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Abstract
Expanding robot autonomy can deliver functional flexibility and enable fast deployment of robots in challenging and unstruc-
tured environments. In this direction, significant advances have been recently made in visual-perception driven autonomy,
which is mainly due to the availability of rich sensory data-sets. However, current robots’ physical interaction autonomy levels
still remain at a basic level. Towards providing a systematic approach to this problem, this paper presents a new context-aware
and adaptive method that allows a robotic platform to interact with unknown environments. In particular, a multi-axes self-
tuning impedance controller is introduced to regulate quasi-static parameters of the robot based on previous experience in
interacting with similar environments and the real-time sensory data. The proposed method is also capable of differentiating
internal and external disruptions, and responding to them accordingly and appropriately. An agricultural experiment with
different deformable material is presented to validate robot interaction autonomy improvements, and the capability of the
proposed methodology in detecting and responding to unexpected events (e.g., faults).

Keywords Robotic manipulation · Interaction autonomy · Impedance control · Adaptive control

1 Introduction

To respond to the rapidly increasing demand for high levels of
flexibility in manufacturing and service applications, recent
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research has focused on endowing robots with the ability
to react and adapt to their environments. From the one hand,
robotic systemsbasedon torque sensing andactuationor vari-
able impedance mechanisms have been developed to make
them compliant to their surroundings (Albu-Schaffer et al.
2003; Tsagarakis et al. 2016). On the software level instead,
a great deal of attention has been devoted to the perception
autonomy of the robots, to capture the effects of appearance
and context (Kotseruba et al. 2016; Harbers et al. 2017).

Although these two directions have seen significant
advancements over the past decade, the bridging action,
i.e., associating perception to interaction in an autonomous
way, still remains in a non-satisfactory level. This funda-
mental shortcoming has limited the application of robots
in out-of-the-cage application scenarios, making a frame-
work to enhance their physical interaction autonomyacritical
requirement.

Previous attempts to endow robots with adaptive interac-
tion skills have pursued different directions. A well-known
approach is based on learning from human demonstrations
(Katz et al. 2014, 2008; Kronander and Billard 2014), which
has shown promising results when sufficient training data
is available. In fact, the high dependency of observation-
based approaches to the quality of training data sets has
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been a limiting factor. Moreover, while performing complex
manipulation tasks, accurate sensory measurements related
to physical interactions (e.g., forces and torques) may not be
possible through wearable sensory systems, that is why most
learning by demonstration techniques function on a kine-
matic level.

To provide a solution to this problem, analytical tech-
niques have focused on the use of impedance control (Diet-
rich et al. 2016; Lee et al. 2014; Ajoudani et al. 2014b),
force control for both fixedmanipulators (Roveda et al. 2018;
Righetti et al. 2014) and mobile base applications (Roveda
2018), or hybrid interaction controllers (Anderson andSpong
1988; Schindlbeck and Haddadin 2015). However, in the
majority of cases, the control parameters are pre-selected by
robot programmers based on their experience in carrying out
analogous tasks. In such a way, the framework cannot adapt
when task conditions change, hence, the full potential of such
powerful control techniques cannot be exploited (Yang et al.
2011; Ferraguti et al. 2013).

To provide a solution to this shortcoming, adaptive learn-
ing techniques have been proposed. In (Xu et al. 2011),
an adaptive impedance controller for upper-limb rehabili-
tation, based on evolutionary dynamic fuzzy neural network
was proposed to regulate the impedance profile between the
impaired limb and the robot. However, this method lacks ver-
satility, since the algorithm is limited to a specific task. In a
similar work (Gribovskaya et al. 2011), empirical constants
had to be set, which reduced the flexibility of the framework.
In addition, the desired impedance matrices were assumed
to be diagonal, resulting in limited adaptability in selective
Cartesian axes. More generic methods have been introduced
by reducing impedance control to position control (through
high position loop gains) when there is no interaction (Li
et al. 2012) with the aim to minimize the error between the
desired and actual trajectories (He and Dong 2018). This
significantly reduced the system’s ability to deliver a distin-
guished respond to the desired (task) and undesired (e.g.,
collisions) interactions (see also Nemec et al. 2018).

To address these challenges and towards bridging the
autonomy gap in the perception-reaction chain, we pro-
pose a novel manipulation framework that integrates various
components to achieve a context-aware and adaptive robot
physical interaction behavior.

The main component of our framework is a multi-axes
self-tuning impedance controller, to tune the Cartesian stiff-
ness and damping profiles (see Fig. 1) in any arbitrary
direction, which coincide with the direction of interaction,
based on the previous experience in interacting with sim-
ilar environments and the real-time robot sensory data.
As (Song et al. 2019) report in the survey and comparison of

Fig. 1 The robotic arm explores the materials in its workspace, iden-
tifying and self-tuning its impedance parameters along the directions
of interaction. These are represented by the principal axis of the geo-
metric ellipsoids depicted in the figure. Longer arrows represent higher
Cartesian stiffness and damping values

impedance control techniques on robotic manipulation, vari-
able impedance controllers need to determine when and how
to vary the impedance parameters. Autonomously carrying
out this non-trivial task falls within the primary aims of this
work.

To recognise and localize different materials in the robot
workspace and associate their newly/previously identified
characteristics to the robot interaction knowledge (i.e.,
impedance control and self-tuning gains), a visual percep-
tion module has been developed. This module, embedded
in our multi-axis self-tuning controller, enables the robot to
explore an environment, to identify its characteristics, and to
effectively interact with it. This behavior is inspired by the
humans’way of adapting to their surroundings, by constantly
building internal models of the external world, while explor-
ing and identifying it. When interacting with new or similar
environments, the prior knowledge is used as a preparatory
strategy, while keeping open the possibility of adaption, to
update our internal knowledge (Kawato 1999). Another sim-
ilarity between our method and human behavior is given by
the default compliant behavior of the robot. In fact, when no
interaction is expected, we tend to relax our muscles to com-
ply with unexpected external disturbances (and to minimize
energy consumption).

The organization of the individual components and their
inter-connections are achieved throughaFiniteStateMachine
(FSM). The proposed FSM fuses the data received from the
robot sensors and the vision module, to distinguish expected
interactions from disturbances and faults, and accordingly,
to self-tune control gains and trajectories in real-time. Note
that, the presented FSM is connected to the main experiment
we conducted to validate the proposedmethod. Nevertheless,
the algorithm can be applied to many other applications by
modifying its states, as it is described in a section dedicated
to the algorithm scalability.

We prepared an agricultural experimental setup to demon-
strate the potential of the presentedmethodology in one of the
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Fig. 2 The framework is composed by 5 modules, each of them is
developed as a ROS node. Data between them are exchanged via ROS
messages on the ROS topics illustrated with dotted lines. The messages

in blue are published by the proposed software architecture, while the
others represent the robot state (in green) and the vision data provided
by the camera (in red) (Color figure online)

most promising but somewhat disregarded fields in robotics.
Two Franka Emika Panda robotic arms, one equipped with
the Pisa/IIT SoftHand (Ajoudani et al. 2014a) and the other
with a standard gripper were used to perform the experimen-
tal task.

The original idea of this work was presented in a short
conference paper (Balatti et al. 2019). However, to advance
the methodology and explain its full potential, in this article,
we have added significant contributions w.r.t. to the original
work. Here, we introduce a novel “Fault Detection” unit, able
to recover from unexpected collisions with the boundary (for
instance due to a fault of the perception unit). This can also
be useful to detect substantial changes in the material prop-
erties, since these would be system malfunction symptoms
in industrial production. Next, the performance of the multi-
axis self-tuning impedance controller is thoroughly evaluated
with several details. Additionally, we performed new exper-
iments to compare our method to non-adaptive techniques,
to highlight the full potential of the framework in interacting
with uncertain environments. Furthermore, we conducted an
analysis to guarantee the stability of the controller, since it is
based on continuous variations of the impedance parameters.
To illustrate the generality and scalability of the presented
approach, we also included a new experiment showing the
controller adaptation while grasping and handling a pallet
jack handle.

2 Method

The main purpose of the presented framework is to enable
robots to acquire an original set of skills to explore various
environments, identify their characteristics and accordingly

adapt to them, build the knowledge, and use it for future
interactions. This methodology is based on the concept of
self-adaptability, even after building the knowledge on task
or environments. In this way, the robot has the ability to
adapt by starting from a reasonable initial condition, even if
the environmental conditions were subject to changes.

The required theoretical and technological components to
build such a framework are integrated into five main mod-
ules, that are illustrated in Fig. 2: (1) a Cartesian impedance
controller whose parameters can be tuned online, (2) a multi-
axes self-tuning impedance unit to tune the aforementioned
parameters when an interaction with the environment is pre-
dicted, (3) a trajectory planner to calculate the spatial points
to be reached by the controller, (4) a visual perceptionmodule
that locates the materials’ positions in the robot workspace,
and (5) a Finite State Machine (FSM) that, based on the data
provided by (4), triggers unit (2) and (3), being also respon-
sible of detecting system faults.

2.1 Cartesian impedance controller

Cartesian impedance control techniques provide the ability to
achieve any arbitrary quasi-static behavior at the robot end-
effector (Schindlbeck and Haddadin 2015; Ajoudani et al.
2017). This is however limited to the positive definiteness and
symmetry of the impedance matrices, by considering robot
torque boundaries and the number of degrees of freedom
(≥ 6).

This control technique relies on torque sensing and actua-
tion, with the vector of robot joint torques τ ∈ R

n calculated
as follows:

τ = M(q)q̈ + C(q, q̇)q̇ + g(q) + τ ext, (1)
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Fig. 3 The self-tuning impedance algorithm flow chart: if no interac-
tion is expected, the robot keeps a compliant behavior, otherwise the
impedance parameters can be subject to changes

τ ext = J(q)T Fc + τ st, (2)

where n is the number of joints, q ∈ R
n is the joint angles

vector, J ∈ R
6×n is the robot arm Jacobian matrix, M ∈

R
n×n is the mass matrix, C ∈ R

n×n is the Coriolis and
centrifugal matrix, g ∈ R

n is the gravity vector and τ ext is
the external torque vector. Fc represents the forces vector in
the Cartesian space and τst the second task torques projected
onto the null-space of J .

Forces Fc ∈ R
6 are calculated as follows:

Fc = K c(Xd − Xa) + Dc(Ẋd − Ẋa), (3)

where K c ∈ R
6×6 and Dc ∈ R

6×6 represent respectively the
Cartesian stiffness and damping matrix, Xd and Xa ∈ R

6

the Cartesian desired and actual position, Ẋd and Ẋa ∈ R
6

their corresponding velocity profiles. The Cartesian desired
position and velocity are given in input by the Trajectory
planner (see Sect. 2.3).

2.2 Self-tuning impedance unit

In the near future, robots will enter in several application sce-
narios to collaborate with humans, in environments designed
and built to match their human counterparts’ needs, charac-
terised by high uncertainty levels. To respond to the varying
task conditions and uncertainly levels, we aim to develop a
novel self-tuning impedance controller that is able to adapt its

parameterswhen an interaction is expected. The adaptation is
limited to the expected direction(s) of interaction/movement
to avoid unnecessary stiffening/complying of the remaining
axes (Fig. 3).

Since our method implies the adaptation of the impedance
parameters only in the interactions that are expected, we need
to distinguish when this is the case. To this end, we define
a Boolean value, named Interaction expectancy (Ie), that
results from the Boolean logic rule Ie = Im ∧ I f . The first
value, Im , induced by the FSM, is True only in the states
where an interaction with the environment is expected. The
second one, I f , set by the visual perception module, is set
to True when the tool attached to the end-effector is inside
the material that has to be manipulated. The importance of
this consideration has already been shown in our preliminary
work (Balatti et al. 2018) and it will not be repeated here.

When no interaction is expected, and therefore Ie is False,
the Cartesian stiffness matrix K c is set to a default diago-
nal matrix with all the non-zero coefficients set to kmin to
deliver a compliant behavior. That is because the base con-
dition of the presented self-tuning impedance controller is
to be soft in all Cartesian and redundant axes, unless an
interaction is expected to occur. The impedance values to
render softness, however, has to be chosen based on a trade-
off between the position tracking accuracy (affected by the
existence of unmodelled dynamics such as friction) and the
force response, if an unexpected interaction occurs.

The damping matrix Dc is derived from K c by:

Dc = �∗DdiagK adj∗ + K adj∗Ddiag�∗, (4)

where Ddiag is the diagonal matrix containing the damping
factor (ζ = 0.7), K adj∗K adj∗ = K c and�∗�∗ = �, where�

is the desired end-effector mass matrix (Albu-Schaffer et al.
2003).

Instead, when an interaction is expected, being Ie True,
the Cartesian stiffness matrix K c and consequently the
damping matrix Dc are subject to changes increasing (or
decreasing) the impedance parameters only along the direc-
tion of the desired movement defined by:

−→
P = Xd,t − Xd,t−1, (5)

(which can also be calculated from Ẋd ) and keeping a
compliant behavior, set to kmin and dmin = 2ζ

√
kmin (Albu-

Schaffer et al. 2003), along the other axes. To achieve this,
the stiffness and damping matrices, as being symmetric and
positive definite, can be expressed by:

A = U�V ∗, (6)
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which is knownby theSingularValueDecomposition (SVD).
Such a decomposition enables us to project the desired stiff-
ness and damping, calculated w.r.t. the reference frame of

desired motion vector
−→
P , onto the reference frame of the

robot base. U ∈ R
3 and V ∈ R

3 are orthonormal bases, and
� ∈ R

3 is a diagonal matrix whose elements are the singular
values of matrix A sorted in decreasing order and represent-
ing the principal axes amplitudes of the resulting geometric
ellipsoid. The columns ofmatrixU form a set of orthonormal
vectors, which can be regarded as basis vectors. In this work,
the first column of U represents the desired motion vector−→
P , while the second and the third ones are derived from the
first in such a way they form an orthonormal basis. Since the
Hermitian transpose V ∗ ∈ R

3, and the resulting matrix A,
that represents the impedance values, is positive definite, we
have that:

V ∗ = V T , (7)

V = U . (8)

Combining (6), (7) and (8), we can derive the stiffness and
the damping matrix:

K c = U�kUT , (9)

Dc = U�dUT , (10)

where the diagonal matrix�k and�d coefficients are respec-
tively the desired stiffness and damping coefficients along
the direction of the vectors composing the U basis. They are
diagonal matrices defined by:

�k = diag(kst, kmin, kmin) (11)

�d = diag(dst, dmin, dmin) (12)

where kst is the self-tuning stiffness coefficient to be set along

the motion vector
−→
P and dst its correspondent damping ele-

ment. kst is defined at every time t as:

kst,t = kst,t−1 + α�P�T , (13)

�P = |�X · ̂P |, (14)

�X = Xd − Xa, (15)

where α is the update parameter, �P is the absolute value
of the Cartesian error �X projected onto the direction of the

motion vector
−→
P , and normalized ̂P , where�T is the control

loop sample time. It is important to notice that, kst is subject
to changes only when �P is beyond a limit. To this end,
we introduce a threshold, defined as �P t , since usually in
impedance controlled robots it is hard to achieve a small error

between the desired and actual position, unless the gains, i.e.
stiffness and damping, are very high and it can be compared
to position control. In this way we let a small margin of
error, not to increase the impedance parameters when it is
not required by the task, and to arrest its growth when a
desired accuracy is achieved. Moreover, we want to avoid
unnecessary adaptation which can be caused by unmodeled
robot dynamics and small amount of friction at joints, and
therefore the error can also not be related to the task.

In order to increase robot autonomy, thedesired impedance
parameters need to be adapted in a reasonably short time.
This implies an accurate choice of α. A high value of this
parameter would lead to a rapid convergence in materials
with high density. Nevertheless, choosing a high value for
non-densematerial will cause needless stiffening of the robot
thatmust be avoided. Therefore, to obtain an averageα value,
as a trade-off between fast convergence and stiffening per-
formance, we performed experiments on different materials
such as soil, sand, rocks with different density, air and water.

To achieve this, for every material m, αm was estimated
and the average value was defined through the arithmetic
mean of all the n materials taken into account in the analysis:

α = 1

n

n∑

m=1

αm . (16)

There are also situations in which the impedance param-
eters adaptation has to be carried out in the opposite way,
i.e. decreasing them, and (13) cannot be applied. An exam-
ple is given by the case where the tool attached to the robot
end-effector exits the material, even still being inside the
interaction expectancy area. We define �Fext,t as the varia-
tion of the external forces, along the motion vector, detected
at the robot end-effector at time t w.r.t. the ones measured at
time t − 1:

�Fext,t = (Fext,t − Fext,t−1) · ̂P . (17)

In the aforementioned situations, �Fext,t is positive and kst
is defined at every time t as:

kst,t = kst,t−1 − β�Fext,t�T , (18)

whereβ is given byα scaled by a factor of 10−2, to implement
a similar rate of adaptation as in (13). To avoid unneces-
sary changes caused by negligible force sensing difference,
the positiveness of �Fext,t is defined considering a small
ε. A pseudo-code of the proposed method is presented in
Algorithm 1.
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Algorithm 1 Self-tuning impedance algorithm

Input:
−→
P

Output: K c, Dc
Initialization :
�k = kmin I3×3, �d = dmin I3×3
kst,0 = kmin, dst,0 = dmin
Control loop :
Ie = Im ∧ I f
if (Ie ∧ No fault detected) then

̂P =
−→
P

‖−→P ‖2
�P = |(Xd − Xa) · ̂P |
if (�P ≥ �P t ) then

kst,t = kst,t−1 + α�P�T
else if (�Fext ≥ ε) then

kst,t = kst,t−1 − β�Fext,t�T
end if
�k,1,1 = kst,t
�d,1,1 = 2ζ

√
kst,t

U = getOrthonormalBasis(
−→
P )

K c = U�kUT

Dc = U�dUT

else
K c = kmin I3×3
Dc = dmin I3×3

end if
return K c, Dc

2.3 Trajectory planner

The framework offers different kinds of motion planning tra-
jectories. The Trajectory planner unit receives in input from
the FSM (see Sect. 2.5) the target pose, the desired period to
reach it, and the type of trajectory planner that can be selected
among:

– point-to-point motion between two via points, i.e. start-
ing from the actual one and reaching the desired one that
is given as input. To achieve smoother trajectory pro-
files and prevent impulsive jerks, this kind of motion is
implemented with fifth-order polynomial. In this way,
velocity/acceleration initial and final values are set to
zero.

– scooping motion, which reaches the target pose through
a half circular motion on the vertical axis, replicating
a scooping movement. This type of motion, designed
with constant angular rate of rotation and constant speed,
is helpful to collect materials when a scoop-like end-
effector is attached to the robot flange.

– shaking motion, that is based on a rapid sinusoidal move-
ment performed in place. By getting as input the shaking
direction, this motion is needed to completely pour the
materials in the pot during the “Task” state, without leav-
ing any residuals on the spoon.

Note that, the design and implementation of the trajecto-
ries are not explained in details since they do not contribute
to the novelty of this work, as they arewell-known in robotics
literature. However, a short introduction is useful to under-
stand better the different phases explained in Sect. 2.5.

2.4 Visual perceptionmodule

Visual perception plays a key role in the Finite StateMachine,
providing information about the materials which are going to
be manipulated by the robotic arm. The module splits in two
sub-systems, using as input RGB-D data from a range sen-
sor (ASUS Xtion PRO) placed in fixed position with respect
to the arm and facing the materials. In the first sub-system,
different types of materials are detected in the scene, using
RGB data, and their three-dimensional (3D) surface convex
hull polygon is calculated, using depth data (materials local-
ization sub-module). In the second one, a peak point per each
material is localized in the base robot frame, using the depth
data (peaks localization sub-module).

Materials Localization To localize different materials in
3D, we use color-based region growing segmentation. The
RGB-D sensor provides colored point clouds that are first
transformed in the robot’s base frame (z-axis upwards and
y-axis towards left). Point cloud filtering, such as pass-
through and box-cropping, is applied to keep only those
points of interest that are inside the working space of the
robot. Keeping the structure of the point cloud in its origi-
nal grid organization (i.e. instead of removing points, setting

Fig. 4 The visual perception module. Upper left: the RGB-D point
cloud, acquired from the range sensor. Upper right: each material ver-
tices V1, V2, V3, V4 visualized in different colors. Down: the peak point
pi per each material i (Color figure online)
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them toNaNs)makes themethodmore efficient. Then, region
growing is applied based on color, in order to classify similar
points in clusters. This is a two-steps algorithm. In the first
step, points are sorted based on their local curvature. Regions
that grow from points with minimum curvature (more flat
surfaces) reduce the number of segments. Two neighboring
points are consider to be part of the same material if their
color is similar to each other. The process continues for a
seed’s neighboring point, until no further neighbors can be
classified to the same segment. In the second step, clusters
with similar average colors or small size aremerged. In Fig. 4,
the result of this process is visualized. To localize the convex
hull polygon of each material, we identify the extreme points
in the xy-plane (i.e. the 2.5D bounding box), which results
to vertices V1, V2, V3, V4 (Fig. 4), stored and passed to the
Finite State Machine.

Peaks Localization Identifying each material’s peak point
is straightforward after having localized the materials them-
selves. The peak point pi , for a material i , is the point with
themaximum z-value. Similarly, eachmaterial’s center is the
average of the encapsulating polygon’s vertices.

2.5 Finite state machine

To increase the autonomy of the system, we designed a Finite
StateMachine that is responsible of managing the transitions
between the different phases of the framework (see Fig. 2).
This unit gets as input the data sent by the Visual perception
module, and by processing them, defines the target poses that
are sent to theTrajectory planner.Moreover, thismodule is in
charge of determining if an interaction with the environment
is to happen, in order to activate the Self-tuning impedance
unit.

The FSM is formed by four states. The “Workspace
definition” state is responsible of acquiring the knowledge
regarding the environment where the robot will operate in
the next steps. To do so, it gets as input the vertices of the
polygons that shape thematerialswithin the robotworkspace.
These data are received from the “Materials localization” unit
and stored in an appropriate data structure. In order to iden-
tify the kst parameter for every material, the FSM switches
to the “Exploration” state. At this step, the robot end-effector
grasps a stick-like tool, and reaches in a compliant way the
material placed in the leftmost part of the workspace, pre-
viously identified by the Visual Perception Module. After
having dunked into thematter, the Self-tuning impedance unit
is triggered: both the boolean value Im and I f have been set
to True, since a contact with the environment is expected and
the end-effector tool is inside the material. Then, the robot
follows a point-to-point motion towards the polygon cen-
ter while adapting the impedance parameters as described
in Sect. 2.2. The framework stores the resulting kst in the
data structure, associating it to the corresponding material.

After that, the tool is pulled out from the substance and the
impedance parameter identification process is repeated for all
the materials in the workspace, until the rightmost material
has been analyzed. Notice that, it is not necessary to contin-
uously track the tool pose to check if it is inside the material
and therefore to activate Im . In fact, during the “Workspace
definition” state, the Visual Perception Module localizes and
defines the areas of interaction, and from here on, through
the robot forward kinematics, we can identify whether a tool
is located within that interaction expectancy area or not. This
is possible since the tool is attached to the robot end-effector.
In such a way, we can define whether Im has to be set to True
or False at every time step.

To enhance the robustness of the system to unexpected
events, we designed a “Fault Detection” sub-unit, within the
“Exploration” state, that is triggered in case of a collision
with the boundary (possibly due to a perception unit fault). If
the sensed external forces projected along the motion vector
experience an abrupt increase, the robot ends its motion and
goes back to its homing position. The external forces trend
w.r.t the robot displacement, is estimated through a linear
regression algorithm, computed for every n samples. When
the linear regression slope m goes beyond a threshold set to
mfault, the fault is triggered.

Next, in the “Materials distribution” state, the vision unit
detects the highest point for every matter through the “Peaks
localization” unit. The FSM receives these points and asso-
ciates them to the relative material. During the final state,
named “Task”, the robot needs to scoop some material and
pour it in a pot held by another robot. The scooping trajecto-
ries are designed to start in the Euclidean points identified as
peak points to ensure that some material is found in that part
of the container. While holding a scooping tool, as a scoop or
a small shovel, the robot starts to carry out the task by reach-
ing the first scheduled material with the default compliance
kmin set in all the Cartesian axes. When it dunks inside the
matter in order to scoop some of it, and therefore activating
the interaction expectancy value, the impedance parameter
are adapted in the direction of the motion setting the relative
kst for every material. This value is retrieved from the data
structure, where it was stored during the learning phase in the
“Exploration” state. Like this, since the very beginning of the
task, the robot does not lag behind and can execute the task in
a more precise manner. When the scooping motion, that goes
from the highest point towards the polygon center, is over,
the material is poured in a pot and the process starts over
with the next material, as scheduled by the task sequence.
There are cases in which the substances’ viscous properties
are subject to changes over time. This can be given either
because of the material intrinsic properties or due to exter-
nal circumstances. That is why, even in the “Task” state, the
impedance parameters are exposed to changeability. Never-
theless, we decided to set a maximum value kst_max that can
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Fig. 5 The experimental setup is composed by twoFrankaEmikaPanda
robotic arms (one equipped with the Pisa/IIT SoftHand), and an ASUS
Xtion Pro RGB-D camera

be reached by kst in this state to avoid significant variations
w.r.t. the one computed in the “Exploration” state:

kst_max,m = kst_exploration,m ∗ (1 + p)

0 ≤ p ≤ 0.5 ∀m, (19)

where kst_exploration,m is the value stored in the “Exploration”
state for material m, and p is the percentage of variation that
can be set. If, in the “Task” state, this value is exceeded, the
“Fault Detection” sub-unit is triggered, and the robot goes
back to its homing position. This method can be useful for
detecting both a collisionwith the boundary (for instance due
to a fault of the perception unit) and a substantial change in
the material properties, since in industrial production these
would be symptoms of systemmalfunction ormaterial incon-
sistency.

3 Experimental setup

The framework software architecture is developed with the
robotics middleware Robot Operating System (ROS) using
C++ as client library. The modules illustrated in Sect. 2 are
implemented as ROS nodes, and they communicate through
the ROS topics depicted in Fig. 2 by means of the pub-
lisher/subscriber design pattern.

The experimental setup (Fig. 5) includes two Franka
Emika Panda robotic arms. The main robot carries out all the
steps of the described method, and the other one is used as a
support to the first one, providing the pot where the materials
are poured after the scooping task. The presented architecture
relies upon a tailored version of franka_ros metapackage,
the ROS integration for Franka Emika research robots. This
package integrates libfranka, Franka Emika’s open source
C++ interface, into ROS and ROS Control. This interface
communicateswith the robot trough theFrankaControl Inter-
face (FCI), that provides the current robot status and enables
its direct control with an external workstation PC. The com-

munication is realized via an Ethernet cable in real-time, and
the communication rate is 1 kHz.

An underactuated robotic hand, i.e., the Pisa/IIT Soft-
Hand (Ajoudani et al. 2014a), is used as end-effector. We
installed a pole in front of the robot arm, and we mounted on
top an ASUS Xtion Pro RGB-D sensor to provide the per-
ception data. The camera calibration is conducted w.r.t. the
robot base frame.

4 Experiments

We conducted experiments within an agricultural robotics
scenario, in order to validate the presentedmethod. The setup
included a container, placed between the camera pole and
the robot, where three different materials were placed. To
demonstrate distinct behaviors in the impedance parameters
self-tuning, we considered materials with substantial differ-
ence among their viscoelastic properties, and their large-scale
use in agriculture: seeds, soil and expanded clay. A video of
the experiment is available in the multimedia extension.

We follow the FSM states sequence to describe the exper-
iments. The materials’ container had a rectangular shape,
and the materials inside were equally separated into three
rectangular areas. Therefore, in the “Workspace definition”
state, the FSM receives from the “Materials localization” per-
ception unit the 12 Euclidean points delimiting the areas of
the three materials. Accordingly, it updates the column of the
data structure proposed in Table 1 related toPolygon vertices.
Afterwards, the robot grasps ametal stick 27cm long, to carry
out the next phase, i.e. the “Exploration” state. Based on (16)
and on the values reported in Table 2, α was set to 20,000.
To ensure a good level of compliance in case of unpredicted
collisions, the value of kmin was set to 500N/m. During this
state, the robot gets to the leftmost material, formed by seeds
(material 1), dunking the metal stick into it. An interaction
with the environment is expected to happen, and therefore
the Ie value is activated, as shown at t = 1.5 s in the fourth
plot of Fig. 6. Consequently, the Self-tuning impedance unit
is enabled. While keeping the tool immersed in the material,
the robot performs an 18cm longmovement along the x axis.
Since �P goes beyond the threshold �P t set to 1cm, kst
increases following (13) as shown in the first plot of Fig. 6.As
a consequence, the Cartesian stiffness along the direction of
interaction is adapted. In this case the movement direction is
performed only on x axis.With the increase of the impedance
values, we can notice that �P , that represents the Cartesian
error along the motion vector, gets reduced and goes below
the threshold �P t . The maximum value reached by kst in
this case is equal to 1100N/m, and it gets associated to the
relativematerial as reported in the right column of Table 1. To
complete the “Exploration” state, the robot repeats the same
described procedure for the other twomaterials. As expected,
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Table 1 The data structure containing the data coming from the Self-tuning impedance unit, relative to the stiffness kst (rounded to integers), and
from the Visual perception module, relative to the polygon vertices of the materials and their peak points

Material Polygon vertices (x,y,z) Peak point (x,y,z) kst[N/m]
V1 V2 V3 V4

1 (0.66,0.30,0.10) (0.36,0.30,0.11) (0.36,0.09,0.09) (0.66,0.08,0.09) (0.63,0.22,0.14) 1100

2 (0.66,0.09,0.08) (0.36,0.09,0.09) (0.36,−0.16,0.10) (0.66,−0.16,0.09) (0.62,−0.01,0.12) 1650

3 (0.66,−0.14,0.10) (0.36,−0.14,0.10) (0.36,−0.36,0.13) (0.66,−0.36,0.11) (0.59,−0.29,0.13) 1330

Table 2 To derive the value of
α, different materials have been
taken into account. The resulting
average, computed through (16),
has been set to 20,000

m αm

Air 16,200

Water 16,800

Seeds 19,400

Soil 22,300

Expanded clay 21,800

Soil + water 23,500

the soil (material 2) turns out to be the stiffest material, with
kst reaching a value of 1650N/m, and the expanded clay
(material 3) is in between the other two, i.e. 1330N/m. In the
third plot of Fig. 6, we can notice how these values are tuned.

After the identification of the impedance parameters, the
FSM transits to the “Material distribution” state. The starting
point of the scooping trajectories are detected by the “Peaks
localization” unit of the perception module, and stored in the
relative column of Table 1.

Then, the robotic hand grasps a scooping tool in order to
carry out the “Task” state, subdivided in four substates. The
robot scoops and pours in a plant pot, provided by the sec-
ond robotic arm, the three materials following this sequence:
soil (a), plant seeds (b), other soil (c), and expanded clay (d).
These four substates are depicted in the plots of Fig. 7 and
Fig. 8. In the latter, the green triangles represent the highest
point of each substance provided by the “Peaks localization”
perception module. To foster a deeper understanding, the
axes of this figure are oriented to analyze the task from a lat-
eral view. In this way, it is clear to see how the stiffness value
kst is adapted along the direction of the motion ̂P inside the
interaction expectancy area. Faint and shorter arrows sym-
bolize lower stiffness values, while longer and more vivid
arrows represent higher stiffness values. The direction of the
motion vector in the Cartesian space is also specified in the
plot related to the three components of the normalizedmotion
vector ̂P in Fig. 7.

When no interaction is to happen, i.e. outside the contain-
ers, the robot keeps a compliant profile, and kst is always
set to kmin, i.e. 500N/m. Entering the interaction expectancy
area leads to a rapid adaptation of kst, that assumes the value
stored in Table 1 relative to eachmaterial. This can be noticed
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Fig. 6 “Exploration” state: when an interaction with the environment
is predicted, the self-tuning stiffness kst value grows based on the error
in the direction of the motion (�P)

by the sudden growth in the arrows length and color intensity.
In case�P keeps its value below the threshold, it means that
the viscoelastic properties of thematerial did not change, and
so there is no need for further adaptation. When the scooping
is over, but still being inside the container, kst gets reduced
according to (18), as can be seen the last part of the scooping.
Notice that, negligible variations could lead to unnecessary
changes, so we designed a moving average window to calcu-
late �Fext. In the last part of the depicted motion, the robot
exits the interaction expectancy area, and kst is restored to
its default compliant value, i.e. kmin.

To show that the impedance self-tuning would occur also
in case of viscoelastic properties changes, we decided to pour
some water in the soil between the “Exploration” and the
“Task” states. This adaptation is visible when the scooping
tool enters the soil during “Task” (a), and it is caused by �P
exceeding the threshold �P t as shown in the third plot of
Fig. 7 at t = 6.3s when the Self-tuning impedance unit is
activated again. The value of kst for material 2 gets increased
from1650N/m to 1750N/m.This is highlighted by the differ-
ence between the first and the other arrows inside the leftmost
container in Fig. 8.

In Fig. 9 we show how the tuning of the Cartesian stiff-
ness is achieved only in the directions of movement ̂P , when
the tool is inside the materials in two of the “Task” state
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Fig. 7 “Task” state: starting from the impedance values already tuned
in the “Exploration” state, the framework allows the robot not to lag
behind, so that �P remains below the �P t threshold. Only in “Task”

(a),�P goes beyond the threshold, since thematerial viscoelastic prop-
erties have been intentionally changed

Fig. 8 A lateral view of the four “Task” substates. kst is projected onto the direction of motion and here represented by means of red arrows, whose
intensity grows with their value (Color figure online)

Fig. 9 “Task” state: the tuning of the Cartesian stiffness is achieved
only in the directions of movement ̂P . The vectorial sum of the three
diagonal components is always equal to kst

sub-phases. In “Task”(a), kst of material 2 is adapted at
t=6.5 s, since the soil viscoelastic properties were changed

as explained above.We notice that the sum of the three Carte-
sian stiffness diagonal components is always equal to kst. In
“Task”(d), we see the adaptation also on K c(y).

To show that the framework reliability has been increased
bymeans of the two “Fault Detection” sub-units, we repeated
the experiment simulating a fault in the perception unit by
changing the pose of the box containing the materials both
during the “Exploration” state and the “Task” state execution.
Like this, following the desired trajectory, the tool grasped
by the robot end-effector collides with one of the container
sides.

Figure 10 shows an execution of the “Exploration” state
performed to retrieve the first material kst. As can be noticed
in the third subplot, performing a linear regression (red
solid curve) on the measured external forces data (blue scat-
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Fig. 10 “Fault Detection” during “Exploration” state: if the external
forces linear regression slope m goes beyond the threshold mfault , the
robot stops the currentmotion and goes back to its homing configuration
in a compliant way

Fig. 11 “Fault Detection” during “Task” state: if kst goes beyond the
kst_max threshold, the execution halts and the robot goes back to its
initial configuration in a compliant way

tered curve) allows to define in the fourth subplot the linear
regression slope m (blue curve) that when goes beyond the
threshold mfault set to −15, triggers a fault at t=4.5 s. The
robot stops performing the task and goes back to its homing
position in a compliant way, as illustrated in the second sub-
plot that shows the Cartesian stiffness parameters. The linear
regression was performed every 500 samples, i.e. every 0.5 s.

On the other hand, Fig. 11 shows the behavior of the “Fault
Detection” sub-unit associated to the “Task” state. Since in
the “Exploration” state (performed without faults), kst for
material 1 reached 1100N/m, by applying (19) with p =
0.3, we obtain that kst_max,1 = 1433N/m. As shown in the
plots, at the time of the collision, i.e. t=6s, �P increases
suddenly and so kst,1 goes beyond kst_max,1 computed above.
The execution halts, the robot exits thematerial and goes back
to its initial configuration.

To demonstrate further the validity and the effectiveness
of the proposed method, we decided to perform an other
experiment inserting an obstacle inside one of the materi-
als, so as to simulate an uncertain environment, and carrying
out one more time the FSM “Task” state. We put a piece of
wood inside the seeds (material 1), placing it in the middle

of the path of the expected reference trajectory. In this way,
the tool held by the robot had to react adapting to the wood
shape. We repeated the experiment three times. At first, we
removed the “Self-tuning impedance unit” from the frame-
work, so that the impedance parameters were not subjected
to changes even if an interactionwas expected.With this con-
figuration, we performed the experiment with high and low
impedance parameters andwe compared the obtained results.
Afterwards, we carried out the task with the same setup, but
with the impedance regulation enabled. To evaluate the three
described trials, whose plots are illustrated in Fig. 12, we
decided to compare the external interaction forces acting on
the robot end-effector, i.e. Fext, and the Cartesian error pro-
jected onto the direction of the movement, i.e.�P , under the
different conditions of the impedance parameters.

The first column represents the data acquired while keep-
ing always a high level of the impedance parameters, i.e.
1100N/m (see bottom plot), that is the value reached by kst
for material 1 during the “Exploration” state. In this case,
although the tracking of the error�P does not exceed exces-
sively the imposed threshold �P t , we measured interaction
forces on z axis, represented by the blue line on the top plot,
reached a quite high value (≈ 13N). Therefore, this approach
could lead to a system failure caused by a tool/robot dam-
age. Notice that, with higher obstacle curvatures, the external
forces measurements could scale quite rapidly easily leading
to more substantial failures.

The second column shows the plots of the trial with lower
impedance parameters, set at 500N/m, as no interaction was
ever expected. The robot is able to better comply with the
external environment, as highlighted by lower interaction
forces on z axis, that reach a maximum value of ≈ 10N, and
therefore damages are more likely prevented. Nevertheless,
complying both with the expected and unexpected interac-
tions with the environment leads also to a loss in terms of
performances. This can be seen in the plots representing�P ,
where the robot lags behind the desired trajectory up to 3cm.
This behavior can not be considered desirable, since the task
is not carried out as expected.

Lastly, the third column depicts the data logged applying
the method presented in this work. Stiffness and damping are
updated on-line, based on the interaction expectancy and on
the direction of the movement ̂P . The external interaction
forces are further reduced, reaching at maximum ≈ 8N. �P
is significantly less w.r.t. to the case with low impedance.

In Fig. 13, we report the setup used in this experiment
enhanced with the reference trajectory (blue curve) and the
measured path (red curve) logged during the last trial, when
the “Self-tuning impedance unit” was enabled.
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Fig. 12 The plots show three different executions of the “Task” state
with an object placed inside material 1 (setup shown in Fig. 13): at
the left without applying the presented method and always keeping
high impedance values, in the center as the previous case but with low

impedance parameters, and at the right the trial with the Self-tuning
impedance unit enabled. In the latter case, there are less external inter-
action forces w.r.t. the first case, and the error in the direction of the
movement �P is substantially less w.r.t. the second trial

Fig. 13 To simulate an uncertain environment, a piece of wood has
been inserted inside material 1. The curves in the picture represent the
desired trajectory (blue line) and the actual trajectory (red line) (Color
figure online)

5 Tank-based system passivity observer

Since the presented controller is based on continuous vari-
ations of the impedance parameters, we must demonstrate
that the passivity of the system, and so its stability, is guar-
anteed. Following the approach presented in (Ferraguti et al.
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Fig. 14 The analysis reveals that the tank energy is above the lower
bound T̄l set to 0.5 J for the entire experiment, thus guaranteeing there
is no loss of stability

2013), we implemented a tank-based approach to monitor
the system stability. Formally, the model of the robot in the
task space is given by:

�(x)�̈X + (μ(x, ẋ) + Dd)�̇X

+K const�X − ωxt = Fext,

ẋt = σ

xt
(�̇X

�
Dd�̇X) − ω��̇X . (20)
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(a) (b)

Fig. 15 The self-tuning impedance algorithm applied to the handle
pulling phase of a standard industrial pallet jack.When an interaction is
expected and�P t is beyond a threshold, the impedance parameters are

tuned along the motion vector ̂P (a). On the right, the initial and final
configuration assumed by the cobot are depicted, with a sketch repre-
senting the trajectory followed by the robot to pull the handle down (b)

where the desired stiffness is equal to K d(t) = K const +
K ′(t), being K const ∈ R

6×6 the constant stiffness term
and K ′ ∈ R

6×6 the time-varying stiffness. �(x) ∈ R
6×6

and μ(x, ẋ) ∈ R
6×6 are the Cartesian inertia and Corio-

lis/centrifugal matrices respectively. The scalar xt ∈ R is the
state associated with the tank and the tank energy T ∈ R

+
and T = 1

2 x
2
t . σ ∈ R and ω ∈ R

6 respectively are

σ =
{
1 if T (xt ) ≤ T̄u
0 otherwise

, (21)

ω =
{

− K ′(t)x̃
xt

if T (xt ) ≥ T̄l

0 otherwise
. (22)

where, T̄u ∈ R
+ is a suitable, application dependent, upper

bound that avoid excessive energy storing in the tank while
T̄l ∈ R

+ is a lower bound below which energy cannot be
extracted by the tank for avoiding singularities in (20) and
thus the time-varying stiffness K ′(t) will be removed. For
a detailed analysis of the system passivity, please refer to
(Ferraguti et al. 2013).

Figure 14 shows the stability analysis performed dur-
ing the entire duration of the experiment, i.e. including the
“Exploration” and the “Task” states, when no faults occurred.

As we can see from the bottom subplot, the tank energy was
above the lower bound (T̄l = 0.5J ) during all the phases,
which means that the full stiffness including the constant
(set to the compliant value, 500N) and varying parts can be
realised without loss of stability.

6 Algorithm scalability

The self-tuning impedance algorithmhas extensively demon-
strated its validity in the previous sections.However, its appli-
cability is not limited to the experimental setup described so
far. In fact, by changing the FSMstates illustrated in Sect. 2.5,
various applications can gain advantages thanks to the pro-
posed methodology.

An example is given by pick and place tasks, where the
robot keeps a compliant profile on all the Cartesian axes
before picking and after placing, while adjust the impedance
parameters while carrying the task. Preliminary results,
although tuning the parameters only along Cartesian axes,
are presented in (Balatti et al. 2018) for a debris removal
task.

Another application field is represented by the logistics
sector, where cobots are expected to automatize repetitive
and physically demanding works, as transporting airport
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mobile stairways, heavy industrial carts, andwarehouses pal-
let jacks. To this end, hereafter we show a demonstration of
the self-tuning impedance algorithm applied to the pulling
task of a standard industrial pallet jack. We define a new
FSM, that includes a “Handle pull down” state where Im gets
triggered. On the other hand, vision comes into play trigger-
ing I f whenever the end-effector is within the area around
the pallet jack handle (similarly as in (Balatti et al. 2018)),
which is recognized through a standard template matching
perception algorithm. The “Handle pull down” state is per-
formed with a circular trajectory as depicted in the lower
part of Fig. 15b. In this sketch the red arrows represent the
online stiffness parameters adaption as in Fig. 8. In the plots
of Fig. 15a, it is represented the tuning of kst along themotion
vector, triggered only when Ie is set to True and �P is
beyond the threshold �P t , set to 3cm. The top right part
of Fig. 15 represents the initial and final configuration of the
MOCA robot (Wu et al. 2019) used in this experiment. A
video showing the pallet jack handle pulling results is part of
the multimedia extension.

7 Conclusion and discussion

This paper presented a novel framework to enhance robot
adaptability in unknown and unstructured environments. The
system relied on a self-tuning impedance controller, able to
regulate the impedance parameters only on the direction of
the motion vector, and activated just when an interaction
with the external environment was predicted. It addition-
ally included a visual perception module that improved the
situation-awareness of the robot, localizing the surrounding
materials and their peakpoints.Notice that thematerial detec-
tion process (i.e. color-based region growing segmentation)
could be replaced with other RGB-based methods, such as
deep learning, to improve the time complexity. Given that the
visual results were accurate and fast enough for our applica-
tion, we leave this as future work.

To detect faults, we also presented a novel unit capable of
recovering from unexpected collisions with the boundary. A
Finite State Machine was introduced to manage the transi-
tions between the system states.We experimentally validated
the presented framework in an agricultural task. Although
we are working towards making the method autonomous,
it still needs an offline tuning of some parameters, such as
α and β, whose online adaptation will be the focus of our
future work. Nevertheless, using non-optimal α and β values
does not imply failure in task execution, but rather introduces
some variations to the convergence speed of the self-tuning
control gains. An analysis of the stability of the system is
reported, since the algorithm includes time-varying tuning
of the impedance parameters.
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