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Crowding in urban rail transit is an inevitable issue for most of the high-density cities across the world, especially during peak
time. For commuters who have considerably fixed destination arrival times, departure time choice is an important tool to adjust
their trips. 'e ignorance of crowding impact on commuters’ departure time choice in urban rail transit may cause errors in
forecasting dynamic passenger flow during peak time in urban rail transit.'e paper develops a mixed logit model to identify how
crowding impacts the departure time choice of commuters and their taste variation. Arrival time value was firstly measured in a
submodel by applying the reference point approach and then integrated to the main model. Considering the characteristics of
human perception, we divided crowding into five grades with distinct circumstances. All parameter distributions were assumed
based on their empirical distributions revealed through resampling. 'e data from Shanghai Metro used for estimation were
collected by a specifically designed survey, which combines revealed preference questions and stated preference experiments to
investigate the willingness and extent of changing departure time choice of passengers who experienced various grades and
duration of crowding in the most crowded part. 'e result shows that an asymmetric valuation model with preferred arrival time
as the only reference point best captured commuters’ responses to arrival time.'e departure time choice model clearly identified
that only crowding ranging from Grades 3 to 5 had an impact on commuters’ departure time choice. 'e parameters of crowding
costs can be assumed to follow transformed lognormal distributions. It is found that the higher the grade of crowding is, the bigger
the impact each unit of crowding cost has on commuters’ departure time choice, while commuters’ tastes get more concentrated
when crowded situation upgrades. 'e model in this paper can help policymakers better understand the interaction between
commuters’ departure time choice and crowding alleviation.

1. Introduction

Crowding in urban rail transit is an inevitable issue for
most of the high-density cities in the world, especially
during peak time. Crowding itself is an aggregate result of
passengers’ departure time choice and route choice, both of
which are fundamental behaviours considered in dynamic
passenger assignment models in urban rail transit. But
meanwhile, crowding can also affect both choices, which
leads to a new network status. Passengers may react to
crowding by adapting their travel behaviours, such as
departing earlier or later to avoid crowding, using a dif-
ferent line.

A number of studies have paid attention to the influence
of crowding on passenger assignment in urban rail transit,
especially on route choice [1–6]. It was proved not only
crowding delay but also crowding itself were equilibrated in
the route choice of metro passengers [2]. Except crowding
delay, crowding may cause physical inconvenience (e.g., seat
unavailability and squeezing with people), extra psycho-
logical pressure (e.g., less privacy and higher risk of personal
safety and security), and long-term ill health [7–9]. Although
the fact that crowding matters to passengers has been
pointed out by the existing literature, the questions how
passengers perceive crowding in their subjective way,
whether all degrees of crowding have an identical influence
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on passengers’ behavioural changes, and if not, what the
differences are still need more research.

Apart from changing route choice, another practical
response of passengers to crowding is changing departure
time. 'e survey carried out by Maunsell [10] reported that
25–28% of the respondents stated that they set off earlier or
later than preferred in order to travel in less crowded
conditions. For commuters who have considerably fixed
destination arrival times, they would try to update their
departure times based on their own experience instead of
keeping the same all the time. However, the impact of
crowding on the departure time choice of commuters in
urban rail transit has been scarcely studied.'e ignorance of
crowding impact on departure time choice of commuters
may cause errors in predicting dynamic passenger flow
during peak time in urban rail transit. 'is paper aims at
constructing a departure time choice model that identifies
how crowding impacts the departure time choice of com-
muters in urban rail transit. It will be integrated in a po-
tential dynamic transit assignment model by combining
with route choice and update models to predict within-day
and day-to-day passenger patterns in the future.

Departure time choice was first studied in road traffic since
1980s. Schedule models, reliability-based models, and activity-
schedule based models were developed in both econometric
modelling [11–17] and dynamic user equilibrium analysis
fields [18–24]. Despite the different methods used in these
models, the main concerns keep the same as exploring the
relation between travel time uncertainties caused by conges-
tion and arrival time value which is usually interpreted as
schedule delay. Congestion is a major response of road net-
work with insufficient supply to excess travel demand.
Travellers departing at different times in the road networkmay
experience various levels of congestion, which directly leads to
the changes in arrival time at destination. However, urban rail
transit has significant differences with road traffic in terms of
network structure, operation scheme, and demand charac-
teristics. In an exclusive right-of-way urban rail transit net-
work, the response to insufficient supply is no longer
congestion; instead, it is crowding. An increase of passengers
has no influence on the speed, so in-vehicle travel time be-
tween stations remains unchanged. Alternatively, the growing
number of passengers leads to an aggravation of in-vehicle
crowding, an extension of boarding and alighting time, and an
extra waiting time for the passengers who cannot board the
first incoming train. Passengers choose their departure time by
mainly considering the trade-off between arrival time value
and crowding. 'e viewpoint was agreed by most of the re-
search studies on departure time choice in urban rail transit
[25–31] in the past two decades. However, both components
and the relation between them are worthy of further studies.

Arrival time value is mostly converted to schedule delay [32]
for measuring the disutility of arriving at destination earlier or
later than preferred in existing research studies. 'e desired
arrival time is predetermined as official work/school start time
[27–31, 33–35]. Although recently researchers tried to relax this
assumption [25, 26, 36], very few studies investigated how this
time point should be fixed. In addition, the schedule delay is
assumed to be a linear function [27, 29–31, 34], which ignores

the different responses of commuters to every unit increase of
the difference between actual and desired arrival time, on either
early-arrival or late-arrival side. Nonlinear functions [33, 37] are
used to relax this assumption for accommodating the different
responses. But the functions are convex with fixed parameters,
which assumes passengers are risk-seekingwhen they arrive later
than work/school start time.

Crowding valuation is the other research point. It is mainly
quantified by monetary equivalent, i.e., willingness-to-pay
[38–40] and extra travel time [8, 41–44] with both revealed
preference (RP) and/or stated preference (SP) data. 'e latter is
found to be more transferrable across different contexts, in-
cluding countries [8]. In thismethod, crowding cost is calculated
by multiplying the degree of crowding with in-vehicle time, that
is, the degree of crowding is quantified as a time multiplier to
describe passengers’ perceptions of crowding, which can be seen
as the crowding cost per unit of in-vehicle time.

In both quantification methods of crowding, the key issue is
how to measure the degree of crowding. Objective metrics are
widely used by transport authorities in different countries, such
as the passengers in excess of capacity (PiXC) [45], the number
of standing passengers per square meter [46], load factor, and
the level of service (LOS) [47]. Meanwhile, crowding is tradi-
tionally assumed to be monotonically an increasing function of
in-vehicle passenger density by researchers [30, 48], normally a
linear function. While these objective density-based metrics are
used to measure crowding, passengers perceive crowding in a
more subjective way according to surveys [49]. 'eir percep-
tions of crowding are affected by situational, emotional, and
behavioural factors. Empirical studies also indicated that pas-
senger density may not be simply and linearly related to the
perception of crowding [7, 8, 39], that’s why more researches
discretised the degrees of crowding in a finite set of grades.'ese
grades are measured by passengers through purely stated
preference survey with various criteria, such as occupancy rate
or number of passengers per square meter [5, 8, 37, 42, 44] or
their crowding status, e.g., sitting or standing [41, 50, 51].
However, based on the stated preference survey, the degrees of
crowding are fixed in different scenarios.'e limited alternatives
may distort the passengers’ perceptions of crowding.

Although there have been many studies on departure
time and crowding, few of them contributed to solve the
following questions:

(i) How commuters in urban rail transit respond and
change their risk attitudes to early and late arrivals
when they face different extents of gains and losses

(ii) Whether all degrees of crowding have an influence
on commuters’ departure time choice and if so, how
they influence

(iii) Whether passengers have taste variation on the
influencing factors of departure time choice and if
so, how the taste variation distributes

To address these questions, the paper puts forward a
reference point-based valuation framework to capture
commuters’ responses to their arrival times, designs a
combined RP and SP survey to reflect commuters’ per-
ceptions of their actual experiencing crowding, and finally
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explores how different impact crowding has on commuters
who experience different degrees of crowding by using a
mixed logit model.

'e remainder of the paper is structured as follows:
Section 2 introduces the model framework and model
specification. 'e survey design and data description are
detailed in Section 3. 'e results are discussed in Section 4.
And Section 5 summarises the findings and suggests di-
rections for future research.

2. Methodology

In urban rail transit, the departure time choice is mainly a
trade-off between arrival time value and experienced
crowding of passengers. 'erefore to understand how
passengers value their arrival times without the influence of
crowding is a prior condition for establishing a departure
time choice model for urban railway commuters. 'us, we
will firstly build a submodel of arrival time valuation and
pass its output to the main model of departure time choice.

2.1. Submodel: Arrival Time Valuation Model. We intro-
duced the reference point approach of prospect theory [52]
to describe urban rail commuters’ reactions to different
arrival times. In the prospect theory, a commuter is assumed
to maintain the same departure time as long as his/her actual
arrival time is within an indifference band; otherwise, the
commuter will adjust his/her departure time through some
procedures [52, 53]. 'is assumption still holds when
crowding impact is not taken into account, and commuters
only compare different departure time alternatives by their
values. With this approach, actual arrival time (AAT) is
valued according to its deviation from reference points,
instead of its absolute value. 'e reference points include
two demarcation points of the indifference band, one for
too-early arrival time (EAT) and the other for too-late arrival
time (LAT), and optimal arrival time (OAT). Based on the
assumption, a commuter’s choice of switching his/her de-
parture time or not is devised as a binary probit model, the
utility of which is the sum of arrival time value and random
error. When the utility of arrival time is greater than zero,
the commuter will keep the same choice, otherwise, switch to
a new one, as shown in the following equations:

p(NS) � p(d � 1) � p U ta( 􏼁> 0( 􏼁 � p V ta( 􏼁 + ε> 0( 􏼁,

(1)

p(S) � p(d � 0) � p U ta( 􏼁< 0( 􏼁 � p V ta( 􏼁 + ε< 0( 􏼁, (2)

where p(NS) is the probability of not switching departure
time, p(S) is the probability of switching departure time,
U(ta) is the utility of arrival time, V(ta) is the arrival time
value, ε is the random error, d� 1 if a commuter maintains
his/her departure time, and d� 0, otherwise.

'ree valuation frameworks were developed to describe
the behaviour patterns of commuters in urban rail transit
based on the previous work of Cheng et al. [54]. Arrival time
itself is continuous, but its value is influenced by which area

it falls in. 'e proposed frameworks involved one or both
kinds of reference points.

Framework A: commuters value their arrival times
according to the demarcation points of indifference band
[55].'e demarcation points of too-early arrival and too-late
arrival are reference points with zero values, and optimal
arrival time is a “pseudo” reference point with maximum
value to define early-side and late-side arrival. 'e utility
function is shown as follows:

UA ta( 􏼁 � VA ta( 􏼁 + ε �

c1 + β1 tE − ta( 􏼁
α1 + εL

e td < ta ≤ tE( 􏼁,

c1 + β2 ta − tE( 􏼁
α2 + εG

e tE < ta ≤ tO( 􏼁,

c2 + β3 tL − ta( 􏼁
α3 + εG

l tO < ta < tL( 􏼁,

c2 + β4 ta − tL( 􏼁
α4 + εL

l ta ≥ tL( 􏼁.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

Framework B: commuters value their arrival times only
according to optimal arrival time. Optimal arrival time is the
only reference point, at which arrival time value reaches the
maximum. 'e value decreases with the increase of differ-
ence between actual arrival time and optimal arrival time:

UB ta( 􏼁 � VB ta( 􏼁 + ε �
c1 + β5 tO − ta( 􏼁

α5 + εe td < ta ≤ tO( 􏼁,

c1 + β6 ta − tO( 􏼁
α6 + εl ta > tO( 􏼁.

⎧⎨

⎩

(4)

Framework C: commuters value their arrival times
according to optimal arrival time when they are early-side
arrivals and value their arrival time according to the de-
marcation point of too-late arrival when they are late-side
arrivals:

UC ta( 􏼁 � VC ta( 􏼁 + ε �

c2 + β7 tO − ta( 􏼁
α7 + εe td < ta ≤ tO( 􏼁,

c2 + β8 tL − ta( 􏼁
α8 + εG

l tO < ta < tL( 􏼁,

c2 + β9 ta − tL( 􏼁
α9 + εL

l ta ≥ tL( 􏼁.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

In the above equations, td is the departure time, ta is the
actual arrival time, tO is the optimal arrival time, tE is the
demarcation point of too-early arrival, and tL is the de-
marcation point of too-late arrival. 'e error terms are
assumed to be normally distributed with zero means and
heteroskedastic variances under various circumstances.'ey
are distinguished by subscripts and superscripts. 'e sub-
script e represents the early side and l represents the late side,
and the superscripts G and L represent gain and loss, re-
spectively. Parameters αi (i� 1, . . ., 9) represent the rates of
changes in value to the commuter. 'e values of αi (i� 1, . . .,
9) are not predetermined in this research because whether
the segments of functions are convex or concave needs to be
decided based on estimation result. However, exponents
should be greater than 0 because, otherwise, the curve would
tend towards infinity at each reference point, which conflicts
with the basic theory. Parameters βi (i� 1, . . ., 9) are weights
which represent the importance of value in different seg-
ments to the commuter. According to the frameworks,
except β2, β3, and β8, the other βs should take on negative
values. Parameters ci (i� 1, 2) are the values of the optimal
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arrival time within frameworks B and C, which should be
positive. Parameters c1 and c2 are set to regulate the potential
deviations between the surveyed demarcation points of too-
early and too-late arrival and their real values.

Several alternative time points were chosen to represent
each kind of reference point, which are given in Table 1. 'e
best arrival time valuation framework was decided by
comparing the performances of three abovementioned
frameworks with the combinations of different reference
point alternatives.

2.2. Main Model: Departure Time Choice Model

2.2.1. 6eoretical Background. Given that commuters have
considerably fixed destination arrival times [56], who are
supposed to be little influenced by other activities, and the
travel time reliability of rail transit is much higher than road
traffic, this paper develops a schedule model to describe the
departure time choice of commuters in urban rail transit.
Logit models were firstly established to test whether all
degrees of crowding have an impact on departure time
choice and how to define effective crowding. A specification
test was then carried out to statistically test whether mixing
is needed for the discrete choice model. A mixed logit model
was built with the distributions of the random parameters
being decided based on their empirical distributions.

We assume that commuters’ departure time choice
complies with utility maximization theory when crowding
impact is taken into consideration, that is, when a commuter
faces several alternative departure time choices, he/she will
choose the one that provides the greatest utility. 'e utility
has two components, one is the representative utility which
includes the influence of explanatory factors that can be
observed, and the other one is the random error which
captures the factors that affect the utility but are not included
in the representative utility, as shown in the following
equation:

Uin � Vin + εin, n � 1, . . . , N; i � 1, . . . , Jn, (6)

where Uin is the utility of alternative i for commuter n, Vin is
the representative utility of alternative i for commuter n, εin
is the random error of alternative i for commuter n, N is the
total number of commuters, and Jn is the number of al-
ternatives for commuter n. In classical logit models, the
distribution of each random error is assumed to be inde-
pendent and identically extreme value type I distributed, also
known as Gumbel distribution. 'e choice probability of
commuter n to choose alternative i in a logit model is given
by

Pin �
eVin

􏽐je
Vjn

, i, j � 1, . . . , Jn; n � 1, . . . , N. (7)

'e independence from irrelevant alternatives (IIA)
property of choice probabilities leads to one limitation of
logit models that they cannot represent random taste var-
iation. In other words, the value or importance that com-
muters place on each attribute of the alternative does not
vary over commuters but fixed. Due to the differences in

subjective perception and experienced crowding for each
commuter, it is arbitrary to accept this specification. Mixed
logit [57] could obviate this limitation through the relaxation
of the IIA property. 'e taste variation is considered in the
utility of commuters shown in the following equation:

Uin � βn′ xin + εin, (8)

where xin is a 1×M vector of observed variables that relate to
the alternative i and commuter n and βn is aM× 1 vector of
parameters of variables for commuter n representing his/her
tastes. 'e parameters vary over commuters in the pop-
ulation with density f(β | θ), which can be assumed as a
specific kind of distribution, such as normal, lognormal, and
uniform distribution. 'e choice probabilities of mixed logit
model are the integrals of standard logit probabilities over
possible variables of βn, which can be expressed as follows:

Pin � 􏽚 Lin βn( 􏼁f(β | θ)dβ, (9)

Lin βn( 􏼁 �
exp βn′xin( 􏼁

􏽐jexp βn′xjn􏼐 􏼑
, i, j � 1, . . . , Jn; n � 1, . . . , N,

(10)

where Lin (βn) is the logit probability of alternative i for
commuter n evaluated at parameters βn, f(β | θ) is the
density function of β that varies over commuter in the
population with the parameter vector θ. Instead of the
parameter vector β itself, the parameter vector θ that de-
scribes the density of parameter β is to be estimated in a
mixed logit model.

Although the mixed logit has the advantage of repre-
senting taste variation, whether mixing is needed for the
parameters of variables should be tested statistically. 'e test
proposed in McFadden and Train [57] was used to accept or
reject the preservation of fixed parameters in the model.
Suppose the alternatives are from a set C� {1, . . ., Jn}, xi is a
1×M vector of variables of alternative i, and N is the total
number of commuters. 'e test estimates the parameter α in
the classical multinomial logit model by using maximum-
likelihood method and then constructs artificial variables for
selected components t of xi as in the following equations:

ztin � 0.5 xtin − xtCn( 􏼁
2
,

t � 1, . . . , M; i � 1, . . . , Jn; n � 1, . . . , N,

(11)

xtCn � 􏽘
j

xtjnPjn �
􏽐jxtjn · exp 􏽢αn′ xjn􏼐 􏼑

􏽐j∈Cexp 􏽢αn′ xjn􏼐 􏼑
, (12)

where xtin is the variable of the component t from variables
vector xi of alternative i for commuter n, xtCn is a weighted
sum of xtin, Pjn is the choice probabilities of commuter n to
choose alternative j, and 􏽢αn is the maximum-likelihood
estimates of multinomial logit model.'e logit model is then
reestimated including these artificial variables, and the null
hypothesis of no random parameters on attributes x is
rejected if the parameters of the artificial variables are sig-
nificantly different from zero. 'e actual test for the joint
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significance of the z variables can be carried out using aWald
test statistic. 'is test is asymptotically equivalent to a
Lagrange multiplier test of the hypothesis of no mixing
against the alternative of a mixed logit model with mixing in
the selected components t of α.

Once whether a parameter is random or not is decided, a
“jackknife” resampling procedure will be used to explore the
empirical distribution of a parameter. With this procedure,
Q+ 1 models are to be estimated, with Q as the number of
individuals included [58]. Except for a model involving the
entire sample, each of the other models is distinguished by
removing a different individual. 'e profile of individual
preference heterogeneity can be reflected by observing the
difference in the numerical value of the parameter estimates
of these Q+ 1 models.

2.2.2. Utility Function. In the context of urban rail transit,
we assume services are with sufficiently high frequency,
usually with expected waiting time less than 3min. In this
case, when passengers change their departure time, they do
not need to take timetables into consideration.

Although departure time itself is continuous, we found
that most of the commuters change their times in a gran-
ularity of 5min (Section 3) within a limited range. 'eo-
retically, commuters could change their departure times to
whatever extent; however, the time out of acceptable ranges
does not make practical sense. For these reasons, we dis-
cretised the departure time choices into 13 alternatives
according to our case, i.e., commuters can choose from
departing earlier or later than their original departure times
from 5min to 30min with 5min as the interval or keeping
the same. 'e span of range may slightly vary from case to
case, but the finite alternative set should be exhaustive.

According to the previous studies, we can conclude the
main trade-off in departure time choice is between arrival
time value and experienced crowding. Besides, when a
commuter has chosen one departure time before, he/she
would be unwilling to switch to a new departure time in the
next trip because of the uncertainty that a change may cause.
For this reason, the utility of a specific departure time choice
of a commuter in urban rail transit includes three parts: the
reluctance to switch departure time, crowding impact, and
arrival time impact, as shown in the following equation:

U tdin
􏼐 􏼑 � λeδei

+ λlδli
+ 􏽘

k∈K
λck

tckin + λaV tain
􏼐 􏼑 + εin,

i � 0, . . . , 12; n � 1, . . . , N,

(13)

where tdin
is the ith departure time alternative for commuter

n, when i� 0, the alternative is the original departure time,
tain

is the corresponding arrival time of tdin
, and U(tdin

) is the
utility of tdin

. δei
and δli

are dummy variables indicating
whether tdin

is earlier or later than the original departure
time, δei

� 1 if tdin
> td0n

while δli
� 1 if tdin

< td0n
, and oth-

erwise, both variables are equal to zero. tckin is the crowding
cost with the grade of crowding being k. K is the set of grades
of effective crowding that has an impact on the departure
time choice of commuters. V(tain

) is the arrival time value of
tain

. εin is the random error of the ith departure time al-
ternative for commuter n, which is assumed to be Gumbel-
distributed. λ’s are parameters to be estimated.Whether they
are random parameters or not needs to be tested. It is worth
noting that the fare is fixed for the same origin-destination
station pair regardless of which route a commuter chooses in
our case study, and the influence of fare, therefore, was not
included.

In the utility function, two dummy variables were
assigned to indicate whether the alternative departure time is
earlier or later than the original departure time, which is
analogous to the nests in a nested logit model. 'e pa-
rameters of both variables represented the reluctances of
commuters to change their original departure time to either
early or late side. Generally, the parameters λe and λl are
supposed to be negative. 'e total crowding impact on
commuters’ departure time choice was quantified as a
weighted sum of all effective crowding costs. Because the
commuters’ perceptions of crowding are shaped by their
subjective feelings of the surrounding environment, mainly
through observing in-vehicle occupancy situation and their
physical contact with others, which is bound to be vague and
inaccurate, so the degrees of crowding were divided into
finite grades rather than continuous value. Considering the
realism of crowding degrees and the cognitive burden for
respondents in survey, a five-grade scale was established
according to the ratio of passengers sitting and standing and
whether there is physical contact or even squeezing with
others, as shown in Table 2. Occupancy rate, the ratio of
passenger number to capacity of each vehicle, was used to
quantitatively represent the different grades. Corresponding
occupancy rate range was estimated based on the vehicle
configuration of our case study, Shanghai Metro. 'e rep-
resentative occupancy rates were the mean occupancy rates
for Grade 1 to Grade 4, while 100% for Grade 5 because in
that case the actual occupancy rate may sometimes exceed
100%. For each grade of crowding, the crowding cost tckin
was calculated by multiplying the representative occupancy

Table 1: Alternatives for each reference point.

Reference point Alternatives

'e demarcation point of too-early arrival (EAT)
'e acceptable earliest arrival time (AEAT)

Work/school start time (WST)
'e time when a commuter starts to consider departing later (SCDLT)

'e demarcation point of too-late arrival (LAT) 'e acceptable latest arrival time (ALAT)
'e time when a commuter starts to consider departing earlier (SCDET)

Optimal arrival time (OAT) Work/school start time (WST)
Preferred arrival time at workplace/school (PAT)

Journal of Advanced Transportation 5



rate of that grade by its corresponding in-vehicle time to
reflect the extra travel time caused by crowding. 'is is
because the main effect of crowding is magnifying the
perceived in-vehicle time of passengers, so the crowding
effect is influenced not only by the degree of crowding, but
also by the duration of the corresponding degree of
crowding. Meanwhile, this crowding valuation method has
been proved to be more transferrable across different
contexts [8]. 'e weight λck

is the unit impact of crowding
cost of each effective crowding, which is assumed to be
negative. Whether a grade of crowding is effective needs to
be discussed further.

3. Survey Design and Data

3.1. Survey Design. To better understand how commuters
make a trade-off between their arrival time values and
crowding, an innovative survey combining revealed pref-
erence (RP) questions and stated preference (SP) experi-
ments was specifically designed.'e survey consisted of four
parts in Table 3, with the first part collecting the socio-
economic characteristics and metro usage information of
respondents, the second part exploring commuters’ latent
attitudes to potential arrival times, the third part investi-
gating their actual routes and the corresponding grades of
crowding, and the last part focusing on whether and how
they will switch departure time when the grade of crowding
changes. To avoid the bias caused by different perceptions of
crowding, the grading of crowding was clearly set out
graphically and in written explanation in survey.

'e survey asked respondents twice about the willing-
ness to switch departure time, respectively, without and with
crowding situation change. 'e first answer was used for
estimating the arrival time valuation model, while the sec-
ond one was for investigating in what manner and to what
extent commuters adjust their departure times. Different
from repeating the same question several times with distinct
configurations in most of traditional SP survey, our survey
adopted an innovative way by asking a set of RP-based
progressive questions. Respondents were first asked whether
they are willing to switch their departure times in their first
metro trip on next weekday when the crowding of the most
crowded part they experienced in the first trip on the latest
weekday degrades by one level, with no change to the du-
ration. For example, if the original grade of crowding of the
most crowded part for one respondent was Grade 5, then the

one after change would be Grade 4. If they chose to switch, a
further question would follow up to ask whether they will
depart earlier or later. After they decided the manner of
switching, the extent of switching departure time was raised
by asking them how much time at most they can accept to
change from their original departure times. 'ese SP
questions were customised according to the answers in the
third part based on respondents’ actual experiences and
revealed preferences, trying to avoid the distortion of their
perceptions caused by fatigue in answering similar questions
with scenarios far away from their situations. 'e design
tried to avoid that respondents’ answers are mixtures of
learning and inertia effects caused by the sequencing of
offered choice situations. It is noteworthy to mention here
that only the grade of crowding of the most crowded part
being changed has twofold reasons. One is the survey needed
to control variables to figure out the impact of different
grades of crowding, and the other is passengers were as-
sumed to have the deepest impression of the extreme sit-
uation, say, the most crowded part.

Because of the distinct design of the question asking the
willingness of commuters to switch departure time when
crowding changes, each commuter’s answer can be con-
verted to at least one choice situation. It is because com-
muters were asked howmuch time at most they can accept to
change from their original departure times, which means if
there were an alternative (available) that requires a smaller
change than their answers, they would choose that alter-
native. If more than one alternative less than their answers
are available, they would choose the one with the smallest
change. State equivalently, commuters were assumed to
choose the least extent of change within the range of change
extent they answered when it is available. If all the available
alternatives are beyond the range of change extent they
answered, commuters would choose to keep the original
departure times. 'e number of choice situations, therefore,
is equal to 􏼆Δtac/5􏼇 + 1, where Δtac is the acceptable extent of
change for a commuter and the symbol ⌈ · ⌉ means the
ceiling of the number. For all the choice situations, if a
commuter chooses to depart earlier or later, the other side
would be available for him/her all the time.

3.2. Data Collection and Description. Data were collected
through a web-based interactive questionnaire between June
2017 and August 2017 with the help of an online survey

Table 2: 'e grading of crowding.

Grade Occupancy rate
range (%)

Representative occupancy
rate (%) Description

1 0–20 10 All passengers in vehicle have seats

2 20–40 30 Most of the passengers in vehicle have seats, while a small number of passengers
have to stand

3 40–80 60 Amajority of passengers in vehicle have to stand, but there is no physical contact

4 80–90 85 Amajority of passengers in vehicle have to stand with physical contact, but there
is no squeezing

5 >90 100 A majority of passengers in vehicle have to stand with intense squeezing or the
passengers waiting on platform cannot board on train
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system. 'e link was emailed to around 1400 people who
register to live in Shanghai in the system. To ensure the
respondents are the commuters in Shanghai Metro who use
rail transit system frequently, all respondents needed to pass
a screening procedure. 'e first step was carried out before
each respondent entering the questionnaire. Two questions,
whether the respondent lives in Shanghai and uses Shanghai
Metro per week, were asked to examine whether the re-
spondent was eligible to get in the body of the questionnaire.
However, the second step was after their completion of the
survey, in which manual double check was executed to
guarantee they were targets by reviewing their frequencies of
using Shanghai Metro and their purposes of the first metro
trip on the latest weekday. After passing this procedure, all
the questionnaires went to the final validity check, which
tested whether there were answers missing, inconsistent, or
incorrect (e.g., the name of the metro station or the inter-
change station on the route). Note that the survey plan and
designs have been approved by Tongji University (ref:
35744).

'e study of arrival time valuation only required the data
of parts 1 and 2 to be valid whilst the one of departure time
choice model including crowding impact required the data
from all parts to be valid. In the light of this, to make the best
use of the survey data, 585 questionnaires got through all
tests and served for arrival time valuation, of which 460
questionnaires were extracted to be used in the estimation of
departure time choice model. It is worth mentioning that to
ensure commuters who switch their departure time choice
when being asked the second time were solely because of the
change of crowding, only those who did not switch de-
parture times when there was no change of crowding were

eligible. Table 4 summarises the socioeconomic and travel
characteristics of both samples. A large majority of re-
spondents travelled by metro more than 3 times in one week
with the purpose of going to work/school, which suggests
that they were commuters familiar with Shanghai Metro
network.

'e work/school start times of most of the respondents
ranged from 7:30 to 9:30 am (96.24%). A majority of re-
spondents started work/school at 9:00 am (49.06%), followed
by 8:30 am (23.42%), as shown in Figure 1. 'e statistics of
time points related to arrival time valuation of urban rail
transit commuters surveyed are shown in Table 5. 'e
analysis of variance (ANOVA) result in Table 6 shows that
except the difference between work/school start time and the
time when a commuter starts to consider departing earlier,
all the others between alternative reference points were
significant at the 5% level.

Table 7 gives the distribution of the grades of crowding of
the most crowded part experienced by 460 commuters in
Shanghai Metro. More than 70% of them experienced the
crowding with physical contact with others in vehicle. Fur-
thermore, 40% of respondents had to bear being squeezed.

223 respondents (48.48%) chose to keep the same de-
parture times while 222 chose to depart earlier (48.26%).
Only 15 respondents (3.26%) preferred to depart later.
Figure 2 presents the willingness of respondents to switch
their departure time choices when the grades of crowding of
the most crowded part degrade by one level. 'e respon-
dents experiencing original crowding of Grade 5 tended to
depart earlier or later most (57.05%), whereas none of the
ones experiencing original crowding of Grade 1 was going to
switch their departure times. Although there was no big

Table 3: 'e combined RP and SP survey.

Part Questions Method

Basic information

Gender
Age

Occupation
'e frequency of travelling by metro in one week
'e time period of travelling by metro in one week

'e purpose of the first metro trip on the latest weekday

Arrival time valuation

Work/school start time RP
Preparation time before work/school start time SP

Preferred arrival time SP
'e acceptable earliest arrival time SP
'e acceptable latest arrival time SP

'e time when he/she starts to consider departing later next time SP
'e time when he/she starts to consider departing earlier next time SP

'e actual departure time of the first metro trip on the latest weekday RP
'e actual arrival time of the first metro trip on the latest weekday RP

'e willingness to switch departure time according to the arrival time of the first
metro trip on the latest weekday SP

Crowding valuation
'e actual route choice of the first metro trip on the latest weekday RP

'e grade of crowding of the most crowded part on the route RP
'e duration of the most crowded part on the route RP

Willingness to switch departure time when
crowding changes

'e willingness to switch departure time if crowding situation changes in the first
metro trip on next weekday SP

'e manner of switching departure time SP
'e extent of switching departure time SP
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difference in the proportions of commuters being willing to
switch departure times among the commuters experiencing
original crowding of Grades 4 to 2, there did exist a big
difference in the extents of switching departure time.

Table 8 shows for the group of respondents who were
willing to switch departure times for degraded crowding,

and those who experienced crowding of Grades 3 and 2 were
more willing to adjust their departure times within a short
range. 'e time adjustments of more than 80% of them were
less than or equal to 10min. In contrast, those who expe-
rienced crowding of Grades 5 and 4 were more likely to
change their departure times farther away from the original

Table 4: Respondents’ socioeconomic and metro usage profile.

Items
Arrival time valuation Departure time choice
N % N %

Gender
Male 266 45.47 209 45.43
Female 319 54.53 251 54.57

Age
<18 10 1.71 7 1.52
18–40 513 87.69 399 86.74
41–60 61 10.43 53 11.52
>60 1 0.17 1 0.22

'e frequency of travelling by metro per week
1-2 times 61 10.43 47 10.72
>3 times 524 89.57 413 89.78

'e time period of travelling by metro per week
Only weekdays 163 27.86 133 28.91
Weekdays and weekends 422 72.14 327 71.09

'e purpose of the first metro trip on the latest weekday
Work 568 97.09 449 97.61
School 17 2.91 11 2.39

Total 585 100 460 100
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Figure 1: 'e distribution of work/school start time.

Table 5: Time points related to arrival time valuation.

Time point Mean Min Max Std. deviation (min)
'e acceptable earliest arrival time (AEAT) 8:24 6:20 9:55 33.43
'e time when a commuter starts to consider departing later (SCDLT) 8:18 6:30 9:50 33.03
Preferred arrival time at workplace/school (PAT) 8:38 6:35 10:00 30.80
Work/school start time (WST) 8:48 6:45 10:30 29.85
'e acceptable latest arrival time (ALAT) 8:55 6:45 11:00 32.83
'e time when a commuter starts to consider departing earlier (SCDET) 8:51 6:45 10:40 32.76
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departure times. 'e commuters planning to depart earlier
or later more than 10min accounted for 29.00% for Grade 5
and 37.70% for Grade 4. 'e analysis indicates that a higher
grade of crowding may lead to an increase either in com-
muters’ willingness to switch departure time or in their
extents of adjustment.

4. Results and Discussion

4.1. Arrival Time Valuation Model. As a key component of
departure time choice model, arrival time value needs to be
firstly estimated without the influence of crowding cost. So
the commuters’ willingness to switch departure time without

crowding situation change should be used to estimate this
model. 'e arrival time value provides a basis for departure
time choice model because it captures the pure attitudes of
commuters towards different arrival times without any other
impact. 'is helps to analyse the trade-off between arrival
time value and crowding cost in the main departure time
choice model, when the change of crowding situation is
introduced. 'e economic and statistical significance tests
were carried out on each estimation result to guarantee the
signs of parameters are consistent with the proposed theory
as well as the values of parameters are significant at the 5%
level. For each valuation framework, only the estimation
results passing two tests were picked out to be compared
with each other. Since utility functions in arrival time val-
uation frameworks are nonlinear segmented functions, the
assumption of normally distributed error terms would be
broken if a logarithmic transformation is adopted. 'us, the
parameters were estimated by combining maximum sim-
ulated likelihood with limited enumeration. Due to the
properties of power function, the convexity of a function
switches when exponent crosses 1. Based on the significance
test and predictive ability performances of models in a trial
estimation, the value range of each exponent α was set to be
(0, 2], with step size 0.05. Table 9 shows that all the models
within Framework A failed significance tests. Within
Framework B, the models with work/school start time
(WST) as optimal arrival time (OAT) were unable to pass
significance tests. 'e best estimation came out when pre-
ferred arrival time at workplace/school (PAT) is the only
reference point. Within Framework C, a model with pre-
ferred arrival time at workplace/school (PAT) and the time
when a commuter starts to consider departing earlier
(SCDET) as reference points had the best estimation result.
More detailed estimation process could be found in a
previous research [54].

Table 6: 'e differences between alternative reference points of arrival time valuation.

Difference (min)
ANOVA

Mean Min Max Std. deviation
F Sig.

SCDLT-AEAT 8.784 0.003∗∗ −5.76 −60.00 70.00 12.05
WST-PAT 32.555 0.000∗∗∗ 10.12 0.00 50.00 5.99
ALAT-WST 15.691 0.000∗∗∗ 7.27 0.00 90.00 10.23
SCDET-WST 3.189 0.074∗ 3.27 −20.00 60.00 11.12
SCDET-ALAT 4.314 0.037∗∗ −3.99 −70.00 45.00 11.06
Note. ∗Difference is significant at the 10% level. ∗∗Difference is significant at the 5% level. ∗∗∗ Difference is significant at the 1% level. SCDLT: the time when a
commuter starts to consider departing later; AEAT: the acceptable earliest arrival time; WST: work/school start time; PAT: preferred arrival time at
workplace/school; ALAT: the acceptable latest arrival time; SCDET: the time when a commuter starts to consider departing earlier.

Table 7: 'e distribution of the grade of crowding of the most crowded part.

Original grade of crowding N % Avg. adjustment (min)
Grade 5 191 41.52 6.79
Grade 4 133 28.91 5.86
Grade 3 103 22.39 5.37
Grade 2 28 6.09 5.54
Grade 1 5 1.09 0
Total 460 100 6.05
Note. Avg. adjustment� total absolute adjustment/the number of respondents experiencing the same original grade of crowding. If one respondent keeps the
same departure time, then adjustment is equal to zero.
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Figure 2: 'e willingness to switch departure time.
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By comparing the estimation results of the best models of
each framework, it is found that the optimal estimation
result of Framework B performed the best, with both ρ2 of
0.4819 and hit rate of 85.64% higher than Framework C, with
ρ2 of 0.4809 and hit rate of 85.13%. 'e best models of
Framework B are demonstrated in Figure 3 and equation
(14), with preferred arrival time as the reference point:

UB ta( 􏼁 �
2.255 − 0.384 tO − ta( 􏼁

0.50
, td < ta ≤ tO,

2.255 − 0.956 ta − tO( 􏼁
0.30

, ta > tO.

⎧⎨

⎩

(14)

'e result that the framework with optimal arrival time
as the only reference point outperformed the others with two
reference points leads us to believe that passengers do not
evaluate their arrival times in a very complicated way. 'ey
would like to compare their arrival times with the same
benchmark; either their arrivals are on early or late side.
Furthermore, the optimal arrival time was represented by
preferred arrival time, not work/school start time assumed in
most of the existing literature studies, which provides

evidence to our hypothesis that predetermining work/school
start time as the desired arrival time of passengers does not
reflect the reality. 'is finding suggests that the arrival time
value of work/school start time is usually overestimated
while the one of real optimal arrival time is underestimated.
'e result that passengers choose preferred arrival time,
which is 10.12min earlier than work/school start time on
average in our case, as their reference point could be
explained by the reason that commuters need a period of
time to prepare for their daily work or adjust themselves to
work mode in advance of the start of their work or school
[59].

'e result in Table 9 also shows that β6 had a greater
absolute value than β5, which indicates that commuters
responded asymmetrically to arrivals on early and late sides
by attaching more disutility to being late. 'e time when
arrival time value is equal to zero on late-arrival side was
17.46min later than preferred arrival time, nearly half of the
one on early-arrival side, 34.48min. 'e values of α5 and α6
statistically demonstrated that the value function was
nonlinear. 'e curves in both quasi-gain regions were

Table 8: 'e distribution of the extent of switching departure time.

'e extent of switching departure time
Original grade of crowding

Grade 5 Grade 4 Grade 3 Grade 2
% % % %

(0, 5] 14.00 18.03 14.58 15.39
(5, 10] 57.00 44.26 66.67 69.23
(10, 15] 13.00 19.67 10.42 0.00
(15, 20] 10.00 11.48 6.25 7.69
(20, 25] 0.00 0.00 0.00 0.00
(25, 30] 6.00 6.56 2.08 7.69

Table 9: 'e best estimation results of three valuation frameworks.

Framework
Reference points

Region Parameter Variable Coefficient T-stat LogL ρ2 Hit rate
(%)tE

(EAT)
tO

(OAT) tL (LAT)

A None of the estimation results pass both economic and statistical significance tests
B — tP (PAT) — All arrivals c1 — 2.255 10.349∗∗∗ −210.103 0.4819 85.64

β5 tO − ta −0.384 −4.747∗∗∗
β6 ta − tO −0.956 −7.349∗∗∗
α5 tO − ta 0.50 —
α6 ta − tO 0.30 —

C — tP (PAT)
tl2

(SCDET)
Early-side
arrivals c2 — 2.153 9.464∗∗∗ −210.458 0.4809 85.13

β7 tO − ta −0.311 −4.192∗∗∗
α7 tO − ta 0.55 —

Late-side
arrivals c2 — 0.383 2.634∗∗∗

β8 tL − ta 0.044 2.658∗∗∗
β9 ta − tL −0.087 −1.962∗∗
α8 tL − ta 0.85 —
α9 ta − tL 1.20 —

Notes. ∗∗Significant at the 5% level. ∗∗∗Significant at the 1% level. tE: the demarcation point of too-early arrival (EAT); tO: the optimal arrival time (OAT); tL:
the demarcation point of too-late arrival (LAT); tP: preferred arrival time at workplace/school (PAT); tl2: the time when a commuter starts to consider
departing earlier; ta: actual arrival time at workplace/school; c: the arrival time value of the optimal arrival time; β: the weight of time difference between actual
arrival time and corresponding reference point in each segment; α: the rate of change in value in each segment.
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convex, consistent with prospect theory. 'e result indicates
that commuters showed varying attitudes to every unit of
change instead of a fixed one in linear function. It also
implies that commuters were risk-seeking no matter they
arrived earlier or later than preferred arrival time, that is,
they were willing to take big risks to increase the potential
value of their arrival times. One explanation for this finding
can be that commuters evaluate arrival time with respect to
the decline from the gain at preferred arrival time, the
reference point, which leads to the result that even though
their arrival time value may be positive, they felt perceived
losses.

4.2. Departure Time Choice Model. Except the five com-
muters who already experienced the least crowded situation
(Grade 1) in our survey, 455 commuters were left for es-
timation. 'anks to the distinct design of question asking
commuters’ willingness to switch departure time when
crowding changes, there were 1018 choice situations for
estimation after the conversion. 'e conversion efficiently
increased the size of estimation data without repeating
asking commuters similar questions several times. All the
models were estimated by using modified Matlab codes
based on the ones developed by Train [60]. Note that the
arrival time value for each choice situation was calculated
according to the arrival time valuation model in Section 4.1.

'e logit-based departure time choice models with
different effective crowding specifications were estimated
with maximum-likelihood method. 'e results in Table 10
show when the effective crowding covered all grades, the
signs of all parameters were consistent with the qualitative
analysis except λc1

, the weight of Grade 1 crowding cost,
which was expected to be negative. Furthermore, the weight
of Grade 2 failed the significance test at the 10% level. Both
results point out that the Grade 1 and 2 crowding did not
considerably contribute to the crowding impact on depar-
ture time choice of commuters. After removing them from
the effective crowding set, all the parameters passed the
economic and statistical significance tests and the model had
a higher adjusted ρ2 0.409. In both models, with or without
the removal of Grade 1 and 2 crowding cost, the coefficients
of Grade 3 to 5 crowding cost were negative and significant
at the 1% level as all absolute values of t-statistics are larger

than 2.58. 'is finding supports us to believe that Grade 3 to
5 crowding did impact on commuters’ departure time
choice, and not all degrees of crowding had an influence on
departure time choice of commuters, which indicates that
objective metrics could not represent commuters’ subjective
perceptions of crowding. 'e density-based indicators
supposing that every degree of crowding impacts passengers’
behavioural changes lack factual evidence. 'e reason why
the boundary of effective crowding was between Grade 2 and
Grade 3 could be attributed to the maintenance of a personal
bubble. In the circumstances of Grade 2 crowding, although
a part of commuters have to stand, their personal bubbles are
guaranteed, while the crowding of Grade 3 or beyond is
more likely to encroach their personal bubbles. 'is situa-
tion may result in qualitative changes in emotion and
consideration about safety and security.

Based on this finding, all the parameters in the logit
model with effective crowding ranging from Grades 3 to 5
were tested about whether mixing is needed. Table 11 shows
that all the artificial variables constructed passed significance
tests, which means that all of the parameters were random. A
mixed logit was necessary for describing the taste variation
of commuters on influencing factors.

With the help of resampling technique, 456 models were
estimated to generate the estimates of six parameters. 'e
histogram and kernel density distribution of each parameter
are shown in Figure 4. According to the skewness and
kurtosis characteristics, the distributions of parameters λe

and λa can be assumed to be normally distributed. Although
the distribution of parameter λl had a long left-hand tail, its
symmetrical pattern near the peak suggested it also can be
assumed as a normal distribution. 'e distributions of pa-
rameters λc3

, λc4
, and λc5

were more likely to be transformed
lognormal distributions that have been moved over to the
negative side. 'ree reasons that supported us to choose
transformed lognormal distributions are as follows: (1) the
empirical distributions had asymmetrical patterns near the

tO (PAT)

Time

Value

td

Quasi-gain region Quasi-gain region

I II

–20 +20 +40–40

Early arrival Late arrival

Figure 3: 'e optimal estimation result of Framework B.

Table 10: 'e estimates of logit-based departure time choice
models with different effective crowding specifications.

Model
Logit with effective

crowding from Grade
1 to 5

Logit with effective
crowding from Grade

3 to 5
Parameter Value T-stat Value T-stat
λe −0.906 −6.07∗∗∗ −0.845 −5.98∗∗∗
λl −4.898 −16.3∗∗∗ −4.831 −16.3∗∗∗
λc5

−0.098 −3.69∗∗∗ −0.077 −3.92∗∗∗
λc4

−0.088 −3.37∗∗∗ −0.066 −3.68∗∗∗
λc3

−0.088 −3.04∗∗∗ −0.061 −3.66∗∗∗
λc2

−0.045 −1.11 — —
λc1

0.050 2.22∗∗ — —
λa 1.201 16.8∗∗∗ 1.196 16.7∗∗∗
Log-likelihood −1487.489 −1488.298
Adjusted ρ2 0.408 0.407
Note. ∗∗Significant at the 5% level. ∗∗∗Significant at the 1% level. λe: the
reluctance to change original departure time to early side; λl: the reluctance
to change original departure time to late side; λck

(k� 1–5): the unit impact
of crowding cost of Grade k crowding; λa: the unit impact of arrival time
value.
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peak and very long right-hand tails; (2) a lognormal dis-
tribution requires the random parameter to be positive, but
the parameters for effective crowding were negative, so we
needed to convert them to positive values in distributions;
and (3) if we convert the parameters to their negative
numbers, then the distributions will not be lognormal
distributions anymore because the distributions will change
from right-skewed to left-skewed.

In mixed logit models, for variables following either
normal distributions X∼N (μ, σ2) or transformed lognormal
distributions ln (X+ δ)∼N (μ, σ2), the mean μ and standard
deviation σ were to be estimated.'e value of δ representing
the number of units that a lognormal distribution has been

moved over to the left was enumerated from 0.1 to 3 with the
step size 0.1. For each enumeration, the mixed logit model
was estimated with maximum simulated likelihood method
with 100 modified Latin hypercube sampling (MLHS) draws
[61]. 'e starting values of standard deviation were 0.01,
while the starting values of means for normal distribution
were the corresponding estimates of logit model, and the
ones for lognormal distributions were calculated based on
the estimates of logit model, the standard deviation, and the
number of units to be moved. Table 12 shows the optimal
estimation result.

All the parameters passed significance tests, which shows
taste variation did exist among commuters and the

Table 11: Specification test for all the parameters in the departure time choice model.

Artificial variable Value Standard error T-stat
λe 13.940 0.747 18.66∗∗∗
λl 107.161 28.275 3.79∗∗∗
λc5

0.005 0.002 2.71∗∗∗
λc4

−0.005 0.002 −2.29∗∗
λc3

0.010 0.004 2.71∗∗∗
λa −2.197 0.260 −8.46∗∗∗

Note. ∗∗Significant at the 5% level. ∗∗∗Significant at the 1% level. λe: the reluctance to change original departure time to early side; λl: the reluctance to change
original departure time to late side; λck

(k� 1–5): the unit impact of crowding cost of Grade k crowding; λa: the unit impact of arrival time value.

150

100

50

0

Fr
eq

ue
nc

y

–0.9 –0.85 –0.8
Value

Histogram
Kernel density distribution

(a)

Fr
eq

ue
nc

y

Value
–5 –4.9 –4.8

300

250

200

150

100

50

0

Histogram
Kernel density distribution

(b)

150

200

100

50

0

Fr
eq

ue
nc

y

Value
1.18 1.19 1.2 1.21 1.22

Histogram
Kernel density distribution

(c)

Fr
eq

ue
nc

y

Value

600

500

400

300

200

100

0
–0.08 –0.07 –0.06

Histogram
Kernel density distribution

(d)

Fr
eq

ue
nc

y

Value

600

500

400

300

200

100

0
–0.05–0.07 –0.06

Histogram
Kernel density distribution

(e)

Fr
eq

ue
nc

y

Value

600

800

400

200

0
–0.05 –0.04–0.06

Histogram
Kernel density distribution

(f )

Figure 4: Empirical distributions of all the parameters: (a) λei
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assumptions of distributions we made were reasonable.
When the estimation result reached its optimum, the
transformed lognormal distributions were moved over 2.4
units to the left. Its adjusted ρ2 was 0.27 higher than the one of
logit model, which indicates the mixed logit model better fits
the data.

'e mean values of parameters representing the reluc-
tances of commuters to switch their departure time to either
early or late side were negative, with much higher absolute
values for late side, showing that commuters were more
unwilling to move their departure time forward. 'e dis-
tribution of λe had 32.47% on the positive side, while the one
of λl had only 1.26%. 'is finding suggests there was still a
part of commuters who accept departing earlier or later. It
can be explained by the fact that although commuters’
original departure times are within the acceptable range,
they are not exactly their preferred arrival times. Switching
departure time earlier or later may allow them closer to their
preferred arrival times. But it is worth noting that the
percentage of λl being on the positive side was very low.
Combining with the asymmetrical responses of commuters
in arrival time valuation, we could conclude that the whole
commuter group averts to departing later through setting
both a higher threshold for them to switch and a greater
disutility for each unit of late arrival, which reemphasises
that commuters react differently to earlier and later de-
parture times and try to avoid being later at work/school,
which has been found by other researchers [62, 63].

Regarding crowding impact, all the weights of effective
crowding costs had negative mean values, with the absolute
values increasing as crowding situation upgrades. It shows that
the higher the grade of crowding is, the bigger the impact each
unit of crowding cost has on commuters’ departure time
choice. 'e difference between the mean weights of crowding
costs of Grades 5 and 4 was 0.27, 0.16 higher than the one
between Grades 4 and 3. Emphasis should be put on that the
difference between Grade 3 and Grade 2 was 0.17, a bit greater
than the one between 4 and 3. 'is is mainly because that
Grade 2 crowding does not have an impact on departure time
choice, which is a qualitative change. On the other hand, the
standard deviations of the parameter distributions decreased
with the upgrade of crowding level. 'e weight of Grade 3
crowding cost had the greatest standard deviation of 0.35, while
the ones for Grade 4 (0.13) and Grade 5 (0.09) were much less.

It implies that commuters had more dispersed tastes in a less
crowded situation, while less difference existed in their tastes
when they were facing higher grades of crowding. One of the
reasons that could explain this finding is that there is no
physical contact in Grade 3 crowding, and the weights that
commuters give to the impact of Grade 3 crowding mainly
depend on their perceptions of personal bubbles. If a commuter
is more sensitive about the distance between him/her and other
passengers, he/she is more likely to attach a higher weight to
Grade 3 crowding cost. As for Grade 4 and Grade 5 crowding,
commuters’ perceptions were more concentrated.

'e only parameter with a positive mean value was λa,
the one for arrival time value, which is consistent with
our analysis. Only 5.27% of the distribution was on the
negative side. For most of the commuters, arrival time
value had an increasing effect on the utility of the de-
parture time choice. 'e ratio between the mean values of
parameters of arrival time value and crowding costs
shows that for every 0.1 unit decrease in arrival time
value, commuters needed to experience a reduction of
2.02, 4.02, or 6.61 units in crowding costs of Grades 5, 4,
and 3, that is, 2.02, 4.73, or 11.01 min in the corre-
sponding crowding situation. Note that here a reduction
means the crowding situation changes from its original
status to the one less crowded than or equal to Grade 2
crowding. If the crowding situation only degrades by one
grade, then a reduction of 4.07 units in the crowding cost
(3.54 min) for Grades 5 to 4, 10.25 units (8.28 min) for
Grades 4 to 3, and 6.61 units (11.01 min) for Grades 3 to 2
was needed to offset the 0.1 unit decrease in the arrival
time value. Averagely speaking, a commuter would be
motivated to depart earlier with at least 14.06, 27.93, or
45.94 units of reduction in the crowding costs of Grades
5, 4 and 3, while the reduction needed to motivate a
commuter to depart later is 5.56 times of the one for
departing earlier. 'ese results could explain why the
passengers who experienced higher grade of crowding
were more likely to switch their departure time. It also
proves that arriving at preferred time is still one of the
most important influencing factors of commuters’ de-
parture time choice.

Traditionally, both transport authorities and railway
operators try to alleviate crowding with little consideration
of commuters’ departure time choice. 'e model in this

Table 12: 'e estimates of mixed logit departure time choice model.

Parameter Distribution δ value
μ σ

Mean Std. Share <0
Value T-stat Value T-stat

λe Normal — −7.690 −8.836 16.905 11.852 −7.671 16.900 67.53%
λl Normal — −42.655 −10.112 −19.157 −10.096 −42.662 19.138 98.74%
λc5

Lognormal 2.4 0.616 12.180 0.049 4.861 −0.546 0.091 99.99%
λc4

Lognormal 2.4 0.752 19.842 0.062 6.856 −0.275 0.131 97.73%
λc3

Lognormal 2.4 0.791 25.756 −0.157 −6.996 −0.167 0.354 70.47%
λa Normal — 11.025 12.286 6.819 11.139 11.033 6.824 5.27%
Log-likelihood −1105.812
Adjusted ρ2 0.679
Note. All parameters are significant at the 1% level. λe: the reluctance to change original departure time to early side; λl: the reluctance to change original
departure time to late side; λck

(k� 1–5): the unit impact of crowding cost of Grade k crowding; λa: the unit impact of arrival time value.
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paper could be used to predict commuters’ departure time
under different crowding circumstances due to different
time periods, route choices, and policies and be used to
compare different scenarios and validate or evaluate some
crowding alleviation strategies. Because crowding situation
is a dynamic status, so for relieving crowding, two major
contexts should be considered. 'e first one is adjusting
commuters’ departure time choice without changing their
route choices. 'e results of both the arrival time valuation
and departure time choice models give some implications to
where and who should be focused on and what potential
actions could be. Because from Grades 3 to 5, crowding has
an increasing impact on departure time choice while
commuters’ perceptions of crowding cost get more con-
centrated, so the priority of crowding alleviation should be
firstly given to the sections where Grade 5 crowding situ-
ation happens as both the population of commuters per
vehicle and the proportion of being influenced are much
greater and the commuters are more willing to switch their
departure times with a greater extent of change. For those
commuters who experience Grade 5 crowding, the reasons
that prevent them from switching departure time are the
reluctances to switch departure time to both sides and the
reduction of arrival time value. To overcome these barriers,
actions could be taken to adjust the working time schemes of
this group of commuters. In our case, why commuters are
much more reluctant to switch their times to late side can be
explained by the fact that most of the companies in Shanghai
implement fixed working time scheme, which does not allow
lateness or allow little lateness. On the other hand, com-
muters try to arrive at their preferred arrival times, which are
usually before their work start times. Flexible or later work
start time may help to encourage commuters to adjust their
preferred arrival times and, therefore, switch their departure
times. 'is could move a part of commuters who experience
Grade 5 crowding to a less crowded situation in a different
time period and mitigate the crowding situation of peak
time, leading to a more evenly distributed travel demand.
Based on commuters’ destinations, place-based gradient
work start time could also be considered to regulate the peak
time crowding. Once Grade 5 crowding situation is eased,
the attention could be moved on to less crowded situation.
But one thing to note is that because the reluctances to
switch departure time to both sides contribute more to the
utility of departure time as the total crowding cost decreases,
so the effectiveness of cost and effort will drop with the
degrading of crowding. 'e second context is guiding
commuters to other less crowded routes. Changing route
will influence not only commuters’ journey time, experi-
enced crowding situation, but also their departure times, so
the guidance should provide commuters with suggestions
about not only route but also departure time choice. 'e
combinations of both should be compared by using the
departure time choice model and route choice model to-
gether to guarantee the new choices are tempting enough to
shift commuters from their original choices. It is worth
emphasising that any one of actions may change the network
to a new crowding status; thus, commuters may reselect their
departure times, which could be predicted by the departure

time choice model. It can help policymakers to better un-
derstand the interaction between commuters’ departure
time choice and other influencing factors of crowding.

5. Conclusions

'is study aims at identifying how crowding impacts the
departure time choice of commuters in urban rail transit and
its trade-off with arrival time value. A submodel of arrival
time valuation introduced the reference point approach
from prospect theory to capture the asymmetrical responses
of commuters to arrivals on early and late sides. On this
basis, a mixed logit-based departure time choice model was
constructed with the degrees of crowding being measured by
a five-grade standard according to commuters’ perceptions.
We used multinomial logit models to compare two hy-
potheses of effective crowding specifications. Whether the
mixing is needed was then tested statistically and the as-
sumptions of parameter distributions were picked based on
their empirical results. Both models were estimated with the
survey data of commuters in Shanghai Metro. 'e main
findings of this study are summarised as follows:

(i) Commuters in urban rail transit took preferred
arrival time as the only reference point, instead of
work/school start time in most of the existing
studies. 'is leads to the result that commuters felt
perceived loss and exhibited risk-seeking even
though their arrival time value may be positive.
Furthermore, commuters responded asymmetri-
cally to arrivals on early and late sides with attaching
more disutility to being late.

(ii) Commuters did have taste variation on the influ-
encing factors of departure time choice. 'e dis-
tributions of the reluctances to switch departure
time to early or later side and the parameter of
arrival time value could be assumed to be normally
distributed, while the ones of the weights of
crowding cost followed transformed lognormal
distributions.

(iii) Crowding did have impact on the departure time
choice of commuters; however, not all degrees of
crowding had an impact. Only the crowding
ranging fromGrades 3 to 5 influenced the departure
time choice of commuters significantly. Meanwhile,
the reluctances to switch departure time to early and
late sides and arrival time value also played roles in
the decision making of departure time.

(iv) Each unit of crowding cost had a bigger impact on
commuters’ departure time choice with an upgrade
of crowding situation, while commuters’ tastes on
the weights of crowding cost got more dispersed in a
less crowded situation.

'is departure time choice model can be directly used to
predict the departure time choice and update of commuters.
We aim at integrating it into a potential dynamic transit
assignment model by combining with route choice and
update model to predict the passenger pattern in the future
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when a brand-new or modified urban rail network is pro-
posed. It can also be used to analyse policy regarding re-
ducing peak time crowding and develop operational
strategies.
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