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Abstract 

AIM: The outstanding performance of elite athletes is a product of a complex interaction 

between genetic and environmental factors. The aims of this study was to compare 

differences in genetic and metabolic profiles among different classes of elite athletes and 

to identify genetically-influenced metabolic profiles (metabotypes) underlying these 

differences. 

 

METHODS: Genome-wide association study (GWAS) was conducted in 1259 elite athlete 

samples using Drug core BeadChip arrays, followed by non-targeted metabolomics of 

692 serum samples. Genotype distribution, differences in metabolic levels and 

genetically-influenced metabotypes were compared between high and moderate 

endurance and power sports as well as among sports with different cardiovascular 

demands (CVD). 

 

RESULTS:  Out of 341385 SNPs, two novel associations are reported for endurance 

status including rs56330321 in ATP2B2 (p=1.47E-7) and rs2635438 in SYNE1 (p=2.54E-

7). A meta-analysis confirmed the association of rs56330321 and rs2635438 with 

endurance athlete status at GWAS level of significance. Metabolomics analysis of 740 

metabolites was performed in in 191 (discovery cohort) and 500 (replication cohort) elite 

athletes. These studies revealed changes in various metabolites involved in steroid 

biosynthesis, fatty acid oxidation, oxidative stress response, xenobiotics and various 

mediators of cell signaling among different groups of endurance, power and CVD 

athletes. By combining GWAS with metabolomics profiling data (mGWAS), 19 common 
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variant metabolic quantitative trait loci (mQTLs) were identified, of which 5 were novel.  

When focusing on metabolites associated with endurance, power and CVD, 4 common 

variant mQTLs were found, of which one novel mQTL linking 4-androsten-

3alpha,17alpha-diol monosulfate and SULT2A1 involved in steroid sulfation was 

identified in association with endurance. 

 

CONCLUSIONS: GWAS, metabolomics and mGWAS of elite athletes identified novel 

markers associated with elite athletic performance with a potential application in 

biomarker discovery in relation to elite athletic performance. 
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Impact Statement  

The performance of elite athletes is a multifactorial trait, with input from both 

environmental (exercise and diet) and genetic factors, the combined effect of which can 

cause changes in blood metabolic profile. There is ample evidence suggesting genetic 

and environmental factors influence over several phenotypic traits related to physical 

performance and training responses. The genetic predisposition is believed to result from 

minor/small? contributions of multiple genetic variants.  However, genetic studies of 

athletic performance have been mostly underpowered because of small sample size due 

to the difficulty in obtaining samples from elite athletes. Additionally, most of the previous 

studies lacked a clear phenotype. 

In this study, we carried out a sufficiently powered genome-wide association study 

(GWAS) to identify common genetic variants (single nucleotide polymorphisms or SNPs) 

associated with elite athletic performance in distinct athletic groups (moderate vs high 

endurance, power, and cardiovascular demand). We also compared the blood metabolic 

profiles among these groups to identify the potential metabolic pathways underlying 

differences in their performance. Finally, we identified known and novel SNPs likely to 

influence the levels of metabolites differentiating the athletic groups as well as those 

differentiating elite athletes from the general population. 

GWAS has revealed a number of SNPs associated with endurance, power and 

cardiovascular demand in elite athletes. Metabolomics has identified a number of 

metabolites differentiating these groups, including biomarkers of steroid biosynthesis, 

fatty acid oxidation, glutathione cycle, energy metabolites, and various membrane lipids. 

When focusing on xenobiotics, specific metabolites exhibited different levels in various 
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sports groups including those that potentially prolong exercise tolerance, carry a nootropic 

effect, exert a potent anti-oxidant effect, or originate from drugs used treating different 

types of injuries. Finally, combining GWAS and metabolomics data revealed known and 

novel genetically-influenced metabolites (metabotypes) with an association with 

performance, including those related to steroid biosynthesis and energy storage. 

This project provides evidence of genetic predisposition to elite athletic performance that 

is most evident when considering genetically-determined metabolites with direct 

relevance to steroid biosynthesis and energy utilization. 

The emerging novel data could lead to the development of a panel of SNPs that can 

influence levels of specific metabolites associated with elite athletic performance, aiming 

for more informed identification and management of sports talents in Qatar and potentially 

worldwide. 
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1 (Chapter 1) Introduction:  
 

A historical debate on whether nature or nurture plays a more important role in 

mammalian development has been going on for centuries. Many researchers proposed 

that environmental factors such as physical activity, nutrition, experience, education, 

social relationships and culture play a more significant role in shaping individuals, while 

others argued that key determinants of features are carried in their DNA [1]. In his “origin 

of species” book, Darwin denied direct role of environment in the modification of heredity 

(genes), stressing on the role of natural selection as the driver of evolution [2, 3]. 

However, it has now become evident that phenotypes in general are determined by 

complex interactions between genes and the surrounding environmental factors that 

collectively account for the final phenotype [4]. Gene-environment interplay is 

comprehensive and complex. The superior performance of elite athletes, for instance, 

has been historically considered an outcome of a special talent shaped by intensive 

training.  The talent is now believed to be a product of additive genetic components 

predisposing the athlete to endurance/power trainability under the control of strong 

environmental cues including exercise and nutrition. In this model, the inherited capability 

together with ability to respond to training are the keys to success in sport [5]. For 

example, initial selection for participation in organized competitive sports begins at the 

age of 6-7 years for children who show certain sports talents (genetic predisposition). As 

children grow from adolescence to young adulthood following intense exercise in the field 

of their interest, they benefit from regular training that brings changes in their body shape 

and results in increases in muscle strength and muscle power, predisposing them to 

becoming  young elite athletes [6]. Hence, athletes may reach the elite-level only when 
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they are born with innate ability [7] as activation and expression of the innate ability 

(dormant genes) in the athletes in response to exercise training (environmental factor) 

constitute the fundamental factors for achieving elite-level of performance [8]. This fact 

can be used in describing the impact of nature (genes), nurture (environment) and their 

complex interaction in the context of physical performance of elite athletes.  

1.1 Elite athletes: Definition and classification 

1.1.1 Definition of elite athletes 

The consistency and precision in performing remarkable skills with increased force, joint 

stability, and minimizing the risk of musculoskeletal injuries are essential characteristics 

in defining elite athletes and differentiating them from less or non-elite individuals [6, 9]. 

Some studies considered elite athletes as professional athletes who have accumulated 

deliberate practice for two to ten years [10, 11]. Other studies indicated elite athletes as 

professional performers who compete in national or international sport events [12-14] . 

Accordingly, consented elite athlete’s samples (males and females) who participated in 

national or international sports events and tested negative for doping substances were 

used in this study. 

1.1.2 Classification of elite athletes 

Athletes have been classified into two broad categories according to the type and intensity 

of their training: dynamic (isotonic) and static (isometric) [15-17] (Figure 1). The dynamic 

component reflects alterations in the muscle length as a result of regular contractions 

generating a limited, but long-lasting, intramuscular power. Those alterations are typical 

of endurance for sports like long distance running, cycling or triathlons. On the other hand, 

static exercise causes a higher, but short-lasting, intramuscular power with limited 
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alterations in length of the muscle. This type of exercise is typical in power sports like 

weightlifting, jumping, sprinting and throwing. However, most of sports includes both static 

and dynamic components at varying degrees. For example, Marathon running, which has 

limited static but have high dynamic components, whereas water skiing has a greater 

static but have lower dynamic component. Rowing, on the other hand, requires both 

intense static and dynamic components [16-18].  

 

Figure 1. Classification of elite athletes into power sports (moderate and high) and 

endurance sports (moderate and high) [19]. 

Muscle contraction can be high and prolonged to match the metabolic needs of the 

exercising body while regulating the blood pressure to ensure adequate perfusion 

pressure to all organs [20].  Dynamic exercise can be additionally classified depending 
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on the percentage of maximal oxygen uptake (VO2 max%) attained with maximum cardiac 

output. Static exercise can also be classified depending on percentage of maximal 

voluntary contraction (MVC%) attained with elevated blood pressure (Table.1). Very 

intense dynamic exercise (such as long-distance running) as well as constant static 

exercise (such as gymnastics) may be grouped in one high-intensity exercise group 

based on their similar cardiovascular demand (CVD) that includes high cardiac output 

and blood pressure. Each sport can be further classified into low, medium, or high 

intensity dynamic or static exercise, with subcategories including (high static, high 

dynamic), (moderate static, moderate dynamic), (low static, low dynamic) and so on [16].   

Increased aerobic exercise causes greater cardiac output whereas the increased 

anaerobic exercise results in higher load of blood pressure. Consequently, total CVD 

includes cardiac output and blood pressure combined and is utilized to divide sports into 

five additional classes ranging from low static/dynamic (examples are golf and riflery) to 

high static/dynamic (examples are boxing and cycling) [16].  Several studies examining 

the association between CVD and physical activity have indicated that exercise plays a 

role as antidepressant as well as protection from cardiovascular disease [21-23]. A recent 

study by Hamer and his team investigated the association between physical activity and 

sub‑types of cardiovascular disease. The participants were categorized into four groups: 

Inactive (not exercising); insufficient activity (performing some moderate - high physical 

activity), sufficient activity (performing physical activity with intensities: moderate (150 

min/week) or high (75 min/week); and high activity group (performing 300 min/week high 

intensity physical activity). That information was obtained from the participants by 

interview and assessed by a validated questionnaire. Their data showed an opposite 
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association between physical activity and type of cardiovascular disease called 

haemorrhage stroke, suggesting preventions at moderate and risk can be increased with 

high intensities; in contrast high intensity physical activity was not associated with 

increased risk of other type of cardiovascular disease called ischemic stroke [21]. 

However, they concluded that physical activity regardless to its intensities prevent 

cardiovascular disease as well as there is strong association between aerobic exercise 

and protection from cardiovascular disease, but they also mentioned the fact that they 

had a very small proportion of the cohort and lacked complete data on their detailed 

socioeconomic, sedentary behavior, and diet that might have influenced their results [21]. 
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Table 1. Classification of sports based on peak dynamic (VO2max) and static (MVC) 

components achieved during competition, adopted from previously published work [16]. 

 

Dynamic exercise causes a significant increase in cardiac output and systolic blood 

pressure but not diastolic or mean arterial blood pressure. Static exercise, on the other 

hand, triggers lower cardiac output, but significant elevation in systolic, diastolic, and 

mean arterial pressure. Therefore, dynamic exercise principally triggers a volume load on 

the left ventricle, whereas static exercise triggers a pressure load [16]. In Table1, the 

highest total CVD (cardiac output & blood pressure) are shown in red whereas the lowest 

are shown in green. Light green, yellow, and orange reflect low moderate, moderate, and 

high moderate total CVD [16].  
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Dynamic and static classes of exercise are complementary to another categorization 

based on muscle metabolism, known as aerobic and anaerobic exercise. The latter 

categorization describes the source of the required energy for muscle metabolism, which 

represents a vital element for successful performance. During dynamic exercise, energy 

is largely obtained through oxidative phosphorylation that requires oxygen for the 

synthesis of ATP via stimulation of components of the mitochondrial respiratory chain 

[24]. Under static conditions, the energy for muscle contraction is mostly obtained without 

using oxygen through anaerobic glycolysis where ATP is produced by substrate-level 

phosphorylation reactions [25]. Since carbohydrates are the prime energy source during 

exercise, their limited supplies must be preserved by using fat as a supplementary source 

of energy. The efficiency of the muscles of elite endurance athletes in utilizing fat as 

source of energy is greater than that of the power athletes. Such ability can be further 

enhanced by endurance training [5]. 

1.2 Factors influencing athletic performance 

As introduced, elite athletic performance is a multifactorial trait that is influenced by 

multiple intrinsic (genetic, physical, physiological and psychological), extrinsic factors 

(training, nutrition, socioeconomical and general health conditions) and various levels of 

interactions among these factors [26]. The genetic predisposition was suggested by early 

hereditary studies, case control studies and more recently genome wide association 

studies (GWAS), whereas the environmental influence is believed to include exercise, 

diet and other environmental factors such as socioeconomical status, air quality and 

emotional status as described in more details. 
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1.2.1 Environmental factors influencing athletic performance: 

Human athletic ability is largely influenced by environmental factors and can be learned 

and earned through extended and intense practice that interacts at variable degrees with 

genetic predisposition. Altitude training, for example, is known to enhance sport 

performance [27]. Indeed, Kenyan runners, who have won most distance running events 

in the past two decades, are a vibrant example of gene-environment interactions with 

their yet to be determined unique genetic predisposition in addition to their strict running 

exercise at high altitude since childhood [28, 29]. Therefore, the genetic makeup of living 

cells influences the responses to environmental conditions by whole-body functional 

organs, whereas the expression of genetic variation on a trait depends on the 

environmental context [30]. Exercise evokes several signaling pathways that strongly 

modify skeletal muscle contractile properties and myofiber metabolism [31].  These 

metabolic changes will subsequently alter glucose uptake from the bloodstream to meet 

the requirement of huge amount of energy demand during exercise [32]. It has been 

proven that genetic variance plays an important role in determining blood glucose levels 

and genetic factors may explain half of the variance in impaired fasting glucose and 

fasting plasma glucose [33].  

Other essential environmental issues influencing athletic performance include weather 

condition, temperature, and air pollution that could potentially impact running capacity 

and adaptation to sprint conditions [34, 35].  

The socio-economic status of the athletes is another example of environmental factors 

influencing athletic training and performance [36]. Athletes of developed countries 

undergo strict diet and training programs supervised by professionals who are expert in 

maximizing the outcome of the genetic predisposition. Elite athletes from developing 
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countries, on the other hand, may have less opportunity for professional supervision 

because of limited resources and since sports development does not occupy a top priority 

in their national budgets [37, 38]. 

The athlete’s emotional status can also affect physical performance substantially by 

modulating the sympathetic drive resulting in changing energy burst and cardiac output 

that can further control perceived exertion, pacing and performance [39]. Furthermore, 

the emotional profiles of elite athletes were shown to predict their potential risk of injury 

[40]. It has been postulated that training poses stress on an athlete, shifting their physical 

and psychological well-being along a range of performing better and scoring higher, 

leading to acute fatigue, overreaching, and ultimately overtraining syndrome [41]. On the 

other hand, studies have reported that athletes with greater sense of mindfulness were 

more likely to exhibit better scores in emotion control, setting goals and positive 

satisfaction, together reflecting positively on their performance [42]. Measurement of 

athletes’ status of emotion and self-satisfaction as well as identification of other 

environmental factors affecting their own perception have revealed the heterogeneity of 

motivating factors among athletes. Studies identified that personalized approaches are 

needed in every athlete’s case for encouraging and coordinating by the support system 

and leadership [43].  

1.2.1.1 Exercise 

Several studies found that there is a positive effect and a linear relationship between 

physical performance and exercise protocols [44]. For example, physical inactivity, 

sedentary behavior and low cardiorespiratory fitness are strong risk factors for the 

development of chronic diseases, morbidity with resulting mortality [45, 46]. Whereas, 
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healthcare professionals are promoting physical activity and encouraging adolescents 

and young adults to exercise with new frontiers broached in elite sport that are 

increasingly being translated to benefit patients, and vice versa [45, 47]. Exercise 

improves skeletal muscle energy status and causes higher muscle force outputs for 

longer periods of time [17]. Overall effect of exercise on performance in terms of intensity 

and duration of training has been investigated. Continuous training protocols are 

performed at moderate or high intensities in a single bout [48, 49]. High‑intensity interval 

training protocol is repeated bouts of high‑intensity exercise with transition from maximal 

lactate steady state to complete rest interspersed with recovery periods of low‑intensity 

exercise [17]. Studies tested continuous training versus high-intensity interval training 

protocol. Previous studies found that both are equally effective at improving exercise 

performance and reducing the risk of cardiovascular disease [50, 51]. It was shown that 

high‑intensity interval training increases VO2max and maximal exercise capacity, 

whereas continuous training is more effective at increasing muscle oxidative capacity 

[52]. Another study showed that exercise at high intensity, with shorter duration, caused 

a greater activation of significant regulatory pathways controlling skeletal muscle gene 

expression when compared to exercise at low intensity with a longer duration [53]. 

Another study showed that long high intensity interval training generated higher acute 

increases in rate perceived exertion (RPE: measurement of global perceived effort 

intensity), heart rate (HR) and maximal oxygen consumption than short high intensity 

interval training and moderate intensity continuous training, suggesting increase in 

cardiovascular demand on the cardiorespiratory system [48]. The study also showed 
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similarity between short high intensity interval training and moderate intensity continuous 

training in physiological and perceptual responses [48]. 

A recent study tested duration of recovery periods separating serial bouts of small sided 

football games on RPE, HR, deoxygenated hemoglobin (HHb), and time motion 

descriptors (speed and distance) during the sessions [54]. The study concluded that the 

tested recovery duration ranging from 30s to 120s between serial bouts had a similar 

effect on trained footballers as the experienced players. The study suggested the coaches 

to consider recovery duration in the training plan to provide an efficient training session 

that maintains performance levels [54].  

 

1.2.1.2  Nutrition 

Sufficient nutritional intake is fundamental for achieving optimal athletic performance [55], 

protecting athletes from health issues related to nutrients deficiency and enhancing post-

exercise recovery. For example; carbohydrate intake during exercise maintains high 

levels of carbohydrate oxidation and prevents hypoglycemia [56]. Similarly, a balanced 

diet of iron is essential for endurance athletes as they have a higher tendency to develop 

both iron depletion and deficiency, which sooner or later can cause anemia and lead to 

reduction in training capabilities [57]. Dietary supplements are widely used by athletes in 

different sport disciplines as part of their regular training or competition routine  to fulfill 

the requirement of having a balanced nutritional diet [58]. Other potential benefits of 

supplements include the ability to sustain a higher training load without suffering illness 

or injury, enhance responsiveness to the training stimulus and improve competition 

performance [59, 60]. Supplements contain essential fatty acids, amino acids, vitamins, 

minerals, and various "ergogenic" compounds, consumed in the form of protein shakes, 
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sports drinks, and fortified foods [58, 60, 61]. The regulation of supplements is different 

in different countries as there is no global market agreement on categorization of these 

products. For example, some known “dietary” supplements are defined as natural health 

products and marketed as a food product. Other products are treated as a therapeutic 

goods, prescription medicine, or controlled substances [61].  

 

Several studies investigated supplement use by elite athletes based on interviews and 

surveys to determine the influence of age and gender on consuming these supplements 

and the opinions regarding nutritional supplement education as well as awareness of anti-

doping regulations. A study based on questionnaires filled by Canadian high-performance 

athletes (314 males, 268 females with a mean age of 19.96 +/- 3.91) and reviewed by 

health professionals (dietitians, sport medicine physician, pharmacist) revealed no age or 

gender difference in consuming supplements. The study found that 52.7% of 

family/friends, 44.3% of teammates, and 40.7% of coaches were major source of 

information for athletes consuming the supplements without approaching an expert in 

nutrition. Furthermore, 83.5% of athletes indicated that health maintenance and nutritional 

deficiency were their prime reason for consuming supplements [62]. Another investigation 

on nutritional supplements performed on 1620 Norwegian elite athletes showed increased 

use of nutritional supplements in male elite athletes. Their coaches were the main source 

of information for used supplements [63]. Information acquired from doping control forms 

of 361 Danish elite athletes reported 100% use of at least one nutritional supplement [64]. 

A survey conducted on use of dietary supplements in 164 elite German athletes indicated 

80% use of one or more supplements such as multi-vitamins, minerals and energy drinks 



46 
 

[65]. Among the supplements used by athletes, carbohydrates ranked top in the list of 

consumed supplements. However, only some indicated use of amino acids, creatine, or 

other ergogenic aids such as "blood doping" (administration of packed red blood cells) 

and pharmacologic agents, such as androgenic steroid supplements [65, 66].  However, 

some studies have revealed that most athletes were not well informed regarding the 

benefits and risks of supplements, due to the limited available scientific evidence [58].  

A study on population health and lifestyle was performed using 15465 participants (45.2 

% were men and the overall mean age was 49.8 years) through collecting data using self-

completion postal questionnaire. The study showed that 35.5 % of the participants were 

taking dietary supplements, but participants had no knowledge of the potential risks 

associated with these supplements [67]. Another study reported that most of the athletes 

considered club coaches as the best source of information on supplements and among 

them only 23% were aware of the side effects of the supplements, mainly via searches 

on the internet [68]. Consistently, most of the studies revealed significant influence of 

coaches’ beliefs and actions regarding performance-enhancing drugs as well as their role 

as anti-doping agents, on athletes’ supplement consumption [69].  

Since elite-level athletes are often reluctant to participate in supplement testing trials 

because of heavy training load and busy competition timetables, a true assessment on 

the effectiveness of supplements still to be investigated. Hence, a retrospective approach 

that investigates the existence of certain supplements/metabolites in elite athletes could 

offer a deeper view of potentially consumed supplements and their anticipated effects on 

general health and performance. 
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1.2.1.3 Other environmental factors 

Elite athletes’ performance is also affected by other environmental factors including air 

pollution, weather conditions and socioeconomical factors. A research into the effects of 

long-term exposure to air pollution on athletic performance described that pollutants like 

nitrogen and sulphur oxides, as well as ammonium ion, organic aerosols, particulate 

matter and ozone are all of concern [70]. Particularly during outdoor sports trainings and 

competition events, athletes are receiving  higher exposure via inhalation of pollutants 

because of the increased ventilation during exercise, which may lead to decreased lung 

function, increased exacerbations of asthma, decreased diffusion capacity, pulmonary 

hypertension, cardiovascular effects and an overall decrease performance [70]. A number 

of measures can be taken into account to reduce exposure to pollutants. Athletes living 

and practicing in urban cities close to major roadways should consider levels of particulate 

matter and ozone prior to start exercise, and need to make lifestyle alterations to avoid 

the deleterious effects of pollutants inhalation [71].  

Outdoor sports participants may also be affected by the environmental thermal stress. 

They might be exposed to warm/hot ambient conditions (temperature >39 °C) leading to 

exertional hyperthermia, or they may get hypothermia, while practicing in cold/cool-windy 

environments (temperature <35 °C). Thus, the chances of athletes facing health risks 

increases which in turns lowers their physical activities and performance [72]. A study 

showed that heat exposure increases muscle temperature that may benefit initial‑sprint 

bouts performance via an improved muscle contractility [73]. However, overheat exposure 

leads those muscle‑temperature‑related benefits to be overridden by the intensified 
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cardiovascular and metabolic strain and decreasing voluntary muscle activation 

associated with greater performance decrements [73]. 

Studies also considered social and economic features of players as one of the 

environmental factors that distinguish and promote elite athletes. For instance, a study 

conducted on the Greek women's national volleyball team provided useful information 

concerning the impact of profession, financial status, relatives and social environment on 

the performance of female athletes with high potential [74]. The study showed that most 

of the female athletes were second-born children in their families with support to 

participate in athletic activities [74]. Their relatives and social environment had an 

emotional connection with sports and showed moral support towards their participation in 

sports [74]. Greek women volleyball athletes were financially supported by the sports 

ministry as their sole occupation [74]. Another study reported that athletes were more 

influenced by their personal family, teammates, and lack of support from relatives, than 

coaches who were more concerned about technical and institutional aspects and medical 

support [75]. The study also reported financial support as the least important factor in 

terms of athlete’s path to sports success [75]. The most influential factor according to both 

athletes and coaches was dedication, whereas the factor that adversely affected 

performance was exposure to injuries [75]. 

1.3 Genetic predisposition to elite athletic performance: 

The Human Genome Project has completed over a decade and half ago [76]. 

Successively, International HapMap Consortium, 1000 genomes and the encode [77] 

projects indicated that over 99% of human DNA sequences is similar. The 1% variation 

in human genome at several sites in an individual’s DNA and their unique combinations 
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are likely to have the potential to predispose an individual towards elite sporting ability 

[78]. The identification of these variants is crucial to understand the superior performance 

of elite athletes and has been a subject of study for many years [79, 80].  

1.3.1 Heritability of super-physical performance 

Family-based studies have indicated that the propensity to engage in physical activity, 

particularly in the form of organized athletics, may be rooted to some extent in our genes.  

Heritability estimates the amount of variation in a trait that can be accounted for by 

variation in genes. Twin heritability studies provided the first clues of genetic 

predisposition to physical performance-related phenotypes. A study of 37051 twins from 

7 European countries revealed 48-71 % heritability of participating in leisure-time exercise 

depending on the country, suggesting that genetics play a significant role in athletic 

performance independent of environmental effects [81]. The first genome-wide linkage 

scan for athletic status was performed in 700 British female dizygotic twin pairs and 

reported a heritability of athletic status of 66% (explained by additive genetic factors), with 

the remaining variance explained by environmental factors [82]. Data from the 

HERITAGE family study of 473 sedentary Caucasian adults from 99 families suggested 

that the heritability of changes in VO2max with 20 weeks exercise training was ~47%. 

This GWAS revealed a set of 21 single nucleotide polymorphisms (SNPs), out of 300000 

studied, that accounted for the observed variance in VO2max trainability [83]. Among 

these, rs6552828 SNP in acyl coenzyme A synthetase long-chain 1 gene (ACSL1) 

exhibited the most significant association with VO2max, accounting for 6% of the training 

response of VO2max. This study, despite the relatively small sample size, has highlighted 

that performance is genetically influenced and that a large number of SNPs must be 
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studied to reveal genotype–phenotype interaction instead of single candidate genes. The 

HERITAGE family study group applied a molecular classifier that predicts the training 

responsiveness of VO2max in non-athletes [84].  

 

In addition to VO2max, multiple studies have reported that muscle strength and mass are 

influenced by genetic factors. Twin and family studies estimated heritability for muscle 

strength and muscle mass between 31-78%, with significant alterations between muscle 

groups and lengths in addition to contraction velocities [85]. Studies focusing on the 

heritability of explosive power, an essential predictor of sprinting ability, have revealed 

74% heritability of maximal power (5 seconds interval) and 84% heritability of total power 

(30 seconds interval) in 32 Caucasian male twin pairs sharing the same environmental 

backgrounds [86]. Therefore, it is becoming widely accepted that physical performance is 

indeed heritable.  

1.3.2 Case-control studies 

Multiple case-control studies have revealed a number of genetic variants associated with 

elite athletic performance. Early work identified a significant association of an 

insertion/deletion (I/D) polymorphism in the angiotensin converting enzyme gene (ACE) 

and endurance trainability, where the insertion genotypes (I and II) were predominant in 

skilled British high-altitude climbers compared to healthy non-athletic counterparts  [87]. 

This work was followed by the GENEATHLETE study that presented a robust phenotype 

for elite athletic status by using world-class group of Caucasian athletes VO2max of at 

least 75 ml per kg per min. This study identified association of alpha-actinin-3 (ACTN3) 

R577X as well as the Pro582Ser polymorphism of the hypoxia-inducible factor-1alpha 
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(HIF1A) gene with elite endurance athletes, but not variants in myostatin (MSTN) or 

muscle creatine kinase (CKM) [88-90]. Subsequent case-control studies have identified 

over 200 SNPs shown to be associated with physical performance, among which at least 

20 SNPs were suggested to influence elite-athletic phenotype [91]. Among these, ACTN3 

remains the only gene that shows a significant and consistent association across multiple 

studies of elite-athletic power. The expression of the skeletal muscle protein ACTN3 is 

limited to fast twitch (type II) muscle fibers as it stabilizes muscle contraction, hence 

provides a higher force ability than type I fibers [92]. ACTN3 R577X polymorphism 

(prevalence of 10% in Africans and up to 50% in Caucasians) provides the most 

consistent association with reduced sprint capacity, and possible improved endurance 

performance in humans with the ACTN3 XX genotype [92, 93] with more than a billion 

people worldwide cannot express alpha-actinin-3 in their skeletal muscle fibers 

(homozygous for the R577X null-allele) [94]. The functional relevance of this SNP is 

clearly confirmed in ACTN3 knockout mouse model. In this model, (ACTN3 deficient) has 

a reduced anaerobic glycolytic activity and increased aerobic oxidative activity [95, 96]. 

ACTN3 knockout mice also show greater resistance to fatigue, smaller muscle mass and 

reduced diameter of fast (IIB) twitch muscle fibers and strength than wild-type mice [94, 

97]. The phenotypes of the ACTN3 knockout mouse mimic the gene association studies 

performed in humans and provide a plausible explanation for the phenotype seen in 

ACTN3 XX individuals [93]. However, the ACTN3 R577X polymorphism was shown an 

account of only 2.5% of the variance seen in athletic performance [98]. Other 

polymorphisms associated with elite-athletic power less consistently including ACE 

(rs4646994), angiotensinogen (rs699), skeletal adenosine monophosphate deaminase 
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(rs17602729), interleukin-6 (rs1800795), endothelial nitric oxide synthase 3 (rs2070744), 

peroxisome proliferator activated receptor-alpha (rs1799983) and mitochondrial 

uncoupling protein 2 (rs660339) [99]. Ethnic differences were also evident as some 

studies associating ACE and ACTN3 with endurance and sprint performance in 

Caucasians were not replicated in Africans, possibly due to small sample sizes, using 

inappropriate controls or a mere reflection of a true genotype-ethnicity interaction [100].  

Another study performed by Dr. Jamshidi and her team focused on inherited cardiac 

function defects associated with fatty acid oxidation in response to exercise, 

hypertension, or obesity [101]. The study analyzed 144 young British Army males and 

1148 men and women who participated in the echocardiographic sub-study of the Third 

Monitoring Trends and Determinants in Cardiovascular Disease Augsburg study 

(MONICA) [101]. The results indicated that G/C polymorphism in PPARα gene was 

significantly associated with left ventricular growth in response to exercise (P=0.009) 

[101]. Equally, the C allele homozygotes had significantly higher left ventricular mass, 

which was greater still in hypertensive subjects, and a higher prevalence of left ventricular 

hypertrophy (LVH) in the Third MONICA Augsburg study [101]. The study concluded that 

peroxisome proliferator–activated receptor α (PPARα) regulates genes responsible for 

myocardial fatty acid oxidation and is downregulated during cardiac hypertrophy, 

associated with glucose utilization instead of fatty acid [101]. 

Such preliminary studies have played an important role to identify the heritability of 

performance, however, a candidate gene approach of athletic performance has been 

hindered by a small sample size and poorly defined phenotypes used by various studies 

that involved multiple sports disciplines without a clear categorization. This included 
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measuring heritability of physical activity, a vague phenotype in identical twins and 

underpowered case-control studies, comparing limited number of genetic variants in 

athletes versus non-athletes. One issue that these studies have in common is their 

assumption that, controls have little or no genetic contribution to athleticism. However, 

the fact is that they contain a number of genetically predisposed individuals who are 

simply inactive and therefore not meeting their athletic potential [102]. 

1.3.3 Genome-Wide Association Studies 

Decades of research in sport genomics have been shaped by the development in 

molecular biology techniques and the enhanced statistical and bioinformatics analyses 

and their ability to identify genetic markers linked to physical performance. Among them, 

GWAS have been proven a promising approach that can rapidly scan numerous genetic 

markers across complete sets of DNA in a large sample size to find genetic association 

with a physical phenotype.  

For instance, one GWAS evaluated four phenotypes related to electrocardiogram (ECG): 

heart rate (RR interval), PR interval, QRS duration, and QT interval in large consortia of 

30,000 samples [103]. Using meta-analyzed genome-wide association results, the study 

identified seven novel locus-trait associations, of which six were successfully replicated 

[103]. Among their findings, a variant in ATP2A2 gene was significantly associated with 

QRS duration that is known for measurement of cardiac depolarization, which causes the 

ventricular muscle to contract, resulting in pulsatile blood flow [104]. The study results 

identified ATP2A2 as a candidate gene in the region that encodes a sarcoplasmic 

reticulum Ca2+-ATPase (SERCA) [103], which is involved in calcium transport in the 

human heart and under regulation of phospholamban [103, 105]. This GWAS strategy, 
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unlike candidate gene studies, is not based on the previous knowledge of the trait that 

identifies candidate loci contributing to the trait of interest but follows a hypothesis-free 

approach.  

Accordingly, the high degree of similarity in the genetic profile across athletes and the 

relatively few individuals with low or high numbers of favorable genetic loci indicate a low 

level of heterogeneity in muscular power-related traits and/or VO2max endurance-related 

phenotypes in the population. This low heterogeneity provides insights into the challenges 

of using genetic information in predicting athletic potential [106, 107]. Therefore, GWAS 

were utilized to reveal genetic predisposition of elite athletic performance by using a large 

number of genetic markers covering the entire genome in order to maximize the chance 

to reveal multiple genetic sites in various athletes’ cohorts.  For instance, Ahmetov I and 

his research group have examined the association between 1,140,419 SNPs and relative 

maximal oxygen consumption rate (VO2max) in both males and females of eighty 

international level endurance athletes from Russia. The data indicated associations of 

rs1572312 in NFIA-AS2, rs7144481 in TSHR and rs7191721 in RBFOX1 with aerobic 

exercise as well as their endurance level. To verify their data, investigators carried out a 

case/control study comparing the three most significant SNPs between their endurance 

athletes and controls (Russian power athletes and Russian and European controls). The 

results indicated that the frequency of the C allele of rs1572312 was significantly higher 

in elite endurance athletes (95.5%) than non-elite endurance Russian athletes (88.8%) 

[108]. 

GWAS can also be applied to predict risk of sports injury in athletes. Several studies in 

the context of sports genetics have identified a number of DNA polymorphisms associated 
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with anterior cruciate ligament tear, Achilles tendon injury, low bone mineral density and 

stress fracture, osteoarthritis, vitamin/mineral deficiencies, and sickle cell trait [109]. 

Herbert and his team studied the importance of physical activity on bone mineral density, 

and identified genetic associations considering gene–environment interactions such as 

sensitivity to mechanical loading from physical activity. Their results showed significantly 

higher total body bone mineral density in 84 weight-bearing athletes compared to 80 

controls. A subsequent study of 99 elite academy footballers by the same group indicated 

significant associations between SNPs in SOST, P2RX7 and TNFRSF11 and bone 

phenotypes, although no genotype–training interactions were observed after a 12-week 

period of increased football training volume [110]. Mitchell and his team performed 

exploratory analyses in a discovery cohort of 918 athletes and a replication cohort of 486 

athletes of European descent. They calculated the genetic risk score to investigate 

interactions between individual variants and proportions of high impact physical activity. 

A significant interaction between total physical activity and one variant (rs2887571) 

influencing bone mineral content was observed. However, this exploratory finding did not 

reach statistical significance in the cross-sectional replication cohort as variants only 

partly (≈6%) explained the variance in adult bone mineral density. Additionally, the 

contribution of other genetic variants influencing the pediatric skeleton response to 

physical activity exposure could not be ruled out [111]. 

It is believed that studying elite athletes’ gene–environment interactions could provide a 

greater understanding of biological underpinnings of physical activity and subsequently 

changes in exercise and rehabilitation programs with reference to genetic backgrounds 

could have significant impact on sporting and public health sectors [110]. 
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1.3.4 Limitations of genetic association studies 

Overall, when it comes to physical performance, the association between genotype and 

phenotype is complex. For simple phenotypes such as height, identified SNPs through 

GWAS could explain up to 45% of its variance [112]. However, complex phenotypes, such 

as athletic performance, rely on the association analysis of thousands of genes that only 

explain a small percentage of the phenotype due to their small effect size [102, 113]. Such 

studies require a large sample size as well as a simpler intermediate phenotype to fully 

understand the genotype association and contribution of inheritance in elite performance. 

Until this day, none of the GWAS associations in physical performance has reached the 

genome-wide significance level of 5x E-8  [106]. This is because genetic talent is a result 

of a number of genetic variants and a complex combination of several environmental 

conditions influencing patterns of expressed genes [114]. In addition to the small effect 

size of identified SNPs, the number of participants represents the most significant 

limitation of genetic association studies. There becomes a need to include thousands of 

subjects to reach a sufficient statistical power to identify genetic variants that truly 

predispose to the phenotype of interest. Whereas this may be possible for some common 

diseases such cardiovascular disease, the number of elite athletes is limited for a given 

ethnicity and sport type, making and conducting such studies are more challenging. In 

order to increase sample size, a recent meta-analysis by the international consortium 

(GAMES) was conducted to compare elite endurance athletes and ethnicity-matched 

controls in a case-control study was designed by combining GENATHLETE and 

Japanese endurance runners. The meta-analysis tested a panel of 45 SNPs that were 

identified as promising markers by early studies on the GWAS basis of sports 

performance. The study that analyzed 1520 endurance athletes and 2760 controls 
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revealed only one statistically significant SNP (rs558129) at N-

acetylgalactosaminyltransferase-like 6 (GALNTL6) locus, exhibiting the same direction of 

association with endurance, although it did not reach GWAS level of significance. The 

study concluded that there is no evidence of association of genomic signature that 

differentiates endurance status in world class athletes from controls. The study also 

highlighted that the sample size constitutes the main limitation which is hard to tackle 

because of limited number of elite endurance, the majority of whom are reluctant to take 

part in genetic studies [115]. Differences in allele frequency and association with 

performance among different ethnicities represent an additional limitation of genetic 

association studies, making it imperative to verify SNP associations in different ethnicities 

before candidates are named. A third limitation is heterogeneity of phenotype as some 

investigation reports data from athletes of mixed (power and endurance) sports with 

different cardiovascular demands instead of clearly defining athletes at either end of the 

spectrum such high power or high endurance ranked by their increased cardiovascular 

demand. This would offer a better understanding of variants associated with either power 

or endurance elite athletic status. Finally, many of these identified associations between 

SNPs and athletic performance were unique to athletes who were exposed to specific 

environmental factors including technique, kinematics, motivation, pain tolerance, adding 

to the complex trait. Such factors are very difficult to reproduce.   

Functional validation of identified SNPs is required to understand the underlying 

mechanisms of SNP association with the phenotype such as gene expression studies. 

However, such studies would require sample collection from various tissues such as 
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skeletal muscles or myocardium which is not feasible in elite athletes. Such approaches 

are possible in animal models and possibly in non-athletes [116]. 

Overall, genomics studies are limited in predicting the complex phenotypes because 

genetic information is mostly static and does not account for the influences of the dynamic 

environmental factors [117]. There are difficulties in determining the effect of GWAS-

discovered SNPs on nearby or distant genes as well as in determining the effect of the 

environmental factors including lifestyle, diet, emotional and psychological factors and 

physical activity on the development of several phenotypes. Therefore, it is more 

appropriate to consider metabolites as an alternative phenotype that may provide a direct 

functional link and consequently a greater effect size of genetic variants. Metabolomics 

have been recently used to explain the outcome of a variety “inborn errors of metabolism” 

in conjunction with the environment [118]. These “inborn errors of metabolism” would be 

reflected by differences in the concentrations of metabolites in body fluids and could 

provide insight into the “missing heritability” explained as “genetically influenced 

metabotype” (GIM) [119]. 

1.4 Metabolomics 

Metabolomics is the measurement of endogenous metabolites in biological fluids, 

providing a “snapshot” analysis of metabolic pathways, gene function, enzyme activity, 

and the physiological effects [120]. Previous studies focused on the identification of 

metabolites and measurement of metabolite concentrations for the discovery of clinically 

relevant biomarkers and potential therapeutic targets [121]. For example, a study 

considered cardiovascular disfunction as the leading cause of mortality globally and 

investigated heart disease-associated metabolic derangements [122]. This study 
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indicated that carnitine palmitoyltransferase I inhibitor-dependent suppression of free fatty 

acids oxidation, and glucagon-like peptide-1-dependent enhancement of glucose 

oxidation are significantly associated with stimulation of myocardial function and 

constitute potential targets for therapeutic efficacy and cardiac recovery in heart disease 

[122]. 

Another study considered the potential of metabolomics serving as prognostic tools to 

perceive the development of cardiovascular disease [123]. The study assessed the 

metabolic difference associated with obesity and/or type 2 diabetes (T2D) and their 

contribution in disturbing function of body organs with several deleterious changes. These 

included inflammation of the adipose tissue, insulin resistance of skeletal muscle, 

nonalcoholic fatty-liver disease, dysfunction of beta cells, and vascular and cardio-

myopathies [123]. Associated with these changes are metabolic derangements that can 

lead to increased acyl carnitines, lactate, and branched-chain amino acids (BCAAs), 

which collectively contribute to an increased risk for cardiovascular disease in these 

individuals [123] (Figure 2). The study suggested that identification of circulating 

metabolites that correlate with risk of disease would aid in the treatment and overall 

management of CVD in obese and/or T2D patients [123].  
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Figure 2. Blood-based metabolomic profiles of individuals with obesity and type 2 

diabetes often lead to worsening of CVD system and development of cardiovascular 

disease. Abbreviations are CVD - cardiovascular demand and BCAAs - branched-chain. 

Figure adopted from previously published work [123]. 
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The excessive training of professional athletes is associated with major alterations in their 

metabolic profiles that depends largely on the type and duration of their training regimen 

as discussed above.  Exercise has putatively beneficial effects on blood pressure, blood 

lipids, and glucose homeostasis. Several biomarkers are commonly used to evaluate the 

physical status of elite athlete during their exercise [124, 125]. However, these methods 

were not sufficient enough to evaluate accurately the physiological alterations between 

endurance athletes and controls or differentiate pre versus post exercise markers [126]. 

Hence, there is a need for a more accurate metabolic profiling to reveal true physiological 

alterations in response to exercise. 

Metabolomics presents a quantitative method for profiling of metabolites that change with 

physical activity in professional athletes, aiming at identification of biomarkers for 

performance, fatigue, and sports-associated disorders [126, 127]. These metabolic 

alterations are characteristic of glucose, lipid, amino acid and energy metabolism [126, 

128]. For instance, metabolic profiling of exercising athletes showed elevation in plasma 

lactate [129] and breakdown products of adenine [130], typical of anaerobic respiration 

and ATP recycling. Other investigations of the metabolic impact of exercise indicated 

increased intermediates of the Krebs cycle, indicating aerobic energy generation in 

skeletal muscles [131]. High load training was also implicated in causing alterations in the 

concentrations of amino acids such as uptake of glutamate by the skeletal muscle, 

causing generation of alanine to induce ammonia metabolism [132], with associated 

alterations in plasma levels of these metabolites [133, 134]. Increase in serum 

concentration of sex steroid hormones was also shown in endurance athletes undergoing 

high exercise load [135]. 
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Evaluation of these alterations presents invaluable assessments of athletes’ physical 

status and response to exercise that would assist in planning their future exercise 

programs, avoiding potential disorders associated with intensive training and improving 

their general performance. The identified metabolites can also serve as potential 

biomarkers for professional athletes or may exhibit functional relevance as hormones 

[136, 137]. 

Metabolomics also offers a comprehensive method for identifying metabolic alterations 

associated with various dietary and environmental factors [138].  Approaches based on 

non-targeted/targeted metabolomics have substantially aided in the screening of 

hundreds of metabolites marking different metabolic signals  [139]. Although the direction 

for comprehensive metabolic profiling is recommended to ensure all health aspects are 

accurately evaluated [140], it remains underutilized [141]. 

1.5 Genetically-influenced Metabotypes 

Hundreds of GWAS have been processed for the identification of common genetic 

polymorphisms influencing common human traits.  As a result, several genetic variants 

have been associated with numerous phenotypes by the selection of variants with an 

associated p value below a certain threshold in each individual SNP has a small overall 

effect [142]. Previous studies have shown that GWAS could explain up to 45% of some 

phenotypes such as height as discussed earlier, though for complex ones such as 

cardiovascular risk factors and coronary heart disease, it may not be able to explain more 

than 10–12% of the total trait variance [143, 144]. However, when taking metabolites into 

account, some genetic variants could explain up to 50% of their respective metabolic 

profile [145]. Several studies considered that the integration of personalized genetic and 
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metabolomics data would improve the success of precision medicine by enhancing the 

prediction of increased risk of disease and the therapeutic options [117]. For instance, the 

study conducted by Suhre and his team reported a comprehensive analysis of genotype-

dependent metabolic phenotypes using a GWAS with non-targeted metabolomics to 

provide functional insights for many disease-related associations, including CVD and T2D 

[119, 146]. The study used several published CVD associated SNPs that were not 

statistically very robust but were considered since the identification of the biochemical 

function of the associated metabolic traits would explain the link to heart disease [146]. 

The results indicated several significant genome-wide association studies with 

metabolomics (mGWAS) associations. Among them was kallikrein B plasma (Fletcher 

factor) 1 (KLKB1) gene associated with the bradykinin pathway that controls blood 

pressure, as well as ABO (encoding ABO blood group) in association with transferase A 

(α-1-3-N-acetylgalactosaminyltransferase) and transferase B (α-1-3-

galactosyltransferase) and ALPL (alkaline phosphatase) in association with fibrinogen A-

α phosphorylation (FAaP). The data indicated that these associations could serve as 

biomarkers for acute myocardial infarction, and the combined additive genetic effect could 

predict the CVD risk [146]. Considering mGWAS results associated with T2D, the study 

reported ten associations included Carbamoyl-phosphate synthase 1 (CPS1) associated 

with glycine, as well as genetic variant in Fatty acid desaturase 1 (FADS1) associated 

with lysophosphatidylcholine acyl (lysoPC a C18:2). The latter is a genetic risk factor for 

hyperglycemia, preferentially associating with abnormal cholesterol and triglyceride levels 

[147].  
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Consequently, studies suggested that mGWAS results provide useful clues for 

understanding the causality of disease progression when studying the functional role of 

metabolic pathways in combination with genetic evidence. Figure 3 summarizes the 

importance of metabolites as an intermediate phenotype to examine function of the 

genomic allele. 

 

Figure 3. Metabolomics is a genome sentinel and metabolites are highly informative 

intermediate phenotypes between genes and their functional presence (Adopted from 

[148]).  

Therefore, analyzing mGWAS and gathering knowledge of the heritable part of the 

genetic variation in metabolism could explain a significant part of complex phenotypes by 

providing intermediate phenotypes that collectively explain these phenotypes [146, 149]. 

mGWAS provides measurable hypotheses for functional genomics and metabolomics 

and identify novel gene functions and metabolite identities, allowing for more 

comprehensive and system-based downstream analyses [150]. Figure 4 summarizes the 

purpose of “OMICS” by identifying alleles that are associated with intermediate 

phonotypes that contribute collectively to the final disease phenotype.  
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Figure 4. Genetically influenced metabotypes. Genome mapping will identify a number 

of SNPs at various loci linked to specific genes that are associated with an intermediate 

protein. These proteins mark certain metabolites that together are associated with risk of 

disease. This, joint “OMICS” approach is necessary to provide an intermediate phenotype 

for genetic variation as has been the aim of this project (Adopted from [151]).  

 

There is ample evidence suggesting genetic influence of multiple genetic variants with 

small effect size over several phenotypic traits related to physical performance [152]. The 

identification of these variants is crucial to understand the superior performance of elite 

athletes and has been a subject of study for many years [79, 80, 107]. Limited evidence 

of genetically-influenced metabolites in the context of physical exercise exists. Pilot 

studies conducted by Karoly and his team investigated 200 sedentary individuals to 

determine the correlations between 14 SNPs and responses to a 30min session of 

aerobic exercise. Participants were strictly instructed what to eat, drink and when to 
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exercise. Blood samples were collected immediately before exercise, 10 min and 30 min 

into exercise to measure lactate concentration and catecholamine levels (epinephrine and 

norepinephrine) that were considered as physiological phenotypes in the analysis. Their 

results indicated that SLIT2 SNP rs1379659 and the FAM5C SNP rs1935881 were 

related to changes in norepinephrine. OPRM1 SNP rs1799971 was also associated with 

norepinephrine and lactate changes during exercise. However, the study concluded that 

the physiological responses to aerobic exercise involve a complex interaction of metabolic 

functions, thus these genes and SNPs are likely to explain only a small portion of the 

variability in individual differences in response to aerobic exercise [153, 154]. 

 

In conclusion, several studies used unbiased genome-wide approaches in the form of 

case-control study that have uncovered many new loci [83, 91]. However, for more 

reliable functional associations when analyzing genomic regions, further studies showed 

interest in metabolomics. The advancement in metabolomics tools including 

bioinformatics technologies has offered a unique opportunity to complement enormous 

sample sizes and massive genomics data with intermediate phenotypes as metabolic 

profiles. Several studies showed that identified metabolites exhibited direct functional 

associations with genetic variants and provided greater effect sizes [150, 155]. Previous 

mGWAS findings [146, 150, 156-164] have revealed hundreds of metabolomics 

quantitative trait loci (mQTLs) in the general population [145, 162-166]. The identification 

of mGWAS in athletes who experience unique environmental conditions including special 

diet and intensive exercise may provide invaluable tools for biomarker discovery in 

relation to exercise and performance. This unique approach could provide better informed 
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selection of athletic candidates and crucial information needed for optimal balance 

between training and recovery for every athlete [167]. The integration of genomics and 

metabolomics technologies has also allowed a more comprehensive coverage of the 

metabolic pathways involved in complex physiological and pathological processes [168, 

169]. 

 

In this study, genetics, metabolomics, and genetically-influenced metabolites profiling of 

consented elite athletes collected at anti-doping labs during the study are investigated 

and reported. 
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1.6 Hypothesis and Aims of this project 
 
Combining ‘omic’ approaches will facilitate the discovery of the metabolic and genetic 

determinants that underlie elite athlete performance within selective athletic disciplines 

1.6.1 Overall objectives: 
 
This study aims to determine the genetic predisposition of elite athletic performance in 

endurance and power athletes with different cardiovascular demand and identify 

intermediate phenotypes (metabolic profiling) that could explain some of the identified 

genetic associations. 

1.6.2 Specific aims: 
 

1. To develop a sample bank comprising of serum and DNA from cohorts of elite 

athletes collected at the ADLQ. 

 

2. To explore genetic association by performing comprehensive GWAS analysis on 

DNA derived from cohorts of elite athletes from defined disciplines and 

performance activities based on endurance, power and cardiovascular demand. 

 

3.  Investigating global sera metabolic profiles in cohorts of elite athletes using the 

Metabolon platform. 

 

4.  Employing complex bioinformatics and statistical analysis to interrogate GWAS 

and Metabolomics data and  defined genetically-influenced metabotypes  
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CHAPTER 2 

MATERIALS AND METHODS 
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2 (Chapter 2) Materials and Methods:  
 

2.1 Ethical Approval 
 
Ethical approval from the Institutional Research Board of Anti-Doping Lab Qatar 

(F2014000009) was obtained in line with the World Medical Association Declaration of 

Helsinki – Ethical Principles for Medical Research Involving Human Subjects.  

2.2 Study participants and Power calculation 
 
Consented elite athlete’s samples from various sport groups who took part in national or 

international sport competitions and tested negative for doping abuse at anti-doping 

laboratories in Qatar (ADLQ) and Italy (FMSI) were used in this study. Based on article 

investigating ACTN3 polymorphism by comparison between elite swimmers and runners 

[170], using ACTN3 R allele frequency in long distance (42%)  vs. short distance 

(61.8%)  elite runners, a power calculation indicates 102 participants per group to detect 

significant difference at alpha 0.05 and 80% power. However, based on R allele frequency 

in elite long distance (57%) vs low distance (62.5%) swimmers, a power calculation 

indicates the need for 1247 per group. Since athletes recruited in our study were a mixed 

population of runners, swimmers, footballers, athletics etc.., we believe that our study was 

probably underpowered to detect significant differences in genotypes between high 

(n=639) and low (n=114) endurance. However, because of limited number of available 

samples through the anti-doping laboratories), we have used an intermediate phenotype 

(metabolites) that provided a larger effect size, increasing the chance to pick up significant 

differences with our sample numbers. 

Samples were received in ethylenediaminetetraacetic acid (EDTA) anti-coagulated tubes 

and/or serum-separator tubes (SSt) on dry ice. Serum samples were instantly aliquoted 
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into 2ml tubes and stored at -80oC until use. Blood samples were stored at –20oC until 

use. . All the other information of participants were not available, including the time of 

recruitment (pre or post exercise), measurements of weight, body mass index, fat mass, 

muscle mass, bone mass and basal metabolic rate due to the strict anonymization 

process undertaken by anti-doping laboratories. Table 2 summarizes number of samples 

collected to date and type of analysis performed.  

Athletes were grouped into classes based on the endurance, power and cardiovascular 

demand phenotypes-associated with their sport types using previously published criteria 

as introduced earlier [16]. Tables 3, 4, 5, and 7 further list the number of athletes and their 

information (genders and sport type) used in subsequent bioinformatics analyses applied 

for each class. 

Table 2. Total number of recruited samples and type of performed analyses throughout 

the study.  

  Blood only Blood + Serum Serum only Total 

Recruited 884 512 191 1587 

Processed (excluding dropouts) 758 501 191 1450 

GWAS 1259 - 1259 

Metabolomics - 692 692 

mGWAS 490 - 490 

 

2.3 Genome Wide Association analysis 

Blood from EDTA tubes and clotted blood from Serum separating tubes was collected 

from one thousand two hundred and fifty nine (1259) consented elite athletes. Table 3 

summarizes the distribution of elite athletes’ samples that were used in GWAS into 

endurance, power and cardiovascular demand (colored) groups following published 

criteria [16].  
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Table 3. Distribution of all genotyped samples into three phenotypic groups: endurance 

(columns: moderate and high), power (rows: moderate and high) and cardiovascular 

demand (white and grey: low and high) based on their sports discipline.  

 

2.3.1 DNA extraction 

Extraction of genomic DNA was performed at anti-doping laboratory Qatar, using different 

Qiagen kits recommended for the type of blood samples according to the manufacturer’s 

instructions. All DNA extraction methods involved proteinase K-mediated protein 

denaturation, followed by several steps of ethanol DNA washing, hydration and 

precipitation. Additional steps were performed depending on type of blood used in 

extraction. Accordingly, this section is divided into three sub-sections: whole blood 

samples (EDTA-tubes), clotted blood samples (SSt-tubes) and fully automatable DNA 

extraction via QIAcube.  Isolated DNA was loaded on gel electrophoresis to check for 

DNA integrity and quantified with Nano-Drop (Thermo Scientific, cat. # ND-2000) and 

Qubit Fluorometer (Invitrogen, cat. # Q32866) to ensure that all DNAs exhibit the required 
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quantity and quality to achieve the study objectives. When needed, increased 

concentration of extracted DNA was achieved by vacuum evaporation. DNA samples 

were stored frozen at -20oC. The detailed protocol is described as follows. 

2.3.1.1 DNA extraction from whole blood samples collected in EDTA tubes 

 

DNeasy Blood & Tissue kit from Qiagen (Cat# 69506) were used for isolation of genomic 

DNA from EDTA-anti-coagulated whole blood (n= 554) samples. Sample tubes (n=24) 

were thawed at a time of extraction and 200µL of each sample was transferred to a new 

1.5ml tube. Lysate buffer with proteinase K was added and incubated for 1hr at 65oC with 

900rpm shaking. After centrifugation at 6000xg for 1min, the supernatant containing the 

DNA was transferred to a clean 1.5ml tube and mixed with absolute ethanol. After 

vortexing vigorously, the mix was transferred to filter tube, and the DNA was precipitated 

with nuclease-free water after two washes with washing buffers that were provided by the 

kit. The concentration and the quality of DNA was measured using the Nanodrop (Thermo 

Scientific, cat. # ND-2000) and the DNA was stored at -20oC. Figure 5 summarizes 

workflow of DNA extraction using DNeasy Blood & Tissue kit. 

 

Figure 5. workflow of DNA extraction 
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2.3.1.2 Clotted blood samples obtained from Serum Separation tubes 

Due to interest in running GWAS and Metabolomics on the same samples, blood 

collected in serum-separator vacutainer (for growth factor anti-doping tests) were utilized, 

where serum was separated without using anti-coagulant, therefore clotting took place in 

the remaining blood at the bottom of the tube. Serum was collected in 2ml tubes and 

stored at -80OC for metabolomics analysis at Metabolon, Durham, NC, USA. The clotted 

blood was used for genomic DNA isolation which was performed at anti-doping lab Qatar.  

Previously devised method was utilized to efficiently remove clotted blood (n= 501) from 

the serum-separation gel without being contaminated by the separation gel [171]. This 

method was performed after collecting serum by inverting the capped serum-separator 

tube free of serum within a 50ml tube and spinning at 2000xg for 5min. The clot was then 

transferred to a clean 15ml tube (Figure 5) and mixed with 10ml Red Blood Cell (RBC) 

lysing buffer (Sigma cat# R7757) and vigorously vortexed and incubated at room 

temperature for 40min, then centrifuged at 2000xg for 5min. If the resultant pellet was still 

thick and dark in color, this step was repeated. Supernatant was discarded and 200µL 

from the pellet was transferred to 1.5ml tube. Figure 6 summarizes steps of collecting 

clotted blood from the serum separation vacutainer tube into 15ml tube. 
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Figure 6. Collecting clotted blood from the serum separation tube. Clotted blood was 

used for DNA extraction whereas serum from the same tube was used for metabolomics 

analysis. 

 

This was followed by DNA isolation using QIAmp DNA blood mini kit from Qiagen cat# 

51106. Lysate buffer with proteinase K was added and incubated at 56oC for 2 hours with 

shaking 1200rpm. NaCl (5mol/L) was then added and centrifuged at 6000xg for 1min. 

Supernatant was transferred to a new tube and mixed with absolute ethanol. The mix was 

vortexed and transferred to filter column then centrifuged at 6000xg for 1 minutes [172]. 

The column was then washed twice with washing buffers provided by the kit and 

centrifuged at 20,000xg for 3min to dry the filter and finally re-suspended DNA in 

nuclease-free water (Life Technologies, Paisley, UK). The concentration and the quality 

of DNA was measured using the Nanodrop (Thermo Scientific, cat. # ND-2000) and the 

DNA was stored at -20oC. 
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2.3.1.3 Fully automatable DNA extraction via QIAcube 

 

Some of the blood samples (n=204) were placed into QIAcube (Qiagen, cat. # 9001293) 

that is fully automated to increase standardization for purification of high-quality genomic 

DNA using QIAamp DNA Blood Mini QIAcube Kit Cat # 51126. Procedures comprises the 

same four steps as the manual procedure (lysing, binding, washing, and eluting)  (Figure. 

4), but enabling seamless integration of automated, low-throughput of laboratory workflow 

(Figure 6). QIAcube is carried out by placing samples to their predefined positions 

followed by loading buffers that all are provided in the kit with rotor adapters (preloaded 

with spin columns and elution tubes) in a standard microcentrifuge, on a vacuum 

manifold, as it is prescribed in QIAcube protocol. The procedures are designed to ensure 

that there is no sample-to-sample cross-contamination and to allow safe handling of 

potentially infectious samples. The concentration and the quality of DNA was measured 

using the Nanodrop and the DNA was stored at -20oC. Figure 7 workflow of DNA 

extraction using fully automated method via QIAcube 

 

Figure 7. Workflow of DNA extraction using QIAcube 

 

2.3.1.4 DNA quantity and quality assessment: 

 

DNA was visualized by gel electrophoresis method. 2% agarose (Sigma-Aldrich cat. # 

A9539-10G) gel was prepared with 2% tris-acetate EDTA (Sigma-Aldrich cat. # T9650-
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1L) and 0.5 µg/mL of ethidium bromide (Invitrogen cat. #15585011). 10µL of isolated DNA 

was mixed with 2µl of loading dye (Thermo Scientific cat. # R0611) and loaded on the gel 

along with 10µl of 1kb DNA ladder (Promega cat. # G5711) to be assessed under UV 

light. The gel was run for 45 minutes to 1 hour at a voltage of 90 and was then examined 

using UV benchtop transilluminators (Thomas Scientific cat. # 6284E17). The quantity 

and quality of extracted DNA was assessed before going further to make sure that enough 

DNA (≥50ng/µL) was obtained for genotyping, otherwise, additional steps of increasing 

DNA concentration were performed by reducing the elution volume to 10µl by evaporation 

by vacuum (Eppendorf™ Concentrator Plus Complete, cat. # 5305000568) under 40ºC 

for 2hours. DNA was quantified using Nanodrop (Thermo Scientific, cat. # ND-2000) at 

optical density (OD) of 260 nm and quality was assessed at ratio of 260/280 ODs. Further 

assessment was carried out using Qubit dsDNA High Sensitivity Assay Kit, Invitrogen 

cat# Q32854 that quantifies double stranded DNA accurately according to manufacturer’s 

instructions (Figure 8). Qubit working solution was prepared at 1:200 dilution of reagent 

with buffer. Qubit standards and DNA samples were mixed with Qubit working solution in 

thin-walled polypropylene tubes (Invitrogen cat. # Q32856) and incubated at room 

temperature in dark for 20min then measured. DNA concentration of 50ng/µl and a 

260/280 ratio >1.7 was considered acceptable for genotyping.  
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Figure 8. DNA quantification using Qubit 

 

2.3.2 Whole Genome Genotyping Arrays 

 

Among multiple SNP chips options available for GWAS, Illumina Drug Core array-24 

BeadChips was chosen for genotyping of 476728 SNPs in athletes of different type of 

sport. This array represents a new product leading in translational genomics and 

computational chemical biology with 240,000 highly-informative genome-wide tag SNPs 

and a novel 200,000 custom marker set designed to support studies of drug target 

validation and treatment response. It supports genotyping of SNPs selected according to 

sets of criteria like: 1- genes involved in drug absorption, distribution, metabolism and 

excretion (ADME), 2- exome content coverage of genes encoding proteins closely related 

to targets of approved small molecule and biotherapeutic drugs or binding drug-like 

compounds, and 3- other useful content, including all SNPs associated at genome-wide 

significance with any human trait marking the X and Y chromosomes and mitochondrial 

DNA, and for sample fingerprinting (common SNPs represented on major genome-wide 

array products from both Illumina and Affymetrix). These SNPs are expected to be 
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involved in regulating the same essential metabolic pathways that regulate the magnitude 

of physical performance such as ACTN3, ACE, IL-6 and PPAR.  

The assay required 4 μl of the DNA sample (200 ng) as input with a concentration of at 

least 50 ng/µl. Exact concentrations of DNA in each sample were measured using a Qubit 

Fluorometer (Invitrogen, cat. # Q32866). All further procedures were performed manually 

at anti-doping lab Qatar following the instructions of Infinium HD Assay (Figure 9). 96 

samples were processed at a time. First day of applying the genotyping assay, 4µl of 

obtained DNA was mixed with Illumina amplification reagents and incubated overnight at 

37oC in hybridization oven. On the second day, enzymatic reagents were used to 

fragment the amplified DNA then precipitated by centrifugation. Subsequently, the pellet 

was resuspended and loaded in the beadchip (twenty-four samples per array) for 

hybridisation to the oligonucleotide probes by overnight incubation at 48oC in the 

hybridization oven. On the third day, a washing step was carried out to remove the 

unhybridised DNA. Beadchips underwent enzymatic two-colour single-base extension 

step in which differentially labelled nucleotides were added to the oligonucleotide probes 

corresponding to nucleotide in the hybridised DNA samples, followed by fluorescent 

staining. Lastly, after coating, the beadchips were imaged in iScan system (Illumine, cat. 

# SY-101-1001) (Figure 10) and the output files and recorded intensity were imported into 

Illumina GenomeStudio software (Figure 11) to extract the genotype information. Almost 

all samples passed the QC with genotyping call rate greater than 98%. 
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Figure 9. Workflow for genome-wide SNP genotyping using the Illumina Infinium assay. 

Figure is reproduced from Illumina.com 
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Figure 10. A screen capture of beadchips imaging in iScan system (Illumine, cat. # SY-

101-1001).  The preview information bar is located at the left side of the iScan Control 

Software Scan screen displays the section of the strip that currently being scanned. 

Green indicates the successful data reading. Yellow indicates the conditional iScan 

reading. Red indicates unsuccessful data reading. If 1 or more sections of a BeadChip 

did not successfully scan, Rescan can be performed by clicking on the iScan Control 

Software Review screen to rescan the BeadChip. The iScan Control Software only 

rescans the sections that are not successfully scanned. 
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2.3.3 Data Extraction and SNP Identification: 

 

Illumine iScan (Illumine, cat. # SY-101-1001) hardware and software were used for raw 

data extraction, peak-identification and QC process. Illumina SNP array files including 

raw signal intensity files, cluster files and the sample sheet were loaded into 

GenomeStudio. The sample call rate and SNPs signal intensity were checked in 

GenomeStudio as shown in figure 11. Then, the exported data were selected from 

GenomeStudio options to save genotype data for each sample into ped/map format. 

SNPs were identified by statistical analyses as described later. 

 

Figure 11. Shows a screenshot of signal intensities in GenomeStudio. The image 

indicates genoplot with samples falling in each of three genotype clusters based on their 

alleles (red points are AA, purple points are AB, blue points are BB). Black points in the 

genoplot shown in the right panel, represented the samples that dramatic drop in intensity, 

which may signify a homozygous deletion in those samples. 
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2.3.4 Statistical analysis of genomics data 
 

Statistical analysis was performed with Plink using the SNP array genotyping data after 

filtering out SNPs with genotype call rate < 98%, Hardy Weinberg p value < 10-6 and minor 

allele frequency (MAF) < 0.01. The commonly used 1% cut off for minor allele frequency 

for GWAS studies was adopted taking into account that athletic performance is a 

complex, but not rare, phenotype among athletes, therefore common polymorphisms are 

expected to be identified, especially by combining the metabolic profile as an intermediate 

phenotype. Additionally, lowering the cut off will lead to increasing the penalty of multiple 

testing correction. Furthermore, at the most extreme level, if all but one variant cluster 

together, it is difficult to assess whether the only variant is truly a different genotype, or 

whether it is a missed call [173]. Number of removed samples and SNPs are indicated in 

the results chapter. Principle component analysis (PCA) was used for uncovering any 

hidden segregation of samples based on maximizing the variance. Association analysis 

was performed with PLINK v1.90b4.6 64-bit using plink function (Figure 12). Plink code 

incorporated sports ranked according to the lowest endurance, power or cardiovascular 

demands (ranked 1) and the highest (ranked 2). A categorical variable with two levels 

(moderate & high) is sensible since the two classes of either sport phenotype feature a 

heterogeneous distribution of the other phenotype's classes as described in the study 

design section (Table 3). With both analyses, covariates including gender, and PCA 

components 1, 2, 3 & 4 were included in the model. Despite not picking gender effect in 

PCA, gender was included as a confounder in statistical analyses because the differences 

in physical performance between males and females are well established. This is related 

to hormonal differences (higher estrogen levels in women and higher levels of 
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testosterone in men). Testosterone enables men to develop larger skeletal muscles as 

well as larger hearts [174, 175]. Therefore, sex is considered a major factor influencing 

physical performances. A stringent Bonferroni level of significance was calculated and 

used to define significant associations. For a selected set of SNPs (see tables 8, 10 and 

12 in the results chapter), genotype distribution among groups of athletes was reported.  

 

For demonstration of most significant SNPs, Manhattan and quantile-quantil (QQ) plots 

were generated using R (version 3.3.1). The QQ plot demonstrates a plot of the observed 

vs the expected test statistics of the P-values, thus is used to examine the genomic 

inflation [176]. The observed P-values should be in large deviations from the expected 

distribution in the lower tail of the QQ plot, whereas the deviation in the upper tail indicates 

a possible association [176]. 

A web-based software application called ingenuity pathway analysis (IPA) QIAGEN, cat. 

# 830011 was also performed to gain further insight into the functional relevance of 

identified SNPs. IPA searches for targeted information on genes and enables analysis, 

integration, and understanding of data from gene expression [177]. Data analysis and 

search capabilities help in identification of candidate biomarkers in the context of larger 

biological or chemical systems associated with deeper understanding of metabolomics, 

as well as discoveries about disease processes [177]. 
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Figure 12. A screenshot of plink processing logistic regression analysis on large data set 

of 753 elite athletes’ samples to analyze the variants in genetic models by performing 

basic statistical tool.    

2.3.5 Validation of significant GWAS findings in a second cohort 

Validation of results was performed by comparing the frequencies of the most significant 

SNPs (with P <E-5 - E-8) in 219 elite Russian athletes (120 middle-distance athletes, 56 

long-distance athletes, 43 sprinters) and 173 Russian controls. All athletes were Olympic 

team members (International level) who have tested negative for doping substances. 

DNA extraction, genotyping and GWAS analysis of this replication study cohort was 
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performed by research scientist at Department of Molecular Biology and Genetics, 

Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical 

Biological Agency, Moscow, Russia.  To perform the meta-analysis, the Cochrane Review 

Manager (RevMan) version 5.3 was used. Random and fixed effect models were applied. 

The heterogeneity degree between the studies was assessed with the I2 statistics. 

 

2.4 Metabolomics 
 
Metabolon, Inc., is a commercial supplier and a leader in metabolomics-driven biomarker 

discovery, including the identification and relative quantification, and quality-assurance 

components of the process [178]. Aliquot of each serum sample were shipped frozen in 

dry ice to Metabolon, Durham, NC, USA to perform metabolites profiling using established 

protocols as detailed below. Despite outsourcing the metabolomics analysis at 

Metabolon, Durham, towards the end of PhD, Metabolon established a sister-lab at ADLQ 

where I was personally involved in processing and analysis of samples belonging to other 

projects. This opportunity has gained me a practical experience in metabolomics analysis 

that was added to my analytical expertise in liquid chromatography used in ADLQ’s 

routine doping tests:  

2.4.1 Samples transportation: 

Firstly, 191 serum samples were shipped to Metabolon as the discovery group (Table 4.a) 

followed by 501 serum samples as the replication group (Table 4.b). The overall 

characteristics of the study participants are provided in Table 4, and they were divided 

into different classes for statistical analysis as shown in Figure 13. 
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Table 4. Categorization of metabolomics study participants. Elite athletes were distributed 

in various categories: 4.a Discovery cohort and 4.b replication cohort, based on sport type 

as described previously [16]. These categories were based on the VO2Max, MVC and 

CVD associated with their respective sports types. The number and gender (M for males 

and F for females) of participants in each group are also indicated. 
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Figure 13. Classification of sport groups based on endurance only regardless of power 

(right) and similarly for power only ignoring endurance (left); statistical analysis  these 

classes were used in the analysis. 

2.4.2 Sample Preparation: 
 

Following Metabolon protocols previously published by us [167], serum samples were 

identified then kept at -80oC until needed. Samples were processed via automated 

MicroLab STAR® system (Hamilton).  A number of recovery standards were included 

before the first extraction step for quality control.  Sample were mixed with methanol and 

vigorously shaked for 2 min (Glen Mills GenoGrinder 2000) then centrifugated to eliminate 

protein via small molecules trapped in the precipitated protein matrix, as well as to regain 

chemically-diverse metabolites. The extracted mix was then divided into 5 fractions (2 

fractions for 2 independent reverse phase (RP)/UPLC-MS/MS analyses with positive ion 

mode electrospray ionization (ESI), 1 for RP/UPLC-MS/MS analysis with negative ion 

mode ESI, 1 fraction for HILIC/UPLC-MS/MS analysis with negative ion mode ESI, and 1 

fraction for backup. Then samples were briefly placed on a TurboVap® (Zymark) to 

eliminate organic solvent.  The sample extracts were stored in nitrogen overnight until 

further preparation for analysis. 
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2.4.3 Quality Control (QC): 
 

A number of controls were analyzed together with the tested samples. These included a 

pooled matrix sample produced from small volume of each tested sample (or a pool of 

human plasma that was previously characterized) that was used as a technical replicate 

during the run; extracted water samples used as blank controls; and a cocktail of quality 

control standards selected carefully not to interfere with the endogenous compounds. 

These controls were ‘spiked’ into every tested sample, allowing monitoring of instrument 

performance and aiding in chromatographic alignment.  Instrument variability was 

assessed by computing the median relative standard deviation (RSD) for the standards 

that were added to each tested sample before injection into the mass 

spectrometers.  Overall process variability was calculated by computing the median RSD 

for all endogenous metabolites (i.e., the non instrument ones) present in 100% of the 

pooled matrix samples.  Tested samples were randomized throughout the platform run 

with quality control samples put evenly among the injections. 

 

2.4.4 Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-
MS/MS): 

 

All methods used a Waters-ACQUITY ultra performance liquid-chromatography (UPLC) 

and a ThermoScientific Q Exactive high-resolution accurate mass spectrometer 

combined with a heated electrospray ionization (HESI-II) source and Orbitrap mass 

analyzer operated at 35,000 mass resolution.  The extracts from samples were dried then 

reconstituted in solvents corresponding to each of the four methods (positive early, 

positive late, negative and polar). Each reconstitution solvent contained a number of 

standards at specific concentrations to ensure consistency of injection and 
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chromatography.  One aliquot was analyzed using acidic positive ion conditions for early 

positive compounds, optimized chromatographically for more hydrophilic compounds. In 

this “positive early” method, the extract was gradient eluted from a C18 column (Waters 

UPLC BEH C18-2.1x100 mm, 1.7 µm) using water and methanol, containing 0.05% 

perfluoropentanoic acid (PFPA) and 0.1% formic acid (FA).  Another aliquot was also 

analyzed using acidic positive ion conditions, however it was optimized 

chromatographically for more hydrophobic compounds.  In this “positive late” method, the 

extract was gradient eluted from the same mentioned C18 column using methanol, 

acetonitrile, water, 0.05% PFPA and 0.01% FA and was operated at an overall higher 

organic content.  Another aliquot was analyzed using basic negative ion optimized 

conditions using a separate dedicated C18 column.   The basic extracts were gradient 

eluted from the column using methanol and water, however with 6.5mM Ammonium 

Bicarbonate at pH 8. The fourth aliquot was analyzed via negative ionization following 

elution from a HILIC column (Waters UPLC BEH Amide 2.1x150 mm, 1.7 µm) using a 

gradient consisting of water and acetonitrile with 10mM Ammonium Formate, pH 10.8 

(polar compounds). The MS analysis alternated between MS and data-dependent MSn 

scans using dynamic exclusion.  The scan range varied slighted between methods but 

covered 70-1000 m/z.  Raw data files are archived and extracted as described below. 

2.4.5 Data Extraction and Compound Identification: 
 

Using Metabolon’s hardware and software, raw data was extracted, peak-identified and 

QC processed.  Metabolon’s systems are connected to a web-service platform utilizing 

Microsoft’s .NET technologies, which run on high-performance application servers and 

fiber-channel storage arrays in clusters to provide active failover and load-
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balancing.  Compounds were identified by comparison to library entries of purified 

standards or recurrent unknown entities.  Metabolon maintains a library based on 

authenticated standards that contains the retention time/index (RI), mass to charge ratio 

(m/z), and chromatographic data (including MS/MS spectral data) on all molecules 

present in the library.  Furthermore, biochemical identifications are based on three 

criteria: retention index within a narrow RI window of the proposed identification, accurate 

mass match to the library +/- 10 ppm, and the MS/MS forward and reverse scores 

between the experimental data and authentic standards.  The MS/MS scores are based 

on a comparison of the ions present in the experimental spectrum to the ions present in 

the library spectrum.  While there may be similarities between these molecules based on 

one of these factors, the use of all three data points can be utilized to distinguish and 

differentiate biochemicals.  More than 3300 commercially available purified standard 

compounds have been acquired and registered into Laboratory Information Management 

System (LIMS) for analysis on all platforms for determination of their analytical 

characteristics.  Metabolon data analysts use proprietary visualization and interpretation 

software to confirm the consistency of peak identification among the various 

samples.  Library matches for each compound were checked for each sample and 

corrected if necessary. 

2.4.6 Statistical analysis of metabolomics: 
 

2.4.6.1 Multivariate analysis: 

Batch correction of the samples was performed by Metabolon. Extracted metabolomics 

data were log-transformed to achieve normal distribution. Principle component analysis 

(PCA), an unsupervised multivariate test, was performed to get a global data view by 
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revealing the natural separation of samples based on maximizing the variance. PCA 

component’s loading values were used to view the linear combination of the metabolites 

levels. Orthogonal partial least square discriminant analysis (OPLS-DA), a supervised 

multivariate regression test, was performed to differentiate components that best 

discriminate between predefined classes of samples whilst analyzing orthogonal 

components which do not differentiate between these classes. In this study, OPLS-DA 

was used to compare moderate versus high classes of endurance and power separately. 

Both PCA and OPLS-DA were run using SIMCA 14 with the default metabolite-wise 

sample missingness threshold of 50%. It is important to note that the purpose of the 

multivariate analysis performed in this study, including PCA and OPLS-DA, was purely 

for visualization purposes to provide an upfront global view of the data. Statistical rigor 

was later achieved by means of a linear regression model.  

2.4.6.2 Univariate regression and enrichment analysis: 

 

Association analysis were run using the R statistical package (version 2.14, www.r-

project.org/). With general linear regression models, covariates included hemolysis levels 

(determined visually by Metabolon), gender, and first two PCA components that were 

calculated from SIMCA as explained above. Specifying power and endurance regression 

model, the incorporating power and endurance as a categorical variable with two levels 

(moderate & high) was used. Incorporating both power and endurance classification in 

the same model makes it possible to examine the effect of endurance class whilst 

correcting for power class and vice versa. This is sensible since these two classes of 

either sport phenotype feature a heterogeneous distribution of the other phenotype's 

classes as described in the study design section. A stringent Bonferroni level of 

http://www.r-project.org/
http://www.r-project.org/
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significance of p < = 0.05/743 = 6.72 E-5 was used to identify association. False discovery 

rate (FDR) was also performed for multiple testing correction at 5%. Function enrichment 

analysis was performed using the one tailed Wilcoxon sum of the ranks test. The purpose 

of the test is to identify sub-pathway categories (part of Metabolon annotation), whose 

metabolite members occupy higher ranks than can be accounted for by chance, in the list 

of metabolites ranked by decreasing significance of association with power/endurance 

sport phenotype. After exclusion of categories with less than 4 metabolites, 53 categories 

remained. These were tested for enrichment following association tests with endurance 

and power.  Multiple testing correction for function enrichment analysis was also 

performed using FDR. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways 

were utilized to gain further insight into the biochemistry of identified metabolites. 

2.4.6.3 Statistical meta-analysis of metabolomics data 

A meta-analysis was utilized to identify metabolites equally influenced by endurance, and 

power level in both metabolomics datasets in the current study [167, 179]. A similar linear 

regression model as explained above was run using R statistical package (version 2.14, 

www.r-project.org/) to assess association between metabolites and (moderate versus 

high) endurance and power classes in 2nd cohort. The model also corrected for the 

following possible confounders: hemolysis levels (determined visually by Metabolon), 

gender, and metabolites PCs as explained above. Multiple testing was Bonferroni 

corrected. Initially, both metabolomics data were compared and listed 691 metabolites 

that are similar in both data were identified. Then, values of beta, and SE.beta from the 

regression analysis of individual datasets were collected. Meta-analysis was performed 
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using “metafor” function in R (version 3.3.1). The p-values from the meta-analysis were 

corrected for multiple testing based on FDR correction (https://tools.carbocation.com/FDR). 

Gaussian graphical modeling (GGM) was used to identify correlated metabolites based 

on partial correlation coefficient [180], leading potentially to unbiased reconstruction of 

metabolic reactions as previously reported [181]. GGM pairwise correlation were 

calculated using “ggm.estimate.pcor” function in R (version 3.3.1). then used Cytoscape 

software for visualizing complex networks and analyze human-curated pathway datasets 

such as KEGG with attribute data of metabolic pathways  [182].  

Another visualization tool called Heatmaps were generated using R (version 3.3.1) for 

metabolomics results. Color intensities in a heatmap image is representing the relative 

richness of metabolites detected in each sample [183]. In this study heatmaps are 

representing significant metabolic differences between low/moderate versus high 

endurance, power and CVD group of athletes. 

 

2.5 mGWAS analysis 

Profiling of serum metabolites and genotyping of 490 elite athletes was conducted as 

explained previously. Table 5 summarizes classification of 490 athletes samples used in 

mGWAS analysis. 

 

Table 5. Distribution of 490 samples used in mGWAS into three phenotypes: endurance 

(columns), power (rows) and cardiovascular demand (colored) based on their sports 

discipline.  

https://tools.carbocation.com/FDR
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2.5.1 Metabolomics and genomics data extraction 

Illumina iScan system (Illumina, cat. # SY-101-1001) was used for genotyping raw data 

extraction and QC process. SNP identification was obtained from GenomeStudio that was 

explained previously (see section 1.1.3 Data Extraction and SNP Identification). 

Metabolites data were received from Metabolon after their analysts performed the 

confirmation step related to the consistency of peak identification among the various 

samples as explained previously (see section 1.2.5 Data Extraction and Compound 

Identification). 

2.5.2 Statistical analysis of combined metabolomics and genomics data 

Statistical analysis for genotyping data of 490 samples was performed using Plink as 

explained previously in GWAS analysis. SNP exclusion QC filters were adopted: 

genotype call rate < 98% (130526 SNPs were excluded), MAF < 0.01 (70210 SNPs were 
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excluded) and Hardy Weinberg p value < 10-6 (976 SNPs were excluded), resulting in 

275016 SNPs (Bonferroni significance= [0.05/(275016x751)] = 2.4E-10 was used for the 

analysis. 

Following metabolomics of 490 samples, 751 metabolites were taken into account 

following the previously described QC filters in the metabolomics analysis. Metabolites 

data were log scaled and z-score normalized. Outliers were detected and replaced by 

missing values. Metabolites with more than 50% missing values were excluded.  

Associations between SNPs and metabolite levels were computed using lm function in R 

(version 3.3.1) while correcting for gender, hemolysis and population stratification based 

on top two PCs from genotype data using plink version 1.9.  An additive inheritance model 

was used (SNPs were coded as 0,1,2 according to their genotype group).  

An average inflation factor was calculated for mGWAS metabolites using chi-squared 

statistic for the null markers divided by the expected median value of the chi-squared 

statistic (chi2=beta*beta/(sebeta*sebeta) and lambda=median(chi2)/0.45), providing the 

“inflation factor,” lambda [184]. If observed average inflation factor is less than or equal 

to 1, no adjustment is required, but if is above 1.1 then method for correcting for 

population stratification should be considered [176, 184]. Principal-components analysis 

can control inflation as covariates in a regression model [184], hence principal-

components were included in mGWAS regression model as explained above. However, 

studies indicated that phenotype-associated markers can cause a slight increase in the 

inflation factor [176]. 
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Percent of explained variance (r2) was calculated with formula: r2 = X2/(N − 2 + X2), where 

N is the number of samples and X2 = (Beta/standard error of the beta)2, values obtained 

from the regression analysis [165]. Percent of explained variance used to measure 

proportion of how well the variation of metabolite explains the variation of corresponding 

gene in the identified mQTLs in elite athletes.  

To display significant SNPs, manhattan and box plots were generated using R (version 

3.3.1). The boxplots are quick graphical examination of resulted mQTLs that comparing 

distributions of samples between SNP alleles associated with metabolites and genes.  

Regional association plots were used to show the strength of mGWAS calculated SNP-

metabolite associations. A sentinel SNP (lead SNP) or sentinel metabolite (lead 

metabolite) show the most significant SNP-metabolite association within the locus. Thus, 

mQTL locus is defined as 500Kb region around the sentinel SNP and is named according 

to the gene present in the locus. Regional association plots were generated using SNIPA 

(grch37-1kgpp3v5, eur; http://snipa.helmholtz-muenchen.de/snipa/).  

2.5.3 mQTLS associated with Endurance, power and CVD 

To determine mGWAS associated with endurance, power and CVD sports, a list of 

significant results from GWAS and metabolomics were considered. Significant 

metabolites associated with endurance, power and CVD metabolites were identified 

within the list of mQTLs from the mGWAS analysis. The following Bonferroni p-values 

were used to report a significant association: 

• Endurance: [0.05 / (104x275016)] =1.7E-9 (104 was obtained from the meta-

analysis) 

http://snipa.helmholtz-muenchen.de/snipa/
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• Power: [0.05 / (207x275016)] =8.9E-10 (207 was obtained from the 1st cohort only) 

• CVD: [0.05 / (112x275016)] =1.6E-9 (112 was obtained from second cohort only) 

Box plots were generated using R (version 3.3.1) to display distributions of samples 

among SNP alleles associated with metabolites and genes. Regional association plots 

were used to show the strength of mGWAS calculated for significant SNP-metabolite 

associations. Regional association plots were generated as previously described using 

SNIPA (grch37-1kgpp3v5, eur; http://snipa.helmholtz-muenchen.de/snipa/). 

 

2.5.4 mQTLS associated with GWAS significant SNPs Endurance, power and CVD 

GWAS significant SNPs associated with endurance were recognized from the mGWAS 

analysis to perform functional validation of the genes by identifying metabolites that could 

explain the functional relevance of the association with endurance athletes. Regional 

association plots were used to show the strength of GWAS calculated SNP-Gene 

associations. Thus, SNP locus is defined as 500Kb region around the significant SNP 

and is named according to the gene present in the locus. Regional association plots were 

generated using SNIPA (grch37-1kgpp3v5, eur; http://snipa.helmholtz-muenchen.de/snipa/). 

Pathway enrichment analyses were carried out using Chi square tests 

(https://www.mathsisfun.com/data/chi-square-calculator.html) to identify pathways with 

enriched metabolites ranked by p-value from the linear regression model. Boxplots were 

generated using R (version 3.3.1) to display distributions of samples between SNP alleles 

associated with metabolites and genes. 

  

http://snipa.helmholtz-muenchen.de/snipa/
http://snipa.helmholtz-muenchen.de/snipa/
https://www.mathsisfun.com/data/chi-square-calculator.html
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3 (Chapter 3) Results: Genome Wide Association study 
 

3.1 Introduction 

With the development of high-density SNP chip-based arrays, GWAS present a powerful 

tool for detecting associations between genetic variants and a phenotype of interest in a 

group of individuals [185]. It offers a valuable first insight into humans’ trait validation by 

considering biological and statistical associations [186]. GWAS presents the advantages 

of dealing with population stratification, and effectively adjusting for common variants to 

avoid spurious results of no association [187]. When considering genetic associations 

with physical performance related phenotypes, limited progress has been published due 

to small size of elite atheltes cohorts and complixity of phenotypes. Most published work 

has adopted traditional candidate-gene approach [113, 188]. Classical twin and family 

genetic studies have suggested that VO2max is up to 50% inherited [85, 189]. Case-

control studies have revealed a number of SNPs associated with various aspects of elite 

athletic performance (Table 6). GWAS in athletes versus non-athletes have uncovered 

many new loci in association with VO2max [83, 91] and elite endurance performance 

[108]. A more recent review of genetic predisposition to elite athletic performance has 

highlighted 93 endurance variants and 62 power variants [107].  Table 6 provides a 

summary of SNPs associated with physical performance identified from case-control and 

GWAS analysis. A large meta-analysis of 1520 endurance athletes and 2760 controls has 

revealed no evidence of association of a common genetic variation with alite athlete’s 

status in world class athletes [115]. Therefore, the genetic predisposition to endurance or 

power traits remains unclear, largely due to the relatively underpowered elite athletes’ 

cohorts.  



101 
 

To investigate the influence of genes on human physical performance, GWAS need to be 

carried out with large sample size of elite athletes using high number of gene variants 

that may explain differences in physical capabilities and training-induced effects between 

subjects. Therefore, GWAS represent a productive way that could explain genetic 

predisposition of athletic performance in relation to various sports-related phenotypes.  

 

Table 6. A summary of identified DNA polymorphisms associated with physical 

performance in more than one study in different ethnicities, although some were not 

reproduced in at least one study, adopted from [190]. 

 

 GENE SNP SPORT DESCIPLINE 
FUNCTIONAL 

RELEVANCE 

REFERE

NCES 

1 

Angiotensin 

I-converting 

enzyme  

ACE 287 bp Alu 

sequence insertion 

fragment 

Endurance: Elite 

mountaineers, 5000 

meter distance runners, 

rowers, cyclists, cross-

country skiers, 

basketball, triathletes, 

and handball players 

Increase synthesis of the 

vasodilator kinins that 

elevates oxygen flow in the 

blood 

[87], [191], 

[192] [193-

209] 

2 
Adrenergic 

receptor 

ADRA2A 6.7-kb, 

ADRB1 49Gly, ADRB2 

16Arg, and ADRB3 

64Arg Alleles 

Elite endurance athletes 

Modulate the physiological 

impacts of norepinephrine/ 

epinephrine, therefore 

affecting cardiovascular 

responses 

 

[210-220] 

3 

Angiotensin 

II type 2 

receptor 

AGTR2 rs11091046 C 

Allele 
Endurance athletes 

Increase growth and 

differentiation of slow-

twitch fibers in skeletal 

muscle with increased in 

oxygen consumption 

[221] 
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4 Aquaporins 
AQP1 rs1049305 C 

Allele 

Elite endurance athletes: 

Marathon runners and 

triathletes 

Regulate osmotic 

reabsorption by promoting 

water transfer from the blood 

into the muscle.  

[222, 223] 

5 

Adenosine 

monophospha

te deaminase 

1 

AMPD1 Gln12 Allele 

Endurance athletes: 

Cyclists, runners and 

rowers 

Prematurely terminate 

translation of catalyst and 

deaminate adenosine 

monophosphate to inosine 

monophosphate in skeletal 

muscle. 

[224-228] 

6 
Bradykinin 

B2 receptor 

BDKRB2 _9 and 

rs1799722 T Alleles 

Endurance athletes: 

200, 400–3000, and 

5000 m runners, and 

Triathletes 

Increase efficiency of 

muscular contraction by 

endothelium-dependent 

vasodilator. 

[229-231], 

[216] 

7 
Protein 

phosphatase 3 

Calcineurin/NFAT-

Related Genetic 

Markers (NFATC4 

Gly160, PPP3CA 

rs3804358 C, PPP3CB 

rs3763679 C, and 

PPP3R1 5I Alleles) 

Elite endurance athlete: 

Runners 

Regulate skeletal muscle 

differentiation, 

hypertrophyand fiber-type 

by Calcineurin–NFAT 

signaling pathway that leads 

to different cardiac and 

skeletal muscle phenotypes. 

[232-238], 

[239] 

8 

The muscle 

isoform of 

creatine 

kinase 

CKM rs8111989 A 

Allele 

Elite endurance athlete: 

Marathon runners and 

cyclists 

Increase aerobic 

performance and reduce 

fatigability after long-term 

physical activity 

[240-244] 

9 Collagens 

Collagen-Related 

Genetic Markers 

(COL5A1 rs12722 T, 

COL5A1 rs71746744 

AGGG, and COL6A1 

rs35796750 T Alleles) 

Elite endurance athletes: 

Ultramarathon runners 

and triathletes 

Associated with energy 

storage, inflexibility of 

muscles and reduction in the 

need for muscle-stabilizing 

activity 

[245-251] 

10 

Endothelial 

PAS domain 

protein 1 

EPAS1 rs1867785 G 

and rs11689011 T 

Alleles 

Endurance athletes: 

Cyclists, swimmers 

(100–800 m), middle-

Regulate hypoxia-inducible 

transcription factor, 

catecholamine and 

[252, 253] 
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distance runners, 

triathletes, and rowers 

mitochondrial homeostasis, 

also associated with 

regulation of cardiac output 

and erythropoietin. 

11 

GA-binding 

protein β 

subunit 1 

GABPB1 rs12594956 

A, rs8031031 T, and 

rs7181866 G Alleles 

Elite endurance athletes: 

Runners, rowers and 

sprinters 

Stimulate mitochondrial 

biogenesis 
[254-257] 

12 

Heterotrimeri

c guanine 

nucleotide-

binding 

proteins (G 

proteins) 

GNB3 rs5443 T Allele 

Elite endurance athletes: 

Long-distance runners 

and sprinters 

Increase oxygen 

consumption 
[258-262] 

13 
Hemochroma

tosis 
HFE 63Asp Allele 

Elite endurance athletes: 

cyclists, and runners 

Regulate iron absorption by 

increasing the interaction of 

the transferrin receptor with 

transferrin. 

[263-265] 

14 

Hypoxia-

inducible 

factor-1α 

HIF1A Pro582 Allele Elite endurance athletes 

Increase VO2max through 

aerobic exercise training at 

age 55 to 65 years 

[90, 266-

268] 

[239] 

15 
IL-15 

receptor α 
IL15RA rs2228059 A 

Elite endurance athlete: 

Cyclists (A allele), 

triathletes and rowers (C 

allele) 

Increase whole muscle 

baseline and cortical bone 

volumes 

[269] 

16 

Potassium 

inwardly 

rectifying 

channel, 

subfamily J, 

member 11 

KCNJ11 Glu23 Allele 

Endurance-oriented 

athletes, and marathon 

runners 

Increase VO2max and 

maximal minute ventilation 
[270] 

17 

Monocarboxy

late 

transporters 

MCT1 (SLC16A1) 

rs1049434 A Allele 

endurance-oriented 

athletes and rowers 

Associated with lactate 

production by white muscle 

fibers  

[271-275] 
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18 
mtDNA 

Markers 
mtDNA Markers 

Elite endurance athletes: 

Sprinters, cyclists and 

runners 

Regulate energy metabolism 

through 36 molecules of 

ATP per glucose molecule in 

contrast to the two ATP 

molecules produced by 

glycolysis. 

[276, 277]  

[276, 278-

283] 

19 
Nuclear 

factor I A 

NFIA-AS2 rs157231 С 

Allele 
Endurance athletes 

Increase VO2max by 

activating erythropoiesis that 

enhances haemoglobin, 

reticulocytes and 

erythrocytes production. 

[284], 

[108],  

20 

Endothelial 

nitric oxide 

synthase 

NOS3 Glu298, 164-bp, 

4B and rs2070744 T 

Alleles 

Elite endurance athletes: 

triathletes, rowers, and 

underwater 

finswimmers 

Regulate NO generation in 

blood vessels and associated 

with vascular function as 

vasodilator 

[285],[286, 

287], [231] 

21 

Peroxisome 

proliferator-

activated 

receptor α 

PPARA rs4253778 G 

Allele 

Endurance-oriented 

athletes, sprinters and 

rowers 

Modulate lipid, glucose, and 

energy homeostasis and 

regulate body weight and 

vascular inflammation. 

[101, 288-

291], [292] 

22 

Peroxisome 

proliferator-

activated 

receptor δ 

PPARD rs2016520 C 

and rs1053049 T 

Alleles 

Endurance athletes 

PPARδ agonist GW1516 is 

in the WADA prohibition 

list because it increases the 

exercise tolerance and 

significantly linked with an 

increased muscle glucose 

uptake. 

[293-297] 

23 

Peroxisome 

proliferator-

activated 

receptor γ 

(PPARγ) 

coactivator 1α 

PPARGC1A Gly482 

and rs4697425 A 

Alleles 

Endurance-oriented 

athletes, and rowers 

Decrease expression of 

PPARGC1A in 

mitochondrial biogenesis, 

fatty acid oxidation, glucose 

utilization, thermogenesis, 

angiogenesis, and muscle 

fiber-type conversion toward 

slow-twitch type I fibers. 

[298-302] 

[292], 

[239],[283] 
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24 

PPARγ 

coactivator 1 

β 

PPARGC1B 203Pro 

and 292Ser Alleles 
Elite endurance athletes 

Increase insulin-stimulated 

glucose metabolism, and 

protect muscle against an 

age-related decline in 

PGC1β expression  

[303-305], 

[239] 

25 

RNA-binding 

protein, fox-1 

homolog 

RBFOX1 rs7191721 G 

Allele 

Middle and short 

endurance 

Associated with tissue-

specific alternative splicing 

in heart, muscle, and 

neuronal tissues 

[306], [108] 

26 

Solute carrier 

family 2 

(Mediated 

glucose 

transporter), 

member 4 

SLC2A4 rs5418 A 

Allele 
Long-distance runners 

Mediate glucose metabolism 

in the body by limiting 

muscle glucose uptake under 

most conditions 

[307] 

27 
TFAMprotein 

expression 
TFAM 12Thr Allele Elite endurance athletes 

Modulate mtDNA 

transcription, replication, 

and maintenance. 

[308] 

[239] 

[283] 

28 

Thyroid 

stimulating 

hormone 

receptor 

TSHR rs7144481 C 

Allele 
Long endurance athletes 

Regulate thyrothropin 

impacts on angiogenesis by 

cAMP mammalian target of 

rapamycin signaling. 

[108] 

29 
Uncoupling 

proteins 2, 
UCP2 55Val Allele 

Elite endurance athletes 

and rowers (55Val 

allele). power-oriented 

athletes (Ala55 allele) 

Enhance metabolic  

efficiency by increasing 

body mass index, physical 

activity, and energy 

generation with higher 

VO2max 

[309, 310] 

[311] 

[239] 

30 
Uncoupling 

proteins 3 

UCP3 rs1800849 T 

Allele 

Elite endurance athletes 

and rowers 

Linked to markers of energy 

metabolism and aerobic 

capacity 

[312-314] 

[239] 
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31 

vascular 

endothelial 

growth factor 

VEGFA rs2010963 C 

Allele 

Elite endurance athletes 

and rowers 

Regulate VEGF protein 

expression in human 

myoblasts and increase 

oxygen uptake before and 

after aerobic exercise 

training, 

[239, 315] 

32 
VEGF 

receptor 2 

VEGFR2 472Gln 

Allele 

Elite endurance athletes, 

all-round speed skaters 

and rower 

Regulate the full spectrum of 

VEGF angiogenic responses 

by kinase insert domain 

receptor in aerobic exercise 

[316, 317] 

33 

Y-

chromosome 

haplogroups 

E*, E3*, and 

K*(xP) 

Y-Chromosomal 

Haplogroups 
Endurance running 

Specific haplogroups of the 

Y-chromosome have been 

associated in the Ethiopian 

athletes. 

[318] 

34 

Circulating 

angiotensin I-

converting 

enzyme  

ACE D Allele 

Power-oriented athletes, 

short-and-middle-

distance swimmers and 

sprinters 

Increase muscle volume and 

strength by increasing fast-

twitch muscle fibers 

[211, 319-

327], [191], 

[205], 

[328], 

[195], 

[193], [311] 

35 α-actininin-3 ACTN3 Arg577 Allele 

Power-oriented athletes, 

artistic gymnasts, 

sprinters, swimmers, 

short-distance skaters 

and soccer 

Restricted to fast muscle 

fibers responsible for 

generating force at high 

velocity. 

[88, 319, 

329-349], 

[277], 

[195], 

[311], 

[216], [321] 

36 
Angiotensino

gen 
AGT 235Thr Allele Power athletes 

Modulate vascular resistance 

and sodium homeostasis, 

consequently regulate blood 

pressure. 

[350-352], 

[209] 

37 

Adenosine 

monophospha

te deaminase 

AMPD1 Gln12 Allele 

Power oriented athletes: 

short-distance runners, 

short-distance 

Reduces skeletal muscle 

AMPD activities 

[353-355], 

[224] 
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swimmers, sprinter, 

boxing, wrestling, speed 

skating (500–1500 m), 

and weightlifters 

38 

cAMP-

responsive 

element 

modulator 

CREM rs1531550 A 

Allele 
Elite sprinters 

A bZIP transcription factor 

that binds to the cAMP-

responsive element found in 

many viral and cellular 

promoters. 

[356]  

39 Dystrophin 
DMD rs939787 T 

Allele 
Strength/power athletes 

Dystrophin RNA is part of 

dystrophin–glycoprotein 

complex associated with the 

inner surface of muscle 

fibers, generating a large set 

of protein isoforms. 

[357] 

40 

5,10-

methylenetetr

ahydrofolate 

reductase 

Folate Pathway 

Genetic Markers 

(MTHFR rs1801131 C, 

MTR rs1805087 G, and 

MTRR rs1801394 G 

Alleles) 

Power/strength athlete 

DNA hypomethylation leads 

to myogenic differentiation, 

and increases muscle mass, 

and energy metabolism. 

[358-360] 

41 

UDP-N-

acetyl-alpha-

D-

galactosamin

e:polypeptide 

N-

acetylgalactos

aminyltransfe

rase 13 

protein 

GALNT13 rs10196189 

G Allele 
Elite sprinters 

Initiate O-linked 

glycosylation of mucins by 

the initial transfer of N-

acetylgalactosamine with an 

alphalinkage to a serine or 

threonine residue and thus 

catalyzes the initial reaction 

in O-linked oligosaccharide 

biosynthesis. 

[356] 

42 HIF-1α HIF1A 582Ser Allele 

Power-orientated 

athletes, all-round speed 

skaters, weightlifters, 

and wrestlers 

Increase HIF-1α protein 

stability and transcriptional 

activity by converting 

proline to serine in the amino 

[361-364] 
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acid sequence of the protein, 

which improve glucose 

metabolism 

43 

Insulin-like 

growth factor 

1 

IGF1 rs35767 T and 

IGF1R rs1464430 C 

Alleles 

Power athletes 

Increase IGF-1 impacts in 

skeletal muscle through 

transmembrane receptor 

[365, 366] 

44 

Interleukin-1 

receptor 

antagonist 

IL1RN*2 Allele 

Volleyball, soccer, 

rugby, triathlon, 

basketball, martial arts, 

track-and-field sports, 

running, handball, and 

swimming 

Regulate skeletal muscle 

inflammatory and repair 

reactions during and after 

exercise and increase 

adaptation to high-intensity 

exercise. 

[367, 368] 

45 interleukin-6 
IL-6 rs1800795 G 

Allele 
Power-oriented athletes 

Modulate glucose 

homeostasis during exercise 

and mediate hypertrophic 

muscle growth 

[369-373] 

46 

endothelial 

nitric oxide 

synthase gene 

NOS3 rs2070744 T 

Allele 

Power-oriented athletes: 

jumpers, throwers, and 

sprinters 

Improve muscle contraction 

during knee-extensor 

exercise and increase 

tolerance to high-intensity 

exercise in humans 

[374], 

[362], 

[285], [311] 

47 

Peroxisome 

proliferator-

activated 

receptor α 

PPARA rs4253778 C 

Allele 

Power-oriented athletes 

and football players 

In response to training, LV 

mass increases with the 

increase in hypertrophic 

effect that influences cardiac 

and skeletal muscle substrate 

consumption 

[101, 288, 

289], [375-

377] 

48 PPARγ PPARG 12Ala Allele Power-oriented athletes 

Reduce receptor activity and 

increase insulin sensitivity 

and skeletal muscle glucose 

uptake with better cross-

sectional area of muscle 

fibers 

[362, 378-

381] 
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49 

Manganese 

superoxide 

dismutase 

SOD2 Ala16 Allele 

Power athlete: 100–200 

m sprinters and long 

jumpers 

Convert anion superoxide of 

the mitochondria into 

hydrogen peroxide and 

oxygen. Consequently after 

racing, creatine kinase is 

increased, suggesting lower 

muscle damage. 

 

[273, 382-

385] 

50 
Vitamin D 

receptor 

VDR rs10735810 T 

Allele 

Medium-high-level 

male soccer 

Impact on bone and skeletal 

muscle biology through 

binding of vitamin D and 

inhibiting parathyroid 

hormone production that 

sustain normocalcemia. 

[386-388] 

 

 
 
 
 
 
 
 
 
 
 
 
 

  



110 
 

 

The aim of this chapter was to identify genetic predisposition into elite athletic 

performance by genotyping a large cohort of elite athletes who belong to different types 

of sports. Genotyping was performed using a unique SNP chip that covers various 

enzymes and metabolic pathways with relevance to physical performance. The study 

findings were validated in an independent replication cohort of elite Russian athletes and 

matched controls. 

 

3.2 Material and method 

3.2.1 Classification of study participants for Statistical analysis of GWAS data 
 
Athletes were classified according to their VO2max, MVC and cardiovascular demand as 

shown previously in chapter 2 Table 3, following Mitchell’s previously published sports 

classification criteria [16]. Table 5 further lists the number of participants based on various 

analyses as per sport type in each class/group and their genders. 

 

3.2.2 Data Extraction and SNP Identification: 

SNP array genotyping was performed in 1259 athletes’ samples using a new customized 

24 BeadChips array. The Illumina Drug Core array-24 BeadChips developed by Illumina 

in collaboration with experts in translational genomics and computational chemical 

biology.  This array contains 240,000 highly-informative genome-wide tag SNPs and a 

novel 200,000 custom marker set designed to support studies of metabolomics, drug 

target validation, and treatment response. 

The genotypes were extracted from the raw intensities using GenomeStudio (Illumina). 

The genotyping data (476728 SNPs from each sample) were processed to quality control 



111 
 

steps using Plink v1.90b4.6 64-bit to identify candidate gene regions through regression 

analyses. 

 

3.2.3 Statistical analysis of genomics data 

 

Following genotyping using Illumina’s DrugCore SNP array, PCA was conducted to 

investigate whether genotypes were influenced by individual sport types (Figure 14) or 

gender (Figure 15). PCA confirmed no evidence of such influence as genotypes did not 

cluster over any of the identified PCs. Further PC analyses were applied on the study 

groups using cardiovascular demand of their respective sport rankings (Figure 16) [16]. 

The latter included low/medium (2), medium (3), high/medium (4) and high (5) as shown 

in Figure 15. Rank 2 and 3 were then grouped as moderate CVD vs. rank 4 and 5 as high 

CVD. Study groups were used in analysis including low/moderate vs. high groups of CVD, 

endurance and power as shown in Figure 17.  

 

Figure 14. PCA shows no difference in genotype distribution among sports types. 
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Figure 15. PCA shows no difference in genotype distribution between gender. 

 

Figure 16. PCA shows no difference in genotype distribution among sport ranks 

according to cardiovascular demand groups. 
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Figure 17. PCA shows no difference in genotype distribution among high vs. moderate: 

A. CVD, B. endurance, and C. power athletic groups. 
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Some clusters of samples were observed in the PCA, which probably reflect ethnic 

diversity. To predict ethnicities of athletes’ samples, genotyped data were merged with 

1000 Genome project data. PCA were conducted for merged data and then ethnicities of 

athletes were predicted. Figure 18 reveals clusters of ethnicities, and figure 19 indicates 

that the majority of the samples were from European athletes. 

 

Figure 18. PCA revealed clusters of samples reflecting different ethnicities: American, 

orange; African, blue; South Asian, green; East Asian, violet, European, cyan. 
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Figure 19. Pie chart showing the percentages of samples collected from different 

ethnicities as per mapping against PCA generated clusters in 1000 genome project. 

Since PCA analysis showed that there is population stratification in genetic data that 

requires the execution of several quality checks and careful conductance of statistical 

analyses to avoid spurious associations due to several potential sources of confounding 

(e.g., ethnic stratification) that lead to false positive associations and/or mask true 

associations, because allele frequencies can differ between subpopulations [389]. 

Accordingly, we applied the rigorous quality control (QC) procedures on genotype data 

prior to conducting GWAS, including the use of appropriate methods to take into account 

ethnic heterogeneity [389]. Since most athletes included in the study cohort were of 

European origin, genetic association studies were performed on 753 European athletes’ 

samples to minimize the effect of ethnicities. Table 7 summarizes the distribution of 

European elite athletes’ samples into endurance, power and cardiovascular demand 

(colored) groups, following published criteria [16].  Figure 20 reveals clusters of European 
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athletes, but not pertaining to any of the study groups discussed above, suggesting no 

significant influence of ethnicity on sports classes used in this analysis.  

 

Table 7. Classification of GWAS study participants. Elite athletes are distributed in 

defined  categories, as described previously [16]. These categories were based on 

VO2Max, MVC, and CVD associated with their respective sports types. The number of 

participants and gender (M for males and F for females) in each class are mentioned. 

 

 

GWAS 
Endurance 

Moderate (<70% VO2max) High (>70% VO2max) 

P
o

w
e

r 

H
ig

h
 (

>
5

0
%

 

M
V

C
) Weight-Lifting (8M/7F),Judo 

(2M),Wrestling (4M),Skate 
boarding (2M) 

Kayaking (1F),Morden Pantathlon 
(1F),Rowing (9M/8F),Biathlon 

(2M/1F),Boxing (3M/12F),Cycling 
(149M/48F),Triathlon (9M/7F) 

M
o

d
e
ra

te
 

(2
0

-5
0

%
 

M
V

C
) Athletic-Jump (1F),Rugby 

(15M),Aquatics (8M/5F),Athletics 
(31M/29F) 

Handball (15M/3F),Athletics middle 
distance (1M),Basketball 

(2M),Hockey (1F),Skiing Cross 
Country (3M/1F),Swimming 

(24M/17F) 

L
o

w
 (

<
2

0
%

 

M
V

C
) 

Baseball (2M),Volleyball 
(2M),Table-Tennis (7M) 

Athletic-Long-Distance-Marathon 
(35M/12F),Tennis (2M/3F),Soccer 

(243M),Athletics-Ultra-Running 
(1F),Football (16M/1F) 
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Figure 20. PCA shows no difference in genotype distribution between high vs. moderate 

A. CVD, B. endurance, and C. power athletic groups. 
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The top principal components from PCA were used in the following association analysis 

for correcting for any remaining population stratification. Genome wide association study 

was performed using Plink v1.9 Quality control measures were applied to the genotype 

data set to exclude samples with low genotype call rate (<95%) or excess heterozygosity. 

SNPs with genotype call rate < 98%, minor allele frequency < 1%, or data deviating from 

Hardy-Weinberg equilibrium (P < 1E-6) were excluded. Accordingly, out of 476728 SNPs, 

only 341385 SNPs were analyzed. A stringent Bonferroni level of significance of p < = 

0.05/341385 = 1.46E-7 was used to define significant associations. The analysis was 

performed using linear or logistic regression models adjusting for sex and the first four 

top principal components. Resulted minor allele frequencies (MAF) of our study groups 

were compared against non-athlete group (1000 Genome project) and Trans-Omics for 

Precision Medicine (TOPMed) projects that contributed to this initiative by integrating 

whole-genome sequencing (WGS) with their clinical data that were obtained from: 

https://www.ncbi.nlm.nih.gov/snp/?term=rs56330321. Ingenuity pathway analysis (IPA), 

Qiagen, cat. # 830011) was also reported to look for functional relevance of identified 

SNPs. 

3.2.4 Replication analysis of genomics data 

 The Russian athletes’ study involved 43 sprinters, 120 middle-distance athletes, 56 long-

distance athletes (95 females, age 21.9 (3.5) years, 124 males, age 22.1 (4.2) years). 

Sprinters included 8 (100-400m) runners, 5 sprint cyclers, 10 (500-1000m) speed skaters 

/ short trackers, 19 (50-100m) swimmers, 1 (200m) kayaker. Middle-distance athletes 

comprised 59 rowers, 10 (0.8-1.5km) runners, 7 middle-distance cyclers, 21 middle-

distance kayakers / canoers, 15 (1.5-3.0km) speed skaters, 8 (200-400m) swimmers. 

https://www.ncbi.nlm.nih.gov/snp/?term=rs56330321
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Long-distance athletes included 3 (3-10km) runners, 1 marathon runner, 14 biathletes, 

12 cross-country skiers, 14 (0,8-25km) swimmers, 6 triathletes, 6 race walkers. All 

athletes were Olympic team members (International level) who have tested negative for 

doping substances. 

Russian controls were 173 (126 males and 47 females) unrelated individuals with no 

competitive sporting experience (all Eastern European descent Caucasians). The 

protocol was approved by the Ethics Committee of the Federal Research and Clinical 

Center of Physical-chemical Medicine of the Federal Medical and Biological Agency of 

Russia. Written informed consents were obtained from participants. The study complied 

with the guidelines of the Declaration of Helsinki and ethical standards in sport and 

exercise science research. The experimental procedures were performed according to 

the set of guiding principles for results reporting typical of genetic association studies as 

defined by the Strengthening the REporting of Genetic Association studies (STREGA) 

Statement. DNA extraction was performed using a commercial kit according to the 

manufacturer's instructions (Technoclon, Russia). HumanOmni1-Quad BeadChips 

(Illumina Inc, USA) were utilized for genotyping of 1,140,419 SNPs in athletes and 

controls. Genotyping was performed according to the instructions of the Infinium HD 

Assay. The analysis of Russian cohort data was performed using linear regression 

models incorporating sports grouped by training (i.e. sports with high vs. low/moderate 

aerobic component). To perform the meta-analysis, the Cochrane Review Manager 

(RevMan) version 5.3 was used. Random and fixed effect models were applied. 
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3.3 Results 

3.3.1 Comparing high endurance performers against low/moderate endurance performers. 

Genotype distribution of SNPs was compared between high endurance compared to 

moderate endurance group. Several variants were found associated with high endurance 

(Table 8) by logistic model regression analysis after correcting for gender, and population 

stratification using PC1, PC2, PC3, and PC4. One novel SNP (rs56330321 in ATPase 

Plasma Membrane Ca2+ Transporting 2 gene, ATP2B2) reached Bonferroni level of 

significance (p=1.47E-7) and another novel SNP (rs2635438 in Spectrin Repeat 

Containing Nuclear Envelope Protein 1 gene, SYNE1) reached FDR level of significance 

at 5% level of significance (p=2.54E-7). Validation of significant endurance associated 

variants was performed by comparing the frequencies of the most significant SNPs (with 

P < E-5 - E-8) in 219 elite Russian athletes and 173 Russian controls. The rs56330321 A 

allele was under-represented in Russian middle-distance athletes (n=120) compared to 

173 Russian controls (0.8 vs 3.8%; OR=0.2036; SE=0.6435; P=0.013). The rs2635438 

G allele was under-represented in 56 elite Russian long-distance athletes compared to 

43 elite Russian sprinters (3.6 vs 8.1%; OR=0.132; SE=0.9004; P=0.024). A subsequent 

Meta-analysis has confirmed the association of rs56330321 and rs2635438 with 

endurance athlete status at GWAS level of significance (5.13E-09 and 1.91E-08, 

respectively). Table 8 shows top 10 SNPs with their odd ratios (OR), location according 

to function genome variation server (GVS), gene name and MAF in high and low 

endurance groups. MAF in non-elite athletes from 1000 Genome project were used as a 

reference. Manhattan and quartile-quartile (QQ) plot of GWAS hits associated with 

endurance are shown in Figure 21. 
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Table 8. Top GWAS SNPs associated with Endurance (n=753, High= 639, Low= 114). 

Abbreviations: single nucleotide polymorphism (SNP), chromosome (Chr), Position (BP), 

Reference Allele (A), number of samples (N), odds ratio (OR), standard error (SE), 

probability value (Pval), function genome variation server (GVS), and minor allele 

frequencies (MAF). 

 

 

 

SNP Chr. BP A N OR SE Pval FDR 
Significant 
using an 
FDR of 
0.05? 

Function 

GVS 

Nearest 

Gene  

MAF-High 

Endurance 

N=639 

MAF-Low 

Endurance 

N=114 

MAF-

nonathletes 

rs56330321 3 10684812 A 751 0.2501 0.26 1.15E-07 0.037 Yes intron ATP2B2 0.038 0.12 A=0.055 

rs2635438 6 152506470 G 753 0.1636 0.35 2.54E-07 0.041 Yes intron SYNE1 0.015 0.08 C=0.06 

rs225902 14 30459451 A 748 0.41 0.19 2.48E-06 0.268 No intergenic none 0.14 0.24 A=0.18 

rs146654270 9 123798492 A 749 0.1621 0.39 3.38E-06 0.274 No intron C5 0.013 0.057 A=0.01655 

rs1969772 1 59205102 A 752 0.4928 0.15 4.23E-06 0.274 No intergenic none 0.29 0.44 A=0.26 

rs77471963 15 69245158 G 746 0.3671 0.29 4.38E-06 0.236 No intron NOX5 0.08 0.16 G=0.068 

rs10011584 4 127213903 T 750 0.4572 0.17 5.41E-06 0.250 No intergenic none 0.15 0.26 T=0.13 

rs142155779 7 126252753 C 751 0.2247 0.33 5.47E-06 0.221 No intron GRM8 0.021 0.082 C=0.015 

rs7584904 2 106131036 T 750 0.4047 0.20 6.30E-06 0.227 No intergenic none 0.09 0.18 T=0.14 

rs7599151 2 59308101 A 753 0.5097 0.15 7.75E-06 0.251 No intergenic none 0.36 0.46 A=0.33 
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Figure 21. Manhattan (A) and quantile-quantile (B) plots illustrating GWAS results in 

association with endurance (red line indicates the Bonferroni level of significance, 

P=1.46E-7). 
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Pathway analysis using Ingenuity Pathway Analysis software (IPA) predicted top five 

affected physiological system development and functions (Table 9). Nervous system 

development occupies the top in the list. The model predicted abnormal morphology of 

neurons by variants in the following genes: ATP2B2, BRAF, EPHB1, GRID2, NTRK3, 

SYNE1, THRB and TPH2 (p value range 2.8E-3 – 5.8E-7). The functional relevance of 

this association remains to be investigated. Also, SNPs in twelve genes associated with 

endurance are found to be related to cardiovascular system development. Of these 

genes, ABCC4, BRAF, NTRK3, PIK3CA, PRKD1, SYNE1, and VAV3 are associated with 

cardiac enlargement and cardiac dysfunction (p=0.000016) with direct relevance to 

increased CVD and subsequently endurance. 

Table 9. IPA analysis of top SNPs associated with high endurance athletes’ performance.  
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3.3.2 Comparing high power performers against low/moderate power performers. 

Genotype distribution of SNPs was compared between high power against the moderate 

low/moderate groups. Several SNPs associated with high power athletic performance at 

p-values <10-5 were identified (Table 10) by linear regression model  analysis after 

correcting for gender, and population stratification using PC1, PC2, PC3 and PC4, but 

none reached Bonferroni significance (1.47E-7). Table 10 shows top 10 SNPs with their 

odd ratios (OR), location according to function genome variation server (GVS), gene 

name and MAF in low/moderate and high power groups. MAF in non-elite athletes from 

1000 genome project were used as a reference. Manhattan and quartile-quartile (QQ) 

plots of GWAS hits associated with endurance are shown in Figure 22. 

Table 10. Top GWAS SNPs associated with Power (n=753, High= 273, Medium=156, 

Low= 324). Abbreviations: single nucleotide polymorphism (SNP), chromosome (Chr), 

Position (BP), Reference Allele (A), number of samples (N), odds ratio (OR), standard 

error (SE), probability value (Pval), function genome variation server (GVS), and minor 

allele frequencies (MAF). 

 

SNP Chr. BP A N OR SE P val FDR 
Function 

GVS 
Nearest Gene 

MAF-
High 

Power 
N=273 

MAF-
Low 

Power 
N=324 

MAF-
nonathletes 

rs2073307 14 69342250 C 739 0.21 0.045 
3.08E-

06 
0.64 

intron ACTN1 0.46 0.44 C=0.47 

rs6732989 2 75778286 C 753 0.275 0.06 
4.53E-

06 
0.77 

intron FAM176A 0.2 0.12 C=0.12 

rs1430779 2 67878108 T 753 -0.216 0.047 
6.08E-

06 
0.86 

intergenic none 0.23 0.29 T=0.27 

rs2072633 6 31919578 T 753 0.2154 0.047 
6.44E-

06 
0.88 

intron CFB 0.41 0.27 A=0.42 

rs876549 15 52602736 A 753 1.098 0.242 
6.57E-

06 
0.88 

utr-3 MYO5A 0.02 0.001 T=0.09 

rs135230 22 49513663 G 753 0.2223 0.049 
7.21E-

06 
0.91 

intergenic none 0.32 0.23 G=0.32 

rs2106247 16 23177942 T 753 -0.211 0.047 
7.95E-

06 

0.93 

intergenic none 0.23 0.31 A=0.30 

rs2603154 4 69363530 G 752 0.2278 0.051 
9.47E-

06 

0.96 
near-gene-

3 
TMPRSS11E 0.31 0.22 G=0.27 

rs3802753 11 26682387 T 753 0.238 0.054 
1.07E-

05 

0.97 

utr-3 ANO3 0.24 0.15 T=0.16 

rs2808770 9 1.17E+08 C 748 -0.198 0.045 
1.45E-

05 
0.99 

missense COL27A1 0.25 0.33 C=0.23 

rs864687 7 1.05E+08 C 751 0.3949 0.091 
1.65E-

05 
0.99 

intron RINT1 0.09 0.04 C=0.07 
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Figure 22. Manhattan (A) and quantile-quantile (B) plots illustrating GWAS results in 

association with power. No Bonferroni level of significance found. 
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Pathway analysis using IPA was also utilized to predict top five affected physiological 

system development and functions (Table 11). Nervous system and cardiovascular 

system development also occupied the top two functions in the list as predicted by 

variants associated with high power athletes (p value range 4.9E-2 – 4.54E-4). 

Table 11. IPA analysis of top SNPs associated with high power athletes’ performance.  

 
 

3.3.3 Comparing high performers with high cardiovascular demand against low/moderate 
performers with lower cardiovascular demand. 

Genotype distribution of SNPs was compared between high CVD (grey cells in Table 7) 

against low/moderate CVD group. SNPs associated with high CVD athletic performance 

at p-values <E-5 were identified (Table 12) by logistic regression analysis after correcting 

for gender, and population stratification using PC1, PC2, and PC3, but none reached 

Bonferroni significance (1.47E-7). Table 12 shows top 10 SNPs with their odd ratios (OR), 

location according to function genome variation server (GVS), gene name and MAF in 

high and low CVD groups. MAF in non-elite athletes from 1000 genome project were used 

as a reference. Manhattan and quartile-quartile (QQ) plots of GWAS hits associated with 

CVD are shown in Figure 23. 
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Table 12. Top GWAS SNPs associated with CVD (n=753, High= 335, Moderate= 418). 

Abbreviations: single nucleotide polymorphism (SNP), chromosome (Chr), Position (BP), 

Reference Allele (A), number of samples (N), odds ratio (OR), standard error (SE), 

probability value (Pval), function genome variation server (GVS), and minor allele 

frequencies (MAF). 

 

SNP Chr. BP A N OR SE Pval FDR 
Function 

GVS 

Nearest 

Gene 

MAF-

High 

CVD 

N=335 

MAF-

Low 

CVD 

N=418 

MAF-

nonathletes 

rs8032767 15 66244634 G 752 2.238 0.15 1.77E-07 
0.05

6 
intron MEGF11 0.2 0.12 G=0.10 

rs2171302 10 3815292 T 753 
0.431

7 
0.18 2.34E-06 

0.53

3 
intergenic KLF6 0.1 0.15 T=0.15 

rs6476151 9 29730581 C 753 
0.583

3 
0.11 2.42E-06 

0.54

5 
intergenic none 0.34 0.45 C=0.41 

rs2808661 1 159558258 A 753 1.927 0.14 4.50E-06 
0.76

9 

coding-

synonymous 
APCS 0.24 0.15 A=0.15 

rs2073307 14 69342250 C 739 1.722 0.12 8.26E-06 
0.93

2 
intron ACTN1 0.46 0.43 C=0.47 

rs8040847 15 85447805 T 753 1.705 0.12 1.13E-05 
0.97

5 
intron SLC28A1 0.39 0.29 T=0.37 

rs1889055 9 29539919 C 753 
0.617

6 
0.11 1.72E-05 

0.99

6 
intergenic none 0.39 0.49 G=0.37 

rs560764 9 29592836 C 753 1.628 0.11 1.78E-05 
0.99

7 
intergenic none 0.46 0.42 T=0.45 

rs11071854 15 66275951 G 753 1.761 0.13 1.81E-05 
0.99

7 
intron MEGF11 0.28 0.19 G=0.17 

rs2290272 15 85447431 T 753 1.653 0.12 2.07E-05 
0.99

9 
missense SLC28A1 0.4 0.3 A=0.40 
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Figure 23. Manhattan (A) and quantile-quantile (B) plots illustrating GWAS results in 

association with CVD (genome wide line=-log10(5e-08), Bonferroni line (red) =-

log10(1.5E-7) 
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Similarly, IPA was used for functional enrichment analysis to investigate the physiological 

system development and functions (Table 13). Nervous system and organ development 

occupied the top two functions in the list as predicted by variants associated 

with increased cardiovascular demand-linked to increased athletic performance (p value 

range 4.1E-2 – 9.5E-4). 

Table 13. IPA pathway analysis of top SNPs associated with increased cardiovascular 

demand-linked to increased athletic performance. 

 
 

 

3.4 Discussion 

3.4.1 Genetic associations 

Genetic predisposition into cardiorespiratory fitness and response to exercise training has 

been previously described [189, 390-394]. Since endurance sports are characterized by 

increased cardiorespiratory capacity, genetic predisposition into elite endurance 

performance is also expected to be genetically influenced [152]. However, genetic studies 

of elite athletic endurance showed inconsistent results [113, 152, 190, 395]. Additionally, 

a large meta-analysis has revealed no evidence of genetic predisposition to endurance 

sports, potentially due to the small size of individual studies and the complexity of 
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endurance as a phenotype [115]. Taken previous study designs and findings into account 

when designing the current project, we decided to adopt a design that compares low vs 

high levels of performance (power, endurance and cardiovascular demand) athletes, 

instead of the classical case-control design in order to avoid the potential issue of controls 

carrying the genetic predisposition but not pursuing athleticism as a career. However, 

when we looked for an independent cohort to validate our findings, the only available 

ones were case-control cohorts (such as the Russian elite athletes), hence they were 

used for validation.  Our GWAS results have revealed two novel SNPs (rs56330321 and 

rs2635438) associated with endurance at Bonferroni and FDR level of significance, 

respectively. Validation of the results in an independent cohort of elite Russian athletes 

and controls has confirmed the association of rs56330321 and rs2635438 with endurance 

athlete status. Subsequent meta-analysis of the two cohorts has shown for the first time 

that both SNPs were associated with endurance in elite endurance athletes at GWAS 

level of significance. The two novel SNPs (rs56330321 and rs2635438) are located within 

genes ATP2B2 and SYNE1, respectively. Although these two genes have not been 

previously implicated directly in physical performance, their potential roles in cell signaling 

and cytoskeletal structure of skeletal muscle cells were previously established [396, 397].  

The top endurance GWAS significant SNP (rs56330321) is located within the intron of 

ATP2B2. This gene codes for the plasma membrane Ca2+ ATPase 2 (PMCA2), a 

member of the P-type primary ion transport ATPases. These ATPases play a crucial role 

in calcium homeostasis as they remove bivalent calcium ions from the cell against high 

gradients [396]. PMCA2 is mostly expressed in the inner ear, the cerebellum and the 

mammary gland with an established role in hearing and balance in mice [398] and 
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humans [399]. The expression of different isoforms and splice variants is highly regulated 

following the physiological demand of the cell [400]. The association between PMCA2 

and physical performance has not been previously described. The under representation 

of the A allele in the high endurance athletes in the discovery and replication cohorts, 

compared to their moderate endurance/non-athletes controls, may suggest that carrying 

the A allele is disadvantageous for high endurance athletes. 

The second endurance GWAS significant SNP (rs2635438) is located within the intron of 

SYNE1. This gene codes a spectrin-repeat containing protein expressed in skeletal and 

smooth muscle, as well as peripheral blood lymphocytes. The protein localizes to the 

nuclear membrane. Mutations in this gene have been associated with autosomal 

recessive spinocerebellar ataxia 8, Emery-Dreifuss muscular dystrophy type 4, dominant 

muscular dystrophy and Emery-Dreifuss muscular dystrophy-like [401-405]. Both 

discovery and replication cohorts have shown that the G allele is under represented in 

high endurance athletes compared to moderate endurance, suggesting that carriers of 

the G allele may have lower endurance ability, perhaps through  replacement of healthy 

muscle tissue by fibrosis and fatty infiltration described in recessive arthrogryposis 

families carrying mutations in SYNE1 gene [405].   

Subsequent analyses of GWAS data in association with power and CVD did not show 

Bonferroni significant hits. It is well established that sports with highly intensive training 

can lead to an increased cardiac mass and tissue remodeling [406-408]. Training causes 

expansion of the right and LV chambers, with increased wall thickness. Extreme changes 

in wall thickness are usually associated with rowing, cross-country skiing, cycling, and 

swimming [407]. Hence, genetic predisposition into larger cardiac mass may give athletes 
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the advantage of increased cardiac output, but may have increased their cardiovascular 

risk [408].  

Our data identified one borderline significant SNP (rs8032767) associated with high 

performers in CVD group, but it has no apparent functional relevance to physical activity.  

SNP (rs8032767) is associated with gene MEGF11 (Multiple EGF Like Domains 11) that 

has a critical function in regulating mosaic signals by two retinal interneuron subtypes, 

ensuring similarity in all parts of the visual field to access a full set of processing elements 

[409]. Functional association between this gene and cardiovascular demand phenotype 

need to be further investigated to confirm the genetic association.  

Further investigations of the functional relevance of the identified SNPs and associated 

metabolites in relation to enhanced athletic performance are needed to confirm these 

associations and identify their functional relevance. Functional characterization of genetic 

variants is often required to move from statistical association to causal variants and 

genes, especially in the non-coding genome. Computational methods are often used to 

predict the regulatory effect of non-coding variants on the basis of functional annotations. 

Target genes can be identified or confirmed using chromatin immunoprecipitation and 

chromosome conformation capture methods, and experimentally validated using cell-

based systems and model organisms [410]. For ATP2B2 SNP, expression studies using 

reporter gene assays investigating calcium signaling in wild type and mutant ATP2B2 

SNP (rs56330321) will reveal the potential effect of the SNP on calcium homeostasis 

[411]. Similarly, for SYNE1 gene variant, a multi-isomeric modular protein which forms a 

linking network between organelles and the actin cytoskeleton, experiments comparing 

the connection between the nuclear lamina and the cytoskeleton between wild type and 
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rs2635438 mutants will reveal whether SYNE1 SNP (rs2635438) destabilizes the actin 

cytoskeletal structure of the cells. Further studies on its role in cardiomyocytes contraction 

would provide additional evidence of the functional role of this SNP in relation to athletic 

performance [412]. 

3.4.2 Genomics study limitations 

Firstly, categorization of elite athletes into groups based on sport disciplines characterized 

by variable peak dynamic (VO2max) component reached during competition may not be 

sufficient as it is not based on actual measurement of VO2max. This limitation is caused 

by restricted access to athletes’ information as per study ethics.  

Secondly,  common genetic variations exhibit relatively low effect sizes, especially in the 

context of complex phenotype such as physical performance [413]. Despite the fact, 

GWAS had a major contribution towards the identification of genetic variants associated 

with several common complex phenotypes. The modest effect size of these variants limits 

their utility in functional prediction. 

Thirdly, the added complexity of sport phenotype (sport group) is one of the features that 

makes the search for common variants difficult even when using VO2max, MCV and CVD-

based study designs. Such complexity arises from several factors including the position 

of the player as, for example, we can’t differentiate between a goal keeper and a outfield 

player in the samples collected from football team. Great difference in athletes’ 

contribution and involvement in sport performances makes it difficult to separate the 

heterogenic phenotypes, as the fact that endurance, power and CVD are not monogenic. 

In several cases, causal variants were found within key associated genes, and their gene-

environment interactions were determining the effect of some risk variants; such as CVD 
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associated variant MEGF11. Such complexity may explain why there was no clear co-

segregation or association evidence for the variant identified in this study. Therefore, 

further investigations are necessary in order to obtain valid conclusions about the role of 

the identified candidate variants in relation to elite athlete physical performance. 

In addition, the functional relevance of many of these variants to physical activity is 

unclear since most of them are mapped to intergenic or intronic regions [413]. Therefore, 

additional follow-up studies are necessary to fully understand the genes and mechanisms 

deriving the effect on study groups, as in the case of the MEGF11 and ATP2B2 genes. 

 

Conclusion: This study was carried out with the largest GWAS analysis of elite European 

athletes to date using a unique SNP microarray that is enriched with genes involved in 

different metabolic pathways with direct influence on various physiological pathways 

characteristic of elite athletes. This study reports the first GWAS significant SNPs 

associated with endurance in elite athletes in genes with no previous association with 

physical performance. Further investigations of the functional relevance of the identified 

SNPs and associated metabolites in relation to enhanced athletic performance are 

needed to confirm these associations and identify their functional relevance. In chapter 

5, metabolites associated with top endurance SNPs were further investigated as a step 

toward unravelling their functional validation.  
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4 (Chapter 4) Results: Metabolomics 
 

4.1 Introduction 
 

The professional athlete’s body adapts to the type of physical activity and elevates the 

capacity of physiological systems to carry out the increased workloads and to enhance 

performance. For instance, a study examining the association between hormone 

fluctuations and human behavior focused on the hypothalamic-pituitary-adrenal (HPA) 

axis in different exercise groups [414]. The study revealed that both moderate and high 

intensity of exercise could significantly increase HPA axis function, leading to increased 

cortisol concentration. The study concluded that salivary cortisol measurement could be 

a reliable biomarker of physical performance [414, 415]. Therefore metabolites profiling 

using the quantitative measurement of metabolic responses to that elevation in various 

systems could provide a potential tool for a deeper insight into athlete’s physiological 

state, and explain the fluctuations induced by endurance/power physical exercise [127]. 

More importantly, it could provide straightforward phenotypes for genotype association. 

One example is a study aimed at examining the alterations in the metabolic biochemical 

compositions of professional athletes (rowers) compared with non-athlete (control) 

subjects. In this study, the authors monitored the endogenous metabolomics status of 

rowers during a training program and identified sports-associated variation in metabolic 

phenotype in professional athletes. They used gas chromatography/time of flight–mass 

spectrometry (GC/TOF-MS)-based metabolomics. Multivariate statistical analysis, such 

as partial least squares projection to latent structures and discriminant analysis (PLS-DA) 

was carried out using SIMCA-P 11 software to visualize clustering of study groups and 

their metabolites (Figure 24). Significant differences in metabolic profiles were observed 
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with mean difference that was considered significant at 0.05 or 0.01 level (Table 14) 

compared between the professional athletes and control subjects [124, 126, 128, 416-

418]. 

 

Figure 24. Significant metabolomics difference observed between ● control subjects and 

■ rowers, adopted from [126]. A: PLS-DA score plots (PC1/PC2) of control subjects (left) 

and the professional athletes (right) indicating a significant separation in measured 

metabolites of studied groups. B: PLS-DA loading plots exhibited variables positively 

correlated with score plots. Data showed open squares “□” endogenous metabolite  (Ala, 

alanine; Cit, citric acid; Cys, cysteine; Gln, glutamine; Glu, glutamic acid; Lac, lactate; Lin, 

linoleic acid; Me-G, β-D-methylglucopyranoside; Ole, oleic acid; Pal, palmitic acid; Pyr, 

pyroglutamic acid; and Val, valine) were statistically significant and found responsible for 

the discrimination of the two groups. Closed squares “▪” indicate non-significant 

metaoblites. 
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Table 14. A list of endogenous metabolites that were found statistically different 

between control subjects and rowers. Adopted from [126]  

 
 

The exhaustive physical exercise is associated with myocardial adaptations such as 

electrical, structural and functional changes of athletes’ heart that improve athletic 

performance [419, 420]. The nature and intensity of an athlete’s sport determines the 

metabolic changes in systemic blood flow, whereas the cardiovascular function  is 

influenced by the duration of exercise over time [421]. For instance, during aerobic 

workout, athlete’s cardiovascular system reaches up to maximum cardiac output as per 

the need of the exercising body organs to receive as much oxygen for regulating the mean 

arterial pressure [422, 423].  

Despite of various physiological studies measuring blood pressure and cardiac output of 

different groups of athletes [424], or studies collecting information about their consumed 

dietary supplements  [140], a more comprehensive measurement of athletes’ metabolic 

markers in response to exercise and nutrition remains limited [141].  

For example, no study has adopted a retrospective approach to measure metabolites that 

potentially originate from drugs/supplements consumption in elite athletes or analyzed 

the metabolic signature of different groups of elite athletes who belong to different sports.  



139 
 

Such comprehensive testing of blood metabolic biomarkers may offer valuable insight 

into the pathophysiological and functional alterations underlying athletes’ long-term 

performance and health considering changes in metabolites associated with their 

nutrition, CVD, MVC and VO2max. 

The aim of this chapter was to identify metabolites associated with endurance and power 

in discovery and replication cohorts. This chapter also aims to investigate metabolites 

associated with CVD and analyze xenobiotic profiling in serum samples from elite athletes 

of different sport disciplines. 

4.2 Material and method 

4.2.1 Classification of study participants for metabolomics analysis 

Metabolomics analysis of serum samples from elite athletes was performed in discovery 

(n=191) and replication cohorts (n=501) as described in the general methods, section 2.4. 

Categorization of participants’ sport groups for both cohorts into low/moderate vs. high 

endurance, power and CVD groups is shown in Tables 15 and 16. 

 

Table 15. Classification of pilot metabolomics study of 191 participants. Elite athletes are 

distributed in various categories is based on sports type as described previously [16]. The 

number of participants and gender (M for males and F for females) in each group are 

mentioned. 
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Table 16. Classification of 2nd metabolomics study of 490 participants. Elite athletes are 

distributed in various categories is based on sports type as described previously [16]. The 

number of participants and gender (M for males and F for females) in each group are 

mentioned. 

(15) Discovery 

Endurance 

Moderate High 

(40-70% VO2max) (>70% VO2max) 

P
o

w
e

r 

High 
  

Boxing (12M), Triathlon (4M), 
Rowing (2M), Cycling (21M/3F), 

Canoe Kayak (1F) (>50% MVC) 

Moderate 
Athletics (5M/5F), Rugby 

(41M), Canoe 200m Sprint 
(4M/1F), Motorcycle 
Racing / Road (5M) 

Skiing Cross Country (1M), 
Basketball (4M), Swimming 

(9M) 
(20-50% 

MVC) 

Low 

Baseball (1M), Volleyball 
(4M/4F) 

Tennis (1F), Football (62M), 
Long distance 3000m or greater 

(1M), 
(<20% MVC) 

 



141 
 

 

4.2.2 Metabolomics profiling 

Serum samples from 1st cohort (191 samples) and 2nd cohort (501 samples) were sent 

to Metabolon, Durham, NC, USA for metabolomics profiling that was performed using 

established protocols as described in the general methods section 2.4.1. 

4.3 Results 

4.3.1 Multivariate analysis of athlete metabolomics data 

As noted above, PCA and OPLS-DA were run using SIMCA 14; the default metabolite-

wise sample missingness threshold of 50% was performed. PCA is a hypothesis-free 

multivariate approach that can reduce the dimensionality of the dataset while preserving 

the original relationships inherent within the dataset including any population stratification. 

OPLS-DA can exhibit sets of metabolites that best differentiate the predefined classes of 

sports. 

(16) Replication 

Endurance 

Moderate High 

(40-70% VO2max) (>70% VO2max) 

P
o

w
e

r 

High 
Wrestling (3M), Judo (3M) 

Boxing (1M/16F), Heptathlon 
(1M), Rowing (6M/7F), Cycling 

(31M/4F) (>50% MVC) 

Moderate 
Athletics (15M/22F), Rugby 

(16M), Triple Jump (1M) 

Athletics 200-800m (4M), Hockey 
(1F), Skiing Cross Country (1M), 

Basketball (3M), Swimming 
(22M/16F) 

(20-50% 
MVC) 

Low Baseball (2M), Volleyball 
(1M) 

Tennis (1M/1F), Soccer (315M), 
Athletics 1500-3000m (3M) (<20% MVC) 
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4.3.1.1 Principle components analysis (PCA) 1st cohort 

PCA revealed no clusters of samples influenced by sport types, gender, or study groups 

(Figure 25A). First two principle components (PC1 and PC2) together captured 25% of 

the variance in the data (Figure 25). Figure 25A is scatter plot that discovered two clusters 

of samples along PC1, which were not explained by sport types, study groups, or gender. 

Figure 25B is a loading plot that showed heme and hemoglobin metabolites at the 

extreme positive end of PC1, suggesting that PC1 is influenced by hemolysis.  A t-test 

performed to compare the hemolysis extent between the two clusters of samples 

discovered a significant difference (p= 0.01) between the two groups. These results reveal 

that PC1 captured presence of hemolysis in the samples. Likewise, arachidonate 

phospholipid metabolites were found enriched at the positive end of PC1 in contrast to 

eicosanoids enrichment at the negative end. These two metabolites are biochemically 

linked as substrate/product, but the link to hemolysis remains unclear. The loading plot in 

Figure 25C shows amino acids that feed into tricarboxylic acid cycle (TCA) and TCA cycle 

energy metabolites clustering at the positive end of PC2, suggesting a potential metabolic 

signature of exercise. A significant positive correlation has been revealed between 

previously identified variations in metabolites pre/post endurance exercise [128], listed in 

Table 17, and PC2 loading values for the same metabolites was identified (R=0.6, 

p=0.005). Since the loading values drive the corresponding PC score values, PC2 may 

represent a pre/post exercise metabolic signature. Focusing at the negative end of PC2, 

there is enrichment of dipeptides that suggest an opposing anabolic effect. Consequently, 

in summary, PCA results have been significantly beneficial in detecting possible 

confounders (hemolysis and pre/post exercise) that were used as covariates to be 

corrected for in subsequent analyses. 
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Table 17. Comparison of variations in previously identified metabolites pre/post exercise 

[416] and their PC2 loading values acquired in this study. 

Metabolites Changes in 
concentration 1 hour 

post exercise as 
reported in [416] 

PC2 loading values 
from this study 

Malate 69 0.07 

citric/Isocitrate 44 0.052 

Aconitic acid 25 0.06 

Fumarate 76 0.07 

Lactate 81 0.05 

Pyruvate 47 0.06 

Succinate 20 0.06 

Methionine 10 0.04 

Alanine 21 0.058 

Cystathione -38 0.03 

Glutamine 12 0.02 

Ornithine -19 0.036 

Hipurate -12 0.01 

Allantoin -33 0.01 

Uridine 36 0.04 

Uric acid 8 0.03 

Nicocianidine 53 0.021 

Pantothenate 18 0.06 
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Figure 25. PCA analysis of metabolomics data from 191 elite athletes (Discovery cohort). 

(A) A score plot of PC1 and PC2 signifying clusters of samples into two groups according 

to PC1 without any influence of sport type. (B, C) Loading plots reveals that (B) the 

hemoglobin/heme metabolites suggest a hemolysis presentation for PC1, whilst (C) the 

TCA energy metabolite suggest an energy generating process for PC2 which may be 

associated with exercise. 



145 
 

4.3.1.2 OPLS-DA Endurance Group 

An OPLS-DA analysis compared moderate vs. high endurance. Figure 26A indicated 

66.7% class-discriminatory component of the alteration in the data due to endurance level 

(R-squared-Y = 0.66, Q-squared = 0.45). Figure 26B reveals the corresponding loading 

values, indicating a decrease in gamma-glutamyl amino acids and diacyl glycerols as well 

as increase in monohydroxy fatty acids and steroids with higher endurance levels. 

 

 
Figure 26. OPLS-DA model comparing high vs. moderate endurance groups of discovery 

cohort. (A) A score plot showing the orthogonal component (y-axis) versus class-

discriminatory component (x-axis). (B) The corresponding loading plot discovered a 

positive association between monohydroxy-fatty acids and steroids with endurance and 

a negative association with gamma-glutamyl amino acids and diacyl-glycerols.   
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4.3.1.3 OPLS-DA Power Group 

OPLS-DA also discovered a clear separation between high vs. moderate power. Figure 

27A reveals the significant predictive component that is explaining 88% of the variation in 

the power (R-squared-Y =0.88, Q-squared = 0.52), together with four orthogonal 

components. The loading plot on Figure 27B suggests a decrease in gamma glutamyl 

amino acids and steroids as opposed to an increase in lyso lipids, phospholipids and 

xanthine metabolites with increased power. 

 

Figure 27. OPLS-DA model of high vs. moderate power groups of elite athletes. A score 

plot showing the orthogonal component (y-axis) versus the class-discriminatory 

component (x-axis). (B) The corresponding loading plot showing a positive association 

between power and lipids, and xanthine metabolites and a negative association with 

sterols and gamma-glutamyl amino acids. 
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4.3.2 Univariate association tests and function enrichment analysis 

Metabolomics data were used in the association analysis only after log-transformation 

and z-score normalization. Linear regression models were run using the R statistical 

package (version 2.14, www.r-project.org/ ). Incorporating power and endurance as a 

categorical variable with two levels (moderate & high) was used in the model as explained 

above. 

4.3.2.1 Endurance-associated metabolites in elite 1st cohort of 191 athletes 

A linear regression model was used to identify the significant metabolite associated with 

high vs. moderate endurance after correcting for covariates: gender, hemolysis levels, 

PC1, PC2 and power. Thirty-nine metabolites were found associated with endurance at 

a Bonferroni level of significance (p < = 0.05/743 = 6.72 E-5) and Table 18 lists their 

associated pathways. More metabolites that are associated at FDR level of significance 

with endurance are shown in Table 33 in the appendix section. 

 

Table 18. List of metabolites significantly associated with high endurance athletes 

(Bonferroni significance).  

 

http://www.r-project.org/
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Enrichment analysis indicated an over-representation of monohydroxy fatty acids, 

eicosanoids, gamma-glutamyl amino acids and diacylglycerols (FDR-corrected p-value 

0.04, 0.017, 0.005 and 0.000122 respectively) amongst metabolites associated with 

endurance, regardless of change direction. Noticeably, steroids had a nominal significant 

p-value of 0.05, but lost significance after FDR-based multiple testing. Of interest, this 

data is similar to the identified metabolic effects discussed by the OPLS-DA model shown 

earlier (Fig. 12.B).  

The results concerning steroids are absolutely remarkable and will be explained further 

in the discussion. Additionally, there are six Bonferroni significant steroids listed in Table 

18, and seven more steroid species at FDR significant at alpha=0.05. These are 

androstenediol (3alpha, 17alpha) monsulfate (FDR p-value=0.04), pregnen-dioldisulfate 

(FDR p-value=0.035), 5alpha-pregnan-3beta,20alpha-diol monosulfate (FDR p-

value=0.029), androstenediol (3beta,17beta) disulfate (FDR p-value=0.025), 5alpha-

pregnan-3beta,20beta-diol monosulfate (FDR p-value=0.02), 5alpha-pregnan-

3beta,20alpha-diol disulfate (FDR p-value=0.01), and etiocholanolone glucuronide (FDR 

p-value=0.003). All these significant steroid metabolites were investigated further using 

KEGG to highlight their biochemical inter-relationships in Steroid Biosynthesis Pathway 

(Fig. 28). 
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Figure 28. A schematic diagram reviewing steroid metabolites and their biochemical 

relationships. Shaded boxes indicate metabolite significantly associated with high 

endurance based on our data. This steroid hormone biosynthesis pathway is based on 

reference pathway (map00140) from the Kyoto Encyclopedia of Genes and Genomes 

(KEGG).   

Significant correlations are identified between steroids metabolites, including the 

precursor cholesterol, are shown in Table 19, suggesting high endurance athletes show 

highly activate sex steroid biosynthesis pathway. 
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Table 19. Pearson’s Correlations between steroid biosynthesis-related metabolites. 

Significantly associated metabolites’ p values are highlighted (*<0.05, **<0.01, 

***<0.001). 
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In addition to steroid biosynthesis-related metabolites, enrichment analysis of endurance 

associated metabolites also discovered further individual metabolic signatures that are 

remarkable. Amongst these are 2-pyrrolidinone itself (FDR p value=0.03), byproducts of 

GABA cyclic lactam 2-pyrrolidinone including acisoga or N-(3-acetamidopropyl) 

pyrrolidin-2-one (FDR p value=0.004) and succinimide (FDR p value= 0.0002462) as well 

as GABA derivative 4-guanidinobutanoate (FDR p value=0.000292). There were 

significant correlations between 2-pyrrolidinone and its derivatives including 4-

guanidinobutanoate (R=-0.146, p=0.04), succinimide (R=0.15, p=0.04), and 

guanidinosuccinate (R=-0.186, p=0.01), confirming these results as seen in OPLS-DA 

(Figure 26B) and also signifying the presence of this drug and its derivatives in high 

endurance athletes. 

Other interesting findings include increase in citrate (a Bonferroni significant) together 

with increase in 2-methylcitrate (an FDR significant) in high endurance athletes. Other 

associations include sphingolipids, phospholipids and acyl carnitines among others 

(Table 33 in section appendix). 

Endurance associated FDR significant metabolites with p values less than 0.01 were 

projected on the heatmap as shown in Figure 29. The heatmap summarizes a snapshot 

of the actual intensities of significant metabolites after correcting for covariates in the 

linear regression model described above. Samples were arranged within their respective 

sports classes (moderate endurance vs. high endurance) considering their sport types. 
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Figure 29. Heatmap of high endurance associated significant metabolites (y axis). 

Samples were grouped into high vs. moderate endurance groups (x axis). The color code 

represents scaled values of metabolites after correction of covariates.  

4.3.2.2 Power-associated metabolites in elite 1st cohort of 191 athletes 

A similar regression model was performed with the categorical variable 'power' becoming 

the variable of interest. 

 

A linear regression model was used to identify the significant metabolite associated with 

moderate/low vs. high power after correcting for covariates: gender, hemolysis levels, 

PC1, PC2 and endurance. Thirty-three metabolites were found associated with power at 

a Bonferroni level of significance (p < = 0.05/743 = 6.72 E-5) and Table 20 listed their 

associated pathways. More metabolites that are associated at FDR level of significance 

with power are shown in Table 34 in the appendix. 
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Table 20. List of metabolites significantly associated with high power athletes 

(Bonferroni significance). 
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Enrichment analysis discovered an over-representation of sterols (p=0.005), gamma-

glutamyl amino acids (p=0.000846), lysolipids (p=0.00042) and phospholipids 

(p=0.00042) among the most significantly correlated metabolites associated with power. 

Other significantly altered metabolites in high vs. moderate power classes included 3-

methylxanthine, cholate, guanidinoacetate, N-acetylcarnosine, imidazole lactate, and 

indolelactate (Table 20).  

The FDR significant metabolites in association with power included a decrease in 

creatinine (estimate=-0.1, p=0.002) and an increase in creatine (estimate=0.6, p=0.001) 

although this result was not confirmed with Bonferroni significance. FDR significant 

metabolites with p values of less than 0.01 were projected on the heatmap in Figure 30. 

The heatmap summarizes a snapshot of the actual intensities of significant metabolites 

associated with high power athletes after correcting for covariates in the linear regression 

model described above. Samples were arranged within their respective sport classes 

(moderate power vs. high power) considering their sports type.  
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Figure 30. Heatmap of high power associated significant metabolites (y axis). Samples 

were grouped into moderate vs. high power groups (x axis). The color code represents 

scaled values of metabolites after correction of covariates.  

 
 
Confirmation of metabolites associated with predefined sport classes in a 2nd cohort of 

490 elite athletes 

4.3.3 Multivariate analysis of athlete metabolomics data cohort 2 

4.3.3.1 PCA 2nd cohort 

Non-targeted metabolomics was applied to determine the metabolic signatures of 490 elite 

athletes. PCA revealed no clusters of samples influenced by sport types (Figure 31A), gender 

(Figure 31B), or study groups (Figure 32). 
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A.  

B.  

Figure 31. A score plot of PC1 and PC2 signifying no clusters of samples influenced by 

(A) sport type, of (B) gender. 

A.  
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B.  

C.  

Figure 32. PCA analysis of 2nd cohort athlete metabolomics data. (A) A score plot of first two PCA 

components (PC1/PC2) indicating no population stratification of samples appeared due to 

difference in grouping (A) high vs. moderate endurance, (B) high, medium and low power, and 

(C) high vs. low cardiovascular demand. 

4.3.3.2 OPLS-DA Endurance Group replication for cohort 2 

OPLS-DA identified a number of metabolites that best distinguish predefined high vs. 

moderate endurance classes of samples. Figure 33A revealed 44% class-discriminatory 

component accounting for variation in the data due to endurance level (R-squared-

Y = 0.44, Q-squared = 0.19). Two orthogonal components that do not differentiate the 

classes were also identified. The corresponding loading score, shown in Figure 33B, 

indicates a number of metabolites associated with higher endurance levels. 
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Figure 33. OPLS-DA model comparing high versus moderate endurance classes of elite 

athletes. (A) A score plot showing the orthogonal component (y-axis) vs. class-

discriminatory component (x-axis). (B) The corresponding loading plot showing a 

clustering of gamma-glutamyl amino acids and androgenic steroids at the high end of 

endurance opposed by progestin steroids clustering at the negative end.   

 

4.3.3.3 OPLS-DA Power Group for replication cohort 2 

OPLS-DA identified number of metabolites that best distinguish predefined high vs. 

moderate power groups of samples. Figure 34A revealed 65% class-discriminatory 

component accounting for the variation in the data due to power level (R-squared-

Y = 0.65, Q-squared = 0.55). Two orthogonal components that do not differentiate the 

A. 
 
 
 
 
 
 
 
 
 
 
 
B. 
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classes were also identified. The corresponding loading score, shown in Figure 34B, 

indicates a number of metabolites associated with higher power levels. 

A.  

B.  
Figure 34. OPLS-DA model of high versus moderate power classes of elite athletes. (A) 

A score plot showing the orthogonal component (y-axis) and the class-discriminatory 

component (x-axis). (B) The corresponding loading plot showing a clustering of 

phosphatidyl (PC, PE and PI) at the high end of power as opposed to enrichment of 

gamma-glutamyl amino acids at the moderate and low end of power. 

4.3.4 Univariate association tests and meta-analysis 

A linear regression model was used to identify the significance of metabolite-associations 

in 2nd cohort of the athletes and their associated pathways listed below. 
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4.3.4.1 Endurance-associated metabolites in a 2nd cohort 490 elite athletes 

Table 21 lists common metabolites-associated with endurance between the two cohorts. 

Among the metabolites identified, leucine, isoleucine and valine metabolites, 

phenylalanine and tyrosine metabolites, steroid, TCA cycle citrate and xanthine 

metabolites were increased with endurance. Gamma-glutamyl amino acid, fatty acid acyl 

carnitines, diacylglycerols, and glutamate metabolites were decreased with endurance. 

 

Table 21. Common metabolites associated with endurance in previously reported cohort 
1[167] and cohort 2. 
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Among confirmed hits, elevation of pregnenolone and androgenic steroids indicate active 

steroid biosynthesis pathway in high endurance athletes. Reduced diacylglycerols and 

acyl carnitines and increased monohydroxy fatty acids suggest active fatty acid oxidation 

for energy generation in the high endurance group. Reduction in glutathione metabolism 
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and gamma glutamyl amino acids suggests active oxidative scavenging mechanisms in 

moderate endurance group. 

4.3.4.2 Meta-analysis of endurance-associated metabolites of elite athletes 

A meta-analysis shows a list of metabolites identified in both cohorts in association with 

endurance sports (Table 22). 

 

Table 22. List of metabolites identified by meta-analysis in discovery and replication 

cohorts in association with endurance sports. 
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4.3.4.3 Power-associated metabolites in a 2nd cohort of 490 elite athletes 

Table 23 lists common metabolites-associated with power group between the two cohorts. Among 

the hit metabolites: phenylalanine and tyrosine metabolism, histidine metabolism, secondary bile 

acid metabolism, steroid, fatty acid metabolism (acyl Carnitine), dipeptide derivative, gamma-

glutamyl amino acid, urea cycle, arginine and proline metabolism, sphingolipid metabolism, and 

creatine metabolism were decreased with power. Whereas, lysolipid, phospholipid metabolism, 

plasmalogen, sphingolipid metabolism, diacylglycerol, histidine metabolism, benzoate 

metabolism and primary bile acid metabolism were increased with power. 

 

Table 23. Common metabolites associated with power in discovery and replication 

cohorts 1. 
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4.3.4.4 Meta-analysis of power-associated metabolites in a 2nd cohort of 490 elite athletes 

A meta-analysis shows a list of metabolites identified in both cohorts in association with 

power sports (Table 24). 

 

Table 24. List of metabolites identified by meta-analysis in current and previously 

published cohort in association with power sports. 
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4.3.4.5 CVD-associated metabolites in elite athletes in a 2nd cohort of 495 elite athletes 

4.3.4.6 OPLS-DA in the 2nd cohort for CVD Group 

An OPLS-DA was performed by comparing high vs. moderate CVD classes. The one 

class-discriminatory component model showed 71% of the variation in the data due to 

increased CVD (R-squared-Y = 0.71, Q-squared = 0.52) (Figure 35A). The diagnostic 

performance calculated by the leave-one-out analysis indicated sensitivity 97.9% and 

specificity 87.8%. Figure 35B identified the corresponding loading scores representing key 

metabolites that are responsible for the clear separation between high vs. moderate CVD 

levels. These metabolites are diacylglycerols, monohydroxy fatty acids, gamma glutamyl 

amino acids, leucine, isoleucine and valine metabolites, PC and PE. Consequently, OPLS 

confirmed linear regression model results shown in Table 25. 

 

Figure 35. OPLS-DA model comparing high versus moderate CVD levels of elite athletes. 

A. A score plot indicating the orthogonal component (y-axis) and the class-discriminatory 
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component (x-axis). B. The matching loading plot indicating a cluster of gamma-glutamyl 

amino acids and diacylglycerols fatty acids (acyl carnitines) at the moderate end of CVD 

against a cluster of PC and PE at the high end. 

4.3.4.7 CVD-associated metabolites in 495 elite athletes 

A model incorporating CVD as a categorical variable was performed in 495 elite athletes 

(377 moderate versus 118 high CVD and CVD athletes). Linear regression model was 

run after correcting for covariates including hemolysis levels, gender, and PCA 

components obtained from genomic data as explained in the section 3.2.3 Statistical 

analysis of genomics data. Analyses included 751 known metabolites among which 112 

were found significantly associated with high CVD group (p<6.6 x E-5), including 2 

cofactors and vitamins, 3 carbohydrates, 5 nucleotides, 8 xenobiotics, 12 peptides, 25 

amino acids, and 57 lipids (Table 25). In order to validate using sports discipline as a CVD 

grouping criterion, a group of metabolites  was utilized as surrogate markers of increased 

VO2max as shown previously [425]. Figure 36 is box plot of the detected 7 metabolic 

markers exhibited significant differences between low/moderate and high CVD groups, 

suggesting that sport discipline was a reasonable criterion to dichotomize participants. 
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Figure 36. Boxplot describing surrogate metabolic markers of increased VO2max that 

showed significant differences between low/moderate and high CVD groups.  

 

Table 25. Metabolites that differentiate moderate vs high CVD athletes. 
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The thirty-two CVD associated metabolites corresponding to different sub-pathways that 

significantly differentiating moderate versus high CVD groups were projected on the 
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heatmap in Figure 37. The heatmap summarizes a snapshot of the actual intensities of 

significant metabolites associated with high CVD group of athletes after correcting for 

covariates in the linear regression model described above. Samples on y-axis were 

ordered by sports group (high CVD, low/moderate CVD). The color code denotes z-

scaled values of metabolites after correction of confounders (red represents an increase 

in high CVD, green represents a decrease in high CVD). Whereas the moderate groups 

of CVD showed similar intensities of metabolites, the latter high CVD group was visibly 

different intensities of metabolites, signifying presence of athletes with the moderate 

CVD group exhibiting a similar metabolic profile to the high CVD group than their own 

low/moderate CVD group. Athletes who belong to moderate CVD group are mostly 

athletics who share some of the features of the high CVD group including high VO2max. 

Since we do not have the detailed description of these athletes, we predict that the 

moderate CVD athletics belong to high endurance sports. 
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Figure 37. Heatmap of high CVD associated with 32 significant metabolites (y axis). 

Samples were grouped into moderate vs. high CVD groups type (x axis). The color code 

represents scaled values of metabolites after correction of covariates.  

4.3.4.8 Six GGM networks capture pathways that change in relation to CVD 

All 751 metabolites were projected into GGM pairwise correlation calculation using R 

(version 3.3.1). GGM networks were constructed using Cytoscape software, resulting in 

60 subnetworks containing more than two metabolites with an overall 604 metabolites 

(nodes) connected by 600 edges. The identified subnetworks were filtered for metabolites 

associated with CVD at (p less than 0.05), resulting in 11 subnetworks containing more 

than two Bonferroni significant metabolites. The major metabolic pathways were captured 

by six subnetworks that were selected for discussion in relation to CVD (Figure 38), 

including phosphatidyls (cholines and ethanol amines) (Figure 38A), eicosanoids (Figure 

38B), carnitine metabolism (Figure 38C), gamma glutamyl amino acids and their link to 

glutamate (Figure 38D), cortisol metabolism (Figure 38E), energy metabolites including 

creatine and TCA (Figure 38F). 
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Figure 38. Six GGM subnetworks reveal metabolic networks that significantly 

differentiated between high versus moderate CVD groups of athletes. Alterations are 

signified by nodes with sizes proportional to – (log p value) (more significant metabolite 

association with CVD group represented by larger nodes). A. Phosphatidyls including 

cholines and ethanol amines, B. Eicosanoids, C. Carnitine metabolism, D. Gamma 

glutamyl amino acids and their link to glutamate, E. Cortisol metabolism, F. Energy 

metabolites including tricarboxilic acid cycle and creatine. Green shows that 

low/moderate CVD has higher metabolite levels and red color shows that high CVD has 

higher metabolite levels. 
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4.3.5 Metabolomics profiling of xenobiotics in elite athletes 

Despite multiple studies investigating the impact of specific dietary supplements on health 

and performance of elite athletes, no study has focused on products of dietary 

consumption and environmental exposure in elite athletes by adopting a comprehensive 

serum xenobiotic profiling. This study aims to identify differences in various xenobiotics 

in serum samples from elite athletes of different sport disciplines, focusing on metabolites 

that certainly originate from supplements/drugs. 

4.3.5.1 Multivariate analysis of athlete metabolomics data 

Non-targeted metabolomics data determined 102 studied xenobiotic signatures in 478 

elite athletes belonged to six classes (bacterial and fungal metabolites, tobacco 

metabolites, xanthine metabolites, benzoate metabolites, food components, and 

chemicals and drugs). Figure 39 summarizes classes and prevalence of xenobiotics 

found in elite athletes. 

 

Figure 39. A pie chart summarizing classes and prevalence of xenobiotics identified in 

elite athletes included in this study. 



185 
 

An OPLS-DA analysis was performed using seven studied sport disciplines for comparing 

xenobiotics. OPLS results revealed one class-discriminatory component separating 

boxers and football players from the rest of the sport groups (Figure 40A). For easier 

visualization, OPLS-DA was repeated by combining football players and boxers in one 

group and the rest in group two (Figure 40B). With the second unique discriminatory 

component (x-axis, Figure 40B) model, the differences between sport groups accounted 

40% and of the variation among xenobiotics was 30%.  The corresponding loading score, 

shown in Figure 40C, suggested an increase in 2,3-dihydroxyisovalerate, 4-

allylphenol.sulfate, 3.methylcatechol sulfate, 3-hydroxypyridine sulfate, 4-

vinylguaiacol.sulfate, catechol sulfate, methyl.glucopyranoside, caffeic acid sulfate, 

ectoine, tartronate .hydroxymalonate, ferulic acid 4 sulfate, N-2.furoyl glycine, 3hippurate, 

O-methylcatechol sulfate, quinate, in football players and boxers, while showing an 

increase in 1,3.7-trimethylurate, tartronate (hydroxymalonate), thioprolinein the other 

groups (athletics, cyclist, rowers, rugby players and swimmers). 
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Figure 40. OPLS-DA model comparing elite athletes of different sport disciplines (cycling, 

athletics, rugby, boxing, rowing, swimming and football) (A) A score plot showing the 

orthogonal component (y-axis) vs. class-discriminatory component (x-axis) between all 

sport groups. (B) An updated score plot from 2nd OPLS-DA model featuring group one: 

football and boxing, group two: cycling, rugby, athletics, rowing, and swimming). (C) The 

corresponding loading plot revealing clusters of xenobiotics at opposite sides of group 

one or group either ends of the discriminatory component along the x-axis. 

4.3.5.2 Univariate association tests  

A linear regression model was used to identify the significant metabolite associated with 

studied sport groups: athletics, swimming, cycling, rugby, rowing, boxing and football after 

correcting for covariates including gender, and PCA components obtained from genomic 
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data as explained in the section 3.2.3 Statistical analysis of genomics data predicted 

ethnicities. Twenty one metabolites were significantly differentiating between studied 

sport groups including xanthine metabolites (catechol sulfate, 1,3,7-trimethylurate caffeic 

acid sulfate, and O-methylcatechol.sulfate), chemicals (2-pyrrolidinone, thioproline, 3-

hydroxypyridine.sulfate, ectoine), food and plant products (ferulic acid 4-sulfate, eugenol 

sulfate, methyl glucopyranoside (alpha/beta), quinate, 2-furoylglycine, retinol, 4-

vinylguaiacol.sulfate, stachydrine, 2,3-dihydroxyisovalerate, tartronate 

(hydroxymalonate), 4-allylphenol.sulfate, and benzoate metabolites (3-methylcatechol 

sulfate, 4-hydroxyhippurate, hippurate). Table 26 lists top significantly different 

metabolites (FDR p value less than 0.05) between different studied sport groups, their 

fold change and level of significance. After correcting for covariates, levels of significantly 

different metabolites are visually plotted in Figure 41. 

Table 26. Metabolites differentiating between studied sport groups (FDR significance, p 

≤0.05).   
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Figure 41. Box plots visualizing levels of significantly different metabolites between seven 

studied groups (SW: Swimming, RG: Rugby, RO: Rowing, CY: Cycling, AT: Athletics, BX: 

Boxing, FB: Football).  These levels are from a repeated linear regression model 

corrected for covariates, mean-shifted, and scaled since they show the residuals that 

omits the sport group while featuring only covariates.  

 

All seventy-two xenobiotics with no missing values were used for GGM sub-network 

construction with size of nodes indicating the level of significance, therefore creating a 

map that potentially reveals biochemical connections between different sport groups-

associated networks containing more than or equal to two metabolites (Figure 42). These 

included two xanthine sub-networks showing partial correlations between one benzoate 

sub-network including 5 benzoate metabolites (shown in yellow in Figure 42), 11 xanthine 

metabolites (shown in blue in Figure 42), and various smaller food components sub-

networks that discovered direct partial correlations between ferulic acid 4-sulfate and 4-

vinylguaiacol sulfate and between stachydrine and methyl glucopyranoside (alpha/beta) 

(shown in red in Figure 42). 
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Figure 42. Xenobiotics GGM sub-networks that varied significantly between studied sport 

groups and between Football and Swimming. Significance are represented by nodes with 

sizes proportional to – (log p value) (bigger nodes reveal more significant association with 

particular sport group). Colors correspond to classes of metabolites (Xanthine metabolites 

in blue, benzoate metabolites in yellow, food components in red, and chemicals in green).  
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4.4 Discussion 

Metabolic profiling of athletes’ serum samples in response to exercise has recently 

discovered unique metabolic biomarkers associated with different intensities and 

durations of exercise [128, 426]. However, metabolomics of elite athletes from different 

sport classes remains to be investigated. Particularly, the metabolic pathways of power 

and endurance elite athletes should shed light on the molecular mechanisms underlying 

variations with functional significance or those that can be used as potential signatures 

for their respective sport class. In this study, metabolomics association analysis was 

utilized to identify the unique serum metabolic signature of elite athletes who competed 

in national or international sports events and successfully passed the anti-doping tests. 

Following rules and regulations of WADA (The World Anti-Doping Code), athletes’ 

samples were provided with very limited information that included sport type and gender 

only. Even with the restricted information about possible confounding factors influencing 

their metabolic profiling, the emerging data discovered significant alterations in metabolite 

levels between moderate versus high endurance, power and CVD levels of sport classes. 

Incorporating PCA components for discovery cohort in the linear regression model has 

conceivably corrected for expected covariates including pre-post exercise and hemolysis 

effects to identify common as well as differentiating/distinct metabolic mechanisms 

underlying endurance and power. Bonferroni level of significance was calculated and 

checked. Fold change reflects beta values. They are similar to correlation coefficient and 

range from -1 to +1 depending on the direction of the relationship. The closer the value is 

to 1 or -1, the stronger the relationship. Low beta therefore reflect low correlation with the 
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phenotype [427]. Second cohort was used as a replication cohort to confirm the list of 

metabolites associated with endurance and power group of athletes.  

4.4.1 Metabolites associations 

4.4.1.1 Metabolites associated with endurance 

Exercise can cause alterations in sex steroid hormone levels in the serum of athletes as 

well as non-athletes [135, 428], including concentrations of cortisol and testosterone [429, 

430]. Interestingly, this study’s results showed elevated levels of several metabolites 

involved in sex steroid hormone biosynthesis associated with high endurance athletes. 

Some of the significant metabolites were conjugated with one or more sulfate group(s) 

which renders them inactive. However, these can be reactivated through the activity of 

enzyme steroid sulfatase [431].  The list of elevated steroids (Fig. 28) involved 

pregnenolone that mediates biosynthesis of progesterone and corticosteroids, 21-

hydroxypregnenolone disulfate that mediates biosynthesis of corticoids (cortisol and 

cortisone), corticosteroids, various metabolites of progesterone (5alpha-pregnan-

3beta,20alpha-diol, 5alpha-pregnan-3beta,20beta-diol, pregnanediol), testosterone 

precursor (androstenediol (3beta,17beta)) and testosterone metabolites (androstenediol 

(3alpha, 17alpha), etiocholanoloneglucuronide). The increase in cortisol-related 

metabolites in response to sustained aerobic exercise correlated positively with intensity 

of exercise measured by oxygen uptake [432]. However, exercise-induced changes in 

sex steroid hormone levels lasts only for 1–3 hours which are considered usually short 

lived [135]. The typical exercise regiments that are usually followed by elite endurance 

athletes may have accounted for this maintained systemic increase. Sex steroid 

hormones play a crucial role in regulation of redox homeostasis, as well as maintain 



194 
 

protein synthesis and glucose metabolism in the muscle [433-435].  Among significant 

results is pregnen-dioldisulfate that is known for its role as neurosteroid that alters 

neuronal excitability and also works as a potent negative allosteric modulator of the 

GABAA receptor [436] and pregnenolone sulfate that acts as a potent negative allosteric 

modulator of the GABAA receptor and a weak positive allosteric modulator of the N-

methyl-D-aspartate (NMDA) receptor [437]. The stimulatory effects of steroids on 

neuronal excitability, muscle mass and energy generation may have accounted partially 

to the superior performance associated with high endurance elite athletes. The fact that 

athletes included in this study all tested negative in anti-doping tests, alterations in 

steroids levels may reflect either enrichment in endogenous anabolic steroids 

biosynthesis due to genetic predisposition, physiological adaptation to exercise and/or 

increased dietary intake.  Therefore, further genetic association studies are required to 

reveal the potential genetic variants underlying elevated activity of enzymes involved in 

steroid biosynthesis. Remarkably, in addition to increased neurosteroids, findings of this 

study suggested increased elevated levels of a number of GABA byproducts including 2-

pyrrolidinone, the cyclic lactate form of GABA [438], its derivatives (N-(3-

acetamidopropyl)pyrrolidin-2-one), 4-guanidinobutanoate, and succinimide, possibly 

contributing to GABA-mediated muscle growth in response to exercise [439].             

Other findings of high endurance associated metabolic alterations involved elevated 

acylated carnitine and decreased FA-carnitine and DAGs. Changes in these metabolites 

may suggest enhanced hydrolysis of DAGs, shuttling of FA intracellularly followed by fatty 

acid oxidation and energy generation [440]. Lipids and fatty acids are ideal substrates for 

exercising muscle and the results of this study suggest a bigger beta oxidation of fatty 
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acids in athletes in response to higher endurance exercises. Hence, lipolysis is highly 

active in high endurance athletes compared to moderate endurance athletes during 

physical activity.  

Focusing on the increased levels of acylated carnitine may indicate prevention from 

cellular damage and recovery from exercise stress since carnitine can reduce post-

exercise plasma lactate [441]. Isocitrate and citrate were also increased in high 

endurance elite athletes, indicating enhanced aerobic energy generation through TCA 

cycle.  

4.4.1.2 Metabolites associated with power athletes 

Alterations in guanidinoacetate, creatine, and creatinine were significantly associated 

with power athletes. Maintaining the previously reported balance of creatine metabolism 

can be seen here, as creatine increased in the high power athletes, its breakdown product 

(creatinine) and precursor (guanidinoacetate) were both significantly reduced [442]. 

Creatine phosphate and creatine play crucial roles in the transmission and storage of 

phosphate-bound energy. Alterations in creatine homeostasis in high power athletes may 

suggest more creatine phosphate storage in muscles that adapted during exercise and 

will constitute a primary source for high energy to reload ATP in the first few seconds of 

intense activity 7-methylxanthine (adenine breakdown products) and 3-methylxanthine 

were other examples of increased energy-related metabolites elevated in high power 

athletes, possibly indicating heightened utilization of fuel substrates in several metabolic 

pathways [443]. Xanthine supplementation allows high power athletes to exercise at a 

higher power output for longer durations [444]. 

http://muscle.ucsd.edu/musintro/energy.shtml
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Furthermore, N-acetylcarnosine was significantly decreased in high power athletes. This 

metabolite is known as oxidative stress scavenger in muscles where it scavenges the 

lipid peroxidation over the imidazolium groups that stabilize adducts formed at the primary 

amino group [445].  

Various byproducts of phosphatidates were elevated with high power athletes, possibly 

indicating alterations in cellular membranes dynamics in response to oxidative stress 

[446]. Among those, 12,13-DHOME was earlier revealed to accumulate in response to 

stress-induced membrane dynamics. This long-chain fatty acid inhibits osteogenesis and 

enhances adipogenesis due to its role as a proliferator-activated receptor (PPAR) gamma 

2 ligand [447]. Another elevated metabolite likely to be a product of muscle contraction 

during hypoxia is inositol phospholipids [448].  

4.4.1.3 Global stress response in both high power and endurance athletes 

Intensive exercise causes elevation in free radical generation in active skeletal muscle 

resulting in the formation of oxidized lipids [446]. Overall in both endurance and power 

athletes, there was a clear stress metabolic response. Alterations in gamma-glutamyl 

amino acids, associated with increased cysteine-glutathione disulfide (fold change 0.24, 

nominal p value of 0.03), between high and moderate performance athletes may reflect 

activation of gamma-glutamyl cycle that plays a significant role in the glutathione 

mediated radical detoxification during oxidative stress [449]. The cycle involves synthesis 

and degradation of glutathione by transferring gamma-glutamyl functional groups from 

glutathione to an amino acid, leaving the cysteine product to preserve intracellular 

homeostasis of oxidative stress [450, 451]. Decrease in serum levels of gamma-glutamyl-

amino acids in high performance athletes (both high endurance and high power) may 
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suggest increased glutathione synthesis. The enrichment of glutathione in the blood 

stream marks elevated oxidative stress and reactive oxygen species scavenging activity.  

These metabolic alterations detected in high endurance and high-power elite athletes 

may indicate several cellular adaptations to prolonged exercise-induced oxidative stress. 

These may involve modulation of energy utilization, muscle mass and deployment of 

stress-scavenging mechanisms. Further research should investigate whether elite 

athletes may have developed more efficient mechanisms to counteract exercise-induced 

stress.  

4.4.1.4 Metabolites associated with CVD 

Cardiovascular system of elite athletes is also influenced by the intensive exercise 

causing certain physiological adaptations leading to increased stroke volume and blood 

pressure in response to enhanced performance. Metabolomics association analysis with 

different CVD levels of athletes could provide vital information about their systemic 

metabolic alterations with effect on their performance and health [421]. In this study, 

comparison of metabolic biomarkers was performed between athletes who belong to a 

high CVD group versus those who belong to a low/moderate CVD group. This is the first 

attempt to analyze over 750 metabolites in such a big cohort of elite athletes (n=495) with 

linear regression model incorporating different levels of CVD. Association analysis 

revealed 112 Bonferroni significant metabolites associated with CVD and OPLS-DA 

confirmed association of metabolites into two groups: 70 metabolites that showed higher 

levels in low/moderate CVD group of athletes and 40 metabolites that showed higher 

levels in high CVD group of athletes. The findings of this study identified differences in 

oxidative stress scavenging mechanisms, energy utilization, and membrane dynamics 
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between the two studied CVD groups. Metabolic alterations in high CVD group may 

indicate elevated cardiovascular risk, hypothetically due to elevated blood pressure and 

exercise-induced left ventricular hypertrophy [452].  

By focusing on higher levels of 40 metabolites that associated with high CVD group of 

athletes, energy-related metabolites such adenine, the building block of ATP used in 

cellular metabolism as the main source of energy, were apparent. Creatine was also 

elevated in the high CVD group. It plays an important role in ATP recycling mainly in 

muscles through donation of phosphate groups to adenosine diphosphate (ADP). 

Creatine also plays an important role as a pH buffer in skeletal muscle tissues [453], 

consequently increased creatine is consistent with the intensive training associated with 

high CVD levels. Remarkably, levels of imidazole lactate were positively associated with 

levels of creatine as indicated in the GGM subnetworks in Figure 38F, possibly indicating 

enrichment of lactate in exercising muscle. Lactate is also used in energy generation via 

its oxidation to pyruvate in well-oxygenated muscle and heart cells, followed by re-entry 

into TCA cycle [454]. Glutamine was also elevated in high CVD group. It is mostly 

synthesized in the muscle tissue, accounting for 90% of all synthesized glutamine, where 

it can serve as a source of cellular energy next to glucose [455].  Carnitine was also 

increased in the high CVD group.  Carnitine plays an important role as a transporter of 

long-chain fatty acids into the mitochondria to be oxidized and produce energy in 

exercising skeletal muscles [456]. However, since there was a negative correlation 

between carnitine associated with several fatty acids and free carnitine levels (Figure 

38C), fatty acid oxidation was lower in high CVD group of athletes compared to their 

low/moderate counterpart.  

https://en.wikipedia.org/wiki/Pyruvate
https://en.wikipedia.org/wiki/Muscle
https://en.wikipedia.org/wiki/Glucose
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Furthermore, there were specific signaling molecules elevated in high CVD group. Among 

those three different diacylglycerols containing arachidonic acid (C20:4) were increased 

with high CVD group of athletes including palmitoleoyl-arachidonoyl-glycerol, linoleoyl-

arachidonoyl-glycerol, and palmitoyl-arachidonoyl-glycerol. Arachidonic acid retention is 

highly active in skeletal muscle, accounting for 10-20% of the phospholipid fatty acid 

content on average [457]. In addition to its crucial role as a second messenger involved 

in regulating various signaling enzymes from the phospholipase C family (PLC-γ, PLC-δ, 

and PKC-α/β/γ), arachidonic acid plays a critical role as a primary inflammatory 

intermediate [457].    

Another metabolite found to be elevated in high CVD group of athletes is the 

plasmologens. This group of metabolites constitute up to 20% of the total phospholipid 

mass in humans and greater than or equal to 50% of the ethanol amines fraction in the 

brain, heart, neutrophils and eosinophils [458]. They play important roles as modulators 

of membrane dynamics and as signaling molecules, mediating various signaling 

processes, providing unique structural properties, and guarding membrane lipids from 

oxidation [458]. GGM subnetworks revealed positive correlations between various 

plasmologens, GPEs and GPCs (Figure 38A), indicating biochemical relationships 

between these various phosphatides.  

Also, cortisol was elevated in high CVD. It is related to glucocorticoid type of hormones 

that are secreted during stress and low blood glucose. It plays significant roles in 

stimulating gluconeogenesis to elevate blood sugar [459], immunomodulation and 

metabolism of carbohydrates, fat, and protein [460]. Cortisol is also important to keep  

normal blood pressure and extra high levels of cortisol can cause hypertension [461]. 

https://en.wikipedia.org/wiki/Phospholipase_C
https://en.wikipedia.org/wiki/Protein_kinase_C
https://en.wikipedia.org/wiki/Glucocorticoid
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Therefore, the elevated cortisol in high CVD group of athletes could indicate their low 

blood glucose in response to increased stress triggers increase in their blood pressure. 

Remarkably, GGM subnetwork analysis (Figure 38E) also showed a positive association 

among cortisol and other steroids such as pregnenolone, an intermediate in the 

biosynthesis of most of the steroid hormones, indicating elevated steroid biosynthesis 

revealed earlier in endurance athletes [167]. 

Likewise, an increase in branched chain amino acids (BCAAs, valine, leucine, and 

isoleucine) metabolites was revealed in the high CVD group of athletes as demonstrated 

by increased levels of 4-methyl-2-oxopentanoate, 3-methyl-2-oxovalerate, and 3-methyl-

2-oxobutyrate. Exercise promotes energy expenditure and activates oxidation of BCAAs 

that act as substrates to TCA intermediates and gluconeogenesis [462]. Similarly, leucine 

acts as a regulator of intracellular signaling pathway, increasing muscle-protein synthesis 

in vivo [463]. 

Even if exercise is associated with enhancement of body function, it can also be risky for 

heart function and can cause diseases such as myocardial infarction, arrhythmias, aortic 

dissection and sudden cardiac arrest [464]. Increases in some metabolites associated 

with high CVD like PC, PE, and BCAAs may also indicate an elevated risk of 

cardiovascular disease in high CVD groups of athletes. Whereas PC were previously 

shown to be correlated with elevated cardiovascular mortality independent of traditional 

risk factors [465], PE (precursors of PC) have been revealed earlier to be amongst the 

strongest predictive lipid species for risk of cardiovascular disease [466]. BCAAs were 

also previously associated with increased risk of cardiovascular disease [467]. Whether 

these associations are actual signatures of elevated risk of cardiovascular disease in high 

https://en.wikipedia.org/wiki/Steroid_hormone
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CVD group of athletes or just an indication of differences in dietary requirement and 

exercise compared to low/moderate CVD group of athletes remains to be investigated. 

Nevertheless, it is possible to accept that high CVD group of athletes could manifest 

indicators of higher risk of cardiovascular disease due to their intensive physical training 

that is linked to functional, electrical, and structural myocardial adaptations [419, 420], 

initiating left ventricular hypertrophy and causing high blood pressure [452]. 

The 70 elevated metabolites associated with low/moderate CVD group of athletes include 

metabolites indicative of sterol biosynthesis, energy generation, and oxidative stress. The 

increase in several metabolites like acylated carnitines, DAGs, and fatty acid-carnitines 

suggests improved hydrolysis of diacylglycerols, followed by transfer of fatty acids inside 

the cells for oxidation and energy production [440]. These alterations indicate that 

low/moderate CVD group of athletes adapt by increasing fatty acids beta oxidation for 

energy generation and by exhibiting a greater potential to activate lipolysis during 

exercise than high CVD group of athletes. Moreover, enrichment of acylated carnitine in 

low/moderate CVD group of athletes may suggest a better exercise recovery, because 

carnitine can lower prolonged exhaustion by lowering plasma lactate [468]. Remarkably, 

four DAGs containing oleic acid, C18:1 (arachidonic acid precursor) were elevated in 

low/moderate CVD group (Table 25). Oleic acid has a hypotensive effect that partially 

explains the increase of this metabolite in athletes of this group that is characterized by 

lower blood pressure [469]. In addition, eicosanoids (products of arachidonic acid) were 

also elevated in low/moderate CVD group including Leukotriene B4 & B5 and 5 & 12 

HETE and were positively associated as showed in Figure 38B. Eicosanoids play a key 
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role in several pathological and physiological processes including platelet aggregation 

and immunomodulation [470, 471].    

Similarly, 5-oxoproline, a metabolite of glutathione cycle, beta-citrylglutamate, glutamate, 

and gamma glutamyl amino acids were higher in low/moderate CVD group of athletes 

indicating improved anti-oxidative stress scavenging mechanism [472]. The GGM 

subnetworks revealed a strong positive association among various gamma glutamyl 

amino acids, gamma glutamylglutamate and glutamate (Figure 38D), confirming their 

biochemical and functional relationship.  

4.4.1.5 Metabolites associated with athletes’ supplement consumption 

Athletes’ ideal dietary requirements are dictated by their training regimen and sport-

related energy demand as well as their own metabolic needs. Maintaining athletes’ 

optimal dietary requirement is important because inadequate nutrition could compromise 

their physical performance and lower their ability to exercise and recovery from injury. 

Such comprehensive nutritional need differs between various sport groups although the 

most challenging finding when reviewing the literature is the shortage of such data [473]. 

As a compensation for nutritional deficiencies, athletes are frequently taking supplements 

that boost their nutritional consumption and fulfil their optimal energy demand. Still, the 

potential adverse effects of supplements and their effectiveness remain speculative. 

Information concerning athletes’ supplement consumption is somewhat scarce and 

mostly relays on surveys and interviews. In this study, profiling of supplement 

consumption in elite athletes was attempted by identifying xenobiotics in their serum 

samples received from Anti-Doping Laboratories. Various xenobiotics that possibly 

originated from food products, supplements, drugs, and other chemical contaminants 
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were found significantly different between sport disciplines. Even if the potential effects 

of supplements and their exact sources remain questionable, this study provides a 

snapshot of xenobiotics existing in different sport disciplines that may be beneficial or 

infelicitous to athletes. 

Xenobiotics increased in athletics: Higher levels of both stachydrine and 

eugenolsulfate were found in Athletics group of athletes. These have possibly originated 

from supplements and/or food products. Stachydrine is contained in various citrus fruits 

and several supplements that claim to provide soothing effects promoting calm and relief 

from anxiety. It plays an osmoprotective role in the kidneys and in animal models it 

exerted anti-oxidative stress and anti-inflammatory effects [474]. There was a partial 

correlation showed in GGM sub-networks between methyl glucopyranoside (alpha/beta) 

and stachydrine, also increased in athletics, indicating a similar source, possibly orange 

juice as previously shown [475]. Eugenol is also a strong anti-oxidant found in many 

spices, herbs, and plants especially in clove but is also present in some supplements 

promoting reduction of risk of gingivitis and heart disease and providing blood purification 

[476]. 2, 3-Dihydroxy-isovalerate is also increased in athletics, and has been known as a 

substrate of dihydroxyacid dehydratase that is sensitive to nitric oxide [477]. 4-

hydroxyhippurate is also elevated in athletics, and it is known as a microbial end-product 

derived from polyphenol metabolism by the microflora in the intestine.  

Xenobiotics increased in football: Higher levels of several xenobiotics were found 

associated with footballers. Those possibly originated from supplements and/or food 

products. These involved caffeic acid (3,4-dihydroxycinnamic acid) that can be consumed 

as a supplement as well as found naturally in many plants such as sage, thyme, 
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spearmint, star anise, cinnamon, black chokeberry, coffee and tea. Caffeic acid-treated 

animals had enhanced hepatic oxidation, higher exercise tolerance, and lower blood 

lactate [478]. The derivative of caffeic acid (caffeic acid phenethyl ester) was shown 

previously to protect against hyperthermal stress induced by prolonged exercise [479]. 

Caffeic acid has also showed an anti-oxidant effect in both vivo and vitro [480, 481]. 

Ferulic acid 4-sulfate was also high among footballers, and it is known as a strong 

ubiquitous plant anti-oxidant found in high concentration in oranges, peanuts, apples, 

wheat, and rice [482] and in oral supplement form. Ferulic acid is a direct product of caffeic 

acid in plants and can be generated from tyrosine and phenylalanine metabolism. Other 

compounds with higher concentrations in footballers involved drugs like ectoine, eye 

drops or a nasal spray, frequently used in allergic rhinoconjunctivitis and rhinitis treatment 

for relief of sneezing and nose block [483], possibly as a result of continuous exposure to 

grass. Quinine, is another xenobiotic that is also a drug and found increased in footballers. 

It is an alkaloid synthesized in plants and is the active component of quinate that is used 

for treating muscle cramps between footballers [484]. A benzoate metabolite, hippurate, 

was also increased between footballers. Hippurate is rich in fruits and whole grains and 

has been found associated with lower risk of metabolic syndrome [485]. From the GGM 

sub-networks, hippurate concentrations were partially associated with other benzoate 

metabolites including O-methyl catechol sulfate and catechol sulfate, both found in higher 

levels in football. Other xenobiotics increased in footballers included 4-vinylguaiacol 

sulfate, an additive flavor in beer, also revealed in GGM sub-network in partial correlation 

with ferulic acid.  2-furoyl.glycine was elevated in footballers, and also found partially 
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associated with quinate. A minor metabolite of caffeine called 1,3,7-trimethylurate, was 

also increased in football.  

Xenobiotics increased in boxing: In this small study of female boxers (n=17), 

association analysis has revealed three significantly increased xenobiotics. One of the 

compounds was retinol (vitamin A), a dietary supplement that has strong anti-oxidant 

effects and is contained in anti-aging creams [486]. 2.pyrrolidinone was also elevated in 

boxers. It constitutes the simplest γ-lactam with nootropic effects, proving efficient as an 

antiepileptic agent and enhancing neuroprotection after stroke [487]. The existence of this 

drug in boxers may indicate a prophylactic treatment for multiple head injury.  Another 

xenobiotic increased in boxers was thioproline. It is an intracellular sulfhydril antioxidant 

and free radical scavenger that improves immune functions. Results from in vivo studies 

in mice revealed that thioproline provides an anorexic effect correlated with a decreased 

oxidative damage and better neurological function as well as greater survival [488].  

Athletes from different sport disciplines may intake different nutritional supplements 

according to their nature of physical performances and the obligatory outcomes from the 

nutritional supplements, aiming eventually for improved recovery from exercise and injury. 

Our findings provide evidence that athletes with different sports types show a different 

xenobiotic profile that may indicate their exposure to some chemicals, food, and 

drug/supplement. These metabolites possibly provide an anti-oxidant effect, a nootropic 

effect, and enhance prolong exercise tolerance, or originate from drugs for different types 

of treatments. GGM showed metabolic networks that associated several xenobiotics 

correlated with different sport groups, providing additional evidence of functional 

relationship between these xenobiotics. To validate these metabolic differences, 
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replication studies are required to verify the associations with different sport disciplines in 

independent data sets, targeting for monitoring of athletes’ exposure to several 

environmental chemicals and assessment of their supplement use that might be 

beneficial or cause harm to their health and career. 

4.4.1.6 Metabolomics study limitations 

 

Since athletes’ blood samples were collected at different sites and at multiple times (IN 

and OUT of competition), several confounding factors were unavoidable. For instance, 

batch effect was inevitable, and might have lowered the associations between metabolite 

levels and sports groups.  This batch effect may have impacted several critical pre-

analytical features that can significantly influence the metabolic profiling of samples 

including the blood collection procedure, transportation conditions, such as period to 

reach anti-doping laboratories, sample handling and storage [489].  Despite these 

confounders, clear signatures were revealed after correcting for potential covariates. 

Furthermore, the lack of information about studied group of athletes such as their body 

mass index, origin and age was a penalty this study has endured to access large number 

of elite athletes. However, since most of national and international sports competitions 

include athletes at young age as well as the wide range of sports involved in the study 

analysis may have decreased the effect of other possible confounders.  

Ambiguity of sports classifications based on earlier published work was another issue as 

differences exist between different members of the same team, for instance, football 

midfielders and goal keepers. Strikers, defenders, and mid-fielders differ in their CVD 

levels due to their intensity of exercise and style of playing. For example, playing with 

change of direction is known to elicit higher levels of CVD and causes greater metabolic 
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changes compared to running in a straight line with the same mean speed [490, 491]. 

Another confounder in this study is the number of participants in classified group of 

athletes. Some classes were underrepresented and other overrepresented. Finally, 

differences in nutritional consumption between moderate and high endurance and power 

elite athletes, including several other ergogenic and supplements, may have significant 

effect on their metabolic profile [492]. Such alterations are difficult to take into account as 

they differ between different sport groups and participants and are not generally revealed. 

Taking all these restrictions and limits on board, data of this study require further 

validation and confirmation in other sports group of athletes. 

Conclusion: In summary, our pilot study of 191 elite athletes identified a number of 

metabolites associated with endurance and power [167]. By carrying out metabolomics 

in a second cohort of 490 elite athlete we confirmed a number of these metabolites, 

followed by a meta-analysis of the two cohorts. These metabolic changes seen in high 

performance elite athletes may reflect various cellular adaptations to prolonged exercise-

induced oxidative stress. These may include modulation of energy utilization, muscle 

mass and deployment of stress-scavenging mechanisms as previously suggested [167].  

CVD metabolites data also indicate an elevated risk of heart disease in the high CVD 

group of athletes compared to low/moderate CVD group of athletes. Metabolomics 

findings present a snapshot summarizing differences among classified sports groups of 

elite athletes with metabolic differences. Replication studies are desired to validate these 

findings in independent data sets, aiming for discovery of metabolic signatures for 

assessing performance, recovery, and health of elite athletes. Such metabolic signatures 

could be used as screening tools for young athletic candidates by revealing their extreme 
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trainability potential associated that could predict their performance. Metabolic profiling in 

elite athletes could also help guiding training programs and avoiding potential disorders 

that can be caused by intensive training. 
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5 (Chapter 5) Results: mGWAS analysis 
 

5.1 Introduction 

Following completion of GWAS and Metabolomics, assessment of genetically influenced 

metabotypes (GIM) has been expedient, where metabolites served as intermediate 

phenotypes with a greater effect size [145, 165]. The coupling of genetics to 

metabolomics (mGWAS) has been proven a powerful tool for clinical translation [493-

495]. It has been used to reveal molecular mechanisms that link human genetic variation 

to inter-individual differences in metabolite concentrations [494, 496]. Utilizing mGWAS 

approach [146, 150, 156-164] in elite athletes may enlighten the environmental exposures 

affecting athletes and provide information related to athlete’s health and training 

requirements. Indeed, theses robust and quantitative information can explain 

environmental conditions, special diet as well as type and intensity of exercise that best 

fit to athletes’ innate capabilities [167]. mGWAS results could serve as important tools in 

biomarker discovery associated with exercise that can be used in selection of athletic 

candidates. It could also help in developing anti-doping analytical strategies that include 

gene doping of specific performance enhancing metabolites. 

 

The aims of this chapter are (1) to discover novel genetically influenced metabolites in 

elite athletes by fine-mapping loci to putative functional variants at or near sentinel SNPs 

(a sentinel SNP or sentinel metabolite refers to a lead SNP or a lead metabolite), (2) to 

discover novel variant loci associated with significant metabolites identified from 

metabolomics associated with high endurance, power and CVD group of athletes, and to 
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perform functional validation of significant endurance-related SNPs by identifying 

associated metabolites from mGWAS results. 

5.2 Material and method 

5.2.1 Sample classification, metabolomics and genomics data extraction 

mGWAS analysis was conducted in only four hundred and ninety (490) elite athletes who 

were included in both genetic and metabolic studies.  Categorization of participants’ 

groups (Low/moderate vs. high endurance, power and CVD) is shown in Table 27. 

 

Table 27. Classification of 490 study participants. Distribution of elite athletes in various 

categories based on trainability as described previously [16]. The number and gender (M 

for males and F for females) of participants in each group are indicated. 

 

 

As discussed in chapter 3, section 1.2.3, SNP array genotyping was performed using 

Illumina Drug Core array-24 BeadChips. Corresponding metabolomics data were 

collected from Metabolon, Durham, NC, USA as detailed in chapter 4 section 1.2.2. 

 

mGWAS 

Endurance 

Moderate High 

(40-70% VO2max) (>70% VO2max) 

P
o

w
e
r 

H
ig

h
 

(>
5
0
%

 

M
V

C
) 

Wrestling (3M), Judo (3M) 
Boxing (1M/16F), Heptathlon 

(1M), Rowing (6M/7F), Cycling 
(31M/4F) 

M
o

d
e
ra

te
 

(2
0
-5

0
%

 

M
V

C
) 

Athletics (15M/22F), Rugby (16M), 
Triple Jump (1M) 

Athletics 200-800m (4M), 
Hockey (1F), Skiing Cross 

Country (1M), Basketball (3M), 
Swimming (22M/16F) 

L
o

w
 

(<
2
0
%

 

M
V

C
) 

Baseball (2M), Volleyball (1M) 
Tennis (1M/1F), Soccer 

(315M), Athletics 1500-3000m 
(3M) 

 



211 
 

5.2.2 Statistical analysis of combined metabolomics and genomics data 

The genotyping data (476728 SNPs from each sample) were filtered using Plink v1.9 as 

follows: SNPs with genotype call rate < 98% were excluded (130526 SNPs).  SNPs with 

minor allele frequency (MAF) < 0.01 were excluded (70210 SNPs). SNPs exhibiting Hardy 

Weinberg p value < E-6 were excluded (976 SNPs). Similarly, metabolites with more than 

50% missingness were excluded (87 metabolites). After quality control filtering, only 

275016 SNPs and 751 metabolites were used in mGWAS analysis, providing a 2.4E-10 

Bonferroni level of significance (p≤0.05/(275016x751)). Linear regression model 

associations between SNPs and metabolite were performed using “lm” function in R 

(version 3.3.1) while correcting for gender, hemolysis, and genotypic population 

stratification (using two genomic PCA components that were calculated with plink version 

1.9).   

An average inflation factor was calculated for mGWAS metabolites using 

chi2=beta*beta/(sebeta*sebeta) and lambda=median(chi2)/0.45) [184]. Percent of 

explained variance (r2) was calculated with formula: r2 = X2/(N − 2 + X2), where N is the 

number of samples and X2 = (Beta/standard error of the beta)2, values obtained from the 

regression analysis [165]. Manhattan and boxplots were generated using R (version 

3.3.1). Regional association plots were produced using SNIPA (http://snipa.helmholtz-

muenchen.de/snipa/). Pathway enrichment analyses were carried out using Chi square 

tests (https://www.mathsisfun.com/data/chi-square-calculator.html) as explained in chapter 2 

section 1.3.4. 

 

http://snipa.helmholtz-muenchen.de/snipa/
http://snipa.helmholtz-muenchen.de/snipa/
https://www.mathsisfun.com/data/chi-square-calculator.html
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5.3 Results 

5.3.1 Loci and sentinel SNPs 

By combining genomics and metabolomics analyses, 145 significant associations 

(Bonferroni p ≤ 2.4 E−10) were identified, with an average inflation factor for mGWAS 

metabolites of 1.07 (0.96 - 1.19). Table 28 lists 145 mGWAS association results.  

 

Table 28. Metabolite quantitative trait loci (mQTL) associated with elite athletes 

(Bonferroni significance p ≤ 2.4 E−10).  
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Association results were divided into gene loci with each locus having sentinel SNP and 

sentinel metabolite defined according to the SNP-metabolite association with the highest 

significant p-value. These SNP-metabolite associations define the metabolite quantitative 

trait loci (mQTLs). Table 29 lists 19 mQTLs resulted from gene-metabolite associations 

found by analyzing sentinel SNPs. In case of locus 5, the sentinel SNP rs3733402 with 

highest P-value 6.80E-12 could not be found in SNIPA regional association plotting. 

Therefore, another SNP rs4241816 with the second highest P-value 2.02E-11 had been 

considered in the regional association. Both were associated with same gene KLKB1.  

Table 29. Nineteen unique locus-metabolite mGWAS pairs identified in 490 elite athletes. 

The novel gene/metabolite associations appear in red and the known gene/metabolite 

associations, but with novel SNPs, appear in blue. Abbreviations; SNP is single 

nucleotide polymorphism, MAF is minor allele frequency, SE is standard error, and r2 is 

percent of explained variance. Highlighted rows indicate novel significant mGWAS. 

Biochemical Name* indicates compounds that have not been confirmed using reference 

standards, but Metabolon is confident in their identities based on exact mass and 

fragmentation pattern. 

Locus 
by 

gene 
Gene SNP MAF Metabolite 

P 
value 

Beta 

SE. 
r2 

(%) 

Function 

Comment 

Reported  

Beta GVS 
r2 (%) 

[27] [25] 

1 AGMAT rs6429759 0.48 
Beta-

guanidinopropanoate 
2.98E-

25 
0.74 0.07 28.54 Intron Reported 2.3, NA 

2 NAT8 rs1881245 0.27 
N-acetyl-1-

methylhistidine* 
5.76E-

39 
0.87 0.06 30.92 Intron Reported 1.8, 26.6 

3 UGT1A10 rs10168416 0.31 Biliverdin 
2.67E-

14 
0.5 0.06 11.68 Intron Reported 0.5, NA 

4 TMPRSS11E rs35307342 0.36 
5alpha-androstan-
3alpha,17beta-diol 

monosulfate (1) 

6.48E-
12 

0.47 0.07 9.9 Intron Reported 1.2, 21.4 

5 KLKB1 rs3733402 0.48 Leucylglycine 
6.80E-

12 
0.4 0.06 9.68 Missense Reported 8.8, NA 

6 SLC22A16 rs12210538 0.24 
Dihomo-linolenoylcarnitine 

(20:3n3 or 6)* 
8.67E-

14 
-0.54 0.07 11.24 Missense Reported 3.8, NA 

7 VNN1 rs3798793 0.42 Linoleoyl ethanolamide 
3.15E-

13 
0.46 0.06 10.82 Intron 

Novel 
gene/metabolite 

association 
NA 

8 CYP3A7 rs11568825 0.01 Androsterone sulfate 
3.91E-

17 
-1.88 0.21 14.11 

Upstream-
gene 

Reported 
gene/metabolite 

NA 
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Epiandrosterone sulfate 
2.82E-

12 
-1.55 0.22 9.95 

association but 
not with this 

SNP 

NA 

5alpha-androstan-
3alpha,17beta-diol 

monosulfate (1) 

3.31E-
11 

-1.53 0.23 9.2 NA 

CYP3A7 rs45446698 0.03 Androsterone sulfate 
4.62E-

31 
-1.92 0.15 24.82 

Upstream-
gene 

Reported 0.5 

9 NAT2 rs1495741 0.27 
5-acetylamino-6-
formylamino-3-

methyluracil 

5.48E-
17 

0.74 0.08 21.44 Intergenic Reported 4.9 

10 PYROXD2 rs7072216 0.35 N-methylpipecolate 
1.23E-

59 
-0.96 0.05 43.68 Intron Reported NA, 18.3 

11 FOLH1 rs55729124 0.06 
N-acetyl-aspartyl-
glutamate (NAAG) 

2.17E-
11 

-0.95 0.14 9.35 Intron 
Novel 

gene/metabolite 
association 

NA 

12 FADS1 rs174547 0.3 
1-arachidonoyl-GPC 

(20:4n6)* 
1.18E-

13 
-0.48 0.06 11.04 Intron Reported 10.2, NA 

13 
SLC22A10, 
SLC22A24 

rs75859219 0.06 
Etiocholanolone 

glucuronide 
5.04E-

13 
0.96 0.13 10.73 

Upstream-
gene 

Reported 4.8, NA 

14 SLC6A13 rs11613331 0.46 Deoxycarnitine 
1.93E-

11 
0.39 0.06 9.15 Intron Reported 5.8, nA 

15 SLCO1B1 rs4363657 0.14 
Glycochenodeoxycholate 

glucuronide (1) 
7.18E-

13 
0.69 0.09 10.53 Intron Reported 0.9, 18.5 

16 UNC119B rs2066938 0.29 Ehylmalonate 
6.16E-

37 
0.82 0.06 29.79 

3-prime-
UTR 

Reported 1.5, NA 

17 SGPP1 rs17101394 0.17 
Ceramide (d16:1/24:1, 

d18:1/22:1)* 
1.52E-

10 
0.52 0.08 8.59 Intergenic 

Reported SNP 
association but 
with different 
metabolites 

2.4, NA 

18 CERS4 rs7258249 0.46 
Sphingomyelin 

(d18:1/20:1, d18:2/20:0)* 
7.17E-

11 
0.4 0.06 8.6 

Upstream-
gene 

Reported 2.6, NA 

19 SPTLC3 rs680379 0.35 
Sphingomyelin 

(d18:1/25:0, d19:0/24:1, 
d20:1/23:0, d19:1/24:0)* 

1.20E-
12 

0.49 0.07 10.24 Intergenic Reported 1.5, NA 

 

5.3.2 mQTLS associated with athletes vs. non-athletes 

Genetic loci were investigated for known expression quantitative trait loci (eQTLs), 

mQTLs and functional associations using several databases including: 

• SNIPA http://snipa.helmholtzmuenchen.de/snipa/ 

• PhenoScanner V2 A database of human genotype-phenotype associations 

http://www.phenoscanner.medschl.cam.ac.uk/ 

• GTEx portal (version 2.1, Build #201) www.gtexportal.org 

• OMIM www.omim.org 

• Overview of Bravo variant server resources 

https://bravo.sph.umich.edu/freeze3a/hg19/ 

• GnomAD http://gnomad.broadinstitute.org/ 

http://snipa.helmholtzmuenchen.de/snipa/
http://www.phenoscanner.medschl.cam.ac.uk/
http://www.gtexportal.org/
http://www.omim.org/
https://bravo.sph.umich.edu/freeze3a/hg19/
http://gnomad.broadinstitute.org/
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By defining the identities of the sentinel SNPs by their genes, these associations 

collapsed into 19 independent loci (Table 29, Figure 43). The percent of variance 

explained by these SNPs ranges from the highest value of 43.68% (N-methylpipecolate 

with rs7072216 in PYROXD2 locus) to the lowest value of 8.59% (Ceramide-d16:1/24:1-

d18:1/22:1 in SGPP1 locus) with an average of 16.09% (Figure 44). The 19 independent 

loci replicated 15 previously reported loci [145, 166] (Table 29). The remaining four 

mGWAS loci represented novel associations between specific SNPs and metabolites. 

Two of these included novel gene/metabolite associations, namely rs55729124 in folate 

hydrolase 1 (FOLH1) in association with N-acetyl-aspartyl-glutamate (NAAG) and 

rs3798793 in vascular non-inflammatory molecule 1 (VNN1) in association with linoleoyl 

ethanolamide (Table 29, Figures 43 and 44). Other novel mGWAS involved known 

gene/metabolite associations of existing loci with novel SNP. These included the third 

novel mGWAS rs11568825 SNP within the cytochrome P450 family 3 subfamily A 

member 7 (CYP3A7) gene, exhibiting significant association with three different 

metabolites (androsterone sulfate, epiandrosterone sulfate and 5 alpha-androstan-

3alpha, 17 beta-diol monosulfate 1). The fourth novel mGWAS represented association 

between rs17101394 in sphingosine-1-phosphate phosphatase 1 (SGPP1) gene and 

Cermamide. For the 4 novel mGWAS loci, there were clear genotype-dependent effects 

on levels of associated metabolites as shown in boxplots in Figure 45.  
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Figure 43. Manhattan plot for the discovered mGWAS loci. The red line indicates the 

Bonferroni threshold (2.4 E-10) and the blue line indicates the genome wide significance 

threshold (5 E-8). The newly identified replicated loci are typed in black, and the non-

replicated novel loci are in red. The known existing loci with novel SNP is typed in blue.  



220 
 

 

Figure 44. Percent of explained variance of metabolites by the corresponding SNP in the 

identified mGWAS loci in elite athletes. The height of a column bar reflects the percent of 

variance explained for each locus. Loci genes are indicated above the column bar and 

corresponding metabolite name on the X-axis. The newly identified/novel replicated loci 

are typed in black, and the novel mGWAS loci appear in red. The known identified 

replicated loci, but with novel SNP or metabolite are typed in blue. Bars are colored 

according to Metabolon specified pathway for the metabolites associated with the locus. 

Biochemical Name* indicates compounds that have not been officially confirmed based 

on a standard, but Metabolon is confident in their identities. 
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Figure 45. Boxplots of levels of metabolites by genotype for novel loci. Boxplots for the 

loci CYP3A7 (A-C), SGPP1 (D), VNN1 (E), and FOLH1 (F) indicating the metabolite level 

and the number of samples for each genotype group. 
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Regional association plots for the novel loci VNN1 and FOLH1 are shown in Figure 46.  

The intronic SNPs within VNN1 (rs3798793, Figure 5a) and FOLH1 (rs55729124, Figure 

5b) loci show the strongest association (−log10 (p-value)) with linoleoyl ethanolamide and 

N-acetyl-aspartyl-glutamate (NAAG), respectively. The colors correspond to different 

linkage disequilibrium (LD) thresholds, where LD is computed between the sentinel SNP 

(lowest p-value, colored in blue) and all SNPs.  
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Figure 46. Regional association plots for the two new loci (VNN1 and FOLH1). VNN1 (A) 

and FOLH1 (B) loci intron SNPs showing the strength of the association (−log10 (p-

value)) for linoleoyl ethanolamide and N-acetyl-aspartyl-glutamate (NAAG), respectively, 

on the Y-axis and the genes on the X-axis. The colors resemble the difference in LD 

thresholds, where LD is calculated around 500Kb region between the SNPs and sentinel 

SNP (colored in blue). Shapes and colors of the symbols correspond to their functionality 

as described in the legend. 

 

5.3.3 mQTLs associated with significant metabolites of endurance, power and CVD 

Various metabolites were associated with endurance, power or CVD. In order to identify 

mQTLs differentiating these different groups, the corresponding SNP associations were 

identified from all identified mQTLs in elite athletes according to their calculated 

Bonferroni level of significance as follows:  

• Endurance mQTLs are p <0.05/104*275016 = 1.7E-9 

• Power mQTLs are p <0.05/207*275016 = 8.78E-10 

• CVD mQTLs are p <0.05/112*275016 = 1.6E-9 

Four endurance significant associations are shown in table 30 including one novel 

mGWAS association between rs10426201 in SULT2A1 gene and androstenediol 

(3alpha, 17alpha) monosulfate (2). Although the latter association was reported before, it 

did not reach statistical significance [166]. One power and CVD significant association is 

shown in table 30 between rs174574 SNP in FADS2 gene and 1-palmitoyl-2-linoleoyl-

GPE (16:0/18:2), which was previously reported in non-athletes. 
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Table 30. Unique locus-metabolite pairs associated with endurance, power and CVD 

sports in comparison with previous reports [166]. Abbreviations; SNP is single nucleotide 

polymorphism, N is number if samples, and SE standard error. 
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For the novel endurance mGWAS locus in SULT2A1 gene, there was a clear genotype-

dependent effect on levels of associated metabolite as shown in Figure 47. The regional 

association plot indicates that the intronic SNP (rs10426201) in SULT2A1 gene shows 

the strongest association (−log10 (p-value)) with androstenediol (3alpha, 17alpha) 

monosulfate (2) (Figure 48). The colors correspond to different LD thresholds, where LD 

is computed between the sentinel SNP (lowest p-value, colored in blue) and all SNPs.  

 

Figure 47. Boxplot for metabolite-locus pair associated with endurance, indicating the 

metabolite level and the number of samples for each genotype group 
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Figure 48. Regional association plots for the novel locus SULT2A1 

 

5.3.4 Metabolites associated with GWAS significant SNPs of endurance 

To validate the potential functionality of the identified GWAS SNPs, mGWAS results of 

751 metabolites in a subset of the discovery cohort (n=490) and enriched metabolic 

pathways associated with the rs56330321 and rs2635438 were determined (Table 31). 

Among the metabolic pathways associated with rs56330321, ceramides, fatty acid (Acyl 

Carnitine), polyamine and creatine metabolites were significantly altered by rs56330321 

genotype (Table 31, Figure 50). Whereas, gamma-glutamyl amino acid and glutamate 

metabolic pathways were significantly changed with rs2635438 (Table 31, Figure 51). 

Regional association plots for the novel loci ATP2B2 and SYNE1 are shown in Figure 49.  

The intronic SNPs within (rs56330321, Figure 49A) and (rs2635438, Figure 49B) show 

the strongest association (−log10 (p-value)) with loci ATP2B2 and SYNE1, respectively. 



227 
 

The colors correspond to different linkage disequilibrium (LD) thresholds, where LD is 

computed between the significant SNP (lowest p-value, colored in blue) and all SNPs. 

 

Figure 49. Regional association plots for the two new loci (ATP2B2 and SYNE1). ATP2B2 

(A) and SYNE1 (B) loci intron SNPs showing the strength of the association (−log10 (p-

value)) on the Y-axis and the genes on the X-axis. The colors resemble the difference in 
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LD thresholds, where LD is calculated around 500Kb region between the SNPs and 

sentinel SNP (colored in blue). Shapes and colors of the symbols correspond to their 

functionality as described in the legend. 

 

Table 31. Metabolites that belong to the significantly enriched phospholipids pathway Top 

metabolites associated with significant SNPs.  
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230 
 

 

 

Figure 50. Boxplots representing levels of metabolites affiliated with enriched metabolic 

pathways in association with the ATP2B2 (rs56330321) genotype groups.  
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Figure 51. Boxplots representing levels of metabolites affiliated with enriched metabolic 

pathways in association with the SYNE1 (rs2635438) genotype groups. 
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5.4 Discussion 

5.4.1 Common variant loci influence metabolites (mQTLs) in elite athletes 

Our genotyping data revealed several SNPs associated with endurance, power and CVD, 

but none has reached the GWAS level of significance. Except for the association of 

ATP2B2 SNP with endurance, the small sample size and effect size of the genetic 

variants as well as the complexity of the phenotype may have reduced the power of the 

study to confirm previously suggested associations or identify novel ones. Therefore, a 

more precise phenotype (metabolites) was sought to obtain larger effect size and a better 

chance for detection. Additionally, validation in a replication cohort was also pursued. 

 

Combining genotyping and metabolomics analyses, genetically-influenced metabolites 

were firstly assessed between elite athletes cohort and published data from non-elite 

athletes [145, 165, 166], and secondly within the elite athletes cohort between moderate 

and high endurance, power, and CVD groups. Both analyzes revealed novel mGWAS 

associations with significant effect size (between 8%-14%, Table 29 and Figures 44 and 

45), clear genotype-dependent effect (Figures 46 and 48) and evidence of multiple SNP 

associations within the same genomic region (Figures 47 and 50).  

The mGWAS results between elite and non-elite athletes revealed 4 novel mGWAS 

associations. The first of which is a negative association between rs55729124 in Folate 

Hydrolase 1 (FOLH1) and NAAG levels. FOLH1 hydrolyzes NAAG to NAA and glutamate 

[497]. The intronic SNP rs55729124 may therefore be associated with enhanced FOLH1 

activity leading to the breakdown of NAAG and accumulation of NAA and glutamate. NAA 

is a nervous system specific metabolite found predominantly in cell bodies of neurons. 

Aerobic fitness was reported to enhance NAA levels, leading to improved cognitive 
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enhancement [498]. The identification of this novel mGWAS in elite athletes may suggest 

augmentation of FOLH1 activity in elite athletes with exercise, resulting in higher NAA 

levels compared to non-elite athletes in other published studies (Table 29). The second 

mGWAS identified in our athletic cohort is a positive association between rs3798793 in 

vascular non-inflammatory molecule 1 (VNN1) in association with linoleoyl ethanolamide.  

VNN1 protein possess pantetheinase activity that may play a role in oxidative-stress 

response. The endocannabinoid linoleoyl ethanolamide has a role as fatty acid amide 

hydrolase inhibitor as it inhibits arachidonoylethanolamide amidohydrolase. The link 

between VNN1 and linoleoyl ethanolamide is not clear yet. Exercise, however, has been 

shown to increase serum concentrations of endocannabinoids [499], thus the 

identification of  this novel mGWAS may be due to exercise interaction (Table 29). The 

third mGWAS involved association of SNP (rs45446698) in the Cytochrome P450 Family 

3 Subfamily A Member 7 (CYP3A7) with lower serum sulfated steroids [500]. This is the 

first report of a negative association between the novel SNP rs11568825 in CYP3A7 with 

5alpha- androstan-3alpha, 17beta-diol monosulfate (1), although association of other 

SNPs within the same gene with same metabolites were previously reported [166]. The 

linkage disequilibrium between the novel SNP rs11568825 and the previously published 

SNP rs45446698 is r2 >0.4 that are part of a polymorphism in the promoter of CYP3A7 

[501]. Cytochrome P450 enzymes are important for the metabolism of many endogenous 

compounds including various steroids [502]. We have indicated previously that 5alpha-

androstan-3alpha, 17beta-diol monosulfate is increased in endurance sports, potentially 

providing evidence of environmental interaction with endurance exercise [167] (Table 29). 

The fourth novel mGWAS was a positive association between rs17101394 in 
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Sphingosine-1-Phosphate Phosphatase 1 (SGPP1) in association with Ceramide 

(d16:1/24:1, d18:1/22:1).  Although the association of the same SNP with multiple 

different metabolites was previously reported. These metabolites included various 

spingolipids such as palmitoyl dihydrosphingomyelin (d18:0/16:0), sphingomyelin 

(d18:1/14:0, d16:1/16:0), sphingomyelin (d18:1/15:0, d16:1/17:0), sphingomyelin 

(d18:1/20:0, d16:1/22:0), and sphingomyelin (d18:1/21:0, d17:1/22:0, d16:1/23:0) [166, 

503] as well as X-08402, and X-10510 [145] that are also related to sphingolipid pathway 

[160]. SGPP1 catalyzes the degradation of Sphingosine-1-phosphate (S1P), a bioactive 

sphingolipid metabolite that regulates diverse biologic processes, via salvage and 

recycling of sphingosine into long-chain ceramides [504]. Acute prolonged exercise was 

shown previously to influence ceramide metabolism in human skeletal muscle [505], 

perhaps explaining identification of this mGWAS in our elite athlete cohort (Table 32). In 

addition to novel mQTLs identified in elite athletes, we have confirmed 16 previously 

published mQTLS, two of which exhibited greater effect sizes in our elite atheltes 

compared to the ones reported in non-elite athletes [165], including rs7072216 in 

PYROXD2 in association with N-methylpipecolate (effect size 43% vs 31%) and 

rs1881245 in NAT8 in association with N-acetyl-1-methylhistidine (effect size 30% vs 

26.6%). The functional relevance of these elevated effect sizes remains to be 

investigated. 

 

Table 32. Novel elite athletes-associated mQTLSs reflecting gene/environment 

(exercise) interaction  
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SNP Gene Metabolite 

Functional 
relationship 

between gene and 
metabolite 

Interaction with 
athletic performance 

(exercise) 

rs55729124 FOLH1 
N-Acetylaspartylglutamic acid 

(NAAG) 

Gene encodes an 
enzyme that directly 
cleaves NAAG into 
NAA + Glutamate 

Aerobic fitness was 
reported to enhance 

NAA levels, leading to 
increased cognitive 
enhancement [498] 

rs3798793 VNN1 Linoleoyl ethanolamide 

Gene encodes a 
membrane protein 
that participates in 
hematopoietic cell 

trafficking 

Exercise increases 
serum concentrations of 

endocannabinoids 
including linoleoyl 

ethanolamide [499] 

rs17101394 SGPP1 Ceramide  

Gene encodes 
enzyme that directly 
mediates recycling of 

sphinogsine into 
cermides 

Acute prolonged 
exercise was shown  to 

influence ceramide 
metabolism in human 
skeletal muscle [505] 

 

 

5.4.2 mQTLS associated with endurance, power and CVD athletes 

When focusing on identified endurance, power and CVD associated metabolites, four 

mQTLs were found significant for endurance and only one mQTL was significant for both 

power and CVD. Association between rs174574 SNP in FADS2 gene and 1-palmitoyl-2-

linoleoyl-GPE (16:0/18:2) with power and CVD level were not novel as it was previously 

reported in non-athletes [166]. A positive association between rs10426201 in 

Sulfotransferase Family 2A Member 1 (SULT2A1) in association with androstenediol 

(3alpha, 17alpha) monosulfate (2) was novel for endurance athletes.  SULT2A1 catalyzes 

the sulfation of steroids, a process that is fundamental for their function. Following 

biosynthesis, hydrophobic steroids become sulfated to accelerate their circulatory 

shuttling to target tissues. The expression of anion transporting polypeptides on target 

cells enables their uptake. Subsequently, intracellular sulfatases activate them by  

hydrolyzing the steroid sulfate esters  [506]. The genetic predisposition of steroid sulfation 
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in elite high endurance athletes may therefore explain active steroid biosynthesis in this 

group and could potentially contribute to their elite physical performance.  

5.4.3 Metabolites associated with endurance SNPs 

GWAS results showed only two significant SNPs associated with endurance. 

Metabolomics data were used for functional validation of this association. The 

rs56330321 A allele found in mGWAS results was associated with higher levels of several 

ceramides, fatty acidsacyl carnitine, polyamines, except for acisoga (N-(3-

acetamidopropyl)pyrrolidin-2-one), and creatine/creatinine (Figure 51). Ceramides tend 

to accumulate in skeletal muscles and promote insulin resistance. Chronic endurance 

exercise lowers muscle ceramides and promotes the insulin-sensitivity in exercising 

muscle [507]. Since the A allele is associated with higher ceramides levels, it could be 

potentially compromising the beneficial effect of exercise in carriers on improving insulin 

sensitivity [508]. The A allele is also associated with higher levels of fatty acids acyl 

carnitines, a hallmark of active fatty acid oxidation. During endurance exercise, fatty acids 

oxidation increases, sparing glycogen and delaying muscle fatigue [509]. Despite the 

beneficial effect of fatty acid oxidation in endurance athletes, the elevated fatty acid acyl 

carnitines in A allele carriers may represent a compensatory mechanism to counteract 

ceramides-induced impairment of fatty acid oxidation [510]. The A allele was also 

associated with higher polyamine accumulation, except for acisoga. The increase in 

polyamines concentration in exercising skeletal muscle after physical exercise reflects 

oxidative processes related to muscle adaptation to exercise [511]. The elevated 

polyamines in A allele carriers may therefore reflect higher oxidative mechanisms, also 

suggested by the increased acyl carnitines, in response to endurance exercise. The 
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elevated creatine/creatinine levels in A allele carriers may suggest worse renal functions 

compared to GG individuals, perhaps contributing to their lower prevalence in high 

endurance athletes [512]. The direct link between ATP2B2 (rs56330321) and levels of 

these metabolites is yet to be determined. 

 

The second GWAS significant SNP (rs2635438) G allele is associated with lower gamma-

glutamyl amino acids and glutamine but higher glutamate metabolism. Glutamine has 

various ergogenic benefits including increased muscle strength and promotes better 

recovery [513]. The lower levels of glutamine in G allele carriers may partially explain their 

lower prevalence in endurance athletes. The direct link between SYNE1 (rs2635438) and 

levels of these and other metabolites remains to be determined. 

 

The data described in this chapter reveal for the first-time evidence of genetically-

influenced metabolites associated with elite athletic status in general and endurance 

sports in particular. Uncovering these novel associations in elite athletes, but not in the 

general population, could reflect a gene-environment (intensive exercise) interaction that 

augments the effect size of these genetic variants. Among the novel identified mGWAS, 

SNPs associated with enhanced endogenous steroids activity may play an important role 

in elite athletic performance, especially among endurance athletes. The utilization of 

these mGWAS as biomarkers for selecting athletic candidates with a greater potential to 

becoming elite endurance athletes is warranted and should be further validated. 
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6 (Chapter 6) Discussion: 

This thesis describes an investigation of the superior physical performance of elite 

athletes as a complex phenotype that results from interactions between genetic and 

environmental factors (exercise and diet). At the start of this work, samples were collected 

from the anti-doping laboratory in Qatar and Italy after they tested negative for doping 

abuse, following strict lab procedures of using anonymous clean athletes’ samples in 

research. Sport’s type and gender were the only information available with the samples 

because of the strict anonymization process followed by anti-doping laboratories 

according to the world anti-doping laboratories agency (WADA). Without any access to 

actual measurement of VO2max, MVC and cardiovascular demand, athletes were 

classified into high vs moderate endurance, power and CVD groups according to their 

known sport type depending on previously published sports classification criteria [16].  

The first aim of this study was to examine the association of the identified polymorphisms 

with functional relevance to classified study groups. The second aim of this study was to 

investigate the metabolomic fluctuations and mechanisms through which those changes 

exhibit associations with the study groups. 

6.1.1 Genome Wide Association study 

There have been several investigations over genetic contribution to the susceptibility to 

sport performance. Most of the findings in the field of sports genetics came from studying 

case-control and monogenic forms of results. The identification and understanding of the 

genetic contributors alone to different sport disciplines has proven to be more challenging. 

The discovery GWAS analysis in our cohort followed by a replication study in Russian 

elite athletes has revealed two significant SNPs associated with endurance.  
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GWAS identified two significant SNPs in ATP2B2 gene and SYN2A gene. Whereas the 

first gene is known to be involved in calcium intracellular signaling, the second gene codes 

for nucleo-cytoskeletal structural protein. Neither of these two genes was reported before 

in association with physical activity, however their critical functions in cell signaling and 

muscle contraction may explain these associations [396, 397].   

Despite identification of two novel SNPs in association with endurance, their effect size 

remains relatively small because of small sample size and the complexity of the 

phenotype. Therefore, an intermediate phenotype with direct functional relevance to 

genetic variants was sought. To achieve this goal, metabolomics profiling was performed 

and compared among different sport disciplines. Metabolites were then used as 

intermediate phenotypes for identifying genetically influenced metabotypes associated 

with elite athletes. 

6.1.2 Metabolomics 

Metabolomics offer a comprehensive approach for detecting metabolic changes in 

response to environmental factors, dietary, and lifestyle. Indeed, profiling metabolic 

changes in elite athletes from various sport disciplines has given a deeper insight into the 

biological state and physical adaptation in response to their respective sports. 

Metabolomics analysis of discovery and replication cohorts of elite athletes revealed 

changes in various metabolites involved in steroid biosynthesis, fatty acid oxidation, 

oxidative stress response, xenobiotics and various mediators of cell signaling among 

different groups of endurance, power and CVD athletes. These changes reflect various 

cellular adaptations to prolonged exercise-induced oxidative stress and increased energy 

demand. Using metabolomics data as potential biomarkers requires further validation. 
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Once validated it could help in managing athletes’ future training programs and in 

avoiding potential disorders related to excessive training as well as improving their 

performance in general.   

 

Since supplement use by athletes is of interest, and because most information related to 

supplement use are obtained from surveys, we have decided to use our data to provide 

the evidence from metabolomics analysis of supplement use in elite athletes. This was 

achieved by focusing on profiling xenobiotics that likely came from supplements present 

in different groups of athletes. Our data indicated presence of various types of 

supplements that can benefit the athlete, but others may harm the athlete’s health, and 

reputation; in case of an anti-doping rule violation [60].  

6.1.3 Metabolomics GWAS study 

In order to link GWAS and metabolomics results, mGWAS analysis was conducted. The 

analysis revealed novel mQTLs found in elite athletes when compared to non-elite athlete 

[145, 165, 166]. The analysis also revealed novel mQTL in association with endurance. 

The functional relevance of these associations remains suggestive despite the direct 

functional relationship between gene function and metabolite levels, especially the ones 

that were shown to respond to exercise. Final functional validation of these SNPs is 

important for their potential use as biomarkers for selecting athletic candidates and 

enhance performance and recovery from sports injuries. 

  



242 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 7 

CONCLUSION 

  



243 
 

7 (Chapter 7) Conclusion: 

This thesis reports the identification of genetic predisposition into elite athletic 

performance that has long been considered as a controversial matter due to the small 

effect size of genes and the vague phenotype of elite performance. By increasing the 

number of participants and focusing on intermediate phenotypes with direct functional 

relationships with genetic variants, the study results provide the first evidence of 

genetically-influenced metabolites associated with elite athletic performance. The 

identified novel genetic variants are associated with metabolites that can be influenced 

by exercise and potentially enhance elite athletic performance by increasing the cognitive 

function, energy utilization and endogenous steroids activity of elite athletes. Uncovering 

these novel associations in elite athletes, but not in the general population, could reflect 

a gene-environment (intensive exercise) interaction that augments the effect size of these 

genetic variants. The identified genetic variants and associated metabolites, once 

validated in independent cohorts, could potentially be utilized in biomarker discovery in 

elite athletic candidates, non-conventional anti-doping analytical approaches and 

therapeutic strategies. Future research should therefore investigate how an athletes 

genotype and metabolic profile may contribute to training outcomes and adaptations. A 

major application to prospective athletes or sport clubs is providing personalized training 

programs to the individual athletes. Introducing genetic and metabolic testing to these 

programs will allow athlete specific training regimes to improve athletic, skill, and match 

performance. 
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Future Plan:  

Following the completion of this project, a number of studies are planned to confirm and further validate 

our findings. These include the following studies: 

1. Validation of GWAS and mGWAS data in larger cohorts of athletes from different sport groups 

and a better stratification based on defined age/weight/cardiac/respiratory function or some type 

of functional analyses of the identified SNPs and mQTLs?  

2. Validation of metabolites and genetically influenced metabotypes as potential biomarkers for 

athletic talent identification and development using athletic candidates recruited at Aspire 

Academy, Doha, Qatar. The overall aims of the study are to determine the natural variation of 

known metabolites in young athletic candidates from different sports disciplines and to 

validate/identify metabolic biomarkers for talent development.  If successful, this can be 

developed into an anti-doping testing protocol following all required validation steps. This will 

include the following steps: 

• Assessment of the natural range of metabolites, their specificity and stability over period 

of times (relevance to doping research initiated recently by WADA). 

• Validate our panel of metabolic biomarkers for talent identification and selection. This 

panel could help in the selection process of athletic talents in Qatar and potentially 

worldwide. 

• Establish a panel of metabolic biomarkers for talent development. This panel will reflect 

best adaptation to training allowing optimal training programs for young promising 

athletic candidates and measures of their physical status. Furthermore, this could open 

new avenues for exercise prescription in the general population and target the approach 

for metabolic diseases 
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• Verification of the predictive power of the established panel of selected metabolites of 

elite athletes in relation to young candidates’ performance. Such panel could be further 

developed based on the new findings into a screening panel for elite power or endurance 

athletes from young age. It would also help directing future training programs, preventing 

potential disorders associated with excessive exercise as well as improving their overall 

performance 

• Profiling xenobiotics including supplements and their products with reference to 

information collected from candidates and their coaches.  

• Detection and determination of extreme metabolic outliers in relation to their genetic 

profile following repeated metabolomics analyses. Such information could be used by 

anti-doping labs to avoid false positives.  
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Appendix: 

Table 33. Metabolites differentiating between moderate and high endurance athletes 

(FDR significance). 
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Table 34. Metabolites differentiating between moderate and high power athletes (FDR 

significance). 
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