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ABSTRACT

Conventional training methods for multi-layer perceptrons (MLPs), derived from the 

traditional backpropagation algorithm, have three serious inadequacies: convergence to a 

solution is frequently slow; they do not always converge to the desired global solution; 

and their performance is highly dependent on the setting of one or more user-defined 

parameters. A growing body of research indicates that second-order training methods, 

derived from classical optimisation theory, offer substantial improvements in training 

speed and a reduced sensitivity to initial parameter settings. However, experiments 

conducted for this research suggest that most second-order methods have worse global 

convergence properties than conventional methods. On the other hand, training methods 

that are designed to have better global convergence characteristics than conventional 

methods - for example, stochastic training methods - are typically as slow or slower than 

conventional methods.

The aim of this research is to develop MLP training algorithms that are both fast and 

globally-reliable' by combining second-order methods with a novel deterministic strategy 

for global optimisation. Expanded Range Approximation (ERA). Unlike most stochastic 

methods for global optimisation, the implementation of ERA with a second-order 

algorithm is trivial. When tested on benchmark training tasks, hybrid second-order/ERA 

algorithms (with appropriate parameter settings) were considerably faster and converged 

to a global minimum as or more frequently than conventional algorithms.

This thesis also gives practical guidelines for the efficient implementation of second-order 

training algorithms, with particular attention paid to factors that affect the probability of 

a given algorithm attaining a global minimum. In addition, a novel line-search algorithm 

is presented that offers an efficient compromise between the reliability of safeguarded 

polynomial interpolation and the speed of backtracking line searches; used as part of a 

second-order training algorithm, only a single function evaluation is required per training 

iteration in the best case.
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1. INTRODUCTION

Conventional training methods for multi-layer perceptrons (MLPs), derived from the 

traditional backpropagation algorithm, have three serious inadequacies: convergence to a 

solution is frequently slow; they do not always succeed in converging to a desired (and 

achievable) solution, irrespective of the number of training iterations allowed; and they 

tend to be highly sensitive to the choice of input-parameters, set heuristically by the user. 

A growing body of research (reviewed in section 4.1) indicates that second-order training 

methods, derived from classical optimisation theory, offer substantial improvements in 

training speed as well as a greatly reduced sensitivity to the choice of initial parameters. 

However, experiments conducted for this research suggest that most second-order 

methods have worse global convergence properties than conventional methods; tested on 

benchmark tests with known local minima, second-order methods failed to converge to the 

desired global solution as frequently as conventional methods. On the other hand, training 

methods that are designed to have better global convergence characteristics than 

conventional training methods - for example, stochastic training methods - are typically 

as slow or slower than conventional algorithms.

The underlying aim of this research is the development of MLP training algorithms that 

are both faster and more globally-reliable' than conventional training methods. The 

approach adopted here has been to combine fast second-order classical algorithms with a 

novel deterministic strategy for global optimisation - Expanded Range Approximation, or 

ERA for short. When tested on benchmark tasks, hybrid second-order/ERA training 

algorithms (with appropriate parameter settings) were considerably faster and converged 

to a global minimum as or more frequently than conventional training algorithms.

This thesis is in four major sections. Chapter 2 provides an overview of MLP training and 

the backpropagation training algorithm. A key perspective, introduced in section 2.2, is to 

view the training of an MLP as an optimisation process that involves the minimisation of 

a multi-dimensional error surface. Chapter 3 is devoted to classical optimisation methods 

- in particular, second-order methods for the minimisation of multi-dimensional nonlinear 

functions. The chapter introduces a novel line-search algorithm (section 3.2.5) that offers 

an efficient compromise between the reliability of safeguarded polynomial interpolation
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(section 3.2.2) and the speed of backtracking line searches (section 3.2.4). Chapter 4 

contains detailed experimental results for traditional and classical training algorithms 

applied to a small number of benchmark tests (section 4.2). In contrast to earlier research 

in this field, the global convergence properties of different classical training algorithms 

are rigorously assessed, and practical guidelines given about how to maximise the 

probability that such algorithms will attain a global minimum (section 4.4). Finally, 

chapter 5 is concerned with the ERA method for global optimisation. Unlike the majority 

of stochastic methods for global optimisation (section 5.1.1), the implementation of ERA 

with a second-order algorithm is trivial; the resultant hybrid second-order/ERA training 

algorithms are shown to be highly effective - in terms of both training speed and global 

reliability - when applied to the benchmark tests used in this research.
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2. MULTI-LAYER PERCEPTRON TRAINING

The class of neural network considered in this research is the multi-layer perceptron 

(MLP)’ . MLPs have a wide range of applications, including pattern classification and 

function-learning [Lisboa, ed., 1992]. MLP training involves adjusting the network so 

that it is able to produce a specified output for each of a given set of input patterns; since 

the desired outputs are known in advance, MLP training is an example of supervised 

learning.

This chapter sets the context for the research presented in the remainder of this thesis: 

section 2.1 considers the physical properties and dynamics of MLP training, section 2.2 

the essential characteristics of MLP training tasks and their implications for training 

algorithm design, and section 2.3 the properties of error-backpropagation, the dominant 

training paradigm for MLPs.

2.1 Introduction to MLPs

2.1.1 The MLP architecture

The MLP architecture consists of units or nodes arranged in two or more layers. (The 

input layer, which serves only to distribute the input from each pattern, is not counted.) 

Some of the nodes are connected by real-valued weights, but there are no connections 

between nodes in the same layer. For notational convenience, it is assumed throughout 

that MLP architectures are of a ‘standard’ form, with adjacent layers fully-connected but 

no connections between non-adjacent layers. Such an MLP consists of L layers with 

nodes in each layer (/ = 0,...,L), with I = 0 denoting the input layer. The notation for a 

single node is n' (i = 1,...,V). The thresholds for the weighted sum of inputs to each node 

(given by Eq. 2.1 below) are treated uniformly by adding an extra node with a fixed 

output of 1.0 to all but the output layer. This node - called the bias unit - is denoted

’ As so often in the field of neural networks, there is little standard terminology. Alternative 
terms for MLPs are 'feed-forward neural networks' (various), 'multilayered neural networks' 
(MLNs) [Gori & Tesi, 1992], and 'feature-based mapping neural networks' or simply 'feature 
networks' [Hecht-Nielsen, 1990].
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(for / ^  L). Network weights can be represented in terms of the nodes they connect, thus 

weight w\j connects nodes n~  ̂and n \. However, it will often be more convenient to

consider weights in terms of the weight vector w comprising all weights in the network, 

with a single weight denoted w, (/ = l,...,Vk).

Figure 1 - Minimal 2-2-1 MLP architecture, suitable for learning the XOR problem

bias units

network inputs

/  \

network output

layer 0

layer 1

layer 2

The number of nodes in the input and output layers is determined by, respectively, the 

pattern-size and target-size of the chosen training task. MLPs are typically trained using a 

fixed training set of P training pairs, with each training pair comprising two real-valued 

vectors - a pattern (^ = 1 and a corresponding target (desired output)

Individual pattern and target elements are denoted (/ = 1 ,...,A )̂ and tj,̂  (j = 1 ,...,N^) 

respectively. The output of input node i is simply p ^  for pattern q (except for y j , the

fixed output of the bias unit). For non-input noden/, the output is given by the weighted 

sum

Eq. 2.1 M,y'u
7=0

for / > 0 ,
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where the activation or squashing function s is typically the sigmoid:

1Eq. 2.2 =
1 + e'

The layers between the input and output layers are known as hidden layers. The number 

of hidden layers and nodes has a major impact on MLP training: too few, and the network 

will be unable to learn the problem; too many, and the network may take excessively long 

to train and have poor generalisation capabilities - a measure of the network’s ability to 

classify patterns which share the same general features as, but are not identical to, 

patterns in the training set. Numerous schemes have been developed which calculate an 

appropriate number of hidden nodes from the training data or which adapt the architecture 

(i.e. add or ‘prune’ nodes) during training [Brent, 1991] [Hirose, Yamashita & Hijiya, 

1991] [Santini, 1992]. (Upper and lower bounds on the number of nodes are given in 

[Huang & Huang, 1991].) None of these schemes have been adopted for this research, 

since the appropriate architecture was known in advance for the chosen benchmark tests, 

but all the training methods presented here could easily be modified to incorporate such 

schemes.

2.1.2 MLP training

MLP training is an iterative process which involves, at each iteration or epoch, the 

calculation of network outputs for each pattern in the training set and the adjustment of 

network weights according to the disparity between actual and desired outputs. Prior to 

training, the weights are initialised to small random values - small to prevent saturation 

(where one or more hidden nodes is highly active or inactive for all patterns and therefore 

insensitive to the training process) and random to break symmetry. The choice of 

initialisation range can have a significant impact on training performance (see [Kolen & 

Pollack, 1990]).

The degree of success at each epoch can be measured by applying an error function (or 

energy function) E of all the parameters (weights) of the network. This research uses the 

traditional mean-squared error (MSB) function, defined by

15



;=1

The advantages of Eq. 2.3 are consistency with the majority of MLP research and 

compatibility with the nonlinear least squares methods considered in sections 3.1.4 and 

3.6. However, the MSB function is a ‘greedy’ error function; the number of 

misclassifications can increase from one iteration to the next despite a reduction in E. 

Other error functions, such as the exponential, frequently perform better in practice 

[M0ller, 1993e, 65-70 & 149-161]. An investigation of the impact of different error 

functions on the training methods presented here will be the subject of future research.

MLP training is deemed to be successful when E becomes ‘acceptably’ small. Precisely 

how small is application-specific, but a close approximation to zero is generally 

undesirable since an MLP’s ability to generahse decreases with overtraining [Hecht- 

Nielsen, 1990, 116].

The key factor in the dynamics of MLP training is the role of the hidden nodes. A hidden 

node that duplicates the function of another hidden node is redundant, i.e. makes no 

useful contribution to the training process. A mathematical analysis by Annema et al. of 

the dynamics of MLP training indicates that the build-up and dissipation of hidden-node 

redundancy is an integral part of the training process [Annema, Hoen & Wallinga, 1994]. 

The core analysis, which holds for a two-layer MLP with two hidden nodes and ‘very 

small’ initial weights, describes three distinct training phases; for MLPs of arbitrary size, 

this three-phase analysis can be applied iteratively to smaller and smaller clusters of 

redundant hidden nodes.

In phase one of the analysis redundancy builds up in the hidden layer to the point where it 

is 'approximately reducible to one neuron' and the entire network can be linearized, i.e. 'all 

neurons are activated in the approximately linear middle region' [Annema, Hoen & 

Wallinga, 1994]. At this stage both the attractors in weight space and the vectors of input 

weights are near-identical for all hidden nodes. In phase two the attractors remain near­

identical, but the network can no longer be linearized. By the end of this transitional phase 

the cluster of redundant hidden nodes starts to split in two. Phase three consists of the 

division of redundant hidden-layer nodes into two distinct clusters. The input weight

16



vectors associated with each cluster now converge towards different attractors in weight 

space.

The inability of an MLP to ehminate hidden-node redundancy (i.e. to proceed beyond 

phase two of the preceding analysis) is a frequent cause of training failure (see section 

2 .2 . 1).

2.2 Error Surfaces and Local Minima

In order to design efficient and reliable training algorithms, it is essential to gain an 

understanding of the principal characteristics of MLP training tasks and their implications 

for different training strategies. The perspective adopted here is that of function 

optimisation - that is, the minimisation of the MLP error function E. Viewed in these 

terms, MLP training is an error-minimisation or optimisation process (for which many 

techniques have been developed outside the neural network field), and each training task 

defines a multi-dimensional non-negative error surface (section 2.2.1), formed by plotting 

the value of E for all (reasonable) settings of the MLP weight vector w. This approach 

has two important benefits: it aids visualisation of the training process through analogy 

with a three-dimensional landscape; and it leads to numerically-testable definitions for 

many of the conditions encountered during training.

The lowest points on the error surface are known as global minima. (Typically MLP 

error surfaces have multiple global minima, each of which is a surface rather than a single 

point.) If the lowest point of a ‘basin’ in the error surface has a higher error than that 

associated with a global minimum, it is termed a local minimum. Since the impact of 

local minima on MLP training is a major theme of this research, they are considered 

separately in section 2.2.2.

2.2.1 The MLP error surface

For any viable combination of MLP architecture, test problem, and error function, there is 

a corresponding error surface (or energy surface) with n+\ dimensions for an MLP with n
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weights. The precise shape of the error surface is problem- and architecture-specific; 

since it is impractical to produce a map of an error surface that is both detailed and 

extensive (even for small training problems and architectures), it is no surprise that the 

properties of MLP error surfaces remains a subject for debate [Hecht-Nielsen, 1990,

131].

It is worth stressing that the common practice of inferring the presence of landscape 

features based on training error-curve information alone is highly suspect. There is, for 

example, a tendency to say an MLP has become trapped in a local minimum whenever the 

training curve flattens out at a comparatively high level, despite the fact that there are 

equally plausible causes for this behaviour which are unrelated to local minima. This is 

not simply a case of pedantry about the use of terminology; the precise cause of a given 

training characteristic may have profound implications for the efficacy of an attempted 

solution.

What reliable evidence there is (for example, from contour plots of small sections of an 

error surface) suggests that most MLP error surfaces share a number of broad 

characteristics: a high degree of smoothness', 'a multitude of areas with shallow slopes in 

multiple dimensions simultaneously' [Hecht-Nielsen, 1990,131] (‘plateaus’); 

convolutions and ellipses of high eccentricity (‘valleys’); and many ‘basins’ or minima. 

MLP error surfaces typically have multiple global minima, owing to permutations of the 

weights that leave the MLP input-output function unchanged; an assessment of the 

prevalence of local minima is deferred to section 2.2.2.

‘Plateaus’, ‘narrow valleys’, and local minima often prove to be serious obstacles to 

successful training. If an MLP encounters a region with very shallow gradients, it can 

take many training epochs before a significant reduction in E is made - the network is said 

to be stuck in a temporary minimum [Annema, Hoen & Wallinga, 1994]. Training 

algorithms derived from the steepest descent method are prone to slow training in narrow 

valleys (see section 3.1.1). And algorithms which do not allow an increase in E at any 

epoch are prone to becoming trapped in local minima, i.e. no amount of additional 

training will enable the MLP to make further downward progress. In terms of the analysis 

of training dynamics presented in section 2.1.2, both local and temporary minima are 

closely related to the presence of redundant hidden nodes in the network. (Local minima 

are known to have several different physical correlates in the context of MLP training; the

18



three most frequently encountered are redundant hidden nodes, hidden node saturation, 

and ‘dead regions’ of weights space where all hidden nodes are inactive [Wessels, 

Barnard & van Rooyen, 1990].)

The characteristics of MLP error surfaces give a good indication of the kinds of strategy 

that are likely to engender efficient and reliable training: the smoothness of the error 

surface suggests that classical optimisation with derivatives (chapters 3 and 4) will be 

effective; rounding errors, floating-point precision and the choice of termination criteria 

are likely to be important in nearly flat regions; some methods are far less prone to slow 

progress in ‘narrow valleys’ than others; and, if there are local minima, global 

minimisation strategies (chapter 5) may be necessary to ensure an acceptable probability 

of training success.

2.2.2 Local minima

For the purposes of this research, the term ‘local minimum’ is used in a rigorous 

mathematical sense. If, for a given combination of MLP architecture and training task, the 

error function E(w) is twice-continuously differentiable (i.e. the second-derivatives of E 

are continuous), it is possible to define useful theoretical conditions for a point w* to be a 

minimum of E in terms of the gradient vector g(w*)

Eq.2.4
dw-

and Hessian matrix G(w*)

a"E(w )Eq. 2.5 G, =
 ̂ dW;dw ;< J

If g(w*) is zero, w* is a stationary point - which means it is either a minimum, a 

maximum or a saddle point. Stationary point w* is definitely a minimum if G(w*) is 

positive definite (i.e. all the eigenvalues of G are strictly positive), and may be a 

minimum if G(w*) is positive semi-definite (i.e. all the eigenvalues of G are non­

negative). Minimum w* is a global minimum if E(w*) < E(w) for all w, otherwise w* is a 

local minimum.
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The prevalence of local minima in MLP error surfaces remains a matter of debate. Local 

minima are known to occur with specific test problems [Mclnemey et al., 1989] [Lisboa 

& Perantonis, 1991]. On the other hand, local minima cannot occur if the training task is 

linearly separable [Gori & Tesi, 1992], if there are as many hidden nodes as patterns in 

the training set [Poston et al., 1991], or if the number of patterns is less than or equal the 

number of pattern elements [Yu, 1992] - assuming, in each of these cases, that the chosen 

architecture is capable (with some set of weights) of learning the task in question. 

Unfortunately, none of these results give much guidance to real-world applications, for 

which there is precious little hard evidence on either side of the debate. At present, it is 

probably reasonable to conclude that for many (if not all) realistic applications local 

minima present a serious obstacle to successful training.

Every minimum has an associated basin o f attraction - a region surrounding the minimum 

from which it is only possible to escape by passing over higher ground (or by deforming 

the error surface in some way). A number of contrasting approaches have been proposed 

for reducing the likelihood of an MLP getting trapped in the attractive basin of a local 

minimum, including: stochastic methods (section 5.1.1); deterministic strategies, such as 

homotopic methods (section 5.1.2); changing the error function [Solla, Levin & Fleisher, 

1988]; weight initialisation schemes [Wessels & Barnard, 1992]; and schemes for 

dynamically changing the number of hidden nodes [Hirose, Yamashita & Hijiya, 1991].

As these schemes apply to different aspects of the training process, it is likely that the 

‘optimal’ strategy will combine several of these schemes in a single algorithm.

2.3 Backpropagation

2.3.1 Backpropagation - an overview

The vast majority of MLP research has used a version of the backpropagation (BP) 

training method (rediscovered and disseminated to a wide audience by [Rumelhart, Hinton 

& Williams, 1986]), and it remains the most widely used technique. BP is the benchmark 

against which all other training methods are judged.
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In essence, BP implements gradient or steepest descent (section 3.1.1) for an MLP. At 

each epoch k the gradient g(wt) is calculated and the weights updated according to the 

simple rule

Eq. 2.6 - n S t ,  fo rrj> 0  ,

where T) is a constant heuristically-chosen training rate, typically set in the range [0, 1]. 

A reduction in total network error E at each epoch is guaranteed so long as the gradient is 

greater than zero and T) is sufficiently small. The calculation of the gradient by 

backpropagation is implemented in two phases - a forward pass and a backward pass. 

'Yïie, forward pass generates the network outputs for pattern p through the calculation of 

each y \  p , from layer / = 1 to / = L, according to the weighted sum of Eq. 2.1. The 

backward pass calculates the partial contribution of pattern p to the total network 

error E, and the corresponding partial gradient with elements . These

elements are calculated by applying the following rule from layer / = L to / = 1 :

Eq.2.7 a£ ,/aw ' = 5 ',y ':;  ,

where the error term ô is given by

Eq.2.8 K p = [ h . p - y t p ) y i . p { ^ - y l )

K . P  =  y ' > . p { ^ - y ] . p ) l L K p < ' ^ f ° ^ i < i ^  ■

(=1

A single training epoch consisting of P forward passes interleaved with P backward 

passes.

The form of BP which conforms exactly to Eq. 2.6 is called batch or off-line BP. Batch 

BP has proved satisfactory with many problems, but has several important drawbacks: it 

is often slow to reach a satisfactory error level, and particularly slow when confronted 

with two common features of the MLP error surface - flat regions and 'narrow valleys'; it 

is prone to getting trapped in local minima (and will also converge to saddle points); and 

training performance is sensitive to the choice of training rate. A wide variety of heuristic 

modifications to standard batch BP have been devised in an attempt to overcome these 

difficulties, such as on-line training strategies, the addition of ‘momentum’ to the weight
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updates, the adaptation of the MLP training rate, and the addition of noise to the weights. 

All these techniques have reported strengths when applied to specific problems, but tend 

to be ineffective in general. Moreover, many require an additional problem-specific 

parameter (or parameters) to be set heuristically by the user.

One implication of this diversity of practical BP implementations is that the choice of a 

‘fair’ BP benchmark is extremely difficult. This thesis considers only two of the most 

widely-used modifications to the standard BP algorithm - on-line training (section 2.3.2) 

and momentum (section 2.3.3). The steepest descent algorithm, a 'classical' 

implementation of batch BP that sets the training rate optimally at each epoch, is 

described in section 3.1.1.

2.3.2 On-line backpropagation

On-line BP^ differs from batch BP in that the weights are updated at the end of each 

backward pass (i.e. P times per epoch), rather than once every P backward passes (i.e. 

once per epoch). The weight update rule for on-line BP is

E q .2.9 = w J-Tig*, forTi>0.

Typically, the P patterns are presented to the network in random order. If the training rate 

Tj tends to zero, on-line BP can be regarded as an approximation to batch BP; however, 

for practical settings of r| the two methods diverge.

In theory, on-line BP has several potential disadvantages compared to batch BP:

• it is not guaranteed to 'make progress' (i.e. reduce E) at each training epoch;

• it requires slightly more computational effort per epoch than batch BP;

• the optimal training rate for on-line BP is poorly understood (cf. the batch­

mode steepest descent method);

 ̂ Alternatives to the term 'on-line' include 'stochastic' (various), 'immediate update' [Kinsella, 
1992, 28], 'jump every time' [Hecht-Nielsen, 1990, 136], local learning' [Annema et al., 1994], 
and 'pattern mode' [Gori & Tesi, 1992, 78].
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• it is much more difficult to analyse.

Nevertheless, on-line BP has several practical advantages over batch BP:

• on-line BP is an example of a stochastic process that can prevent an MLP 

from getting trapped in a local minimum;

• if the training set contains redundant information, the more frequent weight 

updates of on-line BP often prove more efficient [M0ller, 1993b] (although it 

may be possible to remove redundant information by pre-processing the 

training set [Battiti, 1992]);

• on-line training is essential if the full complement of training patterns is not 

known at the start of training.

For these reasons, on-line BP can be regarded as the backpropagation benchmark.

There are two ways in which on-line BP can be regarded as a stochastic process. Firstly, 

the total network error E may rise at one or more epochs such that the network is able to 

escape from the basin of attraction of a local minimum. Secondly, the shape of the MLP 

error surface is not constant with on-line BP; local minima are meta-stable states which 

slowly decay to the global minimum, at a rate of t j t  for some constant t that is 'much 

larger than the typical time scale \jt to reach equilibrium inside an attractive region' 

[Kappen & Heskes, 1992,72]. In its traditional' form - with weights updated after the 

presentation of every pattern - on-line BP makes no attempt to regulate the amount of 

stochastic 'noise' added to the system at each training epoch. However, the term 'on-line 

training' is often used in a more general sense to encompass training algorithms which 

update the weights after a subset n (1 < n < P) of the full training set has been presented 

to the network; by varying the size and membership of the subset at each training iteration 

it is possible to regulate the amount of stochastic noise. A wide variety of strategies have 

been devised for this purpose, ranging from simple heuristic schemes that gradually 

increase n as training progresses to complex sampling and validation schemes (see section 

5.1.1).
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2.3.3 Backpropagation with momentum

Backpropagation with momentum uses a modified version of the standard BP weight 

update formula (given by Eq. 2.6), as follows:

Eq. 2.10 = -T|gt + cxAw^, for Tj > 0 and 0 < a  < 1 ,

where a  is known as the momentum term. (With momentum turned 'off, i.e. with a=0, 

Eq. 2.10 is equivalent to the standard update of Eq. 2.6.) Experience shows that the 

addition of momentum can significantly speed up the BP training algorithm, attributable 

to its impact in precisely those regions of the MLP error surface where the 

backpropagation algorithm performs badly - 'plateaus' and 'narrow valleys'; the

momentum term accelerates convergence in flat regions by a factor that approaches ^
1 - a

as the number of epochs (k) gets large, and reduces the number of oscillations in a narrow 

valley - i.e. reduces the 'narrow valley effect' (see section 3.1.1) - by averaging out the 

components of the gradient which alternate in sign [Watrous, 1987]. As M0ller points out 

[1993e, 19], batch BP with momentum can be viewed as an approximation to conjugate 

gradient methods (section 3.5) - the important difference being that conjugate gradient 

methods chose parameters Tj and a  automatically at each iteration, whereas batch BP with 

momentum sets T[ and a  to fixed heuristic values.

An alternative weight update to Eq. 2.10, given by

Eq. 2.11 Awjt+, = - ( l-a ) r |g ^  +aAw^,  fort| > 0 and 0 < a  < 1,

proved consistently slower than the Eq. 2.10 update in the experiments conducted for this 

research.
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3. CLASSICAL OPTIMISATION

3.1 Introduction to Classical Methods

Unconstrained nonlinear optimisation is a mature branch of numerical analysis 

concerned with the minimisation of multi-dimensional functions^. For a wide class of 

smooth convex functions, convergence is guaranteed. However, classical optimisation is 

concerned only with local optimisation.

All the optimisation methods considered in this chapter share important characteristics: 

all derive, algebraically, from the Taylor-series expansion of a smooth function / in  the 

neighbourhood of an arbitrary point x

Eq. 3.1 f(x-l-s)= f(x)-l-g(x)^s+is^ G(x)s+... ;

all are iterative descent algorithms (i.e. minimum x* is located in a series of steps, with 

f(xjt+i) < f(xjfe) at each step); and all are hybrid methods, which fall somewhere between the 

steepest descent method (section 3.1.1) and Newton’s method (section 3.1.2).

In order to compare the theoretical performance of these methods, it will be useful to 

consider their global and local convergence properties. In the context of the convergence 

of classical algorithms, the terms ‘local’ and ‘global’ have a different meaning to that 

introduced in section 2.2. A method is said to be globally convergent if, for an arbitrary 

smooth convex function, it is guaranteed to converge (eventually) to a minimum from 

(almost) any starting position. (The global convergence properties of algorithms 

associated with convex functions are applicable to non-convex functions inside the basin 

of attraction of a minimum.) A method’s local convergence rate, on the other hand, is its 

anticipated rate of convergence close to a minimum. Convergence characteristics act as a 

rough guide to a method’s performance, but they should be treated with caution; they 

require conditions that do not apply in general, and the effect of rounding error is ignored.

' Good general surveys of the field are provided by [Fletcher, 1980], [Gill, Murray & Wright, 
1981], [Luenberger, 1984], and [Wolfe, 1978].
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The following survey of classical methods is necessarily selective; the emphasis is on 

tried and tested methods which are fast and reliable, and can be readily implemented in a 

neural network context.

3.1.1 The linear model and steepest descent

Optimisation methods which derive from the linear model 

Eq. 3.2 f(x + s)~  f(x) + g(x)^s

(i.e. all but the first two terms of Eq. 3.1 are ignored) are termed first-order methods. 

The pre-eminent example is steepest descent (SD)^, the longest- and most widely-known 

optimisation technique of all. SD sets search direction s* to the negative gradient -gjt at 

each iteration, i.e.

Eq. 3.3 -a&gt

This is equivalent to the standard BP update of Eq. 2.6 except that a* is chosen to 

minimise E(xt - g*) rather than set to the fixed heuristic value of the BP training rate ( t | ) .

SD is easy to implement and requires, on average, the least computational effort per 

iteration of any classical method. However, SD is often both inefficient and unreliable. 

Ellipses of large eccentricity can produce the so-called ‘narrow valley effect’ (Figure 2), 

with the path oscillating back and forth along the local gradient. Successive SD search 

directions have a tendency to interfere, i.e. a minimisation in one direction can spoil the 

minimisation previously achieved in other directions.

If SD is applied to a quadratic function Q such as 

Eq. 3.4 Q(x) = x ^ b + ix ^ A x  ,

where matrix A is symmetric and positive definite, the theoretical upper bound on the 

convergence rate is given by the convergence ratio r.

 ̂ Steepest descent is also commonly referred to as 'gradient descent'.
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Eq. 3.5 r  =

c =

where c is the condition number of A, and Vmax and v̂ in are, respectively, the largest and 

smallest eigenvalues of A [Luenberger, 1984, 219]. This amounts to an arbitrarily slow 

rate of linear convergence (which becomes slower as c increases). Moreover, SD is 

sensitive to rounding errors, which can cause termination far from the solution; global 

convergence to a stationary point of /cannot be guaranteed in practice.

Both the convergence ratio r and the steepest descent direction s are sensitive to the scale 

of X . The feasibility of changing the scale of x so that c is reduced (with a corresponding 

improvement in the convergence characteristics of the SD algorithm) is considered in 

section 3.1.5.

Figure 2 - Steepest descent and the * narrow valley effect'

Note: successive descent directions are perpendicular to each other and to the tangent planes of 
the surface contours.
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3.1.2 The quadratic model and Newton’s method

With the exception of steepest descent, all the classical methods considered here are 

second-order methods, based on the quadratic model

Eq. 3.6 f(x + s)«  f (x)+g(x)^s+is^  G(x)s .

The theoretical convergence rate and practical performance of second-order methods are 

generally superior to those of first-order methods (provided/is sufficiently smooth). The 

success of the quadratic model derives from the fact that quadratic functions are a good 

approximation to general functions near a minimum. If successive search directions 

satisfy

Eq. 3.7 sf Gs^ = 0, for j  ,

that is, the directions are mutually conjugate with respect to the Hessian matrix, they will 

(unlike successive steepest descent directions) be approximately non-interfering, with a 

correspondingly fast rate of convergence.

The straightforward implementation of the quadratic model, known as Newton’s method, 

generates each search direction s* as follows:

Eq. 3.8 s ^ = - G  ’ĝ

If G is positive definite, the s* given by Eq. 3.8, commonly denoted , has a number of 

important properties [Dennis & Schnabel, 1983]: uniquely minimises the quadratic

model at Xk and is guaranteed to be a descent direction, i.e. satisfies

Eq. 3.9 g[s^ < 0 ;

it defines both the direction (the Newton direction) and step-length (the Newton step) to 

be taken at each iteration, hence

Eq. 3.10 X;t+]=X/t+sf ;

and, unlike the steepest descent direction, is unaffected by the scale of x. Moreover, the 

availability of the Hessian means it is possible to distinguish between saddle points and 

minima, and hence prevent premature termination.
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For quadratic functions with a positive definite Hessian, Newton’s method converges in a 

single iteration. For non-quadratic functions, the local convergence rate is quadratic. A 

sequence that converges to the minimiser x* is said to be quadratically convergent 

if

Eq. 3.11 |x^^,-x*|<c|x^-x*p

for some constant c > 0.

Unfortunately, unmodified Newton’s method suffers from a number of drawbacks which 

make it unsuitable as a general optimisation method: it requires both first and second 

analytic derivatives to be available at every point x /  ; it is only defined if G is positive 

definite (and is prone to failure whenever G is ill-conditioned), so that global convergence 

cannot be guaranteed; and its computational and storage costs are comparatively high - 

O(n^) (to solve Eq. 3.8) and 0{rt) (to store G) respectively.

All the remaining second-order methods considered in this chapter fall somewhere 

between steepest descent and Newton’s method. Broadly speaking, all these methods aim 

to: retain the guaranteed global convergence of steepest descent; generate search 

directions that are ‘superior’ to (i.e. interfere less than) the steepest descent direction 

when (comparatively) remote from a minimum; and approach the fast local convergence 

rate of Newton’s method when close to a minimum. None of the methods require the 

prohibitively expensive calculation of second derivatives at each iteration.

In view of their ‘heritage’, we should expect the local convergence properties of these 

methods (for non-quadratic functions) to lie somewhere between those of steepest descent 

and Newton’s method. In formal terms, this amounts to linear convergence at a faster rate 

than SD, or super-linear convergence. A sequence {x̂ } that converges to x* is said to be 

super-linearly convergent if

 ̂ There are two (non-equivalent) definitions of 'quadratic convergence' in general usage. The 
alternative definition to that used here is: convergence in (at most) n iterations for an n- 
dimensional quadratic function. This is often termed 'quadratic termination' - see, for example, 
[Wolfe, 1978,114].
 ̂ Bishop [1992] has developed an algorithm for the exact calculation of the Hessian matrix 

using an MLP. The algorithm requires up to 2n forward and backward passes per pattern for an 
arbitrary n-node net - an indication of the high computational costs commonly associated with 
analytic second derivatives.
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Eq. 3.12 1x̂ +1- x J  < c^lx^-x*p

for some sequence {c&} that converges to zero.

3.1.3 Line-search methods vs. model-trust region methods

Classical methods fall into two categories: line-search methods and model-trust region 

methods. Line searches share the same iterative structure, outlined in the following 

pseudo-algorithm:

1. Choose a random starting point Xq.
2. At each iteration k, do the following until termination criteria are satisfied:

2 .1 . compute a search direction Sk that is a descent direction;
2 .2 . chose a step-length CLk>0 that satisfies

Eq. 3.13 f(x  ̂ + a * s j < f ( x j

2.3. set Xjt+i to Xfc + ttjtSjt.

If Sk is a descent direction (i.e. satisfies Eq. 3.9), the existence of a positive oCt that 

satisfies Eq. 3.13 is guaranteed.

Whereas for line-search methods the sub-task at each iteration is to locate the minimum 

along the search direction from Xk, with model-trust region methods^ the aim is to find 

the minimum in a ‘trusted’ region Ok around x*. Ok is conveniently defined in terms of its 

radius %, and s* chosen to satisfy

Eq. 3.14 ||st||<a^ ,

where IMI is the Euclidean {Lj) norm^. The basic iterative structure of model-trust region 

methods is outlined in the following pseudo-algorithm:

 ̂ The name comes from viewing the task as defining a region in which it is possible to trust the 
local quadratic model of function/[Dennis & Schnabel, 1983, 130]. These methods are also 
known as restricted step methods [Fletcher, 1980, 113] or, simply, trust region methods.
 ̂ Model-trust region methods using the La norm are sometimes termed Levenberg-Marquardt 

methods. Here the latter term is reserved for the nonlinear least squares method of section 3.6. 
Hypercube or boxstep methods, using the norm, have good local but poor global convergence 
properties [Fletcher, 1980, 99].
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1. Choose a random starting point Xo and region size oco > 0.
2. At each iteration k, do the following until termination criteria are satisfied:

2 .1 . compute search direction Sk for tmsted region Ok with radius a*;
2.2. IF f(xjt + Sjfe) < f(X;t),

2 .2 .1 . set Xifc+i to Xjfe + S)t;
2.3. update according to a regulation scheme.

Broadly speaking, schemes for regulating the radius are designed to increase a  at 

iteration k if the local model o f/is  accurate, but decrease a  if the model is inaccurate (for 

example, if f(x  ̂+ s*) > f(x*)). In practice, it is usual to control a* indirectly by performing 

the substitution

Eq. 3.15 =H^

where is the model Hessian and I the identity matrix. In Eq. 3.15 a change to the 

scalar m (m > 0) produces an inverse change in a. If Uk = 0, s* is the same as the Newton 

direction; as Uk tends to infinity, Sjt tends to the steepest descent direction - see Figure 3. 

Strategies for initialising and regulating u are considered in section 3.3.

An important feature of the substitution in Eq. 3.15 is that, if Uk is ‘sufficiently’ large, 

will be strictly diagonally dominant - that is, for all i (i = 1 ,...,»),

Eq. 3.16 ÏÎ,, -  ]^|H^.|>0.
j=hj*i

It follows, from the Gerschgorin circle theorem, that such an His positive definite 

[Dennis & Schnabel, 1983, 60]. Parameter u can therefore be viewed as providing a 

mechanism for regulating the positive definiteness of the model Hessian.

Neither line searches nor model-trust region methods are clearly superior. With line 

searches, the optimal accuracy with which % approximates the minimum along s* is 

method- and problem-dependent. With model-trust region methods, the chosen scheme for 

initialising and regulating a  (or u) can have a significant impact on training performance. 

In practice, line searches are often the first choice because they are, in general, simpler 

and easier to understand than model-trust region methods.
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Figure 3 - Parameter u and the model-trust region search direction

Note: curve s(m) plots the points = x* + s* for 0 < « <

the curve s(m)

solution (x^) of 
current model

steepest descent 
direction, s* = -g*

Newton direction,
St=current position, x*

3.1.4 Special methods for nonlinear least squares

When using the ‘traditional’ sum-of-squares error function

Eq. 3.17
p=\ j= i

(cf. Eq. 2.3), the MLP training task is equivalent to a special category of problem known 

as nonlinear least squares. Such problems occur when fitting model functions to 

experimental data; typically the number of data values m (equivalent to PN^ for an MLP) 

is greater than the number of free parameters n (equivalent to the number of weights), i.e. 

the corresponding system of equations is over-determined.

The gradient and Hessian of Eq. 3.17 have a special structure with respect to the residual 

vector r and m x n  Jacobian matrix J:

Eq. 3.18 

Eq. 3.19
_ af(x ,)
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In terms of r  and J  at iteration k.

Eq. 3.20 -  2

Eq. 3.21 gt —

Eq. 3.22 +Sj^

f=]

where is the matrix of second derivatives such that r is the Hessian of r.

Eq. 3.22 is unsuitable as the basis of a general nonlinear least-squares algorithm because 

the second-order term S is typically unavailable. One option is to ignore S altogether on 

the assumption that the first-order term of Eq. 3.22 dominates the second-order term near 

the solution - a reasonable assumption so long as the residuals at the solution are small or 

zero [Dennis & Schnabel, 1983, 222]. Nonlinear least-squares algorithms which 

approximate G according to

Eq.3.23

are considered in section 3.6. A second alternative to Eq. 3.22 is to approximate S by a 

secant approximation A, i.e.

E q .3.24 G^ = J^Jj^-l-A^ .

Methods derived from Eq. 3.24, which are superior to those derived from Eq. 3.23 for 

large-residual problems, are considered in [Fletcher, 1980] and [Dennis & Schnabel, 

1983, 228-233].

The significance of Eq. 3.23 and Eq. 3.24 is that, given only r* and J*, it is possible to 

approximate the Hessian matrix G  ̂immediately at each iteration, whereas with general 

unconstrained minimisation strategies (such as the quasi-Newton methods of section 3.4) 

it may take n iterations to calculate a satisfactory approximation of the {n x n) Hessian. 

For this reason, least squares methods are generally preferred to general unconstrained 

minimisation methods for functions of the form Eq. 3.17 on grounds of convergence 

speed.
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3.1.5 Scaling and preconditioning

Although none of the classical algorithms considered in the remainder of this chapter are 

as sensitive to 'sub-optimal' scaling as the steepest descent algorithm (see section 3.1.1), 

all are prone to numerical problems - ranging from a general degradation in performance 

and loss of stability to premature termination of the multivariate algorithm - if the scale of 

either the independent variables x or the function/is sufficiently poor^. Scaling schemes 

aim to prevent these problems from arising by improving the scale of x (so that the 

independent variables are of a similar order of magnitude in the 'region of interest') and/or 

the scale of/(so that the norm of the model Hessian is of a similar order of magnitude to 

that of the Hessian itself). A convenient way of approaching the issue of scaling is in term 

of the condition of the Hessian matrix; a scheme that ensures a problem is 'well-scaled' 

by minimising the condition number (see Eq. 3.5) of the Hessian - so that similar changes 

in X  lead to similar changes in /-  is known as a preconditioning scheme.

Most scaling schemes modify the scale of x according to the linear transformation 

Eq. 3.25 X = Lx ,

where matrix L is fixed and non-singular. The optimal L, which transforms the model 

Hessian at x* to the identity matrix (assuming G(x*) is positive definite), is

Eq. 3.26 L = G(x.)"''^ ,

where L is a n x n matrix. Assuming G(x*) is not known, the L in Eq. 3.26 can be 

approximated using G(xo) (or, if second derivatives are unavailable, a finite-difference 

approximation of G(xo)). However, unless G is positive definite and remains relatively 

constant in the region of interest - properties which cannot be guaranteed in general - 

there is a risk that such a scaling will actually degrade the performance of the 

multivariate algorithm. Although it is possible to overcome this problem by recalculating 

L periodically {dynamic scaling  or adaptive preconditioning), the high cost of evaluating

’ Certain methods, such as the DFP and BFGS quasi-Newton methods of section 3.4, are 
theoretically 'scale-invariant' under certain strict conditions, including the use of exact 
arithmetic. However, scale-invariance cannot be achieved in practice; finite floating-point 
arithmetic is scale-dependent - so that, for example, the error associated with the sum X] + xg is 
not related in a straightforward way to that of the sum aX] + bxi, if a ^ b -  and termination, 
step-length and other criteria rely on implicit definitions of 'large' and 'small' [Gill, Murray & 
Wright, 1981].
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G(x) or computing its approximation means that this approach cannot be recommended in 

a neural network context. Moreover, for methods which have, as one of their main 

competitive advantages, 0(n) storage requirements (such as the conjugate gradient 

methods of section 3.5 and memoryless quasi-Newton method of section 3.4.3), the O(n )̂ 

storage cost for matrix L is a significant disadvantage.

The most widely-used scaling schemes for multivariate optimisation represent L in Eq. 

3.25 by a diagonal matrix (D). Given a suitable estimate of the condition number of the 

Hessian (calculated, for example, by the Power method [Mpller, 1993d], or from the 

Cholesky factors of the Hessian matrix* [Gill, Murray & Wright, 1981, 320-322]), D 

can be used as a simple preconditioning matrix. Mpller [1993d] has devised an efficient 

adaptive preconditioning scheme for D, based on an extension to the Power method, 

which significantly increases MLP training speed with the steepest descent algorithm 

under most circumstances. However, M0 ller reports only a modest improvement for 

conjugate gradient methods, and concedes that convergence may actually be degraded in 

some situations (for example, when the Hessian is indefinite).

A simpler alternative is to initialise D according to a set of n user-defined scale factors, 

representing the approximate ranges of the elements of x. Although this depends on the 

availability of useful prior knowledge about the problem structure, which cannot be 

guaranteed for minimisation tasks in general, Rigler et al. [1991] suggest a natural set of 

scale factors for MLP training derived from the gradient calculation by Eq. 2.1 and Eq. 

2.7. When node output y is in the interval [0, 1] (as is the case with the standard sigmoid 

squashing function of Eq. 2.2), the derivative y' = y*(l - y) (see Eq. 2.8) is constrained so 

that 0 < y*(l -y)<  1/4. Given that the factor y*(l - y) is used in the derivative calculation 

at the preceding layer by Eq. 2.7, Rigler et al. propose that the compensatory factors 6 , 

36, 216,... are applied as a multiplier of each partial derivative calculated at layers L-1, 

L-2, L-3,.... Such a scheme can be modified to take account of the scale of function/. For 

example Dennis and Schnabel [1983, 209] recommend that the model Hessian is 

initialised according to:

Eq. 3.27 Ho = max{]f(xo)|,t}.D^ ,

The Cholesky factors of the Hessian are available with certain (efficient) implementations of 
quasi-Newton methods - see section 3.4.2.
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where r is a user-supplied estimate of the ‘typical’ size of/. (In the absence of any useful 

information, t is initialised to 1 .0 .)

The impact of different scaling schemes on the first- and second-order MLP training 

algorithms implemented for this thesis is the subject of on-going research. Preliminary 

experiments suggest that the scale factors proposed by Rigler et al. significantly improve 

the training speed of first-order algorithms, but not second-order algorithms (although the 

improvement for first-order methods was not sufficient to bring them up to the speed of 

any second-order method).

3.2 Line Minimisation

For classical methods with line searches, the task of locating the minimum along search 

direction Sk (line minimisation) is equivalent to finding the minimum of a function with a 

single variable (univariate minimisation). For clarity, all the line-minimisation strategies 

considered here are presented in terms of an arbitrary smooth univariate function/with 

scalar minimum x*. (Since line minimisation is an iterative process, the suffix m will be 

used for line-search iterations to prevent confusion with the ^-iterations of the 

multivariate algorithm.)

3.2.1 Line minimisation strategies

There are two broad strategies commonly used to locate minimum x* of univariate 

function/: function comparison and function approximation (polynomial interpolation).

Given two initial values of x {Xa and x^  which hxdick&i x*, function comparison methods 

iteratively reduce the interval in which x* lies - the interval of uncertainty - by a fixed 

ratio. Linear convergence is guaranteed for unimodal functions. (Function/[%) is 

unimodal in the interval [a, b] if, given any X],X2e [a, b] with %]<%2 , there is a unique jc* 

G [a, b] such that/(xi)>/(x2 ) i fx2<x*, and/(x])</(x2 ) if %]>%* [Gill, Murray & Wright, 

1981, 88-89].) The technique adopted here is golden section search, which ensures that 

the interval at iteration m+ 1  is approximately 0.618 (the golden section) times the size of
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the interval at m. In terms of the maximum reduction of the interval for a given number of 

function definitions, golden section search is almost as efficient as the ‘optimal’ strategy, 

Fibonacci search. (The latter is considered impractical as it requires the storage or 

generation of p Fibonacci numbers for p function evaluations, where p is generally not 

known in advance.)

Function comparison methods are reliable, but make no attempt to exploit the smoothness 

of function/. The second strategy, polynomial interpolation, approximates/by a simple 

function /  and uses /  to estimate the minimum of/. Typically /  is a parabolic 

(quadratic) or cubic polynomial. The former requires three pieces of data about/  

(typically f(x«), f(xt) and f(Xc)) and the latter four (typically f(x^), g(x^), f{Xb) and g(x )̂).

If /  is an accurate approximation of/, the theoretical convergence rate is super-linear 

(parabolic /  ) or quadratic (cubic /  ). If, on the other hand, /  inaccurately approximates 

/, polynomial interpolation is likely to be slow and unreliable; lower-order polynomials 

may actually prove more accurate than higher-order polynomials in regions where/is 

comparatively non-smooth^.

3.2.2 Safeguarded polynomial interpolation

In practice, it is possible to combine the strengths of both the above strategies in a single 

line-search algorithm with a convergence rate that approaches that of polynomial 

interpolation under favourable conditions, but remains close to the guaranteed rate of 

unmodified interval-reduction in the worst case. Such algorithms are termed safeguarded 

polynomial interpolation algorithms.

Designing such an algorithm is a non-trivial task, requiring efficient and robust 

mechanisms for detecting how ‘co-operative’ /  is and for switching strategies when 

appropriate. The method adopted here - Brent’s method [Brent, 1973] - is widely-used 

and well-regarded [Fletcher, 1980, 29] [Press etal., 1988]. Brent’s method can be 

implemented with either parabolic or cubic interpolation. Although the latter is likely to

 ̂ For a visual explanation of the relative merits of high- and low-order polynomial 
interpolation, see [Press et al., 1988, 87].
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take fewer m-iterations on average, it requires the calculation of derivatives (thereby 

approximately doubling the computational cost at each m-iteration for an MLP).

3.2.3 Inaccurate line searches

When a line search is used as part of a multivariate minimisation strategy, a key issue is 

the accuracy with which a* is chosen to approximate the minimum along s*. The trade-off 

between the effort expended to determine an a* of a given accuracy and the corresponding 

benefit (in terms of the overall reduction in E) to the multivariate algorithm is problem- 

and algorithm-dependent. Given a sufficiently robust multivariate algorithm, current 

opinion clearly favours inaccurate line searches on grounds of efficiency.

A practical and popular termination criterion for controlling the accuracy of % is 

Eq. 3.28 |g[+,s^|<-^g[s^ ,

where gjt+i is the gradient vector at and q a scalar in the range 0 < g < 1. If <7 is

small, an accurate line minimisation is performed, with ^ = 0  giving an ‘exact’ line 

search. (For exact line searches, the limiting factor is the floating-point precision 

available; owing to rounding error, it is a waste of effort to evaluate f(x„) if point Xm is 

closer than the square-root of the machine accuracy to a previously evaluated point [Press 

etal., 1988, 300].)

To guarantee global convergence it is important that % produces a ‘sufficient’ reduction 

in E. Since Eq. 3.28 takes no account of the actual reduction in E, it is usual to 

supplement it with the condition

Eq.3.29 E(x^)-E(xjt-Fa^Sjt)>-Majtg[s^ ,

where u is in the range 0 < w < 0.5. Setting q> u  guarantees that Eq. 3.28 and Eq. 3.29 

can be satisfied simultaneously.

Algorithms which satisfy both Eq. 3.28 and Eq. 3.29 at each iteration are globally 

convergent (under the mild assumptions that E is bounded below and the angle between s* 

and g* is bounded away from 90 degrees) [Dennis & Schnabel, 1983, 125]. Moreover,
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since s f  will satisfy both conditions simultaneously when Xk is close to x* (assuming G is 

positive definite), Eq. 3.28 and Eq. 3.29 are compatible with fast rates of local 

convergence.

To test condition Eq. 3.28 at each m-iteration requires first-derivatives; Eq. 3.28 is, 

therefore, inappropriate for line minimisation without derivatives. An alternative 

condition, proposed in [Gill, Murray & Wright, 1981, 102], replaces the left-hand side of 

Eq. 3.28 by a finite-difference approximation, i.e.

Eq. 3.30 |E ( x . + a A ) - E ( x . + . J  ^ ,

where v is a scalar satisfying 0 < v < a*. For the non-derivative line searches used in this 

research, Eq. 3.30 was adopted with v=0, so that no additional function evaluations were 

required to test this condition. Alternatively, Eq. 3.28 can be ignored altogether [Mpller, 

1993a], or replaced by a heuristic mechanism for controlling line-search accuracy - for 

example, Kinsella [1992] places an upper limit on the number of m-iterations performed 

at a each A:-iteration. However, neither of these alternatives have the theoretical 

justifications of Eq. 3.30.

3.2.4 Backtracking line search

Recent results (for conjugate gradient algorithms) published by Mpller [1993a] suggest 

that inaccurate safeguarded polynomial interpolation - entailing a minimum of three 

function evaluations per epoch - may be less efficient than the model-trust region 

approach. However, there is a class of line-search algorithm (not considered by Mpller) 

which requires only a single function evaluation per epoch in the best case - backtracking 

line searches.

For many second-order methods, the Newton step (i.e. %= 1) is a ‘natural’ step to take at 

each iteration. If the Hessian is positive definite, there is a good chance that the Newton 

step will produce an acceptable decrease in E. Near the solution, allowing the full Newton 

step is a key to fast convergence [Dennis & Schnabel, 1983, 117].
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If the error at Xjt+i = x* + St is unacceptable, backtracking algorithms iteratively 

‘backtrack’ (i.e. reduces %) until an acceptable E is found. The algorithm developed here, 

based on the backtracking algorithms in [Dennis & Schnabel, 1983], uses parabolic 

interpolation for the first step and cubic interpolation thereafter. (The latter is performed 

without expensive derivative calculations by storing f(x )̂, g(x )̂ and the two most recent 

test values for f(x  ̂+ Pt)-) Parameter u in Eq. 3.29 is set to a small value (10"^) so

that a small reduction in E is sufficient for the acceptance of a given %

Dennis and Schnabel present two versions of their backtracking algorithm; one version - 

the ‘modified’ version - implements Eq. 3.28 and requires derivative calculations, the 

other does not. The authors give theoretical and practical reasons for implementing Eq. 

3.28 as well as Eq. 3.29 with algorithms that use quasi-Newton approximations to the 

Hessian matrix. With the architectures, training problems and multivariate algorithms 

considered in this research, the Dennis-Schnabel unmodified backtracking algorithm 

displayed worse average convergence characteristics than the modified algorithm. The 

non-derivative backtracking algorithm developed here, which implements Eq. 3.30 rather 

than Eq. 3.28 (with a corresponding saving in derivative calculations), retained the 

improved performance of the modified Dennis-Schnabel algorithm.

3.2.5 Hybrid Brent/backtracking line search

In trials conducted for this research it was observed that low-accuracy non-derivative 

Brent’s method frequently made better progress than the backtracking strategy in very flat 

regions - a common feature of MLP error surfaces (see section 2.2.1). In response to this 

observation, a novel hybrid Brent/backtracking algorithm has been developed. This 

algorithm uses the efficient backtracking strategy under ‘average’ conditions but switches 

to Brent’s method under unfavourable conditions, i.e. whenever the number of 

backtracking iterations exceeds a user-defined limit or the multivariate algorithm 

generates a search direction that fails to satisfy Eq. 3.9. A few ^-iterations of Brent’s 

method are often sufficient to find a position in a more favourable region of weight-space, 

so that backtracking can be resumed without further interruption.
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3.2.6 Line search implementation

Multivariate vj. univariate implementation. Line-search algorithms can be coded either 

using vector-valued points or (as here) scalar points. The second alternative requires 

some mechanism for evaluating the multi-dimensional function F in a single dimension; 

the simple device adopted here (described in [Press et al., 1988, 317]) is to provide an 

‘artificial’ uni-dimensional function f(a) which evaluates F at + ocxjt.

Handling non-descent directions. A prerequisite for all the line searches considered 

above is that Sk satisfies Eq. 3.9 (i.e. Sk is a descent direction). Sk is guaranteed to satisfy 

Eq. 3.9 with the SD algorithm, so long as the gradient is greater than zero. However, 

many multivariate algorithms do occasionally generate an s* which is not a descent 

direction (for the various reasons considered in section 3.1). In these circumstances, 

probably the only solution (in general) is to restart the multivariate algorithm at the 

current position, with s reset to the steepest descent direction. An unfortunate by-product 

of resetting the algorithm is that any useful derivative information from previous 

iterations will be automatically discarded.

3.3 Model-Trust Region Strategies

The model-trust region approach has become an increasingly popular alternative to the 

traditional line-search approach. For all the strategies considered here, it is assumed that 

the step length (radius) a* is controlled indirectly by parameter u via the substitution in 

Eq. 3.15. There is no ‘natural’ choice for mq; recommended settings range between 0.001 

[Press et al., 1988] and < 10"°̂  [M0 ller, 1993a].

3.3.1 A simple model-trust region algorithm

The simplest model-trust region strategy is given by the following pseudo-algorithm 

(based on the Levenberg-Marquardt algorithms in [Press et al., 1988] and [Nash, 1990]):

1. Set uq > 0;
2. While termination criteria are not satisfied

2 .1 . calculate Sk,
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2.2. IF f(xt 4- St) < f(xt),
2 .2 .1 . set Xjt+i = Xjfe + Sjt;
2 .2 .2 . divide by a reduction constant",

ELSE
2.2.3. set Xk+\ = Xk,
2.2.4. multiply Uk by a growth constant.

For this research, the reduction constant was set to 2 or 4 and the growth constant to 4 or 

10. This strategy has proved satisfactory when used with the Levenberg-Marquardt 

method of section 3.6, but is prone to inefficient, oscillatory behaviour in regions where 

the appropriate value of u remains relatively constant for a number of iterations. (This 

behaviour is particularly apparent if the reduction and growth constants are set to the 

same value, as advocated by [Press et al., 1988].)

3.3.2 Fletcher’s method

A better strategy - sometimes called Fletcher's method [Wolfe, 1978] - is to chose a Uk 

that ensures ‘sufficient’ agreement is maintained between the actual and predicted 

quadratic error change at each iteration (AEk and AQk respectively). This is conveniently 

measured in terms of the ratio r, given by

Eq. 3.31 = *
AG,

The predicted error change AQk can be calculated as follows:

Eq. 3.32 AG, = E, -  G(s  ̂)

0 (sj) = |s [G ^ S j + g [s j

This leads to the following pseudo-algorithm (based on the Levenberg-Marquardt 

algorithm in [Fletcher, 1980]):

1. Set « 0  > 0;
2. While termination criteria are not satisfied,

2 .1 . calculate ŝ ;
2 .2 . evaluate f(x  ̂+ Sk) and calculate rk,
2.3. IF rk is less than lower ratio limit v,

2.3.1. multiply Uk by a growth constant".
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ELSE IF Tk is greater than upper ratio limit w,
2.3.2, divide Uk by a reduction constant',

ELSE
2.3.3, set Mjt+i = Mjk;

2,4, IF r, <0
2.4.1, set Xjfc+] = Xjt;

ELSE
2.4.2, set Xjt+i =Xk + ŝ .

The lower and upper ratio limits v and w are typically chosen so that 0 < v < w < 1, This 

algorithm is relatively insensitive to changes in the various constants; those used in this 

research are the same (arbitrary) constants advocated in [Fletcher, 1980, 96]: v=0,25 and 

w=0,75, (Settings for the growth and reduction constants were the same as for the simple 

strategy of section 3,3,1,)

When G is not available (as, for example, with conjugate gradient methods), G^St (in Eq, 

3,32) can be approximated by a one-sided finite-difference approximation or calculated 

exactly with P forward and backward passes using an algorithm described in [Mpller, 

1993c], Both schemes have 0(PN) time and storage costs; on average, the former yields a 

faster convergence rate than the latter (which is prone to numerical instability) [Mpller, 

1993e, 39],

3.3.3 Modern model-trust region algorithms

More recent model-trust region strategies choose Uk so that Eq, 3,14 is satisfied explicitly 

at each iteration, i,e, a Uk that satisfies

Eq. 3.33 ||ŝ || = a^

whenever the length of is greater than % [More, 1983], Two strategies for iteratively 

approximating the Uk that satisfies Eq, 3,33 - the locally constrained optimal ('hook') 

step and the double dogleg step - are presented in [Dennis & Schnabel, 1983, 134], 

(None of these more sophisticated strategies have been implemented for this research,)
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3.4 Quasi-Newton Methods

Quasi-Newton (QN) methods^^ differ from Newton’s method in that an approximation of 

the Hessian matrix (or its inverse) is built up iteratively, rather than calculated afresh at 

each epoch. Since QN algorithms do not require analytic second derivatives, they are 

more suitable for MLP implementation than straight Newton-type methods.

3.4.1 The Hessian update formula

In generating the Hessian approximation Ĥ +i from Ht using the derivative information 

collected during iteration k, all QN methods satisfy the so-called quasi-Newton 

condition^ ’

Eq. 3.34 H^+iP  ̂ = ,

where yt and pt are respectively the gradient change and the change in position x during 

iteration Ac, i.e.

Eq. 3.35 y t = Agj =  g. .̂, -  gj

Pt =AXj = X j ^ , - X j  .

Where methods differ is in the choice of updating formula that satisfies Eq. 3.34. Ho is 

typically set to the identity matrix (I) as a ‘neutral’ first approximation, making the first 

iteration equivalent to steepest descent.

QN methods are categorised in terms of the simple equation 

Eq. 3.36 H^ î = H  ̂ ,

There is some confusion in the numerical analysis literature about the use of the terms 
'quasi-Newton methods', 'variable metric methods', and 'secant methods'; some authors maintain 
a distinction between these terms (see, for example, [Dennis & Schnabel, 1983]), others do not. 
In this research, the term 'quasi-Newton methods' is used throughout.
” For an explanation of the quasi-Newton condition in terms of a Taylor series expansion of 
f(x), see [Fletcher, 1980, 39].
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where C* is a correction or update matrix. The best-known methods use a rank-two 

matrix for C*: the Davidon-Fletcher-Powell (DFP) update (most concisely written in 

terms of the inverse model Hessian, H )

Eq. 3.37 = H '̂ + ,
ply . y lH j'y .

and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update (the complement of the DFP 

update) given by

Eq. 3.38 =H*
y .P .  P.HjPj

Under various fairly stringent conditions (including the strict convexity off) both DFP 

and BFGS methods are globally convergent with a super-linear rate of local convergence. 

However, there is overwhelming theoretical and experimental evidence that the BFGS 

update is superior to the DFP update (and probably all other updates) [Dennis & 

Schnabel, 1983] [Dixon, 1972] [Fletcher, 1980]. (The DFP update has, for instance, the 

reputation of being highly sensitive to the choice of line-search accuracy.)

3.4.2 Representing the Hessian approximation matrix

If the Hessian approximation H is represented directly, QN methods - like Newton’s 

method - require the solution of Eq. 3.8 at the cost of O(n^) multiplications per iteration. 

By storing an approximation of the inverse Hessian G rather than G itself, the cost falls 

to O(n^) multiplications. In terms of the inverse Hessian, the BFGS update Eq. 3.38 

becomes

Eq. 3.39 H"!, =H-'  +
p ly . p . y .  p . y .

Although the inverse Hessian approach is highly effective with many problems, there is 

no convenient mechanism for regulating the positive-defmiteness of the inverse Hessian 

(in contrast to the regular Hessian - see section 3.1.3). As a consequence, wasteful 

resetting of the QN algorithm may be unavoidable.
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A more complex alternative, developed by Gill and Murray, is to represent the Hessian 

approximation by its Cholesky factorisation

Eq. 3.40

where and D* are, respectively, a unit lower-triangular matrix (i.e. all diagonals are 

one) and a positive diagonal matrix. This representation is convenient for detecting and 

correcting an indefinite Hessian, with computational costs that are of the same order as 

the inverse Hessian strategy [Gill, Murray & Wright, 1981]. (Algorithms for calculating 

and iteratively updating the Cholesky factorisation of the QN Hessian are given in 

[Dennis & Schnabel, 1983].)

3.4.3 M odified quasi-Newton methods

0(n) memory storage. With large-scale problems, the O(n^) memory cost of storing the 

Hessian matrix may be prohibitive. This has led to the development of a ‘memoryless’ 

(i.e. 0(n)) quasi-Newton method (NQN) in which the BFGS formula is applied to I 

rather than Successive search directions are generated iteratively according to the 

expression

y&plst+i +Ptyl8t+, 
p l y t

l-H
p l j k j

T 
k i ' kPtP

The algorithm is equivalent to the Polak-Ribiere conjugate gradient method (section 3.5) 

when exact line searches are used, and is reputedly superior in practice with inaccurate 

line searches [Luenberger, 1984, 280].

Reset every n iterations. One inelegant but effective way of ensuring a QN algorithm is 

globally convergent is to reset the algorithm every n (or w+1) iterations. This strategy 

may be appropriate for difficult problems when using a QN algorithm that makes no 

attempt to regulate the condition of the model Hessian.
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3.5 Conjugate Gradient Methods

Conjugate gradient (CG) methods are a class of second-order methods which, unlike 

quasi-Newton methods, require only 0{n) storage. They are thus particularly well-suited 

to large-scale problems for which quasi-Newton methods may be impractical.

3.5.1 The conjugate gradient formula

CG methods exploit the fact that a sequence of search directions that are mutually 

conjugate (i.e. satisfy Eq. 3.7) can be generated iteratively without using the Hessian G 

according to the expression

Eq. 3.42 = -gt+] »

with the first iteration equivalent to steepest descent (i.e. So = -go). Where CG methods 

differ is in the formula - the so-called conjugate gradient formula - used to calculate 

scalar p*.

In terms of the Hessian matrix, is defined by

gl+iGs^Eq. 3.43 P ^ = - -

In CG methods, where the aim is to avoid evaluating G, Eq. 3.43 is reformulated using 

first derivative information. The three most popular alternatives are the Fletcher-Reeves 

(FR) formula

T
Eq. 3.44 P^ ^

g ig t

the Hestenes-Stiefel (HS) formula

(gt+l ~ gl: ) g/
T

{&M - g j  5

and the Polak-Ribiere (PR) formula,

( g M - g . ) ' gEq. 3.46 P jfc =
T

"k+]
gigt
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All three formulae are equivalent for quadratic functions (with exact line searches), but 

the PR formula is widely preferred in practice and has been adopted here. (One reason 

why the PR formula may be more effective is that it tends to reset automatically to the 

steepest descent direction whenever the algorithm fails to make much progress.)

3.5.2 Conjugate gradient restarts

Under strict conditions, CG methods are capable of minimising quadratic functions in at 

most n iterations for n free parameters (MLP weights), but generally take more than n 

iterations for non-quadratic functions. Although it is possible to use the same update 

formula at every iteration (often with acceptable results in the case of the PR update 

[Wolfe, 1978]), it is usually much more efficient to restart the CG algorithm roughly 

every n iterations.

A variety of CG restart schemes have been devised, differing in the choice of restart 

direction and the interval between restarts. The simplest and most popular option 

(adopted here) is to reset s to the steepest descent direction every n (or n+1) iterations. (In 

addition, it is common practice to restart a CG algorithm whenever a search direction that 

fails to satisfy Eq. 3.9 is generated.) A drawback with the traditional, steepest descent 

restart procedure is that curvature information from previous iterations is automatically 

discarded. Restart schemes which aims to retains some curvature information (such as the 

Powell restart [Powell, 1977]), are worth considering, but have not been implemented for 

this research.

The traditional SD restart is important for the theoretical convergence characteristics of 

CG methods. It guarantees global convergence, and affords a super-linear rate of local 

convergence for a wide class of functions (assuming exact line searches and exact 

arithmetic) [Gill, Murray & Wright, 1981, 149-50]. (For a more detailed consideration of 

the convergence properties of CG methods in terms of the distribution of the eigenvalues 

of the Hessian matrix, see [Luenberger, 1984, 247-252] and [Mpller, 1993e, 33-36].)
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3.6 Levenberg-Marquardt Method

3.6.1 From Gauss-Newton to Levenberg-M arquardt

Section 3.1.4 introduced a class of nonlinear least-squares algorithms which approximate 

the Hessian matrix G according to the simple Eq. 3.23. The Gauss-Newton (GN) method, 

which implements Eq. 3.23 without modification, has the update

E q .3.47 ~ ^k  [j/feJit]

The convergence properties of the GN method depend on the size of S (from Eq. 3.22), a 

measure of the nonlinearity and residual size associated with the chosen problem. If Sk is 

small relative to J  [ J  ̂ , the method is locally quadratically convergent. However, an 

increase in either the relative residual size or nonlinearity of the problem increases the 

relative size of S, with a corresponding decrease in convergence speed; if S is too large 

the method may fail altogether, even in the neighbourhood of a minimum [Dennis & 

Schnabel, 1983, 224] [Fletcher, 1980, 113]. Moreover, the method is ill-defined whenever 

J  does not have full column rank, a condition that is guaranteed to occur if m<n. (Since 

m<n is equivalent to PN^<W for an MLP, this makes the GN method inherently 

unsuitable for the XOR task used in this research; otherwise, this condition rarely arises.)

The ‘straight’ Gauss-Newton method can be improved by combining it with a line-search 

algorithm so that Eq. 3.47 becomes

Eq. 3.48 Xjfc+i ~ Xjfe J* ] »

where is the familiar step length. This method - the damped Gauss-Newton method 

(or Hartley method [Wolfe, 1978]) - is more reliable than the unmodified version, but 

otherwise suffers from similar drawbacks [Dennis & Schnabel, 1983, 227] [Fletcher, 

1980, 115].

The preferred modification of the Gauss-Newton method, based on the model-trust region 

approach considered in section 3.3, is the Levenberg-Marquardt (LM) method (or 

Marquardt method). The LM update is given by

Eq. 3.49 "  [ j * J  t •
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The LM method has several advantages over the damped Gauss-Newton method: it is 

well-defined when J  does not have full column rank; several version of the LM algorithm 

have been proved to be globally convergent (see, for example, [Osborne, 1976]); and, 

when the step length is too long, the LM update (which tends to the steepest descent 

direction) is often superior. The theoretical local convergence characteristics of the ON, 

damped ON, and LM methods are broadly similar: quadratic convergence for zero- 

residual problems; fast linear convergence for problems that are not too nonlinear and 

have fairly small residuals; and slow linear convergence for problems that are sufficiently 

nonlinear or have comparatively large residuals [Dennis & Schnabel, 1983, 225-228].

3.6.2 Neural implementation

The Levenberg-Marquardt method, in common with all nonlinear least squares methods 

based on Eq. 3.23 or Eq. 3.24, requires the components of Jacobian matrix J  to be 

available at each iteration. An MLP can calculate the components of J  as follows [Battiti, 

1992, 160]:

Eq.3.50 ^  =

where the term 5 is given by

Eq. 3.51 Ô = yl̂ p (l -  yip ), for i = a

= 0 , i o x i ^ a

h

To calculate and g* (by Eq. 3.23 and Eq. 3.21 respectively) requires P standard BP 

forward passes and PN^ 'modified' backward passes based on Eq. 3.50 (as opposed to Eq. 

2.7 for the standard BP backward pass).

50



Kollias and Anastassiou [1989] propose several modifications to the standard LM 

algorithm when used to train an MLP, including the representation of the Hessian by

a near-diagonal matrix and an adaptive distributed scheme for selecting the step-length 

parameter. (These modifications have not been implemented for this research.)

3.7 Comparison of Methods

With respect to convergence speed, conventional wisdom ranks the preceding methods in 

the following o r d e r - LM (ranked first for zero-residual problems only), QN, CG and 

NQN, SD. This ordering is fairly intuitive, as it reflects the extent to which the various 

methods exploit the problem structure and store useful curvature information, but is 

somewhat misleading; although SD is consistently rated as the poorest method, the choice 

between the others is less clear-cut. In practice, the fastest second-order method for a 

given problem can only be determined by experimentation.

On balance, an efficient implementation of the BFGS quasi-Newton algorithm probably 

deserves the highest recommendation for its combined speed and robustness. BFGS QN 

has the reputation for being the most stable method with inaccurate line searches, does 

not require potentially-wasteful resetting to the steepest descent direction every n 

iterations (cf. conjugate gradient methods), and is not sensitive to the presence of 

residuals at the solution (cf. the Levenberg-Marquardt method).

Unfortunately, the O(aî ) storage requirements of both the QN and LM methods - where n 

is the number of MLP weights - make them impractical for large-scale tasks. Under these 

circumstances, there is little to choose between the PR CG and NQN methods, both of 

which have only 0 (n) storage costs.

Newton-type methods with analytic second derivatives are generally preferred to all other 
unconstrained minimisation strategies, but rely on the ability to evaluate G efficiently at each 
iteration. For the reasons given in section 3.1.2, such methods are inappropriate for MLP 
training, and are therefore ignored in the current discussion.
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4. CLASSICAL MLP TRAINING METHODS

This chapter compares the experimental performance of classical optimisation algorithms 

(adapted for supervised learning with an MLP) with that of traditional MLP training 

methods, focusing on two key aspects of training algorithm performance - speed and 

frequency of convergence to local, rather than global, minima. (Throughout the remainder 

of this thesis, the terms 'local' and 'global' are used to distinguish between local and global 

minima - cf. chapter 3.) Of the available research papers on this subject (reviewed in 

section 4.1), all address - if often inadequately - the comparative performance of classical 

training methods and backpropagation with respect to training speed, but only a single 

paper gives detailed consideration to the susceptibility of different training algorithms to 

getting trapped in local minima.

4.1 Research Review

The following review focuses on research papers that compare, experimentally, the

performance of classical and traditional training methods:

Barnard [1992]

•  Training methods: QN, BFGS update; CG with Powell restarts; SD; 'stochastic' BP 

with periodic line search to set training rate.

• Line minimisation: no details given.

• Test problems: XOR; artificial set (383 patterns); aircraft data (1890 patterns).

• Architectures: 2-3-2 (sic) (XOR); 2-5-3 (artificial); 32-9-3 (aircraft); weight 

initialisation range [-1 , 1 ]; sum-of-squares error function.

• Results: 5 training runs with each problem/algorithm combination; QN and CG 

consistently fewer iterations than SD; performance of QN and CG very similar; 

'stochastic' strategy fewest iterations with artificial and aircraft problems.
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Battiti and Masulli [1990]

• Training methods: NQN, with SD restart every n\ ‘bold driver’ batch BP, with 

training rate ‘growth’ and ‘shrink’ factors of 1.1 and 0.5 respectively.

• Line minimisation: method based on quadratic interpolation (requiring 'a small 

number of energy evaluations' per epoch).

• Test problems: arbitrary dichotomy problems (i.e. two classes of randomly generated 

patterns) with between 5 and 100 patterns in the range [0,1]; recurrent logistic Xk+\ = 

Axk{\-xi^, with 1 0  pattern set.

• Architectures: 2-n-\ (dichotomy) where n is the number of patterns divided by 2; 1-5- 

1 (logistic); weight initialisation range [-0 .1 , 0 .1 ] (dichotomy problem - unspecified for 

logistic problem).

• Results: 10 runs (logistic); significantly fewer 'learning cycles' with NQN; both 

methods encountered ‘local minima’ with dichotomy problem (frequency not 

documented).

Berggren [n.d.]

• Training methods: CG, FR update; batch BP with unspecified training rate (claimed 

to be ‘optimal’).

• Line minimisation: ‘modified Rosenbrock success-failure line-minimisation’ 

(attributed to F James, “MINUIT”, Computer Physics Communications 10, 343, 75) 

with undocumented learning parameter. Average 4.2 function evaluations per epoch.

• Test problem: distinguish positively- from negatively-sloping smeared lines in range 

[-0.005,0.005] (1,000 patterns).

• Architecture: 25-15-1; sum-squared error function.

• Results: CG fewer iterations than BP; (the author suggests that CG is more likely to 

get trapped in local minima than BP with a large training rate, but no evidence is 

presented.)
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Johansson, Dowla & Goodman [1992]

•  Training methods: 4 CG methods (FR, PR, HS and Shanno’ ) with SD restart every 

n\ SD; batch BP with 7 different combination of training rate and momentum in the 

range [0.1, 0.9].

• Line minimisation: safeguarded cubic interpolation with accuracy {q in Eq. 3.28) 

0.01, 0.1, 0.5 and 0.9, and u (Eq. 3.29) of 10^.

• Test problems: 3-, 4- and 5-parity; mean-squared error function with termination 

criterion of 1 0 ^ .

• Architectures: n-n-\ and n-n-n-l\ weight initialisation range [-0.5, 0.5].

• Results: single run with each problem/algorithm combination; SD fewer function 

evaluations than batch BP and all CG methods fewer evaluations than SD; the authors 

conclude that the choice of CG method and line search accuracy is highly problem- 

dependent, but the HS or PR update with 0.1 accuracy considered most satisfactory; 

only CG with the Shanno update converged successfully with all problems and line- 

search settings.

Kinsella [1992]

• Training methods: CG, Fletcher-Reeves-Polak-Ribiere update - i.e. presumably the 

PR update (line search and model-trust region versions); on-line BP with training rate 

0.1, and momentum 0.0 or 0.5.

• Line minimisation: Brent’s method (with the number of iterations per epoch used as a 

crude mechanism for controlling accuracy).

• Test problems: distinguish between circles and rectangles of differing sizes and 

positions (3 training sets of increasing size and difficulty).

• Architecture: 16384-2-2; sum-squared error function.

' The aim of the Shanno CG update is to generate, at every iteration, a search direction that is 
guaranteed to be a descent direction, even with inaccurate line searches [Johansson, Dowla & 
Goodman, 1992, 295].

54



• Results: single run with each problem/algorithm combination; CG methods of growing 

superiority to BP as difficulty increases; with ‘middle’ training set, BP got 'stuck' and 

CG methods encountered 'local minima'; with largest training set, line-search CG 

performed poorly if Brent iterations (i.e. m-iterations) limited to 5 per epoch (Re­

iteration), but better than model-trust region CG when limit raised to 10; (author 

concludes that 'no advantage appears to be gained by using the Levenberg-Marquardt 

[i.e. model-trust region] approach .)

Kollias & Anastassiou [1989]

• Training methods: modified LM (two versions - with and without adaptive distributed 

selection of step-length parameter); batch BP with training rate in range [0.1,0.5] and 

momentum 0.9.

• Line minimisation: backtracking line search (based on [Dennis & Schnabel, 1983]).

• Test problems: digital image halftoning (16,000 samples); XOR (training set with 5 

copies of each pattern).

• Architecture: single neuron (halftoning); 2-2-1 (XOR); sigmoid squashing function; 

sum-squared error function; weight initialisation range [-0.3, 0.3] (XOR).

• Results: 1 run (halftoning); 10 runs (XOR); modified LM methods consistently more 

accurate than BP and required fewer iterations; adaptive version of LM required fewer 

iterations than non-adaptive version.

M0ller [1993a]

• Training methods: CG, PR update^ (line search and model-tmst region versions) with 

SD restart every n; NQN (with line search); batch BP with training rate 0.2 (3- to 6 - 

parity), 0.05 (7-parity) or 0.01 (8 - and 9-parity), and momentum 0.9.

• Line minimisation: safeguarded quadratic interpolation with termination condition 

u=0.25 in Eq. 3.29.

 ̂ The Folak-Ribiere update is called the Hestenes-Stiefel update by Moller [1993a, 80].
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Test problems: 3- to 9-bit parity; termination criterion of 10'^ ('average error').

• Architecture: n-n-1.

• Results: 20 runs with each problem/algorithm combination (10 runs for BP with 8 - 

and 9-bit parity); line-search CG and NQN required 2.5-12 times fewer function 

evaluations than BP (with, in general, a greater improvement for higher n); model-trust 

region CG required 2-3 times fewer function evaluations than line-search CG and 

NQN; average failure-rate with BP about twice that of other methods.

M0ller [1993b]

• Training methods: CG, PR update (2 model-trust region versions: a 'standard' off-line 

algorithm, and an on-line algorithm with subset update validation scheme - see section 

5.1.1); on-line BP with training rate 0.1 and momentum 0.9.

• Test problems: randomly generated sets, of varying degrees of redundancy, with 12- 

bit inputs and 3-bit outputs; 1,000 word NETtalk (5,438 patterns); exchange rate 

prediction (set of 4,476 daily rates for DM vs. US$).

• Architectures: 12-8-3 (random sets); 203-30-26 (NETtalk); 20-10-1 (exchange rate).

• Results: 10 runs (NETtalk); on-line BP required fewer epochs than 'standard' CG with 

highly redundant problems (such as NETtalk), although the latter achieved greater 

accuracy; on-line CG required fewer epochs and achieved greater accuracy than on­

line BP with highly redundant problems.

M0ller [1993d]

• Training methods: CG, PR update (3 model-trust region versions, with and without 

adaptive preconditioning) with SD restart every n; batch BP ( 6  versions, with and 

without adaptive preconditioning - training rate 0.25 with standard version).

• Test problems: XOR; 5-parity; two spirals.
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• Architectures: 5-5-1 (5-parity); non-standard MLP with 3 hidden layers of 5 nodes 

each (two spirals); termination criterion of < 0 . 8  error for each pattern and output (all 

test problems).

• Results: 30 runs (XOR, batch BP methods - unspecified for CG methods), 20 runs (5- 

parity) and 10 runs (two spirals, CG methods only); preconditioning schemes produce 

substantial speed-up (measured in epochs) with batch BP, slight speed-up with CG, 

but 'barely enough to justify the extra computation'; higher tendency to converge to a 

saddle point with batch BP and symmetric preconditioning scheme (5-parity).

Pattichis etal. [1991]

• Training methods: CG, PR update with SD restart every n; BP with momentum 

(details in unavailable reference).

• Line minimisation: details in unavailable reference.

• Test problem: EMG data (740 patterns).

• Architectures: variety of 2- and 3-layer MLPs with 5,000 to 26,000 weight for BP 

and 45 to 260 weights for CG; sigmoidal outputs in (non-standard) range [-1, 1]; least- 

square error function.

• Results: CG significantly better than BP in terms of training time and successful 

network size.

Van der Smagt [1990]

•  Training methods: CG, PR update with Powell restarts; BP (no details given).

•  Line minimisation: details in unavailable reference.

• Test problem: XOR.

• Architecture: 2-2-1; sigmoid squashing function; sum-squared error function.

• Results: CG fewer iterations than BP; (CG error curve shows two sudden increases in 

E, which are not explained by the author).
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Van der Smagt [1994]

• Training methods: QN, DFP update (inverse Hessian); CG, FR update; CG, PR 

update with Powell restarts; SD; batch BP with training rate 0.1 and momentum 0.9.

•  Line minimisation: Brent’s method (average 3-5 function evaluations per epoch).

• Test problems: XOR; continuous function sin(%)cos(2%) for 0 < j: < 2tc (20 samples); 

discontinuous function tan(%) for 0 < % < 7t (20 samples); termination condition <0.025 

per pattern (all test problems).

• Architectures: 2-2-1 (XOR); 1-10-1 (sin(%)cos(2%)); 1-5-1 (tan(%)); sum-squared error 

function.

• Results: 10,000 runs with each problem/algorithm combination; success rates with 

average function evaluations (if given by author) in parentheses:

• XOR: BP 91% (332), SD 38% (3,662), FR CG 81% (523), DFP QN 34% 

(2,141), and PR CG 82% (79);

• sin(%)cos(2%): BP 0%, but 15% with adaptive training rate ('over two million 

function evaluations'), SD 90% (4.10°^), FR CG 49%, DFP QN 36%, and PR 

CG 100%;

• tan(x): BP 0%, SD 0%, FR CG 4%, DFP QN 40%, and PR CG 85%.

Watrous [1987]

• Training methods: QN, DFP and BFGS updates (both inverse Hessian); SD; batch 

BP.

• Line minimisation: no details given.

• Test problems: XOR (with 0.1 and 0.9 targets); multiplexor.

• Architectures: 2-1-1 with 7 weights (XOR); 6-4-1 (multiplexor); sum-squared error 

function.
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• Results: BFGS fewest function and gradient evaluations with both problems; SD and 

DFP failed to converge with multiplexor problem; BP considerably slower than other 

methods for XOR.

Before considering the usefulness (or otherwise) of these papers in terms of the issues 

addressed by this research, it is worth stressing that sensitivity to initial conditions is well- 

recognised in optimisation theory in general [Gill, Murray & Wright, 1981, 324-330] 

[Murray, 1972c] and MLP training in particular [Kolen & Pollack, 1990]. The 

performance of a training algorithm - and, perhaps more importantly, the relative 

performance of different training algorithms - may be sensitive to a range of factors, 

including the choice of floating-point precision, termination criteria, weight initialisation 

range, error function, training rate (backpropagation), or accuracy (line minimisation). As 

a consequence, the value of published results is diminished when this type of information 

is omitted from the written account. Of the thirteen papers summarised above, nine fail to 

specify the weight initialisation range, eight the termination criteria, seven the line search 

accuracy, five the BP training rate, and four the chosen error function. None of the 

authors specify the floating-point precision of their programs. Several papers even leave 

us in doubt as to the algorithm being tested; four fail to give any details about the line 

search method, and two neglect to mention whether the BP algorithm was on- or off-line.

Perhaps an even more significant issue is the number of training runs performed with a 

given combination of test problem and algorithm. Under otherwise identical training 

conditions, the relative performance of training algorithms - in terms of both the length of 

training time and the final error level - can vary dramatically with different sets of starting 

weights (even when initialised within the same range). Our confidence that a given set of 

results represents the typical' performance of an algorithm with a particular problem is 

proportional to the number of runs undertaken. Of the research papers reviewed above, 

five fail to mention the number of training runs performed, and, of the remainder, two 

have results for no more than a single run per problem/algorithm, and only three have 

results for more than ten runs per problem/algorithm.

A further aspect of these papers worthy of comment is the choice of training-speed metric. 

What counts as a satisfactory metric depends on which methods are being compared. The
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traditional metric for MLP training - the number of training epochs - is suitable for 

methods which evaluate/and g (i.e. performp forward passes and p backward passes) 

exactly once per epoch (A:-iteration), assuming that the cost of evaluating/and g 

dominates the total computational cost of each algorithm^. The number of epochs is, 

therefore, an acceptable metric for comparing the performance of traditional fixed- 

training-rate BP methods with certain implementations of model-trust region methods for 

unconstrained optimisation (e.g. [Mpller, 1993b]) and LM methods (e.g. [Kollias & 

Anastassiou, 1989]), but inadequate for comparisons with line search methods, which 

require, on average, more than a single function (and, in some cases, gradient) evaluation 

per epoch. Four of the papers reviewed above use the unsuitable number-of-epochs metric 

to compare the performance of traditional BP with classical line search methods. 

(Performance metrics are discussed further in section 4.3.1 and 4.4.2.)

Of those papers which do not contain serious methodological flaws and omissions, only a 

single paper - [van der Smagt, 1994] - investigates, in detail, the tendency of different 

training methods to get trapped in local minima.

4.2 Benchmark Training Sets

4.2.1 Benchmark criteria

The choice of appropriate benchmark test problems is a difficult but crucial aspect of 

MLP research. Desirable properties of an MLP benchmark include: widespread usage 

(enabling comparisons with earlier research); small size (allowing a large number of 

training runs); and similarity to ‘real-world’ MLP problems (giving a degree of 

confidence that a successful training method can be extended to practical applications). 

There are no MLP training problems which meet all these criteria, mainly because there is 

an approximate trade-off between the size of a problem and its applicability to the ‘real 

world’. Given finite computational resources and time, this leaves a difficult choice.

 ̂ For practical applications with large training sets, this is a reasonable assumption to make 
with all the algorithms considered here. However, if two algorithms evaluate/and g roughly the 
same number of times per training run, it is worth taking into account the computational 
complexity of their respective updates.
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Furthermore, an additional criterion - the presence of known local minima - is essential to 

this research, but (as noted in section 2.2.2) currently hard to satisfy.

The approach adopted here has been to perform a large number of training runs with 

small but non-trivial test problems. This approach has two key advantages: many 

important trends and characteristics in the comparative performance of different training 

methods only emerge if sufficient runs are performed; and much useful mathematical 

analysis (of the error surface and network behaviour) is currently feasible only with small 

network architectures. The two main training tasks used in this research - the XOR and 

sine problems - are described in the following sections.

4.2.2 XOR

XOR is the simplest and most widely-used MLP benchmark, but is criticised for having 

little in common with real-life applications'^. For present purposes, the fact that MLPs 

frequently get caught in local minima when learning the XOR problem is its main 

recommendation. The minimal standard MLP that can learn XOR is 2-2-1.

When learning the XOR problem with any standard 2-m-l architecture (m > 2) and using 

the error function Eq. 2.3, local minima may be found at two distinct error levels - 

£■=0.08333 and £=0.0625. That these are true local minima has been demonstrated by a 

numerical analysis of the XOR problem by Lisboa and Perantonis [1991]^. It has often 

been assumed that local minima may occur at a third error level of £=0.125 (see, for 

example, [Hirose, Yamashita & Hijiya, 1991]); Lisboa and Perantonis appear to support

The generalised parity problem [including XOR] is just the type of problem which distributed 
training by back error propagation is not suited to. Every bit of information in the data is 
conflicting, and there is absolutely no redundancy. Solutions to it are reached, not by 
generalising from sample data, but rather by reasoning about the problem as a whole at a much 
higher level.' [Lisboa ed., 1992, 252].

 ̂ The numerical simulations of Lisboa and Perantonis gave different error-levels to those in this 
research, attributable to their use of a different error function (the 'cross-entropy' error function

rather than Eq. 2.3) and different target outputs (0.1 and 0.9, rather than 0 and 1). The authors' 
main analytic findings about the existence and characterisation of XOR local minima are 
unaffected by these differences.
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this assumption, but point out that saddle points frequently occur at the same error level. 

However, a recent analysis of the XOR error surface for an MLP with two hidden nodes 

indicates that local minima cannot occur at £'=0.125 [Hamey, 1995]. The configuration 

of pattern classifications and misclassifications for each XOR stationary point is as 

follows:

• £=0.125 saddle points:
• £=0.0625 local minima:

• £=0.0833 local minima:

4 patterns 50% correct
2 patterns 100% correct, 2 patterns 50%
correct
1 pattern 100% correct, 1 pattern 66.7% 
correct, 2 patterns 33.3% correct.

Sample MLP output values for each of these stationary points are given in Graph 1. The 

XOR global minima are at £=0, i.e. there are no residuals at the solution.

In practice, MLPs are often trained using a modified XOR training set with targets 0.1 

and 0.9 (rather than 0 and 1) to prevent network saturation. This option is ignored in the 

current chapter, but is related to the Expanded Range Approximation (ERA) strategy of 

section 5.2.

Graph 1 - Sample location of XOR stationary points in terms of pattern 
classification/ misclassification
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4.2.3 The sine problem

The sine problem is a small but non-trivial example of a function-learning task. The 

version used in this research - based on that in [Mclnemey et al., 1989] - has a training 

set of 64 patterns, with each patterii {pq) and target {t^ defined as follows:

Eq. 4.1 P q - { q - 1)^— j  — j, for  ̂= 1,... ,64

Eq. 4.2 = sin(p  ̂) .

The minimal standard MLP that can learn the sine function is 1-2-1. This architecture is 

prone to getting trapped in local minima, but with a much smaller frequency than XOR 

with a minimal architecture. Mclnemey et al.'s investigation (combining a smart raster 

scan of the error surface with numerical analyses of candidate minima) of a limited region 

of weight space found local minima 'like pinholes in a large flat board' [Mclnemey et al., 

1989, 9]; these local minima occur at an error level of £«0.023, using the architecture and 

training set of this research* .̂ With certain training methods used in this research, a small 

number of runs converged to stationary points at other error levels; whether these are 

local minima or saddle points is not known. The location of the sine stationary points, in 

term of the classification and misclassification of pattems in the training set, are shown in 

Graph 2.

Mclnemey et al.'s analysis indicated that the sine global minima are at £^0, i.e. there are 

residuals at the solution; the lowest error level attained for the sine problem with any of 

the training methods used in this research was 3.0"°̂ .

 ̂ The error-levels reported by Mclnemey et al. for both the sine and XOR local minima are 
different to those given here. In the absence of full details about Mclnemey et al.'s 
implementation, the precise cause of these differences is uncertain. However, the differences in 
error levels do not appear to be of any great significance; when the MLP used for this research 
was initialised using the sample location of the sine local minima given in [Mclnemey et al., 
1989, 8], it rapidly became trapped at £=0.023, irrespective of the (non-global) training 
algorithm used.

63



Graph 2 - Location of sine stationary points in terms of pattern classification/ 

misclassification
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4.3 Experimental Results

4.3.1 General training conditions

This section specifies the general conditions which remained constant for all the results 

presented later in this chapter.

MLP architecture and initialisation. All the results presented below are for an MLP with 

the minimal standard architecture capable of learning the given benchmark training set (on 

the assumption that larger networks are likely to yield fewer local minima), using the 

mean-squared error function (Eq. 2.3) and sigmoid squashing function (Eq. 2.2). The 

same 200 sets of random starting weights were used for all the tests, with a weight 

initialisation range of [-1,1].

As the sine problem defined by Eq. 4.1 and Eq. 4.2 has a number of target values outside 

the range [0, 1], the corresponding MLP architecture must, of necessity, have linear 

output nodes, i.e. the sigmoid squashing function is not applied to the nodes in layer L. 

With binary problems, such as XOR, the architecture may have either linear output nodes 

or sigmoid output nodes. XOR with linear output nodes and XOR with sigmoid output
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nodes are treated as separate training tasks in this research, on the grounds that the 

corresponding error surfaces have different shapes and properties^.

Termination conditions. Three common-sense termination criteria are generally applied to 

unconstrained minimisation: '"Have we solved the problem?" "Have we ground to a halt?" 

or "Have we run out of money, time, or patience?'" [Dennis & Schnabel, 1983,159]. All 

three criteria are used in this research, but the specific tests performed are somewhat 

different to those advocated in the optimisation literature [Dennis & Schnabel, 1983, 159- 

61] [Gill, Murray & Wright, 1981, 305-12]; in order to accurately record the 

susceptibility of each training algorithm to becoming trapped in local minima, priority 

was given to the prevention of premature termination under all reasonable circumstances 

(at the expense of some - perhaps many - additional iterations with those training runs that 

did get trapped). A training mn was deemed to have ground to a halt' only if there was no 

reduction in E for 10 epochs, or a high epoch limit -100,000 for BP methods, 10,000 

otherwise - exceeded. (For second-order methods with Brent's line search algorithm, this 

upper epoch limit was sufficiently high to ensure that it was reached by only a small 

fraction of runs.)

The optimal accuracy with which E should approximate a global minimum in the MLP 

error surface is problem- and application-specific, although an exceedingly accurate 

solution is rarely desirable (see section 2.1.2). The tabulated results below are for E=0.01 

only; a consideration of training performance across a range of different error tolerances 

is deferred until section 4.4.2.

Training speed metric. The main training-speed metric used here is the number of 

equivalent function evaluations (EFEs), defined as follows:

^   ̂ function evaluations + gradient evaluations
Eq. 4.3 EFEs = ----------------------------------------    ,

2

where a function evaluation and gradient evaluation comprise P forward passes and P 

backward passes respectively (for a training set with P pattems). The computational 

effort associated with an EFE is, therefore, roughly equivalent to that associated with a 

traditional BP epoch. For a given training algorithm and choice of parameters, the number

 ̂ Every training algorithm tested here displayed a higher failure-rate for the XOR problem 
when the architecture had a sigmoid output node. This is attributable to the greater degree of 
freedom allowed in the values of network outputs with linear output nodes.
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of EFEs required to achieve a given error tolerance is characterised by three main 

statistics - the mean, the standard deviation and the median (ignoring, in all three cases, 

runs that did not achieve that tolerance).

Implementation and settings. The code for this research was written in the C++ 

programming language. The programs were compiled using Borland C++ v3 and tested 

on two IBM-compatible PCs: a Gateway 2000 75MHz Pentium computer running MS- 

DOS 6.22 and a Zenith Data Systems 286 computer running MS-DOS 5.0. All training 

algorithms were implemented with double (15-digit) precision arithmetic.

The classical algorithms tested for this research were as follows:

• BA and OL - batch and on-line BP (section 2.3). The momentum parameter is 

implemented as in Eq. 2.10 and set either 'on' (0.9) or 'off (0.0). With OL BP, training 

pattems were presented in random order.

• SD - the steepest descent algorithm (section 3.1.1).

• CG - the Polak-Ribiere (PR) conjugate gradient method (section 3.5.1 ).

• QN - the BFGS quasi-Newton method (section 3.4.1). For QN implemented with line- 

search methods but without positive definiteness enforced, the model Hessian was 

represented by the inverse Hessian; for QN implemented with a model-trust region 

strategy or with positive definiteness enforced, the model Hessian was represented 

directly (section 3.4.2).

• NQN - the memoryless' quasi-Newton method (section 3.4.3).

• LM - the Levenberg-Marquardt nonlinear least-squares algorithm (section 3.6).

• BR and DBR - Brent's line-search method, with and without derivatives (section 

3.2.2).

• BT and DBT - backtracking line search, with and without derivatives (section 3.2.4). 

Accuracy parameter q (Eq. 3.30 for BT, Eq. 3.28 for DBT) was set to 0.9 and 

parameter u (Eq. 3.29) to 0.001.

• DBT-DBR - the hybrid Brent/backtracking algorithm with derivatives (section 3.2.5). 

Accuracy parameter q (Eq. 3.28) was set to 0.9 for the backtracking line search and 

0.5 for Brent's method. Parameter u (Eq. 3.29) was set to 0.001 for the backtracking
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line search and 0.25 for Brent's method. Both Brent's method and the backtracking 

strategy were implemented with derivatives. The DBT-DBR algorithm switching 

parameters were set as follows: a) switch to Brent's method whenever the backtracking 

strategy executes 4 or more EFEs during a single epoch; b) switch to the backtracking 

strategy after 3 epochs of Brent's method.

• ST - the 'simple' model-trust region strategy (section 3.3.1).

• RT - Fletcher's model-trust region strategy (section 3.3.2). The lower and upper limits 

for ratio r (Eq. 3.31) were set to 0.25 and 0.75 respectively.

Tabulated results. The following information will aid interpretation of the tables in

sections 4.3.2, 4.3.3 and 4.3.4:

• Global minima percentage column. In a small number of cases the percentage of runs 

converging to known local and global minima does not total 100 - marked by one or 

more asterisks in the global minima column. This is an indication that one or more 

training runs converged to a stationary point or points not given a separate column 

(marked *), that one or more training runs failed to converge to any stationary point 

within the allowed number of epochs (marked **), or both (marked ***).

• 'EFEs per run' columns. The mean, standard deviation (s.d.) and median number of 

EFEs are given for successful runs terminated at £=0.01.

• 'Resets /  run ' column. With line-search methods, this column is reserved for the mean 

number of SD resets per run caused by a failure to generate an that satisfies Eq. 3.9; 

no other resets are counted. With model-trust region methods, the mean number of 

times per run that E(x* + ŝ ) > E(x )̂ is recorded. In all cases, figures are for successful 

runs terminated at £=0.01.

'EFEs per k' column. For line-search methods, this column contains the mean number 

of EFEs per ^-iteration (epoch) for successful runs terminated at £=0.01. With model 

trust region methods, the number of EFEs per k for a given run is calculated as 

follows: EFEs / (EFEs - resets). (The EFEs per £ column is omitted for BP methods 

as a single EFE is performed at every epoch.)

Results for the BT and DBT backtracking line-search strategies are omitted for the XOR 

task with sigmoid output nodes on the grounds that, with all the multivariate algorithms
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tested, a significant percentage of runs failed to converge to any stationary point within 

10,000 training epochs. Given that training times for the sine task were much longer than 

those for XOR - attributable, primarily, to the larger number of pattems in the sine 

training set - a slightly smaller range of test results are presented for the sine task (section 

4.3.4) than for XOR (sections 4.3.2 and 4.3.3).
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4.3.2 XOR results, sigmoid output nodes

Table 1
Method: batch (BA) or on-line (OL) BP, with training rate (r|) and momentum (a in Eq. 2.10)

method: ii / a global
minima (%) 

0.0625 0.0833 mean
EFEs per run 

s.d. median
BA: 0.5/0.0 84.0 15.5 0.5 5,801.6 3,754.0 4,873.5
BA: 0.5/0.9 83.5 16.0 0.5 3,042.2 2,054.9 2,545.0
BA: 1.0/0.0 83.5 16.0 0.5 2,883.2 1,892.5 2,415.0
BA: 1.0/0.9 83.5 16.0 0.5 1,531.4 1,119.4 1,276.0
BA: 3.0/0.0 83.5 16.0 0.5 967.9 688.9 808.0
BA: 3.0/0.9 83.5 16.0 0.5 542.1 717.1 430.0

OL: 0.5/0.0 84.0 15.0 1.0 5,445.3 2,124.2 4,957.0
OL: 0.5/0.9 86.0 13.0 1.0 2,970.6 1,474.0 2,672.0
OL: 1.0/0.0 82.5 16.0 1.5 2,883.2 2,524.7 2,483.0
OL: 1.0/0.9 85.5 13.0 1.5 1,526.5 1,167.0 1,313.0
OL: 3.0/0.0 83.0 16.0 1.0 1,300.4 2,506.2 869.5
OL: 3.0/0.9 83.5 16.0 0.5 1,593.7 8,642.8 469.0

Table 2 

Method: SD
Line search: BR, or DBR, with parameters q (Eq. 3.28, Eq. 3.30) and u (Eq. 3.29)

line search: q ! u global
minima (%) 

0.0625 0.0833
EFEs per run 

mean s.d. median
EFEs
per*

BR: 0.9/0.001 83.0 16.0 1.0 282.8 144.2 253.0 3.51
BR: 0.9/0.25 83.0 16.0 1.0 284.5 144.0 254.0 3.51
BR: 0.9/0.4 82.5 16.5 1.0 282.0 133.3 255.0 3.52
BR: 0.5/0.001 82.0 17.0 1.0 400.4 214.3 343.3 5.16
BR: 0.5/0.25 82.0 17.0 1.0 399.3 215.2 340.8 5.18
BR: 0.1 / 0.001 80.5 18.5 1.0 509.8 1,225.8 319.5 7.24

DBR: 0.9 / 0.001 83.0 16.0 1.0 281.1 124.9 254.3 3.52
DBR: 0.9/0.25 82.5 16.5 1.0 284.2 125.7 257.0 3.57
DBR: 0.9/0.4 82.0 17.0 1.0 281.7 126.1 256.5 3.59
DBR: 0.5/0.001 82.5 16.5 1.0 277.0 122.9 252.5 3.53
DBR: 0.5/0.25 82.5 16.5 1.0 280.5 123.0 256.0 3.57
DBR: 0.1 / 0.001 83.0 16.0 1.0 410.0 628.9 342.3 4.32
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Table 3
Method: PR CG with SD reset every n
Line search: BR, or DBR, with parameters q (Eq. 3.28, Eq. 3.30) and u (Eq. 3.29); DBT-BR

line search: q ! u
minima (%) 

global 0.0625 0.0833
EFEs per run 

mean s.d. median
resets
/run

EFEs 
per A:

BR: 0.9/0.001 60.5 28.5 11.0 92.6 56.2 77.0 0.83 3.92
BR: 0.9/0.25 60.0 27.5 12.5 90.7 54.1 76.3 0.62 3.97
BR: 0.9/0.4 62.5 26.5 11.0 152.7 619.1 73.5 0.32 4.93
BR: 0.5/0.001 60.0 30.5 9.5 141.3 109.8 108.3 1.20 5.55
BR: 0.5/0.25 59.5 30.5 10.0 138.0 100.6 108.0 0.65 5.74
BR: 0.1 / 0.001 65.0 27.5 7.5 166.2 144.3 122.5 0.08 7.13

DBR: 0.9 / 0.001 63.5 27.0 9.5 320.4 2,323.3 78.0 0.76 10.26
DBR: 0.9/0.25 62.5 28.5 9.0 402.1 2,488.0 78.0 0.68 11.54
DBR: 0.9/0.4 64.5 26.5 9.0 132.0 79.1 115.0 0.10 5.99
DBR: 0.5 / 0.001 61.0 26.0 13.0 179.4 611.7 82.8 0.45 6.41
DBR: 0.5/0.25 61.5 26.5 12.0 177.1 604.4 83.5 0.44 6.47
DBR: 0.1 / 0.001 62.5 27.0 10.5 258.8 311.4 179.5 0.08 10.68

DBT-DBR: 70.0 21.0 9.0 338.7 1,555.2 97.3 0.71 2.90

Table 4

Method: NQN with SD resets every n
Line search: BR, or DBR, with parameters q (Eq. 3.28, Eq. 3.30) and u (Eq. 3.29); DBT-BR

line search: q ! u
minima (%) 

global 0.0625 0.0833
EFEs per run 

mean s.d. median
resets 
/ run

EFEs 
per A:

BR: 0.9/0.001 67.0 24.5 8.5 146.4 153.3 109.0 0.11 3.51
BR: 0.9/0.25 68.5 25.0 6.5 135.6 91.2 109.0 0.11 3.51
BR: 0.9/0.4 66.5 26.5 7.0 139.9 142.6 106.5 0.11 3.62
BR: 0.5/0.001 61.0 28.0 11.0 231.6 353.9 141.0 0.12 5.32
BR: 0.5/0.25 60.5 28.0 11.5 192.5 205.2 137.0 0.13 5.36
BR: 0.1 / 0.001 56.0 29.0 15.0 173.0 124.6 133.3 0.14 6.89

DBR: 0.9 / 0.001 62.5 30.5 7.0 136.1 105.2 106.5 0.12 3.63
DBR: 0.9/0.25 64.0 29.5 6.5 155.7 259.1 112.8 0.16 3.74
DBR: 0.9/0.4 69.0 24.0 7.0 159.2 214.8 121.5 0.19 4.10
DBR: 0.5 / 0.001 66.0 26.5 7.5 151.7 137.6 116.0 0.13 3.78
DBR: 0.5/0.25 65.5 27.0 7.5 166.3 283.3 115.0 0.14 3.98
DBR: 0.1 / 0.001 58.0 31.5 10.5 250.7 180.1 213.5 0.12 8.39

DBT-DBR: 77.5 18.5 4.0 151.2 120.7 117.0 5.8 1.59
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Table 5
Method: BFGS QN (no resets)
Line search: BR, or DBR, with parameters q (Eq. 3.28, Eq. 3.30) and u (Eq. 3.29); DBT-BR

line search: q ! u
minima (%) 

global 0.0625 0.0833
EFEs per run 

mean s.d. median
resets 
/ run

EFEs 
per A:

BR: 0.9 / 0.001 34.0 29.5 36.5 89.9 51.5 76.8 0.04 3.64
BR: 0.9 / 0.25 35.0 29.0 36.0 87.2 43.2 76.8 0.06 3.72
BR: 0.9 / 0.4 34.5 29.5 36.0 90.9 43.6 79.0 0.09 3.90
BR: 0.5 / 0.001 34.0 32.0 34.0 114.0 54.2 104.8 0.03 4.96
BR: 0.5 / 0.25 32.0 31.5 36.5 120.9 86.1 99.3 0.03 5.12
BR: 0.1 / 0.001 33.5 32.0 34.5 146.2 92.1 119.5 0.15 6.71

DBR: 0.9/0.001 35.5 29.5 35.0 91.5 41.0 78.0 0.10 3.75
DBR: 0.9/0.25 36.5 28.5 35.0 95.3 41.5 83.5 0.12 3.95
DBR: 0.9/0.4 35.5 30.5 34.0 106.8 57.3 87.0 0.10 4.42
DBR: 0.5/0.001 35.0 29.5 35.5 89.4 40.9 77.3 0.06 3.94
DBR: 0.5/0.25 36.0 29.0 35.0 89.7 38.1 77.3 0.08 4.02
DBR: 0.1/0.001 30.5 35.0 34.5 124.7 52.3 116.0 0.02 6.42

DBT DBR: 44.5 28.5 27.0 78.7 42.9 66.5 1.57 1.89

Table 6
Method: BFGS QN (no resets) with positive definiteness enforced
Line search: BR, or DBR, with parameters q (Eq. 3.28, Eq. 3.30) and u (Eq. 3.29); DBT-BR

line search: q ! u
minima (%) 

global 0.0625 0.0833
EFEs per run indef. 

mean s.d. median H / run
EFEs 
per A

BR: 0.9 / 0.001 34.5 28.0 37.5 90.1 54.3 77.0 0.43 3.59
BR: 0.9 / 0.25 35.0 26.5 38.5 89.1 52.4 76.8 0.21 3.75
BR: 0.9 / 0.4 34.0 29.0 37.0 90.0 52.7 78.3 0.24 3.92
BR: 0.5 / 0.001 34.5 31.5 34.0 118.0 58.7 105.5 0.09 4.98
BR: 0.5 / 0.25 32.5 31.5 36.0 116.6 65.5 99.5 0.17 5.04
BR: 0.1 / 0.001 33.0 32.0 35.0 148.8 103.9 117.8 0.30 6.72

DBR: 0.9 / 0.001 35.5 30.5 34.0 94.8 55.6 78.0 0.41 3.79
DBR: 0.9/0.25 36.0 29.0 35.0 96.6 51.0 82.0 0.25 3.98
DBR: 0.9/0.4 33.5 31.5 35.0 102.1 71.8 83.5 1.07 4.35
DBR: 0.5/0.001 35.5 28.5 36.0 90.1 44.2 77.0 0.38 3.94
DBR: 0.5/0.25 35.5 28.5 36.0 88.7 40.6 77.0 0.17 4.03
DBR: 0.1/0.001 30.5 34.0 35.5 134.5 91.9 116.0 0.23 6.60

DBT DBR: 38.5 29.0 32.5 74.0 30.7 67.0 2.06 1.77
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Table 7
Method: BFGS QN (no resets)
Model-trust region strategy: RT, or ST, with parameter uq (Eq. 3.15) and reduction/growth 
constants 2.0/4.0

trust method: uq
minima (%) 

global 0.0625 0.0833
EFEs per run 

mean s.d. median
resets 
/ run

EFEs 
per A:

RT: 0.0001 42.5 28.0 29.5 74.1 42.4 62.0 21.25 1.40
RT: 0.001 36.5 28.5 35.0 66.9 60.8 55.0 17.22 1.35
RT: 0.01 34.0 32.5 33.5 60.4 24.6 56.0 14.38 1.31
RT: 0.1 34.5 31.0 34.5 63.1 29.8 58.0 14.20 1.29

ST: 0.0001 36.5 30.0 33.5 61.8 25.3 57.0 17.99 1.41
ST: 0.001 36.5 28.5 35.0 66.5 31.7 59.0 18.45 1.38
ST: 0.01 34.5 30.5 35.0 67.7 38.1 58.0 17.49 1.35
ST: 0.1 34.5 29.5 36.0 65.6 29.0 61.0 15.90 1.32

Table 8

Method: BFGS QN (no resets)
Model-trust region strategy: RT, or ST, with parameter uq (Eq. 3.15) and reduction/growth 
constants 4.0/10.0

trust method: uq
minima (%) 

global 0.0625 0.0833
EFEs per run 

mean s.d. median
resets 
/ run

EFEs
pert

RT: 0.0001 38.5 28.0 33.5 70.5 34.2 60.0 22.31 1.46
RT: 0.001 39.0 30.0 31.0 66.9 36.4 59.0 19.43 1.41
RT: 0.01 37.5 28.5 34.0 66.2 33.8 60.0 18.75 1.39
RT: 0.1 36.5 34.0 29.5 65.4 28.6 60.0 18.08 1.39

ST: 0.0001 37.5 29.0 33.5 76.1 40.5 61.0 25.76 1.51
ST: 0.001 40.0 26.0 34.0 74.8 44.2 64.0 24.20 1.48
ST: 0.01 39.5 28.5 32.0 70.9 39.1 60.0 21.46 1.43
ST: 0.1 38.5 31.5 30.0 68.9 28.2 64.0 20.58 1.43
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Table 9
Method: BFGS QN with SD resets every n
Line search: BR, or DBR, with parameters q (Eq. 3.28, Eq. 3.30) and u (Eq. 3.29); DBT-BR

line search: q lu
minima (%) 

global 0.0625 0.0833
EFEs per run 

mean s.d. median
resets
/run

EFEs 
per A:

BR: 0.9 / 0.001 65.0 27.0 8.0 127.4 142.7 96.3 0.08 3.55
BR: 0.9/0.25 65.0 27.5 7.5 143.6 227.5 99.5 0.09 3.61
BR: 0.9 / 0.4 61.0 28.5 10.5 119.8 110.7 95.8 0.11 3.66
BR: 0.5 / 0.001 59.0 31.0 10.0 154.0 121.7 121.3 0.08 4.92
BR: 0.5 / 0.25 58.0 30.5 11.5 153.1 116.4 120.8 0.08 5.02
BR: 0.1 / 0.001 50.5 33.0 16.5 159.2 72.0 147.0 0.09 6.46

DBR: 0.9 / 0.001 61.0 30.0 9.0 112.9 88.7 91.8 0.07 3.63
DBR: 0.9/0.25 63.5 29.0 7.5 128.2 121.3 96.0 0.10 3.80
DBR: 0.9/0.4 60.0 31.5 8.5 128.7 118.8 101.5 0.07 4.07
DBR: 0.5/0.001 63.0 30.0 7.0 147.8 219.0 93.3 0.10 4.10
DBR: 0.5/0.25 62.5 30.5 7.0 141.1 170.9 96.0 0.08 4.13
DBR: 0.1 / 0.001 56.5 31.0 12.5 201.8 137.0 168.5 0.12 7.25

DBT DBR: 71.5 22.0 6.5 266.0 843.6 96.0 41.5 1.93

Table 10 

Method: LM
Model-trust region strategy: RT, or ST, with parameter uq (Eq. 3.15) and reduction/growth 
constants 2.0/4.0

trust method: Uq
minima (%) 

global 0.0625 0.0833
EFEs per run 

mean s.d. median
resets 
/ run

EFEs 
per A:

RT: 0.0001 82.0 17.5 0.5 14.1 7.1 12.0 2.74 1.24
RT: 0.001 85.5 14.5 0.0 10.5 2.7 10.0 0.57 1.06
RT: 0.01 90.5 9.5 0.0 12.4 2.8 12.0 0.41 1.03
RT: 0.1 92.0 8.0 0.0 15.7 4.4 15.0 0.40 1.03

ST: 0.0001 82.0 17.0 1.0 14.6 8.5 12.0 3.16 1.28
ST: 0.001 86.0 14.0 0.0 10.6 2.7 10.0 0.70 1.07
ST: 0.01 90.5 9.5 0.0 12.4 2.9 12.0 0.47 1.04
ST: 0.1 92.0 8.0 0.0 15.8 4.4 15.0 0.45 1.03
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Table 11 

Method: LM
Model-trust region strategy: RT, or ST, with parameter uq (Eq. 3.15) and reduction/growth 
constants 4.0/10.0

trust method: u»
minima (%)  

global 0.0625 0.0833
EFEs per run 

mean s.d. median
resets 
/ run

EFEs 
per A:

RT: 0.0001 81.5 17.0 1.5 12.9 4.9 12.0 2.44 1.23
RT: 0.001 86.0 13.5 0.5 11.5 3.9 11.0 1.30 1.13
RT: 0.01 91.5 8.5 0.0 12.3 4.3 11.0 1.04 1.09
RT: 0.1 92.5 7.5 0.0 13.8 3.7 13.0 0.98 1.08

ST: 0.0001 81.0 18.0 1.0 13.9 7.0 12.0 3.01 1.28
ST: 0.001 86.5 13.0 0.5 12.0 4.9 11.0 1.71 1.17
ST: 0.01 91.5 8.5 0.0 12.6 4.9 11.0 1.26 1.11
ST: 0.1 92.5 7.5 0.0 13.9 3.7 13.0 1.14 1.09

4.3.3 XOR results, linear output nodes

Table 12

Method: batch (BA) or on-line (OL) BP, with training rate (r|) and momentum (a in Eq. 2.10)

m e t h o d :  t | /  a g l o b a l

m i n i m a  ( % )  

0.0625 0.0833 m e a n

EFEs p e r  r u n  

s.d. m e d i a n

BA: 0.1/0.0 93.0 7.0 0.0 8,026.2 8,541.2 5,746.5
BA: 0.1/0.9 94.5 5.5 0.0 5,067.9 8,799.1 3,104.0
BA: 0.25/0.0 94.0 6.0 0.0 3,678.6 6,031.9 2,335.0
BA: 0.25/0.9 95.0 5.0 0.0 1,988.1 3,370.9 1,269.0
BA: 0.5/0.0 95.0 5.0 0.0 3,088.2 13,916.6 1,206.0

OL: 0.1/0.0 93.5 6.5 0.0 7,254.6 7,407.1 5,570.0
OL: 0.1/0.9 95.5 4.5 0.0 4,017.2 4,441.4 2,909.0
OL: 0.25/0.0 94.5 5.5 0.0 3,396.2 7,168.0 2,286.0
OL: 0.25/0.9 93.5 6.5 0.0 1,928.9 4,812.3 1,108.0
OL: 0.5/0.0 93.0 7.0 0.0 1,611.5 2,986.1 1,038.5
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Table 13 

Method: SD
Line search: BR, or DBR, with parameters q (Eq. 3.28, Bq. 3.30) and u (Eq. 3.29)

line search: g lu global
minima (%) 

0.0625 0.0833
EFEs per run 

mean s.d. median
EFEs
per^

BR: 0.9/0.001 95.5 4.5 0.0 1,385.3 1,412.3 1,048.5 2.72
BR: 0.9/0.25 95.0 5.0 0.0 1,464.1 2,086.3 1,074.0 2.76
BR: 0.9/0.4 94.0 6.0 0.0 1,265.3 3,025.9 675.3 3.17
BR: 0.5/0.001 95.5 4.5 0.0 2,529.1 3,565.4 1,753.0 4.23
BR: 0.5/0.25 94.0 6.0 0.0 2,472.2 2,841.7 1,766.8 4.27
BR: 0.1 / 0.001 94.5 5.5 0.0 1,564.1 5,084.1 720.0 5.69

DBR: 0.9 / 0.001 94.5 5.5 0.0 1,283.0 1,149.5 1,018.0 2.75
DBR: 0.9/0.25 93.5 6.5 0.0 1,285.9 1,546.3 924.5 2.77
DBR: 0.9/0.4 94.5 5.5 0.0 1,229.3 1,977.4 710.0 3.69
DBR: 0.5 / 0.001 93.5 6.5 0.0 1,212.4 1,334.4 924.5 2.79
DBR: 0.5/0.25 93.5 6.5 0.0 1,285.2 1,538.3 924.5 2.77
DBR: 0.1 / 0.001 93.0 7.0 0.0 1,128.5 1,869.5 662.5 4.10

Table 14

Method: PR CG with SD reset every n
Line search: BR, or DBR, with parameters q (Eq. 3.28, Eq. 3.30) and u (Eq. 3.29); BT, DBT, 
DBT-BR

line search: q ! u
minima (%) 

global 0.0625 0.0833
EFEs per run 

mean s.d. median
resets
/run

EFEs 
per &

BR: 0.9/0.001 93.5 6.0 0.5 226.0 609.0 145.0 27.8 2.31
BR: 0.9/0.25 93.0 6.0 1.0 317.9 2,130.9 95.5 2.72 2.97
BR: 0.9/0.4 91.5 8.5 0.0 133.8 180.9 99.5 0.44 3.21
BR: 0.5/0.001 94.0 5.0 1.0 369.6 975.8 167.0 56.67 2.38
BR: 0.5/0.25 90.5 9.5 0.0 266.0 1,056.5 131.5 2.02 4.22
BR: 0.1 / 0.001 90.5 8.5 1.0 215.0 233.8 162.0 7.51 4.56

DBR: 0.9 / 0.001 92.5 7.5 0.0 354.3 1,667.6 134.0 39.36 2.41
DBR: 0.9/0.25 90.0 9.5 0.5 138.8 206.6 103.3 1.61 3.12
DBR: 0.9/0.4 91.0 8.0 1.0 256.9 1,298.0 100.3 0.27 3.37
DBR: 0.5 / 0.001 90.5 8.5 1.0 206.6 715.2 100.0 2.14 3.15
DBR: 0.5/0.25 90.0 9.0 1.0 201.9 641.6 104.0 1.96 3.16
DBR: 0.1/0.001 89.5 9.0 1.5 189.6 160.0 151.5 0.01 5.67

BT: 89.0** 5.0 1.5 179.0 191.3 125.3 26.98 1.58
DBT: 86.0** 4.5 0.0 194.4 388.3 112.0 21.56 1.40
DBT-DBR: 94.5 5.0 0.5 139.8 125.1 110.5 13.43 1.49
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Table 15
Method: NQN with SD resets every n
Line search: BR, or DBR, with parameters q (Eq. 3.28, Eq. 3.30) and u (Eq. 3.29); BT, DBT,
DBT-DBR

line search: q ! u
minima (%) 

global 0.0625 0.0833
EFEs per run 

mean s.d. median
resets 
/ run

EFEs 
per A:

BR: 0.9/0.001 95.0 4.5 0.5 354.5 1,377.4 106.5 15.60 2.70
BR: 0.9/0.25 94.0 6.0 0.0 270.1 1,100.9 107.5 0.91 3.06
BR: 0.9/0.4 93.5 6.0 0.5 279.2 1,256.4 103.5 0.76 3.13
BR: 0.5 / 0.001 89.5 9.0 1.5 244.2 511.7 129.0 5.78 3.80
BR: 0.5/0.25 90.5 8.0 1.5 184.0 195.2 136.0 0.34 4.29
BR: 0.1 / 0.001 89.5 8.0 2.5 288.6 738.5 171.0 7.95 4.83

DBR: 0.9 / 0.001 94.0 6.0 0.0 205.9 457.0 105.3 2.35 3.06
DBR: 0.9/0.25 92.0 8.0 0.0 303.6 1,103.3 104.8 2.46 3.10
DBR: 0.9/0.4 91.5 7.5 1.0 417.7 2,320.9 111.0 1.06 3.29
DBR: 0.5/0.001 91.5 6.5 2.0 145.2 160.4 101.5 0.56 3.29
DBR: 0.5/0.25 90.0 7.5 2.5 139.1 133.8 101.5 0.48 3.29
DBR: 0.1 / 0.001 90.5 8.0 1.5 353.4 1,309.0 160.0 0.31 5.23

BT: 89.0** 6.5 0.0 226.6 441.3 114.8 18.84 1.72
DBT: 88.0** 6.5 0.5 269.8 950.8 92.0 7.69 1.35
DBT-DBR: 92.5 7.0 0.5 249.3 826.7 96.5 4.44 1.30

Table 16

Method: BFGS QN (no resets)
Line search: BR, or DBR, with parameters q (Eq. 3.28, Eq. 3.30) and u (Eq. 3.29); BT, DBT, 
DBT-DBR

line search: q lu
minima (%) 

global 0.0625 0.0833
EFEs per run 

mean s.d. median
resets 
/ run

EFEs 
per A:

BR: 0.9/0.001 65.0 22.0 13.0 90.2 111.3 71.0 0.08 3.23
BR: 0.9/0.25 66.5 19.5 14.0 95.4 122.5 73.5 0.09 3.32
BR: 0.9/0.4 62.0 24.0 14.0 84.1 85.5 70.0 0.06 3.39
BR: 0.5/0.001 63.5 23.0 13.5 123.6 126.5 92.5 0.02 4.71
BR: 0.5/0.25 67.0 20.5 12.5 134.2 137.6 99.0 0.06 4.94
BR: 0.1 / 0.001 64.5 23.0 12.5 144.9 111.6 115.0 0.06 6.26

DBR: 0.9/0.001 64.5 23.5 12.0 97.1 116.5 75.0 0.16 3.50
DBR: 0.9/0.25 68.0 20.5 11.5 103.5 120.7 73.8 0.09 3.55
DBR: 0.9/0.4 64.5 24.5 11.0 89.8 47.7 77.5 0.02 3.62
DBR: 0.5 / 0.001 69.5 19.0 11.5 119.3 192.2 79.5 0.10 3.70
DBR: 0.5/0.25 69.0 21.0 10.0 114.2 162.0 78.5 0.15 3.75
DBR: 0.1 / 0.001 64.0 23.5 12.5 147.5 132.6 116.0 0.13 5.82

BT: 76.0 16.0 8.0 109.8 133.0 68.0 3.74 1.95
DBT: 74.5** 17.5 7.5 78.6 80.0 52.0 2.09 1.54
DBT-DBR: 73.0 19.0 8.0 89.0 100.7 55.3 2.03 1.90
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Table 17
Method: BFGS QN (no resets) with positive-definiteness enforced
Line search: BR, or DBR, with parameters q (Eq. 3.28, Eq. 3.30) and u (Eq. 3.29); BT, DBT,
DBT-DBR

line search: q lu
minima (%) 

global 0.0625 0.0833
EFEs per run 

mean s.d. median
indef. 

H / run
EFEs 
per A:

BR: 0.9/0.001 63.0 23.0 14.0 91.0 101.9 72.3 0.07 3.24
BR: 0.9/0.25 65.5 20.5 14.0 111.4 194.6 74.0 0.23 3.31
BR: 0.9/0.4 62.0 24.5 13.5 85.9 90.0 71.5 0.09 3.43
BR: 0.5/0.001 65.0 22.0 13.0 142.2 246.5 95.5 0.04 4.70
BR: 0.5/0.25 67.5 19.5 13.0 140.8 155.3 99.0 0.04 4.92
BR: 0.1 / 0.001 64.5 23.0 12.5 153.1 143.2 115.5 0.11 6.30

DBR: 0.9 / 0.001 62.0 23.5 14.5 89.8 51.8 75.3 0.03 3.42
DBR: 0.9/0.25 66.0 22.0 12.0 93.8 76.1 76.3 0.05 3.50
DBR: 0.9/0.4 65.5 23.5 11.0 94.5 64.3 79.0 0.05 3.62
DBR: 0.5 / 0.001 68.0 20.0 12.0 102.5 96.6 77.3 0.03 3.60
DBR: 0.5/0.25 66.0 21.5 12.5 92.1 56.9 76.8 0.02 3.61
DBR: 0.1 / 0.001 64.0 22.0 14.0 139.2 105.1 116.0 0.04 5.83

BT: 68.0** 21.5 7.5 185.9 908.0 72.5 5.24 2.84
DBT: 70.0** 18.0 10.5 147.1 618.3 56.5 7.53 2.63
DBT-DBR: 70.0 20.5 9.5 77.3 122.4 56.3 1.19 1.59

Table 18

Method: BFGS QN (no resets)
Model-trust region strategy: RT, or ST, with parameter uq (Eq. 3.15) and reduction/growth 
constants 2.0/4.0

trust method: i/o
minima (%) 

global 0.0625 0.0833
EFEs per run 

mean s.d. median
resets 
/ run

EFEs
per&

RT: 0.0001 74.0 19.5 6.5 72.1 69.0 53.0 21.57 1.43
RT: 0.001 70.5 20.0 9.5 63.9 42.9 52.0 17.84 1.39
RT: 0.01 70.0 18.0 12.0 69.7 72.8 53.5 19.09 1.38
RT: 0.1 67.0 20.5 12.5 58.4 33.5 49.0 14.16 1.32

ST: 0.0001 72.5 21.0 6.5 65.7 40.4 54.0 20.99 1.47
ST: 0.001 72.0 18.5 9.5 63.1 37.3 54.5 18.76 1.42
ST: 0.01 66.0 20.5 13.5 66.8 50.7 52.0 19.15 1.40
ST: 0.1 66.5 23.0 10.5 66.2 75.7 50.0 17.95 1.37
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Table 19
Method: BFGS QN (no resets)
Model-trust région strategy: RT, or SX, with parameter uq (Eq. 3.15) and réduction/growth
constants 4.0/10.0

trust method: «o
minima (%)  

global 0.0625 0.0833
EFEs per run 

mean s.d. median
resets
/run

EFEs 
per A:

RT: 0.0001 72.5 19.5 8.0 87.1 167.6 55.0 28.28 1.48
RT: 0.001 72.0 19.0 9.0 70.9 62.6 56.0 22.15 1.45
RT: 0.01 71.5 17.5 11.0 65.3 39.9 55.0 19.58 1.43
RT: 0.1 68.5 19.0 12.5 66.1 48.7 54.0 19.56 1.42

ST: 0.0001 72.0 19.5 8.5 68.7 41.4 60.5 23.54 1.52
ST: 0.001 73.0 19.0 8.0 69.8 52.5 59.0 23.16 1.50
ST: 0.01 70.0 20.0 10.0 69.7 47.0 59.5 22.96 1.49
ST: 0.1 68.0 19.5 12.5 67.4 51.2 55.0 21.54 1.47

Table 20

Method: BFGS QN with SD resets every n
Line search: BR, or DBR, with parameters q (Eq. 3.28, Eq. 3.30) and u (Eq. 3.29); BT, DBT, 
DBT-DBR

line search: q lu
minima (%) 

global 0.0625 0.0833
EFEs per run 

mean s.d. median
resets 
/ run

EFEs 
per A:

BR: 0.9/0.001 94.0 5.5 0.5 362.7 2,221.0 85.5 0.09 3.48
BR: 0.9/0.25 91.5 7.5 1.0 127.6 212.3 81.5 0.04 3.25
BR: 0.9/0.4 90.0 8.5 1.5 140.5 375.5 82.0 0.03 3.34
BR: 0.5/0.001 89.0 9.5 1.5 159.7 167.4 107.3 0.03 4.49
BR: 0.5/0.25 88.5 9.0 2.5 175.0 299.0 105.5 0.02 4.67
BR: 0.1 / 0.001 89.0 10.0 1.0 208.4 507.3 125.8 0.05 6.18

DBR: 0.9/0.001 93.5 6.0 0.5 121.4 150.0 85.0 0.02 3.33
DBR: 0.9/0.25 92.5 6.5 1.0 119.7 140.9 88.0 0.04 3.37
DBR: 0.9/0.4 91.0 8.0 1.0 124.4 166.7 89.8 0.04 3.55
DBR: 0.5/0.001 91.5 7.5 1.0 115.2 142.0 87.0 0.04 3.48
DBR: 0.5/0.25 92.0 7.0 1.0 116.5 150.2 87.5 0.04 3.49
DBR: 0.1/0.001 88.5 10.0 1.5 216.1 322.7 135.0 0.12 5.72

BT: 95.0** 3.5 1.0 221.4 557.0 95.0 8.44 1.74
DBT: 92.5** 4.5 1.5 403.0 2,072.7 63.0 3.11 1.11
DBT-DBR: 92.0 6.5 1.5 124.7 255.4 63.0 2.75 1.59
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Table 21 

Method: LM
Model-trust region strategy: RT, or ST, with parameter uq (Eq. 3.15) and reduction/growth 
constants 2.0/4.0

trust method:
minima (%) 

global 0.0625 0.0833
EFEs per run 

mean s.d. median
resets 
/ run

EFEs
per&

RT: 0.0001 90.5 9.5 0.0 67.7 461.4 12.0 15.59 1.30
RT: 0.001 96.0 4.0 0.0 11.8 10.7 10.0 1.60 1.16
RT: 0.01 99.0 1.0 0.0 30.1 277.0 10.0 4.49 1.18
RT: 0.1 99.5 0.5 0.0 13.4 8.3 12.0 0.48 1.04

ST: 0.0001 89.5 10.5 0.0 143.9 948.1 12.0 46.94 1.48
ST: 0.001 97.0 3.0 0.0 11.7 11.9 10.5 1.76 1.18
ST: 0.01 99.0 1.0 0.0 42.5 451.1 10.0 11.16 1.36
ST: 0.1 99.5 0.5 0.0 13.4 8.1 12.0 0.54 1.04

Table 22 

Method: LM
Model-trust region strategy: RT, or ST, with parameter uq (Eq. 3.15) and reduction/growth 
constants 4.0/10.0

trust method: uq
minima (%) 

global 0.0625 0.0833
EFEs per run 

mean s.d. median
resets
/run

EFEs 
per A:

RT: 0.0001 92.0 8.0 0.0 19.7 54.3 12.0 5.18 1.36
RT: 0.001 94.5 5.5 0.0 12.9 14.6 10.0 2.22 1.21
RT: 0.01 98.0 2.0 0.0 15.7 63.4 10.0 2.35 1.18
RT: 0.1 98.5 1.5 0.0 28.7 221.1 11.0 3.21 1.13

ST: 0.0001 92.5 7.5 0.0 28.7 130.3 12.0 9.05 1.46
ST: 0.001 95.0 5.0 0.0 12.8 13.1 10.0 2.38 1.23
ST: 0.01 97.0 2.5 0.5 18.7 112.7 10.0 4.02 1.27
ST: 0.1 98.5 1.5 0.0 52.1 551.4 11.0 16.06 1.45
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4.3.4 Sine results

Table 23

Method: batch (BA) or on-line (OL) BP, with training rate (r|) and momentum (a in Eq. 2.10)

method: Ti / a
minima (%) 

global 0.023 mean
EFEs per run 

s.d. median
BA: 0.1/0.0 100.0 0.0 3,543.2 3,797.1 2,714.5
BA: 0.1/0.9 100.0 0.0 1,914.9 2,013.3 1,444.5
BA: 0.25/0.0 100.0 0.0 1,429.5 1,456.8 1,097.5
BA: 0.25/0.9 100.0 0.0 752.0 689.3 580.5
BA: 0.5/0.0 100.0 0.0 798.4 936.4 565.0

OL: 0.1/0.0 100.0 0.0 3,576.6 4,208.9 2,635.5
OL: 0.1/0.9 100.0 0.0 1,930.8 2,376.0 1,386.5
OL: 0.25/0.0 100.0 0.0 1,499.8 2,100.1 1,053.5
OL: 0.25/0.9 100.0 0.0 901.7 1,800.1 556.0
OL: 0.5/0.0 100.0 0.0 1,012.9 3,195.5 527.0

Table 24 

Method: SD
Line search: BR, or DBR, with parameters q (Eq. 3.28, Eq. 3.30) and u (Eq. 3.29)

line search: q l u
minima (%) 

global 0.023 mean
EFEs per run 

s.d. median
EFEs 
per A:

BR: 0.9/0.001 100.0 0.0 1,529.0 1,710.5 1,209.5 3.10
BR: 0.9/0.25 100.0 0.0 1,489.9 999.6 1,306.5 3.22
BR: 0.9/0.4 100.0 0.0 1,543.6 1,161.7 1,302.3 3.33
BR: 0.5/0.001 100.0 0.0 1,971.4 1,636.3 1,562.0 3.76
BR: 0.5/0.25 100.0 0.0 2,188.0 1,347.5 1,773.0 4.10
BR: 0.1 / 0.001 100.0 0.0 1,711.8 2,671.6 1,394.3 5.50

DBR: 0.9 / 0.001 100.0 0.0 1,628.7 1,528.2 1,216.8 3.29
DBR: 0.9/0.25 100.0 0.0 1,675.4 1,264.2 1,314.0 3.33
DBR: 0.9/0.4 100.0 0.0 1,575.0 1,260.5 1,313.0 3.74
DBR: 0.5 / 0.001 100.0 0.0 1,716.2 1,458.4 1,349.0 3.33
DBR: 0.5/0.25 100.0 0.0 1,680.3 1,302.8 1,311.0 3.34
DBR: 0.1 / 0.001 100.0 0.0 1,447.6 1,569.2 1,002.0 4.20
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Table 25
Method: PR CG with SD reset every n
Line search: BR, or DBR, with parameters q (Eq. 3.28, Eq. 3.30) and u (Eq. 3.29); DBT-BR

line search: q lu
minima (%) 

global 0.023
EFEs per run 

mean s.d. median
resets 
/ run

EFEs
per

BR: 0.9 / 0.001 99.5 0.5 234.4 233.7 167.5 21.92 2.58
BR: 0.9 / 0.25 100.0 0.0 131.4 83.1 111.5 0.68 2.99
BR: 0.9 / 0.4 100.0 0.0 137.6 233.8 106.8 0.12 3.07
BR: 0.5 / 0.001 100.0 0.0 267.0 565.2 176.8 17.78 3.13
BR: 0.5 / 0.25 100.0 0.0 147.5 77.5 127.8 0.56 4.03
BR: 0.1 / 0.001 99.5 0.5 190.8 93.5 160.0 4.64 4.75

DBR: 0.9/0.001 100.0 0.0 219.5 286.1 145.5 10.72 2.89
DBR: 0.9/0.25 100.0 0.0 137.6 99.8 116.5 0.60 3.18
DBR: 0.9/0.4 99.5 0.5 129.2 76.3 113.0 0.10 3.39
DBR: 0.5 / 0.001 100.0 0.0 161.2 228.2 116.3 0.58 3.26
DBR: 0.5/0.25 100.0 0.0 143.6 116.4 114.3 0.47 3.28
DBR: 0.1 / 0.001 99.5 0.5 156.3 105.6 135.0 0.0 4.74

DBT DBR: 99.5 0.5 145.6 380.4 84.0 3.43 1.28

Table 26

Method: NQN with SD resets every n
Line search: BR, or DBR, with parameters q (Eq. 3.28, Eq. 3.30) and u (Eq. 3.29); DBT-BR

line search: q lu
minima (%) 

global 0.023
EFEs per run 

mean s.d. median
resets 
/ run

EFEs 
per A:

BR: 0.9 / 0.001 98.5 1.5 165.2 184.1 125.5 8.84 2.71
BR: 0.9 / 0.25 98.5 1.5 178.7 706.1 101.5 0.77 2.94
BR: 0.9 / 0.4 98.5 1.5 205.6 1,104.9 97.0 0.25 3.06
BR: 0.5 / 0.001 99.0 1.0 258.1 941.4 146.0 7.91 3.65
BR: 0.5 / 0.25 99.5 0.5 323.1 1,558.0 129.0 0.50 4.19
BR: 0.1 / 0.001 99.0 1.0 255.8 911.9 166.8 3.37 5.78

DBR: 0.9 / 0.001 100.0 0.0 261.2 1,277.2 118.5 3.30 2.96
DBR: 0.9/0.25 99.5 0.5 270.8 1,096.0 107.0 0.78 3.07
DBR: 0.9/0.4 99.5 0.5 275.5 1,115.6 108.0 0.29 3.26
DBR: 0.5 / 0.001 99.5 0.5 222.2 615.5 113.5 0.47 3.19
DBR: 0.5/0.25 99.5 0.5 236.5 737.8 113.5 0.47 3.18
DBR: 0.1 / 0.001 99.0 1.0 660.6 4,414.6 134.8 0.05 4.74

DBT DBR: 100.0 0.0 132.9 490.4 71.3 1.34 1.34
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Table 27

Method: BFGS QN (no resets)
Line search: BR, or DBR, with parameters q (Eq. 3.28, Eq. 3.30) and u (Eq. 3.29); DBT-BR

line search: q l u
minima (%) 

global 0.023
EFEs per run 

mean s.d. median
resets 
/ run

EFEs 
per A:

BR: 0.9/0.001 89.0* 8.0 88.7 38.9 76.3 0.01 2.98
BR: 0.9/0.25 89.0* 8.0 90.9 44.4 77.0 0.02 3.11
BR: 0.9/0.4 89.5* 7.5 96.0 51.1 79.0 0.04 3.23
BR: 0.5/0.001 91.5* 5.5 131.5 71.7 108.0 0.01 4.51
BR: 0.5/0.25 90.0* 7.0 133.5 68.3 106.8 0.01 4.76
BR: 0.1 / 0.001 90.0* 7.0 159.5 82.5 134.8 0.03 6.06

DBR: 0.9 / 0.001 90.0* 7.5 100.1 76.4 82.3 0.01 3.18
DBR: 0.9/0.25 88.5* 9.5 97.4 48.7 83.0 0.02 3.29
DBR: 0.9/0.4 88.5* 9.5 104.4 55.8 85.5 0.01 3.52
DBR: 0.5 / 0.001 88.0* 9.0 96.5 44.1 83.5 0.02 3.39
DBR: 0.5/0.25 88.0* 9.5 97.5 44.7 84.3 0.02 3.41
DBR: 0.1 / 0.001 88.5* 8.0 134.4 72.3 110.5 0.03 5.01

DBT-BR: 89.5* 9.5 65.4 56.2 48.0 0.76 1.55

Table 28

Method: BFGS QN (no resets) with positive-definiteness enforced
Line search: BR, or DBR, with parameters q (Eq. 3.28, Eq. 3.30) and u (Eq. 3.29); BT, DBT, 
DBT-DBR

line search: q iu
minima (%) 

global 0.023
EFEs per run 

mean s.d. median
resets
/run

EFEs
per^

BR: 0.9/0.001 88.5* 8.0 89.5 38.6 76.5 0.02 2.98
BR: 0.9/0.25 89.0* 8.0 91.4 45.0 77.0 0.02 3.09
BR: 0.9/0.4 89.5* 7.5 96.7 52.9 79.0 0.04 3.23
BR: 0.5/0.001 90.5* 6.0 129.0 64.1 108.0 0.02 4.51
BR: 0.5/0.25 90.0* 7.0 132.7 67.7 106.3 0.01 4.76
BR: 0.1 / 0.001 90.0* 7.0 161.3 84.7 134.8 0.04 6.08

DBR: 0.9 / 0.001 89.0* 8.5 96.4 48.1 82.0 0.02 3.19
DBR: 0.9/0.25 88.5* 9.0 104.0 95.5 83.0 0.19 3.30
DBR: 0.9/0.4 89.5* 7.5 107.5 59.1 88.0 0.03 3.53
DBR: 0.5 / 0.001 89.0* 7.5 99.8 50.5 84.5 0.02 3.41
DBR: 0.5/0.25 89.5* 7.5 101.6 51.5 85.5 0.01 3.42
DBR: 0.1 / 0.001 88.5* 7.5 135.3 72.6 110.5 0.04 4.98

BT: 88.5*** 5.5 1,337.6 10,876.2 69.5 5.38 6.97
DBT: 85.5*** 8.5 61.9 47.6 45.0 0.99 1.40
DBT-BR: 89.5* 8.0 66.1 56.9 50.5 0.83 1.50
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Table 29
Method: BFGS QN (no resets)
Model-trust région strategy: RT, or ST, with parameter uq (Eq. 3.15) and reduction/growth 
constants 2.0/4.0

trust method: Uq
minima (%) 

global 0.023
EFEs per run 

mean s.d. median
resets 
/ run

EFEs 
per A:

RT: 0.0001 93.0* 6.0 68.4 50.5 53.5 19.63 1.37
RT: 0.001 93.0* 6.5 60.2 35.3 48.5 16.12 1.37
RT: 0.01 94.0* 5.5 59.5 37.6 48.0 14.80 1.33
RT: 0.1 93.0 7.0 59.1 34.1 49.0 13.47 1.30

ST: 0.0001 92.5* 6.5 67.8 50.5 52.0 21.32 1.47
ST: 0.001 93.5* 6.0 65.2 42.3 51.0 20.06 1.44
ST: 0.01 94.0* 5.5 61.3 32.7 49.0 17.63 1.40
ST: 0.1 93.5* 6.0 63.0 45.8 49.0 16.83 1.36

Table 30

Method: BFGS QN (no resets)
Model-trust region strategy: RT, or ST, with parameter uq (Eq. 3.15) and reduction/growth 
constants 4.0/10.0

trust method: uq
minima (%) 

global 0.023
EFEs per run 

mean s.d. median
resets 
/ run

EFEs 
per A:

RT: 0.0001 93.0* 6.0 69.4 45.9 52.0 21.58 1.46
RT: 0.001 93.5* 6.0 66.5 46.2 52.0 19.85 1.43
RT: 0.01 92.5* 6.0 65.0 45.4 50.0 18.29 1.40
RT: 0.1 92.0* 7.5 63.0 37.5 50.0 17.86 1.39

ST: 0.0001 90.0* 9.0 72.7 84.4 53.0 25.29 1.53
ST: 0.001 90.0* 9.5 68.3 82.3 52.0 22.16 1.50
ST: 0.01 91.0* 7.5 68.4 79.9 51.0 22.68 1.51
ST: 0.1 92.0* 7.0 69.0 80.6 50.0 21.99 1.47
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Table 31
Method: BFGS QN with SD resets every n
Line search: BR, or DBR, with parameters q (Eq. 3.28, Eq. 3.30) and u (Eq. 3.29); DBT-BR

line search: q l u
minima (%) 

global 0.023
EFEs per run 

mean s.d. median
resets 
/ run

EFEs
per

BR: 0.9 / 0.001 100.0 0.0 102.0 74.1 82.0 0.03 288
BR: 0.9 / 0.25 99.5 0.5 101.8 79.1 81.5 0.02 2.97
BR: 0.9 / 0.4 99.5 0.5 100.2 59.1 85.5 0.02 3.06
BR: 0.5 / 0.001 100.0 0.0 137.9 89.5 114.0 0.03 4.18
BR: 0.5 / 0.25 100.0 0.0 141.8 131.2 113.5 0.02 4.34
BR: 0.1 / 0.001 100.0 0.0 354.4 2,114.4 139.5 0.02 6.50

DBR: 0.9/0.001 100.0 0.0 109.3 73.1 87.8 0.02 3.08
DBR: 0.9/0.25 99.5 0.5 109.9 72.3 88.5 0.04 3.15
DBR: 0.9/0.4 98.5 1.5 143.0 480.7 93.0 0.03 3.40
DBR: 0.5/0.001 100.0 0.0 111.1 74.7 90.3 0.02 3.24
DBR: 0.5/0.25 100.0 0.0 110.8 72.6 91.0 0.02 3.25
DBR: 0.1/0.001 100.0 0.0 163.6 159.9 131.3 0.03 5.04

DBT-DBR: 100.0 0.0 104.1 247.9 54.5 0.48 1.22

Table 32 

Method: LM
Model-trust region strategy: RT, or ST, with parameter uq (Eq. 3.15) and reduction/growth 
constants 2.0/4.0

trust method: uo
minima (%) 

global 0.023
EFEs per run 

mean s.d. median
resets 
/ run

EFEs
perÆ

RT: 0.0001 97.0* 2.0 172.1 47.1 174.0 25.66 1.18
RT: 0.001 99.0* 0.5 165.9 48.5 165.0 21.62 1.15
RT: 0.01 100.0 0.0 152.8 45.8 141.0 14.07 1.10
RT: 0.1 100.0 0.0 146.9 43.0 134.0 10.86 1.08
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4.4 Comparison of Training Methods

4.4.1 Convergence to local minima

It is evident from the results in section 4.3 that there is a marked disparity between the 

frequency of convergence to global, as opposed to local, minima for different training 

algorithms. A major - and novel - finding of this research is that there is a strong 

correlation between, on the one hand, the frequency with which a training algorithm 

converges to global minima and, on the other, the frequency with which that algorithm 

discards derivative information accumulated during one or more previous training epochs. 

This effect can be traced both in the performance of different multivariate algorithms, and 

in the performance of different versions of the same multivariate algorithm.

Graphs 3, 4 and 5 plot, for each multivariate algorithm and training task, the percentage 

of runs that converged to global and local minima using (where possible) the same line- 

search method and parameters - Brent's method with derivatives and with parameters 

<7=0.5 (Eq. 3.28) and m=0.25 (Eq. 3.29), or DBR: 0.5 / 0.25 for short. Two additional 

algorithms were tested for this purpose - the Polak-Ribiere conjugate gradients without 

resets CG nr and the memoryless quasi-Newton method without resets NQN nr A clear 

trend emerges if we divide the training methods into three broad categories; methods 

which never store derivative information (i.e. generate a new model at every epoch); 

methods which discard accumulated derivative information approximately once every n 

epochs for an n-weight MLP; and methods which rarely, if ever, discard derivative 

information. Methods from the first category (BA^, OL, SD and LM) consistently 

converge to a global minimum as frequently or more frequently than methods from the 

second category (CG, NQN and QN with SD resets); methods from the second category 

consistently converge to a global minimum as frequently or more frequently than methods 

from the third category (CG, NQN and QN without resets).

* Strictly speaking, BA and OL with momentum never discard all previous derivative 
information. However, the use of momentum with backpropagation is essentially a heuristic 
procedure and is not comparable to the second-order classical methods considered here. For this 
reason, and since it appears to have no significant effect on the percentage of runs successfully 
converging to a global minimum, the momentum term is ignored in the current discussion.
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Graph 3 - Training algorithm convergence to global minima (XOR, sigmoid)
Results are for DBR: 0.5 / 0.25, except LM (RT, with Mo=0.01 and reduction/growth constants 
2.0/4.0) and BA (r|=3.0, 0=0.9)
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Graph 4 -Training algorithm convergence to global minima (XOR, linear)
Results are for DBR: 0.5 / 0.25, except LM (RT, with «o=0.01 and reduction/growth constants 
2.0/4.0) and BA (T|=G.5, a=0.0)
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Graph 5 -Training algorithm convergence to global minima (sine)
Results are for DBR: 0.5 / 0.25, except LM  (RT, with wo=0.01 and reduction/growth constants 
2.0/4.0) and BA (ri=0.5, a=0 .0)
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The simple categorisation above does not account for one of the main features of Graphs 

3, 4 and 5 - the much poorer global reliability of the non-resetting QN algorithm 

compared with the CG and NQN non-resetting algorithms. To see how this fits in with the 

proposed correlation between global convergence and reset frequency, it is necessary to 

examine the number of resets actually performed by these algorithms - specifically, those 

resets performed during successful training runs at error levels of £>0.0625 and £>0.023 

for the XOR and sine problems respectively (since, for a reset to have any effect on the 

global convergence of a classical descent algorithm, it must take place at a higher error 

level than that of the lowest local minimum). The appropriate data for all classical 

algorithms using the DBR: 0.5 / 0.25 line search strategy is presented in Tables 33, 34 

and 35; these results largely conform to the identified trend, and show, in particular, that 

the QN algorithm without resets has both the lowest mean reset-rate and the lowest 

probability of converging to a global minimum of all the algorithms tested.
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Table 33 - mean resets by ^=0.0625 (XOR, sigmoid)
Methods: classical methods with line search
Line search: DBR with parameters ^=0.5 (Eq. 3.28) and u=0.25 (Eq. 3.29)

method:

global
minima

(%)

mean resets by £=0.0625 
every n Eq. 3.9 
epochs failure total

SD: 82.5 --- --- 65.69
NQN: 65.5 2.95 0.09 3.05
QN: 62.5 2.24 0.06 2.30
CG: 61.5 1.64 0.43 2.07
CG nr: 58.0 --- 0.40 0.40
NQN nr: 57.0 --- 0.12 0.12
QN nr: 36.0 0.08 0.08

Table 34 - mean resets by £=0.0625 (XOR, linear)
Methods: classical methods with line search
Line search: DBR with parameters q=0.5 (Eq. 3.28) and «=0.25 (Eq. 3.29)

method:

global
minima

(%)

mean resets by £=0.0625 
every n Eq. 3.9 
epochs failure total

SD: 93.5 - — - --- 411.70
QN: 92.0 2.05 0.03 2.08
CG: 90.0 3.84 1.86 5.70
NQN: 90.0 2.54 0.44 2.98
CG nr: 88.5 --- 1.51 1.51
NQN nr: 83.0 2.86 2.86
QN nr: 69.0 --- 0.14 0.14

Table 35 - mean resets by £=0.0625 (sine)
Methods: classical methods with line search
Line search: DBR with parameters ^=0.5 (Eq. 3.28) and «=0.25 (Eq. 3.29)

method:

global
minima

(%)

mean resets by £=0.0229 
every n Eq. 3.9 
epochs failure total

SD: 100.0 --- --- 433.19
CG: 100.0 4.04 0.43 4. .47
QN: 100.0 3.17 0.02 3.18
NQN: 99.5 8.11 0.47 8.58
CG nr: 99.0 --- 0.45 0.45
NQN nr: 99.0 --- 0.69 0.69
QN nr: 88.0 --- 0.00 0.00



That Tables 33, 34 and 35 do not show a perfect correlation between an algorithm's 

global reliability and its mean reset rate is not surprising; the latter takes no account of the 

dynamics of different multivariate strategies - such as the known automatic-resetting 

property of the Polak-Ribiere conjugate gradient algorithm (see section 3.5.1) - and may, 

in any case, be an imperfect measure of the number of resets that 'counted' (i.e. that 

changed the outcome of a training run). To eliminate the first of these factors, further 

analysis has been confined to different versions of the same multivariate algorithm, 

concentrating on a single task and method - XOR with sigmoid output nodes using the 

quasi-Newton algorithm, with and without SD resets. This combination of task and 

algorithm is the natural choice; QN is the most robust multivariate algorithm and the 

subject of the greatest number of tests in this research, and it produced the widest 

differential between highest and lowest rates of global convergence when applied to the 

XOR task with sigmoid output nodes. The full set of line search results for QN methods 

(excluding those with positive definiteness enforced) are listed in Table 36 and plotted in 

Graph 6.

Table 36 - mean resets by E=0.0625, QN methods 

Task: XOR, sigmoid output nodes
Line search: BR, or DBR, with parameters q (Eq. 3.28, Eq. 3.30) and u (Eq. 3.29); DBT-BR

global mean resets by £=0.0625
minima every n Eq. 3.9

method, line search: q l u (%) epochs failure total
QN, DBT-DBR: 71.5 3.60 36.27 39.87
QN, BR: 0.9/0.25 65.0 2.78 0.08 2.86
QN, BR: 0.9/0.001 65.0 2.42 0.06 2.48
QN, DBR: 0.9/0.25 63.5 2.19 0.06 2.24
QN, DBR: 0.5/0.001 63.0 2.44 0.06 2.49
QN, DBR: 0.5/0.25 62.5 2.24 0.06 2.30
QN, BR: 0.9/0.4 61.0 2.06 0.08 2.14
QN, DBR: 0.9 / 0.001 61.0 1.91 0.04 1.95
QN, DBR: 0.9/0.4 60.0 2.03 0.03 2.06
QN, BR: 0.5 / 0.001 59.0 2.01 0.06 2.07
QN, BR: 0.5/0.25 58.0 1.96 0.03 1.99
QN, DBR: 0.1 / 0.001 56.5 1.65 0.06 1.71
QN, BR: 0.1 / 0.001 50.5 1.47 0.07 1.53
QN nr, DBT-DBR: 44.5 --- 1.42 1.42
QN nr, DBR: 0.9/0.25 36.5 --- 0.12 0.12
QN nr, DBR: 0.5/0.25 36.0 --- 0.08 0.08
QN nr, DBR: 0.9 / 0.001 35.5 --- 0.07 0.07
QN nr, DBR: 0.9/0.4 35.5 --- 0.07 0.07
QN nr, DBR: 0.5 / 0.001 35.0 --- 0.04 0.04
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method, line search: q l u

global
minima

(%)

mean resets by £=0.0625 
every n Eq. 3.9 
epochs failure total

QN nr, BR: 0.9/0.25 35.0 --- 0.04 0.04
QN nr, BR: 0.9/0.4 34.5 --- 0.07 0.07
QN nr, BR: 0.9/0.001 34.0 --- 0.04 0.04
QN nr, BR: 0.5/0.001 34.0 0.03 0.03
QN nr, BR: 0.1 / 0.001 33.5 0.13 0.13
QN nr, BR: 0.5/0.25 32.0 --- 0.02 0.02
QN nr, DBR: 0.1 / 0.001 30.5 --- 0.02 0.02

Graph 6 - Global convergence frequency vs. log mean resets per successful run, QN 
line-search methods (XOR, sigmoid)
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The preceding results provide convincing evidence of a strong correlation between global 

convergence and reset frequency for a single algorithm and task. Similar, but less detailed, 

analyses were performed on the sigmoid and linear XOR results for each classical 

algorithm, excluding LM. (With the sine task, too few training runs converged to non- 

global minima for meaningful comparisons to be made.) The CG, NQN and QN 

algorithms, with and without resets, showed the same broad correlation - over a narrower 

convergence range - as the QN algorithm with XOR and sigmoid output nodes; however, 

there was negligible change in the global reliability of SD, irrespective of the number of
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resets performed. Taken together, these results suggest the following rule for second-order 

nonlinear optimisation algorithms with line searches when applied to problems with local 

minima: increasing the reset-rate of an algorithm is likely to produce a steady 

improvement in its global reliability, so long as the reset-rate remains low' or 'moderate'; 

the benefit of increasing the reset-rate diminishes as the frequency of global convergence 

approaches that of the steepest descent algorithm.

An important corollary is that a given second-order algorithm (with or without SD resets 

every n epochs) is less likely to get trapped in local minima when used with an inaccurate 

line-search strategy, and more likely to get trapped with an accurate line search.

Inaccurate line searches typically require more epochs to reach a given error tolerance 

than accurate ones, with correspondingly more resets performed every n epochs; and 

inaccurate line searches are, intuitively, more likely to generate an s^that is not a descent 

direction because the local model, generated iteratively by the multivariate algorithm, is 

based on less-accurate information.

On balance, the hybrid backtracking/Brent algorithm, DBT-DBR, is the least-accurate 

line-search algorithm tested for this research - excluding the non-hybrid backtracking 

algorithms, BT and DBT, which failed to produce a full set of training results (see section

4.3.1). The DBT-DBR algorithm typically spends the majority of training epochs in 

derivative backtracking (DBT) mode, with parameters ^=0.9 (Eq. 3.28) and m=0.001 (Eq. 

3.29). Brent's method, with the same settings for q and u, has a tendency to achieve 

greater accuracy than the backtracking strategy, owing to the enforced bracketing of the 

minimum (see section 3.2.1). Graphs 7 and 8 plot, for the sigmoid XOR and linear XOR 

training tasks respectively, the global convergence frequency of each classical algorithm 

with line searches of varying accuracy - Brent's method with settings ^=0.9 / m=0.001, 

^=0.5 / u=0.25 and ^=0.1 / «=0.001, and the novel DBT-DBR strategy. These graphs 

support the thesis that the global reliability of a given classical multivariate algorithm 

tends to increase as the accuracy of the line search employed by that algorithm decreases; 

the low-accuracy DBT-DBR algorithm has the highest rate of global convergence in 6 out 

of 8 cases and the second-highest in the remaining 2 cases, whereas the high-accuracy 

Brent 0.1 / 0.001 line-search has the lowest (or equal lowest) rate in 9 out of 10 cases.
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Graph 7 - Line searches and global convergence (XOR, sigmoid)
Note: the Brent global percentage - for given settings of parameters q (Eq. 3.28) and u (Eq.
3.29) - is the average of the BR and DBR percentages with those settings.
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Graph 8 - Line searches and global convergence (XOR, linear)
Note: the Brent global percentage - for given settings of parameters q (Eq. 3.28) and u (Eq.
3.29) - is the average of the BR and DBR percentages with those settings.
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So far, nothing has been said about model-trust region strategies or the strategy for 

enforcing the positive-definiteness of the Hessian matrix. When a second-order classical 

method without resets is implemented using one of these strategies, derivative information 

from previous epochs is never wholly discarded. Rather than reset the model completely 

to the current steepest descent direction, these strategies perturb the model Hessian 

towards the linear model of steepest descent, to a degree determined by the size of scalar u 

in Eq. 3.15; if m is sufficiently large, such a perturbation is roughly equivalent to the 

traditional SD reset (see section 3.1.3). Both model-trust region strategies and the strategy 

for enforcing the positive-definiteness of the Hessian can be said, therefore, to partially 

reset' the multivariate algorithm.

Judging by the tabulated results of section 4.3, the adoption of the enforced positive- 

definiteness strategy generally has little impact on either the global convergence 

characteristics or the training speed of the non-resetting QN algorithm. An examination of 

the mean number of partial resets performed with line searches of different accuracy 

suggests that the correlation between global reliability and reset frequency extends to 

partial-reset frequency, but that the number of partial resets required to produce an 

equivalent effect is higher (by as much as a factor of 12 in certain cases). With model- 

trust region strategies, both partial-reset frequency and global reliability increased as the 

size of Mo decreased (Graph 9). (For LM model-trust region algorithms, which 'reset' at 

every training epoch, these considerations do not apply. In fact, the global convergence 

frequency of the LM method given in the tables of section 4.3 show the opposite trend to 

those for QN methods, i.e. global reliability has a tendency to increase as the number of 

partial-resets decreases.)
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Graph 9 - Model-trust region strategies and global convergence, QN without resets
Note: the model-trust region global percentage, for a given mq (Eq. 3.15), is the average of four 
percentages - those for RT, and ST, with reduction/growth constants of 2.0/4.0 and 4.0/10.0.
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Having established the link between the global reliability of an algorithm and its reset (or 

partial-reset) rate, we are left with an obvious question: 'How does resetting an algorithm 

improve its chances of reaching a global minimum?' For an explanation, let us consider 

the situation where a second-order algorithm has constructed, by iteration k, a model of E 

which, if minimised, will trap the algorithm in a local minimum. (Such a situation may be 

a common occurrence in the early stages of training, owing to the build-up of hidden-node 

redundancy - see sections 2.1.2 and 2.2.1.) Now let us suppose that the derivative 

information generated at iteration k is not dominated by the curvature towards this (or any 

other) local minimum. If the algorithm is reset at iteration k, a new model will be 

constructed which has a much better chance of directing the algorithm towards a global 

minimum. However, if no reset is performed, the derivative information generated at 

iteration k will be incorporated in the existing model; since the old (pre-iteration k) model 

will tend to dominate the new information, the search direction generated at iteration k is 

likely to head towards the basin of attraction of the local minimum.
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4.4.2 Training speed and accuracy

The tables in section 4.3 provide two estimates of the 'typical' speed of each training 

algorithm - the mean and the median EFEs per run. (In either case, training runs that fail 

to reach the chosen tolerance - £=0.01 for the tabulated results - are ignored.) Before 

embarking on an analysis of the comparative speeds of different algorithms, it is worth 

examining which of these two measures is superior. Graph 10 shows the distribution of 

the training speed data for a single combination of algorithm, task and settings. A 

prominent feature of this distribution - and one that is common to all the results in section 

4.3 - is the broad tail, caused by a small number of outlier points (corresponding to 

training runs that required a disproportionately large number of EFEs to reach a given 

tolerance). Since the mean is sensitive to the breadth of the tail whereas the median is not, 

the latter is the more robust estimate of the typical speed of an MLP training algorithm^. 

For this reason, the median FEE rate is the adopted training speed metric for this analysis.

The following analysis of MLP training speed is in three stages. The first stage gives an 

overview of the performance of traditional and classical methods, and addresses the 

fundamental question, 'Do second-order classical methods speed up training sufficiently to 

justify the additional programming, storage and (at each training epoch) computational 

costs involved?' The second stage compares the performance of different second-order 

methods using, where possible, the same line-search strategy and settings. The final stage 

of the analysis examines, in detail, the performance of different versions of the same 

second-order algorithm. At each stage, the actual performance of the algorithms under 

investigation, when applied to the three tasks used in this research, will be assessed in 

terms of their anticipated performance based on theoretical and practical experience.

 ̂ There are several instances where the mean EFE rate given in section 4.3 grossly over­
estimates the typical performance of an algorithm. Prime examples are to be found in Table 3 
for settings DBR: 0.9 / 0.001 and DBR: 0.9 / 0.25.
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Graph 10 - Relative frequency histogram, SD DBR: 0.5 / 0.25 (sine)
Note: the corresponding mean and median are 1,680.3 and 1,311.0 respectively
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O verview  o f  traditional and classical methods. Graphs 11,12 and 13 plot, for each 

training task, the performance of traditional methods (represented by on-line BP with 

several different combinations of training rate and momentum), first-order classical 

methods (i.e. SD), and second-order classical methods (represented by the Polak-Ribiere 

CG algorithm with SD resets). In each of these graphs, the best curve plotted for on-line 

BP represents the 'near-optimal' performance of that algorithm - i.e. a modest increase in 

the training rate was sufficient to induce oscillatory behaviour. (In the majority of cases, 

batch BP was slightly slower than on-line BP with the same training rate and momentum.) 

The SD curves show the fastest and slowest performances of the SD algorithm using 

either the BR or the DBR line-search strategy; the CG curves show the fastest and slowest 

performances of CG using the BR, DBR or DBT-DBR line-search strategies.
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Graph 11 - Training speed, first- and second-order methods (XOR, sigmoid)
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Graph 12 - Training speed, first- and second-order methods (XOR, linear)
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Graph 13 - Training speed, first- and second-order methods (sine)
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These results illustrate two key reasons why second-order classical methods are likely to 

produce faster solutions to many MLP training problems than traditional training 

methods. Firstly, traditional fixed step-length BP is highly sensitive to the choice of 

training rate, and the optimal (or near-optimal) training rate is task-specific; classical 

methods, using variable step-length strategies, are far less sensitive to the choice of initial 

parameter-settings, and (as the final stage of this analysis will show) certain parameter- 

settings tend to be consistently better than others. Secondly, the second-order CG 

algorithm is consistently faster than any of the first-order methods, attributable to the 

superiority of a quadratic model over a linear model for generating 'effective' search 

directions (see sections 3.1.1 and 3.1.2). With BP, the addition of the heuristic second- 

order momentum term (described in section 2.3.3) was highly effective in the form 

specified by Eq. 2.10, but of negligible benefit when used in the form given by Eq. 2.11.
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Second-order methods. Graph 14, 15 and 16 plot, for each training task, the performance 

of the following second-order methods: Polak-Ribiere CG, NQN and QN with SD resets, 

QN without SD resets, and the LM algorithm. The curves for CG, NQN and QN with 

resets represent the performance of these algorithms with the Brent line-search strategy 

DBR: 0.5 / 0.25, whereas the LM curve is for the model-trust region strategy RT: 0.01; 

both these versions of the non-resetting QN algorithm are represented.

Graph 14 - Training speed, second-order methods (XOR, sigmoid) 
Results are for DBR: 0.5 / 0.25 and RT: 0.01
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Graph 15 - Training speed, second-order methods (XOR, linear) 
Results are for DBR; 0.5 / 0.25 and RT: 0.01
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Graph 16 - Training speed, second-order methods (sine) 
Results are for DBR: 0.5 / 0.25 and RT: 0.01
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These graphs show that the comparative speeds of the second-order classical algorithms 

tested for this research are very much in line with the predictions given in section 3.7, a 

point made clear by the following observations:

• the LM algorithm is by far the fastest algorithm with the non-residual XOR tasks, but 

one of the slowest second-order algorithms with the sine task, which has residuals at 

the solution;

• the QN algorithm is significantly faster than the CG and NQN algorithms - both of 

which store less derivative information than the QN algorithm - with two of the 

training tasks;

• the QN algorithm is consistently faster when implemented without SD resets, i.e. when 

(potentially) useful derivative information is not discarded every n epochs;

• there is little to choose between the CG and NQN algorithms, although the former is 

significantly faster on the XOR problem with sigmoid output nodes.

Another feature of these graphs is that the shape of the LM curves is different from the 

rest, being virtually straight (with the MSE plotted on a log scale) for all three tasks. This 

may be related to the fundamental distinction between the LM algorithm and all the other 

classical algorithms used here - i.e. it is a nonlinear least-squares algorithm, rather than an 

unconstrained nonlinear optimisation algorithm.

Line-search and model-trust region strategies. The analysis now turns to the 

performance of different versions of the same nonlinear optimisation method. Graphs 17- 

28 plot, for each second-order method in turn: the fastest and slowest performances of the 

Brent line-search strategy (with the settings used to generate the results of section 4.3); 

the performance of the novel hybrid Brent/backtracking line-search algorithm (DBT- 

DBR); and - for the non-resetting QN algorithm only - the fastest and slowest 

performances of either the RT or ST model-trust region strategy (MTRS) (with the 

settings of section 4,3).
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Graph 17 - Training speed, PR CG with SD resets (XOR, sigmoid)
Note: no point is plotted for DBT-DBR at MSE 1.0 °̂  since a significant percentage of runs 
failed to reach this level within 50,000 EFEs.
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Graph 18 - Training speed, PR CG with SD resets (XOR, linear)
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Graph 19 - Training speed, PR CG with SD resets (sine)
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Graph 20 - Training speed, NQN with SD resets (XOR, sigmoid)

600 -I

500 -
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Graph 21 - Training speed, NQN with SD resets (XOR, linear)
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Graph 22 - Training speed, NQN with SD resets (sine)
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Graph 23 - Training speed, QN with SD resets (XOR, sigmoid)
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Graph 24 - Training speed, QN with SD resets (XOR, linear)
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Graph 25 - Training speed, QN with SD resets (sine)
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Graph 26 - Training speed, QN without resets (XOR, sigmoid)
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Graph 27 - Training speed, QN without resets (XOR, linear)
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Graph 28 - Training speed, QN without resets (sine)
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The preceding graphs largely support the modern preference for inaccurate line searches, 

as the following observations make clear:

• with Brent's method, a high accuracy of ̂ =0.1 (Eq. 3.28) accounted for 10 of the 12 

slowest performances, whereas all 12 of the fastest Brent performances were produced 

by a low accuracy of ^=0.9;

• the hybrid Brent/backtracking algorithm DBT-DBR - which, as noted in section 4.4.1, 

is generally less accurate than Brent's method with ^=0.9 - was faster than the fastest 

Brent performance in 8 out of 12 cases, and approached the speed of the fastest Brent 

performance (at error tolerances of £’>0.001) in the remaining 4 cases.

However, this endorsement of inaccurate line searches is not entirely unqualified. In 

addition to the problems encountered with the highly-inaccurate non-hybrid backtracking 

algorithms BT and DBT, two further points emerged in the preceding analysis.

• With Brent's method, low accuracy did not guarantee fast training. All of the low 

accuracy settings - i.e. <?=0.9 with or without derivatives and with u (Eq. 3.29) of 

0.001, 0.25 or 0.4 - performed well with many, but not all, combinations of 

multivariate algorithm and task. On balance, the moderate-accuracy DBR: 0.5 / 0.25 

algorithm - used widely in this research as the representative Brent algorithm - is 

probably as good a choice as any, as it approached the speed of the fastest Brent 

algorithm in every case.

• With all but the non-resetting QN algorithm, the hybrid DBT-DBR algorithm proved 

comparatively slow at relatively low error tolerances for the XOR task with sigmoid 

output nodes.

These qualifications are not surprising; it is well known that the less-robust multivariate 

algorithms (e.g. CG and NQN) do not always perform well with inaccurate line-searches, 

and backtracking algorithms are designed to work with multivariate algorithms, such as 

the non-resetting QN algorithm with positive definiteness enforced, for which the Newton 

direction and Newton step are defined at each iteration. Given the lack of theoretical 

justification for using backtracking strategies with other methods, it is perhaps surprising 

that they are as effective as the results in this research suggest.
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The results for the non-resetting QN algorithm indicate that model-trust region strategies 

are less sensitive than Brent's method to the setting of parameters. In general, the RT 

strategy was slightly faster than the ST strategy (with the same settings) and both RT and 

ST strategies slightly faster with shrink/growth constants of 2.0/4.0, rather than 4.0/10.0. 

These results also suggest that there is little to chose between model-trust region methods 

and the hybrid DBT-DBR line-search algorithm.

Finally, it is useful to compare the results for different versions of the non-resetting QN - 

the most robust second-order algorithm used in this research, and the subject of the 

greatest number of tests - in terms of the number of EFEs performed at each epoch. The 

mean number EFEs per epoch gives a measure of the accuracy of an algorithm that is 

independent of the choice of line-search/model-trust region strategy and settings. Graphs 

29, 30 and 31 show that, for each training task, there is strong correlation between the 

mean EFEs per epoch and the median EFEs per run - the fewer EFEs per epoch, the faster 

the algorithm.

Graph 29 - EFEs per run vs. EFEs per epoch, QN methods without resets (XOR, 
sigmoid)
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Graph 30 - EFEs per run vs. EFEs per epoch, QN methods without resets (XOR, 
linear)
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Graph 31 - EFEs per run vs. EFEs per epoch, QN methods without resets (sine)
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4.4.3 Conclusion

The results of section 4.3 and analysis of section 4.4 suggest the following practical

guidelines for the selection of a fast MLP training algorithm with a reasonably high rate

of global convergence, given no prior knowledge about the properties of the MLP error

surface (i.e. the existence of local minima or the size of residuals at the solution);

• To maximise training speed, use second-order methods. The QN algorithm is 

consistently fast; if the O(n^) storage costs of the QN algorithm is prohibitive, both the 

CG and NQN algorithms are viable alternatives. The LM method may be highly 

effective, but cannot be recommended in general because of its sensitivity to the 

presence of residuals at the solution.

• To maximise the chance of finding a global solution, use an algorithm that resets the 

model at every iteration, such as SD or LM. Of the second-order algorithms 

recommended on grounds of training speed, the CG and NQN algorithms are more 

likely to avoid local minima than the QN algorithm. With all three of these algorithms, 

resetting the model periodically may improve the chances of avoiding local minima.

• Provided the chosen multivariate algorithm is sufficiently robust, the adoption of an 

inaccurate line-search strategy or a model-trust region strategy can improve both 

training speed and the global convergence rate of the algorithm.

These results also suggest two important areas for future research:

• the development of 'variable' training strategies, i.e. ones which vary the accuracy and 

reset frequency of an algorithm at different stages of training;

• the development of nonlinear least-squares algorithms for MLP training that have 0{n) 

storage requirements, and that are not sensitive to the size of the residuals at the 

solution.
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5. GLOBAL OPTIMISATION - A NEW ERA?

The term 'global optimisation' covers a diverse range of strategies designed to improve the 

chances of converging to a global, rather than a local, minimum. Global optimisation 

strategies fall into two broad classes - stochastic (or probabilistic) methods, and 

deterministic (or classical) methods; typically, the former allow uphill motion with respect 

to the chosen error function, whereas the latter do not. The main purpose of this chapter is 

to assess the potential for combining global optimisation strategies with the fast second- 

order training methods of chapter 4 to produce fast global training methods - the 

fundamental goal of this research.

This chapter is in two parts. Section 5.1 considers global optimisation in general, and 

assesses the contrasting suitability of different global and second-order optimisation 

strategies for the development of fast global methods. The analysis conducted for this 

research suggests that the comparatively under-researched field of deterministic global 

optimisation is well-suited to second-order training. Section 5.2 presents a novel global 

training strategy - Expanded Range Approximation (ERA) - developed jointly with Dr D 

Gorse and Prof. J Taylor [Gorse, Shepherd & Taylor, 1993a, 1993b, 1994a, 1994b, 

1995]. ERA is a deterministic strategy which requires modification to the MLP training 

set only, so that implementation with any of the training methods considered in chapter 4 

is trivial.

5 .1 Introduction to Global Optimisation

5.1.1 Stochastic methods

The term ‘stochastic methods’ covers a wide variety of techniques - of contrasting 

algorithmic complexity, performance and theoretical justification - for avoiding local 

minima (and other error-surface obstacles) through the addition of ‘noise’. In contrast to 

the classical methods of chapter 3, all these techniques allow uphill motion with respect to 

the chosen error function. Stochastic methods can be divided into two broad categories, 

depending on whether noise is added to the system from the outset of training, or only
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when the MLP has converged to a local minimum. In the light of research by Gorse (using 

the Folak-Ribiere conjugate gradient algorithm), which suggests that random 

perturbations of the search direction and 'various kinds of stochastic adjustment to the 

current set of weights' are largely ineffective at enabling MLPs to escape from local 

minima [Gorse, 1992], this section concentrates on stochastic methods that add noise 

throughout the training process.

The fundamental problem for all stochastic methods is how to determine the appropriate 

level of ‘noise’ for an arbitrary minimisation task; too little, and the algorithm may 

become trapped in a local minimum; too much, and it may fail to converge to a global 

minimum within a reasonable number of iterations. What is needed is some scheme for 

adapting the level of noise; for an arbitrary task with no special features, the intuitively 

sensible approach is to reduce the amount of noise as the minimisation proceeds. Two 

widely-used strategies are to gradually reduce the level of noise as the number of 

iterations increases - known as simulated annealing (SA) [Kirkpatrick, Gelatt & Vecchi, 

1983] - or as the error level falls - known as time-invariant noise algorithms (TINA) 

[Burton & Mpitsos, 1992]. (A similar effect can be achieved in the context of on-line 

MLP training by adopting a suitable scheme for adapting the size and composition of the 

subset of patterns presented to the network at each iteration.)

A number of training strategies have been developed that combine stochastic and first- 

order information, the most widely-used being the traditional' on-line BP algorithm 

described in section 2.3.2. In addition, algorithms that combine simulated annealing with 

BP [Wasserman, 1989] [Amato et al., 1991] and TINA with BP [Burton & Mpitsos, 

1992] have been developed, as well as numerous strategies for combining genetic 

algorithms (GAs) [Holland, 1975] with BP (see, for example, [Belew, Mclnemey & 

Schraudolph, 1991]). (In fact, the algorithms of Amato et al.. Burton and Mpitsos, and 

Belew et al. can be regarded as doubly stochastic' in that SA, TINA and GAs are 

combined with on-line BP.) All these strategies perform well on specific problems, but 

have potential weaknesses. For example, the SA and TINA methods are sensitive to the 

heuristic choice of constants', whereas with 'traditional' on-line BP the level of noise

' Burton and Mpitsos used noise constants of 0.3 for SA and in the range 2-5 for TINA, but note 
that 'the noise constants usually had to be decreased as the teacher task [i.e. training task] 
became more difficult, and when increasing the number of hidden units beyond 32' [Burton & 
Mpitsos, 1992, 629].
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added to the system is an arbitrary function of the training set and network architecture, 

and may not produce a higher rate of global convergence than (non-stochastic) batch BP - 

as is the case with the results presented in chapter 4.

Rather than provide a detailed evaluation of the strengths and weaknesses of strategies 

that combine stochastic information with fixed step-length BP, our primary concern here 

is to assess the potential for combining stochastic information with variable step-length 

second-order methods to form fast global training algorithm. In this context, several 

fundamental difficulties present themselves.

• Second-order methods for general optimisation that rely on stored information from 

previous training epochs (i.e. the CG, QN and NQN methods) are likely to be severely 

disrupted by the addition of noise in a way that methods which compute a completely 

new model at each iteration (BP, SD, LM and Newton's method) are not.

• In contrast to classical optimisation, the optimal training rate (step length) at each 

iteration for stochastic methods is poorly understood. Results from stochastic 

approximation theory provide a theoretical basis for adjusting the on-line training rate 

r| as a function of time (for a brief summary, see [Mpller, 1993e, 23]). An example is 

the search then converge (STC) training rate schedule of Darken, Chang and Moody 

[1992], given by

Eq. 5.1 ^0 no T:

T|o 'C T

where T|t is the training rate at iteration k, parameter c is set greater than a threshold of 

l/2Xmin (where Â in is the smallest eigenvalue of the Hessian of E), and parameter t  

relates to the number of anticipated training epochs. The significance of the STC 

schedule is that, when implemented with a suitable scheme for estimating c (using, for 

example, the Power method [Mpller, 1993e, 24]), an optimal rate of asymptotic ('large 

time') convergence is guaranteed for on-line BP. In practice, however, the convergence 

rate associated with the STC schedule is highly dependent on the choice of parameters 

Tio and T . Whereas it is possible to estimate c automatically, guidance for setting 

parameters T|o and t  is essentially heuristic, or requires prior knowledge about the
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problem. Mpller rightly concludes that 'methods for the initial setting of these 

parameters are needed in order for the [STC] method to have any real practical use' 

[M0ller, 1993e, 24].

• There is a fundamental mis-match between the theoretically-justified schedules for 

reducing noise with SA methods and the convergence rates of second-order methods. 

With SA algorithms, the amount of noise generated at a given iteration depends on the 

choice of generation function and an artificial temperature parameter T. With noise 

generated according to a Gaussian distribution - the basis of Boltzmann annealing - T 

should be reduced no faster than

Eq.5.2 T ,= T j\n {k )

to guarantee that the system will statistically find a global minimum. With noise 

generated according to a Cauchy distribution - known 2&fast annealing [Szu & 

Hartley, 1987] - T can be reduced at the faster rate of

Eq. 5.3 = T q I  k .

However, both of the schedules given by Eq. 5.2 and Eq. 5.3 are much slower than the 

anticipated rates of convergence associated with second-order methods (see section

3.1.2).

These factors do not preclude the development of effective hybrid stochastic/second-order 

methods, but suggest that the direct combination of stochastic and second-order 

information is highly problematic - unless the stochastic component is comparatively 

small. Judging by available research in this field, practical implementations of hybrid 

stochastic/second-order methods fall into two categories - those which completely isolate 

the second-order method from stochastic 'noise', and those which severely restrict the level 

of noise added to the system. Examples of the former are:

• algorithms that have two distinct training phases - a stochastic phase and a classical 

second-order phase, e.g. the hybrid on-line BP/conjugate-gradient algorithm proposed 

in [Shepherd, 1992], which switches from on-line BP to CG after a user-defined 

number of training epochs have elapsed;

• hybrid GA/second-order algorithms used for 'sampling and search', by which the GA is 

used to chose initial weights for a population of MLPs, each of which is trained using
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a classical second-order method, e.g. the hybrid GA/CG algorithm in [Belew, 

Mclnemey & Schraudolph, 1991]^.

An example of a hybrid stochastic/second-order method that combines stochastic and 

second-order information directly but severely restricts the level of stochastic noise 

throughout the training process is Mpller’s on-line CG algorithm [M0ller, 1993b]. At 

each training epoch, Mpller's algorithm uses a validation scheme to ensure, with a high 

probability, that the normalised error for the subset of patterns (chosen using standard 

sampling techniques or by an active data-selection scheme) is an approximation to that for 

the entire training set; the better the approximations are the better and more reliable will a 

conjugate gradient algorithm converge' [Mpller, 1993e, 41]. As with the strictly classical 

implementation of CG methods described in chapter 3, Mpller's algorithm resets to the 

steepest descent direction whenever a given (i.e. the search direction at iteration k) fails 

to satisfy Eq. 3.9 (i.e. is not a descent direction).

M0ller's algorithm has several important merits: it has a much better theoretical 

foundation than the majority of proposed strategies in this field, its performance does not 

rely on heuristically-chosen parameters, and it appears to be highly successful at 

eliminating redundancy in the training set. However, M0ller does not quantify the global 

convergence properties of the algorithm - a primary issue for the current discussion. From 

the perspective of global optimisation, it is clear that Mpller's on-line CG algorithm is 

very different in character to traditional implementations of on-line BP; with traditional 

on-line BP, wild changes in the error surface are permitted at each iteration, whereas 

Mpller's algorithm expends considerable effort ensuring that the error surface does not 

change very much throughout the training process. For this reason it seems likely that the 

global convergence properties of Mpller's on-line CG algorithm are little (if any) better 

than those of classical CG.

 ̂ Interestingly, the experiments performed by Belew et al. suggest that the tendency for CG and 
other classical algorithms to generate weights of much greater magnitude than those generated 
by BP can be problematic for GA schemes that involve encoding of the weight vector w. Using a 
uniform encoding scheme, GA/BP was able to find 'perfect solutions' to the six-bit symmetry 
task whereas the solutions found by GA/CG were poor in absolute terms' [Belew, Mclnemey & 
Schraudolph, 1991,532].
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5.1.2 Deterministic methods

As noted in the introduction, deterministic global methods - unlike stochastic global 

methods - share the fundamental property that an increase in network error is not required 

at any stage of the training process. Outlined below are two contrasting approaches to 

deterministic global optimisation - homotopic methods and tunnelling methods. In neither 

case do the problems associated with combined stochastic/second-order training methods 

(discussed in section 5.1.1) arise.

Homotopic methods. Two functions f(jc) and g(%) are said to be homotopic to each other if 

/can  be continuously deformed into g, or vice versa - i.e. there exists a homotopy 

function h(X., %), continuous in both its variables, for which h(0, x) = g(x) and h(l, x) = 

f(x). The fundamental idea behind homotopic methods for the solution of nonlinear 

systems is to use a homotopic function h to progressively deform a simple function g, 

with a known solution, into the nonlinear function/ to which a solution is desired. A 

variety of such methods, of varying complexity, have been devised outside the field of 

neural networks (see, for example, the method in [Finhoff & Zimmerman, 1992] for the 

solution of nonlinear systems of equations).

The second half of this chapter is devoted to a novel homotopic training strategy, ERA, 

specifically designed for training MLPs. Rather than attempt to devise - for an arbitrary 

MLP architecture and training task - a simple function with a known solution, ERA 

deforms the 'normal' error surface E into a surface E' that is easier to solve; having 

minimised E\ surface E' is progressively deformed back into the original surface E.

Details of the ERA method are given in section 5.2.

Tunnelling methods. Tunnelling methods proceed in cycles, with each cycle comprising a 

minimisation phase followed by a tunnelling phase. In the minimisation phase, the MLP is 

trained in the normal manner using a given minimisation algorithm, until a minimum w* is 

located. The method then enters the tunnelling phase, in which regions of the error surface 

where E(w) > E(w*) are 'tunnelled through' until a region is located where E(w) < E(yv*). 

The cycles are repeated iteratively until a global minimum is located.
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Probably the most effective tunnelling strategy to date is the TRUST (Terminal Repeller 

Unconstrained Subenergy Tunnelling) method [Cetin, Barhen & Burdick, 1993]^. At a 

given minimum w*, the TRUST method defines a sub-energy tunnelling function which 

flattens all values of E(w) above a threshold of E(w*) that lie within a specified domain 

of interest D; values of E(w) below threshold E(w*) are left 'nearly unmodified' [Barhen, 

Fijany & Toomarian, 1994, 371]. An important characteristic of the TRUST method, as 

modified by [Barhen, Fijany & Toomarian, 1994], is that convergence to a global 

minimum is formally guaranteed within domain D. However, the TRUST method is much 

more complicated to implement than the homotopic ERA method of section 5.2, and relies 

on the user to specify the domain of interest D. (The published results in [Barhen, Fijany 

& Toomarian, 1994] for the TRUST method with gradient descent are based on 

comparatively small domains of interest, with weights restricted to the range [-10, +10], 

or smaller. In general, such settings would be inappropriate when using the TRUST 

method with classical optimisation algorithms, owing to the tendency of such algorithms 

to generate weights of large magnitudes.)

5.2 Expanded Range Approximation (ERA)

5.2.1 Introduction

The fundamental idea behind the Expanded Range Approximation strategy is to perform a 

homotopy on the target-vectors tp of a given MLP training-set, S. The

homotopy is achieved by compressing the target-vectors to their mean values - i.e. the 

mean target-vector <t> with elements

1 p
Eq. 5.4 < f >, , for/=1,...,A^

- and then progressively expanding them back to their original values. The expansion of 

the compressed target-vectors, t/,(X) (p=l,...,P), is regulated by a range parameter X, 

(0<X<1) according to the following rule:

 ̂ For a useful summary of the development of tunnelling algorithms for global optimisation, see 
[Cetin, Barhen & Burdick, 1993, 99-102].
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Eq. 5.5 < t >  < t > ) .

A parameter value of 1=0 sets each tp(X) to <t>, a value of 1=1 gives the original training 

set S. In place of the error function E given by Eq. 2.3, the modified training set S(l) is 

evaluated using a corresponding error function, E(l), defined by

Eq.5.6 .
p = \  1=1

With 1=1, Eq. 5.6 is equivalent to Eq. 2.3. By monotonically increasing the range 

parameter from 1=0 to 1=1 in a series of steps, the error surface E(0) is progressively 

deformed into the original error surface E(l).

Our analysis of how the ERA method works suggests that its success is attributable to the 

following: the problem defined by 1=0 appears to have only a global minimum, and can 

be solved trivially; a sufficiently small step T| away from 1=0 (i.e. l = q « l )  is seen to 

keep the system within the basin of attraction of a global minimum; and the range can be 

progressively expanded up to 1=1 without displacing the system from the global minimum 

at any step. A summary of our (on-going) analysis is presented in section 5.2.2. (Full 

details are given in [Gorse, Shepherd & Taylor, 1995].)

At present, ERA is underpinned by empirical evidence only - the method has been seen to 

give a greatly improved probability of global convergence in all the cases examined. A 

theoretical underpinning which delineates the conditions (for example, the rate of 

expansion of parameter 1) under which ERA can be guaranteed to work is obviously 

desirable, and an analytical study of the technique is under way. However, even if it can 

be shown that ERA works in theory, it does not guarantee that a practical implementation 

is possible; if, to successfully avoid local minima, it proved necessary to expand the range 

parameter from 1=0 to 1=1 in a very large number of steps and/or to approximate a 

global minimum of E(l) at each step to a high degree of accuracy, it is likely that ERA 

would be deemed excessively slow for many practical tasks. The practical implementation 

and performance of the ERA method are the subjects of sections 5.2.3 and 5.2.4 

respectively.
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5.2.2 How ERA works

The following 3-stage description of the ERA method is applicable to its use with any 

classical multivariate algorithm, i.e. the only assumption made is that successive search 

directions satisfy Eq. 3.9. In practice, ERA can also improve the practical performance of 

non-classical training methods (see, for example, the results in section 5.2.4 for ERA with 

on-line BP).

Solving the system fork=0. Although we have yet to derive a general proof that the error 

surface E(0) has only a single global minimum, we have accumulated considerable 

evidence - both analytical and empirical - to support this proposition. A limited proof, for 

the XOR task and a 2-layer MLP, is given in the appendix of [Gorse, Shepherd & Taylor, 

1995]. The empirical evidence for the proposition that the error surface E(0) has only 

global minima comes from simulations performed with randomly generated architectures 

and training sets, as summarised in Table 37. In each case, the training set comprised 

different input pattem-vectors, but identical target-vectors (with both pattern- and target- 

vectors set randomly to real values in the range [0, 1]). The task of minimising such a 

training set ( i.e. one with the same target outputs for all input patterns) using the mean- 

squared error function given by Eq. 2.3 is equivalent to solving E(0) for some training set 

which has, as its mean target-vector, those target outputs. (In all cases, weights were 

initialised in the range [-1 , 1 ] and the network architecture used sigmoid output nodes.)

All of the tasks summarised in Table 37 converged to within 100 training epochs

using the non-resetting QN algorithm with the DBR line-search - i.e. the training 

algorithm which, judging by the results in chapter 4, is most prone to getting trapped in 

local minima.
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Table 37 - MLP architectures, training set sizes, and numbers of runs used in testing 
the proposition that E(0) has only a global minimum

architecture # of training pairs # of runs
8-1 62 30
25-1 28 24
3-1-1 41 5
5-2-1 33 41
5-3-1 21 58
5-4-1 42 16
2-2-2 36 18
3-4-2 30 22
4-1-2 32 19

To satisfy the condition E=0 for A,=0, the MLP weights must be of a special form - i.e. 

one that ensures that, whatever the input pattern, the output is always the same. For a 

single-layer N-1 MLP architecture with the target value <t> for each input pattern, the 

following weight values are guaranteed to satisfy E=0:

Eq. 5.7 wJo = In
<t>

1 - < r > , 

w/. =0, fork = 1,...,7V°,

where weight wJq connects the output node nj to the bias unit and weight connects n] to 

the kth input element. For a 2-layer MLP architecture with target-vector <t> for each 

input pattern, the following weight values are guaranteed to satisfy E=0 :

Eq. 5.8 w,o = In
1 -  < t >; ;=i

wjjt = 0 , fory = 1, . . . A/’ and/: = 1, . . . , ,

where s (a :) is the sigmoid function. The terminal network weights from the training runs 

performed with each training tasks in Table 37 - more than 200 sets of weights in total - 

were compared with these predictions; in every case the weights satisfied Eq. 5.7 or Eq. 

5.8 (as appropriate) to an accuracy of at least five decimal places.

According to Eq. 5.7 and Eq. 5.8, the error surface E(0) has a single global minimum. 

However, with a 2-layer MLP the global minimum constitutes a surface, rather than a
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single location in weight-space, and one for which the network weights may have infinite 

values.

The first step X = x\« l. To justify the assertion that a sufficiently small step away from 

X,=0 keeps the system within the basin of attraction of the E(0) global minimum (located 

by the weight-setting procedure described above), it is useful to investigate the properties 

of the error surface E(T|). We can do this by reformulating the error function of Eq, 5.6 as 

follows:

Eq. 5.9 E(r|) = E(0) + Ti î + O(Ti^),

where the value of y^(0), the derivative of yf'p (O), depends on the chosen learning law,

but is assumed bounded. In terms of Eq. 5.9, what we need to show is that the 

perturbation brought about by the term rjEi will not create any local minima, i.e. will only 

shift the location of the global minimum. Outside a small neighbourhood (No) of the 

global minimum, it can be shown that no local minima can exists whenever

Eq. 5.10 T)
3w

3E(0) a
9w 3w

[ E ( 0 ) + t | E i ] ^ 0 .

To visualise how a first step T| that is sufficiently small guarantees the absence of local 

minima outside Nq, let us consider the one-dimensional case where a perturbation, in the 

form of a surface E\ with multiple minima, is added to an error surface E(0) with a single, 

global minimum - see Figure 4. The number of stationary points in the error surface E(r|) 

depends on the number of intersections between the linear function E'(0) and the function

-q  Ef (i.e. the number of locations where the derivative [E(0 )-l-qEi ] = 0  ), and the

number of such intersections is determined by the size of q. This point is illustrated in 

Figure 5; of the three error surfaces, corresponding to three different values of q 

(T|]<q2 <q3 ), only E(qi) has no local minima.

Within neighbourhood No, we should expect the location of the global minimum to be 

shifted by no more than 0 (q) as q^O , owing to the smoothness of the error surface.
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Figure 4 - Schematic representation of error surfaces E(0) (with a single global 
minimum) and Ei (with multiple minima)

E(0) - global minimum

+ El - may have many 
local minima
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Figure 5 - Illustration of how the number of stationary points in error surface E(T|) is 
determined by the size of t\ (tii<t12<T|3). Stationary points in E(t|) occur where the 
linear function E'(0) intersects function -t) EJ.

E'(0)
“■naE'i

-riaE'i
-TjiE'i
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Expanding the range to X=l. As with the argument developed for the first step, the 

smoothness of the MLP error surface is the key to showing how the system can be kept 

within the basin of attraction of a global minimum while progressively expanding the 

range parameter up to X,=l. Having located the global minimum w(A<) for the current step, 

we should expect a subsequent step of e to keep the network within the basin attraction of 

the 'expanded' global minimum w(A,+e) - provided the network approximates w(X,) with 

sufficient accuracy and e is sufficiently small. This derives from the observation that the 

basin of attraction of w(X,+e) should contain location w (l) when e->0 , assuming that 

w(X.+e) is shifted from location w (l) by only 0(e) as e—>0 .

Whereas error surface E(X,=0) has a unique global minimum, error surface E(1>0) 

typically has many global minima. The possibility that one or more global minima in the 

error surface E(lt) (for 0<Xk<l) may cease to be global minima in surface E(X,*+i) (for 

A,jk<X,jk+i<l) is currently an obstacle to a general proof of the ERA method.

5.2.3 Implementing ERA

For this research the ERA method was implemented with three user-defined parameters: 

the size of the first step, T|>0 ; an expansion-rate parameter, p>l; and an error-tolerance 

parameter, e>0 , controlling the accuracy with which a global minimum of E(X,) is 

approximated at each step (with X. < 1). Given initial values of Xo=0 and X,=T|, 

subsequent values of range parameter X are defined as follows:

Eq. 5 . 1 1  Xt+] = min[l.O,X^-l-p(X^-X;t-i)]> for ^ > 1 .

An 'Â -step ERA' method refers to the special case where (3=1.0 and T| is chosen such that 

l/r| is a whole number - i.e. range parameter X is expanded in steps of a uniform size, so 

that the method requires the solution of the N  problems S(X„=nTi) for n=l,...,A^= l/r|.

Although suitable for the experimental investigation of the ERA method conducted for 

this research, the use of an error-tolerance parameter to terminate ERA training steps is 

not satisfactory in general, because the appropriate' level of error tolerance varies from 

task to task and step to step (depending on the scale of E(X) and the size of the residuals
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at a global minimum of E(X,)). One alternative is to terminate a training step (with l t < l )  

only when the gradient drops to zero, but this approach is likely to entail a significant 

increase in the total number of training iterations unless the number of steps is small and 

the chosen training algorithm converges rapidly near a minimum. A second alternative is 

to terminate intermediate ERA steps on the basis of the correct classification of training 

patterns in the training set. For instance, a step could be terminated when q< P  (for a P- 

pattem training set) patterns are 'correctly classified', i.e. satisfy

Eq.5.12 f o r O< r < l  ,
h , p - < f > i

where parameter r determines the degree to which networks output y[̂ p is required to

match target output for it to be deemed 'correct'. (With q = P and r = 1, a step is

terminated only when E = 0.) Schemes for automatically adjusting user-defmed 

parameters q and r are currently under investigation.

Finally, when using the ERA method with one of the second-order classical algorithms for 

general optimisation considered in chapters 3 and 4, these algorithms were reset to the 

steepest descent direction at the start of each step, on the grounds that a descent direction 

for error surface E(X,jt) is not guaranteed to be a descent direction for error surface

E( ĵt+i).

5.2.4 Experimental results

N-step ERA. The preliminary set of ERA results presented in Tables 38, 39 and 40 are for 

the Â -step ERA method - implemented with the classical and traditional training 

algorithms evaluated in chapter 4 - applied to the sigmoid XOR, linear XOR and sine 

problems respectively. (For the sine problem, results are for the non-resetting quasi- 

Newton algorithm QN nr only, on the grounds that no other algorithm had a significant 

failure rate on this problem without the ERA method - see results in section 4.3.4.) 

Selected results from these tables are presented in Graphs 32 and 33. Training conditions 

were identical to those used to generate the results in chapter 4 (see section 4.3.1), with
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the exception of the epoch limit - set to 50,000 for each ERA step. The error tolerance (at 

X,=l) was £= 0 .0 1 .

Table 38 - A-step ERA, XOR with sigmoid output nodes

ERA error tolerance: e=1.0'°* (classical methods), e=1.0'°  ̂(BP)
Line search: DBR with parameters ^=0.5 (Eq. 3.28) and u=0.25 (Eq. 3.29) 
Model-trust region strategy (LM only): RT with parameter Mo=0.01 (Eq. 3.15) and 
reduction/growth constants 2.0/4.0
Backpropagation settings: training rate r|=3.0, momentum a=0.0

A-step ERA 
method: N

minima (%) 
global 0.0625 0.0833

EFEs per run 
mean s.d. median

resets 
/ run

EFEs 
per &

QN nr: regular 36.0 29.0 35.0 89.7 38.1 113 0.08 4.02
QN nr: 1 54.5 23.5 2 2 . 0 115.0 41.7 107.5 0.08 3.76
QN nr: 2 6 6 . 0 17.0 17.0 191.6 124.3 162.8 0.06 3.44
QN nr: 5 72.5 14.5 13.0 320.0 188.2 282.5 0.16 3.22
QN nr: 10 79.5 14.0 6.5 479.4 238.4 441.5 0.09 3.07
QN nr: 20 87.5 7.5 5.0 758.5 254.3 730.0 0.07 2.99
QN nr: 50 93.5 5.0 1.5 1,496.5 559.7 1,533.5 0.17 2.95
QN nr: 100 94.5 4.5 1 . 0 2,824.5 660.9 2,953.5 0.05 2.90

QN: regular 62.5 30.5 7.0 141.1 170.9 96.0 0.08 4.13
QN: 1 74.0 16.5 9.5 146.0 64.5 131.5 0.07 3.59
QN:2 8 8 . 0 8 . 0 4.0 249.3 169.0 214.0 0 . 1 1 3.39
QN:5 93.5 5.5 1 . 0 428.1 887.7 350.5 0 . 0 2 3.36
QN: 10 97.0 3.0 0 . 0 557.3 123.2 535.3 0 . 0 1 3.03

NQN: regular 65.5 27.0 7.5 166.3 283.3 115.0 0.14 3.98
NQN: 1 75.0 18.0 7.0 237.8 181.6 185.8 0.16 3.61
NQN: 2 87.5 11.5 1 . 0 585.6 1,984.7 310.0 0 . 2 2 3.62
NQN: 5 95.5 4.5 0 . 0 1,054.7 5,266.7 567.5 0.13 4.19
NQN: 10 99.0 1 . 0 0 . 0 1,242.9 2,194.5 956.8 0.16 3.32

CG: regular 61.5 26.5 1 2 . 0 177.1 604.4 83.5 0.44 6.47
CO: 1 77.5 15.0 7.5 282.1 1,314.9 139.0 0 . 6 6 6.39
CG:2 92.0 6.5 1.5 261.8 367.5 2 0 2 . 0 0.61 3.85
CG:5 94.0 5.5 0.5 361.5 81.1 340.3 0.71 3.44
CG: 10 99.0 1 . 0 0 . 0 1 ,2 2 0 . 0 9,053.8 562.3 0 . 8 6 5.69

SD: regular 82.5 16.5 1 . 0 280.5 123.0 256.0 3.57
SD:1 87.5 12.5 0 . 0 9,500.3 1.8°4 2,360.5 - 3.54
SD:2 90.0 1 0 . 0 0 . 0 i.r 2.f^ 3,279.5 - 3.53
SD:5 97.5 2.5 0 . 0 1 .2 ®̂ 1 9 0 4 5,688.0 - 3.53

BA: regular 83.5 16.0 0.5 967.9 688.9 808.0 1 . 0

BA: 2 8 8 . 0 1 2 . 0 0 . 0 3,875.2 1.1°4 2,672.0 - 1 . 0

BA: 5 95.0 5.0 0 . 0 9,471.6 6,927.9 7,548.0 1 . 0
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A-step ERA 
method: N

minima (%) 
global 0.0625 0.0833

EFEs per run 
mean s.d. median

resets 
/ run

EFEs 
per A:

OL: regular 83.0 16.0 1 . 0 1,300.4 2,506.2 869.5 - 1 . 0

OL:2 91.0 9.0 0 . 0 3,934.0 1,167.9 3,657.5 - 1 . 0

OL:5 96.5 3.5 0 . 0 8,519.1 4,781.2 7,523.0 - 1 . 0

LM: regular 90.5 9.5 0 . 0 12.4 2 . 8 1 2 . 0 0.41 1.03
LM: 1 94.0 6 . 0 0 . 0 38.1 4.9 38.0 0.52 1 . 0 1

LM: 2 97.0 3.0 0 . 0 65.4 1 0 . 8 64.0 0.61 1 . 0 1

LM: 5 1 0 0 . 0 0 . 0 0 . 0 138.9 16.5 138.0 0.77 1 . 0 1

Table 39 - A -̂step ERA, XOR with linear output nodes 

ERA error tolerance: e=1.0'°®
Line search: DBR with parameters g=0.5 (Eq. 3.28) and «=0.25 (Eq. 3.29) 
Model-trust region strategy (LM only): RT with parameter m o= 0.01 (Eq. 3.15) and 
reduction/constants 2.0/4.0

A-step ERA 
method: A

minima (%) 
global 0.0625 0.0833

EFEs per run 
mean s.d. median

resets 
/ run

EFEs
per

QN nr: regular 69.0 2 1 . 0 1 0 . 0 114.2 162.0 78.5 0.15 3.75
QN nr: 1 73.0 14.0 13.0 1 1 1 . 1 29.6 1 1 0 . 0 0 . 0 1 3.41
QN nr: 2 74.5 16.5 9.0 150.7 43.9 142.5 0 . 0 2 3.24
QN nr: 5 82.0 12.5 5.5 224.3 83.2 209.0 0.04 2.99
QN nr: 10 89.0 7.5 3.5 350.5 139.9 323.5 0.04 2.90
QN nr: 20 93.0 5.0 2 . 0 537.2 115.4 523.5 0.03 2.80
QN nr: 50 94.0 4.5 1.5 1,076.6 238.5 1,052.5 0.06 2.72

QN: regular 92.0 7.0 1 . 0 116.5 150.2 87.5 0.04 3.49
QN: 1 93.0 6 . 0 1 . 0 174.0 199.3 134.0 0 . 0 1 3.36
QN:2 98.0 2 . 0 0 . 0 284.9 787.8 179.5 0 . 0 1 3.53
QN:5 99.5 0.5 0 . 0 278.8 78.2 262.0 0.03 2.98

NQN: regular 90.0 7.5 2.5 139.1 133.8 101.5 0.48 3.29
NQN: 1 94.5 5.0 0.5 416.4 495.2 226.0 1.37 3.13
NQN: 2 99.0 1 . 0 0 . 0 490.3 463.4 331.5 2.83 3.07
NQN: 5 1 0 0 . 0 0 . 0 0 . 0 767.0 730.7 591.3 3.66 2.99

CG: regular 90.0 9.0 1 . 0 201.9 641.6 104.0 1.96 3.16
CG:1 96.0 3.5 0.5 395.2 406.0 249.0 6 . 0 0 3.05
CG:2 99.5 0.5 0 . 0 885.7 5,467.6 355.5 7.48 3.08
CG:5 1 0 0 . 0 0 . 0 0 . 0 744.3 384.1 641.8 7.92 2.94

SD: regular 93.5 6.5 0 . 0 1,285.2 1,538.3 924.5 2.77
SD: 1 96.0 4.0 0 . 0 3.4°4 3.0* 2 Xf* - 2.79
SD:2 97.5 2.5 0 . 0 3.0°̂ 2.3̂ 4 2 Xf* - 2.79
SD:5 98.0 2 . 0 0 . 0 4Xf* 2.6°̂ 3 .4 O" - 2.79

LM: regular 99.0 1 . 0 0 . 0 30.1 277.0 1 0 . 0 4.49 1.18
LM: 1 99.5 0.5 0 . 0 40.3 4.4 40.0 0.62 1 . 0 2

LM: 2 1 0 0 . 0 0 . 0 0 . 0 67.0 4.3 66.5 0.61 1 . 0 1

LM: 5 1 0 0 . 0 0 . 0 0 . 0 138.2 5.5 138.0 0.83 1 . 0 1
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Table 40 - A -̂step ERA, sine task 

ERA error tolerance: e=1.0'°^
Line search: DBR with parameters ^=0.5 (Eq. 3.28) and m=0.25 (Eq. 3.29)

A-step ERA 
method: N

minima (%) 
global 0.023

EFEs per run 
mean s.d. median

resets
/run

EFEs 
per A:

QN nr: regular 8 8 .0 * 9.0 96.5 44.1 83.5 0 . 0 2 3.39
QN nr: 1 94.0 6 . 0 1 1 1 . 1 40.3 1 0 0 . 0 0 . 0 1 3.26
QN nr: 2 95.0 5.0 497.0 194.3 479.0 0 . 0 1 3.24
QN nr: 5 96.5 3.5 1,126.5 599.4 938.0 0 . 0 1 3.23
QN nr: 10 98.0 2 . 0 1,735.2 779.2 1,405.0 0.03 3.24

Graph 32 - A-step ERA, global convergence frequency vs. log N  (XOR, sigmoid)
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Graph 33 - Â -step ERA, global convergence frequency vs. log N  (XOR, linear)
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The preceding tables and graphs prompt the following observations about the global

convergence properties of the ERA method:

• the global reliability of the A-step ERA method increases with N  (whereas the training 

speed - measured in median EFEs per training run - decreases with A);

• the optimal size of first step with respect to global convergence frequency is task- and 

method-specific;

• the benefit of increasing A for the global reliability of an algorithm is greatest for low 

A and least for higher A; substantial benefits accrue even with modest levels of A.

The role of the first step A.=T|. An examination of the network error at each ERA step

suggests that the first step has a special role:

• having solved the problem S(A-i=ti) at the first step, the network was predisposed to 

successfully solve the problem S(A,*) (for fc>l) at each subsequent step;

• if the network converged to a local minimum at a given step (with range 0 <A,jt<l), it 

never succeeded in converging to a global minimum at any subsequent step;
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the number of training epochs required to find a solution at the first step is typically 

greater than the number required at any subsequent step (of the same size); taking as 

an example the 10-step ERA curve of Graph 34, the number of EFEs taken at each 

step was as follows: 19 (A,=0); 129 (A,=0.1); 6 8  (1=0.2); 30.5 (1=0.3); 31.5 (1=0.4); 

36.5 (1=0.5); 39.5 (1=0.6); 35.5 (1=0.7); 49.5 (1=0.8); 5 (1=0.9); 30 (1=1.0, with an 

error tolerance of 1 .0 ^).

Graph 34 - Sample 10-step ERA training curve, QN without resets (XOR, sigmoid)
An example of a training run that converged to a local minimum (at £=0.0625) with the 
standard QN algorithm, but successfully converged to a global minimum with 10-step ERA. The 
10-step ERA curve is plotted using the E(l) error function; although the error E(lt) never 
increases at ERA step k, the error E(l) can - and, in this instance, does - show local increases for 
1< 1.
Settings: line search DBR 0.5 / 0.25, ERA error tolerance e=1.0'®*
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To gain an insight into the impact of T| - the size of the first step - on the dynamics of 

MLP training, further experiments were conducted (with various sizes of T|), focusing on 

the behaviour of the network outputs and weights during the solution of S(t|). Graphs 35, 

36, 37 and 38 plot - for rj=l .0, Tj=0.3, r|=0.2 and r|=0.1 respectively - the change in
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network outputs for two of the four patterns in the XOR training set, p,=00 and P3 = 1 0 .

So that all four graphs have identical scales, the values are plotted according to the 

following coordinate transformation:

Eq. 5.13 “ 0-5(1-Tl)) ,

where 0.5 is the mean target value <t> for the XOR problem. In each case, the top left- 

hand comer (0,1) represents a global minimum of E(T|), and the midpoint on the );-axis (0, 

0.5) represents a local minimum of E(t|) (at E=0.0625 for E(r|=l)).

These graphs point to a progressive change in network behaviour as rj is decreased. At 

r|=1.0 (Graph 35) the output values rapidly converge to the local minimum. At T|=0.3 

(Graph 36) the network again converges to the local minimum, but the trajectory appears 

to come closer to escaping to the desired solution. At r|=0.2 (Graph 37) the trajectory 

spends a lot of time in the vicinity of the local minimum, but ultimately succeeds in 

reaching the global minimum. Finally, at T|=0.1 (Graph 38) the trajectory heads more-or- 

less directly to the global minimum.

Graph 39 plots, for different sizes of T|, the changes in value of a single MLP weight 

during the first 60 epochs of training on the XOR task with sigmoid output nodes. The 

graph focuses in on the critical value of T| (Tjcrit) at which the network starts to 

successfully converge to a global minimum. In this case, 0.13 < r|crit < 0.14, i.e. for 

values of Ti below Tjcrit the network consistently converges to a global minimum, whereas 

for T| greater than Tjcrit it consistently converges to a local minimum. An interesting feature 

of this graph is that not only are the final weight values different when the network 

converges to a global rather than local minimum, but the progression to these final values 

is also different in character; for Tj > Tjcrit progression to the final weight values is far less 

smooth than for Tj < Tjcrit- This behaviour suggests that a phase change occurs in the 

learning system at the critical value Tjcrit-
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Graph 35 - Trajectory of network outputs for XOR patterns 00 and 10 with T|=1.0
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Graph 36 - Trajectory of network outputs for XOR patterns 00 and 10 with t]=0.3
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Graph 37 - Trajectory of network outputs for XOR patterns 00 and 10 with T]=0.2
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Graph 38 - Trajectory of network outputs for XOR patterns 00 and 10 with T|=0.1
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Graph 39 - The value of a single MLP weight plotted as a function of time (in epochs) 
and first step size (rj)

weight
value
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Improving the speed o f ERA. The chosen values of parameters e and p used to generate 

the results in Tables 38, 39 and 40 are appropriate from the perspective of global 

convergence, in that the global convergence frequency at the first step (i.e. for surface 

E(A.=T|)) was retained for the fully-expanded problem E(l) in the vast majority of cases. 

However, an obvious question is whether these 'conservative' settings for e and p are 

overly-conservative with respect to training speed, i.e. is it possible to reduce the number 

of steps and/or the required accuracy at each step without degrading the global reliability 

of the ERA method? The following results for the non-resetting quasi-Newton algorithm 

and XOR task with sigmoid output nodes demonstrate the impact of relaxing parameters 

P (Table 41) and e (Table 42) on the global reliability and speed of the ERA strategy for 

different sizes of first step T|.

Table 41 - ERA expansion-rate parameter, p
Task: XOR, sigmoid output nodes 
Method: BFGS QN without resets
Line search: DBR with parameters ^=0.5 (Eq. 3.28) and i/=0.25 (Eq. 3.29) 
ERA error tolerance: e=1.0'®*

first step (n) : 3
minima (%) 

global 0.0625 0.0833
EFEs per run 

mean s.d. median
resets 
/ run

EFEs 
per A:

0.2 : 1.0 72.5 14.5 13.0 320.0 188.2 282.5 0.16 3.22
0.2 : 2.0 72.5 14.5 13.0 271.5 204.3 223.8 0 . 1 2 3.39
0.2 : 4.0 72.5 14.5 13.0 207.2 135.4 178.0 0 . 1 2 3.48

0.1: 1.0 79.5 14.0 6.5 479.4 238.4 441.5 0.09 3.07
0.1: 3.0 79.5 14.0 6.5 256.5 148.4 225.3 0.04 3.30
0.1 : 5.0 79.5 14.0 6.5 286.2 165.8 234.0 0.05 3.32
0.1 : 9.0 79.5 14.0 6.5 212.3 126.5 185.5 0.07 3.48

0.05 : 1.0 87.5 7.5 5.0 758.5 254.3 730.0 0.07 2.99
0.05 : 3.0 87.0 8.5 4.5 312.5 225.8 261.0 0.06 3.25
0.05 : 5.0 87.0 8.5 4.5 261.1 181.7 227.0 0.07 3.36
0.05 : 10.0 87.0 8.5 4.5 274.4 173.1 239.5 0.05 3.31
0.05 :19.0 85.5 8 . 0 6.5 218.6 158.1 183.0 0.04 3.49

0.02 :1.0 93.5 5.0 1.5 1,496.5 559.7 1,533.5 0.17 2.95
0.02 : 3.0 93.0 5.5 1.5 345.8 153.8 307.3 0.08 3.25
0.02 : 5.0 93.0 5.5 1.5 306.5 158.3 268.5 0.04 3.29
0.02 :10.0 93.0 5.5 1.5 252.4 87.6 233.8 0 . 1 2 3.39
0.02 : 20.0 93.0 5.5 1.5 263.4 114.8 242.8 0.04 3.35
0.02 : 49.0 77.0 9.0 14.0 215.4 102.4 196.5 0.03 3.54
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minima (%) EFEs per run resets EFEs
first step (q) : 3 global 0.0625 0.0833 mean s.d. median / run per A:

0.01 :1.0 94.5 4.5 1 . 0 2,824.5 660.9 2,953.5 0.05 2.90
0.01 : 5.0 92.5 4.5 3.0 302.9 230.1 257.0 0.03 3.33
0.01 :10.0 92.0 5.0 3.0 262.4 213.8 223.8 0 . 0 1 3.43
0.01 : 50.0 86.5 7.0 6.5 297.7 229.0 257.5 0.04 3.40
0.01 : 99.0 74.5 8 . 0 17.5 255.4 256.0 2 0 2 . 0 0 . 1 0 3.66

Table 42 - ERA error-tolerance parameter, e

Task: XOR, sigmoid output nodes 
Method: BFGS QN without resets
Line search: DBR with parameters ^=0.5 (Eq. 3.28) and u=0.25 (Eq. 3.29) 
ERA expansion rate: P=1.0

first step (n) : e
minima (%) 

global 0.0625 0.0833
EFEs per run 

mean s.d. median
resets 
/ run

EFEs
pert

1.0 : 1.0 ®* 54.5 23.5 2 2 . 0 115.0 41.7 107.5 0.08 3.76
1.0: 1.0 ®® 46.0 33.0 2 1 . 0 108.7 40.5 100.3 0.17 4.03
1.0 :1.0 ®̂ 36.0 29.0 35.0 97.9 43.8 89.5 0 . 1 0 3.98

0.5 : 1.0 ®* 6 6 . 0 17.0 17.0 191.6 124.3 162.8 0.06 3.44
0.5 : 1.0 ®® 59.5 23.0 17.5 260.8 179.8 176.0 0 . 1 1 3.51
0.5 : 1.0 ®̂ 55.0 26.0 19.0 146.4 64.5 132.5 0.14 3.59

0.2 : 1.0 ®* 72.5 14.5 13.0 320.0 188.2 282.5 0.16 3.22
0.2 : 1.0 ®® 72.5 15.0 12.5 293.9 203.4 250.0 0.18 3.30
0.2 : 1.0 ®̂ 69.0 19.0 1 2 . 0 231.7 143.4 2 0 1 . 8 0.14 3.36

0.1: 1.0®* 79.5 14.0 6.5 479.4 238.4 441.5 0.09 3.07
0.1 : 1.0'®® 79.5 13.0 7.5 416.1 157.6 383.0 0 . 1 1 3.10
0.1 : l.O'®'* 78.0 16.0 6 . 0 324.9 239.8 275.5 0.14 3.17

0.05 :1.0 ®* 87.5 7.5 5.0 758.5 254.3 730.0 0.07 2.99
0.05 :1.0 ®® 84.0 1 1 . 0 5.0 672.8 397.3 617.5 0.07 3.07
0.05 :1.0 ®̂ 77.5 17.0 5.5 423.8 162.8 395.5 0.06 2.95

0.02 : 1.0'®* 93.5 5.0 1.5 1,496.5 559.7 1,533.5 0.17 2.95
0.02 :1.0 ®® 90.0 7.5 2.5 1,133.1 288.3 1,072.0 0.05 2.91
0.02 : 1.0 ®̂ 8 6 . 0 1 0 . 0 4.0 634.2 449.7 574.0 7.66 2.72

0.01:1.0®* 94.5 4.5 1 . 0 2,824.5 660.9 2,953.5 0.05 2.90
0.01 : 1.0'®® 92.5 4.5 3.0 1,855.8 492.9 1,813.5 0 . 1 1 2.87
0.01 :1.0®̂ 92.5 6 . 0 1.5 755.6 224.4 729.0 25.09 2.34

139



The preceding results for the hybrid QN/ERA algorithm (without resets) applied to the 

XOR (sigmoid) task prompt the following observations about the setting of parameters p 

and e.

• When the size of the first ERA step is comparatively large (T|>0.1), the range 

parameter can be expanded up to X,=l in a single step (with expansion-rate parameter 

P = I/t) -1) without reducing the global reliability of the algorithm. When the size of 

the first ERA step is small (ti<0.05), setting p<10 has negligible (if any) impact on 

global reliability. However, with p>10 a significant deterioration in the rate of global 

convergence may occur.

• In terms of convergence speed, setting p>l is beneficial for all T| less than 0.5, and 

most beneficial for small T). It is worth noting, however, that convergence speed does 

not increase consistently with the size of P; for example, with a first step of r|=0 .0 1 , 

ERA is faster with P=10 than with P=50. This is attributable to the fact that 

increasing P from 10 to 50 does not reduce the number of ERA steps required (i.e. 3), 

but merely increases the size (and difficulty ) of the intermediate step.

• When the size of the first ERA step is large (T|>0.5), increasing error-tolerance 

parameter e produces only a modest improvement in convergence speed, but a 

substantial deterioration in the rate of global convergence. For smaller T|, increasing e 

brings about a greater improvement in convergence speed, and the impact on global 

reliability is somewhat reduced.

It is clear from the results in Tables 41 and 42 that, with appropriate settings for 

parameters p and e, it is possible to make substantial improvements on the convergence 

speed of the default ERA method (A-step ERA with £=1.0"°̂ ), without a significant 

reduction in global reliability. However, although the preceding observations offer some 

guidance about appropriate settings for P and e, their optimal settings are task-specific. 

(This reinforces the desirability of automated parameter-setting schemes, mentioned 

briefly in section 5.2.3.)
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5.3 Conclusion

In contrast to the majority of global optimisation strategies (see section 5.1), the ERA 

method of section 5.2 is both easy to implement, and fully-compatible with second-order 

classical optimisation algorithms. Furthermore, the results in section 5.2.4 suggest that 

ERA represents a highly efficient compromise between global reliability and training 

speed; when applied to benchmark tests with known local minima, ERA (with appropriate 

parameter settings) proved highly effective at improving the global reliability of MLP 

training algorithms without excessively increasing the number of training iterations 

required to find a solution.

If, as anticipated, it is possible to automate the progressive expansion of range parameter 

X, the ERA method will depend on a single user-defined parameter - the size of the first 

ERA step, T|. There is no 'natural' choice of first-step size. In practice, r| should reflect the 

hardness' of the training task (if known), and the priorities of the user; broadly speaking,

T) should be set to a 'small' value for hard problems or when a high degree of global 

reliability is required, but to a 'large' value if convergence speed is a higher priority. In 

this context, one promising feature of the results in section 5.2.4 is that a significant 

improvement in the rate of global convergence is still achieved when T| is comparatively 

large (i.e. r|>0 .1 ).

However, unqualified endorsement of the ERA method must be withheld, pending the 

outcome of our on-going investigations regarding:

• the development of a rigorous mathematical proof that ERA works in all but 

pathological (and rare) cases;

• the application of ERA to hard, real-world training tasks;

• the refinement of the procedure by which range parameter X is progressively expanded.
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6. CONCLUSION

This thesis has proposed a novel approach to the development of MLP training algorithms 

that are both faster and more globally-reliable than conventional, backpropagation- 

derived, training methods - that is, to combine fast second-order training algorithms 

(chapters 3 and 4), implemented so as to maximise their potential for global convergence, 

with the deterministic ERA method for global optimisation (chapter 5). When tested on 

the benchmark training tasks of section 4.2, hybrid second-order/ERA training 

algorithms, with suitable parameter settings, proved consistently faster and converged to a 

global minimum as or more frequently than conventional training algorithms. Moreover, 

one training algorithm in particular - the Levenberg-Marquardt/ERA algorithm - 

outperformed all conventional methods by a wide margin. For example, the LM / 5-step 

ERA algorithm achieved a 100% global convergence rate at a cost of only 138.0 median 

EFEs per run on the XOR task (with both sigmoid and linear output nodes); this 

compares with global convergence rates of 83.5 % at a cost of 469.0 median EFEs 

(sigmoid) and 93.0% at a cost of 1,038.5 median EFEs (linear) for on-line 

backpropagation - generally the best of the conventional options - with near-optimal 

parameter settings.

This research has identified several areas where the performance of these algorithms may 

be open to improvement, for example:

• the choice of error function (section 2 .1 .2 );

• the adoption of an appropriate scaling or preconditioning scheme (section 3.1.5);

• the development of LM algorithms that are less sensitive to the presence of residuals at 

the solution and have 0(n) storage requirements (section 3.6);

• the refinement of the procedure for regulating the progressive expansion of the ERA 

range parameter X (section 5.2).

Furthermore, although hybrid second-order/ERA training algorithms have proved highly 

effective within the experimental framework adopted for this research, an assessment of 

their performance when applied to hard, real-world training tasks is a clear priority for the 

future. All of these topics are, or will be, the subject of further research by the author.
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