4.) but why this occurred in these two 

placentae is unclear as all seven placentae were selected by the criteria described in the 

methods and treated in the same way. In both these placentae CRF inhibited El 

production but significantly increased E2 production in the same cell populations at the 

same time. The TE levels produced by these two placentae on incubation with CRF 

were not significantly different to those produced by controls from those cells isolated 

from placenta B2 but were increased in those from placenta B3. Why this is the case in 

only these two placentae is difficult to explain. The fact that more E2 was produced by 

these cells than E l may indicate that in these individual placentae the 17p-HSD was 

activated in such a way as to increase the reductive pathway towards E2 perhaps by 

stimulating type I or inhibiting type II activity. It is difficult to determine whether or not 

this could be due to addition of CRF and ACTH.

4.3.2 The effects of CRF and ACTH on E3 production by the placenta

There was no consistent effect of either CRF or ACTH, compared to controls, on E3 

production by tissue minces obtained from three placentae, incubated for 24 hours in
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DMEM from which aliquots were obtained at fixed time intervals (see results section

3.6). Similarly in those tissue minces obatined from three placentae and incubated for 

24 hours with 16a-0HA, with/without CRF, levels of E3 did not differ significantly 

from those of the controls. Those explants incubated with 16a-OHA with/without 

ACTH showed no significant differences from those of controls with the exception of 

one of the three placentae (B2) which produced significantly lower levels of E3 (see 

results section 3.9).

The isolated cell preparations again yielded more variable results. Of the seven 

placentae studied, cell preparations from three placentae, (Bl, B2, B3, results section

3.7) produced sigificantly higher levels of E3 when CRF was present and two of these 

placentae (B2 and B3) had increased E3 levels when ACTH was present compared to 

controls.

The general finding however is that CRF and ACTH do not have a consistent 

significant effect on the aromatization of 16a-OHA in the human placenta as assessed 

in this experimental system.

4.3.3. The effects of CRF and ACTH on P production by the placenta

There was no consistent significant effect of either CRF or ACTH on P levels from 

placental tissue minces obtained from three placentae and incubated in DMEM alone 

with/without CRF/ACTH for 24 hours (results section 3.10). A further study utilising 

tissue minces that were incubated in DMEM and pregnenolone with/without CRF or 

ACTH indicated that P levels were not affected in two placentae but were raised in 

placenta B3 by both CRF and ACTH (see results section 3.12). These findings are not 

in accord with those documented by Bamea (1986) who found that ACTH increased P 

production in all three of the placentae that he studied.
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Of those cytotrophoblast cell preparations (obtained from eight placentae), incubated 

with CRF only those from placenta B4 produced P levels which were significantly 

decreased compared to those produced by the controls (results section 3.11). On 

incubation with ACTH, inhibtion of P production was observed in the same placenta 

whereas two other placentae, B2 and B3, were observed to have significantly raised P 

levels. Those placentae which produced significantly higher levels of P were incubated 

at the lower concentration of pregnenolone. It may be that the higher concentration of 

pregnenolone or the high levels of P produced by the isolated cells inhibit 3|3-HSD 

activity and over ride any stimulatory effect that ACTH might have. On addition of 

ACTH at the lower concentration of pregnenolone it may be that ACTH has stimulated 

synthesis of the enzyme which would account for the higher levels obtained in two of 

the three placentae studied.

These observations suggest that there is no consistent effect of CRF or ACTH on the P- 

450cscc or 3|3-HSD enzyme system within the human placenta in these experimental 

models.

4.3.4. General summary on the action of CRF and ACTH on steroid synthesis in 

human placenta

The few examples in which any apparent modulatory effect was observed were mainly 

expressed by placentae B2 and B3 but there is no apparent reason for this as all seven 

placentae were collected and processed using identical protocols. However, different 

types of sera have been shown to effect the levels of P and E2 produced by trophoblast 

cultures (Henson et al 1996) and different batches of proteases have even affected the 

levels of HPL and HCG produced by human trophoblasts (Richards et al 1994). 

Although the cells in this study were not incubated with bovine sera they were in 

contact with it during the isolation procedure. It is possible that different batches of 

bovine sera contain variable levels of certain factors. These factors could "activate" or
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"inhibit" the cellular enzymes in some way, which in combination with exposure to 

CRF and ACTH, may have resulted in the variable responses observed by isolated cells 

in the individual placenta studied. This highlights the difficulties in interpreting data 

from such experimental models.

The general conclusion from this study is that CRF and ACTH under the experimental 

conditions described do not have a modulatory role on the the aromatase system in the 

production of E l, B2, B3 or a regulatory role on 3p-HSD in placental tissue or isolated 

cytotrophoblast cells. The affect of CRF and ACTH on P-450cssc is more difficult to 

asses in this study, although the tissue studies suggest that there is no affect of either 

hormone on P production. It is not possible to determine from this study whether P 

production observed is release from an already discrete pool present within the cells of 

the tissue explants, or whether it is being synthesized from a supply of precursors 

present within the tissue. In order to explore this it would be necessary to selectively 

inhibit the enzyme system and observe whether or not the increase in P continues but 

even this would not rule out the possibility that the inhibitor affects the release of pre­

formed hormone from the cell into the surrounding medium.

The addition of CRF to placental tissue and purified cells did not have any effect on 

steroid production by cells or tissue and this suggests that it does not play a role in 

modulating placental Bl, B2, B3 or P synthesis. Attempts were made to measure ACTH 

in the media of isolated cytotrophoblast cells and tissue explants after incubation. No 

measurable levels of ACTH were obtained from media in which tissue had been 

incubated, but ACTH was measurable in the medium from cell preparations although at 

very low levels of 1-2 pg/ml. The addition of CRF to the medium did not increase the 

levels of ACTH present in these cell incubations.

In the adrenal ACTH stimulates the hydrolysis of cholesterol esters (Davis and Garren 

1966). In addition, ACTH increases the number of lipoprotein receptors on the cell 

surface (Kovanen et al 1979) stimulating the uptake of LDL, which in turn is thought to
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be enhance ACAT activity and suppress HMG COA reductase activity in a similar 

manner to that observed in human fibroblast cells ( Brown et al 1973; Brown et al 1974; 

Goldstein et al 1974; Brown, Faust and Goldstein 1975; Brown Dana and Goldstein 

1975), thereby increasing the amount of pregnenolone and P produced. D e novo 

synthesis of cholesterol is low in the human placenta (Woolever et al 1961; van 

Leusden and Villee 1965; Zelewski and Villee 1966; Hellig et al 1970) which is thought 

to be due to inhibition of HMG COA reductase activity by LDL (Simpson, Porter et al 

1978; Winkel et al 1981). In addition the levels of P produced by the placenta are 

thought to inhibit ACAT activity suggesting that the enzyme system in the placenta is 

regulated in a different manner to that of the adrenal (Winkel et al 1980; Simpson and 

Burkhart 1980a; Simpson and Burkhart 1980b). The level of pregnenolone production 

appears to be dependant on the uptake of LDL by the placenta, a process which is 

regulated by the number of LDL receptors on the cell surface (Simpson, Porter et al 

1978; Simpson, Bilheimer et al 1979; Simpson and Burkhart 1980b; Winkel, Synder et 

al 1980; Winkel, Gilmore et al 1980; Winkel et al 1981; Simpson and MacDonald 

1981). If the production of P from the tissue explants is due to utilization of endogenous 

cholesterol then the fact that there was no increase in P production on addition of 

ACTH in the first few hours of the study indicates that ACTH does not play a role in 

the stimulation of P production in the human trophoblast in contrast to its role in the 

adrenal. Indeed the StAR protein, involved in the acute regulation of steroidogenesis in 

the adrenal, has not been located in the placenta (Sugawara et al 1995).

The discrepancies between this study and that of Barnea et al (1986) are not easily 

explicable as this study failed to detect any modulatory role of ACTH on placental 

tissue explants or isolated cells. One experimental difference between the two studies is 

that the placentae utilized in the study by Barnea et al (1986) were obtained from 

women who had elective caesereans whilst those women in this study had gone into 

labour. It is possible, but unlikely, that changes occurring within the placenta during the 

process of parturition in some way alter the intrinsic properties of the cells such as those 

regulating the production of LDL receptors on the cell surface. It was noticeable that
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there could be large variations within repeated groups of tissue incubates in the amount 

of steroid produced which was probably associated with the proportion of steroid 

producing cells within the tissue fragments. It is obvious that care must be taken in 

interpreting results from a small set of data. In this study a total of six placentae were 

used in the tissue explant experiments (and the number of flasks containing tissue 

explants for each individual placenta was also six at each time point in each experiment) 

to study the effect of CRF and ACTH. However the number of tissue preparations for 

each placentae used by Bamea (1986) was smaller (number of placentae studied=3, 

number in control group =10, number exposed to ACTH 10 nmoles/1 = 7).

The duration of experimental procedure in this study was relatively short term and does 

not preclude a modulatory role for CRF or ACTH on steroid synthesis in placental 

tissue that may take place after 24 hours has elapsed. It may be that if ACTH does act to 

stimulate the synthesis of enzymes involved in steroid production, which has been 

observed in adrenal steroid transforming enzymes systems such as P450cssc and 3(3- 

HSD (Dubois et al 1981;Funkenstein et al 1983; Kramer et al 1984; Zuber et al 1985; 

Mason et al 1985; John et al 1986), then this would only be apparent on incubating cells 

or tissue preparations for longer periods of time. The roles of CRF and ACTH produced 

by the placenta during pregnancy may instead be directed towards the fetus increasing 

fetal adrenal activity and hence increasing the supply of precursors for oestrogen 

synthesis.

4.4.1. Is there a role for IGF-I and IGF-II in modulating steroid production in the 

placenta?

Research has indicated that both IGF-I and IGF-II have a role in modulating 

steroidogenic activity in numerous endocrine tissues, IGF-I stimulates P-450cscc 

activity in swine granulosa cells and enahances aromatase activity in human granulosa 

cells (Veldhuis et al 1986; Ercikson et al 1989). Stimulation of cortisol by ACTH in
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bovine adrenal cells and that of 17a, 21a and l i p  hydroxylase activities in human 

granulsoa cells have been shown to be augmented by IGF-I (Penhoat et al 1989; Pham- 

Huu Trung et al 1991). IGF-II has been shown to increase the abundance of ACTH 

stimulated mRNAs for P-450cssc, 3p-HSD and 17a hydroxylase/17, 20 lysase in 

human fetal adrenal cell cultures (Mesiano and Jaffe 1993). Both IGF-I and IGF-II have 

been shown to inhibit aromatase activity whilst stimulating P-450cscc and 3p-HSD 

activity in cytotrophoblast cells (Nestler and Williams 1987; Nestler 1989; Nestler 

1990) The purpose of this part of the study was to assess the effects of these 

somatomedins on the production of E l, E2, E3 and P production in placental tissue 

explants and isolated cytotrophoblast cell cultures.

4.4.2. The effects of IGF-I on E l and E2 production in placental tissue

There was no consistent effect of IGF-I on E2 production by placental tissue explants 

when compared to those explants incubated with DMEM alone (results section 13). 

There was no effect of IGF-I on E l, E2 or TE levels produced by those explants 

incubated in the presence of A.

The levels of E l produced by cytotrophoblast cells were unaffected by the presence of 

IGF-I when compared to controls in isolated cell preparations obtained from six of the 

seven placentae. The two placentae which did appear to respond to IGF-I were 

placentae B2 and B3 in which E l levels were significantly decreased at both 

concentrations of IGF-I (results section 3.14.1).

In comparison to E2 levels obtained from controls, three of the seven placentae studied 

showed a significant increase in E2 production when purified cells were incubated with 

IGF-I at 20 ng/ml but none were significantly different at the higher concentration of 

IGF-I (results section 3.14.2).
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In contrast to the findings of Nestler (1990) that IGF-I inhibits TE production in 

cytotrophoblast cells, there were no significant differences in TE production by cells 

incubated with IGF-I at 400 ng/ml. TE levels were significantly different in cell 

preparations obtained from two placental cell preparations at the lower concentration of 

20 ng/ml as compared to those obtained from controls, being lower in placenta B4 and 

higher in placenta B3 (results section 3.14.3).

4.4.3. The effects of IGF-II on E l and E2 production

There was no significant effect of IGF-II on E l or E2 production by tissue explants 

incubated with A at either concentration of IGF-II in any of the three placentae studied. 

However there was a significant reduction in TE levels compared to controls in placenta 

B2 when incubated with IGF-II at 400 ng/ml (results section 3.15).

Significant effects of IGF-II on E l production by isolated cytotrophoblast cells were 

apparent in three of the seven placentae but these were variable. At both concentrations 

of IGF-II, levels of E l were significantly decreased in placenta B2 and were also 

significantly lower in cell preparations from placenta B3 but only when incubated with 

IGF-II at 400 ng/ml. In contrast E l levels were significantly higher than control values 

produced by isolated cells obtained from placenta Bl (results section 13.14.4).

Levels of E2 and TE were significantly raised compared to those of the controls in 

cytotrophoblast preparations from both B2 and B3 at both concentrations of IGF-II but 

no significant effect was observed in any of the other five placentae (result sections 

13.14.5 and 13.14.6). The overall conclusion is that in contrast to the findings of Nestler 

(1990), who found that IGF-II inhibited aromatase activity in cytotrophoblast cells, this 

study suggests that IGF-II does not appear to have a modulatory role on TE production 

by these cells.
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4.4.4. The effects of IGF-I on E3 production

There was no significant effect of IGF-I on E3 synthesis in any of the placental tissue 

explants studied whether or not 16a OH A was used as a precursor with the exception of 

one placenta A4 which produced significantly lower E3 levels at just one time point 

(results section 3.16 and 3.18).

The effects of IGF-I on E3 production by purified cytotrophoblast cells were 

inconsistent. There was a significant increase in E3 levels measured in three of the 

seven placentae studied compared to controls but a decrease in one on incubation with 

IGF-I at 20 ng/ml. At the higher concentration of IGF-I a significant increase was 

observed only in two of the placentae (results section 3.17).

4.4.5. The effects of IGF-II on E3 production

There was no consistent significant effect of IGF-II on E3 levels produced by placental 

explants incubated with/without 16a OH A as a precursor (results section 3.18).

There was a significant effect of IGF-II (at both concentrations) in cell preparations 

obtained from only two of the seven placentae studied suggesting that IGF-II has no 

regulatory role to play on E3 production by the human placenta.

4.4.6. The effects of IGF-I on P production

There was no overall consistent effect of IGF-I on either placental tissue explants 

obtained from three placentae or isolated cytotrophoblast cells obtained from seven 

placentae. Of those tissue explants showing any effect of IGF-I, all levels were 

significantly lower than those produced by controls (results section 3.19). This
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reduction was also present in cells isolated from one placenta (B4) incubated with IGF- 

I at both concentrations used (results section 3.20.1). These findings fail to confirm 

those of Nestler (1989) who suggested that 3-(3HSD activity in isolated cytotrophoblast 

cells is enhanced by IGF-I.

4.4.7. The effects of IGF-II on P production

There was no overall consistent effect of IGF-II on either placental explants or isolated 

cytotrophoblast cells although the levels of P produced by cells from two placentae 

were significantly different from controls. Whilst P production by isolated cells 

incubated with a pregnenolone concentration of 10 pmol/l from placenta B4 was 

significantly reduced at both concentrations of IGF-II used, P production was 

significantly decreased only at the higher concentration of IGF-II in placentae B7 (20 

pmol/l pregnenolone) and B8  (10 pmol/l pregnenolone), and levels were significantly 

higher in placenta B6  (20 pmol/1 pregnenolone), (results section 3.20.2) . These 

findings fail to confirm those of Nestler (1990) who suggested that 3-(3HSD activity in 

isolated cytotrophoblast cells is enhanced by IGF-II.

4.4.8. Overall summary of the role of IGF-I and IGF-II on steroid production in 

human placenta

The presence of either insulin like growth factor had no consistent effect on steroid 

output in tissue explants. Although the collection of placentae and subsequent isolation 

of cytotrophoblast cells was conducted in a similar way to that of Nestler et al (1987, 

1988) inhibition of aromatase and stimulation of 3-pHSD activity was not apparent in 

this study. The variation in responses by individual placentae in this study may be due 

to the differences in batches of bovine calf sera or the proteases used in the experiments. 

In purified cytotrophoblast cell preparations obtained from two of the placentae in this
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study the overall effect of IGF-I and IGF-II on TE levels was actually to enhance its 

production, indicating that if anything, IGF-I and IGF-II stimulate aromatase activity 

rather than inhibiting it, as has been suggested by other researchers (Nestler and 

Williams 1987, Nestler 1990).

It appears that the length of time that the cells are in culture is important in determining 

any modulatory role of IGF-I on steroid synthesis. The inhibition of E2 production in 

choriocarcinoma cells by this somatomedin was observed after 24 hours (Ritvos 1988), 

whilst studies on swine granulosa cells have shown that IGF-I induces P-450cscc 

synthesis as early as 16 hours of culture (Veldhuis et al 1986). In a similar experiment 

to those in this study, cytotrophoblast cells incubated with A and IGF-I for 24 hours, 

showed up to 30% inhibtion of aromatase activity (Nestler et al 1987) and further time 

course studies indicated that the effect of IGF-II was apparent only after incubation with 

IGF-II for 20 hours (Nestler et al 1988). The cells in this study were incubated for 24 

hours and as the collection of placental tissue and cell culture conditions were similar to 

those of Nestler (1987) it is difficult to determine why the modulatory effects observed 

by Nestler (1987, 1989, 1990) were not observed in this study. The number of cells 

plated by Nestler was between 500,000-1,000,000 cells/well whilst in this study 

100,000 viable cells were plated per well. Dependant upon the size of the well it is 

possible that the cell densities in Nestlers study created an environment which was in 

some way necessary for the effects of the insulin like growth factors to become 

apparent. However the tissue studies reported above suggest that this is unlikely as there 

was no effect on steroid production in these experiments.

4.5. Tissue experiments with NADPH

The production of E l and E3 were not generally affected by the addition of NADPH to 

DMEM in the experiments conducted on tissue explants. The experiments utilising 

NADPH suggest that there are more than sufficient endogenous steroid precursors

210



present within the tissue for P and E2 production, as the addition of NADPH created a 

large increase in output of these steroids (in some cases by 2 0 0 %) when no additional 

precursor was present. That NADPH did not just stimulate the release of E2 and P from 

preformed stores cannot be excluded but it is unlikely. This suggests that as P 

production increases with the addition of NADPH that P-450cscc is active in the 

placental tissue explants as this enzyme utilises NADPH whilst 3p-HSD utilzes NAD+. 

The enzyme systems P-450cscc and aromatase both utilise NADPH and so the addition 

of this compound would be expected to stimulate the activités of both these enzyme 

systems if the amount of energy available to the cell is a limiting factor in the 

production of P and E2 rather than the amount of steroid precursor present. In the case 

of E3 the lack of affect of NADPH on aromatase activity may be because the 

concentration of precursors, or their uptake by the cells, might be rate limiting for the 

overall reaction. In the experiments utilising NADPH it was apparent that the effect 

varied over time with E2 levels falling and then rising throughout the 24 hours (see 

figure 3.22.2). As the aromatase system utilises NADPH it might have been expected 

that El would also be seen to increase. However this was not the case. The 17p-HSD 

enzyme system can also utilise NADPH when converting E l to E2. Stimulation of 

aromatase by NADPH would increase the amount of E l available to this enzyme 

system. The reductive pathway appears to be more active in cytotrophoblast cells than 

the oxidative pathway (Shepherd et al 1995). The addition of NADPH could stimulate 

E2 production via the reductive pathways that is, through the interconversion of El to 

E2 and also through the interconversion of A to T and its subsequent conversion to E2. 

If 17P-HSD is not saturated with substrate and is more active than aromatase in 

placental tissue then El would be converted to E2 as E l becomes available so there 

would be no apparent increase in E l levels produced.
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4.6. General conclusions

The enzyme systems 3p-HSD, aromatase and 17p-HSD are active in cytotrophoblast 

cells and tissue expiants from human placenta when maintained in in vitro culture. The 

isolated cell studies indicate that the activity of 17p-HSD is predominantly in the 

reductive direction whilst the converse is apparently true for the tissue explants. The 

enzyme system P-450cscc does not appear to utilise 25a-OH as a precursor in isolated 

cytotrophoblast cells.

The variable responses seen by the placental cell preparations illustrate the importance 

of repeating experiments with more than 3-4 placentae, and in having a sufficient 

number of replicate flasks or wells at each time point studied.

There does not appear to be a role for CRF or ACTH in the production of E l, E2, E3 or 

P in human placental tissue. This study failed to confirm the findings of Bamea (1986) 

that ACTH enhances P and E2 production in the human placenta. The experimental 

models used in this study are limited however, and a role for these compounds in 

modulating steroid production in vivo cannot be precluded.

There was no consistent effect of IGF-I or IGF-II on the production of E l, E2, E3 or P 

in isolated human placental tissue. This study failed to confirm the findings of Nestler 

(1987,1988,1989) that indicated IGF-I and IGF-II had an inhibitory effect on "TE" 

production and a stimulatory one on P production in isolated cytotrophoblast cells.

The addition of NADPH to tissue explants appears to stimulate the activity of 

aromatase, 17p-HSD and cytochrome P-450cscc with an increase in P and E2. It did 

not however stimulate El or E3 production. The lack of apparent stimulation of El may 

be due to an increase in reductive 17p-HSD activity which converts El to E2 as rapidly 

as El is formed. The lack of stimulation of E3 production by addition of NADPH may 

be because the supply of 16a-0HA is rate limiting for this steroid.
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4.7. Recommendations for future work

As the isolated cytotrophoblast cells in this study produced very little P from 25- 

OHcholesterol it would be of interest to investigate the precursor cholesterol sulphate to 

determine whether this is a major substrate for P synthesis in the human placenta.

Although there was no consistent effect by CRF, ACTH, IGF-I or IGF-II on steroid 

production by isolated cytotrophoblast cells incubated for 24 hours it would be of 

interest to study long term cell cultures a) to see if any modulatory effects become 

apparent beyond 24 hours b) to see if any possible modulatory effects might depend on 

the cell type and the formation of syncytia. In addition it would be interesting to study 

17P-HSD activity in cultured syncytiotrophoblasts to see if it differs from that in 

cyotrophoblast cells. Preliminary data (not presented here) suggests that 17p-HSD is 

more active in cells cultured for 96 hours compared to cells cultured for 24 hours.

In view of the finding that ACTH significantly increased P production in two of the 

three placentae incubated with lower concentrations of pregnenolone further studies 

utilising this substrate at more physiological concentrations might determine whether 

ACTH modulates the 3p-HSD enzyme under these experimental conditions.

It would also be interesting to see whether the addition of ACTH to the insulin like 

growth factors would enhance or decrease the production of P and E2 as has been 

reported in other cell systems (Penhoat et al 1989; Pham-Huu-Trung et al 1991; 

Mesiano and Jaffe 1993).

The addition of NADPH to cell culture sytems would perhaps help in answering the 

question of why it stimulates B2 production but not El or E3 in tissue explants.

Tissue explants and cell cultures prepared from preterm placentae and elective 

caesarean sections might clarify whether the discrepancies between this study and that
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of Bamea et al (1986) were due to the fact that this study only used placentae from 

women who had gone into labour. It would also be of interest to assess whether the 

growth factors and CRF have any affect on placental P, E l, E2 and E3 production when 

the placenta is obtained from a preterm delivery or elective caesarean section.
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Appendix

For all the Appendix tables listed below the symbol: ~ indicates that the level of steroid 
produced by the tissue explants or isolated cells was below the sensitivity of the assay. 
The concentrations of CRF and ACTH used in this study are 100 nmol/1 and 10 nmol/1 
respectively.

20 m 40 m 60 m 80 m 100 m 120 m 150 m 180 m 1440 m

Control 447.9 503.7 550.7 552.1 505.9 721.3 629.6 456.7 461.8

Control 3410.0 581.1 821.2 556.2 439.0 469.9 689.0 649.0 614.5

Control 579.3 600.6 355.7 504.0 567.9 540.0 761.0 790.4 761.0

Control 1433.2 705.9 636.2 624.1 534.5 576.3 652.7 671.4 660.0

Control 1015.0 1410.8 749.2 1013.9 879.2 789.6 1042.6 921.8 1153.8

Control 1663.3 552.1 489.3 3151.9 941.2 646.1 589.9 881.8 709.6

ACTH 367.8 434.6 781.2 542.6 698.6 533.8 772.8 560.9 526.8

ACTH 819.0 422.9 556.2 588.5 456.7 379.6 794.8 638.4 512.8

ACTH 392.4 1038.2 478.0 578.9 536.3 498.1 852.0 674.0 616.4

ACTH 470.6 558.4 475.8 588.1 908.2 562.0 751.8 1696.0 612.3

ACTH 700.1 1176.6 824.5 777.5 1043.3 762.8 1116.0 1645.7 1121.9

ACTH 725.0 923.6 817.5 859.8 600.6 1036.0 1069.0 1705.9 1113.4

NADPH 3269.4 350.2 2349.1 4688.2 8505.0 1733.1 2663.7 1113.1 1718.0

NADPH 1471.7 602.4 4969.8 5149.7 1987.1 1280.1 1544.4 1395.0 1285.2

NADPH 3769.8 3907.8 4462.1 3796.6 5737.4 1566.1 2581.4 1331.1 1332.6

NADPH 2121.8 2199.3 3310.9 1572.3 8770.4 1729.4 1769.8 1835.9 1567.2

NADPH 5326.2 1138.7 6213.9 7749.5 10179.3 1293.7 2719.1 4560.1 2006.2

NADPH 4542.1 886.9 6845.3 2732.3 7306.0 4584.0 1911.1 1893.1 2283.0

ACTH + NADPH 2865.2 740.8 4597.6 4798.4 4631.3 1691.6 1823.4 1311.3 1797.7

ACTH + NADPH 1467.3 458.1 4550.9 4070.0 2631.0 891.0 1501.8 1872.2 1219.5

ACTH + NADPH 2324.8 441.6 4806.8 2932.8 3157.8 812.4 1205.2 905.6 979.8

ACTH + NADPH 3545.8 1028.2 5611.5 1079.3 3018.3 1071.6 2093.9 1962.9 979.4

ACTH + NADPH 6447.0 1011.0 7835.4 5139.4 10186.3 2400.1 2681.3 2569.7 2785.6

ACTH + NADPH 5180.5 1928.7 7179.0 4331.0 1465.5 2273.1 3179.4 4022.3 2678.4

Appendix table 6.1.1. The values for E2 levels (fmol/mg protein) produced by tissue
explants obtained from placenta A1 and incubated for a total period of 24 hours.

250



20 m 40 m 60 m 80 m 100 m 120 m 150 m 180 m 1440 m

Control 0.62 0.60 0.87 0.82 0.96 0.93 0.92 0.76 1.05

Control 0.64 0.55 0.59 0.69 0.70 0.59 0.60 0.64 0.81

Control 0.52 0.56 0.63 0.70 0.90 0.48 0.88 0.69 0.75

Control 0.73 0.64 0.68 0.60 0.70 0.79 0.74 1.11 1.26

Control 1.00 0.84 0.87 0.78 0.89 0.87 0.85 1.15 1.26

Control 0.57 0.44 0.45 0.49 0.78 0.75 0.78 0.75 0.96

ACTH 0.61 0.59 0.86 0.81 0.94 0.92 0.90 0.75 1.00

ACTH 0.82 0.42 0.57 0.59 0.71 0.43 0.62 0.52 0.75

ACTH 0.61 0.47 0.64 0.65 0.88 0.66 0.68 0.64 0.74

ACTH 0.72 0.68 0.73 0.62 0.64 0.91 0.77 1.05 1.07

ACTH 1.16 0.94 1.08 1.16 1.15 1.21 1.21 1.83 1.95

ACTH 0.88 0.73 1.19 0.97 1.24 0.72 0.85 1.33 1.42

NADPH 0.46 0.61 0.89 0.81 1.03 0.72 0.81 0.91 1.02

NADPH 0.61 0.57 0.74 0.75 0.80 0.59 0.77 0.73 0.75

NADPH 0.47 0.49 0.58 0.67 0.82 0.62 0.67 0.68 0.97

NADPH 0.65 0.69 0.72 0.74 0.65 0.74 0.80 0.87 0.93

NADPH 1.19 1.11 1.16 0.98 0.95 1.01 1.13 1.71 1.64

NADPH 0.82 0.75 0.90 0.74 0.90 0.83 0.81 1.18 1.13

ACTH + NADPH 0.62 0.60 0.65 0.65 0.65 0.67 0.85 0.79 0.77

ACTH + NADPH 0.59 0.52 0.78 0.79 0.77 0.71 0.75 0.67 0.77

ACTH + NADPH 0.34 0.26 0.41 0.43 0.60 0.43 0.46 0.39 0.74

ACTH + NADPH 0.74 0.71 0.77 0.83 0.90 1.02 1.01 1.14 1.22

ACTH + NADPH 1.20 0.92 1.01 0.90 0.98 1.39 1.30 1.37 1.49

ACTH + NADPH 0.82 0.90 0.73 0.78 1.02 0.98 1.04 1.49 1.50

Appendix table 6.1.2. The values for E3 levels (pmol/mg protein) produced by tissue 
explants obtained from placenta A1 and incubated for a total period of 24 hours.
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20 m 40 m 60 m 80 m 100 m 120 m 150 m 180 m 1440 m

Control 17.30 24.74 26.90 21.02 27.54 27.19 38.22 40.96 3 8 J#

Control 16.38 22.90 23.21 22.93 23.06 31.99 23.66 43.25 48.40

Control 22.48 27.86 24.99 26.11 22.48 36.25 33.68 24.99 50.69

Control 28.97 43.03 38.19 41.24 35.78 50.59 46.17 66.84 56.86

Control 36.51 48.65 39.69 64.59 60.13 87.55 60.01 67.38 72.56

Control 42.96 27.25 19.78 42.39 27.22 38.70 35.65 40.45 48.65

ACTH 20.22 24.30 24.93 23.72 23.95 38.45 45.22 51.48 56.76

ACTH 12.34 28.24 28.78 26.84 28.02 32.53 29.42 24.20 40.39

ACTH 20.07 19.10 20.96 18.98 24.30 25.54 23.12 27.22 38.22

ACTH 26.11 33.93 36.12 34.60 37.37 42.39 36.47 42.20 52.76

ACTH 40.61 43.60 46.33 60.29 45.06 47.76 47.75 46.27 62.55

ACTH 22.93 45.76 36.86 65.54 40.64 47.38 50.28 50.31 62.42

NADPH 31.04 63.06 69.48 48.15 88.94 125.55 117.06 120.81 166.25

NADPH 35.74 41.66 64.84 58.64 62.11 100.17 98.36 122.37 159.99

NADPH 28.40 43.76 56.57 67.77 67.77 78.51 83.92 150.83 145.77

NADPH 34.53 64.11 67.99 83.47 84.49 125.96 114.70 156.65 161.61

NADPH 83.57 130.19 143.64 188.64 242.32 224.99 230.33 257.45 283.15

NADPH 50.43 107.13 107.77 114.16 206.92 187.05 218.47 177.76 230.61

ACTH + NADPH 26.68 22.55 24.04 30.85 34.31 35.27 39.97 48.05 65.54

ACTH + NADPH 22.61 35.49 44.07 46.75 41.50 60.90 76.54 8287 83.13

ACTH + NADPH 2&89 35.01 40.89 41.88 38.76 51.96 44.87 49.42 72.12

ACTH + NADPH 35.74 46.01 56.67 64.90 88.75 95.11 76.92 91.52 105.29

ACTH + NADPH 0.54 75.94 82.93 102.68 125.16 117.82 123.19 143.29 175.89

ACTH + NADPH 35.62 77.85 91.74 113.56 167.75 133.59 158.01 150.00 174.11

Appendix table 6.1.3. The values for P levels (pmol/mg protein) produced by tissue 
explants obtained from placenta A1 and incubated for a total period of 24 hours.
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20 m 40 m 60 m 80 m 100 m 120 m 150 m 180 m 1440 m
Control 136.6 262.1 269.1 252.9 241.2 315.0 294.8 263.2 359.4
Control 425.5 259.9 298.8 292.2 326.4 301.8 305.8 291.1 320.1
Control 258.1 186.9 315.7 236.1 294.4 415.2 328.9 354.6 360.5
Control 356.1 454.5 379.6 220.6 341.4 359.0 385.5 352.8 348.4
Control 242.6 200.4 244.1 209.2 241.6 266.9 265.4 266.1 279.7
Control 273.9 219.5 286.7 301.4 262.5 627.0 305.1 309.8 273.9
CRF 481.3 375.9 475.0 244.1 412.2 349.1 360.9 396.1 370.0
CRF 170.3 261.0 301.4 208.5 215.1 279.7 271.6 263.2 384.7
CRF 222.1 290.0 296.6 226.5 250.7 318.6 218.1 272.8 288.9
CRF 223.2 577.5 267.6 249.6 342.1 291.1 291.5 357.6 365.3
CRF 306.9 561.3 545.5 297.7 317.5 678.4 146.9 340.3 418.5
CRF 347.6 480.9 575.6 371.5 405.3 675.5 574.5 442.7 1717.7
ACTH 364.5 225.4 283.4 333.3 334.4 299.9 322.3 287.1 372.2
ACTH 244.9 240.1 281.2 270.5 355.0 340.7 357.6 352.8 352.8
ACTH 208.9 190.2 259.5 193.1 270.2 274.6 346.2 271.3 502.9
ACTH 214.0 228.0 156.8 182.4 260.3 304.7 207.0 257.7 291.8
ACTH 273.1 221.7 237.9 290.4 278.3 349.1 309.8 314.2 278.3
ACTH 257.0 196.4 292.6 254.8 291.1 288.5 283.0 316.8 364.9
IGF-I 157.9 225.4 212.9 342.1 328.5 379.6 315.7 281.9 333.7
IGF-I 233.5 196.8 316.8 323.8 326.0 254.4 304.7 347.6 313.1
IGF-I 185.4 218.8 304.7 233.5 227.6 563.9 283.8 277.5 490.8
IGF I 324.1 283a 2612 277.9 406.0 367.1 271.3 375.5 641.7
IGF-I 279.4 272.4 173.3 172.5 287.4 281.9 270.2 240.4 413.7
IGF-I 168.5 222.1 251.5 233.8 421.8 276.4 271.6 263.9 315.3
NADPH 1265.4 996.3 752.9 846.9 1221.7 1023.8 732.0 445.7 494.9
NADPH 1375.9 1236.4 973.9 1018.0 593.6 455.6 443.1 426.2 532.3
NADPH 743.4 757.0 676.6 557.3 1010.6 1398.3 389.9 326.7 421.1
NADPH 1481.2 1285.6 1008.1 1200.4 1050.3 975.0 422.2 380.3 559.1
NADPH 1579.3 1336.6 844.7 911.1 1121.1 1565.3 527.2 881.8 547.0
NADPH 547.3 842.1 684.6 697.1 677.3 1211.8 384.7 442.0 419.6
CRF + NADPH 936.1 745.2 575.2 696.4 931.7 1487.5 418.5 470.3 411.1
CRF + NADPH 1673.6 1314.6 993.7 1095.1 1632.1 535.6 785.6 781.9 628.1
CRF + NADPH 1008.4 1136.5 634.3 507.7 901.6 1003.3 384.4 473.9 445.7
CRF + NADPH 998.1 1341.0 857.5 728.7 972.1 1234.6 440.9 465.5 510.3
CRF + NADPH 676.2 885.8 708.5 732.0 811.3 1855.3 377.0 391.3 429.9
CRF + NADPH 658.2 712.9 606.8 595.4 1065.3 1710.3 443.1 497.8 426.9
ACTH + NADPH 639.1 637.3 625.9 908.2 987.1 1290.4 351.3 431.7 391.0
ACTH + NADPH 427.3 912.6 639.9 447.9 875.2 1389.5 405.3 569.7 421.1
ACTH + NADPH 909.3 868.2 643.2 849.1 800.3 1386.5 414.5 306.9 468.4
ACTH + NADPH 1077.1 1651.6 1370.8 1231.6 1164.8 1312.4 509.2 1084.1 643.5
ACTH + NADPH 670.3 844.3 665.5 811.3 981.3 1109.7 544.8 443.5 449.3
ACTH + NADPH 994.1 1160.8 526.8 560.9 324.1 747.0 383.2 361.6 455.9
IGF-I + NADPH 1169.9 1096.2 737.9 664.8 1214.4 1530.1 609.8 835.2 498.9
IGF-I + NADPH 885.1 682.4 721.7 914.5 1070.5 688.0 330.8 397.2 426.9
IGF-I + NADPH 1443.8 942.7 797.3 884.7 1074.5 1479.8 601.3 500.4 505.5
IGF-I + NADPH 1357.9 1245.9 976.8 1163.3 1018.0 944.9 409.0 368.6 541.8
IGF-I + NADPH 1413.0 899.8 567.5 586.3 1205.6 591.4 440.1 761.4 449.7
IGF-I + NADPH 1317.5 1240.4 1124.8 980.5 1158.2 1507.7 660.4 1040.0 617.5

Appendix table 6.2.1. The values for E2 levels (fmol/mg protein) produced by
placental tissue explants obtained from placenta A2 and incubated for 24 hours. The
concentration of IGF-I used in this experiment was 20 ng/ml.
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20 m 40 m 60 m 80 m 100 m 120 m 150 m 180 m 1440 m
C ontrol 2.01 2.59 2.07 2.99 2.43 2.64 2.82 2.46 2.66
C ontrol 2.47 2.34 2.59 2.01 2.14 2.33 2.87 2.48 2.23
C ontrol 2.35 1.31 2.66 2.90 2.07 2.16 2.57 2.25 2.44
C ontrol 2.32 2.11 2.30 2.04 2.90 2.65 4.85 3.47 4.22
C ontrol 2.14 2.34 1.69 2.58 2.39 2.52 2.56 2.39 3.39
C ontrol 2 3 9 1.65 2.24 2.53 3.34 3.18 2.24 2.17 3.91
C RF 4.37 4.55 4.84 3.13 4.48 4.85 4.49 4.73 4.37
C RF 2.09 2.02 2.68 2.03 2.57 1.80 2 J 8 2.15 2.31
C RF 1.98 1.87 2.50 1.90 2.17 2.47 2.65 2.20 2.27
C RF 1.83 1.76 1.89 2.05 1.81 3.97 5.63 2.64 3.42
CRF 2.27 1.43 1.83 2.36 2.63 2.68 2.14 2.60 3.81
CRF 2.15 1.82 2.05 2.48 3.35 2.70 2.46 2.81 3.27
A CTH 2.07 2.42 2.32 2.49 2.39 2.46 2.52 2.24 2.20
A CTH 2.47 2.33 2.13 2.16 2.39 2.58 2.93 2.60 2.11
A CTH 1.80 1.67 2.22 2.30 2.26 2 ^ 3 2.43 2.45 3.14
A CTH 2.43 1.91 2.13 2.72 3.33 3.14 2.92 2.85 4.43
A CTH 2.06 2.03 2.77 1.62 2.62 2.51 2.67 2 ^ 8 2.10
A CTH 2.02 1.73 1.62 2.40 1.26 2.34 2.39 2.42 3.40
IG F-I 2.19 2.04 2.13 2.52 2.22 1.93 2.71 2.20 2.59
IG F-I 2.37 2.00 2.90 3.21 3.01 2.91 3.14 3.01 1.40
IG F-I 1.89 1.85 2.68 1.81 2.21 1.19 2.12 2 4 3 2.50
IG F-I 2.21 1.70 2.15 2.69 2.55 2.66 2.71 3.01 3.72
IG F-I 2.15 1.69 2.10 2.65 2.59 2.94 2.75 2 8 3 3.65
IG F-I 233 1.61 2.00 2.76 2.46 2.23 3.07 2.63 4.16
NADPH 2.36 2.47 2.14 2.11 2.57 2.53 3.04 2.56 2.00
NADPH 2.91 2.51 2.29 2.94 2.66 2.74 2.93 3.09 2.58
NADPH 1.93 1.89 238 2.22 2.27 2.20 2.57 2.40 2.24
NADPH 2.75 2.39 1.99 3.01 2.85 3.25 3.42 3.34 3.66
NADPH 1.80 1.77 1.74 2.43 2.35 2.59 2.36 2.49 3.61
NADPH 2.65 2 3 9 1.95 2.85 3.23 3.34 2.90 3.19 4.08
CRF + NADPH 2.12 1.99 2.21 2.48 2.16 2.44 2.87 2.43 2.20
CRF + NADPH 2 3 3 2.85 3.61 3.01 3.20 3.19 3.61 348 2.55
CRF + NADPH 2.37 2 3 2 3.19 2.96 2.61 2.89 2.71 2.97 2 4 2
CRF + NADPH 2.19 1.54 1.95 2.83 2.91 3.24 3.29 3.22 4.38
CRF + NADPH 1.65 1.78 2.05 2.65 2.38 2.47 2.54 2.56 4.12
CRF + NADPH 2.50 2.04 1.99 2.75 2.61 2.74 2.99 2.19 3.95
A CTH  + NADPH 2.60 2.45 2.76 3.22 2.74 3.07 3.12 2.50 288
ACTH  + NADPH 2.04 1.96 2.41 2.64 2.51 2.54 2.63 2.57 2.34
ACTH  + NADPH 1.77 2.13 1.90 2.19 2.35 2.42 2.95 2.96 343
ACTH  + NADPH 2.21 1.77 1.83 23 6 2.65 2 ^ 0 3.11 2.87 3.66
A CTH  + NADPH 2.49 2.27 3.17 3.05 3.63 3.74 3.50 3.92 4.95
ACTH  + NADPH 2.00 1.71 233 2.75 2.36 2 ^ 8 2 4 8 2 4 9 2.08
IG F-I + NADPH 2.78 2.37 2.44 23 8 2.54 2.39 2.96 2.65 2.49
IG F-I + NADPH 2.14 2.13 2.37 3.15 2.69 3.00 3.02 2.64 2.57
IG F-I + NADPH 1.99 1.98 233 2.79 2.45 2.59 2.86 2.71 2.78
IG F-I + NADPH 2.48 2.16 2.26 238 2.95 3.03 3 4 8 3.46 5.84
IG F-I + NADPH 3.28 2.78 2.57 3.53 2.85 3.58 3.78 3.66 5.23
IG F-I + NADPH 2 3 9 1.85 2.50 2.69 3.61 3.30 2 8 6 2.87 4.10

Appendix table 6.2.2. The values for E3 levels (pmol/mg protein) produced by tissue
explants obtained from placenta A2 and incubated for 24 hours. The concentration of
IGF-I used in these experiments was 20 ng/ml.
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20 m 40 m 60 m 80 m 100 m 120 m 150 m 180 m 1440 m
Control 54.85 59.62 39.05 56.67 73.65 61.85 64.74 66.90 91.87
Control 54.38 55.43 84.40 48.27 46.97 84.02 53.84 69.17 66.59
C ontrol 67.73 77.59 83.64 72.19 77.91 87.13 85.86 92.54 102.71
C ontrol 54.38 73.43 60.96 55.94 64.49 74.03 69.55 76.35 73.71
Control 60.39 65.51 57.56 68.75 75.40 72.57 70.25 84.49 75.97
Control 59.78 84.91 71.55 78.55 88.40 80.45 83.95 96.35 79.82
CRF 106.82 124.31 93.56 89.23 135.63 137.09 100.65 131.43 280.38
CRF 57.27 78.26 75.94 56.29 76.77 92.32 87.67 96.96 77.05
CRF 51.96 63.92 41.66 58.93 61.53 61.47 67.03 70.21 68.31
CRF 59.88 63.00 53.42 61.18 74.32 45.60 61.02 73.11 67.48
CRF 59.88 68.05 81.15 79.75 72.92 94.54 89.01 91.04 80.58
CRF 47.38 68.37 65.83 73.78 50.24 63.28 73.46 62.96 78.23
ACTH 62.61 64.55 51.64 71.55 89.20 81.60 83.67 74.51 95.65
ACTH 72.22 68.02 49.96 66.33 73.62 82.55 85.26 90.31 76.22
ACTH 48.72 61.15 49.74 57.69 62.17 80.93 74.06 63.06 73.43
ACTH 45.79 68.59 57.27 64.97 68.08 69.86 64.65 66.18 84.33
ACTH 58.13 78.64 69.55 75.87 66.21 79.09 78.48 75.30 87.51
ACTH 61.98 70.15 61.15 63.38 58.10 69.58 67.64 75.18 86.31
IG F-I 53.74 65.64 56.89 64.59 74.48 63.19 65.79 70.79 95.24
IG F-I 58.26 77.05 72.28 95.65 99.18 93.78 99.28 102.33 111.62
IG F-I 46.43 49.61 55.94 56.03 62.42 61.47 55.40 66.88 69.32
IG F-I 61.06 72.50 48.02 60.74 63.60 59.78 82.68 72.50 87.45
IG F-I 62.90 75.72 59.82 67.70 57.88 66.18 69.55 87.07 86.18
IG F-I 52.53 69.99 70.21 61.60 71.07 73.94 64.74 64.68 81.98
NADPH 58.00 84.02 106.66 150.41 116.96 130.76 147.71 149.46 151.23
NADPH 64.62 104.94 75.97 153.98 172.29 138.27 127.36 186.03 163.39
NADPH 48.05 61.85 76.03 93.68 93.36 95.53 102.97 117.50 127.17
NADPH 82.08 106.75 106.91 141.61 139.22 151.75 140.56 196.71 219.93
NADPH 45.95 75.43 76.48 85.80 103.89 90.66 98.96 114.89 136.61
NADPH 72.41 104.78 85.96 113.02 131.24 156.04 128.69 199.35 171.69
CRF + NADPH 40.32 73.01 70.12 98.20 116.39 97.09 92.60 8&88 94.70
CRF + NADPH 73.97 93.97 144.85 146.63 202.95 211.95 202.98 203.20 141.64
CRF + NADPH 49.32 79.69 92.79 108.82 100.90 91.71 124.50 144.37 117.63
C RF + NADPH 45.57 88.05 100.33 103.03 131.78 106.88 131.56 154.68 198.05
CRF + NADPH 51.83 86.81 65.51 88.72 97.63 78.55 96.99 112.89 136.42
CRF + NADPH 55.81 71.36 86.05 108.76 110.73 95.53 108.34 76.19 100.36
A CTH  + NADPH 58.58 97.56 95.27 114.61 151.91 109.01 132.70 157.82 137.38
A CTH  + NADPH 56.10 101.95 71.84 47.45 135.69 141.06 127.20 133.15 129.14
A CTH  + NADPH 48.27 74.19 67.54 81.09 99.66 95.15 104.97 92.89 109.20
A CTH  + NADPH 21.94 72.50 69.64 77.91 86.81 103.99 114.16 137.69 136.42
A CTH  + NADPH 53.14 91.43 90.44 107.58 110.38 104.69 118.90 134.80 153.53
A CTH  + NADPH 70.15 138.74 97.21 143.77 155.37 186.13 194.90 207.91 219.80
IG F-I + NADPH 53.42 78.99 118.61 131.49 146.28 131.78 145.77 158.81 163.99
IG F-I + NADPH 54.73 90.25 70.56 112.10 160.49 138.49 126.44 127.23 125.20
IG F-I + NADPH 54.35 69.64 62.46 84.68 100.90 100.58 108.15 104.65 118.49
IG F-I + NADPH 61.82 98.20 102.24 126.72 108.57 130.16 135.47 134.61 207.08
IG F-I + NADPH 80.71 112.57 111.87 142.69 151.59 171.40 170.73 200.44 212.71
IG F-I + NADPH 64.74 82.78 83.54 116.42 161.32 131.78 159.99 151.05 189.02

Appendix table 6.2.3. The values for P levels (pmol/mg protein) produced by tissue
explants obtained from placenta A2 and incubated for 24 hours. The concentration of
IGF-I used in these experiments was 20 ng/ml.
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Control
Control
Control
Control
Control
Control
CRF
CRF
CRF
CRF
CRF
CRF
ACTH
ACTH
ACTH
ACTH
ACTH
ACTH
IGF-I
IGF-I
IGF-I
IGF-I
IGF-I
IGF-I
NADPH
NADPH
NADPH
NADPH
NADPH
NADPH
CRF + NADPH 
CRF + NADPH 
CRF + NADPH 
CRF + NADPH 
CRF + NADPH 
CRF + NADPH 
ACTH + NADPH 
ACTH + NADPH 
ACTH + NADPH 
ACTH + NADPH 
ACTH + NADPH 
ACTH + NADPH 
IGF-I + NADPH 
IGF-I + NADPH 
IGF-I + NADPH 
IGF-I + NADPH 
IGF-I + NADPH 
IGF-I + NADPH

20 m 40 m 60 m 80 m 100 m 120 m 150 m 180 m 1440 m
1.41 1.88 2.02 2.41 2.90 1.26 2.47 2.11 2.29
3.02 2.15 2.26 1.93 2.45 1.85 2.41 2.14 2.57
1.70 1.65 1.98 4.40 3.83 2.64 1.79 2.39 2.99
2.62 0.91 1.99 2.25 2.81 1.84 1.92 2.13 2.46
1.44 1.48 2.04 1.03 2.27 2.11 2.25 2.41 2.96
2.05 1.59 2.98 2.53 2.70 2.32 2.49 2.58 2.66
1.47 1.01 0.74 1.24 1.26 0.74 0.61 1.11 1.27
1.78 1.13 1.32 1.64 1.29 1.70 1.50 1.51 1.87
2.30 1.41 1.85 1.75 3.05 1.91 2.06 2.18 2.15
2.77 2.03 2.19 1.92 2.57 2.52 1.52 2.39 2.99
2.45 1.73 2.71 2.22 2.83 2.30 2.33 2.92 2.70
1.65 1.17 1.96 1.30 1.98 2.28 1.82 2.09 1.75
3.14 1.50 1.74 2.39 2.87 1.35 2.32 1.51 2.35
1.70 1.59 2.38 1.80 2.70 2.20 2.16 2.81 2.93
2.24 1.89 2.13 2.72 3.88 2.47 3.56 2.78 3.24
2.40 1.68 2.35 2.40 2.92 2.34 2.46 3.04 2.80
1.61 1.52 1.68 2.05 2.11 1.96 1.78 2.10 2.19
1.53 1.36 1.79 2.11 2.20 2.16 2.55 1.80 2.43
1.98 1.24 1.71 2.07 1.99 2.05 1.72 1.79 1.87
2.12 1.54 1.99 2.19 2.45 1.78 2.37 2.75 2.49
2.32 1.31 1.75 1.62 2.98 2.00 1.93 2.27 2.34
2.45 1.45 2.08 1.60 2.15 2.00 2.30 2.16 2.49
3.29 1.73 2.17 0.98 2.47 2.38 2.30 2.49 2.49
2.38 1.64 2.07 2.33 2.29 2.10 2.29 2.31 2.56
1.82 1.33 1.70 1.85 2.60 2.69 2.50 2.57 2.57
2.58 1.48 1.97 1.91 2.58 1.62 2.73 2.76 2.92
2.80 1.79 2.12 4.64 3.35 3.20 2.12 3.35 3.00
1.76 1.42 2.04 1.65 3.72 2.64 2.76 2.64 3.23
2.68 1.61 2.52 1.38 2.59 2.75 2.91 3.12 4.98
0.99 0.90 1.64 1.84 2.28 1.89 2.96 2.54 2.60
1.96 1.20 2.10 1.85 2.40 1.69 2.00 2.16 2.26
1.77 1.06 1.38 1.72 2.31 1.90 2.00 1.99 2.52
1.60 1.17 1.39 1.44 2.88 2.24 1.95 2.37 2.52
1.13 1.17 1.53 1.35 1.79 1.59 1.82 2.15 2.26
2.52 1.40 1.88 2.15 2.62 2.32 2.64 2.62 2.89
3.15 2.42 3.14 3.33 3.68 3.80 3.46 4.10 4.14
0.47 1.79 2.42 1.82 2.78 1.63 2.18 2.25 2.69
3.20 2.00 2.20 2.74 3.41 2.05 3.32 3.43 3.29
1.27 1.01 1.39 2.39 2.40 1.46 1.71 1.65 1.84
1.40 0.91 1.30 1.29 2.46 1.61 1.79 1.84 1.86
2.00 1.58 2.06 2.04 1.23 2.08 2.40 2.06 2.95
2.07 0.88 1.97 1.00 2.41 2.41 2.21 2.46 2.76
0.27 1.06 1.52 1.74 1.92 1.55 2.10 2.14 2.17
1.60 1.01 1.35 1.42 2.07 1.45 1.65 2.10 2.08
1.09 0.90 1.48 1.63 2.76 1.77 2.15 2.08 2.45
2.23 1.07 1.49 1.55 1.44 1.90 1.82 2.22 2.56
1.92 1.57 1.92 1.56 2.16 2.09 2.36 2.34 2.52
1.43 0.98 1.62 1.57 1.99 2.06 1.85 2.53 2.21

Appendix table 6.3.1. The values for E l levels (pmol/mg protein) produced by tissue
explants obtained from placenta A3 and incubated for 24 hours. The concentration of
IGF-I used in these experiments was 20 ng/ml.
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20 m 40 m 60 m 80 m 100 m 120 m 150 m 180 m 1440 m
C ontrol 1061.3 584.2 573.2 643.2 567.2 583.2 571.2 479.1 815.2
C ontrol 1219.3 726.2 594.2 607.2 508.1 713.2 635.2 535.2 853.2
Control 1051.3 559.2 517.1 662.2 582.2 670.2 585.2 633.2 968.3
C ontrol 1397.4 395.1 482.1 1390.4 616.2 618.2 515.2 534.1 795.2
C ontrol 631.2 542.1 549.1 491.1 537.1 587.2 539.2 508.1 647.2
C ontrol 1508.4 685.2 652.2 665.2 746.2 700.2 605.2 695.2 841.2
CR F 165.1 280.1 351.1 416.1 340.1 351.1 384.1 312.1 677.2
CR F 1045.3 357.1 386.1 485.1 320.1 440.1 433.1 527.2 744.2
CR F 1203.3 547.2 542.1 456.1 464.1 571.2 490.1 466.1 646.2
CRF 1184.3 419.1 546.1 480.1 494.1 528.2 437.1 446.1 799.2
CRF 1692.5 505.1 627.2 640.2 603.2 869.3 637.2 438.1 753.2
CRF 1589.4 804.2 737.2 806.2 753.2 772.2 638.2 645.2 1021.3
A CTH 1919.5 1019.3 1060.3 762.2 626.2 772.2 442.1 561.2 799.2
ACTH 948.3 548.2 582.2 572.2 696.2 784.2 703.2 621.2 973.3
ACTH 536.2 439.1 422.1 400.1 415.1 475.1 1181.3 498.1 735.2
ACTH 486.1 438.1 469.1 487.1 464.1 550.1 542.1 388.1 739.2
ACTH 499.1 494.1 608.2 575.2 740.2 582.2 599.1 538.1 849.2
ACTH 260.1 374.1 486.1 604.2 449.1 628.2 586.2 507.1 851.2
IG F-I 252.1 344.1 441.1 529.1 419.1 513.1 540.2 456.1 571.2
IG F-I 80&2 445.1 547.2 68&2 461.1 600.2 381.1 508.1 792.2
IG F-I 495.1 450.1 371.1 623.2 517.1 523.2 506.2 450.1 576.2
IG F-I 363.1 428.1 415.1 446.1 408.1 477.1 320.1 420.1 658.2
IG F-I 324.1 450.1 570.1 637.2 512.1 557.2 713.2 478.1 746.2
IG F-I 326.1 353.1 516.1 528.2 507.1 554.1 505.1 622.2 881.2
NADPH 1294.4 1585.4 1593.4 2103.6 1550.4 1887.5 1312.3 939.3 997.3
NADPH 1447.4 1651.4 1578.4 1653.5 1653.5 1586.4 1146.3 1566.4 958.3
NADPH 1437.4 2237.6 2136.6 1805.5 1886.5 2125.6 1759.5 1024.3 1104.3
NADPH 1425.4 1021.3 1484.4 1579.4 1830.5 1675.4 895.2 885.2 823.2
NADPH 1984.5 1659.4 2397.6 2185.6 2407.7 2226.6 1787.5 1342.4 1142.3
NADPH 1441.4 1530.4 1631.4 1332.3 1144.3 1682.5 836.2 721.2 904.2
CRF + NADPH 1428.4 1509.4 1713.5 2044.6 1679.4 1471.4 1129.3 990.3 744.2
CRF + NADPH 1142.3 1187.3 986.3 964.3 1282.3 1443.4 842.2 403.1 474.1
CRF + NADPH 1179.3 1726.5 1259.3 2755.8 1542.4 1039.3 1398.4 830.2 8322
CRF + NADPH 1177.3 1372.4 1369.4 1450.4 880.2 1536.4 814.2 676.2 835.2
CRF + NADPH 1558.4 1781.5 1828.5 1480.4 1787.5 1462.4 979.3 803.2 926.3
CRF + NADPH 3266.9 2986.8 1747.5 2318.6 2297.6 2356.6 1506.4 1136.3 1420.4
A CTH  + NADPH 1650.4 1867.5 1723.5 2109.6 1693.5 1945.5 1314.4 947.3 1139.3
ACTH + NADPH 438.1 1965.5 1807.5 710.2 1521.4 2376.6 1325.4 1080.3 1100.3
A CTH  + NADPH 813.2 976.3 1041.3 1143.3 1295.3 1397.4 483.1 712.2 580.2
ACTH + NADPH 903.2 940.2 1159.3 1186.3 1170.3 1129.3 673.2 578.2 699.2
ACTH + NADPH 1476.4 1743.5 1774.5 1593.4 1061.3 1569.4 684.2 816.2 811.2
A CTH  + NADPH 1507.4 1631.4 1825.5 1446.4 1690.5 1360.4 1001.3 824.2 849.2
IG F-I + NADPH 1357.4 1347.4 1382.4 1774.5 1036.3 1840.5 1292.3 737.2 818.2
IG F-I + NADPH 1019.3 1197.3 1507.4 1583.4 1447.4 1402.4 1009.3 798.2 819.2
IG F-I + NADPH 1019.3 1471.4 1259.3 1429.4 966.2 1532.4 770.2 753.2 87&2
IG F-I + NADPH 1135.3 1574.4 1643.4 1581.4 870.2 2170.6 1260.3 8622 859.2
IG F-I + NADPH 1451.4 1149.3 1426.4 1227.3 1323.4 1225.3 613.2 653.2 903.2
IG F-I + NADPH 1267.3 722.2 1359.4 1461.4 1185.3 1222.3 667.2 639.2 734.2

Appendix table 6.3.2. The values for E2 levels (fmol/mg protein) produced by tissue
explants obtained from placenta A3 and incubated for 24 hours. The concentration of
IGF-I used in these experiments was 20 ng/ml.
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20 m 40 m 60 m 80 m 100 m 120 m 150 m 180 m 1440
Control 1.12 0.86 0.99 1.13 1.12 1.13 1.06 1.48 1.76
Control 0.71 0.72 0.89 0.95 0.70 0.79 0.80 1.17 1.46
Control 0.28 1.32 &88 0.97 1.07 0.91 0.97 1.24 1.63
Control 0.64 0.74 0.90 0.87 0.86 0.95 0.90 1.25 1.17
Control 0.64 0.79 0.82 0.79 0.77 1.05 0.77 1.23 1.32
Control 0.90 0.88 1.04 0.93 0.97 1.05 0.90 1.36 1.34
CRF 0.55 0.79 0.71 0.74 0.70 1.27 0.61 0.82 0.98
CRF 0.55 0.70 0.74 0.76 0.85 0.88 0.79 1.05 1.32
CRF 0.79 0.53 0.81 0.76 0.68 0.72 0.71 0.98 1.23
CRF 0.29 0.72 0.84 0.78 0.66 0.91 0.92 1.28 1.95
CRF 0.90 0.86 1.18 0.82 0.88 1.14 0.92 1.34 1.49
CRF 0.92 1.01 1.00 1.02 1.20 1.00 1.00 1.55 2.27
ACTH 0.01 0.92 1.16 0.99 1.01 0.84 0.80 1.32 1.72
ACTH 0.83 0.75 1.23 0.89 0.92 0.95 1.17 1.50 1.51
ACTH 0.28 0.69 0.81 0.74 0.66 0.87 0.76 1.14 1.05
ACTH 0.49 0.77 0.85 0.89 0.75 0.94 0.80 0.99 1.25
ACTH 0.75 1.00 1.18 1.06 0.87 1.10 0.93 1.36 2.01
ACTH 0.61 0.59 0.83 0.65 0.62 0^3 0.82 1.37 1.49
IGF-I 0.71 0.82 0.92 0.84 1.00 0.94 0.85 1.11 1.31
IGF-I 0.67 0.85 1.04 0.70 1.00 0.81 0.85 0.92 1.26
IGF-I 0.58 0.57 0.65 1.01 0.77 0.83 0.79 1.11 1.13
IGF-I 0.65 0.98 0.85 0.96 1.00 1.10 0.96 1.26 1.41
IGF-I 0.50 0.58 0.90 0.77 0.85 0.92 0.80 1.32 1.16
IGF-I 0.73 0.83 0.99 0.97 0.88 0.84 0.85 1.14 1.38
NADPH 2.20 2.41 2.57 2.76 3.51 2.74 2.75 3.34 3.33
NADPH 1.00 1.03 1.17 1.00 1.05 1.11 0.96 1.41 1.71
NADPH 1.23 1.27 1.06 1.28 1.27 1.33 1.50 1.67 2.07
NADPH 0.78 0.74 1.02 1.20 0.97 1.45 1.35 1.61 1.44
NADPH 1.09 1.25 1.57 1.83 1.04 1.79 2.51 2.17 2.23
NADPH 0.88 0.85 1.05 0.92 0.75 1.03 0.86 1.23 1.17
CRF + NADPH 0.73 0.68 0.86 0.81 0.84 0.83 0.72 0.93 1.28
CRF + NADPH 0.85 0.69 0.83 0.86 0.77 0.81 1.04 1.14 1.33
CRF + NADPH 0.44 0.69 1.10 1.12 0.82 0.91 0.73 1.12 1.27
CRF + NADPH 0.22 0.92 1.10 0.89 0.85 1.16 0.81 1.25 1.27
CRF + NADPH 0.45 0.86 1.15 1.19 0.89 1.08 0.98 1.47 1.34
CRF + NADPH 1.53 2.17 1.93 1.75 1.74 1.73 1.73 2.49 2.51
ACTH + NADPH 1.38 1.08 1.37 1.37 1.31 1.54 1.14 1.83 1.77
ACTH + NADPH 0.84 0.96 1.49 1.01 1.06 0.81 1.17 1.42 1.79
ACTH + NADPH 0.62 0.54 0.73 0.59 0.53 0.60 0.66 0.93 1.12
ACTH + NADPH 0.42 0.80 0.77 0.78 0.64 0.83 0.75 1.02 0.93
ACTH + NADPH 0.73 1.04 1.22 1.14 0.59 1.23 0.98 1.41 1.59
ACTH + NADPH 0.84 1.02 1.21 0.97 1.11 1.05 1.02 1.12 1.48
IGF-I + NADPH 0.92 0.71 0.89 0.95 0.91 0.99 0.75 1.01 1.25
IGF-I + NADPH 0.66 0.73 0.93 0.93 0.72 0.83 0.69 1.07 1.23
IGF-I + NADPH 0.64 0.73 0.79 0.69 0.75 0.72 0.75 0.99 1.20
IGF-I + NADPH 0.17 0.61 0.97 0.91 0.64 1.02 1.06 2.52 1.22
IGF-I + NADPH &86 1.07 1.11 1.01 0.94 1.06 0.98 1.35 1.49
IGF-I + NADPH 0.67 0.75 0.90 0.79 0.65 0.67 0.65 1.15 1.08

Appendix table 6.3.3. The values for E3 levels (pmol/mg protein) produced by tissue
explants obtained from placenta A3 and incubated for 24 hours. The concentration of
IGF-I used in these experiments was 20 ng/ml.

258



20 m 40 m 60 m 80 m 100 m 120 m 150 m 180 m 1440 m
Control 25.33 18.25 22.22 21.83 23.90 25.70 26.70 29.66 34.17

Control 18.58 10.45 18.81 25.24 20.33 22.65 25.89 38^3 24.65

Control 23.66 14.45 17.71 24.60 24.19 33.27 30.82 55.34 46.40
Control 25.14 16.18 31.14 29.62 34.02 41.63 38.10 30.94 30.68

Control 25.49 19.68 26.31 23.96 26.36 33.78 29.00 28.73 35.21
Control 24.37 19.40 28.95 24.86 34.53 30.31 33.86 40.11 28.22
CRF 19.34 14.11 16.39 22.38 17.14 21.35 20.04 25.89 27.10
CRF 17.70 21.84 14.51 16.98 12.76 17.53 19.65 19.01 33.76
CRF 19.42 14.56 14.63 22.50 15.07 19.70 23.23 26.31 24.02
CRF 20.02 22.82 26.39 29.56 34.78 60.39 62.44 43.59 38.62
CRF 21.84 18.67 15.19 22.12 39.64 31.26 34.22 31.85 45.02
CRF 28.97 14.37 29.11 24.08 28.49 29.00 24.19 28.02 32.30
ACTH 22.16 19.59 19.88 30.16 21.49 26.21 25.81 34.85 -
ACTH 28.72 21.93 24.82 28.08 29.27 28.33 32.83 40.58 36.45
ACTH 11.65 15.37 28.77 16.71 26.20 26.00 28.40 36.97 33.76
ACTH 13.25 19.44 23.68 21.83 24.75 27.68 20.14 24.73 26.96
ACTH 16.97 13.86 20.50 22.31 2&82 26.89 27.93 29.95 26.59
ACTH 2&88 16.76 22.51 25.66 26.23 29.23 28.81 27.07 27.98
IGF-I 22.61 15.07 18.73 28.16 24.02 25.00 24.71 36.27 34.23
IGF-I 21.12 16.37 9.66 21.23 20.57 23.39 22.04 24.97 2T89
IGF-I 20.10 13.97 8 j# 23.61 17.52 19.58 23.87 49.91 21.67
IGF-I 16.55 15.04 23.88 24.30 26.43 30.26 35.71 27.94 32.96
IGF-I 13.51 17.03 25.06 14.89 31.04 32.56 31.82 31.32 30.59
IGF-I 18.77 15.29 28.99 27.62 32.39 32.08 28.03 28.46 30.59
NADPH 28.38 23.25 2&89 35.51 48.92 44.57 4.78 74.24 57.48
NADPH 2&68 26.87 30.59 46.58 46.21 48.62 46.38 79.90 66.51
NADPH 28.48 23.21 31.66 36.93 51.53 54.36 52.63 47.82 62.44
NADPH 32.23 31.36 49.11 47.47 47.38 77.72 59.39 57.77 62.82
NADPH 28.75 21.37 38.55 45.06 70.46 80.88 64.55 85.25 112.18
NADPH 20.60 17.33 31.36 37.82 48.19 54.10 50.72 54.49 57.30
CRF + NADPH 27.21 22.02 29.87 33.95 36.78 38.59 55.62 54.31 56.61
CRF + NADPH 20.81 19.08 24.61 33.88 33.79 41.82 37.82 46.67 47.82
CRF + NADPH 25.43 15.16 20.57 34.75 34.98 36.31 32.77 48.30 53.86
CRF + NADPH 22.60 18.38 35.40 35.22 42.74 49.74 50.38 53.49 60.86
CRF + NADPH 22.06 24.05 22.65 39.64 53.11 55.89 60.29 65.50 73.23
CRF + NADPH 44.93 30.81 69.25 56.04 78.27 78.84 93.14 105.12 115.38
ACTH + NADPH 38.31 29.19 39.42 51.81 43.11 61.89 (# J 9 78.58 75.15
ACTH + NADPH 9.84 30.11 36.74 45.80 51.81 60.17 59.68 59.57 81.98
ACTH + NADPH 10.26 13.43 21.09 23.73 24.89 21.82 29.11 40.03 38.35
ACTH + NADPH 21.97 12.30 26.20 33.32 27.28 38.79 40.76 56.51 60.98
ACTH + NADPH 2288 22.16 26.58 37.60 31.41 59.88 43.77 58.51 63.95
ACTH + NADPH 21.09 19.39 33.70 35.01 58.60 49.92 45.14 55.04 55.82
IGF-I + NADPH 16.82 21.99 27.03 27.23 33.36 39.13 39.74 51.45 55.22
IGF-I + NADPH 21.42 20.80 23.49 30.73 33.81 34.28 35.63 49.19 44.39
IGF-I + NADPH 16.05 16.46 25.91 30.38 30.01 33.71 39.35 46.06 41.64
IGF-I + NADPH 20.42 18.54 39.87 47.44 42.83 61.78 56.23 58.79 73.58
IGF-I + NADPH 33.74 21.49 37.68 43.25 55.70 47.60 49.10 60.94 73.57
IGF-I + NADPH 19.62 18.37 3 3 J2 33.70 27.21 28.07 52.19 3&84 52.34

Appendix table 6.3.4. The values for P levels (pmol/mg protein) produced by tissue
explants obtained from placenta A3 and incubated for 24 hours. The concentration of
IGF-I used in these experiments was 20 ng/ml.
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20 m 40 m 60 m 80 m 100 m 120 m 150 m 180 m 1440 m
Control 1037.1 1400.1 956.7 1034.1 1348.0 1490.4 1149.4 954.8 1070.8
Control 654.5 609.4 520.5 684.3 553.2 825.2 854.2 442.0 662.2
Control 750.7 656.4 681.0 790.0 906.0 1166.3 512.5 723.2 852.0
Control 1237.1 1161.5 1375.5 1127.0 1212.5 1590.6 1410.8 1082.2 1192.3
Control 781.2 705.6 729.8 725.4 646.1 1156.4 2147.5 693.8 928.8
Control 1064.2 494.1 455.6 600.6 533.4 706.7 759.9 660.8 996.7
CRF 617.5 904.2 783.8 639.9 711.1 899.0 701.2 557.6 590.7
CRF 547.7 552.1 950.0 801.8 880.3 846.9 852.0 606.5 1101.7
CRF 1108.6 984.9 1134.3 1095.1 1097.6 1354.2 1297.7 1041.5 1231.6
CRF 545.5 574.5 746.0 617.8 679.5 667.8 501.8 589.9 1102.8
CRF 447.9 454.1 623.3 471.7 530.1 675.1 646.8 540.4 884.0
CRF 454.8 435.0 492.3 588.5 564.2 677.7 609.8 711.8 -
IGF-1 20 625.9 613.8 567.2 501.8 672.5 783.8 1171.1 561.7 675.5
IGF-1 20 663.3 819.0 946.4 690.9 894.6 1005.8 996.7 794.8 979.8
IGF-1 20 431.0 369.3 597.6 585.9 585.2 783.0 768.0 604.2 604.2
IGF-1 20 515.8 591.0 684.6 686.8 624.4 826.3 824.1 643.5 761.0
IGF-1 20 734.2 739.3 842.1 955.9 872.2 1198.9 854.2 840.3 1111.2
IGF-1 20 480.5 532.3 658.2 741.5 490.8 805.0 733.5 615.3 705.2
IGF-II 20 494.5 533.0 461.1 516.5 710.7 699.3 608.7 545.9 681.0
IGF-II 20 1168.5 524.2 511.0 587.7 580.8 837.0 754.4 538.5 675.1
IGF-II 20 392.4 448.2 498.9 442.7 533.4 676.6 553.6 439.8 627.4
IGF-II 20 504.8 625.5 784.9 831.8 621.1 943.5 725.0 578.2 845.4
IGF-II 20 814.6 867.5 936.1 958.9 991.2 1138.0 861.2 802.8 966.9
IGF-II 20 664.5 656.7 926.2 823.0 735.7 905.3 712.9 1004.8 845.4
IGF-I 400 589.2 686.8 616.4 652.0 562.0 784.5 710.0 478.0 279.0
IGF-I 400 504.4 523.5 503.3 518.0 608.7 656.7 518.0 406.8 534.5
IGF-I 400 655.6 532.3 510.3 438.7 566.8 766.5 688.0 433.2 641.0
IGF-I 400 723.5 764.7 1087.7 839.6 804.3 1203.7 1042.2 922.5 1063.1
IGF-I 400 524.6 643.2 602.8 776.4 460.7 867.5 847.6 545.1 746.0
IGF-I 400 515.8 591.0 684.6 686.8 624.4 826.3 824.1 643.5 761.0
CRF + NADPH 2412.2 2232.0 1550.6 1987.1 1078.2 1280.1 1399.4 981.6 1199.7
CRF + NADPH 4384.6 4453.7 2594.3 2698.2 2087.0 2425.4 2397.2 1956.3 2071.2
CRF + NADPH 964.0 1009.2 594.0 623.3 583.3 526.0 637.3 603.5 540.4
CRF + NADPH 2950.4 3589.5 2656.7 2051.4 1412.6 1482.7 1345.4 899.0 1261.0
CRF + NADPH 2063.8 806.2 1073.0 1006.2 896.1 915.5 910.0 756.2 913.3
CRF + NADPH 1761.7 1819.0 1616.3 1024.9 967.3 1091.8 958.9 864.2 1174.0
IGF-I 20 +NADPH 1234.6 1544.4 1041.8 1148.7 964.7 1100.6 1120.8 906.4 810.6
IGF-I 20 +NADPH 1362.3 1367.8 960.3 985.3 682.4 853.1 742.3 646.8 689.4
IGF-I 20 +NADPH 915.2 1496.7 896.5 657.5 645.4 712.2 752.2 772.8 724.7
IGF-I 20 +NADPH 3493.3 5194.1 2761.0 1689.8 2109.7 3300.6 3004.7 2241.1 2567.1
IGF-I 20 +NADPH 1158.6 1791.1 557.6 571.6 616.4 907.1 2034.1 816.8 8223
IGF-I 20 +NADPH 1677.3 1729.4 1332.6 1065.0 890.6 1063.1 1114.5 1022.7 848.4

IGF-I 20:- IGF-I at a concentration of 20 ng/ml.

IGF-n 20:- IGF-II at a concentration of 20 ng/ml.

IGF-I 400:- IGF-I at a concentration of 400 ng/ml.

Appendix table 6.4.1 The values for E2 levels (fmol/mg protein) produced by tissue
explants obtained from placenta A4 and incubated for 24 hours.
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20 m 40 m 60 m 80 m 100 m 120 m 150 m 180 m 1440 m
Control 2.03 2.12 2.17 2.09 2.36 2.88 2.15 2.65 2.47
Control 1.66 1.52 1.56 1.45 1.96 1.67 2.33 1.93 2.10
Control 1.56 7.47 8.41 7.15 8.42 7.89 8.10 6.96 9.20
Control 12.14 12.16 10.15 11.60 10.69 12.85 11.27 14.05 11.91
Control 6.90 6.79 6.53 7.10 7.53 9.07 7.22 8.84 9.11
Control 6.39 7.22 5.96 7.19 12.79 7.65 6.64 8.61 8.88
CRF 6.24 9.66 6.85 7.03 6.69 9.71 6.87 8.03 8.31
CRF 4.73 7.24 7.34 6.23 11.06 6.88 7.30 7.94 8.46
CRF 10.36 10.29 13.23 11.11 13.51 13.26 12.96 9.81 14.06
CRF 10.36 4.60 7.26 7.26 7.19 7.66 6.56 7.84 7.54
CRF 7.11 6.02 6.20 6.54 5.53 7.45 7.45 7.14 6 j3
CRF 4.96 6.18 6.07 5.68 5.72 6.54 5.53 6.55 6.67
IGF-1 20 5.26 5.45 5.61 5.73 6.43 6.34 6.39 6.62 7.54
IGF-1 20 7.29 6.96 7.37 7.19 8.25 8.50 8.52 7.64 9.48
IGF-1 20 1.32 4.84 5.51 5.01 6.65 5.76 6.35 5.14 6.74
IGF-1 20 5.90 6.75 5.29 5.74 5.21 6.69 5.95 8.09 7.58
IGF-1 20 7.43 8.34 8.64 9.65 8.70 8.50 8.30 10.13 10.44
IGF-1 20 5.41 5.37 5.14 5.46 4.60 5.77 5.10 6.12 6.44
IGF-II 20 4.99 6.05 5.47 6.54 6.59 7.05 6.60 7.08 8.25
IGF-II 20 4.93 5.72 5JW 5.60 6.92 6.33 6.52 6.62 7.58
IGF-II 20 10.79 4.99 3.20 4.00 5.47 5.19 5.46 4.64 6.05
IGF-II 20 7.80 7.87 6.81 7.03 7.12 8.73 6.92 8.78 8 j^
IGF-II20 8.84 10.80 11.19 10.53 9.14 10.77 10.04 12.16 11.74
IGF-II 20 7.52 7.90 6.90 7.22 7.11 7.41 7.31 9.17 9.26
IGF-I 400 5.26 5.45 5.61 5.73 6.43 6.34 6.39 6.46 6.62
IGF-I 400 3.75 4.25 5.31 4.06 5.00 5.05 6.12 5.81 6.13
IGF-I 400 0.71 4.78 4.57 4.58 3.98 4.52 5.17 5.36 6.15
IGF-I 400 7.43 8.96 7.57 7.96 6.94 &88 7.71 9.18 9.20
IGF-I 400 9.40 9.63 8.71 8.85 7.89 8.62 8.43 10.17 10.66
IGF-I 400 5.49 6.13 4.73 6.48 5.65 6.39 5.78 6.64 7.41
CRF + NADPH 5.45 7.43 7.80 7.20 9.04 8.79 8.41 7.20 8.57
CRF + NADPH 13.51 12.98 12.48 12.84 15.13 14.08 14.19 12.60 16.08
CRF + NADPH 3.34 3.87 4.47 4.74 5.23 4.84 4.80 4.75 5.17
CRF + NADPH 10.69 11.67 8.57 8.72 9.54 11.15 10.01 12.18 11.34
CRF + NADPH 5.47 6.47 6.20 7.30 10.96 7.62 7.07 9.04 8.05
CRF + NADPH 6.53 6.69 5.40 6.46 7.67 7.05 6.17 9.22 8.18
IGF-I 20 +NADPH 5.83 6.38 7.10 7.41 7.50 7.64 7.41 &88 9.55
IGF-I 20 +NADPH 3.81 4.12 4.94 4.84 6.01 5.16 6.41 6.43 6.07
IGF-I 20 +NADPH 1.10 5.89 5.40 5.62 11.37 7.18 6.99 7.97 7.14
IGF-I 20 +NADPH 17.74 18.61 13.44 16.16 16.30 17.17 15.52 18.24 15.16
IGF-I 20 +NADPH 5.34 6.26 5.02 5.77 5.97 6.19 5.41 6.79 7.46
IGF-I 20 +NADPH 7.47 8.47 5.40 8.17 7.70 9.02 7.37 8.74 9.06

IGF-I 20:- IGF-I at a concentration of 20 ng/ml. 

IGF-II 20:- IGF-II at a concentration of 20 ng/ml. 

IGF-I 400:- IGF-I at a concentration of 400 ng/ml.

Appendix table 6.4.2. The values for E3 levels (pmol/mg protein) produced by tissue
explants obtained from placenta A4 and incubated for 24 hours.
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20 m 40 m 60 m 80 m 100 m 120 m 150 m 180 m 1440 m
Control 43.15 46.56 44.07 60.93 61.09 66.56 59.53 69.48 73.27
Control 22.61 22.74 29.61 40.55 43.03 44.33 40.86 47.73 42.77
Control 32.66 53.01 40.86 49.54 54.95 62.23 74.63 62.49 61.63
Control 52.98 57.65 65.67 66.65 73.71 76.16 89.45 90.73 90.73
Control 19.05 44.27 49.10 49.26 58.89 52.12 56.86 52.06 57.75
Control 25.98 37.59 33.20 46.33 45.89 35.58 52.02 47.45 46.52
CRF 27.89 38.22 38.67 49.80 50.28 44.97 53.58 48.59 58.13
CRF 27.63 41.18 35.46 39.88 50.15 54.41 46.46 53.46 54.57
CRF 43.34 53.49 66.84 88.66 67.77 76.19 80.68 91.55 85.19
CRF 32.37 47.10 51.64 60.52 64.84 61.69 57.78 84.75 81.73
CRF 24.10 27.22 31.10 36.82 46.21 32.53 39.11 40.00 41.09
CRF 17.04 19.14 22.32 25.25 25.06 29.64 28.33 40.48 34.98
IGF-1 20 23.72 32.34 40.26 45.28 40.23 40.35 38.89 43.85 58.64
IGF-1 20 29.07 31.39 37.46 57.11 60.39 60.17 53.04 62.90 52.79
IGF-1 20 21.56 20.89 23.06 32.69 34.53 36.57 26.36 33.87 39.50
IGF-1 20 27.76 30.85 37.43 39.02 48.11 39.56 44.11 41.75 47.80
IGF-1 20 31.61 30.56 38.32 51.77 70.09 43.66 60.36 57.46 62.26
IGF-1 20 20.00 17.81 25.47 33.29 31.55 31.35 32.47 35.39 31.74
IGF-II 20 25.89 27.35 41.75 34.69 36.09 38.48 40.48 34.25 57.69
IGF-II 20 27.03 26.14 27.92 41.02 30.56 41.50 36.60 56.57 51.36
IGF-II 20 23.95 21.15 25.89 31.74 27.67 33^8 31.48 38.13 29.32
IGF-II 20 31.96 40.16 37.78 46.36 50.85 37.78 52.34 53.93 47.57
IGF-II 20 38.86 49.35 38.16 45.76 77.50 52.22 68.24 62.84 63.06
IGF-II 20 12.24 34.34 34.98 35.46 52.66 45.00 43.73 50.94 42.45
IGF-I 400 24.07 19.18 32.12 36.95 41.79 34.47 41.24 39.85 38.57
IGF-I 400 18.95 17.55 2A68 28.24 29.96 35.36 24.58 35.74 39.91
IGF-I 400 18.89 20.70 22.23 27.79 29.54 31.39 34.28 23.69 36.60
IGF-I 400 27.60 23.79 35.33 42.61 27.95 42.80 54.66 62.11 67.35
IGF-I 400 39.81 40.26 38.45 48.02 68.56 59.97 70.37 60.74 59.85
IGF-I 400 23.02 27.35 24.77 35.55 41.50 37.37 36.86 40.10 49.26
CRF + NADPH 39.78 47.54 47.70 68.05 76.32 71.71 86.56 81.85 121.32
CRF + NADPH 56.95 91.14 104.49 97.18 127.84 141.32 125.80 134.32 178.62
CRF + NADPH 16.92 20.73 19.84 32.31 34.38 32.25 33.26 34.92 37.81
CRF + NADPH 59.50 61.95 59.02 78.45 99.41 89.52 85.35 115.12 115.88
CRF + NADPH 31.64 32.44 42.55 44.65 77.97 59.08 61.15 61.37 75.72
CRF + NADPH 29.96 30.56 33.20 34.25 64.97 44.87 63.22 69.58 92.38
IGF-I 20 +NADPH 34.25 36.57 52.15 75.02 69.23 71.36 67.45 80.20 108.15
IGF-I 20 +NADPH 16.66 19.37 35.84 37.81 34.98 42.77 31.61 41.72 58.86
IGF-I 20 +NADPH 32.85 27.35 32.31 48.37 48.88 55.46 43.44 64.71 49.89
IGF-I 20 +NADPH 62.20 178.46 106.43 134.26 178.88 134.13 156.42 197.64 141.80
IGF-I 20 +NADPH 27.44 28.62 41.98 42.80 62.49 42.29 63.19 53.42 60.77
IGF-I 20 +NADPH 29.73 28.46 41.82 61.63 87.04 58.16 62.81 82.08 72.69

IGF-I 20:- IGF-I at a concentration of 20 ng/ml.

IGF-II 20:- IGF-II at a concentration of 20 ng/ml.

IGF-I 400:- IGF-I at a concentration of 400 ng/ml.

Appendix table 6.4.3. The values for P levels (pmol/mg protein) produced by tissue
explants obtained from placenta A4 and incubated for 24 hours.
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20 m 40 m 60 m 80 m 100 m 120 m 150 m 180 m 1440 m

Control 2.30 2.45 2.47 2.59 2.80 2.97 3.15 3.26 3.99

Control 2.40 1.98 3.37 2.82 3.09 3.25 3.54 333 3.98

Control 2.29 2.39 2.76 2.97 2.59 3.10 3.07 3.41 4.08

Control 2 j# 1.59 4.21 3.72 4.37 3.95 4.46 4.43 5.13

Control 2.90 2.78 3.30 3.27 3.92 3.82 3.79 3.97 4.42

Control 4.56 5.59 5.86 4.91 5.99 5.65 6.93 6.19 6.96

IGF-I 1.99 2.28 2.50 2.53 2.62 2.61 2.67 2.91 3.42

IGF-I 2.33 2.62 2.91 2.69 2.95 3.22 3.61 3.65 4.01

IGF-I 2.71 2.79 2.42 3.51 3.21 3.43 3.95 4.21 4.04

IGF-I 2.91 3.06 3.04 3.55 3.48 3.76 4.01 4.59 4.74

IGF-I 3.70 368 4.60 4.42 4.74 4.20 4.80 532 5.41

IGF-I 6.91 5.79 6.51 6.96 6.79 6.19 7.44 7.67 7.92

NADPH 1.64 1.76 1.38 1.29 1.85 2.08 2.24 2.18 3.49

NADPH 2.92 2.14 1.58 1.92 2.24 2.79 336 4.05 4.54

NADPH 2.73 2.06 2.67 1.96 2.24 2.63 3.24 3.33 338

NADPH 3.37 3.38 3.63 3.01 2.94 243 4.15 4.37 4.65

NADPH 2.78 2.91 2.33 2.53 2.77 2.45 3.48 3.46 3.86

NADPH 4.88 6.20 6.00 4.67 6.39 5.84 5.42 5.95 6.46

IGF-I + NADPH 2.48 2.06 2.25 1.88 2.33 2.64 232 3.56 3.73

IGF-I + NADPH 2.37 1.66 1.59 1.74 1.90 2.58 2.84 2.62 2.87

IGF-I + NADPH 1.90 2.05 2.14 2.28 2.14 2.48 3.12 1.98 4.16

IGF-I + NADPH 2.81 328 3.51 3.46 2.74 3.17 3.62 5.04 3.01

IGF-I + NADPH 5.83 6.63 5.62 4.78 5.37 5.39 5.92 6.79 6.66

IGF-I + NADPH 5.21 6.86 5.58 5.40 6.48 3.90 7.38 7.82 7.49

Appendix table 6.5.1. The values for E l levels (pmol/mg protein) produced by tissue 
explants obtained from placenta A5 and incubated for 24 hours. The concentration of 
IGF-I used in these experiments was 400 ng/ml.
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20 m 40 m 60 m 80 m 100 m 120 m 150 m 180 m 1440

Control 1.26 1.97 0.85 0.74 0.63 0.66 0.86 0.85 1.13

Control 1.90 1.71 0.66 0.72 0.57 0.65 0.77 0.69 1.25

Control 2.04 1.28 0.81 0.72 0.54 0.95 0.80 0.94 1.09

Control 2.80 1.91 1.72 0.91 1.02 1.18 0.98 1.54 1.54

Control 1.58 0.81 1.05 0.80 0.87 0.97 1.22 1.22 1.09

Control 1.92 3.37 1.58 1.44 1.64 1.89 1.71 2.29 1.82

IGF-I 0.88 0.83 0.40 0.57 0.55 0.53 0.64 0.61 0.91

IGF-I 1.13 1.96 0.88 0.88 0.63 0.66 0.73 0.70 1.05

IGF-I 1.65 0.77 0.73 0.66 0.71 0.81 1.07 1.08 1.21

IGF-I 1.31 1.70 1.03 0.86 0.78 0.74 1.06 1.16 1.22

IGF-I 1.38 1.30 1.12 1.36 1.22 0.97 1.40 1.34 1.39

IGF-I 2.34 2.51 2.45 2.02 2.27 2.37 2.58 3.14 2.40

NADPH 1.38 1.62 &83 0.51 0.54 0.66 0.75 0.84 0.74

NADPH 1.71 1.68 1.33 1.74 0.61 1.50 1.19 0.97 1.25

NADPH 2.14 1.55 1.16 0.86 1.09 0.92 0.72 0.83 0.95

NADPH 2.29 2.23 2.31 2.03 2.55 2^8 2.40 2.25 1.45

NADPH 2.44 1.67 1.36 1.19 1.94 1.81 1.11 1.15 1.03

NADPH 4.97 4.19 3.45 2.67 3.41 3.92 2.56 3.15 1.88

IGF-I + NADPH 1.97 2.25 1.45 1.38 1.39 1.43 1.04 1.01 1.03

IGF-I + NADPH 1.95 1.31 0.99 1.06 0.79 1.06 0.91 0.72 0.89

IGF-I + NADPH 1.45 1.20 0.94 0.88 1.37 1.53 0.91 1.05 1.07

IGF-I + NADPH 1.88 1.55 1.39 1.21 1.80 1.11 1.38 1.42 1.34

IGF-I + NADPH 3.81 0.35 2.56 1.37 3.13 2.78 3.13 2.25 1.76

IGF-I + NADPH 5.51 5.30 2.52 3.71 3.32 3.64 4.14 3.17 2.15

Appendix table 6.5.2. The values for E2 levels (pmol/mg protein) produced by tissue 
explants obtained from placenta A5 and incubated for 24 hours. The concentration of 
IGF-I used in these experiments was 400 ng/ml.
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20 m 40 m 60 m 80 m 100 m 120 m 150 m 180 m 1440 m

Control 2.74 3.62 7.37 4.44 4.53 7.50 4.36 5.03 596

Control 4.57 4.28 7.26 1.01 4.46 8.03 5.14 4.07 6.21

Control 4.31 4.29 7.05 4.71 5.02 9.53 4.04 5.54 5.20

Control 5.55 6.01 9.66 6.34 6.14 12.37 5.10 6.27 6.67

Control 4.44 4.88 7.98 4.66 5.76 9.94 5.14 4.90 6.02

Control 8.53 9.07 11.28 5.76 9.30 16.41 7.61 7.99 9.52

IGF-I 3.52 3.58 6.30 3.45 3.82 3.45 4.00 3.87 5.06

IGF-I 4.44 4.07 7.05 3.91 4.42 3.91 4.30 4.79 5.78

IGF-I 4.91 4.56 8.72 4.67 5.47 4.67 5.07 5.52 6.02

IGF-I 5.06 5.32 7.40 5.10 5.33 5.10 4.90 5.80 6.49

IGF-I 6.40 6.42 933 4.95 7.45 8.40 5.50 5.73 7.00

IGF-I 9.11 10.14 14.32 8.40 9.85 18.34 8.78 9.97 12.29

NADPH 2.96 3.14 3.53 3.40 3.70 6.59 3.73 4.14 5.55

NADPH 4.28 3.78 4.63 4.28 5.20 9.48 4.89 4.55 5.45

NADPH 3.41 3.75 3.95 4.51 4.80 8.59 4.37 4.53 5j%

NADPH 5.38 5.93 5.25 6.10 5.54 11.73 6.02 6.73 7.67

NADPH 4.68 4.63 4.26 5.08 4.74 9.93 4.56 4.69 5.60

NADPH 10.40 8.37 832 8.03 9.10 17.72 8.31 7.94 10.80

IGF-I + NADPH 3.55 4.10 833 5.14 5.50 9.11 5.64 5.03 5.52

IGF-I + NADPH 3.15 3.73 6.67 3.93 4.32 7.72 4.05 4.94 5.60

IGF-I + NADPH 3.24 3.78 6.34 4.25 4.64 8.91 3.91 4.87 5.25

IGF-I + NADPH 4.94 5.30 9.08 5.49 6.88 13.03 5.37 6.51 6.70

IGF-I + NADPH 8.64 8.45 14.90 7.87 10.19 16.89 7.79 &32 11.40

IGF-I + NADPH 10.79 11.95 19.13 10.19 9.48 15.49 10.50 11.72 11.48

Appendix table 6.5.3. The values for E3 levels (pmol/mg protein) produced by tissue 
explants obtained from placenta A5 and incubated for 24 hours. The concentration of 
IGF-I used in these experiments was 400 ng/ml.
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20 m 40 m 60 m 80 m 100 m 120 m 150 m 180 m 1440 m

Control 16.76 42.36 48.37 45.70 44.39 60.96 65.79 58.45 64.43

Control 33.84 38.57 42.10 45.44 46.81 48.75 66.84 50.69 69.99

Control 27.16 101.79 38.00 43.25 58.73 59.43 64.55 54.98 68.97

Control 43.63 99.22 123.00 148.79 93.24 116.83 85.73 119.41 114.77

Control 24.36 80.61 101.70 109.84 95.81 75.40 73.08 88.18 8&02

Control 60.13 155.72 194.17 270.55 198.46 143.23 156.33 168.73 165.04

IGF-I 24.80 42.80 46.08 58.96 51.93 55.11 57.08 50.02 62.49

IGF-I 34.63 40.86 61.22 67.32 58.83 58.32 67.23 58.77 68.40

IGF-I 30.05 36.76 51.26 56.38 62.17 52.79 72.44 80.26 84.68

IGF-I 38.13 65.44 102.30 109.74 80.36 77.94 82.11 130.54 88.18

IGF-I 37.02 105.54 99.22 108.69 92.35 73.08 102.87 113.97 108.09

IGF-I 55.97 162.34 202.53 225.59 124.56 135.28 183.14 167.11 191.63

NADPH 24.17 39.59 45.76 51.80 61.41 78.83 67.23 89.99 92.38

NADPH 34.66 46.65 55.65 65.22 83.60 77.85 94.45 84.68 100.30

NADPH 27.41 2 3 j# 30.53 35.93 68.66 75.27 84.24 74.54 79.02

NADPH 50.05 102.90 132.26 163.52 122.56 135.82 142.31 180.66 175.41

NADPH 40.58 51.71 83.67 81.38 110.70 95.59 109.42 112.41 128.38

NADPH 83.09 155.37 243.02 304.96 146.25 201.90 223.52 240.06 261.05

IGF-I + NADPH 33.39 43.66 58.19 67.83 86.56 91.49 89.58 92.25 95.46

IGF-I + NADPH 27.60 31.51 30.08 35.65 88.18 67.29 74.51 61.69 77.88

IGF-I + NADPH 32.56 44.42 64.52 74.83 84.33 88.53 75.02 76.67 111.94

IGF-I + NADPH 40.55 147.77 86.46 127.55 134.16 147.97 147.14 206.89 167.14

IGF-I + NADPH 65.95 132.89 147.04 227.43 211.02 185.74 214.49 183.26 207.69

IGF-I + NADPH 82.68 193.82 281.59 241.97 167.40 136.26 141.32 180.12 196.68

Appendix table 6.5.4. The values for P levels (pmol/mg protein) produced by tissue 
explants obtained from placenta A5 and incubated for a total period of 24 hours. The 
concentration of IGF-I used in these experiments was 400 ng/ml.
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20 m 40 m 60 m 80 m 100 m 120 m 150 m 180 m 1440 m

Control 2.15 2.80 3.20 3.15 3.26 4.01 3.94 3.96 4.33

Control 1.47 2.50 2.72 2.75 3.18 3.64 3.44 3.46 3.41

Control 238 3.61 4.22 4.45 5.09 5.40 5.14 5.34 5.41

Control 2.74 338 3.36 4.55 3.87 3.72 3.64 4.54 6.06

Control 5.04 7.29 6.18 833 7.29 6.51 7.69 7.37 9.84

Control 3.39 5.21 4.54 538 4.58 5.75 5.87 5.88 6.64

IGF-I 1.38 3.30 2.95 3.06 3.35 3.96 4.21 3.46 3jW

IGF-I <0.01 2.07 2.41 2.19 2.50 1.59 0.66 3.01 232

IGF-I 2.29 3.13 3.52 3.50 3.96 4.47 4.63 4.62 5.05

IGF-I 2.24 3.36 3.47 3.69 3.70 3.71 4.05 4.02 4.79

IGF-I 1.93 3.34 3.24 3.65 3.63 339 3.40 4.09 4.98

IGF-I 3.57 4.27 4.27 5.27 4.28 4.52 5.29 5.53 6.92

NADPH 1.21 2.01 2.19 2.17 2.13 2.58 3.17 3.16 3.60

NADPH 338 5.80 4.87 5.72 4.45 4.88 5.13 5.07 838

NADPH 1.83 0.38 2.81 2.54 3.02 238 3.50 3.41 4.56

NADPH 2.44 336 3.63 3.39 333 4.22 4.31 4.28 5.83

NADPH 3.24 3.12 2.74 3.43 3.02 3.19 3.30 4.35 5.17

NADPH 2.40 3.11 3.04 3.46 2.92 3.39 3.14 3.78 5.56

IGF-I + NADPH 1.35 2.11 2.15 2.28 2.39 2.74 3.14 3.01 3.07

IGF-I + NADPH 2.41 3.40 3.48 3.45 3.43 3.52 3.89 3.77 6.14

IGF-I + NADPH 1.62 2.31 239 2.21 3.00 3.31 3.26 3.77 4.36

IGF-I + NADPH 2.45 238 2.63 3.64 2.61 2.80 3.35 3.69 438

IGF-I + NADPH 1.78 2.53 2.20 2.67 2.34 2.31 2.79 3^5 4.49

IGF-I + NADPH 7.95 833 8.15 7.26 5.64 8.04 9.85 8.20 11.89

Appendix table 6.6.1. The values for E l levels (pmol/mg protein) produced by tissue 
explants obtained from placenta A6 and incubated for 24 hours. The concentration of 
IGF-I used in these experiments was 400 ng/ml.
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20 m 40 m 60 m 80 m 100 m 120 m 150 m 180 m 1440 m

Control 4.44 4.89 3.29 2.02 1.77 1.76 1.66 1.64 1.49

Control 3.26 2.89 3.19 1.37 1.41 1.54 1.36 1.37 1.22

Control 1.26 1.81 2.59 1.54 1.92 1.88 1.74 1.83 1.64

Control 1.49 5.28 1.76 1.59 1.80 1.88 1.72 1.53 1.74

Control 6.31 5.03 2.70 2.84 3.51 3.55 3.01 3.48 3.01

Control 6.49 6.24 5.75 2.44 4.26 3.28 2.67 2.64 2.57

IGF-I 0.94 0.88 1.23 1.32 1.46 1.43 1.50 1.47 1.42

IGF-I 3.13 2.74 1.43 0.96 1.08 1.01 1.12 1.15 1.19

IGF-I 2.48 1.64 1.71 1.91 1.67 1.61 1.61 1.76 1.62

IGF-I 4.15 5.92 4.40 3.01 2.30 1.99 1.85 2.01 1.80

IGF-I 3.47 2.78 3.36 1.41 1.49 1.67 1.52 1.92 1.47

IGF-I 5.23 3.21 3.74 2.23 2.39 2.20 232 2.19 2.05

NADPH 3.40 3.98 4.96 4.68 5.87 5.72 4.74 4.89 2.31

NADPH 6.67 6.50 8.32 7.17 938 9.47 10.95 10.60 4.13

NADPH 2.56 5.25 5.95 5.10 5.89 6.53 5.62 7.64 2.81

NADPH 5.11 4.95 4.84 4.87 5.93 6.20 5.58 7.46 2.60

NADPH 4.92 5.61 5.28 4.97 4.95 5.64 5.66 6.72 2.55

NADPH 7.14 7.30 8.34 7.75 8.46 8.60 8.97 9.74 4.08

IGF-I + NADPH 3.58 3.07 3.48 2.27 4.36 4.39 2.00 238 1.84

IGF-I + NADPH 4.64 4.65 6.39 633 5.70 7.37 7.76 7.64 3.13

IGF-I + NADPH 3.00 2.44 3.75 3.40 4.69 5.27 3.34 4.08 2.02

IGF-I + NADPH 3.87 5.13 2.65 4.93 5.07 6.15 5.35 7.57 2.64

IGF-I + NADPH 3.70 4.26 3.84 3.71 4.09 4.35 4.07 4.48 2.12

IGF-I + NADPH 12.16 15.28 16.22 12.36 14.19 14.24 15.13 16.69 9.05

Appendix table 6.6.2. The values for E2 levels (pmol/mg protein) produced by tissue 
explants obtained from placenta A6 and incubated for 24 hours. The concentration of 
IGF-I used in these experiments was 400 ng/ml.
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20 m 40 m 60 m 80 m 100 m 120 m 150 m 180 m 1440 m

Control 8.52 10.00 10.05 12.53 12.98 9.49 11.91 12.10 11.09

Control 6.79 9.75 8.53 12.58 13.28 11.10 10.38 10.69 8.29

Control 9.54 13.62 11.77 9.93 14.31 11.82 9.08 13.95 12.59

Control 9.70 12.17 12.37 11.99 12.29 8.54 12.59 14.76 14.26

Control 11.55 19.50 20.81 20.43 20.41 13.68 18.87 2282 23.31

Control 13.66 15.72 15.71 16.27 14.79 15.18 13.67 18.37 18.38

IGF-I 6.99 8.78 9.25 9.77 11.32 12.43 10.41 12.36 11.45

IGF-I 7.76 8.25 8.14 9.95 11.30 8.40 8.53 9.56 9.56

IGF-I 8.16 10.18 10.13 11.25 12.26 11.42 10.35 12.44 12.36

IGF-I 9.09 10.92 10.57 11.57 11.17 7.84 10.26 13.54 12.01

IGF-I 7.42 9.96 9.62 11.48 9.21 8.46 10.04 12.18 10.66

IGF-I 9.96 11.83 11.81 13.06 12.74 10.64 12.82 15.34 18.69

NADPH 13.90 16.60 16.04 15.94 18.62 12.12 15.87 20.03 19.84

NADPH 7.14 10.91 10.05 11.93 11.72 7.72 11.47 12.55 12.73

NADPH 6.92 8.92 7.95 11.20 11.76 13.02 &86 10.25 10.37

NADPH 10.46 12.03 10.32 11.71 13.58 11.20 11.00 13.99 12.52

NADPH 10.23 10.60 10.58 13.29 12.08 9.85 11.82 14.67 13.76

NADPH 9.26 11.27 11.37 13.36 13.33 12.70 11.61 13.51 13.50

IGF-I + NADPH 6.99 8.97 8.12 10.80 9.77 10.42 10.15 10.28 &86

IGF-I + NADPH 8.70 13.51 13.01 15.48 17.13 15.17 14.13 14.58 15.38

IGF-I + NADPH 7.16 8.69 7.65 9.20 10.81 8.59 8.56 10.46 9.81

IGF-I + NADPH 9.23 12.47 12.19 15.04 13.01 11.50 9.62 14.06 14.70

IGF-I + NADPH 7.24 8.59 9.21 9.85 8.51 &39 8.69 11.37 11.94

IGF-I + NADPH 23.67 28.63 28.72 31.20 33.21 27.00 31.47 39.12 35.14

Appendix table 6.6.3. The values for E3 levels (pmol/mg protein) produced by tissue 
explants obtained from placenta A6 and incubated for 24 hours. The concentration of 
IGF-I used in these experiments was 400 ng/ml.
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20 m 40 m 60 m 80 m 100 m 120 m 150 m 180 m 1440 m

Control 66.75 82.65 112.22 113.05 92.79 159.16 117.82 125.42 135.28

Control 54.89 62.65 123.67 95.27 99.76 106.69 9839 93.62 113.14

Control 87.00 91.77 107.64 80.39 131.37 143.93 147.07 150.03 168.44

Control 78.04 134.96 143.93 126.91 180.40 171.66 160.34 187.91 212.90

Control 94.83 168.25 231.92 224.51 200.21 279.59 222.35 241.68 220.63

Control 60.67 120.97 130.54 157.06 120.05 144.09 153.72 159.99 182.06

IGF-I 58.99 62.93 130.09 141.70 119.22 131.81 112.60 134.99 124.53

IGF-I 60.17 58.16 77.78 89.74 80.17 96.26 94.41 86.34 102.97

IGF-I 71.49 77.31 109.77 117.34 109.42 177.92 123.54 147.04 150.06

IGF-I 85.80 103.57 90.53 135.79 93.97 137.92 124.82 157.82 139.86

IGF-I 72.69 89.74 101.51 108.57 86.05 109.04 112.10 106.24 117.88

IGF-I 90.69 116.07 103.06 147.17 138.23 156.46 151.75 156.11 174.93

NADPH 82.23 9282 115.47 168.19 167.49 217.58 190.99 181.86 221.33

NADPH 68.72 87.20 114.83 146.06 127.23 145.23 161.80 153.82 172.26

NADPH 77.02 134.42 207.34 225.72 222.12 242.70 262.76 263.18 309.95

NADPH 92.51 119.57 151.11 194.90 162.37 239.80 206.57 229.60 25338

NADPH 99.76 126.12 160.81 182.31 209.56 213.06 230.36 229.21 272.27

NADPH 233.35 189.37 206.80 226.29 231.85 315.33 341.98 366.46 397.18

IGF-I + NADPH 56.35 68.75 114.67 106.63 102.17 168.57 133.66 132.19 105.58

IGF-I + NADPH 90.03 112.73 187.11 212.77 212.04 273.10 272.02 305.22 318.54

IGF-I + NADPH 74.92 88.66 117.82 141.96 143.74 150.57 161.70 188.54 160.08

IGF-I + NADPH 63.92 108.60 136.07 155.44 125.04 225.84 179.35 219.90 223.33

IGF-I + NADPH 73.20 106.08 143.55 149.05 147.58 187.24 168.22 171.88 238.31

IGF-I + NADPH 215.67 141.92 378.52 419.06 447.59 478.40 520.95 520.73 532.55

Appendix table 6.6.4. The values for P levels (pmol/mg protein) produced by tissue 
explants obtained from placenta A6 and incubated for 24 hours. The concentration of 
IGF-I used in these experiments was 400 ng/ml.
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Experiment 1

HCG (mIU/100,000 viable cells) 

24 hours 96 hours

19.82

23.38

18.85

19.71

4460.0

5664.8

7848.5

6937.8

HPL (ng/100,000 viable cells) 

24 hours 96 hours

429.5 1059.0

375.4 1052.7

345.8 970.4

373.1 1132.2

Experiment 2 8.03

7.32

6.71

450.8

233.3

207.0

195.7

79.08

84.50

75.10

79.14

Table 6.7.1 The values for HCG and HPL levels produced by isolated cytotrophoblast 
cells incubated for a total period of 96 hours.

Experiment 1 Experiment 2

E l E2 E l E2

DHEA 163.5 321.5 33.58 139.7

DHEA 153.9 392.6 36.46 148.7

DHEA 148.5 378.4 53.23 195.2

DHEA 180.2 415.3 53.36 170.3

DHEAS 280.8 497.1 40.91 129.2

DHEAS 149.8 405.8 33.71 161.8

DHEAS 157.9 316.8 49.55 164.0

DHEAS 210.7 447.3 41.58 146.4

A 236.1 494.7 56.72 181.5

A 198.5 503.0 26.00 114.4

A 168.6 537.3 38.26 125.8

A 210.7 595.9 43.25 164.6

T 238.3 513.5 32.53 132.2

T 179.0 426.8 31.76 146.3

T 197.0 477.4 25.83 108.4

T 112.2 399.7 32.76 124.5

Table 6.7.2. The values for El and E2 levels (pmol/100,000 viable cells/24 hours) 
produced by isolated cytotrophoblast cells incubated with a precursor at a concentration 
of 1 |imol/l for 24 hours.
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Precursor Experiment 1 Experiment 2

16a-OHDHEA 331.6 48.3

16a-OHDHEA 312.9 54.7

16a-OHDHEA 400.1 62.1

16a-OHDHEA 369.9 57.0

16a-OHA 372.9 61.5

16a-OHA 161.8 47.8

16a-OHA 268.7 46.8

16a-OHA 247.9 57.1

16a-OHT 106.2 37.7

16a-OHT 122.7 39.6

16a-OHT 124.5 24.9

16a-OHT 114.5 28.6

16a-OHEl 925.7 1141.9

16a-OHEl 995.0 1309.2

16a-OHEl 992.7 1271.2

16a-OHEl 975.9 1431.4

Table 6.7.3. The values for E3 levels (pmol/100,000 viable cells/24 hours) produced by 
isolated cytotrophoblast cells obtained from two placentae incubated with precursors at 
a concentartion of (1 |imo/l) for 24 hours.

Experiment 1 Experiment 2

25-OHcholesterol cells only 25-OHcholesterol cells only

104.4 126.8 712.2 760.4

197.6 224.4 758.4 577.8

114.4 116.0 493.0 550.0

94.0 202.0 592.4 432.0

122.0 158.0 412.8 227.6

119.2 231.0

Table 6.7.4. The values for P levels (pmol/100,000 viable cells/24 hours) produced by 
isolated cytotrophoblast cells obtained from two placentae, incubated with/without 25- 
OHcholesterol (5]Limol/l) for 24 hours.

272



LDL (1.5 mg/ml) Pregnenolone (1 |imol/l) Cells only

1.18 4.44 1.10

1.56 3.46 0.78

1.42 4.46 0.63

1.53 3.72 0.79

Table 6.7.5. Values for P levels (pmol/100,000 viable cells/24 hours) produced by 
isolated cytotrophoblast cells obtained from one placenta, incubated with/without LDL 
or pregnenolone for 24 hours.
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A E l E l E2 E2

tration used nmol/1) Placenta 1 Placenta 2 Placenta 1 Placenta 2

25 1.83 2.45 3.87 1.49

25 2.11 2.07 4.12 1.74

25 2.05 3.46 4.09 2.00

50 2.83 3.49 3.88 2.19

50 2.04 3.78 5.21 2.19

50 2.73 3.53 5.08 2.56

100 2.47 4.08 5.22 3.26

100 2.64 4.45 6.24 2.68

100 2.63 3.12 7.09 2.94

200 5.44 7.15 6.67 4.03

200 3.07 4.80 8.91 3.08

200 4.49 5.96 5.04 3.72

400 4.59 4.50 7.90 2.41

400 4.83 5.05 9.94 3.00

400 4.51 5.37 7.78 2.62

800 4.90 5.26 8.16 3.25

800 3.34 5.25 5.44 3.53

800 4.15 4.92 5.77 3.48

1600 3.83 5.07 6.85 3.54

1600 3.76 3.10 5.65 2.84

1600 5.73 4.58 5.87 373

3200 5.14 5.76 8^7 2.79

3200 3.92 6.30 5.10 2.98

3200 4.63 4.25 5.68 2.94

Appendix table 6.7.6.The values for El and E2 levels (pmol/100,000 viable cells/24 
hours) produced by isolated cytotrophoblast cells incubated with increasing 
concentrations of A.
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16a-OHA Placenta 1 Placenta 2

(concentration used nmol/1)

25 1.18 0.96

25 1.14 0.85

25 1.03 0.34

50 2.35 0.55

50 1.49 0.44

50 2.50 0.47

100 3.51 0.91

100 4.18 0.95

100 1.21 0.49

200 5.79 1.11

200 6.76 1.49

200 6.94 1.07

400 - 1.87

400 6.60 2.36

400 6.59 2.25

800 9.56 1.81

800 8.46 2.31

800 7.18 3.36

1600 4.53 1.57

1600 7.66 1.70

1600 5.00 3.50

3200 6.60 2.11

3200 9.13 1.60

3200 6.92 2.29

Appendix table 6.7.7. The values for E3 levels (pmol/100,000 viable cells/24 hours) 
produced by isolated cytotrophoblast cells incubated with increasing concentrations of 
16a-OHA.
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Pregnenolone Placenta 1 Placenta 2

(concentratiuon used }imoI/l)

0.5 93.1 114.9

0.5 92.0 116.7

0.5 84.6 88.9

1.0 155.8 196.0

1.0 212.7 168.5

1.0 98.9 217.0

5.0 220.2 333.5

5.0 269.3 387.9

5.0 244.9 375.2

10.0 295.4 430.1

10.0 342.3 312.8

10.0 149.4 529.1

20.0 335.0 496.7

20.0 302.7 475.5

20.0 351.4 602.2

40.0 263.2 616.5

40.0 351.2 699.0

40.0 339.8 579.3

80.0 299.8 630.5

80.0 285.1 1199.6

80.0 715.1

Appendix table 6.7.8. The values for P levels (pmol/100,000 viable cells/24 hours) 
produced by isolated cytotrophoblast cells incubated with various pregnenolone
concentrations.
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Experiment 1

E l E l E2 E2 E3 E3 P P

24 hrs 96 hrs 24 hrs 96 hrs 24 hrs 96 hrs 24 hrs 96 hrs

16.55 12.22 18.25 32.64 133.89 148.60 0.89 3.01

8.95 19.83 18.44 75.26 85.66 194.94 0.96 3.12

6.57 16.04 17.63 74.93 45.70 185.27 1.12 2.61

6.37 17.17 17.27 62.87 48.37 58.37 1.09 1.72

8.79 16.25 15.97 61.26 1.28 2.89

&62 22.24 10.64 57.25 1.39 2.91

Experiment 3

343.13 306.43 432.02 475.91 343.59 427.34 8.46 15.63

223.02 220.07 429.03 479.00 353.05 519.28 8.84 16.07

262.76 231.93 485.58 461.93 250.72 348.87 8.84 14.84

252.77 210.28 450.85 433.35 325.62 325.62 8.46 13.74

31.50 159.04 164.06 377.23 63.60 278.12 3.74 11.26

41.64 153.41 153.24 413.54 62.90 22T89 3.16 10.20

34.44 72.21 157.74 275.03 61.00 22L89 5.35 10.44

36.16 122.06 144.25 355.41 49.80 175.39 5.15 9.97

Table 6.7.9 The values for levels of E l, E2, E3 (all pmol/100,000 viable cells/24 
hours) and P (nmol/100,000 viable cells/24 hours) produced by isolated cells incubated 
with 20% calf serum.
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Placenta 3 Placenta 4 Placenta 5

16-aOHA 93.56 182.22 284.95

16-aOHA 84.62 127.73 531.92

16-aOHA 77.85 177.32 335.37

16-aOHA 83.11 162.76 188.66

16-aOHA 79.36 189.43 263.02

16-aOHA 82.68 165.35 416.15

16-aOHA + A 70 nmol/1 79.06 95.00 221.76

16-aOHA + A 70 nmol/1 63 76.84 194.32

16-aOHA + A 70 nmol/1 80.50 84.62 202.81

16-aOHA + A 70 nmol/1 72.81 88.51 129.56

16-aOHA + A 70 nmol/1 76.46 104.08 167.43

16-aOHA + A 70 nmol/1 69.69 101.79 114.30

16-aOHA + A 175 nmol/1 56.83

16-aOHA + A 175 nmol/1 60.28

16-aOHA + A 175 nmol/1 70.39

16-aOHA + A 175 nmol/1 69.11

16-aOHA + A 175 nmol/1 65.09

16-aOHA + A 175 nmol/1 57.17

16-aOHA + A 350 nmol/1 48.39

16-aOHA + A 350 nmol/1 56.06

16-aOHA + A 350 nmol/1 55.23

16-aOHA + A 350 nmol/1 48.16

16-aOHA + A 350 nmol/1 54.00

16-aOHA + A 350 nmol/1 58.36

16-aOHA + A 700 nmol/1 48.78 74.39 45.5

16-aOHA + A 700 nmol/1 52.46 72.36 23.0

16-aOHA + A 700 nmol/1 52.78 71.50 116.1

16-aOHA + A 700 nmol/1 47.56 18.70 21.9

16-aOHA + A 700 nmol/1 57.42 72.11 ~

16-aOHA + A 700 nmol/1 61.25 76.26

Appendix table 6.8.1. The values for E3 levels (fmol/100,000 viable cells/24 hours)
produced by isolated cytotrophoblast cells incubated with various concentrations of A.
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Placenta 3 Placenta 4

16-aOHA alone 10.54 4.1

16-aOHA alone 13.56 2.61

16-aOHA alone 15.87 2.73

16-aOHA alone 12.24 296

16-aOHA alone 10.59 2.40

16-aOHA alone 15.30 2.52

16-aOHA + A 70 nmol/1 10.54 4.10

16-aOHA + A 70 nmol/1 13.56 2.61

16-aOHA + A 70 nmol/1 15.87 2.73

16-aOHA + A 70 nmol/1 12.24 2.96

16-aOHA + A 70 nmol/1 10.59 2.40

16-aOHA + A 70 nmol/1 15.30 2.52

16-aOHA + A 700 nmol/1 13.87 2.06

16-aOHA + A 700 nmol/1 10.98 1.90

16-aOHA + A 700 nmol/1 13.03 2.04

16-aOHA + A 700 nmol/1 14.25 2.35

16-aOHA + A 700 nmol/1 10.56 2.58

16-aOHA + A 700 nmol/1 8.72 3.69

Appendix table 6.8.2. The values for E3 levels (pmol/mg protein) produced by 
placental tissue minces incubated with 16-a  OH A with/without A.
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E l E2 TE E3 P
Control 23.79 12.28 36.07 1.37 42.46
Control 27.36 13.02 40.38 1.56 37.22
Control 22.62 10.51 33.13 1.79 36.12
Control 16.84 10.09 26.93 1.46 55.01
Control 14.92 10.33 25.25 1.45 47.85
Control 16.28 14.55 30.83 1.55 47.98
CRF 21.67 13.94 35.61 2.44 42.46
CRF 21.12 12.24 33.36 2 j9 71.65
CRF 27.67 14.18 41.85 2.46 63.02
CRF 21.37 10.35 31.72 2.38 44.77
CRF 18.99 14.46 33.45 2.50 61.82
CRF 16.41 13.88 30.29 2.65 74.26
ACTH 24.46 12.63 37.09 1.44 42.64
ACTH 13.56 13.78 27.34 1.60 61.25
ACTH 24.16 13.92 38.08 1.50 47.20
ACTH 22.55 13.79 36.34 1.43 47.84
ACTH 21.68 10.82 32.50 1.70 50.74
ACTH 19.12 15.64 34.76 3.23 55.71
IGF-I 20 ng/ml 21.65 18.93 40.58 1.19 54.27
IGF-I 20 ng/ml 21.41 17.44 38.86 1.21 39.72
IGF-I 20 ng/ml 18.49 19.60 38.09 1.24 61.85
IGF-I 20 ng/ml 16.48 16.22 32.70 1.28 55.73
IGF-I 20 ng/ml 17.40 18.31 35.71 1.29 51.32
IGF-I 20 ng/ml 16.93 18.61 35.54 1.56 30.74
IGF-1 400 ng/ml 22.03 9.87 31.90 1.37 39.43
IGF-1 400 ng/ml 27.10 9.70 36.80 1.39 42.51
IGF-1 400 ng/ml 27.68 11.36 39.04 1.45 40.81
IGF-1 400 ng/ml 27.38 10.83 38.21 1.55 48.19
IGF-1 400 ng/ml 25.74 11.43 37.17 1.44 33.82
IGF-1 400 ng/ml 25.26 11.71 36.97 1.55 44.92
IGF-II 20 ng/ml 22.67 12.80 35.47 1.25 47.65
IGF-H 20 ng/ml 28.04 12.39 40.43 1.50 55.52
IGF-II 20 ng/ml 22.42 14.46 36.88 1.48 62.26
IGF-H 20 ng/ml 17.05 11.79 28.84 1.43 32.21
IGF-II 20 ng/ml 23.23 12.06 35.29 1.66 33.65
IGF-H 20 ng/ml 16.55 13.71 30.26 1.93 62.81
IGF-H 400 ng/ml 36.39 10.51 46.90 1.15 34.88
IGF-H 400 ng/ml 37.29 10.84 48.13 1.51 34.15
IGF-H 400 ng/ml 41.64 11.37 53.01 1.61 45.64
IGF-H 400 ng/ml 21.34 9.12 30.46 1.63 36.46
IGF-II 400 ng/ml 25.85 10.34 36.19 1.65 33.20
IGF-H 400 ng/ml 23 9.28 33.08 1.75 55.18

Appendix table 6.9.1. The values for E l, E2, TE, E3 and P levels (all pmol/100,000
viable cells) produced by isolated cytotrophoblast cells obtained from placenta B 1.
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E l E l E2 TE E3 P
baseline 24 hrs 24hrs 24 hrs 24 hrs 24 hrs

Control 57.87 2.78 0.58 3.36 4.05 36.00
Control ~ 3.90 0.68 4.58 4.58 40.64
Control 63.27 2.68 0.50 3.18 3.76 44.39
Control 24.37 2.31 0.39 2.70 3.22 81.79
Control 2.68 0.41 3.09 3.99 51.26
Control 47.96 4.42 0.59 5.01 8.36 71.36
CRF 206.35 2.79 0.51 3.30 3.45 80.45
CRF 77.66 3.57 0.57 4.14 3.35 49.42
CRF 77.84 2.08 0.37 2.46 6.63 53.77
CRF — 2.11 0.38 2.49 3.21 56.54
CRF 109.87 2.01 0.38 2.39 3.47 62.01
CRF 54.84 3.70 0.56 4.26 4.69 84.30
ACTH 86.79 3.96 0.75 4.72 3.21 26.58
ACTH ~ 3.74 0.64 4.38 4.23 42.90
ACTH — 3.24 0.66 3.90 3.72 85.13
ACTH — 4.35 0.66 5.02 2.54 80.07
ACTH 3.56 0.54 4.10 2.97 51.42
ACTH 58.13 4.77 0.74 5.51 2.12 48.43
IGF-I 20 ng/ml 68.41 4.00 0.74 4.74 6.52 31.35
IGF-I 20 ng/ml 64.20 2.85 0.51 3.36 5.16 85.07
IGF-I 20 ng/ml 215.15 3.46 0.60 4.06 3.36 40.55
IGF-I 20 ng/ml 133.31 3.12 0.50 3.62 3.28 52.57
IGF-I 20 ng/ml ~ 7.28 1.95 9.23 3.15 79.63
IGF-I 20 ng/ml 3.84 1.32 5.16 3.43 54.60
IGF-1 400 ng/ml ia 3 0.76 4.59 4.07 80.90
IGF-1 400 ng/ml 688.01 3.27 0.49 3.76 3.21 40.67
IGF-1 400 ng/ml 143.67 5.71 1.25 6.96 2^8 43.88
IGF-1 400 ng/ml 35.17 2.11 0.30 2.41 4.19 79.34
IGF-1 400 ng/ml 1230.92 3.49 0.71 4.20 5jW 51.61
IGF-1 400 ng/ml 65.90 2.70 0.40 3.10 4.08 76.07
IGF-II 20 ng/ml 106.58 2.53 0.47 3.00 3.95 97.21
IGF-II 20 ng/ml 143.33 3.32 0.55 3.87 5.32 66.59
IGF-II 20 ng/ml 8.17 11.29 2.74 14.03 5.93 54.54
IGF-II 20 ng/ml 96.74 3.58 0.58 4.16 4.87 95.08
IGF-II 20 ng/ml 570.05 3.70 0.85 4.55 5.20 130.73
IGF-II 20 ng/ml 105.91 3.27 0.48 3.75 4 j# 71.68
IGF-II 400 ng/ml 69.93 3.24 0.70 3.94 4.12 78.83
IGF-H 400 ng/ml 4.37 1.32 5.69 4.72 47.51
IGF-H 400 ng/ml 139.23 4.83 0.95 5.78 3.77 90.34
IGF-II 400 ng/ml 133.83 2.42 0.48 2.90 2.59 106.69
IGF-H 400 ng/ml 174.92 4.23 0.77 5.00 5.26 95.18
IGF-II 400 ng/ml 406.45 4.09 0.63 4.72 3.73 58.70
No precursor 104.73 3.03 0.73 3.76 4.16 42.48
No precursor 193.48 3.54 1.16 4.70 3.66 82.62
No precursor 49.85 2.84 0.56 3.40 338 57.34
No precursor 884.52 3.31 0.85 4.16 4.17 111.17
No precursor 74.81 2.81 0.55 3.36 4.16 65.03
No precursor 3.19 0.61 3jW 4.61 75.62

Appendix table 6.9.2. The values for E l, B2, TE, E3 and P levels produced by tissue 
explants obtained from placenta B l. All explants were incubated with appropriate 
precursors except when stated in the table. The values at 24 hours are expressed as 
pmol/mg protein. Basline levels of E l are expressed as fmol/mg protein. All other 
basline values were too low to measure.
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E l E2 TE E3 P P
24 hrs 24 hrs 24 hrs 24 hrs baseline 24hrs

Control 2.05 2.71 4.76 0.19 1.42 480.7
Control 2.55 3.10 5.65 0.21 1.91 480.7
Control 2.37 3.34 5.71 0.17 1.93 293.3
Control 2.19 2.69 4.88 0.16 278.2
Control 238 332 5.60 0.20 293.5
Control 2.23 3.10 5.33 0.14 284.8
CRF 1.87 4.00 5.86 0.29 0.75 239.1
CRF 1.99 3.62 5.61 0.28 1.29 230.9
CRF 1.90 3.96 5.87 0.34 1.69 299.4
CRF 1.73 3.74 5.47 0.29 262.6
CRF 1.79 4.00 5.79 0.30 240.7
CRF 1.72 3.65 5.37 0.33 252.8
ACTH 2.31 2.97 5.28 0.24 1.83 1058.4
ACTH 2.06 3.90 5.96 0.21 2.93 1266.4
ACTH 2.01 3.97 5.98 0.20 2.32 898.4
ACTH 2.05 3.74 5.79 0.23 779.5
ACTH 1.80 4.24 6.04 0.20 664.8
ACTH 2.00 3.32 5.32 0.24 806.6
IGF-I 20 ng/ml 1.80 3.43 5.23 0.35 1.88 324.3
IGF-I 20 ng/ml 1.69 3.87 5.56 0.28 1.61 297.5
IGF-I 20 ng/ml 1.53 4.04 5.57 0.36 2.32 360.1
IGF-I 20 ng/ml 1.52 4.48 6.00 0.34 220.0
IGF-I 20 ng/ml 1.86 4.50 636 0.34 246.1
IGF-I 20 ng/ml 1.87 4.26 6.13 0.21 2.48 199.9
IGF-1 400 ng/ml 1.84 3.10 4.94 0.17 1.75 1142.5
IGF-1 400 ng/ml 1.88 1.98 3.85 0.19 .620 441.4
IGF-1 400 ng/ml 1.77 3.51 5.28 0.20 0.78 459.5
IGF-1 400 ng/ml 1.44 2.66 4.10 0.20 240.9
IGF-1 400 ng/ml 1.21 2.34 3.54 0.20 364.1
IGF-1 400 ng/ml 1.21 2.56 3.77 0.19 229.1
IGF-H 20 ng/ml 1.15 4.79 5.94 0.32 1.49 188.2
IGF-H 20 ng/ml 1.63 5.08 6.71 0.36 1.49 236.7
IGF-H 20 ng/ml 2.09 4.73 632 0.37 588.4
IGF-H 20 ng/ml 1.58 4.55 6.13 0.38 340.6
IGF-H 20 ng/ml 1.50 4.16 5.66 0.47 582.1
IGF-H 20 ng/ml 1.73 3.88 5.61 0.44 435.9
IGF-H 400 ng/ml 1.70 3.95 5.65 0.28 0.74 608.4
IGF-H 400 ng/ml 1.99 4.05 6.04 0.35 0.90 170.5
IGF-II 400 ng/ml 1.82 4.15 5.97 0.34 3.31 526.5
IGF-H 400 ng/ml 1.34 168 5.02 0.36 253.8
IGF-H 400 ng/ml 1.62 4.44 6.06 0.31 317.3
IGF-H 400 ng/ml 1.90 4.29 6.19 0.41 316.9

Appendix table 6.10.1. The values for E l, E2, TE, E3 and P levels (pmol/100,000
viable cells) produced by cytotrophoblast cells isolated from placenta B2.
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E l E l E2 TE E3 E3 P P
baseline 24 hrs 24 hrs 24 hrs baseline 24 hrs baseline 24 hrs

Control 48.59 37.41 4.35 41.76 0.33 9.27 1.59 118.7
Control 18.60 238 20.98 0.56 11.71 1.37 109.1
Control 57.59 25.28 2.47 27.75 3.28 9.15 105.7
Control 26.24 22.54 4.30 26.84 0.88 7.75 1.37 107.1
Control 20.14 3.86 24.01 ~ 8.58 1.46 178.6
Control 29.93 29.22 3.43 32.66 0.51 6.89 0.32 181.1
CRF 67.21 11.46 1.58 13.05 7.19 14.79 1.62 119.0
CRF 65.83 37.75 4.99 42.74 3.80 10.71 119.1
CRF 93.53 21.51 3.03 24.54 839 17.18 6.61 82.0
CRF 9^2 1.73 11.54 2.13 8.81 1.40 219.2
CRF 119.67 20.75 3.61 24.36 4.66 6.23 5.88 123.2
CRF 18.16 11.15 1.38 12.53 3.66 8.58 0.67 129.8
ACTH 63.69 18.73 2.37 21.10 0.16 7.62 2.35 103.5
ACTH ~ 15.50 2.42 17.92 1.44 8.30 2.16 147.8
ACTH 15.27 2.09 17.36 3.54 11.27 1.08 175.0
ACTH 22.79 3.47 26.26 1.38 5.76 5.85 278.1
ACTH 13.22 2.18 15.40 6.20 0.86 221.2
ACTH 24.98 14.23 2.67 16.89 7.50 7.96 3.12 195.9
IGF-I 20 ng/ml 38.18 29.96 2.75 32.70 9.02 4.52 282.3
IGF-I 20 ng/ml 87.47 31.66 3.36 35.02 10.89 1.49 135.4
IGF-I 20 ng/ml 118.20 25.64 5.11 30.75 2.21 10.35 0.83 121.8
IGF-I 20 ng/ml 90.84 33.30 4.71 38.02 0.36 7.68 165.9
IGF-I 20 ng/ml < 12.75 1.76 14.51 236 5.52 3.15 185.4
IGF-I 20 ng/ml 14.62 2.02 16.63 0.89 7.43 < 124.9
IGF-1 400 ng/ml 17.49 2.57 20.06 0.63 10.85 222.2
IGF-1 400 ng/ml 135.17 17.75 233 19.98 ~ 10.89 1.27 150.9
IGF-1 400 ng/ml 54.95 20.87 3.17 24.03 1.76 9.70 1.49 124.4
IGF-1 400 ng/ml 38.90 20.03 3.97 24.00 1.44 7.97 4.13 62.0
IGF-1 400 ng/ml 52.45 30.74 3.49 34.23 7.75 4.77 270.6
IGF-1 400 ng/ml 41.73 7.51 2.30 9.81 17.19 17.68 194.4
IGF-II 20 ng/ml 196.66 38.57 4.92 43.49 0.94 11.76 1.18 220.5
IGF-II 20 ng/ml 203.65 53.09 6.26 59.35 0.92 9.60 9.51 109.7
IGF-II 20 ng/ml 106.20 22.32 1.29 23.610 2.53 13.21 4.96 137.6
IGF-II 20 ng/ml 35.97 13.95 2.08 16.03 3.12 5.93 0.73 138.0
IGF-II 20 ng/ml 177.61 10.71 1.43 12.14 2.75 9.91 2.00 299.3
IGF-II 20 ng/ml 45.76 11.96 1.56 13.52 1.58 7.23 1.40 114.3
IGF-II 400 ng/ml ~ 16.19 2.00 18.19 332 6.26 14.53 127.6
IGF-II 400 ng/ml 13.50 1.97 15.47 9.48 15.30 195.8
IGF-II 400 ng/ml 43.22 20.87 2.32 23.19 338 12.93 0.48 164.6
IGF-II 400 ng/ml 82.71 23.96 3.04 27.00 1.30 8.37 286.9
IGF-II 400 ng/ml 9286 15.10 3.37 18.46 1.08 632 2.86 127.5
IGF-II 400 ng/ml 226.98 20.71 2.75 23.46 0.35 7.16 16.47 104.5
No precursor 3&29 6.04 1.02 7.06 2.21 7.66 2.89 132.9
No precursor 92.11 12.80 1.41 14.21 1.95 838 139.4
No precursor 29.92 6.50 1.06 7.55 2.11 7.58 2.93 140.5
No precursor 27.01 6.45 0.83 7.29 2.02 5.91 1.40 116.0
No precursor ~ 7.11 0.98 8.08 0.29 6.24 1.53 128.8
No precursor 5.60 0.78 638 ~ 4.78 6.65 98.1

Appendix table 6.10.2. The values for E l, E2, TE, E3 and P levels produced by 
placental tissue explants obtained from placenta B2. All explants were incubated with 
appropriate precursors except when stated in the table. The values for baseline levels of 
E l are expressed as fmol/mg protein whilst all other values are expressed as pmol/mg 
protein.
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E l E2 TE E3 P P
24 hrs 24 hrs 24 hrs 24 hrs baseline 24 hrs

Control 3.73 4.01 7.74 0.69 19.62 436.3
Control 3.61 4.04 7.65 0.64 34.60 471.1
Control 4.06 3.68 7.74 0.67 35.68 306.8
Control 3.59 339 6.98 0.72 181.5
Control 3.96 3.97 7.93 0.73 378.0
Control 3.82 3.75 7.57 0.68 233.9
CRF 2.75 5.25 8.00 0.88 20.55 235.8
CRF 2.43 5.01 7.44 0.98 59.22 167.6
CRF 2^3 5.72 7.95 0.92 39.34 276.2
CRF 2.84 5.15 7.99 0.89 288.7
CRF 2.75 6.34 9.09 0.90 8383
CRF 3.21 5.55 8.75 0.92 387.3
ACTH 2.98 5.48 8.46 1.17 31.96 862.7
ACTH 2.74 4.56 7.30 0.89 27.76 776.8
ACTH 2.90 5.38 838 1.32 22.61 787.3
ACTH 2.74 4.80 7.54 0.87 493.6
ACTH 2.80 4.81 7.61 0.89 368.9
ACTH 3.32 4.82 8.14 0.89 19.72 736.9
IGF-I 20 ng/ml 3^2 4.75 8.57 1.14 18.09 407.8
IGF-I 20 ng/ml 3.35 4.88 8.24 0.94 25.76 186.9
IGF-I 20 ng/ml 3.68 5.49 9.17 1.09 251.9
IGF-I 20 ng/ml 3.36 5.06 8.41 1.02 169.5
IGF-I 20 ng/ml 3.92 4.71 8.63 1.08 115.9
IGF-I 20 ng/ml 3J8 4.90 8.68 0.72 176.7
IGF-1 400 ng/ml 2.75 3.54 639 0.88 33.20 253.9
IGF-1 400 ng/ml 3.23 4.56 7.79 0.83 69.42 218.5
IGF-1 400 ng/ml 2.68 4.69 7.37 0.66 45.79 278.6
IGF-1 400 ng/ml 3.67 4.70 8.37 0.74 103.4
IGF-1 400 ng/ml 2.84 4.02 6.86 0.74 114.2
IGF-1 400 ng/ml 2.81 4.02 6.83 0.73 71.8
IGF-H 20 ng/ml 4.10 4.23 833 1.53 ~ 598.1
IGF-H 20 ng/ml 3.50 5.03 8.53 1.57 216.4
IGF-H 20 ng/ml 3.49 5.39 838 1.47 418.6
IGF-H 20 ng/ml 3.71 4.91 832 1.80 306.5
IGF-H 20 ng/ml 3^2 5.22 9.04 1.62 293.3
IGF-H 20 ng/ml 4.32 4.33 8.65 1.70 257.7
IGF-H 400 ng/ml 2.77 5.90 8.67 1.19 41.02 235.2
IGF-H 400 ng/ml 2.49 5.58 8.07 1.27 32.60 373.0
IGF-H 400 ng/ml 2.73 5.77 8.50 1.22 40.67 286.6
IGF-H 400 ng/ml 3.02 5.90 8.92 1.01 125.1
IGF-H 400 ng/ml 2^2 5.17 8.09 1.04 147.5
IGF-H 400 ng/ml 2.65 4.87 7.52 1.25 104.1

Appendix table 6.11.1. The values for E l, E2, TE, E3 and P levels (pmol/100,000
viable cells) produced by cytotrophoblast cells isolated from placenta B3.
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E l E2 TE E3 P P
24 hrs 24 hrs 24 hrs 24 hrs basline 24 hrs

Control 7.20 1.12 8.32 5.46 0.60 109.39
Control 5.29 0.80 6.09 4.47 3.18 88.79
Control 4.28 0.67 4.95 6.07 97.34
Control 3.15 0.63 3.78 6.94 9.92 67.29
Control 2.63 0.74 3.37 7.64 0.41 99.66
Control 4.18 0.71 4.89 5.76 24.96 89.07
CRF 2.77 0.57 3.34 5.70 27.35 441.67
CRF 7.44 1.18 8.62 4.85 16.15 100.23
CRF 4.00 0.76 4.76 3.80 1.43 104.18
CRF 8.91 2.59 11.50 5.78 2.64 137.31
CRF 4.38 0.84 5.22 6.84 304.71
CRF 8.22 1.48 9.70 6.11 4.77 95.02
ACTH 4.35 0.72 5.07 9.55 17.33 230.61
ACTH 5.40 1.00 6.40 11.16 8.27 166.60
ACTH 16.03 3.14 19.17 6.88 2.70 158.90
ACTH 5.19 0.96 6.15 7.60 10.75 153.94
ACTH 4.23 0.99 5.22 6.27 8.08 231.31
ACTH 5.47 1.12 6.59 5.58 2.42 142.56
IGF-I 20 ng/ml 4.53 0.94 5.47 4.44 3.37 61.18
IGF-I 20 ng/ml 3.87 0.75 4.62 4.95 22.67 58.64
IGF-I 20 ng/ml 4.08 0.79 4.87 7.19 1.46 100.93
IGF-I 20 ng/ml 2.99 0.41 3.40 4.45 9.73 -

IGF-I 20 ng/ml 5.04 1.49 6.53 4.39 0.22 71.42
IGF-I 20 ng/ml 6.98 1.66 &63 4.91 175.82
IGF-1 400 ng/ml 3.34 0.75 4.09 8.07 - 74.32
IGF-1 400 ng/ml 9.91 1.15 11.06 2.47 72.22
IGF-1 400 ng/ml 6.20 1.15 7.35 9.34 7.41 110.76
IGF-1 400 ng/ml 7.35 1.33 8.68 5.04 1.88 114.16
IGF-1 400 ng/ml 3.81 0.87 4.68 4.31 1.08 95.34
IGF-1 400 ng/ml 4.31 0.72 5.03 4.75 ~ 102.62
IGF-H 20 ng/ml 4.34 0.88 5.22 3.30 ~ 85.70
IGF-H 20 ng/ml 4.28 0.75 5.03 7.57 3.56 73.39
IGF-H 20 ng/ml 6.18 1.20 7.38 7.35 1.24 134.74
IGF-H 20 ng/ml 3.07 0.39 3.46 8.49 9.60 147.39
IGF-H 20 ng/ml 7.46 1.39 &85 4.92 5.18 159.54
IGF-H 20 ng/ml 5 j# 1.18 7.06 4.95 ~ 93.46
IGF-H 400 ng/ml 6.69 1.03 7.72 3.36 86.78
IGF-H 400 ng/ml &08 1.22 9.30 5.71 ~ 120.20
IGF-H 400 ng/ml 5.55 0.91 6.46 7.36 82.20
IGF-II 400 ng/ml 3.84 1.10 4.94 5.26 12.05 143.26
IGF-II 400 ng/ml 4.72 0.54 5.26 4.72 4.32 103.48
IGF-II 400 ng/ml 3.49 0.85 4.34 4.58 ~ 90.38
No precursor 2.43 0.50 2.92 3.36 ~ 61.56
No precursor 3.65 0.74 4.39 9.49 ~ 116.52
No precursor 3.45 0.79 4.24 6.53 ~ 74.63
No precursor 3.19 0.75 3.94 6.30 ~ 91.43
No precursor 3.03 0.62 3.64 6.14 1.91 85.29
No precursor 2.26 1.13 138 4.84 4.74 67.26

ppendix table 6.11.2. The values for E l, E2, TE, E3 and P levels (pmol/mg prc
produced by tissue explants obtained from placenta B3. All explants were incubated
with appropriate precursors except when stated in the table.
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E l E2 TE E3 P
24 hrs 24 hrs 24 hrs 24 hrs 24 hrs

Control 2.03 5.93 7.96 0.78 311.3
Control 2.04 5.74 7.78 0.86 313.2
Control 1.86 6.16 8.01 1.16 290.3
Control 2.32 5.46 7.78 0.92 311.3
Control 2.06 5.46 7.52 0.63 340.7
Control 2.17 5.61 7.77 1.04 301.3
CRF 2.29 5.58 7.87 1.03 168.1
CRF 2.32 6.34 8.66 1.07 181.5
CRF 2.15 6.07 8 j2 1.04 122.8
CRF 1.87 4.50 6.37 1.02 95.9
CRF 1.84 4.89 6.73 1.04 193.6
CRF 2.36 5.27 7.63 1.05 200.6
ACTH 1.53 5^2 7.35 1.05 183.9
ACTH 1.53 5.73 7.26 0.96 208.8
ACTH 1.47 5.89 7.36 0.90 235.3
ACTH 1.23 4.62 5.85 0.98 234.3
ACTH 0.95 5.37 6.32 1.10 207.1
ACTH 1.79 5.16 6.95 0.84 171.9
IGF-I 20 ng/ml 1.93 5.68 7.61 0.93 182.1
IGF-I 20 ng/ml 1.59 5.59 7.18 1.04 236.2
IGF-I 20 ng/ml 2.16 5.76 7.92 0.97 258.7
IGF-I 20 ng/ml 1.80 5.13 6.93 1.07 171.6
IGF-I 20 ng/ml 0.97 5.86 6^3 1.00 228.3
IGF-I 20 ng/ml 1.99 4.97 6.96 1.12 228.1
IGF-1 400 ng/ml 1.71 5.09 6.80 0.79 210.5
IGF-1 400 ng/ml 2.44 6.32 8.76 0.79 327.4
IGF-1 400 ng/ml 2.43 5.90 833 0.96 255.7
IGF-1 400 ng/ml 1.47 4.70 6.17 0.92 204.7
IGF-1 400 ng/ml 1.79 5.00 6.79 0.89 186.6
IGF-1 400 ng/ml 1.65 4.23 538 1.07 199.6
IGF-II 20 ng/ml 2.23 5.75 7.98 0.90 240.0
IGF-II 20 ng/ml 1.44 5.68 7.12 0.97 117.5
IGF-II 20 ng/ml 2.13 5.29 7.42 0.88 141.0
IGF-H 20 ng/ml 2.65 6.21 836 0.92 208.6
IGF-II 20 ng/ml 1.99 6.14 8.13 1.05 232.6
IGF-H 20 ng/ml 2.46 6.54 8.99 0.96 194.4
IGF-H 400 ng/ml 1.88 5.49 7.37 0.93 258.5
IGF-H 400 ng/ml 2.47 5.74 8.21 0.88 289.6
IGF-H 400 ng/ml 2.66 5.88 8.54 1.08 257.9
IGF-H 400 ng/ml 1.91 6.13 8.04 0.96 225.7
IGF-II 400 ng/ml 1.89 5.43 7.32 0.76 263.1
IGF-II 400 ng/ml 
Cholesterol 20 pmol 
Cholesterol 20 pmol 
Cholesterol 20 pmol 
Cholesterol 20 pmol 
Cholesterol 20 pmol 
Cholesterol 20 pmol

1.82 5.96 7.78 0.78 291.9
18.0
13.2 
17.0
47.5
35.5
17.2

Appendix table 6.12. The values for E l, E2, TE, E3 and P levels (pmol/100,000 viable 
cells) produced by isolated cytotrophoblast cells obtained from placenta B4.
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E l E2 TE E3 P
24 hrs 24 hrs 24 hrs 24 hrs 24 hrs

Control 3.01 5.54 8.55 0.73 149.9
Control 2.92 5.32 8.24 0.71 97.0
Control 2.94 5.64 8.58 0.73 123.7
Control 1.97 5.35 7.32 0.70 204.1
Control 2.71 5.20 7.91 0.64 226.8
Control 2.26 4.47 6.73 0.67 162.4
CRF 2.26 3.50 5.76 0.86 131.5
CRF 3.50 5.33 8^3 1.01 141.6
CRF 2.74 4.74 7.48 0.69 123.0
CRF 2.52 4.68 7.20 0.63 94.2
CRF 2.80 5.27 8.07 0.71 104.2
CRF 3.25 5.16 8.41 0.88 143.4
ACTH 2.74 5.24 7.98 0.69 125.1
ACTH 1.81 4.60 6.41 0.73 114.0
ACTH 2.74 4.67 7.41 0.79 126.6
ACTH 3.58 5.90 9.48 0.77 149.9
ACTH 2.78 5.95 8.73 0.77 150.5
ACTH 2.71 4.86 7.57 0.70 139.5
IGF-I 20 ng/ml 2.10 4.53 6.63 0.88 120.8
IGF-I 20 ng/ml 2.10 5.00 7.10 0.83 115.8
IGF-I 20 ng/ml 1.75 4.80 6.55 0.93 101.5
IGF-I 20 ng/ml 2.56 7.08 9.64 0.81 103.8
IGF-I 20 ng/ml 286 5.64 8.50 0.74 110.3
IGF-I 20 ng/ml 2.64 4.71 7.35 0.70 119.3
IGF-1 400 ng/ml 289 5.17 8.06 0.85 148.2
IGF-1 400 ng/ml 2.67 4.75 7.42 0.83 136.4
IGF-1 400 ng/ml 3.44 5.74 9.18 0.76 131.9
IGF-1 400 ng/ml 2.99 4.70 7.69 0.81 81.8
IGF-1 400 ng/ml 2.74 4.47 7.21 0.76 131.7
IGF-1 400 ng/ml 2.92 4.32 7.24 0.75 123.9
IGF-H 20 ng/ml 2.91 5J8 8 j# 0.69 46.3
IGF-II 20 ng/ml 2.13 3.07 5.20 0.58 123.1
IGF-II 20 ng/ml 2.19 4.98 7.17 0.68 159.6
IGF-II 20 ng/ml 2.55 5.41 7.96 0.77 157.2
IGF-II 20 ng/ml 2.47 5.36 7.83 0.73 155.8
IGF-II 20 ng/ml 2.41 4.64 7.05 0.76 116.0
IGF-II 400 ng/ml 2.75 5.35 8.10 0.75 185.3
IGF-H 400 ng/ml 1.41 5.41 6.82 0.91 135.8
IGF-H 400 ng/ml 2.38 6.00 8.38 0.77 87.7
IGF-H 400 ng/ml 235 4.89 7.24 0.67 130.4
IGF-II 400 ng/ml 1.89 6.12 8.01 0.58 171.4
IGF-H 400 ng/ml 3.07 5.35 8.42 0.86 146.5
Cholesterol 20 jimol 24.1
Cholesterol 20 |imol 10.1
Cholesterol 20 jLimol 5.0
Cholesterol 20 |imol 8.8
Cholesterol 20 fimol 6.4
Cholesterol 20 jamol 1.3

Appendix table 6.13. The values for E l, E2, TE, E3 and P levels (pmol/100,000 viable
cells) produced by isolated cytotrophoblast cells obtained from placenta B5.
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E l E2 TE E3 P
24 hrs 24 hrs 24 hrs 24 hrs 24 hrs

Control 3.02 10.26 13.28 2.65 286.0
Control 2.94 9.29 12.23 3.16 283.8
Control 3.86 12.54 16.41 3.17 225.6
Control 4.02 9.77 13.79 2.84 378.1
Control 3.65 4.68 8.33 3.17 213.1
Control 3.97 &83 12.80 3.42 248.8
CRF 2.59 13.15 15.74 3.06 229.6
CRF 3.25 16.23 19.48 3.16 236.6
CRF 3.19 18.11 21.30 2.96 212.3
CRF 3.43 9.86 13.29 2.55 177.9
CRF 4.07 11.45 15.52 3.47 316.8
CRF 3.98 11.59 15.57 3.52 266.6
ACTH 3.19 15.28 18.47 283 259.8
ACTH 2.26 8.91 11.17 3.11 282.3
ACTH 3^9 12.14 15.43 3.11 202.9
ACTH 3.16 10.49 13.65 3.70 203.2
ACTH 3.84 10.44 14.28 4.46 327.5
ACTH 2.91 10.46 13.37 3.24 208.1
IGF-I 20 ng/ml 2.74 10.47 13.21 2.87 241.4
IGF-I 20 ng/ml 2.79 11.95 14.74 2.80 261.5
IGF-I 20 ng/ml 2.74 10.12 12.86 2.73 201.6
IGF-I 20 ng/ml 3.49 8.57 12.06 3.19 268.6
IGF-I 20 ng/ml 3.25 10.55 13.80 3.75 272.0
IGF-I 20 ng/ml 3.53 10.80 14.33 3.94 257.5
IGF-1 400 ng/ml 2.75 11.55 14.30 2.73 234.5
IGF-1 400 ng/ml 2.64 13.41 16.05 2.65 170.7
IGF-1 400 ng/ml 2.63 12.46 15.09 2.30 162.5
IGF-1 400 ng/ml 3.43 18.63 22.06 3.16 249.2
IGF-1 400 ng/ml 2^8 10.44 13.32 3.26 279.5
IGF-1 400 ng/ml 2.77 9.39 12.16 3.25 223.6
IGF-II 20 ng/ml 2.99 12.76 15.75 2.61 222.3
IGF-H 20 ng/ml 2.99 10.93 13.92 258 283.7
IGF-H 20 ng/ml 3.24 11.19 14.43 2.50 342.7
IGF-II 20 ng/ml 3 jJ 9.77 13.64 2.96 362.7
IGF-H 20 ng/ml 2.72 9.59 12.31 233 331.1
IGF-II 20 ng/ml 3.87 10.36 14.23 3.50 285.3
IGF-H 400 ng/ml 3.21 12.66 15.87 2.55 412.9
IGF-H 400 ng/ml 4.05 14.66 18.71 2.02 452.4
IGF-H 400 ng/ml 4.16 12.78 16.93 2.72 407.7
IGF-H 400 ng/ml 2.40 9.79 12.19 2.86 321.2
IGF-H 400 ng/ml 3.24 9.66 12.90 2.66 393.7
IGF-H 400 ng/ml 
Cholesterol 20 pmol 
Cholesterol 20 pmol 
Cholesterol 20 pmol 
Cholesterol 20 pmol 
Cholesterol 20 pmol 
Cholesterol 20 pmol

3.73 &83 12.56 2.92 344.6
2.8

18.3
13.9 
6.2 
9.9

12.9

Appendix table 6.14. The values for E l, E2, TE, E3 and P levels (pmol/100,000 viable
cells) produced by isolated cytotrophoblast cells obtained from placenta B6.
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E l E2 TE E3 P
24 hrs 24 hrs 24 hrs 24 hrs 24 hrs

Control 2.92 7.65 10.57 0.78 1174.0
Control 3.05 7.73 10.78 1.07 1033.1
Control 3.07 0.81 3.88 1.10 907.2
Control 2.33 7.83 10.16 1.06 740.0
Control 2.71 8.18 10.89 1.19 836.7
Control 2.42 7.85 10.27 0.72 904.4
CRF 2.39 6.71 9.10 0.83 884.3
CRF 2.90 8.74 11.64 0.90 1007.2
CRF 2^2 6.79 9.61 1.19 877.3
CRF 2.33 6.66 8.99 0.86 874.6
CRF 2.72 7.07 9.79 1.00 676.6
CRF 2.47 8.06 10.53 0.99 789.5
ACTH 2.44 8.62 11.06 1.12 1034.0
ACTH 2.34 8.13 10.47 0.94 1076.2
ACTH 2^8 7.45 10.33 0.69 1098.2
ACTH 2.85 7.51 10.36 0.86 732.3
ACTH 2.46 8.31 10.77 1.14 638.2
ACTH 2.32 8.14 10.46 0.84 730.5
IGF-I 20 ng/ml 2.38 8.39 10.77 1.05 1047.6
IGF-I 20 ng/ml 2.53 7.77 10.31 1.11 913.7
IGF-I 20 ng/ml 2.74 8.17 10.91 0.91 1015.6
IGF-I 20 ng/ml 2J# 8.66 10.95 1.04 486.5
IGF-I 20 ng/ml 3.05 8.18 11.23 0.88 530.2
IGF-I 20 ng/ml 2.77 8.52 11.29 0.97 392.7
IGF-1 400 ng/ml 3.69 7.45 11.14 0.49 943.0
IGF-1 400 ng/ml 3.41 8 j# 11.69 1.07 950.6
IGF-1 400 ng/ml 3.34 8.16 11.51 0.98 1105.3
IGF-1 400 ng/ml 2.33 10.18 12.51 0.90 461.0
IGF-1 400 ng/ml 2.73 8.02 10.75 1.15 493.9
IGF-1 400 ng/ml 2.48 7.29 9.77 1.08 455.5
IGF-H 20 ng/ml 2.16 7.73 9.89 0.94 1085.8
IGF-H 20 ng/ml 2.51 7.38 9 j# 1.19 837.0
IGF-II 20 ng/ml 2.54 6.67 9.21 0.98 970.6
IGF-H 20 ng/ml 2^3 7.93 10.56 1.00 426.8
IGF-H 20 ng/ml 2.48 6.54 9.02 0.87 376.9
IGF-H 20 ng/ml 2.99 7.75 10.74 0.81 576.6
IGF-H 400 ng/ml 2.98 8.31 11.29 0.71 547.6
IGF-H 400 ng/ml 2.47 7.03 9.50 1.12 758.2
IGF-H 400 ng/ml 2.44 7.17 9.61 1.09 793.9
IGF-H 400 ng/ml 2.76 7.58 10.34 1.03 326.7
IGF-H 400 ng/ml 2.41 8.39 10.80 1.07 601.6
IGF-II 400 ng/ml 2.59 6.86 9.45 1.09 562.4

Appendix table 6.15. The values for E l, E2, TE, E3 and P levels (pmol/100,000 viable
cells) produced by isolated cytotrophoblast cells obtained from placenta B7.
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Pregnenolone 10 )lmol Pregnenolone 20 fimol

Control 241.9 175.2
Control 379.5 139.2
Control 311.1 153.3
Control 348.1 290.8
Control 318.7 273.7
Control 237.5 237.3
CRF 297.3 193.6
CRF 362.5 190.2
CRF 282.8 266.3
CRF 282.3 224.5
CRF 200.0 263.4
CRF 287.8 202.2
ACTH 238.8 311.8
ACTH 237.5 203.8
ACTH 294.7 265.8
ACTH 220.5 279.9
ACTH 241.6 228.6
ACTH 288.2 281.5
IGF-I 20 ng/ml 320.3 187.9
IGF-I 20 ng/ml 293.2 248.3
IGF-I 20 ng/ml 286.7 206.6
IGF-I 20 ng/ml 235.1 166.9
IGF-I 20 ng/ml 262.4 146.2
IGF-I 20 ng/ml 192.2 184.6
IGF-1 400 ng/ml 387.5 193.2
IGF-1 400 ng/ml 226.1 271.1
IGF-1 400 ng/ml 183.9 268.0
IGF-1 400 ng/ml 326.2 128.1
IGF-1 400 ng/ml 173.6 187.1
IGF-1 400 ng/ml 340.9 178.7
IGF-II 20 ng/ml 223.9 176.8
IGF-II 20 ng/ml 182.2 253.0
IGF-II 20 ng/ml 270.4 210.5
IGF-II 20 ng/ml 367.7 164.7
IGF-II 20 ng/ml 201.2 204.7
IGF-H 20 ng/ml 240.1 126.4
IGF-H 400 ng/ml 174.3 164.5
IGF-II 400 ng/ml 168.7 248.6
IGF-II 400 ng/ml 213.5 209.1
IGF-H 400 ng/ml 243.6 180.9
IGF-II 400 ng/ml 265.4 222.5
IGF-II 400 ng/ml 239.3 156.6

Appendix table 6.16. The values for P levels (pmol/100,000 viable cells) produced by 
isolated cytotrophoblast cells obtained from placenta B8 and incubated for 24 hours 
with pregnenolone as the chosen precursor.
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Placenta B7 Placenta

Control- Cholesterol alone 35.04 78.48

Control- Cholesterol alone 38.64 65.83

Control- Cholesterol alone 31.48 94.89

Control- Cholesterol alone 27.06 97.94

Control- Cholesterol alone 53.55 95.18

Control- Cholesterol alone 39.43 91.93

CRF 20.99 116.26

CRF 29.10 78.48

CRF 18.67 92.95

CRF 23.18 86.18

CRF 2 3 j# 97.50

CRF 21.88 85.54

ACTH 37.49 73.11

ACTH 25.98 72.73

ACTH 19.94 73.81

ACTH 20.64 68.27

ACTH 20.57 65.00

ACTH 13.36 72.06

IGF-I 20 ng/ml 19.08 72.06

IGF-I 20 ng/ml 16.00 57.18

IGF-I 20 ng/ml 3.18 59.88

IGF-I 20 ng/ml 14.09 68.43

IGF-I 20 ng/ml 15.84 62.26

IGF-I 20 ng/ml 11.10 64.55

IGF-H 20 ng/ml 5.66 77.27

IGF-H 20 ng/ml 16.95 66.14

IGF-H 20 ng/ml 16.63 55.01

IGF-H 20 ng/ml 13.52 49.19

IGF-H 20 ng/ml 13.39 60.48

IGF-H 20 ng/ml 19.78 61.85

No cholesterol precursor 42.48 101.28

No cholesterol precursor 32.02 50.31

Appendix table 6.17. The values for P levels (pmol/100,000 viable cells) produced by 
isolated cytotrophoblast cells obtained from placentae B7 and B8 and incubated for 24 
hours with cholesterol (20 pmol/l) as the chosen precursor.
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