
NOVEL SECOND-ORDER TECHNIQUES AND GLOBAL
OPTIMISATION METHODS FOR SUPERVISED TRAINING

OF MULTI-LAYER PERCEPTRONS

Adrian John Shepherd

Thesis submitted for the degree of

Doctor of Philosophy in the University of London

September 1995

Department of Computer Science,

University College London

ProQuest Number: 10106017

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest 10106017

Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

ABSTRACT

Conventional training methods for multi-layer perceptrons (MLPs), derived from the

traditional backpropagation algorithm, have three serious inadequacies: convergence to a

solution is frequently slow; they do not always converge to the desired global solution;

and their performance is highly dependent on the setting of one or more user-defined

parameters. A growing body of research indicates that second-order training methods,

derived from classical optimisation theory, offer substantial improvements in training

speed and a reduced sensitivity to initial parameter settings. However, experiments

conducted for this research suggest that most second-order methods have worse global

convergence properties than conventional methods. On the other hand, training methods

that are designed to have better global convergence characteristics than conventional

methods - for example, stochastic training methods - are typically as slow or slower than

conventional methods.

The aim of this research is to develop MLP training algorithms that are both fast and

globally-reliable' by combining second-order methods with a novel deterministic strategy

for global optimisation. Expanded Range Approximation (ERA). Unlike most stochastic

methods for global optimisation, the implementation of ERA with a second-order

algorithm is trivial. When tested on benchmark training tasks, hybrid second-order/ERA

algorithms (with appropriate parameter settings) were considerably faster and converged

to a global minimum as or more frequently than conventional algorithms.

This thesis also gives practical guidelines for the efficient implementation of second-order

training algorithms, with particular attention paid to factors that affect the probability of

a given algorithm attaining a global minimum. In addition, a novel line-search algorithm

is presented that offers an efficient compromise between the reliability of safeguarded

polynomial interpolation and the speed of backtracking line searches; used as part of a

second-order training algorithm, only a single function evaluation is required per training

iteration in the best case.

CONTENTS

Acknowledgements 6

List of Figures 7

List of Graphs 8

List of Tables 10

1. INTRODUCTION 11

2. MULTI-LAYER PERCEPTRON TRAINING 13

2.1 Introduction to MLPs 13
2.1.1 The MLP architecture 13
2.1.2 MLP training 15

2.2 Error Surfaces and Local Minima 17
2.2.1 The MLP error surface 17
2.2.2 Local minima 19

2.3 Backpropagation 20
2.3.1 Backpropagation - an overview 20
2.3.2 On-line backpropagation 22
2.3.3 Backpropagation with momentum 24

3. CLASSICAL OPTIMISATION 25

3.1 Introduction to Classical Methods 25
3.1.1 The linear model and steepest descent 26
3.1.2 The quadratic model and Newton’s method 28
3.1.3 Line-search methods vs. model-trust region methods 30
3.1.4 Special methods for nonlinear least squares 32
3.1.5 Scaling and preconditioning 34

3.2 Line Minimisation 36
3.2.1 Line minimisation strategies 36
3.2.2 Safeguarded polynomial interpolation 37
3.2.3 Inaccurate line searches 38
3.2.4 Backtracking line search 39
3.2.5 Hybrid Brent/backtracking line search 40
3.2.6 Line search implementation 41

3.3 Model-Trust Region Strategies 41
3.3.1 A simple model-trust region algorithm 41
3.3.2 Fletcher’s method 42

3.3.3 Modem model-tmst region algorithms 43

3.4 Quasi-Newton Methods 44
3.4.1 The Hessian update formula 44
3.4.2 Representing the Hessian approximation matrix 45
3.4.3 Modified quasi-Newton methods 46

3.5 Conjugate Gradient Methods 47
3.5.1 The conjugate gradient formula 47
3.5.2 Conjugate gradient restarts 48

3.6 Levenberg-Marquardt Method 49
3.6.1 From Gauss-Newton to Levenberg-Marquardt 49
3.6.2 Neural implementation 50

3.7 Comparison of Methods 51

4. CLASSICAL MLP TRAINING METHODS 52

4.1 Research Review 52

4.2 Benchmark Training Sets 60
4.2.1 Benchmark criteria 60
4.2.2 XOR 61
4.2.3 The sine problem 63

4.3 Experimental Results 64
4.3.1 General training conditions 64
4.3.2 XOR results, sigmoid output nodes 69
4.3.3 XOR results, linear output nodes 74
4.3.4 Sine results 80

4.4 Comparison of Training Methods 85
4.4.1 Convergence to local minima 85
4.4.2 Training speed and accuracy 95
4.4.3 Conclusion 111

5. GLOBAL OPTIMISATION - A NEW ERA? 112

5.1 Introduction to Global Optimisation 112
5.1.1 Stochastic methods 112
5.1.2 Deterministic methods 117

5.2 Expanded Range Approximation (ERA) 118
5.2.1 Introduction 118
5.2.2 How ERA works 120
5.2.3 Implementing ERA 125
5.2.4 Experimental results 126

5.3 Conclusion 141

6. CONCLUSION 142

Bibliography 143

ACKNOWLEDGEMENTS

The British postgraduate student is a lonely forlorn soul... for whom
nothing has been real since the Big Push.

David Lodge*, Changing Places

I would like to thank the following for making this thesis possible, and for saving me from

the narrow existence of the British postgraduate student':

• my first-supervisor. Dr Denise Gorse, for her enthusiastic guidance throughout the

production of this thesis;

• my second-supervisor. Dr Simon Arridge, for sharing his knowledge and experience in

the field of classical optimisation;

• Templer Hart, for the generous gift of computer equipment, and for acting as an

unpaid PC help-desk operator;

• my wife, Wendy, and my family, for their unfailing support and encouragement.

David Lodge was a postgraduate student at University College London in the late 1950s.

LIST OF FIGURES

Figure 1 Minimal 2-2-1 MLP architecture, suitable for learning the XOR
problem___ 14

Figure 2 Steepest descent and the ‘narrow valley effect' __________________ 27
Figure 3 Parameter u and the model-tmst region search direction___________ 32
Figure 4 Schematic representation of error surfaces E(0) (with a single

global minimum) and E] (with multiple minima)____________________ 123
Figure 5 Illustration of how the number of stationary points in error surface

E(t|) is determined by the size of r| (T|,<T)2 <T|3). Stationary points in
E(r|) occur where the linear function E'(0) intersects function -r | E | ___ 124

LIST OF GRAPHS

Graph 1 Sample location of XOR stationary points in terms of pattern
classification/misclassification___________________________________ 62

Graph 2 Location of sine stationary points in terms of pattern
classification/misclassification___________________________________ 64

Graph 3 Training algorithm convergence to global minima (XOR, sigmoid) 86
Graph 4 Training algorithm convergence to global minima (XOR, linear) ____ 86
Graph 5 Training algorithm convergence to global minima (sine)___________ 87
Graph 6 Global convergence frequency vs. log mean resets per successful run,

QN line-search methods (XOR, sigmoid)___________________________ 90
Graph 7 Line searches and global convergence (XOR, sigmoid)____________ 92
Graph 8 Line searches and global convergence (XOR, linear)______________ 92
Graph 9 Model-trust region strategies and global convergence (XOR, sigmoid)

___ 94
Graph 10 Relative frequency histogram, SD DBR: 0.5 / 0.25 (sine)_________ 96
Graph 11 Training speed, first- and second-order methods (XOR, sigmoid)___ 97
Graph 12 Training speed, first- and second-order methods (XOR, linear)____ 97
Graph 13 Training speed, first- and second-order methods (sine)___________ 98
Graph 14 Training speed, second-order methods (XOR, sigmoid)___________ 99
Graph 15 Training speed, second-order methods (XOR, linear) ___________ 100
Graph 16 Training speed, second-order methods (sine)__________________ 100
Graph 17 Training speed, PR CO with SD resets (XOR, sigmoid)_________102
Graph 18 Training speed, PR CO with SD resets (XOR, linear)___________102
Graph 19 Training speed, PR CG with SD resets (sine) _________________103
Graph 20 Training speed, NQN with SD resets (XOR, sigmoid)___________ 103
Graph 21 Training speed, NQN with SD resets (XOR, linear)____________ 104
Graph 22 Training speed, NQN with SD resets (sine)___________________ 104
Graph 23 Training speed, QN with SD resets (XOR, sigmoid) ___________105
Graph 24 Training speed, QN with SD resets (XOR, linear)______________105
Graph 25 Training speed, QN with SD resets (sine)____________________106
Graph 26 Training speed, QN without resets (XOR, sigmoid)____________106
Graph 27 Training speed, QN without resets (XOR, linear)______________107
Graph 28 Training speed, QN without resets (sine)_____________________107
Graph 29 EFEs per run vs. EFEs per epoch, QN methods without resets

(XOR, sigmoid)___ 109
Graph 30 EFEs per run vs. EFEs per epoch, QN methods without resets

(XOR, linear)___ 110
Graph 31 EFEs per run vs. EFEs per epoch, QN methods without resets

(sine)__ 110
Graph 32 N-sX&p ERA, global convergence frequency vs. log N

(XOR, sigmoid)___ 129
Graph 33 A-step ERA, global convergence frequency vs. log N

(XOR, linear)___ 130
Graph 34 Sample 10-step ERA training curve, QN without resets

(XOR, sigmoid)___ 131

Graph 35 Trajectory of network outputs for XOR patterns 00 and 10
with T)=l___ 133

Graph 36 Trajectory of network outputs for XOR patterns 00 and 10
with T|=0.3___ 134

Graph 37 Trajectory of network outputs for XOR patterns 00 and 10
with T|=0.2___ 135

Graph 38 Trajectory of network outputs for XOR patterns 00 and 10
with T|=0.1 ___ 136

Graph 39 The value of a single MLP weight plotted as a function of time
(in epochs) and first step size (r|)________________________________ 137

LIST OF TABLES

Table 1 69
Table 2 69
Table 3 70
Table 4 70
Table 5 71
Table 6 71
Table 7 72
Table 8 72
Table 9 73
Table 10 73
Table 11 74
Table 12 74
Table 13 75
Table 14 75
Table 15 76
Table 16 76
Table 17 77
Table 18 77
Table 19 78
Table 20 78
Table 21 79
Table 22 79
Table 23 80
Table 24 80
Table 25 81
Table 26 81
Table 27 82
Table 28 82
Table 29 83
Table 30 83
Table 31 84
Table 32 84
Table 33 mean resets bv E=0.0625 tXOR. sigmoidl 88
Table 34 mean resets by E=0.0625 tXOR. linear! 88
Table 35 mean resets bv E=0.0625 tsine! 88
Table 36 mean resets by E=0.0625. QN methods 89
Table 37 MLP architectures, training set sizes, and numbers of runs used

in testing the proposition that E(0) has only a global minimum 121
Table 38 Â -step ERA. XOR with sigmoid output nodes 127
Table 39 N-step ERA. XOR with linear output nodes 128
Table 40 Â -step ERA. sine task 129
Table 41 ERA expansion-rate parameter. P 138
Table 42 ERA error-tolerance parameter. £ 139

10

1. INTRODUCTION

Conventional training methods for multi-layer perceptrons (MLPs), derived from the

traditional backpropagation algorithm, have three serious inadequacies: convergence to a

solution is frequently slow; they do not always succeed in converging to a desired (and

achievable) solution, irrespective of the number of training iterations allowed; and they

tend to be highly sensitive to the choice of input-parameters, set heuristically by the user.

A growing body of research (reviewed in section 4.1) indicates that second-order training

methods, derived from classical optimisation theory, offer substantial improvements in

training speed as well as a greatly reduced sensitivity to the choice of initial parameters.

However, experiments conducted for this research suggest that most second-order

methods have worse global convergence properties than conventional methods; tested on

benchmark tests with known local minima, second-order methods failed to converge to the

desired global solution as frequently as conventional methods. On the other hand, training

methods that are designed to have better global convergence characteristics than

conventional training methods - for example, stochastic training methods - are typically

as slow or slower than conventional algorithms.

The underlying aim of this research is the development of MLP training algorithms that

are both faster and more globally-reliable' than conventional training methods. The

approach adopted here has been to combine fast second-order classical algorithms with a

novel deterministic strategy for global optimisation - Expanded Range Approximation, or

ERA for short. When tested on benchmark tasks, hybrid second-order/ERA training

algorithms (with appropriate parameter settings) were considerably faster and converged

to a global minimum as or more frequently than conventional training algorithms.

This thesis is in four major sections. Chapter 2 provides an overview of MLP training and

the backpropagation training algorithm. A key perspective, introduced in section 2.2, is to

view the training of an MLP as an optimisation process that involves the minimisation of

a multi-dimensional error surface. Chapter 3 is devoted to classical optimisation methods

- in particular, second-order methods for the minimisation of multi-dimensional nonlinear

functions. The chapter introduces a novel line-search algorithm (section 3.2.5) that offers

an efficient compromise between the reliability of safeguarded polynomial interpolation

11

(section 3.2.2) and the speed of backtracking line searches (section 3.2.4). Chapter 4

contains detailed experimental results for traditional and classical training algorithms

applied to a small number of benchmark tests (section 4.2). In contrast to earlier research

in this field, the global convergence properties of different classical training algorithms

are rigorously assessed, and practical guidelines given about how to maximise the

probability that such algorithms will attain a global minimum (section 4.4). Finally,

chapter 5 is concerned with the ERA method for global optimisation. Unlike the majority

of stochastic methods for global optimisation (section 5.1.1), the implementation of ERA

with a second-order algorithm is trivial; the resultant hybrid second-order/ERA training

algorithms are shown to be highly effective - in terms of both training speed and global

reliability - when applied to the benchmark tests used in this research.

12

2. MULTI-LAYER PERCEPTRON TRAINING

The class of neural network considered in this research is the multi-layer perceptron

(MLP)’ . MLPs have a wide range of applications, including pattern classification and

function-learning [Lisboa, ed., 1992]. MLP training involves adjusting the network so

that it is able to produce a specified output for each of a given set of input patterns; since

the desired outputs are known in advance, MLP training is an example of supervised

learning.

This chapter sets the context for the research presented in the remainder of this thesis:

section 2.1 considers the physical properties and dynamics of MLP training, section 2.2

the essential characteristics of MLP training tasks and their implications for training

algorithm design, and section 2.3 the properties of error-backpropagation, the dominant

training paradigm for MLPs.

2.1 Introduction to MLPs

2.1.1 The MLP architecture

The MLP architecture consists of units or nodes arranged in two or more layers. (The

input layer, which serves only to distribute the input from each pattern, is not counted.)

Some of the nodes are connected by real-valued weights, but there are no connections

between nodes in the same layer. For notational convenience, it is assumed throughout

that MLP architectures are of a ‘standard’ form, with adjacent layers fully-connected but

no connections between non-adjacent layers. Such an MLP consists of L layers with

nodes in each layer (/ = 0,...,L), with I = 0 denoting the input layer. The notation for a

single node is n' (i = 1,...,V). The thresholds for the weighted sum of inputs to each node

(given by Eq. 2.1 below) are treated uniformly by adding an extra node with a fixed

output of 1.0 to all but the output layer. This node - called the bias unit - is denoted

’ As so often in the field of neural networks, there is little standard terminology. Alternative
terms for MLPs are 'feed-forward neural networks' (various), 'multilayered neural networks'
(MLNs) [Gori & Tesi, 1992], and 'feature-based mapping neural networks' or simply 'feature
networks' [Hecht-Nielsen, 1990].

13

(for / ^ L). Network weights can be represented in terms of the nodes they connect, thus

weight w\j connects nodes n~ ̂and n \. However, it will often be more convenient to

consider weights in terms of the weight vector w comprising all weights in the network,

with a single weight denoted w, (/ = l,...,Vk).

Figure 1 - Minimal 2-2-1 MLP architecture, suitable for learning the XOR problem

bias units

network inputs

/ \

network output

layer 0

layer 1

layer 2

The number of nodes in the input and output layers is determined by, respectively, the

pattern-size and target-size of the chosen training task. MLPs are typically trained using a

fixed training set of P training pairs, with each training pair comprising two real-valued

vectors - a pattern (^ = 1 and a corresponding target (desired output)

Individual pattern and target elements are denoted (/ = 1 ,...,A)̂ and tj,̂ (j = 1 ,...,N^)

respectively. The output of input node i is simply p ^ for pattern q (except for y j , the

fixed output of the bias unit). For non-input noden/, the output is given by the weighted

sum

Eq. 2.1 M,y'u
7=0

for / > 0 ,

14

where the activation or squashing function s is typically the sigmoid:

1Eq. 2.2 =
1 + e'

The layers between the input and output layers are known as hidden layers. The number

of hidden layers and nodes has a major impact on MLP training: too few, and the network

will be unable to learn the problem; too many, and the network may take excessively long

to train and have poor generalisation capabilities - a measure of the network’s ability to

classify patterns which share the same general features as, but are not identical to,

patterns in the training set. Numerous schemes have been developed which calculate an

appropriate number of hidden nodes from the training data or which adapt the architecture

(i.e. add or ‘prune’ nodes) during training [Brent, 1991] [Hirose, Yamashita & Hijiya,

1991] [Santini, 1992]. (Upper and lower bounds on the number of nodes are given in

[Huang & Huang, 1991].) None of these schemes have been adopted for this research,

since the appropriate architecture was known in advance for the chosen benchmark tests,

but all the training methods presented here could easily be modified to incorporate such

schemes.

2.1.2 MLP training

MLP training is an iterative process which involves, at each iteration or epoch, the

calculation of network outputs for each pattern in the training set and the adjustment of

network weights according to the disparity between actual and desired outputs. Prior to

training, the weights are initialised to small random values - small to prevent saturation

(where one or more hidden nodes is highly active or inactive for all patterns and therefore

insensitive to the training process) and random to break symmetry. The choice of

initialisation range can have a significant impact on training performance (see [Kolen &

Pollack, 1990]).

The degree of success at each epoch can be measured by applying an error function (or

energy function) E of all the parameters (weights) of the network. This research uses the

traditional mean-squared error (MSB) function, defined by

15

;=1

The advantages of Eq. 2.3 are consistency with the majority of MLP research and

compatibility with the nonlinear least squares methods considered in sections 3.1.4 and

3.6. However, the MSB function is a ‘greedy’ error function; the number of

misclassifications can increase from one iteration to the next despite a reduction in E.

Other error functions, such as the exponential, frequently perform better in practice

[M0ller, 1993e, 65-70 & 149-161]. An investigation of the impact of different error

functions on the training methods presented here will be the subject of future research.

MLP training is deemed to be successful when E becomes ‘acceptably’ small. Precisely

how small is application-specific, but a close approximation to zero is generally

undesirable since an MLP’s ability to generahse decreases with overtraining [Hecht-

Nielsen, 1990, 116].

The key factor in the dynamics of MLP training is the role of the hidden nodes. A hidden

node that duplicates the function of another hidden node is redundant, i.e. makes no

useful contribution to the training process. A mathematical analysis by Annema et al. of

the dynamics of MLP training indicates that the build-up and dissipation of hidden-node

redundancy is an integral part of the training process [Annema, Hoen & Wallinga, 1994].

The core analysis, which holds for a two-layer MLP with two hidden nodes and ‘very

small’ initial weights, describes three distinct training phases; for MLPs of arbitrary size,

this three-phase analysis can be applied iteratively to smaller and smaller clusters of

redundant hidden nodes.

In phase one of the analysis redundancy builds up in the hidden layer to the point where it

is 'approximately reducible to one neuron' and the entire network can be linearized, i.e. 'all

neurons are activated in the approximately linear middle region' [Annema, Hoen &

Wallinga, 1994]. At this stage both the attractors in weight space and the vectors of input

weights are near-identical for all hidden nodes. In phase two the attractors remain near­

identical, but the network can no longer be linearized. By the end of this transitional phase

the cluster of redundant hidden nodes starts to split in two. Phase three consists of the

division of redundant hidden-layer nodes into two distinct clusters. The input weight

16

vectors associated with each cluster now converge towards different attractors in weight

space.

The inability of an MLP to ehminate hidden-node redundancy (i.e. to proceed beyond

phase two of the preceding analysis) is a frequent cause of training failure (see section

2 .2 . 1).

2.2 Error Surfaces and Local Minima

In order to design efficient and reliable training algorithms, it is essential to gain an

understanding of the principal characteristics of MLP training tasks and their implications

for different training strategies. The perspective adopted here is that of function

optimisation - that is, the minimisation of the MLP error function E. Viewed in these

terms, MLP training is an error-minimisation or optimisation process (for which many

techniques have been developed outside the neural network field), and each training task

defines a multi-dimensional non-negative error surface (section 2.2.1), formed by plotting

the value of E for all (reasonable) settings of the MLP weight vector w. This approach

has two important benefits: it aids visualisation of the training process through analogy

with a three-dimensional landscape; and it leads to numerically-testable definitions for

many of the conditions encountered during training.

The lowest points on the error surface are known as global minima. (Typically MLP

error surfaces have multiple global minima, each of which is a surface rather than a single

point.) If the lowest point of a ‘basin’ in the error surface has a higher error than that

associated with a global minimum, it is termed a local minimum. Since the impact of

local minima on MLP training is a major theme of this research, they are considered

separately in section 2.2.2.

2.2.1 The MLP error surface

For any viable combination of MLP architecture, test problem, and error function, there is

a corresponding error surface (or energy surface) with n+\ dimensions for an MLP with n

17

weights. The precise shape of the error surface is problem- and architecture-specific;

since it is impractical to produce a map of an error surface that is both detailed and

extensive (even for small training problems and architectures), it is no surprise that the

properties of MLP error surfaces remains a subject for debate [Hecht-Nielsen, 1990,

131].

It is worth stressing that the common practice of inferring the presence of landscape

features based on training error-curve information alone is highly suspect. There is, for

example, a tendency to say an MLP has become trapped in a local minimum whenever the

training curve flattens out at a comparatively high level, despite the fact that there are

equally plausible causes for this behaviour which are unrelated to local minima. This is

not simply a case of pedantry about the use of terminology; the precise cause of a given

training characteristic may have profound implications for the efficacy of an attempted

solution.

What reliable evidence there is (for example, from contour plots of small sections of an

error surface) suggests that most MLP error surfaces share a number of broad

characteristics: a high degree of smoothness', 'a multitude of areas with shallow slopes in

multiple dimensions simultaneously' [Hecht-Nielsen, 1990,131] (‘plateaus’);

convolutions and ellipses of high eccentricity (‘valleys’); and many ‘basins’ or minima.

MLP error surfaces typically have multiple global minima, owing to permutations of the

weights that leave the MLP input-output function unchanged; an assessment of the

prevalence of local minima is deferred to section 2.2.2.

‘Plateaus’, ‘narrow valleys’, and local minima often prove to be serious obstacles to

successful training. If an MLP encounters a region with very shallow gradients, it can

take many training epochs before a significant reduction in E is made - the network is said

to be stuck in a temporary minimum [Annema, Hoen & Wallinga, 1994]. Training

algorithms derived from the steepest descent method are prone to slow training in narrow

valleys (see section 3.1.1). And algorithms which do not allow an increase in E at any

epoch are prone to becoming trapped in local minima, i.e. no amount of additional

training will enable the MLP to make further downward progress. In terms of the analysis

of training dynamics presented in section 2.1.2, both local and temporary minima are

closely related to the presence of redundant hidden nodes in the network. (Local minima

are known to have several different physical correlates in the context of MLP training; the

18

three most frequently encountered are redundant hidden nodes, hidden node saturation,

and ‘dead regions’ of weights space where all hidden nodes are inactive [Wessels,

Barnard & van Rooyen, 1990].)

The characteristics of MLP error surfaces give a good indication of the kinds of strategy

that are likely to engender efficient and reliable training: the smoothness of the error

surface suggests that classical optimisation with derivatives (chapters 3 and 4) will be

effective; rounding errors, floating-point precision and the choice of termination criteria

are likely to be important in nearly flat regions; some methods are far less prone to slow

progress in ‘narrow valleys’ than others; and, if there are local minima, global

minimisation strategies (chapter 5) may be necessary to ensure an acceptable probability

of training success.

2.2.2 Local minima

For the purposes of this research, the term ‘local minimum’ is used in a rigorous

mathematical sense. If, for a given combination of MLP architecture and training task, the

error function E(w) is twice-continuously differentiable (i.e. the second-derivatives of E

are continuous), it is possible to define useful theoretical conditions for a point w* to be a

minimum of E in terms of the gradient vector g(w*)

Eq.2.4
dw-

and Hessian matrix G(w*)

a"E(w)Eq. 2.5 G, =
 ̂ dW;dw ;< J

If g(w*) is zero, w* is a stationary point - which means it is either a minimum, a

maximum or a saddle point. Stationary point w* is definitely a minimum if G(w*) is

positive definite (i.e. all the eigenvalues of G are strictly positive), and may be a

minimum if G(w*) is positive semi-definite (i.e. all the eigenvalues of G are non­

negative). Minimum w* is a global minimum if E(w*) < E(w) for all w, otherwise w* is a

local minimum.

19

The prevalence of local minima in MLP error surfaces remains a matter of debate. Local

minima are known to occur with specific test problems [Mclnemey et al., 1989] [Lisboa

& Perantonis, 1991]. On the other hand, local minima cannot occur if the training task is

linearly separable [Gori & Tesi, 1992], if there are as many hidden nodes as patterns in

the training set [Poston et al., 1991], or if the number of patterns is less than or equal the

number of pattern elements [Yu, 1992] - assuming, in each of these cases, that the chosen

architecture is capable (with some set of weights) of learning the task in question.

Unfortunately, none of these results give much guidance to real-world applications, for

which there is precious little hard evidence on either side of the debate. At present, it is

probably reasonable to conclude that for many (if not all) realistic applications local

minima present a serious obstacle to successful training.

Every minimum has an associated basin o f attraction - a region surrounding the minimum

from which it is only possible to escape by passing over higher ground (or by deforming

the error surface in some way). A number of contrasting approaches have been proposed

for reducing the likelihood of an MLP getting trapped in the attractive basin of a local

minimum, including: stochastic methods (section 5.1.1); deterministic strategies, such as

homotopic methods (section 5.1.2); changing the error function [Solla, Levin & Fleisher,

1988]; weight initialisation schemes [Wessels & Barnard, 1992]; and schemes for

dynamically changing the number of hidden nodes [Hirose, Yamashita & Hijiya, 1991].

As these schemes apply to different aspects of the training process, it is likely that the

‘optimal’ strategy will combine several of these schemes in a single algorithm.

2.3 Backpropagation

2.3.1 Backpropagation - an overview

The vast majority of MLP research has used a version of the backpropagation (BP)

training method (rediscovered and disseminated to a wide audience by [Rumelhart, Hinton

& Williams, 1986]), and it remains the most widely used technique. BP is the benchmark

against which all other training methods are judged.

20

In essence, BP implements gradient or steepest descent (section 3.1.1) for an MLP. At

each epoch k the gradient g(wt) is calculated and the weights updated according to the

simple rule

Eq. 2.6 - n S t , fo rrj> 0 ,

where T) is a constant heuristically-chosen training rate, typically set in the range [0, 1].

A reduction in total network error E at each epoch is guaranteed so long as the gradient is

greater than zero and T) is sufficiently small. The calculation of the gradient by

backpropagation is implemented in two phases - a forward pass and a backward pass.

'Yïie, forward pass generates the network outputs for pattern p through the calculation of

each y \ p , from layer / = 1 to / = L, according to the weighted sum of Eq. 2.1. The

backward pass calculates the partial contribution of pattern p to the total network

error E, and the corresponding partial gradient with elements . These

elements are calculated by applying the following rule from layer / = L to / = 1 :

Eq.2.7 a£ ,/aw ' = 5 ',y ':; ,

where the error term ô is given by

Eq.2.8 K p = [h . p - y t p) y i . p { ^ - y l)

K . P = y ' > . p { ^ - y] . p) l L K p < ' ^ f ° ^ i < i ^ ■

(=1

A single training epoch consisting of P forward passes interleaved with P backward

passes.

The form of BP which conforms exactly to Eq. 2.6 is called batch or off-line BP. Batch

BP has proved satisfactory with many problems, but has several important drawbacks: it

is often slow to reach a satisfactory error level, and particularly slow when confronted

with two common features of the MLP error surface - flat regions and 'narrow valleys'; it

is prone to getting trapped in local minima (and will also converge to saddle points); and

training performance is sensitive to the choice of training rate. A wide variety of heuristic

modifications to standard batch BP have been devised in an attempt to overcome these

difficulties, such as on-line training strategies, the addition of ‘momentum’ to the weight

21

updates, the adaptation of the MLP training rate, and the addition of noise to the weights.

All these techniques have reported strengths when applied to specific problems, but tend

to be ineffective in general. Moreover, many require an additional problem-specific

parameter (or parameters) to be set heuristically by the user.

One implication of this diversity of practical BP implementations is that the choice of a

‘fair’ BP benchmark is extremely difficult. This thesis considers only two of the most

widely-used modifications to the standard BP algorithm - on-line training (section 2.3.2)

and momentum (section 2.3.3). The steepest descent algorithm, a 'classical'

implementation of batch BP that sets the training rate optimally at each epoch, is

described in section 3.1.1.

2.3.2 On-line backpropagation

On-line BP^ differs from batch BP in that the weights are updated at the end of each

backward pass (i.e. P times per epoch), rather than once every P backward passes (i.e.

once per epoch). The weight update rule for on-line BP is

E q .2.9 = w J-Tig*, forTi>0.

Typically, the P patterns are presented to the network in random order. If the training rate

Tj tends to zero, on-line BP can be regarded as an approximation to batch BP; however,

for practical settings of r| the two methods diverge.

In theory, on-line BP has several potential disadvantages compared to batch BP:

• it is not guaranteed to 'make progress' (i.e. reduce E) at each training epoch;

• it requires slightly more computational effort per epoch than batch BP;

• the optimal training rate for on-line BP is poorly understood (cf. the batch­

mode steepest descent method);

 ̂ Alternatives to the term 'on-line' include 'stochastic' (various), 'immediate update' [Kinsella,
1992, 28], 'jump every time' [Hecht-Nielsen, 1990, 136], local learning' [Annema et al., 1994],
and 'pattern mode' [Gori & Tesi, 1992, 78].

22

• it is much more difficult to analyse.

Nevertheless, on-line BP has several practical advantages over batch BP:

• on-line BP is an example of a stochastic process that can prevent an MLP

from getting trapped in a local minimum;

• if the training set contains redundant information, the more frequent weight

updates of on-line BP often prove more efficient [M0ller, 1993b] (although it

may be possible to remove redundant information by pre-processing the

training set [Battiti, 1992]);

• on-line training is essential if the full complement of training patterns is not

known at the start of training.

For these reasons, on-line BP can be regarded as the backpropagation benchmark.

There are two ways in which on-line BP can be regarded as a stochastic process. Firstly,

the total network error E may rise at one or more epochs such that the network is able to

escape from the basin of attraction of a local minimum. Secondly, the shape of the MLP

error surface is not constant with on-line BP; local minima are meta-stable states which

slowly decay to the global minimum, at a rate of t j t for some constant t that is 'much

larger than the typical time scale \jt to reach equilibrium inside an attractive region'

[Kappen & Heskes, 1992,72]. In its traditional' form - with weights updated after the

presentation of every pattern - on-line BP makes no attempt to regulate the amount of

stochastic 'noise' added to the system at each training epoch. However, the term 'on-line

training' is often used in a more general sense to encompass training algorithms which

update the weights after a subset n (1 < n < P) of the full training set has been presented

to the network; by varying the size and membership of the subset at each training iteration

it is possible to regulate the amount of stochastic noise. A wide variety of strategies have

been devised for this purpose, ranging from simple heuristic schemes that gradually

increase n as training progresses to complex sampling and validation schemes (see section

5.1.1).

23

2.3.3 Backpropagation with momentum

Backpropagation with momentum uses a modified version of the standard BP weight

update formula (given by Eq. 2.6), as follows:

Eq. 2.10 = -T|gt + cxAw^, for Tj > 0 and 0 < a < 1 ,

where a is known as the momentum term. (With momentum turned 'off, i.e. with a=0,

Eq. 2.10 is equivalent to the standard update of Eq. 2.6.) Experience shows that the

addition of momentum can significantly speed up the BP training algorithm, attributable

to its impact in precisely those regions of the MLP error surface where the

backpropagation algorithm performs badly - 'plateaus' and 'narrow valleys'; the

momentum term accelerates convergence in flat regions by a factor that approaches ^
1 - a

as the number of epochs (k) gets large, and reduces the number of oscillations in a narrow

valley - i.e. reduces the 'narrow valley effect' (see section 3.1.1) - by averaging out the

components of the gradient which alternate in sign [Watrous, 1987]. As M0ller points out

[1993e, 19], batch BP with momentum can be viewed as an approximation to conjugate

gradient methods (section 3.5) - the important difference being that conjugate gradient

methods chose parameters Tj and a automatically at each iteration, whereas batch BP with

momentum sets T[and a to fixed heuristic values.

An alternative weight update to Eq. 2.10, given by

Eq. 2.11 Awjt+, = - (l-a) r |g ^ +aAw^, fort| > 0 and 0 < a < 1,

proved consistently slower than the Eq. 2.10 update in the experiments conducted for this

research.

24

3. CLASSICAL OPTIMISATION

3.1 Introduction to Classical Methods

Unconstrained nonlinear optimisation is a mature branch of numerical analysis

concerned with the minimisation of multi-dimensional functions^. For a wide class of

smooth convex functions, convergence is guaranteed. However, classical optimisation is

concerned only with local optimisation.

All the optimisation methods considered in this chapter share important characteristics:

all derive, algebraically, from the Taylor-series expansion of a smooth function / in the

neighbourhood of an arbitrary point x

Eq. 3.1 f(x-l-s)= f(x)-l-g(x)^s+is^ G(x)s+... ;

all are iterative descent algorithms (i.e. minimum x* is located in a series of steps, with

f(xjt+i) < f(xjfe) at each step); and all are hybrid methods, which fall somewhere between the

steepest descent method (section 3.1.1) and Newton’s method (section 3.1.2).

In order to compare the theoretical performance of these methods, it will be useful to

consider their global and local convergence properties. In the context of the convergence

of classical algorithms, the terms ‘local’ and ‘global’ have a different meaning to that

introduced in section 2.2. A method is said to be globally convergent if, for an arbitrary

smooth convex function, it is guaranteed to converge (eventually) to a minimum from

(almost) any starting position. (The global convergence properties of algorithms

associated with convex functions are applicable to non-convex functions inside the basin

of attraction of a minimum.) A method’s local convergence rate, on the other hand, is its

anticipated rate of convergence close to a minimum. Convergence characteristics act as a

rough guide to a method’s performance, but they should be treated with caution; they

require conditions that do not apply in general, and the effect of rounding error is ignored.

' Good general surveys of the field are provided by [Fletcher, 1980], [Gill, Murray & Wright,
1981], [Luenberger, 1984], and [Wolfe, 1978].

25

The following survey of classical methods is necessarily selective; the emphasis is on

tried and tested methods which are fast and reliable, and can be readily implemented in a

neural network context.

3.1.1 The linear model and steepest descent

Optimisation methods which derive from the linear model

Eq. 3.2 f(x + s)~ f(x) + g(x)^s

(i.e. all but the first two terms of Eq. 3.1 are ignored) are termed first-order methods.

The pre-eminent example is steepest descent (SD)^, the longest- and most widely-known

optimisation technique of all. SD sets search direction s* to the negative gradient -gjt at

each iteration, i.e.

Eq. 3.3 -a>

This is equivalent to the standard BP update of Eq. 2.6 except that a* is chosen to

minimise E(xt - g*) rather than set to the fixed heuristic value of the BP training rate (t |) .

SD is easy to implement and requires, on average, the least computational effort per

iteration of any classical method. However, SD is often both inefficient and unreliable.

Ellipses of large eccentricity can produce the so-called ‘narrow valley effect’ (Figure 2),

with the path oscillating back and forth along the local gradient. Successive SD search

directions have a tendency to interfere, i.e. a minimisation in one direction can spoil the

minimisation previously achieved in other directions.

If SD is applied to a quadratic function Q such as

Eq. 3.4 Q(x) = x ^ b + ix ^ A x ,

where matrix A is symmetric and positive definite, the theoretical upper bound on the

convergence rate is given by the convergence ratio r.

 ̂ Steepest descent is also commonly referred to as 'gradient descent'.

26

Eq. 3.5 r =

c =

where c is the condition number of A, and Vmax and v̂ in are, respectively, the largest and

smallest eigenvalues of A [Luenberger, 1984, 219]. This amounts to an arbitrarily slow

rate of linear convergence (which becomes slower as c increases). Moreover, SD is

sensitive to rounding errors, which can cause termination far from the solution; global

convergence to a stationary point of /cannot be guaranteed in practice.

Both the convergence ratio r and the steepest descent direction s are sensitive to the scale

of X . The feasibility of changing the scale of x so that c is reduced (with a corresponding

improvement in the convergence characteristics of the SD algorithm) is considered in

section 3.1.5.

Figure 2 - Steepest descent and the * narrow valley effect'

Note: successive descent directions are perpendicular to each other and to the tangent planes of
the surface contours.

27

3.1.2 The quadratic model and Newton’s method

With the exception of steepest descent, all the classical methods considered here are

second-order methods, based on the quadratic model

Eq. 3.6 f(x + s)« f (x)+g(x)^s+is^ G(x)s .

The theoretical convergence rate and practical performance of second-order methods are

generally superior to those of first-order methods (provided/is sufficiently smooth). The

success of the quadratic model derives from the fact that quadratic functions are a good

approximation to general functions near a minimum. If successive search directions

satisfy

Eq. 3.7 sf Gs^ = 0, for j ,

that is, the directions are mutually conjugate with respect to the Hessian matrix, they will

(unlike successive steepest descent directions) be approximately non-interfering, with a

correspondingly fast rate of convergence.

The straightforward implementation of the quadratic model, known as Newton’s method,

generates each search direction s* as follows:

Eq. 3.8 s ^ = - G ’ĝ

If G is positive definite, the s* given by Eq. 3.8, commonly denoted , has a number of

important properties [Dennis & Schnabel, 1983]: uniquely minimises the quadratic

model at Xk and is guaranteed to be a descent direction, i.e. satisfies

Eq. 3.9 g[s^ < 0 ;

it defines both the direction (the Newton direction) and step-length (the Newton step) to

be taken at each iteration, hence

Eq. 3.10 X;t+]=X/t+sf ;

and, unlike the steepest descent direction, is unaffected by the scale of x. Moreover, the

availability of the Hessian means it is possible to distinguish between saddle points and

minima, and hence prevent premature termination.

28

For quadratic functions with a positive definite Hessian, Newton’s method converges in a

single iteration. For non-quadratic functions, the local convergence rate is quadratic. A

sequence that converges to the minimiser x* is said to be quadratically convergent

if

Eq. 3.11 |x^^,-x*|<c|x^-x*p

for some constant c > 0.

Unfortunately, unmodified Newton’s method suffers from a number of drawbacks which

make it unsuitable as a general optimisation method: it requires both first and second

analytic derivatives to be available at every point x / ; it is only defined if G is positive

definite (and is prone to failure whenever G is ill-conditioned), so that global convergence

cannot be guaranteed; and its computational and storage costs are comparatively high -

O(n^) (to solve Eq. 3.8) and 0{rt) (to store G) respectively.

All the remaining second-order methods considered in this chapter fall somewhere

between steepest descent and Newton’s method. Broadly speaking, all these methods aim

to: retain the guaranteed global convergence of steepest descent; generate search

directions that are ‘superior’ to (i.e. interfere less than) the steepest descent direction

when (comparatively) remote from a minimum; and approach the fast local convergence

rate of Newton’s method when close to a minimum. None of the methods require the

prohibitively expensive calculation of second derivatives at each iteration.

In view of their ‘heritage’, we should expect the local convergence properties of these

methods (for non-quadratic functions) to lie somewhere between those of steepest descent

and Newton’s method. In formal terms, this amounts to linear convergence at a faster rate

than SD, or super-linear convergence. A sequence {x̂ } that converges to x* is said to be

super-linearly convergent if

 ̂ There are two (non-equivalent) definitions of 'quadratic convergence' in general usage. The
alternative definition to that used here is: convergence in (at most) n iterations for an n-
dimensional quadratic function. This is often termed 'quadratic termination' - see, for example,
[Wolfe, 1978,114].
 ̂ Bishop [1992] has developed an algorithm for the exact calculation of the Hessian matrix

using an MLP. The algorithm requires up to 2n forward and backward passes per pattern for an
arbitrary n-node net - an indication of the high computational costs commonly associated with
analytic second derivatives.

29

Eq. 3.12 1x̂ +1- x J < c^lx^-x*p

for some sequence {c&} that converges to zero.

3.1.3 Line-search methods vs. model-trust region methods

Classical methods fall into two categories: line-search methods and model-trust region

methods. Line searches share the same iterative structure, outlined in the following

pseudo-algorithm:

1. Choose a random starting point Xq.
2. At each iteration k, do the following until termination criteria are satisfied:

2 .1 . compute a search direction Sk that is a descent direction;
2 .2 . chose a step-length CLk>0 that satisfies

Eq. 3.13 f(x ̂ + a * s j < f (x j

2.3. set Xjt+i to Xfc + ttjtSjt.

If Sk is a descent direction (i.e. satisfies Eq. 3.9), the existence of a positive oCt that

satisfies Eq. 3.13 is guaranteed.

Whereas for line-search methods the sub-task at each iteration is to locate the minimum

along the search direction from Xk, with model-trust region methods^ the aim is to find

the minimum in a ‘trusted’ region Ok around x*. Ok is conveniently defined in terms of its

radius %, and s* chosen to satisfy

Eq. 3.14 ||st||<a^ ,

where IMI is the Euclidean {Lj) norm^. The basic iterative structure of model-trust region

methods is outlined in the following pseudo-algorithm:

 ̂ The name comes from viewing the task as defining a region in which it is possible to trust the
local quadratic model of function/[Dennis & Schnabel, 1983, 130]. These methods are also
known as restricted step methods [Fletcher, 1980, 113] or, simply, trust region methods.
 ̂ Model-trust region methods using the La norm are sometimes termed Levenberg-Marquardt

methods. Here the latter term is reserved for the nonlinear least squares method of section 3.6.
Hypercube or boxstep methods, using the norm, have good local but poor global convergence
properties [Fletcher, 1980, 99].

30

1. Choose a random starting point Xo and region size oco > 0.
2. At each iteration k, do the following until termination criteria are satisfied:

2 .1 . compute search direction Sk for tmsted region Ok with radius a*;
2.2. IF f(xjt + Sjfe) < f(X;t),

2 .2 .1 . set Xifc+i to Xjfe + S)t;
2.3. update according to a regulation scheme.

Broadly speaking, schemes for regulating the radius are designed to increase a at

iteration k if the local model o f/is accurate, but decrease a if the model is inaccurate (for

example, if f(x ̂+ s*) > f(x*)). In practice, it is usual to control a* indirectly by performing

the substitution

Eq. 3.15 =H^

where is the model Hessian and I the identity matrix. In Eq. 3.15 a change to the

scalar m (m > 0) produces an inverse change in a. If Uk = 0, s* is the same as the Newton

direction; as Uk tends to infinity, Sjt tends to the steepest descent direction - see Figure 3.

Strategies for initialising and regulating u are considered in section 3.3.

An important feature of the substitution in Eq. 3.15 is that, if Uk is ‘sufficiently’ large,

will be strictly diagonally dominant - that is, for all i (i = 1 ,...,»),

Eq. 3.16 ÏÎ,, -]^|H^.|>0.
j=hj*i

It follows, from the Gerschgorin circle theorem, that such an His positive definite

[Dennis & Schnabel, 1983, 60]. Parameter u can therefore be viewed as providing a

mechanism for regulating the positive definiteness of the model Hessian.

Neither line searches nor model-trust region methods are clearly superior. With line

searches, the optimal accuracy with which % approximates the minimum along s* is

method- and problem-dependent. With model-trust region methods, the chosen scheme for

initialising and regulating a (or u) can have a significant impact on training performance.

In practice, line searches are often the first choice because they are, in general, simpler

and easier to understand than model-trust region methods.

31

Figure 3 - Parameter u and the model-trust region search direction

Note: curve s(m) plots the points = x* + s* for 0 < « <

the curve s(m)

solution (x^) of
current model

steepest descent
direction, s* = -g*

Newton direction,
St=current position, x*

3.1.4 Special methods for nonlinear least squares

When using the ‘traditional’ sum-of-squares error function

Eq. 3.17
p=\ j= i

(cf. Eq. 2.3), the MLP training task is equivalent to a special category of problem known

as nonlinear least squares. Such problems occur when fitting model functions to

experimental data; typically the number of data values m (equivalent to PN^ for an MLP)

is greater than the number of free parameters n (equivalent to the number of weights), i.e.

the corresponding system of equations is over-determined.

The gradient and Hessian of Eq. 3.17 have a special structure with respect to the residual

vector r and m x n Jacobian matrix J:

Eq. 3.18

Eq. 3.19
_ af(x ,)

32

In terms of r and J at iteration k.

Eq. 3.20 - 2

Eq. 3.21 gt —

Eq. 3.22 +Sj^

f=]

where is the matrix of second derivatives such that r is the Hessian of r.

Eq. 3.22 is unsuitable as the basis of a general nonlinear least-squares algorithm because

the second-order term S is typically unavailable. One option is to ignore S altogether on

the assumption that the first-order term of Eq. 3.22 dominates the second-order term near

the solution - a reasonable assumption so long as the residuals at the solution are small or

zero [Dennis & Schnabel, 1983, 222]. Nonlinear least-squares algorithms which

approximate G according to

Eq.3.23

are considered in section 3.6. A second alternative to Eq. 3.22 is to approximate S by a

secant approximation A, i.e.

E q .3.24 G^ = J^Jj^-l-A^ .

Methods derived from Eq. 3.24, which are superior to those derived from Eq. 3.23 for

large-residual problems, are considered in [Fletcher, 1980] and [Dennis & Schnabel,

1983, 228-233].

The significance of Eq. 3.23 and Eq. 3.24 is that, given only r* and J*, it is possible to

approximate the Hessian matrix G ̂immediately at each iteration, whereas with general

unconstrained minimisation strategies (such as the quasi-Newton methods of section 3.4)

it may take n iterations to calculate a satisfactory approximation of the {n x n) Hessian.

For this reason, least squares methods are generally preferred to general unconstrained

minimisation methods for functions of the form Eq. 3.17 on grounds of convergence

speed.

33

3.1.5 Scaling and preconditioning

Although none of the classical algorithms considered in the remainder of this chapter are

as sensitive to 'sub-optimal' scaling as the steepest descent algorithm (see section 3.1.1),

all are prone to numerical problems - ranging from a general degradation in performance

and loss of stability to premature termination of the multivariate algorithm - if the scale of

either the independent variables x or the function/is sufficiently poor^. Scaling schemes

aim to prevent these problems from arising by improving the scale of x (so that the

independent variables are of a similar order of magnitude in the 'region of interest') and/or

the scale of/(so that the norm of the model Hessian is of a similar order of magnitude to

that of the Hessian itself). A convenient way of approaching the issue of scaling is in term

of the condition of the Hessian matrix; a scheme that ensures a problem is 'well-scaled'

by minimising the condition number (see Eq. 3.5) of the Hessian - so that similar changes

in X lead to similar changes in /- is known as a preconditioning scheme.

Most scaling schemes modify the scale of x according to the linear transformation

Eq. 3.25 X = Lx ,

where matrix L is fixed and non-singular. The optimal L, which transforms the model

Hessian at x* to the identity matrix (assuming G(x*) is positive definite), is

Eq. 3.26 L = G(x.)"''^ ,

where L is a n x n matrix. Assuming G(x*) is not known, the L in Eq. 3.26 can be

approximated using G(xo) (or, if second derivatives are unavailable, a finite-difference

approximation of G(xo)). However, unless G is positive definite and remains relatively

constant in the region of interest - properties which cannot be guaranteed in general -

there is a risk that such a scaling will actually degrade the performance of the

multivariate algorithm. Although it is possible to overcome this problem by recalculating

L periodically {dynamic scaling or adaptive preconditioning), the high cost of evaluating

’ Certain methods, such as the DFP and BFGS quasi-Newton methods of section 3.4, are
theoretically 'scale-invariant' under certain strict conditions, including the use of exact
arithmetic. However, scale-invariance cannot be achieved in practice; finite floating-point
arithmetic is scale-dependent - so that, for example, the error associated with the sum X] + xg is
not related in a straightforward way to that of the sum aX] + bxi, if a ^ b - and termination,
step-length and other criteria rely on implicit definitions of 'large' and 'small' [Gill, Murray &
Wright, 1981].

34

G(x) or computing its approximation means that this approach cannot be recommended in

a neural network context. Moreover, for methods which have, as one of their main

competitive advantages, 0(n) storage requirements (such as the conjugate gradient

methods of section 3.5 and memoryless quasi-Newton method of section 3.4.3), the O(n)̂

storage cost for matrix L is a significant disadvantage.

The most widely-used scaling schemes for multivariate optimisation represent L in Eq.

3.25 by a diagonal matrix (D). Given a suitable estimate of the condition number of the

Hessian (calculated, for example, by the Power method [Mpller, 1993d], or from the

Cholesky factors of the Hessian matrix* [Gill, Murray & Wright, 1981, 320-322]), D

can be used as a simple preconditioning matrix. Mpller [1993d] has devised an efficient

adaptive preconditioning scheme for D, based on an extension to the Power method,

which significantly increases MLP training speed with the steepest descent algorithm

under most circumstances. However, M0 ller reports only a modest improvement for

conjugate gradient methods, and concedes that convergence may actually be degraded in

some situations (for example, when the Hessian is indefinite).

A simpler alternative is to initialise D according to a set of n user-defined scale factors,

representing the approximate ranges of the elements of x. Although this depends on the

availability of useful prior knowledge about the problem structure, which cannot be

guaranteed for minimisation tasks in general, Rigler et al. [1991] suggest a natural set of

scale factors for MLP training derived from the gradient calculation by Eq. 2.1 and Eq.

2.7. When node output y is in the interval [0, 1] (as is the case with the standard sigmoid

squashing function of Eq. 2.2), the derivative y' = y*(l - y) (see Eq. 2.8) is constrained so

that 0 < y*(l -y)< 1/4. Given that the factor y*(l - y) is used in the derivative calculation

at the preceding layer by Eq. 2.7, Rigler et al. propose that the compensatory factors 6 ,

36, 216,... are applied as a multiplier of each partial derivative calculated at layers L-1,

L-2, L-3,.... Such a scheme can be modified to take account of the scale of function/. For

example Dennis and Schnabel [1983, 209] recommend that the model Hessian is

initialised according to:

Eq. 3.27 Ho = max{]f(xo)|,t}.D^ ,

The Cholesky factors of the Hessian are available with certain (efficient) implementations of
quasi-Newton methods - see section 3.4.2.

35

where r is a user-supplied estimate of the ‘typical’ size of/. (In the absence of any useful

information, t is initialised to 1 .0 .)

The impact of different scaling schemes on the first- and second-order MLP training

algorithms implemented for this thesis is the subject of on-going research. Preliminary

experiments suggest that the scale factors proposed by Rigler et al. significantly improve

the training speed of first-order algorithms, but not second-order algorithms (although the

improvement for first-order methods was not sufficient to bring them up to the speed of

any second-order method).

3.2 Line Minimisation

For classical methods with line searches, the task of locating the minimum along search

direction Sk (line minimisation) is equivalent to finding the minimum of a function with a

single variable (univariate minimisation). For clarity, all the line-minimisation strategies

considered here are presented in terms of an arbitrary smooth univariate function/with

scalar minimum x*. (Since line minimisation is an iterative process, the suffix m will be

used for line-search iterations to prevent confusion with the ^-iterations of the

multivariate algorithm.)

3.2.1 Line minimisation strategies

There are two broad strategies commonly used to locate minimum x* of univariate

function/: function comparison and function approximation (polynomial interpolation).

Given two initial values of x {Xa and x^ which hxdick&i x*, function comparison methods

iteratively reduce the interval in which x* lies - the interval of uncertainty - by a fixed

ratio. Linear convergence is guaranteed for unimodal functions. (Function/[%) is

unimodal in the interval [a, b] if, given any X],X2e [a, b] with %]<%2 , there is a unique jc*

G [a, b] such that/(xi)>/(x2) i fx2<x*, and/(x])</(x2) if %]>%* [Gill, Murray & Wright,

1981, 88-89].) The technique adopted here is golden section search, which ensures that

the interval at iteration m+ 1 is approximately 0.618 (the golden section) times the size of

36

the interval at m. In terms of the maximum reduction of the interval for a given number of

function definitions, golden section search is almost as efficient as the ‘optimal’ strategy,

Fibonacci search. (The latter is considered impractical as it requires the storage or

generation of p Fibonacci numbers for p function evaluations, where p is generally not

known in advance.)

Function comparison methods are reliable, but make no attempt to exploit the smoothness

of function/. The second strategy, polynomial interpolation, approximates/by a simple

function / and uses / to estimate the minimum of/. Typically / is a parabolic

(quadratic) or cubic polynomial. The former requires three pieces of data about/

(typically f(x«), f(xt) and f(Xc)) and the latter four (typically f(x^), g(x^), f{Xb) and g(x)̂).

If / is an accurate approximation of/, the theoretical convergence rate is super-linear

(parabolic /) or quadratic (cubic /). If, on the other hand, / inaccurately approximates

/, polynomial interpolation is likely to be slow and unreliable; lower-order polynomials

may actually prove more accurate than higher-order polynomials in regions where/is

comparatively non-smooth^.

3.2.2 Safeguarded polynomial interpolation

In practice, it is possible to combine the strengths of both the above strategies in a single

line-search algorithm with a convergence rate that approaches that of polynomial

interpolation under favourable conditions, but remains close to the guaranteed rate of

unmodified interval-reduction in the worst case. Such algorithms are termed safeguarded

polynomial interpolation algorithms.

Designing such an algorithm is a non-trivial task, requiring efficient and robust

mechanisms for detecting how ‘co-operative’ / is and for switching strategies when

appropriate. The method adopted here - Brent’s method [Brent, 1973] - is widely-used

and well-regarded [Fletcher, 1980, 29] [Press etal., 1988]. Brent’s method can be

implemented with either parabolic or cubic interpolation. Although the latter is likely to

 ̂ For a visual explanation of the relative merits of high- and low-order polynomial
interpolation, see [Press et al., 1988, 87].

37

take fewer m-iterations on average, it requires the calculation of derivatives (thereby

approximately doubling the computational cost at each m-iteration for an MLP).

3.2.3 Inaccurate line searches

When a line search is used as part of a multivariate minimisation strategy, a key issue is

the accuracy with which a* is chosen to approximate the minimum along s*. The trade-off

between the effort expended to determine an a* of a given accuracy and the corresponding

benefit (in terms of the overall reduction in E) to the multivariate algorithm is problem-

and algorithm-dependent. Given a sufficiently robust multivariate algorithm, current

opinion clearly favours inaccurate line searches on grounds of efficiency.

A practical and popular termination criterion for controlling the accuracy of % is

Eq. 3.28 |g[+,s^|<-^g[s^ ,

where gjt+i is the gradient vector at and q a scalar in the range 0 < g < 1. If <7 is

small, an accurate line minimisation is performed, with ^ = 0 giving an ‘exact’ line

search. (For exact line searches, the limiting factor is the floating-point precision

available; owing to rounding error, it is a waste of effort to evaluate f(x„) if point Xm is

closer than the square-root of the machine accuracy to a previously evaluated point [Press

etal., 1988, 300].)

To guarantee global convergence it is important that % produces a ‘sufficient’ reduction

in E. Since Eq. 3.28 takes no account of the actual reduction in E, it is usual to

supplement it with the condition

Eq.3.29 E(x^)-E(xjt-Fa^Sjt)>-Majtg[s^ ,

where u is in the range 0 < w < 0.5. Setting q> u guarantees that Eq. 3.28 and Eq. 3.29

can be satisfied simultaneously.

Algorithms which satisfy both Eq. 3.28 and Eq. 3.29 at each iteration are globally

convergent (under the mild assumptions that E is bounded below and the angle between s*

and g* is bounded away from 90 degrees) [Dennis & Schnabel, 1983, 125]. Moreover,

38

since s f will satisfy both conditions simultaneously when Xk is close to x* (assuming G is

positive definite), Eq. 3.28 and Eq. 3.29 are compatible with fast rates of local

convergence.

To test condition Eq. 3.28 at each m-iteration requires first-derivatives; Eq. 3.28 is,

therefore, inappropriate for line minimisation without derivatives. An alternative

condition, proposed in [Gill, Murray & Wright, 1981, 102], replaces the left-hand side of

Eq. 3.28 by a finite-difference approximation, i.e.

Eq. 3.30 |E (x . + a A) - E (x . + . J ^ ,

where v is a scalar satisfying 0 < v < a*. For the non-derivative line searches used in this

research, Eq. 3.30 was adopted with v=0, so that no additional function evaluations were

required to test this condition. Alternatively, Eq. 3.28 can be ignored altogether [Mpller,

1993a], or replaced by a heuristic mechanism for controlling line-search accuracy - for

example, Kinsella [1992] places an upper limit on the number of m-iterations performed

at a each A:-iteration. However, neither of these alternatives have the theoretical

justifications of Eq. 3.30.

3.2.4 Backtracking line search

Recent results (for conjugate gradient algorithms) published by Mpller [1993a] suggest

that inaccurate safeguarded polynomial interpolation - entailing a minimum of three

function evaluations per epoch - may be less efficient than the model-trust region

approach. However, there is a class of line-search algorithm (not considered by Mpller)

which requires only a single function evaluation per epoch in the best case - backtracking

line searches.

For many second-order methods, the Newton step (i.e. %= 1) is a ‘natural’ step to take at

each iteration. If the Hessian is positive definite, there is a good chance that the Newton

step will produce an acceptable decrease in E. Near the solution, allowing the full Newton

step is a key to fast convergence [Dennis & Schnabel, 1983, 117].

39

If the error at Xjt+i = x* + St is unacceptable, backtracking algorithms iteratively

‘backtrack’ (i.e. reduces %) until an acceptable E is found. The algorithm developed here,

based on the backtracking algorithms in [Dennis & Schnabel, 1983], uses parabolic

interpolation for the first step and cubic interpolation thereafter. (The latter is performed

without expensive derivative calculations by storing f(x)̂, g(x)̂ and the two most recent

test values for f(x ̂+ Pt)-) Parameter u in Eq. 3.29 is set to a small value (10"^) so

that a small reduction in E is sufficient for the acceptance of a given %

Dennis and Schnabel present two versions of their backtracking algorithm; one version -

the ‘modified’ version - implements Eq. 3.28 and requires derivative calculations, the

other does not. The authors give theoretical and practical reasons for implementing Eq.

3.28 as well as Eq. 3.29 with algorithms that use quasi-Newton approximations to the

Hessian matrix. With the architectures, training problems and multivariate algorithms

considered in this research, the Dennis-Schnabel unmodified backtracking algorithm

displayed worse average convergence characteristics than the modified algorithm. The

non-derivative backtracking algorithm developed here, which implements Eq. 3.30 rather

than Eq. 3.28 (with a corresponding saving in derivative calculations), retained the

improved performance of the modified Dennis-Schnabel algorithm.

3.2.5 Hybrid Brent/backtracking line search

In trials conducted for this research it was observed that low-accuracy non-derivative

Brent’s method frequently made better progress than the backtracking strategy in very flat

regions - a common feature of MLP error surfaces (see section 2.2.1). In response to this

observation, a novel hybrid Brent/backtracking algorithm has been developed. This

algorithm uses the efficient backtracking strategy under ‘average’ conditions but switches

to Brent’s method under unfavourable conditions, i.e. whenever the number of

backtracking iterations exceeds a user-defined limit or the multivariate algorithm

generates a search direction that fails to satisfy Eq. 3.9. A few ^-iterations of Brent’s

method are often sufficient to find a position in a more favourable region of weight-space,

so that backtracking can be resumed without further interruption.

40

3.2.6 Line search implementation

Multivariate vj. univariate implementation. Line-search algorithms can be coded either

using vector-valued points or (as here) scalar points. The second alternative requires

some mechanism for evaluating the multi-dimensional function F in a single dimension;

the simple device adopted here (described in [Press et al., 1988, 317]) is to provide an

‘artificial’ uni-dimensional function f(a) which evaluates F at + ocxjt.

Handling non-descent directions. A prerequisite for all the line searches considered

above is that Sk satisfies Eq. 3.9 (i.e. Sk is a descent direction). Sk is guaranteed to satisfy

Eq. 3.9 with the SD algorithm, so long as the gradient is greater than zero. However,

many multivariate algorithms do occasionally generate an s* which is not a descent

direction (for the various reasons considered in section 3.1). In these circumstances,

probably the only solution (in general) is to restart the multivariate algorithm at the

current position, with s reset to the steepest descent direction. An unfortunate by-product

of resetting the algorithm is that any useful derivative information from previous

iterations will be automatically discarded.

3.3 Model-Trust Region Strategies

The model-trust region approach has become an increasingly popular alternative to the

traditional line-search approach. For all the strategies considered here, it is assumed that

the step length (radius) a* is controlled indirectly by parameter u via the substitution in

Eq. 3.15. There is no ‘natural’ choice for mq; recommended settings range between 0.001

[Press et al., 1988] and < 10"°̂ [M0 ller, 1993a].

3.3.1 A simple model-trust region algorithm

The simplest model-trust region strategy is given by the following pseudo-algorithm

(based on the Levenberg-Marquardt algorithms in [Press et al., 1988] and [Nash, 1990]):

1. Set uq > 0;
2. While termination criteria are not satisfied

2 .1 . calculate Sk,

41

2.2. IF f(xt 4- St) < f(xt),
2 .2 .1 . set Xjt+i = Xjfe + Sjt;
2 .2 .2 . divide by a reduction constant",

ELSE
2.2.3. set Xk+\ = Xk,
2.2.4. multiply Uk by a growth constant.

For this research, the reduction constant was set to 2 or 4 and the growth constant to 4 or

10. This strategy has proved satisfactory when used with the Levenberg-Marquardt

method of section 3.6, but is prone to inefficient, oscillatory behaviour in regions where

the appropriate value of u remains relatively constant for a number of iterations. (This

behaviour is particularly apparent if the reduction and growth constants are set to the

same value, as advocated by [Press et al., 1988].)

3.3.2 Fletcher’s method

A better strategy - sometimes called Fletcher's method [Wolfe, 1978] - is to chose a Uk

that ensures ‘sufficient’ agreement is maintained between the actual and predicted

quadratic error change at each iteration (AEk and AQk respectively). This is conveniently

measured in terms of the ratio r, given by

Eq. 3.31 = *
AG,

The predicted error change AQk can be calculated as follows:

Eq. 3.32 AG, = E, - G(s ̂)

0 (sj) = |s [G ^ S j + g [s j

This leads to the following pseudo-algorithm (based on the Levenberg-Marquardt

algorithm in [Fletcher, 1980]):

1. Set « 0 > 0;
2. While termination criteria are not satisfied,

2 .1 . calculate ŝ ;
2 .2 . evaluate f(x ̂+ Sk) and calculate rk,
2.3. IF rk is less than lower ratio limit v,

2.3.1. multiply Uk by a growth constant".

42

ELSE IF Tk is greater than upper ratio limit w,
2.3.2, divide Uk by a reduction constant',

ELSE
2.3.3, set Mjt+i = Mjk;

2,4, IF r, <0
2.4.1, set Xjfc+] = Xjt;

ELSE
2.4.2, set Xjt+i =Xk + ŝ .

The lower and upper ratio limits v and w are typically chosen so that 0 < v < w < 1, This

algorithm is relatively insensitive to changes in the various constants; those used in this

research are the same (arbitrary) constants advocated in [Fletcher, 1980, 96]: v=0,25 and

w=0,75, (Settings for the growth and reduction constants were the same as for the simple

strategy of section 3,3,1,)

When G is not available (as, for example, with conjugate gradient methods), G^St (in Eq,

3,32) can be approximated by a one-sided finite-difference approximation or calculated

exactly with P forward and backward passes using an algorithm described in [Mpller,

1993c], Both schemes have 0(PN) time and storage costs; on average, the former yields a

faster convergence rate than the latter (which is prone to numerical instability) [Mpller,

1993e, 39],

3.3.3 Modern model-trust region algorithms

More recent model-trust region strategies choose Uk so that Eq, 3,14 is satisfied explicitly

at each iteration, i,e, a Uk that satisfies

Eq. 3.33 ||ŝ || = a^

whenever the length of is greater than % [More, 1983], Two strategies for iteratively

approximating the Uk that satisfies Eq, 3,33 - the locally constrained optimal ('hook')

step and the double dogleg step - are presented in [Dennis & Schnabel, 1983, 134],

(None of these more sophisticated strategies have been implemented for this research,)

43

3.4 Quasi-Newton Methods

Quasi-Newton (QN) methods^^ differ from Newton’s method in that an approximation of

the Hessian matrix (or its inverse) is built up iteratively, rather than calculated afresh at

each epoch. Since QN algorithms do not require analytic second derivatives, they are

more suitable for MLP implementation than straight Newton-type methods.

3.4.1 The Hessian update formula

In generating the Hessian approximation Ĥ +i from Ht using the derivative information

collected during iteration k, all QN methods satisfy the so-called quasi-Newton

condition^ ’

Eq. 3.34 H^+iP ̂ = ,

where yt and pt are respectively the gradient change and the change in position x during

iteration Ac, i.e.

Eq. 3.35 y t = Agj = g. .̂, - gj

Pt =AXj = X j ^ , - X j .

Where methods differ is in the choice of updating formula that satisfies Eq. 3.34. Ho is

typically set to the identity matrix (I) as a ‘neutral’ first approximation, making the first

iteration equivalent to steepest descent.

QN methods are categorised in terms of the simple equation

Eq. 3.36 H^ î = H ̂ ,

There is some confusion in the numerical analysis literature about the use of the terms
'quasi-Newton methods', 'variable metric methods', and 'secant methods'; some authors maintain
a distinction between these terms (see, for example, [Dennis & Schnabel, 1983]), others do not.
In this research, the term 'quasi-Newton methods' is used throughout.
” For an explanation of the quasi-Newton condition in terms of a Taylor series expansion of
f(x), see [Fletcher, 1980, 39].

44

where C* is a correction or update matrix. The best-known methods use a rank-two

matrix for C*: the Davidon-Fletcher-Powell (DFP) update (most concisely written in

terms of the inverse model Hessian, H)

Eq. 3.37 = H '̂ + ,
ply . y lH j'y .

and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update (the complement of the DFP

update) given by

Eq. 3.38 =H*
y .P . P.HjPj

Under various fairly stringent conditions (including the strict convexity off) both DFP

and BFGS methods are globally convergent with a super-linear rate of local convergence.

However, there is overwhelming theoretical and experimental evidence that the BFGS

update is superior to the DFP update (and probably all other updates) [Dennis &

Schnabel, 1983] [Dixon, 1972] [Fletcher, 1980]. (The DFP update has, for instance, the

reputation of being highly sensitive to the choice of line-search accuracy.)

3.4.2 Representing the Hessian approximation matrix

If the Hessian approximation H is represented directly, QN methods - like Newton’s

method - require the solution of Eq. 3.8 at the cost of O(n^) multiplications per iteration.

By storing an approximation of the inverse Hessian G rather than G itself, the cost falls

to O(n^) multiplications. In terms of the inverse Hessian, the BFGS update Eq. 3.38

becomes

Eq. 3.39 H"!, =H-' +
p ly . p . y . p . y .

Although the inverse Hessian approach is highly effective with many problems, there is

no convenient mechanism for regulating the positive-defmiteness of the inverse Hessian

(in contrast to the regular Hessian - see section 3.1.3). As a consequence, wasteful

resetting of the QN algorithm may be unavoidable.

45

A more complex alternative, developed by Gill and Murray, is to represent the Hessian

approximation by its Cholesky factorisation

Eq. 3.40

where and D* are, respectively, a unit lower-triangular matrix (i.e. all diagonals are

one) and a positive diagonal matrix. This representation is convenient for detecting and

correcting an indefinite Hessian, with computational costs that are of the same order as

the inverse Hessian strategy [Gill, Murray & Wright, 1981]. (Algorithms for calculating

and iteratively updating the Cholesky factorisation of the QN Hessian are given in

[Dennis & Schnabel, 1983].)

3.4.3 M odified quasi-Newton methods

0(n) memory storage. With large-scale problems, the O(n^) memory cost of storing the

Hessian matrix may be prohibitive. This has led to the development of a ‘memoryless’

(i.e. 0(n)) quasi-Newton method (NQN) in which the BFGS formula is applied to I

rather than Successive search directions are generated iteratively according to the

expression

y&plst+i +Ptyl8t+,
p l y t

l-H
p l j k j

T
k i ' kPtP

The algorithm is equivalent to the Polak-Ribiere conjugate gradient method (section 3.5)

when exact line searches are used, and is reputedly superior in practice with inaccurate

line searches [Luenberger, 1984, 280].

Reset every n iterations. One inelegant but effective way of ensuring a QN algorithm is

globally convergent is to reset the algorithm every n (or w+1) iterations. This strategy

may be appropriate for difficult problems when using a QN algorithm that makes no

attempt to regulate the condition of the model Hessian.

46

3.5 Conjugate Gradient Methods

Conjugate gradient (CG) methods are a class of second-order methods which, unlike

quasi-Newton methods, require only 0{n) storage. They are thus particularly well-suited

to large-scale problems for which quasi-Newton methods may be impractical.

3.5.1 The conjugate gradient formula

CG methods exploit the fact that a sequence of search directions that are mutually

conjugate (i.e. satisfy Eq. 3.7) can be generated iteratively without using the Hessian G

according to the expression

Eq. 3.42 = -gt+] »

with the first iteration equivalent to steepest descent (i.e. So = -go). Where CG methods

differ is in the formula - the so-called conjugate gradient formula - used to calculate

scalar p*.

In terms of the Hessian matrix, is defined by

gl+iGs^Eq. 3.43 P ^ = - -

In CG methods, where the aim is to avoid evaluating G, Eq. 3.43 is reformulated using

first derivative information. The three most popular alternatives are the Fletcher-Reeves

(FR) formula

T
Eq. 3.44 P^ ^

g ig t

the Hestenes-Stiefel (HS) formula

(gt+l ~ gl:) g/
T

{&M - g j 5

and the Polak-Ribiere (PR) formula,

(g M - g .) ' gEq. 3.46 P jfc =
T

"k+]
gigt

47

All three formulae are equivalent for quadratic functions (with exact line searches), but

the PR formula is widely preferred in practice and has been adopted here. (One reason

why the PR formula may be more effective is that it tends to reset automatically to the

steepest descent direction whenever the algorithm fails to make much progress.)

3.5.2 Conjugate gradient restarts

Under strict conditions, CG methods are capable of minimising quadratic functions in at

most n iterations for n free parameters (MLP weights), but generally take more than n

iterations for non-quadratic functions. Although it is possible to use the same update

formula at every iteration (often with acceptable results in the case of the PR update

[Wolfe, 1978]), it is usually much more efficient to restart the CG algorithm roughly

every n iterations.

A variety of CG restart schemes have been devised, differing in the choice of restart

direction and the interval between restarts. The simplest and most popular option

(adopted here) is to reset s to the steepest descent direction every n (or n+1) iterations. (In

addition, it is common practice to restart a CG algorithm whenever a search direction that

fails to satisfy Eq. 3.9 is generated.) A drawback with the traditional, steepest descent

restart procedure is that curvature information from previous iterations is automatically

discarded. Restart schemes which aims to retains some curvature information (such as the

Powell restart [Powell, 1977]), are worth considering, but have not been implemented for

this research.

The traditional SD restart is important for the theoretical convergence characteristics of

CG methods. It guarantees global convergence, and affords a super-linear rate of local

convergence for a wide class of functions (assuming exact line searches and exact

arithmetic) [Gill, Murray & Wright, 1981, 149-50]. (For a more detailed consideration of

the convergence properties of CG methods in terms of the distribution of the eigenvalues

of the Hessian matrix, see [Luenberger, 1984, 247-252] and [Mpller, 1993e, 33-36].)

48

3.6 Levenberg-Marquardt Method

3.6.1 From Gauss-Newton to Levenberg-M arquardt

Section 3.1.4 introduced a class of nonlinear least-squares algorithms which approximate

the Hessian matrix G according to the simple Eq. 3.23. The Gauss-Newton (GN) method,

which implements Eq. 3.23 without modification, has the update

E q .3.47 ~ ^k [j/feJit]

The convergence properties of the GN method depend on the size of S (from Eq. 3.22), a

measure of the nonlinearity and residual size associated with the chosen problem. If Sk is

small relative to J [J ̂ , the method is locally quadratically convergent. However, an

increase in either the relative residual size or nonlinearity of the problem increases the

relative size of S, with a corresponding decrease in convergence speed; if S is too large

the method may fail altogether, even in the neighbourhood of a minimum [Dennis &

Schnabel, 1983, 224] [Fletcher, 1980, 113]. Moreover, the method is ill-defined whenever

J does not have full column rank, a condition that is guaranteed to occur if m<n. (Since

m<n is equivalent to PN^<W for an MLP, this makes the GN method inherently

unsuitable for the XOR task used in this research; otherwise, this condition rarely arises.)

The ‘straight’ Gauss-Newton method can be improved by combining it with a line-search

algorithm so that Eq. 3.47 becomes

Eq. 3.48 Xjfc+i ~ Xjfe J*] »

where is the familiar step length. This method - the damped Gauss-Newton method

(or Hartley method [Wolfe, 1978]) - is more reliable than the unmodified version, but

otherwise suffers from similar drawbacks [Dennis & Schnabel, 1983, 227] [Fletcher,

1980, 115].

The preferred modification of the Gauss-Newton method, based on the model-trust region

approach considered in section 3.3, is the Levenberg-Marquardt (LM) method (or

Marquardt method). The LM update is given by

Eq. 3.49 " [j * J t •

49

The LM method has several advantages over the damped Gauss-Newton method: it is

well-defined when J does not have full column rank; several version of the LM algorithm

have been proved to be globally convergent (see, for example, [Osborne, 1976]); and,

when the step length is too long, the LM update (which tends to the steepest descent

direction) is often superior. The theoretical local convergence characteristics of the ON,

damped ON, and LM methods are broadly similar: quadratic convergence for zero-

residual problems; fast linear convergence for problems that are not too nonlinear and

have fairly small residuals; and slow linear convergence for problems that are sufficiently

nonlinear or have comparatively large residuals [Dennis & Schnabel, 1983, 225-228].

3.6.2 Neural implementation

The Levenberg-Marquardt method, in common with all nonlinear least squares methods

based on Eq. 3.23 or Eq. 3.24, requires the components of Jacobian matrix J to be

available at each iteration. An MLP can calculate the components of J as follows [Battiti,

1992, 160]:

Eq.3.50 ^ =

where the term 5 is given by

Eq. 3.51 Ô = yl̂ p (l - yip), for i = a

= 0 , i o x i ^ a

h

To calculate and g* (by Eq. 3.23 and Eq. 3.21 respectively) requires P standard BP

forward passes and PN^ 'modified' backward passes based on Eq. 3.50 (as opposed to Eq.

2.7 for the standard BP backward pass).

50

Kollias and Anastassiou [1989] propose several modifications to the standard LM

algorithm when used to train an MLP, including the representation of the Hessian by

a near-diagonal matrix and an adaptive distributed scheme for selecting the step-length

parameter. (These modifications have not been implemented for this research.)

3.7 Comparison of Methods

With respect to convergence speed, conventional wisdom ranks the preceding methods in

the following o r d e r - LM (ranked first for zero-residual problems only), QN, CG and

NQN, SD. This ordering is fairly intuitive, as it reflects the extent to which the various

methods exploit the problem structure and store useful curvature information, but is

somewhat misleading; although SD is consistently rated as the poorest method, the choice

between the others is less clear-cut. In practice, the fastest second-order method for a

given problem can only be determined by experimentation.

On balance, an efficient implementation of the BFGS quasi-Newton algorithm probably

deserves the highest recommendation for its combined speed and robustness. BFGS QN

has the reputation for being the most stable method with inaccurate line searches, does

not require potentially-wasteful resetting to the steepest descent direction every n

iterations (cf. conjugate gradient methods), and is not sensitive to the presence of

residuals at the solution (cf. the Levenberg-Marquardt method).

Unfortunately, the O(aî) storage requirements of both the QN and LM methods - where n

is the number of MLP weights - make them impractical for large-scale tasks. Under these

circumstances, there is little to choose between the PR CG and NQN methods, both of

which have only 0 (n) storage costs.

Newton-type methods with analytic second derivatives are generally preferred to all other
unconstrained minimisation strategies, but rely on the ability to evaluate G efficiently at each
iteration. For the reasons given in section 3.1.2, such methods are inappropriate for MLP
training, and are therefore ignored in the current discussion.

51

4. CLASSICAL MLP TRAINING METHODS

This chapter compares the experimental performance of classical optimisation algorithms

(adapted for supervised learning with an MLP) with that of traditional MLP training

methods, focusing on two key aspects of training algorithm performance - speed and

frequency of convergence to local, rather than global, minima. (Throughout the remainder

of this thesis, the terms 'local' and 'global' are used to distinguish between local and global

minima - cf. chapter 3.) Of the available research papers on this subject (reviewed in

section 4.1), all address - if often inadequately - the comparative performance of classical

training methods and backpropagation with respect to training speed, but only a single

paper gives detailed consideration to the susceptibility of different training algorithms to

getting trapped in local minima.

4.1 Research Review

The following review focuses on research papers that compare, experimentally, the

performance of classical and traditional training methods:

Barnard [1992]

• Training methods: QN, BFGS update; CG with Powell restarts; SD; 'stochastic' BP

with periodic line search to set training rate.

• Line minimisation: no details given.

• Test problems: XOR; artificial set (383 patterns); aircraft data (1890 patterns).

• Architectures: 2-3-2 (sic) (XOR); 2-5-3 (artificial); 32-9-3 (aircraft); weight

initialisation range [-1 , 1]; sum-of-squares error function.

• Results: 5 training runs with each problem/algorithm combination; QN and CG

consistently fewer iterations than SD; performance of QN and CG very similar;

'stochastic' strategy fewest iterations with artificial and aircraft problems.

52

Battiti and Masulli [1990]

• Training methods: NQN, with SD restart every n\ ‘bold driver’ batch BP, with

training rate ‘growth’ and ‘shrink’ factors of 1.1 and 0.5 respectively.

• Line minimisation: method based on quadratic interpolation (requiring 'a small

number of energy evaluations' per epoch).

• Test problems: arbitrary dichotomy problems (i.e. two classes of randomly generated

patterns) with between 5 and 100 patterns in the range [0,1]; recurrent logistic Xk+\ =

Axk{\-xi^, with 1 0 pattern set.

• Architectures: 2-n-\ (dichotomy) where n is the number of patterns divided by 2; 1-5-

1 (logistic); weight initialisation range [-0 .1 , 0 .1] (dichotomy problem - unspecified for

logistic problem).

• Results: 10 runs (logistic); significantly fewer 'learning cycles' with NQN; both

methods encountered ‘local minima’ with dichotomy problem (frequency not

documented).

Berggren [n.d.]

• Training methods: CG, FR update; batch BP with unspecified training rate (claimed

to be ‘optimal’).

• Line minimisation: ‘modified Rosenbrock success-failure line-minimisation’

(attributed to F James, “MINUIT”, Computer Physics Communications 10, 343, 75)

with undocumented learning parameter. Average 4.2 function evaluations per epoch.

• Test problem: distinguish positively- from negatively-sloping smeared lines in range

[-0.005,0.005] (1,000 patterns).

• Architecture: 25-15-1; sum-squared error function.

• Results: CG fewer iterations than BP; (the author suggests that CG is more likely to

get trapped in local minima than BP with a large training rate, but no evidence is

presented.)

53

Johansson, Dowla & Goodman [1992]

• Training methods: 4 CG methods (FR, PR, HS and Shanno’) with SD restart every

n\ SD; batch BP with 7 different combination of training rate and momentum in the

range [0.1, 0.9].

• Line minimisation: safeguarded cubic interpolation with accuracy {q in Eq. 3.28)

0.01, 0.1, 0.5 and 0.9, and u (Eq. 3.29) of 10^.

• Test problems: 3-, 4- and 5-parity; mean-squared error function with termination

criterion of 1 0 ^ .

• Architectures: n-n-\ and n-n-n-l\ weight initialisation range [-0.5, 0.5].

• Results: single run with each problem/algorithm combination; SD fewer function

evaluations than batch BP and all CG methods fewer evaluations than SD; the authors

conclude that the choice of CG method and line search accuracy is highly problem-

dependent, but the HS or PR update with 0.1 accuracy considered most satisfactory;

only CG with the Shanno update converged successfully with all problems and line-

search settings.

Kinsella [1992]

• Training methods: CG, Fletcher-Reeves-Polak-Ribiere update - i.e. presumably the

PR update (line search and model-trust region versions); on-line BP with training rate

0.1, and momentum 0.0 or 0.5.

• Line minimisation: Brent’s method (with the number of iterations per epoch used as a

crude mechanism for controlling accuracy).

• Test problems: distinguish between circles and rectangles of differing sizes and

positions (3 training sets of increasing size and difficulty).

• Architecture: 16384-2-2; sum-squared error function.

' The aim of the Shanno CG update is to generate, at every iteration, a search direction that is
guaranteed to be a descent direction, even with inaccurate line searches [Johansson, Dowla &
Goodman, 1992, 295].

54

• Results: single run with each problem/algorithm combination; CG methods of growing

superiority to BP as difficulty increases; with ‘middle’ training set, BP got 'stuck' and

CG methods encountered 'local minima'; with largest training set, line-search CG

performed poorly if Brent iterations (i.e. m-iterations) limited to 5 per epoch (Re­

iteration), but better than model-trust region CG when limit raised to 10; (author

concludes that 'no advantage appears to be gained by using the Levenberg-Marquardt

[i.e. model-trust region] approach .)

Kollias & Anastassiou [1989]

• Training methods: modified LM (two versions - with and without adaptive distributed

selection of step-length parameter); batch BP with training rate in range [0.1,0.5] and

momentum 0.9.

• Line minimisation: backtracking line search (based on [Dennis & Schnabel, 1983]).

• Test problems: digital image halftoning (16,000 samples); XOR (training set with 5

copies of each pattern).

• Architecture: single neuron (halftoning); 2-2-1 (XOR); sigmoid squashing function;

sum-squared error function; weight initialisation range [-0.3, 0.3] (XOR).

• Results: 1 run (halftoning); 10 runs (XOR); modified LM methods consistently more

accurate than BP and required fewer iterations; adaptive version of LM required fewer

iterations than non-adaptive version.

M0ller [1993a]

• Training methods: CG, PR update^ (line search and model-tmst region versions) with

SD restart every n; NQN (with line search); batch BP with training rate 0.2 (3- to 6 -

parity), 0.05 (7-parity) or 0.01 (8 - and 9-parity), and momentum 0.9.

• Line minimisation: safeguarded quadratic interpolation with termination condition

u=0.25 in Eq. 3.29.

 ̂ The Folak-Ribiere update is called the Hestenes-Stiefel update by Moller [1993a, 80].

55

Test problems: 3- to 9-bit parity; termination criterion of 10'^ ('average error').

• Architecture: n-n-1.

• Results: 20 runs with each problem/algorithm combination (10 runs for BP with 8 -

and 9-bit parity); line-search CG and NQN required 2.5-12 times fewer function

evaluations than BP (with, in general, a greater improvement for higher n); model-trust

region CG required 2-3 times fewer function evaluations than line-search CG and

NQN; average failure-rate with BP about twice that of other methods.

M0ller [1993b]

• Training methods: CG, PR update (2 model-trust region versions: a 'standard' off-line

algorithm, and an on-line algorithm with subset update validation scheme - see section

5.1.1); on-line BP with training rate 0.1 and momentum 0.9.

• Test problems: randomly generated sets, of varying degrees of redundancy, with 12-

bit inputs and 3-bit outputs; 1,000 word NETtalk (5,438 patterns); exchange rate

prediction (set of 4,476 daily rates for DM vs. US$).

• Architectures: 12-8-3 (random sets); 203-30-26 (NETtalk); 20-10-1 (exchange rate).

• Results: 10 runs (NETtalk); on-line BP required fewer epochs than 'standard' CG with

highly redundant problems (such as NETtalk), although the latter achieved greater

accuracy; on-line CG required fewer epochs and achieved greater accuracy than on­

line BP with highly redundant problems.

M0ller [1993d]

• Training methods: CG, PR update (3 model-trust region versions, with and without

adaptive preconditioning) with SD restart every n; batch BP (6 versions, with and

without adaptive preconditioning - training rate 0.25 with standard version).

• Test problems: XOR; 5-parity; two spirals.

56

• Architectures: 5-5-1 (5-parity); non-standard MLP with 3 hidden layers of 5 nodes

each (two spirals); termination criterion of < 0 . 8 error for each pattern and output (all

test problems).

• Results: 30 runs (XOR, batch BP methods - unspecified for CG methods), 20 runs (5-

parity) and 10 runs (two spirals, CG methods only); preconditioning schemes produce

substantial speed-up (measured in epochs) with batch BP, slight speed-up with CG,

but 'barely enough to justify the extra computation'; higher tendency to converge to a

saddle point with batch BP and symmetric preconditioning scheme (5-parity).

Pattichis etal. [1991]

• Training methods: CG, PR update with SD restart every n; BP with momentum

(details in unavailable reference).

• Line minimisation: details in unavailable reference.

• Test problem: EMG data (740 patterns).

• Architectures: variety of 2- and 3-layer MLPs with 5,000 to 26,000 weight for BP

and 45 to 260 weights for CG; sigmoidal outputs in (non-standard) range [-1, 1]; least-

square error function.

• Results: CG significantly better than BP in terms of training time and successful

network size.

Van der Smagt [1990]

• Training methods: CG, PR update with Powell restarts; BP (no details given).

• Line minimisation: details in unavailable reference.

• Test problem: XOR.

• Architecture: 2-2-1; sigmoid squashing function; sum-squared error function.

• Results: CG fewer iterations than BP; (CG error curve shows two sudden increases in

E, which are not explained by the author).

57

Van der Smagt [1994]

• Training methods: QN, DFP update (inverse Hessian); CG, FR update; CG, PR

update with Powell restarts; SD; batch BP with training rate 0.1 and momentum 0.9.

• Line minimisation: Brent’s method (average 3-5 function evaluations per epoch).

• Test problems: XOR; continuous function sin(%)cos(2%) for 0 < j: < 2tc (20 samples);

discontinuous function tan(%) for 0 < % < 7t (20 samples); termination condition <0.025

per pattern (all test problems).

• Architectures: 2-2-1 (XOR); 1-10-1 (sin(%)cos(2%)); 1-5-1 (tan(%)); sum-squared error

function.

• Results: 10,000 runs with each problem/algorithm combination; success rates with

average function evaluations (if given by author) in parentheses:

• XOR: BP 91% (332), SD 38% (3,662), FR CG 81% (523), DFP QN 34%

(2,141), and PR CG 82% (79);

• sin(%)cos(2%): BP 0%, but 15% with adaptive training rate ('over two million

function evaluations'), SD 90% (4.10°^), FR CG 49%, DFP QN 36%, and PR

CG 100%;

• tan(x): BP 0%, SD 0%, FR CG 4%, DFP QN 40%, and PR CG 85%.

Watrous [1987]

• Training methods: QN, DFP and BFGS updates (both inverse Hessian); SD; batch

BP.

• Line minimisation: no details given.

• Test problems: XOR (with 0.1 and 0.9 targets); multiplexor.

• Architectures: 2-1-1 with 7 weights (XOR); 6-4-1 (multiplexor); sum-squared error

function.

58

• Results: BFGS fewest function and gradient evaluations with both problems; SD and

DFP failed to converge with multiplexor problem; BP considerably slower than other

methods for XOR.

Before considering the usefulness (or otherwise) of these papers in terms of the issues

addressed by this research, it is worth stressing that sensitivity to initial conditions is well-

recognised in optimisation theory in general [Gill, Murray & Wright, 1981, 324-330]

[Murray, 1972c] and MLP training in particular [Kolen & Pollack, 1990]. The

performance of a training algorithm - and, perhaps more importantly, the relative

performance of different training algorithms - may be sensitive to a range of factors,

including the choice of floating-point precision, termination criteria, weight initialisation

range, error function, training rate (backpropagation), or accuracy (line minimisation). As

a consequence, the value of published results is diminished when this type of information

is omitted from the written account. Of the thirteen papers summarised above, nine fail to

specify the weight initialisation range, eight the termination criteria, seven the line search

accuracy, five the BP training rate, and four the chosen error function. None of the

authors specify the floating-point precision of their programs. Several papers even leave

us in doubt as to the algorithm being tested; four fail to give any details about the line

search method, and two neglect to mention whether the BP algorithm was on- or off-line.

Perhaps an even more significant issue is the number of training runs performed with a

given combination of test problem and algorithm. Under otherwise identical training

conditions, the relative performance of training algorithms - in terms of both the length of

training time and the final error level - can vary dramatically with different sets of starting

weights (even when initialised within the same range). Our confidence that a given set of

results represents the typical' performance of an algorithm with a particular problem is

proportional to the number of runs undertaken. Of the research papers reviewed above,

five fail to mention the number of training runs performed, and, of the remainder, two

have results for no more than a single run per problem/algorithm, and only three have

results for more than ten runs per problem/algorithm.

A further aspect of these papers worthy of comment is the choice of training-speed metric.

What counts as a satisfactory metric depends on which methods are being compared. The

59

traditional metric for MLP training - the number of training epochs - is suitable for

methods which evaluate/and g (i.e. performp forward passes and p backward passes)

exactly once per epoch (A:-iteration), assuming that the cost of evaluating/and g

dominates the total computational cost of each algorithm^. The number of epochs is,

therefore, an acceptable metric for comparing the performance of traditional fixed-

training-rate BP methods with certain implementations of model-trust region methods for

unconstrained optimisation (e.g. [Mpller, 1993b]) and LM methods (e.g. [Kollias &

Anastassiou, 1989]), but inadequate for comparisons with line search methods, which

require, on average, more than a single function (and, in some cases, gradient) evaluation

per epoch. Four of the papers reviewed above use the unsuitable number-of-epochs metric

to compare the performance of traditional BP with classical line search methods.

(Performance metrics are discussed further in section 4.3.1 and 4.4.2.)

Of those papers which do not contain serious methodological flaws and omissions, only a

single paper - [van der Smagt, 1994] - investigates, in detail, the tendency of different

training methods to get trapped in local minima.

4.2 Benchmark Training Sets

4.2.1 Benchmark criteria

The choice of appropriate benchmark test problems is a difficult but crucial aspect of

MLP research. Desirable properties of an MLP benchmark include: widespread usage

(enabling comparisons with earlier research); small size (allowing a large number of

training runs); and similarity to ‘real-world’ MLP problems (giving a degree of

confidence that a successful training method can be extended to practical applications).

There are no MLP training problems which meet all these criteria, mainly because there is

an approximate trade-off between the size of a problem and its applicability to the ‘real

world’. Given finite computational resources and time, this leaves a difficult choice.

 ̂ For practical applications with large training sets, this is a reasonable assumption to make
with all the algorithms considered here. However, if two algorithms evaluate/and g roughly the
same number of times per training run, it is worth taking into account the computational
complexity of their respective updates.

60

Furthermore, an additional criterion - the presence of known local minima - is essential to

this research, but (as noted in section 2.2.2) currently hard to satisfy.

The approach adopted here has been to perform a large number of training runs with

small but non-trivial test problems. This approach has two key advantages: many

important trends and characteristics in the comparative performance of different training

methods only emerge if sufficient runs are performed; and much useful mathematical

analysis (of the error surface and network behaviour) is currently feasible only with small

network architectures. The two main training tasks used in this research - the XOR and

sine problems - are described in the following sections.

4.2.2 XOR

XOR is the simplest and most widely-used MLP benchmark, but is criticised for having

little in common with real-life applications'^. For present purposes, the fact that MLPs

frequently get caught in local minima when learning the XOR problem is its main

recommendation. The minimal standard MLP that can learn XOR is 2-2-1.

When learning the XOR problem with any standard 2-m-l architecture (m > 2) and using

the error function Eq. 2.3, local minima may be found at two distinct error levels -

£■=0.08333 and £=0.0625. That these are true local minima has been demonstrated by a

numerical analysis of the XOR problem by Lisboa and Perantonis [1991]^. It has often

been assumed that local minima may occur at a third error level of £=0.125 (see, for

example, [Hirose, Yamashita & Hijiya, 1991]); Lisboa and Perantonis appear to support

The generalised parity problem [including XOR] is just the type of problem which distributed
training by back error propagation is not suited to. Every bit of information in the data is
conflicting, and there is absolutely no redundancy. Solutions to it are reached, not by
generalising from sample data, but rather by reasoning about the problem as a whole at a much
higher level.' [Lisboa ed., 1992, 252].

 ̂ The numerical simulations of Lisboa and Perantonis gave different error-levels to those in this
research, attributable to their use of a different error function (the 'cross-entropy' error function

rather than Eq. 2.3) and different target outputs (0.1 and 0.9, rather than 0 and 1). The authors'
main analytic findings about the existence and characterisation of XOR local minima are
unaffected by these differences.

61

this assumption, but point out that saddle points frequently occur at the same error level.

However, a recent analysis of the XOR error surface for an MLP with two hidden nodes

indicates that local minima cannot occur at £'=0.125 [Hamey, 1995]. The configuration

of pattern classifications and misclassifications for each XOR stationary point is as

follows:

• £=0.125 saddle points:
• £=0.0625 local minima:

• £=0.0833 local minima:

4 patterns 50% correct
2 patterns 100% correct, 2 patterns 50%
correct
1 pattern 100% correct, 1 pattern 66.7%
correct, 2 patterns 33.3% correct.

Sample MLP output values for each of these stationary points are given in Graph 1. The

XOR global minima are at £=0, i.e. there are no residuals at the solution.

In practice, MLPs are often trained using a modified XOR training set with targets 0.1

and 0.9 (rather than 0 and 1) to prevent network saturation. This option is ignored in the

current chapter, but is related to the Expanded Range Approximation (ERA) strategy of

section 5.2.

Graph 1 - Sample location of XOR stationary points in terms of pattern
classification/ misclassification

0.9

0.8
0.7

0)
■2 0.6

” 0.5I 0.4
o

0.3

0.2

0.1

1 2 3 4

" " target
 ■ -----E=0.0625

2=0.0833
 A----- E=0.125

XOR pattern #

62

4.2.3 The sine problem

The sine problem is a small but non-trivial example of a function-learning task. The

version used in this research - based on that in [Mclnemey et al., 1989] - has a training

set of 64 patterns, with each patterii {pq) and target {t^ defined as follows:

Eq. 4.1 P q - { q - 1)^— j — j, for ̂= 1,... ,64

Eq. 4.2 = sin(p ̂) .

The minimal standard MLP that can learn the sine function is 1-2-1. This architecture is

prone to getting trapped in local minima, but with a much smaller frequency than XOR

with a minimal architecture. Mclnemey et al.'s investigation (combining a smart raster

scan of the error surface with numerical analyses of candidate minima) of a limited region

of weight space found local minima 'like pinholes in a large flat board' [Mclnemey et al.,

1989, 9]; these local minima occur at an error level of £«0.023, using the architecture and

training set of this research* .̂ With certain training methods used in this research, a small

number of runs converged to stationary points at other error levels; whether these are

local minima or saddle points is not known. The location of the sine stationary points, in

term of the classification and misclassification of pattems in the training set, are shown in

Graph 2.

Mclnemey et al.'s analysis indicated that the sine global minima are at £^0, i.e. there are

residuals at the solution; the lowest error level attained for the sine problem with any of

the training methods used in this research was 3.0"°̂ .

 ̂ The error-levels reported by Mclnemey et al. for both the sine and XOR local minima are
different to those given here. In the absence of full details about Mclnemey et al.'s
implementation, the precise cause of these differences is uncertain. However, the differences in
error levels do not appear to be of any great significance; when the MLP used for this research
was initialised using the sample location of the sine local minima given in [Mclnemey et al.,
1989, 8], it rapidly became trapped at £=0.023, irrespective of the (non-global) training
algorithm used.

63

Graph 2 - Location of sine stationary points in terms of pattern classification/

misclassification

0.5

§ 20I3 -0.5
o

-1.5

target
------------0.023

0.048
— — — —0.098

sine pattern #

4.3 Experimental Results

4.3.1 General training conditions

This section specifies the general conditions which remained constant for all the results

presented later in this chapter.

MLP architecture and initialisation. All the results presented below are for an MLP with

the minimal standard architecture capable of learning the given benchmark training set (on

the assumption that larger networks are likely to yield fewer local minima), using the

mean-squared error function (Eq. 2.3) and sigmoid squashing function (Eq. 2.2). The

same 200 sets of random starting weights were used for all the tests, with a weight

initialisation range of [-1,1].

As the sine problem defined by Eq. 4.1 and Eq. 4.2 has a number of target values outside

the range [0, 1], the corresponding MLP architecture must, of necessity, have linear

output nodes, i.e. the sigmoid squashing function is not applied to the nodes in layer L.

With binary problems, such as XOR, the architecture may have either linear output nodes

or sigmoid output nodes. XOR with linear output nodes and XOR with sigmoid output

64

nodes are treated as separate training tasks in this research, on the grounds that the

corresponding error surfaces have different shapes and properties^.

Termination conditions. Three common-sense termination criteria are generally applied to

unconstrained minimisation: '"Have we solved the problem?" "Have we ground to a halt?"

or "Have we run out of money, time, or patience?'" [Dennis & Schnabel, 1983,159]. All

three criteria are used in this research, but the specific tests performed are somewhat

different to those advocated in the optimisation literature [Dennis & Schnabel, 1983, 159-

61] [Gill, Murray & Wright, 1981, 305-12]; in order to accurately record the

susceptibility of each training algorithm to becoming trapped in local minima, priority

was given to the prevention of premature termination under all reasonable circumstances

(at the expense of some - perhaps many - additional iterations with those training runs that

did get trapped). A training mn was deemed to have ground to a halt' only if there was no

reduction in E for 10 epochs, or a high epoch limit -100,000 for BP methods, 10,000

otherwise - exceeded. (For second-order methods with Brent's line search algorithm, this

upper epoch limit was sufficiently high to ensure that it was reached by only a small

fraction of runs.)

The optimal accuracy with which E should approximate a global minimum in the MLP

error surface is problem- and application-specific, although an exceedingly accurate

solution is rarely desirable (see section 2.1.2). The tabulated results below are for E=0.01

only; a consideration of training performance across a range of different error tolerances

is deferred until section 4.4.2.

Training speed metric. The main training-speed metric used here is the number of

equivalent function evaluations (EFEs), defined as follows:

^ ̂ function evaluations + gradient evaluations
Eq. 4.3 EFEs = -- ,

2

where a function evaluation and gradient evaluation comprise P forward passes and P

backward passes respectively (for a training set with P pattems). The computational

effort associated with an EFE is, therefore, roughly equivalent to that associated with a

traditional BP epoch. For a given training algorithm and choice of parameters, the number

 ̂ Every training algorithm tested here displayed a higher failure-rate for the XOR problem
when the architecture had a sigmoid output node. This is attributable to the greater degree of
freedom allowed in the values of network outputs with linear output nodes.

65

of EFEs required to achieve a given error tolerance is characterised by three main

statistics - the mean, the standard deviation and the median (ignoring, in all three cases,

runs that did not achieve that tolerance).

Implementation and settings. The code for this research was written in the C++

programming language. The programs were compiled using Borland C++ v3 and tested

on two IBM-compatible PCs: a Gateway 2000 75MHz Pentium computer running MS-

DOS 6.22 and a Zenith Data Systems 286 computer running MS-DOS 5.0. All training

algorithms were implemented with double (15-digit) precision arithmetic.

The classical algorithms tested for this research were as follows:

• BA and OL - batch and on-line BP (section 2.3). The momentum parameter is

implemented as in Eq. 2.10 and set either 'on' (0.9) or 'off (0.0). With OL BP, training

pattems were presented in random order.

• SD - the steepest descent algorithm (section 3.1.1).

• CG - the Polak-Ribiere (PR) conjugate gradient method (section 3.5.1).

• QN - the BFGS quasi-Newton method (section 3.4.1). For QN implemented with line-

search methods but without positive definiteness enforced, the model Hessian was

represented by the inverse Hessian; for QN implemented with a model-trust region

strategy or with positive definiteness enforced, the model Hessian was represented

directly (section 3.4.2).

• NQN - the memoryless' quasi-Newton method (section 3.4.3).

• LM - the Levenberg-Marquardt nonlinear least-squares algorithm (section 3.6).

• BR and DBR - Brent's line-search method, with and without derivatives (section

3.2.2).

• BT and DBT - backtracking line search, with and without derivatives (section 3.2.4).

Accuracy parameter q (Eq. 3.30 for BT, Eq. 3.28 for DBT) was set to 0.9 and

parameter u (Eq. 3.29) to 0.001.

• DBT-DBR - the hybrid Brent/backtracking algorithm with derivatives (section 3.2.5).

Accuracy parameter q (Eq. 3.28) was set to 0.9 for the backtracking line search and

0.5 for Brent's method. Parameter u (Eq. 3.29) was set to 0.001 for the backtracking

66

line search and 0.25 for Brent's method. Both Brent's method and the backtracking

strategy were implemented with derivatives. The DBT-DBR algorithm switching

parameters were set as follows: a) switch to Brent's method whenever the backtracking

strategy executes 4 or more EFEs during a single epoch; b) switch to the backtracking

strategy after 3 epochs of Brent's method.

• ST - the 'simple' model-trust region strategy (section 3.3.1).

• RT - Fletcher's model-trust region strategy (section 3.3.2). The lower and upper limits

for ratio r (Eq. 3.31) were set to 0.25 and 0.75 respectively.

Tabulated results. The following information will aid interpretation of the tables in

sections 4.3.2, 4.3.3 and 4.3.4:

• Global minima percentage column. In a small number of cases the percentage of runs

converging to known local and global minima does not total 100 - marked by one or

more asterisks in the global minima column. This is an indication that one or more

training runs converged to a stationary point or points not given a separate column

(marked *), that one or more training runs failed to converge to any stationary point

within the allowed number of epochs (marked **), or both (marked ***).

• 'EFEs per run' columns. The mean, standard deviation (s.d.) and median number of

EFEs are given for successful runs terminated at £=0.01.

• 'Resets / run ' column. With line-search methods, this column is reserved for the mean

number of SD resets per run caused by a failure to generate an that satisfies Eq. 3.9;

no other resets are counted. With model-trust region methods, the mean number of

times per run that E(x* + ŝ) > E(x)̂ is recorded. In all cases, figures are for successful

runs terminated at £=0.01.

'EFEs per k' column. For line-search methods, this column contains the mean number

of EFEs per ^-iteration (epoch) for successful runs terminated at £=0.01. With model

trust region methods, the number of EFEs per k for a given run is calculated as

follows: EFEs / (EFEs - resets). (The EFEs per £ column is omitted for BP methods

as a single EFE is performed at every epoch.)

Results for the BT and DBT backtracking line-search strategies are omitted for the XOR

task with sigmoid output nodes on the grounds that, with all the multivariate algorithms

67

tested, a significant percentage of runs failed to converge to any stationary point within

10,000 training epochs. Given that training times for the sine task were much longer than

those for XOR - attributable, primarily, to the larger number of pattems in the sine

training set - a slightly smaller range of test results are presented for the sine task (section

4.3.4) than for XOR (sections 4.3.2 and 4.3.3).

68

4.3.2 XOR results, sigmoid output nodes

Table 1
Method: batch (BA) or on-line (OL) BP, with training rate (r|) and momentum (a in Eq. 2.10)

method: ii / a global
minima (%)

0.0625 0.0833 mean
EFEs per run

s.d. median
BA: 0.5/0.0 84.0 15.5 0.5 5,801.6 3,754.0 4,873.5
BA: 0.5/0.9 83.5 16.0 0.5 3,042.2 2,054.9 2,545.0
BA: 1.0/0.0 83.5 16.0 0.5 2,883.2 1,892.5 2,415.0
BA: 1.0/0.9 83.5 16.0 0.5 1,531.4 1,119.4 1,276.0
BA: 3.0/0.0 83.5 16.0 0.5 967.9 688.9 808.0
BA: 3.0/0.9 83.5 16.0 0.5 542.1 717.1 430.0

OL: 0.5/0.0 84.0 15.0 1.0 5,445.3 2,124.2 4,957.0
OL: 0.5/0.9 86.0 13.0 1.0 2,970.6 1,474.0 2,672.0
OL: 1.0/0.0 82.5 16.0 1.5 2,883.2 2,524.7 2,483.0
OL: 1.0/0.9 85.5 13.0 1.5 1,526.5 1,167.0 1,313.0
OL: 3.0/0.0 83.0 16.0 1.0 1,300.4 2,506.2 869.5
OL: 3.0/0.9 83.5 16.0 0.5 1,593.7 8,642.8 469.0

Table 2

Method: SD
Line search: BR, or DBR, with parameters q (Eq. 3.28, Eq. 3.30) and u (Eq. 3.29)

line search: q ! u global
minima (%)

0.0625 0.0833
EFEs per run

mean s.d. median
EFEs
per*

BR: 0.9/0.001 83.0 16.0 1.0 282.8 144.2 253.0 3.51
BR: 0.9/0.25 83.0 16.0 1.0 284.5 144.0 254.0 3.51
BR: 0.9/0.4 82.5 16.5 1.0 282.0 133.3 255.0 3.52
BR: 0.5/0.001 82.0 17.0 1.0 400.4 214.3 343.3 5.16
BR: 0.5/0.25 82.0 17.0 1.0 399.3 215.2 340.8 5.18
BR: 0.1 / 0.001 80.5 18.5 1.0 509.8 1,225.8 319.5 7.24

DBR: 0.9 / 0.001 83.0 16.0 1.0 281.1 124.9 254.3 3.52
DBR: 0.9/0.25 82.5 16.5 1.0 284.2 125.7 257.0 3.57
DBR: 0.9/0.4 82.0 17.0 1.0 281.7 126.1 256.5 3.59
DBR: 0.5/0.001 82.5 16.5 1.0 277.0 122.9 252.5 3.53
DBR: 0.5/0.25 82.5 16.5 1.0 280.5 123.0 256.0 3.57
DBR: 0.1 / 0.001 83.0 16.0 1.0 410.0 628.9 342.3 4.32

69

Table 3
Method: PR CG with SD reset every n
Line search: BR, or DBR, with parameters q (Eq. 3.28, Eq. 3.30) and u (Eq. 3.29); DBT-BR

line search: q ! u
minima (%)

global 0.0625 0.0833
EFEs per run

mean s.d. median
resets
/run

EFEs
per A:

BR: 0.9/0.001 60.5 28.5 11.0 92.6 56.2 77.0 0.83 3.92
BR: 0.9/0.25 60.0 27.5 12.5 90.7 54.1 76.3 0.62 3.97
BR: 0.9/0.4 62.5 26.5 11.0 152.7 619.1 73.5 0.32 4.93
BR: 0.5/0.001 60.0 30.5 9.5 141.3 109.8 108.3 1.20 5.55
BR: 0.5/0.25 59.5 30.5 10.0 138.0 100.6 108.0 0.65 5.74
BR: 0.1 / 0.001 65.0 27.5 7.5 166.2 144.3 122.5 0.08 7.13

DBR: 0.9 / 0.001 63.5 27.0 9.5 320.4 2,323.3 78.0 0.76 10.26
DBR: 0.9/0.25 62.5 28.5 9.0 402.1 2,488.0 78.0 0.68 11.54
DBR: 0.9/0.4 64.5 26.5 9.0 132.0 79.1 115.0 0.10 5.99
DBR: 0.5 / 0.001 61.0 26.0 13.0 179.4 611.7 82.8 0.45 6.41
DBR: 0.5/0.25 61.5 26.5 12.0 177.1 604.4 83.5 0.44 6.47
DBR: 0.1 / 0.001 62.5 27.0 10.5 258.8 311.4 179.5 0.08 10.68

DBT-DBR: 70.0 21.0 9.0 338.7 1,555.2 97.3 0.71 2.90

Table 4

Method: NQN with SD resets every n
Line search: BR, or DBR, with parameters q (Eq. 3.28, Eq. 3.30) and u (Eq. 3.29); DBT-BR

line search: q ! u
minima (%)

global 0.0625 0.0833
EFEs per run

mean s.d. median
resets
/ run

EFEs
per A:

BR: 0.9/0.001 67.0 24.5 8.5 146.4 153.3 109.0 0.11 3.51
BR: 0.9/0.25 68.5 25.0 6.5 135.6 91.2 109.0 0.11 3.51
BR: 0.9/0.4 66.5 26.5 7.0 139.9 142.6 106.5 0.11 3.62
BR: 0.5/0.001 61.0 28.0 11.0 231.6 353.9 141.0 0.12 5.32
BR: 0.5/0.25 60.5 28.0 11.5 192.5 205.2 137.0 0.13 5.36
BR: 0.1 / 0.001 56.0 29.0 15.0 173.0 124.6 133.3 0.14 6.89

DBR: 0.9 / 0.001 62.5 30.5 7.0 136.1 105.2 106.5 0.12 3.63
DBR: 0.9/0.25 64.0 29.5 6.5 155.7 259.1 112.8 0.16 3.74
DBR: 0.9/0.4 69.0 24.0 7.0 159.2 214.8 121.5 0.19 4.10
DBR: 0.5 / 0.001 66.0 26.5 7.5 151.7 137.6 116.0 0.13 3.78
DBR: 0.5/0.25 65.5 27.0 7.5 166.3 283.3 115.0 0.14 3.98
DBR: 0.1 / 0.001 58.0 31.5 10.5 250.7 180.1 213.5 0.12 8.39

DBT-DBR: 77.5 18.5 4.0 151.2 120.7 117.0 5.8 1.59

70

Table 5
Method: BFGS QN (no resets)
Line search: BR, or DBR, with parameters q (Eq. 3.28, Eq. 3.30) and u (Eq. 3.29); DBT-BR

line search: q ! u
minima (%)

global 0.0625 0.0833
EFEs per run

mean s.d. median
resets
/ run

EFEs
per A:

BR: 0.9 / 0.001 34.0 29.5 36.5 89.9 51.5 76.8 0.04 3.64
BR: 0.9 / 0.25 35.0 29.0 36.0 87.2 43.2 76.8 0.06 3.72
BR: 0.9 / 0.4 34.5 29.5 36.0 90.9 43.6 79.0 0.09 3.90
BR: 0.5 / 0.001 34.0 32.0 34.0 114.0 54.2 104.8 0.03 4.96
BR: 0.5 / 0.25 32.0 31.5 36.5 120.9 86.1 99.3 0.03 5.12
BR: 0.1 / 0.001 33.5 32.0 34.5 146.2 92.1 119.5 0.15 6.71

DBR: 0.9/0.001 35.5 29.5 35.0 91.5 41.0 78.0 0.10 3.75
DBR: 0.9/0.25 36.5 28.5 35.0 95.3 41.5 83.5 0.12 3.95
DBR: 0.9/0.4 35.5 30.5 34.0 106.8 57.3 87.0 0.10 4.42
DBR: 0.5/0.001 35.0 29.5 35.5 89.4 40.9 77.3 0.06 3.94
DBR: 0.5/0.25 36.0 29.0 35.0 89.7 38.1 77.3 0.08 4.02
DBR: 0.1/0.001 30.5 35.0 34.5 124.7 52.3 116.0 0.02 6.42

DBT DBR: 44.5 28.5 27.0 78.7 42.9 66.5 1.57 1.89

Table 6
Method: BFGS QN (no resets) with positive definiteness enforced
Line search: BR, or DBR, with parameters q (Eq. 3.28, Eq. 3.30) and u (Eq. 3.29); DBT-BR

line search: q ! u
minima (%)

global 0.0625 0.0833
EFEs per run indef.

mean s.d. median H / run
EFEs
per A

BR: 0.9 / 0.001 34.5 28.0 37.5 90.1 54.3 77.0 0.43 3.59
BR: 0.9 / 0.25 35.0 26.5 38.5 89.1 52.4 76.8 0.21 3.75
BR: 0.9 / 0.4 34.0 29.0 37.0 90.0 52.7 78.3 0.24 3.92
BR: 0.5 / 0.001 34.5 31.5 34.0 118.0 58.7 105.5 0.09 4.98
BR: 0.5 / 0.25 32.5 31.5 36.0 116.6 65.5 99.5 0.17 5.04
BR: 0.1 / 0.001 33.0 32.0 35.0 148.8 103.9 117.8 0.30 6.72

DBR: 0.9 / 0.001 35.5 30.5 34.0 94.8 55.6 78.0 0.41 3.79
DBR: 0.9/0.25 36.0 29.0 35.0 96.6 51.0 82.0 0.25 3.98
DBR: 0.9/0.4 33.5 31.5 35.0 102.1 71.8 83.5 1.07 4.35
DBR: 0.5/0.001 35.5 28.5 36.0 90.1 44.2 77.0 0.38 3.94
DBR: 0.5/0.25 35.5 28.5 36.0 88.7 40.6 77.0 0.17 4.03
DBR: 0.1/0.001 30.5 34.0 35.5 134.5 91.9 116.0 0.23 6.60

DBT DBR: 38.5 29.0 32.5 74.0 30.7 67.0 2.06 1.77

71

Table 7
Method: BFGS QN (no resets)
Model-trust region strategy: RT, or ST, with parameter uq (Eq. 3.15) and reduction/growth
constants 2.0/4.0

trust method: uq
minima (%)

global 0.0625 0.0833
EFEs per run

mean s.d. median
resets
/ run

EFEs
per A:

RT: 0.0001 42.5 28.0 29.5 74.1 42.4 62.0 21.25 1.40
RT: 0.001 36.5 28.5 35.0 66.9 60.8 55.0 17.22 1.35
RT: 0.01 34.0 32.5 33.5 60.4 24.6 56.0 14.38 1.31
RT: 0.1 34.5 31.0 34.5 63.1 29.8 58.0 14.20 1.29

ST: 0.0001 36.5 30.0 33.5 61.8 25.3 57.0 17.99 1.41
ST: 0.001 36.5 28.5 35.0 66.5 31.7 59.0 18.45 1.38
ST: 0.01 34.5 30.5 35.0 67.7 38.1 58.0 17.49 1.35
ST: 0.1 34.5 29.5 36.0 65.6 29.0 61.0 15.90 1.32

Table 8

Method: BFGS QN (no resets)
Model-trust region strategy: RT, or ST, with parameter uq (Eq. 3.15) and reduction/growth
constants 4.0/10.0

trust method: uq
minima (%)

global 0.0625 0.0833
EFEs per run

mean s.d. median
resets
/ run

EFEs
pert

RT: 0.0001 38.5 28.0 33.5 70.5 34.2 60.0 22.31 1.46
RT: 0.001 39.0 30.0 31.0 66.9 36.4 59.0 19.43 1.41
RT: 0.01 37.5 28.5 34.0 66.2 33.8 60.0 18.75 1.39
RT: 0.1 36.5 34.0 29.5 65.4 28.6 60.0 18.08 1.39

ST: 0.0001 37.5 29.0 33.5 76.1 40.5 61.0 25.76 1.51
ST: 0.001 40.0 26.0 34.0 74.8 44.2 64.0 24.20 1.48
ST: 0.01 39.5 28.5 32.0 70.9 39.1 60.0 21.46 1.43
ST: 0.1 38.5 31.5 30.0 68.9 28.2 64.0 20.58 1.43

72

Table 9
Method: BFGS QN with SD resets every n
Line search: BR, or DBR, with parameters q (Eq. 3.28, Eq. 3.30) and u (Eq. 3.29); DBT-BR

line search: q lu
minima (%)

global 0.0625 0.0833
EFEs per run

mean s.d. median
resets
/run

EFEs
per A:

BR: 0.9 / 0.001 65.0 27.0 8.0 127.4 142.7 96.3 0.08 3.55
BR: 0.9/0.25 65.0 27.5 7.5 143.6 227.5 99.5 0.09 3.61
BR: 0.9 / 0.4 61.0 28.5 10.5 119.8 110.7 95.8 0.11 3.66
BR: 0.5 / 0.001 59.0 31.0 10.0 154.0 121.7 121.3 0.08 4.92
BR: 0.5 / 0.25 58.0 30.5 11.5 153.1 116.4 120.8 0.08 5.02
BR: 0.1 / 0.001 50.5 33.0 16.5 159.2 72.0 147.0 0.09 6.46

DBR: 0.9 / 0.001 61.0 30.0 9.0 112.9 88.7 91.8 0.07 3.63
DBR: 0.9/0.25 63.5 29.0 7.5 128.2 121.3 96.0 0.10 3.80
DBR: 0.9/0.4 60.0 31.5 8.5 128.7 118.8 101.5 0.07 4.07
DBR: 0.5/0.001 63.0 30.0 7.0 147.8 219.0 93.3 0.10 4.10
DBR: 0.5/0.25 62.5 30.5 7.0 141.1 170.9 96.0 0.08 4.13
DBR: 0.1 / 0.001 56.5 31.0 12.5 201.8 137.0 168.5 0.12 7.25

DBT DBR: 71.5 22.0 6.5 266.0 843.6 96.0 41.5 1.93

Table 10

Method: LM
Model-trust region strategy: RT, or ST, with parameter uq (Eq. 3.15) and reduction/growth
constants 2.0/4.0

trust method: Uq
minima (%)

global 0.0625 0.0833
EFEs per run

mean s.d. median
resets
/ run

EFEs
per A:

RT: 0.0001 82.0 17.5 0.5 14.1 7.1 12.0 2.74 1.24
RT: 0.001 85.5 14.5 0.0 10.5 2.7 10.0 0.57 1.06
RT: 0.01 90.5 9.5 0.0 12.4 2.8 12.0 0.41 1.03
RT: 0.1 92.0 8.0 0.0 15.7 4.4 15.0 0.40 1.03

ST: 0.0001 82.0 17.0 1.0 14.6 8.5 12.0 3.16 1.28
ST: 0.001 86.0 14.0 0.0 10.6 2.7 10.0 0.70 1.07
ST: 0.01 90.5 9.5 0.0 12.4 2.9 12.0 0.47 1.04
ST: 0.1 92.0 8.0 0.0 15.8 4.4 15.0 0.45 1.03

73

Table 11

Method: LM
Model-trust region strategy: RT, or ST, with parameter uq (Eq. 3.15) and reduction/growth
constants 4.0/10.0

trust method: u»
minima (%)

global 0.0625 0.0833
EFEs per run

mean s.d. median
resets
/ run

EFEs
per A:

RT: 0.0001 81.5 17.0 1.5 12.9 4.9 12.0 2.44 1.23
RT: 0.001 86.0 13.5 0.5 11.5 3.9 11.0 1.30 1.13
RT: 0.01 91.5 8.5 0.0 12.3 4.3 11.0 1.04 1.09
RT: 0.1 92.5 7.5 0.0 13.8 3.7 13.0 0.98 1.08

ST: 0.0001 81.0 18.0 1.0 13.9 7.0 12.0 3.01 1.28
ST: 0.001 86.5 13.0 0.5 12.0 4.9 11.0 1.71 1.17
ST: 0.01 91.5 8.5 0.0 12.6 4.9 11.0 1.26 1.11
ST: 0.1 92.5 7.5 0.0 13.9 3.7 13.0 1.14 1.09

4.3.3 XOR results, linear output nodes

Table 12

Method: batch (BA) or on-line (OL) BP, with training rate (r|) and momentum (a in Eq. 2.10)

m e t h o d : t | / a g l o b a l

m i n i m a (%)

0.0625 0.0833 m e a n

EFEs p e r r u n

s.d. m e d i a n

BA: 0.1/0.0 93.0 7.0 0.0 8,026.2 8,541.2 5,746.5
BA: 0.1/0.9 94.5 5.5 0.0 5,067.9 8,799.1 3,104.0
BA: 0.25/0.0 94.0 6.0 0.0 3,678.6 6,031.9 2,335.0
BA: 0.25/0.9 95.0 5.0 0.0 1,988.1 3,370.9 1,269.0
BA: 0.5/0.0 95.0 5.0 0.0 3,088.2 13,916.6 1,206.0

OL: 0.1/0.0 93.5 6.5 0.0 7,254.6 7,407.1 5,570.0
OL: 0.1/0.9 95.5 4.5 0.0 4,017.2 4,441.4 2,909.0
OL: 0.25/0.0 94.5 5.5 0.0 3,396.2 7,168.0 2,286.0
OL: 0.25/0.9 93.5 6.5 0.0 1,928.9 4,812.3 1,108.0
OL: 0.5/0.0 93.0 7.0 0.0 1,611.5 2,986.1 1,038.5

74

Table 13

Method: SD
Line search: BR, or DBR, with parameters q (Eq. 3.28, Bq. 3.30) and u (Eq. 3.29)

line search: g lu global
minima (%)

0.0625 0.0833
EFEs per run

mean s.d. median
EFEs
per^

BR: 0.9/0.001 95.5 4.5 0.0 1,385.3 1,412.3 1,048.5 2.72
BR: 0.9/0.25 95.0 5.0 0.0 1,464.1 2,086.3 1,074.0 2.76
BR: 0.9/0.4 94.0 6.0 0.0 1,265.3 3,025.9 675.3 3.17
BR: 0.5/0.001 95.5 4.5 0.0 2,529.1 3,565.4 1,753.0 4.23
BR: 0.5/0.25 94.0 6.0 0.0 2,472.2 2,841.7 1,766.8 4.27
BR: 0.1 / 0.001 94.5 5.5 0.0 1,564.1 5,084.1 720.0 5.69

DBR: 0.9 / 0.001 94.5 5.5 0.0 1,283.0 1,149.5 1,018.0 2.75
DBR: 0.9/0.25 93.5 6.5 0.0 1,285.9 1,546.3 924.5 2.77
DBR: 0.9/0.4 94.5 5.5 0.0 1,229.3 1,977.4 710.0 3.69
DBR: 0.5 / 0.001 93.5 6.5 0.0 1,212.4 1,334.4 924.5 2.79
DBR: 0.5/0.25 93.5 6.5 0.0 1,285.2 1,538.3 924.5 2.77
DBR: 0.1 / 0.001 93.0 7.0 0.0 1,128.5 1,869.5 662.5 4.10

Table 14

Method: PR CG with SD reset every n
Line search: BR, or DBR, with parameters q (Eq. 3.28, Eq. 3.30) and u (Eq. 3.29); BT, DBT,
DBT-BR

line search: q ! u
minima (%)

global 0.0625 0.0833
EFEs per run

mean s.d. median
resets
/run

EFEs
per &

BR: 0.9/0.001 93.5 6.0 0.5 226.0 609.0 145.0 27.8 2.31
BR: 0.9/0.25 93.0 6.0 1.0 317.9 2,130.9 95.5 2.72 2.97
BR: 0.9/0.4 91.5 8.5 0.0 133.8 180.9 99.5 0.44 3.21
BR: 0.5/0.001 94.0 5.0 1.0 369.6 975.8 167.0 56.67 2.38
BR: 0.5/0.25 90.5 9.5 0.0 266.0 1,056.5 131.5 2.02 4.22
BR: 0.1 / 0.001 90.5 8.5 1.0 215.0 233.8 162.0 7.51 4.56

DBR: 0.9 / 0.001 92.5 7.5 0.0 354.3 1,667.6 134.0 39.36 2.41
DBR: 0.9/0.25 90.0 9.5 0.5 138.8 206.6 103.3 1.61 3.12
DBR: 0.9/0.4 91.0 8.0 1.0 256.9 1,298.0 100.3 0.27 3.37
DBR: 0.5 / 0.001 90.5 8.5 1.0 206.6 715.2 100.0 2.14 3.15
DBR: 0.5/0.25 90.0 9.0 1.0 201.9 641.6 104.0 1.96 3.16
DBR: 0.1/0.001 89.5 9.0 1.5 189.6 160.0 151.5 0.01 5.67

BT: 89.0** 5.0 1.5 179.0 191.3 125.3 26.98 1.58
DBT: 86.0** 4.5 0.0 194.4 388.3 112.0 21.56 1.40
DBT-DBR: 94.5 5.0 0.5 139.8 125.1 110.5 13.43 1.49

75

Table 15
Method: NQN with SD resets every n
Line search: BR, or DBR, with parameters q (Eq. 3.28, Eq. 3.30) and u (Eq. 3.29); BT, DBT,
DBT-DBR

line search: q ! u
minima (%)

global 0.0625 0.0833
EFEs per run

mean s.d. median
resets
/ run

EFEs
per A:

BR: 0.9/0.001 95.0 4.5 0.5 354.5 1,377.4 106.5 15.60 2.70
BR: 0.9/0.25 94.0 6.0 0.0 270.1 1,100.9 107.5 0.91 3.06
BR: 0.9/0.4 93.5 6.0 0.5 279.2 1,256.4 103.5 0.76 3.13
BR: 0.5 / 0.001 89.5 9.0 1.5 244.2 511.7 129.0 5.78 3.80
BR: 0.5/0.25 90.5 8.0 1.5 184.0 195.2 136.0 0.34 4.29
BR: 0.1 / 0.001 89.5 8.0 2.5 288.6 738.5 171.0 7.95 4.83

DBR: 0.9 / 0.001 94.0 6.0 0.0 205.9 457.0 105.3 2.35 3.06
DBR: 0.9/0.25 92.0 8.0 0.0 303.6 1,103.3 104.8 2.46 3.10
DBR: 0.9/0.4 91.5 7.5 1.0 417.7 2,320.9 111.0 1.06 3.29
DBR: 0.5/0.001 91.5 6.5 2.0 145.2 160.4 101.5 0.56 3.29
DBR: 0.5/0.25 90.0 7.5 2.5 139.1 133.8 101.5 0.48 3.29
DBR: 0.1 / 0.001 90.5 8.0 1.5 353.4 1,309.0 160.0 0.31 5.23

BT: 89.0** 6.5 0.0 226.6 441.3 114.8 18.84 1.72
DBT: 88.0** 6.5 0.5 269.8 950.8 92.0 7.69 1.35
DBT-DBR: 92.5 7.0 0.5 249.3 826.7 96.5 4.44 1.30

Table 16

Method: BFGS QN (no resets)
Line search: BR, or DBR, with parameters q (Eq. 3.28, Eq. 3.30) and u (Eq. 3.29); BT, DBT,
DBT-DBR

line search: q lu
minima (%)

global 0.0625 0.0833
EFEs per run

mean s.d. median
resets
/ run

EFEs
per A:

BR: 0.9/0.001 65.0 22.0 13.0 90.2 111.3 71.0 0.08 3.23
BR: 0.9/0.25 66.5 19.5 14.0 95.4 122.5 73.5 0.09 3.32
BR: 0.9/0.4 62.0 24.0 14.0 84.1 85.5 70.0 0.06 3.39
BR: 0.5/0.001 63.5 23.0 13.5 123.6 126.5 92.5 0.02 4.71
BR: 0.5/0.25 67.0 20.5 12.5 134.2 137.6 99.0 0.06 4.94
BR: 0.1 / 0.001 64.5 23.0 12.5 144.9 111.6 115.0 0.06 6.26

DBR: 0.9/0.001 64.5 23.5 12.0 97.1 116.5 75.0 0.16 3.50
DBR: 0.9/0.25 68.0 20.5 11.5 103.5 120.7 73.8 0.09 3.55
DBR: 0.9/0.4 64.5 24.5 11.0 89.8 47.7 77.5 0.02 3.62
DBR: 0.5 / 0.001 69.5 19.0 11.5 119.3 192.2 79.5 0.10 3.70
DBR: 0.5/0.25 69.0 21.0 10.0 114.2 162.0 78.5 0.15 3.75
DBR: 0.1 / 0.001 64.0 23.5 12.5 147.5 132.6 116.0 0.13 5.82

BT: 76.0 16.0 8.0 109.8 133.0 68.0 3.74 1.95
DBT: 74.5** 17.5 7.5 78.6 80.0 52.0 2.09 1.54
DBT-DBR: 73.0 19.0 8.0 89.0 100.7 55.3 2.03 1.90

76

Table 17
Method: BFGS QN (no resets) with positive-definiteness enforced
Line search: BR, or DBR, with parameters q (Eq. 3.28, Eq. 3.30) and u (Eq. 3.29); BT, DBT,
DBT-DBR

line search: q lu
minima (%)

global 0.0625 0.0833
EFEs per run

mean s.d. median
indef.

H / run
EFEs
per A:

BR: 0.9/0.001 63.0 23.0 14.0 91.0 101.9 72.3 0.07 3.24
BR: 0.9/0.25 65.5 20.5 14.0 111.4 194.6 74.0 0.23 3.31
BR: 0.9/0.4 62.0 24.5 13.5 85.9 90.0 71.5 0.09 3.43
BR: 0.5/0.001 65.0 22.0 13.0 142.2 246.5 95.5 0.04 4.70
BR: 0.5/0.25 67.5 19.5 13.0 140.8 155.3 99.0 0.04 4.92
BR: 0.1 / 0.001 64.5 23.0 12.5 153.1 143.2 115.5 0.11 6.30

DBR: 0.9 / 0.001 62.0 23.5 14.5 89.8 51.8 75.3 0.03 3.42
DBR: 0.9/0.25 66.0 22.0 12.0 93.8 76.1 76.3 0.05 3.50
DBR: 0.9/0.4 65.5 23.5 11.0 94.5 64.3 79.0 0.05 3.62
DBR: 0.5 / 0.001 68.0 20.0 12.0 102.5 96.6 77.3 0.03 3.60
DBR: 0.5/0.25 66.0 21.5 12.5 92.1 56.9 76.8 0.02 3.61
DBR: 0.1 / 0.001 64.0 22.0 14.0 139.2 105.1 116.0 0.04 5.83

BT: 68.0** 21.5 7.5 185.9 908.0 72.5 5.24 2.84
DBT: 70.0** 18.0 10.5 147.1 618.3 56.5 7.53 2.63
DBT-DBR: 70.0 20.5 9.5 77.3 122.4 56.3 1.19 1.59

Table 18

Method: BFGS QN (no resets)
Model-trust region strategy: RT, or ST, with parameter uq (Eq. 3.15) and reduction/growth
constants 2.0/4.0

trust method: i/o
minima (%)

global 0.0625 0.0833
EFEs per run

mean s.d. median
resets
/ run

EFEs
per&

RT: 0.0001 74.0 19.5 6.5 72.1 69.0 53.0 21.57 1.43
RT: 0.001 70.5 20.0 9.5 63.9 42.9 52.0 17.84 1.39
RT: 0.01 70.0 18.0 12.0 69.7 72.8 53.5 19.09 1.38
RT: 0.1 67.0 20.5 12.5 58.4 33.5 49.0 14.16 1.32

ST: 0.0001 72.5 21.0 6.5 65.7 40.4 54.0 20.99 1.47
ST: 0.001 72.0 18.5 9.5 63.1 37.3 54.5 18.76 1.42
ST: 0.01 66.0 20.5 13.5 66.8 50.7 52.0 19.15 1.40
ST: 0.1 66.5 23.0 10.5 66.2 75.7 50.0 17.95 1.37

77

Table 19
Method: BFGS QN (no resets)
Model-trust région strategy: RT, or SX, with parameter uq (Eq. 3.15) and réduction/growth
constants 4.0/10.0

trust method: «o
minima (%)

global 0.0625 0.0833
EFEs per run

mean s.d. median
resets
/run

EFEs
per A:

RT: 0.0001 72.5 19.5 8.0 87.1 167.6 55.0 28.28 1.48
RT: 0.001 72.0 19.0 9.0 70.9 62.6 56.0 22.15 1.45
RT: 0.01 71.5 17.5 11.0 65.3 39.9 55.0 19.58 1.43
RT: 0.1 68.5 19.0 12.5 66.1 48.7 54.0 19.56 1.42

ST: 0.0001 72.0 19.5 8.5 68.7 41.4 60.5 23.54 1.52
ST: 0.001 73.0 19.0 8.0 69.8 52.5 59.0 23.16 1.50
ST: 0.01 70.0 20.0 10.0 69.7 47.0 59.5 22.96 1.49
ST: 0.1 68.0 19.5 12.5 67.4 51.2 55.0 21.54 1.47

Table 20

Method: BFGS QN with SD resets every n
Line search: BR, or DBR, with parameters q (Eq. 3.28, Eq. 3.30) and u (Eq. 3.29); BT, DBT,
DBT-DBR

line search: q lu
minima (%)

global 0.0625 0.0833
EFEs per run

mean s.d. median
resets
/ run

EFEs
per A:

BR: 0.9/0.001 94.0 5.5 0.5 362.7 2,221.0 85.5 0.09 3.48
BR: 0.9/0.25 91.5 7.5 1.0 127.6 212.3 81.5 0.04 3.25
BR: 0.9/0.4 90.0 8.5 1.5 140.5 375.5 82.0 0.03 3.34
BR: 0.5/0.001 89.0 9.5 1.5 159.7 167.4 107.3 0.03 4.49
BR: 0.5/0.25 88.5 9.0 2.5 175.0 299.0 105.5 0.02 4.67
BR: 0.1 / 0.001 89.0 10.0 1.0 208.4 507.3 125.8 0.05 6.18

DBR: 0.9/0.001 93.5 6.0 0.5 121.4 150.0 85.0 0.02 3.33
DBR: 0.9/0.25 92.5 6.5 1.0 119.7 140.9 88.0 0.04 3.37
DBR: 0.9/0.4 91.0 8.0 1.0 124.4 166.7 89.8 0.04 3.55
DBR: 0.5/0.001 91.5 7.5 1.0 115.2 142.0 87.0 0.04 3.48
DBR: 0.5/0.25 92.0 7.0 1.0 116.5 150.2 87.5 0.04 3.49
DBR: 0.1/0.001 88.5 10.0 1.5 216.1 322.7 135.0 0.12 5.72

BT: 95.0** 3.5 1.0 221.4 557.0 95.0 8.44 1.74
DBT: 92.5** 4.5 1.5 403.0 2,072.7 63.0 3.11 1.11
DBT-DBR: 92.0 6.5 1.5 124.7 255.4 63.0 2.75 1.59

78

Table 21

Method: LM
Model-trust region strategy: RT, or ST, with parameter uq (Eq. 3.15) and reduction/growth
constants 2.0/4.0

trust method:
minima (%)

global 0.0625 0.0833
EFEs per run

mean s.d. median
resets
/ run

EFEs
per&

RT: 0.0001 90.5 9.5 0.0 67.7 461.4 12.0 15.59 1.30
RT: 0.001 96.0 4.0 0.0 11.8 10.7 10.0 1.60 1.16
RT: 0.01 99.0 1.0 0.0 30.1 277.0 10.0 4.49 1.18
RT: 0.1 99.5 0.5 0.0 13.4 8.3 12.0 0.48 1.04

ST: 0.0001 89.5 10.5 0.0 143.9 948.1 12.0 46.94 1.48
ST: 0.001 97.0 3.0 0.0 11.7 11.9 10.5 1.76 1.18
ST: 0.01 99.0 1.0 0.0 42.5 451.1 10.0 11.16 1.36
ST: 0.1 99.5 0.5 0.0 13.4 8.1 12.0 0.54 1.04

Table 22

Method: LM
Model-trust region strategy: RT, or ST, with parameter uq (Eq. 3.15) and reduction/growth
constants 4.0/10.0

trust method: uq
minima (%)

global 0.0625 0.0833
EFEs per run

mean s.d. median
resets
/run

EFEs
per A:

RT: 0.0001 92.0 8.0 0.0 19.7 54.3 12.0 5.18 1.36
RT: 0.001 94.5 5.5 0.0 12.9 14.6 10.0 2.22 1.21
RT: 0.01 98.0 2.0 0.0 15.7 63.4 10.0 2.35 1.18
RT: 0.1 98.5 1.5 0.0 28.7 221.1 11.0 3.21 1.13

ST: 0.0001 92.5 7.5 0.0 28.7 130.3 12.0 9.05 1.46
ST: 0.001 95.0 5.0 0.0 12.8 13.1 10.0 2.38 1.23
ST: 0.01 97.0 2.5 0.5 18.7 112.7 10.0 4.02 1.27
ST: 0.1 98.5 1.5 0.0 52.1 551.4 11.0 16.06 1.45

79

4.3.4 Sine results

Table 23

Method: batch (BA) or on-line (OL) BP, with training rate (r|) and momentum (a in Eq. 2.10)

method: Ti / a
minima (%)

global 0.023 mean
EFEs per run

s.d. median
BA: 0.1/0.0 100.0 0.0 3,543.2 3,797.1 2,714.5
BA: 0.1/0.9 100.0 0.0 1,914.9 2,013.3 1,444.5
BA: 0.25/0.0 100.0 0.0 1,429.5 1,456.8 1,097.5
BA: 0.25/0.9 100.0 0.0 752.0 689.3 580.5
BA: 0.5/0.0 100.0 0.0 798.4 936.4 565.0

OL: 0.1/0.0 100.0 0.0 3,576.6 4,208.9 2,635.5
OL: 0.1/0.9 100.0 0.0 1,930.8 2,376.0 1,386.5
OL: 0.25/0.0 100.0 0.0 1,499.8 2,100.1 1,053.5
OL: 0.25/0.9 100.0 0.0 901.7 1,800.1 556.0
OL: 0.5/0.0 100.0 0.0 1,012.9 3,195.5 527.0

Table 24

Method: SD
Line search: BR, or DBR, with parameters q (Eq. 3.28, Eq. 3.30) and u (Eq. 3.29)

line search: q l u
minima (%)

global 0.023 mean
EFEs per run

s.d. median
EFEs
per A:

BR: 0.9/0.001 100.0 0.0 1,529.0 1,710.5 1,209.5 3.10
BR: 0.9/0.25 100.0 0.0 1,489.9 999.6 1,306.5 3.22
BR: 0.9/0.4 100.0 0.0 1,543.6 1,161.7 1,302.3 3.33
BR: 0.5/0.001 100.0 0.0 1,971.4 1,636.3 1,562.0 3.76
BR: 0.5/0.25 100.0 0.0 2,188.0 1,347.5 1,773.0 4.10
BR: 0.1 / 0.001 100.0 0.0 1,711.8 2,671.6 1,394.3 5.50

DBR: 0.9 / 0.001 100.0 0.0 1,628.7 1,528.2 1,216.8 3.29
DBR: 0.9/0.25 100.0 0.0 1,675.4 1,264.2 1,314.0 3.33
DBR: 0.9/0.4 100.0 0.0 1,575.0 1,260.5 1,313.0 3.74
DBR: 0.5 / 0.001 100.0 0.0 1,716.2 1,458.4 1,349.0 3.33
DBR: 0.5/0.25 100.0 0.0 1,680.3 1,302.8 1,311.0 3.34
DBR: 0.1 / 0.001 100.0 0.0 1,447.6 1,569.2 1,002.0 4.20

80

Table 25
Method: PR CG with SD reset every n
Line search: BR, or DBR, with parameters q (Eq. 3.28, Eq. 3.30) and u (Eq. 3.29); DBT-BR

line search: q lu
minima (%)

global 0.023
EFEs per run

mean s.d. median
resets
/ run

EFEs
per

BR: 0.9 / 0.001 99.5 0.5 234.4 233.7 167.5 21.92 2.58
BR: 0.9 / 0.25 100.0 0.0 131.4 83.1 111.5 0.68 2.99
BR: 0.9 / 0.4 100.0 0.0 137.6 233.8 106.8 0.12 3.07
BR: 0.5 / 0.001 100.0 0.0 267.0 565.2 176.8 17.78 3.13
BR: 0.5 / 0.25 100.0 0.0 147.5 77.5 127.8 0.56 4.03
BR: 0.1 / 0.001 99.5 0.5 190.8 93.5 160.0 4.64 4.75

DBR: 0.9/0.001 100.0 0.0 219.5 286.1 145.5 10.72 2.89
DBR: 0.9/0.25 100.0 0.0 137.6 99.8 116.5 0.60 3.18
DBR: 0.9/0.4 99.5 0.5 129.2 76.3 113.0 0.10 3.39
DBR: 0.5 / 0.001 100.0 0.0 161.2 228.2 116.3 0.58 3.26
DBR: 0.5/0.25 100.0 0.0 143.6 116.4 114.3 0.47 3.28
DBR: 0.1 / 0.001 99.5 0.5 156.3 105.6 135.0 0.0 4.74

DBT DBR: 99.5 0.5 145.6 380.4 84.0 3.43 1.28

Table 26

Method: NQN with SD resets every n
Line search: BR, or DBR, with parameters q (Eq. 3.28, Eq. 3.30) and u (Eq. 3.29); DBT-BR

line search: q lu
minima (%)

global 0.023
EFEs per run

mean s.d. median
resets
/ run

EFEs
per A:

BR: 0.9 / 0.001 98.5 1.5 165.2 184.1 125.5 8.84 2.71
BR: 0.9 / 0.25 98.5 1.5 178.7 706.1 101.5 0.77 2.94
BR: 0.9 / 0.4 98.5 1.5 205.6 1,104.9 97.0 0.25 3.06
BR: 0.5 / 0.001 99.0 1.0 258.1 941.4 146.0 7.91 3.65
BR: 0.5 / 0.25 99.5 0.5 323.1 1,558.0 129.0 0.50 4.19
BR: 0.1 / 0.001 99.0 1.0 255.8 911.9 166.8 3.37 5.78

DBR: 0.9 / 0.001 100.0 0.0 261.2 1,277.2 118.5 3.30 2.96
DBR: 0.9/0.25 99.5 0.5 270.8 1,096.0 107.0 0.78 3.07
DBR: 0.9/0.4 99.5 0.5 275.5 1,115.6 108.0 0.29 3.26
DBR: 0.5 / 0.001 99.5 0.5 222.2 615.5 113.5 0.47 3.19
DBR: 0.5/0.25 99.5 0.5 236.5 737.8 113.5 0.47 3.18
DBR: 0.1 / 0.001 99.0 1.0 660.6 4,414.6 134.8 0.05 4.74

DBT DBR: 100.0 0.0 132.9 490.4 71.3 1.34 1.34

81

Table 27

Method: BFGS QN (no resets)
Line search: BR, or DBR, with parameters q (Eq. 3.28, Eq. 3.30) and u (Eq. 3.29); DBT-BR

line search: q l u
minima (%)

global 0.023
EFEs per run

mean s.d. median
resets
/ run

EFEs
per A:

BR: 0.9/0.001 89.0* 8.0 88.7 38.9 76.3 0.01 2.98
BR: 0.9/0.25 89.0* 8.0 90.9 44.4 77.0 0.02 3.11
BR: 0.9/0.4 89.5* 7.5 96.0 51.1 79.0 0.04 3.23
BR: 0.5/0.001 91.5* 5.5 131.5 71.7 108.0 0.01 4.51
BR: 0.5/0.25 90.0* 7.0 133.5 68.3 106.8 0.01 4.76
BR: 0.1 / 0.001 90.0* 7.0 159.5 82.5 134.8 0.03 6.06

DBR: 0.9 / 0.001 90.0* 7.5 100.1 76.4 82.3 0.01 3.18
DBR: 0.9/0.25 88.5* 9.5 97.4 48.7 83.0 0.02 3.29
DBR: 0.9/0.4 88.5* 9.5 104.4 55.8 85.5 0.01 3.52
DBR: 0.5 / 0.001 88.0* 9.0 96.5 44.1 83.5 0.02 3.39
DBR: 0.5/0.25 88.0* 9.5 97.5 44.7 84.3 0.02 3.41
DBR: 0.1 / 0.001 88.5* 8.0 134.4 72.3 110.5 0.03 5.01

DBT-BR: 89.5* 9.5 65.4 56.2 48.0 0.76 1.55

Table 28

Method: BFGS QN (no resets) with positive-definiteness enforced
Line search: BR, or DBR, with parameters q (Eq. 3.28, Eq. 3.30) and u (Eq. 3.29); BT, DBT,
DBT-DBR

line search: q iu
minima (%)

global 0.023
EFEs per run

mean s.d. median
resets
/run

EFEs
per^

BR: 0.9/0.001 88.5* 8.0 89.5 38.6 76.5 0.02 2.98
BR: 0.9/0.25 89.0* 8.0 91.4 45.0 77.0 0.02 3.09
BR: 0.9/0.4 89.5* 7.5 96.7 52.9 79.0 0.04 3.23
BR: 0.5/0.001 90.5* 6.0 129.0 64.1 108.0 0.02 4.51
BR: 0.5/0.25 90.0* 7.0 132.7 67.7 106.3 0.01 4.76
BR: 0.1 / 0.001 90.0* 7.0 161.3 84.7 134.8 0.04 6.08

DBR: 0.9 / 0.001 89.0* 8.5 96.4 48.1 82.0 0.02 3.19
DBR: 0.9/0.25 88.5* 9.0 104.0 95.5 83.0 0.19 3.30
DBR: 0.9/0.4 89.5* 7.5 107.5 59.1 88.0 0.03 3.53
DBR: 0.5 / 0.001 89.0* 7.5 99.8 50.5 84.5 0.02 3.41
DBR: 0.5/0.25 89.5* 7.5 101.6 51.5 85.5 0.01 3.42
DBR: 0.1 / 0.001 88.5* 7.5 135.3 72.6 110.5 0.04 4.98

BT: 88.5*** 5.5 1,337.6 10,876.2 69.5 5.38 6.97
DBT: 85.5*** 8.5 61.9 47.6 45.0 0.99 1.40
DBT-BR: 89.5* 8.0 66.1 56.9 50.5 0.83 1.50

82

Table 29
Method: BFGS QN (no resets)
Model-trust région strategy: RT, or ST, with parameter uq (Eq. 3.15) and reduction/growth
constants 2.0/4.0

trust method: Uq
minima (%)

global 0.023
EFEs per run

mean s.d. median
resets
/ run

EFEs
per A:

RT: 0.0001 93.0* 6.0 68.4 50.5 53.5 19.63 1.37
RT: 0.001 93.0* 6.5 60.2 35.3 48.5 16.12 1.37
RT: 0.01 94.0* 5.5 59.5 37.6 48.0 14.80 1.33
RT: 0.1 93.0 7.0 59.1 34.1 49.0 13.47 1.30

ST: 0.0001 92.5* 6.5 67.8 50.5 52.0 21.32 1.47
ST: 0.001 93.5* 6.0 65.2 42.3 51.0 20.06 1.44
ST: 0.01 94.0* 5.5 61.3 32.7 49.0 17.63 1.40
ST: 0.1 93.5* 6.0 63.0 45.8 49.0 16.83 1.36

Table 30

Method: BFGS QN (no resets)
Model-trust region strategy: RT, or ST, with parameter uq (Eq. 3.15) and reduction/growth
constants 4.0/10.0

trust method: uq
minima (%)

global 0.023
EFEs per run

mean s.d. median
resets
/ run

EFEs
per A:

RT: 0.0001 93.0* 6.0 69.4 45.9 52.0 21.58 1.46
RT: 0.001 93.5* 6.0 66.5 46.2 52.0 19.85 1.43
RT: 0.01 92.5* 6.0 65.0 45.4 50.0 18.29 1.40
RT: 0.1 92.0* 7.5 63.0 37.5 50.0 17.86 1.39

ST: 0.0001 90.0* 9.0 72.7 84.4 53.0 25.29 1.53
ST: 0.001 90.0* 9.5 68.3 82.3 52.0 22.16 1.50
ST: 0.01 91.0* 7.5 68.4 79.9 51.0 22.68 1.51
ST: 0.1 92.0* 7.0 69.0 80.6 50.0 21.99 1.47

83

Table 31
Method: BFGS QN with SD resets every n
Line search: BR, or DBR, with parameters q (Eq. 3.28, Eq. 3.30) and u (Eq. 3.29); DBT-BR

line search: q l u
minima (%)

global 0.023
EFEs per run

mean s.d. median
resets
/ run

EFEs
per

BR: 0.9 / 0.001 100.0 0.0 102.0 74.1 82.0 0.03 288
BR: 0.9 / 0.25 99.5 0.5 101.8 79.1 81.5 0.02 2.97
BR: 0.9 / 0.4 99.5 0.5 100.2 59.1 85.5 0.02 3.06
BR: 0.5 / 0.001 100.0 0.0 137.9 89.5 114.0 0.03 4.18
BR: 0.5 / 0.25 100.0 0.0 141.8 131.2 113.5 0.02 4.34
BR: 0.1 / 0.001 100.0 0.0 354.4 2,114.4 139.5 0.02 6.50

DBR: 0.9/0.001 100.0 0.0 109.3 73.1 87.8 0.02 3.08
DBR: 0.9/0.25 99.5 0.5 109.9 72.3 88.5 0.04 3.15
DBR: 0.9/0.4 98.5 1.5 143.0 480.7 93.0 0.03 3.40
DBR: 0.5/0.001 100.0 0.0 111.1 74.7 90.3 0.02 3.24
DBR: 0.5/0.25 100.0 0.0 110.8 72.6 91.0 0.02 3.25
DBR: 0.1/0.001 100.0 0.0 163.6 159.9 131.3 0.03 5.04

DBT-DBR: 100.0 0.0 104.1 247.9 54.5 0.48 1.22

Table 32

Method: LM
Model-trust region strategy: RT, or ST, with parameter uq (Eq. 3.15) and reduction/growth
constants 2.0/4.0

trust method: uo
minima (%)

global 0.023
EFEs per run

mean s.d. median
resets
/ run

EFEs
perÆ

RT: 0.0001 97.0* 2.0 172.1 47.1 174.0 25.66 1.18
RT: 0.001 99.0* 0.5 165.9 48.5 165.0 21.62 1.15
RT: 0.01 100.0 0.0 152.8 45.8 141.0 14.07 1.10
RT: 0.1 100.0 0.0 146.9 43.0 134.0 10.86 1.08

84

4.4 Comparison of Training Methods

4.4.1 Convergence to local minima

It is evident from the results in section 4.3 that there is a marked disparity between the

frequency of convergence to global, as opposed to local, minima for different training

algorithms. A major - and novel - finding of this research is that there is a strong

correlation between, on the one hand, the frequency with which a training algorithm

converges to global minima and, on the other, the frequency with which that algorithm

discards derivative information accumulated during one or more previous training epochs.

This effect can be traced both in the performance of different multivariate algorithms, and

in the performance of different versions of the same multivariate algorithm.

Graphs 3, 4 and 5 plot, for each multivariate algorithm and training task, the percentage

of runs that converged to global and local minima using (where possible) the same line-

search method and parameters - Brent's method with derivatives and with parameters

<7=0.5 (Eq. 3.28) and m=0.25 (Eq. 3.29), or DBR: 0.5 / 0.25 for short. Two additional

algorithms were tested for this purpose - the Polak-Ribiere conjugate gradients without

resets CG nr and the memoryless quasi-Newton method without resets NQN nr A clear

trend emerges if we divide the training methods into three broad categories; methods

which never store derivative information (i.e. generate a new model at every epoch);

methods which discard accumulated derivative information approximately once every n

epochs for an n-weight MLP; and methods which rarely, if ever, discard derivative

information. Methods from the first category (BA^, OL, SD and LM) consistently

converge to a global minimum as frequently or more frequently than methods from the

second category (CG, NQN and QN with SD resets); methods from the second category

consistently converge to a global minimum as frequently or more frequently than methods

from the third category (CG, NQN and QN without resets).

* Strictly speaking, BA and OL with momentum never discard all previous derivative
information. However, the use of momentum with backpropagation is essentially a heuristic
procedure and is not comparable to the second-order classical methods considered here. For this
reason, and since it appears to have no significant effect on the percentage of runs successfully
converging to a global minimum, the momentum term is ignored in the current discussion.

85

Graph 3 - Training algorithm convergence to global minima (XOR, sigmoid)
Results are for DBR: 0.5 / 0.25, except LM (RT, with Mo=0.01 and reduction/growth constants
2.0/4.0) and BA (r|=3.0, 0=0.9)

100%

□ 0.0833
□ 0.0625

I global

method

Graph 4 -Training algorithm convergence to global minima (XOR, linear)
Results are for DBR: 0.5 / 0.25, except LM (RT, with «o=0.01 and reduction/growth constants
2.0/4.0) and BA (T|=G.5, a=0.0)

(0
E
'E
E

IoO)

100%

95%

90%

85%

80%

75%

70%

65%

60%

55%

50%

□ 0.0833
□ 0.0625

I global

method

86

Graph 5 -Training algorithm convergence to global minima (sine)
Results are for DBR: 0.5 / 0.25, except LM (RT, with wo=0.01 and reduction/growth constants
2.0/4.0) and BA (ri=0.5, a=0 .0)

100%

95%

90%

85%

80%

75%

□ other
□ 0.023
■ global

method

The simple categorisation above does not account for one of the main features of Graphs

3, 4 and 5 - the much poorer global reliability of the non-resetting QN algorithm

compared with the CG and NQN non-resetting algorithms. To see how this fits in with the

proposed correlation between global convergence and reset frequency, it is necessary to

examine the number of resets actually performed by these algorithms - specifically, those

resets performed during successful training runs at error levels of £>0.0625 and £>0.023

for the XOR and sine problems respectively (since, for a reset to have any effect on the

global convergence of a classical descent algorithm, it must take place at a higher error

level than that of the lowest local minimum). The appropriate data for all classical

algorithms using the DBR: 0.5 / 0.25 line search strategy is presented in Tables 33, 34

and 35; these results largely conform to the identified trend, and show, in particular, that

the QN algorithm without resets has both the lowest mean reset-rate and the lowest

probability of converging to a global minimum of all the algorithms tested.

87

Table 33 - mean resets by ^=0.0625 (XOR, sigmoid)
Methods: classical methods with line search
Line search: DBR with parameters ^=0.5 (Eq. 3.28) and u=0.25 (Eq. 3.29)

method:

global
minima

(%)

mean resets by £=0.0625
every n Eq. 3.9
epochs failure total

SD: 82.5 --- --- 65.69
NQN: 65.5 2.95 0.09 3.05
QN: 62.5 2.24 0.06 2.30
CG: 61.5 1.64 0.43 2.07
CG nr: 58.0 --- 0.40 0.40
NQN nr: 57.0 --- 0.12 0.12
QN nr: 36.0 0.08 0.08

Table 34 - mean resets by £=0.0625 (XOR, linear)
Methods: classical methods with line search
Line search: DBR with parameters q=0.5 (Eq. 3.28) and «=0.25 (Eq. 3.29)

method:

global
minima

(%)

mean resets by £=0.0625
every n Eq. 3.9
epochs failure total

SD: 93.5 - — - --- 411.70
QN: 92.0 2.05 0.03 2.08
CG: 90.0 3.84 1.86 5.70
NQN: 90.0 2.54 0.44 2.98
CG nr: 88.5 --- 1.51 1.51
NQN nr: 83.0 2.86 2.86
QN nr: 69.0 --- 0.14 0.14

Table 35 - mean resets by £=0.0625 (sine)
Methods: classical methods with line search
Line search: DBR with parameters ^=0.5 (Eq. 3.28) and «=0.25 (Eq. 3.29)

method:

global
minima

(%)

mean resets by £=0.0229
every n Eq. 3.9
epochs failure total

SD: 100.0 --- --- 433.19
CG: 100.0 4.04 0.43 4. .47
QN: 100.0 3.17 0.02 3.18
NQN: 99.5 8.11 0.47 8.58
CG nr: 99.0 --- 0.45 0.45
NQN nr: 99.0 --- 0.69 0.69
QN nr: 88.0 --- 0.00 0.00

That Tables 33, 34 and 35 do not show a perfect correlation between an algorithm's

global reliability and its mean reset rate is not surprising; the latter takes no account of the

dynamics of different multivariate strategies - such as the known automatic-resetting

property of the Polak-Ribiere conjugate gradient algorithm (see section 3.5.1) - and may,

in any case, be an imperfect measure of the number of resets that 'counted' (i.e. that

changed the outcome of a training run). To eliminate the first of these factors, further

analysis has been confined to different versions of the same multivariate algorithm,

concentrating on a single task and method - XOR with sigmoid output nodes using the

quasi-Newton algorithm, with and without SD resets. This combination of task and

algorithm is the natural choice; QN is the most robust multivariate algorithm and the

subject of the greatest number of tests in this research, and it produced the widest

differential between highest and lowest rates of global convergence when applied to the

XOR task with sigmoid output nodes. The full set of line search results for QN methods

(excluding those with positive definiteness enforced) are listed in Table 36 and plotted in

Graph 6.

Table 36 - mean resets by E=0.0625, QN methods

Task: XOR, sigmoid output nodes
Line search: BR, or DBR, with parameters q (Eq. 3.28, Eq. 3.30) and u (Eq. 3.29); DBT-BR

global mean resets by £=0.0625
minima every n Eq. 3.9

method, line search: q l u (%) epochs failure total
QN, DBT-DBR: 71.5 3.60 36.27 39.87
QN, BR: 0.9/0.25 65.0 2.78 0.08 2.86
QN, BR: 0.9/0.001 65.0 2.42 0.06 2.48
QN, DBR: 0.9/0.25 63.5 2.19 0.06 2.24
QN, DBR: 0.5/0.001 63.0 2.44 0.06 2.49
QN, DBR: 0.5/0.25 62.5 2.24 0.06 2.30
QN, BR: 0.9/0.4 61.0 2.06 0.08 2.14
QN, DBR: 0.9 / 0.001 61.0 1.91 0.04 1.95
QN, DBR: 0.9/0.4 60.0 2.03 0.03 2.06
QN, BR: 0.5 / 0.001 59.0 2.01 0.06 2.07
QN, BR: 0.5/0.25 58.0 1.96 0.03 1.99
QN, DBR: 0.1 / 0.001 56.5 1.65 0.06 1.71
QN, BR: 0.1 / 0.001 50.5 1.47 0.07 1.53
QN nr, DBT-DBR: 44.5 --- 1.42 1.42
QN nr, DBR: 0.9/0.25 36.5 --- 0.12 0.12
QN nr, DBR: 0.5/0.25 36.0 --- 0.08 0.08
QN nr, DBR: 0.9 / 0.001 35.5 --- 0.07 0.07
QN nr, DBR: 0.9/0.4 35.5 --- 0.07 0.07
QN nr, DBR: 0.5 / 0.001 35.0 --- 0.04 0.04

89

method, line search: q l u

global
minima

(%)

mean resets by £=0.0625
every n Eq. 3.9
epochs failure total

QN nr, BR: 0.9/0.25 35.0 --- 0.04 0.04
QN nr, BR: 0.9/0.4 34.5 --- 0.07 0.07
QN nr, BR: 0.9/0.001 34.0 --- 0.04 0.04
QN nr, BR: 0.5/0.001 34.0 0.03 0.03
QN nr, BR: 0.1 / 0.001 33.5 0.13 0.13
QN nr, BR: 0.5/0.25 32.0 --- 0.02 0.02
QN nr, DBR: 0.1 / 0.001 30.5 --- 0.02 0.02

Graph 6 - Global convergence frequency vs. log mean resets per successful run, QN
line-search methods (XOR, sigmoid)

80 -I

70 -

g 6 0 -

II 50 -

1& 40-

30 -

0.1 1 1000.01 10

log mean rese ts per run (E=0.0625)

The preceding results provide convincing evidence of a strong correlation between global

convergence and reset frequency for a single algorithm and task. Similar, but less detailed,

analyses were performed on the sigmoid and linear XOR results for each classical

algorithm, excluding LM. (With the sine task, too few training runs converged to non-

global minima for meaningful comparisons to be made.) The CG, NQN and QN

algorithms, with and without resets, showed the same broad correlation - over a narrower

convergence range - as the QN algorithm with XOR and sigmoid output nodes; however,

there was negligible change in the global reliability of SD, irrespective of the number of

90

resets performed. Taken together, these results suggest the following rule for second-order

nonlinear optimisation algorithms with line searches when applied to problems with local

minima: increasing the reset-rate of an algorithm is likely to produce a steady

improvement in its global reliability, so long as the reset-rate remains low' or 'moderate';

the benefit of increasing the reset-rate diminishes as the frequency of global convergence

approaches that of the steepest descent algorithm.

An important corollary is that a given second-order algorithm (with or without SD resets

every n epochs) is less likely to get trapped in local minima when used with an inaccurate

line-search strategy, and more likely to get trapped with an accurate line search.

Inaccurate line searches typically require more epochs to reach a given error tolerance

than accurate ones, with correspondingly more resets performed every n epochs; and

inaccurate line searches are, intuitively, more likely to generate an s^that is not a descent

direction because the local model, generated iteratively by the multivariate algorithm, is

based on less-accurate information.

On balance, the hybrid backtracking/Brent algorithm, DBT-DBR, is the least-accurate

line-search algorithm tested for this research - excluding the non-hybrid backtracking

algorithms, BT and DBT, which failed to produce a full set of training results (see section

4.3.1). The DBT-DBR algorithm typically spends the majority of training epochs in

derivative backtracking (DBT) mode, with parameters ^=0.9 (Eq. 3.28) and m=0.001 (Eq.

3.29). Brent's method, with the same settings for q and u, has a tendency to achieve

greater accuracy than the backtracking strategy, owing to the enforced bracketing of the

minimum (see section 3.2.1). Graphs 7 and 8 plot, for the sigmoid XOR and linear XOR

training tasks respectively, the global convergence frequency of each classical algorithm

with line searches of varying accuracy - Brent's method with settings ^=0.9 / m=0.001,

^=0.5 / u=0.25 and ^=0.1 / «=0.001, and the novel DBT-DBR strategy. These graphs

support the thesis that the global reliability of a given classical multivariate algorithm

tends to increase as the accuracy of the line search employed by that algorithm decreases;

the low-accuracy DBT-DBR algorithm has the highest rate of global convergence in 6 out

of 8 cases and the second-highest in the remaining 2 cases, whereas the high-accuracy

Brent 0.1 / 0.001 line-search has the lowest (or equal lowest) rate in 9 out of 10 cases.

91

Graph 7 - Line searches and global convergence (XOR, sigmoid)
Note: the Brent global percentage - for given settings of parameters q (Eq. 3.28) and u (Eq.
3.29) - is the average of the BR and DBR percentages with those settings.

80 --

o 6 0 -
□ 0.1 / 0.001
■ 0 .5 / 0.25
□ 0 .9 / 0.001
□ DBT -DBR

method

Graph 8 - Line searches and global convergence (XOR, linear)
Note: the Brent global percentage - for given settings of parameters q (Eq. 3.28) and u (Eq.
3.29) - is the average of the BR and DBR percentages with those settings.

100

90 --

85 --

w 8 0 -1
2 O

65-H

70 --

60 --

55 --

ÜO zO § C

□ 0.1 / 0.001
■ 0.5 / 0.25
□ 0.9/0.001
□ DBT-DBR

method

92

So far, nothing has been said about model-trust region strategies or the strategy for

enforcing the positive-definiteness of the Hessian matrix. When a second-order classical

method without resets is implemented using one of these strategies, derivative information

from previous epochs is never wholly discarded. Rather than reset the model completely

to the current steepest descent direction, these strategies perturb the model Hessian

towards the linear model of steepest descent, to a degree determined by the size of scalar u

in Eq. 3.15; if m is sufficiently large, such a perturbation is roughly equivalent to the

traditional SD reset (see section 3.1.3). Both model-trust region strategies and the strategy

for enforcing the positive-definiteness of the Hessian can be said, therefore, to partially

reset' the multivariate algorithm.

Judging by the tabulated results of section 4.3, the adoption of the enforced positive-

definiteness strategy generally has little impact on either the global convergence

characteristics or the training speed of the non-resetting QN algorithm. An examination of

the mean number of partial resets performed with line searches of different accuracy

suggests that the correlation between global reliability and reset frequency extends to

partial-reset frequency, but that the number of partial resets required to produce an

equivalent effect is higher (by as much as a factor of 12 in certain cases). With model-

trust region strategies, both partial-reset frequency and global reliability increased as the

size of Mo decreased (Graph 9). (For LM model-trust region algorithms, which 'reset' at

every training epoch, these considerations do not apply. In fact, the global convergence

frequency of the LM method given in the tables of section 4.3 show the opposite trend to

those for QN methods, i.e. global reliability has a tendency to increase as the number of

partial-resets decreases.)

93

Graph 9 - Model-trust region strategies and global convergence, QN without resets
Note: the model-trust region global percentage, for a given mq (Eq. 3.15), is the average of four
percentages - those for RT, and ST, with reduction/growth constants of 2.0/4.0 and 4.0/10.0.

S ' 60

sO
cn

linear
XOR,

sigmoid

□ TRUST: 0.1
■ TRUST: 0.01
■ TRUST: 0.001
□ TRUST: 0.0001

Having established the link between the global reliability of an algorithm and its reset (or

partial-reset) rate, we are left with an obvious question: 'How does resetting an algorithm

improve its chances of reaching a global minimum?' For an explanation, let us consider

the situation where a second-order algorithm has constructed, by iteration k, a model of E

which, if minimised, will trap the algorithm in a local minimum. (Such a situation may be

a common occurrence in the early stages of training, owing to the build-up of hidden-node

redundancy - see sections 2.1.2 and 2.2.1.) Now let us suppose that the derivative

information generated at iteration k is not dominated by the curvature towards this (or any

other) local minimum. If the algorithm is reset at iteration k, a new model will be

constructed which has a much better chance of directing the algorithm towards a global

minimum. However, if no reset is performed, the derivative information generated at

iteration k will be incorporated in the existing model; since the old (pre-iteration k) model

will tend to dominate the new information, the search direction generated at iteration k is

likely to head towards the basin of attraction of the local minimum.

94

4.4.2 Training speed and accuracy

The tables in section 4.3 provide two estimates of the 'typical' speed of each training

algorithm - the mean and the median EFEs per run. (In either case, training runs that fail

to reach the chosen tolerance - £=0.01 for the tabulated results - are ignored.) Before

embarking on an analysis of the comparative speeds of different algorithms, it is worth

examining which of these two measures is superior. Graph 10 shows the distribution of

the training speed data for a single combination of algorithm, task and settings. A

prominent feature of this distribution - and one that is common to all the results in section

4.3 - is the broad tail, caused by a small number of outlier points (corresponding to

training runs that required a disproportionately large number of EFEs to reach a given

tolerance). Since the mean is sensitive to the breadth of the tail whereas the median is not,

the latter is the more robust estimate of the typical speed of an MLP training algorithm^.

For this reason, the median FEE rate is the adopted training speed metric for this analysis.

The following analysis of MLP training speed is in three stages. The first stage gives an

overview of the performance of traditional and classical methods, and addresses the

fundamental question, 'Do second-order classical methods speed up training sufficiently to

justify the additional programming, storage and (at each training epoch) computational

costs involved?' The second stage compares the performance of different second-order

methods using, where possible, the same line-search strategy and settings. The final stage

of the analysis examines, in detail, the performance of different versions of the same

second-order algorithm. At each stage, the actual performance of the algorithms under

investigation, when applied to the three tasks used in this research, will be assessed in

terms of their anticipated performance based on theoretical and practical experience.

 ̂ There are several instances where the mean EFE rate given in section 4.3 grossly over­
estimates the typical performance of an algorithm. Prime examples are to be found in Table 3
for settings DBR: 0.9 / 0.001 and DBR: 0.9 / 0.25.

95

Graph 10 - Relative frequency histogram, SD DBR: 0.5 / 0.25 (sine)
Note: the corresponding mean and median are 1,680.3 and 1,311.0 respectively

I
i0)CC

25

20

15

10

5

0
o § I I I I I o o o o

CO

number of EFEs (£=0.01), in c lasses of 200

O verview o f traditional and classical methods. Graphs 11,12 and 13 plot, for each

training task, the performance of traditional methods (represented by on-line BP with

several different combinations of training rate and momentum), first-order classical

methods (i.e. SD), and second-order classical methods (represented by the Polak-Ribiere

CG algorithm with SD resets). In each of these graphs, the best curve plotted for on-line

BP represents the 'near-optimal' performance of that algorithm - i.e. a modest increase in

the training rate was sufficient to induce oscillatory behaviour. (In the majority of cases,

batch BP was slightly slower than on-line BP with the same training rate and momentum.)

The SD curves show the fastest and slowest performances of the SD algorithm using

either the BR or the DBR line-search strategy; the CG curves show the fastest and slowest

performances of CG using the BR, DBR or DBT-DBR line-search strategies.

96

Graph 11 - Training speed, first- and second-order methods (XOR, sigmoid)

2000 1

1500 -

£ 1000 -

500 ;

-A— BA 1 .0 /0 .9
BA 3.0 / 0.0

-B— BA 3.0 / 0.9
w orst SD

H— best SD
w orst CG

-e — best CG

MSE

Graph 12 - Training speed, first- and second-order methods (XOR, linear)

3000 1

2500 -

L. 2 0 0 0 -
&

1500

Ü 1000 ; :

500

BA: 0.25 / 0.0
BA: 0.25 / 0.9
BA: 0.5 / 0.0
BA: 0.5 / 0.9
worst SD

i— best SD
worst CG
best CG

MSE

97

Graph 13 - Training speed, first- and second-order methods (sine)

3500

3000

c
E 2500

Î.
u.

2000

^ 1500
.5
I 1000

500

o oo

A— BA: 0.1 /O.O
^ B A : 0.1 /0 .9
a - B A : 0 .25 /0 .0
e — BA: 0.25 / 0.9
^ — worst SD
4— best SD

worst CG
^ best CG

MSE

These results illustrate two key reasons why second-order classical methods are likely to

produce faster solutions to many MLP training problems than traditional training

methods. Firstly, traditional fixed step-length BP is highly sensitive to the choice of

training rate, and the optimal (or near-optimal) training rate is task-specific; classical

methods, using variable step-length strategies, are far less sensitive to the choice of initial

parameter-settings, and (as the final stage of this analysis will show) certain parameter-

settings tend to be consistently better than others. Secondly, the second-order CG

algorithm is consistently faster than any of the first-order methods, attributable to the

superiority of a quadratic model over a linear model for generating 'effective' search

directions (see sections 3.1.1 and 3.1.2). With BP, the addition of the heuristic second-

order momentum term (described in section 2.3.3) was highly effective in the form

specified by Eq. 2.10, but of negligible benefit when used in the form given by Eq. 2.11.

98

Second-order methods. Graph 14, 15 and 16 plot, for each training task, the performance

of the following second-order methods: Polak-Ribiere CG, NQN and QN with SD resets,

QN without SD resets, and the LM algorithm. The curves for CG, NQN and QN with

resets represent the performance of these algorithms with the Brent line-search strategy

DBR: 0.5 / 0.25, whereas the LM curve is for the model-trust region strategy RT: 0.01;

both these versions of the non-resetting QN algorithm are represented.

Graph 14 - Training speed, second-order methods (XOR, sigmoid)
Results are for DBR: 0.5 / 0.25 and RT: 0.01

c
2
i
(0

IIIu.m

I
E

300

250

200

150

100 e —

50

0
o §o I Io
o o

QN nr
QN nr (RT)
LM (RT)

MSE

99

Graph 15 - Training speed, second-order methods (XOR, linear)
Results are for DBR; 0.5 / 0.25 and RT: 0.01

160 n

140 -

c
E 120 -

100 -

80 - ui
I 60 2

% I
E 40 -

20 -

oo o oo
o o o

QN nr
QN nr (RT)
LM (RT)

MSB

Graph 16 - Training speed, second-order methods (sine)
Results are for DBR: 0.5 / 0.25 and RT: 0.01

350 -|

300 -

250 -c
E
I
au_

200 -

c 150 -
.5
%
E 100 -

50

o o oo
o

QN nr
QN nr (RT)
LM RT)

MSB

100

These graphs show that the comparative speeds of the second-order classical algorithms

tested for this research are very much in line with the predictions given in section 3.7, a

point made clear by the following observations:

• the LM algorithm is by far the fastest algorithm with the non-residual XOR tasks, but

one of the slowest second-order algorithms with the sine task, which has residuals at

the solution;

• the QN algorithm is significantly faster than the CG and NQN algorithms - both of

which store less derivative information than the QN algorithm - with two of the

training tasks;

• the QN algorithm is consistently faster when implemented without SD resets, i.e. when

(potentially) useful derivative information is not discarded every n epochs;

• there is little to choose between the CG and NQN algorithms, although the former is

significantly faster on the XOR problem with sigmoid output nodes.

Another feature of these graphs is that the shape of the LM curves is different from the

rest, being virtually straight (with the MSE plotted on a log scale) for all three tasks. This

may be related to the fundamental distinction between the LM algorithm and all the other

classical algorithms used here - i.e. it is a nonlinear least-squares algorithm, rather than an

unconstrained nonlinear optimisation algorithm.

Line-search and model-trust region strategies. The analysis now turns to the

performance of different versions of the same nonlinear optimisation method. Graphs 17-

28 plot, for each second-order method in turn: the fastest and slowest performances of the

Brent line-search strategy (with the settings used to generate the results of section 4.3);

the performance of the novel hybrid Brent/backtracking line-search algorithm (DBT-

DBR); and - for the non-resetting QN algorithm only - the fastest and slowest

performances of either the RT or ST model-trust region strategy (MTRS) (with the

settings of section 4,3).

101

Graph 17 - Training speed, PR CG with SD resets (XOR, sigmoid)
Note: no point is plotted for DBT-DBR at MSE 1.0 °̂ since a significant percentage of runs
failed to reach this level within 50,000 EFEs.

350 1

300-

c
2 250 -

S.
« 2 0 0 -

150-
.2
I 100 -

o o oo
o

slowest Brent
(DBR: 0.1 / 0.001)
fas te st Brent
(BR: 0 .9 /0 .001)
DBR: 0.5 / 0.25

DBT-DBR

MSE

Graph 18 - Training speed, PR CG with SD resets (XOR, linear)

250 -I

200 -
c
2
I
g

150 -

o o oo oo

-A— slow est Brent
(BR: 0.5 / 0.001)

— fas te s t Brent
(BR: 0.9 / 0.4)

-■ -D B R : 0 .5 /0 .2 5

-A— DBT-DBR

MSE

102

Graph 19 - Training speed, PR CG with SD resets (sine)

450 1

400 ■

350 -

I 300 -
I
g

250 -

lu 200 -

I 150-

100 -

ooo

- slow est Brent
(BR: 0 .5 /0 .001)

-fastest Brent
(DBR: 0.9 / 0.4)
DBR: 0 .5 /0 .2 5

DBT-DBR

MSE

Graph 20 - Training speed, NQN with SD resets (XOR, sigmoid)

600 -I

500 -

Î 400 -
Q.

S 300 -
UJ

.§I 200-

100 -

o ood o o
o

-A-— slow est Brent
(DBR: 0 .1 /0 .001)
fa s te s t Brent
(BR: 0.9 / 0.25)

- m - DBR: 0.5 / 0.25

-£ i— DBT-DBR

MSE

103

Graph 21 - Training speed, NQN with SD resets (XOR, linear)

250 1

200 -

c
2
I
g

150 -

o o ood

-A— slowest Brent
(BR: 0 .1 /0 .001)

-A—fas tes t Brent
(BR: 0.9 / 0.4)

« —DBR: 0 .5 /0 .2 5

-A— DBT-DBR

MSE

Graph 22 - Training speed, NQN with SD resets (sine)

450 -I

400 -

350 -
c
2 300 -I
i
I 150 -

100 -

od o o

slow est Brent
(BR: 0 .1 /0 .001)
fa s te s t Brent
(BR: 0.9 / 0.25)
DBR: 0 .5 /0 .2 5

DBT-DBR

MSE

104

Graph 23 - Training speed, QN with SD resets (XOR, sigmoid)

450 -I

400 -

350 -
c
s 300 ■

2
250 -

w 200 -
I
“ 150 -
E

100 ■

od
o

-A— slowest Brent
(DBR: 0.1 / 0.001)
fa s te s t Brent
(DBR: 0 .9 /0 .001)

-* -D B R : 0 .5 /0 .2 5

-A— DBT-DBR

MSE

Graph 24 - Training speed, QN with SD resets (XOR, linear)

160 1

140 -

120 -c
E

1
2B “ =
.5 60 ■

I
20 -

oo o
§ §o

-A— slow est Brent
(DBR: 0 .1 /0 .001)

■A— fa s te s t Brent
(BR: 0.9 / 0.4)

- a - DBR: 0.5 / 0.25

-A— DBT-DBR

MSE

105

Graph 25 - Training speed, QN with SD resets (sine)

350 -I

300-

c
2
I

g
200 •

c 150-
.S
%
E 100 -

50

o o od

■ slow est Brent
(BR: 0.1 / 0.001)
fa s te s t Brent
(BR: 0.9 / 0.4)
DBR: 0 .5 /0 .2 5

DBT-DBR

MSE

Graph 26 - Training speed, QN without resets (XOR, sigmoid)

150 1

c
2 100 -

I
glU
.1 ̂I “ i

o o o o o

■Tfc— slow est Brent
(DBR: 0 .1 /0 .001)

-♦— fas te s t Brent
(BR: 0 .9 /0 .001)

-■ -D B R : 0 .5 /0 .2 5

-A—DBT-DBR

- slow est MTRS
(ST: 0.0001, 4/10)
fas te s t MTRS
(RT: 0.01, 2/4)

MSE

106

Graph 27 - Training speed, QN without resets (XOR, linear)

150 1

c
E 100 -

I
g
UJ

I
o o o o o

o

- slow est Brent
(DBR: 0 .1 /0 .001)

-fastest Brent
(BR: 0 .9 /0 .001)
DBR: 0 .5 /0 .2 5

DBT-DBR

-slow est MTRS
(ST: 0.0001, 4/10)

-fastes t MTRS
(RT: 0.001, 2/4)

MSE

Graph 28 - Training speed, QN without resets (sine)

300 -I

250 -

c
a 200 -

I
g 150 -
UJ

i
I 100 ■

§o od

slow est Brent
(BR: 0 .1 /0 .001)
fa s te s t Brent
(BR: 0 .9 /0 .001)
DBR: 0 .5 /0 .2 5

DBT-DBR

slow est MTRS
(ST: 0.0001, 4/10)
fas te s t MTRS
(RT: 0.01, 2/4)

MSE

107

The preceding graphs largely support the modern preference for inaccurate line searches,

as the following observations make clear:

• with Brent's method, a high accuracy of ̂ =0.1 (Eq. 3.28) accounted for 10 of the 12

slowest performances, whereas all 12 of the fastest Brent performances were produced

by a low accuracy of ^=0.9;

• the hybrid Brent/backtracking algorithm DBT-DBR - which, as noted in section 4.4.1,

is generally less accurate than Brent's method with ^=0.9 - was faster than the fastest

Brent performance in 8 out of 12 cases, and approached the speed of the fastest Brent

performance (at error tolerances of £’>0.001) in the remaining 4 cases.

However, this endorsement of inaccurate line searches is not entirely unqualified. In

addition to the problems encountered with the highly-inaccurate non-hybrid backtracking

algorithms BT and DBT, two further points emerged in the preceding analysis.

• With Brent's method, low accuracy did not guarantee fast training. All of the low

accuracy settings - i.e. <?=0.9 with or without derivatives and with u (Eq. 3.29) of

0.001, 0.25 or 0.4 - performed well with many, but not all, combinations of

multivariate algorithm and task. On balance, the moderate-accuracy DBR: 0.5 / 0.25

algorithm - used widely in this research as the representative Brent algorithm - is

probably as good a choice as any, as it approached the speed of the fastest Brent

algorithm in every case.

• With all but the non-resetting QN algorithm, the hybrid DBT-DBR algorithm proved

comparatively slow at relatively low error tolerances for the XOR task with sigmoid

output nodes.

These qualifications are not surprising; it is well known that the less-robust multivariate

algorithms (e.g. CG and NQN) do not always perform well with inaccurate line-searches,

and backtracking algorithms are designed to work with multivariate algorithms, such as

the non-resetting QN algorithm with positive definiteness enforced, for which the Newton

direction and Newton step are defined at each iteration. Given the lack of theoretical

justification for using backtracking strategies with other methods, it is perhaps surprising

that they are as effective as the results in this research suggest.

108

The results for the non-resetting QN algorithm indicate that model-trust region strategies

are less sensitive than Brent's method to the setting of parameters. In general, the RT

strategy was slightly faster than the ST strategy (with the same settings) and both RT and

ST strategies slightly faster with shrink/growth constants of 2.0/4.0, rather than 4.0/10.0.

These results also suggest that there is little to chose between model-trust region methods

and the hybrid DBT-DBR line-search algorithm.

Finally, it is useful to compare the results for different versions of the non-resetting QN -

the most robust second-order algorithm used in this research, and the subject of the

greatest number of tests - in terms of the number of EFEs performed at each epoch. The

mean number EFEs per epoch gives a measure of the accuracy of an algorithm that is

independent of the choice of line-search/model-trust region strategy and settings. Graphs

29, 30 and 31 show that, for each training task, there is strong correlation between the

mean EFEs per epoch and the median EFEs per run - the fewer EFEs per epoch, the faster

the algorithm.

Graph 29 - EFEs per run vs. EFEs per epoch, QN methods without resets (XOR,
sigmoid)

175 -,

150 - □ □
c
2
&
g

125 -

100 -
UJ

5
75 -

E

50 -

0 2 4 6 8

X E=0.01
□ E=1e-6

mean EFEs per epoch

109

Graph 30 - EFEs per run vs. EFEs per epoch, QN methods without resets (XOR,
linear)

150 -I

125 -
XXc

2
I
s

100 -

UJ

I 75-

1
50 -

0 2 4 6 8

X E=0.01
□ E=1e-6

mean EFEs per epoch

Graph 31 - EFEs per run vs. EFEs per epoch, QN methods without resets (sine)

300 -I

250 -

c
2 200 -I
g 150 -

100 -

E

50 ■ X<

2 4 60 8

X E=0.01
□ E=0.0001

mean EFEs per epoch

110

4.4.3 Conclusion

The results of section 4.3 and analysis of section 4.4 suggest the following practical

guidelines for the selection of a fast MLP training algorithm with a reasonably high rate

of global convergence, given no prior knowledge about the properties of the MLP error

surface (i.e. the existence of local minima or the size of residuals at the solution);

• To maximise training speed, use second-order methods. The QN algorithm is

consistently fast; if the O(n^) storage costs of the QN algorithm is prohibitive, both the

CG and NQN algorithms are viable alternatives. The LM method may be highly

effective, but cannot be recommended in general because of its sensitivity to the

presence of residuals at the solution.

• To maximise the chance of finding a global solution, use an algorithm that resets the

model at every iteration, such as SD or LM. Of the second-order algorithms

recommended on grounds of training speed, the CG and NQN algorithms are more

likely to avoid local minima than the QN algorithm. With all three of these algorithms,

resetting the model periodically may improve the chances of avoiding local minima.

• Provided the chosen multivariate algorithm is sufficiently robust, the adoption of an

inaccurate line-search strategy or a model-trust region strategy can improve both

training speed and the global convergence rate of the algorithm.

These results also suggest two important areas for future research:

• the development of 'variable' training strategies, i.e. ones which vary the accuracy and

reset frequency of an algorithm at different stages of training;

• the development of nonlinear least-squares algorithms for MLP training that have 0{n)

storage requirements, and that are not sensitive to the size of the residuals at the

solution.

I l l

5. GLOBAL OPTIMISATION - A NEW ERA?

The term 'global optimisation' covers a diverse range of strategies designed to improve the

chances of converging to a global, rather than a local, minimum. Global optimisation

strategies fall into two broad classes - stochastic (or probabilistic) methods, and

deterministic (or classical) methods; typically, the former allow uphill motion with respect

to the chosen error function, whereas the latter do not. The main purpose of this chapter is

to assess the potential for combining global optimisation strategies with the fast second-

order training methods of chapter 4 to produce fast global training methods - the

fundamental goal of this research.

This chapter is in two parts. Section 5.1 considers global optimisation in general, and

assesses the contrasting suitability of different global and second-order optimisation

strategies for the development of fast global methods. The analysis conducted for this

research suggests that the comparatively under-researched field of deterministic global

optimisation is well-suited to second-order training. Section 5.2 presents a novel global

training strategy - Expanded Range Approximation (ERA) - developed jointly with Dr D

Gorse and Prof. J Taylor [Gorse, Shepherd & Taylor, 1993a, 1993b, 1994a, 1994b,

1995]. ERA is a deterministic strategy which requires modification to the MLP training

set only, so that implementation with any of the training methods considered in chapter 4

is trivial.

5 .1 Introduction to Global Optimisation

5.1.1 Stochastic methods

The term ‘stochastic methods’ covers a wide variety of techniques - of contrasting

algorithmic complexity, performance and theoretical justification - for avoiding local

minima (and other error-surface obstacles) through the addition of ‘noise’. In contrast to

the classical methods of chapter 3, all these techniques allow uphill motion with respect to

the chosen error function. Stochastic methods can be divided into two broad categories,

depending on whether noise is added to the system from the outset of training, or only

112

when the MLP has converged to a local minimum. In the light of research by Gorse (using

the Folak-Ribiere conjugate gradient algorithm), which suggests that random

perturbations of the search direction and 'various kinds of stochastic adjustment to the

current set of weights' are largely ineffective at enabling MLPs to escape from local

minima [Gorse, 1992], this section concentrates on stochastic methods that add noise

throughout the training process.

The fundamental problem for all stochastic methods is how to determine the appropriate

level of ‘noise’ for an arbitrary minimisation task; too little, and the algorithm may

become trapped in a local minimum; too much, and it may fail to converge to a global

minimum within a reasonable number of iterations. What is needed is some scheme for

adapting the level of noise; for an arbitrary task with no special features, the intuitively

sensible approach is to reduce the amount of noise as the minimisation proceeds. Two

widely-used strategies are to gradually reduce the level of noise as the number of

iterations increases - known as simulated annealing (SA) [Kirkpatrick, Gelatt & Vecchi,

1983] - or as the error level falls - known as time-invariant noise algorithms (TINA)

[Burton & Mpitsos, 1992]. (A similar effect can be achieved in the context of on-line

MLP training by adopting a suitable scheme for adapting the size and composition of the

subset of patterns presented to the network at each iteration.)

A number of training strategies have been developed that combine stochastic and first-

order information, the most widely-used being the traditional' on-line BP algorithm

described in section 2.3.2. In addition, algorithms that combine simulated annealing with

BP [Wasserman, 1989] [Amato et al., 1991] and TINA with BP [Burton & Mpitsos,

1992] have been developed, as well as numerous strategies for combining genetic

algorithms (GAs) [Holland, 1975] with BP (see, for example, [Belew, Mclnemey &

Schraudolph, 1991]). (In fact, the algorithms of Amato et al.. Burton and Mpitsos, and

Belew et al. can be regarded as doubly stochastic' in that SA, TINA and GAs are

combined with on-line BP.) All these strategies perform well on specific problems, but

have potential weaknesses. For example, the SA and TINA methods are sensitive to the

heuristic choice of constants', whereas with 'traditional' on-line BP the level of noise

' Burton and Mpitsos used noise constants of 0.3 for SA and in the range 2-5 for TINA, but note
that 'the noise constants usually had to be decreased as the teacher task [i.e. training task]
became more difficult, and when increasing the number of hidden units beyond 32' [Burton &
Mpitsos, 1992, 629].

113

added to the system is an arbitrary function of the training set and network architecture,

and may not produce a higher rate of global convergence than (non-stochastic) batch BP -

as is the case with the results presented in chapter 4.

Rather than provide a detailed evaluation of the strengths and weaknesses of strategies

that combine stochastic information with fixed step-length BP, our primary concern here

is to assess the potential for combining stochastic information with variable step-length

second-order methods to form fast global training algorithm. In this context, several

fundamental difficulties present themselves.

• Second-order methods for general optimisation that rely on stored information from

previous training epochs (i.e. the CG, QN and NQN methods) are likely to be severely

disrupted by the addition of noise in a way that methods which compute a completely

new model at each iteration (BP, SD, LM and Newton's method) are not.

• In contrast to classical optimisation, the optimal training rate (step length) at each

iteration for stochastic methods is poorly understood. Results from stochastic

approximation theory provide a theoretical basis for adjusting the on-line training rate

r| as a function of time (for a brief summary, see [Mpller, 1993e, 23]). An example is

the search then converge (STC) training rate schedule of Darken, Chang and Moody

[1992], given by

Eq. 5.1 ^0 no T:

T|o 'C T

where T|t is the training rate at iteration k, parameter c is set greater than a threshold of

l/2Xmin (where Â in is the smallest eigenvalue of the Hessian of E), and parameter t

relates to the number of anticipated training epochs. The significance of the STC

schedule is that, when implemented with a suitable scheme for estimating c (using, for

example, the Power method [Mpller, 1993e, 24]), an optimal rate of asymptotic ('large

time') convergence is guaranteed for on-line BP. In practice, however, the convergence

rate associated with the STC schedule is highly dependent on the choice of parameters

Tio and T . Whereas it is possible to estimate c automatically, guidance for setting

parameters T|o and t is essentially heuristic, or requires prior knowledge about the

114

problem. Mpller rightly concludes that 'methods for the initial setting of these

parameters are needed in order for the [STC] method to have any real practical use'

[M0ller, 1993e, 24].

• There is a fundamental mis-match between the theoretically-justified schedules for

reducing noise with SA methods and the convergence rates of second-order methods.

With SA algorithms, the amount of noise generated at a given iteration depends on the

choice of generation function and an artificial temperature parameter T. With noise

generated according to a Gaussian distribution - the basis of Boltzmann annealing - T

should be reduced no faster than

Eq.5.2 T ,= T j\n {k)

to guarantee that the system will statistically find a global minimum. With noise

generated according to a Cauchy distribution - known 2&fast annealing [Szu &

Hartley, 1987] - T can be reduced at the faster rate of

Eq. 5.3 = T q I k .

However, both of the schedules given by Eq. 5.2 and Eq. 5.3 are much slower than the

anticipated rates of convergence associated with second-order methods (see section

3.1.2).

These factors do not preclude the development of effective hybrid stochastic/second-order

methods, but suggest that the direct combination of stochastic and second-order

information is highly problematic - unless the stochastic component is comparatively

small. Judging by available research in this field, practical implementations of hybrid

stochastic/second-order methods fall into two categories - those which completely isolate

the second-order method from stochastic 'noise', and those which severely restrict the level

of noise added to the system. Examples of the former are:

• algorithms that have two distinct training phases - a stochastic phase and a classical

second-order phase, e.g. the hybrid on-line BP/conjugate-gradient algorithm proposed

in [Shepherd, 1992], which switches from on-line BP to CG after a user-defined

number of training epochs have elapsed;

• hybrid GA/second-order algorithms used for 'sampling and search', by which the GA is

used to chose initial weights for a population of MLPs, each of which is trained using

115

a classical second-order method, e.g. the hybrid GA/CG algorithm in [Belew,

Mclnemey & Schraudolph, 1991]^.

An example of a hybrid stochastic/second-order method that combines stochastic and

second-order information directly but severely restricts the level of stochastic noise

throughout the training process is Mpller’s on-line CG algorithm [M0ller, 1993b]. At

each training epoch, Mpller's algorithm uses a validation scheme to ensure, with a high

probability, that the normalised error for the subset of patterns (chosen using standard

sampling techniques or by an active data-selection scheme) is an approximation to that for

the entire training set; the better the approximations are the better and more reliable will a

conjugate gradient algorithm converge' [Mpller, 1993e, 41]. As with the strictly classical

implementation of CG methods described in chapter 3, Mpller's algorithm resets to the

steepest descent direction whenever a given (i.e. the search direction at iteration k) fails

to satisfy Eq. 3.9 (i.e. is not a descent direction).

M0ller's algorithm has several important merits: it has a much better theoretical

foundation than the majority of proposed strategies in this field, its performance does not

rely on heuristically-chosen parameters, and it appears to be highly successful at

eliminating redundancy in the training set. However, M0ller does not quantify the global

convergence properties of the algorithm - a primary issue for the current discussion. From

the perspective of global optimisation, it is clear that Mpller's on-line CG algorithm is

very different in character to traditional implementations of on-line BP; with traditional

on-line BP, wild changes in the error surface are permitted at each iteration, whereas

Mpller's algorithm expends considerable effort ensuring that the error surface does not

change very much throughout the training process. For this reason it seems likely that the

global convergence properties of Mpller's on-line CG algorithm are little (if any) better

than those of classical CG.

 ̂ Interestingly, the experiments performed by Belew et al. suggest that the tendency for CG and
other classical algorithms to generate weights of much greater magnitude than those generated
by BP can be problematic for GA schemes that involve encoding of the weight vector w. Using a
uniform encoding scheme, GA/BP was able to find 'perfect solutions' to the six-bit symmetry
task whereas the solutions found by GA/CG were poor in absolute terms' [Belew, Mclnemey &
Schraudolph, 1991,532].

116

5.1.2 Deterministic methods

As noted in the introduction, deterministic global methods - unlike stochastic global

methods - share the fundamental property that an increase in network error is not required

at any stage of the training process. Outlined below are two contrasting approaches to

deterministic global optimisation - homotopic methods and tunnelling methods. In neither

case do the problems associated with combined stochastic/second-order training methods

(discussed in section 5.1.1) arise.

Homotopic methods. Two functions f(jc) and g(%) are said to be homotopic to each other if

/can be continuously deformed into g, or vice versa - i.e. there exists a homotopy

function h(X., %), continuous in both its variables, for which h(0, x) = g(x) and h(l, x) =

f(x). The fundamental idea behind homotopic methods for the solution of nonlinear

systems is to use a homotopic function h to progressively deform a simple function g,

with a known solution, into the nonlinear function/ to which a solution is desired. A

variety of such methods, of varying complexity, have been devised outside the field of

neural networks (see, for example, the method in [Finhoff & Zimmerman, 1992] for the

solution of nonlinear systems of equations).

The second half of this chapter is devoted to a novel homotopic training strategy, ERA,

specifically designed for training MLPs. Rather than attempt to devise - for an arbitrary

MLP architecture and training task - a simple function with a known solution, ERA

deforms the 'normal' error surface E into a surface E' that is easier to solve; having

minimised E\ surface E' is progressively deformed back into the original surface E.

Details of the ERA method are given in section 5.2.

Tunnelling methods. Tunnelling methods proceed in cycles, with each cycle comprising a

minimisation phase followed by a tunnelling phase. In the minimisation phase, the MLP is

trained in the normal manner using a given minimisation algorithm, until a minimum w* is

located. The method then enters the tunnelling phase, in which regions of the error surface

where E(w) > E(w*) are 'tunnelled through' until a region is located where E(w) < E(yv*).

The cycles are repeated iteratively until a global minimum is located.

117

Probably the most effective tunnelling strategy to date is the TRUST (Terminal Repeller

Unconstrained Subenergy Tunnelling) method [Cetin, Barhen & Burdick, 1993]^. At a

given minimum w*, the TRUST method defines a sub-energy tunnelling function which

flattens all values of E(w) above a threshold of E(w*) that lie within a specified domain

of interest D; values of E(w) below threshold E(w*) are left 'nearly unmodified' [Barhen,

Fijany & Toomarian, 1994, 371]. An important characteristic of the TRUST method, as

modified by [Barhen, Fijany & Toomarian, 1994], is that convergence to a global

minimum is formally guaranteed within domain D. However, the TRUST method is much

more complicated to implement than the homotopic ERA method of section 5.2, and relies

on the user to specify the domain of interest D. (The published results in [Barhen, Fijany

& Toomarian, 1994] for the TRUST method with gradient descent are based on

comparatively small domains of interest, with weights restricted to the range [-10, +10],

or smaller. In general, such settings would be inappropriate when using the TRUST

method with classical optimisation algorithms, owing to the tendency of such algorithms

to generate weights of large magnitudes.)

5.2 Expanded Range Approximation (ERA)

5.2.1 Introduction

The fundamental idea behind the Expanded Range Approximation strategy is to perform a

homotopy on the target-vectors tp of a given MLP training-set, S. The

homotopy is achieved by compressing the target-vectors to their mean values - i.e. the

mean target-vector <t> with elements

1 p
Eq. 5.4 < f >, , for/=1,...,A^

- and then progressively expanding them back to their original values. The expansion of

the compressed target-vectors, t/,(X) (p=l,...,P), is regulated by a range parameter X,

(0<X<1) according to the following rule:

 ̂ For a useful summary of the development of tunnelling algorithms for global optimisation, see
[Cetin, Barhen & Burdick, 1993, 99-102].

118

Eq. 5.5 < t > < t >) .

A parameter value of 1=0 sets each tp(X) to <t>, a value of 1=1 gives the original training

set S. In place of the error function E given by Eq. 2.3, the modified training set S(l) is

evaluated using a corresponding error function, E(l), defined by

Eq.5.6 .
p = \ 1=1

With 1=1, Eq. 5.6 is equivalent to Eq. 2.3. By monotonically increasing the range

parameter from 1=0 to 1=1 in a series of steps, the error surface E(0) is progressively

deformed into the original error surface E(l).

Our analysis of how the ERA method works suggests that its success is attributable to the

following: the problem defined by 1=0 appears to have only a global minimum, and can

be solved trivially; a sufficiently small step T| away from 1=0 (i.e. l = q « l) is seen to

keep the system within the basin of attraction of a global minimum; and the range can be

progressively expanded up to 1=1 without displacing the system from the global minimum

at any step. A summary of our (on-going) analysis is presented in section 5.2.2. (Full

details are given in [Gorse, Shepherd & Taylor, 1995].)

At present, ERA is underpinned by empirical evidence only - the method has been seen to

give a greatly improved probability of global convergence in all the cases examined. A

theoretical underpinning which delineates the conditions (for example, the rate of

expansion of parameter 1) under which ERA can be guaranteed to work is obviously

desirable, and an analytical study of the technique is under way. However, even if it can

be shown that ERA works in theory, it does not guarantee that a practical implementation

is possible; if, to successfully avoid local minima, it proved necessary to expand the range

parameter from 1=0 to 1=1 in a very large number of steps and/or to approximate a

global minimum of E(l) at each step to a high degree of accuracy, it is likely that ERA

would be deemed excessively slow for many practical tasks. The practical implementation

and performance of the ERA method are the subjects of sections 5.2.3 and 5.2.4

respectively.

119

5.2.2 How ERA works

The following 3-stage description of the ERA method is applicable to its use with any

classical multivariate algorithm, i.e. the only assumption made is that successive search

directions satisfy Eq. 3.9. In practice, ERA can also improve the practical performance of

non-classical training methods (see, for example, the results in section 5.2.4 for ERA with

on-line BP).

Solving the system fork=0. Although we have yet to derive a general proof that the error

surface E(0) has only a single global minimum, we have accumulated considerable

evidence - both analytical and empirical - to support this proposition. A limited proof, for

the XOR task and a 2-layer MLP, is given in the appendix of [Gorse, Shepherd & Taylor,

1995]. The empirical evidence for the proposition that the error surface E(0) has only

global minima comes from simulations performed with randomly generated architectures

and training sets, as summarised in Table 37. In each case, the training set comprised

different input pattem-vectors, but identical target-vectors (with both pattern- and target-

vectors set randomly to real values in the range [0, 1]). The task of minimising such a

training set (i.e. one with the same target outputs for all input patterns) using the mean-

squared error function given by Eq. 2.3 is equivalent to solving E(0) for some training set

which has, as its mean target-vector, those target outputs. (In all cases, weights were

initialised in the range [-1 , 1] and the network architecture used sigmoid output nodes.)

All of the tasks summarised in Table 37 converged to within 100 training epochs

using the non-resetting QN algorithm with the DBR line-search - i.e. the training

algorithm which, judging by the results in chapter 4, is most prone to getting trapped in

local minima.

120

Table 37 - MLP architectures, training set sizes, and numbers of runs used in testing
the proposition that E(0) has only a global minimum

architecture # of training pairs # of runs
8-1 62 30
25-1 28 24
3-1-1 41 5
5-2-1 33 41
5-3-1 21 58
5-4-1 42 16
2-2-2 36 18
3-4-2 30 22
4-1-2 32 19

To satisfy the condition E=0 for A,=0, the MLP weights must be of a special form - i.e.

one that ensures that, whatever the input pattern, the output is always the same. For a

single-layer N-1 MLP architecture with the target value <t> for each input pattern, the

following weight values are guaranteed to satisfy E=0:

Eq. 5.7 wJo = In
<t>

1 - < r > ,

w/. =0, fork = 1,...,7V°,

where weight wJq connects the output node nj to the bias unit and weight connects n] to

the kth input element. For a 2-layer MLP architecture with target-vector <t> for each

input pattern, the following weight values are guaranteed to satisfy E=0 :

Eq. 5.8 w,o = In
1 - < t >; ;=i

wjjt = 0 , fory = 1, . . . A/’ and/: = 1, . . . , ,

where s (a :) is the sigmoid function. The terminal network weights from the training runs

performed with each training tasks in Table 37 - more than 200 sets of weights in total -

were compared with these predictions; in every case the weights satisfied Eq. 5.7 or Eq.

5.8 (as appropriate) to an accuracy of at least five decimal places.

According to Eq. 5.7 and Eq. 5.8, the error surface E(0) has a single global minimum.

However, with a 2-layer MLP the global minimum constitutes a surface, rather than a

121

single location in weight-space, and one for which the network weights may have infinite

values.

The first step X = x\« l. To justify the assertion that a sufficiently small step away from

X,=0 keeps the system within the basin of attraction of the E(0) global minimum (located

by the weight-setting procedure described above), it is useful to investigate the properties

of the error surface E(T|). We can do this by reformulating the error function of Eq, 5.6 as

follows:

Eq. 5.9 E(r|) = E(0) + Ti î + O(Ti^),

where the value of y^(0), the derivative of yf'p (O), depends on the chosen learning law,

but is assumed bounded. In terms of Eq. 5.9, what we need to show is that the

perturbation brought about by the term rjEi will not create any local minima, i.e. will only

shift the location of the global minimum. Outside a small neighbourhood (No) of the

global minimum, it can be shown that no local minima can exists whenever

Eq. 5.10 T)
3w

3E(0) a
9w 3w

[E (0) + t | E i] ^ 0 .

To visualise how a first step T| that is sufficiently small guarantees the absence of local

minima outside Nq, let us consider the one-dimensional case where a perturbation, in the

form of a surface E\ with multiple minima, is added to an error surface E(0) with a single,

global minimum - see Figure 4. The number of stationary points in the error surface E(r|)

depends on the number of intersections between the linear function E'(0) and the function

-q Ef (i.e. the number of locations where the derivative [E(0)-l-qEi] = 0), and the

number of such intersections is determined by the size of q. This point is illustrated in

Figure 5; of the three error surfaces, corresponding to three different values of q

(T|]<q2 <q3), only E(qi) has no local minima.

Within neighbourhood No, we should expect the location of the global minimum to be

shifted by no more than 0 (q) as q^O , owing to the smoothness of the error surface.

122

Figure 4 - Schematic representation of error surfaces E(0) (with a single global
minimum) and Ei (with multiple minima)

E(0) - global minimum

+ El - may have many
local minima

123

Figure 5 - Illustration of how the number of stationary points in error surface E(T|) is
determined by the size of t\ (tii<t12<T|3). Stationary points in E(t|) occur where the
linear function E'(0) intersects function -t) EJ.

E'(0)
“■naE'i

-riaE'i
-TjiE'i

24

Expanding the range to X=l. As with the argument developed for the first step, the

smoothness of the MLP error surface is the key to showing how the system can be kept

within the basin of attraction of a global minimum while progressively expanding the

range parameter up to X,=l. Having located the global minimum w(A<) for the current step,

we should expect a subsequent step of e to keep the network within the basin attraction of

the 'expanded' global minimum w(A,+e) - provided the network approximates w(X,) with

sufficient accuracy and e is sufficiently small. This derives from the observation that the

basin of attraction of w(X,+e) should contain location w (l) when e->0 , assuming that

w(X.+e) is shifted from location w (l) by only 0(e) as e—>0 .

Whereas error surface E(X,=0) has a unique global minimum, error surface E(1>0)

typically has many global minima. The possibility that one or more global minima in the

error surface E(lt) (for 0<Xk<l) may cease to be global minima in surface E(X,*+i) (for

A,jk<X,jk+i<l) is currently an obstacle to a general proof of the ERA method.

5.2.3 Implementing ERA

For this research the ERA method was implemented with three user-defined parameters:

the size of the first step, T|>0 ; an expansion-rate parameter, p>l; and an error-tolerance

parameter, e>0 , controlling the accuracy with which a global minimum of E(X,) is

approximated at each step (with X. < 1). Given initial values of Xo=0 and X,=T|,

subsequent values of range parameter X are defined as follows:

Eq. 5 . 1 1 Xt+] = min[l.O,X^-l-p(X^-X;t-i)]> for ^ > 1 .

An 'Â -step ERA' method refers to the special case where (3=1.0 and T| is chosen such that

l/r| is a whole number - i.e. range parameter X is expanded in steps of a uniform size, so

that the method requires the solution of the N problems S(X„=nTi) for n=l,...,A^= l/r|.

Although suitable for the experimental investigation of the ERA method conducted for

this research, the use of an error-tolerance parameter to terminate ERA training steps is

not satisfactory in general, because the appropriate' level of error tolerance varies from

task to task and step to step (depending on the scale of E(X) and the size of the residuals

125

at a global minimum of E(X,)). One alternative is to terminate a training step (with l t < l)

only when the gradient drops to zero, but this approach is likely to entail a significant

increase in the total number of training iterations unless the number of steps is small and

the chosen training algorithm converges rapidly near a minimum. A second alternative is

to terminate intermediate ERA steps on the basis of the correct classification of training

patterns in the training set. For instance, a step could be terminated when q< P (for a P-

pattem training set) patterns are 'correctly classified', i.e. satisfy

Eq.5.12 f o r O< r < l ,
h , p - < f > i

where parameter r determines the degree to which networks output y[̂ p is required to

match target output for it to be deemed 'correct'. (With q = P and r = 1, a step is

terminated only when E = 0.) Schemes for automatically adjusting user-defmed

parameters q and r are currently under investigation.

Finally, when using the ERA method with one of the second-order classical algorithms for

general optimisation considered in chapters 3 and 4, these algorithms were reset to the

steepest descent direction at the start of each step, on the grounds that a descent direction

for error surface E(X,jt) is not guaranteed to be a descent direction for error surface

E(ĵt+i).

5.2.4 Experimental results

N-step ERA. The preliminary set of ERA results presented in Tables 38, 39 and 40 are for

the Â -step ERA method - implemented with the classical and traditional training

algorithms evaluated in chapter 4 - applied to the sigmoid XOR, linear XOR and sine

problems respectively. (For the sine problem, results are for the non-resetting quasi-

Newton algorithm QN nr only, on the grounds that no other algorithm had a significant

failure rate on this problem without the ERA method - see results in section 4.3.4.)

Selected results from these tables are presented in Graphs 32 and 33. Training conditions

were identical to those used to generate the results in chapter 4 (see section 4.3.1), with

126

the exception of the epoch limit - set to 50,000 for each ERA step. The error tolerance (at

X,=l) was £= 0 .0 1 .

Table 38 - A-step ERA, XOR with sigmoid output nodes

ERA error tolerance: e=1.0'°* (classical methods), e=1.0'° ̂(BP)
Line search: DBR with parameters ^=0.5 (Eq. 3.28) and u=0.25 (Eq. 3.29)
Model-trust region strategy (LM only): RT with parameter Mo=0.01 (Eq. 3.15) and
reduction/growth constants 2.0/4.0
Backpropagation settings: training rate r|=3.0, momentum a=0.0

A-step ERA
method: N

minima (%)
global 0.0625 0.0833

EFEs per run
mean s.d. median

resets
/ run

EFEs
per &

QN nr: regular 36.0 29.0 35.0 89.7 38.1 113 0.08 4.02
QN nr: 1 54.5 23.5 2 2 . 0 115.0 41.7 107.5 0.08 3.76
QN nr: 2 6 6 . 0 17.0 17.0 191.6 124.3 162.8 0.06 3.44
QN nr: 5 72.5 14.5 13.0 320.0 188.2 282.5 0.16 3.22
QN nr: 10 79.5 14.0 6.5 479.4 238.4 441.5 0.09 3.07
QN nr: 20 87.5 7.5 5.0 758.5 254.3 730.0 0.07 2.99
QN nr: 50 93.5 5.0 1.5 1,496.5 559.7 1,533.5 0.17 2.95
QN nr: 100 94.5 4.5 1 . 0 2,824.5 660.9 2,953.5 0.05 2.90

QN: regular 62.5 30.5 7.0 141.1 170.9 96.0 0.08 4.13
QN: 1 74.0 16.5 9.5 146.0 64.5 131.5 0.07 3.59
QN:2 8 8 . 0 8 . 0 4.0 249.3 169.0 214.0 0 . 1 1 3.39
QN:5 93.5 5.5 1 . 0 428.1 887.7 350.5 0 . 0 2 3.36
QN: 10 97.0 3.0 0 . 0 557.3 123.2 535.3 0 . 0 1 3.03

NQN: regular 65.5 27.0 7.5 166.3 283.3 115.0 0.14 3.98
NQN: 1 75.0 18.0 7.0 237.8 181.6 185.8 0.16 3.61
NQN: 2 87.5 11.5 1 . 0 585.6 1,984.7 310.0 0 . 2 2 3.62
NQN: 5 95.5 4.5 0 . 0 1,054.7 5,266.7 567.5 0.13 4.19
NQN: 10 99.0 1 . 0 0 . 0 1,242.9 2,194.5 956.8 0.16 3.32

CG: regular 61.5 26.5 1 2 . 0 177.1 604.4 83.5 0.44 6.47
CO: 1 77.5 15.0 7.5 282.1 1,314.9 139.0 0 . 6 6 6.39
CG:2 92.0 6.5 1.5 261.8 367.5 2 0 2 . 0 0.61 3.85
CG:5 94.0 5.5 0.5 361.5 81.1 340.3 0.71 3.44
CG: 10 99.0 1 . 0 0 . 0 1 ,2 2 0 . 0 9,053.8 562.3 0 . 8 6 5.69

SD: regular 82.5 16.5 1 . 0 280.5 123.0 256.0 3.57
SD:1 87.5 12.5 0 . 0 9,500.3 1.8°4 2,360.5 - 3.54
SD:2 90.0 1 0 . 0 0 . 0 i.r 2.f^ 3,279.5 - 3.53
SD:5 97.5 2.5 0 . 0 1 .2 ®̂ 1 9 0 4 5,688.0 - 3.53

BA: regular 83.5 16.0 0.5 967.9 688.9 808.0 1 . 0

BA: 2 8 8 . 0 1 2 . 0 0 . 0 3,875.2 1.1°4 2,672.0 - 1 . 0

BA: 5 95.0 5.0 0 . 0 9,471.6 6,927.9 7,548.0 1 . 0

127

A-step ERA
method: N

minima (%)
global 0.0625 0.0833

EFEs per run
mean s.d. median

resets
/ run

EFEs
per A:

OL: regular 83.0 16.0 1 . 0 1,300.4 2,506.2 869.5 - 1 . 0

OL:2 91.0 9.0 0 . 0 3,934.0 1,167.9 3,657.5 - 1 . 0

OL:5 96.5 3.5 0 . 0 8,519.1 4,781.2 7,523.0 - 1 . 0

LM: regular 90.5 9.5 0 . 0 12.4 2 . 8 1 2 . 0 0.41 1.03
LM: 1 94.0 6 . 0 0 . 0 38.1 4.9 38.0 0.52 1 . 0 1

LM: 2 97.0 3.0 0 . 0 65.4 1 0 . 8 64.0 0.61 1 . 0 1

LM: 5 1 0 0 . 0 0 . 0 0 . 0 138.9 16.5 138.0 0.77 1 . 0 1

Table 39 - A -̂step ERA, XOR with linear output nodes

ERA error tolerance: e=1.0'°®
Line search: DBR with parameters g=0.5 (Eq. 3.28) and «=0.25 (Eq. 3.29)
Model-trust region strategy (LM only): RT with parameter m o= 0.01 (Eq. 3.15) and
reduction/constants 2.0/4.0

A-step ERA
method: A

minima (%)
global 0.0625 0.0833

EFEs per run
mean s.d. median

resets
/ run

EFEs
per

QN nr: regular 69.0 2 1 . 0 1 0 . 0 114.2 162.0 78.5 0.15 3.75
QN nr: 1 73.0 14.0 13.0 1 1 1 . 1 29.6 1 1 0 . 0 0 . 0 1 3.41
QN nr: 2 74.5 16.5 9.0 150.7 43.9 142.5 0 . 0 2 3.24
QN nr: 5 82.0 12.5 5.5 224.3 83.2 209.0 0.04 2.99
QN nr: 10 89.0 7.5 3.5 350.5 139.9 323.5 0.04 2.90
QN nr: 20 93.0 5.0 2 . 0 537.2 115.4 523.5 0.03 2.80
QN nr: 50 94.0 4.5 1.5 1,076.6 238.5 1,052.5 0.06 2.72

QN: regular 92.0 7.0 1 . 0 116.5 150.2 87.5 0.04 3.49
QN: 1 93.0 6 . 0 1 . 0 174.0 199.3 134.0 0 . 0 1 3.36
QN:2 98.0 2 . 0 0 . 0 284.9 787.8 179.5 0 . 0 1 3.53
QN:5 99.5 0.5 0 . 0 278.8 78.2 262.0 0.03 2.98

NQN: regular 90.0 7.5 2.5 139.1 133.8 101.5 0.48 3.29
NQN: 1 94.5 5.0 0.5 416.4 495.2 226.0 1.37 3.13
NQN: 2 99.0 1 . 0 0 . 0 490.3 463.4 331.5 2.83 3.07
NQN: 5 1 0 0 . 0 0 . 0 0 . 0 767.0 730.7 591.3 3.66 2.99

CG: regular 90.0 9.0 1 . 0 201.9 641.6 104.0 1.96 3.16
CG:1 96.0 3.5 0.5 395.2 406.0 249.0 6 . 0 0 3.05
CG:2 99.5 0.5 0 . 0 885.7 5,467.6 355.5 7.48 3.08
CG:5 1 0 0 . 0 0 . 0 0 . 0 744.3 384.1 641.8 7.92 2.94

SD: regular 93.5 6.5 0 . 0 1,285.2 1,538.3 924.5 2.77
SD: 1 96.0 4.0 0 . 0 3.4°4 3.0* 2 Xf* - 2.79
SD:2 97.5 2.5 0 . 0 3.0°̂ 2.3̂ 4 2 Xf* - 2.79
SD:5 98.0 2 . 0 0 . 0 4Xf* 2.6°̂ 3 .4 O" - 2.79

LM: regular 99.0 1 . 0 0 . 0 30.1 277.0 1 0 . 0 4.49 1.18
LM: 1 99.5 0.5 0 . 0 40.3 4.4 40.0 0.62 1 . 0 2

LM: 2 1 0 0 . 0 0 . 0 0 . 0 67.0 4.3 66.5 0.61 1 . 0 1

LM: 5 1 0 0 . 0 0 . 0 0 . 0 138.2 5.5 138.0 0.83 1 . 0 1

128

Table 40 - A -̂step ERA, sine task

ERA error tolerance: e=1.0'°^
Line search: DBR with parameters ^=0.5 (Eq. 3.28) and m=0.25 (Eq. 3.29)

A-step ERA
method: N

minima (%)
global 0.023

EFEs per run
mean s.d. median

resets
/run

EFEs
per A:

QN nr: regular 8 8 .0 * 9.0 96.5 44.1 83.5 0 . 0 2 3.39
QN nr: 1 94.0 6 . 0 1 1 1 . 1 40.3 1 0 0 . 0 0 . 0 1 3.26
QN nr: 2 95.0 5.0 497.0 194.3 479.0 0 . 0 1 3.24
QN nr: 5 96.5 3.5 1,126.5 599.4 938.0 0 . 0 1 3.23
QN nr: 10 98.0 2 . 0 1,735.2 779.2 1,405.0 0.03 3.24

Graph 32 - A-step ERA, global convergence frequency vs. log N (XOR, sigmoid)

100

90

Ê
E

oD>

30
o §

QN nr

log N

129

Graph 33 - Â -step ERA, global convergence frequency vs. log N (XOR, linear)

100

95

90

85

80

75

70
o §

QN nr

log N

The preceding tables and graphs prompt the following observations about the global

convergence properties of the ERA method:

• the global reliability of the A-step ERA method increases with N (whereas the training

speed - measured in median EFEs per training run - decreases with A);

• the optimal size of first step with respect to global convergence frequency is task- and

method-specific;

• the benefit of increasing A for the global reliability of an algorithm is greatest for low

A and least for higher A; substantial benefits accrue even with modest levels of A.

The role of the first step A.=T|. An examination of the network error at each ERA step

suggests that the first step has a special role:

• having solved the problem S(A-i=ti) at the first step, the network was predisposed to

successfully solve the problem S(A,*) (for fc>l) at each subsequent step;

• if the network converged to a local minimum at a given step (with range 0 <A,jt<l), it

never succeeded in converging to a global minimum at any subsequent step;

130

the number of training epochs required to find a solution at the first step is typically

greater than the number required at any subsequent step (of the same size); taking as

an example the 10-step ERA curve of Graph 34, the number of EFEs taken at each

step was as follows: 19 (A,=0); 129 (A,=0.1); 6 8 (1=0.2); 30.5 (1=0.3); 31.5 (1=0.4);

36.5 (1=0.5); 39.5 (1=0.6); 35.5 (1=0.7); 49.5 (1=0.8); 5 (1=0.9); 30 (1=1.0, with an

error tolerance of 1 .0 ^).

Graph 34 - Sample 10-step ERA training curve, QN without resets (XOR, sigmoid)
An example of a training run that converged to a local minimum (at £=0.0625) with the
standard QN algorithm, but successfully converged to a global minimum with 10-step ERA. The
10-step ERA curve is plotted using the E(l) error function; although the error E(lt) never
increases at ERA step k, the error E(l) can - and, in this instance, does - show local increases for
1< 1.
Settings: line search DBR 0.5 / 0.25, ERA error tolerance e=1.0'®*

0.14 -I

0.12 -

0.08 -u
(/)s

0.06 -

0.04 -

0.02 -

o § § § s §

- regular
10-step ERA

EFEs

To gain an insight into the impact of T| - the size of the first step - on the dynamics of

MLP training, further experiments were conducted (with various sizes of T|), focusing on

the behaviour of the network outputs and weights during the solution of S(t|). Graphs 35,

36, 37 and 38 plot - for rj=l .0, Tj=0.3, r|=0.2 and r|=0.1 respectively - the change in

131

network outputs for two of the four patterns in the XOR training set, p,=00 and P3 = 1 0 .

So that all four graphs have identical scales, the values are plotted according to the

following coordinate transformation:

Eq. 5.13 “ 0-5(1-Tl)) ,

where 0.5 is the mean target value <t> for the XOR problem. In each case, the top left-

hand comer (0,1) represents a global minimum of E(T|), and the midpoint on the);-axis (0,

0.5) represents a local minimum of E(t|) (at E=0.0625 for E(r|=l)).

These graphs point to a progressive change in network behaviour as rj is decreased. At

r|=1.0 (Graph 35) the output values rapidly converge to the local minimum. At T|=0.3

(Graph 36) the network again converges to the local minimum, but the trajectory appears

to come closer to escaping to the desired solution. At r|=0.2 (Graph 37) the trajectory

spends a lot of time in the vicinity of the local minimum, but ultimately succeeds in

reaching the global minimum. Finally, at T|=0.1 (Graph 38) the trajectory heads more-or-

less directly to the global minimum.

Graph 39 plots, for different sizes of T|, the changes in value of a single MLP weight

during the first 60 epochs of training on the XOR task with sigmoid output nodes. The

graph focuses in on the critical value of T| (Tjcrit) at which the network starts to

successfully converge to a global minimum. In this case, 0.13 < r|crit < 0.14, i.e. for

values of Ti below Tjcrit the network consistently converges to a global minimum, whereas

for T| greater than Tjcrit it consistently converges to a local minimum. An interesting feature

of this graph is that not only are the final weight values different when the network

converges to a global rather than local minimum, but the progression to these final values

is also different in character; for Tj > Tjcrit progression to the final weight values is far less

smooth than for Tj < Tjcrit- This behaviour suggests that a phase change occurs in the

learning system at the critical value Tjcrit-

132

Graph 35 - Trajectory of network outputs for XOR patterns 00 and 10 with T|=1.0

1.00

0.75

o

I
2.

0.50

1
0.25

0.00
0.75 1.000.00 0.25 0.50

scaled output for pattern 00

133

Graph 36 - Trajectory of network outputs for XOR patterns 00 and 10 with t]=0.3

I*
§T3

1.00

0.85

0.70

0.55

0.40

0.25

O.IO

- 0.05
0.85 1.000.700.550.10 0.25 0.40- 0.05

scaled output for pattern 00

134

Graph 37 - Trajectory of network outputs for XOR patterns 00 and 10 with T]=0.2

a
ë

o

1.00

0.85

0.70

0.55

0.40

0.25

0.10

- 0.05
0.85 1.000.700.550.25- 0.05 0.10 0.40

scaled output for pattern 00

135

Graph 38 - Trajectory of network outputs for XOR patterns 00 and 10 with T|=0.1

f

1.00

0.75

0.50

0.25

0.00
1.000.750.500.250.00

scaled output for pattern 00

136

Graph 39 - The value of a single MLP weight plotted as a function of time (in epochs)
and first step size (rj)

weight
value

137

Improving the speed o f ERA. The chosen values of parameters e and p used to generate

the results in Tables 38, 39 and 40 are appropriate from the perspective of global

convergence, in that the global convergence frequency at the first step (i.e. for surface

E(A.=T|)) was retained for the fully-expanded problem E(l) in the vast majority of cases.

However, an obvious question is whether these 'conservative' settings for e and p are

overly-conservative with respect to training speed, i.e. is it possible to reduce the number

of steps and/or the required accuracy at each step without degrading the global reliability

of the ERA method? The following results for the non-resetting quasi-Newton algorithm

and XOR task with sigmoid output nodes demonstrate the impact of relaxing parameters

P (Table 41) and e (Table 42) on the global reliability and speed of the ERA strategy for

different sizes of first step T|.

Table 41 - ERA expansion-rate parameter, p
Task: XOR, sigmoid output nodes
Method: BFGS QN without resets
Line search: DBR with parameters ^=0.5 (Eq. 3.28) and i/=0.25 (Eq. 3.29)
ERA error tolerance: e=1.0'®*

first step (n) : 3
minima (%)

global 0.0625 0.0833
EFEs per run

mean s.d. median
resets
/ run

EFEs
per A:

0.2 : 1.0 72.5 14.5 13.0 320.0 188.2 282.5 0.16 3.22
0.2 : 2.0 72.5 14.5 13.0 271.5 204.3 223.8 0 . 1 2 3.39
0.2 : 4.0 72.5 14.5 13.0 207.2 135.4 178.0 0 . 1 2 3.48

0.1: 1.0 79.5 14.0 6.5 479.4 238.4 441.5 0.09 3.07
0.1: 3.0 79.5 14.0 6.5 256.5 148.4 225.3 0.04 3.30
0.1 : 5.0 79.5 14.0 6.5 286.2 165.8 234.0 0.05 3.32
0.1 : 9.0 79.5 14.0 6.5 212.3 126.5 185.5 0.07 3.48

0.05 : 1.0 87.5 7.5 5.0 758.5 254.3 730.0 0.07 2.99
0.05 : 3.0 87.0 8.5 4.5 312.5 225.8 261.0 0.06 3.25
0.05 : 5.0 87.0 8.5 4.5 261.1 181.7 227.0 0.07 3.36
0.05 : 10.0 87.0 8.5 4.5 274.4 173.1 239.5 0.05 3.31
0.05 :19.0 85.5 8 . 0 6.5 218.6 158.1 183.0 0.04 3.49

0.02 :1.0 93.5 5.0 1.5 1,496.5 559.7 1,533.5 0.17 2.95
0.02 : 3.0 93.0 5.5 1.5 345.8 153.8 307.3 0.08 3.25
0.02 : 5.0 93.0 5.5 1.5 306.5 158.3 268.5 0.04 3.29
0.02 :10.0 93.0 5.5 1.5 252.4 87.6 233.8 0 . 1 2 3.39
0.02 : 20.0 93.0 5.5 1.5 263.4 114.8 242.8 0.04 3.35
0.02 : 49.0 77.0 9.0 14.0 215.4 102.4 196.5 0.03 3.54

138

minima (%) EFEs per run resets EFEs
first step (q) : 3 global 0.0625 0.0833 mean s.d. median / run per A:

0.01 :1.0 94.5 4.5 1 . 0 2,824.5 660.9 2,953.5 0.05 2.90
0.01 : 5.0 92.5 4.5 3.0 302.9 230.1 257.0 0.03 3.33
0.01 :10.0 92.0 5.0 3.0 262.4 213.8 223.8 0 . 0 1 3.43
0.01 : 50.0 86.5 7.0 6.5 297.7 229.0 257.5 0.04 3.40
0.01 : 99.0 74.5 8 . 0 17.5 255.4 256.0 2 0 2 . 0 0 . 1 0 3.66

Table 42 - ERA error-tolerance parameter, e

Task: XOR, sigmoid output nodes
Method: BFGS QN without resets
Line search: DBR with parameters ^=0.5 (Eq. 3.28) and u=0.25 (Eq. 3.29)
ERA expansion rate: P=1.0

first step (n) : e
minima (%)

global 0.0625 0.0833
EFEs per run

mean s.d. median
resets
/ run

EFEs
pert

1.0 : 1.0 ®* 54.5 23.5 2 2 . 0 115.0 41.7 107.5 0.08 3.76
1.0: 1.0 ®® 46.0 33.0 2 1 . 0 108.7 40.5 100.3 0.17 4.03
1.0 :1.0 ®̂ 36.0 29.0 35.0 97.9 43.8 89.5 0 . 1 0 3.98

0.5 : 1.0 ®* 6 6 . 0 17.0 17.0 191.6 124.3 162.8 0.06 3.44
0.5 : 1.0 ®® 59.5 23.0 17.5 260.8 179.8 176.0 0 . 1 1 3.51
0.5 : 1.0 ®̂ 55.0 26.0 19.0 146.4 64.5 132.5 0.14 3.59

0.2 : 1.0 ®* 72.5 14.5 13.0 320.0 188.2 282.5 0.16 3.22
0.2 : 1.0 ®® 72.5 15.0 12.5 293.9 203.4 250.0 0.18 3.30
0.2 : 1.0 ®̂ 69.0 19.0 1 2 . 0 231.7 143.4 2 0 1 . 8 0.14 3.36

0.1: 1.0®* 79.5 14.0 6.5 479.4 238.4 441.5 0.09 3.07
0.1 : 1.0'®® 79.5 13.0 7.5 416.1 157.6 383.0 0 . 1 1 3.10
0.1 : l.O'®'* 78.0 16.0 6 . 0 324.9 239.8 275.5 0.14 3.17

0.05 :1.0 ®* 87.5 7.5 5.0 758.5 254.3 730.0 0.07 2.99
0.05 :1.0 ®® 84.0 1 1 . 0 5.0 672.8 397.3 617.5 0.07 3.07
0.05 :1.0 ®̂ 77.5 17.0 5.5 423.8 162.8 395.5 0.06 2.95

0.02 : 1.0'®* 93.5 5.0 1.5 1,496.5 559.7 1,533.5 0.17 2.95
0.02 :1.0 ®® 90.0 7.5 2.5 1,133.1 288.3 1,072.0 0.05 2.91
0.02 : 1.0 ®̂ 8 6 . 0 1 0 . 0 4.0 634.2 449.7 574.0 7.66 2.72

0.01:1.0®* 94.5 4.5 1 . 0 2,824.5 660.9 2,953.5 0.05 2.90
0.01 : 1.0'®® 92.5 4.5 3.0 1,855.8 492.9 1,813.5 0 . 1 1 2.87
0.01 :1.0®̂ 92.5 6 . 0 1.5 755.6 224.4 729.0 25.09 2.34

139

The preceding results for the hybrid QN/ERA algorithm (without resets) applied to the

XOR (sigmoid) task prompt the following observations about the setting of parameters p

and e.

• When the size of the first ERA step is comparatively large (T|>0.1), the range

parameter can be expanded up to X,=l in a single step (with expansion-rate parameter

P = I/t) -1) without reducing the global reliability of the algorithm. When the size of

the first ERA step is small (ti<0.05), setting p<10 has negligible (if any) impact on

global reliability. However, with p>10 a significant deterioration in the rate of global

convergence may occur.

• In terms of convergence speed, setting p>l is beneficial for all T| less than 0.5, and

most beneficial for small T). It is worth noting, however, that convergence speed does

not increase consistently with the size of P; for example, with a first step of r|=0 .0 1 ,

ERA is faster with P=10 than with P=50. This is attributable to the fact that

increasing P from 10 to 50 does not reduce the number of ERA steps required (i.e. 3),

but merely increases the size (and difficulty) of the intermediate step.

• When the size of the first ERA step is large (T|>0.5), increasing error-tolerance

parameter e produces only a modest improvement in convergence speed, but a

substantial deterioration in the rate of global convergence. For smaller T|, increasing e

brings about a greater improvement in convergence speed, and the impact on global

reliability is somewhat reduced.

It is clear from the results in Tables 41 and 42 that, with appropriate settings for

parameters p and e, it is possible to make substantial improvements on the convergence

speed of the default ERA method (A-step ERA with £=1.0"°̂), without a significant

reduction in global reliability. However, although the preceding observations offer some

guidance about appropriate settings for P and e, their optimal settings are task-specific.

(This reinforces the desirability of automated parameter-setting schemes, mentioned

briefly in section 5.2.3.)

140

5.3 Conclusion

In contrast to the majority of global optimisation strategies (see section 5.1), the ERA

method of section 5.2 is both easy to implement, and fully-compatible with second-order

classical optimisation algorithms. Furthermore, the results in section 5.2.4 suggest that

ERA represents a highly efficient compromise between global reliability and training

speed; when applied to benchmark tests with known local minima, ERA (with appropriate

parameter settings) proved highly effective at improving the global reliability of MLP

training algorithms without excessively increasing the number of training iterations

required to find a solution.

If, as anticipated, it is possible to automate the progressive expansion of range parameter

X, the ERA method will depend on a single user-defined parameter - the size of the first

ERA step, T|. There is no 'natural' choice of first-step size. In practice, r| should reflect the

hardness' of the training task (if known), and the priorities of the user; broadly speaking,

T) should be set to a 'small' value for hard problems or when a high degree of global

reliability is required, but to a 'large' value if convergence speed is a higher priority. In

this context, one promising feature of the results in section 5.2.4 is that a significant

improvement in the rate of global convergence is still achieved when T| is comparatively

large (i.e. r|>0 .1).

However, unqualified endorsement of the ERA method must be withheld, pending the

outcome of our on-going investigations regarding:

• the development of a rigorous mathematical proof that ERA works in all but

pathological (and rare) cases;

• the application of ERA to hard, real-world training tasks;

• the refinement of the procedure by which range parameter X is progressively expanded.

141

6. CONCLUSION

This thesis has proposed a novel approach to the development of MLP training algorithms

that are both faster and more globally-reliable than conventional, backpropagation-

derived, training methods - that is, to combine fast second-order training algorithms

(chapters 3 and 4), implemented so as to maximise their potential for global convergence,

with the deterministic ERA method for global optimisation (chapter 5). When tested on

the benchmark training tasks of section 4.2, hybrid second-order/ERA training

algorithms, with suitable parameter settings, proved consistently faster and converged to a

global minimum as or more frequently than conventional training algorithms. Moreover,

one training algorithm in particular - the Levenberg-Marquardt/ERA algorithm -

outperformed all conventional methods by a wide margin. For example, the LM / 5-step

ERA algorithm achieved a 100% global convergence rate at a cost of only 138.0 median

EFEs per run on the XOR task (with both sigmoid and linear output nodes); this

compares with global convergence rates of 83.5 % at a cost of 469.0 median EFEs

(sigmoid) and 93.0% at a cost of 1,038.5 median EFEs (linear) for on-line

backpropagation - generally the best of the conventional options - with near-optimal

parameter settings.

This research has identified several areas where the performance of these algorithms may

be open to improvement, for example:

• the choice of error function (section 2 .1 .2);

• the adoption of an appropriate scaling or preconditioning scheme (section 3.1.5);

• the development of LM algorithms that are less sensitive to the presence of residuals at

the solution and have 0(n) storage requirements (section 3.6);

• the refinement of the procedure for regulating the progressive expansion of the ERA

range parameter X (section 5.2).

Furthermore, although hybrid second-order/ERA training algorithms have proved highly

effective within the experimental framework adopted for this research, an assessment of

their performance when applied to hard, real-world training tasks is a clear priority for the

future. All of these topics are, or will be, the subject of further research by the author.

142

BIBLIOGRAPHY

• s Amato, B Apolloni, G Caporali, U Madesani and A Zanaboni (1991): “Simulated

annealing approach in backpropagation”, Neurocomputing 3, 207-220

• A J Annema, K Hoen and H Wallinga (1994): “Learning behaviour and temporary

minima of two-layer neural networks”. Neural Networks, 1 (9), 1387-1404

• J Barhen, A Fijany and N Toomarian (1994): "Globally optimal neural learning".

Proceedings ofWCNN ‘94, San Diego, June 1994, III 370 III 375

• E Barnard (1992): “Optimization for training neural nets”, IEEE Transactions on

Neural Networks, 3 (2), March 1992, 232-240

• R Battiti and F Masulli (1990): “BFGS optimization for faster and automated

supervised learning”. Proceedings of the International Neural Network Conference

(INNC 90), Paris, France, 757-760

• R Battiti (1992): “First- and second-order methods for learning: between steepest

descent and Newton’s method”. Neural Computation, 4 (2), 141-166

• R K Belew, J Mclnemey and N N Schraudolph (1991): "Evolving networks: using the

genetic algorithm with connectionist learning", in C G Langton, C Taylor, J D Farmer

and S Rasmussen, eds.. Artificial Life II, SFI Studies in the Sciences of Complexity,

vol. X, Addison-Wesley, Reading, Mass., 511-547

• M Berggren (n.d.): “An efficient method of training feed-forward neural networks

using conjugate gradients”. Laboratoire de L’Accélérateur Linéaire, Centre d’Orsay,

Orsay, France, pre-print

• C Bishop (1992): “Exact calculation of the Hessian matrix for the mutilayer

perceptron”. Neural Computation, 4, 494-501

• R P Brent (1973): Algorithms for Minimization Without Derivatives, Prentice-Hall,

Inc., Englewood Cliffs, New Jersey

• R P Brent (1991): “Fast training algorithms for multilayer neural nets”, IEEE

Transactions on Neural Networks, 2 (3), May 1991, 346-354

143

• RM Burton and G J Mpitsos (1992): “Event-dependent control of noise enhances

learning in neural networks”, Neural Networks, 5, 627-637

• E C Cetin, J Barhen and J W Burdick (1993): "Terminal repeller unconstrained

subenergy tunneling (TRUST) for fast global optimization", Journal of Optimization

Theory and Applications, 77 (1), April 1993, 97-126

• C Darken, J Chang and J Moody (1992): “Learning rate schedules for faster stochastic

gradient search”, in S Y Kung, F Fallside, J A Sorensen and C A Kamm, eds.. Neural

Networks for Signal Processing, 2, IFFF Workshop, EEFF Press, 3-13

• J F Dennis and R B Schnabel (1983): Numerical Methods for Unconstrained

Optimization and Nonlinear Equations, Prentice-Hall, Inc., Englewood Cliffs, New

Jersey

• L C W Dixon (1972): “The choice of step length, a crucial factor in the performance

of variable metric algorithms”, in Lootsma, ed., 149-170

• W Finhoff and H G Zimmerman (1992): "Homotopy methods in circuit analysis", pre­

print, Siemens, Munich

• R Fletcher (1980): Practical Methods of Optimization, vol. 1, Unconstrained

Optimization, John Wiley & Sons, New York

• P F Gill, W Murray and M H Wright (1981): Practical Optimization, Academic

Press, London

• M Gori and A Tesi (1992): “On the problem of local minima in backpropagation”,

IEEE Transactions on Pattern Analysis and Machine Learning, 14 (1), 76-86

• D Gorse (1992): “Classical and stochastic search in conjugate gradient algorithms”.

Proceedings of IJCNN ‘92, Beijing, November 1992, 435-440

• D Gorse and A Shepherd (1992): “Adding stochastic search to conjugate gradient

algorithms”. Neural Network World, 2, 599-605

• D Gorse, A Shepherd and J Taylor (1993a): “Avoiding local minima using a range

expansion algorithm”. Neural Network World, 5, 503-510

144

• D Gorse, A Shepherd and J Taylor (1993b); “Tracking global minima by progressive

range expansion”, Proceedings ofIJCNN ‘93, Portland, Oregon, July 1993, IV-350-

rV-353

• D Gorse, A Shepherd and J Taylor (1994a): “Avoiding local minima by a classical

range expansion algorithm”. Proceedings of ICANN ‘94, Sorrento, 1, May 1994, 525-

528 (RN/94/14)

• D Gorse, A Shepherd and J Taylor (1994b): “A classical algorithm for avoiding local

minima”. Proceedings ofWCNN ‘94, San Diego, June 1994, III 364 HI 369

(RN/94/15)

• D Gorse, A Shepherd and J Taylor (1995): "The new ERA in supervised learning",

submitted to Neural Networks

• LG Hamey (1995): "Analysis of the error surface of the XOR network with two

hidden nodes". Computing Report 95/167C, Department of Computing, Macqarie

University NSW 2109 Australia

• R Hecht-Nielsen (1990): Neurocomputing, Addison-Wesley, Reading, Mass.

• DM Himmelblau (1972): “A uniform evaluation of unconstrained optimization

techniques”, in Lootsma, ed., 69-97

• Y Hirose, K Yamashita and S Hijiya (1991): “Back-propagation algorithm which

varies the number of hidden units”. Neural Networks, 4, 61-66

• J Holland (1975): Adaptation in Natural and Artificial Systems, University of

Michigan Press, Ann Arbor MI

• S Huang and Y Huang (91): “Bounds on the number of hidden neurons in multilayer

perceptrons”, IEEE Transactions on Neural Networks, 2 (1), January 1991, 47-55

• D Jacobs, ed. (1977).' The State of the Art in Numerical Analysis: Proceedings of the

Conference on The State o f the Art in Numerical Analysis held at the University of

York, April 1976, organized by The Institute of Mathematics and its

Applications, Academic Press, London

145

• EM Johansson, F U Dowla and D M Goodman (1992): “Backpropagation learning

for multilayer feed-forward neural networks using the conjugate gradient method”,

International Journal of Neural Systems, 2 (4), 291-301

• B Kappen and T Heskes (1992): “Learning rules, stochastic processes, and local

minima”, in I Aleksander and J G Taylor, eds.. Artificial Neural Networks, 2:

Proceedings of the 1992 International Conference on Artificial Neural Networks

(ICANN-92) Brighton, United Kingdom, 4-7 September, 1992, 2 vols., Elsevier

Science Publishers B.V., Amsterdam, 1-71-1-77

• J A Kinsella (1992): “Comparison and evaluation of variants of the conjugate gradient

method for efficient learning in feed-forward neural networks with backward error

propagation”. Network, 3, February 1992, 27-36

• S Kirkpatrick, C D Gelatt, Jr. and M P Vecchi (1983): “Optimization by simulated

annealing”. Science, 220, 671-680

• D E Knuth (1981): Semi-Numerical Algorithms, 2nd edition, vol. 2 of The Art of

Computer Programming, Addison-Wesley, Reading, Mass.

• J F Kolen and J B Pollack (1990): “Backpropagation is sensitive to initial conditions”.

Complex Systems, 4, 269-280

• S Kollias and D Anastassiou (1989): “An adaptive least squares algorithm for the

efficient training of artificial neural networks”, IEEE Transactions on Circuit and

Systems, 36 (8), August 1989, 1092-1101

• P J G Lisboa and S J Perantonis (1991): “Complete solution of the local minima in the

XOR problem”. Network, 2, February 1991, 119-124

• P J G Lisboa, ed. (1992): Neural Networks: Current Applications, Chapman & Hall,

London

• FA Lootsma, ed. (1972): Numerical Methods for Non-linear Optimization, Academic

Press, New York

• D G Luenberger (1984): Linear and Nonlinear Programming, 2nd edition, Addison-

Wesley, Reading, Mass.

146

• J M Mclnemey, K G Haines, S Biafore and R Hecht-Nielsen (1989): “Error surfaces

of multi-layer networks can have local minima”. Technical Report No. CS89-157,

Department of Computer Science and Engineering, University of California

• M M0 ller (1993a): “A scaled conjugate gradient algorithm for fast supervised

learning”. Neural Networks, 6 (4), June 1993, 525-533 (reprinted in [Mpller, 93e],

appendix A)

• M M0 ller (1993b): “Supervised learning on large redundant training sets”.

International Journal of Neural Systems, 4(1), 15-25 (reprinted in [M0 ller, 93e],

appendix B)

• M M0 ller (1993c): “Exact calculation of the product of the Hessian matrix of feed­

forward network error functions and a vector in 0(N) time”. Technical Report, Daimi

PB-432, Computer Science Department, Aarhus University, 1993 (reprinted in

[M0 ller, 93e], appendix C)

• M M0 ller (1993d): “Adaptive Preconditioning of the Hessian Matrix”, submitted to

Neural Computation (reprinted in [M0 ller, 93e], Appendix D)

M M0 ller (1993e): Efficient Training of Feed-Forward Neural Networks, PhD

Thesis, Daimi PB-464, Computer Science Department, Aarhus University, December

1993

J J More (1983): “Recent developments in algorithms and software for tmst region

methods”, in A Bachem, M Grotschel and B Korte, eds.. Mathematical programming:

the state o f the art, Bonn 1982, Springer-Verlag, Berlin, 258-287

W Murray, ed. (1972): Numerical Methods for Unconstrained Optimization,

Academic Press, London

J C Nash (1990): Compact Numerical Methods for Computers: Linear Algebra and

Function Minimisation, Adam Hilger, Bristol

M R Osborne (1976): “Nonlinear least squares - the Levenberg algorithm revisited”.

Journal of the Australian Mathematical Society, 19 (Series B), 343-357

147

• D B Parker (1987): “Optimal algorithms for adaptive networks: second order back

propagation, second order direct propagation, and second order Hebbian learning”.

Proceedings of the First IEEE International Conference on Neural Networks, IEEE

Press, New York, June 1987, II-593-II-600

• C S Pattichis, C Charalambous, C N Schizas and L T Middleton (1991): “EMG

diagnosis using conjugate gradient backpropagation neural network learning

algorithm”, in T Kohonen, K Makisara, O Simula and J Kangas, eds.. Artificial

Neural Networks: Proceedings of the 1991 International Conference on Artificial

Neural Networks (ICANN-9I) Espoo, Finland, 24-28 June, I99I, 2 vols., Elsevier

Science Publishers B.V., Amsterdam, 1621-1624

• T Poston, C N Lee, Y Choie and Y Kwon (1991): “Local minima and back

propagation”, in Proceedings ofIJCNN ‘91, Seattle, WA, July 1991, II-173-11-176

• M J D Powell (1977): “Restart procedures for the conjugate gradient method”.

Mathematical Programming, 12, April 1977, 241-254

• W H Press, B P Flannery, S A Teukolsky and W T Vetterling (1988): Numerical

Recipes in C, Cambridge University Press, Cambridge

• A K Rigler, J M Irvine and T P Vogl (1991): “Rescaling of variables in back

propagation learning”. Neural Networks, 4, 225-230

• D E Rumelhart, G E Hinton and R J Williams (1986): “Learning internal

representations by error propagation”, in D E Rumelhart and J L McClelland, eds..

Parallel Distributed Processing: Explorations in the Microstructure of Cognition,

vol. 1, MIT Press, Cambridge MA, 318-362

• S Santini (1992): “The bearable lightness of being: reducing the number of weights in

backpropagation networks”, in I Alexander and J G Taylor eds., Artificial Neural

Networks, 2: Proceedings o f the 1992 International Conference on Artificial Neural

Networks (ICANN-92) Brighton, United Kingdom, 4-7 September, 1992, 2 vols.,

Elsevier Science Publishers B.V., Amsterdam, I-139-1-142

• R W H Sargent and D J Sebastian (1972): “Numerical experience with algorithms for

unconstrained minimization”, in Lootsma, ed., 45-68

148

• A Shepherd (1992); “Towards a hybrid conjugate gradient/ backpropagation algorithm

for training feed-forward neural networks”, MSc Thesis, Department of Computer

Science, University College London

• SA Solla, E Levin and M Fleisher (1988): "Accelerated learning in layered neural

networks". Complex Systems, 2, 625-639

• H Szu and R Hartley (1987): “Fast simulated annealing”. Physics Letters, 122, 157-

162

• P P van der Smagt (1990): “Neural implementation of Powell’s conjugate gradient

minimisation”. Report UvA-sma-2-9012-2, Department of Computer Science and

Mathematics, University of Amsterdam

• P P van der Smagt (1994): “Minimisation methods for training feedforward neural

Neural Networks, 7(1), 1-11

• P D Wasserman (1989): Neural Computing: Theory and Practice, Van Nostrand

Reinhold, New York

• R L Watrous (1987): “Learning algorithms for connectionist networks: applied

gradient methods of nonlinear optimization”. Proceedings of the International

Conference on Neural Networks, IEEE Press, New York, July 1987, II-619-11-627

• L E A Wessels and E Barnard (1992): “Avoiding false local minima by proper

initialization of connections”, IEEE Transactions on Neural Networks, 3 (6),

November 1992, 899-905

• L E A Wessels, E Barnard and E van Rooyen (1990): “The physical correlates of local

minima”, in Proceedings o f the International Neural Network Conference (Paris),

985

• M A Wolfe (1978): Numerical Methods for Unconstrained Optimization: an

introduction. Van Nostrand Reinhold, New York

• X Yu (1992): “Can backpropagation error surface not have local minima” (sic), IEEE

Transactions on Neural Networks, 3 (6), November 1992, 1019-1021

149

