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A b stra c t

This thesis is concerned primarily with the definition and semantics of resource use 

in the A-calculus and the implicational fragment of intuitionistic propositional logic. A 

secondary aim is the subsequent derivation of a type system which can infer the expected 

reduction behaviour of functions upon their arguments.

The term resource use refers to the view of arguments as the resources a function 

requires to produce a result. In this thesis, resource use will be taken to  mean a property 

of the formal parameter of a function that describes the use tha t the function will make 

of arguments substituted for the parameter. Knowledge of the resource use of a function 

param eter can lead to many practical benefits in the efficient compilation of functional 

programs.

Recent research has investigated the derivation of resource use information using type 

inference. Types inferred for functions contain resource use information about the way that 

arguments will be evaluated when applied to  those functions. However, the justification of 

the correctness of these type systems relies on the given interpretation of type expressions 

as sets of terms possessing those types.

The main contribution of this thesis is the definition of resource use in both the A- 

calculus and in the implicational fragment of intuitionistic propositional logic tha t cor­

responds to the typed A-calculus under the Curry-Howard isomorphism. We are able to 

demonstrate the correspondence of resource use between (typed) A-terms and the proofs 

in intuitionsitic logic, though we find that this correspondence is not up to  equivalence.

Subsequently, we derive a type system for inferring resource use in A-terms and also 

discuss the implementation of the type system. We find tha t we are unable to apply 

previously-used methods of unification over types containing resource use information 

when the range of resource use information is expanded.
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C hapter 1

Introduction

Despite the many advances made in the implementation of functional programming lan­

guages in recent years, static program analysis continues to be an im portant tool in com­

piler development as researchers and developers seek to match the conceptual advantages 

of functional programming languages with adequate run-time performance.

Functional programming languages have been designed to enable programmers to  write 

clear, concise programs at a level of abstraction tha t does not involve them in architectural 

issues such as memory allocation, leaving these to be dealt with automatically by the 

compiler and the run-time system. To manage memory allocation automatically requires 

a garbage collection process to be run alongside the program, checking at intervals for 

redundant memory cells that can be collected and returned to the free pool of memory. 

This process, however, imposes its own cost on run-time performance, by consuming CPU 

cycles, and is not as efficient as the programmer, through the use of program statements, 

in managing the program’s memory.

The goal of static analysis therefore is to provide information about expected program 

behaviour which can be used to guide the compiler in optimising the translation of program 

code to minimise a program’s reliance on run-time support. Traditionally, the framework 

for developing static analyses has been Abstract Interpretation [2]. Recently, however, 

much interest has been shown in the potential of type inference as a means of performing
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static analysis as well as ensuring program correctness.

One such, proposal for a system of type inference, which is able to  deduce computational 

information about a program, has been made by Wright [93] and Baker-Finch [3] [4]. In 

these type systems, information is inferred that indicates the manner in which arguments 

to functions will be evaluated. In this thesis, we refer to such type systems as being 

resource-aware, and to the use that a function makes of its parameters, based on the 

expected evaluation of arguments substituted for those parameters, as resource use.

For example, in Wright’s type system, two possible functional types are a oi 

a ^  T. The first type indicates that any argument to a function of this type wiU not be 

evaluated during evaluation of the application, while the second indicates tha t it will be 

evaluated. Baker-Finch has described a similar system of type inference, derived from a 

system of logic in which hypotheses are tagged to indicate whether they are necessary or 

not to a deduction of a proposition.

Both Wright and Baker-Finch have supplied interpretations of types containing infor­

mation about reduction behaviour using the concept of needed redexes from Barendregt et 

al [7], and, on the basis of these interpretations, have proved the soundness and complete­

ness of their type inference systems with respect to the type interpretation. One criticism 

of their work, however, is tha t they have not shown the existence of a relationship be­

tween the reduction behaviour of A-terms and the information inferred about reduction 

behaviour by a resource-aware type system. Any relationship tha t may be presumed to 

exist does so only on the basis of the supplied interpretation of types.

In this thesis, we investigate the relationship between resource use in the A-calculus 

and in intuitionistic logic. Our aim is to demonstrate the existence of this relationship, 

and subsequently, to  use it as the basis for deriving a resource-aware type system in which 

it can be shown tha t the resource use inferred by the type system for a A-term corresponds 

to the reduction behaviour of the term in question.
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1.1 Goals and contributions o f the thesis

Our primary goal in this thesis is to provide a semantics of resource use in the A-calculus 

and in intuitionistic logic, and to demonstrate the relationship between these two seman­

tics.

Subsequently, as a secondary goal, we intend to define a resource-aware type inference 

system on the basis of our understanding of this relationship, and to give an algorithm 

tha t implements the inference system.

The main contributions of this thesis can be stated as follows:

• In Chapter 3, we define resource use in A-terms, following Wright and Baker-Finch 

in describing reduction behaviour in terms of needed and head-needed redexes (as 

defined by Barendregt et al in [7]), and give a semantics in the form of a system 

of inference rules. We define three resource use domains: the first is for strictness, 

absence, and non-strictness; the second extends the first with linearity; the third is 

Bierman’s lattice of type annotations. In order to define a linear resource use, we 

extend the definitions of neededness and head-neededness to measure the degree to 

which a redex may be needed or head-needed.

• In Chapter 4, we give analogous definitions of needed and head-needed redexes in 

terms of proofs in intuitionistic logic, and subsequently define a system of intuition­

istic logic which infers the resource use made of hypotheses in a proof. A variation 

on this system of intuitionistic logic is defined, in which only first-order resource 

use information is inferred. We show tha t neededness and head-neededness in in­

tuitionistic logic are equivalent to the same concepts in the typed A-calculus. For 

resource use, however, we are only able to show tha t a relationship holds, but not 

up to equivalence.

• We show in Chapter 5, that the type system derived from the system of intuitionistic 

logic with resource use, given in Chapter 4, does not have the Subject Reduction 

property, i.e., that the type of a term is not preserved over the reduction of the term. 

However, it is the case tha t the types of a term and its reduct are related by means
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of an ordering on types induced by an ordering over the resource use domains.

• In Chapter 6 , we show tha t the resource use domains and the operators defined over 

them do not form a boolean algebra, and therefore, tha t the method of boolean 

unification used by Wright in [93] is not suitable, except for very simple domains. 

We give a type inference algorithm for the type inference system in Chapter 5.

1.2 Static analyses o f functional program m ing languages

In this section, we briefly review static analysis for functional programs in order to  provide 

a context for this thesis.

As Sestoft mentions in [83], the expressive power and flexibility of functional languages 

require that they be implemented in a very general way. However, for any particular func­

tion, a more restrictive and consequently more efficient implementation may be possible. 

The aim of static analysis is to find out instances of a functional program where a more 

restrictive implementation is possible by analysis of program properties.

The properties a program useful to producing more efficient implementations include, 

for example, strictness, storage use, and sharing. Strictness, in functional programming 

languages, concerns the termination or non-termination of a program. Strictness is de­

fined as follows: a function /  is strict if / J .  =  ± , where _L is the undefined value. In lazy 

functional programming languages, knowledge that a function is strict in its argument 

can be used to  evaluate function arguments in advance of, or in parallel with, evaluation 

of the function appfication, consequently reducing the amount of space needed to con­

struct closures for unevaluated arguments and, on parallel machines, recovering implicit 

parallelism lost to lazy evaluation. Store use properties, such as single-threading of data 

structures, or discarding of heap cells in the local context of the need to allocate heap 

cells, can also result in useful optimisations, such as destructive updating of heap cells, 

without compromising referential transparency. The benefits of these optimisations are 

in minimising the costs of heap administration and avoiding garbage collection. Sharing 

is related to storage use, and describes the number of program references pointing to a
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sub-expression of the program. Implementations such as the Spineless, Tagless G-Machine 

[7 7 ] can make beneficial use of knowledge about sharing to avoid updating a graph node 

after evaluation of a term when it is known tha t the term is not shared.

Traditionally, the basis for static analysis of functional languages has been abstract 

interpretation [2] [53] [16], which provides a formal framework in which program analyses 

can be developed and proved correct. The underlying idea of abstract interpretation is to 

evaluate a program in a non-standard semantics, in which values denote properties, such 

as non-termination, abstracted from the standard semantics. Using abstract interpreta­

tion, both forward analyses, those that propagate values from the leaves of a program ’s 

syntax tree to the root, i.e., to derive a value for the program as a whole, and backwards 

analyses, those that propagate values from the root to the leaves of the syntax tree (see, 

for example, Hughes’s abstract interpretation of continuations in [48]), can be formulated. 

The correctness of the analysis is given by showing tha t the property denoted by the value 

of a program in the non-standard semantics is satisfied by the standard semantic interpre­

tation of the program. The computability of the analysis follows from defining properties 

in the non-standard semantics as approximations to values in the standard semantics, and 

constructing finite lattices of properties.

Abstract interpretation was originally developed for imperative languages using oper­

ational semantics by the Cousots [23] and applied to first-order functional languages using 

denotational semantics with domains rather than sets of values by Mycroft in [74]. Burn, 

Hankin, and Abramsky extended Mycroft’s work to higher-order functional languages in 

[14]. More recent work by Hunt has shown tha t abstract interpretation can be expressed 

using partial equivalence relations (PERs) in order to capture certain properties, such 

as head-strictness of lists, which escape M ycroft/Burn, Hankin, and Abramksy style ab­

stract interpretation based on domains. Prior to H unt’s work, projections were discovered 

as a means of formulating backwards static program analyses (for example, Hughes and 

Wadler [90]). Backwards analyses using projections as abstract values are also able to de­

fine properties elusive to abstract interpretation based on the M ycroft/Burn, Hankin, and 

Abramsky approach. Launchbury [59] showed tha t projections can be associated with 

equivalence relations. Using this idea. Hunt’s work on abstract interpretation, demon­

strated that the properties expressible by projections can captured using PERs. Work has
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also been carried out on the relationship between abstract interpretation-based forwards 

analyses and projection-based backwards analyses, in order to understand their compara­

tive power. See, for example, Hughes and Launchbury [51], Burn [15], and Neuberger and 

Mishra [75].

The best-known example of the use of abstract interpretation in static analysis of 

functional languages is strictness analysis, first proposed by Mycroft in [74], and further 

explored by, among others. Clack and Peyton-Jones [19], Burn, Hankin and Abramsky [14], 

Wray [92], and Wadler [8 8 ]. In strictness analysis the aim is to discover if a function is strict 

in its argument. For example, first-order forwards strictness analysis involves abstracting 

the value domain D  of the standard interpretation to a two-point domain 2  =  {0,1} where 

0 corresponds to {_L}, where _L is the undefined value, and and 1 corresponds to D. If the 

abstract interpretation of a function produces 0, then the function is strict. For backwards 

strictness analysis using projections, see Hughes [49] [50], Hughes and Wadler [90], Davis 

and Wadler [29], and Davis [28].

Program analyses tha t capture properties about store-use are also possible using ab­

stract interpretation: for example, Hudak’s reference count analysis [47], Bloss’s update 

analysis [11], the store-use analyses of Hughes [52], and Goldberg’s sharing analysis [38]. 

Typically, in these analyses, the standard and non-standard semantics are extended in 

some way to capture operational information, for example, the abstract stores in Hudak’s 

analysis, Bloss’s update paths semantics, or Hughes’ store semantics.

One of the disadvantages of abstract interpretation as a framework for static analysis is 

its complexity. Much work is needed, for example, to perform fix-pointing over domains. 

Even if these domains are finite, the cost can be prohibitive even for relatively small 

domains. Hunt has shown in [53] that finding fix-points, especially in the higher-order 

case, by exploring the lattice using an efficient method based on frontiers [18] can be 

intractable. Furthermore, Hunt suggests tha t higher-order functions often produce the 

worst-case scenario for this method. To solve this problem, he shows how lattices can be 

reduced in size to improve the search for fix-points using the frontiers method without 

having to change the abstract interpretation.
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An alternative framework for static analysis, which has been recently proposed, is 

non-standard type inference. The perceived advantage of type inference over abstract 

interpretation is that it is able to make use of fast implementations of Hindley-Milner 

style type inference algorithms.

In non-standard type inference, types model the properties under analysis and are 

inferred using a program logic based on tha t of type inference. The work by Kuo and 

Mishra in [58] seems to have been the first application of type inference to static analysis, 

and was followed by Jensen [54] [55] and Benton [9]. Burn describes the general framework 

of using non-standard type inference as a program logic in [12] [13]. In this approach, 

however, it has been found tha t to achieve the deductive power of abstract interpretation, 

it is necessary to include conjunctive types, also known as intersection types, into the type 

discipline. The problem of the undecidability of type inference for intersection types is 

avoided by analysing only those programs that are known to be type-correct. However, 

the introduction of conjunctive types, as Hankin and Le Métayer point out, removes the 

link with efficient implementations. Their work, in [40], [42] and [41], has concentrated on 

how efficient algorithms can be recovered using lazy evaluation of type expressions.

A different approach to using type inference as the basis for static analysis is described 

by Wright in [93] and Baker-Finch in [3] [4]. In Wright’s and Baker-Finch’s work, static 

analysis is incorporated into the conventional type inference phase of program compilation, 

rather than performed as a separate pass after type inference (Kuo and Mishra note in 

[58] tha t they assume programs to be type-correct). The work of Wright and Baker forms 

the foundation of the work presented in this thesis, and is described in more detail in 

Section 2 .6  of Chapter 2 .

1.3 O verview o f thesis

The plan of this thesis is as follows: in Chapter 2, we review background material on the 

A-calculus, type inference, and intuitionistic logic necessary to an understanding of the 

thesis; in Chapter 3, we define resource use in the A-calculus and provide its semantics; 

in Chapter 4, we define resource use in the implicational fragment of intuitionistic logic,
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and demonstrate the relationship between resource use in intuitionistic logic and resource 

use in typed A-terms; in Chapter 5, we derive a type system for A-terms, and discuss 

the representation of principal types and let-polymorphism; we discuss the use of boolean 

ring unification for unification over resource use expressions in Chapter 6 , and give an 

implementation of the type system of Chapter 5; finally, in Chapter 7, we summarise the 

contributions of the thesis, discuss directions for future work, and conclude.
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C hapter 2

A-Calculus, types and 

in tu ition istic logic

In this chapter, we review the basic concepts of A-calculus, type inference and intuitionistic 

logic necessary to an understanding of this thesis. We also discuss an equivalence between 

the typed A-calculus and intuitionistic logic known as the Curry-Howard isomorphism. An 

overview of the resource-aware type systems of Wright and Baker-Finch is also provided.

2.1 The A-calculus

In this section, we provide a brief introduction to the A-calculus. (For further reading see 

Barendregt’s comprehensive text on the A-calculus [6 ], Hindley and Seldin’s book [43], or 

the more recent book by Hankin [39].)

A A-term is a word formed from the alphabet consisting of variables x G Var, where 

Var is a count ably infinite set of variable symbols, the symbol brackets ( ) and the 

lambda sign A. The set of A-terms A is defined inductively as the least set satisfying

X G Var x  G A 

M  G A,x G Var => (Ax.Af) G A 

M ,N  e A { M N)  G A

20



This is also known as the Aif-calculus. (Church’s original definition, now known as the 

AT-calculus, contained the additional stipulation tha t, in forming an abstraction Xx.M,  

the variable x had to occur within M.)

Functions, or operators, are represented by A-abstractions, i.e., by terms of the form 

Xx.M.  In such a term, the variable x is said to be bound and M is the scope of the binding. 

An occurrence of a variable within a term that is not bound is said to be free. The set of 

free variables in a term M is denoted by FV{M) .

Applications of functions to arguments by the juxtaposition of two terms, e.g., [ X x . M ) N. 

By convention, function application associates to the left, so tha t, for example, the term 

M AP is equivalent to (MN)P. The value of a function, represented by Aar.M, at A  is calcu­

lated by substituting A for free occurrences of x throughout the body of the abstraction, 

represented by M[N/xJ. Substitution is defined by

(i) x[N/x] = A

(Ü) y[N!x] = y , y ^ x

( in)  (Xx.M)[N/x]  =  Xx.M

(iv) (Xy.M)[N/x]  =  Xy.(M[N/x]),  i f  y ̂  x,  and y ^  F V ( N )  or x ^  F V ( M )

(v) (Xy.M)[N/x] =  Xz.(M [z/y][N/x]), i f  y X and y 6  F V (N ) and X e FV (M )

and z ^  F V ( M )  U F V ( N )

(vi) ( MM' ) [ N / x] = ( M[ N/ x]) (M' [N/x])

In the process of substitution it may be necessary to rename bound variables to prevent 

free occurrences of a variable in a term A to be substituted in a term Xx.M  from being 

unintentionally bound. For example, contracting the following term

(Xx.(Xy.yx))y

win cause the argument y to  be bound by the inner A-abstraction Xy.yx when this was 

not intended, producing a function applies a value to itself, rather than a function which 

applies a value to a constant. To prevent this situation, bound variables are renamed 

during substitution of an argument where necessary. In the above example, substitution 

of the argument y with renaming of bound variables wiU result in

(Xz.((yx)[z/y]))[y/x]
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i.e., y is renamed to be a new variable z throughout the body of the abstraction before 

y is substituted for x. This act of renaming bound variables is called a-conversion or 

congruence. Congruent terms, i.e., those terms that are syntactically equivalent up to 

renaming of bound variables, have the same interpretation. In discussing A-terms we wiU 

use =  to denote syntactic equivalence. For example, Xx.x =  \y .y .  In the rest of this 

thesis, for those A-terms that occur in definitions, proofs, examples etc., we wiU adopt 

Barendregt's variable convention (see Chapter 1, §2.1, of [6]), i.e., tha t bound variables 

are chosen to  be different from the free variables.

In the A-calculus, a combinator is a closed term. In other words, it is a term with no 

free variables. Some common combinators have been given special names; these are /, K, 

S, and y, defined as follows.

I  =  Xx.x

K  =  Xx.Xy.x

S  = Xx.Xy.Xz.xz{yz)

Y  = Xx.{Xy.x{yy)){Xy.x{yy))

A A-term of the form [Xx.M)N  is called a /)-redex and the corresponding term  M[Njx]  

is its contractum. If a term P  contains a redex R, denoted by Æ G P , then P (d~contracts 

to P^  i.e., P  —>-/3 P  , where P̂  is P  with the redex R replaced by its contractum. (We wiU 

sometimes write P  P  to denote the fact that the redex R  is contracted.) A term 

P  P-reduces to P^, i.e.yP-»pP' iff P  is reached by zero or more contractions from P. The 

reduction relation is the reflexive, transitive closure of — A reduction sequence is a 

series of contractions. The notation TZ : M ^ ^ M '  states tha t % is a reduction sequence 

reducing M to  il/.

The reduction relation induces a notion of conversion of A-terms, expressed by the 

equivalence relation =^.

D efin ition  2 . 1  Given X-terms M  and N, then MP-converts to N  (and vice versa), written

M=f}N

iff N  is obtained from M  by a finite (possibly empty) series o f P~contractions, reversed 

P~contractions, and a-conversions.
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A term is in normal form  (nf ) if it contains no redexes. A term A is a normal form 

of a term  M  ii N  contains no redexes and A A-term tha t does not reduce to a

normal form is one for which ah reduction paths are infinitely long, i.e., do not terminate. 

For those terms with normal forms, the Church-Rosser Theorem for /^-reduction implies

tha t the normal form of a A-term is unique.

T h e o re m  2 . 1  (Church-Rosser theorem) Given a X-term M, i f M ^ p N  and M - ^ p N ' , then 

there exists a R such that N-**pR and N' -^pR,

A redex is maximal (or outermost) if it is not contained in any other redex, and is the 

leftmost maximal redex if it is the leftmost of the maximal redexes of a term. In the term

Xx.{{Xy. (Ky))(Ix){{SKK)x))

the redex {Xy.{Ky)){Ix)  is leftmost maximal.

If a term  M  is of the form

Az i . . .  Xxn. {Xy.N)Ni . . .  Nm

for n > 0 ,m  > 0, then (Ay.A)Ai is the head redex of M . The head redex is also the

leftmost redex (but not conversely). For example, given the terms

Xx.{( Ix){SKx))

Xx.{x{Kyx))

the redex (Ix) in the first term is a head redex, while, in the second term , although (Kyx) 

is the leftmost redex, it is not a head redex. A term is in head normal form (hnf) iff it 

does not contain a head redex. The following are examples of terms in head normal form:

x

x{Iy)

Xx.{x{K{Iy)x))

A reduction sequence in which only leftmost maximal redexes are contracted is a 

normal or leftmost reduction sequence, denoted as £ . As a notational convention, we will
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use JJ.£ M  to represent the reduction of a term M  by leftmost reduction. Head reduction 

describes a reduction sequence in which only head redexes are contracted, denoted by 7i. 

The notation M  denotes the reduction of a term M  by head reduction. Head reduction 

is closely linked with the solvability of a A-term. If M' is the closure of an arbitrary A-term 

M  (i.e., M ' is Aa^i.. .Xn.M where { x i , .. . ,Xn} =  FV{M)) ,  then M  is solvable if

3n, 3 N i . . .  Nn G A.Af N i . . .  Nn=isl

Wadsworth has shown (Theorem 8.3.14 in Barendregt [6 ]) tha t, in the AÆ-calculus, if 

a term  is solvable then it has a head-normal form. Finite head reduction sequences are 

therefore associated with solvable terms, while infinite head reduction sequences, i.e., those 

th a t do not produce head normal forms, are associated with unsolvable terms.

2.1.1 Labelled A-calculi

In Klop [56], a variant of the A-calculus is described in which labels are attached to A- 

terms in order to  be able to trace terms across reduction steps. The definition of the set 

of labelled A-terms A l  follows the definition of the set of untyped A-terms A.

D efin ition  2.2 Let L be a set of labels. Then Al  is defined inductively as the least set 

satisfying
X G Var, I e L => x̂  e Al

X G Var, M  e Al , 1 e L {Xx . MY G Al

M , N  e A l ,1 e L => ( MNY  g A l

E x am p le  2.1 The following is a term in A l (where X =  N^.

M  =  (((Az.(Ai/.%/^a;^)^)^z^)^a^)^

A term in A/, can be written as where M  is the term  obtained by erasing the 

labels, and y  is a mapping from the sub-terms of M to labels. Therefore, another way to 

view labelled A-terms is as ordinary (i.e., unlabeUed) A-terms with an associated mapping 

if. For our purposes, in Chapter 3, we take a mapping ip for a term  M  to  be one whose
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domain is the set of ail sub-terms of M  and whose range is the m ultise t of labels in Af, 

such tha t distinct occurrences of a label a in M  result in distinct occurrences of a in the 

range of (p.

Reduction in Klop’s labelled A-calculus is defined as in the unlabelled case, with pro­

vision for labels:

{ { Xx . My NY  M[N/x]

Note tha t the label of the application, and of the A-abstraction, are erased in the contrac­

tion of the redex.

An earlier version of a labelled A-calculus is described by Levy in [61]. In Levy’s 

labelled A-calculus, /^-reduction is defined as

{ { X x . My N y  j l M[ i .N / x ]

where the scope of j i .  is M[i.N/x]  and

i.x^ =

i . {Xx.My = {Xx.My^  

i . { MNy  = { MNÿ i

Substitution of a term A for x in M, denoted M[iV/x], is as for the unlabeUed A-calculus, 

except for the case where M  is a variable. Then substitution is defined by

x*[iV/x] =  L N  

y^[Nlx] = Ÿ

The im portant aspect of Levy’s labelled A-calculus from our point of view is that 

labels of redexes are not lost when they are contracted, as is the case in Klop’s labelled 

A-calculus. Instead they are concatenated to other labels as reduction proceeds. In fact, 

labels are only erased in the case of contraction where the bound variable does not appear 

among the free variables of the body of the abstraction, i.e.,

[ X x M ) N ,  X  i  F V { M)

In this instance, the labels attached to N  and its sub-terms are erased on contraction. 

Levy has also shown tha t his calculus has the Church-Rosser property.
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As with Klop’s version of a labelled A-calculus, labels in Levy’s calculus can be repre­

sented by a mapping y  from sub-terms to labels.

2.1.2 The typed A-calculus

The traditional mathematical view of a function is as a set of ordered pairs with a domain 

and range, which are themselves sets of values. We can apply the operator-process concept 

of the A-calculus to the study of the set-theoretic idea of functions from an algorithmic 

perspective by specifying domains and ranges of A-terms using types. The resulting calculus 

is known as the typed A-calculus (see Chapter 13 of Hindley and Seldin [43], or Appendix 

A of Barendregt [6 ]), and forms the basis for the study of many conventional programming 

languages, for example, in denotational semantics (see Stoy [85]).

The language of type expressions is built up from type constants, e.g., o, which repre­

sent fixed sets of values such as the set of integers or the set of boolean values, and the 

connective —

An intuitive interpretation of a type <7 —> r ,  where a  and r  denote arbitrary type 

expressions, is tha t it represents a set of functions mapping from a domain represented by 

(7 to a range which is a subset of the set represented by r .  Note tha t X x°.x°^°  is distinct 

from Xx^ .x^~*^ for any type <7 7  ̂ o, even though they both perform the same operation of 

identity.

The language of typed A-terms is similar to the untyped A-calculus, with variables, 

abstraction and application as the three syntactic forms. In the typed A-calculus, however, 

terms and bound variables of abstractions are annotated with types to denote domains 

and ranges. The language of typed A-terms A“" is defined to be the least set satisfying

x^ e T y p e d V x ^  Ç. A~^

M'^.x^eAr^ { X x ^ e  A~̂  

eA~"  => e a ^

(where a  and r denote arbitrary types, and TypedVaVa is an infinite set of variables af of 

type (7 for each cr).
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The typed A-calculus has substitution, reduction, convertibility, normal-form etc. as 

defined for the untyped A-calculus, with the minor difference of type annotations to terms. 

It has one im portant property, however, tha t the untyped A-calculus does not: Strong 

Normalisation.

T h e o re m  2 . 2  Strong Normalisation Theorem (Theorem 13.12 of Hindley and Seldin [43])

In the typed X-calculus, there are no infinite j3-reductions.

In other words, as a consequence of Strong Normalisation, every term  in the typed 

A-calculus has a normal form. Hence, not all terms in the untyped A-calculus have an 

analogous typed A-term. The untyped version of the identity function Xx.x has infinitely 

many typed analogues Xx^.x^~"^ for every type cr. However, terms such as Xx.xx  have 

no typed equivalent (unless we allow intersection types [21]). The Y  combinator used 

to implement recursion in the untyped A-calculus also has no equivalent typed A-term. 

Consequently, a fix-point constant fix must be introduced into the typed A-calculus if 

recursion is needed.

2.2 M odels o f the A-calculus

In this section, we review models of the A-calculus, which provide the semantics of A-terms.

The following definitions of A-models are standard and more detailed presentations of 

the topic may be found in Hindley and Seldin [43], Barendregt [6 ], and Meyer [71].

D efin ition  2.3 (Definition 11.3 o f [43].) A  A-model is a triple

= <  D , - , [  J >

where < D, - > is an applicative structure in which D is a non-empty set and • is a binary 

operator o f type D X  D ^  D, and [ ] zs a mapping from X-terms to D in the context of
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an environment p :: Var —> D, such that

(i) l x } p  = p{x)

(ii) l M N j p = l M j p 4 N } p

(iii) i X x . M j p  ' a = l M j p [ x  a],^ia e B

(iv) l M j p  = p{x) =  a{x), \ fx 6  FV(M )

(v) l X x . M j p = l X y . { M [ y / x ] ) j p ,  if y ^  FV(M )

(vi) \/d e D. l M}p[x  d\ = |iV ]p[x d], then {Xx . M]p  = [ Aa;.iV]/>

Note tha t clause (v) defines the semantic equivalence of congruent A-terms. Clause

(vi) defines the equivalence of two functions if they map the same arguments to the same 

results for all possible applications.

The simplest A-model to construct is a term models in which the set D contains con­

vertibility classes of A-terms.

D efin itio n  2.4 (Definition 11.16 o f [43].) Define convertibility classes for X-terms, such 

that

[M] = { N \ M  = (3  N }

Then a term-model of the X-calculus (either Xfi or Xfirj) is a model < £ ) ,• , [  ] > where

(i) D = { [M ]|M gA }

(ii) [M]-[iV] =  [MN]

(iii) [ M] p  =  [M[Ni /x i , . . . ,Nn/xn]]

where

{x i , .. . ,Xn} =  FV(M ) 

p(xi) = [iV,]

Note that, for (iii), we define [M[Ni fXi , . . . ,  Nn/Xn]] to be the act o f simultaneously sub­

stituting N i for x i , . . . N n  for Xn in M.

The class of models to which the term model above belongs are models of conversion, 

i.e., two A-terms M  and N  equate to the same semantic element if M = p N . (In the case 

of the term model, this follows directly from the fact tha t the elements of the semantic
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domain are simply the convertibility classes of terms.) An alternative model of reduction 

has been proposed by Plotkin [78], in which the underlying term  relation is the reduction 

relation ->*p. (Plotkin’s reduction model has been used as the basis for the term  and type 

semantics of the resource-aware type systems of Wright [93] and Baker-Finch [3].)

2.3 Intu ition istic logic

In this thesis, we are concerned with intuitionistic implicative propositional logic, where 

the only logical connective is implication^ denoted by — Figure 2.1 presents implicative 

propositional intuitionistic logic in Natural Deduction style using asymmetrical sequent s. 

In the rest of this thesis, we will refer to implicative propositional intuitionistic logic simply 

as intuitionistic logic or as IL. (For further reading on mathematical logic, see Mendelson 

[70], G allier [34], or Van Dalen [87].)

A sequent in the system of intuitionistic logic presented in Figure 2 .1  is of the form 

r  h (j (where P is a multiset of propositions and tr is a single proposition) and is interpreted 

as meaning th a t, given the conjunction of the propositions in P, we can infer cr. Hence, 

the propositions in P act as hypotheses or assumptions for the inference of cr.

IL is divided into three types of rules: the Axiom rule. Structural Rules and Logical 

Rules. The Axiom rule is the start point for any proof. The Structural rules define the 

manipulations tha t can be performed over the structure of sequent s. Since we are using 

sequents in which the right-hand side is restricted to a single proposition, the Structural 

rules are defined only over the multiset of propositions on the left-hand side of h. (Some 

presentations of IL include a structural rule Exchange which permutes the propositions 

on the left-hand side of the sequent. However, since we consider multisets of propositions, 

rather than sequences, we have omitted this rule.) The Logical rules are those used for 

manipulating derived propositions by introducing or eliminating propositional connectives, 

in this case —

Proofs (or deductions) of propositions in intuitionistic logic can be envisaged as trees 

of deductions, in which nodes of the tree are premises or conclusions, and applications of
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A xiom
 Axiom
(7 h (7

S tru c tu ra l Rules
r ,  <7, <7 h r  _ r  h r

Contraction ----------- Weakening
r, (T h r r, 0- h r

Logical Rules
r ,  (7 h r

Intro
r  h (7 ^  r

r h o - ^ r  A h a  

r , A h r
Elim

Figure 2.1: Intuitionistic implicative propositional logic

inference rules act as edges. For example, a proof of a h r  a  can be represented by the 

tree

Axiom
(7 h <7

Weakening
<7, r h a

Intro
(7 h r (7

-H- Intro  Axiom
h < 7 ^ r ^ ( 7  (7 h <7
------------------------------------------  ̂ Elim

(7 h r  (7

As a notational convenience, we will sometimes abbreviate proof trees as follows:

[f]

 Rule
r  h r
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or sometimes, just

( f |

r , .

where [P] stands for the proof tree above the conclusion of F h r  by rule Rule. We will 

use the letters P , Q, R  to range over proof trees in this fashion. Also, we will sometimes 

write P  : <7 to mean that a proposition a is the conclusion of a proof tree P.

A hypothesis occurring on the left of a sequent is in fact a multi-set of occurrences of 

the same hypothesis, called a parcel by Girard [37] (or assumption class by Troelstra in 

[8 6 ]). A parcel of a hypothesis contains different occurrences of the hypothesis introduced 

by the Axiom rule at different positions in the proof tree. Parcels are merged to form 

larger parcels by Contraction. Empty or dummy parcels are introduced by Weakening.

E xam ple  2 .2  In the following proof, the rule Intro discharges a parcel containing two 

occurrences of the hypothesis a.

---------------------------------- Axiom  Axiom
c r ^ ( 7 ^ r h ( 7 - ^ c r — a \~ a
-------------------------------------------------------- T Elim  Axiom

a  ^  G  ^  T . a  \ -  a  ^  T  crhcr
------------------------------------------------------------------  ̂ Elim

G  G  T , a , G  \ -  T
---------------------------Contraction

G  G  ^  T , G  \ -  T
—  ̂ Intro

G  G  T  \ -  G

Proof trees can be simphhed by ehminating redundant pairs of Introduction and Elim­

ination rules (see [37] or [8 6 ]). In implicative propositional intuitionistic logic, there is 

one rule governing proof normalisation for pairs of Intro and —> Elim rules, described 

below.

[Ql

[F ]  [Q 1
r , a h r  : :

° Ah<r  , r , A h r
-----------------------------------------   Elim

r , Ah r
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where Q' is obtained from Q by substitution of

[f]

A h a

for the hypothesis cr, in other words by replacing in Q the proof tree f  for every occurrence 

of

Axiom
<7 h  cr

where the cr introduced is included in the hypothesis parcel for a  in the sequent concluding 

Q. As a notational shorthand for substitution, we will write

(g : r)[P/a]

to denote the substitution, as described above, of the proof P  : cr for occurrences of the 

Axiom rule introducing the undischarged hypothesis cr in g  : r .

A proof is said to be in normal form if there are no redundant proof steps to be 

eliminated, i.e., there are no contractions of the above form tha t can be applied to the proof 

([8 6 ], Section 4.1.4). Strong normalisation is also true for intuitionistic logic, i.e., proofs 

possess unique normal forms. As a result, there are no infinite normalisation sequences of 

proofs.

2.4 Intu ition istic logic and the typed  A-calculus

There exists a correspondence between intuitionistic logic and the typed A-calculus, which 

shows tha t, in an essential way, the two systems are equivalent. This correspondence is 

known as the Curry-Howard isomorphism (see Howard [46], Girard [37], or Troelstra [8 6 ]).

Under the Curry-Howard isomorphism, types and terms in the typed A-calculus corre­

spond to propositions and proofs in intuitionistic logic. In particular, terms are encodings 

of the proofs of the propositions corresponding to the types of the terms, i.e., variables,
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abstractions and applications of terms correspond to the use of the Axiom, —> Intro and 

—> Elim rules in proofs.

E x am p le  2.3 The typed X-term . X y ' ^ c o r r e s p o n d s  to the proof

 Axiom
a a

----------- Weakening
(T, r h cr

Intro
a \- T ^  a

Intro
h cr —>• r cr

Not only do the two systems share the same structure, but the processes of normalisa­

tion on each side are equivalent. The proof normalisation rule which eliminates redundant 

proof steps involving the connective —>■ (see Section 2.3 above) corresponds to ^-reduction 

of redexes in the typed A-calculus.

The following translation Ÿ of IL proofs into A-terms is derived from the translation 

described by Troelstra [8 6 ] (Section 4.1.6) for a Natural Deduction presentation of IL.

1. To a proof consisting only of an Axiom rule, we assign a new typed variable z, i.e.,

e  ( Axiom') — x
W h cr ^

2. Contracted hypotheses result in renaming to a single variable: 

/  : \
$ r,<7,<7 h r

-------------- Contraction
V r,<7 h r /

— ^  I ■ , I \ . ^crI^cr  IVc] 
V r,(7 ,<7hr/

where x̂ j and y^ are the typed variables assigned to the two distinct hypotheses a, a 

in the premise to the Contraction rule.
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3. The translation of a deduction ending in an application of Weakening is simply the 

translation of the premise:

( : 
r h r  

Vr,(7 I- r
Weakening r h r

4. An abstraction is translated inductively:

Ÿ I r , < 7 h r  I = \ x ^ . ^
In tro ; V r , a h r ,

where the variable is the variable associated with the hypothesis a  in the trans­

lation of the premise F, cr h r  to the —> Intro rule.

5. Apphcations are also translated inductively:

$ r h c T ^ r  A h c r

V r ,Ahr
Elim

In the rest of this thesis, we will use =CHI to stand for equivalence between objects 

in intuitionistic logic and the typed A-calculus, for example, between a proof and a typed 

A-term.

2.5 The Curry typ e system

In the typed A-calculus (see Section 2.1.2 above), a consequence of the type annotations on 

A-terms is tha t there are distinct copies of what is essentially the same term for different 

domains and ranges. For example, for each type a and r  in the set of types, we have
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a different version of each of which is a special case (for the

specified domain and range) of the term in the untyped A-calculus Xf .Xx. fx .

An alternative approach is to take the analogue in the untyped A-calculus of these 

terms and to treat it as the general case of which the typed terms are specialisations. 

We can reconstruct any of the typed terms from the general untyped term  using a system 

of type inference to deduce a type for the term. A term in the untyped A-calculus may 

be assigned an infinite number of types, but we can treat these as being special cases 

of a small number of general type expressions called type schemes. Type schemes have 

variables in the type expressions for which type expressions can be substituted to create 

any of the valid types for the term.

D efin ition  2.5 Assume a number o f type constants and an infinite number o f type vari­

ables. Then type schemes are defined as follows:

• all type constants and type variables are type schemes,

• if  cr, r  are type schemes, so is a ^  r.

Throughout this thesis, we wiU denote type variables by and arbitrary type schemes

by a, r, (j>, ip.

The result of simultaneously substituting type schemes cT i,...,an  for type variables 

« 1 , . . . ,  0!„ in a type scheme r  is denoted by

t \ u \ ! 0L\, . . ., CXn!Ĉ r\\

Mappings such as [c ri/o i,..  are called substitutions (in this thesis, the letters S

and T  wiU range over substitutions).

The rules for inferring the types of A-terms were first developed by Curry in [24] [25]. 

Curry’s system for inferring type schemes of A-terms (also known as Curry’s system of 

F-deducibility) is presented in Figure 2.2. In this system, rules are of the form

-  - - - - -  Rule 
C
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---------------------Axiom
A ,  X  : (7 X  : a

A^x : a \- M  : r
Intro

A  h Xx.M : (7 T

Ai^-  M  : a T A 2 \~ N  : (7 

Ai U A2 I- M N  : T
Elim

Figure 2 .2 : Curry type inference system

where P i . . .  P„ are premises to  the rule and C  is the conclusion following from the premises 

by application of rule Rule. Premises and conclusions are statements or type judgements 

of the form

A[- M  : C7

where A is a base or set of mappings from variables to types used as a type environment 

from which the right-hand side of the sequent, M  : cr, can be inferred.

The type system is syntax-directed^ i.e., the type of a term  is derived from the types 

of its immediate sub-terms. The Axiom rule types occurrences of variables with their 

assumed type. The —>• Intro rule introduces types for functions, deriving them from the 

type assumed for the variable to be bound in the A-abstraction and the type derived for 

the term  forming the body of the abstraction. The — Elim rule eliminates function types 

to derive the result of the application of a function-typed term to an argument term  whose 

type matches tha t expected by the function.

E x am p le  2.4 The type r  a is derived for the X-term (Xx.Xy.x)z as follows:

Axiom
X  : a ^ y  : T  \ -  X  : (7

Intro
X : a \-  Xy.x : t ^  a

Intro -----------------Axiom
h Xx.Xy.x : a ^  T ^  a z : a \- z  : a
----------------------------- :------------------------------------- Elim

z : 0  (Xx.Xy.x)z : r  a
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As might be expected, if a type can be inferred for a A-term, then it has a normal form 

(since it is the untyped analogue of a typed A-term, which, by the Strong Normalisation 

theorem, wiU possess a normal form).

Curry’s system has the advantage of being decidable, but the disadvantage of not being 

complete with respect to a semantics in which convertible terms denote the same semantic 

element. If M has type a and M  N,  then we would expect M and N  to have the same 

type. To achieve this kind of type equivalence, we need to add an extra rule

r  h M : (7 M  =p N
------------------------------- Eq

T\-  N  :a

However, adding the rule Eq to Curry’s type system makes type inference an undecidable 

problem, since the set of typable terms is not closed under conversion.

In the following theorems of the soundness and completeness of the Curry type system, 

we assume the inclusion of the Eq rule and a term model based on convertibility classes 

of A-terms.

2 .5 .1  S o u n d n e s s  a n d  c o m p le te n e s s  o f  t h e  C u r r y  ty p e  s y s te m

The Curry type system has been shown to be sound and complete with respect to a variety 

of semantic interpretations of A-terms by Hindley in [44] [45]. Soundness indicates tha t the 

type system infers types for terms tha t are valid with respect to semantic interpretations 

of both terms and types, i.e., tha t if a term M is associated with type a  in the type system, 

then the semantic meaning of M is a member of the set of values which is the semantic 

meaning of cr. Completeness means tha t any relationship between terms and types tha t 

is possible in the semantics can be inferred by the type system.

The simple semantics of the A-calculus is given using the semantic interpretation func­

tion I :: Expr Env —> T) as follows:
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IXx.MjxT) = Xz . I M ] ^ t][x z] 

i M N j . r i  = l M} , r j ( l N] , r j )

The semantics of type expressions is defined using an environment u :: TypeV ar  — 2^ 

which maps type variables to subsets of 2^ (the powerset of D). Not every subset of D 

is denoted by a type, however: as noted by Milner [72], only those subsets which are 

downwards-closed and directed complete form the semantics of type expressions  ̂ (when 

D is viewed as a domain). Hence, for any type variable a, u{a)  G 2^.

Using the type variable environment f/, we define a semantic interpretation [ 

TypeExpr  TypeE nv 2^  of type expressions as follows

=  u { o i )

= { f e D \ y e . e e l ( 7 j t U ^ ( f e ) e l T l f U }

Note tha t the semantic meaning of a type t i  —>• T2 is given by application, i.e., tha t 

Ti —> T2 is the set of ail functions /  such tha t, for all values e in f r i j i / ,  the result of 

applying /  to e is in | t 2 ]i/.

Satisfaction in the Curry type system relates the assignment to a term M of a type a 

with the membership of in for a domain D and environments //, i/. We say

tha t a statem ent x : r  is satisfied by D and environments 77 and u iff

A base A  is satisfied iff all its members are satisfied. We write A  |=  M  : cr \/D ,r),u  

satisfying A, Af : cr is also satisfied, i.e., tha t G

The soundness of the Curry type system is expressed in Theorem 2.3.

T h e o re m  2.3 I f  A \- M  : <7 , then VD , 77, 1/  which satisfy the base A in the simple semantics 

A 1= M  : a , i.e., [M];^77 G

^Such subsets are called i d e a l s  by MacQueen, Plotkin and Sethi in [66].
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Theorem 2.4 states that the Curry type system (with Eq typing rule) is complete with 

respect to  the semantics of A-terms and types. See [44] for the proof of this theorem.

T h e o re m  2.4 If, in the simple semantics, A \=  M  : a, then A \-  M  \a .

2.6 Resource-aware type inference system s

In this section, we give a brief overview of the type systems of Wright and Baker-Finch, 

which infer information about the reduction behaviour of functions as part of their types. 

Throughout this thesis, we will refer to  these type systems as resource-aware type systems, 

since it is our belief tha t there exists a connection between the system of intuitionistic logic 

underlying the type systems of Wright and Baker-Finch and those systems of logic called 

resource-conscious, such as linear logic [36] and relevant logic [31] (in fact, as mentioned 

below. Baker-Finch has developed his type system from a variant of relevant logic).

2 .6 . 1  W r ig h t ’s r e d u c t io n  ty p e s

In his thesis [93], Wright introduced a new type discipline for the A-calculus which he 

termed reduction types. Reduction types capture information, in the form of types, about 

the expected evaluation of arguments when they are supplied to functions. As part of this 

type discipline, Wright introduced two function arrows and =>, interpreted as follows: 

a function of type cr r  is a function from arguments of type a  to  results of type r  such 

th a t, during reduction of the application of the function to an argument, the arguments 

are not evaluated, while if a function has type <j =>• r ,  then the arguments are evaluated, 

i.e., the function is strict.

In Figure 2.3, we reproduce Wright’s rules for deducing reduction types using Curry- 

style type inference. In this type system, a variable neededness function V  is attached to 

the deduction symbol h, which maps term variables to the function arrows to be used to 

create a function type when those variables are discharged to form A-abstractions. For 

example, given the term x, the variable neededness function is V[x :==>]. Consequently,
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---------------------------- Var
X , o X . G

i4 , X  . G  i k f  . T
-------------------------------------------- A ds

A i~ v [ x : =  ] ^x .M  : G b r

A\~Vi M  : G b r  A \~V2 N  : g
----------------------------------------- App

A \-v M N  : r
(where V  =  Xx.Vi{x)  V (6 A ^2(3:)))

Figure 2.3: Wright’s Curry-style rules for deducing reduction types

the type of Xx.x is cr cr, indicating tha t any argument to this function will be definitely 

evaluated in head reduction to head normal form.

A more complicated example is the term Xf.Xg.Xx. f{gx),  which is assigned type

(g r )  => (p  g ) p { ^ i  A ^ j ) r

The type of this term involves the use of variable arrows — and — and the boolean 

operator A . Variable arrows are instantiated over the set of ground arrows, {=>,

The set of variable and ground arrows together with the boolean operators A and V  are 

shown to be a boolean algebra. Consequently, as variable arrows are instantiated, the 

simplification rules of boolean algebra can be used to simplify the arrow expressions in 

the type.

Wright has also given an extension to this system for let-polymorphism, which involves 

quantification over variable arrows. However, neither the Curry-style nor let-polymorphic 

type systems are able to type all typable A-terms, particularly in those cases where higher- 

order variables are passed arguments of different intensionality. A further extension to 

intersection types is made in order to type all typable A-terms. (This point is further 

discussed in Section 5.1.1 of Chapter 5.)
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2 .6 . 2  B a k e r - F in c h ’s s t r ic tn e s s  ty p e s

In [3] and [4], Baker-Pinch describes a type system similar to W right’s, but developed using 

relevant implication from relevance logic [31]. It is well-known tha t relevance logic proofs 

correspond to terms in the A/-calculus, in which aU terms are strict in their arguments, and 

hence relevant implication corresponds to the function type constructor of strict functions. 

Baker-Finch extends relevance logic by incorporating for constant implication (i.e., an 

implication tha t does not depend on its argument) and D for ordinary intuitionistic im­

plication (which essentially denotes non-strictness), and by tagging hypotheses according 

to their method of introduction (e.g., by Axiom or by Weakening rules) so tha t the ap­

propriate implication introduction rule can be applied when a hypothesis is discharged. A 

type system is derived from this system of logic by the usual approach of assigning terms 

to logical rules tha t represent their encoding under the Curry-Howard isomorphism. As 

in Baker-Finch’s extension to relevance logic, tags are attached to hypotheses in order to 

determine which form of function arrow should be used when a variable is discharged. In 

Baker-Finch’s system, the tag denotes strictness in a hypothesis, the empty string e 

denotes absence, and ? denotes non-strictness.

Baker-Finch’s type system is reproduced in Figure 2.4. (In [3], several type systems 

are described, but since they represent a series of incremental extensions, and we wish to 

illustrate the main idea behind Baker-Finch’s work, we choose to describe only R-^ here.) 

In the system the need to extend the type system to incorporate intersection types 

in order to type all Curry-typable A-terms is avoided by the introduction of conventional 

intuitionistic implication and by adding a side-condition to the App rules tha t allows types 

with more specific reduction information than is expected to be applied as arguments to 

implications. This side-condition is given in terms of an ordering < over types, defined as 

follows:
a ^  a

a ^  T < a ^  t \  \i g < a  and r  < r  

(7 T < (T T% li a < a  and t < r

a D T < G D t \  ÏÎ g < g and t < t

G ^  T < G Z) T , IÎ G < G and T < r '

G < G D t \  li g ' < g  and r  < r
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------------------------Var
Airr^X^a  h X : <7

A, \- M  : t  A . x  : (t  \- M  : t
Abs   ^  Abs

A  h Xx.M : a ^  T A\~ Xx.M : a - ^ r

A, x l a  \- M  : r
 D Abs
A  h Xx.M : a D  T

A\ -  M  : a T A \- N  : a 

A U A' I- M N  : r

A \ -  M  : a - ^ T  A'  \- N  : a

<7 <3 <J

A h M N  : r

A\r  M  : (7 D r  A* ^  N  : a 

A  U A-„  ̂ h M A  : r

App ^

D App (T < (7

Figure 2.4: Baker-Finch’s type assignment system 

As  a result, typings such as

f- Xf .Xx . f x  : {a D r)  ^  a D T \ - M : a ^ r a - ^ T < a D T
-----------------------------     D App

h (Xf . Xx . f x )M : a D T

are possible. In this case, an argument with strict function type <j —»• r  is supplied as 

argument to a function expecting an non-strict functional argument of type a  D  t .

Note tha t, in the Var rule, Airr denotes a base of typing hypotheses in which all tags 

are the empty string e. Also, in rule D App, Aint denotes a base in which the tags of 

typing hypotheses are ?.
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C hapter 3

U sage and neededness in the  

A-calculus

In this chapter, we define the use made of a formal parameter by a function. In other 

words, for functional A-terms of the form Ax.M, we provide a semantics of the use made 

of X in M. Broadly speaking, the semantics of the use made of x in M  is given by whether 

or not the value of a redex R  substituted for x in M is required during evaluation, for all 

possible values of R. The meaning of required in this context is derived from neededness 

and head-neededness as defined by Barendregt, Kennaway, Klop and Sleep [7]. Our ap­

proach is based on work by Wright [93] and Baker-Finch [3] [4] who use neededness to 

provide the semantics of resource-aware type expressions (see Section 2.6 of Chapter 2  for 

an introduction to the resource-aware type systems of Wright and Baker-Finch). However, 

our aim in this chapter will be to use neededness (and head-neededness) to define prop­

erties about functions in their parameters tha t describe how those parameters are used, 

rather than to use the neededness of an argument in an application to interpret reduction 

information annotating a type expression.

The rest of this chapter is as follows: in Section 3.1, we review the work of Barendregt 

et al on neededness and head-neededness of redexes; in Section 3.2, we show how a simple 

resource use domain describing first-order strictness and absence can be defined using 

head-neededness; Section 3.3 extends the work of Barendregt et al to  consider how much a

43



redex may be needed or head-needed; based on this extended view of neededness and head- 

neededness, Section 3.4 shows how more complex resource use domains can be defined; 

related work is discussed in Section 3.6; Section 3.7 concludes.

A preliminary version of the work in this chapter (and Chapter 4) has appeared in [2 2 ]. 

However, as some differences in the treatm ent of resource use have been made since the 

publication of tha t work, it should be considered as being superseded by the work given 

in this chapter.

3.1 N eededness in the A-calculus

Neededness describes the property possessed by some redexes in A-terms tha t sooner or 

later they are contracted to normal form whatever reduction sequence is followed. For 

example, any reduction sequence taking the term

(Xx.x)R

(where is a redex) to normal form will contract R. In addition, we can define a sharper 

notion of neededness called head-neededness which is based on reduction to head-normal 

form. Redexes known to be needed or head-needed can be reduced in parallel, thus reduc­

ing the length of a reduction sequence without affecting its termination characteristics. 

(A similar benefit is conferred by strictness analysis, which recovers the parallelism of a 

functional program lost to the sequentialism of lazy evaluation.)

Neededness and head-neededness were first defined by Barendregt, Klop, Kennaway 

and Sleep in [7] for the untyped A-calculus, together with approximation algorithms to 

find subsets of the set of needed redexes. (Approximation is necessary since the problem 

of finding all needed redexes can be reduced to the Halting Problem.) In this section, we 

review the definitions of neededness etc. from tha t work necessary to define the simple 

resource use domain in Section 3.2.

Stating tha t a redex is needed if it is contracted on all reduction paths, however, 

obscures the fact that the redex actually contracted may be a copy of the original redex.
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For example, given the term

{Xx.{Xy.Xz.z)xx)R 

where R  is some redex, one possible reduction sequence is

{Xx.(Xy.Xz.z)xx)R 

- ^ 0  {Xy.Xz.z)RR 

{Xz.z)R

- ^ 0  R 

^0 • • '

in which it is the second copy of R, created by substitution in the first step of the reduction, 

which is contracted. To enable us to identify copies of a redex created during reduction 

with their original, we require the notion of descendant. (The following definition of 

descendant uses Klop’s labelled A-calculus, for a discussion of which see Section 2.1.1.)

D efin itio n  3.1 Let M  be an unlabelled X-term and let <p be an initial mapping o f sub­

terms o f M  to labels in a label set L. Furthermore, let M  , and (p be the mapping of 

sub-terms o f M" to L. Then a sub-term ISf in M* is a descendant of a sub-term N  in M  if

In [56] and [6 ], a descendant of a redex is also called a residual. Note tha t residuals 

of redexes are themselves redexes. The following examples of descendants are taken from 

Barendregt [6 ] (Chapter 11, Section 2), adapted to use Klop’s labelled A-calculus.

E x am p le  3.1 Let R be the redex SK K  in the following one-step reductions:

(i) {{Xx .x ' ^x^ fM^^R^  (M^^M^fR^

(ii) {Xx.x^x'^fR^  -> R^R^

(iii) {Xx.y^yR? y^

In  (i), R has one descendant or residual, while in (ii), it has two. In (iii), there are no 

descendants o f R.

Using descendants, we can define neededness and head-neededness as follows:
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D efin ition  3.2 (Definition 3.1 of Barendregt et al [7]) I f  R is a redex in M, then

• R is needed in M  if every reduction sequence o f M  to normal form  contracts a

descendant o f R.

• R is head-needed in M  if every reduction sequence of M  to head normal form  con­

tracts a descendant o f R.

Note tha t the leftmost reduction path to normal form contracts all needed redexes and 

only needed redexes (Theorem 3.6 of Barendregt et al [7]). This arises as a consequence 

of the fact th a t the position of leftmost redexes means tha t their contracted forms cannot 

be substituted into A-abstractions and possibly erased. Similarly, the head reduction path 

to head normal form contracts all and only head needed redexes.

E x am p le  3.2 (Example 3.2 of Barendregt et al [7]) In the term

Xx.Xy.{Ix{Ky{Iy)))

the redex I x  is needed and head-needed, the redex [Ky{Iy))  is needed but not head-needed, 

and the redex {ly)  is neither needed nor head-needed.

If a redex R  is not needed in a term M, then, using the definition of neededness, there

exists a reduction sequence S  in which R  is not contracted, i.e., R  is erased m  S  o i R  is

erasable in S  (Definition 3.3 of Barendregt et al [7]). In Example 3.2, the redex (ly) is

erasable.

A corollary of the definitions of neededness and head-neededness is tha t every head- 

needed redex is also needed (but not vice versa), since every reduction to normal form 

contains a reduction to head-normal form [7] .̂

Recursion in the A-calculus is usually implemented using the Y  combinator (see Sec­

tion 2 .1  of Chapter 2  for a definition of Y) or by a fix-point constant fix. The presence of

^Every head redex is a leftmost redex, but not conversely (See Chapter 8, §4 of Barendregt [6]).

46



the Y  combinator in a A-term, however, may result in an infinite series of reductions. For 

example, /5-reduction of the term

Y {Xf .Xx. fx)

is non-terminating. One possible reduction for this term is

Y{Xf . Xx . f x )

{Xf .Xx. fx){Y{Xf .Xx. fx) )

Xx. {Y{Xf .Xx. fx))x  

-^p Xx. {{Xf .Xx. fx){Y{Xf .Xx. fx)))x  

-^p Xx.{Xx.{Y{Xf .Xx. fx))x)x

Where reduction does not terminate in a normal form (head normal form), all redexes

are considered to  be needed (head-needed) [7]. For example, in the A-term M  defined as

{Xx.xx){Xx.xx){KzR)

where R  is any redex, R is erasable. However, R  is also said to be head-needed since M  

does not possess a head normal form. Hence, for example, any redex R  in the term

{Y{Xf .Xx. f x) )R

win be head-needed.

The following proposition shows tha t non-neededness persists over reduction.

T h e o re m  3.1 (Theorem 3.5 of Barendregt et al [7].) Let M  ^ p  M". Let S  be a redex in 

M  and Si be a descendant o f S  in il /. Then

(i) S  is not needed =#> ^  is not needed

(ii) S  is not head-needed => ^  is not head-needed

Equivalently,

(i) Si is needed S  is needed

(ii) ^  is head-needed S  is head-needed
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Consequently, the reduction relation -^ (3  preserves neededness and head-neededness, 

as described in the following proposition.

P ro p o s itio n  3.1 (Proposition 3.7 of Barendregt et al [7]) Assume M  has a normal form  

(head normal form) and that R is a needed (head needed) redex o f M. I f  M -»pN  is a 

reduction sequence that does not reduce any descendant of R then R has a needed (head- 

needed) descendant in N.

Following from Theorem 3.1 and Proposition 3.1, Lemma 3.1 shows tha t neededness 

is preserved under conversion.

L em m a 3.1 (Lemma 3.11 of Barendregt et al [7]) I f  F  =p , then R needed (head-needed) 

in FR  => R needed (head-needed) in R.

Therefore, if a redex R is needed (head-needed) in XR, then

Vy G [X] => R is  needed (head needed) i n Y R

where [X] denotes the convertibility class of X.  In other words, if R  is needed (head needed) 

in XR,  then R is needed (head needed) when supplied to all the terms in the convertibility 

class of X.

3.2 A sim ple definition o f resource use

In this section, we show how a domain of simple resource use values which represent 

first-order strictness and absence can be defined on the basis of neededness and head- 

neededness. In other words, we can describe a term  Xx.M  as being first-order strict, 

absent, or non-strict in its parameter x.  In addition, we present a set of inference rules for 

deriving the resource use of variables in A-terms and show these to be sound with respect 

to  our definition of resource use.

As Barendregt et al [7] observe
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R  is head needed in C[i?] <=> C[ ] is strict in its argument [ ].

In other words, head neededness corresponds to first-order strictness^. This observation 

provides the basis for our definition of a strict resource use. Intuitively, if a redex R  is head 

needed in {Xx.M)R,  then Xx.M  is strict in its bound variable x Furthermore, if there exists 

an R  such tha t R  is head-needed in {Xx.M)Rj  it is easy to show tha t for all redexes R \  r!  

is head-needed in [Xx . M) r! . Hence, we define a function as being strict in its param eter 

if aU redexes substituted for the parameter are head-needed. Note tha t if {Xx.M)R  is 

non-terminating for aU possible values of then the function is considered to be strict 

in its param eter x. The reason being that all redexes are head-needed on non-terminating 

reduction sequences (as mentioned in Section 3.1 above).

To define a resource use of absence, head neededness is insufficient. Absence attached 

to a param eter z of a term Xx.M  indicates not only that a value substituted for x will 

not be evaluated as a first-order value, but that it wiU not be evaluated in the context of 

values substituted for other parameters. For example, given the term

Xx.Xy.yx

any value R  substituted for x will not be head needed in the evaluation of (Xx.Xy.yx)R to 

head normal form. However, it may become head-needed as a result of values substituted 

for y. For example, R is head needed in

(Xx.Xy.yx)R{Xz.z)

but not in

{Xx.Xy.yx)R(Kz)

To be certain tha t a function parameter wiU not be used (is absent), we must be sure that 

values substituted for the parameter will not be head-needed in the context of arguments 

substituted for further parameters (e.g., (Kz) for y in the example above). Note th a t not 

even neededness is sufficient to define absence in this (higher-order) case.

^The restriction to first-order strictness is due to the fact that no term occurs to the left of a head redex, 

other than A-bindings, and consequently, the head redex does not appear as an argument to sub-terms to 

its left.
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However, we can define a simpler first-order version of absence. A param eter z o f a  

term  Xx.M  is said to be (first-order) absent if a redex i2, substituted for x in M, is not 

needed^ for all possible values of R. (Note tha t, similar to strictness discussed above, if 

there exists an R  such that R  is not needed in {Xx.M)R,  then for all R'  is not needed 

in {Xx . M) R ' .) For example, z is absent in

Xx.Xy.Xz.y[Kzx)

since any redex R  substituted for z will not be needed (or head needed) and hence will 

not be required by the values of arguments substituted for y or z.

We also define a third resource use of non-strictness to represent the use of variables 

such as z in the example above. For such variables, we cannot determine in general 

whether they will be used strictly or will be absent or neither. Typically, this is because 

they occur in the position of arguments to other, higher-order variables (such as y in the 

above example).

Definition 3.3 formally defines simple resource use (initially for variables tha t occur 

free in A-terms). Note that (•JJ-Zf) denote the leftmost (head) evaluation to normal (head 

normal) form.

D efin ition  3.3 For x € Var,  M  £ A, say that z : u E M  (x has use u in M) where u is 

defined as follows:

(i) u = S 'iR .R  is head needed in ilrfjM[R/x],

(ii) u = A => 'iR .R  is not needed in l^j_,M[R/x],

(in) u = N  => 'iR .R  is or is not needed in ]̂ l M [R/x].

It is easy to show tha t the resource use of a free variable z in a A-term M  is preserved

by /?-conversion.

L em m a 3.2 Let x : u Ç: M  according to Definition 3.3. Let M  =p M ' . Then x : u £ M ' .

P ro o f  Follows from Lemma 3.1 on the preservation of neededness and head-neededness 

under conversion.
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Figure 3.1: Resource use domain S

□

We also define a relation between a function applied to  an argument and a resource

use value tha t says that the evaluation of the argument is congruent with the definition

of the resource use value.

D efin ition  3.4 Let M  be a X-term. Then M  = u implies that, given any redex R
(i) head needed in

(ii) u = A  ^  R is not needed in )̂ l MR,

(in) u = N  => R is or is not needed in )̂ l MR.

We also define a refiexive, transitive, and anti-symmetric relation or partial order Cg 

over the simple resource values S, A  and N  as follows:

S Çg N 

A  Çg N  

u Cg w G {S, A ,N }

For example, any Xx.M with use S in z also has use N  in z, since any redex which is 

definitely head-needed is also needed, and hence possibly needed. Figure 3.1 shows the 

domain^ S derived from the ordering of the simple resource use values by Cg.

domain is a pair (D, Ç) where D is  a set with distinguished element J_c andC is a partial order 

over D  such that Vd €  D.J-u Ç d. In our presentation of S we have omitted J_g since it plays no role in 

the semantics of resource use (similarly for the other resource use domains presented in this chapter).
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------------- Vari  Vai2
a: t> z : S y t> x : A

M  \> X : u M  t> X : u
Absi  Abs2

X y . M  >  X : u X x . M  l> a; : A

M N ^ r c P  f  -L M  t> a; : wi N  t> x : U2 M '  [> y  : U3

M N  t> X  : u i  -\- { u 2  X  U s )

M N ^-hP  ^  ±  ..  .Mn M  t> x : ui N  t> x : U2

Appi

ApP2
M N  t> X : ui + {u2 U A)

, ,  .T . App3 where u is N  if a; G F V ( M N )  and A otherwise
M N  >  X : u  ̂ /

Figure 3.2: > 3 : inference rules for simple resource use

In Figure 3.2, we present a system t>g of inference rules for the derivation of resource 

use of free variables in A-terms. In > g , a  statement of the form M  > a? : u is a deduction 

of resource use u made of a free variable z in a term M.  An inference rule is of the form

S \ . , .  Sfi 
------------ Rule

where premises Si .. ,Sn are statements about the deduction of resource use of variables 

in sub-terms, leading to  the inference of resource use of a variable in a term  composed of 

those sub-terms in S.

Note tha t in the case of the Appn rules (1 < n < 3), head reduction of the application 

appears as a premise to the rules. The question of whether the application has a head 

normal form is im portant, since the unsolvability of a term  implies non-strictness (following 

from the fact tha t all redexes in an unsolvable term are considered to  be needed but not 

head-needed). If the head reduction path is finite, i.e., the application has a head normal 

form, then either of Appi or App2 may be applied, depending on the head normal form of 

the functional sub-term of the application. If the head-normal form is an abstraction, then
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X S A N + S A N

S S A N S s s S

A A A A A s A N

N N A N N s N N

Table 3.1: Operators x and +  over domain S

the resource use of the bound variable in the body of the abstraction participates in the 

resource use of the variable free over the application. Otherwise, if the functional term  is 

of the form y M \ . . .  Mn (n > 0), then, since we lack information about what values y might 

take on, we assume either non-strictness or absence for the resource use of occurrences of 

the variable in the argument sub-term of the application. If, however, the head reduction 

path is infinite, and the variable in question is in the set of free variables of the application, 

we must assume tha t any redex substituted for the variable will be needed. Therefore, the 

resulting resource use of the variable is N . However, if the variable is not in the set of free 

variables, then we can assume absence for its resource use.

The Appi and Appg rules in Figure 3.2 make use of binary operators x and 4- to 

derive resource use values for occurrences of a free variable occurring in the functional and 

argument sub-components of an application term. The operators X and - f  are defined in 

Table 3.1 below. Note tha t both x and -|- are commutative and associative, and tha t S is 

the identity for x and A  x u =  A , while A  is the identity for -f and S -f u = S.

E x am p le  3.3 Given a term [ \x. [[\y.y)x))z ,  the deduction o f the resource use made of 

the free variable z is represented as follows (rule labels have been omitted for the purpose 

of presentation).

Let [P] represent
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y t> z : A

^ ± Xy.y^n>^y.y Xy.y > z : A  x l> z \ A  y t> y 

[Xy.y)x t> 2T : A + (S X A)

Xx.[[Xy.y)x) t> z : A + (S x A)

and let [Q] represent

y  t> X : A

{Xy.y)x]}^nx 7  ̂ -L Xy.y\^nXy.y Xy.y > x : A  z > z : S y t> y : S 

{Xy.y)x > a; : A + (S X S)

in the proof

{Xx.{Xy.y)x)z]^n^ ^  _L Xx.{Xy.y)x^nXx.{Xy.y)x [P] [Q] z t> z : S 

(Xx.((Xy.y)x))z  > z : (A + (S x A)) + ((A + (S x S)) x S)

The inferred resource use o f z simplifies to S according to the definitions o f +  and X in 

Table 3.1 below.

E x am p le  3.4 Let [P] represent

Var2
X t> z  : A

Vai2 ------------- Vari
{Xx.x)yil.'Hy ^  ±  Xx.x]}.'}iXx.x Xx.x t> z : A  y t> z : A  a; > z : S
------------------------------------------------------------------------------------------------------------------- Appi

{Xx.x)y t> z : A  + {S X  A )  = A

in the inference o f the resource use of z in the X-term  ((Aa;.a;)y);

54



------------ Vari
{ [ \ x . x ) y ) z ^nyz  ^  -L [\x.x)y]!^uy [P] z > z : S
------------------------------------------------------------------------ Appo

{{Xx.x)y)z  > X : A +  (S U A)

Hence z has resource use A  +  (S U A) =  N  in {{Xx.x)y)z.

The following lemmas are concerned with the derivation of the resource use of a free 

variable in a compound term, given its resource use in the sub-expressions of the term.

L em m a 3.3 Let x £ Var  and x : u £ N .  Given Xy.M such that x ^  FV(M ). I f  y : A  G M , 

then z : A  G ( X y . M ) N .

P ro o f  By definition of use A for y in M, A  is erased in evaluating {Xy.M)N  to  normal 

form. Therefore, any redex R  substituted for x in {Xy.M)N  will also be erased, and so 

X  : A  e  {Xy . M)N  by Definition 3.3.

L em m a 3.4 Let x E Var  and x : A  E N .  Then for any Xy.M such that x ^  FV { M) ,  

X : A  E {Xy.M)N.

P ro o f  Let N '  =  N[R/x]  for any redex R. Then R  is erased in the evaluation of any 

descendant of N" contracted during the evaluation of (Xy . M) N' . Hence z : A  G {Xy.M)N  

by Definition 3.3.

□

L em m a 3.5 Let x E Var.  Let N  be a X-term such that x : u E N , and let Xy.M be a 

X-term such that x 0 FV { M) .  I f  y : N  E M,  then u = A  implies x : A  E {Xy.M)N,  

and u = S or u = N  implies z : N  G {Xy . M) N. Otherwise, if  Xy.M has use S in y, then 

X : u E { Xy . M) N.
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P ro o f  For the first case, where y has use N: if u =  A , then by Lemma 3.4, x : A  £ 

{Xy.M )N ; if u =  S or w =  N , then by Definition 3.3, it is not known if N is  needed (head 

needed) in the evaluation of {Xy.M )N  to normal (head normal) form. Hence it is not 

known if any redex R  substituted for x in iV will be needed (head-needed), and therefore 

z : N  G {X y.M )N . If y has use S, then iVwill be head needed in the evaluation to head 

normal form, and therefore the use of x in the application reduces to the use of x in N.

□

The following lemma demonstrates the soundness of the definition of x .

L em m a 3.6 Assume M N , such that M]}^T-(Xy.M', and y : ui £ M . Let x £ V ar, such 

that X ^  F V {M ), and assume x : U2 £ N . Then x : u\ x  U2 £ M N .

P ro o f  By case analysis over the possible values of u\, and U2 '.

%i =  s ui X  U 2  = U 2 i  by Lemma 3.5

u \  = A => m  X  U2 = u i, by Lemma 3.3

ui = N m  X  U2 = u i ,  if U 2  =  S, by Lemma 3.5

m  X  U 2  = U 2 i  if U 2  = A , by Lemma 3.4

Ui X  U2 = u i, if U 2  = N , by Lemma 3.3

An examination of the definition of x in Table 3.1 shows that x satisfies these conditions.

□

In rule App2 of t>g, when the functional sub-term of an application turns out not 

to be a A-abstraction, we assume either non-strictness or absence for the resource use of 

those occurrences of a variable in the argument sub-term, reasoning that we know nothing 

about the way the argument to a higher-order variable (e.g., the variable y in the second 

premise to the rule) wiU be evaluated. The following lemma shows the correctness of the 

deduction of this resource use in the conclusion to App2 as being u U A  (where u is the 

resource use of the variable in the argument).

56



L em m a 3.7 Assume x  E Var. Given M  such that x ^  F V {M ), and . .  .M n.

For all possible uses u of x in N, x has use w U A in { y M \.. .M n )N .

P ro o f  Clearly, N  is be needed but not head-needed in [ y M \.. .M n)N  (since it will 

not be substituted into a A-abstraction, it cannot be copied or erased). Therefore, if 

X : S £ N , any redex R  substituted for z in A  will be head-needed in N  and therefore 

needed in ( y M i .. .M n )N y i.e., z : N  E { y M \.. .M n )N . A similar argument follows to 

show that if ar : N  E A , then z : N  E { y M \ . .  .M n)N , and also tha t if a: : A  E A , then 

X : A  E { y M i . . .  M n )N . An examination of u U A  for all values u E S shows tha t it meets 

these requirements.

□

So far we have dealt with the derivation of the resource use of a free variable present 

in the argument sub-term of an application, but not present in the functional sub-term. 

To derive the resource use of a free variable present in both component terms of an 

application requires an operator to compose the resource use values of separate occurrences 

of a variable in distinct sub-terms. For example, x : S E Ay.x, while x : A E {K zx). 

Since y : A E x, then by Lemma 3.3, the occurrence of x in {K zx)  has resource use 

A in { \y .x ){K zx ) .  Therefore, the resource use of x in { \y .x ){K zx )  is derived from the 

resource uses S and A for the two distinct occurrences of the variable. In this case, 

X : S E {\y .x ){K zx)y  since any redex R substituted for x wiU be head-needed. To perform 

this composition, we require the binary operator -|-. Lemma 3.8 below demonstrates the 

soundness of the definition of -|- given in Table 3.1.

L em m a 3.8 Let x \ .. .X2 be the distinct occurrences of the same variable x in term M. 

I f  ui ...U n are the resource use values o f x i ...X n  respectively, i.e., x* : U{ E M , then 

X : Ui + . . .  + Un E. M  (where -f is defined in Table 3.1).

P ro o f  The proof proceeds by case analysis. If any U{ of u \ . . .Un is S, then by Defi­

nition 3.3, any redex R  substituted for x wiU be head-needed, i.e., x : S E M . If no
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Ui o i u \ .. .Un is S, then if any Uj o{ u i .. .Un is N , then also by Definition 3.3, any re­

dex R  substituted for x may be needed in M. Hence x : N  6  M . Furthermore, only if

ui =  A .. .Un =  A  do we have x : A  £ M . The definition of -f satisfies these properties,

since for aU values u G S, S -|- u =  S, while for aU u 7  ̂ S, N  +  u =  N . Lastly, since A  is

the identity for -(-, A  +  u =  A=$>u =  A.

□

We now show tha t the inference system > 5  described in Figure 3.2 is sound with 

respect to Definition 3.3 of resource use. In the following theorem of the soundness of > 5 , 

we write M  |= a; : u to mean tha t x : u M  according to Definition 3.3.

T h e o re m  3.2 (Soundness o f inference of resource use.)

M  \> X  : u M  ^  X  : u.

P ro o f  The proof is by structural induction over the height of a proof using the inference 

rules. We show tha t for each case, the resource use assigned to a free variable by the 

inference rules is the resource use of the variable according to Definition 3.3.

Case 1 :
------------- Vari
æ > x : S

For aU redexes R, x[R/x] = R. Hence, R is a. head redex and x has resource use S by 

Definition 3.3.

Case 2 :
--------------Var2
y t> a: : A

For aU redexes i?, y[R/x] = y. Hence R  is erased, and the resource use value of x is A. 

Case 3:
M  t> X  : u

Absi
Xy.M  [> X  : u 
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By the induction hypothesis, we have tha t M  \= x : u. By the rules of substitution for the 

A-calculus,

[\y .M )[R lx] = \y .M [R lx]

(assuming changes of bound variables to avoid name clash problems). If i? is a head- 

needed redex in M , i.e., the head reduction path contains a reduction of M  to  R N \ . . .  

then R  is also head-needed in Xy.M , since R  is also a head-redex in X y .R N i ..  .iV^. Hence, 

X  : u £  Xy.M .

Case 4:
M  \>  X  : u

-------------------- Abs2
Xx.M  \>  X  : A

Since zis  not free in Xx.M , R  is erased in [Xx.M )[R/x] and consequently is not contracted 

in the head reduction of {Xx.M )[R/x]. Therefore, by Definition 3.3, x : A  £ M .

Case 5:

^  _L Mi^-nXy.M' M  t> x : ui N  l >  x : U 2  M ' t> y :

M N  >  X  : u i  + { u 2 X  U s )
Appi

By induction, we have tha t M  \= x  : u i, N  [= x  : U2 , and M ' |= y : us. Also, we have that 

MN]i.-}iXy.M' and tha t, also by induction, M ' \= y : u s .  Rename the occurrences of x  in 

N  with a fresh variable w. By Lemma 3.6, we have

M N  \ =  w  : U 2  X  U s

and subsequently, by Lemma 3.8, we have

M N  \ =  X  : u i  +  { u 2 X  U3)

Case 6 :
7̂  _L M ]^-nyM i. . .  Mn M  t> x : ui N  t> x : U2

---------------------------------------------------------------------------------- App2
M N  > a; : -|- (u2 U A)

By induction, M  \= x : Ui and N  \= N  : U2 . Also, we have tha t MN^^.'hvMi ..  .Mn- Let w 

rename a: in A . Then w : U2 U A  £ M N  by Lemma 3.7. Finally, by Lemma 3.8, we have

M N  \= X :u \-\- {u2 U A).
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Case 7:

T~~r~ A.PP3 where « is N  if a; G F V (M N )  and A otherwise M N  > X : u '

If z G F V {M N ), then any redex R  substituted for x in M N  is may or may not be needed, 

and therefore, we have x : N  G M iV . If z ^ F V {M N ), then any redex R  substituted 

for X in M N  does not appear in [M N )[R /x], and hence is not needed (despite the non­

term ination of the application), i.e., x : M N .

□

It would also be desirable to demonstrate the completeness of > 5 , which would show 

th a t whenever æ : u G M , then M  \> x : u. A proof of such a theorem would follow a 

structural induction over A-terms. However, the rule Apps means tha t the system is not 

sufficiently strong to be complete in this sense, since it allows us to infer a resource use of 

N  for a free variable in a term M N  without reference to the resource use of the variable 

in the sub-terms M  and N .

The inference system > 5  presented in Figure 3.2 is unsuitable to be used as a static 

analysis of strictness and absence in A-terms because of the use of head reduction and the 

test for head normal form in the premises of the App rules. Its usefulness, however, wiU 

become apparent in the following chapter on resource use in intuitionistic logic, where we 

will describe the relationship between resource use in A-terms and intuitionistic logic by 

structural induction over both intuitionistic proofs and typed A-terms.

3.3 N eededness in detail

In this section, we extend the work of Barendregt, Kennaway, Klop and Sleep, as reviewed 

in Section 3.1 above, to measure in more detail the neededness and head-neededness of 

redexes during reduction. This wiU allow us to develop a framework for defining more 

complex resource use domains based on neededness and head-neededness in Section 3.4 

below. The essence of our approach will be to define the degree to  which a redex may
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be needed (head-needed) in terms of the number of descendants of the redex tha t are 

contracted on the leftmost (head) reduction path. This idea is similar to tha t outlined by 

Wright in [93] (and described in greater detail in a joint work with Baker-Finch [94]) as 

the basis for a semantics of a type language incorporating complete sharing information 

(see Section 3.6 below).

As an example of what we mean by degrees of neededness, consider the A-term

(A /.A z ./( /a :) ) (^ jr^ )( ;y )  

and its reduction to normal form using leftmost reduction, i.e.,

(A /.A z./(/z))(5 'A '^)(72/)

{ \x .[S K K ){{S K K )x )){ Iy )

{ S K K ){ (S K K )(Iy ))

I{{S K K ){Iy ))

{{S K K ){Iy ))

H iy )

^ 0  ( ly )

- ^ 0  y

in which two descendants of the redex {S K K )  are contracted, while only one descendant 

of the redex (ly) is contracted. Consequently, by our intuitive definition, the degree to 

which the redex (SKK) is needed is greater than that of (ly).

In other words, we measure the degree to which a redex may be needed not just by

whether a descendant is contracted on the leftmost reduction path to normal form, but 

by how many descendants are contracted. Similarly, we measure the degree of head- 

neededness by how many descendants are contracted in head reduction to  head normal 

form.

For any term  M  and sub-redex R  of M, the number of descendants of R  contracted 

win vary according to the reduction path followed. The leftmost-innermost reduction 

path CX (as used in strict functional languages, such as Hope [32] for evaluating function

application) for the example above would be as follows:
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(A /.A zJ(/a:)y(72/)

-^ (3  [ \ x J { I x ) ) { I y )

■ ^ (3  [ \ x . { I x ) ) { I y )

^ ( 3  [ \ x , x ) { I y )

^ ( 3  [ \ x . x ) y

- ^ 0  y

in which the redex (SKK) is contracted only once.

Other reduction sequences may contract a redex R  more times than on the leftmost 

sequence. For example, for the term

{ X z . { X x . X y . x ) z z ) ( I a )

the leftmost reduction sequence contracts only one descendant of the redex (la).

( X z . { X x . X y . x ) z z ) { I a )

-^ (3  { X x . X y . x ) [ I a ) { I a )

^ 0  (Aî/.(/a))(/a)

~^0 (-̂ ®)

~ ^ 0  0,

Another reduction sequence for this term  is

{ X z . { X x . X y . x ) z z ) { I a )

~ ^ f3  { X x . X y . x ) { I a ) { I a )

-^ (3  [ X x . X y . x ) a { I a )

-^ (3  { X x . X y . x ) a a  

^ ( 3  (Ay.a)a 

^ 0  a

in which two descendants of (la) are contracted, one of which is later erased.

In general, it would seem that the only correlation between the leftmost reduction 

sequence and other reduction sequences is the one provided by the definition of neededness,
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i.e., tha t if a redex is needed, then at least one descendant is contracted on all reduction 

sequences to normal form. However, the following results establish the im portant fact tha t 

the number of descendants of a redex contracted on the leftmost reduction path to normal 

form corresponds to the number of descendants of the same redex contracted on other 

reduction paths whose contracted forms are not eventually erased. The formulation and 

proof of these results uses Levy's labelled A-calculus [61] (see Section 2.1.1 of Chapter 2). 

In Levy's version of a labelled A-calculus, labels of redexes are not deleted when the redexes 

are contracted, as is the case in Klop's version [56]. Note tha t Baker-Finch in [3] uses a 

similar method to define neededness by adapting the labelled A-calculus of Klop such tha t 

labels are not erased unless the term in which they occur is erased. However, it would 

seem tha t for this adapted calculus to be Church-Rosser it would have to impose an order 

on the collection of labels on A-terms during reduction, in much the same way as Levy 

does by concatenating label sequences. Hence, Baker-Finch's description of a labelled 

A-calculus is likely to resemble Levy's.

For the purposes of the following discussion, we define membership of the range of a 

mapping (p also means being a sub-string of a string in range{(p), assuming a unique initial 

labelling.

L em m a 3.9 Let R be a sub-redex of term M. Let p  be an initial labelling of M, assigning 

label a to R. Let d be the labelling of Mnf, the normal form of M. Then

R erasable in M  => a ^  range{d)

P ro o f  If R  is erasable, then it is not contracted on the leftmost reduction path. In Levy's 

labelled A-calculus, x^[R/y] = x \  Hence, the labels in R  do not appear in M nf and so 

a ^  range^d).

□

C o ro lla ry  3.3 Let R be a sub-redex o f term M. L e tp  be an initial labelling o f M, assigning 

label a to R, and let d be the labelling o f M nf. I f  a £ range{d), then R is needed in M.
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P ro o f  By Lemma 3.9. If a G range('â), then R  is not erasable, i.e., R  is needed.

□

C o ro lla ry  3.4  Let R be the leftmost redex in M. Let (p be an initial labelling o f M  assigning 

label a to R. Let d be the labelling of M nf • Then a G range^d), and furthermore, there 

exists only one occurrence o f a in range{d).

Theorem 3.5 below states tha t the number of times a descendant of R  is contracted in 

the leftmost reduction of M to normal form is the same as the number of labels of R  left in 

the normal form of M. The importance of this theorem lies in the fact tha t it establishes 

tha t measuring the degree of neededness of a redex using the number of residuals of the 

redex contracted on the leftmost reduction path is sound in the sense tha t it corresponds 

to  the way in which the value of the redex is required on other reduction paths. For 

example, if a reduction path contracts fewer residuals of R  than the leftmost reduction 

path, then as a result of the following theorem, we can be sure tha t contracted forms of 

R  are duplicated and are involved in the contraction of other redexes. Moreover, we can 

be sure th a t the extent to which residuals of R  are contracted and its contracted form 

required in the contraction of other redexes (which are not themselves erased) corresponds 

to the number of residuals of R  contracted on the leftmost reduction path.

We introduce the following notation to denote descendants of redexes contracted on a 

particular reduction path.

N o ta tio n  3.1 Let R  be a redex in M  and let

S  : M-^pM

denote a reduction sequence S  from M  to A Ï , Then the descendants o f R  contracted in S  

are denoted by {R }s- Write |{A }j| for the number o f descendants contracted.

Hence for a term  M  with sub-redex R, the descendants of R  contracted on the leftmost 

(head) reduction path are denoted {R }c  {{R}n)-
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T h e o re m  3.5 Let R be a sub-redex o f M. Let y? be an initial labelling o f M, assigning 

label a to R. Let d be the labelling of Mnf- Then

|{ i2}£| = no. of distinct occurrences of a Ç; range{d)

P ro o f  Assume |{-R}z:| =  m, i.e., tha t m descendants of R  occur as contracted redexes 

on the leftmost reduction path to normal form. By Corollary 3.4, there are at least m  

distinct occurrences of the label a in range{d). Furthermore, since leftmost redexes cannot 

be substituted as arguments after their contraction, the labels of contracted residuals of 

R  cannot be duplicated. Therefore, there are exactly m  occurrences of a in range(d).

□

The implication of Corollary 3.6 is tha t if the leftmost reduction path  contracts just 

one residual of a redex, then on aU other reduction paths to  normal form, aU but one of 

the contracted forms of the redex is erased.

C o ro lla ry  3.6 Let R be a sub-redex of term M. Let (p be an initial labelling o f M  assigning 

label a to R, and let d be the labelling o f M nf - I f  K-R}^! =  1, then there is exactly one 

occurrence o f a in range{d).

L em m a 3.10 Let M  be a X-term with sub-redex R. I f  > 1, then for all other

reduction sequences S  to normal form, |{uR}g| > 1 .

P ro o f  By Definition 3.2, if a redex is needed, then at least one descendant of the redex 

is contracted on all reduction paths to normal form.

□

In the case where head reduction to head normal form contracts a single descendant 

of a  redex, and leftmost reduction to normal form of the same term also contracts a single 

descendant of the same redex, the following theorem shows tha t the redex contracted in
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the leftmost reduction occupies the head position in the term, i.e., it is also the contracted 

head redex.

T h e o re m  3.7 Let R be a sub-redex of term M. I f  =  1 and =  1, then a

residual o f R  is contracted in the head position in C.

P ro o f  Head redexes are leftmost redexes. Therefore, if one descendant of R  is contracted 

on the head reduction path to head normal form, then one or more descendants of R  must 

be contracted on the leftmost reduction path to normal form. Furthermore, if |{R}£| = 1, 

the descendant of R  contracted must occupy the head position for =  1 to  be

satisfied.

□

We now show tha t degrees of neededness and head-neededness are preserved under 

conversion of A-terms, tha t is to say tha t if n residuals of a redex R  are contracted in 

the leftmost reduction of M R  and M  M ' , then n residuals of R  are contracted in the 

leftmost reduction of M  R. The proof of this theorem is greatly simplified by the use of 

labels.

T h e o re m  3.8 I f  M  =p M ', then if  n descendants o f R  are contracted on the leftmost 

(head) reduction o f M R  to normal (head normal) form, then n descendants o f R  are 

contracted in the leftmost (head) reduction of M 'R  to normal (head normal) form.

P ro o f  Follows from the confluence of Levy's labelled A-calculus and Theorem 3.5.

□

The effect of non-termination with respect to neededness is to make all redexes needed 

(similarly for head-neededness). In the context of this section, non-termination has the 

effect of making the degree of neededness and head-neededness non-zero but infinite, i.e., 

equivalent to contracting an infinite number of descendants of a redex on the leftmost and 

head reduction paths.
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3.4 Resource use in detail

In this section, we extend the domain of resource use values defined in Section 3.2. The 

work of the previous section now makes it possible to define resource use values in a 

manner similar to that used in Section 3.2, but which capture more information about the 

degree to  which a function parameter is used, for example, whether a variable is used once 

or more than once within the body of the function that binds it.

As in Section 3.2, our aim is to take a property pertaining to arguments to a function 

as the basis for defining a property of the bound variable of the function. In this section, 

we take the extended view of degrees of neededness and head-neededness from Section 3.3 

to be the properties of arguments with which we wiU define resource use properties of 

function variables. In the rest of this section, we first show how the simple resource use 

domain shown in Figure 3.1 can be extended to  include a value describing linearity of 

use. Then we give a semantics in similar terms to a lattice of argument usage annotations 

described by Bierman in [10].

3.4.1 Adding a linear resource use

A linear resource use describes the case where the argument value substituted for a bound 

variable in a function is guaranteed to be evaluated exactly once. Worthwhile optimisations 

such as in-place or destructive updating of data structures can be made once it is known 

th a t the argument to a function will be used only once (see, for example, [1 1 ] [47]). Also, 

by distinguishing between a linear resource use and a strict but (possibly) non-linear 

value, we describe elementary sharing, which is also of use in optimising the performance 

of abstract machines such as the Spineless Tagless G-machine [77].

We define linearity to be first-order strictness without sharing. In other words, a bound 

variable z of a function Xx.M  is used linearly if any argument substituted for x will be 

evaluated once and exactly once.

Below, we define a linear resource use as well as strictness, absence and non-strictness
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Figure 3.3: Resource use domain L

in terms of the number of descendants of argument redexes occurring on the head and 

leftmost reduction paths.

D efin ition  3.5 For x  G Var, M  G A, say that x : u £ M  (x has use u in M) where u is 

defined as follows:

(i) u = L ^  VÆ.|{JÎ}>^| =  1 in \^h M [R/x] and =  1 in ^ l M [R /x]

(ii) u = S ^  '^R .\{R}n\ > 1 in ^ h M [R/x]

(Hi) u =  A  => VR.|{R}7̂ | =  0 in ]̂ h M [R/x] and |{R}£| =  0 in ]̂ l M [R /x]

(iv) u =  N  =>- VÆ.|{R}?^| > 0 in ]̂ h M [R/x]

The definition of linearity in Definition 3.5 above states tha t a variable x has use L 

(linear) in a term  M  if any redex R  substituted for z in M has exactly one descendant 

contracted on the head reduction path to head normal form and exactly one descendant 

contracted in the leftmost reduction to  normal form. By Theorem 3.7, the descendant 

contracted on the leftmost path is contracted as a head redex. The restriction in this case 

of the number of descendants contracted on the leftmost path is necessary to  ensure true 

linearity. For example, the term Af . f x  is linear in its bound variable /. However, this is 

not the case for the term \ f . \ g . \ x . f x { { g f ) x ) ,  since for some redex R  substituted for /, 

will be greater than 1. (For example, R  = {{Xa.Xb.Xc.ach)K).) Further arguments 

for the bound variables g and x may also require the value substituted for /.

Note tha t the form of linearity defined here is not the same as linearity in the sense used
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in Linear Logic-based term  calculi (see, for example, Abramsky’s Linear Term Calculus [1], 

Mackie’s linear functional language Lilac [64], or the linear logic term calculus of Benton 

et al [8 ]). For example, the A-term X x.K xx  is linear in x according to Definition 3.5 (since 

= 1 and |{-R}£| =  1 for any redex R). However, x would not be considered linear 

in any equivalent term in the Linear Term Calculus, since x occurs twice syntactically.

The following lemma demonstrates tha t resource use with linearity is preserved by 

/)-conversion.

L em m a 3.11 L etx  : u £ M  according to Definition 3.5. Let M  =p M ' . T henx  : u G M ' .

P ro o f  Follows from Theorem 3.8 on the preservation of degrees of neededness and head- 

neededness under /^-conversion.

□

Lemma 3.11 is equivalent to Lemma 3.2 for domain S given in Section 3.2 above. In 

th a t section, we also defined in Definition 3.4 a relation = on functions and their arguments 

with respect to resource use values. The relation =  can also be defined for functions and 

arguments over L in the same manner.

We define a refiexive, transitive, and anti-symmetric ordering Ç l over the resource use 

values in Definition 3.5 as follows:

L El s

S El N

A El N

u El u

The semantics of the ordering relation is defined by reference to the meaning of the resource 

use values given in Definition 3.5. We interpret a statement such as

\{R}n\ > 1 in ^h M[R/x]

using the set of values over which |{-R}h | ranges that satisfy the inequality in the statem ent 

(in this case, the set of positive integers). Conjunctions of such statements are interpreted
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as of pairs of such sets. For example, the conjunctive statement

| W w l > l A | { i J } c | > l

is interpreted by the pair

(where { ! . . . }  is the set of positive integers). The semantics of the ordering relation over 

resource use values is then given in terms of a subset relation between components of pairs 

of sets of positive integers. This is formalised in the following definition.

D efin ition  3.6 Let u and u be two resource use values as defined in Definition 3.5. Let 

the interpretation (s,s )  represent u and (t,{ )  represent u . Then uC. u iff

s C t  A s C t

Subsequently, we are able to define the domain L of resource values defined in Defini­

tion 3.5 as shown in Figure 3.3.

We define a system > l  of inference rules for resource use with linearity in Figure 3.4, 

in a similar fashion to > 5  defined in Section 3.2 for strictness and absence. The inference 

rules for resource use with linearity are almost identical to those for simple resource use, 

with the exception that the resource use inferred in the rule Vari is the linear value L, 

rather than S. Note also tha t the binary operators x and -|- are re-defined (and over­

loaded) for L (see Table 3.2.)

We now show tha t t>L is sound with respect to Definition 3.5. In the following theorem, 

we write M  \= x : u to  mean tha t x : u £ M  according to  Definition 3.5.

T h e o re m  3.9 Soundness of > l.

M  t>i X : u ^  M  \= X : u

P ro o f  The proof follows the proof of soundness in the case of simple resource use (see 

Section 3.2 above), except for rule Var% for which the proof is as follows:
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X t>L a: : L 

M  t>\_x : u

Vari

Absi

y >L x : A  

M  t> ix : u

Vai2

Absc
X y . M  >La r : w X x . M  t>i_ x : A

^  J_ M ^^u^y.M ' M  t>\_x : u\ N  l>\_x : U2 M ' \> \^y\uz

M N  >L a: : wi +  (w2 X U3 )

MAJJ-t^P ÿé ±  M-lj.-^yMi..  .Mn M  t>i x : ui N  t>i x : U2
-------------------------------------------- :---------------------------------App 2

M N  > i _  X  : u i  i- ( u 2 U A)

M N  t >j _ X  ’ u  where 1/ is N  if z E F V ( M N )  and A  otherwise

ApP]

Figure 3.4: inference rules for resource use with linearity

X L A S N + L A S N

L L A S N L L L S s

A A A A A A L A s N

S S A S N S S S s S

N N N N N N S N s N

Table 3.2: Operators of X and +  over domain L
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T

< 1 >

0

> 1

1 >1

Figure 3.5: Bierman’s domain

Case: x > l  a; : L.

For all redexes i?, x[R!x] =  R. By definition, Æ is a head redex, and furthermore, is 

evaluated once. In other words,

Vi(!.|{i2}7̂ | =  1 in and =  1 in ]j^cx[R/x]

which is the definition of L in Definition 3.5.

□

3.4.2 B ierm an’s domain

In [10], Bierman describes a complete lattice of values intended as resource use an­

notations to function types, reproduced in Figure 3.5. No semantics of the values in the 

lattice is given by Bierman, but it is easy to see tha t the resource use domain described in 

Section 3.4.1 above is a subdomain of Bierman’s, with the following equivalences: T = N; 

> 1 =  S; 1 =  L; and 0 =  A. Therefore, the domain points 1, > 1, 0, and T are defined 

as L, S, A  and N  respectively in Definition 3.5. We are also able to define the remaining 

points in similar fashion in Definition 3.7 below. (Note tha t, in keeping with our presen­

tation of resource use domains in this chapter, we have omitted the least element _L, since 

it plays no role in the semantics of resource use.)
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D efin ition  3.7 For x G Var, M  Ç: A, say that x has use u in M  where u is defined as 

follows:

(i) u =  > 1 => Vi2.|{Æ}7̂ | > 1 in ]̂ h M [R/x] and |{^}/:| > 1 in )̂ l M [R /x]

(ii) u = < 1  VÆ.|{Jî}^| < 1 in ^ h M [R/x] and |{Æ}£| < 1 in ^ l M [R /x]

(in) \^R .\{R}n\  7  ̂1 in ^hM [R /x] and \{R}jr\ > 0 in U M [ R /x ]

The semantics of the ordering relation Cg over values in Bierman’s use domain are as

described for the ordering over the domain in Section 3.4.1 above.

3.5 Resource use and th e typed A-calculus

The work in this chapter on resource use in the (untyped) A-calculus also applies to the 

typed A-calculus, with one exception. Since the typed A-calculus is strongly-normalising, 

we do not need rule Appa in t>g and > l ,  nor the premises concerning reduction to head 

normal form in rules Appi and App2 in these systems.

However, we may wish to introduce a family of fix-point constants f i x ^ ^ a  for each 

type <7 into the typed A-calculus to implement recursion. In which case, given a term 

f i x  M , we must find the resource use of a free variable in M  over the calculation of the 

fix-point of M .

3.6 R elated  work

Wright in [93] uses strong head-neededness to define the semantics of resource-aware type 

expressions. Strong head-neededness differs from head-neededness in tha t it is defined with 

respect only to residuals contracted on the head reduction path, rather than all reduction 

paths to  head normal form. For example, given the type expression
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(i.e., a function of this type is strict in its first argument), then the semantics is (partly) 

described by

Vd € a.Mci G n ( l  < ê < n).d  strongly head-needed in /  • d • e i . . .

In Baker-Finch’s work [3], persistent labels are used to  determine whether a redex is 

needed. In Klop’s concept of labelled reduction [56] the label of a redex is dispensed with 

once the redex has been contracted. However, in Baker-Finch’s semantics, the label of the 

redex persists, and is erased only if the term it is attached to is erased during reduction. 

Therefore if the label of a redex appears in the normal form, then the redex with that 

label is said to be needed. Strictness and absence are defined by Baker-Finch as follows:

D efin ition  3.8 (Definition 3.2.1 of [3]). Given a term M  and a sequence o f terms Pi 

. . . P n  (n >  0),

(i) M  is strict in the context o f P\ .. .Pn if  no term N  is erased in M N P \ ..  .Pn,

(ii) M  is constant in the context o f Pi .. .Pn if  nny term N  is erasable in 

M N  P i .. .Pn>

An extension to this idea is outlined by Wright in [93] and described in more detail by 

Wright and Baker-Finch in [94], which describes complete sharing information in terms of 

the number of descendants of a redex tha t occur on the head reduction path, again given 

all possible values tha t may be substituted for further parameters. For example, functions 

linear in their first parameter are said (by their type) to be those functional A-terms M  

such tha t only one descendant of the redex N  is contracted in the head reduction of

M N P i . . . P n  ( n > 0 )

for all possible values of N  and P i , . . . ,  Pn. Generally, functions tha t use their param eter to 

degree m are those functions M that, for all possible values of A , P i , . . . ,  Pn, m descendants 

of N  are contracted during head reduction of

M N P 1 . . . P 2

Also of relevance, as mentioned in [93] and [3], is Sestoft’s definition of usage intervals 

in [83]. Usage intervals are defined using the values Zero, One and Many, and give the
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lower and upper bounds within which the actual use of a function argument may fall; for 

example, the interval [Zero, One] means tha t a function argument may not be used, but 

if it is then it will be used once at most. Moreover, the inference system > l  appears 

very similar to Sestoft’s usage analysis function lie (see Section 5.1.2 of [83]). Like our 

system t>g, %  is essentially first-order but is extended to analyse higher-order functions 

by means of a closure analysis. The semantics and soundness of %  are not considered in 

[83], unlike [>g in this chapter.

Lastly, the inference system >g presented in Section 3.2 also bears some resemblance 

to the context analysis of Wadler and Hughes in [90]. Context analysis is based upon the 

idea of determining the need for the value of a free variable given the need for the value of 

its surrounding expression or context. As Davis and Wadler describe in [30], the context 

analysis in [90] was first-order and low-fidelity, by which is meant tha t the analysis is 

carried out on each free variable separately, which excludes the possibility of discovering 

jo in t strictness in two or more variables. It is easy to see tha t > g i s  similarly low-fidelity 

in th a t each free variable is examined separately from other free variables.

3.7 Sum m ary and conclusions

In this chapter, we have presented a semantics of resource use in the A-calculus, based on 

the neededness and head-neededness of arguments to functions. We defined a resource use 

domain describing first-order strictness and absence, and presented a system of inference 

rules for deriving the resource use of free variables, similar to the context analysis of 

Wadler and Hughes. A proof of the soundness of the inference system was given.

We also showed how neededness and head-neededness can be extended to degrees of 

neededness and head-neededness based on the number of residuals of a redex contracted on 

the leftmost and head reduction paths. We also established a correspondence between this 

measure of the degree of neededness (head-neededness) of a redex and the number of times 

a redex’s value was required on other reduction paths using Levy's labelled A-calculus. 

Subsequently, we defined resource use beyond strictness and absence, for example, to 

include linearity and to provide a semantics for the annotations in Bierman’s domain.
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C hapter 4

Intu itionistic logic and resource 

use

In this chapter, we investigate the definition and semantics of resource use in intuitionistic 

logic, and its correspondence with the semantics of resource use in the typed A-calculus (as 

described in Chapter 3) under the Curry-Howard isomorphism. Our aim is to demonstrate 

th a t resource use inferred for hypotheses in intuitionistic proofs is equivalent to the re­

source use of free variables in typed A-terms, thus providing a justification of the inference 

of resource use for A-terms by the type system in Chapter 5. As we will see, however, we 

are unable to demonstrate an equivalence between our definitions of resource use in proofs 

and A-terms, although we are able to show a correspondence based on approximation.

The plan of this chapter is as follows: we define neededness and head-neededness for 

intuitionistic logic, and show their equivalence with neededness and head-neededness in the 

typed A-calculus. Subsequently, we define a resource use domain of strictness and absence, 

and extend intuitionistic logic to incorporate resource use in proofs and propositions. We 

also show tha t the correspondence with resource use defined for the typed A-calculus is 

an approximation rather than an equivalence. We also outline how the more complex 

resource use domains of Chapter 3 can be defined in intuitionistic logic.

Note tha t in the rest of this thesis, the term intuitionistic logic refers to intuitionistic
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A xiom
 Axiom
a h <7

S tru c tu ra l  R u les

Logical R ules

r , (7, <7 f- r r  h r
-------------- Contraction  Weakening

r , C7 h r r,(7 h T

r,<7 h r
Intro

r  h f7 ^  r

r h < 7 — Ahcr  

r , A h r
Elim

Figure 4.1: Intuitionistic implicational propositional logic

implicational propositional logic (see Figure 4.1 above). Also, reference to the A-calculus 

is to the typed A-calculus unless otherwise stated.

4.1 N eededness and head-neededness in in tu ition istic  logic

In this section, we define neededness and head-neededness for propositions and their proofs 

in intuitionistic logic.

4.1.1 Proofs in redex form

In the discussion of neededness and head-neededness in intuitionistic logic proofs, we wiU 

require the following definitions. The first defines the notion of a proof in redex form.
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D efinition  4.1 Let P  be a proof o f proposition r, i.e., F  : t . F  is a proo/redex or proof

in redex form if  it is of the form

r,<7hr :
Intro

r i - (T—>-r A h a
----------------------------------------> Elim

r , A h r

In other words, a redex proof is one in which the last rule used is —̂ Elim, which directly 

follows a use o f Intro.

In addition to the notion of a proof redex, we wiU need the definition of leftmost and 

head proof redex. Both definitions rely on the concept of a labelling of rules in a proof.

A labelling has been defined by Troelstra [8 6 ] (called a coding), and similarly by G allier 

[34], which assigns a finite string of natural numbers to each node in a proof tree. Here we 

define the labelling in the form of a function over a proof F. In the following definitions, 

N is the set of natural numbers and N* is the set of strings, including the empty string £, 

generated over N.

D efin ition  4.2 For a proof tree F  : cr, define by induction a function mapping nodes

(sequents) in F  : a to values in N* as follows:

• to the conclusion o f F, assign the empty string e

• i f  a deduction in F, assigned n by ^ p ,  has m premises above it, then the premises 

are labelled left to right as nO,. .. ,n{m  — 1 ) (where juxtaposition represents concate­

nation).

The application o f to any sub-proof R  : (f) Q F  : a, written ^ p [ R  : (f)), returns the label 

assigned to the conclusion of R.

We also define a lexicographic ordering < over strings (taken from G allier [34], Section

2.2.2 of Chapter 2), which induces a depth-first, left-right ordering on nodes in a proof

tree when they are labelled according to the scheme given in Definition 4.2.
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D efin ition  4.3 Let NÜj. denote the set of strings over natural numbers. Let < be an 

ordering over strings u ,v  E NÜj. such that u < v if  either u is a prefix of v, or there exist 

strings x .,y ,z  E NÜj., and natural numbers i , j  E N+ such that i < j ,  such that u = x iy  and 

V  = x j z .

E x am p le  4.1 The following are orderings over strings in NÜj.;

€ < 112

112 < 12

12 < 1211

100 < 11

E x am p le  4.2 The rules o f the following proof tree P  : 0 are annotated with their labels 

under a depth-first left-right labelling

[Qi] [« 2] [Qa] [0 4 ]

r I- 0- ^  ( 7- ^  r' f- £r®' A h  ( 7 ^  a '  I-
--------------- ;--------------------   Elim  ;-  >• Elim

r , r  A, A h r i
---------------------------- ;------- ;---------------------------------.E lim

r , r , A , A  k f

Hence,
(  [0 3 ] \
I : I =  10

\A  l- (7 —. r /

The definitions of leftmost and head redex that follow are motivated by the definitions 

of leftmost and head redexes for the A-calcnlus (see Section 2.1 of Chapter 2 ). In Sec­

tion 4.1.3 below, we show tha t these definitions of leftmost and head redex are equivalent 

to leftmost and head redex in the A-calculus under the Curry-Howard isomorphism.

D efin ition  4 .4  A proof redex F  : cr E Q : r  is leftmost in Q : r  i f  for all proof redex 

R:<f>EQ : t , $ q (P )  <

The following example illustrates the definition of leftmost proof redexes.

79



E xam ple 4.3 Let P  : a denote the proof redex

Axiom
O' h a

Intro  Axiom
h  a  o  a  h  c
--------------------------------------------- E lim

a h or

and let Q : T denote the proof redex

 Axiom
r  h r

Intro  Axiom
h r  —̂ r  r  h r
------------------------------------ >' Elim

r  h r

in the proof R  : {o ^  r  ^  o) o (in which nodes are labelled) as follows

[p]

Axiom •   [Q]
0 ^ T —^ 0 ' \ - ( T - ^ T - ^  (7°°° O h
------------------------------------------------------------------------ >• Elim

O’ —» - r —>(j, ( j h r — o° °  r  h
---------------------------------------------------------   >• E lim

O’ r  —> O’, O’, r  h O’
------------------------------------------- >■ Intro
O’, r  h (o  r  —>■ o )  o^

According to the labelling function

^ r { P  : O’) =  001  

^ r{Q  : T) =  01

Therefore, ^ r (P  : <r) < ^ r {Q : r), i.e., P  : o is the leftmost proof redex.

W e define head  p roof redexes as special cases o f le ftm ost redexes, such th a t th ey  occur  

on w h at T roelstra refers to  as th e  spine o f  a  p roof tree (C hapter 4,§2 o f  [86]).

D efin ition  4.5 A proof redex P  : a Ç: Q : r  is a head proof redex i f  P  : cr is leftmost in 

Q : T  and there exists no occurrence of an axiom R  : <f> such that ^ q { R  : <f) < : o).

E x am p le  4.4  In the proof tree

80



-------- — —>• Intro ----------------------— Axiom
r  h ^  (cr —> r) (}) f- <f)
------------       .E lim   -A xiom

r,<^ h cr —. r a \- a
------------------------------------------------------------- . Intro

r , </>, <7 h (c7 r) r"

the proof redex

r , < ^ h ( r - » r ““
Intro ------- — Axiomr h ^  ^  ( < 7 r ) “

--------------------------------------------  . Elim
r ,  0  h <7 —. r

is a head proof redex according to Definition 4-5.

Note tha t, in Example 4.3, the leftmost proof redex is not the head proof redex because 

of the presence of an axiom in the proof with a label 0 0 0  tha t precedes tha t of the leftmost 

redex according to the ordering < over strings.

Normal form for proofs in intuitionistic logic is defined in Section 2.3 of Chapter 2. A 

proof is said to  be in normal form if it contains no proof redexes. We also define a proof 

as being in head normal form  if it contains no head proof redexes.

E x am p le  4.5 The following proof is in head normal form  (hut not normal form).

Intro  Axiom
r h < ^ —.cr

A x io m  . Elim
<7 ^  r h <7 —. r r , <6 I- cr
-------------------------------------------------------------. Elim

r,(7 -4- T, ^ I- T
Intro

r , c 7 —. r h < ^ - 4 r

From the definitions of leftmost and head redex we derive leftmost and head normali­

sation of proofs. Leftmost proof normalisation consists of the successive normalisation of
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leftmost redexes in a proof to normal form, while head proof normalisation refers to the 

successive normalisation of head redexes until head normal form is reached.

As a m atter of notation, we will use C and to refer to the leftmost and head proof 

normalisation paths, respectively. Also, we write ^  : r  to denote the normalisation of 

a proof Q : T hy the leftmost normalisation path (and similarly, Q : t  t o  denote head 

normalisation).

4.1.2 N eededness and head-neededness

For proofs in intuitionistic logic, we define a needed proof redex to be one tha t will even­

tually be contracted, whatever normalisation path is followed to reduce the proof in which 

it occurs to normal form. As with redexes in A-terms, a notion of descendants is required 

in order to identify a proof with its original across normalisation steps.

D efin ition  4.6 The descendants of a sub-proof P  : a £ Q : r, after the normalisation of 

Q : T to Q' : T,  are all those sub-proofs of Q' : t  that can be traced back to F  : cr, identified 

at the level o f the rule used to deduce the conclusion o f P  : a.

E x am p le  4.6 In the normalisation of the proof 

----------------------------------- Axiom  Axiom
( 7 —> c r — a a
---------------------------------------------------------- Elim  Axiom

CT—^ < J —^ T , C r \ ~ < 7 —^ T  a  \- (T
-------------------------------------------------------------------- >■ Elim

cr—><7 —>-r, <7, c r h r
----------------------------Contraction

cr—̂C7—>-r, C7hr
Intro

cr f- (cr ^  <7 —> r )  —>• r  [P]
Intro

h e r —> ( < 7 - > c 7 —> ^ r ) —»-r F  h  cr
  ---------------   . Elim

r h ( < 7 - ^ c 7 —̂ r ) —>-r

to the proof
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[f]------------------------Axiom -------
^ r \ - a ^ ( 7 ^ T  r  H (T [P]
-----------------------------------------------  ̂ Elim
T , a ^ ( j ^ T \ - a - ^ T  r h c r
--------------------------------------------------------------------  ̂ Elim

r , r , o - - ^ o - —>-rl-r  
—- —  - ■■ -■ =  Contraction

T ^ a  —>■ (7 T  \ -  T
— )- Intro

T \ - {(7

two descendants of the sub-proof P  : cr are created. (Note that possibly multiple applications 

of Contraction are required in order to merge the different occurrences o f the base T.)

As a small digression, we note that when a proof is substituted for a hypothesis in 

a proof normalisation step, the number of descendants of the proof resulting from the 

substitution depends upon the size of the hypothesis’s parcel (parcels of hypotheses are 

discussed in Section 2.3 of Chapter 2). The correspondence between the number of ele­

ments in a parcel of a hypothesis and the number of free occurrences of a variable in a 

typed A-term is implied by the Curry-Howard isomorphism.

As mentioned in Section 2.3 of Chapter 2 , the Axiom rule introduces a hypothesis 

parcel of size 1 , while Contraction merges parcels into larger ones by multi-set union and 

Weakening introduces empty parcels. Sub-proofs are erased or discarded when substituted 

for a hypothesis whose parcel is empty. On the other hand, the result of Contraction is 

to increase the number of descendants of a sub-proof tha t may be created during proof 

normalisation.

We define neededness for intuitionistic logic using descendants as follows:

D efin ition  4.7 Let P  : a be a proof redex in proof Q : r . Then P  : a is needed iff every 

normalisation o f Q : r  to normal-form normalises a descendant o f P  : cr.

Head-neededness for proofs is similarly defined as follows.
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D efin ition  4.8 Let P  : a Ç: Q : r  be a proof redex. Then P  : a is head-needed iff a 

descendant o f P  : a is normalised in every normalisation sequence taking Q : r  to head 

normal form.

As is the case with redexes in the A-calculus, proof redexes contracted on the left­

most normalisation path are needed redexes, and proof redexes contracted on the head 

normalisation path are head-needed. In the A-calculus, this arises because the position 

of leftmost and head redexes means tha t their contracted forms cannot be erased later in 

the reduction path. The same observation applies to leftmost and head proof redexes in 

intuitionistic logic.

We also define a notion of erasure for proof redexes.

D efin ition  4.9 Let P  : a be a proof redex in Q : r, and S a normalisation path o f Q : r  

to Q' : T, such that no descendant of P  : a is contracted on S and P  : a does not occur in 

Q' : T. Then P  : cr is erased in S .

If there exists a normalisation path S  such tha t P  : <7 in Q : r is erased, then P  : a 

is erasable. It follows from Definition 4.7 that no needed proof redex is erasable, and no 

erasable proof redex is needed.

4.1.3 R elationship w ith neededness in the A-calculus

The definitions of neededness and head-neededness for intuitionistic logic have been mo­

tivated by neededness and head-neededness for the (typed) A-calculus, and here we show 

th a t they are in fact equivalent under the Curry-Howard isomorphism.

Troelstra (Section 4.1.6 of [86]) has shown that the equivalence between a proof redex 

and a A-term holds across the contraction of the proof redex and the A-term, shown as 

follows (using the translation $  discussed in Section 2.4 of Chapter 2):
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[<91

[f]
r,(7  h r

-------------------Intro
r i - ( 7— Ah<j

r ,A I - r
Elim

translates to

(Az : (7.Ÿ

IQ]

r ,  (7 h r

Vrh Intro

[f]

<A h  <7>

and

[ < 9 1

r ,A I - r

(where Q' : r  = Q : r[P/cr] as defined in Section 2.3 of Chapter 2) is translated to

/  IQ]

Intro
)[» (  )  /*]

\ A h ( 7 /

The persistence of the equivalence between a proof redex and its corresponding A-term 

across contraction also holds between a proof and a term in which these redexes occur.

We define equivalence of reduction sequences of proofs and typed A-terms as follows.

D efin itio n  4.10 For a proof Q : r  and its corresponding X-term  Ÿ(Q : r), a proof nor­

malisation path 71 taking Q : r  to normal form and a reduction path S  taking ^{Q  : r )  to 

normal form  are equivalent, denoted 7Z = C H I  iff each step they contract equivalent 

sub-parts o f Q : t  and Ÿ(Q : r) .
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To help prove the equivalence between neededness and head-neededness in intuitionistic 

logic and the A-calculus, we re-define the translation Ÿ from intuitionistic logic proofs to 

typed A-terms defined by Troelstra (see Section 2.4 of Chapter 2). The new translation 

function Ÿ/ makes use of the labelling function mentioned in Section 4.1.1 above, in order 

to translate a proof P  into a labelled typed A-term. (Details of the translations of the 

Contraction and Weakening rules have been omitted, since they are the same as for Ÿ.)

D efin ition  4.11 Ÿ/ is defined for a proof Q : r  as follows:

1. To a proof consisting only of an Axiom rule, we assign a new typed variable, labelled 

by the labelling function for the particular occurrence of the Axiom rule, i.e..

Axiom^ —

2. An abstraction is translated inductively: 

{  :
V , a \ - T  = ( A x „ .$ ,  :

In tro / \r ,(7 l- r/
f- (T —» r

3. Applications are also translated inductively:

T h c r ^ r  Ahcr
---------------------------- >■ Elim

V r , A h r

E x am p le  4.7 The following are examples of the translation o f proofs into labelled typed 

X-terms using

1 .

(   Axiom \

Intro
\ h  (J <J /

0\e
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2.

<7 h  cr 

O’, r  h  <7 

<7 h  r  ^  I

Axiom

Weakening 

— Intro

h  a
Intro

cr —> (7 h  (7
Axiom

a ^  CT \- a

a a^a \- T a

a a

Elim

Axiom 

Elim

We also define a function over the translated A-terms tha t returns the label attached 

to them.

D efin ition  4.12 For any proof F  : a in proof Q : r, the label associated with the transla­

tion o f F  : a is given by

label{^l{F  : cr)) =  ^ q {F  : cr)

We also require the following lemma that relates the relative position of A-redexes 

within a A-term to the ordering over their associated labels.

L em m a 4.1 Let N  and F  be redexes in a labelled typed X-term M, where labels are assigned 

to sub-terms according to the labelling function  $  for an equivalent proof. I f  N  is to the 

left o f F  in M, then label{N) < label(F).

P ro o f  Follows directly from the fact tha t pre-order traversed is used for both the labelling 

of proofs and for the definition of N  to the left of F  in M.

□

L em m a 4.2 F  : cr is a leftmost proof redex in a proof Q : r  ^  ^ i{F  : cr) is a leftmost 

redex in : r ) .
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P ro o f  (=#>) Let M be any redex in '^i{Q : r ) , i.e., M  = ^ i{R  : <j>) where R  : (f)is a. proof 

redex in Q : T .  Assume tha t M is to the left of ^ i{P  : cr). By Lemma 4.1,

label{M) < label{^i{P  : a))

which, by definition of labels imphes that

^ q {R  : </>) < ^ q{P  : (r)

which contradicts Definition 4.4 of leftmost proof redex. Therefore, : a) is the

leftmost redex in ^i{Q  : r ) .

( 4=) If ^ i{P  : cr) is leftmost in : r ) , then there exists no redex M in  : r )  such

tha t M is to the left of Ÿ /(P : cr). Therefore, by Lemma 4.1, there exists no M such that

label(M) < label{^i{P : a))

Let P  : ^  be the proof translated to M by Ÿ/. Then by definition of the function labels 

there is no P  : ^  such that

$q(P : (j>) <  $q(P : (t )

By Definition 4.4, therefore, P  : cr is the leftmost proof redex.

□

L em m a 4.3 P  : cr is a head proof redex in a proof Q : r  ^  Ÿ /(P : a) is a head redex in

: T ) .

P ro o f  The proof follows along the same lines as the proof of Lemma 4.2.

□

L em m a 4.4  Assume a proof Q : r . Let C il  denote the leftmost normalisation path taking 

Q : T  to normal form, and let C \ denote the leftmost reduction path taking ^i{Q  : r )  to 

normal form. Then

^ I L  = C H I  P ' X

Similarly for head proof normalisation H il  and the head reduction path l ï \ .
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P ro o f  The proof follows from Lemma 4.2, which states tha t leftmost redexes in a proof 

and a A-term are equivalent (under the translation $ /) , and from the persistence of the 

equivalence between a proof and a A-term across contraction steps. (Substitute Lemma 4.3 

for Lemma 4.2 to prove the same for head proof normalisation and head reduction paths.)

The main result of this section is given in Theorem 4.1, and states tha t our definitions 

of neededness and head-neededness, in intuitionistic logic and the typed A-calculus, are 

equivalent under the Curry-Howard isomorphism.

T h e o re m  4.1 Let P  : cr be a proof redex in Q : r . Then P  : cr is needed (head-needed) in 

Q \T  ^  Ÿf(P : a) is needed (head-needed) in : r ) .

P ro o f  Directly from Lemma 4.4 and from the definitions of neededness (head-neededness) 

in intuitionistic logic and A-calculus.

□

4.2 Sim ple resource use in in tuition istic logic

In this section, we show how simple resource use, covering strictness, absence, and non­

strictness, can be defined in intuitionistic logic.

In intuitionistic logic, resource use is taken to be concerned with the use made of the 

resources of deductions, in other words about hypotheses. For example, given a proof tree

[Q]

r,o- h r

the hypothesis cr is a resource, and a description of its resource use is concerned with the 

dependency of the proof upon the hypothesis. In this section, we define this dependency
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in terms of the neededness and head-neededness of the proofs of o substituted for it in the 

proof tree Q \r ,

4 .2 .1  S t r ic tn e s s ,  a b s e n c e , a n d  n o n - s t r ic tn e s s  in  in tu i t io n is t ic  lo g ic

We define the resource use domain S containing strictness, absence, and non-strictness for 

intuitionistic logic following the approach taken in Section 3.2 of Chapter 3. This domain 

is as previously defined in Figure 3.1, with the same ordering Cg over resource use domain 

S and with operators 4- and X as defined in Table 3.1 of that section.

Our intuition of what strictness means for intuitionistic logic is tha t any hypothesis 

a  used in the deduction of a proposition r  should be necessary in some sense to  the 

deduction.

To be more precise about what necessary means, we first consider the circumstances 

under which a hypothesis might be unnecessary. A hypothesis can be thought of as unnec­

essary if the deduction can be made without it; in particular, if a proof of the hypothesis is 

substituted for it in the deduction, which is not then contracted in a normalisation of the 

deduction, then the hypothesis is obviously unnecessary. The converse of this idea is that 

a necessary, or strict, hypothesis is one such tha t a proof substituted for the hypothesis in 

the deduction will be contracted during normalisation.

We determine strictness by the head-neededness of any proof substituted for a hypoth­

esis in a deduction, i.e., if all proofs of a hypothesis a substituted for it in a deduction are 

head-needed in normalisation, then the deduction is strict in the hypothesis. Neededness 

is insufficient to define strictness, as the following example illustrates.

E x am p le  4.8 Let Q : a he the proof

---------------------Axiom  Axiom
a ^  a \- a a (7 \- a
--------------------------------------------->• Elim

<7 —» (7, cr h  (7

The result o f substituting a proof redex P  : a for the hypothesis a in Q : a is the proof
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Q -.<T

[P]
----------------------Axiom •
( 7 —> < 7 h c r ^ c r  A h c r
----------------------------------------------------------E lim

C7 —> <7, A  h  C7

By Definition P  \ o is needed in Q' : a, but not head-needed according to Defini­

tion 4-8. However, P  : a may be subsequently erased depending on the proof substituted 

for hypothesis a a. In particular, P  : a will be erased if  the following proof

Axiom
cr h a

----------- Weakening
<7, (j h cr

— Intro
cr h  cr —> c

of a (T (where the discharged hypothesis is the one introduced by Weakening) is substi­

tuted for the hypothesis in Q : r .

As the above example demonstrates, although a proof substituted for a hypothesis may 

be needed, the hypothesis may yet prove to be unnecessary to the deduction as a result 

of proofs substituted for other hypotheses. This problem is avoided if head-neededness is 

adopted as the basis for the definition of strictness. By Definition 4.5, no axiom lies to the 

left of a head proof redex in the deduction, and therefore, no later substitution of proofs 

for hypotheses can result in its erasure. Therefore, we define a deduction to be strict in a 

particular hypothesis if all proofs substituted for tha t hypothesis are head-needed in the 

deduction.

A hypothesis in a deduction has a resource use of absence if it is unnecessary to  the 

deduction, as explained above. In this case, the basis for the definition of absence is that 

any proof substituted for the hypothesis is not needed in the deduction. T hat a proof 

substituted for the hypothesis is not head-needed is insufficient to establish absence, by a 

line of argument similar to tha t demonstrating tha t head-neededness is required to define 

strictness. If the proof is not head-needed but needed, then later substitutions of proofs 

may result in the proof being head-needed after all.
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Finally, the resource use describing non-strictness is simply the resource use of uncer­

tainty. If a deduction is non-strict in a hypothesis, then we have no information about 

how it win be used.

The following definition formalises this discussion about the semantics of resource use. 

Definition 4.13 Given the proof

[Q]

then for any a £ V , write Ç: Q : r  where u is defined as follows:

(i) u =  S VP : a . P  : cr head-needed in Q : rfP/cr]

(ii) u = A = ^  VP : <j . P  : <7 is not needed in Q : r[P/a]

(Hi) li =  N  VP : a . P  : a is or is not needed in Q : T[P/cr]

Sequents are now written with resource use annotations on hypotheses to indicate their 

resource use with respect to the proof in which they appear. For example,

[Q]

r,(7® h r

indicates tha t the hypothesis a  is used strictly in the deduction of r ,  i.e., tha t any proof 

P  : a  substituted for occurrences of the hypothesis a in Q will be head-needed in the 

normalisation of the proof Q : r[P/a] resulting from the substitution.

We also allow resource use annotations to be discharged along with the hypothesis 

parcel they annotate on application of the — Intro rule. For example,

[Q]

r,(7® h r
Intro
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introduces an implicative proposition which is strict in its first argument. Hence, in

: [f]
Intro ;

A h <7
Elim

r , A X ® h r

the sub-proof P  : a will be head-needed in the normalisation of the proof. Note th a t the 

strict use of the sub-proof P  : a  also affects the open hypotheses in the base A. In the 

conclusion of the —»■ Elim Rule, we write A^® to denote the fact tha t the resource use of 

the hypotheses in A must now take account of the strict use of the proof in which they 

appear. (This notation and the x operator are defined and explained in more detail in 

Section 4.2.2 below.)

4.2.2 Incorporating resource use into intuitionistic logic

We would like to incorporate resource use into intuitionistic logic such tha t the resource 

use made of hypotheses, and discharged with hypotheses to annotate implications, can 

be inferred within the existing rules. In this section, we present an extended system of 

intuitionistic logic in which resource use is represented and inferred for hypotheses. Also, 

we show tha t this system is sound, in the sense tha t if a hypothesis is annotated with 

resource use u in the conclusion of a proof, then any proof of the hypothesis substituted 

for it will be head-needed and needed according to the definition of u in Definition 4.13.

The extended system of intuitionistic logic with simple resource use, ILg, is presented 

in Figure 4.2. To denote deduction in a sequent in ILg, we use the symbol hg, e.g.,

r  hg (7

Where necessary, to establish the context as being ILg, we wiU also annotate bases and 

propositions, for example, Fg ,rg .

D efin ition  4 .14 The language of propositions in ILgîs given by the following grammar:

a  ::= « | 0 \ - ^ 0 2  

u ::= S I A I N
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A xiom
—c-------- Axiom
a  hs (7

S tru c tu ra l  R u les
r, (7% (7-̂  He T r Hg T
 — Contraction  r  Weakening

Hg T r , t 7 ^  H g r

Logical R u les

Intro r h s < ^ - ^ T  A l-s /  g  Cg <t

r  Hg (7—U r  r , A ^ ®  Hg r

Figure 4.2; ILg: intuitionistic logic and resource use

The language of propositions should also include resource use expressions, such as 

A  +  S, as annotations to the implication, but since these expressions evaluate to atomic 

values (such as S for this example), we do not include them.

The rules of ILg are essentially the same as those for intuitionistic logic, except tha t 

values of S annotate hypotheses and the implicative connective Also, we add an extra

condition to the Elim rule, to reflect, for example, the fact tha t a proof of the strict
S . . Nimplication a — >-cr can be substituted for the non-strict hypothesis <7— >a. The condition

to  — Elim makes use of an ordering Cg over propositions which is induced by the ordering 

Cg over values in S.

D efin ition  4.15 A partial ordering Cg on propositions in ILg is defined as follows: 

a  Cg o
i  / J / I ^  .

(7— > r  Cg a  — > T  ^  (7 Cg (7,T Cg T ,2 Cg ;

(where a denotes an atomic proposition).

E x am p le  4.9 The following are examples of the ordering between propositions induced by
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Çs;
(T-^T Çs ( 7 ^ T

One im portant feature of the ordering Çg is its anti-monotonicity in the first argument 

to the implicative connective. For example, see the second instance given in Example 4.9 

above).

W ithout this coercion, we would be unable to produce, for example, a proof tree with 

a proof of < 7 -^ r  as the minor premise and a proof of ( c r - ^ r ) - ^ 0  as the major premise 

in an application of Elim. But with the current —> Elim rule, we can have

T fIntro
r  he (cr-^r)-^<^ r  he cr-^r cr-^r Cc a - ^ T

r , A ^ ^  hg<^

Note tha t the definitions of Contraction and —»■ Elim in ILg require operators -h and 

X over resource use values in their conclusions. These operators over resource use domain 

S are as defined in Table 3.1 of Chapter 3. The notation used in the conclusion of the 

Elim rule is defined as

€ A}

E x am p le  4.10 The following proof tree is an example o f a deduction in ILg (for reasons 

of presentation, the side-condition to the —> Elim has been omitted in this example):

Axiom
<7 hg a

—c— T---------Weakening
( 7^, r  hg G

— -------- %------ ,------------------- s ' " ---------^  Axiom  Axiom
<7 he  r — >G (cr— )-C7) he  a — cr he  cr

^ Intro          ̂ Elim

( ^ ^ ^ ) S x S ^ ^ S x S x S  .^SxA ^
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Note that the conclusion o f the proof simplifies to

Hg <7

by the definitions of +  and X.

4.2.3 Soundness of resource use inference

We would like to show that if an open hypothesis in a proof Q : r  has resource use 

u according to Definition 4.13, then u is the resource use annotation attached to  the 

hypothesis by the rules of ILg. However, this is not the case, as the following example 

shows. Let Q : T he

g G g - ë  Axiom
( <j — > t )  f- < 7 — cr h  cr cr C cr
 -------------------------------------  =-. Elim

The open hypothesis cr in the conclusion of this proof has resource use S x S = S, yet it is 

obvious tha t no proof redex replacing the axiom introducing cr in this proof will be head-
g

needed. The problem is clearly that the axiom cr— >r contains more precise information 

about the resource use to be made of any argument to the implication than is assumed by 

the definition of resource use made in Definition 4.13.

To resolve this mis-match, we introduce a variation on ILg in which the resource use 

contained in implicative propositions introduced as axioms is non-specific, i.e., is N . This 

system is called ILgy (where /  stands for first-order) and is given in Figure 4.3.

In ILgy, the propositions introduced by Axiom are treated by the operator | ,  defined 

over propositions as follows:

o; J, =  O!

{ (T -^r )  I = a i  - ^ T  i

The effect is to ensure tha t all implications introduced as axioms now contain only the 

resource use value N.
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A xiom

a i^l-g a i
Axiom

Structural Rules
r,CT*,(7  ̂ hg r  

r,(7*+^’ hg T
Contraction Weakening

Logical Rules
H gr 

r  Hg G - U r
Intro r  hg G -^ T  A hg (J G Ç. G 

r , A ^ * h g r
Elim

Figure 4.3: System ILgy for first-order resource use in intuitionistic logic

A definition of soundness of inference of resource use might be as follows: let r  be a 

provable proposition in ILgy by proof Q and set of open hypotheses F, i.e.,

[<31

r i - r

Then for any g , such tha t G F: let u be the resource use tha t g receives according to 

Definition 4.13, based on the head-neededness and neededness of any proof redex substi­

tu ted  for the axiom introducing g (if any) in Q : r. Then soundness would state tha t the 

resource use inferred for g by the rules of ILgy, i.e,, v, is equivalent to the resource use u 

for G according to Definition 4.13.

Unfortunately, it is relatively simple to construct an example to show tha t this is not 

the case in ILgy. In fact, instead of an equivalence we have an approximation. We take 

the following proof tree as an example. (Note tha t for presentation purposes, rule labels 

have been omitted, as well as application of J, in the Axiom rules, although the effect of 

this operator is shown):
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( 7 h  ( 7 - ^ < 7  (7® h  (7 <T Çg <7

( 7 - ^ ( 7 ^ ,  ( 7 ^  h  a

( 7 - ^ ( 7 ®  h  ( 7 - ^ ( 7  cr® h  (7

, , N \ S N , S  s  ^  Nh (cr— >̂<7j— >̂(7— >a r  a — ya a — >a Çg a — >a

I N S ih <7— ya a V a a  Ce a

  —

which normalises by contraction of the head proof redex to

<7® h  <7

s  —s -----h a — ya a \~ a  cr Çg (7

cr® h C7

h cr-^cr cr® h cr cr Çg cr

cr® h cr

which, in turn, normalises by contraction of the head proof redex to

C7® f- cr

s ------- —s -----h cr— ya cr h cr cr Çg cr

cr® h  cr

which reduces to the head normal form (and normal form)

cr® h  cr

Any proof redex substituted for the open hypothesis a  in the conclusion of the orig­

inal proof will therefore become the head proof redex and therefore head-needed in the 

normalisation to head normal form. But ILgy is unable to deduce this in the original 

proof tree, deriving instead the less informative resource use N . The reason for this is 

the (lack of) interaction between the coercion premise between propositions for Elim
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and the derivation of resource use in the conclusion of the rule. The coercion premise 

allows proofs of propositions tha t are more specific in their resource use information to  be 

used as the minor premise to — Elim than is specified by the argument component of the 

implication which is the major premise. However, it is the resource use behaviour of the 

argument component of the implication that prevails in the conclusion, not tha t of the 

minor premise. As a result, given a proof

[Q]

and its normalised form

[«']

r ' L

then, for all G <7̂  G F, we have u Cg v.

Consequently, we define soundness as an approximation, rather than an equivalence, 

for ILgy. Theorem 4.2 below demonstrates the soundness of the inference of the resource 

use of hypotheses in ILg y . We write Q : t  [= to  mean tha t £ Q : r  according to 

Definition 4.13 above.

T h e o re m  4.2 Resource use soundness o/IL gy . I f T \ - ^ r  is provable in ILgy by proof Q, 

then

V<7̂  G T.Q : r  1= cr" =î> wCgu 

P ro o f  The proof is by structural induction over the height of proofs in ILgy.

Case 1: Let Q : r  be

 Ô Axiom
<7 iS |-s  <r i
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For any proof redex P  : cr, P  : cr occurs as the head redex in Q : crfP/cr], and hence is 

head-needed. Therefore, Q : a \= By the reflexive property of Ç, we have SCgS.

Case 2: Let Q : r  be

[Q'\

r ,< r^  hs r
Weakening

By induction,

Vf G r.Q' : r  h  f  => jEg*

For any proof redex P  : <7, by substitution Q : r[P/a] = Q' : r[P/<j]. Since ct has been 

introduced by Weakening, it is not an open hypothesis in F (other occurrences of cr G F 

are distinct). Therefore,

Q' : r[P/a] = Q' : r

i.e., P  : cr is erased in Q : r. So we have Q : r  \= Again, by the reflexive nature of 

Ç, we have ACgA.  Also, any proof redex R  : (/> to he substituted in Q : r  for an open 

hypothesis f  G F, will be substituted in Q' : r ,  and hence we have that

V f  G T.Q : r  f= f  =î> jEg*

Case 3: Let Q : r  he

[Q']

F , c r \ ( 7 ^  f - g  T
Contraction

By induction, Q' : r  |= cr* /Cgz  and Q' : r  \= (t  ̂ => / E g J  for the two distinct parcels 

of a in the premise. If ê =  S, then, for all values of i' such tha t Q' : r  [= c r \  any proof 

redex substituted for cr*"*"-̂  in Q : r  will be head-needed as a result of being substituted for 

<7* in the premise, i.e., the resource use of the contracted hypothesis a  in the conclusion is
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s .  Similarly, if j  =  S, then o in the conclusion also has resource use S. Similar arguments 

hold for the other possible combinations of values in 5 for i and j  tha t show tha t if i =  N  

and j  ^  S (and vice versa), then the resource use of the contracted hypothesis is N , 

and that it is A  only if both i = A  and j  = A .  An examination of the definition of +  

shows tha t in each case i +  j  produces the result required for the resource use of a in the 

conclusion given all possible values for i and j  in the premise. Hence Q : r  \= , and

by the monotonie property of + , we have that i' +  j 'Q ^ i  +  j .

Case 4: Let Q : r  he

[P]

i-g T

r t-s (T -^ 7
Intro

By induction,

P  : r  1= fT* and 6 T.P  : r  |= ^

The discharge of the hypothesis cr* does not affect the resource use of other hypotheses in 

r  (any substitution of a proof redex R : (f) ioi e. hypothesis ^  G F takes place above the 

conclusion to  Q : T ,  i.e., in P i t ) .  Therefore, we have

G r.Q  : r  1= => / Ç g i

Case 5: Let Q : r  be

[■Pii [ i) i

F hg a - ^ T  A hg a a  Cg a 

F,A>^*l-gr
Elim

By induction.
G F.Pi : a - ^ T  \= cfp / C g j

G A.P2 : <7 CgA:
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The resource use annotations of those hypotheses in F are preserved in the conclu­

sion, since the head-neededness or neededness of any proof redex substituted for such a 

hypothesis in Pi : a - ^ r  is preserved in Q : r .  For those hypotheses in A, we need to 

show tha t Q : r  1= V' where k C.^k and i This follows by induction on the rule 

used to produce the implication <r— either an application of — Elim or Axiom, and 

the monotonicity of x.

□

4.3 R elationship w ith  resource use in the A-calculus

We would like to show tha t the resource use inferred for propositions in ILgj  is equivalent 

to  the resource use inferred for A-terms by >g. For example, given a proof

[ f]  

r,a ' hg r

then in the corresponding A-term Ÿ (P : r ) ,  has resource use i, i.e., $ ( P  : r )  > g#f : i.

However, as the following theorem and its proof demonstrate, this is not entirely the 

case. We are unable to demonstrate the existence of an equivalence. Instead, we show that 

the resource use inferred for propositions in ILg y is related to tha t inferred for variables in 

A-terms by >g by the ordering Cg over S. Taking the proof P  : r  in the example above, 

with open hypothesis a \  we have

Ÿ (P : r )  >g%f : i'

such tha t i' Cg i.

T h e o re m  4.3 Given a proof

[P]

r  hg r  
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then

V(7̂  G r . Ÿ ( f  : r )  : u u u

P ro o f  The proof can be given directly by induction over the height of the proof P  : r  and 

the structure of the corresponding A-term Ÿ (P : r ) ,  but also follows from Theorem 4.2 

on the resource use soundness of of ILgy and Theorem 4.1 on the equivalence under the 

Curry-Howard isomorphism of needed and head-needed redexes in proofs and A-terms.

□

4.4 R esource use in intuitionistic logic in detail

In this section, we discuss how to provide more detailed resource use information other than 

simple strictness and absence. We briefly consider how neededness and head-neededness in 

intuitionistic logic can be extended in the manner of Section 3.3 in Chapter 3 for A-terms, 

and then deflne more complex resource use domains for intuitionistic logic. In particular, 

we deflne IL^, in which the resource use domain of strictness and absence is augmented 

with a linear resource use value.

4 .4 .1  E x te n d in g  n e e d e d n e s s  a n d  h e a d -n e e d e d n e s s

In order to  deflne more detailed resource use domains for intuitionistic logic, we must deflne 

degrees of neededness and head-neededness, just as was done for A-terms in Section 3.3 

of Chapter 3. Rather than the exhaustive process followed in Section 4.1 above, we 

describe briefly how to measure the degree to which proof redexes may be needed or head- 

needed. The im portant concepts, such as neededness and head-neededness, have already 

been deflned for intuitionistic logic, and the relationship with degrees of neededness and 

head-neededness in the A-calculus follow as a result.

We introduce the following notation to denote the number of descendants of a proof 

redex normalised on a particular proof normalisation sequence:
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N o ta tio n  4.1 Let P  : a be a proof redex in a proof Q : r . Let S  be a proof normalisation 

path taking Q \ r  to Q : t . Then the descendants of P  : a normalised on S  is denoted by 

{P  : a }s , and the number of descendants normalised by |{P  :

In particular, {P  : (j}c and {P  : <j}-̂  denote the descendants of P  : cr normalised on 

the leftmost and head normalisation paths to leftmost and head normal form, respectively.

It can be shown tha t given a proof redex P  : cr tha t is needed in a proof Q : r , then 

if P  : O' is replaced by any other proof redex P  : a then P  : cr was also needed. As 

the following theorem demonstrates, in general, it is not the case tha t if n descendants 

of P  : <7 are contracted in the leftmost normalisation of Q : r  then n descendants of any 

other proof redex P  : cr replacing it in Q : r  wiU be contracted.

T h e o re m  4.4  Let P  : a be a proof redex in Q : r . Let S  be a normalisation path o f Q : r .  

Let P ' : (7 be any other proof redex o f a replacing P  : cr in Q : t . Then

|{P  : o ja l = |{P ' : =  n

P ro o f  We assume that

|{P  : = n |{P  : =  n

is true, and then provide a counter-example to invalidate the assumption. Let

Q : {a ^  a) ^  a ^  (7

be the IL proof

---------------------Axiom  Axiom
c r ^ c r h c r —>cr crhcr

-------------------A x io m --------------------------------------------------Elim
(7 ^  a  (7 cr cr—>cr, <t I“ (7
------------------------------------------------------------------->• Elim

c r—>̂ cr, <7—>-cr, c rh f j
--------------------------- Contraction

(7 —> <7, cr h cr
Intro

C7 —» C7 | -  C7 ^  (7
Intro

h (cr —)■ cr) C7 C7
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and let P  : (7 —> <7 be the proof

Axiom  Axiom
(7 a  h  a  (7 (7 h  cr

I n t r o -------------- >• Intro
h (o- ^  O') ^  (cr —̂ O’) I- (T (7
—         ̂ Elim

h  a  (7

in the proof R  : cr cr a s  follows:

[Q] [f]

h(<7—>( j )—>^<7-^(7 h e r d e r
— ---------  ^Elim

(7 cr

In the leftmost normalisation of proof R  : a ^  a two descendants of P  : cr —>• cr are 

normalised (the details of the normalisation are omitted). Let P' : cr a he the proof

 Axiom
(7 h <7

Axiom  Weakening
(7 —>-a’ h c r —»<7 c r , a  h  (7

I n t r o -----------------  ̂ Intro
h (a a) (a a) cr h a a
— ---------       ̂ Elim

cr h cr ^  cr
in which the occurrence of a discharged in the right-most branch of the proof tree is the 

one introduced by Weakening.

Let P * : ( 7 —>-(7 b e P : c r —>-cr with P' : a a replacing P  : cr ^  cr, i.e.,

[«1 [p'l

h ( c r ^ c r ) ^ c r —>• h e r d e r
— ---------   ̂ Elim

(7 h cr cr

In the leftmost normalisation of this proof, just one descendant of P  : cr cr is normalised 

(again the actual details of the normalisation are omitted), thus contradicting the initial 

assumption.

4.4.2 Linear resource use in intuitionistic logic

In this section, we define a system of resource-aware intuitionistic logic similar to ILgy. 

but whose domain of resource use is L (see Section 3.4.1 of Chapter 3).
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A xiom
 T----------- Axiom
(a  i)L  l - s ^ i

S tru c tu ra l  R ules
r ,  (7% £T-̂  H e  T  r  H g  T
 —  Contraction —   - r  Weakening
r,<r’+^l-Sr r,(<Ti)^l-Sr

Logical R u les

_  Intro r h g < ^ - ^ ^  Ahs<^'  f ' S  ?  
r  Hg <7 - ^ r  r,A^* H g r

Elim

Figure 4.4: IL^y: intuitionistic logic with linear resource use

Figure 4.4 presents the system IL|_y of intuitionistic logic with resource use annotations 

from domain L. This system is essentially the same as ILgy, except tha t the resource use of 

a hypothesis introduced in the Axiom is L, since any proof redex substituted for the axiom 

will obviously be normalised just once on the head and leftmost normalisation paths, and 

because multiple uses only arise from application of the Contraction rule. An ordering Ç l 

over propositions is also defined, as follows.

D efin ition  4.16 A partial ordering Ç l on propositions in /L l /  defined as follows: 

a a

a — »-r Ç l <T— >r r  , i  Q u

(where a denotes an atomic proposition).

The definitions of resource use values in domain L are given in Definition 4.17 below.

D efin ition  4 .17 Given the proof

[Q]

r L
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then for any a e T, write Ç. Q : r  where u is defined as follows:

(i) u = L  =>- VP : (J . \{P : (i}y\ =  1 in : r[P/cr] and

|{P  : a}c\ =  1 in ^cQ  ' r[P!a]

(ii) u = S => V P : e  .|{P  : a}y \ > 1 in • T[P/(r] and

|{P  : > 1 in : r[P/a]

(Hi) u = A  => V P : e  .\{P  : =  0 in : r[P/a] and

|{P  : a}c\ = 0 in & Q  : r[P/a]

(iv) u = N  =>- MP : a  .|{P  : > 0 in ^n Q  : T[P/(r] anc?

\{P  : > 0 in : r[P /a ]

4.5 R elated  work

In [3], Baker-Finch describes a system of intuitionistic logic P g , derived from Relevant 

Logic [31], which has three versions of the implication operator: —»• for strict or relevant 

implication, for absent or constant implication, and D for ordinary implication. In 

this system, tags are attached to hypotheses at the point they are introduced in order to 

determine which implicative operator should be used to discharge them. For example, if a 

hypothesis is introduced by Axiom, then it is given a relevant tag and if introduced by 

Weakening, the tag assigned to the hypothesis is the empty string €. An additional tag of 

? is used to indicate non-strictness. Hypotheses with tag e are discharged using , and 

those with tag are discharged using —

The relationship with our system ILgy is immediately apparent, since the tags e, 

and ? used by Baker-Finch intuitively correspond to the resource use annotations S, A , 

and N , respectively. Hence, - ^ ,  and are respectively equivalent to — and

D in Baker-Finch’s system R ^ . Moreover, intuitionistic implication in P g  only occurs as 

a result of implicational axioms. The ? tag is not attached to a hypothesis by the Axiom 

rule, by Weakening, or by Contraction, but occurs only as a result of taking part in the 

minor premise to  D Elim, the elimination rule for D. Therefore, D is either introduced 

in an implicational axiom or as a result of the discharge of a hypothesis which acquired 

the ? tag by taking part in a minor premise to D Elim for an axiomatic occurrence of
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D. This has obvious similarities with our restriction in ILgy tha t implicational axioms 

must only contain a resource use of N . An im portant difference, however, is tha t in R j ,  

implicational axioms can be made using implicational arrows other than D. Also, another 

difference is tha t Contraction in only takes place over hypotheses assigned the same 

tag. By contrast, in ILg, Contraction is defined over hypotheses with different resource 

use annotations using the operator +•

In ILg, the semantics of the resource use annotations for hypotheses and implications 

are defined with respect to neededness and head-neededness for intuitionistic logic proofs. 

In addition, neededness and head-neededness, and subsequently, resource use, in intuition­

istic logic are related to their corresponding concepts for the typed A-calculus through the 

Curry-Howard isomorphism. Baker-Finch, however, does not define the semantics of the 

tags in R jy  other than #  which is the tag of relevant implication. Nor are the tags related 

to the reduction behaviour of A-terms.

Baker-Finch also describes in [3], and with Wright in [94], an extension to  R j  which 

uses the set of natural numbers N as the domain of annotations for hypotheses (thus 

creating an infinite family of implications for each value n G N, for example,

—̂  and so on). We have not extended our resource-aware system of intuitionistic logic 

to  cover this domain of annotations, primarily for practical reasons. Wright has already 

discussed a resource-aware type system similar to such a logic in [93], and has mentioned 

th a t unification in an implementation would be undecidable.

We should also mention Girard’s linear logic [36] (see also Wadler [89] and Abramsky 

[1] for good introductions to linear logic). It would seem tha t IL[y and linear logic are 

related, since they both contain a notion of linearity. However, it is easy to produce 

simple proofs in IL^y with linear hypotheses (i.e., hypotheses annotated with L) th a t are 

not linear in an equivalent linear logic proof. The reason is tha t in IL|_y applications of 

the Contraction rule may preserve linearity. For example.

h r
Contraction

r , ( j ^  h r
In linear logic, however. Contraction is only permitted over non-linear hypotheses, i.e., 

those to which the ! operator is applied (as is also the case for Weakening). Another way
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of looking at this difference is that in linear logic, linear hypotheses are those whose parcel 

is limited to  exactly one occurrence of the hypothesis by forbidding Contraction over it (if 

we ignore the similar restriction on Weakening). In IL|^y, however, it is not the parcel size 

tha t determines linearity, but how many of the descendants of proof redexes substituted 

for the occurrences of a hypothesis in a parcel that will be head-needed and needed.

4.6 Sum m ary

In this chapter, we have defined neededness and head-neededness for intuitionistic logic. 

We have also shown the equivalence of these definitions with neededness and head-neededness 

in the typed A-calculus by means of the Curry-Howard isomorphism. Subsequently, we 

defined resource use for intuitionistic logic for strictness, absence, and non-strictness in 

ILg. However, it was shown that in order to prove the soundness of resource use infer­

ence, it was necessary to restrict the resource use of implicative axioms, leading to  the 

definition of the logical system ILgy. The relationship of resource use in ILgy and the 

typed A-calculus was shown to be an approximation based on the domain ordering Cg, 

rather than an equivalence, because implicative propositions in the system ILgy were less 

expressive in terms of resource use annotations than types in the typed A-calculus.

We also outlined how the definitions of neededness and head-neededness in intuition­

istic logic could be extended in the same way as neededness and head-neededness were 

extended for the A-calculus. Subsequently, we showed how resource use information could 

be extended to include, for example, a linear resource use value.
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C hapter 5

A resource-aware type inference  

system

In this chapter, we describe a resource-aware type inference system for the typed A- 

calculus, based on the resource-aware systems of intuitionistic logic discussed in Chap­

ter 4. In this system, types inferred for A-terms contain information about the resource 

use behaviour of those terms with respect to their parameters, where resource use is as 

defined in Chapters 3 and 4. For example, the type a - ^ r - ^ a  is the type of functions 

with a strict resource use in their first parameter and a resource use of absence in their 

second parameter, for example, a A-term such as Xx.Xy.x.

We present the type inference system as a generic framework tha t can be parameterised 

over any of the resource use domains we have seen so far, simply by redefining the resource 

use constant labelling axioms and the x and operators for the appropriate domain. 

Furthermore, the basis of the type system we describe here are the first-order systems of 

resource-aware intuitionistic logic, such as ILgy, presented in Chapter 4. There, for ILgy, 

we showed tha t the resource use inferred for hypotheses in ILg y proofs corresponded to  the 

resource use of free variables in equivalent A-terms only up to approximation. As a result, 

in this chapter, the resource use inferred for A-terms by type inference approximates the 

actual resource use of those A-terms, in the sense tha t, for some term Xx.M,  the resource 

use u inferred by the type system for z in M  and the actual resource use u of x in M
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—7----------------------------Axiom
J,, a; : (cr J,)*̂  h a; : (7

r , a; : (J* h M : r
Intro

r  h Xx.M : cr—

T \- M  : cr— A h A : cr cr Ç cr 

r + Â* M N : t
Elim

Figure 5.1: a resource-aware type inference system

(given, for example, by >g) are such tha t v Q u (where □ =  Cg if the resource use domain 

is S).

In the rest of this chapter, we describe the resource-aware type inference system, and 

discuss its properties, for example. Subject Reduction in the light of approximate infor­

mation. We show that the type system is sound with respect to the simple semantics 

(see Chapter 2, Section 2.5.1) and to the semantics of resource use for A-terms (see Chap­

ter 3). Finally, we discuss an extension to the type system to accommodate Milner-style 

let-polymorphism.

5.1 Resource-aware typ e inference

In this section, we describe a system of resource-aware type inference which follows from 

the application of resource-aware intuitionistic logic (discussed in Chapter 4) to A-terms 

as type inference rules in the same way tha t conventional intuitionistic logic is applied as 

a type inference system for A-terms in the form of Curry’s system of F-deducibility under 

the Curry-Howard isomorphism.

Figure 5.1 presents the resource-aware system of type inference Fj. based on the first- 

order systems of resource-aware intuitionistic logic, such as ILgy, in Chapter 4. We derive
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the type system from the logical system as follows: at each stage in a proof, the A-term 

to  be typed represents the encoding of the proof so far according to the Curry-Howard 

isomorphism. The inference system is presented as a general framework tha t can be 

parameterised over any of the resource use domains considered in Chapters 3 and 4, so 

th a t, for example, is the inference system that infers resource use values in domain S, 

and rjr infers resource use values in domain L. In each case, the definition of the -f and 

X operators is the definition of those operators associated with the relevant resource use 

domain.

The language of resource types, i.e., the type expressions incorporating resource use 

values, is given by the following grammar:

a  ::= a  | 0 1 - ^ 0 2

where a  ranges over types, a  over atomic types (type constants and type variables), and 

u over values in the relevant resource use domain, for example, S.

The variable typing rule in the generic system Fr is defined as

Axiom
J., a: : (a  h a; : cr

where the annotation c to the hypothesis or type assumption a: : (cr J,) is, for example, S if 

the type inference system is parameterised over S and L if it is parameterised over L. Also, 

the resource use annotations of functionally-typed variables introduced by the Axiom rule 

are set to N  using the J, operator, as defined for ILgy (see Section 4.2.3, Chapter 4). 

The Axiom rule also combines both the introduction of a variable and its type with the 

Weakening of other hypotheses in the assumption set, which we denote by | ,  where 

is a set of type assumptions x : 0* such that i = A . The meaning of J, is as follows:

i= {x : (0 i ) ^ \ x  : (i>  ̂ e  r^}

In the rest of this chapter, we will adopt the convention of omitting J, from presentations 

of prooftrees in examples, showing instead, where necessary, its effect on functionally-typed 

hypotheses.
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In the —> Elim rule, we perform Contraction on the common hypotheses between the 

bases of the two sequents which are premises to the rule, identifying those hypotheses by 

variable names. Before we can contract two hypotheses tha t appear in the two bases for 

the same variable, however, we must take account of the effect tha t application of the 

function to  its argument has on the resource use of those hypotheses in the base A of the 

premise typing the argument. We denote the changes in the resource use of the hypotheses 

by defined as

{x  : (fP '̂^\x : ^  € A}

Contraction takes place over common variables in the bases F and A^* using the +  op­

erator. The contraction of bases F -|- A^* in the conclusion of the typing rule — Elim is 

defined as follows:

{æ : I a; : (T-’' e  r , x  : cr* €  A""} U ( F A  A"")

(where F A  A^* is the symmetric set difference of the bases). Both -f and X are as defined 

for the relevant resource use domain in Chapter 3.

Also in — Elim, the ordering relation Ç defined over propositions in Section 4.2.2 of 

Chapter 4 appears in the third premise to the rule as a coercion relation over resource 

types. This follows the definition of the logical rule —v Elim in ILgy; the definition of Ç 

over resource types is

a  Ç a

(7— yr Ç a — >r o' ^(7", T Ç g T , 2 Ç y

(where a  denotes an atomic proposition and Ç  is the ordering over the relevant resource 

use domain). As a m atter of terminology, if a type cr and a type r  are such th a t Ç T, then 

<7 is said to be a subtype of the supertype r. In Section 5.2.1 below, we give a semantics 

of the ordering relation and discuss in more detail the anti-monotonie property of the 

relation over function types.

5.1.1 Typing m ultiple occurrences of variables

Both Wright, in [93], and Baker-Finch, in [3], discuss the problem of typing multiple occur­

rences of variables. For example, consider the term Af . g { f I ) ( f ( K z ) ) .  The first occurrence
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s sof the variable /  could be assigned type (cr— >cr)— >-r, while the second occurrence could 

be given type (c r-^ c r)^ -^ r for its argument. The problem, therefore, is to derive a type 

for a variable tha t fits the context of each occurrence of the variable, where the context is 

provided by the arguments (if any) to the variable. In other words, we must provide a type 

for a variable such tha t, if the variable is used as a function, the argument components of 

the function type for the variable match the types of the arguments supplied to  the vari­

able. As the above example shows, different occurrences of such a variable may be given 

extensionaUy equivalent but intensionaJly different arguments, and so, the problem further 

refines itself to the resolution of the different resource uses of arguments to a functional 

variable. So far, two different solutions to this problem have been proposed, by Wright 

and Baker-Finch.

W right’s solution requires the extension of the type system to intersection types^ which, 

in the above example, allows the variable /  to possess both types, joined by conjunction. 

However, this is at the expense of the decidability of type inference. Type inference with 

intersection type is known to be undecidable [81], although a semi-decidable algorithm 

exists^.

A simpler solution has been proposed by Baker-Finch, which is to include intuition­

istic implication in the language of function types, along with coercion of types as a 

side-condition to the apphcation typing rule (see Figure 2.4, Section 2.6 of Chapter 2). 

This allows, for example, a strict function to be used where a non-strict function is ex­

pected. This is similar to our approach, based on the first-order resource-aware intuition­

istic systems described in Chapter 4, except tha t Baker-Finch’s system stiU allows for the 

possibility of introducing functional types as axioms with resource use information tha t is 

more specific than non-strictness.

^Hankin and Le Métayer [40] have described a non-standard type inference system for strictness analysis 

that uses lazily evaluated types to recover efficiency in the presence of conjunctive types. It is not known 

whether this approach can be applied to Wright’s type system to improve its performance.
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5.1.2 Exam ple typings

The following are examples of typings produced by the type inference system . 

E x am p le  5.1 The type assigned to Xx.x is

—  Axiom
X : (7^ [- X : a

Intro
h Xx.x : a -^ c r

E x am p le  5.2 The type inferred for the X-term Xx.Xy.x is

 Ô 1----------- Axiom
X : a , y  : r  x : a 
 >■ Intro

X : (J® h r - ^ a
Intro

h Xx.Xy.x :

E x am p le  5.3 Given the X-term Xf .Xg.Xx. fx(gx),  the inferred type is as follows. Let

[p]

f  : : cr^ h f x  : r -^ < ^

denote the typing

Axiom ------ ^-----------Axiom
/  : H z  : (rS I- z  : (T cr C g  cr
— ----------------  — ------. Ehm

/  : (c7- ^ r - ^ 0 )® , a; : j - S x N = N  |_

and let

IQ]

g : gx : t

denote the typing
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AxiomN s . N ----- sT ------q : a — h g : <7— >t x : a x : a a Cc a
-------------------------------------------------------------------------------------------— ------- .E l im

g : : j-SxN=N gj.

in the following derivation of the type for Xf .Xg.Xx. fx[gx):

[f] [Q]

/  : [ (7 - ^ t ^^4> )^,x : <7  ̂ h f x  : g : (<7-^r)®,æ : \- gx : t r  Cg r

/  : a; : <jN+(NxN)=N [_ j x { g x )  : <f)
 . Intro

Elim

/  : ,g : (c r^ i- r )^  h Xx. fx(gx)  :

/  : h Xg.Xx. fx{gx) :

h Xf.Xg.Xx. fx{gx)  :

Intro 

. Intro

5.1.3 Properties of the type inference system

In this section, we discuss properties of Fr. We show th a t Fr is as expressive as Curry 

type inference, i.e., that any term typable by Fr is Curry-typable, and vice versa; and that 

the inference of resource use by the type system corresponds to the resource use of terms. 

As we would expect, this correspondence is based on approximation, and follows from the 

work on relating resource use in ILgy and the typed A-calculus, covered in Chapter 4. 

Also, as a consequence, the Subject Reduction theorem does not hold in the form used for 

the Curry type system, i.e., types of terms are not preserved across reduction.

We show tha t every A-term which possesses a Curry type is also typable in the resource- 

aware type system Fr and vice versa. We first introduce a function T tha t translates 

resource types into Curry types by simply stripping resource use annotations from function 

types, defined as follows:

T (o) =  ot

T (fT -^ r)  =  T((j) T( r )

In the following theorems, \~c refers to typing in the Curry type system and \~r refers 

to typing in the resource-aware type system.
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T h e o re m  5.1 Let T \~c M  : a be a valid Curry typing. Then there exists a such that

Vz : € r .z  : £ V r and T{'ip) = <f>

and there exists Cr such that T((Jr) = a, such that F̂ . M  : is a valid typing in Fr.

P ro o f  The proof is by induction over the proof of F he; M  : <7. The Axiom and —> Intro 

cases are straightforward. So is the —> Ehm case, except tha t we must deal with the 

additional premise concerning coercion between types. By induction, we know tha t if 

T \~c M  : cr ^  T and A [~c N  : a are provable, then so are F^ h^ M  : <7̂ — and 

Ar \~r N  : a'j.. However, we must also show tha t Ç cr,.. This follows from a sub­

induction over the structure of a  as follows. If cr =  a , then <7̂  Ç cr̂  since Ç is reflexive

over atomic types. If cr = ^  ip, then, assuming the equivalences

_ » J  '  •  3 '(Tr — ^̂7*2 3<nd (7,. — (7,.̂

we require tha t

^r\ ^  ^T\ 5 ^T2 — ^^2 7 J E *

Since cr was discharged as a result of —> Intro oi a r  was introduced by Axiom, then

» _  N

Hence we have tha t j  Ç N  for any value of j .  For the same reasons, all resource use 

annotations in cr^ must be N. Similarly, the resource use annotations in cr^^ must be N , 

and hence

by reflexivity of Ç. Then ^  ^ t2 can be shown to hold by induction.

The following theorem shows that any term typable by Fr is Curry typable.

T h e o re m  5.2 Let Vr \ ~ r M :  Cr be a valid typing in Fr. Let there be a V such that

Vz : cr̂  E F^.z : T(<t) G F 

Then V  \~ c  M  : T { ct) is a valid Curry typing
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P ro o f  By a straightforward induction over the proof of Vr M  : Cj.. For the Elim 

case, and the premise Ç note tha t erasure of resource use annotations from types 

turns Ç into = , i.e., equivalence.

Theorem 5.3 states tha t the resource use of typing hypotheses inferred by the type 

system is an approximation of the resource use of the free variables of those hypotheses in 

the term  being typed. This theorem is essentially a restatement of Theorem 4.3 given in 

Section 4.3 of Chapter 4 as it relates to ILg y (the system of resource-aware intuitionistic 

logic in which implicative axioms are introduced with resource use annotation N ), and 

hence we have not given a separate proof.

T h e o re m  5.3 /fF ,. is a valid typing in Fr then

\/x : (f)̂  e Tr .M  > z : /  =>- i' Ç i

P ro o f  Follows directly from the proof of Theorem 4.3.

It follows from this theorem that we are unable to show tha t types of terms are pre­

served over reduction steps. The reason why inferred resource use only approximates 

actual resource use in A-terms is that in applications of Elim information is lost in the 

derivation of resource use of hypotheses in the conclusion to the rule when the argument 

has a more specific type than tha t expected by the function. Therefore we expect, for 

example, tha t the type of a term not in normal form and its type when it is in normal 

form wiU not be the same, although this difference can be explained solely in terms of the 

resource use annotations.
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5.2 Soundness o f typ e inference

In this section, we prove the soundness and completeness properties for the resource-aware 

type system Fr.

5.2.1 The sem antics of resource types

The semantics of resource type variables is defined by an environment v :: T ypeV ar  —̂ 2^ 

which maps type variables to subsets of D (where 2^ is the powerset of D). We define a 

semantic interpretation of resource type expressions |  of type expressions as follows

l a j t u  = u{a)

= { f  e D fie .e  {fe)  A f  ^  i}

For Curry types, membership oi j3 ^  a depends only on the applicative behaviour of 

a functional element d, i.e., d is a member of  ̂ iff for all values e in the type (3̂  the 

application of d to e produces a value in the range type a. For resource types, we similarly 

define membership according to appHcative behaviour of functional elements but qualify 

membership according to the operational behaviour of tha t element, so th a t a value /  

belongs to  a - ^ r  iff its applicative behaviour is as for Curry types and its operational 

behaviour as regards its arguments is congruent with the resource use i annotating the 

function type, as defined by the =  operator (see Definition 3.4, Section 3.2 of Chapter 3).

5.2.2 Satisfaction for the resource aware type system

Satisfaction establishes a correspondence between assignments of types to terms and the 

inclusion relation between the term and type semantics (see Section 2.5.1 of Chapter 2 

for satisfaction in Curry type inference). For resource types, we use the same notion of 

satisfaction, but extended in order to show that the resource use of hypotheses in a type 

judgement is also satisfied with respect to the A-term being typed.

A type assignment x : <7* is satisfied by a model D = <  D, -, |  ] > and environments 

rj :: T erm V ar  D, f/ :: TypeVar  —>■ 2^ if G A base F of such type
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assignments is satisfied iff all its members are satisfied. A typing F h M  : cr is satisfied if, 

for all environments rj, u  satisfying F, then

{Mj^r j  G IcrltU and Vz : G F.[M];^77 ï> : i i Q j

This definition of satisfaction also takes into account the satisfaction of resource use an­

notations of hypotheses with respect to the semantics of resource use given in Chapter 3. 

Note tha t satisfaction of resource use annotations to hypotheses is defined using the or­

dering relation Ç because we have only approximation, not equivalence, between resource 

use in the type system and resource use in A-terms. If a typing F h M  : cr is satisfied 

according to this definition, then we write V \= M  : a.

5.2.3 Soundness

T h e o re m  5.4 (Soundness of resource-aware type inference)

T \ - M : c r ^ T \ = M :  (7

P ro o f  The proof of soundness for resource-aware type inference is by induction over the 

structure of A-terms.

C ase  1 : M  = X

By the Axiom rule.

Axiom
F“̂  I, X : (cr h a; : (7

where F ^  = yi : (f)^.. .yn : any rj, u satisfying F ^ , z  : also satisfies x : cr. Also, by

rule Vari of > ,

X t> X : c

and, by rule Var2 of t>

Vy G dom (V ^).x  t> 2/ : A
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Therefore,

r ^ ,  a; : \ =  X  : a

Case 2 : M  = Xx.M.

By induction,

r ,  a; : (7* h M  : r  r ,  X : (7* \= M  : t 

which, by definition, implies

> x : /  =>- i 'c i  and My :(fP e T. lMJ^r j  t> y : j '  ^  j Q j  

By definition of the term model

G IrJiU =^Mae l ( ^]MlM])^r) ' [x  a] G 

which can be rewritten as

Va G I -il >^x.M I ̂ Tj' • a) G

and consequently, we have

IXx.Mj^r]'  G l (T-^T}^u

C ase  3 : M  =  Mi Mg 

By induction we have

r  h Ml  : <7— => r  1= Ml  : <7—

A h Mg : (7 => A [= Mg : a

i.e., tha t

[ ^ i Ia^ ^ Vx : G r.[M i];^7; t> X : /  = 4 ^ /□ ;

[Mg];^77 G and V?/: G F .[ Mg ]; t̂7 >  y : A;'=4-fc'cfc

By definition of the type semantics, we have

Va G • a G [ r ]^ i/
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which implies tha t [ Mi • [ M2 Jx’’! ^ I and hence that

[M i M2];^77 G (5.1)

For the typing hypotheses in A, rename the term variables y i , . . . ,yn € dom{A) to fresh 

variables wi , . . . , Wn.  If Xz .M[ G [MiJ;^?/, then rule Appi of t> applies for each w : 

with conclusion

[  M l  M 2 Ix'^ > w : A  + {k' X i')

where A follows from the fact tha t w ^  FV{Mi ) ,  and If zM[  . . . M^  G [M i

then rule App2 applies with conclusion

[  M l  M 2 Ix'H > w : k' li A

Furthermore, for any y  G dom (r), we have, by Lemma 3.8, that

[ Ml  M2 1;̂  77 > y : j + l

where ^ G F and f  Ç j ,  and if y G dom(A), then Z i s & ' x  i ot  k' X N  from above. 

If y ^  dom(A), then Z is A where A is the identity for + . By definition of +  and X over 

bases, therefore, we have

r  +  A^* 1= Ml M2 : T

□

5.2.4 Principal types in Fr

In Section 2.5 of Chapter 2, principal types for Curry type inference were defined as type 

schemes from which aU valid typings for A-terms could be obtained by substitution of type 

expressions for the variables of the type scheme. In this section, we show how principal 

resource types can be defined.

The use of the ordering relation Ç  in the —» Elim rule in Fr implies tha t a A-term may 

have many possible typings tha t differ only in their resource use annotations. This can be
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seen more easily if we replace the premise <r Ç cr to  the —> Elim rule with a Coerce rule 

as follows:
r  h M  : <7 a Ç T
--------------------------Coerce

r  h M  : r

W ith the addition of this rule to the type system, then (in f }-) the A-term Xf .Xx . f x  has 

the types

, N X N N{<7— >T)—

which differ only in the resource use annotation for the first argument of the function type. 

We see, therefore, that the set of valid typings for a A-term are given by instantiations of 

type variables and coercions of resource use annotations in function types.

To represent principal types in the presence of coercion, induced by the ordering over 

resource use annotations, we follow the approach taken by Mitchell in [73] (further devel­

oped by Fuh and Mishra in [33]) on type inference with subtyping. In Mitchell’s system, 

subtyping is used to take account of the possible coercions tha t may be present between 

types. For example, type Integerma.y be coerced to, or be a subtype of, type Real. Subtype 

relations, such as Integer Ç Real, are contained in a coercion set C, which is present as 

an additional component in typing sequent s. For example, the —>• Elim rule in Mitchell’s 

type inference system is

C; r  h M  : <7 —>■ r  C ] R \ ~ N : g

-------------------------------------------------  ̂ Elim
C \ V , k \ -  M N  : r

The Coerce rule uses derivation over the coercion set as follows

C \ V \ - M : a  C h a C r

C\V\ -  M  : r

where the rules for deriving coercions are as follows:

Coerce
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a ç  a

a Ç T T Ç (j) 

a Ç(j)

CTi Ç a T Ç Ti 

r T ç  ai T

Reflexivity

Transitivity

Function

A coercion <7 Ç r  is provable from a coercion set C,  written C h <7 Ç r ,  if it can be derived 

from the coercions in C  using the above rules. By overloading the notation, (7 h (7 is 

taken to mean that

Vo’ Ç r € ( 7 . ( 7 f - < 7 Ç r

The type for a term  M  in this system of type inference with coercions is represented 

as a pair (C, cr), where (7 is a set of coercions between types and cr is a type expression 

for M.  A type { C ' , a )  is deflned as an instance of ((7, cr) if there exists a substitution S  

of types for type variables such that

(7 h S C  and a =  Sa

A type (C,a)  is therefore the principal type for M  if all valid typings of M  arise as 

instances of {C,a).

In our approach to principal types, we deflne coercion sets as containing relations 

between resource use values tha t represent the ordering of the relevant resource use domain. 

For example, if the resource use domain is S, then the associated coercion set R  over 

resource use values in S is

{SQ s N , A Q s !^}
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 ?--------------------Axiom
R] r  , X  : \- X  : a

R] T , x  : \- M  : T
------------------------ ;-------)■ Intro
R]T Xx.M  : a - ^ T  

R ] T \ - M : a - ^ r  R ] A \ - N : c r '  R [ - < j C a  

R]T + A^^ \- MN  : r
Elim

Figure 5.2: Frc> resource-aware type inference with coercions

However, we define the rules of derivation of coercions as operating over types as follows:

^  Q ^  Refiexivity

(7 Ç r  T C 4> 

a  C ( f >

<7-1 Ç  T C t i  i Q ^ j  

t ja — yr Ç a i — >Ti

Transitivity

Function

Therefore, a coercion d Ç r  is derivable from a coercion set R  over resource use values, 

i.e.,

R\ -  a Ç T

if it can be derived from the relations between resource use values in R  and the rules 

above.

In Figure 5.2, we present the revised system of resource-aware type inference, in 

which the coercion set over resource use values is made explicit. Types for A-terms inferred 

by this system are represented as a pair (R, <t), where R  represents the relevant resource 

use domain and a  is an inferred type expression.

We define type instance as follows: a type {R,(t) has as an instance (E , r )  if there
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exists a substitution S  of types for type variables such, tha t

R  \- T Ç S (7

A type (Æ, <7) for a A-term M  is therefore the principal type for M  if all valid typings

(J? ,r) for M  arise as instances of {R,cr).

The presence of the resource coercion set R  in the definition of a type for a term 

would appear to be superfluous, since, for example, we could define type instance as 

a Ç S t in which the resource use domain is implicit in the parameterisation of the type 

inference system. In the next section, however, we make use of the resource coercion set 

in introducing let-polymorphism into the type system, and so we take the opportunity to 

introduce it now.

5.3 Introducing let-polym orphism

Milner has shown in [72], and with Damas in [26], how a restricted form of parametric 

polymorphism^ f called let-polymorphism^ allows different occurrences of a variable in the 

body of an expression to be given different types.

The essence of let-polymorphism is tha t a variable may have different types at different 

occurrences if the argument to be substituted for the variable is already known. For

example, in the A-term {Xf .g{ f I ) ( fK)){Xz. z ) ,  the variable /  is typed as cr —> <7 at its

first occurrence and as (^  —> -0 —>• </>) ^  (^  —> -0 3-t its second occurrence. Milner

introduced a special syntactic construct to represent such situations, e.g.,

let f  =  Xz.z in g { f I ) { f K )

as weU as type-schemes in which type variables are bound in much the same way as term  

variables are bound in A-terms. Type expressions can then be substituted for such bound 

type variables to create instances of a type-scheme for a variable such as f i n  the example

^Parametric polymorphism arises from the second-order A-calculus, and was discovered independently 

by Girard [35] and Reynolds [79].
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above. This permits different instances of the type o f / t o  be introduced for each separate 

occurrence of the variable. Furthermore, the type system is extended to  include the two 

typing rules Gen and Inst, given as

r h M : < 7  r  t- M  : (7 a > r
Gen(a not free in T)  Inst

r  f- M  : Va.(7 r  h M  : r

In Damas and Milner [26], a type cr = Va.T is said to have as generic instance a type 

a = yp.T  if r  = r [0 /a ]  for some type <f) and is not free in a. Then instantiation is 

denoted hy a > a .

Wright has already shown how his resource-aware type system can be extended to

include let-polymorphism. In W right’s let-polymorphic type system, binding takes place

over arrow variables as weU as type variables, producing types such as

V .Va.V/?.(a -^i (5) a  /3

for the A-term Xx.Xy.xy.  Specialisation of this type takes place over arrow and type 

variables to produce types such as (cr =>■ r )  =>• cr =>■ r  and {a r) a r .

The introduction of W right’s approach into Fra however, has the result tha t types 

inferred for A-terms under the let-polymorphic system do not match types inferred for 

equivalent terms under Frc- To see this, take as an example the term

let f  = Xx.Xy.xy in X x . K { f I x ) { f { K z ) x )

The type of this term if we adopt W right’s approach would be

The equivalent term , without the let-construct, is Xx.K[{Xx.Xy.xy)Ix){{Xx.Xy.xy){Kz)x) .  

Under Fra this term has type

The difference is due to the restriction imposed on the resource use annotations of function 

types introduced by the Axiom rule to be N  (see Section 5.1 above).
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One solution to this difficulty is to not quantify over resource use. Under this proposal, 

the quantified type for Xx.Xy.xy would be

Vo:. . ( a - ^ / 5 ) a

Although the A-term is clearly strict in its first (functional) parameter, the resource use 

is N  in order to comply with the restriction that function types introduced as axioms are 

annotated only with N. Hence, the A-term

let f  = Xx.x in Xz . f z

is typed as follows: let

/  : V a .a -^ a  h /  : V a .a -^ a  
-----------------------------------------Inst

be denoted by

/  : \/a.ot-^OL h /  : x : \r x : cr

f  : V oi.a-^o;, z : \~ f z  : a

f  : Va.CK-^O! h Xz . f z  : c r - ^ a

[P]

f  : ' i a . a - ^ a  h Xz . f z  : <7-^(7
in

z : I- z : a

h Xx.x : a - ^ a
[f]

Gen
h Xx.x : ' i o i . a - ^ a  f  : h Xz . f z  : a - ^ c r  V a . a - ^ a  Ç  V a . a - ^ o ;
--------------------------------------------------------------------------------------------------------------------Let

let f  = Xx.x in Xz . f z  : a — >-<7

In this example, im portant strictness information concerning the term associated with 

the let-bound variable /  has been lost, and as a consequence, we are unable to deduce tha t 

the function is strict in the parameter z.

To circumvent this problem, we allow a limited form of quantification for resource use 

variables. In addition, the quantification is bounded, using an approach based on bounded 

quantification of type variables (see CardeUi and Wegner [17] for a discussion of universal 

and bounded quantification). The type system F r - l e t  which, incorporates let-polymorphism
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-------------------------------   :-----------Axiom
{S Ç z} U A □ / ;  ( r  lY ,  X : {a lY  X : (7

R ] T , x  : \- M  : T
------------------------------->■ Intro
R]T \- Xx.M  : a - ^ T

R]T M  : a - ^ T  R \ A . \ - N : a  R\ -  a C a

M N  '.T
Elim

i 2 ; r h M : t 7  R ’V \ - M : ct a > (t\
--------------------- Gent (û: not free in T)  — ---------  Instt

R]VY- M '.^ a .a  R\V M  : a

JÇ, w Ç i; r  h Af : (7 Æ; F h M  : Vw Ç z.o- R\~ u ü . v
----------------------------Genu  InstuÆ; rh  M : Vw □ z.a Æ; Fh M : a[vli]

Æ; F, ar : cr* h M  : r  R\N\- N  : g R\~ a Ç a

R]T + A^* \- l e t  X  = N  i n  M i t
Let

Figure 5.3: F r - l e t :  polymorphic resource-aware type inference

with bounded quantification over use variables is presented in Figure 5.3. The first new 

feature of this system is tha t variables are introduced in the Axiom rule with variables 

in place of constants for their resource use annotations. In the axiom rule, the base of 

typing hypotheses is now F^,x : g\  where /indicates the variables annotating the typing 

hypotheses in F. (Note tha t the resource use annotations in functional types introduced 

using the Axiom rule are still N .) The second new feature is tha t typing sequents are now 

of the form

R]T M  : G

where /2 is a resource coercion set, containing orderings u Q u  between resource use values 

and /o r variables. In the Axiom rule, we introduce a resource coercion set as {S Ç z}U A  Ç 

/ ,  where I  is the set of variables annotating the typing hypotheses in a base and

A Q I  = { A C j \ j ç I }
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In other words, the variable annotating the typing hypothesis for which the Axiom is a 

tautology is constrained to be a value of S or above in the resource use domain, i.e., a 

constant u such tha t S Ç u, and for the variables annotating the hypotheses in F, i.e., 

those variables in the set /, they are constrained to be A  or above according to the resource

g
type a — However, Fr — l e t  still loses information about resource use in certain cases.

use domain. Under this type system, Fr-let, the A-term let f  = Xx.x in Xz . f z  receives the
g

type <j— (̂7. However, Fr — let stil 

as shown in the following example.

E x am p le  5.4 The term

let f  =  Xx.Xy.xy in Xx. f{Xa.a)x 

is typed as as follows. Let

r  =

and

T =

Then let the deduction of the sub-term Xx.Xy.xy,

Axiom
■NT NT----------------------------------   G---------------------  Axiom

{S Ç 2}; z : o t — >(3̂ h X  : a — 0; y : o  h y : o; 
--------------------------------------------------------------------------------->■ Elim

{S Ç 2}; X : y : xy  : (3
->• Intro

{S E 2}; a; : h Xy.xy :
->• Intro

{S C 2}; h Xx.Xy.xy : ( a — >(3)— >a— >/?
------------------------------------------------------------------G en t

{S Ç 2}; h Xx.Xy.xy : Vo.V/).T
 ----------------------------------------- Genu
0; h Xx.Xy.xy : VS C i.\/a.'i(3.r

he denoted by

[P]

0; h Xx.Xy.xy : VS C i.'ia.'i(3.r

and let the deduction o f the sub-term Xz.f{Xa.a)z (where some rule labels have been omitted 

fo r purposes o f presentation),
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/  : v s  ç  iMa.y/S.T h /  : Va.V/).T

/  : v s  ç  \- f  : Va.V/3.r[S/i] “ °  °
Inst

/  : VS Ç iM a.yp.T  h /  : r  h Aa.a : a - ^ a  a - ^ a  Ç c r - ^ a

/  ; VS Ç z.Va.V/?.r h /(A a.a) : z : I- z : a

/  : VS □ z.VcK.V .̂T, z : <r^ h /(A a.a)z : <r
-> Intro

/  : VS Ç i.Va.V/?.r h Xz.f{Xa.a)z  : cr-^cr

6e denoted by

[Q]

/  : v s  Ç i.MaM^.r h Az./(Aa.a)z : cr-^cr

m the typing

[P] [9 ]

0; I- Xx.Xy.xy : VS Ç i.Va.V/3.r /  : VS Ç i.'ia .'i^.T  I- Xz. f{Xa.a)z  : 
-------------------------------------------------------------------------------------------------------Let

0; let f  = Xx.Xy.xy in Xz. f{Xa.a)z : a - ^ a

5 . 4  R e l a t e d  w o r k

The type systems presented in this chapter are closely related to those of Wright [93] and 

Baker-Finch [3] [4] (see Section 2.6, Chapter 2, for an overview of these type systems).

In [93], Wright considers three type systems, for Curry-style type inference, an ex­

tension to let-polymorphism, and for intersection types. Only the last of these is able to 

type aU Curry-typable A-terms for reasons discussed in Section 5.1.1 above. Baker-Finch's 

system, on the other hand, is able to type all Curry-typable A-terms. However, this is 

at the expense of expressiveness, for the same reason tha t the correspondence between 

resource use inferred in Fr and resource use in A-terms is only an approximation, not an 

equivalence.
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The correctness of resource use inference in both W right’s and Baker-Finch’s type sys­

tems is due to the proofs of the soundness and completeness of the type system, in which 

the semantics of types are extended with neededness to provide a semantics of resource 

use (in the form of different function arrows). We argue, however, tha t soundness and 

completeness do not constitute a sufficient proof of correctness of resource use inference, 

since while together they show tha t the type system is consistent with respect to the inter­

pretation, they do not show tha t the information inferred by the type system corresponds 

to  the reduction behaviour of A-terms.

In [94], Wright and Baker-Finch discuss an extension to W right’s intersection-style type 

system to capture precise sharing information. In this system, the domain of resource use 

annotations is N, the domain of natural numbers. However, as Wright comments in [93], 

unification in an implementation of such a type system is likely to be undecidable because 

of its reduction to Hilbert’s 10th problem.

A similar type system is outlined by Bierman in [10] which uses the domain of an­

notations reproduced in Section 3.4.2 of Chapter 3. A sketch of how principal types in 

Bierman’s work can be represented using sets of relations between resource use values is 

given. However, no further details about this type system are available. Baker-Finch has 

shown in [3] how Bierman’s lattice can be incorporated into his method of resource-use 

typing by redefining the operators 4- and X over the elements of the lattice.

Also related to the work presented in this chapter are non-standard program logics 

for strictness analysis , for example, Fuh and Mishra [58] and Jensen [54]. As mentioned 

in Section 1.2 of Chapter 1, non-standard program logics abstract type semantics to rep­

resent properties of interest, and infer information about those properties for programs 

using type inference rules. The key difference, therefore, between this approach and tha t 

of Wright and Baker-Finch derives from tha t between denotational and operational seman­

tics. Non-standard program logics define properties from an abstraction of a denotational 

model of types. In Wright and Baker-Finch’s work (and in the work presented in this 

chapter), however, the semantics of types are augmented with an operational semantics 

based on reduction, and it is within this augmented semantics tha t we are able to  represent 

information about reduction behaviour.
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5.5 Sum m ary

In this chapter, we defined a type system capable to deriving resource use information 

about A-terms. The type system was derived from the first-order resource-aware systems 

of intuitionistic logic discussed in Chapter 4. Properties of the type inference system 

were described, particularly Theorem 5.3, which stated the correspondence between the 

resource use for A-terms inferred by the type system and the actual resource use of those 

terms. Since the basis for this relationship is the relationship between resource use in 

the logical system ILgy and the typed A-calculus, a similar problem occurs, i.e., tha t the 

correspondence is one of approximation rather than equivalence.

The soundness of the type system was also given. We also introduced a notion of 

resource coercion sets, based on the work of Mitchell [73] on type inference with subtyping, 

th a t allowed a succinct representation of principal types and of let-polymorphism.
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C hapter 6

A n algorithm  for resource aware 

typ e inference

In this chapter, we give an algorithm to implement the type inference system JFVo with 

resource coercion sets (described in Section 5.2.4 of Chapter 5). The framework for our 

implementation is the typing algorithm given by Leivant in [60], which is well suited to 

typing with subtypes and also forms the basis for Mitchell’s type inference algorithms with 

subtyping in [73]. However, we must also perform unification over resource use expressions 

annotating function types and typing hypotheses within the unification of type expressions.

Wright has already shown tha t Boolean unification as described by M artin and Nipkow 

[68] [69] can be used to unify expressions involving his strict and constant function arrows, 

producing single most general unifiers of his arrow expressions. Since our resource use 

expressions are similar to Wright’s arrow expressions, it seems appropriate to follow his 

approach in using boolean unification. However, we find tha t although the domains 5 and 

B (Bierman’s domain) are, with the addition of a least element _L, boolean lattices, the 

definitions of the operators +  and x over these domains are such tha t they do not satisfy 

the laws of boolean algebra. Furthermore, we find tha t the resource use domain L does 

not even satisfy the properties of a boolean lattice. We leave as an open problem the 

definition of a unitary unification procedure, i.e., one tha t produces a single most general 

unifier, for these domains, and instead simplify the S domain to  a two-point strictness
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and non-strictness domain N in which the operators -f and x satisfy the laws of boolean 

algebra.

We describe a typing algorithm in the style of the type algorithm GA of Mitchell [73] 

for type inference with subtypes, together with auxiliary functions to infer resource use 

coercion sets. We show tha t the type algorithm is sound with respect to the type inference 

system Frc parameterised over N.

6.1 U nification over resource use dom ains

In this section, we briefly review material on boolean uniflcation from M artin and Nipkow 

[68] [69], and discuss its application to uniflcation over expressions from the three resource 

use domains considered in Chapter 3, i.e., domains S, L, and Bierman’s domain (here 

called B).

6.1.1 D istributive lattices, boolean algebras and unification in boolean  

rings

A lattice is deflned as a pair (P, < ), where P  is a set and < is a partial order (a reflexive, 

transitive, anti-symmetric relation) over P , such that

Vz, y G P.x A y and xW y £ P

where xA y  and x V y  are the least upper and greatest lower bounds induced by the ordering 

relation < over P . Furthermore, a distributive lattice L — (P, <) is defined as a lattice if 

it satisfies the following laws:

V z,y^z e L .x A { y \ /  z) — [x A y ) y  [x A z)

and

Vz, y, z G L.x y  {y A z) = {x\ /  y) A (x y  z)
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For example, the following lattice is distributive

a

whereas the following lattice

is not distributive. In fact, in Davey and Priestley [27], it is shown tha t if this lattice is a 

sub-lattice of any other lattice L' , then L' is also non-distributive (Theorem 6.10, Chapter 

6 of [27]). A special kind of distributive lattice is a boolean lattice. In [27], a lattice L 

is defined as a boolean lattice if L is distributive, L has 0 and 1, and each a £ L  has a 

unique complement a , i.e., an a such tha t aW a = 1 and a A a  = 0.

A boolean algebra is a set 5  with distinguished elements 0 and 1, and operators A, V, and 

-I, which satisfies axioms concerning, for example, the commutativity, associativity, and 

distributivity of A and V. Moreover, a boolean algebra {B, A, V, -i, 0,1) can be represented 

as a boolean lattice (see Davey and Priestley [27] or Cooke and Bez [20]).

A boolean ring is a set B  containing two distinguished elements 0 (zero element) and 1 

(unit) with operations 0  and 0  and axioms defining their behaviour defined over B. These 

axioms induce the following rewrite system IZ under associative-commutative rewriting

0 0  z 

0 0  a; 

X  ® x

x ® x  => 0

1 0  a; => a;

x ® { y ® z )  => X ® y  ® X ® z

136



The set of rules comprising 71 rewrite boolean ring terms into a polynomial normal 

form. Unification over boolean ring expressions attem pts to solve equations of the form 

=  g { x i , . . .  ,Xn),  which as a consequence of the laws of boolean rings is 

equivalent to f { x i , . . . ,  Xn) © g{x i , . . . ,  Xn) = 0. One unification method is due to Boole 

and is known as “successive variable elimination” (see Martin and Nipkow [69] for further 

discussion). A recursive algorithm in a functional notation of Boole’s method is given by 

M artin and Nipkow in [69].

Expressions in a boolean algebra can be converted into boolean ring expressions and 

vice versa, as follows: for boolean algebra expressions into boolean ring expressions we use 

the following translation of operators

z V 2/ = X ® y B X <S> y

X A y  =  X B  y

->x =  X 0  1

and for boolean ring expressions into boolean algebra expressions, we use

x B y  =  (z A-ly) V ( - 1Z V y) 

z  ® y =  X A y

6.1.2 Unification over resource use domain S

Wright has shown in [93] tha t the set of arrow expressions induced over the set of arrow 

variables and the strict and constants arrows together with the operators A and V can 

be represented as a boolean algebra (B, V, A, -i, , =>), in which takes the role of 0

(zero) and => takes the part of 1 (unit), and B  represents the set of arrow expressions (the 

negation -i has no role in the arrow expressions inferred by the type systems described in 

[93]).

Since the resource use domain S is very close to Wright’s set of ground arrow { , =^},

we apply W right’s approach in using boolean ring unification to unification over expressions 

induced over variables, values in S, and the operators x and +  (the definitions of X and 

+  over 5 are reproduced in Figure 6.1). However, as we will demonstrate below, the 

definition of the operators +  and X over 5 are such tha t they do not correspond to the A
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X S A N + S A N

S S A N S S s S

A A A A A s A N

N N A N N s N N

Table 6.1: Operators over S

and V operators, and tha t consequently, we are unable to  define a boolean algebra on S 

using +  and X.

In W right’s algebra of function arrows, and =>• take the roles of 0 and 1, respectively. 

Similarly, we might take A and S to be 0 and 1, respectively. Also, we might assume that 

+  and X, which play similar roles to V and A in W right’s type system, can be used as 

operators in the boolean algebra on 5.

Two of the laws of boolean algebra are

X V -iz  =  1 

X  A - > x  = 0

For z =  A , the complement -ix is S, and for x =  S, -læ is S. However, there is no suitable 

complement for N . In fact, by examining the definition of +  and x , we see tha t there is 

no value in the lattice corresponding to  -iN such tha t the equations

N  V - i N  = S 

N  A -iN =  A

are satisfied. Even if we extend 5 with a least element ±  =  S □ A  so tha t it is properly a 

boolean lattice, the same problem occurs (even with different values from S taken to  be 0 

and 1).

We therefore conclude tha t we are unable to  directly define a boolean algebra from S 

with operators +  and X. In Martin and Nipkow [69], the possibility of different operators 

over a set in terms of the boolean ring operators is discussed. It remains an open problem
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N

Figure 6.1: Resource use domain N

X S N + S N

S S N S S s
N N N N s N

Table 6.2: Operators over N

whether or not x and +  over S can be translated in this way. Siekmann’s survey of uni­

fication theory [84] shows tha t, generally, in the presence of associative and commutative 

operators, unification is not unitary but produces a finite set of most general unifiers. 

Wand has described a type inference algorithm in [91] for record types in which unifica­

tion is not unitary, but is finite. It may be possible, therefore, to develop a unification 

procedure for resource use expressions over S which is finitary, though not unitary.

We also note tha t, since S is a sub-lattice of B (Bierman’s lattice of resource use 

annotations), tha t similar problems concerning boolean ring unification will apply to B.

Another solution to the problem we face in unifying over S is to simplify the domain 

so th a t the definitions of x and + satisfy the laws of boolean algebra. Figure 6.1 presents 

a simplification of S to domain N which describes only strictness and non-strictness. In 

this domain, the domain point A , representing absence, is subsumed into the non-strict 

domain point N . The definitions of X and +  over N are given in Table 6.2.

In this resource use domain, the roles of the distinguished constants 0 and 1 are taken
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by N and S respectively. Also, -iN = S and -iS =  N . Hence, the laws

xM -^x =  1

X A->x  =  0

are satisfied when V is interpreted as +  and A as x . For example, we have

N  +  -iN = S 

N  X -.N  =  N

Given tha t (iV, x ,+ ,N ,S ) i s  a boolean algebra we can use the unification algorithm 

given by M artin and Nipkow for unification in boolean rings (see Section 6.1.1 above). We 

will denote this algorithm by RUNIFY|\j, given as

R U N IF Y |\ |( /(z i,. .. ,z ^ )

then id 

else let G = RU N IFY |y|(/(N ,^ 2, • • X f{ S ,X 2 , .. .,Xn)) 

in

<^[((/(N, G{x2 , . . . ,  a^n)) +  /(N ,G (Z 2 , . . . ,  Xn)) +  S) X +  / ( N ,  G {x2 , . . . ,  a;n)))/a;i]

6.1.3 Unification over resource use domain L

Even if resource use expressions over S could be unified using W right’s technique using 

boolean unification, we find tha t boolean unification cannot be used over the resource use 

domain L. We reproduce this domain in Figure 6 .2 .

When we add a least point _L to the lattice, the structure of L is clearly isomorphic to 

the lattice in Section 6.1.1 above that stands as a canonical example of a non-distributive 

lattice. Therefore, we can expect not to be able to define a boolean algebra over this 

domain. However, since the operators x and +  over L are associative and commutative, 

we may still be able to  unify to produce a finite set of most general unifiers in the manner 

suggested in Section 6 .1 .2  above for resource use domain S.
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Figure 6.2: Resource use domain L

6.2 A typ e inference algorithm  for resource use

In this section, we describe a resource-aware type inference algorithm in the style of 

Mitchell's GA algorithm [73] for the simply typed A-calculus. The strategy followed by this 

algorithm is to type A-terms with the minimum of context, i.e., without a type environment 

param eter assigning types to free variables and a type for the term  determined by the 

surrounding context in which it appears. (By contrast, Milner’s W algorithm passes a 

type environment parameter.) This makes the algorithm conceptually simpler and makes 

it more applicable to type systems that use type coercion^.

6.2.1 Unification

In order to produce a single most general unifier for resource use expressions, we use 

the restricted domain N for strictness and non-strictness and the unification algorithm 

RUNIFY |\|.

We follow a two-stage approach to unification over type expressions with resource use 

annotations. Given a set of equations involving resource type expressions of the form 

E  = {a\ =  T i,...,o -n  =  Tn}, we first unify E  using the standard unification algorithm.

^See Leivant [60] for a discussion of the advantages and disadvantages of different typing strategies.
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called here UNIFYc- In other words, UNIFYc finds a substitution of type expressions for 

type variables, if one exists, such tha t E  is Curry-unified^ defined as follows.

D efin ition  6 .1  Let E  be a set of equations {cti =  r i , . . .,cr„ =  Tn} where cr*,T* are re­

source types. Then E  is Curry-unified by a substitution S  mapping type variables to type 

expressions iff

= n G E.r(Sai)  = r{STi)

(where T is as defined in Section 5.1.3).

The unification algorithm UNIFYc is presented in Figure 6.3. Note th a t, given two 

functional resource types <ti— and <7 2 —̂ ' 3̂2» UNIFYc does not unify the resource use 

expressions u and v. This algorithm is in the style of Robinson’s original unification 

algorithm described in [80], which is known to be exponential in both time and space 

complexity. More efficient unification algorithms, such as Paterson and Wegman’s linear 

algorithm [76], have been discovered, which employ special graph-based data structures 

and sharing via pointers to increase efficiency. (See Knight’s survey on unification in [57] 

for a discussion on implementations of unification algorithms.)

Given an equation a = r  which is Curry-unified, we define the algorithm UNIFYj?, 

inductive over the structure of a and r, which applies the algorithm RUNIFY|\| given in 

Section 6.1.2 above to unify over resource-use expressions. Note tha t as a consequence 

of Curry-unification, the structure of a  and r match and hence we can pursue a joint 

induction over the two type expressions.

The overall unification algorithm over type expressions is defined in terms of UNIFYc 

and UNIFY/? as follows:

UNIFY({(7i = n , . . .,On =  rn}) = UNIFY/?({5'o’i = ^r i , . . . ,  = 5'r„})

where

S =  UNIFYc'(({<7i = n , .. .,o-„ = Tn})
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UNIFYc'(û:,r) =  if o! =  r

then IdSubst 

else if a  G typevars{r) 

then _L 

else [r/a ]

U N IF Y c(r,a ) =  U N IF Y c(a ,r)

U N IF Y c (c r i-^ n ,a 2^ r 2) =  let 5* =  UNIFYc((Ti,(T2)

in let T  = U NIFY c(5 ' r i , 5 T2) 

in T o 6 "

Figure 6.3: Algorithm UNIFYc for unification over types

The separation of the unification process has the advantage of modularising distinct 

unification algorithms. This is used to advantage in the definition of the inference algo­

rithm  TZ, where unification of the type of the function and the function type created from 

the argument type and a fresh type variable uses only UNIFYc.

6.2.2 A lgorithm  for resource-aware type inference

In the type system Frc^, types of variables in the type environment are restricted in 

the sense tha t resource use in functional types is restricted to N , which represents the top 

point T of the resource use domain. In the type inference algorithm, we must maintain this 

restriction. The fact tha t functional types in the type environment of a typing contain 

only N  resource use values (a property we shall define below as T -conformance) has

^To keep the presentation reasonably simple, we do not consider the let-polymorphic extension to F r c ,  

described in Section 5.3 of Chapter 5. However, extending the algorithm to perform let-polymorphic typing 

should not pose significant problems, other than to ensure that the type inferred for the local definition 

and the type of the let-bound variable are ordered with respect to Ç.
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UNIFYiî(o:,o;) =  Idsubst

U N IF Y fi(a i^ r i ,< 72^ T 2) =  let 5- =  UNIFYi?(ai,o-2)

in let T  =  UNIFYh(5'ti, 5 r 2)

in RUNIFYm ((T 0 S)u , {T o S)v)  o T o S

Figure 6.4: Algorithm UNIFY^

A TO M IZE(a,a) =  {}

A TOM IZE((Ti-^Ti, (72- ^ T2) = { u Q  v} U AT0 MIZE((72,(7i) U ATOMIZE(ri, T2)

Figure 6.5: Algorithm ATOMIZE

certain consequences for type inference. For example, any functional type inferred from 

such a type environment only has resource values below N  in the resource use domain for 

functional arrows present in the type as a result of applying the inference rule — Intro, 

i.e., for first-order resource use. A second consequence concerns the typing of applications 

M N :  U N  has a functional type, then the resource use annotating the arrow constructors 

within the type must be updated to N  in order to  unify with the type of M.

The typing algorithm also makes use of algorithm ATOMIZE to extract resource use 

values from type coercions and produce a resource coercion set. The algorithm is defined 

in Figure 6.5.

The resource-aware type inference algorithm TZ, presented in Figure 6 .6  takes as argu­

ment a A-term to be typed, and returns a triple {R,  A, a ), such tha t (R,  a)  is the principal 

type of M  in the context of the types of free variables in the type environment A.  The
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n { x )

= ({s G i},{x ; a*},o)
where o; is a fresh type variable 

and i  is a fresh resource use variable

=  let =

in

if X : (7* G A

then

A -  { x  : a*}, (7-U r)

else

{R'  u {A ç  j ] , A \  a ^ r )  

where a  is a fresh type variable 

and j  is a fresh resource use variable

n { M N )

=  let (i?i, A i,(t) =  'JZ(M)

{R2,A2,(j)) =  Tl{N)

S  =  UNIFY({ri =  T2 \x : G Ai , x  : G A 2 })

T  =  UNIFYc({<t =  <t>l - ^ o } )  o S  

=  T a

R 3 = A T 0 M IZ E ( r< 7  Ç  T{(f>-^a))

in

{Ri U i?2 U R3,TAi + {TA2Y^,Ta) 
where a  is a fresh type variable

Figure 6 .6 : Algorithm TZ for resource-aware type inference
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algorithm is defined inductively over the structure of A-terms.

D efin ition  6.2 A type a is said to be T-conformant i f fT^a) ,  where

T(a) =  True

T ((7 -^ r )  =  if  u = N

then T((j) A T(r) 

else False

Moreover, a type environment A  is said to be T-conformant i f i x  : (7 * € A.T(o-).

Hence, the types a -^ /5  and are T-conformant, while is not T-

conformant.

In Section 4.3 of Chapter 4, we introduced the |  i operator over propositions, defined

as
o; I = a

[  =  (T i  - ^ T  i
The following lemma shows tha t for any type cr, cr J, is T-conformant.

L em m a 6 . 1  Let a be any type. Then a [ is T-conformant.

P ro o f  Directly from the definition of | .

□

The following definition defines as first-order conformant any type, which if functional, 

only has resource use annotations u Q N  only for the top-level function arrows.

D efin ition  6.3 A type a is said to be first-order conformant iff foc[a),  where

foc{a) = True

/oc (o--^ r) =  T (a )A /o c (r )
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Therefore, the type ( a - ^ / 3 ) - ^ 7  is first-order conformant, while is

not. It is also the case tha t any T-conformant type is first-order conformant.

The operator -f over type environments Ai and A 2 is defined as

{x : e A i , x  : e A 2 } U (Ai A  A 2 )

where u and v range over resource use expressions and A  is symmetric set difference. The 

X operator is defined as follows:

=  {x  : (T^ '̂ \̂x : € A}

6 . 3  S o u n d n e s s  o f  r e s o u r c e - a w a r e  t y p e  i n f e r e n c e

In this section, we show tha t the inference algorithm in Section 6.2.2 above is sound with 

respect to the type inference system presented in Section 5.3 of Chapter 5.

The following theorem and its proof demonstrate the soundness of the type inference 

algorithm TZ.

T h e o re m  6 .1  I f lZ{M)  — [R^A^a),  then R] A \-  M  : cr is a provable typing.

P ro o f  The proof proceeds by structural induction over the A-term M  to be typed.

Case 1: 'JZ{x) =  ({S Ç %}, {x  : a*}, a ). Directly from definition of Axiom rule in Frc-

Case 2: 1Z{Xx.M).  By induction,

TZ[M) = {R, A , r )  R] A \-  M  : r  is provable 

If a; : <7* is in A, then by the —>■ Intro rule we can derive

R]A  — { x :  cr̂ } h Xx.M : c r-A r
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Case 3: TZ{MN).  By induction

'JZ{M) =  (Ri ,  A i , a )  i2i; Ai h M  : (7 is provable 

TZ{N) =  {R2 , A 2 , cr) =#> R 2 ', A 2 \- N  : <f) is provable

Since T is a substitution of T-conformant types for type variables (this is a result of the 

curry-unification of a  with the T-conformant type (j) J, composed with unification

over Ai and A2 which are also T-conformant), and unifies A\ and A2 , then T A \ and T A 2 

are well-formed T-conformant type environments. Also, since T is a curry-unifier of a  and 

0  i  then a  =  and also tha t R 3  is a well-formed resource coercion set. It

follows tha t both
R 1 U R 2 U Rs; T A i \- M  : T a  

R 1 U R 2 U R ^ \T A 2 y- N  :T4> 

are provable. Therefore, by rule Elim, we have 

Æi U i ^2 U R 3 \ T A i  4- T A J“ h M N  : T a

□

6 . 4  S u m m a r y

In this chapter, we have described an algorithm to implement the type inference system 

Frc with resource coercion sets, described in Section 5.2.4 of Chapter 5. We have found 

significant difficulties in adapting W right’s method of boolean unification to  the resource 

use domains 5, L, and B. In the case of 5 and B, this was due to the definition of the 4- 

and X operators, which we discovered did not conform to the definition of boolean algebra 

operators. Nor could we easily discover a translation in the style of tha t for boolean ring 

operators into boolean algebra operators presented in Section 6.1.1 above. In the case of 

L, the difficulty was more serious, since the shape of the domain was exactly tha t of the 

canonical non-distributive lattice.
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C hapter 7

Sum m ary and Conclusions

In this chapter, we provide a summary of the thesis, and assess its contributions. We also 

give some suggestions for future work.

7 . 1  S u m m a r y  a n d  a s s e s s m e n t

In this thesis, we have studied resource use in the A-calculus and in intuitionistic logic 

(which in this thesis referred to the implicational fragment of intuitionistic propositional 

logic) with the aim of deriving a type system in which it can be shown tha t the resource 

use of term  variables inferred by the type system were properties of the variables in the 

term  being typed. Previous work on resource-aware type systems by Wright and Baker- 

Finch has shown the soundness and completeness of type inference with respect to  a type 

semantics tha t incorporates reduction information using needed redexes. However, we have 

argued tha t while this establishes the consistency of inference of annotations with respect 

to a given interpretation, it does not justify the inference of resource use for A-terms.

In Chapter 3, we gave a first-order definition initially of a simple resource use domain 

of strictness, absence and non-strictness based on the concept of needed and head-needed 

redexes from Barendregt at al [7]. We also defined an inference system t>g, similar to the 

context analysis of Wadler and Hughes [90] but which requires reduction to head normal
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form, which infers the resource use of free variables in a A-term. We demonstrated the 

soundness of this system and conjectured its completeness.

We then extended the definitions of neededness and head-neededness to degrees of 

neededness and head-neededness by measuring the number of descendants of redexes con­

tracted on leftmost and head reduction paths. On this basis, we were able to define more 

sophisticated resource use domains, such as L which incorporated a linear resource use. 

Inference systems similar to > 5  were defined.

Chapter 4 dealt with resource use in intuitionistic logic. We defined analogous con­

cepts of neededness and head-neededness, and consequently strict, absent, and non-strict 

resource use in intuitionistic logic, and gave a definition of a resource-aware system of 

intuitionistic logic ILg, in which resource use values were attached to open hypotheses 

and annotated implication arrows. However, it was discovered tha t ILg was not sound 

with respect to the definition of resource use, since it is able to infer stronger resource 

use values for hypotheses than is the case according to the semantics. Consequently, we 

defined a version of ILg, called ILgy, in which the resource use annotating implicative 

axioms is restricted to N. This system was shown to be sound with respect to  resource 

use inference, in tha t it could not infer a more specific resource use than tha t given by the 

semantics.

We demonstrated the equivalence of our definitions of neededness and head-neededness 

with those for the A-calculus under the Curry-Howard isomorphism. When it came to 

relating resource use in ILgy to tha t in the A-calculus, however, we discovered tha t resource 

use in this system was weaker than in >g. The problem lies with the coercion premise in 

the — App rule, which does not take account of more specific resource use in the derivation 

of the resource use of hypotheses in the conclusion. It would appear tha t Baker-Finch’s 

system also suffers from this problem, since it also uses coercion as a premise in typing 

applications.

In Chapter 5, we derived a resource-aware type system from ILgy for A-terms. We 

showed tha t in this system a resource use v inferred for a term  variable in the type 

environment was related via the resource use domain ordering to the resource use u defined

150



for the variable in the A-term being typed, such tha t u Q v .  As a consequence, the Subject 

Reduction theorem held only in a modified form in this system, i.e., tha t i i V  M  : a 

and M ^ p N ,  then T N  : a such tha t a Ç. a (where Ç is an ordering relation over 

types induced by the ordering over resource use). The soundness of this type system was 

demonstrated. Also in this chapter, we gave representations for principal types and showed 

how let-polymorphism could be incorporated into the type system, using an adapted form 

of bounded quantification.

Chapter 6  discussed the implementation of resource-aware type inference. Wright has 

shown in [93] how unification over boolean rings can be used to unify type expressions 

with resource use information (in his case, function arrows for strictness and absence) by 

formulating a boolean algebra from the resource use values and the operators over them. 

We have shown tha t resource use domains and their operators only form a boolean algebra 

in very restricted cases, because of the definition of the operators. We gave a algorithm for 

typing A-terms which implemented the type inference system with resource coercion 

sets, over a restricted resource use domain N for strictness and non-strictness only, and 

demonstrated the soundness of this algorithm.

7 . 2  F u r t h e r  w o r k

The following are areas where further work is required.

7.2.1 The sem antics of higher-order resource use

The definition of resource use for the A-calculus in Chapter 3 is first-order. A higher- 

order treatm ent of resource use is a subject for further work. This may prove difficult, 

as a result of the similarity between, for example, > 5  and Wadler and Hughes’ context 

analysis, and the known difi^iculty in extending backwards analyses such as context analysis 

to  the higher-order case. Wright and Baker-Finch have both defined the neededness of 

an argument to a function in the context of all possible arguments, but a higher-order 

definition of resource use of a function in its parameter in the style of Section 3.2 in
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Chapter 3, and an operational semantics in the style of > g i s  also required.

7.2.2 A resource-typed A-calculus

Also left to further work is the investigation of a resource-typed A-calculus. The resource- 

aware system of intuitionistic logic ILg appears to be isomorphic to a typed A-calculus in 

which the types of terms contain resource-use information. This area also seems related 

to A-calculi with operators or annotations indicating strictness.

7.2.3 D efinition of resource-use domains

In Chapter 6 , we saw tha t the resource use domains S, L, and B, together with operators 

-f and X defined over them, could not be defined as boolean algebras. Despite the fact 

that both S and B were boolean lattices, the definition of 4- and X over these domains did 

not conform to the definition of the boolean operators V and A. Furthermore, the domain 

L was isomorphic to a lattice known to be non-distributive, a key characteristic of boolean 

lattices (and hence, of boolean algebras). However, boolean ring unification may not be 

the only method for unifying expressions over these domains. Further work, therefore, 

would involve the investigation of other methods for unifying over these domains, either 

by finding translations of the operators -f and x into the boolean ring operators for those 

resource use domains which are boolean lattices, or by unification algorithms to  find finite 

sets of most general unifiers.

7.2.4 Extensions to the type system  Fr

In this thesis, the semantics of resource use and the resource-aware type system are devel­

oped only for the pure A-calculus. However, if the type system is to be used for practical 

analysis of functional programming languages, then both the semantics of resource use 

and the type system should be extended to recursion, conditionals, data structures such 

as lists and tuples, and constants. Wright has already outlined suggestions in [93] on how 

to incorporate recursion, data structures and constants, including a conditional, into his
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type system, but does not consider the semantics in terms of reduction of head-needed 

redexes. Baker-Pinch in [3] has shown in greater detail how recursion can be represented 

and has considered the semantics in terms of descendants of redexes tha t occur on the 

head reduction path. However, the method of typing is iterative, in order to find the 

limit, in terms of the ordering over type annotations. It is not clear how costly this may 

be, especially in those cases of functions with several arguments. Typing of tuple data 

structures, but not semantics, is also considered.

We should also investigate the implementation of let-polymorphism in which cur­

rently degrades the quality of the resource-use information inferred for A-terms.

7.2.5 C om pleteness of Fr

The type system Fr has been shown to be sound, but lacks a proof of completeness. 

Wright has already shown the completeness of his reduction type system in [93] using 

Plotkin’s model of reduction [78], although Wright’s proof relies on having established the 

soundness of the type system. For 7^, proving completeness may be difficult, primarily 

because the modified Subject Reduction theorem for Fr implies tha t types of A-terms are 

not maintained by reduction, although they are still ordered. However, the fact tha t the 

types of a term  across reduction steps are ordered means tha t we may be able to associate 

some minimal type (in terms of the ordering) with the equivalence class of the A-term in 

a semantic model, which can then be used to establish completeness.

7.2.6 R elationship w ith Linear Logic

We should further look at the connection between the resource use in systems such as 

I h l j  and resource control in Linear Logic, perhaps with a view to defining an efficient 

translation between A-terms and terms in a linear term calculus. A standard translation 

exists based on the translation of propositions in intuitionistic logic into linear logic (see 

Girard [36], but this applies the “non-linear” modal ! operator to all propositions. It 

may prove possible to define a translation from propositions in IL^y into linear logic that 

produces some linearity in the result. We can then take advantage of implementations
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of linear term  calculi that optimise space use. Other work in the area of translations 

of the A-calculus into a linear logic-based term calculus includes Mackie [65], Maraist, 

Oder sky, Turner, and Wadler [67]. Lincoln [63] [62], and Schellinx [82], have also studied 

translations of intuitionistic logic proofs into linear logic proofs with the aim of preserving 

their structure, i.e., translations tha t minimise the application of the modal operator ! in 

the translated proofs.

7.2.7 R elationship w ith other sem antics

It is also interesting to consider the relationship between resource-aware type systems 

such as Frj and the type systems of Wright and Baker-Finch, with other analyses such 

as abstract interpretation (Jensen has already commented on this point in his discussion 

of future work in his thesis [55]). Baker-Finch has recently shown a connection between 

resource-aware type systems and projections in [5]. Since the semantics of resource use 

embodied by t> appear close to Hughes and Wadler’s context analysis [90] which is based 

on projections, it seems possible to develop an understanding of the relationship between 

the two.

7.3 Conclusion

Resource-aware type inference is a promising field of research for static analysis. It com­

bines the analysis of the reduction behaviour of programs with conventional static type- 

checking, thus obviating the need for further work within a compiler or interpreter. In this 

thesis, we have expanded upon the work of Wright and Baker-Finch into resource-aware 

type systems in order to establish a correspondence between the resource use inferred by 

the type system and the resource use of A-terms.

For our definition of the semantics of resource use in the A-calculus, and in intuitionistic 

logic, we have found that a precise equivalence between these two definitions does not exist, 

although we have been able to define a correspondence based on approximation. The main 

reason for this is the use of coercion between types, based on the ordering of the resource
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use domains, as a premise to the logical rule —> Elim. While this premise is necessary to 

ensure, in terms of the set of typable terms, full expressiveness, while avoiding the need 

for intersection types, it has a severe impact on the power of the analysis of the reduction 

behaviour of those terms.

We conclude, therefore, tha t much more remains to be done, in terms of increasing the 

power of its analysis without sacrificing its efficiency, before resource-aware type inference 

win be of significant use to functional programming language development.
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