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Abstract

Archaeologists were among some of the earliest users of agent-based modelling,
but  recent  years have undoubtedly seen a surge of interest  in  the use  of this
technique to infer  past  behaviour  or  help develop new theories  and methods.
Although ABM software is much easier to use than it was even 20 years ago and
sufficiently  powerful  computers  are  more  readily  available,  the  success  of  a
modelling project is still largely determined by decisions made about the purpose
and design of the model, and the subsequent experimental regime. This chapter
guides the reader through those key issues. It covers epistemological topics such
as the role of the model in a wider project, the trade-off between realism and
generality,  the  idea  of  generative  modelling  and  the  importance  of  adequate
experimentation.  It  also  discusses  technical  issues  such  as  options  for  the
integration  of  ABM and  GIS,  and  even  the  dangers  inherent  in  poor  design
decisions about the scheduling of agent behaviour.

Introduction

Spatial agent-based modelling (ABM) is a method of computer simulation that
can  be  used  to  explore  how  the  aggregate  characteristics  of  a  system—for
example a settlement pattern, population dispersal or distribution of artefacts—
arise from the behaviour of artificial agents. In archaeological ABM the agents
are typically individual people or social units such as households. Agent-based
modelling  is  often  presented  as  part  of  the  toolkit  of  complexity  science
(Beekman and Baden 2005, Epstein and Axtell 1996), but it is a very flexible
method which can be used in projects informed by many different theoretical
perspectives.

It should be noted that while the vast majority of agent-based models used in
archaeology are explicitly spatial, the representation of space is not a necessary
feature of ABM (see e.g. Ferber 1999). Moreover, many of the issues that arise
when using explicitly spatial ABM are essentially the same as those that apply to
the use of raster  GIS,  or various forms of statistical spatial  analysis.  For that
reason, this chapter focuses in issues which are specific to the use of ABM, most
of which are are relevant irrespective whether the model is spatial. It is therefore
strongly  recommended  that  this  chapter  be  read  alongside  others  in  this
handbook. Chapters 2, 3, 7 and 19 may be particularly relevant to the task of
preparing spatial input data, while chapters 4, 6, 8, 9, 21 and 24 discuss methods
that  may  be  relevant  to  the  statistical  analysis  and  presentation  of  spatial
simulation outputs.

The primary purpose of this chapter is to explain the choices that must be
made when designing, building, experimenting with and disseminating an ABM.
Readers  seeking  a  practical  tutorial  complete  with  sample  models  and  code
should  consult  Railsback  and  Grimm’s  excellent  (2012)  Agent-Based  and
Individual-Based  Modelling:  A  Practical  Introduction.  Readers  who  are
interested in the history and theory of ABM in archaeology will find up-to-date
reviews in Cegielski and Rogers 2016, Lake 2014 and Lake 2015. Additional
discussion of the relationship between ABM and archaeological theory can be
found  in  Aldenderfer  1998,  Beekman  and  Baden  2005,  Beekman  2005,
Costopoulos  2010,  Kohler  2000,  Kohler  and van der  Leeuw 2007a,  McGlade
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2005  and  Mithen  1994.  Useful  textbooks  on  agent-based  modelling  include
Grimm and Railsback 2005 (aimed at ecologists), the rather briefer Gilbert 2008
(aimed  at  sociologists)  and  Ferber  1999  (aimed  at  artificial  intelligence
researchers and computer scientists).

Agent-based models in archaeology

Archaeologists were arguably using the forerunners of ABM as far back as the
1970s  (Lake  2014),  but  there  has  undoubtedly  been  an  explosion  of
archaeological interest in ABM since the publication of Kohler and Gumerman’s
(2000) influential  collection of agent-based models,  Dynamics in Human and
Primate Societies in 2000 (Lake 2014), especially in the last ten years (Cegielski
and Rogers 2016).

Characteristics of archaeological ABM

The tens of ABM now published in the archaeological literature (see Cegielski
and Rogers 2016 and Lake 2014) range in complexity from models that barely
meet the minimum textbook definition of an agent-based model (Ferber 1999,
pp.9–10) but were implemented using ABM software (e.g. Bentley et al. 2004),
through relatively simple abstract models of one or a limited number of processes
(e.g.  Crema  and  Lake  2015,  Premo  2007),  to  much  more  complex  models
seeking greater  realism in their  portrayal  of  human society (e.g.  Aubán et al.
2015, Kohler et al. 2012a, Wilkinson et al. 2007).

The Long House Valley ABM, presented as a case study later in this chapter,
illustrates many of the features of a modern spatial ABM (fig. 14.4). This agent-
based  model  was  built  to  explore  the  relationship  between  climatically
determined resource availability,  settlement location and population growth in
Long  House  Valley,  Arizona  in  the  period  A.D. 400–1450.  The  agents  are
individual  Puebloan households which are endowed with rules by which they
choose where to settle in Long House Valley in order to grow sufficient maize to
survive.  The  model  is  explicitly  spatial  because  these  agents  inhabit  a
geographically realistic model of Long House valley, comprising GIS-style raster
maps of maize-growing potential and the location of water sources. The maize-
growing  potential  for  each  hectare  in  the  valley  was  determined  by  detailed
palaeoenvironmental research. The simulation progresses in yearly steps, at each
of which the resource availability is modified according to a high resolution time-
series estimates of rainfall. At each time-step settlements grow, fission, relocate
or collapse depending on the ability of individual agents (the households) to grow
sufficient maize to support their ongoing maintenance and reproduction. Over
time, repeated individual household decision-making and reproduction produces
a  changing  aggregate  settlement  pattern  and  population  size,  which  can  be
compared to observed and proxy evidence in the archaeological record.

Although  the  Long  House  Valley  Model  is  among  the  best  known
archaeological spatial ABM (see Kohler et al. 2005 for a popular account), it is
by  no  means  exhaustive  in  terms  of  the  kinds  of  entities,  relationships  and
processes which can be captured in an ABM. Particularly notable extensions,
each considered in turn,  are  sociality and cognition,  evolution,  environmental
change and virtual reality.
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• Sociality and cognition. Archaeologists have increased the realism of 
human agents by incorporating aspects of social interaction. This ranges 
from agents learning from one another (Kohler et al. 2012b, Lake 2000a, 
Mithen 1989, Premo 2012, Premo and Scholnick 2011), through simple 
collective decision-making (Lake 2000a) to the exchange of goods 
(Bentley et al. 2005, Kobti 2012), group formation (Doran et al. 1994, 
Doran and Palmer 1995) and the emergence of leaders (Kohler et al. 
2012b). Another way of increasing the realism of agents is to explicitly 
model learning and memory. These are a feature of a number of models of 
hunter-gatherer foraging, including Costopoulos’ (2001) investigation of 
the the impact of time-discounting, Mithen’s (1989, 1990) model of 
decision-making in Mesolithic hunting and Lake’s (2000a) spatial ABM of
Mesolithic land-use. The last of these extends to each agent having its own
geographically referenced cognitive map of its environment (fig. 14.1).

<Figure 14.1 about here>

• Evolution. In ABMs built to explore change over longer periods of time it 
may be appropriate for the population of agents to evolve as a result of 
agent reproduction involving recombination or mutation of agent rules (or 
other attributes that are normally fixed for the lifetime of the agent). 
Examples include Premo’s model of hominin prosociality (2005), Kachel 
et als’ (2011) evaluation of the ‘grandmother hypothesis’ for human 
evolution, Lake’s (2001b) model of the evolution of the hominin capacity 
for cultural learning and Xue et als’ (2011) model of the extent to which 
tracking the environment too closely can be detrimental in the long term. 
There are also a number of ABMs which model the cultural transmission 
of traits across agent generations, for example Premo and Kuhn’s (2010) 
investigation of the effects of local extinctions on culture change and 
diversity in the Palaeolithic.

• Environmental change. Many archaeological ABMs include 
environmental change. One option is external forcing, where the 
environment is altered over time to reflect palaeoenvironmental time-
series data. For example, in the Long House Valley ABM (see the case 
study below) the maize yield changes over time following rainfall data, 
while in Xue et als’ (2011) model changes in productivity are based on ice 
core data. Another option is to explicitly model the impact of agents on the
environment. For example, early versions of Kohler et als’ Village ABM 
reduced yields from continued farming (2000, 2012a), while recent 
versions also explicitly model the population growth of prey species such 
as deer (Johnson and Kohler 2012) thereby incorporating reciprocal 
human-environment interaction. Additionally, archaeologists interested in 
the socioecological (Barton et al. 2011) dynamics of long-term human 
environment interaction have coupled ABMs of human behaviour with 
geographical information systems or other raster models of natural 
processes such as soil erosion (e.g. Barton et al. 2010b,a and Kolm and 
Smith 2012).
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• Virtual reality. Ch’ng and Stone (Ch’ng and Stone 2006, Ch’ng 2007, 
Ch’ng et al. 2011) have combined ABM and gaming engine technology to 
generate dynamic vegetation models for archaeological reconstruction and
interactive visualisation of Mesolithic hunter-gatherers foraging in a 
landscape now submerged under the North Sea (fig. 14.2).

<Figure 14.2 about here>

Uses of ABM in archaeology

The general case for computer simulation in archaeology was initially advanced
by Doran in 1970 and more recent  discussion can be found in Cegielski  and
Rogers 2016, Costopoulos 2009, Kohler 2000, Kohler et al. 2005, Lake 2001a,
2014,  Premo  2008  and  Rogers  and  Cegielski  2017.  Today,  archaeologists
typically use spatial ABM (and ABM more generally) for one or more of three
main purposes.

• Understanding long-term change. The notion that archaeology has much 
to offer contemporary society as a science of long-term societal change 
and human-environment interaction (Johnson et al. 2005, van der Leeuw 
and Redman 2002, van der Leeuw 2008) has intellectual antecedents in the
mid 20C programs of cultural ecology and sociocultural evolution (Kohler
and van der Leeuw 2007a), but we now have better understanding of the 
importance of non-linearity, recursion and noise in the evolution of living 
systems, whether that is couched in the language of chaos (Schuster 1988),
complexity (Waldrop 1992), evolutionary drive (Allen and McGlade 
1987), contingency (Gould 1989), niche construction (Odling-Smee et al. 
2003), or structuration (Giddens 1984). Since ABMs explicitly model and 
give causal force to the micro-level parts (agents) they are well suited to 
exploring how potentially non-linear long-term systemic change arises 
from the decision-making of agents interacting with and even modifying 
their physical and social environment (see Kohler and van der Leeuw 
2007a and Barton 2013 for manifestos, Kohler and Varien 2012 for the 
history and role of simulation in one long-running socionatural study, and 
Beekman and Baden 2005 for a more overtly sociological perspective).

• Inferring behaviour from the archaeological record. ABM can be used in 
conjunction with ‘middle range theory’ (Binford 1977) to help infer what 
“organisational arrangements of behaviour” (Pierce 1989, p.2) and human 
decision-making (Mithen 1988) produced the observed archaeological 
evidence. Archaeologists usually make the connection between past 
behaviour and its expected archaeological outcome on the basis of 
“intuition or common sense, ethnographic analogies and environmental 
regularities, or in some cases experimental archaeology” (Kohler et al. 
2012a, p.40), but computer simulation is particularly advantageous for this
purpose when the candidate behaviours can no longer be observed and 
have no reliable recent historical record. Moreover, simulation makes it 
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possible to explore the outcome of behaviour aggregated and sampled at 
the often coarse grained spatial and temporal resolution of the 
archaeological record. Good examples of this are Mithen’s (1988, 1990) 
use of ABM generated virtual faunal assemblages resulting from different 
Mesolithic hunting goals and Premo’s (2005) spatial ABM of Pleistocene 
hominin food sharing which which revealed that the dense artefact 
accumulations at Olduvai and Koobi Fora, long attributed to central place 
foraging, could alternatively have been formed by routed foraging in a 
patchy environment.

• Testing quantitative methods. The fact that computer simulation can be 
used to generate expected outcomes of known behaviour also makes it 
well-suited for testing the efficacy of other analytical techniques. The role 
of such ‘tactical’ (Orton 1982) simulations is to provide data resulting 
from known behaviour which can then be sampled in ways that mimic the 
various depositional and post depositional process which determine what 
evidence we eventually recover. By varying the behaviour and/or the 
subsequent degradation of the data it is possible to investigate whether the 
analytical technique in question is capable of retrieving a (typically 
statistical) ‘signature’ which is unique to the original behaviour. Examples 
include tests of measures of the quantity of pottery (Orton 1982), the 
efficacy of multivariate statistics (Aldenderfer 1981b) to differentiate 
functional assemblages, the ability of cladistic methods to reconstruct 
patterns of cultural inheritance (Eerkens et al. 2005), the relationship 
between temporal frequency distributions and prehistoric demography 
(Surovell and Brantingham 2007), the effect of field survey strategy in the 
recovery of data from battlefields (Rubio-Campillo et al. 2011), and the 
robustness of population genetic methods when applied to time-averaged 
archaeological assemblages (Premo 2014). 

Method

Having decided on the purpose of an ABM, the next task is to determine what
should  be  included  and  in  what  detail  (system  bounding),  followed  by  how
exactly they should be modelled (detailed design). After this it will be necessary
to choose software to implement the model and, having implemented it, verify
that  it  works  correctly  (in  a  software  sense).  As  discussed  below,  creating  a
computer model can be informative in itself, but ultimately the purpose is to run
experiments, which should be carefully designed according the purpose of the
model and earlier decisions about system bounding and detailed design. Finally,
the  modeller  should  consider  how  to  disseminate  the  model  to  promote
reproducible research and the longer-term advancement of knowledge. Each of
these major topics is discussed in turn.

Problem definition and system bounding

The different uses to which archaeologists put ABM potentially pose different
requirements  of  a  model,  particularly  the  extent  to  which  it  should  produce
output  that  can  be  directly  compared  with  measurable  features  of  the
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archaeological record. However, it is always important to be clear about which
aspects  of  the  system can  be  considered  known and  which  are  the  unknown
aspects about which new knowledge is sought. Deciding what to include in a
model—system  bounding—requires  an  awareness  of  epistemic  issues  which
influence the capacity of a model to generate new knowledge (see Lake 2015 for
a more detailed treatment).

• Informative models are generative. It is widely agreed (see Beekman 
2005, Costopoulos 2009, Kohler 2000 and Premo 2008) that the 
explanatory power of a simulation model lies in the fact that it “must be 
observed in operation to find out whether it will produce a predicted 
outcome” (Costopoulos 2009, p.273). Models which must be run to 
determine their outcome are termed ‘generative’ (with respect to the 
phenomenon of interest). The challenge when building generative models 
is to avoid an infinite regress: imagine the complexity of a model in which
social institutions emerge from the actions of individual people whose self 
in turn emerges from explicit modelling of their underlying 
neuropsychology, which is in turn modelled as an outcome of the 
replication and mutation of genes. The outcomes of a model like this 
might be so sensitive to chance events that it would effectively have little 
or no explanatory power and, in any case, it would very likely be 
computationally intractable. The solution is to ‘bracket’ or hold constant 
those aspects of the world thought to be causally distant from the question 
at hand. For example, in biology it is possible to win useful insights into 
cycles of mammalian population growth and collapse without modelling 
atomic vibrations within the biomolecules that make up muscle fibres. 
Even sociologists who reject the ontological reality of social institutions 
accept that for practical purposes it may be necessary “to assume certain 
background conditions which are not reduced to their micro dimensions” 
(King 1999, p.223). Ensuring that an ABM is “generative with respect to 
its purpose” (Lake 2015, p.25) requires a clear statement of what 
question(s) the model is intended to answer in order that it is clear what 
can be treated as known, and thus included in the model specification, and 
what is to be explained, and should therefore be left to be discovered by 
running simulations (see also Kohler et al. 2012a).

• There is a trade-off between realism and generality. In practice it is 
impossible to simultaneously maximise the generality, realism, and 
precision of models of complex systems (Levins 1966). Broadly speaking,
one can have a generalised and probably relatively abstract model which 
fits many cases but none of them in every detail, or a more specific and 
probably more realistic model which fits just one or a few cases in greater 
detail. In the case of an ABM greater realism normally entails one or more
of the following:-

1. Capturing a larger number of different properties of the modelled 
entities. For example, does the environment contain woodland, or is
it made up of several different tree species which have different 
calorific output when burned? 
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2. Modelling more of the relationships between different entities and 
so capturing a larger number of real-world process. For example, 
when a hunter kills prey, does that have no effect on the subsequent 
availability of prey, or does it deplete the prey population and, if so,
does that in turn impact on future prey population growth? 

3. Less commonly, visual realism in the sense of being rendered in a 
virtual reality. 

There are different views on the relative merits of realism versus generality.
Kohler and van der Leeuw (2007b, p.3) argue that “A good model is not a
universal scientific truth but fits some portion of the real world reasonably
well,  in  certain  respects  and  for  some  specific  purpose”,  so  not
unsurprisingly  suggest  that  the  choice  between  realism  and  generality
should be made according to the scope and purpose of the model. Others
see  a  strong  presumption  in  favour  of  simplicity  (Premo  2008,
Costopoulos 2017) on the grounds that: i) understanding requires reducing
complexity to “intelligible dimensions” (Wobst 1974, p.151); ii) it is more
parsimonious to discover how much complexity is necessary to explain the
observed  phenomenon  than  it  is  to  assume  it  from  the  outset  (Premo
2007); and iii) models which have not been finely honed to fit a particular
case  but  can  account  for  a  greater  diversity  of  cases  have  greater
explanatory power because they allow one to predict what should happen
in a wider range of circumstances (Costopoulos 2009). 

Detailed design considerations

One of the advantages of ABM over other simulation paradigms is that it affords
great flexibility in conceptualising and implementing the modelled entities and
processes.

Environment

It is possible to build an ABM in which the agents are not explicitly situated in
any kind of space, although in archaeology that is largely confined to tactical
applications (e.g. Eerkens et al. 2005). Most archaeological ABM are spatial and
the introduction of space requires consideration of three important issues.

• Geometry. Spatial ABM can have very different degrees of geometric 
specificity (Worboys and Duckham 2004). A purely topological network 
of agents explicitly models which agent is connected to which. Adding 
edge-weights to the network (see also Chapter 15, this volume) allows the 
modeller to provide information about the relationship between the agents 
(which could be the distance between them in Euclidean space, or a non-
spatial property such as their similarity with respect to some trait). More 
commonly agents are located in Euclidean space, typically by placing 
them on a regular grid of cells akin to a GIS raster map. The grid can be 
‘empty’, simply serving to locate agents with respect to one another, or it 
may contain values representing terrain or some other aspect of the 
environment. Gridded environments can be abstract, or they can be a 
geographically referenced representation of some part of the earth’s 
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surface. Often the opposite edges of abstract gridded environments are 
joined to form a continuous surface on a torus (doughnut), thereby 
avoiding edge effects such as a reduction in spatial neighbourhood (see 
e.g. Premo 2005).

• Updating. An important consideration is whether the agents’ environment 
should be updated as the simulation runs. For example, in a simulation run
for 100 years it would probably not be necessary to update terrain height, 
whereas it might be appropriate to denude a resource exploited by agents 
as and when they ‘harvest’ it. The latter would require a decision about 
whether, when and how the resource should regenerate. A decision of this 
nature will require careful thought about system bounding because it 
involves determining whether the resource can simply be ‘reset’ to some 
fixed value, or whether it should be set to a new value which is itself the 
outcome of explicitly modelling the process of regeneration. The latter 
blurs the boundary between agents and environment because in a sense the
environment has acquired ‘behaviour’ whose outcome may not be known 
without running simulations—it too has become a generative 
phenomenon.

• Input data. The task of populating an ABM environment with appropriate 
values varies enormously in magnitude. An abstract model might use a 
synthetic environment of resource availability in which the absolute values
may be arbitrary but perhaps the environment as a whole is characterised 
by a particular property, for example a specific amount of spatial 
autocorrelation (Lake 2001b). In this case a suitable grid of values can 
easily be created using GIS or statistical software (see Chapter 6, this 
volume). At the other extreme are ABMs with environments that represent 
the real world at some point in time. The necessary paleoenvironmental 
reconstruction is often a significant project in its own right, entailing both 
fieldwork and modelling (e.g. the case study below and also Barton et al. 
2010a, Kohler et al. 2007, Wilkinson et al. 2007). Interpolating from 
sparse point observations of environmental data to a spatially continuous 
map of the distribution of a resource at an ethnographic-scale (say 20—
1000m linear resolution) is likely to require use of ecological models such 
as that developed by Cousins et al. (2003), or other methods of 
downscaling such as that recently described by Contreras et al. (2018). 

Agents

ABM is scale-agnostic, so agents can be any entity which can be treated as an
individual in the sense that it acts as a cohesive whole in respect of the particular
research problem (Ferber 1999). In archaeological ABM the agents are usually
individual people, or groups of people such as households, so the most important
design decisions usually concern agent goals, behaviour and learning (sociality is
discussed  later  in  the  context  of  collectives).  Note  that  many  of  the  issues
discussed here are not  relevant to uncomplicated abstract  models such as, for
example, ABM’s of cultural transmission in which agents simply copy traits from
other agents (e.g. Lake and Crema 2012).
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• Attributes, states and behaviour. Attributes are enduring traits which an 
agent possesses throughout its lifespan, for example whether it is male or 
female. In contrast, states change as a result of agent behaviour and 
decision-making (e.g. their location, energy reserves), the passage of time 
(age), or possibly external agent or environmental impacts (e.g. theft of 
resources). Whether a given trait counts as a fixed attribute or variable 
state depends on the framing of the research question. For example, 
consider two different ways of building an ABM to explore the transition 
from foraging to farming: endow agents with the decision-making 
capacity to change their preferred subsistence strategy (e.g. Bentley et al. 
2005), or allow the relative proportion of lifetime foragers and farmers in 
the overall population of agents to change as a result of differential 
reproduction, inter-generational cultural transmission, or land-use 
competition (e.g. Angourakis et al. 2014). The former makes the 
subsistence strategy a state, the latter an attribute. Which of these is the 
right approach depends on the archaeological evidence, the duration of the
transition and time-scale of the model, and the modeller’s views 
concerning the primacy of individual human agency.

• Goals. Agents are autonomous in the sense that their behaviour is directed 
by their own goals, which may be different from those of other agents 
(Ferber 1999, pp.9–10). Ordinarily an agent’s ultimate goals will be 
determined by the modeller, but its proximal (immediate) goal at any 
particular time during the simulation may be variable if has been endowed 
with the capacity for meta decision-making (see Mithen 1990). In 
evolutionary ABMs, in which agents differentially reproduce, the modeller
usually determines a set of ultimate goals but does not specify which 
individual agent has which goal, except perhaps for the first generation. 
Evolutionary ABMs in which the suite of goals can evolve by 
recombination during agent reproduction are uncommon in archaeological 
ABM.

• Rules. An agent’s behaviour depends on decision-making rules which 
determine how it ‘thinks’ it can best pursue its goals given the 
circumstances in which it finds itself. These rules are specified by the 
modeller (except in models where they can evolve), but if the model is 
generative it will be necessary to run the simulation to discover how the 
agents actually behave. Ordinarily agents are rational in the sense that 
their decision-making rules ensure a non-random relationship between 
their goals, circumstances and behaviour. Rationality in this sense requires
that agents have some measure of the absolute or relative ‘worth’ of the 
actual or predicted outcomes of different behaviours—what biologists 
term ‘fitness’ and economists term ‘utility’ (Railsback and Grimm 2012, 
p.143). This terminology and the fact that many archaeological ABMs use 
insights from behavioural ecology (see Kohler 2000 and Mithen 1989 for 
arguments in favour) has lead to criticism of agent decision-making rules 
on the grounds that they project modern rationality back into the past (e.g. 
Clark 2000, Cowgill 2000, Shanks and Tilley 1987 and Thomas 1991). 
There are two issues at stake here: i) is it appropriate to invoke a 
rationality grounded in modern evolutionary biology or neoliberal 
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economics, and ii) is it actually necessary to do so when using ABM. This 
debate was reviewed by Lake (2004), who argued that ABM can in 
principle accommodate alternative rationalities.

• Agent prediction / learning. In an ABM learning can take place at the level
of individual agents and/or the system as a whole. The latter is discussed 
in the context of collectives. An individual agent can be said to learn when
it:- 

1. Discovers what resources are present in the environment as it 
moves through it. Note that a cognitivist would require that the 
agent forms a representation of the environment that is separate 
from the environment itself—a good test of this is whether the 
agent can ever have incorrect knowledge of its environment 
(perhaps due to the subsequent actions of other agents). 

2. Forms a view about something that is not directly observable. For 
example, the likelihood of encountering a particular type of animal 
is not directly observable, but must be inferred from the number of 
actual encounters in a given duration and, as a result, different 
agents could end up with different estimates based purely on 
chance. The accuracy of this kind of learning in a changing 
environment depends on how much weight agents give to more 
distant events relative to less distant ones, where distance could be 
in either time or space or both (see Costopoulos 2001 and Wren 
et al. 2014). 

3. Copies behaviour or obtains knowledge from another agent. Note 
that use of the term ‘social learning’ to describe this is intended to 
emphasise the fact that such learning eschews direct observation of 
the environment, not that it necessarily entails a patterned (social) 
relationship between the agents involved (Hinde 1976). 

The possibility of explicitly modelling learning means that ABM can used to
build  formal  quantitative  models  in  which  humans  are  not perfect  all-
knowing decision-makers (see Bentley and Ormerod 2012, Mithen 1991,
Reynolds 1987, Slingerland and Collard 2012). 

Collectives

Both sociologists (Gilbert 1995) and archaeologists (Kohler and van der Leeuw
2007a, Beekman 2005) have advocated using ABM to study the emergence of
social  norms  and  institutions  from  the  beliefs  and  actions  of  individuals.
Emergence is a thorny philosophical problem (see Bedau and Humphreys 2008)
and readers  are  referred  to  Beekman 2005 and Lake  2015 for  more  detailed
discussion of  the  issues  as  they relate  to  archaeological  ABM.  Basically,  the
concept of emergence raises two main questions in the social sciences. One is
whether  the  apparently recursive relationship between individuals  and society
means that social institutions actually exert irreducible causal influence on agents
(see Gilbert 1995 for an overview). The other question is whether the fact that
human agents reason about the emergent properties of their own societies makes
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emergence in human systems qualitatively different from emergence in physical
systems (Conte and Gilbert 1995, Gilbert 1995).

In practice  one can distinguish three kinds of  ‘collective’ phenomenon in
ABM:- 

1. Robust population-level patterning in the interactions of individual agents 
who are not, however, aware of this patterning. 

2. Patterned interaction in which agents are in some sense aware of the 
pattern and perhaps even adjust their behaviour accordingly. For example, 
an agent might consider itself to belong to a group of agents who share 
complimentary goals, but not actually engage in collective decision-
making. 

3. Agents contributing to and abiding by collective decision-making. 
Examples of this kind of strong collective can be found in archaeological 
ABM of hunter-gatherer (Lake 2000a) and small-scale agricultural 
societies (Kohler et al. 2012b). 

The modeller must decide how far to pre-program collectives or whether to
allow them to emerge. The first kind of collective can readily be obtained by true
emergence, whereas the second and third types are more commonly (Railsback
and  Grimm  2012,  p.210)  scaffolded  by  programming  agents  with  additional
characteristics (such as a group ID) and/or programming the characteristics of the
collective entities (for example specifying the possible states and behaviours of
groups even before  any agents  actually  belong to them).  At  the  present  time
archaeological  ABM typically  offer  either  emergent  collective  phenomena,  or
collectives with some causal influence over agents, but not both (see Lake 2015
for a more detailed assessment).

Treatment of time

Modelling  how  a  process  unfolds  over  time  requires  decisions  about  the
appropriate temporal intervals and the scheduling of events.

• Temporal intervals and duration. The temporal intervals (timesteps) 
should reflect the frequency and duration of the relevant agent decision-
making and behaviour. It is not always necessary to calibrate a simulation 
in terms of real-world time: for example, a tactical simulation intended to 
help develop measures of drift in cultural evolution might have timesteps 
which are just abstract generations. The total duration should reflect the 
rate at which the outcomes of agent behaviour accumulate to produce 
detectable patterns, both in the simulation itself and in the archaeological 
record (if relevant). Note that the minimum temporal envelope within 
which changes in behaviour can be observed in the archaeological record 
will often be longer than the duration over which such changes are 
detectable in the simulation results. One of the advantages of ABM is that 
it can be used to investigate what the results of ethnographic-scale human 
behaviours might look like when time-averaged in the archaeological 
record (e.g. Premo 2014), that is to say, what the accumulation of material 
from multiple episodes of behaviour might look like when aggregated 
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across the minimum time-span that archaeologists can differentiate given 
the effects of post depositional processes and available dating techniques.

• Scheduling. An ABM can be event driven, in which case agents 
individually schedule their own activities (e.g. Lake 2000b), or 
programmed so that all agents undertake activities at the same set 
intervals. The latter scenario is much more common, but unless the ABM 
is being run on specialised parallel hardware, the simulation will proceed 
sequentially even if conceptually agents are considered to be undertaking 
activities at the same time. In this case is good practice to ensure that 
agents do not undertake activities in the same order at every timestep, so 
as to avoid arbitrarily advantaging or disadvantaging those that come 
towards the front or back of the execution queue. It will also be necessary 
to decide whether or not agents should be aware of the results of the 
behaviour of other agents who preceded them in the queue. As an 
example, agents who are unaware that other agents have already harvested
a resource in the same timestep will base their decision-making on 
imperfect knowledge, so the question is whether perfect or imperfect 
knowledge better captures reality. 

Implementation and verification

Computer hardware

Productive  ABMs  have  been  run  on  hardware  ranging  from laptops  to  high
performance  computers  (HPC)  offering  hardware  parallelism.  Hardware
requirements are a function of the complexity of the model and the rigour of the
experimental design (see the next section). In many cases it is the latter which
poses the greatest challenge—a simulation which completes in one hour becomes
a different proposition if it is necessary to undertake 1000 runs for all possible
combinations  of  three  parameters  which  can  each  take  ten  values!  Hardware
evolves very rapidly, but one general point worth noting is that simply increasing
the number of cores in a computer does not increase the speed of simulation
unless either the software supports parallel execution of the code, or it is possible
to arrange simultaneous execution of multiple different simulations.

Software platforms

Implementation of an ABM invariably requires some computer programming, so
the modeller will either need to learn to program or collaborate with others who
can. ABM can be implemented using a variety of programming languages and
software, each of which has pros and cons.

• General purpose programming languages (e.g. C++, Java, Python). These 
might be a good choice if the modeller already knows the programming 
language and the model is relatively simple. An ABM written in a general 
purpose compiled language such as C++ is likely to run very fast, but on 
the other hand the lack of existing functionality may slow down 
development of a more complex model, especially if a graphical user 
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interface (GUI) is required and/or integration with GIS or statistical 
software.

• Statistical/mathematical programming languages. To judge from recent 
examples (e.g. Crema 2014, Crema and Lake 2015) statistical 
programming languages such as R are probably better suited to simpler 
abstract ABM, especially where a GUI is not required. Quantitatively 
inclined archaeologists may already be conversant with languages such as 
R, but the greatest advantage of this approach is the direct integration of 
the model into a powerful framework for the statistical analysis of the 
simulation results (see for example Chapters 4 and 9, this volume), which 
can greatly facilitate rigorous experimental design.

• Dedicated simulation frameworks. Dedicated simulation frameworks (e.g. 
Ascape, Mason, Repast Symphony, SWARM) may provide a ‘drop-and-
drag’ graphical model building tool, but in most cases the modeller will 
end up writing at least some programming code using an object-oriented 
language such as Objective C, Java or Python. The main advantage of a 
simulation framework is that it provides code for functionality such as 
controlling the simulation, setting parameters, scheduling agents, drawing 
them on screen, logging results and often also exchanging data with other 
software such as GIS. The most popular frameworks are largely ‘paradigm
agnostic’ in that they do not impose a particular concept of what 
constitutes an agent or how to model the environment. Additionally, some 
frameworks (e.g. Pandora, Repast for HPC) support implementing ABM 
on high performance computers. Taken together, these attributes make the 
popular simulation frameworks well-suited for implementing complex 
computationally intensive ABMs.

• Integrated modelling environment. An integrated modelling environment 
provides a ‘one-stop’ solution for implementing an ABM by providing a 
single GUI for writing program code, running simulations, visualizing and
logging the results and even automating multiple runs with different 
parameters. The best known is NetLogo, which provides an excellent 
vehicle for learning ABM (Railsback and Grimm 2012 uses it) while at the
same time being capable of supporting useful scientific experiments in 
archaeology (e.g. Premo 2014). Indeed, a particular advantage of NetLogo
is the built-in support for sensitivity analysis, which facilitates and 
encourages the experimentation required to actually learn from an ABM. 
NetLogo was originally designed around a particular concept of agents 
and their environment and it may (probably rarely) be unnatural or 
perhaps even impossible to use it to implement a specific conceptual 
model. 

Integrating ABM and GIS

Spatial ABM require spatial input data and produce spatial results, so a means of
connecting to GIS is invaluable. Additionally, an ABM which explicitly models
environmental processes, for example soil erosion, might benefit from access to
relevant GIS functionality. The various methods of coupling or integrating ABM
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and GIS are discussed at  length by Westervelt  (2002) and Crooks and Castle
(2012), but are briefly sketched here.

• Loose coupling entails moving data between the ABM and GIS by saving 
and importing files that both can read, typically a real or de facto 
interchange format such as ESRI’s shapefile and ASCII grid formats. The 
most popular simulation frameworks and integrated modelling 
environments provide the necessary functionality to achieve this kind of 
coupling, which generally occurs at the beginning and end of each 
simulation.

• Tight coupling involves one or both of two enhancements over loose 
coupling. One is that the ABM can directly access the GIS data in its 
native format by connecting to the geodatabase maintained by the GIS 
software. Avoiding the need to convert data into an intermediate format 
and/or write it to disk potentially increases the speed of data exchange, 
thereby facilitating the second enhancement, which is synchronisation of 
the ABM and GIS, usually so that the GIS can actually be used to modify 
the environment occupied by agents at intervals during the the simulation 
(e.g. Barton et al. 2015). Tight coupling of this nature generally requires 
that both the ABM and GIS can be controlled by a meta-program 
(typically a Unix shell script or Python script).

• Integration takes tight coupling one step further and dissolves the 
distinction between the ABM and GIS software by embedding one in the 
other. One option is to model environmental change by implementing the 
relevant algorithms within the ABM, even to the extent of treating aspects 
of the environment (such as woodland) as being made up of agents 
(individual trees). Another is to modify the GIS software to implement 
agent behaviour and dynamic updating of the GIS data (e.g. Lake 2000b); 
this requires that the GIS software has a rich scripting language or that its 
source code is available for modification (as with open source software). 

Verification

Verification is  the  process  of  ensuring that  the  ABM program code  correctly
implements  the  conceptual  model  (Aldenderfer  1981a).  Verification  is  not
intended to determine whether the underlying conceptual model is a good model
of the world, although it can sometimes reveal flaws of logic, typically where the
conceptual  model  simply  does  not  specify  what  should happen under  certain
circumstances. Readers should consult Railsback and Grimm 2012, Chapter 6 for
practical advice about how to verify ABM program code.

Experimentation and analysis

Building an ABM can be said to have “conceptual utility” (Innis 1972, p.33) if it
has served to “create new problems and view old ones in new and interesting
ways” (Zubrow 1981,  p.143).  Nevertheless,  the full  potential  of  simulation is
only  realised  if  enough  time  and  resource  is  reserved  for  extensive
experimentation to generate an ensemble of ‘‘‘what if’ scenarios” (Premo 2008,
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p.50) or “alternative cultural histories” (Gumerman and Kohler 2001). Moreover,
devising a generative ABM capable of matching patterns in the archaeological
record is not sufficient to prove that the modelled process is what actually caused
that pattern. The basic problem is that of underdetermination or equifinality: the
possibility  that  other  processes  might  also  be  able  to  produce  the  observed
pattern. Mitigating the risk of making false inferences by replicating the past for
the wrong reason requires rigorous experimentation designed to answer a series
of questions.

What is the impact of chance events?

Most ABMs are stochastic, meaning that one or more processes have a random
component. Randomness might reflect genuine randomness in the real world, but
it is usually included to create initial variability in the model and/or as a means of
bracketing  out  unnecessary  detail  and  avoiding  an  infinite  regress  in  the
processes  that  must  be  modelled  (Railsback  and Grimm 2012,  p.201–2).  For
example, in an ABM of hunting, an agent might probabilistically encounter prey,
not because the movement of prey is actually random, but to avoid modelling the
decision-making  of  each  prey  animal  while  maintaining  the  realism  of  the
relevant aspect of prey movement (the frequency with which prey are found in
different  parts  of  the  landscape);  in this case implementing probabilistic  prey
encounter may also reflect the fact that agents are uncertain about whether they
will encounter prey. When incorporating random events it is important to choose
an appropriate  probability  distribution:  in  this  example  a  Poisson distribution
would be appropriate (the probability of a number of events occurring in a given
time  period),  but  a  uniform  or  normal  distribution  would  better  characterise
variability  in  many attributes.  Note,  however,  that  drawing quantities  from a
normal distribution can potentially produce extreme values that would simply be
impossible in the real world and although this will (by definition) be rare it could
invalidate the model or even halt the simulation.

The  impact  of  stochasticity  on  simulation  results  should  be  explored  by
running multiple  simulations  which are  identical  apart  from the seed used to
initialise the random number generator. In this way it is possible to build up an
‘envelope’ containing  all  possible  simulation  results  and  thus  to  determine
whether chance alone is  sufficient  to produce different  outcomes that  support
different substantive conclusions. It is difficult to provide a hard-and-fast rule for
how many runs  should  be  made,  but  one  way of  deciding  is  to  observe  the
declining rate at which new results fall outside the existing envelope and then
stop once this  falls  to  a  level  which suggests  any possible  outcomes not  yet
observed will be extremely rare. Note that multiple runs should be made for each
possible  parameter  combination  (see  next),  so  experimentation  can  rapidly
become computationally demanding even if the model itself is relatively simple.

How sensitive is the model to parameter changes?

It  is  usually  desirable  to  conduct  multiple  simulations,  each  with  a  different
combination of parameters (fig. 14.3). There are three main reasons for this, each
requiring a slightly different approach.
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• Dealing with parameter uncertainty. If there is uncertainty about what 
parameter values best represent the state of the world in the past then it 
will be necessary run multiple simulations with different values in order to
establish the likelihood of different outcomes (rather as for dealing with 
stochasticity). Note, however, that the likelihood of different outcomes can
only be estimated if attention is paid to both the range of parameter values 
and the probability that they are correct, since proportionately more 
simulations should be run with the more likely parameter values. 
Consequently, the parameter values should be drawn from a distribution 
which reflects the nature of the uncertainty: for example a uniform 
distribution if all values are equally plausible, but perhaps a normal 
distribution if a certain value is most likely and more distant values 
increasingly unlikely.

• Establishing what is possible. If the aim is to establish what could have 
happened in history under certain circumstances then it will be necessary 
to investigate what outcomes are possible given different assumptions and 
starting points. As with the case of parameter uncertainty this requires 
multiple simulation runs made with parameter values of interest. However,
since the aim is not to establish the likelihood of different outcomes there 
is no need to attach a probability to different parameter values.

• Estimating unknown parameters. The aim here turns the conventional 
approach on its head by making the parameter values the unknowns that 
are to be estimated by running simulations. The logic is to vary the 
parameters and discover what values most reliably produce simulation 
results that match the archaeological record. A good example of this 
approach is Crema et als’ (2014) use of simulation to investigate what kind
of cultural transmission best explains observed changes in European 
Neolithic arrowhead assemblages. Formal models of cultural transmission 
usually have population size (of ‘teachers’) and innovation rate as 
important parameters, but these values are rarely known with certainty and
indeed are often quantities that the modeller would like to infer. Crema et 
al. adopted an approximate Bayesian computation framework in which 
they provided prior probability distributions for these parameters and then 
ran multiple simulations which collectively sampled possible 
combinations of parameter values. By comparing the simulation results to 
the observed changes in the observed archaeological data they were then 
able to provide posterior probabilities for the parameters, in other words, 
to infer which values were more or less likely than others given both 
initial knowledge and the results of the simulations. 

<Figure 14.3 about here>
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How sensitive is the model to structural changes?

The behaviour of a simulation model depends on the structure of the model (e.g.
the  agent  rules)  as  well  as  parameter  values  and  chance  events.  Given  the
problem  of  equifinality  there  is  a  case  for  comparing  “alternative  model
scenarios” (Railsback and Grimm 2012,  p.113) rather than simply conducting
sensitivity analysis of just one model. Railsback and Grimm note that this is not
yet  common  and  is  therefore  a  “less  formalized  and  more  creative”  process
(Railsback  and  Grimm  2012,  p.306)  because—unlike  parameter  values—
alternative rules can not be drawn from some defined quantitative distribution,
but  must  instead  be  chosen  on  the  basis  of  theoretical  understanding.  For
example,  in  a  spatial  ABM of  foraging the modeller  might  swap the goal  of
maximising intake with that of what is technically termed ‘satisficing’ (obtaining
sufficient  calories).  However,  pursuing  this  example,  it  can  be  argued  that
making this change is as much a comparison of two alternative models as it is a
test of the robustness of the original model. Indeed, there is a case for abandoning
hypothesis-testing  using  single  models  in  favour  of  ‘multi-model  selection’
(Rubio-Campillo 2016), which also carries with it a subtle epistemic shift from
attempting to discover if one model is true to attempting to discover which of the
currently available models is ‘best’ (Burnham and Anderson 2002). Adopting a
model-selection approach opens up the possibility of more formalised methods
for  choosing  between  models.  Again,  Crema  et  als’ (2014)  investigation  of
cultural transmission in European Neolithic arrowhead assemblages provides a
good example of how this might be achieved in practice.

Can the model account for multiple patterns?

One way of increasing confidence that simulation results fit observed data for the
right reasons—in other words, that the model is a good representation of reality
—is to adopt an approach known as “pattern oriented modelling” (‘POM’; see
Railsback and Grimm 2012, p.291 and Altaweel et al. 2010). The basic idea is
that  it  is  often relatively  easy to  ‘tune’ a  model  to  replicate  a  single  dataset
comprising  just  one  variable,  but  rather  more  difficult  to  replicate  multiple
datasets and/or multiple variables. Achieving the latter suggests that the model is
‘structurally  realistic’.  Railsback  and  Grimm  (2012)  provide  an  excellent
introduction to POM, but  a  brief  archaeologically oriented example serves to
illustrate the concept. Mithen (1993) built a computer simulation in which human
hunting impacted on the population growth of mammoths. Rather than simply
attempt to replicate the decline in the overall mammoth population, he explicitly
modelled the age structure of the mammoth population. This not only provided
an additional point of contact with the archaeological record (one more readily
available  than overall  population size) but  also better  captured the real-world
causal dynamics—that it might matter whether or not humans hunted animals of
reproductive age.

Dissemination and re-use

Archaeological  knowledge advances  not  just  by collecting more data,  but  by
subjecting  existing  interpretations  to  new  scrutiny.  However,  although  much
archaeological  interpretation  relies  on  the  use  of  computers  and  complex
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software,  “their  role  in  the  analytical  pipeline  is  rarely  exposed  for  other
researchers  to  inspect  or  reuse”  (Marwick  2017,  Abstract).  There  is  growing
awareness of the need to rectify this situation (see also Ducke 2013 and Rollins
et al. 2014) and Marwick has recently applied to archaeology some principles of
reproducible research that have emerged in other fields. In the specific case of
ABM reproducibility requires the following.

• Dissemination of the program code and input data. Ideally it should be 
possible for other researchers to run the simulation, both to verify the 
published results and to explore other scenarios. Program code and data 
can be disseminated as ‘supplementary material’ hosted alongside 
published journal articles, placed on web-based hosting service such as 
GitHub, or perhaps better still, uploaded to a collective repository such as 
Open ABM (https://www.openabm.org/). The ABM program 
code should include inline comments to help others understand how it 
works and should be accompanied by information about the computational
environment required to run it.

• Documentation of the conceptual model. Researchers may be able to infer 
many aspects of the conceptual model from the program code itself, but 
that presupposes that the program is actually an accurate reflection of the 
original modeller’s intention and, in any case, it is helpful to have further 
information about assumptions that have been made. The ODD (Overview,
Design concepts, and Details) protocol has been proposed as a standard for
describing agent-based models and ODD-style documentation has been 
incorporated into the NetLogo integrated simulation environment. The full
specification can be found in Grimm et al. 2006 and Grimm et al. 2010, 
but here is the outline: 

Overview The purpose of the model (which aspects of reality are 
included and why?). What the entities are and how they are 
characterised? What processes are included and when do they 
occur? 

Design concepts For example, is the model intended to produce 
emergent phenomena? Does it involve individual or population-
level adaptation? Does it include stochastic elements? What is the 
nature of any collectives? 

Details How is the model initialized? What are the external inputs? A 
fuller mathematical and/or verbal description of the model. 

• Documentation of the experimental design. In order to reproduce and/or 
extend published results, other researchers will also need to know the 
exact range of parameters ‘swept’ during multiple runs. Any post-
processing of the raw simulation output (for example the aggregation or 
averaging of agent state variables) should also be documented. 
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Case study

As noted above,  the Long House Valley ABM (Dean et al.  2000,  Axtell  et al.
2002) is a well known archaeological model (Kohler et al. 2005) which illustrates
many of  the  features  of  a  modern spatial  ABM (fig. 14.4).  There  are  several
reasons for drawing attention to this model as a case study. One is that it tackles
the kind of research question (collapse of societies) that excites interest beyond
academe and to that extent, at least, is therefore a good advertisement for the use
of spatial ABM in archaeology. Moreover, and not unrelated, a version of the
model (called “Artificial Anasazi”) is available as part of the standard release of
the popular and easy to install NetLogo ABM software (Stonedahl and Wilensky
2010b). Consequently, the interested reader can quite quickly get to the point of
running  the  model,  experimenting  with  it  and  ultimately  exploring  and  even
modifying  the  code.  Finally—and  unusually—this  model  has  a  history
(Swedlund et al. 2015) to the extent that it has been re-implemented and studied
by  researchers  who  were  not  part  of  the  original  modelling  effort,  and  this
includes an analysis of what actually causes the model outcomes ((Janssen 2009,
Stonedahl and Wilensky 2010a)). This history of use is an instructive lesson in
how to ‘do science’ with archaeological spatial ABM.

<Figure 14.4 about here>

Research question

Long House Valley, in northeastern Arizona, was sparsely occupied by hunters
and gatherers until the introduction of maize at around 1800 B.C. initiated the
gradual  development  of  substantial  permanent  settlements  and  the  Puebloan
Anasazi cultural tradition. The valley was abruptly abandoned around A.D. 1300
and  the  population  migrated  elsewhere.  A key  question  is  what  caused  the
abandonment and, in particular, to what extent it can simply be explained by the
onset of climatic deterioration at circa A.D. 1270.

Three features of Long House Valley make it  particularly suitable for the
application  of  ethnographic-scale  spatial  ABM.  One  is  that  the  valley  is  a
topographically  discrete  entity  (of  )  which,  given  the  focus  on  agricultural
subsistence, provides a natural ‘edge’ for the simulated world. The second feature
is  the  availability  of  very  rich  and  high  resolution  palaeoenvironmental  data
which make it possible to estimate the maize growing potential of every hectare
in the valley annually from A.D. 400–1450. Third, the valley has been intensively
surveyed, so there is relatively complete knowledge of the Puebloan settlement
pattern, much of it dated by dendrochronology. Additionally, it is claimed that
ethnographic  studies  of  historic  Pueblo  groups  can  be  used  to  parameterise
aspects of the model, such as the nutritional requirements of agents.

Model design

The two main components of the Long House Valley model are the landscape and
agents. The landscape is a 100x100m raster representation of Long House Valley
in which each cell is allocated to one of 7 different zones. These differ in their
agricultural yield (of maize) and are variably susceptible to changes in the Palmer
Drought Severity index (a measure of the impact of moisture and temperature on
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crop growth). Additionally, the model includes a raster map of water sources. In
later versions of the model, variability in soil quality within zones is modelled
stochastically by the simple expedient of adding a random number drawn from a
uniform distribution between zero and some upper bound representing the spatial
harvest variance.

Each agent represents a household of 5 persons. Agents farm one map cell
and occupy a separate unfarmed residential location which must be within 1km
of  their  farmland.  Agents  have  a  fission  age,  at  which  they  spawn  a  new
household, and an age of death, when they are removed from the model. In the
first version of the model these attributes were the same for all agents, but in later
versions  some  stochastic  heterogeneity  was  introduced  by  randomly  drawing
these values from a uniform distribution with specified lower and upper bounds.
The goal of agents is to grow sufficient maize to meet their annual requirement
for survival. Agents who anticipate falling short search for a new cell to farm as
per the rules in table 14.1 and, if successful, move there. Agents who exceed their
fission age have a chance of spawning a new household, which take a fraction of
the parent household’s stored maize.

The model is run from A.D. 800–1350 in annual time steps. At each time step
the Palmer Drought Severity Index is  updated,  which alters the yield of map
cells. The map of water sources is also updated, which is one of the criteria used
by agents attempting to move to a new cell  to farm. Agents also pursue their
goals (harvesting maize,  possibly relocating and possibly fissioning) once per
time step. The result of iterating these processes is a simulated annual record of
population size and settlement location.

Further details of the model can be found in several sources. The version of
the model distributed as part of the standard NetLogo model library includes an
ODD-like  description,  which  can  also  be  viewed  at
http://ccl.northwestern.edu/netlogo/models/ArtificialA
nasazi.  More  detail,  including  tables  of  agent  attributes  and  rules  in  the
original  model  are  published  in  Axtell  et al.  2002.  Similar  information  is
provided by Janssen 2009, who additionally also describes certain submodels (for
example, how exactly the agricultural yield is calculated).

Experiments

The first version of the model has 17 parameters, and the model was initially run
with values based on ethnographic accounts of historic Peublo groups,  as per
table 14.2. It was found that with these “base case” (Axtell et al. 2002) parameter
values  the  model  could  reproduce  qualitative  features  of  the  history  of
demographic  changes  and  settlement  patterns  in  Long  House  Valley,  but  the
actual population sizes were up to six times too large (Axtell et al. 2002, Kohler
et al. 2005). Subsequent adjustment of farming yields to reflect characteristics of
prehistoric  maize  coupled  with  the  introduction  of  landscape  and  agent
heterogeneity, as mentioned above, resulted in the model closely matching the
historic population sizes (estimated from room counts).

The  experimental  design  for  the  version  of  the  model  with  greater
stochasticity  entailed  calibrating  the  model  by  varying  the  upper  and  lower
bounds of the stochastic parameters to find the values which produced the best fit
between the simulated and historic population sizes (Axtell et al. 2002). This was
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undertaken  for  both  individual  runs  and  for  averages  of  15  runs,  the  latter
reflecting  the  fact  that  runs  with  identical  parameters  can  produce  different
results by chance alone.

Janssen (2009) subsequently conducted a further round of experiments on a
version of Long House Valley model re-implemented in NetLogo. He was able to
replicate the results reported by Axtell et al. 2002, although it is interesting to see
(Janssen 2009, fig. 3) that even the calibrated model can produce quite variable
results, some of which do not so convincingly match the qualitative features of
the  population  history  (fig. 14.5).  Perhaps  more  importantly,  Janssen  (2009,
para. 4.1)  also  conducted  experiments  designed  specifically  to  answer  the
question  “What  leads  to  the  good  fit  of  the  simulation  with  the  aggregated
population  data?”.  He  found  that  the  fit  between  the  simulated  and  historic
population  is  primarily  a  function  of  landscape  carrying  capacity  rather  than
parameters determining the longevity of households or at what age they might
fission.

Implications

The best fitting runs of the calibrated model produce annual population sizes that
track the estimated historic values uncannily well up until abandonment of Long
House Valley. If Janssen’s analysis is correct, this may be primarily a function of
the  quality  of  the  carrying  capacity  estimates  derived  from  painstaking
palaeoenvironmental research. On the other hand, even the best-fitting runs fail
to predict the complete depopulation of Long House Valley at circa AD1300 and
so  all  those  who  have  analysed  the  model  are  in  agreement  that  it  has
convincingly demonstrated that environmental factors alone can not account for
the abrupt  abandonment of the valley.  Indeed, Kohler et al.  2005 suggest that
archaeologists should instead look for sociopolitcal or ideological drivers of this
event.  The  role  that  ABM  might  play  in  this  next  instalment  of  research  is
discussed by Janssen.

Conclusion

Archaeological ABM are used for a variety of purposes and vary greatly in their
complexity.  Twenty—perhaps  even ten—years  ago,  ABM was  almost  always
computationally ‘cutting edge’ in some way, and this is still true of some more
complex models, especially those requiring high performance computing and/or
generating  virtual  reality  visualisations.  On  the  other  hand,  many  recent
archaeological  ABMs have been implemented using well-established software
and  run  on  relatively  mainstream  hardware.  This  does  not  mean  that  those
archaeological ABM’s are not computationally demanding, but that hardware and
software  are  now  sufficient  to  permit  greater  focus  on  other  issues  such  as
experimental  design.  The fact  that  the  technological  aspects of  ABM have in
many cases become less remarkable (literally so in recent publications) suggest
that the technique has genuinely come of age as useful part of the archaeological
toolkit. As the technology of ABM becomes ever more accessible it is hoped that
this  chapter  will  help  users  understand  what  makes  an  archaeological  ABM
scientifically productive.
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Tables

Table 14.1: Rules for choosing new farming and settlement locations (from 
Axtell et al. 2002, Table 2).

A. Identification of agricultural location:
The location must be currently unfarmed and uninhabited.
The  location must  have  potential  maize  production sufficient  for  a  minimum
harvest of 160 kg per person per year. Future maize production is estimated from
that of neighboring sites.
If multiple sites satisfy these criteria the location closest to the current residence
is selected.
If no site meets the criteria the household leaves the valley.
B. Identification of a residential location:
i) The residence must be within 1 km of the agricultural plot.
ii) The residential location must be unfarmed (although it may be inhabited, i.e.,
multihousehold sites permitted).
iii) The residence must be in a less productive zone than the agricultural land
identified in A.
If  multiple  sites  satisfy  these  above  criteria  the  location  closest  to  the  water
resources is selected.
If no site meets these criteria they are relaxed in order of iii then i.
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Table 14.2: Original ‘base’ parameter values for the Long House Valley model 
(from Axtell et al. 2002, Table 4).

 
Parameter Value
Random seed Varies
Year at model start A.D. 800
Year at model termination A.D. 1350
Nutritional need per individual 800 kg
Maximum length of grain storage 2 years
Harvest adjustment 1
Annual variance in harvest 0.1
Spatial variance in harvest 0.1
Household fission age 16 years
Household death age 30 years
Fertility (annual probability of fission) 0.125
Grain store given to new household 0.33
Maximum farm to residence distance 1,600 m
Initial corn stocks, minimum 2,000 kg
Initial corn stocks, maximum 2,400 kg
Initial household age, minimum 0 years
Initial household age, maximum 29 years
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Figures

 

 

 

Figure 14.1: Schematic illustration of the features of an ABM with cognitive 
agents, based on the model described in M. W. Lake (2000) “MAGICAL 
Computer Simulation of Mesolithic Foraging”, in T. A. Kohler and G. J. 
Gumerman, Eds., Dynamics in Human and Primate Societies: Agent-Based 
Modelling of Social and Spatial Processes, New York: Oxford University Press, 
pp. 107–143. Mapping data ©Crown copyright and database rights 2019 
Ordnance Survey (100025252).
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Figure 14.2: Example of the realistic rendering of a simulated landscape. Adapted
with permission from E. Ch’ng and R. J. Stone (2006) “3D Archaeological 
Reconstruction and Visualisation: An Artificial Life Model for Determining 
Vegetation Dispersal Patterns in Ancient Landscapes”, Proceedings of the 
International Conference on Computer Graphics, Imaging and Visualisation 
(CGIV06) 0-7695-2606-3/06

. 
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Figure 14.3: Graphed ABM simulation results which collectively illustrate 
several aspects of experimental design: (i) plotted points of the same colour and 
k value differ due to stochastic effects alone; (ii), two different parameters σ and 
k are varied; and (iii) two different agent rules, “CopyTheBest” and 
“CopyIfBetter” are explored. Reproduced with permission from figure 4 in E. R. 
Crema and M. W. Lake (2015) “Cultural Incubators and Spread of Innovation”, 
Human Biology 87: 151–168.
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Figure 14.4: Comparison of Long House Valley simulation results with 
archaeological evidence. Adapted with permission from T. A. Kohler, G. J. 
Gumerman and R. G. Reynolds (2005) “Simulating Ancient Societies”, Scientific
American 293: 76–84.
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Figure 14.5: Population curves produced by 100 runs of the calibrated Long 
House Valley Model, differing only in random seed. Reproduced under a CC-BY-
4.0 license from M. A. Janssen (2009) “Understanding Artificial Anasazi”, 
Journal of Artificial Societies and Social Simulation 12 (4) 13 
http://jasss.soc.surrey.ac.uk/12/4/13.html.
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