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Highlights 

• A retrieval algorithm for melt ponds is developed using machine learning.  

• Normalized band reflectance differences are used to reduce anisotropic reflectances. 

• The spectral signature of refreezing melt ponds is investigated. 

• Refreezing melt ponds are masked out with IST and freeze-up dates. 

 

Abstract 

Melt ponds on sea ice play an important role in the seasonal evolution of the summer ice cover. 

In this study we present two machine learning algorithms, one (multi-layer neural network) for 

the retrieval of melt pond binary classification and another (multinomial logistic regression) 

for melt pond fraction using moderate resolution visible satellite imagery from the Moderate 
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Resolution Imaging Spectroradiometer (MODIS). To minimize the impact of the anisotropic 

reflectance characteristics of sea ice and melt ponds, normalized MODIS band reflectance 

differences from top-of-the-atmosphere (TOA) measured reflectances were used. The training 

samples for the machine learning were based on MODIS reflectances extracted for sea ice, melt 

ponds and open water classifications based on high resolution (~2m) WorldView (WV) data. 

The accuracy assessment for melt pond binary classification and fraction is further evaluated 

against WV imagery, showing mean overall accuracy (85.5%), average mean difference (0.09), 

and mean RMSE (0.18). In addition to cross-validation with WV, retrieved melt pond data are 

validated against melt pond fractions from satellite and ship-based observations, showing 

average mean differences (MD), root-mean-square-error (RMSE), and correlation coefficients 

(R) of 0.05, 0.12, and 0.41, respectively. We further investigate a case study of the spectral 

characteristics of melt ponds and ice during refreezing, and demonstrate an approach to mask 

out refrozen pixels by using yearly maps of melt onset and freeze-up data together with ice 

surface temperatures (IST). Finally, an example of monthly mean pan-Arctic melt pond binary 

classification and fraction are shown for July 2001, 2004, 2007, 2010, 2013, 2016, and 2019. 

Bulk processing of the entire 20 years of MODIS data will provide the science community with 

a much needed pan-Arctic melt pond data set.   

1. Introduction 
 Melt ponds are a dominant feature on the Arctic sea ice surface in summer, occupying up 

to about 50 – 60% of the sea ice surface during advanced melt (Fetterer and Untersteiner, 1998; 

Perovich et al., 2002a; Eicken et al., 2004). Melt ponds normally begin to form around mid-

May in the marginal ice zone and expand northwards as the summer melt season progresses 

(Fetterer and Untersteiner, 1998). Once melt ponds emerge, the scattering characteristics of the 

ice surface changes, dramatically lowering the sea ice albedo. Eicken et al. (2002) and Lei et 
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al. (2016) detailed the evolution of melt ponds in several stages. In the first stage (initial melt 

phase), as the ponds begin to form, melt water accumulates on the rather impermeable ice, 

expanding spatial pond coverage. Melt pond elevation is generally above sea level because the 

outflow pathways under the melt pond are limited. During the second stage (drainage phase), 

pond elevation remains close to sea level because of increased outflow. Many ponds are created 

during this stage and the spatial coverage of ponds expands. As the melt season progresses, 

melt ponds may drain through the ice. In the third stage (mature pond phase), ponds still remain 

near sea level with high ice permeability and open macroscopic flaws. Many ponds may melt 

through to the ocean during this stage. The last (refreezing phase), is not limited to the end of 

the melt season but can occur anytime during summer once air temperatures drop below 

freezing. A thin layer of ice may form on top of the pond during initial freezing and may open 

again if air temperatures rise above freezing or enough solar radiation is available. Eventually, 

the winter season sets in and ponds completely freeze. 

 Since 96% of the total annual solar heat into the ocean through sea ice occurs between May 

and August (Arndt and Nicolaus, 2014), the presence of melt ponds plays a significant role in 

this transfer of solar heat, influencing not only the sea ice energy balance (Maslanik et al., 2007; 

Perovich et al., 2007; Nicolaus et al., 2010), but also the amount of light available under and 

within the sea ice (Nicolaus et al., 2012) and therefore, ocean primary productivity (e.g. Horvat 

et al., 2017). Melt ponds also provide fresh water to the upper ocean (Polashenski et al., 2012), 

modulate air-ice momentum transfer via their form drag contribution from the melt pond edges 

(Tsamados et al., 2014). In climate model simulations, melt ponds have been found to play an 

important role in future sea ice evolution (Flocco et al., 2010; Flocco et al., 2012; Hunke et al., 

2013) and may also play a role in forecasting how much ice melts each summer. In particular, 

Schröder et al. (2014) found that melt pond fraction in May provided good predictive skill for 
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the September Arctic sea ice extent minimum. Given the importance melt ponds play in the 

coupled Arctic climate-ecosystem, mapping and quantification of melt pond variability on a 

Pan-Arctic basin scale is needed.  

 While much of our understanding of melt ponds and corresponding sea ice albedo evolution 

is based on in situ studies (Eicken et al., 1994; Perovich and Tucker, 1997; Tucker et al., 1999; 

Perovich et al., 2002a; Tschudi et al., 1997, 2001, and 2008), satellite-based observations are 

the only way to map melt ponds and albedo changes on a pan-Arctic scale. The different stages 

of melt pond development have a large impact on the overall spectral albedo (Fig. 1) and this 

information can be exploited using satellite observations made in different wavelength bands.  
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Figure 1. Spectral albedo for different surface types measured during 2018 R/V Araon Arctic 

expedition. The overlaid gray columns represent MODIS bands 1-4 (B: Blue, G: Green, R: Red, 

and NIR: Near- infrared). Spectral albedo for different surface types were collected in August 

2018 during the R/V Araon Arctic expedition across six field sites on sea ice in the Chuckchi 

Sea roughly between 79.20 °N, 164.17 °W and 78.38 °N, 167.89 °W.  Samples collected 

within the same field site were collected at a minimum of 10 meters apart. Measurements were 
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collected with an Analytical Spectral Device – Field Spectrometer equipped with a remote 

cosine receptor to diffuse light and set to report the average of 10 instrument measurements. 

Along with the instrument average, the reported value is the average ratio of three observational 

measurements of downwelling and upwelling solar radiation (Perovich et al., 2002b). The total 

of each spectral type (#) are snow on sea ice (17), bare ice (3), open melt pond (6), refreezing 

melt pond (4), rough frozen melt pond (4) and smooth frozen melt pond (9). 

 

  Some of the earliest studies relied on visible satellite imagery from Landsat 7 (Markus 

et al., 2002; Markus et al., 2003). Landsat imagery at 30 m spatial resolution was well-suited 

for mapping melt ponds, as melt ponds are generally < 10m in size. The drawback is that pan-

Arctic coverage is not possible in a single day from Landsat as the swath width is only 185 km: 

at least 8 days would be needed to map the entire Arctic Ocean, though likely more days to 

ensure cloudless image opportunities. With coarser resolution data (250 to 1000m) and thus 

larger swath widths (e.g. >1000 km for instruments, such as the Moderate Resolution Imaging 

Spectroradiometer (MODIS) and the Medium Resolution Imaging Spectrometer (MERIS)), 

pan-Arctic coverage is achieved each day. Multiple surface types will be present in coarser 

resolution satellite imagery, challenging the retrieval of the actual fraction of each ice surface. 

Tschudi et al. (2008) first demonstrated an approach to map melt pond fraction in the Beaufort 

Sea using MODIS data. Specifically, the MODIS atmospherically corrected (MOD09) data at 

500m spatial resolution was used together with a spectral unmixing method to map area 

fractions of melt ponds over sea ice. End members for sea ice, melt ponds and open water were 

based on in situ data. Rösel et al. (2012) expanded on this approach, but utilized the MODIS 

8-day average product to map melt ponds on a pan-Arctic scale and over several years. Both 

the Tschudi et al. (2008) and Rösel et al. (2012) methods strongly depend on the 
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representativeness of the spectral reflectance data used in the spectral unmixing algorithm. 

Large errors in melt pond fraction were found when the reference spectra strongly deviated 

from the actual melt pond reflectance. Yackel et al. (2018) retrieved melt ponds using a larger 

database of reference reflectance and Multiple Endmember Spectral Mixture Analysis 

(MESMA) to map sub-pixel fractional area of melt pods from MOD09 surface reflectance data. 

However, as is the case with spectral unmixing, the accuracy of the method depends on how 

representative the reflectances used to populate the MESMA library are to specific ice types to 

be retrieved.  

  In another approach, melt pond fraction and surface albedo were retrieved based on 

the physical and optical characteristics of sea ice and melt ponds without a priori information 

using MERIS (Zege et al., 2015). An analytically iterative process based on the Newton-

Raphson method was used, applying a BRDF (Bi-directional Reflectance Distribution Function) 

correction to the satellite reflectances to account for the anisotropic reflectance properties of 

sea ice and melt ponds. Other studies have focused on detecting melt ponds using high-

resolution imagery, such as m-scale WorldView (WV) imagery, and SAR (Divine et al., 2015; 

Fors et al., 2017; Wright and Polashenski, 2018), which is successful when there is a single ice 

type within a satellite pixel, though mixed pixels remains a possibility.   

 Given the potential importance melt ponds may play in seasonal ice forecasting (Schröder 

et al., 2014), this is an important data gap to fill. In this study, we attempt to improve upon 

previous approaches to map Arctic melt ponds from MODIS 500m resolution data, using 

machine learning approaches, with the ultimate goal of providing a 20-year record of pan-

Arctic melt ponds. Specifically, we use MODIS data together with machine learning, including 

multi-layer neural network and multinomial logistic regression to test our ability to map both 

binary melt ponds (multi-layer neural network) and their fraction (multinomial logistic 
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regression) from the start to the end of the melt season. Since sea ice reflectance is strongly 

dependent on the viewing and solar geometry (i.e. sensor and solar zenith and azimuth angles) 

(Warren, 1982), we attempt to minimize this dependence by using normalized band differences 

in the machine learning algorithms. Six normalized band differences from MODIS bands 1 to 

4 are used as input parameters for training sample. Melt pond classification and fractions are 

validated against high-resolution (~2m) WV imagery. Once the approach is demonstrated, we 

further show results during July every three years from the MODIS data record, starting in 

2001 and ending in 2019.  

2. Data  

2.1 MODIS 

 The MODIS instrument has been flown onboard Terra and Aqua since 1999 and 2002, 

respectively, with a range of spatial resolutions from 250 m (channels 1 and 2) to 500 m 

(channels 3 - 7) to 1000 m (channels 8 - 36) (see Table 1). MODIS is a scanning instrument, 

scanning the surface at +/- 55o from nadir, resulting in a 2330 km swath. Although the size of 

individual melt ponds is relatively small compared to the spatial resolution of the MODIS 

visible channels, MODIS has the advantage of being able to map the entire Arctic Ocean in a 

single day.   

 We relied on several MODIS data products for this study, both in developing the machine 

learning algorithm and for masking out clouds and refrozen melt ponds (see Table 2). Bands 1 

- 4 reflectance from the MOD02HKM (5-min L1B swath) product provide the main input in 

the machine learning algorithm. Bands 5, 13, 16, and, 19 reflectance from MOD021KM (5-

min L1B swath) were used for cloud shadow masking. Note that these data were all top-of-the-

atmosphere (TOA) reflectances. While previous studies used atmospherically corrected 
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MODIS reflectance data (e.g. MOD09) together with in situ spectral albedo data in their 

retrieval algorithms (e.g. Tschudi et al., 2008; Rösel et al., 2012; Yackel et al. 2018), these 

atmospheric corrections are not optimized for the polar regions. We investigated performing 

our own atmospheric correction with the same routine used in producing the MOD09 data set, 

Py6S (Wilson, 2013), but the routine is not optimized for running on a large MODIS swath 

images, and pan-Arctic aerosol and water vapor optical depths remain unknown. Since we are 

not relying on in situ data to train our algorithm, we found it best to work with the TOA 

reflectance data sets.   

 We additionally used the MOD35 (1-km cloud mask) product and the MOD29 (1-km Ice 

Surface Temperature (IST) product). The MOD29 IST product was used for flagging refrozen 

melt ponds in August. The spatial resolution of all channels/products was aggregated to 500 m: 

the MOD35 and MOD29 were spatially interpolated to 500m with a nearest interpolation 

method. Each visible and near-infrared reflectance band was normalized by the cosine of the 

solar zenith angle.  

 In order to account for the fact that the MODIS instrument views the surface at fixed 

viewing angles, and that the surface does not reflect sunlight equally in all directions, especially 

at oblique viewing angles and the high solar zenith angles found in the polar regions, a 

correction for the anisotropic reflectance of the surface is needed. This is usually described as 

the ratio of the bidirectional reflectance distribution function (BRDF) to the actual albedo (e.g. 

Schaepman-Strub et al., 2006). The MOD43 data product provides BRDF parameters for land 

surfaces that can be used to correct for the anisotropic effect. It achieves this through 16 days’ 

worth of multi MODIS acquisitions from both Terra and Aqua to provide a global set of 

parameters for describing the BRDF of different land surfaces. However, this is challenging 
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over sea ice as it is constantly moving. Furthermore, a priori information on sea ice type would 

be needed before applying an anisotropic correction.  

 Instead, we decided to use normalized band reflectances differences in an attempt to 

minimize the dependence of the BRDF on viewing and solar angles. Further since the BRDF 

for snow and ice surfaces increases for higher solar and viewing zenith angles, we mask out 

pixels that have solar zenith angles qo > 70o and sensor viewing zenith angles qv > 50o. 

One problem with using the MODIS L1b products is that the images have distinct 

striping patterns because each detector is calibrated independently using a cross-track scanning 

mirror (Gumley et al., 2005). This would inherently bias our melt pond retrievals. To correct 

for the artificial striping, we used a simple image processing method to remove the stripes (Fig. 

2). In short, as the stripes are horizontal and periodically appear in the images, each image is 

horizontally averaged and the averaged profile is smoothed using a 10x10 moving average 

filter. The MODIS image is then subtracted from the difference between the averaged profile 

and smoothed profile. This process does not affect the overall reflectances. Although this 

method cannot perfectly remove all the stripes, it is the most time-efficient way to process 

MODIS imagery on a large pan-Arctic scale. 

 

Figure 2. An example of before and after the de-striping of melt pond fraction on 1 May 

(MOD02HKM 2002121.0100). 



11 

 

 

Table 1. MODIS bands specifications used in this study. 

Band Bandwidth (nm) Spatial 
Resolution (m) Use 

1 620-670 250 Melt pond detection 

2 841-876 250 Melt pond detection 

3 459-479 500 Melt pond detection 

4 545-565 500 Melt pond detection 

5 1230-1250 500 cloud shadow masking 

13 662-672 1000 cloud shadow masking 

16 862-877 1000 cloud shadow masking 

19 915-965 1000 cloud shadow masking 

 

Table 2. MODIS products specifications used in this study.          

MODIS 
Products 

Spatial 
Resolution 
(m) 

Contents Use 

MOD02HKM 250, 500 Bands 1-4 Melt pond detection 

MOD021KM 500, 1000 Bands 5, 13, 16, and 19 Cloud shadow masking 

MOD29 1000 
Sea ice surface 

temperature 
Flagging refrozen melt ponds 

MOD35 1000 Cloud mask Cloud masking 

 

2.2 WorldView (WV) data 

 To identify sea ice types for validation of the MODIS retrievals and training of the machine 

learning algorithm, we relied on ~2m spatial resolution WV-2 imagery, hereafter referred to 
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WV. WV was launched on October 8 2009 and provides multispectral (8 bands at 1.8 m) and 

panchromatic (B&W at 50 cm nadir) images (Table 3). The average solar zenith angle and 

sensor viewing zenith angle of the WV images used in this study are 72.3 o and 47 o, respectively. 

These data have previously been used to detect Arctic melt ponds (e.g. Wright and Polashanski, 

2018). Because WV and MODIS are not collected at the exactly same time, and sea ice is 

moving, we only acquired WV data within 50 minutes of each MODIS image. Geolocation 

accuracy of MODIS level 1B is approximately 50m at nadir (Wolfe et al., 2002), whereas 

Digital Globe states the geolocation accuracy of WV-2 imagery is 5.4m for off-nadir angles 

less than 30o. An example of a WV and MODIS overlapped image is shown in Fig. 3. The 

locations of all matching WV and MODIS used in this study are shown in Fig 4, whereas the 

dates and times for each coincident WV and MODIS image used are provided in Table 6 

(Section 3.2). 

 

Table 3. WV-2 band specification.  

Bands Bandwidth (nm) 

1 400-450 

2 450-510 

3 510-580 

4 585-625 

5 630-690 

6 705-745 

7 770-895 

8 860-900 
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Figure 3. (a) MODIS band 1 at 13:05 11 July 2015 and (b) corresponding WV multi-spectral 
image was captured 45 minutes later. (c) WV-2 image is overlapped with MODIS. 

 

 

 

Figure 4. Location of WV and MODIS images used in this study. The numbers shown 

correspond to the dates and times for each WV and MODIS image listed in Table 6.  Since 

the swath of each WV is small, the WV images are expanded by 20x20.  
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2.3 Satellite and ship-based melt pond data  

Satellite and ship-based melt pond data were used for the validation of our retrieved 

melt pond product. For the satellite validation data, we relied on two data sets. First is the melt 

pond data set from National Snow & Ice Data Center (NSIDC) which is based on unclassified 

high-resolution, reconnaissance visible-band satellite images to derive melt ponds over Arctic 

Ocean during summer of 1999, 2000, and 2001 (Fetterer et al., 2008). Supervised maximum 

likelihood classification was used to classify either two (water and ice) or three (pond, open 

water, and ice) surface classes. The second satellite-based melt pond fraction data set was based 

on similar unclassified high resolution satellite images, but processed differently and is referred 

to as the MEDEA data set, also available from NSIDC (Webster et al., 2015). We used melt 

pond fractions from May and June 2011, and July 2007, 2011, 2013 from the MEDEA data set. 

The ship-based validation data set came from two expeditions using the German R/V 

Polarstern icebreaker. The first, the ARKTIS-XXII/2 expedition, contributed to the 

International Polar Year (IPY) by collecting data in the Eurasian and central Arctic Ocean 

(Spreen. 2014). Observations included a variety of sea ice and snow surface characteristics 

such as sea ice type, thickness, coverage, and topography, snow type and thickness, and melt 

pond fraction covering most of August 2007. Another expedition using R/V Polarstern (PS86: 

ARKTIS-XXVII/3) observed sea ice conditions including melt pond fraction and depth within 

the Greenland Sea on July 2014 (Katlein et al., 2014). Data from both expeditions are available 

on PANGAEA (http://doi.pangaea.de).  

Satellite and ship-based observations that fall within the 5 km grid cell of the MODIS-

retrieved melt ponds are averaged together for the intercomparison. Ship-based observations 

report total concentration and partial concentrations such as the fraction of primary ice type, 

secondary ice type, and tertiary ice type. We did not consider partial concentrations but only 
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take the melt pond fraction of primary ice type. As cloud cover can obscure the surface for a 

direct comparison between MODIS and the validation data sets, MODIS-derived melt pond 

data were averaged for two days before and two days after the target date for validation. If 

cloud cover was too persistent, the validation was ignored for that date/location.  

 

3. Methods 

3.1 Spectral properties of melt pond and sea ice  

 As we can readily observe the evolution of melt ponds with the naked eye, it should be 

possible to distinguish between pond-free ice and melt ponds with an optical sensor using 

known spectral albedos for melt ponds and ice. Grenfell and Maykut. (1977) measured the 

spectral albedo of various sea ice (i.e. snow-covered and bare ice) and melt ponds from 400 to 

1000nm. Results highlighted the dependence of the spectral albedo on the amount of liquid 

water in the snow and/or upper portion of the ice. In particular, since water is mostly transparent 

from 400 to 500nm, and scattering is dominant within the ice, the spectral albedo of melt ponds 

is relatively high at these wavelengths (Fig. 1). After 500 nm, however, increased absorption 

by water starts to dramatically decrease the pond spectral albedo. For wavelengths beyond 800 

nm the spectral albedo is described by Fresnel reflection from the melt pond.  

 As the central wavelength of MODIS band 2 falls within the near infrared (central 

wavelength: 865 nm), this band has overall lower reflectances than bands 1, 3 and 4 in the 

presence of liquid water (see Fig. 1). Since MODIS band 3, blue band (central wavelength: 470 

nm) is less affected by solar absorption from liquid water, the combination of MODIS bands 2 

and 3 through a normalized band 2 and 3 difference can be a good parameter to distinguish sea 

ice from melt ponds (Fig. 5). While all normalized band differences between melt pond and ice 
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are somewhat overlapped in the statistical box plots, the mean and median difference of 

normalized band 2 and 3 between melt pond and ice are the largest (Fig. 5 and Table 4). By 

utilizing the spectral characteristics of sea ice and melt ponds, we tested various combinations 

of MODIS bands 1 to 4 to determine three surface classes: melt ponds, ice, and ocean. We 

found that normalized band differences as listed in Table 5 produced the best validation 

accuracy. In developing these normalized band differences, we chose band differences that 

resulted in positive values in the numerator: i.e. the longer wavelength band is subtracted from 

the shorter wavelength band.  

 

Table 4. Mean and median difference from box plots (see figure 5). 

 Melt pond - Ice 

 Mean difference Median difference 

Normalized band 1 and 2 0.028 0.013 

Normalized band 1 and 3 0.05 0.02 

Normalized band 1 and 4 0.017 0.006 

Normalized band 2 and 3 0.08 0.04 

Normalized band 2 and 4 0.05 0.03 

Normalized band 3 and 4 0.04 0.02 

 

Table 5. Input parameters for machine learning from MOD02HKM used for melt pond 

classification  

Input parameters 

Normalized band 1 and 2  (Band1-Band2)/(Band1+Band2) 
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Normalized band 1 and 3  (Band3-Band1)/(Band3+Band1) 

Normalized band 1 and 4  (Band4-Band1)/(Band4+Band1) 

Normalized band 2 and 3  (Band3-Band2)/(Band3+Band2) 

Normalized band 2 and 4  (Band4-Band2)/(Band4+Band2) 

Normalized band 3 and 4  (Band3-Band4)/(Band3+Band4) 

 

3.2 Determination of melt pond and sea ice class based on WV classification 

 We classified each WV pixel using the random forest algorithm from Wright and 

Polashenski. (2018). The source code is available on Github (Wright and Polashenski, 2018). 

As the spatial resolution of WV imagery is ~2 m for the multispectral images, detailed sea ice 

surface features can be readily identified in the WV data. The Wright and Polashenski. (2018) 

algorithm classifies four sea ice surface types: snow/thick ice, dark/thin ice (i.e., it is not snow 

covered, and can include Nilas and young ice during freeze-up), melt ponds/submerged ice, 

and ocean. The snow/thick ice and dark/thin ice are combined into one ice class in this study. 

Cloud contaminated WV images were carefully excluded through visual inspection because 

melt ponds under the clouds might be falsely classified as sea ice.  

 The table 6 lists the pairs of MODIS and WV images used in this study, and their time 

difference. For implementing machine learning techniques, a training sample is needed. While 

the nominal spatial resolution of the MODIS data we work with is 500m, gridded remote 

sensing data represent different spatial resolutions at each grid point depending on viewing 

angle (Campagnola et al., 2016). Thus, depending on the MODIS viewing angle for an 

individual pixel, the number of WV pixels that overlap with a MODIS pixel may differ when 

a WV image is superimposed on a MODIS image. Because many WV classes will occupy a 



18 

 

single MODIS pixel, a MODIS pixel that has more than 50% melt pond fraction based on WV 

classification results is considered as a melt pond class. Otherwise, it is considered as a sea ice 

class. This might tend to over/underestimate melt pond coverage when the large/small number 

of melt pond classes occupy in the MODIS pixel. For example, if 90% melt pond fraction based 

on WV classification in a MODIS pixel, overall MODIS reflectances would be lower. If 10% 

melt pond fraction based on WV classification in a MODIS pixel, overall MODIS reflectances 

would be higher. For an ocean class, this was more challenging as many of WV images do not 

include open ocean regions. Instead, MODIS images which have ocean pixels (e.g. 21 May 

2015, 29 June 2016, and 9 July 2015) were used to extract training samples for the ocean class. 

Box plots of these band differences for the 3 classes (ice, pond and open water) extracted as 

training samples are shown in Figure 5. In producing these box plots, high-resolution WV 

imagery (described in section 2.2) was used to classify the ice type in each MODIS pixel, and 

TOA MODIS reflectances were then extracted corresponding to each classification. As 

expected, the use of band 2 was useful in distinguishing between melt ponds and sea ice. The 

normalized band differences of the melt ponds are higher than that of ice because the amount 

of solar absorption by liquid water between bands is different, showing high normalized band 

differences. On the other hand, normalized band difference of ice is low due to a smaller 

difference in the amount of solar absorption between bands (Fig. 5).   

 Finally, since it is difficult to correctly classify melt ponds and ice during the refreezing 

season, refrozen melt ponds are regionally masked out using yearly maps of melt onset and 

freeze-up (Markus et al., 2009; Stroeve et at., 2014) and MODIS IST (i.e., MOD29). The 

Markus et al. (2009) melt onset and freeze-up algorithm is available at 25-km spatial resolution 

and in a polar stereographic grid. To use this data product to mask out the refrozen melt ponds, 

a representative annual mean freeze-up date is first found by averaging freeze-up dates in the 
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center of the Arctic Ocean (i.e., the Arctic Ocean region provided by NSIDC regional mask), 

and then the corresponding MODIS IST are averaged to find the refreezing temperature. Mean 

freeze-up dates range from 25 Aug. to 15 Sep. As this step is carried out every year for MODIS 

data record, averaged date and temperature depend on year.  

 

Table 6. Date and time difference of the pair between MODIS and WV. Number in parentheses 

is the number of WV image. 

ID Date 

Time (UTC, hh:mm:ss) Time 

difference 

(min) 

# of clear sky 

MODIS pixel MODIS WV 

1 13 July 2011 01:00 01:30:00 30 1652 

2 21 May 2015 (1) 22:25 22:34:23 9 649 

3 21 May 2015 (2) 22:25 22:34:24 9 417 

4 12 June 2015 (1) 11:50 11:53:44 3 669 

5 12 June 2015 (2) 11:50 11:53:45 3 438 

6 09 July 2015 19:50 20:00:38 10 3257 

7 11 July 2015 13:05 13:50:42 45 1019 

8 14 July 2015 (1) 11:50 12:01:35 11 700 

9 14 July 2015 (2) 11:50 12:01:36 11 476 

10 29 June 2016 04:35 04:55:48 20 1099 
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Figure 5. Box and whisker plots of input parameters showing melt ponds, ice, and ocean 

classes. Parallel red line in the box represents the median, while the upper line (i.e., upper 

quartile) in the box represents the 75th percentile of the sample, the lower line (i.e., lower 

quartile) in the box is the 25th percentile of the sample. The range between upper and lower 

quartile is interquartile range showing the middle 50% of the samples. The upper and lower 

whiskers represent samples outside the middle 50%. The red cross outside the whisker 

represents approximately 0.7% of the sample.  

 

3.3 Cloud and cloud shadow masking  
 The MOD35 product provides an estimate for whether or not a MODIS pixel is 

contaminated by clouds. Within the product there are confidence flags for detecting clouds. In 

this study we only use those pixels as listed “confidently clear” in MOD35. However, this 

doesn’t fully remove the effects of clouds. Cloud shadows, are also a problem as they decrease 

the reflectance of the ice surface and can be misidentified as melt ponds in the classification 

algorithm. We found that scattered cloud shadows remained after removing large cumulus 

cloud clusters. To fix this problem, we removed pixels associated with scattered cloud shadows 
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by utilizing a moving window (10 x 10 pixels). For example, if there are more than 50 cloud 

pixels out of 100 pixels (i.e., a window), the pixel was removed. Additionally, we modified the 

spectral based cloud-shadow mask from Hutchison et al. (2009). Essentially, we randomly 

selected four MODIS files on each month (May to August) every six years from the MODIS 

data record (i.e., 2000, 2006, 2012, and 2018) and manually adjust thresholds to find the 

optimum combination for removing the cloud shadows. We assume that these four different 

months represent cloud seasonality. The modified cloud shadow mask is given by:  

 Band 19 < 0.4 and band 5 < 0.35 and band 16/band 13 >0.5.           (1) 

 

3.4 Machine learning approaches (Multi neural network and Multinomial logistic 

regression) 

 Artificial neural network (ANN) has been widely used for the classification of remote 

sensing images over various surfaces (Chang and Islam, 2000; Hong et al., 2004; Yu et al., 

2017), including sea ice and snow (Bogdanov et al., 2005; Rösel et al., 2012; Ressel et al., 

2015; Braakmann-Folgmann and Donlon, 2019; Liu et al., 2019). The ANN is a brain-inspired 

system and designed to replicate the way humans learn. The network consists of an input, 

hidden, and output layer. Here we used the customized network of Patternnet in Matlab. As 

there are many possible combinations for the network, we built the Multi-Neural Network 

(MNN) through a trial and error procedure. The input layer is six (i.e. according to the number 

of input parameters) and three hidden layers with 10 neurons (Fig. 6a). More layers and neurons 

were tested, but the model was slow and results were almost same. For the weight initialization, 

the Nguyen-Widrow initialization algorithm was used. The activation function and training 

algorithm for feedforward were the tangent sigmoid and Levenberg-Marquardt method, 
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respectively. These hyper-parameters were the same at each hidden layer. The epochs were set 

to 25.  

 Multinomial Logistic Regression (MLR) is the extension of binary logistic regression when 

the dependent variables contain more than two classes (Bishop. 2006). The basic principle of 

MLR is same as binary logistic regression, the only difference is the number of logistic models 

is one less than the number of independent variables rather being a binary model. The logistic 

function is given as follows:  

E(Y) = !
!"#$%&'()*"∑ ),-,.

,/0 )2
                                                 (1) 

 where E is expected value (i.e., fraction) of the dependent variable Y, k is the number of is 

the number of independent variables and 𝑥4 is the value of the j th independent variable. Melt 

pond, ice, and ocean are dependent variables in this study and the MLR model is used to predict 

the probabilities of categorically distributed dependent variables. As MLR does not assume 

linearity or normality, it is often regarded as an effective analysis for binary classification. The 

coefficient estimates of melt pond class are only used to produce melt pond fraction in the 

examples that follow. The logistic function of E values of [0, 1] produce the probability of melt 

pond (Fig. 6b).  

 In short, MNN and MLR are independent approaches. While MNN produces three classes: 

melt pond, ice, and ocean, MLR produces melt pond fraction.  
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Figure 6. (a) The architecture of MNN used in this study. The numbers in parenthesis refer to 

the number of neurons. (b) An example of logistic function. 

 

 Since the spectral signature of sea ice will vary from season to season or month to month 

as the melt season progresses, the machine learning model for seasonal (May and June vs. July) 

or monthly, or integrated (using all dates) can be built. The integrated model was found to 

perform the best in terms of validation. All dates in Table 6 are used as training samples and a 

leave-one out cross validation has been performed. Note, the number of training samples for 

melt ponds, ice, and ocean of all the MODIS images examined are not equal. Instead, the 

number of melt ponds, ice, and ocean within the MODIS scenes based on the WV 

classifications are 1163, 9590, and 3088, respectively. The ratio among the three classes (i.e., 

melt pond, ice, and ocean) is important for implementing any machine learning algorithm. 

Generally, the outcomes of a machine learning model tend to be biased toward the class with 

a largest number of training samples. After testing various combinations (i.e., 1:1, 1:2, and 1:3), 

the best ratio of melt pond classes to ice and ocean classes was determined to be 1:1 for 

implementing the machine learning algorithm.  

 While the seasonal evolution of melt ponds over first-year ice and multiyear ice is different, 

they both go through with seven phases; cold snow, melting snow, pond formation, pond 

drainage, pond evolution, open water, and freeze-up (Perovich and Polashenski. 2012; Webster 

et al., 2015; Lei et at., 2016). We thus assume that the evolution of the MODIS band 

reflectances for first-year and multiyear ice during the seven phases are the same, but that the 

timing of melting snow, pond formation, pond drainage, and pond evolution is different due to 

differences in snow accumulation and topography. Thus, training samples made up of WV 
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images that contain a mix of first-year and multiyear ice can be used to develop robust models 

for both first-year and multiyear ice.  

 In order to extract ice and ocean samples evenly, we ran MNN and MLR 25 times. If a melt 

pond class was returned more than 13 out of 25 times in a MODIS pixel, the pixel was classified 

as melt pond. Otherwise, the pixel was classified as ice. If an ocean class occurred more than 

13 out of 25 times, the pixel was classified as ocean. If the number of melt pond and ice class 

or the number of melt pond and ocean class or the number of ice and ocean class is same, these 

classes are all classified as an ocean class because a class has only one ocean class is close to 

the melt pond class. The purpose of iterating the algorithm 25 times is to extract evenly 1163 

ice and ocean samples out of 9590 and 3088, respectively. A 25 times iteration was sufficient 

to consider all ice and ocean samples. 

 Melt pond binary classification results (i.e., melt ponds and ice) by MNN were evaluated 

using statistical metrics including producer’s accuracy, user’s accuracy, and overall accuracy 

with a cross-validation (leave-one-out) (Jensen, 2015 and Table 7). The producer’s accuracy 

(i.e., a/(a+c) in Table 7) is calculated as the percentage of accurately classified pixels with 

respect to all reference samples for each class. The user’s accuracy (i.e., a/(a+b) in Table 7) is 

calculated as the percentage of correctly classified pixels in terms of the classified pixels. The 

overall accuracy (i.e., (a+b)/(a+b+c+d) in Table 7) is calculated as the total number of 

accurately classified pixels divided by the total number of validation sample. Retrievals were 

validated against the WV images described in 3.2. The Root Mean Square Error (RMSE), mean  

Difference (MD), and correlation coefficient (R) are used for the evaluation of melt pond 

fraction derived by MLR. The melt pond fraction reference is the ratio of the number of melt 

pond pixels from the WV classification result based on random forest to all WV pixels in a 

MODIS pixel. 
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Table 7. Error matrix for calculation of producer’s, user’s, and overall accuracy in terms of 

melt pond and ice classification.  

 

4. Results  

4.1 Cross-validation accuracy against WV 

 Melt pond classification derived by MNN is evaluated by cross-validation with statistical 

metrics as discussed above (see Table 8). Note that an ocean class does not exist in the 

validation since the WV images did not have open water in them. However, as seen in Figure 

5, the spectral characteristics of open ocean are clearly discernable and thus we assume that the 

accuracy of classifying ocean from ice and melt ponds is reasonable. Overall, the accuracy of 

the ice versus melt pond classifications varies with time, space, and sea ice surface condition. 

For example, the MNN model identified more pixels as melt ponds than ice on 13 July 2011 

and 14 July 2015 (1, 2) (Fig. 7, 14, and 15), resulting in high producer’s accuracy for melt 

ponds but low producer’s accuracy for ice. On the other hand, on 21 May 2015 (1), 11 July 

2015, and 29 June 2016 (Fig. 8, 13, and 16) the reverse is true. The producer’s and user’s 

accuracy for melt ponds is 0% on 21 May 2015 (2) because there are only 3 reference melt 

pond pixels in the WV image (Fig. 9). For this date and time, the MNN model classified many 

melt ponds in the middle left side of the MODIS image, which appears to be a transition area 

  Melt pond and ice classification reference based on WV   

  Melt pond Ice Sum 

Melt pond and ice 

classification derived 

by MNN 

Melt pond a b (a+b) 

Ice c d (c+d) 

Sum (a+c) (b+d) (a+b+c+d) 
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from ice to melt pond. On 12 June 2015 (2), the MNN model was unable to classify a melt 

pond pixel, producing 0% producer’s and user’s accuracy for melt pond (Fig. 11). Finally, 

while the MNN model classified many melt ponds and ice on 9 July 2015, the melt ponds were 

generally over-classified on the ice, resulting in low user’s accuracy of melt ponds (Fig. 12)  

 In comparison, the RMSE, mean difference and correlation coefficient of MLR is not 

always consistent with results from MNN (Table 8 and 9). For instance, the correlation 

coefficients of melt pond fraction on 12 June (1,2) 2015 and 29 June 2016 are relatively lower 

than statistical metrics from MNN (Table 8). The melt pond fractions derived by MLR are 

underestimated on 12 June (1,2) 2015 and 29 June 2016 (Fig. 10, 11, and 16). This 

underestimation can be explained by the mean difference between MODIS band 2 and 3 

reflectance. While the mean difference between them is 0.09 and 0.07 on 12 June (1,2) 2015 

and 29 June 2016, respectively, the average of mean difference between them on the other days 

is 0.17. The smaller difference between MODIS band 2 and 3 results in an overall lower melt 

pond fraction based on the training sample in the logit function. The statistical metrics of other 

days are somewhat consistent with the results from the MNN. The producer’s and user’s 

accuracy for ice of all MODIS images evaluated are somewhat oversold because the number 

of ice pixels is considerably larger in MODIS than the number of melt pond pixels in the 

MODIS scenes when we calculate accuracies for ice (Table 9).  
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Figure 7. (a) Melt pond binary classification based on WV classification. (b) Melt pond 

fraction based on WV classification. (c) Melt pond binary classification derived by MNN. (d) 

Melt pond fraction derived by MLR. The unit for the x-and y- axis is the number of pixels. 
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Figure 8. As in Figure 7, but for 21 May 2015 (1). 
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Figure 9.  As in Figure 7, but for 21 May 2015 (2). 
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Figure 10.  As in Figure 7, but for 12 June 2015 (1). 
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Figure 11.  As in Figure 7, but for 12 June 2015 (2). 
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Figure 12.  As in Figure 7, but for 9 July 2015. 
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Figure 13.  As in Figure 7, but for 11 July 2015. 
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Figure 14.  As in Figure 7, but for 14 July 2015 (1). 
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Figure 15.  As in Figure 7, but for 14 July 2015 (2). 
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Figure 16.  As in Figure 7, but for 29 June 2016. 
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Table 8. Accuracy assessment results from MNN for the classification of melt pond. (Unit is 

a percentage). 

Year and day 

Producer’s 
accuracy 
for melt 
pond 

Producer’s 
accuracy 
for ice 

User’s 
accuracy for 
melt pond 

User’s 
accuracy for 
ice 

Overall 
accuracy 

13 July 2011 86.3 62.9 37.3 94.7 67.7 
21 May 2015 (1) 67.1 93 89.9 75.6 80.6 
21 May 2015 (2) 0 90.4 0 99.3 89.9 
12 June 2015 (1) nan 100 nan 100 100 
12 June 2015 (2) 0 100 0 99.8 99.8 
9 July 2015  72 87 32 97.3 85.9 
11 July 2015 54.3 98.2 47.5 98.6 96.9 
14 July 2015 (1) 91.3 63.5 63.1 91.5 74.8 
14 July 2015 (2) 92.3 55.1 50 93.7 67.3 
29 June 2016 37.9 99.2 86.6 92.2 91.9 

 

Table 9. Mean difference, RMSE, and correlation coefficient for the evaluation of MLR 

Year and day Mean 
difference RMSE Correlation coefficient 

13 July 2011 0.02 0.1 0.6 

21 May 2015 (1) 0.03 0.2 0.69 

21 May 2015 (2) 0.24 0.31 0.36 

12 June 2015 (1) 0.09 0.1 0.37 

12 June 2015 (2) 0.09 0.12 0.55 

9 July 2015 0.03 0.15 0.61 

11 July 2015 0.13 0.17 0.55 

14 July 2015 (1) 0.02 0.18 0.8 

14 July 2015 (2) 0.02 0.18 0.8 

29 June 2016 0.2 0.27 0.31 
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4.2 Validation with satellite and ship-based melt pond data 

Validation results are represented as scatter plots providing statistical metrics such as 

correlation coefficient (R), Root Mean Square Error (RMSE), Mean Difference (MD) (Fig. 17). 

The overall mean R, RMSE, and MD for all data combined is 0.41, 0.12, and 0.05, respectively 

showing relatively good agreement. The validation of retrieved melt pond fraction against 

NSIDC melt pond fraction is generally overestimated, which is similar to Rösel et al. (2012)’s 

results. Since the melt pond data from ARKTIS-XXII are stored as decimal number, the 

linearity between ARKTIS-XXII melt pond fraction and retrieved melt pond fraction is small, 

producing low correlation (Fig. 17b). The discrepancy between them might be induced in part 

from not flagging refrozen melt ponds as ponds are often refrozen already in August. 

Comparison with PS86 and MEDEA melt pond fraction shows comparable statistical metrics 

(Fig. 17c and d). However, zero and near zero melt pond fraction from PS86 and MEDEA is 

challenging to accurately estimate and these discrepancies are up to 0.3 in terms of melt pond 

fraction. Small melt ponds unseen by ship-observations underneath snow or ice might be 

detected by infrared band. While poor matches in melt pond coverage between the ship-based 

observations and our MODIS melt pond fraction can signify an inherent problem with our 

retrieval algorithm, we cannot rule out the impacts of differences in time acquisition, 

geolocation accuracy and the impacts of different spatial resolution. This discrepancy is not 

surprising because satellite-based and surface-based observations strongly depend on the time 

of the observation (Rösel et al., 2012). 
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Figure 17. Melt pond fraction validation with satellite and ship-based melt pond fractions 

showing statistical metrics, including correlation coefficient (R), Root Mean Square Error 

(RMSE), and Mean Difference (MD). (a) Retrieved melt pond fraction vs. NSIDC melt pond 

fraction on May, June, and July 2000 and 2001. (b) Retrieved melt pond fraction vs. ARKTIS-

XXII melt pond fraction on August 2007. (c) Retrieved melt pond fraction vs. PS86 melt pond 

fraction on July 2014. (d) Retrieved melt pond fraction vs. MEDEA melt pond fraction on May 

and June 2011 and July 2007, 2011, and 2013. 
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4.3 Spectral signature of melt pond and sea ice in refreezing season in the end of 

August: A case study on 20 August 2015  

 We explored a case study of spectral characteristics of melt ponds and sea ice during the 

stage of refreezing at the middle of August (i.e., 20 August 2015) using coincident WV and 

MODIS imagery. The refreezing area is visually identified in the WV RGB imagery, which in 

combination with yearly maps of freeze onset data and MODIS IST (i.e., MOD29), was used 

to determine the box plot distribution of 6 different normalized band differences (Fig. 18). 

According to the yearly freeze-up maps from the Markus et al. (2009) algorithm, the ice began 

to refreeze in the region around the end of August and early September 2015, with a mean IST 

of 271 K (Fig. 19. a and b). Most of the WV image area is identified as refreezing area. 

Although it seems there are melt ponds on the surface from visual inspection of the WV RGB 

imagery (Fig. 19c), spectral characteristics suggest these are refrozen melt ponds as the band 

differences of these ponds looks nearly identical to ice (Fig. 18). This is possibly because a 

thin ice layer on the melt pond, or a dusting snow on top of the melt pond, could erase the 

expected spectral signature of the melt ponds observed in MODIS bands 1-4. It is noted that 

shadows by sea ice ridges due to low solar angle are likely included in this WV image (Miao 

et al., 2015). Previous studies confirm that refrozen melt ponds have a higher spectral albedo 

than open ponds (Grenfell and Perovich, 2004), and thus will be more likely to be classified as 

ice than a melt pond. Although it is impossible to draw firm conclusions from comparison of 

one WV and one MODIS image during the refreezing period, this analysis suggests it is 

difficult to accurately classify melt ponds from ice in the early freezing season, or an early 

snowy period with visible satellite imagery. Hence, this data was not including for the training 

for the machine learning algorithm.  
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Figure 18. Box plot of input parameters with melt pond, ice, and refreezing area. 
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Figure 19. (a, b) The extent of WV is superposed on IST on 20 August 2015 and on freeze-up 

date in 2015. (c) The location of the WV-2 is seen in the Arctic map. Geolocation of WV-2 on 

20 August 2015 and the magnified WV-2 RGB image. 

5. Discussion 

 A major drawback of using any visible satellite imagery for mapping melt ponds, whether 

or not the data are at high spatial resolution, is the presence of clouds. Although we only used 

MODIS pixels flagged as “confident clear” from the MOD35 data product, the cloud mask was 

found to miss thin cirrus clouds and cloud shadows. Thin cirrus clouds or cloud shadows can 

lead to an over-estimation of melt ponds. Visual inspection of our cloud shadow mask revealed 
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that only approximately 70% of the cloud shadows were masked out, and it is clear that a more 

detailed and sophisticated way to remove cloud shadows is needed.  

 Although we limited the time difference between the MODIS and WV to within 50 minutes, 

there may still be a mismatch between the image pairs because sea ice is moving. This might 

be a potential error source when extracting training samples. 

 Further it is clear that mapping of melt ponds from 5 km resolution data is not always 

satisfactory in terms of melt pond fraction. For example, if ice (i.e., could be pond free ice or 

ponded ice) and ocean are mixed in a pixel, this can result in unrealistically large melt pond 

fractions. This is especially problematic in the marginal ice zone (MIZ) and may lead to an 

exaggerated melt pond fraction estimate compared to the more compact ice pack in the central 

Arctic. On the other hand, leads, cracks, and, open water areas between ice floes play important 

roles in the overall surface albedo and the amount of light transmission to the ocean, and thus 

even if misidentified as melt ponds, may still be useful for energy balance and light studies. 

 The training samples for the machine learning algorithms used in this study strongly depend 

on the WV classification results. Erroneous WV classification due to cloud interference, high 

sensor and solar zenith angle greatly influence the composition of training sample and therefore, 

the machine learning results. In this study we carefully assessed each WV classification result 

based on visual inspection of the WV RGB imagery to choose the best images to compare to 

MODIS. This was feasible because the swath of WV is not too wide, and not too many images 

were used, but would be impractical at a larger scale. If melt pond and ice classification 

algorithms are available using other high-resolution optical satellites such as Landsat series 

and Sentinel-2, these satellites could be potentially alternative sources instead of WV.  

 Two uncertainty sources such as random and systematic uncertainties could be considered 

in this study. The random uncertainties originate from random fluctuation in the measurements 
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and can be mitigated by increasing the number of measurements. Random uncertainties in 

monthly mean melt pond data are likely less than daily or 8-days melt pond data in 5km grid 

cell. Systematic uncertainties come from in various ways, including extracting training samples 

based on WV classification, cloud and its shadow mask, and machine learning approaches. As 

the training samples based on WV classification do not cover extensively across the Arctic 

Ocean throughout 2000 to 2019, seasonal or regional uncertainties cloud be found. 25 times 

iteration of MNN and MLR can minimize the systematic error. It is noted that the uncertainty 

sources above should be considered when using this melt pond data. 

 Another concern is the lack of a sufficient number of suitable pairs of MODIS and WV 

images that occurred within 50 minutes of each other in August to fully investigate if the 

machine learning algorithms would work well in August. It was challenging to find enough 

training and validation data sets during other months due to differences in acquisition times 

and cloud cover. Nevertheless, we hypothesize that the training samples from May to July 

cover the spectral characteristics of melt ponds and ice even in August before refreezing has 

occurred, but were unable to test this. In order to properly evaluate the accuracy of the MNN 

and MLR approach throughout the melt season, we need more validation data spanning melt 

onset to freeze-up. The high-resolution optical satellites, including Landsat series and Sentinel-

2 could be suitable for validation sources and will be explored in the future. While the length 

of the melt season has extended (Stroeve et al., 2014), we assume that the spectral signatures 

of melting and freezing sea ice remain consistent over time. Thus, although training and 

validation samples were not available at all times and regions across the Arctic, the MNN and 

MLR model can retrieve Arctic melt ponds during 2000-2019.  

 Finally, as the validation method, reference data, and statistical metrics are different from 

one another, it is hard to directly compare the accuracy of our melt pond classification to other 
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studies. Istomina et al. (2015) includes validation dates in late August and early September, 

during the refreezing season, resulting in low correlation. In terms of classifying melt ponds 

once refrozen, we chose to remove these refrozen areas. However, mean overall accuracy, 

average mean difference, and mean RMSE are 0.09, 85.5%, and 0.18, respectively. These 

evaluation metrics are comparable to previous studies (Rösel et al., 2012; Istomina et al., 2015), 

considering that various stages of melt ponds have been evaluated. According to previous 

accuracy metrics (Rösel et al., 2012; Istomina et al., 2015), the validation results in this study 

performs well.  

6.  Bulk processing of melt pond binary classification and fraction 

 The bulk processing of melt pond binary classification and fraction from 2000 to 2019 has 

begun. Each processed data is gridded to a 5 km EASE-grid 2.0. The ice edge is determined by 

only taking “confident clear” pixels from MOD35 and by discarding pixels classified as ocean 

class from MNN. Note that melt pond fraction is the fraction relative to a grid cell: an average 

is needed because several valid pixels are overlapped in the 5km grid cell. We did majority 

voting for determining a class (i.e., ice or melt pond) in terms of the binary classification. For 

instance, if the number of melt pond pixels is more than half of all valid pixels, the pixel would 

be classified as a melt pond pixel. For the melt pond fraction, we average the fractions in the 

grid cell.  

 Mean weekly and monthly melt pond binary classification and fraction are stored in 

NetCDF format. Figure 20 and 21 shows an example of monthly averaged melt pond binary 

classification and fraction on July 2001, 2004, 2007, 2010, 2013, 2016, and 2019. This monthly 

mean consists of approximately 1104 individual MODIS swaths above 77°N. Since we limit 

sensor zenith angles to 50o, there is a small pole hole where melt pond fraction is not retrieved. 

As expected, the distribution of melt ponds varies in space and time from year to year. However, 
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we have to keep in mind that cloud variability could also influence the observed spatial pattern 

of melt ponds. Only valid MODIS pixels without clouds in a grid cell are used for these 

monthly mean melt ponds, and thus the melt pond binary classification and fraction might not 

be representative of the “true” monthly mean melt ponds depending on the extensiveness of 

the cloud cover throughout the month.  

 Nevertheless, figure 22 shows spatial mean melt pond fraction in July has increased over 

time. On the other hand, the binary classification of melt ponds shows no clear trend (Fig. 22). 

Differences in individual years between the two methods are discernible. For example, in July 

2007, within the East Siberian Sea the overall melt pond fraction is high, and the binary 

classification returns a large number of melt ponds, while within the Chukchi and Beaufort 

seas, while most of the area is classified as a melt pond, and yet the melt pond fractions are 

generally less than 50%, with a few exceptions. Over the central Arctic Ocean, melt pond 

fractions are generally less than 30% and are mostly binary classified as ice. These results 

suggest more analysis and intercomparisons with other approaches for mapping melt ponds is 

needed. A follow-on paper intercomparing melt pond products from Rösel et al. (2012) and 

Zege et al. (2015), as well as evaluating sea ice albedo, sea ice concentration, air temperature, 

IST, and solar radiation absorbed by the ice and ocean. 
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Figure 20. Monthly averaged melt pond binary classification on July 2001, 2004, 2007, 2010,  

2013, 2016, and 2019.  
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Figure 21. Monthly averaged melt pond fraction on July 2001, 2004, 2007, 2010, 2013, 2016, 

and 2019.  
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Figure 22. Spatial mean melt pond fraction, its standard deviation, and spatial mean ice and 

melt pond fraction in binary classification on July 2001, 2004, 2007, 2010, 2013, 2016, and 

2019. There may be a variability between years.  

 

7. Conclusion 

 Melt ponds play an important role in the energy balance of sea ice and may provide 

predictive skill 3 to 4 months in advance of the annual sea ice minimum in September. This 

study applied machine learning approaches, such as Multi-layer Neural Network (MNN) and 

Multinomial Logistic Regression (MLR), to retrieve pan-Arctic binary melt pond classification 

and melt pond fraction using MODIS data. The training sample for machine learning relied on 

melt pond and ice classification from coincident high-resolution WV-2 imagery (Wright and 

Polashenski. 2018). In order to minimize BRDF and atmospheric correction effects, we used 
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normalized band reflectance differences as input parameters for machine learning from 

MODIS bands 1 - 4 TOA reflectances. Solar and sensor zenith angles over 75o and over 50o, 

respectively, were removed to reduce the influence of the anisotropic scattering by ice and 

water. Clouds and cloud shadows in the MODIS scene were masked out by MOD35 and 

modified spectral thresholds (Hutchison et al., 2009), respectively.  

 Melt pond binary classification derived by MNN and melt pond fraction derived by MLR 

were assessed with a leave-one-out-cross-validation. While the accuracy assessment varied in 

time and region, mean overall accuracy, average mean difference (MD), mean RMSE were 

85.5 %, 0.09, and 0.18, respectively. Additionally, retrieved melt pond fractions were 

compared with melt pond fraction derived by satellite and ship-based observations with a mean 

correlation coefficient (R), RMSE, and MD of 0.41, 0.12, and 0.05, respectively. During the 

refreezing period (i.e. end of August), the spectral signature of refrozen melt ponds in the 

MODIS imagery were identified through corresponding visual inspection of coincident WV-2 

RGB imagery. Refrozen melt ponds were found to look identical to sea ice and result in 

misclassification of “true” ponded area. On the other hand, given these ponds consist of either 

a thin refrozen layer, or snow on the pond, perhaps they should no longer be classified as melt 

ponds. Thus, we chose to remove the areas that were refrozen from our processing of weekly 

and monthly melt pond fraction data set. Classifying melt ponds correctly in transition regions 

(i.e., freezing to melting, vice versa) warrants further study.  

 A long-term data set on pan-Arctic melt ponds would be incredibly valuable to the science 

community. For example, the prediction of sea ice (Schröder et a., 2014), and the study of sea 

ice energy balance and the amount of light transmittance under and within sea ice (Perovich et 

al., 2007; Nicolaus et al., 2012), and the enhanced evaluation of sea ice concentration product 

(Kern et al., 2020). Bulk processing of the 20 year MODIS data record (2000 to 2019) has 
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begun using 5-min L1B swath products, namely MOD02HKM, MOD021KM, and MOD29. 

Once completed, we will assess long-term changes in pan-Arctic melt ponds and compare 

results to melt pond products from Rösel et al. (2012) and Zege et al. (2015). Further, melt 

pond data in this study will be compared to yearly maps of melt onset and freeze-up and sea 

ice concentration data. 

While we developed and tested our algorithm using MODIS data, the sensor is past its nominal 

lifespan. Data from the Visible Infrared Imaging Radiometer Suite (VIIRS) could equally 

provide the ability to map melt ponds on a pan-Arctic scale using our method once a training 

sample is determined. This would allow for mapping of pan-Arctic melt ponds beyond the 

lifetime of the MODIS sensor.  
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