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Abstract

In order to reduce the high mortality rate of breast cancer, most research in mammogram 

image analysis aims to develop a CAD (Computer Assisted Detection) system that can 

assist the clinician in the difficult task of “early” diagnosis. The comparison of temporal 

pairs of mammograms is believed by radiologists to be often crucial for diagnosing 

cancer, especially as breast tissue is highly variable across the population making it 

difficult to perform diagnosis reliably from a single mammogram. However, changes in 

the appearance of mammograms due to differences in compression and imaging 

conditions can limit the effectiveness of temporal comparison. In this thesis, a registration 

method that aligns temporal (or bilateral) mammograms is presented. This technique has 

the potential to assist the clinician to detect changes more efficiently (e.g. interval cancers 

in mammogram sequences, architectural distortions or microcalcifications in bilateral 

mammograms). In addition, the application of this technique to mammograms of 

Hormone Replacement Therapy (HRT) users is investigated. Since long-term use of HRT 

can increase the risk of breast cancer (as a side effect of glandular tissue regeneration), 

quantification of temporal tissue density changes (in addition to registration) is needed 

for assessing density changes locally. In order to derive quantitative measures of breast 

tissue change, the mammogram pairs are processed using the h\nt representation of 

interesting tissue. Since such a measure depends on the image information context, we 

examine the problems that arise from combining image registration and quantification, 

aiming to develop a robust framework for temporal tissue density change assessment.
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1.1 Introduction to Medical Image Analysis

1.1 Introduction to Medical Image Analysis

Over the past two decades, medical image analysis has employed several image 

processing and computer vision concepts to enhance, describe and process digital images 

in order to improve their clinical utility. This is a part of a larger scale application of 

technology to medicine that has been inspired by the development of increasingly 

powerful computers and has made a huge impact on modem clinical medicine.

Medical images of human organs can assist a clinician in diagnosis, surgical planning and 

intervention and evaluation of therapy. Furthermore, functional imaging as well as 

histological imaging, can assist the exploration of complex physiological (or 

pathological) processes in the human body. Some specific areas of research include:

Surgical planning and guidance: Preoperative data are used for planning the surgery 

more efficiently; the surgeon performs the operation guided by image data acquired at 

the time of the operation.

Evaluation of therapy: This involves the accurate comparison of temporal data for 

evaluating the effectiveness of a specific therapy against a disease.

Tele-medicine applications:

• Remote diagnosis: The expert can establish diagnosis (or give a second opinion)

by examining medical data from remote locations.

• Tele-surgery: surgery that is supervised or aided by a surgeon located remote

from the scene of the operation.

Assisted diagnosis through:

• Enhancement and characterisation, to remove noise or to manipulate the contrast

characteristics of a region of interest and to describe the texture (e.g. homogenous 

vs. high entropy) of that region.
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1.1 Introduction to Medical Image Analysis

• Comparison of temporal data of the patient, or data from different modalities.

• Anatomical or physiological “models” of normal variation, in order to

automatically detect regions that potentially exhibit an abnormality.

• Clinical databases for differential diagnosis.

The specific motivation for this thesis is breast cancer. The main objectives of breast 

cancer imaging are:

• Early diagnosis of the disease and reduction of the number of missed cancers (false 

negatives) so that mortality rates reduce.

• Reduction of the number of false positives that often lead to unnecessary biopsies and 

consequently to psychological trauma for the patient.

• Analysis of the image changes that correspond to the effects of therapy for assessing 

the success of a specific drug in treating the cancer.

A detailed account of breast anatomy, physiology and pathology can be found in 

Appendix A of the thesis.

Medical image analysis has provided sophisticated imaging techniques which may assist 

the interpretation of radiological images. It has a crucial role to play in providing the 

clinician with objective anatomical and quantitative information directly from 

mammograms. In this chapter, the role of the breast-screening programme is discussed 

with special emphasis in the need for image analysis tools to improve its effectiveness, 

and the key components of the thesis are summarised.

1.2 Breast cancer and the screening programme

1.2.1 Introduction

In the western world, breast cancer is the most common cancer among women. In the 

European Community (EC) breast cancer represents 19% of cancer deaths and 24% of all
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1.2 Breast cancer and the screening programme

cancer cases. It is the primary diagnosis in a total of 157,000 cases annually and kills 

almost 70,000 annually [1]. As already mentioned in the introduction of this chapter, 

technological advances in breast cancer imaging are aimed at early diagnosis. Although 

mammography remains the predominant modality for breast cancer screening and 

diagnosis, an increasing number of modalities (e.g. contrast-enhanced Magnetic 

Resonance Imaging (MRI), Scintimammography) have been used in clinical practice (as 

is discussed in the next chapter). However, technological advances in breast imaging 

alone cannot tackle the problem; government-defined, global health strategies for the 

early diagnosis of the disease are required as well. Over the last 40 years, the ideas of 

using the technology for the early detection of breast cancer in a whole population rather 

than on an individual-basis (and very often post-symptomatic) assessment, have evolved, 

particularly in so-called screening programmes.

The first large-scale trial undertaken in New York (between 1961 and 1967) was 

successful as women who had a cancer detected had a much higher probability of the 

lesion being pre-invasive [2] and hence good prognosis. However, it was not until 1976, 

when the first screening program with randomised, controlled, population-based trials 

was introduced in Sweden [3]. It demonstrated a nearly 30% reduction in mortality 

against women that did not participate and many European countries followed this 

example.

In The United Kingdom, the design of the first screening programme was undertaken by 

a working group under Sir Patrick Forrest, whose report was accepted by the government 

in 1986. X-ray mammography was proven to be a cost effective imaging modality for 

national screening. However, mammography is not diagnostically useful for younger 

women as their breasts consist mostly of glandular tissue which often masks masses (both 

benign and diseased tissue have very “bright” mammographie appearance). As a 

consequence, the UK screening programme was established for women between 50 and 

64. The implementation of the screening programme has involved the establishment of 

specialist breast screening centres and formal training of both radiographers and 

radiologists.

Page 15



1.2 Breast cancer and the screening programme

This led to several implications for hospital radiology departments. Before the 

implementation of the screening programme, the detection of masses was as a result of 

women reporting to their general practitioner with a breast lump, breast pain or other 

pathological indicators. In most cases these women were referred directly to the 

symptomatic unit where the mammograms were examined by radiologists who were not 

always very experienced in reading mammograms. Today, in the UK, many specialist 

screening centres are staffed by radiologists specialised, often exclusively, in screening 

mammography. However, there is a critical shortage of radiologists trained to read 

mammograms while the amount of patient data is steadily increasing.

Because of the screening programme, small and usually non-palpable masses are 

increasingly detected. As a result, the radiologist’s task has become more complex since 

the interpretation of the mammogram has becomes more challenging. A cancer that 

appears in the screening interval is known as an interval cancer. The large number of 

interval cancers leads to the conclusion that the Forrest report was over-optimistic [4].

1.2.2 A short analysis of the Screening Programme.

Breast screening programmes were introduced in order to reduce the overall mortality 

rate. Screening is defined as the process of inviting a specific population to undergo 

particular examinations which may detect whether or not a given disease is present [2,3]. 

In general, a breast-screening programme is based upon combinations of mammography 

and clinical examinations. The main parameters that can define the effectiveness of the 

screening programme are:

• Design of the screening programme. This includes defining the age group to be 

invited, design of the clinical process (e.g. first mammogram acquisition then reading 

followed by recall if necessary) and the necessary infrastructure and cost-analysis.
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X-ray image-acquisition and quality. This is usually a trade-off with patient 

radiation dose.

Proper-positioning and breast compression. The entire breast should be imaged 

(including the axilla) and compression should be optimal in terms of glandular-tissue 

separation.

Level of medical expertise. The early detection of a lesion is strongly dependent on 

the experience of the radiologist that reads the mammogram.

Consistency. For a screening programme to be successful, it is necessary to ensure 

that the clinical protocol is consistent in order to facilitate individual and population 

comparison. This is very challenging to ensure in practice.

In the typical scenario, mammograms are acquired in regional screening units and 

subsequently examined in reading centres where the decision to recall a woman for 

further assessment is made. In the UK, more than 200 radiologists are employed in the 

national screening programme and the expected screening output is around 5000 cases a 

year [5]. When reading a patient’s mammograms, the clinician compares them with 

previous ones in order to detect changes. This fact is an important motivation for this 

research as is discussed in the next chapter. Temporal comparison is an important aspect 

of future CAD (Computer-aided detection or diagnosis) systems that are expected to 

improve the cancer detection rate.

In summary, breast screening is a cost effective technique that has contributed to the 

early detection of breast cancer as small, non-palpable masses can be detected sooner. 

However, greater clinical efficiency and skill is required to deal with the large amount of 

data particularly as a significant number of cancers are missed. The rapid development of 

digital mammography has further encouraged the development of computer algorithms 

that can provide objective information about individual mammograms. To date, most of 

the researchers in mammogram image analysis (including the research described in this
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thesis) still use digitised m am m o^am  images (films are usually digitised using a laser 

scanner).

It is hoped that future use of software will improve the effectiveness of the screening 

programme, mainly by assisting less experienced radiologists in the early detection of 

breast cancer and by reducing the variability in standards of the in-service performance. 

The work presented in this thesis is concerned with the development of software 

tools that allow a more efficient comparison of temporal or bilateral mammographie 

data. More specifically, the aim is to develop a technique to align mammogram 

sequences. The motivation for this work is detailed in the next sectioned while section

1.4 summarises the work on temporal manunogram registration. As will be discussed 

later in section 1.5, this method can be adapted for local quantitative analysis of HRT 

(Hormone Replacement Therapy) temporal mammogram pairs.

1 3  Motivation and aims of our work

Most of this work is motivated by the reported limitations of the screening programme in 

cancer detection. It has been reported that 27% of the missed interval cancers (cancers 

that “appear” within the screening interval) could have been detected in the previous 

mammogram [6] and that many of such missed diagnoses are attributed to observer errors 

[7]. Our work in mammogram registration aims to assist the clinician to detect 

differences in the comparison of temporal data when reading the mammogram. The 

results of the thesis are currently being exploited under licence from Oxford University 

by a software company (http://mirada-solutions.com).

As mentioned previously, there is a need for reliable medical image analysis tools that 

can assist radiologists (especially the less experienced) to read mammograms and detect 

subtle changes. In each screening visit, the radiologist usually compares the current 

mammogram of a patient with previous ones in order to detect changes that could make 

explicit the presence of an abnormality. Since the number of women returning for a
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second, and third, round of breast screening is increasing rapidly the need to compare 

mammograms becomes more pressing.

The work on temporal mammography aims to provide a computer-based framework for a 

more effective and intuitive comparison of temporal (or bilateral) data. Section 1.4, 

further explains the nature of the work on temporal mammography.

The second clinical problem that motivated the work presented in this thesis, is the 

controversy over the increased risk of breast cancer for Hormone Replacement Therapy 

(HRT) users. It has been suggested that hormone-stimulated tissue regeneration can in 

some cases lead to the development of an abnormality. Changes in breast-tissue density 

are crucial for assessing the response of the woman to therapy, while knowledge of the 

distribution of such changes can assist the clinician to determine whether there is an 

increased risk of cancer for the individual woman. To date, it is not possible to obtain 

quantitative information from mammograms. The objective is to develop tools that can 

facilitate the quantitative comparison of HRT mammogram sequences. HRT data are 

considered as a special application of temporal mammography, where there is an 

additional need to quantitatively compare each mammogram pair. In section 1.5 a short 

account of the work on HRT data is provided.

1.4 Temporal mammography

Mammogram images are highly variable. For this reason it is currently impossible to 

define a consistent method for comparison. Worse, clinical signs are often subtle. For 

these reasons, the radiologist’s most powerful weapon is change detection. As was 

discussed in the previous section, screening programs have been implemented in many 

European countries, (the UK, Sweden, Finland and the Netherlands being the major 

examples) as an attempt to reduce mortality attributed to breast cancer through early 

diagnosis. This has also affected clinical diagnosis since temporal sequences of 

mammograms started to be available for individual women, a fact that gave clinicians an 

additional advantage for breast cancer diagnosis: temporal comparison of x-ray
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mammograms of the same patient. Since screening re-visits are increasing, more 

temporal data is becoming available to the clinician, making temporal comparison of 

mammograms an absolute necessity in clinical practice. Similar to bilateral comparison, 

the clinician compares the most recent mammogram with previous ones in order to detect 

abnormalities on the basis of “significant” differences. In the remainder of this thesis this 

process will be called temporal mammography. As was mentioned before, the main 

objective of this work is the development of tools for the alignment of temporal 

mammogram.

In Figure 1, temporal sequences of the same patient spanning 8 years are shown. Such 

sequences provide considerable information about the temporal changes in breast tissue 

and can assist diagnosis, since any significant difference in the architecture of the breast 

tissue over time can be considered as a candidate region for a malignancy. In Figures 1 

(d) and (e), the region pointed with arrows could have been confused with a recurrent 

cancer. In Figure 2, however, after registering all the previous images (with the method 

that is described in chapter 4), it becomes obvious that these regions correspond to scar 

tissue from previous surgery (as is highlighted by the arrows).
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Figure 1: Series of temporal mammograms of the same patient, over a period of 8 years: 

(a) the oldest and (f) is the most recent. Breast cancer was diagnosed in (c) in the Upper 

Outer Quadrant (UOQ) of the breast, and was excised. Looking at the images from (a) to 

(f), it can be noticed that the architecture of the breast-tissue is preserved although the 

tissue is displaced non-rigidly between images. The reduction of brightness in several 

areas due to involution is also noticeable. In (d) and (e) there is a bright region (see 

arrows) that appears as a cancer.
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(a) (b) (c)

(d) (e) (f)

Figure 2: The same series of temporal mammograms (as in Figure 1) registered to the 

same co-ordinate frame of the most recent, (a) the oldest and (f) is the most recent one. 

Breast cancer was diagnosed in (c) in the Upper Outer Quadrant (UOQ) of the breast, and 

was excised. Looking at the images from (a) to (f), it can be seen that the architectural 

similarity is more pronounced when looking at the registered mammograms. This way, it 

becomes easier to follow the evolution of regions over time and it becomes easier to 

understand that the bright region in (d) and (e) is scar tissue after the cancer in the upper 

outer quadrant in (c) was excised (see arrows).
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1.5 Quantitative comparison of HRT mammograms

A topical and increasingly important clinical application of temporal mammography is 

the analysis of mammogram sequences of Hormone Replacement Therapy users (HRT). 

As is discussed in detail in chapter 5, HRT can stimulate glandular tissue regeneration, 

which results in an increased tissue density. As a consequence, it is possible to develop 

breast cancer while diagnosis becomes more difficult due to the overall increase in 

brightness.

The first objective was to apply the temporal registration techniques developed to 

monitor changes wrought by HRT. Working closely with experienced clinicians, several 

issues that are of specific importance in temporal HRT data were identified:

• If the HRT user responds to therapy, the tissue density and/or the mammographie 

pattern can change significantly. In this case, as discussed in chapter 5, the HRT- 

induced pattern should be used as the new baseline for temporal comparison.

• Since cancers in HRT users are related to the hormone-stimulated increase in 

fibroglandular tissue, it is crucial to be able to monitor such changes in density. 

This becomes even more necessary since mammographie sensitivity can decrease 

due to the increased density.

Changes due to HRT can be characterised either on a global or on a local basis. 

Global changes represent the overall response to exogenous hormones, while 

local changes reflect the fact that breast-tissue receptivity to hormones is variable. 

From a more clinical (rather than theoretical) point of view, certain locations in 

the breast have a higher frequency of cancer appearance (e.g. the upper outer 

quadrant) and it is believed that they exhibit a higher activity and are therefore 

more likely to respond to hormones.
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From these observations, it became apparent that image analysis tools could influence 

clinical decision making for HRT users and could assist the clinician to assess the risk of 

cancer for an individual woman using HRT, Since it is recommended that the first HRT 

mammogram be used as a baseline mammogram, new growths may be detected on the 

basis of significant differences with previous mammograms (via registration). Figure 3, 

shows a temporal HRT mammogram pair. After registration (using the method that is 

described in chapter 4), two new regions are pronounced in the difference image (Figure 

3 (d)). The first corresponds to a density increase while the second corresponds to a 

cancer.

HRT mammogram sequences may be considered as a special case of temporal 

mammography where the increased risk of cancer requires a careful study of the changes 

in breast tissue density. For this reason, further to the work on temporal registration, a 

temporal quantification scheme was necessary to enable the clinician to assess density 

changes in a woman that responds to HRT. The quantitative measures proposed were 

based on the hmi representation of interesting tissue, developed by Highnam and Brady 

[4] (summarised in Appendix C of the thesis). This way, images are normalised for 

differences in imaging conditions and each pixel value of the Amt image can be correlated 

to the underlying anatomy. To validate the proposed measures of density change, they are 

compared to the clinician’s assessment of tissue changes in 60 HRT temporal pairs.

In chapter 5, the potential to use registration for quantification of local changes is also 

investigated. Combination of temporal registration with the representation could 

enable the quantitative assessment of local density changes. To overcome the change in 

image “volume” (i.e. the sum of the hmi values in the image) due to registration, a method 

that preserves the “volume” by calculating an intensity-correction field directly from the 

calculated transformation was developed.
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(a) (b)

(c) (d)

Figure 3: (a), (b): An HRT mammogram pair. In (c), the recent mammogram (b), is 

registered to the previous one (a). The difference image in (d) highlights 2 new regions. 

The first one corresponds to a density increase (arrow “1” in (d)), while the second one to 

a cancer (arrow “2” in (d))
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1.6 Overview of the thesis

Chapter 2 summarises the main applications of computer vision in mammography, 

highlighting the significant role that CAD (computer aided diagnosis) tools may play in 

the future. After describing the limitations of X-ray mammography, the main 

characteristics of the most important imaging modalities that are used today in clinical 

practice are presented, stressing the need to combine information not only from the same 

modality over time (e.g. temporal mammogram registration) but also from different 

modalities (data fusion).

Chapter 3 is an analytical review of the registration problem in medical image analysis. 

The different categories of registration applications are discussed, and some of the more 

popular techniques that have been developed to implement registration in medical image 

analysis are summarised. After describing the specific characteristics and requirements of 

mammogram registration, the relevant previous work on manunogram matching and 

registration is presented.

Chapter 4 is a description of the proposed method for mammogram registration. The 

robust estimation of boundary landmarks is explained and mammograms are first aligned 

using only the boundary. Providing that the breast is not fully involuted*, a multi-scale 

technique to segment regions of dense tissue inside the breast is used. Matching these 

regions and including their centroids as internal landmarks can improve registration. 

Validation results are presented as well as results on registration showing the possible 

applications of the technique.

Chapter 5 is a description of the work on HRT sequences. First, a detailed review of 

clinical studies is presented, in order to understand the importance of the clinical problem 

as well as the controversy concerning several issues related to the use of HRT. Then the 

potential of the proposed work in influencing clinical decision-making and assisting the 

clinician in assessing the risk of cancer for the individual woman using HRT, is

Involution  is a physiological process that describes the gradual degradation o f  the dense breast tissue to fat
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discussed. Validation results for the proposed measures of global tissue-density change 

are presented. Finally, a novel method that can potentially enable the combination of 

image registration without significantly changing the image volume (sum of the /imt 

values) is proposed and a validation experiment is presented.

Chapter 6 summarises the work presented in the thesis and makes explicit its limitations. 

Then, several suggestions for improving the methods proposed are discussed. Finally, 

some preliminary results on texture segmentation are presented and the thesis concludes 

with a discussion on some recent advances in breast imaging data fusion between MRI 

and x-ray mammography.

Appendix A is an overview on breast anatomy, physiology and pathology

Appendix B is  a description of the multi-scale segmentation technique that was applied in 

chapter 4 to segment internal regions in each mammogram.

Appendix C is an overview of the /imt representation that is used in chapter 5 to normalise 

a mammogram pair and to build reliable quantitative measures of tissue-change.

Appendix D is a summary of the most common definition of terms related to diagnostic 

tests. The aim of this appendix is to help the reader better understand several references 

to clinical studies included in the thesis.

Appendix E i s a  gallery of results of mammogram registration. These include temporal 

mammograms, interval cancers, bilateral mammograms and HRT pairs. For each pair the 

transformed image is shown, as well as the subtraction image after registration and in 

certain cases the joint histograms and additional notes to describe the importance of the 

registration result.
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2.1 Introduction

In this chapter, the various applications of medical imaging to breast cancer are 

discussed, emphasising the specific areas where our work aims to contribute. The main 

role of medical images is their use in patient management, starting from diagnosis (e.g. 

breast screening using X-ray mammography) through to surgery (surgical planning and 

image assisted surgery) and into therapy (e.g. assessment of therapy). Figure 4 shows a 

tree diagram of medical image analysis applications, focusing on breast-cancer imaging 

and showing the different modalities involved in clinical management. For each of these 

modalities research aims to develop computer applications that can assist the clinician to 

understand the underlying pathology. As shown in the diagram, our work is focussed in 

two areas that seem certain to play a role in the computer-assisted interpretation of digital 

mammograms.

X-ray MRI US

Q uantitative analysis

N u c lea r  M ed ic in e

Mammogram registration

Medical Image Analysis

Assisted interpretation of 
manunograms

Mass
detection/characterisation

M icrocalcification
detection/characterisation

Breast Cancer Image Analysis-CAD Systems

Figure 4: The different modalities involved in breast-cancer image analysis. Our work is 

focussed on applications relating to the assisted interpretation of mammograms.
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In the remainder of this chapter, the more important modalities for breast cancer imaging 

are briefly presented and compared to X-ray mammography that is more important for 

the work presented in this thesis. In addition, the areas of development of CAD 

(Computer Assisted Diagnosis) systems for mammography are discussed. Finally, the 

possible applications of the presented work are considered in the context of medical 

image analysis.

2.2 Image modalities for breast cancer

2.2.1 X-ray mammography 
Introduction

A mammogram is a specialised x-ray image of the breast. Mammography is the oldest 

but still the most valuable technique for breast imaging. The historical evolution of 

mammography can be summarised as follows:

• 1913: The first work on mammary roentgenography is reported [8].

• 1956: Large-scale mammographie screening was proposed, aiming in the early 

detection of cancerous, non-palpable masses [2].

• Early 70s: The introduction of the screen-film system, replacing the direct 

exposure film [4,8]. The intensifying screen placed under the film reduced the 

radiation dose to the patient and the exposure time required.

• 2000: GB’s full field digital scanner, Senograph™* gains approval from the US 

Food and Drug Administration (FDA), for the reading of mammograms printed 

on film [9].

To obtain a mammogram, the breast is compressed between two plates, situated between 

the x-ray source and the detector, which is usually a film. Inside the breast, each x-ray 

beam is attenuated according to Beers Law:

General Electric Medical Systems [9]
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Where lo is the incident x-ray intensity, 1 is the resulting intensity of the x-ray beam 

exiting the tissue, dx is the thickness of the tissue and /a is the linear attenuation 

coefficient of the tissue. The different types of tissue inside the breast have different 

attenuation coefficients. This is why they attenuate and absorb different proportions of 

the x-ray beams. These differences are finally translated into different intensities in the 

exposed film. In film-screen mammography the single emulsion film is in contact with an 

intensifying screen which acts as a photon-amplifier.

In order to reduce the radiation dosage and to produce a roughly even thickness, the 

breast is compressed between two plates. This way, image quality is improved and is 

(roughly) uniform across the mammogram. That happens because if the breast were 

simply placed between the source and the detector, according to Beers Law, variation in 

the attenuation thickness due to the shape of the breast would subsequently cause a 

variation in the quality of the resulting image. The breast tissue distortion due to 

compression is not considered to produce artefacts in the resulting image. Usually two 

different views of each breast are obtained a cranio-caudal (CC) and a 45° medio-lateral 

(ML), in order to improve the diagnostic value of mammography.

One other interaction between x-rays and tissue is an example of Compton scattering, 

where the path of the photons is altered after collision with breast tissue. Such photons do 

not follow the path perpendicular to the detector, hence they cause image distortion. This 

phenomenon is restricted in practice by placing a grid before the detector, in order to stop 

photons that are not perpendicular to the detector, reaching the detector. However, this 

results in a substantially increased radiation dose to the patient. The anti-scatter grid can 

be modelled and removed using the /imt representation of interesting tissue (described in 

the Appendix C of the thesis) [4].

Strengths and weaknesses

The main advantages of X-ray mammography are:
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Good signal-to-noise ratio and high spatial resolution (~0.1 mm) resulting in a 

detailed representation of breast anatomy.

Affordable cost, so that it can be used as the main screening technique and to be 

widely available in hospitals

Good sensitivity (in [10], is reported to be 90%), for postmenopausal women.

Its effective for microcalcification detection and pathology (in particular Ductal 

carcinoma in situ)

Although mammography remains the most reliable technique for diagnosing breast 

cancer, it has a number of significant limitations:

• The woman receives a radiation dose each time she has a mammogram.

Breast compression cannot be tolerated by all patients. It also results in a non- 

rigid tissue motion, making the reading and temporal comparison of 

mammograms harder.

The dense glandular tissue in the breasts of younger women results in bright, low 

contrast mammograms, thus making detection of masses a difficult task and 

imposing an age constraint on the use of mammography, as has been shown to be 

diagnostically useful only to post-menopausal women.

It is obvious that the intensity of the x-rays reaching the film depends on the path 

taken through the breast and the resulting image is a 2-D representation of the 3D 

compressed breast tissue. This is a significant drawback of x-ray breast imaging 

since important tissue features may overlap or be occluded. In addition, surgeons 

need a 3D representation of the breast for guidance and surgical planning.
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Since imaging anatomical information is taken at a single instance, mammography 

cannot provide functional information (e.g. tumour angiogenesis, activity or increased 

blood flow). In addition, mammography is not very effective in evaluating the 

effectiveness of chemotherapy, since the adenosis and neovascularity around the 

tumour cannot be distinguished clearly by examining the film.

Besides dense tissue, it can be non-diagnostic (or equivocal) in women with breast- 

implants, scar tissue (can appear as a cancer), lumpy breasts (with diffuse areas of 

increased or decreased density) and for multi-focal or multi-centric lesions where the 

extent of the cancer may be underestimated. In addition, the specificity in 

differentiating benign to malignant masses has been reported to be 20-50% [11,12], 

which reflects the high number of false positives.

Nevertheless, to date, film-screen mammography is the most important technique used in 

clinical practice. Recently, it was reported that mammography currently offers the best 

performance with respect to cost [13].

2.2.2 M RI im aging o f the breast 
Introduction

Nuclear Magnetic Resonance imaging is based on the magnetisation of human tissue. 

This is done first by applying an external magnetic field and then an additional RF pulse 

in order to displace and measure the tissue magnetisation M  using an appropriate coil. 

Translating signals that come from different tissues into intensities at the corresponding 

points produces the MR image. The strength of each signal and subsequently the contrast 

is proportional to the magnetisation of each tissue in the xy  plane (transverse 

magnetisation) [14,15]. In particular, the intensity of a pixel in a grey-level MR image is 

directly proportional to the strength of the signal emitted from a tissue voxel [15]. 

Subcutaneous fat emits a particular strong signal, and appears very bright in the MR 

image, while muscle emits intermediate signal and air in the stomach negligible signal.
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Various Nuclear Magnetic Resonance (NMR) signals can be generated by manipulating 

M with suitable RF pulses (e.g. spin-echo pulse sequence [15]). Despite the continuous 

efforts, a pulse sequence that can distinguish between healthy tissue and tumour has not 

been developed yet. For this reason, is more effective to use MRI in combination with a 

contrast agent. In that way the dynamic behaviour of different structures within the breast 

can be monitored (functional imaging). In particular malignant tumours exhibit an 

increased vascularity, since they begin to grow their own blood supply network [14]. For 

that reason when the contrast agent is distributed, malignant masses enhance faster. This 

is illustrated in Figure 5.

I » Ay L ^

Figure 5: Enhancement in breast MRI by using contrast dye (images taken from [19])
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Figure 6: The pharmacokinetic model separates high enhancement tissue structures (e. 

tumours) from low enhancement voxels (e.g. corresponding to fat).
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Enhancement models have been introduced in order to detect regions of high 

enhancement such as tumours. Figure 6, shows the model fitted for high and low 

enhancement data respectively [17,18]. During image acquisition, such a model of 

relative enhancement can assist the clinician to quickly detect an abnormality, since the 

enhancement curves are significantly different in the first minutes of the acquisition.

Strengths and weaknesses

There are some significant trade-offs in MRI imaging. By increasing the voxel size, the 

emitted signal is increased and subsequently the signal to noise ratio of the image. If the 

cross-section of the voxel is increased, the trade-off will be a decrease in the spatial 

resolution of the image. On the other hand, by increasing the voxel thickness (or 

equivalently the slice of tissue being imaged) information concerning different tissue 

borders is lost and problems encountered with partial volume averaging become worse

[15].

In clinical practice, the main advantages of the technique are:

Unlike mammography, there is no harmful radiation and, by using a contrast agent 

(e.g. Gd- DTPA*), tumour vascularity can be imaged thus enabling the radiologist to 

differentiate between benign and malignant lesions.

The intrinsicallySD nature of MRI can assist the clinician in surgical planning and 

more general in minimal invasive surgery in the breast.

• It is suitable for younger women, where mammography is less effective for diagnosis.

By taking images pre and post chemotherapy, one can assess the tissue response to 

chemotherapy.

Gadolinium diethylenetriamine pentaacetic acid
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Offers good sensitivity and spatial resolution. However, a digitised mammogram at 

50 microns (50- IC^m) has 400 times better resolution than an MRI scan of Imm^ 

voxels.

• Suitable for imaging women with implants or scar tissue due to prior surgery.

On the other hand some weaknesses of breast-MRI include:

• Low specificity (-40-60%), since fibroadenomas, benign disease, areas of 

inflammation, and active glandular tissue can all show enhancement [20,21].

• Requires high infrastructure and the cost of MR scanners is very high. As a result, it 

is not so widely available as X-ray mammography is.

• The time of the acquisition remains long (15-20mins) resulting in patient motion that

makes functional studies of the breast tissue more difficult (registration of the

temporal sequences is required).

• Contrast agents are toxic. In fact 1 in 10'̂  women has a side effect.

• Sensitivity to small lesions and DCIS (ductal carcinoma in situ) is poor to average but 

improving. In addition, microcalcifications are almost impossible to detect since 

clinical MRI is based on soft tissue.

2.2.3 Ultrasound 
Introduction

Ultrasound is defined as an acoustic wave of a frequency above human hearing [15] 

(usually around 7-20MHz). In the early 1950s, it was demonstrated that ultrasound could 

image breast structures and distinguish cystic from solid masses. Currently, ultrahigh

Page 36



2.2 Image modalities for breast cancer

frequency probes are available with superb axial and lateral resolution, and extended 

dynamic range. Ultrasound of the breast structures is acquired by recording their 

reflections of ultrasonic waves. For that reason, the technique is also known as pulse echo 

imaging. The reflected waves coming from different tissues and from different depths 

within the breast carry all the information necessary for the image to be formed.

Because of the way the ultrasound image is produced (wave propagation-detection) it can 

be considered a tomographic image of echoes, based on the echogenic variation among 

different structures (tissues). The skin and calcifications exhibit the strongest echoes, 

while dense glandular tissue and Cooper’s ligaments are less echogenic. Finally fat tissue, 

benign tumours and cancers are even less echogenic and fluid is almost unechoic [22J. It 

is worth mentioning that the strength of the reflected wave (described by the reflection 

coefficient R) is dependent on the acoustic impedance of both tissues (Z| and Z2) that 

form a reflecting boundary. Figure 7 ([23]), illustrates the appearance of an ultrasound 

scan with a cyst present.

Figure 7: Appearance of ultrasound imaging of the breast. A cyst (unechoic dark region) 

is present.
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Strengths and weaknesses

The main advantages of ultrasound are:

• It’s inexpensive and real-time acquisition, widely available. It is also possible to 

obtain 3D ultrasound images, usually by using a free-hand probe followed by 3D 

reconstruction. Recently, contrast agents have become available for assessing tumour 

vascularity.

• Ultrasound can reduce the number of unnecessary biopsies and allows image-guided 

biopsy.

• It can detect cysts with high accuracy as well as macrocalcifications and it’s suitable 

for women of all ages.

Some of the weaknesses include:

• Low sensitivity. Images are intrinsically very noisy and hard to interpret. However, 

new high frequency scanners exhibit improved spatial resolution (e.g. the GE 

LOGIQ™ ultrasound systems uses 12 MHz imaging, and has demonstrated point 

resolution under 300 microns, approaching that of CT and MR systems [9].

• Poor specificity in cancer detection (depends on the experience of the user). In [24], 

the sensitivity and specificity of sonography for cancer detection is reported to be 

100% and 48% respectively.

• The breast is deformed during acquisition. Due to tissue deformation, it can become 

difficult to compare ultrasound information to other modalities.
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2.2.4 Nuclear Medicine for the breast: PET and Scintimammography 
Introduction

The application of nuclear medicine in breast imaging is very promising. In nuclear 

medicine, a radiopharmaceutical (a radiolabelled tracer attached to a metabolite) is 

injected into the patient. The metabolite binds preferentially in certain regions, and the 

radiotracer begins to emit particles that are picked up by a scintillator and the emitted 

radiation reveals information about a specific organ. Radiollabelled oestrogen and 

glucose analogue uptake is more intense at sites of tumour growth or lymph node 

metastasis. In particular the glucose analogue FDG (Fluorodeoxyglucose) is known to 

concentrate in breast tumours rendering them easily detectable in conventional PET scans 

[14, 25].

Besides PET, Scintimammography is becoming more popular, mainly because it is less 

expensive compared to PET. In scintimammography, ^̂ ™Tc sestamibi is intravenously 

administered to the patient and an emission image is acquired 5-10 minutes after the 

injection using a gamma camera [26]. Since the uptake in tumour cells is nine times 

greater then in normal cells, the presence and location of a lesion is identified. In clinical 

practice either planar or SPECT imaging is used. In planar imaging, six different views 

are acquired (four in the prone position and two in the supine), while if SPECT is used 

image slices of the chest (through 360° around the patient) are gathered thus allowing the 

localisation of tumours in 3D. This way, scintimammography can be useful for surgical 

planning and biopsy-guidance.

Figure 8, shows the correct positioning of the patient in the supine position during 

acquisition, while Figure 9 shows some typical scintimammograms and Figure 10 the use 

of the technique for evaluating chemotherapy (images taken from [26]).
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Figure 8: Correct patient positioning with the patient in the prone position and the breast 

unconstricted by the imaging couch and enlogated by gravity.
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Figure 9: Scintimammogram showing (a) multi-centric and (b) multi-focal cancers
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Figure 10: Using scintimammography for evaluating chemotherapy: Image (b) illustrates

the reduced activity uptake in the tumour after treatment.

Strengths and weaknesses

The main strengths are:

• It’s almost as sensitive as X-ray mammography and MRI in palpable tumours but 

with greater specificity [26].

• In addition, it can give significant diagnostic information in radio-opaque 

mammograms of dense tissue (e.g. younger women) that are difficult to interpret.

• Scintimammography is less expensive compared with MRI [26].

• It can provide functional information and thus be used for detecting cancerous masses 

(angiogenesis) and can monitor the effects of chemotherapy in patients diagnosed 

with breast cancer.
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• It can effectively image the axilla, thus providing useful clinical information 

concerning breast cancer métastasés. This is particularly useful as 45% of cancers 

appear in the upper outer quadrant (UOQ) of the breast (a fact that is further 

discussed in chapter 5).

The main weaknesses of nuclear medicine techniques for breast imaging are:

• PET imaging for the breast is very expensive and not widely available.

• For Scintimammography, the most significant drawback is its low sensitivity in 

lesions (<lcm ) or in other words the low resolution images acquired.

2.2.5 Conclusion and comparison to X-ray mammography

In clinical practice, there is always a combination of imaging and clinical examination of 

the breast. To date, the most common combination is the triple assessment, which 

includes mammography (for women 35 and over) or ultrasonography (for women under 

35), clinical examination and fine needle aspiration cytology. According to J.M. Dixon, 

in a recent investigation concerning 1511 patients with breast cancer, only in 6 patients 

all the three investigations of the triple assessment, turned out to be benign [27]. 

Although mammography is still the most widely used technique for breast-screening and 

minimal invasive surgery, new modalities have increasing promise, particularly in giving 

functional information about breast cancer:

Ultrasound has been used in combination with x-ray mammography for many years. In 

most cases, if the mammogram has a lumpy appearance or if it shows a well-defined 

mass, ultrasound examination is recommended in order to decide upon whether the lump 

is a cyst or not. Recently, the introduction of 3D ultrasound and contrast-enhanced 

ultrasound has shown some promising results, but their role in breast imaging is still to be 

demonstrated [26]. The cost of an ultrasound scanner is comparable to the cost of an X-
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ray scanner (around $100,000 US) but the examination cost is higher since a well trained 

clinician (compared to a radiographer in mammography) is required. The acquisition time 

for a 3D freehand ultrasound scan is around 5 minutes (comparing to 1 minute for the 

mammogram acquisition and 10-15mins for MRI and scintimammography).

Breast Magnetic Resonance Imaging is used today as a supplement to, or sometimes in 

combination with x-ray mammography. It is suitable for monitoring younger women and 

women who have previously had surgery (as scar tissue can produce artefacts in x-ray 

mammography). Several studies have proved that although it has high sensitivity for 

detecting masses, its specificity is often very low [14]. Nevertheless, breast MRI is a 

useful technique, especially for younger women with dense glandular tissue. Contrast- 

enhanced MRI can detect small enhancing lesions: in [28], 3mm (diameter) DCIS were 

identified in four patients while the best images can show a resolution of about 2mm [29]. 

In another study [30], dynamic contrast MRI was found to be superior to triple 

assessment for multi-focal disease detection (with sensitivity and specificity 73%, 100% 

for MRI and 18%, 100% for triple assessment). However, the significant cost of MR 

scanners (typically an order of magnitude higher than a film-based X-ray scanner) as well 

as the infrastructure required (special room, shielding, specially trained staff) limits its 

use.

Nuclear medicine imaging of the breast (e.g. Scintimammography), can also provide 

functional information as a cancer takes up the metabolite more intensively than the rest 

of the breast tissue, without any age or surgical history constraints. Compared to 

mammography, the higher cost and the low availability are the main reasons for the 

limited use of this technique to date. However, it can provide functional information and 

can be used for imaging younger women (especially those in high-risk groups). 

Compared to MRI, scintimammography has lower spatial resolution (MRI sensitivity is 

nearly 100% exhibiting excellent anatomical information), but higher sensitivity while 

being less expensive [26]. It has been reported that tumours less than about 10mm in 

diameter are difficult detect [14]. However, new scintillation cameras promise increased 

spatial resolution (e.g. in [31] the spatial resolution is around 5mm).
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Table 1, summarises the main advantages of X-ray mammography as well as the need to 

use and further develop other modalities in clinical practice. Evidently, it is desirable to 

be able to combine information from different modalities in order to diagnose pathology 

more reliably. Our work in mammogram registration is a key step towards an imaging 

system that enables temporal and multi-modal fusion for asymptomatic women (that are 

enrolled in the screening programme) and for women that present to the clinician with a 

lump.

As is discussed in chapter 6, the mammogram registration work, presented in chapter 4, 

has been extended to multi-modal registration between X-ray mammography and breast- 

MRI [32, 33]. We believe that temporal registration and data-fusion will play a key role 

in future diagnostic computer systems, enabling the alignment of images from several 

modalities and comparison of patient data with previous ones. Temporal registration can 

be considered as a basic step towards a multi-modal fusion system for breast cancer 

imaging. The next section summarises the main research areas in CAD (Computer 

Assisted Diagnosis or Detection) systems for mammography and discusses the potential 

of our research in clinical practice.

Advantages of X-ray mammography: Need for other modalities:

• Good anatomical representation

• Offers the best performance/cost

• Is used in the screening programme

• Where mammography is equivocal or non­
diagnostic

• Younger women/dense tissue
• Differentiating benign/malignant
• Surgical planning/Minimally invasive 

surgery and chemotherapy evaluation

Table 1: The main benefits of mammography vs. the rationale for using alternative 

modalities in clinical practice. Instead of having to choose the best modality, it is more 

reasonable to combine multi-modal information (although is a difficult engineering 

problem) through data-fusion.
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2.3 Digital mammography and Computer aided diagnosis (CAD) systems

As illustrated in Figure I, CAD systems for breast-cancer, aim to assist the clinician to 

interpret images and establish reliable and early diagnosis of pathology. Digital 

mammography will increasingly replace conventional film-screen mammography 

systems even if at the moment the cost is very high compared to the film-based device 

($400 000 - $600 000 compared to $50 000 - $70 000) [13]. It has been reported that it 

offers better contrast, dynamic range and improved diagnosis rate of masses [6]. In 

addition, it captures images directly and stores them digitally, facilitating image transfer 

between clinicians and safe storage with rapid recall. The main advantage, from the 

image analysis point of view, will be the direct integration of CAD systems that will 

enable the clinician to manipulate the mammogram while he or she is reading it (e.g. 

image enhancement, registration with previous scans and automatic detection of 

features). However, the transition from the film-screen environment (where the film is 

read by placing the film onto the lightbox) to the digital one (where the clinician will read 

the mammograms from the computer screen) is not trivial. The SCREEN project [7], is a 

European effort to assess the difficulties in this transition and suggest solutions for 

efficient hardware implementations of digital-reading systems.

Many different algorithms for aided detection of mammographie features had previously 

been suggested. Moreover, the first CAD system to achieve FDA approval was the R2 

Image checker [34]. The main areas of research related to mammographie CAD systems 

are:

Microcalcification detection and characterisation. Since microcalcification detection can 

improve the early diagnosis of subtle cancers, many algorithms have been suggested for 

detecting clusters. In addition, several algorithms have been developed to try and 

characterise clusters as benign or malignant, based on the geometry of the clusters and 

quantitative measurements. It has been reported that using the R2 ImageChecker®, 

microcalcifications are detected with more than 98% of accuracy. However, as is reported 

in [35], although the diagnostic sensitivity of the clinicians rose when using the system.
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the positive predictive value of the clinician’s interpretations worsened due to the high 

number of false positives. Recently, research in 3D-reconstruction of clusters using two 

views (CC and ML) has shown very promising results [36, 37].

Mass detection characterisation: Such algorithms aim to automatically characterise 

cancerous tissue against normal parenchymal tissue and benign disease. Characterisation 

as benign or malignant is usually done either by describing the shape of a lesion (e.g. 

circumscribed or speculated) [38], or by characterising the texture calculated in the 

region of the mass (e.g. using fractal analysis measures followed by the design of a 

classifier [39]). Using the R2 system, the accuracy in detection rate was reported to be 

less than 73% for mass detection [34].

Computer -assisted interpretation of mammograms: This is a more general category that 

includes image analysis techniques that allow the clinician to better understand the 

mammographie features. In addition, there is an effort to combine image information 

derived from CAD algorithms with protocol-based aids to patient management, in order 

to assist the clinician in the decision making [40]. These ideas have inspired the 

development of decision support systems for mammogram interpretation [41, 42].

Recent advances in medical image analysis have shown potential to influence the 

interpretation of radiological images. A good example is the curvilinear structure (CLS) 

detector, where structures such as vessels are identified and can be removed, in order to 

facilitate the reading of the mammogram. This is because removal of the CLS from an 

image enables better detection of tumours and in itself can provide useful information 

about the location of objects such as calcification [43]. The work presented in the thesis is 

focused on two important aspects of such interpretation systems:

• Mammogram registration: Mammogram images have very variable quality and 

anatomical content. Hence, diagnosis from a single mammogram is intrinsically 

difficult. For this reason, if previous mammograms are available, radiologists often 

use two (or more) such and compare /contrast them to detect significant change(s). A
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major problem is the geometric mis-alignment and difference in intensities because of 

differences in image formation. The work presented in chapter 4 aims to make that 

comparison more efficient and significant through temporal mammogram alignment.

Quantitative comparison: When tissue density changes are of significant interest (e.g. 

in the case of women using HRT), it would be very useful for the clinician to have 

quantitative information concerning tissue changes. In the case of HRT sequences, it 

is important to follow the evolution of glandular tissue content after the beginning of 

therapy in order to assess the response to therapy and the risk of a hormone- 

stimulated abnormality. To date, quantitative comparison of tissue density over time 

using mammography, is not possible. The work presented in chapter 5 aims at the 

development of measures of tissue density change that could enable the quantitative 

comparison of HRT mammogram sequences.

Other CAD applications include:

o More generic image processing and manipulation algorithms (e.g. Image 

enhancement using wavelet filtering) 

o Detection of radiological tags, or anatomical points in mammograms 

o Noise removal, breast edge enhancement.

2.4 Conclusions

Although new modalities have shown many promising results for the early diagnosis of 

breast cancer. X-ray mammography is still the most widely available. Data fusion 

between mammography and newer modalities is the most reasonable choice in order to 

exploit the medical information available from different modalities. CAD systems for 

mammography aim to assist the clinician in the interpretation of mammograms and in 

diagnosis. In addition, the large amount of data arising from subsequent visits to the 

screening programme, encourage the development of computer applications that can 

assist the clinicians (and especially the less experienced ones) in the reliable early 

diagnosis of cancer.
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Our work is a result of a conscious choice of clinical problems and aims to facilitate 

temporal mammogram comparison and provide quantitative measures of tissue density- 

change for women on HRT. Temporal registration and quantitative comparison, could be 

important for:

1. Comparison to previous mammograms in subsequent visits to the screening 

programme. This way, it can become easier to detect changes such as benign and 

malignant masses, asymmetry and calcification clusters.

2. Interval cancers: As was mentioned in the previous chapter, it is believed that a 

significant number of interval cancers are “missed” in previous readings. A more 

effective temporal comparison (e.g. computer-assisted comparison using 

registration) could increase the detection rate of cancers thus reducing the 

“missed” interval cancers which represent a basic weakness of the screening 

programme.

3. HRT users: As will be discussed in chapter 5, there is evidence that substantial 

localised changes in tissue density for women using HRT (especially long term 

users) seem to be correlated with cancer. Our work aims to assist in the clinical 

assessment of the woman’s response to HRT (through quantitative comparison 

with previous mammograms) and in the case where the woman responds to 

therapy (which is often associated with an increase in glandular tissue density) 

register future mammograms to the new baseline (the “increased density/ changed 

pattern” mammogram) in order to detect an abnormality early.

4. Retrospective studies to assess the performance of radiologists in the screening 

programme. In other words, cancers that have been missed because the clinician 

failed to detect signs of abnormality (e.g. very subtle mass, architectural 

distortions, ill-defined masses and focal symmetric densities). The mammogram 

in which the cancer was diagnosed is registered to previous ones so that it can be
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assessed if there was enough information to diagnose the disease at an earlier 

stage.

5. Registration could be used to educate radiologists since it becomes easier to 

follow the evolution of regions of tissue over time through physiological (e.g. 

involution) or pathological changes in aligned sequences.

Summarising, computer aided temporal mammogram analysis has the potential to assist 

the clinician in the detection of subtle cancers that as mentioned are often missed. 

Establishing correspondences between temporal/bilateral mammograms could be an 

important aspect of CAD (computer aided diagnosis) systems. Registration (alignment) 

of mammogram sequences can assist the clinician to better understand the 

correspondences between temporal mammograms and diagnose abnormalities. 

Furthermore, quantification of tissue density changes can assist the clinician to 

understand if the woman is at higher risk of cancer due to HRT. Our clinical co-workers 

believe that the development of robust temporal registration and quantification systems 

could reduce the number of “missed” cancers and assist in the early detection of cancers 

related to the use of HRT. Future clinical trials (e.g. in the screening programme) will test 

these expectations in clinical practice.
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3.1 Introduction

In this chapter the basic concepts of medical image registration are explained with focus 

on mammogram registration, which is the main subject of our work. In clinical practice, 

medical imaging has traditionally been used for diagnosis. Over the past few years, a 

number of medical imaging applications including surgical planning, image-assisted 

surgery, radiotherapy and chemotherapy assessment have become increasingly clinically 

important.

A coarse classification of medical imaging can be made in terms of anatomical and 

functional imaging. Anatomical imaging modalities, such as X-ray, CT (computed 

tomography), MRI and ultrasound provide information about the shape and structure of 

various parts of the human body. On the other hand, functional modalities like contrast- 

enhanced and fMRI (functional MRI), nuclear medicine (e.g. scintimammography), 

SPECT and PET provide information about changes in physiological processes (e.g. 

contrast-enhanced MRI provides information about the breast tissue uptake of the 

contrast agent over time).

Different modalities have their advantages and disadvantages and it is most often the case 

that the clinician needs to combine information from different modalities, or of the same 

modality taken at different time instances. The large variability of medical image data 

and the diverse and often complementary nature of the images, lead to the development 

of techniques that would allow the fusion of information coming from different imaging 

modalities. This process is generally termed registration and covers a wide range of 

applications and modalities.

In this chapter, the different aspects relating to medical image registration are explained 

in more detail.
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3.2 Definition of concepts related to registration

The terms registration, fusion  (or image-fusion) and matching are often used to describe 

similar concepts (and sometimes can cause confusion to the reader). In this section, some 

short definitions are provided in order to help the reader understand the use of these terms 

in the rest of the thesis as well as some comments about the image transformation aspect 

of the registration process.

Imase Matching: This is defined as the process in which correspondences are established 

between two or more images using an algorithm that calculates similarities between 

structures (primitives) in those images. These structures can either be smaller anatomical 

elements (in which case a segmentation algorithm prior to matching is necessary) or 

characteristic/salient points, lines, contours or edges (usually texture masks, edge/line 

detectors are used to define/segment them). The correspondences can be calculated for all 

the pixels in the image (as, for example, in an optical flow algorithm) or between a set of 

image primitives like patches (in general using a similarity measure like mutual 

information or texture in general). Depending on the individual modality and the images, 

a set of constraints or heuristic observations can be defined in order to help establish 

correspondences.

Imase Registration: As noted in the introduction to this chapter, it is most often the case 

that the clinician needs to combine medical images from different modalities, or images 

taken at different times. The first step in this integration process is the geometrical 

alignment of the images. This process generally involves estimation of the transformation 

needed to align an m-dimensional image with an n-dimensional image (n, m e  2,3,4). 

The dimensionality of the registration is discussed later in this chapter. Matching is the 

first step of a registration process, since it is necessary to establish some correspondences 

in order to drive a spatial transformation to align the images.

Imase fusion: After geometric alignment the next step of integrating information from 

different medical images, is image fusion. It is defined as the integrated display of the

Page 52



3.2 Definition o f concepts related to registration

data involved [44] (e.g. a cancer detected in a nuclear medicine scan, superimposed on a 

geometrically aligned 3D MRI scan of the same patient). In some applications, image 

fusion is the most important part of the registration process, the finest example being pre­

operative planning augmented by intra-operative imaging, or fusion of CT with the 

patient’s video images [45, 46].

Comments on the resistration process: The number and type of correspondences between 

images clearly defines the choice of registration technique, the mathematical extent of 

transformation (i.e. rigid/affine/non-rigid) and the type of heuristics/constraints necessary 

to make the registration robust. Additionally, there are a number of optimisation 

considerations that must be taken into account in order to ensure that the choice of 

correspondences produces a computed transformation that correctly compensates for the 

differences in the images that need to be registered. Finally, the optimisation framework 

must reflect the type of régularisation (or constraints) imposed on the registration 

process.

In terms of computing the transformation, there is a large degree of flexibility in the order 

of the computation. The main classifications are:

• Rigid: When the necessary transformation only needs to translate and rotate one 

image to be aligned to the other(s) (3 degrees of freedom).

• Affine: Same as rigid but in addition a scaling parameter is necessary for the 

alignment (4 degrees of freedom).

• Locally Affine: This method has been used for surface matching [47], combining an 

initial global affine transformation, then a local affine modification to complete 

registration

• General non-rigid: When more parameters are necessary in order to align the images, 

the transformation is non-rigid (high-order degrees of freedom).

The transformation that relates the two images depends on:
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•  The difference in geometry arising from the way an organ is imaged in each 

modality (e.g. in X-ray manunography the breast is compressed between two 

plates, whereas in breast MRI it is uncompressed and pendulous).

• The patient positioning: For example a mammogram is taken while the patient is 

standing up, whereas in the breast-MRI acquisition the patient lies in the supine 

position.

• The intrinsic differences (e.g. the image formation process, or dimensionality) 

between modalities can introduce geometrical inconsistencies (e.g. breast MRI 

and nuclear medicine can both provide functional information, but nuclear 

medicine provides limited anatomical details).

In most cases, the clinical application (i.e. the characteristics of the organ or region to be 

registered) will determine which type of transformation is appropriate. For example, soft 

tissue medical imaging (perhaps with the exception of the brain) will almost always 

produce a non-rigid transformation between successive acquisitions due to factors such as 

patient movement, muscle flexing, breathing, cardiac motion, etc. In many such cases, 

there is a need first to compute a general transformation, perhaps based on a rigid or 

rigid/affine transformation, and then to proceed to refine the transformation on the basis 

of a non-rigid relationship between corresponding points.

Alternatively, the type of transformation may be driven by the characteristics of the 

correspondence data. For example, when registering brain MRI images to an atlas, in 

many cases, a rigid transformation may be suitable. However, if the correspondence data 

indicates a higher-order transformation (e.g. affine) on the basis of some minimisation 

framework, then the transformation could be adjusted to reflect a higher degree of 

complexity. This also applies to applications where the transformation may be 

predominantly rigid or rigid/affine, but has a small non-rigid component that may vary 

from case to case (e.g. sequences of breast images).

These considerations are addressed more thoroughly in section 3.7 of this chapter.
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3,3 Clinical Motivation for Registration

There is a wide range of clinical applications that have motivated the need for computing 

correspondences and the transformation characteristics between images. Although several 

techniques allow automatic registration using stereotactic frames, fiducials or skin 

markers, most of these scenarios have limited applications (e.g. it is not possible to have 

markers in all modalities) and their usually invasive nature make their use less attractive. 

There is a need for frameless guidance systems to help surgeons plan the exact locations 

of incisions, to define the margins of tumours and to precisely identify locations of 

neighbouring critical structures.

In general, the motivation for developing sophisticated registration techniques has been 

on the basis that there is no single defined characteristic in the image that can be used for 

correspondence. As a consequence, nearly all registration algorithms involve developing 

correspondences between detected features such as points, landmarks or regions of 

interest. The applications of registration (to date) have been designed to address the 

following types of clinical applications:

• Diagnosis, screening and temporal studies. Registration can assist the clinician in 

establishing a diagnosis via a more efficient comparison of multi-modal or 

temporal mono-modal patient data. Screening for a disease (e.g. for breast cancer) 

provides the opportunity to compare previous data of the patient with the most 

recent, and detect abnormalities on the basis of significant difference (as in the 

case of temporal mammography). In addition, image registration can provide 

useful information about the progression of a disease or treatment since the 

aligned images can show the differences between the images over time (e.g. in 

HRT, chemotherapy, radiotherapy).

• Fusion between different imaging modalities in order to combine information 

from the two images in a single image. This is a general clinical requirement with
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several applications. As an example, recent work on data fusion between X-ray 

and breast MRI has shown promising results [32, 33].

• Generation of statistical models for comparing “normal” against pathological 

conditions. To build such models, it is necessary to acquire information from a 

large number of controls (i.e. healthy individuals) and examine the “normal” 

variation of certain features (size/volume, texture and shape). Image registration is 

needed in this step in order to align all the images to one co-ordinate frame. Once 

the model is computed a patient can be diagnosed “abnormal” if the data does not 

fall within an allowable variation. The basic assumption behind models of normal 

variation is that there is a consistent difference in features (e.g. volume or size of 

a structure) between “normals” and patients with a disease (e.g. in schizophrenia). 

In [48], a probablistic atlas describing the normal variation of the human brain is 

constructed based on high-dimensional vector field transformations, while in [49] 

a biomechanical model (that can simulate tumour growth) is used to register brain 

images to a “normal atlas” and accurately detect abnormalities for effective 

surgical planning.

• Image guided surgery. After image acquisition and surgical planning (including 

segmentation and/or simulation), the medical image and planning information is 

registered to the patient in the operating room (OR). The surgical planning may 

involve registration of a pre-operative model to the intra-operative conditions of 

the OR. In the same context, surgical guidance (fusion between intra-operative 

geometrical information and a pre-operative model) can assist (navigate) the 

surgeon during the procedure [50]. Such methods enable a visual mix of live 

video of the patient with the segmented 3D MRI or CT model, supporting 

enhanced reality techniques for planning and guiding surgical procedures, and to 

interactively view extracranial or intracranial structures non-intrusively [51-53]. 

Extensions of these methods include simulation of tissue change during surgery 

[54-56], image-guided biopsies [57] and focused therapeutic procedures.
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•  Atlas or template matching -  for quantification studies in cardiac imaging [58], or 

for comparing a known library of anatomical/physiological information (this can 

also be functional, in the case of fMRI, for example) against a specific patient 

case [59, 60]. Usually a deformable model is used to transform the individual 

images to the co-ordinates of the atlas for easier and more consistent comparison 

of patient data [61].

3.4 Specific Motivation for Registration in this Thesis

In this thesis, the major emphasis is on registration problems related to mammography. 

As mentioned in the first chapter, comparison of mammograms of the same patient taken 

at different instances can assist the clinician in detecting pathological changes and hence 

establish a diagnosis of cancer at an earlier stage. As a consequence of the 

implementation of screening programmes, temporal mammographie data has become 

increasingly available and clinicians use temporal comparison as a way of detecting 

abnormalities. Registration of temporal mammograms can enhance this comparison and 

assist the clinician in detecting asymmetries, dissimilarities and new growths.

The key objective is to register (align) temporal mammogram images so that a clinical 

comparison becomes an easier task and the architectural similarity (or dissimilarity in 

cases where there is a new growth) is maximised. The method developed, and presented 

in this thesis can extract consistent geometrical landmarks along the edge of the breast in 

order first to align the images based on the boundary of the breast. In a second step, a 

multi-scale segmentation based on wavelet analysis provides a set of internal structures 

that can be matched in the two breast images and then refine the registration to better 

approximate the transformation. In this chapter, the nature of the mammogram 

registration problem is discussed in section 3.10 and in chapter 4 the technique for 

mammograms registration is presented.

A special case of mammogram registration involves temporal data from women that have 

been treated with Hormone Replacement Therapy (HRT). Since it has been reported that
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there is a greater risk of breast cancer for HRT users, possibly induced by the exogenous 

hormonal stimulation, frequent mammogram screening is necessary for early diagnosis of 

pathological changes in breast tissue (especially for long-term users). In chapter 5 of the 

thesis several issues of temporal comparison and tissue quantification in temporal HRT 

mammograms are detailed.

3.5 Basis for Registration

In section 3.2 it was briefly mentioned that the objective is to use the image content to 

drive registration via the detection/computation of a set of correspondences. In general, 

the registration problem can be defined in terms of two categories [44]:

Intrinsic, using image content such as landmarks (anatomical and geometrical), 

segmented features (rigid models based on points, curves, surfaces and deformable 

models like snakes, nets etc.) and voxel properties

Extrinsic, using external markers, fiducials markers etc. These methods, though more 

accurate, are less attractive due to their usually invasive nature.

The Extrinsic case (which often includes non-image considerations such as the 

geometrical correspondence between images acquired in different scanners, etc.) is not 

the emphasis of this literature review. Since for breast registration one may not have the 

benefit of any obvious anatomical landmarks, there is a strong dependence on the 

computation of image-based features and characteristics to drive the registration process.

Shape constraints, topological models, snakes, adaptive meshes may provide some 

constraints or a “model” by which registration can be controlled (e.g. when registration is 

based on the evolution of contours or surfaces). In this case, a shape model is extremely 

useful for computing a point correspondence of the evolution of a contour (or surface). 

Shape-based approaches can also be considered either as an optimisation step, a model- 

based constraint (such as allowable shape deformations with respect to an atlas) or in
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some instances, a régularisation consideration (for example, a contour may only be 

allowed to deform with respect to a certain degree of curvature, etc.). Useful information 

on various deformable models used in medical image analysis, can be found in [62, 63].

3.6 Types o f registration

In the literature, the registration process is often classified according to the 

dimensionality of the problem, the modalities involved and the subject.

There are many different combinations of dimensionality in registration applications as 

for example 2D, 3D, 2D-3D (via projections), temporal 2D and 3D (effectively 4D as in 

[64-68]). The key requirement is that a geometrical framework can map one set of image 

feature vectors onto another.

Depending on the modalities involved, the registration problem can be characterised as:

• Mono-modal, if  the images to be registered come from the same modality. For 

example in [69], where time series of MRI volumes are non-rigidly registered. 

Another example of mono-modal registration is temporal mammography where the 

most recent mammogram is aligned with all previous ones of the same patient, in 

order to detect abnormalities on the basis of significant difference. Another 

application of mono-modal temporal registration is to assess the success of the 

surgery (or therapy) by aligning the images before and after surgery (or the 

commencement of therapy).

• Multi-modal: When two or more different modalities are involved. In this case, it is 

necessary to register the different modality images in order to combine the 

information in a single display (data fusion). A classic case is the registration of PET 

to MRI in order to relate an area of abnormality to the underlying anatomy [70]. In 

this case, multimodal registration is necessary, since nuclear medicine is very 

sensitive at detecting lesions but has very poor spatial resolution, whereas MRI offers
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excellent spatial resolution and anatomical detail. Another important example is MR- 

CT multi-modal registration, using for example a similarity measure [71, 72].

A multi-modal registration problem can be decomposed in two parts: geometrical 

alignment and intensity alignment. In this context, if the intensities of two images are 

corrected, the remaining problem can be treated as a mono-modal registration. This 

concept was exploited in [73], in order to take advantage of the demons algorithm (that 

was originally developed for the mono-modal case) in registering brain images from 

different modalities. In this thesis, the problem of mammogram registration though a 

mono-modality problem, can also be seen as a geometrical and intensity alignment 

(geometrical alignment via boundary and internal landmarks and intensity normalisation 

via the /lint representation).

If the images to be registered are acquired from a single patient, the registration is 

referred to as intrasubject. If different patients are involved the process is called 

intersubject registration. This is usually performed when it is desired to derive image- 

based statistical information about a disease (or anatomical, physiological information) 

from a population. For example, if a region of interest is to be compared between a 

normal (control) group and a group that has developed a certain disease (e.g. cancer), it is 

necessary to register the images to the same geometrical frame in order to facilitate 

computer calculations and make the whole process more robust. Ever since intersubject 

registration became possible, there has been an effort to gather information about normal 

variations to anatomical features. Statistical models of variation associated with a disease 

were discussed in section 3.3.

3.7 Analysis o f the Registration Process

3.7.1 Overview

The technical aspects of the registration process can be decomposed into three distinct 

components:
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• Correspondence of features or “matching stage”

• The computation of a transformation based on this correspondence

• Régularisation, optimisation of the registration

• Interactivity

These issues are discussed in the following sections.

3.7.2 Establishing correspondences

As mentioned earlier, the term registration is often used interchangeably with the term 

“matching”. In fact, the matching process is really the first step of registration and 

involves determining correspondences between images so that a transformation can be 

computed. There are a number of ways to define correspondences that are usually directly 

related either to the imaging modality, the type of organ/region under examination or the 

clinical assessment that may result from registration (for example, if one is comparing 

schizophrenic brain against a “normal” population, contours are more critical than 

points).

In the literature, there are many different kinds of correspondence approaches:

Points (i.e. salient regions, landmarks representing a region of interest, a collection of 

contour points, etc.). Various kinds of search algorithms (like the ICP algorithm 

described in section 3.8) are usually combined with local feature detection (comers, 

scale-saliency, scale-space analysis, etc.).

Regions. Correspondence techniques such as block matching or “patch matching” use 

some kind of correlation measure or texture analysis to ascertain that there is a 

regional similarly between parts of an image. In general, this involves collecting a 

large number of “icons” within the image and utilising a cost function to compare the 

quality of similarity. Interestingly, most of the search algorithms used to define region
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correspondence are similar to those for point correspondence. Similarity measures, 

and in particular mutual information, are described in section 3.8.

• Field (total image) Correspondence. These approaches attempt to compare every 

component in the images to be registered with the objective of defining a 

“transformation map” that defines how each local component differs between images. 

Clearly this approach is not generally applicable to simple rigid/affine registration 

applications as such correspondence measures generally indicate a large degree of 

local deformation. Examples of techniques that compute a transformation “field” are 

optical flow, fluid-based techniques and demons (discussed in section 3.8).

3.7.3 Transformation

Once a set of correspondences has been determined, this relationship is used to compute a 

transformation in order to geometrically align the images. Clearly, the number of 

corresponding points and the spatial relationship between these points will determine the 

class of transformation. As mentioned in section 3.2, the transformation calculation can 

be defined by a limited set of classes that depends on the clinical application. These 

classes are:

• Rigid: A co-ordinate transformation is called rigid when only translations and 

rotations are allowed

• Affine: If the transformation maps parallel lines onto parallel lines is called affine.

• Projective: The transformation maps lines to lines.

• Curved: Maps lines onto curves.

• Non-rigid: When none of the above restrictions can satisfactorily describe the 

transformation and higher degrees of freedom are required to “capture” the geometry.

In this thesis, the non-rigid case is more important, although in many applications the 

computation of a non-rigid transformation includes a substantial rigid or affine
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component. This is clearly a consideration when computing the transformation and is 

further discussed in the context of optimisation in section 3.7.5.

Computation of the transformation for the rigid case is usually quite straightforward as 

only a limited number of corresponding points (e.g. only 3 points in 3D) is required to 

define a rigid transformation and calculation of the homogeneous matrix defining the 

transformation relationship can be performed quite robustly using simple gradient 

descent, least squares, convex matrix inversion, etc.

Non-rigid transformations are more difficult to calculate. Firstly, there is the issue of how 

well the set of corresponding points can be used to define a non-rigid transformation. If 

the data is sparse, computing the transformation can be numerically problematic. 

Additionally, there is the issue of whether to interpolate the transformation between a set 

of corresponding points or to use an approximation framework. This issue is discussed in 

the context of régularisation in section 3.7.4. There are many algorithms in the literature 

that have been used to compute a non-rigid transformation. These include:

• Various kinds of radial basis functions, including Gaussian [74], multiquadrics [75] 

and thin-plate splines [76].

• Different kinds of spline meshes and tensor splines (e.g. in [77] where vector splines 

are used for the reconstruction of the left ventricle. This is also extended to spline 

surfaces and spline mesh topologies.

• Constrained models such as finite-elements and mesh-based transformations (these 

are model-based deformation approaches like in [78]).

3.7.4 Régularisation

Despite the fact that a limited number of correspondences may be used to compute a 

transformation, they must also define the transformation between all points in an image.
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Therefore, there is a need to control the regularity of this transformation either in an 

interpolation or an approximation context. This is crucial for medical imaging, since the 

geometrical transformation has a physiological significance (e.g. heart motion, optimally 

compressed breast etc.). In other words, if the transformation reflects only the true 

correspondences, the rest of the point (pixel/voxel) correspondences between images may 

be not be valid.

There are two possible approaches: to regularise the data before calculating the 

transformation, or to control the “smoothness” or the uncertainty in the localisation of all 

landmarks in an approximation scheme. In the case of field-based registration techniques 

(where correspondences are derived across the whole image), it may be more appropriate 

to regularise the correspondence data (“filter” the landmark set by rejecting outliers). For 

example, techniques exploiting correspondence “smoothing”, Bayesian estimation of 

local error, Markov random fields, etc. can be used to correct or improve the local 

smoothness of correspondences resulting in a smoother transformation.

In the case of landmark-based methods, the previous approach to regularising the data 

may not be as appropriate since the transformation is calculated from these landmarks for 

the entire image. However the transformation can be smoothed by introducing a 

smoothness parameter in the calculation of the transformation. It is also possible to 

individually weight the “significance” of each landmark (e.g. by calculating its 

localisation uncertainty) [79]. In such a case, certain landmarks are given greater or lesser 

influence in the transformation calculation, hence reducing the error that may be 

introduced by landmarks that have a lower confidence. This concept is exploited in the 

next chapter where a two-stage registration algorithm for mammogram registration is 

presented.

Finally, there is a role for model-based registration in the context of régularisation. Shape 

constraints, deformable models with certain mechanical properties and smoothness 

conditions implied by assigning deformation characteristics to certain features (i.e. tissue 

classification in MRI) may also provide a measure of régularisation to a transformation.
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The difficulty with such approaches is that the model must accurately reflect the 

characteristics of the registered images, otherwise the constraints may provide more error 

than benefit.

3.7.5 Optimisation

In many registration algorithms an optimisation step is included in order to improve the 

registration result and make the process more robust. In non-rigid registration 

applications, there are three main considerations related to optimisation:

Optimisation of correspondences: By including additional image-based information the 

calculated correspondences can be improved or “filtered” (e.g. the result of a search 

algorithm). For example, a collection of landmarks may be refined on the basis of feature 

parameters such as scale, orientation, shape, etc. to produce a more robust set of 

correspondences.

Optimisation of the transformation: This can be done either on the basis of iterative 

refinement or alternatively, control over the régularisation parameters. This is usually 

driven by a post-registration assessment of the quality of the transformation (either using 

a distance measure, covariance matrix, map of mutual information, etc.). In our 

application of non-rigid registration to temporal mammograms, we start with an 

interpolation approach when calculating a “boundary condition” registration, but switch 

to an approximation scheme when increasing the complexity of the deformation. Some 

optimisation examples include:

• Representing the transformation process within a framework that can be driven by 

alternative approaches. A good example of this would be to compute a fluid-flow 

displacement map but perform the transformation using radial basis functions driven 

by landmarks that are moved via the displacement [80].
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Optimisation in cases where the deformation (transformation) is based on “principal 

warps” or principle “modes” of deformation (e.g. in [76]). This applies equally well 

to radial basis functions (which may be treated as solution to an eigensystem 

problem) or to linear finite elements, where a deformation can be decomposed into a 

set of modes. By rejecting higher-order modes of deformation, the smoothness of the 

transformation can be controlled.

Multi-scale optimisation: Many search schemes, both for point/region-based 

correspondence and displacement fields (such as those that result from optical flow) 

can be implemented in a multi-scale fashion. This optimisation issue addresses two 

considerations. Firstly, there is the issue of localising a landmark or feature 

correspondence to a particular region of the image using different scales of analysis. 

This may change the level of accuracy of correspondence and consequently the 

smoothness of the transformation (i.e. this generalises the localisation of a feature or 

displacement vector). In the case of optical flow, a high-scale evaluation of the 

displacement field will produce a much smoother approximation as it is effectively 

the result of summing a large number of smaller displacement vectors. The second 

optimisation issue that is addressed by multi-scale is computational efficiency. In 

image registration applications where large regions of the image (for example a fatty 

or involuted breast) do not contain much textural information, a multi-scale approach 

is likely to perform far better at searching for correspondences. Many multi scale 

techniques based around sampling windows, Gaussian (linear) scale-space, wavelets, 

etc. have been developed to address this problem. A multi-scale approach may also be 

useful for speeding the convergence of a search algorithm and to avoid local minima 

in the case of flow-type algorithms.

3.7.6 Interactivity

There are three classifications of registration algorithms with respect to interactivity:
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Automatic: The user supplies the image data and possibly information about the image 

acquisition.

Semi-automatic: Interaction with the user is necessary either to initialise or to supervise 

(e.g. accept/reject landmarks) the registration.

Manual: The user defines the points or regions of correspondence.

Although automatic registration offers the greater challenge, very often in practice it is 

not the best solution for clinical related applications. In order to achieve automated 

performance, there is usually a trade-off between the complexity of the clinical 

application, the precision required and the degree of variability in registration that can be 

managed successfully. In addition, the clinician has to supervise and judge certain steps 

of the process in order to minimise possible errors. In mammograms, there is a large 

degree of variability in the imaging conditions, hence unless there are significant 

measures, a-priori knowledge and ultimately, heuristics, included in the registration 

framework, the potential to automate the process is usually limited. Clearly, by 

introducing heuristics, there may be a compromise in robustness. For all these reasons, it 

is essential to consider interactivity issues as well as robustness, speed and accuracy 

when designing the implementation of clinical registration systems and deciding upon the 

desired degree of automation.

In our opinion, there are three important considerations concerning medical image 

registration methods:

• The clinician must understand each step of the registration. To this end, the

performance, the outcome and the clinical implications of the registration must be 

presented to the clinician (perhaps via visualisation or a graphical interface) in a way 

that is clearly understandable, and understood.

• The registration process must be capable of being interrupted and changed by the

clinician at any stage. This means that although an algorithm may perform well in 

automatic mode, the clinician must be able to introduce his “expert” opinion into the
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registration process to influence the final result, even if this degrades the result in 

some cases. This is the only way that the clinician will have faith that the process 

produces the outcome he/she desires.

• If the registration process fails, the clinician must be informed why, and at what stage 

(and due to what factors) the registration was not successful. This is very important 

since in many cases clinical data exhibit large variability and recording the reasons of 

registration failure is necessary to improve robustness. To this end, there must be 

measures incorporated into the registration process that evaluate whether or not the 

computed transformation is meaningful. An example of this might be a case where 

critical points (e.g. anatomical landmarks) cannot be detected due to occlusion.

With these considerations in mind, in this thesis, there has been an effort to develop 

registration algorithms that perform well automatically; but which also have a level at 

which the clinician can intervene.

3.8 Algorithms

3.8.1 Introduction

Having classified registration techniques, we examine several concepts and methods 

related to registration and we present some of the core registration algorithms in the 

literature. Most techniques require the calculation of correspondences between images. If 

the intensity distributions of the image pair are not substantially different, measures such 

as mutual information (discussed later in this section) can provide good matching results. 

In such cases, algorithms like optical flow and the demons algorithm (both discussed later 

in this section) may be used.

However, when different modalities are involved, or when the imaging conditions 

considerably vary (e.g. in X-ray mammography), the distributions of the image intensities 

may differ significantly. In such cases, photometrically invariant techniques are required
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to segment similar structures in the image pair. It is necessary to include additional 

information either by approximating the intensity relation function of the images (from 

the joint histogram), or by establishing correspondences between image primitives using 

constraints or heuristics specific to the problem.

To this point, registration has been discussed in an abstract formulation. If we ignore the 

basis upon which the transformation is calculated (to a certain extent, this is the least 

critical component of the registration process) and focus instead on the derivation of 

correspondences between images, a series of commonly used matching approaches can 

be outlined. These include:

• Voxel similarity measures

• Fluid-based correspondence

• Optical flow

• Demons

• ICP, search-based approaches

There is an additional classification of “matching” that should not be discounted, namely 

the manual placement of landmarks. In cases where the transformation is simple (i.e. 

rigid/affine) and the visualisation/interaction of the medical data is appropriately flexible, 

it may be more appropriate for the clinician to define a small number of landmarks, than 

to automate correspondence detection.

3.8.2 Mutual information

Mutual information is a measure of similarity that has been used extensively in medical 

image analysis in order to calculate corresponding regions in images and to drive the 

registration process. It has been used as the basis of non-rigid multi-modal registration 

methods [81-83]. The mutual information {MI) of an image /, is defined as:
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M I(I)  = ^  p. j log Pi,

i,je I  P i P j

Where pj are the probabilities of image intensities i and j  respectively, and py  is the 

joint probability of i and j  (the probability of a pixel transition from i to j  in the image). 

The mutual information of two images I], h  is defined as:

PhPh

Where p ‘fj^ is the joint probability density of intensity i in the first image and j  in the 

second, and pJ , p/^ are the probabilities of the same pixels in their corresponding

images. Viola [84, 85], was one of the first to develop an algorithm that calculated the 

transformation which leads to maximum mutual information between the source (model) 

and target image. Gilles [86], used the same concept including an optimisation scheme to 

avoid local minima of MI  in the calculation of the best transformation. The exact 

transformation that maps the first image u (the model) onto the second image v (the 

image) should give rise to the largest mutual information. Mutual information then 

becomes an optimisation criterion, optimised with respect to T:

d/dT[M/(T)] = d/dT[ H( v(T(X)) ) ] - d/dT[ H( u(X), v(T(X)) )]

Where H is the entropy and MI  the mutual information. The method uses a classic 

gradient-descent optimisation technique, and tries to find the transformation that gives the 

largest mutual information by taking small steps in the "direction" of the derivative of the 

criterion. This technique cannot be used directly in the non-rigid case since it is not 

possible to parameterise the induced transformation.

Mutual information can be used in a non-rigid registration framework to establish point 

correspondences (e.g. comparing the MI  from patches along the two images). In [73], the
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mutual information registration is presented as an iterative process, where each voxel 

moves toward the gradient of the mutual information:

= («„ + aV M / (m J )

Where Un+i is the calculated evolution of the point and Go a Gaussian filter for 

smoothing. Comparisons of similarity measures for image registration can be found in 

[87, 88], while in [89] the correlation ratio is proposed as a new similarity measure.

3.8.3 Optical flow

The optical flow algorithm can be used to register temporal images providing that the 

intensity of each pixel or voxel x=(x], X2, xs) remains constant in time [90]. In other 

words:

dl{x, t )
dt

Using this constraint, the displacement f{x) in the direction of the brightness gradient can 

be calculated as follows:

This equation is not sufficient to completely determine the transformation for all pixels, 

and many different suggestions have been offered to regularise the resulting vector field. 

Among these, Thirion [91], proposed to smooth the vector field with a Gaussian filter Go 

and to add a term in the denominator for numerical stability. With these considerations in 

mind, Guimond and Roche [73], showed that the optical flow method can lead to the 

following iterative registration framework:
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Where each voxel m„ is displaced to Un+j using the previous recursive equation. This 

method is similar to the Demons algorithm introduced by Thirion [92]. As mentioned 

above, it is related to the optical flow algorithm by:

Where Un+i is the calculated evolution of the point and Go a Gaussian filter for 

smoothing, T is the target image and Sohn{x) the transformed source image in the n* 

iteration. In [93], optical flow is driven by geometric rather than photometric criteria.

3.8.4 Fluid Registration

The original “viscous fluid algorithm” was a non-rigid registration technique introduced 

by Christensen et al. [94]. Several researchers have presented different implementations 

of the same idea [80, 95] either using multi-resolution optimisation, or by combining the 

method with thin-plate spline warps to obtain faster and more stable results. In the 

viscous fluid algorithm, the image S is deformed iteratively to approximate the target 

image T. At each step, the following partial differential equation (pde) has to be solved:

+  (/I +  y6/)V(Vv) + f  (u ) =  0

Where /J,, A are the viscosity parameters, u the displacement vector in the source image 

and V the velocities corresponding to positions jc- u (jc)  in the source image. The force/(u), 

that drives the deformation is given by:

/ ( u )  = -( 5  (x-u(x)) -T  (x) ) (V5|j.„(x))

At each iteration, the driving forces fiu)  are calculated as the difference between the 

transformed source image (S) and the target image (T) multiplied by the gradient of the 

deformed source image (note the similarity with “demons”). After the forces are
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calculated, the pde is solved at each step in order to calculate a field displacement u, for 

every image pixel. The basic problems with this method are: the computationally 

expensive implementation scheme that is required; and the “blurring” of the transformed 

image after several iterations, due to the regridding of the pixels. (Applying a 

transformation in an integer array such as a digital image can force the pixels outside the 

orthogonal pixel grid).

3.8.5 Combined registration-intensity correction

As mentioned in the introduction to this section, intensity-driven registration algorithms 

do not always give good results, especially in multi-modality registration problems. This 

is because the intensity distributions of the two modalities can be very different. 

However, Guimond and Roche [73], developed an iterative algorithm to register brain 

images that effectively reduces the problem to a mono-modality registration task. At each 

step, the intensity relationship between the images is approximated (assuming either 

mono-functional or bi-functional dependency) and the source image S is transformed into 

the “intensity corrected” S*. After the intensity correction, they used a version of the 

demons algorithm to transform the geometry of S* and better approximate the target 

image T:

u^Jx) = G,  ® («, + oft ) w f + [ s :  o l l ) - T ( x ) Y

Where Un+i is the calculated evolution of the point Un and Go a Gaussian filter for 

smoothing, T  is the target image, S* the intensity corrected source image and Sohn(x) the 

transformed source image in the n^ iteration. The algorithm converges to a solution, 

when the result is not significantly improved between two successive steps.

3.8.6 ICP-based algorithms
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Many variants of the ICP (Iterative Closest Point) algorithm ([96, 97]) have been widely 

used for geometric alignment of 3D images. Registration methods based on the ICP 

algorithm give the advantage that they can include intensity, orientation, gradient as well 

as geometrical information in a minimisation scheme that does not require explicit 

calculation of derivatives. In general, the steps of the algorithm are:

• Selection of points to be matched between source and target image

• Establishing correspondence between points

• Weighting the calculated matches

• Rejecting pairs that may represent a matching error (e.g. due to occlusion or 

pathology present in one of the images).

• Minimise a cost function calculated from the matched pairs.

One basic weakness of these algorithms is that a good initialisation is often needed but 

this can sometimes be avoided with an initial rigid estimation of the transformation (e.g. 

based on mutual information).

In [98], both the intensity and geometry are aligned, deforming the image in 4D during 

iterations. The minimised energy is given by:

E ( f , g ) =  Y ^ d { { f { x ^ ) , g { M . ) \ N ^ Ÿ + À -
(,M j,N j)eM atchi j ,N  j)eMatchj

Where / ,  g are the geometrical and intensity transformations respectively, X[ the spatial 

co-ordinates vector, 5 is a smoothness function, À is the smoothness parameter, while Mj, 

Nj,  and Matchi are defined as follows*:

Match,={ (M j , N  ̂ ),where N  J=CP^^{[f,_^{x.),g,^^{M ̂ )]}

CP stands for closest point
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In other words, for each iteration i, a set of closest points is defined between the source 

image (M) and the destination (N) and subsequently the functions by minimising the 

energy-cost function.

3.9 Registration Assessment and Validation

In cases where the registration is based on a rigid or rigid/affine approach, the validation 

is relatively straightforward. The performance of the registration is less dependent on the 

computation of the transformation (i.e. such techniques are simple and numerically 

robust) and more dependent on the choice of landmarks. In this case, clinician interaction 

will produce a registration framework that can be very robust. More automated 

approaches such as maximisation of mutual information, covariance matrices, etc. may 

also produce reliable registration assessments for simple transformations. A large-scale 

validation experiment of rigid registration has been reported by Fitzpatrick and West

[99]. Various research groups registered the same image pair and the resulting 

transformation co-ordinates for three pre-defined points were used to assess the error in 

the results. The ground truth transformation calculated using fiducials.

For the non-rigid case, registration validation and assessment is substantially more 

difficult. In general, we are interested in the performance of the registration with respect 

to the following considerations:

• Robustness and stability: It is necessary to develop robust registration algorithms that 

can deal with data variability and do not allow “outliers” (e.g. a low confidence 

landmark pair) to change the stability of the approach. The numerical stability is 

important, since most of the algorithms calculate a significant number of complex 

tasks through the images. Generally, a large number of heuristics is not desired, since 

it reduces the robustness of the process and makes the whole process less intuitive.

Precision and accuracy. This is particularly critical if an approximation method is 

used or a model is included to constrain the transformation. Does the registration
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algorithm provide sufficient precision to be used for treatment planning, image 

guided surgery, etc.? If the precision fails, can the clinician be informed? Phantom 

studies and clinical evaluations that compare the results of registration with a “expert” 

opinion may be useful for evaluating this consideration.

Generality of assumptions. Although this relates to stability and robustness, it must be 

clear that any assumptions or heuristics introduced into either the matching or 

transformation computation, must be valid for the entire range of clinical cases for 

which the algorithm will be used. If heuristics are critical to the success of the 

algorithm, can the validity of the heuristic be assessed for each case (and the clinician 

appropriately informed).

Computational performance. The choice of registration algorithm may also be 

influenced by the computational performance of a particular approach. In safety- 

critical registration applications or cases where a diagnosis (that depends on the 

registration) is needed within a certain period of time, the quality of the registration 

may be offset by the time needed to utilise the ideal solution. A good example would 

be the general inappropriateness of using a PDE-based (partial differential equation) 

registration for intra-operative registration, compared with a simple search and radial 

basis functions.

Clinical “ground truth”. Most applications of registration result in the fusion of image 

data for the purpose of evaluating pathology, treatments or utilisation for surgical 

guidance. In all of these cases, the clinical “ground truth” is the pathology (or 

histopathology). The best way to evaluate registration algorithms is via localisations, 

image-guided biopsies, post-surgical assessment, etc. as this provides real evidence 

that the registration technique has been successful. Clearly this is not trivial, 

especially for non-rigid registration problems. In the case of multi-modal fusion (for 

example, breast mammography to MRI), this kind of localisation/biopsy study is 

critical due to the large extent of the deformation during registration.
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3.10 Mammogram registration and matching: A challenging problem

3.10.1 Introduction

The most important mammographie component in terms of disease diagnosis, is the 

fibroglandular tissue. Mammographie images are hard to interpret and, since the region of 

interest consists entirely of soft tissue that is compressed during acquisition, the 

mammographie appearance is not always consistent. The radiographer tries to optimally 

compress the breast so that all the glandular tissue elements are separated during 

acquisition. For this reason, in the registration work presented in this thesis, the glandular 

tissue is considered to be the most important image feature, and the internal matching is 

based on the detection of glandular structures (work presented in chapter 4). Other 

structures, like curvilinear structures, vary significantly between successive scans and are 

not considered to be reliable features for registration.

Figure 11 shows a typical L-R pair of cranio-caudal mammograms. The most prominent 

characteristic is the high intensity architecture consisting of the glandular tissue and 

Cooper’s ligaments. The high intensity architecture appears as a bright network against a 

dark background, which consists of fatty tissue. The appearance of x-ray mammograms 

varies according to the age of the woman. A normal, young woman’s mammogram is 

usually bright due to the high-attenuation characteristics of calcium that is prominent in 

the milk ducts of the breast. As a result, the detection of abnormal structures in younger 

women’s mammograms is today considered very hard.

Mammograms obtained from postmenopausal women vary in appearance according to 

the degree of involution that has occurred. From the standpoint of physiology, involution 

is defined as gradual degradation of milk-bearing tissue to fat (which is trans-radiant). As 

far as the mammographie appearance of the breast is concerned, radiolucent areas appear 

in the place of high intensity regions in the mammogram. Such images that contain both 

high intensity regions and radiolucent areas can be confusing when the radiologist has to 

consider the presence of an abnormality.
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A

Figure 11: A bilateral mammogram pair

Temporal mammogram registration is a mono-modal and, to date, intra-subject 

registration problem. It is a complex problem since the breast is a particularly dynamic 

organ and its composition varies according to a large number of parameters (diet, stress, 

hormones, age, disease, surgery etc.). In addition, the compression of the breast before 

each mammogram is taken can vary between successive acquisitions. Although, in 

absolute value, the difference in compression does not vary significantly (typically 

around 0.5cm) the resulting differences in the geometry of the projected tissue can be 

significant. As has been shown in differential compression experiments [4], a 0.5cm 

difference in compression can change the mammographie appearance disproportionately 

(curvilinear structures can “vanish”, while tumours can move a long way).

Figure 12 illustrates the most common temporal changes that can make registration very 

difficult:

Changes in compression and patient positioning result in changes in the projected 

area of dense tissue.

Changes in imaging conditions make equivalent parts of the breast look brighter 

or darker in one of the two images.
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Breast tissue can change dramatically over the years (involution, HRT, weight 

gain/loss). In addition, the presence of the pathology or changes due to 

surgery/treatment can significantly alter the appearance of the breast.

Figure 12: Temporal images of the same patient, a) is the earliest and c) the most recent. 

The combinations of changes in the structure inside the breast, in compression and in the 

imaging conditions make the registration problem a non-trivial process. In addition, after 

cancer was diagnosed (in the upper outer quadrant (UOQ) first image from the left) it was 

excised. The scar tissue (seen as the bright region where the arrow points) can cause 

confusion when reading the mammogram.

In this section, the reasons that make temporal mammogram registration a hard problem 

in medical image analysis are explained in detail. These consist of the changes in breast 

compression, imaging conditions, new growths and changes due to HRT.

3.10.2 D ifferences in breast positioning and com pression

The first reason for dissimilarities in the appearance of a X-ray mammogram between 

sessions is the fact that the breast is positioned differently in the X-ray machine. This
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corresponds to a rigid displacement but is straightforward to compensate for (by 

translating and rotating the image).

The breast compression often varies between two successive acquisitions since it is only 

recorded and controlled weakly. The reason is that in order to produce a diagnostically 

useful image, the radiographer tries to compress the breast so that the tissue structures are 

separated as much as possible. As a consequence, the tissue structures can move more 

(with additional compression) and the resulting projected areas of tissue can be very 

different. In other words, even a small change in compression between a pair of temporal 

mammograms, can lead to a very significant change in the locations of dense (“bright”) 

regions.

An increase in compression leads to a global expansion of the breast tissue that 

corresponds to a relatively smooth flow [4, 100]. However, the overall smoothness is 

disrupted by tissues that are significantly more dense (e.g. tumours) and by local tissue 

interactions.

Highnam and Brady analysed in detail the different aspects of breast compression in their 

differential compression mammography studies [4]. Figure 13 shows an example, where 

even a small change in compression significantly changes the appearance of the 

mammogram between two consecutive (differential mammography) acquisitions. Several 

of the considerations presented in their work, are related to the difficulties in registering 

mammograms. Differences in the properties of the various tissue types in the breast (e.g. 

stiffness) lead to a non-uniform displacement of the breast structures under compression. 

Cysts are soft and mobile, while fibroadenomas are soft and may be deformed under 

pressure. Finally, because of their higher density cancers are barely deformed and do not 

roll under breast compression. These ideas were exploited in [4], where the breast tissue 

was imaged successively by slightly changing the compression. It was shown that under 

additional compression cancers moved significantly less than the surrounding 

fibroglandular structures, making their detection easier than detecting them from a single
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mammogram. Such sequences (differential compression) can be used to validate the 

intensity correction (after registration) method suggested in chapter 5.

Figure 13: Slight increase in the compression (-0.5cm) and change in imaging 

parameters (e.g. time of exposure) significantly change the appearance of the 

mammogram, even thought the patient is kept immobilised between the two successive 

acquisitions [4J.

3.10.3 Differences in imaging conditions: The need for intensity normalisation as 
well as geom etric alignment

Because of the relatively weak control over the image acquisition process, it is difficult to 

eliminate variability in image characteristics, such as contrast and brightness. Such 

differences in imaging conditions lead to a non-rigid transformation between the 

intensities of temporal pairs of mammograms. For this reason, it becomes even more 

difficult to register temporal mammograms, consequently to assess temporal changes by 

comparison. In addition, the existence of intrinsic degrading factors (scattered and extra- 

focal radiation) reduce the diagnostic value of each mammogram.

The /lint representation of interesting tissue (discussed in chapter 5 and in Appendix C), 

introduced by Highnam and Brady [4], is a quantitative measure in which each pixel 

represents the thickness of ‘interesting’ (non-fat) tissue between the X-ray source and the 

image. For that reason, it can be used to normalise mammograms since it provides
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anatomical information about the breast. Using the h^x representation, Highnam and 

Brady, modelled and removed the effect of scattered, extra-focal radiation as well as 

image glare [101] thus creating a general framework for mammogram normalisation.

The /lint representation is particularly useful in the case of HRT sequences, where the 

objective is to assess local changes in the composition of the breast tissue, as 

mammogram matching and registration do not factor out variations in the pair due to 

imaging conditions. In HRT temporal mammography, both intensities and the geometry 

of the mammograms needs to be aligned. Since the imaging conditions often vary 

temporally, even if a pair of images is accurately aligned, differences in the intensity of 

corresponding points inevitably remain and only by using the hint representation one can 

achieve a quantifiable comparison of a mammogram with previous ones. For this reason, 

in chapter 5 of the thesis the two sources of information are combined in order to develop 

a robust technique for assessing HRT changes.

3.10.4 New growths

Breast cancer is a very common disease, and one of the reasons for its high mortality rate 

is the difficulty in early diagnosis due to the complexity and variability of mammograms. 

Any new growth present in the most recent mammogram, either malignant (cancer) or 

benign (cyst, fibroadenomas), reduces the architectural similarity with previous ones. 

This is useful for establishing diagnoses via comparison of successive mammograms; but 

it renders the image registration problem more difficult. Figure 14 illustrates this 

consideration.
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Figure 14: A cancer has been diagnosed in the most recent mammogram of a patient 

(right image ). The registration problem becomes more difficult (decreased similarity 

between the images), but also more clinically significant since the comparison can help to 

establish diagnosis and retrospectively evaluate if there were signs of the cancer in the 

previous mammogram (left image).

3.10.5 H orm onal-Related changes

In younger women, the breast tissue structure varies daily due to the hormonal changes 

that occur during each menstrual cycle. In post-menopausal women, hormonal 

deficiencies cause the gradual transformation of fibroglandular tissue into fatty tissue, 

and again the mammographie appearance of the breast can change dramatically. The 

reverse process (tissue regeneration) can occur to women that are treated with Hormonal 

Replacement Therapy (HRT), making the interpretation of mammograms more difficult 

and the establishment of temporal correspondences harder. The work in mammogram 

registration and tissue quantification for HRT mammogram sequences is presented in 

chapter 5.
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3.11 Previous work on mammogram matching and registration

3.11.1 Introduction

As mentioned in the introduction, registering a mammogram with a previous one is made 

more difficult by possibly different compressions of the breast at the two time instances, 

and the likely differences in the imaging conditions. The effects of these differences, 

which from now will be described as temporal changes, result in a non-rigid transform 

(geometric) in the image plane due to difference in compression, and a non-rigid 

transformation (photometric) in the intensities of the images. In this section, previous 

work on mammogram matching and work on bilateral mammogram registration is 

discussed.

3.11.2 Mammogram matching
3.11.2.1 Siew-Li Kok-Wiles work

Kok-Wiles’s work on establishing correspondences between mammograms, is based on 

the observation that if no pathology is present, the parenchymal patterns should not differ 

greatly between the mammograms [100, 102]. Consequently, differences or movements 

observed in the dense tissue regions should be due mainly to involution processes and to 

new growths as well as to differences in x-ray imaging conditions, breast positioning and 

compression.

The key innovation in Kok-Wiles’ work is to represent the breast as a set of salient 

regions, then match the salient region structures across images. There are three aspects to 

the representation:

1. Regions of increased brightness in the mammogram are the basis of the 

representation. They are chosen because breast changes, particularly interval cancers, 

appear as regions. Representing and matching the regions means that a cancer appears 

as a region that cannot be matched successfully, or as a region whose representation
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(area, contrast, texture, etc) have changed significantly (e.g. corresponding to 

significant growth of a tumour);

2. Salient regions are those which appear a priori to be good candidates for matching. 

There are, quite simply, too many regions that can be extracted from a mammogram, 

the search-space is very large. For this reason, Brady and Kok-Wiles devised a 

scheme based on the contour of the candidate region as well as its average contrast to 

the background to filter out “obviously” irrelevant regions.

3. Nested regions are represented explicitly, forming a tree-like structure of regions. 

This is a useful representation of the topological structure of the bright regions in the 

breast. Brady and SLKW argued that it is largely preserved over time and for left- 

right matching.

Novak’s compression study [103], was re-interpreted to yield several constraints that 

were used to model the non-rigid temporal transformations:

• Topological constraint: It is assumed that the nested structure of salient regions is 

very similar in both images.

• Smooth motion constraint: The transformation of neighbouring regions is similar.

This assumption comes from the fact that relative movements of tissues during breast- 

compression are not large or sudden.

• Order and monotonicity of geometry constraint: The order relationships between 

geometrical properties of regions (e.g. area, contour length) are preserved in the 

temporal pair. ,

Using these constraints regions are matched between temporal or bilateral mammograms

[100]. A potential pathology in one of the images can be identified as a salient region 

with no good match. The main problems of this method is the large number of salient 

regions (iso-contours that fulfil the saliency constraints) and heuristics necessary for the 

matching.
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3.11.2.2 Vujovic and Brzakovic’s work

Provided that further (than those in Kok-Wiles’ work) assumptions are made, it is 

possible to try and match points belonging to vessel intersections or, more generally, to 

the curvilinear structures of the breast. This is the case in N. Vujovic and D. Brzakovic 

work [104, 105], where they select intersections of image structures such as ducts and 

blood vessels as potential control points which they subsequently match between the 

mammograms.

Although their algorithm is successful at detecting such points even in predominantly 

radio-opaque mammograms, there are robustness issues concerning the use of this 

method for matching temporal mammograms, since it has been shown that the curvilinear 

patterns change significantly as a result of: the difference in compression exerted on the 

breast; and involution [4]. Although sometimes vessel structure is a good sign of 

architecture preservation, it is susceptible to differences in compression and imaging 

conditions. For that reason, such a method for acquiring control points in mammogram 

pairs would only be acceptable if the pattern of the curvilinear structures remains 

constant.

Such a method would not be appropriate if temporal changes like involution or new 

growths have occurred. On the other hand, Kok-Wiles’ algorithm, although it is highly 

dependant on heuristics [102], is more generic than the N. Vujovic one, since it matches 

iso-intensity contours corresponding to bright regions (glandular tissue, masses). 

Additionally, Kok-Wiles algorithm is independent of curvi-linear structures, whose 

appearance can change dramatically under different compression in subsequent (or 

bilateral) scans.

3.11.3 Landmark based Registration techniques in mammography
3.11.3.1 Introduction
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The utilisation of thin-plate spline interpolation as a way to recover deformations in 

medical images was introduced by Bookstein [76]. In its original version, the method did 

not allow uncertainty in the location of the landmarks, and for that reason it was modified 

by [77]. It has been used in registration of heart images [106] as well as bilateral breast 

registration ([107], [108]). This method is efficient at recovering local deformations; but 

special care is needed in the selection of the landmarks. The calculated interpolating 

function /  (x, y) for the vertical or the horizontal direction is smooth and deforms the 

image in such a way that the bending energy is minimised, while the landmarks are 

matched. The general form of this function is given by:

f { x , y )  = a^+a^ -x + a ^ - y  + ^ w .  • -  (x, y)|)
f=l

Where P, are the n landmarks on the boundary of the first mammogram, ai, %  and w,- 

are the n+3 coefficients calculated by the method. The resulting interpolating function is 

calculated by minimising the bending energy of the transformation, given by the next 

equation:

dxdy

Thin-plate spline interpolation and approximation are used in our mammogram 

registration algorithm, presented in the next chapter. This method is efficient at 

recovering local deformations; but special care is needed in the selection of the 

landmarks. In particular, landmarks in the inside of the breast are difficult to extract 

reliably, and errors in their localisation can degrade the accuracy of the overall 

transformation.

After aligning the two images by using the calculated transformation, difference images 

can be produced in order to look for regions of large intensity differences. These regions 

can either be new growths (e.g. expansion of a cancer), changes due to involution, or due 

to local inaccuracy in registration. These issues are explored in the next chapter.
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3.11.3.2 Previous work

Karssemeijer and te Brake [107] and Bowyer and Sallam [108], have presented work on 

registration of bilateral mammograms using thin-plate splines for the automatic detection 

of abnormalities through visual examination of the difference image after registration. 

Breast asymmetry is the main characteristic that can be assessed using the method. 

However, both techniques use points spaced evenly along the breast boundary, along the 

chest wall, and include points from the pectoral muscle line. In addition, the method for 

the automatic detection of corresponding points presented in [28] cannot be robust, since 

in most cases it is impossible to establish point-to-point correspondence in a bilateral pair 

of mammograms. We contend that special care is needed in order to decide which points 

should be used for mammogram registration and this issue is addressed in the next 

chapter.

Bowyer and Sallam [108], used transformation constraints to reduce the search-space of 

potential matches. This was done in a two-stage interpolation. The first stage calculates 

the interpolating function that aligns the two images based on corresponding points along 

the breast boundaries of the two images. In that way, most of the global (rigid), as well as 

some local deformations near the breast boundaries, is recovered. Moreover, the initial 

warping function is used in the next step to define the regions in the second image, where 

the algorithm will locate the best matches for the selected features of the first image. 

Ultimately, combined corresponding features from inside the breast and along its 

boundary are used to calculate the final interpolating function.

It is not clear from their published work if the second stage of interpolation improves the 

initial one. They neither present images showing the matches nor images showing the 

improvement in the interpolation at the second stage. In addition, as will be discussed in 

the next chapter the large number of boundary points is unnecessary and the utilisation of 

landmarks on the pectoral muscle “line” can be problematic.
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On the other hand, Karssemeijer and te Brake’s work [107], does not take into 

consideration that specific correspondences are required to match the breast boundary in 

the two images (for example the nipple, as the glandular structures converge to the nipple 

[8]). In addition, they align the approximated pectoral muscle lines without including 

internal landmarks, something that is proved to be unreliable in the next chapter.

3.11.4 Conclusion on previous work

In the previous sections we summarised relevant work on mammogram matching and 

registration. We believe the work in this thesis addresses the following problems:

• Previous work on mammogram matching and registration was mainly concerned with 

bilateral mammogram pairs and did not address the specific issues for temporal 

registration. In this thesis we analyse in detail the problems related to temporal 

changes on mammogram sequences.

• Previous work on registration based on the boundary did not offer a method for 

reliably establishing correspondences in the breast boundary. As is discussed in the 

next chapter the linear expansion of curvature used in [108] does not realistically 

address the problem. In the next chapter, a reliable method for aligning the boundary 

in mammogram pairs is presented. Moreover, the multi-scale segmentation and 

subsequent matching of internal structures suggested can improve the registration 

result.

• Lastly, previous work showed a very limited number of results and applications. In 

this thesis the proposed two-stage algorithm is used for temporal and bilateral 

mammogram registration including HRT sequences. Results are also shown in the 

Gallery (Appendix E). In addition, the possible applications (e.g. interval cancers or 

assessment of local density changes) of such methods are discussed in detail in the 

next chapter.
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3.12 Conclusion- Summary

In this chapter, the basic issues involved in a registration problem have been presented. 

The distinction of the necessary steps, categories and methods is not always clear but it is 

important to have an understanding of the general registration problems before the 

mammography-specific techniques are presented in the next chapter.

In addition, the most commonly used algorithms for mono-modal or multi-modal medical 

image registration were discussed. Although, in many cases (like mammography) it is not 

possible just to use directly a registration method since the problem is quite complex, it is 

important to have a good understanding of registration techniques, since some of them (or 

a combination of them) could inspire the reader to further improve the mammogram 

registration method presented in the next chapter.

Lastly, the reasons that make mammogram registration a hard problem were discussed. 

Not only are the projection images not always consistent, but changes in the breast (due 

to body weight, water content, involution, disease, surgery, long term effect of exogenous 

hormones etc.) can make the architectural similarity vary a lot and the image alignment a 

hard task. Previous work in mammogram registration does not offer a reliable framework 

for aligning mammograms and maximising the similarity between the images. In the next 

chapter we explain in detail the contribution of this thesis in mammogram registration, 

taking into consideration the limitations and the problems related to image acquisition.
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4.1 Introduction to the proposed method for mammogram registration 

Clinical motivation

As was discussed in the first two chapters of the thesis, the reliable diagnosis of 

abnormalities from a single mammogram is very difficult, and so it is increasingly the 

case that pairs of mammograms are compared. These might be left and right 

mammograms taken at the same session. Also, in the reading centres, if earlier 

mammograms are available, the radiologist will compare them to the most recent one(s). 

This process can be especially important for:

• Women at high risk of developing breast cancer (e.g. women with family history of 

breast cancer or genetic susceptibility-BRCA-1 *), usually have more frequent 

mammograms taken in order to detect a malignancy at as early a stage as possible. 

Previous (“normal”) mammograms are used as a baseline for comparison with recent 

ones.

Post-menopausal women often decide themselves, or are advised by their GP, to 

undergo Hormone Replacement Therapy (HRT). However, despite the many 

beneficial effects of HRT, has been reported that long term use leads to an increased 

risk for developing breast cancer. As is discussed in the next chapter, there is a 

suggestion, based on clinical experience, that localised increases in tissue density 

could be an early indication of breast cancer for women using HRT. For this reason, it 

is important to be able to register and compare HRT mammogram sequences, aiming 

again at a more effective comparison for early diagnosis of cancer. The next chapter 

deals with temporal mammography on HRT patients and addresses the crucial issues 

of accurate tissue quantification and temporal/differential analysis.

BRCA-1 is the “breast cancer gene". Several of its mutations have been found to cause breast cancer.
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• Retrospective studies aim to analyse temporal data in order to assess the accuracy and 

effectiveness of diagnosis in hospitals/screening centres. Such studies aim to define 

the rate of missed cancers and interval cancers, as well as to further educate clinicians 

in the vitally important task of early diagnosis. Since diagnosis through comparison 

is, in many cases, crucial (especially when new growths are subtle), alignment of 

mammogram sequences can assist retrospective studies and training.

The aim is to develop temporal registration tools that can assist the clinician to compare 

mammograms more efficiently. As was discussed in the previous chapter, the 

comparison of a mammogram with a previous one is made more difficult by differences 

in compression of the breast at the two time instances and the likely differences in 

imaging conditions. The impact of these differences, which from now on will be 

described as temporal changes, consist of a non-rigid transform in the image plane due to 

difference in compression (even a small difference in compression can lead to a 

significant and uneven displacement of the breast structures), and a non-rigid 

transformation of image intensity due to differences in the acquisition conditions. In 

addition, normal changes (e.g. weight gain or loss, involution) as well as affects of 

Hormone Replacement Therapy or chemotherapy agents such as Tamoxifen can 

introduce more differences in the architecture of a temporal pair. The intensities of a 

mammogram pair can be normalised using the hint representation of interesting tissue 

(Appendix C). In this chapter, we discuss in detail our method for the geometrical 

alignment of mammogram sequences.

The domain and the aims of the proposed work

The work in this chapter aims at the development of a robust framework for the 

geometrical alignment of temporal (or bilateral) mammograms. Due to the non-rigid 

motion of the different breast tissues during compression, we need to consider a method 

that computes a pixel to pixel non-rigid transformation between the two input 

mammograms. Ideally, after geometrical alignment each voxel in the two input images 

should correspond to the same colunm of tissue of the compressed breast; this is however
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subject to changes in the breast (e.g. tissue involution, cancer). The aims of this chapter 

can be therefore summarised in the next points:

# We aim to develop a method that will exploit the structural similarity of any given 

temporal mammogram pair, in order to calculate a geometrical transform for image 

alignment. The algorithm we aim to develop should be useful for clinicians in 

comparing any mammogram pair. More specifically:

The registration result should never be unreasonable because this would 

undermine the clinician’s confidence.

The alignment result should be close to the clinician’s perceptual judgement. For 

example, a point to point mapping based on the registration should be close to the 

expert’s assessment. This is further discussed in section 4.5.5.

• In order to achieve the above, we need to determine suitable classes of landmarks 

which can anchor the geometric registration.

• We also aim to determine whether or not there are additional useful constraints that 

can be used in the registration process. For example, the pectoral muscle has been 

used in mammogram registration but without questioning its effect in the registration 

result.

• Explore the possibility of applying the same method to bilateral mammogram 

registration and discuss its possible clinical applications.

The working hypothesis

The main hypothesis for the proposed work in this chapter is that it is possible to

determine a non-rigid geometrical transformation in such a way that the similarity of
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normal tissue samples will be increased in the registered images; and it is possible to find 

patient related landmarks automatically for each patient.

Previous work on bilateral mammogram registration has shown promising results using 

the breast outline for mammogram registration. However, none of the previous methods 

offers a robust and intuitive method that enables the selection of consistent boundary 

landmarks for the automatic alignment of the breast boundary. This is discussed further 

in section 4.2.3.1. The breast outline offers useful constraint on the geometric 

transformation but that is insufficient since breast tissues move non-rigidly under 

compression, and in such a way that reflects their mechanical properties.

The mammographie appearance of the breast varies significantly between acquisitions 

due to compression, variable imaging parameters and the actual changes in breast tissue. 

Nevertheless, we believe that most of the times it is possible to define a set of internal 

correspondences that can be used to refine the registration result and improve it. This 

hypothesis is inspired from the perceived “architectural similarity” that is most often the 

case in temporal mammograms.

Description of the selected methodology (why this method was chosen)

The problem of mammogram registration was outlined in the previous chapter. It was 

concluded that none of the existing methods could robustly align both the boundary and 

the significant internal structures in mammogram sequences. The method proposed in this 

chapter was developed in order to overcome the main problems in temporal mammogram 

registration which are due to a combination of a non-rigid tissue motion due to different 

compression between acquisitions, differences in the imaging parameters and the 

temporal changes in tissue composition and structure of the breast. In section 3.10, we 

presented in detail the reasons that make temporal mammogram registration a difficult 

task. Figure 12, illustrates most of these changes in an example of temporal mammogram 

sequence. Since the intensity distribution and the structural morphology can significantly 

differ in temporal sequences, we need a photometrically invariant method that can
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exploit the variable similarity of temporal pairs of mammograms. For this reason, altough 

the registration techniques presented in section 3.8 are very powerful, they can’t be used 

in any direct way for mammogram registration.

Next in this chapter a three-stage method is proposed to register temporal sequences of 

mammograms:

Initially the images are aligned based on the boundary. This is done by developing an 

algorithm that automatically detects 3 points with characteristic curvature in the outline 

of both mammograms. A thin plate spline interpolation is used to calculate the image 

transformation that aligns the boundaries of the two mammograms. The method for the 

robust calculation of consistent landmarks using curvature analysis in the breast outline to 

align the images using thin-plate spline interpolation is described in section 4.2.

Using a wavelet-analysis segmentation algorithm we define internal regions of dense 

tissue that have good spatial characteristics in each mammogram. This is discussed in 

section 4.3. The boundary transformation together with scale and area information of the 

segmented regions is used to match internal structures and refine the registration. In this 

second optimisation stage, a regularised approximation scheme is used to account for 

possible inaccuracies in the selection of the internal landmarks, especially because the 

center of mass of each matched region pair is used to calculate the image transformation. 

The approximation step of the registration is discussed in section 4.4.

All the software in the thesis was developed in the C4-+ programming language and the 

time required to register two 300 micron digitised mammograms is 45 seconds on a PII 

500MHz machine. This time is required for calculating the geometrical transformation 

and for warping the second input image in the co-ordinate system of the first one.

Since there is a large variability both in the information content of each mammogram 

(e.g. highly dense breast or involuted breast) and in the architectural similarity of 

mammogram pairs, internal matching is not always possible. A good example is the case
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of fully involuted breasts, where the only internal structures are vessels which cannot be 

used as landmarks since their mammographie appearance changes dramatically under 

different compression [4]. Figure 15, is a flow chart of our registration algorithm. Though 

the technique could be fully automated, the acceptance or not of the internal landmarks 

should in practice be decided or confirmed by the user. If the suggested internal 

landmarks do not meet the clinician’s satisfaction (e.g. possibly in involuted breast pairs) 

the boundary-based registration is the final result, otherwise an approximation scheme 

(including internal and boundary landmarks) is employed in order to better approximate 

the deformation necessary to align the mammograms.

In summary, in this chapter we first present a mammogram registration technique based 

only on boundary points to undo most of the effects of different compressions is 

presented. Then, it is considered how to improve registration by using internal landmarks 

before presenting results, validation and a discussion concerning the possible applications 

of registration. A gallery of results is presented in Appendix E, showing the application 

of the proposed registration method in bilateral and temporal mammogram pairs.
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Figure 15: The basic steps o f our breast registration algorithm
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4,2 Partial Registration using the boundary 

4.2.1 Introduction

The breast boundary is the most useful feature of the mammogram in terms of temporal 

consistency. It provides information about the difference in compression between two 

acquisitions and enables the calculation of landmarks that allow the approximation of the 

transformation that relates the geometry of a temporal pair of mammograms. As will be 

discussed in the next section, the registration using the boundary is not sufficient as 

internal structures move to different extents under different compressions, because of 

differences in shape and tissue density. However, accurate detection of the breast outline 

and calculation of temporally invariant geometrical landmarks is a key first step for 

mammogram registration. The steps that comprise the boundary registration method are:

1. Boundary outline detection (section 4.2.2)

2. Curvature analysis of the outline(s) and detection of consistent landmarks (section 

4.2.3)

3. Anatomical significance of detected boundary landmarks

4. Thin-plate spline interpolation to align the boundaries (section 4.2.4)

These steps are explained in detail before addressing the need for internal landmarks for 

improved registration.

4.2.2 Breast outline detection

To generate a segmentation, the image is thresholded in the first “valley” of the intensity 

histogram as shown in Figure 16(a), resulting in a binary image 1(b) (Figure 16(b)). 

Subsequently, an 8-connected component outline is obtained using mathematical 

morphology (closing (•) followed by dilation (©) and then subtraction). The relation 

between the binary 1(b) and the outline 1(c) is given by the equation:
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1(c) = (1(b) • M disc)@ M square ”  ( 1(b) •  M d isc)

where M stands for a mask (the radius of M disk is 5 pixels and the size of Msquare 3 

pixels). An example is shown in Figure 4.2(c).

Figure 16: (a): Approximating the breast edge using the histogram of intensities, (b) The 

binary image after theresholding, (c): The boundary is extracted as the largest connected 

component in the image after using morphology, (d): The outline superimposed in the 

original image.

This method yields an approximation to the boundary, it is very fast and the resulting 

outline is an 8-connected component curve (due to morphology). This serves our purpose 

of easily tracking the points along the boundary since the breast outline can have an 

irregular shape (e.g. very often 2 points in the % axis can correspond to 1 in the y).
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However, the segmented curve is ’’jagged” and this poses a problem for the robust 

detection of boundary landmarks, as is discussed in the next section.

4.2.3 Curvature analysis on the breast outline-consistent landmarks
4.2.3.1 Defining consistent boundary landmarks using curvature

In order to be able to register mammogram pairs one needs to be able to establish 

correspondences between the breast outline of each mammogram, since the “beginning” 

and “end” of each outline highly depend on the segmentation result and the image 

acquisition (e.g. in some medio-lateral mammograms a larger part of the rib is visible 

than in others). The aim is to “translate” the geometrical consistencies in mammograms 

into an automatic algorithm for the detection of consistent boundary landmarks. Bowyer 

and Sallam [108], and Karssemeijer and te Brake [107] have presented work on the 

registration of bilateral mammograms based on the boundary. However, neither method 

calculates consistent points along the boundary (in [108] a curvature linear expansion 

algorithm is used to match boundary points, while in [107] the whole segmented outline 

is sampled without establishing any boundary correspondences). Due to the non-rigid 

expansion of the breast during compression, the assumption of linear expansion in the 

curvature of the breast outline is not valid in many cases (e.g. in mammogram pairs 

where the outline is almost in the same place in the upper part, from the nipple to the 

axilla, while is expanded in the lower one). Nevertheless, it has been observed that a 

small number of “pseudo-invariant” points can be detected.

Figure 17 demonstrates this idea, showing three points of characteristic geometry in the 

“ideal” breast outlines. In the cranio-caudal case (CC), the points 1 and 3 can be assumed 

(as in [108]) to be near in the chest wall (and thus invariant) and are approximated by the 

first and last points of the breast-outline respectively. Point 2, is the maximum curvature 

point (negative curvature by convention). The medio-lateral mammograms (ML), 

represent the most difficult case. However, we have found that the three points shown in 

Figure 17 are consistent for almost all ML mammograms (e.g. there is only a few cases, 

especially in very large breasts, where the axilla is not visible). Geometrically, these
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points can be described as two maxima of positive (by convention) curvature (points 1 

and 3) and 1 point of maximum negative curvature (point 2).

Landmark Selection for CC 
and ML Mammograms

ML

Figure 17: Consistent landmarks in the CC and ML “idealised” outlines.

In order to build a robust detection algorithm for the three points discussed above (in the 

remainder of this section we will refer to the ML case only, as it is more general than the 

CC) we need to calculate the curvature profile of the breast outline However, there 

are some intrinsic limitations:

• The segmentation method used approximates the outline using a global threshold and 

it is not always smooth. This results in a large number of local maxima (and minima) 

of curvature along the breast outline.

• The calculation of curvature involves the estimation of second order derivatives 

which lead to “noisy” curvature profiles and makes the robust detection of the 

suggested points hard.

To overcome such problems, Asada and Brady [109], have suggested a Gaussian multi­

scale analysis of features in 2D curves. A similar concept is proposed:

1. Design an algorithm that automatically detects the three suggested points (Figure 17) 

based on an “idealised” model of the breast outline. This algorithm is based on the 

separation of positive and negative curvature as is described later on this section.
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2. Define an optimum sampling rate (Sopt) of points along the segmented breast-outline 

and run a spline to approximate the breast boundary. Different sampling rates 

preserve different amount of detail at a trade-off with overall smoothness. This 

optimum would depend on the pixel dimension (300 microns in the images we used). 

The aim of this step is to approximate the idealised outline shape (shown in Figure 

17) and be able to robustly detect the suggested 3 points.

These two steps are now described in detail:

Stev 1: An algorithm for the automatic detection ofhiek  curvature points

Once the breast outline has been calculated, it is sampled and approximated with a spline 

r(t)=  (%(t), y (t)) which is a continuous function computed for regularly sampled points 

(we use every three) of the breast outline. As is discussed later in this section, the spline 

resolution (“density” of interpolated points) does not affect the detection of the 

anatomical landmarks. However, the sampling of the breast outline is crucial for the 

detection of anatomical landmarks. To build the algorithm, it is assumed that the outline 

is “ideal” (as in Figure 17). The optimum sampling Sopt is defined in the next step.

r{t)

Figure 18: An example of a parametric curve r{t). The rate of change of the unit tangent 

vector T  is the curvature.
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Figure 18 is an example of a parametric curve r{t). The curvature at each point is defined 

as the rate of change of T  with respect to arc length S:

dT

ds
dt
ds
dt

ds
where —  =  |r '(^ )| is the speed, and T  the unit tangent vector. For example if

r{t)=cos{t)-x + sin(rj-}i, then ds/dt=  (sin^(t) +cos^(t))^^^=l and T=(sin(fj x - cos(rj ); )/l, 

and the curvature can be calculated as: k=dT/dt= -cos(t)’x  - sm(t)-y .

This way, the curvilinear parameter t describes the breast outline and we are able to 

calculate geometrical measures along the boundary. By using the spline approximation of 

the boundary, where each point is (x(/), y(f)), we calculate the curvature in each point t of 

the curve, according to the well known equation:

^ ( 0
_^n'y.-^ryn

Where Xt, %» and yt, y« are the derivatives of x(t), y(t) with respect to t.

The key to the maximum curvature detection algorithm is separating the positive and 

negative curvature segments of the outline. Figure 19(a), illustrates the positive and 

negative curvature segments in a temporal pair, while Figure 19(b) shows the positive 

curvature in 3D.

Figure 20, shows how the maximum curvature detection algorithm works. The curvature 

signal is unfolded like a 1-d signal and separated into the complementary positive and 

negative segments. Point 2 (referring to the idealised model in Figure 17), is calculated as 

the global maximum of “negative” curvature and after that we are able to look for 2 

“positive” curvature maxima (points 1 and 3 in Figure 17) in each direction of point 2, 

using a 1-d maximum-detection algorithm.
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4:

[positive k 

I  negativek

(a)

Figure 19: (a): The positive and negative curvature segments in a temporal pair, (b): The 

positive curvature and the maxima (rib, axilla ) in 3D

All the points of the “unfolded” curvature signal are assigned a value of 255. We start 

from the top of the graph (which is the highest value of curvature after rescaling the 

calculated values for all the breast edge) and each time a maximum value is detected a 

zero value is assigned in a zone neighbouring to the peak. That way, we avoid detecting 

neighbouring peaks as maxima, which ensures additional confidence (in addition to the 

fact that the peaks can’t be in the same direction from the pre-calculated negative
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curvature maximum) that points 1 and 3 are correctly calculated. The width of the zone 

Wz has been empirically determined to be:

W = ----- 1------ + 15
2 • {spres)

We provide the following definitions:

• spres: is the resolution of the spline, which is calculated for every three sampled 

points of the breast outline. It defines how many points will be interpolated between 

each 3 sampled boundary points.

• Sopt: is the boundary sampling that preserves the details needed to calculate the 3 

suggested anatomical points. In other words is the sampling that resembles the “ideal” 

curve of Figure 17. Around that optimum value the detection of the 3 suggested 

points does not change significantly.

By calculating Wz, the detection of curvature maxima does not depend on the “density” of 

the interpolated points. However, as mentioned previously, it does depend on the selected 

sampling resolution of points in the breast outline. In order to robustly estimate the three 

suggested points, the optimum sampling needs to be estimated, as is described in the next 

step.
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k

Figure 20: The maximum curvature detection algorithm. Point 2, is detected as a global 

maximum o f negative curvature while to detect the two positive curvature peaks (points 1 

and 3) we search from the top to the bottom and each time a maximum is detected 

(represented by the thick dots in the figure) the signal is “erased” in a zone around it so 

that neighbouring peaks are not detected.

Step 2: Defining: the optimum sampling for the spline representation o f  the outline

There is a need to define the optimum sampling Sopt, in order to robustly detect the 3 

points o f  characteristic curvature. This sampling depends on the size o f  the pixel (the 

images used in this thesis are 300 microns but this method can be extended to any 

resolution) and it can be defined as the sampling with which the maximum curvature 

algorithm described above converges to a steady solution. In other words, the sampling 

rate is increased until the maximum curvature points detected do not change significantly.

This is shown in Figure 21, where the detected points change significantly from sampling 

rate 15 (a sample is taken every 15 points along the 8-connected outline) in Figure 21(C), 

to 25 in Figure 21 (D), 35 in Figure 21(E) and finally 40 in Figure 21 (F). The last figure 

approaches the “ideal” outline shown in Figure 17, and the detected points reflect the
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“perceived” points of maximum curvature (positive and negative) of the original 

mammogram boundary shown in Figure 21 (A).

In addition, the unfolded curvature profile approaches the “ideal” one (shown in Figure 

20) as well. This is illustrated in Figure 22, where the “noisy” curvature profile in Figure 

22 (a) (that corresponds to Figure 21(D)), is smoothed in Figure 22(b) and in Figure 22 

(c) has approached the “ideal” case as mentioned before.

Finally, to define the optimum sampling Sopt, we plot the location of the detected 

curvature maxima along the outline for a range of samplings (from 10 to 50 with a step of 

2), as shown in Figure 23. This is effectively a multi-scale extension of the maximum 

curvature algorithm described in the previous step. As is shown in Figure 23, after the 

sampling value of 40 the detection of the maximum curvature points converges. Using 

this value, 50 pairs of mammograms (of pixel size 300microns) were registered based on 

the boundary. The boundary registration technique (using thin-plate splines) is described 

in section 4.2.4. The success of this method can be attributed to the fact, that most of the 

time, the detected points of maximum curvature have an anatomical significance, as is 

discussed in the next section.

Page 108



4.2 Partial Registration using the boundary

Figure 21: for the mammogram shown in (A): The original mammogram, (B): The breast 

outline. Note the “jagged” appearance due to the global threshold used, (C): The 

maximum curvature detected points using a sampling rate of 15 points along the 

boundary, (D): The same for sampling rate 25, (E): The same for 35 and (F): for 40. Note 

that the detected points change significantly.
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Figure 22: The “unfolded” curvature profile for (a): Sampling rate o f  25, corresponding 

to Figure 21(D), (b):Sampling rate o f 35 corresponding to Figure 21 (E) and (c): 

Sampling rate o f 40 corresponding to Figure 21 (F).
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Defining the optimum sampling for the detection of 
curvature maxima

g 120

u 100 0)
1 80
2 6 0  C3
S

Io
4 0

20

II mm\

♦  P o i n t  1 ( p o s )  
a P o i n t  2  ( n e g )  

P o i n t  3  ( p o s )

1 0  2 0  3 0  4 0  5 0

Sam pling

6 0

Figure 23: Defining the optimum sampling Sopt at the point where the detection of 

curvature maxima converges to a steady solution (at sampling rate of 40 in this case). 

Before and after this sampling, the point detection does not change significantly.

4.2.3.2 Anatomical significance of boundary landmarks

As mentioned previously, the boundary registration technique is based on the robust 

detection of 3 points of characteristic curvature (Figure 17). This makes the boundary 

alignment more robust as consistent boundary points are calculated for a mammogram 

pair, instead of attempting to match the whole segmented breast outline (as is done in 

[107]). The reason that this method works well is that in general these landmarks have an 

anatomical significance. As is shown in Figure 24, the detected landmarks very often 

correspond to the anatomical location of the rib (point 1 in Figure 17), the nipple (point 

2), and the axilla (point 3). However, this anatomical correspondence is not a requirement 

for the boundary registration to work. A good example is the case where the nipple is not 

visible but there is always a global maximum of negative curvature.
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rib nipple axilla

' V

Figure 24: The selected points in Figure 17, very often have an anatomical significance. 

In the case shown, the curvature peaks along the breast boundary k (5) correspond to the 

rib, nipple and axilla points.

We believe that this algorithm could be the basis of a CAD system for the automatic 

detection of the nipple, axilla and rib points. To assess the anatomical significance of the 

detected points in the 50 mammogram pairs that were registered, we evaluated the 

conespondence between the detected landmarks and the location of the rib, nipple and 

axilla. Table 2, summarises results from 50 mammograms (medio-lateral and cranio- 

caudal). We assess the success in detection of these points individually (e.g. it is possible 

in a mammogram to correctly detect the axilla and rib points but not the nipple).

In our implementation, the user can refine the location of the boundary landmarks by 

shifting the calculated points along the breast-edge. As has been explained in chapter 3, 

effort making the registration process completely “blind” can have an effect in the 

robustness and adaptability of the method. In this context, the user might prefer to always 

register the images after making sure the 3 boundary landmarks correspond exactly to the 

corresponding anatomical points (although this would not necessary for the boundary 

registration to work!). The most important correspondence is the nipple, since the 

glandular tissue converges to it and, the method presented could be a starting point of a 

robust nipple detection algorithm. Although this is not exploited in this thesis, as is 

discussed in chapter 6, it could improve the registration method suggested.
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Anatomical 
correspondence of 
detected landmarks 
in breast boundary

Correspondence
rate

Additional 
detection by 
changing the 

sampling

No
correspondence

Reasons for no 
correspondence

Axilla 75% 15% 10% Axilla occluded, or is very 
close to the radiological tag

Nipple 65% 15% 20% Nipple is not visible in the 
breast outline

Rib 85% 10% 5% Rib point is occluded

Table 2: Assessment of the anatomical significance of the three detected points using the 

maximum curvature detection algorithm.

Boundary registration seems to vastly improve the correspondence of a mammogram 

pair. However, the registration can be improved if internal correspondences are included 

in the registration process and this is discussed later in the chapter. The next section 

explains the partial registration of a mammogram pair using the three detected points.

4.2.4 Partial registration from the breast boundary
4.2.4.1 Overview

Radial basis functions have previously been used to align bilateral mammogram images 

[107, 108]. The method described in this thesis reliably calculates boundary landmarks, 

which most often have an anatomical significance. Sampling between these three points 

(that from now on will be only referred as rib, nipple and axilla) and more specifically, 

between the axilla-nipple and nipple rib segments, any temporal or bilateral mammogram 

pair can be aligned based on the boundary.

For temporal mammogram registration we have observed that a good initial alignment 

can be achieved using at least five points along the breast boundary. However, for greater 

accuracy in aligning the boundaries, seven points uniformly sampled between the “axilla” 

and “nipple” boundary landmarks, and another seven between the “nipple” and the “rib”
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landmarks (total of 17 points) are used. Using these points, the images are registered 

using thin-plate spline interpolation [76].

Radial basis functions (RBFs) are used for the elastic image deformation in this 

registration scheme. RBFs are used in two contexts -  firstly, for aligning only the 

boundary. Later, when internal landmarks are included, information about the spatial 

characteristics of the deformation points is used to implement a more sophisticated 

régularisation that is based on an approximation method. We start with the interpolation 

case as it is more general to defining a RBF.

4.2.4.2 Interpolative Radial Basis Functions

In RBF interpolation, a set of n landmarks {pi ,qî) is used to define a transformation 

function u:R^ —>R̂  , where pi={xn, yu) are the landmarks in the first image, qi=(xi2, y/2) 

are the landmarks in the second, and the interpolated transformation function u(x) must 

satisfy the interpolation constraint:

u{Pi) = = 1,...,«

To ensure smoothness of u we ensure also that it minimises a functional (régulariser) J(f) 

for r \

2
9 1 /
dx 2

j
+

3y 2

j
+ 2 a y

9x.9y
.dxdy

This functional is also known as the bending energy of the deformation. In this case we 

are solving the biharmonic equation A^f=0, whereby local deformation conforms to a 

function/(x,y) for minimisation of the bending energy. For interpolation, each co-ordinate 

is calculated independently (i.e. the interpolation Uk : R^ —>R is solved for each co­

ordinate k= l...d , in this case d=2, with the corresponding constraints Uk(pi) = qî k )• In the 

general RBF approach, the interpolation function u(x) consists of two parts [74-76]:

u(x) = (%) + R, (x)

where ^(x) is a sum of polynomials up to degree p  and Rs(x) consists of a sum of RBFs:
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;=i

^s (^ )  = ^ o t .R l \ \x -  p.
i=l

The </)j(x) are a separable basis of M  functions for all polynomials up to degree p. In the 

case of 2D images (e.g. mammograms), it represents the rigid part of the deformation. 

R(x) is a function that depends only on the distance x> 0 from the origin, and describes 

the local deformation (interpolation) of points around the RBF landmarks. Moreover, 

II % -  Pi II = II r  II denotes the Euclidean distance from x  to pi and, or,-, Pj are coefficients, 

with the RBFs R( || x - pi || ) centred on the N  landmarks pi. Combining the last two 

equations and using the deformation constraint:

(=1

yields a system of linear equations for the stacked vectors of weights a  and

^ K
P^ 0V y

where: a  and P  are the vectors containing the weights cci and P ,  K  is the n x n  matrix Kij 

=R( II Pi - pj II) and P  is the TV x M matrix Pÿ = 0/p,). The qk =(qk.i,---,qk,nf are the set of 

target landmarks.

A wide variety of radial basis functions has been proposed in the literature for elastic 

deformation of images (e.g. in [108] for breast registration). These include thin-plate 

splines ( R tps)  [76], multiquadrics (R m )  or inverse multi-quadrics ( R im) [76] and Gaussian 

RBFs ( R g ) [74]:

^  l r^ -U n r\4 -de2N
4-J .[ r , otherwise

Rm (r) = (r^ + c^ ) \ jU^ R+
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In our work to date, we have used the thin-plate spline radial basis function Rjps since it 

is a stable method to recover deformations (including local deformations due to breast 

tissue motion). By weakening the interpolation constraint, the smoothness of the 

transformation can be controlled and the uncertainty in the localisation of landmarks can 

be taken into consideration. This concept is exploited in the second stage of the 

registration process. Bookstein [76], introduced the utilisation of thin-plate spline 

interpolation as a way of recovering deformations in medical images. The calculated 

interpolating function f(x, y) for the vertical or the horizontal direction is smooth and 

deforms the image in such a way that the bending energy is minimised, while the 

landmarks are matched.

Once the interpolating function has been calculated, “warped’ images are produced by 

forcing every point (x, y) in a mammogram to take the intensity value of the point where 

the interpolating function maps the (x, y) point of the previous mammogram. Bilinear 

interpolation can be used to calculate intensities outside the pixel grid (as in [108]). After 

image warping, difference (subtraction) images can be generated and used to search for 

regions of large intensity differences. These regions can be either new growths (e.g. a 

cancer) changes due to involution, or they can be due to local inaccuracy in registration. 

Registration can be improved if we are able to automatically detect landmarks inside the 

breast tissue.

Extensive experimentation has convinced us that registration based only on the breast 

edge does not model with sufficient accuracy the relative motions of important tissue 

regions under different levels of compression. The boundary transformation accounts for 

the global differences between the images, correcting scaling (due to differences in 

compression or breast-size) translation and rotation due to breast positioning and 

orientation of the glandular structures (since the nipple is included as a landmark). 

However, as described in [100], different breast compressions (which are almost 

inevitable), tend to make denser structures (e.g. tumours) move far more than less dense 

tissues (like cysts or fibroglandular structures) resulting in disruption to an otherwise
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generally smooth motion field. Indeed, such motion discontinuities are the basis for 

Highnam and Brady’s differential compression technique, which aims to estimate tissue 

elasticity [4]. The feature detection described in the next section aims at an intensity- 

invariant segmentation of “important” regions that can be matched and thus allow us to 

better approximate internal tissue deformations by including internal landmarks is the 

registration process.

4,3 Multi-scale landmark selection for improved registration

4.3.1 Introduction

In this section, the need to establish correspondences between regions in temporal 

mammograms for robust and more accurate registration is emphasised. Based on 

automatically detected boundary landmarks, we partially register, then subsequently 

analyse the mammogram pair using a non-linear wavelet scale-space to isolate significant 

regions of interest. It is demonstrated that a usually small, but significant number of 

internal correspondences greatly improves registration and better approximates the 

complex internal tissue deformation due mainly to differences in compression.

To complete the registration process, corresponding internal landmarks are detected in 

the registration pair and, along with various matching conditions (discussed in the next 

section), are used to compensate for the complex internal deformation of the breast. We 

cannot rely on a field (intensity-based) registration technique as the deformation may be 

quite large, the projection angle can vary between temporal scans and the morphology of 

the breast usually changes between acquisitions. Therefore it is necessary to implement a 

robust feature detection algorithm, which in turn produces landmarks that can be matched 

and used as the basis for non-rigid registration.

4.3.2 Segmentation of internal structures using wavelet-analysis
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The algorithm used for segmenting internal structures in mammograms is described in 

[160] and is analytically presented in Appendix B. We have applied this multi-scale 

segmentation to mammogram pairs in order to detect regions of dense tissue that could be 

subsequently matched. The main steps of the algorithm are:

1. The mammogram pair is decomposed using the Coiflet wavelet packets. This 

particular wavelet was chosen because it yields good spatial localisation (e.g. it is 

edge preserving), has compact support and because it is effective even at detecting 

small regions such as microcalicifications.

2. After each mammogram is decomposed into a set of high-frequency and low- 

frequency images (with good spatial localisation of features), these are ranked by 

information content using an information cost function in the context of a “best basis” 

algorithm [110]. For this, an entropy measure is used and each wavelet subspace 

(filter superposition) is then cumulatively adjointly convolved, in order, with respect 

to the best-basis assessment of the decomposition. As is shown in Figure 25 (a), the 

result is a “stack” of reconstructions from minimum to maximum information content 

(dependent on the cost function). The top of the stack contains the fully reconstructed 

image while coarser features appear towards the bottom. This construction is used to 

track significant features through scale space and forms the basis of the feature 

segmentation.

3. After constructing the “stack”, important features are detected as features that persist 

through the scale-space. This is done through region growing from the lowest scale 

towards the highest. A merging operator tracks the feature to the highest scale so that 

each feature can be represented with more “detailed” information. Figure 25 (b) is a 

representation of feature detection through the scale-space stack. In a mammogram 

pair, we track the n most important regions (usually n<=5) and subsequently we 

match them as described in the next section. More analytical segmentation results are 

presented in the example in section 4.5.
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2  of packet 
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ranked by M
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Figure 25: (a): The scale space “stack” for robust detection of mammogram structures, 

(b): A schematic representation of the detection of features through the scale-space (the 

stack is inverted to show the detection from coarse to fine).

4.4 Landmark matching and registration refinement

4.4.1 M atching internal structures

Based on the regions that are detected using the scale-space segmentation approach 

described in the previous sections, a set of internal landmarks is defined by a matching 

algorithm that includes the partial transformation (induced by the boundary alignment) in 

conjunction with scale, size and area information of the candidate matches. In the 

registration process the segmented regions are represented by their centroids. Due to the
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small number of the segmented significant regions, matching becomes an easy task as we 

can introduce some further constraints that further reduce the search-space:

The initial search-space for a match in the first image is defined as a window in the 

second image whose size is proportional to the amount of displacement of the 

transformed internal landmarks using the boundary transformation. This is used to limit 

the possible matches to a “window” or neighbourhood. All the feature parameters (size, 

scale, relative motion) are used to drive a simple spatial searching algorithm that is 

conceptually similar to the iterated closest point method (ICP) [96-98]. Essentially these 

criteria are used as the basis of a “match rejection” filter. After evaluating a distance 

measure between landmarks to ensure that landmarks classified as a “match” have similar 

spatial properties and have demonstrated a change in geometrical correspondence as a 

result of the boundary deformation.

In the wavelet feature detection and subsequent feature matching, the chosen criteria 

(size, scale, relative motion) limit the error in search for feature correspondence. In 

particular, we restrict matching on the basis of features with similar scale localisation in 

the wavelet “feature stack”. This effectively means that we are not interested in matching 

features that significantly change size (due to differences in breast compression, for 

example).

On average, depending on the degree to which the breast is involuted we define 3-5 

internal landmarks at the centers of mass of the corresponding wavelet-defined regions. 

In most cases, as shown in Figures 26 (a) and (b), the segmented salient regions in the 

partially warped and the target image move towards each other and exhibit a significant 

degree of overlap facilitating the matching process.

As mentioned before, the area of a region is used as a matching parameter. The objective 

is to ensure that spatially localised features are not matched to larger features. In addition, 

the relative motion between the landmarks in the undeformed and partially registered (via 

boundary curvature) data adds significant constraints to the matching process. This is
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illustrated in Figure 26 (c), where the relative motion of landmarks is included as a 

weighting factor in the match. Our matching algorithm is conceptually similar to Kok- 

Wiles’s work [lOOJ, where topological constraints are used as a matching criterion in 

order to reduce the search space.

1

(c)

Figure 26: (a): Segmented “significant” regions of a temporal pair superimposed, (b) The 

same between the “target” and the partially registered image. The corresponding regions 

“move” towards each other as the partial transformation approximates the motion under 

different compression, (c): The boundary registration is included as rejection criterion for 

the matching algorithm. Before boundary registration (A) there are two candidate pairs 

with distances D| and 0%. After the boundary registration (B), Di is maintained, while 

the rest of the closest matches changed according to the deformation.
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4.4.2 Final registration using an approximation scheme
4.4.2.1 Overview

The last step in the registration process is to include both the boundary (curvature-based) 

landmarks and the internal landmarks (as outlined in Figure 1). However, at this stage of 

the registration process, an approximation (rather than an interpolation) scheme is used to 

compute the elastic deformation. This is to account for possible inaccuracies in landmark 

representation, as well as to produce a smooth deformation that takes into consideration 

the relative importance of the matched regions (represented by their center of mass). It is 

worth mentioning that in a clinical deployment of this algorithm, the user should confirm 

that the detected internal landmarks have a good anatomical correspondence. Due to the 

large variability in tissue architecture, the anatomical significance of the detected internal 

structures is very hard to assess. However, the segmentation method discussed previously 

detects the dominant glandular tissue structures in each mammogram. Next, we discuss 

the approximation scheme used. The aimed is to account for representing the matched 

regions only by a centroid and the overall uncertainty in landmark localisation (e.g. 

localisation of very small regions is prone to a more significant error than to large 

regions).

4.4.2.2 Approximating Radial Basis Functions

The boundary points and the internal landmarks (computed by the wavelet analysis) 

together control a thin-plate spline approximation technique, which gives the final 

registration. Since the confidence in landmark detection is higher for the boundary 

landmarks, we need to employ an approximation scheme that allows us to control the 

smoothness and the individual weighting for each landmark. For example, a pair of 

internal landmarks that correspond to “large areas” of tissue should play a more 

important role than a smaller one.

To implement this in a registration algorithm, in such a way that landmark localisation 

errors can be accommodated, it is necessary to weaken the interpolation condition in such
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a way that the resulting transformation is a compromise between smoothness and data 

adaptation. The new functional 7x(t) to be minimised is a function of À, a régularisation 

parameters that controls the balance between the smoothness and the approximation of 

the transformation [79]:

I | 2

j = i  C T.

Where qi and pi are the landmark pairs, Jiii)  is the bending energy of the transformation t 

and A, is a régularisation parameter that controls the trade-off between the smoothness of 

the transformation and adaptation to the local transformations induced by the data. For 

À—>0 the solution is a very good approximation of the data (we trust the data to be 

accurate), while for A.— we obtain a very smooth transformation with very little 

adaptation to local deformations. If we are able to somehow “predict” the accuracy of our 

landmarks, we can weight each landmark pair by the inverse of the variance a ] . A set of 

weights (the inverse of the variance a^) needs to be defined in order to characterise the

uncertainty in the localisation of the landmarks. After matching the segmented structures 

the “goodness” of each match is characterised by the persistance of the regions in the 

wavelet stack (i.e. the “volume” of the region through the scale-space stack [160]). These 

scores are used (rescaled between 1 and 100 and the higher value is assigned to the 

boundary landmarks) as the landmark weights in the approximation scheme. The global 

transformation smoothly transforms the boundary while local deformations occur on the 

inside according to the importance of the internal matches. The number of internal 

landmarks detected depends on the number of significant regions that propagate in the 

scale-space stack and are consistent in both images in the pair.

The scale localisation information is used to control the (7^ terms that have the effect of 

weighting the smoothness in the deformation by the saliency of the landmark. In this 

way, greater deformation influence can be attributed to features that have stronger spatial 

localisation. The computational implementation is similar to the interpolation problem 

since only the K  submatrix from the interpolation-implementation needs to be changed:
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-1

Figure 27 illustrates the difference in the resulting transformation, if an approximation 

scheme is used instead of interpolation. In Figure 27 (a) all the landmarks are fixed in the 

same position, except the middle one that is significantly displayed. Figure 27 (b) is the 

interpolation result, where every single landmark is forced to move exactly to the new 

position. By changing the overall smoothness (via approximation) we obtain the result of 

image 27 (c) even if the landmark co-ordinates remain exactly the same as before. By 

weighting less the largely displaced landmark (that could be the case of a “low 

confidence” match) we reduce its effect on the final transformation as is illustrated in 

Figure 27 (d).

In the next section, we show analytically an example of the proposed registration method. 

We also discuss ways to validate the non-rigid registration and assess the improvement in 

registration when internal landmarks are used.
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4.4 Landmark matching and registration refinement

Figure 27: (a) Assuming that all the square landmarks remain in the same position while 

the central one (drawn in circle) has to move significantly as a result of a matching 

calculation. In (b): Registration is performed using thin-plate spline interpolation and the 

transformation moves the landmarks to the exact corresponding locations. In (c): the 

approximation scheme discussed above is employed and a “smoother” transformation 

that approximates the landmark requirements is obtained. In (d): the largely displaced 

landmark (the circle one) is weighted less than all the others and that reduces its effect 

(comparing to (b)) in the resulting deformation field.
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4.5  R esu lts  a n d  validation

4.5.1 Overview

Using the techniques described in this chapter 50 pairs of mammograms have been 

registered. A significant number of this data set is included in a separate gallery in 

Appendix E of the thesis (we present a typical sample since 2 pages are needed to present 

each pair). For these examples we show the registration results and, in addition, clinical 

information, comments on the registration results, the difference images, the 

transformation grids and in some cases the joint histograms have been included. A 

summary of the performance on all 50 mammogram pairs is given in Table 3.

In this section we describe how the proposed method was tested:

• The limitations in evaluating non-rigid registration in mammograms are discussed in 

section 4.5.2.

• Qualitative results on the registered data set are included in section 4.5.3

• Assessment of the improvement in registration using internal landmarks (with an 

example of registration including the calculation of internal landmarks) is presented 

in section 4.5.4

• In section 4.5.5, the accuracy in registration is assessed by comparing the calculated 

registration results with “obvious” landmarks marked by the user.

4.5.2 Limitations in evaluation

As was discussed in section 3.9, it is very hard to evaluate non-rigid registration 

techniques since it is difficult to establish ground truth. This is particularly truth in the 

case of mammogram registration since there are actual temporal changes in the
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mammographie appearance of the breast. As a consequence, even if the registration 

method is perfect, the aligned images are not expected to be identical. This means that we 

can only rely on a combination of subjective criteria and image characteristics to assess 

the improvement in similarity between the mammogram pair. In addition, it is impossible 

to use fiducials inside the breast which could provide a ground truth for registration.

Most researchers use “artificial data” to evaluate such complex registration problems. An 

example is illustrated in Figure 28 (a), where we apply a random transform (taken from a 

mammogram pair so that it reflects a realistic breast deformation) to Figure 28 (b) thus 

obtaining the deformed mammogram shown in Figure 28 (b). By applying our 

registration image the original mammogram is recovered as shown in Figure 28 (c) 

(warped image) and Figure 28 (d) (difference image after registration). This kind of 

experiments offer a ground truth for evaluation (the images have to be identical). 

However, in such an experiment we can’t mimic the actual anatomical changes that occur 

in the breast during acquisitions and are amplified by differences in compression and 

imaging parameters. For this reason we use real temporal data in order to validate the 

proposed registration technique, even if this makes establishing a ground truth a more 

difficult task.

First, we qualitatively characterise the registration results in section 4.5.3 while in section

4.5.4 an example of registration is presented, in order to demonstrate the improvement of 

the result when internal landmarks are used. This improvement is also assessed by the 

clinician in 25 mammogram pairs from the data set. To establish a more quantitative 

evaluation, in section 4.5.5 we propose the use of marked, “obvious” landmarks in the 

mammogram sequences.

Finally, as mentioned in the introduction a large number of restoration examples is 

included in the Appendix E of the thesis, so that the reader can better understand the 

application of the suggested method in a large number of mammogram pairs.
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1

(a) (b) (c) (d)

Figure 28: Creating an artificial experiment for evaluating registration, (a) The original 

mammogram, (b): A random mammogram transform is applied and the mammogram is 

significantly deformed non-rigidly, (c): Using the mammogram registration technique the 

mammogram is aligned to its original shape, (d): The difference image shows that the 

images are almost identical, however this artificial experiment does not represent the 

actual mammgraphic changes encountered in real temporal data.

4.5.3 Qualitative characterisation o f the registered images

In this section we provide a short description of the registration results in the 50 images 

that were registered using the registration method presented in this chapter. As has been 

discussed before, the registration process is not expected to make the mammogram pair 

look identical since there are actual temporal changes in the breast structure and thus in 

the mammographie appearance. The success of the registration can be evaluated in terms 

of the increased similarity in image features after geometrical alignment. The viewer 

characterised the geometrical alignment based on observing the alignment of the breast 

boundary and of the internal breast tissues. The criteria for assessing the quality of 

registeration were:
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•  Good: If the images are well registered and no misregistration “shadows”appear in 

the difference image after registration.

• Average: If the registration result looks satisfactory but at the same time there are 

regions of poor overlap in the difference image resulting in “shadows”.

• Poor: If the features (boundary or internal strucures) are not aligned well (e.g. the 

nipple in the boundary is in a different location in the registered images) resulting in a 

large number of misregistration “shadows” in the difference image.

In these examples, the full registration process is characterised, while in the next section 

we assess the impovement of the registration result after the internal landmarks are 

included.

These observations are summarise in Table 3:

Boundary
alignment

Internal
correspondence

Good: 100% 

Average: 0% 

Poor: 0%

Good: 70% 

Average: 25% 

Poor: 5%

Table 3: Comments on registration results in 50 mammogram pairs: The viewer 

classified the results in three categories according to the alignment of image features.

4.5.4 Assessing the im provem ent in registration

In this section, a complete registration example is illustrated, including images of the 

intermediate steps. The aim of this example is to demonstrate how the inclusion of 

internal landmarks can better approximate the deformation of the breast due to different
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degrees of compression, leading to an improved alignment of the images. A small 

number of internal correspondences can significantly improve the registration result since 

it can account for tissue motion inside the breast under compression. To assess the 

improvement in registration we suggest the following:

• Calculation of the difference image after registration. This provides a visual 

verification that the images have been aligned (the misregistration “shadows” are 

significantly reduced after registration).

• The joint histogram is another indication that the image information context has been 

aligned compared to before registration. Before registration the values of the 

histogram are spread out while after the registration they are more concentrated 

around the main diagonal.

• Assessment of the improvement by the clinician; the clinician decides if inclusion of 

internal landmarks significantly improves the quality of the correspondence between 

the mammogram pair.

In Figure 29 (a) and (b), a temporal pair of mammogram is registered, first using just 

boundary points (Figure 29(c) is the transformed 29 (a) ). Images 29 (d) and (e) show the 

matched regions based on the multi-scale wavelet analysis, superimposed onto images 29 

(c) and (b). Using the centers of mass of the corresponing regions, we re-register the 

images as described in section 4.4.2. Figure 29 (f), is the resulting warped image.

The last three images show the difference image after the applying the proposed 

registration (in Figure 29 (i) ); it clearly shows the improvement in the registration 

(compared both to no registration and to the boundary registration difference images in 

Figures 29 (g) and (h) ). Note that all the important features overlap, and the “shadows” 

corresponding to misregistations in Figures 29 (g) and (h) disappear. The deformation 

grid, shown in Figure 30, is an alternative way to visualise the partial registration (Figure 

30 (b) ) and the improved registration (Figure 30 (c) ).
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Figure 28: (a) and (b): A temporal set of images, (c) Image (a) warped in the co­

ordinates of image (b) using the boundary landmarks, (d) and (e): The matched regions 

based on the multi-scale wavelet analysis, superimposed to images (c) and (b), (f): The 

warped (a) to (b) after the final registration. Difference images: (g): Before registration, 

(h): After partial registration and (i): After final registration including internal landmarks.
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Figure 30: (a): The orthogonal grid, (b): The deformed grid for the partial transformation 

is relatively smooth inside the breast, (c): After the final registration the deformed grid 

depicts the relatively non-smooth motion inside the breast under changing compression 

more realistically.

In a clinical assessment of the technique, an experienced radiologist judged that the 

correspondence between the registered images was improved in 20 out of 25 pairs of 

temporal mammograms after the inclusion of internal landmarks. This is in agreement 

with the difference image (less or no misregistration “shadows”) and joint distribuition 

histogram (intensity pair values concentrated more towards the main diagonal).

In Table 4, the clinical assessement concerning the improvent in registration with tne 

inclusion of internal landmarks is presented together with the ruduction in the standard 

deviation of the difference image after registration in the same mammogram pairs. This 

can be seen as a numerical interpretation of Figure 29; using only the boundary makes 

most of the shadows in the difference image dissapear and this effect is amplified when 

internal structures are included in the registration process as well as the boundary. The 

cases of “no improvement” in Table 4, represent the mammogram pairs where the tissue 

was predominantly fat (involuted) and as a result no bright regions could be segmented 

and matched.
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Improvement of the 

registration result 

when including 

internal landmarks

Reduction in the 

standard deviation 

of the difference 

image

Significant: in 20 

mammogram pairs
10%-35%

Not significant: in 5 

mammogram pairs
0%-15%

Table 4: Clinical assessment of the improvement in registration using internal landmarks 

in 25 mammogram pairs and comparison with the reduction in the standard deviation of 

the difference image after geometrical alignment for the same cases.

The success of this method is limited by the degree of involution in the breast tissue. The 

more involuted the breast, the less “significant” internal structures we can detect using 

our method. However, the 2-stage nature of the process ensures that at least the breast 

boundary can be aligned.

4.5.5 A ssessing the accuracy o f registration

Assessing the accuracy of a non-rigid registration algorithm is a very difficult task (as 

was commented in chapter 3). There are no globally accepted “standards”. In addition, 

unlike cases like brain imaging, significant fiducials can’t be used in the breast, (except 

maybe the possibility to use skin markers but even then that could only be useful for a 

more accurate detection of the nipple).

In this section we suggest a simple method for assessing the accuracy of our technique. 

Temporal mammograms often exhibit several “obvious” correspondences since the tissue 

architecture is usually preserved. This experiment uses 10 pairs of mammograms where 

the architecture was preserved so that “obvious” correspondences could be used as
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“ground truth” . In each pair, three “obvious” landmarks were selected, as shown in 

Figure 31. These landmarks were most often regions of dense tissue or benign masses. In 

addition, “obvious” landmarks had to be significantly different (>100 pixels in 300 

micron images) from the landmarks used for the registration in order to assess the global 

improvement in correspondence. Finally, half of the mammogram pairs had a very good 

initial correspondence (points 0 to 15 in Figure 31 (b)) in order to observe the 

improvement in cases where the displacement due to registration is small.

An example is shown in Figure 31. The landmarks are shown in yellow in the source 

image (A in Figure 31 (a)), and as yellow squares in the target image (B in Figure 31 (a)). 

The absolute distance between the corresponding points, d, before any registration 

describes the original error before registration. By applying the calculated transformation 

to the source image, the three points are mapped to the corresponding ones (shown in 

blue), in the target image. The distance between the “transformed” points (shown in blue) 

and the reference points (yellow squares) in the target image, dT, represents the error 

after registration. In addition, the comparison of d with dT is a measure of improvement 

of the correspondence of features after registration.

Figure 31 (b), shows the error in correspondence of the “obvious” landmarks before and 

after registration. It is obvious that registering the images improves the correspondance of 

tissue structures in mammogram pairs. In a clinical context, the estimated transformation 

(for alignment of mammogram pairs), could be used to estimate the location of points or 

regions in temporal mammogram sequences, making the comparison of mammograms an 

easier task.
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A ssessm ent of Registration Accuracy

300 -I
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’obvious" landmarks
(b)

Figure 31: (a) The user selected 3 anatomically significant points in (A) and by using our 

registration method we estimate their locations in (B), shown with blue dots. If  the 

clinician (or the user) marks the corresponding points in the second image (yellow 

squares) the error distance dT can be used to validate the accuracy o f  the transformation, 

(b): The registration error in pixels for pre-selected “obvious” landmarks. Before 

registration d represents the error without registration, while dT is the error after 

alignment.
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4.6 Registration issues and  applications

4.6.1 B ilateral mammogram s

As mentioned both in this chapter and in the previous one, most efforts on mammogram 

registration to date have concentrated on bilateral mammograms. Although this is not the 

main concern of this thesis, the method described can be used to register bilateral 

mammograms and help the clinician determine regions of significant asymmetry. The 

boundary can always be used to register bilateral mammograms, independently of the 

degree of “architectural similarity” between them.

The wavelet segmentation method has the potential also to be used to match bilateral 

mammogi'ams pairs providing that a “structural” similarity exists. However, we have 

found that in many cases the architectural similarity between the breasts is not strong, and 

internal correspondences are difficult to establish. In Figure 32, there is an obvious 

correspondence between the segmented (based on the wavelet analysis) regions of the 

bilateral pair.

I

Figure 32: (a), (b): A bilateral pair of mammograms with the segmented “significant” 

regions superimposed. This clear correspondance of significant features is not always the 

case in bilateral mammograms.
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Bilateral registration can also be used in the case of women that follow Hormone 

Replacement Therapy (HRT) as in some cases the differential response to oestrogens can 

be a sign of an underlying malignancy (a more “active” breast is more likely to develop a 

tumour). However, we emphasise that the architectural similarity in bilateral 

mammograms is poorer than the temporal mammogram case, and it’s very difficult to 

ensure consistency in the clinical importance of the results.

In Figure 33 an interesting example of bilateral registration is illustrated, where the 

registration result maximises the perceived similarity of the two images thus facilitating 

comparison.
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Figure 33: Registration of bilateral MLO views, (a):The original left MLO mammogram, 

(b): The original right MLO mammogram, (c): The left MLO registered to the Right 

MLO and (d): again the left MLO for easier comparison with (c)
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4.6.2 The role of the pectoral muscle

The pectoral muscle moves independently of the rest of the breast during the X-ray 

acquisition. The area of the pectoral muscle is also variable between bilateral and 

temporal mammograms of the same patient. This can give rise to several issues of 

accuracy and consistency concerning registration or quantification techniques.

Figure 34, illustrates that registration using the pectoral muscle can be severely in error, 

especially if landmarks from the inside of the breast have not been included in the 

interpolation scheme. Since the pectoral muscle is currently being used in mammogram 

registration ([107], [108]), this is an important issue to address.

As illustrated in Figure 34, trying to align the pectoral muscle without including 

landmarks from the inside of the breast (as in [107]), leads to an increase in the distance 

between corresponding features. In fact, the difference image 34 (f) reveals that although 

the pectoral muscles are aligned, the fibroadenoma (visible in both images) is further 

away than in the unregistered images. We have observed from differential compression 

mammography [4], that the pectoral muscle seems to move independently of the breast 

tissue under different compression and this might be a possibly explanation. For that 

reason, further investigation is necessary to clarify whether or not the pectoral muscle 

should be taken into consideration in manmiogram registration
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Figure 34: (a),(b): A temporal pair of mammograms with a fibroadenoma present, (c): 

Difference image before registration, (d): After registration using five points in the 

boundary the difference image indicates that we have compensated for some (but not all) 

of the tissue deformations, (e): By manually adding two internal landmarks, registration 

is improved, (f): If we use two points from the line of the pectoral muscle instead, 

although we align the pectoral muscle, the mass is further displaced than in the 

unregistered difference image (c).

4.6.3 Registration and interval cancers

We consider mammogram registration to be an important element of future clinical 

mammography software, especially since digital mammography will allow such 

algorithms to be incorporated in a faster and more efficient manner. Registering the most 

recent mammogram taken with the previous ones can provide information about regions 

of significant difference and assist the clinician in detecting subtle new changes.
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Figure 35 (a) and (b) shows an example of an interval cancer. Figure 35 (c) is the second 

image warped in the co-ordinates of the first, while 35 (d) shows the difference image 

after registration. The difference image can be used for the automatic detection and 

segmentation of the cancer using a one-tailed t-test on the pixel intensities inside the pre­

calculated breast boundary (Figure 35 (e)). In that way we avoid segmenting the line of 

“misregistration” along the boundary. Since the segmented cancer has been transformed 

to the co-ordinates of the first mammogram we can estimate the region of future 

development of cancer in the first, “normal” manunogram by superimposing the 

boundary of the transformed cancer region (Figure 35 (f)).

As mentioned in the beginning of this thesis, a significant number of “interval cancers” 

are missed (and could have been diagnosed from a previous mammogram). Registration 

could be used for retrospective studies in order to examine the region of the cancer prior 

to diagnosis. This could help in determining the number of “true” interval cancers and 

therefore the incidence of breast cancer.

Although we believe that registration can reduce the number of “missed” cancers in a 

screening context, it is a very difficult hypothesis to verify. The first reason is that we 

need to test many more cases where the cancer was “missed” and retrospectively verified 

by the clinician that “it could be detected”, and such data is difficult to compile, 

particularly as inter- and intra- observer variation is high. In addition, mammogram 

registration would have to be used in a test trial related to screening before all the 

expected benefits of such a technique are challenged in practice.
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(a) (b) (c)

(d) (e) (f)

Figure 35: (a): Before the development and diagnosis of the cancer, (b): A clear cancer 

has developed, (c): Mammogram (b) warped in the co-ordinates of mammogram (a), (d) 

Difference image after registration, (e): Cancer segmented from (d), (f): The transformed 

boundary of the cancer superimposed on the “normal” mammogram (a), indicates the 

region of the future development of cancer.

4.7  D iscussion  a n d  sum m ary

In this chapter, we demonstrated a method that first aligns temporal mammograms based 

on the boundary. We demonstrated how the breast-boundary can be consistently used to
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resister mammogram pairs and presented evaluation results concerning the anatomical 

significance of the three proposed maximum curvature landmarks in the breast-boundary 

(nipple, axilla and rib points).

Multi-scale analysis provides a reliable framework for establishing correspondences 

between significant regions inside the breast. In this way, the algorithm presented here is 

an improvement on that presented by [100, 102]. Using internal landmarks, the 

registration result is improved, as was asserted by the clinician and the difference images 

after registration as well as the joint histograms of the aligned images. Even though 

matching points inside the breast is difficult due to temporal changes and depends upon 

the extent to which the architecture (or topology of the surface) is preserved, the multi­

scale segmentation method used, reliably locates regions of dense tissue that appear in 

both temporal mammograms. Additionally, using the thin-plate approximation scheme 

(section 4.4.2), we can weight our internal landmarks according to their size and scale 

and therefore compensate for landmark localisation errors.

Obvious landmarks, were used as ground truth for estimating the correspondence error 

before and after registration. After registration, the correspondence was improved from

65.2 average and 65.7 standard deviation (units in pixels) to 12.2 and 8.2 respectively. 

Since the images were digitised at 300 microns, this translates into an error reduction 

from 2cm before registration on average, to 0.37cm after registration. More experiments 

are necessary to establish the improvement in correspondence of features (since it 

depends on the initial correspondence of the images) and determine the accuracy that is 

necessary for clinical use.

Mammogram registration could be a useful tool for aiding the clinician to detect 

abnormalities by comparing a mammogram with a previous one, as significantly 

“different” regions can be detected in the difference image and are their location can be 

easily identified in both mammograms (after registration). In addition, we can use the 

same registration technique to align HRT sequences in order to detect overall changes in 

tissue composition and to be able to estimate the site of local changes in tissue density;
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this work is discussed on the next chapter. Finally, Behrenbruch et al. [32, 33], 

demonstrated that this registration framework can be extended to achieve 3D-MRI / ID - 

X-ray data fusion as is summarised in the concluding chapter of the thesis.

More generically, mammogram registration is important for future digital mammography 

systems, where the clinician will be able to examine both the original and the aligned 

temporal mammogram pairs when reading manunograms. In addition, other diagnostic 

tools (e.g. microcalcification detection, or image enhancement) could be used in 

conjunction with registration in order to compare features (or examine “prompted” 

regions ) in the aligned mammogram pair. Temporal comparison is already an important 

part of mammogram reading in European screening programmes and computer aided 

mammogram interpretation tools (e.g. registration) are hoped to increase the early 

detection rate of breast cancer.

In temporal HRT mammograms, tissue quantification becomes a crucial issue (unlike 

non-HRT mammograms where involution is a physiological process that is not correlated 

with cancer). For this reason, we need to combine mammogram normalisation (using the 

/lint representation) and registration of temporal mammograms aiming to develop a robust 

temporal tissue-quantification framework. The issues of tissue quantification and 

registration of HRT sequences, is the subject of the next chapter.

4.8 Concluding statement

A mammogram registration method has been proposed in this chapter. The basic aim to 

develop a robust registration method was achieved. The set of landmarks used in that 

method comprise of a number of boundary landmarks which very often have an 

anatomical significance and a small number of internal landmarks that correspond to the 

regions that appear to be similar in the temporal pair. Thus the hypothesis that patient 

specific landmarks can be calculated was achieved. This set of points is enough to
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calculate the geometrical transformation necessary to align the mammogram pair which 

confirms our working hypothesis that such a set of landmarks could be defined in each 

mammogram.

However, as was explained in section 4.5.2, the assessment of the quality of the non-rigid 

registration is a rather subjective task since the breast changes between acquisitions. 

Nevertheless, some validation experiments are performed in the same section in order to 

assess the quality (in terms of feature alignment) and the accuracy of the suggested 

method. In addition, the role of the pectoral muscle is investigated as well as the 

application of the suggested method for bilateral matching. Finally, a number of clinical 

applications is discussed (e.g. registration and interval cancers). In this thesis, we chose 

to analyse data from HRT users, in order to develop an image analysis framework for 

assessing the density changes, which are crucial. This work is reported in the next chapter

Page 145



Chapter 5: Temporal analysis and breast tissue quantification of HRT
sequences

Page 146



5.1 Image Analysis for HRT mammograms

5.1 Image Analysis for HRT mammograms 

Introduction

In this chapter, we are concerned with women that use Hormone Replacement Therapy. 

In general, women choose to use HRT in order to relieve menopause-related symptoms or 

most importantly, prophylactically against osteoporosis and cardiovascular disease. 

Although research findings remain controversial, there is a concern that HRT can 

increase the risk of breast cancer especially for long-term users. A theoretical explanation 

could be that the hormone-stimulated breast cell proliferation increases the probability of 

cancer in HRT users. It is believed that invasive breast cancer evolves from normal 

epithelium of the terminal duct or lobular unit* through various abnormal proliferative 

lesions (e.g. typical and atypical hyperplasia). Female hormones (mainly oestrogen and 

progesterone) are involved in regulating the differentiation and proliferation of normal 

epithelial cells [163].

From an image analysis standpoint, HRT mammograms can be considered as a special 

case of temporal mammography, where the clinician is interested in changes over time. 

However, in non-users, the breast tissue gradually involutes into fat, a physiological 

process that favours diagnosis since a new growth will be easier to detect 

mammoraphically. In HRT-users, if the woman responds to the exogenous hormones, the 

reverse process can take place: glandular tissue may regenerate and this process should 

be carefully monitored by the clinician in order to diagnose an abnormality as early as 

possible. For these reasons we believe that, in conjunction with registration, there is a 

need to be able to quantitatively compare successive HRT mammograms. In other words, 

quantitative comparison can provide information about density changes, while 

registration can help the clinician estimate the location of these changes.

Breast anatomy is summarised in Appendix A
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In the next sections, we present the aims of our work, and we suggest how temporal 

registration and quantification could assist the clinician in assessing the risk of breast 

cancer for the individual woman.

The domain and the aims

The work in this chapter aims to address the Medical Image Analysis problems related to 

women that use Hormone Replacement Therapy (HRT) and to suggest a framework for 

analysing HRT sequences in terms of mammogram density. More specifically the aims of 

our work on HRT mammograms are:

• As was mentioned in the previous section (clinical motivation) our first aim is to 

provide a detailed literature review in order to understand the issues related to the use 

of HRT. Due to the controversy concerning the increased risk of breast cancer, it is 

important to present a detailed review of the medical problem and various reported 

clinical results concerning the effects of HRT on the risk of cancer, breast density and 

mammographie sensitivity.

• Based on previous work on mammogram normalisation we aim to propose and 

validate quantitative measures for breast density. It is believed this is of great 

importance for mammography since identifying regions of local increase in density 

due to the use of HRT could potentially assist a clinician in the early detection of 

cancers. However, the lack of adequate and objective quantitative measures impedes 

serious examination of this conjecture. Here, our first aim is to propose and validate a 

set of quantitative measures on a global basis (i.e. calculate density measures using 

the entire mammogram image) by comparing them to the expert’s description of 

density change and to previously proposed descriptors of density. Then we propose 

an image processing framework that could potentially allow the clinician to assess 

the breast density changes on a local basis and therefore better understand the risk of 

cancer due to HRT for the individual woman.
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• More specifically, in this chapter we aim to present the basic components of a system 

that will allow the automatic quantitative comparison of temporal mammograms. This 

would require a combination of registration and quantification, so that the clinician 

could be informed about the temporal changes in density on a local basis. However, 

in this chapter we only aim to analyse the possible problems that could arise from 

combining registration and normalisation and not to test such a system in clinical 

practice.

The working hypothesis

The main hypothesis in this chapter is that a normalised mammogram representation (e.g. 

the /lint representation) can provide the basis for a quantitative comparison of 

mammogram density. This hypothesis is made because the /imt representation calculates 

the height of fatty tissue in each pixel thus providing an anatomical representation of the 

breast tissue. This is especially important when temporal mammogram pairs are 

considered since the variation in imaging parameters complicates the calculation of 

invariant quantitative measures of density.

More specifically, in this chapter we test the hypothesis that quantitative measures of 

tissue density based on the Amt representation can automatically characterise the actual 

changes in breast density over time. Equivalently, our hypothesis is that /imt changes of 

“interesting tissue” (i.e. non-fatty tissue) in the breast, over time can describe the actual 

changes in the fibroglandular tissue content of the breast.

Finally, in this chapter we suggest a method for comparing mammogram density on a 

local basis. Although we discuss the technical requirements and limitations of such a 

quantification method, its effectiveness in early detection of breast cancer is not tested in 

this thesis since it will necessitate significant number of clinical trials. However, this is a 

hypothesis based on clinical experience and is discussed in section 5.5, while in section 

5.6 we analyse the possible clinical impact of automated density quantification (on a
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global and local basis) on the clinical management of HRT users. The quantification 

methods used in this chapter are now discussed.

Description of the selected methodology and the experiments performed

In the first sections of this chapter, we discuss in detail the medical problems related to 

the use of HRT and present a literature review of the effects of HRT in tissue density and 

patterns, mammographie sensitivity and breast cancer (sections 5.1 to 5.4). This is in 

order to understand the controversy in the literature over the benefits of HRT and the 

requirements in terms of Medical Image Analysis that would provide clinicians with 

useful tools for assessing the risk of cancer for the individual woman who uses HRT.

The measures we develop are based on the Ajnt representation of interesting tissue. The 

reason for this is that it is the most reliable method proposed so far for intensity 

normalisation of mammogram pairs. For comparison, we also calculate the percentage of 

the area of glandular tissue in the mammogram, since it has been used in the past to 

characterise tissue density. These measures are discussed in section 5.7. We used 59 pairs 

of mammograms to validate the performance of each measure individually on describing 

temporal changes in tissue density. These changes are:

Tissue regeneration: If the breast density in the most recent mammogram is increased as 

a result of HRT.

Involution: If the breast density is decreased in the most recent mammogram. This is a 

physiological process for postmenopausal women and in the case of HRT users is a result 

of poor hormonal receptivity.

No change: In many cases no obvious change in tissue density is observed. Although it is 

not such an important case as tissue regeneration, it should be included in order to 

validate the suggested quantitative measures.
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The ground truth is established by the clinician who examined the temporal mammogram 

pairs and classified the observed changes in the 3 categories mentioned above. The 

design of the global quantification experiment and the results are presented in section 5.8.

For assessing local changes a combined registration and image normalisation framework 

is proposed in section 5.9. However, when registering a pair of mammograms, it is often 

the case that the image extent is reduced (or increased) due to the necessary rescaling for 

the image alignment. For this reason a method that preserves the image “volume”(defined 

as the sum of the intensity or hynt values over the image) after registration is presented in 

section 5.10. In the same section a validation experiment of this method is presented.

Nevertheless, there are certain limitations in the design and evaluation of experiments 

relating global or local quantitative measures. These limitations, as well as a discussion 

about alternative methods that could test the suggested density measures (local and 

global) are discussed in section 5.11.

5.2 Medical Background

5.2.1 Typical hormonal changes at menopause

Today’s life expectancy of more than 80 years means that menopause is a much more 

important life event, since the average woman can be postmenopausal for up to a third of 

her life. “Menopause” is a word that encapsulates the totality of the hormonal changes 

that occur in the years leading up to, and beyond, the final menstrual period of a woman. 

For some women, the hormonal deficiency related to menopause can lead to significant 

pathology. In others, the menopause induces severe discomfort and pain, which lead 

women to seek medical help.

Before the menopause, during each menstrual cycle, the levels of oestrogen increase at 

the beginning of the cycle, stimulating the growth of an egg in the ovary. Ovulation 

occurs at mid-cycle, and soon after oestrogen, together with progesterone, stimulates the 

thickening of the lining of the uterus preparing the womb for a possible pregnancy. If the
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egg is not fertilised, it dies and is shed, together with the lining of the uterus, ending the 

menstrual cycle. Table 5, summarises the phases of the menstrual cycle and the major 

role that different hormones play [111].

" ......
Phase of the Menstrual 

Cycle
Description of Physiological 
^  processes that occur

V:

Hormones that determines 
the physiological conges

Menstruation 

Days 0-5

A new egg starts to grow in the 
ovary

Follicle stimulating hormone
(FHS) is the prevalent 

hormone

Preovulation 

Days 5-13

The developing egg produces 
oestrogen

Oestrogen level peaks just 
before ovulation

Ovulation 

Days 13-15

The mature egg is released 
towards the uterus

A luteinizing hormone
triggers ovulation

Postovulation The endometrium is prepared 
for pregnancy

Progesterone levels reach 
their maximum

Table 5: Cycle phases of the menstrual cycle and lormones involved

As a woman approaches the menopause, the ovaries become less and less proficient and 

they eventually cease functioning. As a result, the woman’s periods stop. The disturbance 

in hormone levels causes a number of symptoms and increases the risk of many diseases, 

as we describe in the next section.

5.2.2 Symptom s o f the m enopause, disease and remedies 

Some of the most common symptoms of the menopause are:

Short term symptoms

Irresu lar p erio d s: The ovaries become erratic in their production of oestrogen and 

progesterone, resulting in irregularities in the menstrual cycle and in the decline in 

fertility. This is usually the first sign of the menopause.

Hot Bushes and n ish t sw ea ts: These can occur several times per day and often start with a 

feeling of increased pressure in the head that gradually spreads to the neck, then to the
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shoulders and the chest. The result is disturbed sleep, headaches, muscle and joint pain, 

tiredness, lethargy and depression. This is the most common symptom of menopause, 

affecting about 75% of women [111].

Other symptoms: Sexual changes, as the oestrogen levels drop, result in dryness of the 

sexual organs, urinary symptoms, skin dryness and hair damage.

Long term consequences

Cardiovascular (CV) disease". Cardiovascular disease is the most common cause of death 

in the UK, being responsible for 100000 deaths (ischaemic together with cerebrovascular 

disease) in 1995 [112]. The risk of cardiovascular disease, for example atherosclerosis, is 

significantly higher for a woman after the menopause. In the States, it accounts for more 

than 50% of all deaths for women over 50. A possible reason is that the low density 

lipoprotein (LDL) cholesterol which encourages fat to accumulate in the walls of the 

arteries appears to increase in postmenopausal women [113].

Osteoporosis: This is a disease characterised by low bone mass and deterioration in the 

microarchitecture of bone tissue, that can lead to a significant increase in the risk of bone 

fracture. Osteoporosis, is prevalent in post-menopausal women, and the most conunon 

pathologies include vertebral, distal forearm and hip fractures [112].

Alzheimer's disease: It has been observed that this is more common in women than in 

men. It is suspected that there is a possible correlation between the disease and oestrogen 

deficiency.

From all of the mentioned above, one can understand the huge implications of the 

menopause for women’s health, as well as the various health threats related to the 

induced hormonal imbalances. Many remedies have been proposed to relieve the 

symptoms related to the menopause and to minimise the risks of disease. These include 

exercise, healthy and careful nutrition, weight control as well as several recently 

suggested alternative treatments. However, to date, the most effective remedy for all the
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symptoms and health threats related to the menopause is hormone replacement therapy 

(HRT).

5.2.3 Recommendation of HRT, benefits and risks

Hormone replacement therapy replaces the hormones that a woman’s body ceases to 

produce after the menopause with natural hormones, which, unlike the synthetic 

hormones (used for example in oral contraceptives), have minimal effects on blood 

clotting. In clinical practice HRT is recommended:

for menopause-related symptoms relief: HRT is effective in providing relief of 

climacteric symptoms (Hot flushes, sweats, vaginal dryness, headaches, migraines, 

depression, muscle pains etc.) and improving the general health of a woman;

to prevent osteoporosis: HRT reduces the rate of bone loss and in some cases even 

increases bone mass. The extent of the improvement depends on the type of therapy 

and the route and dose used [111]. However, there have been studies which report no 

improvement in bone mass following HRT [114];

•  another very important patient-group that needs HRT includes women who have had 

a hysterectomy. Over 60,000 hysterectomies (mostly aged between 40-49) are 

currently being performed in the United Kingdom each year [115], most of which aim 

to relieve women from heavy painful periods, chronic pelvic pain and pre-menstrual 

syndrome. A consequence of the operation is ovarian hormone deficiency, which 

often affects quality of life. Most of the symptoms of the menopause appear in 

women that have had a hysterectomy and are often more severe than in post­

menopausal women. Although HRT is considered absolutely essential, at present a 

small number of hysterectomised women receive the therapy, the main reasons being 

the possible risks and the lack of a clinical protocol to regularly assess the hormone 

levels in these women.
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In Table 6, we present a rough classification of “safe” against “not recommended” use of 

HRT depending on patient history, according to [112].

HRT considered “safe” HRT “not recommended”

Patients with ischaemic heart 
disease, hypertension, diabetes 

(non-insulin-dependant)

Patients with breast cancer or 
breast cancer family history, 
endometrial cancer, severe 
liver or renal disease, history 
of venous thromboembolism

Table 6; “Safe” against “not recommended” HRT

There is some evidence that HRT can reduce the risk of heart disease; however this still 

has to be confirmed by large-scale, controlled clinical trials. There are at least three, 

ongoing, randomised, masked and placebo-controlled clinical trials related to the effects 

of HRT and the possible health implications:

• The women’s Health Initiative (WHl) Trial is designed to uncover evidence about the 

effect of HRT on ischaemic heart disease, breast cancer, osteoporosis and 

Alzheimer’s disease [ 116].

• The Heart and Oestrogen/Progestin Replacement Study (HERS) is designed to 

determine the effects of hormone therapy on fatal/nonfatal coronary events in 2763 

post-menopausal women with documented heart disease who were followed for an 

average of 4.1 years [117, 118].

• The MRC trial is designed to assess the effect of HRT on the morbidity/mortality of 

CV disease, bone fractures, breast cancer and its impact on quality of life [119].

The most important aspects of HRT are increased risk of developing breast cancer, 

endometrial cancer and venous thromboembolism. However, the most common reason 

for stopping using HRT, are “less” serious side effects such as weight gain, headaches 

and breast tenderness. The lack of well controlled clinical trials and consistency in the 

planning of the experiments, as well as the small number of patients used in some studies.
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are possible explanations for the inconsistent and sometimes controversial results that 

have been reported. In the next section, we examine in detail the effects of HRT in the 

breast.

5.3 Effects of HRT

The most important implications of HRT in mammography and the increased risk of 

breast cancer are:

5.3.1 Increased risk for breast cancer

There is a controversy in reports on whether HRT increases the risk of breast cancer. 

However, most studies agree that the risk of developing cancer increases for women that 

use HRT for more than 10 years. According to [120], the risk increases with the duration 

of use, while it is reduced after cessation. Similarly, the results from the Iowa Women’s 

Health Study [121], suggest that there is a strong association between HRT use and breast 

cancer. A study concerning women that participated in the breast screening programme 

of West Scotland [122], reports that 12.3% of women with screening detected cancers 

and 22.2% of women with interval cancers were using HRT.

However, there is agreement that cancers due to HRT have a favourable prognosis, a fact 

that leads to the question: does this happen because different pathological processes 

occur, or because of increased clinical “awareness”? Holli et al. [123], compared a set of 

tumour aggressiveness indicators between HRT and non-HRT related cancers and the 

results suggested that breast cancer in HRT users is biologically less aggressive than 

those of non-users. Conversely, in [124], no correlation between biological factors and 

tumour prognosis was established, and the “favourable prognosis” was attributed to 

earlier detection through mammography.
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On the other hand, there are reports (including [125]) that are sceptical about relating 

HRT to an increase in the number of mammographically undetectable lesions, while 

Speroff [126], after examining a number of reports, suggests (with some reservation) that 

any impact of HRT (in any form) on the risk of breast cancer is unlikely to be significant. 

Similarly, Lando et al. [127], did not find any significant statistical association between 

HRT use and the subsequent development of cancer.

Many studies have addressed and examined the possible risks of cancer (e.g. breast 

cancer, ischaemic heart disease and stroke, colorectal cancer, lung and ovarian cancer) 

related to HRT [128, 129]. We can conclude that although a consensus about the role of 

HRT in breast cancer has not been arrived at completely, most clinicians and researchers 

believe that women on HRT have an increasing risk of cancer. There is also agreement 

that the more time a woman uses HRT, the more risk she runs of developing cancer. The 

Million Women Study in the UK aims to determine (by the end of 2002), the relative risk 

of breast cancer between current HRT users and never users [130, 131].

5.3.2 Increase in density, changes in pattern

The response to HRT depends on the individual woman. As explained in section 5.5, the 

changes due to HRT are not necessarily homogeneous or global; in fact, they depend on 

the hormonal receptivity of the epithelial elements, thus there can be an increase in the 

density and a change in the density distribution (pattern) of the breast tissue.

Kaufman et al, suggests that women using HRT were found to have higher risk 

parenchymal patterns (according to Wolfe’s criteria) than non-users [132]. Similarly, 

another study concludes that HRT users were more than twice as likely to have a high- 

risk pattern than never-users [133].

Several studies report that breast tissue density can increase in women who use HRT, 

sometimes causing cysts or fibroadenomas. Stems and Zee [134] report that in a study of 

1232 postmenopausal women, only 18% of the HRT group showed signs of continuing
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breast tissue involution, as opposed to 38% in the non-users group where density 

decrease (involution) was apparent. Leung et al, found that 38% of the HRT users group 

had high breast densities, comparing to 11% in the non-users group [135]. In a hospital 

based study, Marugg et al, report a 31% increase in density for the HRT group, while 

only 14.3% of HRT users showed increased density in a screening-based study reported 

by the same authors [136]. Finally, in [137], the findings suggest that density changes due 

to HRT are dynamic and that: women who initiated HRT were more likely to show an 

increase in density, while women who stopped using HRT were more likely to show a 

decrease in density and women who continued HRT were more likely to show both 

increase in density and to sustain high density.

Other studies like [138, 139] also support the finding that tissue density can increase in 

HRT users. They classify such changes as focal, multifocal or diffuse mammographie 

increases in density. In addition, Cyrlak and Wong [140], report that oestrogen-only 

treatment promotes enlargement of cysts and fibroadenomas, combined treatment is more 

likely to lead to a diffuse increase in tissue density. Finally tissue density increase for 

HRT users is also reported in a number of studies including [141-143].

In a slightly different study, Lundstorm et al assess the density increase according to the 

type of therapy used [144]. They report an average 52% density increase in the group that 

received a combined therapy (oestrogen with progesterone), which was much higher than 

the 13% for the group that received oestrogen-only cyclic therapy and 18% for the group 

that received oestrogen-only treatment. Similarly, in another study it is emphasised that 

density increase in HRT users depends on the type of therapy used [145].

We may conclude that there is a consistent belief that HRT can increase breast tissue 

density. The type and degree of change depends on the exogenous hormone receptivity of 

the individual, and also on the type of hormones used in the treatment. An increase in 

tissue density can have an impact in screening mammography. This is discussed in the 

next section.
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5.3.3 Decrease in mammographie sensitivity

Several studies have reported a decrease in mammographie sensitivity due to HRT. 

Kavanagh et al report a significant decrease in mammographie sensitivity and show that 

HRT users are more likely to have a false-negative report than non-users (odds ratio 1.60) 

[146]. Several other studies, including [135, 138], suggest that mammographie changes 

observed in some HRT users, can diminish the sensitivity of mammography for early 

breast cancer detection.

As a result of HRT increasing tissue density in postmenopausal women, the sensitivity of 

mammography can be reduced. That can have an impact on early diagnosis, as clinically 

occult cancers are more difficult to diagnose. As is discussed in the next section, many 

researchers address the possible dangers related to the use of HRT and suggest measures 

for monitoring users more carefully.

5.4 Recommended clinical management and the possible role o f image analysis

The medical community, both in Europe and in the US, is concerned with the possible 

increase of cancer for women using HRT. In the UK, Sala et al, suggest careful clinical 

and mammographie follow-up for women on HRT, recognising the possible risks [133], 

while in the US, Berkowitz et al [147] suggest “serial” and “vigilant” monitoring of 

women that show a positive response to HRT (density increase). Other studies including 

[141, 143], strongly suggest more regular screening and the use of ultrasound in 

conjunction with mammography, for HRT users.

We conclude that there is global awareness of the possible risks associated with HRT. 

Although there are some disagreements about whether or not there is a statistically 

significant increase of the risk of breast cancer in women using HRT, all studies seem to 

agree that more frequent and careful screening should be introduced for women receiving 

treatment. These increased concerns about HRT users would inevitably increase the recall 

rate for incident screening, hence an increased cost and anxiety in the screening
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population [122]. However, as reported by Harvey [148], a slight increase in the cost, due 

to increased use of diagnostic mammography and sonography, should not be a significant 

factor in the decision of whether or not to use HRT.

As is reported in [133], the mammographie patterns induced by HRT usage can be a new 

baseline, and changes with respect to this new pattern should be monitored over time. 

Once a woman responds to treatment and the breast density increases, temporal 

mammography becomes essential since an abnormality can be detected on the basis of 

significant difference with a baseline mammogram, as we described in the previous 

chapter. Temporal mammogram registration and local tissue quantification can 

potentially provide the clinician with a fram ew ork  for assessing the individual risk of 

cancer and maximising the chances for an early diagnosis of cancer. This is the key 

idea underlying our work, as discussed in the next section.

5 .5  W hy the  site o f  density  changes is o f  p a r ticu la r  in terest

In the previous sections the issues relating to HRT were addressed mostly from an 

epidemiological point of view. In summary, once a woman responds to HRT with an 

increase in breast tissue density (to an extent that depends on her receptivity to exogenous 

hormones), the clinician typically suggests regular mammography and sonography in 

order to maximise the possibility of early detection of a cancer that might develop. In this 

section two approaches are taken to show that local density changes have a clinical 

importance: the first one is based on theoretical model for explaining tissue changes and 

the second on epidemiological findings (geographical distribution of breast cancers).

Figure 36, shows a simplified theoretical model illustrating the parameters that may 

induce tissue changes:
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Endogenous drive 
to reduce hormones 

En

Ex
Ex ogenous 
harm ones (HRT)

En>Ex Involution

Ex =En No change

Ex >Eii Tissue regeneration

.tP hOJIMlPllifrSiidt I

Figure 36: A simple model to explain breast tissue changes due to HRT

Oestrogen is a powerful mitogen (for both normal breast epithelium and breast cancer 

cells) and the induced mitogenic signal is mediated by the hormone receptors [163]. 

Since there is a variable receptivity to exogenous hormones it can be expected that the 

density increase should not necessarily have a uniform distribution. This can lead to a 

change in the mammographie pattern, as was mentioned previously. Local density 

increase (breast cell proliferation), may result in the development of a cancer. This leads 

us to consider that the location of a change in tissue due to HRT plays an important role 

when assessing the increased risk of cancer.

From a purely statistical point of view, certain sites in the breast seem to have different 

frequencies of cancer incidence: the upper outer quadrant (UOQ), of the breast is the 

most common site of cancers, accounts for 45% of detected cancers as is shown in Figure 

37. The lower inner quadrant (LIQ) is the least frequently involved (-5%  of cases) while 

the remaining locations of the breast (upper inner quadrant (UIQ), lower outer quadrant 

(LOQ) and central area) are intermediate in frequency [149]. In the same paper, blood 

flow studies in healthy women showed an increased blood flow  in the upper outer 

quadrant which was in accordance with the clinician’s observation that the UOQ seems 

to be the first region that shows a more active change from  the postmenopausal fatty 

breast to an increase in density. The authors related those findings with a 

mammographically “perceived” local density increase in the upper outer quadrant.
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In related studies, it is reported that 50% o f synchronous and 37.5% o f asynchronous 

bilateral breast cancers (in 19 breast cancer cases) were detected in the upper outer 

quadrant (UOQ) [150], while another study concerned with the location o f  primary 

neoplasia reported 60.7% o f 146 cancers in the upper outer quadrant [151].

We conclude that local tissue density should be quantified and carefully monitored and 

examined particularly for women using HRT. We contend that a method for assessing 

local changes to HRT mammogram sequences could assist the clinician to assess the risk 

for cancer and contribute to early diagnosis. All o f the above, converge to the belief that 

temporal mammography, could be the most effective early diagnosis framework for 

women using HRT. In the remaining o f  this chapter we explain our work on quantifying 

global and local tissue changes, while in the last chapter o f the thesis, we propose some 

ideas for future work on local density quantification.

\
/  UOQ UIQ

LOQ I  LIQ

UIQ UOQ

f1, C
.m 3i'’

LIQ LOQ

U O Q : - 4 5 %  o f  

c a n c e r s  o c c u r

L I Q : - 5 %  o f  

c a n c e r s  o c c u r

Figure 37: About 45 % o f cancers occur in the upper outer quadrant o f  the breast (UOQ), 

while only 5% occur in the lower inner quadrant (LIQ). In the other quadrants (upper 

inner quadrant (UIQ), lower outer quadrant (LOQ) and central area(C)) the frequency in 

intermediate.
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5.6 A proposed strategy y through a computer aided assessment o f breast cancer 
risky for women on HRT

The benefits of HRT cannot be doubted, yet the fear of developing breast cancer 

dissuades many women from taking the natural HRT hormones (oestrogen or combined 

hormones). Epidemiological studies provide valuable information about women taken as 

a whole. However, they these studies do not tell much about the likely incidence of 

disease, or the clinical management, for the individual woman. This is what the 

individual woman -  and the clinician -  is most concerned with.

To date, there is not a clinical protocol that combines the individual medical history of 

the patient and the help of computer tools to analyse temporal mammograms in order to 

assess whether the HRT patient is at increased risk of developing cancer. As noted above, 

several studies conclude that:

Localised tissue changes (particularly breast cell proliferation in high-risk areas) may 

signal the development of a new cancer in HRT users. Image processing techniques 

such as registration, and quantification (for example the method presented in the next 

section) can assist the clinician to assess the local tissue changes consequent upon 

HRT use.

If the mammographie tissue pattern changes due to HRT, it should become the new 

baseline mammogram. Again, image registration can assist the clinician to diagnose 

new growths on the basis of significant changes to previous mammograms. This can 

also help overcome the problems related to decreased mammographie sensitivity due 

to HRT changes.

We believe that temporal registration and quantitative comparison of HRT users 

mammogram sequences could provide the clinician with useful information to assess the 

risk of breast cancer for the individual woman. Figure 38, illustrates a possible patient
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management protocol for HRT users. Global quantitative measures of density can assist 

the clinician in assessing the global response of the woman to therapy. If there is no 

density-increase the clinician can suggest another mammogram in one or two years, 

otherwise a more careful approach is needed: the “increased-density” mammogram 

should be considered as the new baseline, and the clinician should recommend more 

frequent mammography and ultrasound examination. Every time a new mammogram is 

taken, quantitative density measures can assist the clinician to understand if  there is a 

“significant” increase in density while image registration can give him an idea about the 

distribution of the increased, “additional”, density in the breast.
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Was tissue density increased?
Clinical examination and 

quantitative density measures

O

Is an 
abnormality 

present?

YES NO

NO YES

A woman starts using HRT

Further examinations to 
establish diagnosis, 

possibly followed by 
surgeiy/HRT cessation

Registration/temporal quantitative analysis 

Clinical examination/UItrasound scan

The first mammogram after 
HRT is the new baseline. 
Future mammograms are 
compared to the baseline.

No response to exogenous 
hormones. Regular 
mammography and 

ultrasound examination 
recommended

Figure 38: A proposed strategy for assessing the risk o f cancer in HRT users. The 

elements o f the flow charts coloured in yellow, are the ones where computer-aided 

mammography (temporal registration/quantitative comparison) could potentially provide 

additional clinical information. The feedback nodes represent the follow-up 

mammograms (which in the case o f response to HRT should be more frequent than in the 

no-response case).
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We need to consider the possible use of such methods (for example as part of the UK 

screening program) and evaluate retrospectively its accuracy in prompting the clinician in 

regions of potential abnormalities. In the next section, we present our novel method for 

accurate quantification of tissue change in temporal mammogram pairs.

5,7 A novel method for robustly quantifying mammographie changes in 
temporal HRT sequences

5.7.1 Previous work

Describing and measuring HRT induced tissue changes is a part of almost every clinical 

study that examines data obtained before and during therapy. The clinical aim is to 

correlate such changes with an increased risk of cancer or to the type of therapy used, and 

to assess the possible influence on diagnosis. The latter consideration, means that 

increased glandular density induced by the therapy can decrease mammographie 

sensitivity [152], since the observed local “brightening” of the film can make diagnosis of 

lesions more difficult.

The most usual change observed on a mammogram is regeneration or increased density 

in fibroglandular tissue but it is not uncommon to observe the opposite or to observe no 

change at all! A simplified mechanism explaining the variability in the observed changes 

would consist of the indigenous drive to reduce hormone production competing with the 

induced (exogenous) hormones combined with the different hormonal uptake between 

individuals.

To the best of our knowledge, there is no previous computer analysis-assisted framework 

that combines non-rigid registration (alignment) of temporal mammograms with accurate 

breast tissue density quantification. In addition, previous efforts to quantify breast tissue 

density and correlate it with the risk of breast cancer were based on poor breast density 

measures [153-155]. Such measures effectively calculate the area of fibroglandular 

(fibrous and stromal tissue) in the manunogram or, in the best case, the percentage area 

of the mammogram covered with dense (fibroglandular) tissue. That is to date the
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predominant method used for tissue quantification (both in Europe and in North America 

[153-156]). We consider such a method inadequate for a temporal quantitative 

comparison of HRT mammograms for two reasons:

1. It only considers the area and not the intensity of fibroglandular tissue in the 

mammogram. The fact that the denser a tissue segment of the breast is, the higher the 

x-ray attenuation is not taken into consideration. For that reason, density area (or 

percentage area) can be inaccurate since it only measures the spatial extent of the 

projected tissue.

2. For temporal studies, we have to take into consideration the difference in 

compression between the two acquisitions. As has been reported in [4], breast 

structures move and deform differently under different compression and according to 

properties such as tissue density and elasticity. For this reason, area density measures 

of the same woman can change with different compression, even if there is no actual 

change in density.

5.7.2 Introduction to our proposed tissue quantification method

We have introduced a novel method for assessing mammographie (density) changes 

based on temporal analysis of manunograms of women using HRT. A two-step approach 

is taken for quantification of density change in HRT image sequences:

• First, we normalise the intensities using the h\nt representation [4] (discussed in the 

next section and in Appendix C). This allows us to estimate the amount of non-fatty 

tissue in the column of the compressed breast above each pixel. Without registering 

the images we can assess global changes in non-fatty tissue between two successive 

scans. Global change experiments are discussed in section 5.8.

•  In order to assess local, rather than global changes, we need to align the images in the 

same co-ordinate frame. We use the registration method presented in the previous
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chapter to pre-process (align) the mammogram sequences. The idea of quantifying 

local changes is discussed in section 5.9.

5.7.3 Extracting robust tissue density quantitative measures from mammograms

Our aim is to extract quantitative tissue-density information directly from the 

mammograms in order to assess global or local changes due to HRT. Because of the 

relatively weak control over the image acquisition process, it is difficult to eliminate 

variability in image characteristics, such as contrast and brightness. The differences in 

imaging conditions lead to a non-rigid transformation between the intensities of temporal 

pairs of mammograms. For this reason, it becomes difficult to compare temporal 

mammograms, and in particular to relate the temporal intensity differences of dense 

regions to the actual breast-tissue changes due to HRT.

The /lint representation of interesting tissue [4], was briefly introduced in chapters 3 and 4. 

Its main advantage is that it “normalises” mammogram pairs since each pixel value 

represents the amount of ‘interesting’ (non-fat) tissue between the X-ray source and the 

image. A short description of the /iint representation can be found in Appendix C, Figure 

39, is a schematic representation of the calculation of /lim- This representation provides an 

objective framework for quantitative comparison of dense breast-tissue.

Changes of fatty to glandular tissue are precisely changes in non-fatty -  i.e. /imt -  tissue. 

Hence, /lint is the natural representation to use for the quantitative approach needed. By 

using the /lint representation as a first step in our analysis, we can construct measures of 

“interesting” tissue change that reflect the underlying tissue changes due to HRT. This is 

tested in the next section, where we design an experiment to evaluate the accuracy of the 

proposed quantitative density measures.
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h
Acquisition

•Density, D(x,y)

•Imaging parameters

•Energy imparted to the 
intensifying screen E(x,y)

is “different” to j j . int

ogram

Figure 39: A representation of the calculation of the /lim representation. Mammogram 

information (pixel density values) is combined with acquisition information and 

parameters to calculate the “height” of interesting tissue in each pixel.

5.8 Design of a global tissue-quantification validation experiment

5.8.1 Introduction

It is difficult to correlate quantitative measures of dense tissue to the changes in the breast 

over time. Our specific interest in this chapter is to assess changes in tissue over time in 

women on HRT. As mentioned in section 5.7.1, measurements of the area of dense tissue 

in the mammogram have been used to correlate tissue density with the risk of developing 

cancer. Our goal has been to investigate the relationship between the clin ician’s 

perception  o f  global changes in tem poral HRT m ammogram pairs, and the calculated  

measures. For these specific experiments the images were not registered since we wanted 

to test the “agreement” between the clinician and our suggested quantitative measures, on 

a global basis.
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Similar to large-scale clinical studies as in [157], an experienced clinician described the 

changes in each HRT temporal mammogram pair. The HRT sequences were classified in 

three categories by the clinician as shown in the following table:

Assessment of 
change according 

to the clinician

Involution (less 
glandular tissue 
observed in the most 
recent mammogram)

Regeneration (more 
glandular tissue 
observed in the most 
recent mammogram)

No change 
observed between 
the temporal HRT 
PAIR

Number of 
mammogram 
pairs in each 

category

21 21 17

Table 7: Data used for quantification experiments

We used this table as the “ground truth” for comparison with our quantitative measures. 

We note some weaknesses of the experiment:

“Ground truth” was based on the opinion of only one clinician

The clinician compared the images directly from the computer screen instead of the 

light-box that he was used to

Some of the changes were described as “slight” or “very slight” (e.g. very slight 

involution) and the distinction between those changes and the “no-change” categories 

was not obvious to the clinician.

For these reasons, it was expected that the quantitative measures calculated for the 17 

mammogram pairs of the “no change” category would include values found in other 

categories (in other words a value corresponding to a very slight change could be found 

in the “no change” category since the distinction is not clear). This reflects the difference 

in describing a change as insignificant between the clinical expert and the quantitative 

measure; the clinician examines the temporal sequences visually and assesses the overall 

changes as insignificant, but in reality there is always a change in the breast-tissue.

Page 170



5.8 Design o f a global tissue-quantification validation experiment

For the reasons mentioned above, we first examine only those cases where there is either 

involution or tissue regeneration, and the results are presented in the first part of section 

5.8.3. We also examine the cases that the clinician described as “no change”, in the 

second part of the same section.

Registration is not necessary for assessing global changes in tissue composition, rather 

for the local detection and description of changes as is discussed in section 5.9.

5.8.2 Measures used

In the experiment, we used three measures of tissue density, one being the projected area 

of glandular tissue, the other two being based on the hmt quantitative analysis to calculate 

differences over time from HRT mammogram sequences:

1) Projected area

As mentioned in section 5.7.1, the projected area of glandular tissue has previously been 

used as a measure of tissue density. Figure 40 illustrates the “conventional” method for 

isolating the area of glandular tissue, called interactive thresholding. In this method, the 

user has to define a global threshold that includes as much “density” as possible. The 

percentage of density in the whole mammogram is used to describe the density content of 

the breast. Although, the area of glandular tissue is a measure claimed to be correlated 

with the clinician’s perception of tissue density, it does not include intensity information 

(and even if it did it would not be consistent since that depends on the imaging 

parameters).
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Figure 40: Interactive thresholding is performed in order to include all the dense tissue in 

each mammogram.

As a mammographie measure, the area of the projected glandular tissue suffers from two 

basic flaws:

• It does not account for the thickness of the projected tissue since the resulting 

intensity is not directly proportional to the thickness and can differ significantly due 

to the imaging conditions.

• The interactive segmentation of the “dense tissue” is a subjective procedure and 

therefore the measure obtained is not consistent.

However, the nature of this measure is closer to the clinician’s perception of changes 

since the segmentation of “dense” tissue and the description of changes in two 

mammogram sequences are similar processes.

2) Sum and Volume of interesting tissue
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After normalising the HRT sequences using the Amt representation of interesting tissue 

and segmenting the pectoral muscle, we compute the following measure to describe 

global changes in the composition of the breast:

a) The sum of “interesting” tissue:

-1 0 0 , where = for 1=1,2
X y

b) The volume of “interesting” tissue:

'Z'ZK(x„y,)
(% ) =  ( % ( A ; J - y , ( A j ) . 100 , where V , ( h J =  '  -   for 1=1,2

H.  X  A

Where 5], S2 are the sum of interesting tissue values in each image, Ai, A 2 the area of the 

images (number of pixels). Hi, H2 are the heights of the compressed breast in each 

mammogram and AAmt, A Vint our measures of tissue change. It is important to include the 

same part of the breast when calculating 5i and S2. In addition, the first measure is 

arithmetically more stable to calculate than the second which is divided by the height of 

the breast under compression, H, (whose calculation or estimation can be prone to an 

error).

5.8.3 Experiments and results

First experiment: Involution and tissue regeneration

By using this description as the gold standard for characterising change between the HRT 

sequences the rule shown in Table 8 was used to evaluate our method for a total of 49 

HRT sequences.
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Change in interesting tissue Corresponding change in breast 
tissue-density due to HRT

% A/îint or A V\ni or % A Area >0
D ensity D ecrease  

Fibroglandular to fatty

%A/îintor AV̂ int or %A Area <0
D ensity Increase  

Fatty to glandular/stromal

Table 8: The rule to assess mammographie changes due to HRT, from measuring the % 

normalised difference in “interesting” tissue between the HRT sequences.

Even using a rule as simple as that described in Table 6 we have achieved good 

agreement between our measures and the expert’s opinion. Figures 41 and 42 present 

some of the results in graphs, where the degree of agreement between the clinician and 

our measures can be visualised.

For temporal mammograms showing tissue regeneration of the fibroglandular tissue we 

achieved a 71% agreement with both the A/zint measure and the AArea (Figures 41(a) and 

(c)). In those cases, the AV|ni measure did not perform well (34% agreement), probably 

because it describes the percentage of interesting (non-fatty) volume in the breast and can 

be influenced by other changes in the breast (e.g. water content, changes in total volume) 

and because this measure depends on the compression height H, which is difficult to 

accurately calculate.

For temporal mammograms showing involution of the fibroglandular tissue, we achieved 

an 81% agreement using the A/% int measure and 86% using the A\Zmt measure (Figures 

42(b) and (c)) and 57% using the area difference AArea.

Table 9, summarises these results. Overall, the measure that performed the best is the 

A/zint measure, as it gave consistently good results (agreement with clinical “ground 

truth”) in both cases (involution, tissue regeneration pairs). This experiment confirms.
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that /îint is the right representation to use for the quantitative comparison of temporal 

mammograms.

It also has to be noticed that the clinician examined the original (not intensity- 

normalised), mammograms. It would be useful for future experiments to use both 

intensity-normalised temporal mammograms (Amt) and registered sequences.

Density change measure AVmt %A Area

Agreement with clinician in “tissue 
regeneration” pairs

71% 34% 71%

Agreement with clinician in 
“involution” pairs

81% 86% 57%

Table 9; Results on the agreement between the quantitative measures used and the 

clinician, concerning tissue changes
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HRT: C ases  of tis su e  regeneration
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Figure 41: The cases described as “tissue regeneration”. The measures of change are 

expected to be negative in order to match the expert’s description (according to Table 6).

(a) Shows the (%) AArea change measurements, (b) shows the change in the volume of 

“interesting tissue” A Tint measurements and (c) the change (%), in the “sum of interesting 

tissue” A/zint. AArea and A/zint were the most successful measures both resulting in an 

overall 71% agreement with the clinician’s description (according to the rule in Table 6).
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Figure 42: The cases described as “involution”. The measures of change are expected to 

be positive in order to match the expert’s description (according to Table 6). (a) Shows 

the (%) AArea change measurements of glandular tissue while, (b) shows the change in 

the volume of “interesting tissue” AVim measurements and (c) the change (%) in the “sum 

of interesting tissue” A/iim. ATmt and A/z t̂ were the most successful measures showing 

respectively an overall 86% and 81% agreement with the clinician’s description 

(according to the rule in Table 6).
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Second experiment: What happens when “no-change” is reported?

As mentioned in section 5.8.1, the clinician was asked to classify all the pairs in three 

categories, the third being those cases for which “no-change” was observed. However, in 

reality:

• there is always a change in the breast

• the clinician described changes (involution or regeneration) as definite, “slight”, and 

“very slight”

In theory we would expect differences in quantitative measurements to be close to zero. 

However, this is not the case especially since the clinician’s assessment between “very 

slight change”, and “no-change” is not guaranteed to be consistent. The quantitative 

results for the “no change” pairs are presented in Figure 43. It is interesting to note that 

there is a zone of change in each graph that includes most of the measured changes for 

the pairs that were described as “no change” by the clinician. (In Figure 43 (b), it is 

interesting to observe that 70% of the mammogram pairs are constrained in the ±3.5% 

range of change of volume of interesting tissue). We can assume that there should be a 

zone of uncertainty around zero, which quantitatively will include cases of small tissue 

changes. More extensive experimentation is needed to estimate the “ranges” of 

quantitative values that correspond to very small tissue content change. Nevertheless, we 

need to mention that it is very difficult to correlate objective (computer measures) to 

subjective (clinician) descriptions of the “no-change” cases. One obvious obstacle is that 

human perception finds it hard to be consistent in the characterisation of very subtle 

mammographie changes over time (e.g. very slight involution vs. no change). However, 

clinically, there is no particular interest in extending experiments o f  “no change” since 

there is no tissue change o f underlying clinical importance (while H RT induced density 

increase can be “suspicious ”).
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Figure 43: The cases described as “no-change”. The measure change is expected to be 

near zero. The blue lines suggest an uncertainty region in each case, which reflects the 

fact that there is always a slight change, (a) Shows the (%) change AArea measurements 

o f  glandular tissue while, (b) shows the change in the volume o f  “interesting tissue” A Tint 

measurements and (c) the (%) change in the “sum o f  interesting tissue” A/?int.
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5.9 Can we quantify local changes using registration?

The quantitative description and comparison of changes in mammograms of HRT users, 

and our eventual objective of detecting and describing such changes, is not only destined 

to assist the clinician to visualise change, but to help to understand the aetiology of these 

changes as well. For example, one of the breasts that is starting to develop cancer, may 

possibly exhibit a different (and sometimes even the opposite!) response to therapy with 

respect to the other. Similarly, a localised increase in density (e.g. in the upper outer 

quadrant) may be a sign of a cancer developed due to hormonal stimulation.

In the previous section we suggested measures of global changes in tissue composition. 

Our ultimate goal is to be able to assess significant local changes in tissue density. This 

could be done by combining registration and quantification in the same framework, so 

that the clinician can quantitatively compare temporal or bilateral HRT mammograms 

locally. Figure 44 (a) and (b), shows a registered and normalised mammogram sequence 

of a woman on HRT. It is obvious in the second image that there is a “global” increase in 

glandular tissue. Using the measure the change was calculated to be 35% increase in 

glandular tissue. The line-intensity profile after registration in Figure 44 (c) shows that 

there is indeed an increase in the overall intensity with some “larger” local variations 

(numbered 1,2,3) that correspond to the three areas of glandular tissue regeneration 

indicated in figure 44(b). More registration results on H RT sequences are presented in 

the Gallery o f Results (Appendix E).

However, in order to assess local changes we need to transform one of the images to the 

co-ordinate system of the other, and still be able to use image based quantitative 

measures of tissue (based on the hini representation in our case). That sequence of 

operations is not trivial, and there is an additional issue introduced. The transformation 

applied to align the images can “shrink” or “extend” the mammogram image, depending 

on the difference in compression without the intensity being corrected. One can think of 

this problem in the same way as a deformation of an elastic material constrained in a 

horizontal plane. If pressure is applied the material is deformed but in such a way that the
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volume is preserved. This does not happen when we transform 2D images using standard 

methods (like Radial Basis Functions), since there is no change in the intensities and the 

sum of intensities across the image changes after applying the transformation.

Having this in mind, one can think of the mammogram as a 3D structure (the third 

dimension being the h\nt quantitative value, or, given standard imaging parameters, the 

pixel intensities represented in grey-scale). When we want to register it with another 

acquisition of the same patient that was taken with different compression applied to the 

breast, we need to transform (including scaling) the mammogram in a non-rigid way 

(with the method described in chapter 4). This way, the “volume” of the 3D structure 

(mammogram) is not preserved and although we have aligned the images, any image 

based-quantification (like the hint representation) analysis is prone to error. We have 

developed a method to overcome this by approximating the appropriate intensity 

transformation so that the “volume” of the mammogram is preserved after applying a 

spatial transformation. This is presented in the next section and completes the necessary 

image-processing infrastructure proposed for local quantification and comparison in HRT 

sequences.
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:

(a) (b) (c)

Figure 44: Registration and intensity comparison o f an HRT mammogram pair, (a), (b): 

An HRT mammogram pair where in (b) density is increased due to HRT. Using the Ahim 

m easure the g lobal change was calculated to be 35%  increase in glandular tissue. The 

images have been normalised (using the in h ^  representation) and registered, (c): The 

line-intensity profiles showing the intensity distribution along the same bright line 

indicated in (a) and (b). The darker one corresponds to (b) and com es in agreement with 

the observed increase in glandular tissue in image (b). “Larger” local variations 

(numbered 1,2,3) correspond to the 3 areas o f glandular tissue regeneration marked in (b).

5.10 Volume preserving elastic transformation for local breast-tissue 
quantification

5.10.1 Introduction

It has been demonstrated that in order to quantitatively compare a pair o f mammograms, 

there is a need to register the images. However, the elastic registration process involves 

pixel rearrangement and scaling which can significantly alter the total “volum e” of the 

mammogram image.
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The latter can be defined as:
1=0

Where N  is the number of pixels across the image.

This problem is illustrated in Figure 45, where the “volume” of a synthetic image is 

reduced to 70% of the original, after applying a non-rigid transformation.

8SI

igiiiS

(a) (b)

(c) (d)

Figure 45: (a): The original rectangle undeformed, (b): the original rectangle plotted as a 

3D surface, (c): Image (a) is deformed using thin-plate spline interpolation, (d): The 

intensity remains constant and as a result the total image volume is reduced by 70%.

In many cases, due mainly to temporal differences in the breast size/compression, the 

mammogram size and geometry can change significantly between acquisitions. 

Consequently, aligning temporal data can reduce (or increase) the image volume. This is 

not important for “un-normalised” mammograms since the intensities of corresponding 

regions are not necessarily related. However, in the hmt representation, every pixel value 

represents the height of “non-fatty” tissue at that point during acquisition. In this section
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we demonstrate an intensity correction method based on the registration deformation 

field that compensates for the volume error introduced by elastic deformation.

5.10.2 The “volume-preserving” transformation method

A 2D elastic transformation produces an undesirable effect in Amt images where the 

“height” of each pixel, and consequently the image volume, are meaningful quantitative 

measures of the breast anatomy. Our method for intensity correction can be summarised 

in the following idea: if we take a square cell in the image to be transformed and 

calculate a “deformation measure” for that cell, then we can “adjust” the intensity 

(height) of the deformed cell so that the “volume” is preserved. In Figure 46 (a), we 

illustrate this concept. The cell represents the image before registration. The central node 

c, and the 4 surrounding nodes m, (i= 1, 2, 3, 4) are transformed to c^and n/according to 

the image based calculated transform.

Based on those points, we can calculate the area of the cell before and after the 

transformation (we use a local affine approximation of the transformed region). The ratio 

of the areas is then used to assign a modification value to the transformed node c '\

T ( A )

Where A is the area of the orthogonal cell, T is the applied transform. After we calculate 

the modification value for all the nodes of the image, we calculate an intensity 

displacement field using finite differences (Laplacian interpolation). This is shown in 

Figure 46 (b). In order to compensate for the image “volume” changes, we multiply the 

image intensities by the intensity correction field.
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• C

(a) (b)

Figure 46: (a): A local affine approximation is used to describe the deformation of an 

orthogonal image cell (defined by the nodes n\, U2, nf), (b): The calculated intensity- 

correction field based in all the nodes of Figure 45 (a) and 1 (c).

The remaining volume (enor volume) can be equally distributed along the image pixels 

so a 100% volume preservation can be achieved. This requires the calculation of an 

adjustment (“plateau”) value according to the formula:

P = N

Where p  is the plateau value, Tonginai is the volume before the transformation, /  is the 

image and C the intensity-correction field. In the next section we illustrate this concept 

with a synthetic example followed by a real patient case.

5.10.3 Results and conclusion

In Figure 47 (a), the same rectangle as Figure 45 (b) (of constant intensity) is deformed 

using thin-plate spline interpolation. However, the intensity of the square does not 

change, resulting in loss of volume as it is shown in Figure 47 (b). Figure 47 (c) is the 

corrected image using the method described in the previous section. The maximum 

intensity rises from 100 to 173 (on an 8-bit grey-scale) and the intensities are distributed
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according to the intensity-correction field shown in Figure 46 (b). The error volume is 

distributed equally in all pixels and the resulting volume is the same as in the unreformed 

image.

Figure 47: The intensity correction algorithm for the deformed square in Figure 45. (a): 

The original square, (b): After transformation the volume is reduced by 30%, (c): Using 

the intensity correction field (Figure 46 (b)) and the “plateau” value p, we correct the 

intensities so that the image volume is preserved.

In Figure 48 (a) and (b), we show a temporal HRT pair. The difference in breast 

compression (and size) between the two acquisitions is significant. When the images are 

registered, the image “volume” is reduced by 33 %. By using the mammogram 

registration method the images are aligned and then the intensity correction fields are 

calculated, first using only boundary points, and then using internal landmarks to better 

approximate the deformation (Figures 48 (c) and (d)). The corrected images for these two 

registration scenarios are shown in Figure 49 (b) and (d) respectively.

In conclusion, our method aims to preserve the /zim-based anatomical information content 

after registration, so that local quantitative comparison is possible. As shown in Figure 

49, the result of the intensity correction depends on the complexity of the calculated 

registration transformation. For this reason, in Figure 49 (d) the glandular tissue is more 

pronounced as the internal glandular areas are taken into consideration in the registration 

process. In contrast. Figure 49 (b) calculates a smoother transform (and intensity 

coiTection) based only on the boundary alignment. The accuracy of the corrected 

mammograms depends on the accuracy in the calculation of the geometrical
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transformation that relates the temporal mammogram pair. The corrected image is 

calculated mainly for accurate comparison of tissue density in temporal HRT pairs. 

However, it still needs to be clinically meaningful and in our future work we aim to 

validate that assumption. An appropriate experiment to validate the intensity preserving 

alignment method presented here, is to use differential compression data [4] (the patient 

is kept in the same position, and the breast is imaged at the same time, in two different 

compression levels). This could provide a ground truth of the intensity correction field, 

since (unlike temporal mammograms where the breast changes between acquisitions) the 

resulting /lint images (after registration and intensity correction) should be exactly the 

same. In the next section we describe a preliminary validation experiment using 

differential compression mammography data.
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w es

am

Figure 48: (a), (b): A temporal HRT pair, where the breast compression is significantly 

different, (c), (d): The intensity correction fields for boundary-based, and internal 

landmark registration respectively
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Figure 49: (a): The mammogram in (Figure 4 (a)) registered to the one in Figure 4 (b) 

using only boundary points, (b): Using that transformation we calculate the intensity 

corrected image, (c): The same as (a) but using internal landmarks to better approximate 

the deformation, (d): Again based on the calculated transformation we calculate the 

intensity corrected image.
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5.10.3 A  validation experim ent

Summarising what was mentioned in the previous section, to locally compare HRT 

sequences we need to represent the mammogram pair with an anatomically significant 

model (i.e. the hmi representation) and register the images including the intensity 

correction previously described. However, it is very difficult to validate the accuracy of 

this technique since the actual differences in a mammogram pair can’t be known a priori. 

For this reason, we intend to use differential compression mammogram pairs, where the 

image intensity distribution and geometry are expected to be identical after the 

application of our techniques. A first experiment is described in this section.

Figures 50 (a) and (b) illustrate a differential compression mammogram pair where the 

tumour (near the nipple) is further compressed in (b), resulting in a larger spatial 

expansion and a lower average intensity. In Figure 50 (c), the second mammogram 

(Figure 50 (b)) has been registered to the first one (50 (a)), while in Figure 50 (d), the 

registered image is corrected using the technique described in the previous section. The 

difference images in Figure 51 show a significant overlap (in Figure 51 (b) after 

registration but without intensity correction), which is maximised in the difference image 

shown in Figure 51 (c) (after registration and intensity correction). This is because the 

bright region near the breast edge and the intensity differences in the region of the cancer 

almost disappear after the intensity correction (zero is represented with the grey value of 

the background which is rescaled according to the differences in the subtracted images).

In addition to calculating the difference images, we calculate the image volume in the 

region of cancer after registration and intensity correction. The cancer region is manually 

segmented from the mammograms shown in Figures 50 (a) (less compressed 

mammogram), 50 (c) (second mammogram registered to 50 (a)), and 50 (d) (intensity 

corrected mammogram 50 (c)). The segmentations before and after intensity corrections 

are exactly the same. The image “volume” quantitative results for the whole 

mammogram and the segmented region of interest (cancer) are summarised in Table 8. It 

is noticeable, that the volume difference of the segmented cancer (the manual
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segmentation was constant before and after correction) is reduced to 4% after correction 

(from 19% before correction).

i

Figure 50: (a), (b): A differential compression mammogram pair, represented using the 

Aint representation, (c): Image (b) aligned to image (a), (d): The registered image (c), after 

applying the intensity correction. Images (a) and (d) are expected to be identical.
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(a) (b) (c)

Figure 51: Difference images in the differential compression pair (Figure 15 (a) and (b),

(a): Before registration, (b) after registration and (c): after registration and intensity 

correction. Note that after intensity correction the difference image is more homogenous 

and the intensity misregistration in the area of the cancer (pointed with an arrow in image

(b)) almost disappears.

Volume units in 

Pixels X (8-bit 

greyscale)

Target Volume 

(Figure 15 (a))

Volume before 

correction 

(Figure 15 (c))

Volume after 

correction 

(Figure 15 (d))

Whole mammogram 29439392 24856420 29251438

Segmented cancer 716235 581858 685431

Table 10: Quantitative comparison of the whole mammogram volume and the segmented 

cancer before and after intensity correction. The units are in grey-levels after 

normalisation. First we sum all normalised intensities for the whole mammogram and 

then for the segmented region of interest (cancer).
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5.11 Limitations and alternative methods for evaluation

In this section, we summarise the basic limitations concerning the design and 

implementation of experiments for evaluating the proposed methods for global and local 

quantitative measures of density. Some of these problems have already been mentioned 

in the previous sections. However, here we discuss all the limitations in evaluating 

quantitative mammographie techniques and suggest some alternative methods that could 

provide a more objective validation of any technique for quantifying mammographie 

density.

Firstly, the presented experiments in automatic classification of global tissue have some 

intrinsic limitations. As mentioned in section 5.8 some basic limitations include the fact 

that only one clinician classified the changes and the viewing of the mammograms that 

was done in a conventional computer screen (instead of the lightbox). Moreover, we must 

address the problem of establishing a reliable ground truth. Although, the experiment 

presented in this thesis is a simple one, we believe that a more careful design is necessary 

in order to ensure the objectiveness and consistency of the perceptual descriptions of 

density. This is further discussed later on this section.

The image processing framework presented in sections 5.9 and 5.10 for local 

quantification of density is intrinsically difficult to validate. Unlike the case of global 

density description it is not trivial to perform a similar experiment on a local basis. 

Especially because the tissue content of the breast constantly changes, which means we 

can’t predict the actual changes in anatomical content over time. This would require very 

accurate segmentation of similar regions in both mammograms and subsequently a 

similar effort (as in the global case) for establishing ground truth of density change via 

clinical description. Unfortunately, this procedure would be prone to interpretation errors.

Fortunately, in this thesis we were able to use a mammogram pair of differential 

compression data (where two mammograms are taken in the same session with slightly 

different compression). This means that we had two mammograms with exactly the same
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tissue composition and this served as ground truth, since the local quantitative analysis 

was expected to give identical results in both mammograms. As was shown in section

5.10, the results were satisfactory. However, the fact that differential compression data 

are not widely available (due to the increased radiation dose) poses a limitation for using 

such data for validating local quantification techniques.

For all these reasons, we need to suggest alternative methods for testing either the 

proposed or future techniques for global or local mammographie density quantification. 

First of all, in order to design a more robust experiment we will have to investigate:

•  The inter and intra observer variability when assessing density changes. This would 

require the clinician to examine the same set of mammogram pairs several times until 

it can be established with some certainty that his/hers description of changes is 

consistent. In addition, it would be useful to investigate the variation in describing 

density changes between two or more clinicians.

• The consistency in describing density changes when the clinician examines the 

mammogram films on the “lightbox” and the digital mammograms in the computer 

screen.

A more robust way for establishing ground truth in the description of density changes 

could be possible if instead of density changes in a pair the clinician would characterise 

the density in each mammogram individually. This is because there are some standard 

ways in classifying mammogram patterns and many experienced radiologists are quite 

familiar with them. This would make the “ground truth” more robust but the inter and 

intra-observer variability as well as the variability between film screen and computer 

screen assessment, should be investigated in this case as well. Some of the most popular 

techniques of describing mammogram patterns is the Wolfe classification [193] and the 

recently established BI RADS (Breast Imaging Reporting and Data System) from the 

American College of Radiology [194]. Both techniques take into consideration both the
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density and the distribution of the density in the mammogram and could be very useful to 

evaluate any mammogram quantification framework in the future.

5.12, Summary and conclusions

For women who decide, or are advised, to take HRT, it is important to monitor the 

response to therapy so that the increased risk for developing cancer is assessed. The 

reported density increase in HRT users has given rise to concerns for increased risk for 

cancer [158, 159]. This risk depends on whether or not the exogenous hormones 

stimulate glandular tissue regeneration in certain locations in the breast. In this chapter, 

we explored the idea of quantifying local breast-tissue density changes and comparing 

mammogram density over time. We presented results from several clinical studies that 

show that although still controversial there are many concerns about the use of HRT. In 

particular, postmenopausal women who use HRT for more than five years run an 

increased risk of developing cancer due to the “regeneration” of fibroglandular tissue that 

is often induced by the exogenous hormones. We presented a method that combines 

mammogram normalisation and volume-preserving registration that can be the starting 

point for temporal-local breast tissue quantification.

First we introduced a novel method for assessing mammographie (density) changes in 

HRT mammogram sequences. The temporal sequence of mammograms is represented 

using the representation of interesting tissue. The % change in /imt (non-fatty tissue) in 

the pair is a good approximation of the fibroglandular change in the composition of the 

breast tissue. The expert's description of the changes in the HRT sequences of our data 

set was used as the gold standard for evaluating our quantitative measures. The % change 

in /lint was found to be the most reliable measure for describing global changes in density.

Our aim is to be able to locally describe the induced changes in the breast so that regions 

that exhibit strong glandular regeneration could be highlighted and the clinician would 

examine them more carefully in order to early diagnose a potential abnormality. In order 

to assess these changes locally, we suggest the combination of quantitative analysis with
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temporal mammogram registration. Though, image registration can significantly change 

the image “volume” and therefore compromise the accuracy of the desired local 

quantitative comparison. To overcome this problem, a volume preserving registration has 

been developed, which preserves the anatomical content of the /imt-represented 

mammograms after alignment. We presented results on both synthetic images and 

temporal HRT mammogram pair. The method was also evaluated in a differential 

compression mammogram pair.

We believe that quantitative measures of local tissue change can assist the clinician in 

determining the increased risk of cancer for a woman who uses HRT. More 

experimentation and validation work is needed to prove that our suggested framework for 

temporal analysis of HRT images can play that role.

5,13 Final statement about the presented work

In this chapter we presented a method for quantifying density changes in HRT 

mammogram sequences. Our results are very encouraging since there is a good 

agreement between the suggested measures and the clinical perception. Although in our 

experiments the hmi representation of interesting tissue performed better than the other 

measures further experiments are required to prove the hypothesis that this representation 

can accurately describe the actual tissue changes in the breast, over time. Most of the 

limitations and suggestions of more sophisticated experiments were discussed in section

5.11.
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6.1 Conclusions

The work presented in this thesis has focused in two directions: mammogram registration 

and quantitative comparison of HRT sequences. Tables 10 and 11, summarise the aims of 

our work, the motivation behind them and the most significant conclusions:

Aim To investigate the requirements and implement a method for reliably 
registering mammogram sequences.

Motivation Temporal comparison of mammograms is a common practice in the 
reading centers of the screening programme. Registration as a part of a 
computer aided mammogram interpretation system is expected to improve 
the breast-cancer detection rate of the screening programme and help to 
equalise standards throughout the UK.

Conclusions 1. The breast boundary is the most reliable feature for mammogram 
alignment.

2. Three maximum curvature points are calculated in the breast outline 
for each mammogram. These points most often have an anatomical 
significance (corresponding to the axilla, nipple and rib points), and 
allow us to establish correspondence consistently in any pair of 
mammograms.

3. The boundary-based registration is a good first approximation 
(especially in large deformations). Using a multi-scale segmentation 
algorithm a small number of regions can be detected and matched. The 
final registration is done using an approximation scheme.

4. Our validation experiments show that there is a significant 
improvement in the correspondence of features in the mammogram 
pair after registration. In addition, the boundary landmark detection 
rate is satisfactory and can be improved in many ways.

5. By aligning temporal mammogram data it is easier to understand the 
evolution of regions of tissue over time (e.g. notice that a “suspicious” 
dense region corresponds to scar tissue due to previous surgery). In 
addition the difference image after registration can reveal areas of 
significant change.

6. Using registration, interval cancers can be studied retrospectively by 
examining if there were signs of the cancer in the corresponding 
location (given by the registration transformation) in previous 
mammograms.

Table 9: Aims, motivation and conclusions for the registration work presented in this thesis.
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Aim To apply quantitative analysis tools (/zint representation) and registration to 
temporal mammograms of women on HRT.

Motivation Quantification of global changes provides information about the woman’s 
response to exogenous hormones while local tissue changes could assist 
the clinician in assessing the risk of cancer due to hormone-induced 
breast-cell proliferation.

Conclusions 1. HRT can induce tissue changes that change the mammographie 
patterns of the breast. In such cases, the new pattern can be used as a 
baseline for comparison to subsequent mammograms using 
registration.

2. Based on the /z„„ representation measures for quantitative comparison 
of breast tissue can be derived. The accuracy of these measures in 
describing HRT changes was validated using the clinical assessment 
as the ground truth. The results showed a good correspondence of 
these measures in assessing global changes in breast tissue.

3. Quantitative assessment of local tissue changes can have an important 
clinical impact since it would help the clinician to better understand 
the underlying changes due to HRT and assess the risk for cancer.

4. Combining the /z,,„ representation with mammogram registration is a 
first step towards local tissue quantification. However, especially if the 
mammogram size significantly differs between the two mammograms 
(e.g. because of changes in size or compression), the quantitative 
image “volume” is altered due to sub (or over) sampling.

5. In order to preserve the quantitative information after registration, an 
intensity correction method based on the deformation field, was 
introduced. A validation experiment on differential compression data 
(the only ground truth of “equal volume” mammogram sequence), 
showed satisfactory results.

6. The suggested work is a basis for a clinical system for temporal global 
and local tissue change assessment.

Table 10: Aims, motivation and conclusions of the quantitative comparison work 

presented in this thesis.

The research presented in this thesis has been inspired by clinical problems related to 

breast cancer. Our clinical colleagues strongly believe that advances in medical imaging 

can provide them with crucial information for breast-cancer diagnosis. However, to date 

most of the modalities for breast cancer imaging provide complementary information 

leading to the need for data fusion tools. Mammogram registration is a basic step towards 

a future clinical system capable of multi-modality registration for breast cancer imaging.
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6.2 Limitations

The most general limitation for mammogram image analysis is the large variability of 

shape and mammographie appearance glandular tissue structures. In addition, poor 

control in imaging conditions result in non-rigid intensity transformations between 

temporal mammograms. The most important limitations of the work in this thesis can be 

summarised in the following:

#

The breast-edge segmentation presented in the second chapter is a very fast 

approximation based on the histogram of the image. However, in some cases the 

intensity distribution in not clearly distinguished from background noise resulting in 

losing part of the edge after thresholding. Although a sophisticated breast 

segmentation was not of main concern in our work we believe that a more accurate 

segmentation can improve the robustness of our proposed registration framework. 

Nevertheless, the trade off between speed and accuracy should be taken into 

consideration, especially because image analysis should be fast in a digital reading 

environment where the clinician needs to examine a large number of patients (around 

100) per hour.

There is no doubt that inclusion of internal landmarks improves the accuracy of 

registration. However, so far we have used only the center of mass of the matched 

regions. Though this is a fast way to include them in the registration it does not fully 

exploit the shape and orientation information of these regions. To be able to match 

exactly each individual region would be a complex problem and again, the speed of 

the registration could be affected without a corresponding increase in accuracy.

Our novel work on HRT sequences has shown encouraging results and because of the 

clinical importance of the role of the hormones in breast cancer, any advance in the 

HRT image analysis can have an impact in the clinical assessment of the increased 

risk due to hormones. However, the main limitation is the inability of mammography
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to provide information related to the type of proliferated cells (e.g. atypical v .̂ 

normal cells). Nevertheless, information about local density increase would alert the 

clinician and the woman will be further examined (histopathology on a fine needle 

aspiration biopsy sample).

6.3 Ideas for future work

All suggested ideas for improvement should be considered together with performance 

requirements for the related application (e.g. In a digital reading system, time is at a 

premium since the radiologist has to examine a large number of mammograms per hour). 

Most of the improvements suggested in this section aim at the development of a clinically 

useful system. However, in this final chapter we only discuss the image analysis issues 

and not all the other technical issues related to the development of a system that can be 

used in clinical practice.

The main ideas we suggest for future work are:

Improvement of the breast-outline segmentation: This can improve the detection rate 

of the axilla, nipple and rib points. There are two approaches that can improve the 

segmentation: the first is to try and separate the breast outline from the background on 

a local basis (rather than defining a global threshold like we the method we used) and 

the second is to try and enhance the region near the breast edge where the contrast 

(with respect to the background) is usually very poor.

Improvement of the anatomical significance of the boundary landmarks: The 

curvature detection algorithm is dependent on the sampling rate of boundary points 

used to calculate the spline (coarser sampling preserves the detail of the segmentation 

result, while coarser smoothes it). In chapter 4, we proposed a method to overcome 

this problem by examining the curvature maxima in different sampling resolutions. 

These landmarks often have an anatomical significance which can be improved if 

further constraints (to the maximum curvature ones) are added in the detection
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algorithm. Alternatively (or in conjunction), an improved segmentation of the 

boundary could improve the detection rate as well.

A specific algorithm for nipple detection: Unlike the rib and axilla points, there is 

additional information to be exploited for a more robust calculation of the nipple. In 

addition, in some cases the nipple does not appear at all at the breast outline. Future 

work on nipple detection could take into consideration the fact that glandular 

structures (ducts) converge to the nipple (e.g. through segmentation of glandular 

tissue) in order to be able to detect the location of the nipple in mammograms where 

it does not appear near the breast outline.

Additional work on HRT sequences: There is no doubt that computer-assisted 

assessment of tissue density changes has the potential to impact on the clinical 

decision making related to the use of HRT for the individual woman. In section 6.6 

some ideas concerning future work on HRT mammograms are discussed.

Data fusion: The complementary nature and information content of medical images 

from different modalities dictates the development of fusion  algorithms able to 

register multi-modality breast images. Two data fusion problems related to 

mammography are discussed in section 6.5.

Tissue classification using texture: One very interesting image analysis problem is to 

automatically classify the different types of tissue in the breast. This can provide 

additional information/constraints for our proposed work on registration and tissue 

quantification. Our preliminary work on tissue classification is discussed in the next 

section.

6.4 Initial results on texture segmentation

6.4.1 Introduction
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The aim of this work is to segment each mammograms in a small number of distinct 

classes with anatomical significance (e.g. a “rough” classification of the image in density 

fat and the pectoral muscle). To date, it has not been possible to automatically classify all 

the different types of tissue directly from the mammogram. An automatic segmentation 

of different mammographie tissue-regions can be for the following reasons:

Segmentation of the pectoral muscle: By using a method based on texture, we do not 

have to make any assumptions about the shape of the muscle (e.g. linear 

approximation of pectoral muscle) since the area exhibits a highly homogenous and 

high intensity texture.

Breast boundary segmentation for registration of temporal pairs: The background has 

consistently different second order statistics from the breast image and the average 

intensity is significantly lower. The only region that can be difficult to locate is the 

fatty region near the breast edge. Again, enhancement of this region (as in [107]) 

could help overcome the problem of “overlap” between the breast edge and the 

background.

Automatic segmentation of glandular tissue: This, in conjunction with the hnt 

representation, can further improve our quantitative temporal HRT image analysis 

since we will be able to compare only the regions of the image that correspond to the 

projected glandular tissue.

Automatic segmentation of the radiological tag: This could be based on the 

homogenous texture of that image feature and on the fact that is distant to other 

segmented “classes” (e.g. fat and density).

6.4.2 Method

First the image is divided in small patches (15x15 pixels). In each patch normalised 

second order statistics are calculated, for example the correlation measure:
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where p(i, j)  = P{i, j)  ! R is the normalised joint probability of the pixels i and j.  For each 

image patch i, a texture vector X,- is calculated and all the vectors are classified in a 

desired number of classes using hierarchical clustering. Although ideally there should be 

three classes (pectoral muscle, fat and density), in practice there are outliers that can 

appear as a distinct class. This problem poses a limitation for the use of textural 

clustering. However, we believe that these kind of classification problems can be solved 

with the inclusion of basic heuristics.

6.4.3 Results

In Figure 52, the pectoral muscle is segmented by classifying all the patches in two 

categories. Figure 52 (a) shows the original mammogram, while in (b) we see the 

clustering of the patches corresponding to the pectoral muscle, against the rest of the 

image. There is a danger that some patches inside the breast (in this case they would have 

to be homogenous texture and high intensity, as the pectoral muscle) can appear as a 

distinct class. As mentioned before, this could be corrected by including simple 

heuristics.

In Figure 53, a temporal pair (Figures 53(a) and (b)) is shown. The corresponding textural 

classification is shown in Figure 54 ((a) and (b) respectively). Again, in Figure 54 (b) part 

of the pectoral muscle is classified in the same category as glandular tissue but this can be 

corrected by adjusting the number of classes or introducing some basic heuristics (e.g. 

including the radial distance from the origin in each pattern will assist in segmenting only 

the pectoral muscle).
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6.4.4 Discussion

The method can be very useful as a first tool to decompose complex mammographie 

images, but further investigation is required together with the inclusion o f heuristics in 

order to deal with outliers. The results appear to be very promising for the segmentation 

o f the pectoral muscle and the areas o f  glandular tissue as well as for the radiological tag. 

However, the breast edge is not accurately segmented (the method detects the glandular 

disc rather than the real breast edge) since the area close to the edge is not detected.

Figure 52: (a) The original mammogram, (b) textural segmentation o f the pectoral 

muscle (in blue colour).
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Figure 53; (a), (b): The original mammogram pair.

Figure 54: (a), (b): Texture clustering for the temporal pair in Figure 53.
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6.5 Extension of registration to other modalities

6.5.1 X-ray, 3d-MRI data fusion

As discussed in chapter 2, data fusion between the main modalities for breast cancer 

imaging (MRI, US, Nuclear Medicine and X-ray) can assist the clinician in combining 

anatomical and functional information. This could be useful for diagnosis, surgical 

planning and therapy treatment. Recently, the possibility of “fusing” imaging data from 

digitised manunograms and contrast-enhanced MRI (Gd-DTPA), has been investigated 

showing very promising results [32, 33]. The objective is to correlate diagnostic 

information between the two imaging modalities (anatomical and functional). This could 

be done by registering CC and ML projections of the 3D MRI volume to the X-ray CC 

and ML mammograms and then relating mammographie features (e.g.

microcalcifications) from the mammograms to the MRI volume. The correspondence of 

features between the two modalities is not obvious because the mammograms are 

compressed. In the rest of this section, we summarise the data fusion work [32, 33, 160].

The method consists of two important steps:

1. Projection of voxel contrast-enhancement. This is done in order to acquire an 

anatomically significant (and morphologically similar to mammogram image) 

projection of the 3D volume. This is done by:

• Fitting a pharmacokinetic model of Gadolinium enhancement to each voxel in 

order to classify the rate and amplitude of enhancement. This is done to filter out 

the fat and most of the effects of moderately-enhancing parenchyma. This is 

illustrated in Figure 55, where the regions of high enhancement are favoured 

comparing to the low enhancement ones (e.g. fat).

• Project each breast in the approximate CC and ML/MLO planes (Figure 56). 

However, these are projections of the uncompressed breast and in addition the 

MRI is acquired in the prone position. Figure 57, shows the “pseudo”
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mammogram together with the original one. There is a clear correspondence both 

in the pathology (the cancer is clearly visible in both images) and in anatomical 

structures (e.g. vessels).

Subsequently the two “pseudo X-rays” in the CC and ML planes are registered to the CC 

and ML mammograms:

2. Non-rigid registration (matching) between the CE-MRI projections and the two 

mammogram views. This is achieved by extending the mammogram registration 

method presented in chapter 4 of the thesis to include the “pseudo X-rays”. In 

summary:

• The mammograms are “warped” to the shape of the projections

• The matching process consists of two steps -  first the breast boundary is used to 

“approximately” warp, and then internal landmarks complete the deformation.

Results of the registration technique are shown in Figure 58. The projected MRI volume 

(in the ML plane) is registered to the ML X-ray, using the boundary as well as internal 

landmarks. This way, the location of features that are mammographie features (e.g. 

microcalcifications) can be estimated in the 3d-MRI. This was exploited in [160, 161], in 

order to differentiate benign from malignant microcalcification clusters by observing the 

enhancement of the contrast agent in the MRI volume.

The main clinical applications include:

1) Women with dense breasts

2) Multi-focal disease and impalpable tumours

3) Detection of DCIS
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Figure 55: The pharmakokinetic model used for voxel classification.

MRI Volume

Figure 56: Data fusion between 3d MRI and mammography. In order to correlate the 

mammographie anatomical information with the MRI volume we need to establish 

correspondence between the 3d volume and both the cranio-caudal and the medio-lateral 

mammograms.
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Figure 57: Visual comparison of the “pseudo mammogram’’ (on the left) and the 

mammogram show a good correspondence of features.

Figure 58: Registration of the ML projection of the MRI volume (A) with the ML 

mammogram (B), first using the boundary (deformation field shown in (C)) and then 

including internal landmarks (deformation field shown in (D)).
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6.5.2 X -ray-N uclear medicine data fusion.

Nuclear medicine modalities for breast cancer imaging, such as scintimammography 

(described in chapter 2), offer very good sensitivity for cancer detection, especially for 

younger women or for women that had previous surgery or implants in which case, 

mammography can be non-diagnostic. In Figure 59 (a) we can see the mammographie 

appearance of a young woman’s breast. Due to the dense tissue the image appears bright 

and as a consequence the contrast between dense structures (e.g. density and cancer) is 

very low. Figure 59 (b), is a typical scintimammogram of a young woman that has 

developed cancer (there are two masses that are highlighted in the scan).

(b)

Figure 59: Mammographie appearance of a young woman’s breast, (a): A mammogram 

where the dense tissue makes diagnosis extremely difficult and (b): a nuclear medicine 

scan where only the pathological regions appear.

The benefit of registering X-ray mammogiams to scintimammograms are obvious: Firstly 

it would enable the clinician to combine the rich anatomical representation of the 

mammogram with the detected pathology (in the scintimammogram). In addition, using 

the registration transfoimation one can estimate the location of the pathology in the
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“dense” mammogram in order to assess retrospectively the possibility for a mammogram- 

based diagnosis.

A scintimammogram is aquired with the woman lying in the prone position. As shown in 

Figure 59, the low contrast in the breast edge could pose a problem in detecting the breast 

outline from the scintimanunogram (for registration). However, nipple markers can be 

used in scintimammography and this can facilitate boundary-based registration with 

mammograms.

6.6 Future work on HRT sequences

In chapter 5 of the thesis, we demonstrated a framework for quantitative image analysis 

of HRT sequences. To benefit from this analysis a large scale experiments is necessary in 

order to study the density history of a large number of women that developed cancer 

while receiving HRT. Effectively, we’ll register temporal sequences for each woman and 

calculate density changes over time (before and after the cancer appeared). In addition, 

similar studies should be made for women that did not develop any pathology while on 

therapy. For both categories the following measures can be calculated:

• Global density changes over time

• Local changes in density of specific areas

• Density changes per breast quadrant. This would require the employment of a 3D 

uncompression model [162] where the location of density change could be estimated 

in the 3d representation of the breast from the CC and ML mammograms.

An exciting challenge would be to build a model of “normal” density variation against a 

“pathological” one based on a large number of data. A first step could be to build a 

geographical distribution model of “abnormal” density changes, based on a large number 

of HRT mammogram sequences.
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6.7 Final statement

This thesis has described work to register temporal mammograms for a more efficient 

comparison of changes. A two-stage algorithm has been proposed to improve the 

registration based only on the boundary. Moreover, the issues related to HRT use have 

been discussed and an image analysis framework for assessing both global and local 

changes in tissue density between temporal HRT mammogram pairs has been suggested. 

Results of the methods proposed have been included in the main text of the thesis as well 

as in a separate Gallery of results (Appendix E).
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1 Anatomy and Physiology of the Female Breast

The female breast is a well-differentiated apocrine gland [163] that originates in the 

ectoderm and secretes milk during lactation. Each breast is located between the sternum 

and the mid-axillary line and anterior to the pectoral muscles. Figure 1 illustrates the 

basic structures of the breast. From the top to the bottom we can see the glandular tissue, 

the Cooper’s ligaments and the adipose (fatty) tissue (represented in yellow colour) 

together with the vessel network.

Figure A l: Basic Anatomical Features of the Mature Female Breast

The most important part of the breast is the glandular tissue, which is often referred to as 

fibroglandular tissue because of its indistinguishable coexistence with fibro-adipose 

tissue. The glandular tissue is very dense and consists of 15-20 lobes. Each lobe is 

drained by one lactiferous duct and all ducts converge to the area around the nipple, 

called areola. Each lobe is composed of a network of ducts and lobules that brunches in 

the direction towards the sternum. The end units of these networks are called terminal 

duct-lobular units. Most benign changes and almost all breast cancers arise within the 

terminal duct-lobular unit [22]. The milk is produced in the end lobules and is drained 

radially through the ducts to the nipple [27].

Page 215



Appendix A: Breast anatomy, physiology and pathology

The breast tissue is attached to the overlying skin by straps of fibre called Cooper’s 

ligaments. They are scalloped strings of fibrous connective tissue, located throughout the 

breast to support the glandular tissue together with the duct the blood vessels, the lymph 

channels and adipose tissue. The latter is found in the outer portion of the breast, 

surrounding the glands and filling the intervals between the lobes of the breasts. Fat 

tissue is a metabolically active tissue that acts as a reserve supply of energy by storing fat 

and releasing it in response to a variety of nervous and hormonal stimuli [164]. It also 

acts as an insulator to help maintain body temperature and acts as a protective padding in 

certain areas. Fatty tissue also helps smooth out the contours of the body.

Finally, a network of veins and arteries carry blood to and from the breasts while lymph 

fluids wash away waste products, dead cells, and other debris. These fluids flow along 

lymph vessels, which empty into lymph nodes. There are approximately 35 lymph nodes 

around the breast, most of which are located in or near the armpit [164]. The axillary 

lymph nodes receive approximately three quarters of the total lymph drainage. This is the 

cause of very frequent tumour métastasés to these nodes as the lymph, along with other 

debris, can carry cancerous cells [8].

2 Pathology

There are two major categories of aberrations of normal breast development, benign 

changes and malignant pathology. The most common benign disorders are:

Fibroadenomas: They are described as fibrous overgrowth, developed from a whole 

lobule and not from a single cell. They account for 13% of all palpable symptomatic 

breast masses, and for 60% in women aged 20 or less. In clinical practice they are 

diagnosed by clinical examination in combination with ultrasonography and fine needle 

aspiration cytology (in older patients they have characteristic mammographie features, 

when they calcify). The decision upon excision or not depends on the size of the 

fibroadenoma and the age and history of the patient.

Page 216



Appendix A: Breast anatomy, physiology and pathology

Cystic disease: Cysts are distended and involuted lobules and appear as smooth and 

discrete breast lumps and account for 15% of all discrete breast masses [27]. They exhibit 

a characteristic halos in mammography but are usually diagnosed by ultrasonography 

because they don’t produce any echoes. The diagnosis is established by fine needle 

aspiration.

Sclerosis: During stromal involution there are many possible disorders including the 

development of localised areas of excessive fibrosis or sclerosis. The mammographie 

appearance of sclerosing lesions can mimic that of cancer, leading in diagnostic 

problems.

Epithelial hyperplasia: This is an increase in the number of cells lining the terminal duct 

lobular unit. If, in addition these cells are atypical the condition is called atypical 

hyperplasia, which unlike any other benign disease is associated with an increased risk of 

subsequent breast cancer.

Finally, breast cancer is a malignant disease which originates from the epithelial duct 

cells. The term cancer describes a group of diseases in which symptoms are due to 

unrestrained growth of anaplastic cells (cells that grow without form or structure) in one 

of the body organs or tissues. Research in this field has demonstrated the correlation 

between cancer and tobacco, natural constituents of food, sexual and reproductive 

history, occupational hazards, alcohol and food additives.

If the cancer cells remain within the terminal duct lobular unit, they are classified as in 

situ or non-invasive. Ductal carcinoma in-situ is the most common type of cancer in this 

category, accounting for 17% of screen detected cancers [22]. This type of disease is 

characterised by the appearance of microcalcifications. The other type of in-situ cancer is 

less common (1% of screen detected cancers) and is known as lobular carcinoma in-situ. 

It is very important that the cancer is detected at an early (non-invasive) stage, thus 

reducing the possibility of spreading in the surrounding tissue through surgery.
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In many cases cancer infiltrates the surrounding tissue, leading to the condition known as 

invasive carcinoma. Depending on the origin of the cancer, they are characterised as 

ductal or lobular. At this stage surgery, chemotherapy and hormonal treatment are the 

most effective weapons against the spread of cancer. If the cancer infiltrates surrounding 

lymph nodes it is spread to other parts of the body like the spine, the liver and the brain 

and becomes very difficult to control.

The main problem with imaging breast cancer is that affected lesions are very small and 

usually hidden among the glandular tissue. For that reason newer modalities (e.g. Breast- 

MRI or Nuclear Medicine) are being used in conjunction with mammography, in an 

effort to detect early malignant changes such as increased vascularity.

3 Risk factors for breast cancer

Some of the most important risk factors for breast cancer include:

• Age is a risk factor, since women over 50 years old are more likely to have breast 

cancer than women less than 50 years.

• Demographic characteristics, family history and genetic predisposition.

• Previous breast cancer or benign breast disease.

• Mammographie pattern (e.g. P2 DY high-risk patterns [8]).

• Oral contraceptives. Hormone replacement therapy and irradiation

4 Breast Structure and Parameters Important for Imaging

The breast begins to develop during and after puberty. The major changes occur during 

pregnancy preparing the breast for milk secretion. In the fully developed breast the 

glandular tissue has developed to its maximum size and at that stage it is very difficult to 

image the breast with x-ray mammography. This is because the dense fibroglandular 

tissue attenuate a large amount of x-rays resulting in a low contrast, high intensity region
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in the display. Finally after menopause the glandular tissue is gradually replaced by 

adipose tissue. This procedure is called involution and is characterised by the variability 

in its rate between different women and regions of each breast [27, 163].

For all the reasons mentioned, it is clearly very important to image the glandular tissue of 

the breast. Nevertheless glandular tissue is a dynamic structure. Hormonal variations 

related to menstrual cycles, pregnancy and lactation, in combination with factors such as 

stress, changes in nutrition or bodyweight, lead to everyday changes in the size and 

subsequently the mammographie appearance of the glandular tissue.

Breast Asymmetry is a very important parameter and it is often useful to prove such a 

condition by imaging the breast. Asymmetry between breasts is not considered as a 

highly indicative sign of malignancy [8], but it is still a very important mammographie 

sign to detect.

Architectural distortion is an important feature for especially for x-ray mammography, 

and is characterised by a shift in an area of breast tissue. Thus a part of the breast tissue 

appears to be displaced. Architectural distortion is considered as a sign of malignancy. 

Calcifications are strongly related with the presence of breast cancer. Macro­

calcifications are structures greater than 1mm in diameter, and are indicative of benign 

breast disease. On the other hand micro-calcification is associated with malignant 

disease, but in some case it can also appear in benign changes. Many researchers from the 

field of computing and image processing have worked in the automatic detection of 

calcifications in digitised mammograms [165, 166].
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1. In troduction

In this Appendix we present the multi-scale segmentation method used in this thesis for 

detecting internal structures in mammogram pairs. This method was developed by C. 

Behrenbruch and all the material in this Appendix is from [160].

2 O verview  o f  W avelet Concepts

Various spatial filtering techniques based on localised Fourier operators and 

trigonometric transforms have been used for image feature detection [167-170]. The 

inherent limitation of these approaches lies in the need to define a large number of 

Fourier windows (in a multi-resolution context) in order to produce a maximally sensitive 

feature detector. In order for these techniques to work robustly, there is a need to be able 

to adapt the spatial localisation properties of filters as meaningful descriptors with respect 

to image content. Most windowed Fourier/Gabor techniques can do this only to a limited 

extent.

As an alternative, we extend the notion of a multi-resolution analysis to wavelets via the 

use of dilation and scale operators in the frequency domain:

s{x) a  s la<=^s{co)a s(aco) (1)

s(x) a  - 6 )  <=> s(co) a  s(co)e (2)

where the frequency domain is re-parameterised in terms of scale and dilation 

parameters, a and b. This results in a class of integral transforms -  “wavelet transforms” 

-  that are represented as a convolution of a given function or sequence/(xj with a kernel 

function (filter):

¥a,b
1 J  x - b \

(3)

and the transform representation over all scales as:
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W f{a ,b )  = f _ J { x W , j , i x ) J x

1 _ j

T a '̂
x - b (4)

dx

This transform is known as the “continuous wavelet transform” (CWT) which completely 

describes the decomposition of a function via “wavelet” functions, much the same way as 

a Fourier decomposition can describe an arbitrary (continuous) function by sinusoidal 

elements.

Referring back to equation (1), in the case that the transform of .y is localised around 0 )o = 

0, the dilated function s{aco) is still localised around (Do = 0. The dilation operator does 

not change the translation in the frequency domain, only the bandwidth of the filter. 

Therefore it is a requirement that .y does not contain the zero frequency or is of zero 

mean:

5(0) = 0 I  s{x).dx = 0 (5)

This definition is presented here as it explains better the use of the term “wavelet” (as a 

filtering concept) since the dilation operator must contain some oscillation and cannot be 

a mere “bump”. Therefore Gaussian-type convolution [171, 172] is not a wavelet filter, 

however (for example), there is a relationship with Laplacian scale-space [173, 174], 

difference of Gaussian analysis [175], and the time-varying solution of the heat equation 

[176]. An example of one of the simplest wavelets -  the “Morlet” -  is shown in Figure 

B 1 as the modulation of a cosine with a Gaussian function [177].

G aussian Wavelet (MORLET) - O dd & Even W avelets Frequency Domain (B andpass Filtering)
12

10

8

I
I

2

0.100 0 20 40
Frequency (Sampled)

60 80 100
X (Sampled)

Figure Bl: A simple wavelet function (Morlet) generated by modulating a cosine with a 

window function (Gaussian). The corresponding frequency domain representation is 

illustrated to show the resulting filter transfer function.
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Equation (5) also defines the invert ability condition of the wavelet, which leads to the 

inverse wavelet transform for reconstruction:

1
W

x - b

J -
(6)

The previous equation invites the observation that the CWT is an information inefficient 

representation as a ID function is parameterised by the 2Df(a,b). This redundancy can be 

compensated by subsampling the spatial-frequency representation of the wavelet basis 

Wy/'(a,b) at intervals f  a = a,,, | m e  Z } ,{  b = bn \ n e  Z }. This leads, in turn, to the work 

of Mallat [178, 179], which defines the “discrete wavelet transform” (DWT), which can 

be effectively implemented as a filter bank. The result is a dyadic (factor of two) signal 

decomposition where the dilation is performed via successive convolution and 

decimation with quadrature filters (QFs) H  and G for a discrete sequence Sfn)  resulting 

in an approximation A^'‘ and a “detail” component, . Similarly, reconstruction is 

performed via an adjoint convolution and upsampling. This is illustrated in Figure B2.

A'-'(n) ->

S\n)

Figure B2: The process of dyadic wavelet decomposition involves convolution and 

decimation of a sequence with a quadrature filter pair H  and G (represented as h,g -  the 

coefficient sequence) into an approximation A and a detail D component. Reconstruction 

of the sequence is via convolution with the adjoint pair and resampling.

The extension of Figure 2 to several scales (successive convolution/decimation) results in 

the concept of “multi-resolution analysis” (MRA). Recursive filtering can be used to 

decompose a function or sequence into approximations at different scales, by effectively
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changing the successive support length of the filter kernels. An example of such an 

approximation scheme is shown in Figure B3 where a ID cross-section of a ROI in an 

image is successively decomposed {ai, 0 2 , 0 3 ...).

a1
d1

d3 o

d2 d2

a3 d3 d1

\ ! . ''J

4

a3

a2
/ \

Figure B3: An example discrete wavelet analysis showing the successive approximation 

of the MRA into detail and approximation components (using the well-known 

Daubechies wavelets [180], filter length 4).

Similarly, for the MRA case, adjoint convolution and upsampling can reconstruct the 

original function or sequence from a decomposition across many scales. If various 

projections are not used in the reconstruction process, it is possible to regenerate a 

smoothed approximation or, in other words, “denoise” a signal [181, 182]. If an 

information cost function is used to select only those projections that represent 

components in the function or sequence at a specific scale then this framework can be 

used for feature detection. This idea is developed further in section 7. It is worth noting 

that alternative (efficient) wavelet scale-space concepts continue to be developed and 

may be equally applicable to feature detection.

3 Wavelet Packets

The discrete wavelet transform as a dyadic filtering implementation provides a multi scale 

foundation for image analysis. However looking at the wavelet decomposition in terms of 

filter banks, there is an obvious question to be asked. What if the projection space
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generated by the filter bank “tree” was extended to the equivalent high-pass case, as 

illustrated in Figure B4.

Partial Tree 
D W T  Case

Com plete Tree 
DW PA Case

X X
YS %

x x x x x
Figure B4: A tree representation showing the additional decomposition components 

(quadrature filtering) of wavelet packets, compared with the basic DWT case.

It turns out that this reconfiguration of the basis subspaces leads to “discrete wavelet 

packet analysis” (DWPA) [110, 183] which essentially produces particular linear 

combinations (superposition) of wavelets, resulting in a richer library of wavelet 

projections (called “packets”) with which to analyse a function. Additionally, DWPA 

forms subspaces that retain the orthogonality, smoothness and localisation properties of 

the dyadic DWT, but with better spatial localisation characteristics.

The improved spatial characteristics are demonstrated in an example in Figure B5, where 

an (approximate) impulse function is decomposed using both wavelets and wavelet 

packets. When viewed as a tiling of information cells across the space-frequency plane, 

the DWT analysis correctly localises the peak of the function in the high frequency 

elements, but is forced to include poorly localised, low frequency components as well. 

Although the analysis equivalent for the wavelet packet case does not contain all tilings, 

it demonstrates that it is possible to reconstruct the signal using almost a single wavelet 

packet. For this reason, we have used DWPA as the foundation of our feature detection.
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Analyzed Signal : length = 64 Colored Coefficients for Terminal Nodes

10 X  30 40 50 GO

frequency ordered coefficients
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Figure B5: A comparison between DWT and DWPA representation of an (approximate) 

impulse function. The DWT case (left) correctly determines the location of the peak for 

the high-frequency components but also includes low frequency components with poor 

spatial localisation. The DWPA case (right) demonstrates much better spatial localisation 

and produces an optimal representation of the impulse.

The starting point for defining wavelet packets mathematically lies in the interpretation of 

the tree diagram of Figure B4. Using H  and G to represent the equivalent high and low 

pass filter components of a set of conjugate quadrature filters, the following recursive set 

of functions can be defined:
def

¥ 2,, = W in d )  = ■ j2 'Y ,h{i)¥„  &  -  j )
je Z

<̂ 2n+i (0  = V 2 ^ (2t -  j )

(7)

(8 )

(9)
je Z

The function y/o (the “root”) is uniquely defined and is identified with wavelet generation 

function ^  in [178]. The function y/i is the “mother wavelet” associated by convolution 

with H  and G. The descendent functions (tree “leaves”) y/n are analogous to iterated 

forms of the mother wavelet as in the DWT, however in this case, the evolution of y/,i is 

over the complete tree. The collection of these functions for n = 0 ,1 ,. . . ,m makes up the 

wavelet packets associated with a particular choice of quadrature filters. It is also 

apparent that in this way, wavelet packet analysis is a generalisation that includes the 

DWT (i.e. only part of the tree is used), as shown in Figure B4.
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Clearly, the easiest way to use wavelet packets is in a fixed scale context. In this way, 

they are somewhat analogous to analysing a function or sequence with a DWT at a fixed 

scale or level, albeit with a different set of filter projections. In our case, we use wavelet 

packets in a multiscale context, which effectively means that the approximation can be 

performed using projections anywhere in the decomposed basis. For further details of the 

concepts of wavelet analysis, we refer to [184] and for a very useful overview of signal 

processing with wavelet packets (as well as a good treatment of the software 

implementation issues) [185].

4 Best Basis Selection

The multiscale wavelet packet representation provides a rich set of filtered projections 

within a wavelet basis at different scales. Using wavelet packets for feature detection 

involves ordering these subspaces by information content to produce a scale-space 

“stack” for analysis. This approach is called “best basis analysis” [186]. Before 

constructing such a scale space, it is necessary to define the notion of an information cost 

function that is used to rank each representation in terms of the contribution to 

approximating a sequence. To do this, we use a real-valued functional M, satisfying the 

condition:

w (h)= E -“ (I“W|) ;MO)=o (10)
keZ

Here ju is a. real-valued function defined on [0,»:). If we assume that ZkJLi(\u(k)\) converges 

absolutely, then M will be invariant to rearrangement of the representation of the 

sequence w. We can then define a functional Mx on the set of bases B for each x e X:  

M^: B- ^R\ B^M{ B* x )  (11)

which is referred to as the M-information cost of a sequence x  in the basis B. Another

way of looking at this, is to evaluate a transformation o f f(x)  to g(x) via an operator (in

this case convolution-decimation) as a distance measure with respect to a transformation 

parameter À

| | /  -  g\\ LAD + /̂ ll&ll (12)
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evaluated as:
1/2

(13)\ \ f - g f w =  dx

This enables each approximated component of the wavelet packet decomposition to be 

compared and subsequently ranked by information content. There are many different 

kinds of information cost functionals that can be used. For example, a simple threshold e 

based on coefficients in a wavelet subspace could be used to order the contribution of 

each packet to the complete reconstruction of a sequence, as shown in equation (15).

Another useful approach is the entropy of a representation, such that a cost function 

u={u(k)} is evaluated by:

//(« )  = X p W l o g - ^  (15)
T  P(k)

where p(k)=\u(k)f/Wulf is the normalised energy of the element of the sequence. This 

functional can be evaluated in a minimisation context and used to rank a set of 

decompositions.

One of the difficulties with using conventional entropy measurements is defining a 

probability density function p  in a way that is appropriate to each representation. 

Practically, this means selecting a histogram sampling density that meaningfully captures 

the statistical characteristics of the sequence. Clearly, in a multi-scale context where this 

distribution may vary greatly (and with different sampling resolutions by virtue of 

decimation), this is not a trivial task. To circumvent this problem, we have chosen to use 

an approximation to entropy -  Approximate Entropy (ApEn), which is a useful measure 

of signal regularity [45,46]. The idea is that wavelet packet decompositions that smoothly 

approximate the original sequence will have a higher degree of regularity, whilst
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equivalent high-pass filtered components that reflect the signal noise and will be more 

fluctuating in nature, exhibiting greater irregularity. ApEn is defined as follows:

1 N -m + \

4>” W  = - -------- - £ lo g C ,” (r) (16)
N - m  + \ ^

where given a positive integer N  and nonnegative integer m, with m ^ ,  a positive real 

number r, and a sequence of real numbers u:=(u(l),u(2),...,u(N)). The distance between 

two sequences x(i) and x(j), where x(i)=(u(i),u(i+l),...,u(i+m-l)) is defined by d(x(i), 

x(j)) = maxp=]^2,...,m(\u(i+p-l)-u(j+p-l)\). C r(r) is the number of such that

d(x(i),x(j))<r, normalised with respect to N-m+l. Thus, ApEn(m,r,N)(u) may be 

interpreted as a measure of the frequency at which number sequences of length m occur 

compared with sequences of length m + l. High values of the ApEn measure imply a 

highly random nature, whereas low values suggest a relatively smooth sequence.

Therefore, if we apply the ApEn measure to each wavelet packet decomposition of a 

sequence, we can order each projection by the contribution it makes to completely 

reconstructing the sequence. Starting from the lowest approximate entropy packet 

decompositions and progressively adding detail (higher ApEn), one can construct a scale- 

space using multi-scale wavelet packets, despite the fact that different scales (depending 

on whether they are equivalent low-pass or high-pass filtering combinations) may be 

ranked counter-intuitively by virtue of the level of decomposition. An example of such a 

scale-space is shown in Figure B6, where a small portion of an X-ray image is 

decomposed into a wavelet packet scale-space stack (2D sequences are discussed more 

thoroughly in the next section).
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Z  of packet 
reconstructions 
ranked by M
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Figure B6: An example scale-space illustrating cumulative addition of image detail (via 

packet reconstructions) using an information cost function. The bottom of the scale-space 

contains a quite smoothed approximation to the image, whilst the top of the stack is a 

perfectly reconstructed image (i.e. all packets have been used).

5 Choice of Wavelet Packet

Because of the superposition of wavelets, wavelet packets provide a large range of multi­

scale representation with which to create a scale space. For our work, we have chosen a 

class of existing wavelet bases, called “Coiflets”, which have a number of useful 

properties that make them ideal for detecting regions of interest in medical images. In 

particular, we wanted a wavelet basis that would be sensitive to sharp, spatially localised 

features such as tumour spiculations, microcalcifications (in X-ray images) and small 

regions of focal enhancement in MRI (such as for ductal carcinoma). Coiflets, have the 

following useful properties:

They have a high number of vanishing moments for a given support length (i.e. good 

frequency localisation as well as spatial localisation)

They are almost symmetrical 

They have compact support

They are orthogonal (indeed a bi-orthogonal fonn is also available)
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Low-order Coiflet wavelet packets are useful for approximating “bumps” without over­

smoothing, hence they have good edge-preservation characteristics. Higher-order packets 

have broad frequency characteristics making them useful for noise approximation. These 

properties make Coiflets very good for generating the kind of scale-space shown in 

Figure 6, as a good spread of detail is ascribed to both the smoothly approximated region 

of the scale-space and the high-frequency (noise) components. In the case of features that 

have a broad Fourier localisation (for example, sharp changes in intensity due to edges or 

highly localised features), the Coiflet scale-space provides good discrimination from 

smoother components. Some example Coiflet wavelet packets are shown in Figure B7 

(generation and scaling functions shown, as well as example higher-order packets). For 

more information on the generation and properties of Coiflets we refer to [180]. 

Additionally we are considering the development of customised biorthogonal wavelets 

based on the “lifting scheme” [189], which could be tuned to the morphology of specific 

features or feature characteristics.

WO • phi function W1 ■ p si function •

0  2  4 6

Figure B7: Example Coiflet wavelet packets (C2) including the generator/scaling 

functions (WO/1) and higher order members.

6 Extension of Wavelet Packets to Images (2D)

Our treatment of wavelets, wavelet packets and scale-space construction via information 

cost functions (best basis analysis) has so far been limited to the basic ID case. However, 

for analysing images, these concepts need to be extended to higher dimensions.

Page 231



Appendix B: Wavelet segmentation o f internal regions in mammograms

Fortunately, most conjugate quadrature filtering algorithms extend quite neatly to higher 

dimensions via the tensor product of ID basis elements:

b{x) = b { x ^ = (X j) (17)

This tensor product basis approach is termed “separable” because they can be factored 

across integrals to obtain a sequence of d  one-dimensional problems by treating each 

dimension individually. The equivalent low- and high-pass filters H  and G in the 

definition of the wavelet packet decomposition are quadrature filters with corresponding 

dual (adjoint) filters that can be used for reconstruction. Therefore the tensor product 

approach to extend the wavelet packet analysis to higher dimensions naturally involves 

the tensor product of ID sequences (filter coefficients), h and g. We define the tensor 

product of quadrature filters on the bivariate sequence u=u(x,y) as:

{H ® G ) u(x,y)  = '^ h ( i ) g ( j ) u ( 2 x - i ,2 y -  J)

^  (18)
= ^  h(2x -  i )g(2y  -  j)u(i, j)

i j

Similarly, for the adjoint (reconstruction) case, the tensor product (H®G)* =H*® G* is 

defined by:

(H" ® G ')u{x, y) = 'Z J ^ k 2 x  - i ) g ( 2 y -  j)u (i, j )  (19)
I j

These definitions generalise to an arbitrary dimension d  for a filter operator F*e{H,G} for 

i— \ . ,d.

def

(F^ ® - - - ( 8 ) F ' ' ) m ( x )  =  2 ^ . . . ^ / i ( k i ) . . . / ^ ( k ^ ) M ( 2 x i  -k^,...,2x^ - k ^
(20)

A visualisation of equation (20) for d=2 is shown below (Figure B8).
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H ® H U H ® G U

G ® H U

H.H^U
0 1

G.H
2

Ĝ Ĝ U
3

Figure B8: The implementation of wavelet packet analysis for d=-2 is performed by 

directional convolution and decimation for each dimension of the image.

This approach is analogous to subb and coding, a relatively conventional approach to 

image decomposition. In terms of implementation, this means that the image is convolved 

(and decimated) with the quadrature filters in each dimension in a “quadtree” fashion. As 

an aside note, the actual implementation of tensor wavelets requires some care with 

respect to the issue of mixing scales via tensor products [184].

7 F ea ture  E xtraction

Now that we have defined scale-space in terms of “best-basis” ordered reconstructions 

from wavelet packets, it is possible to perform feature extraction. The extraction process 

involves region growing the scale-space (as shown in Figure B6) and identifying regions 

that persist through many levels of scale.

Unlike the “extremum” stack concept of Koenderink [171] or the conventional CWT 

scaleogram [190], our scale-space construction does not guarantee continuity through the 

entire stack. This is the result of an information cost function to order the wavelet packet 

construction. Therefore, we are interested in regions that may be well localised across 

several scales, but not necessarily in a congruent fashion across all scales. The most 

significant n regions are treated as “features” and are labelled by the highest level of scale 

reached by region growing/merging. A visualisation of this effect is illustrated in Figure 

B9 where a small portion of an X-ray image containing microcalcifications (sharp, high- 

intensity features) is visible as distinct regions propagating through the stack.
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Figure B9: A small section (140x140 pixels) of a 30|am digitised mammogram 

containing two calcifications is decomposed into the wavelet scale-space (as shown in 

Figure 8). The calcifications are detectable as a well-localised propagation through the 

sliced scale-space (Ci and C2). Note: The scale-space has been inverted to better show the 

shape preservation from coarse to fine scales.

The region growing starts with a collection of seed pixels at the low-scale part of the 

stack. A merging operator is applied to adjacent pixels //+/, Ij+j, Ij.j and k-iJk+i in the 

scale-stack volume V(x,y,À) using the following criterion:

I I Ii j k 11 n(= y  «= K nF AAE =

and

AE

L L: u
- r (21 )

merge

unchanged

where

A = Y j Lj = Y  ^ k = Y

(22)

(23)
net: neL neL

and L(n)=\ and L, gives the vector of intensities of /,. This process is repeated for a fixed 

threshold value Euntil no more merges are possible (i.e. the region is completely grown). 

E  is then increased until either the desired number of regions is produced (the m most 

significant regions) or the number of regions converges. This results in a segmentation of 

the scale-space that can be visualised as an overlay on the image under analysis (shown 

in Figure BIO).
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Figure BIO: Segmentation results for the small region of a mammogram illustrated in the 

previous figure. There are several features in this image (left) including a small 

curvilinear structure and two clusters of calcifications (circled). The segmentation (right) 

has produced several regions of interest whilst being relatively impervious to the noisy 

characteristics of the image.

Once the regions have been segmented, they are fitted with a cubic spline contour and the 

image labelled into generalised areas of “region of interest” and “noise”. The enables a 

histogram of pixel values to be assigned to “features” or regions of interest -  ROIs - (up 

to a certain scale) and “noise”, which has a different statistical distribution of intensities. 

With these estimations for feature and noise, we utilise the region competition algorithm 

of Zhu [191] to slightly refine the contour boundaries of the detected features, as a small 

amount of smoothing has transpired during the approximation process. This refinement 

step is not strictly necessary, although it produces feature contours that have a higher 

degree of complexity and better reflect the actual morphology (for example the fine 

spiculations of a tumour). An example of a completely segmented mammogram image is 

shown in Figure Bl l .  It is this collection of features that is used as the basis of the 

internal landmark matching.
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Figure B l l :  An example of wavelet-based feature detection and segmentation of a 

mammogram of a patient with very dense breasts. This is a good example as it shows 

image scale-space can be used to produce a limited number of high quality landmarks 

representing visually salient features.

In order to define landmarks for the RBF deformation, we ignore the pectoral muscle 

region and the radiological tag and since our features are based on closed contours grown 

from the scale-space stack, the centroids of the features are defined as candidate RBF 

landmarks. Clearly, this introduces a small amount of error into the registration, however 

the approximation framework largely compensates for this in the completion registration 

step and is also influenced by the number of landmarks used.
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1 In troduction

The /zint representation was discussed in several parts of the thesis. In this Appendix we 

summarise the basic concepts of the hm representation for normalising mammogram 

focusing on the method fo r  the calculation o f  huu- A complete account can be found in 

[41. In the hmt image, each pixel represents the thickness of ‘interesting’ (non-fat) tissue 

between the pixel and the X-ray source and the image surface provides anatomical 

information about the breast. In Figure C l, we can see an hmt surface; A cyst is visible at 

the bottom left and appears as a significant hill comparing to the surrounding tissue. 

Using the hmt representation, Highnam and Brady modelled and removed the effect of the 

scattering and extra-focal radiation thus creating a general framework for mammogram 

normalisation.

Figure C l: The hm representation of a mammogram where a cyst is visible at the bottom 

left as a significant hill in the anatomical landscape.

As far as temporal mammograms are concerned, using the him representation, we can 

compensate for the non-rigid relationship of the intensities of corresponding regions, and 

achieve a more efficient comparison of a film with previous ones. Even if the temporal 

mammogram pair is registered, variations in the image intensities due to imaging 

conditions can’t be factored out. Combining the 2 methods (as discussed in chapter 4) can 

provide us with a significant framework for temporal comparison of him based breast- 

tissue quantitative measures.
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2 Computation of the hint surface

In order to calculate the thickness of interesting tissue between each pixel and the X-ray 

source, we first need to calculate the primary radiation energy Ep{x,y) imparted to the 

intensifying screen. If the mammogram is digitised inhigh quality, laser scanning devices, 

the relationship between pixel and density values is linear:

P { x , y )  = m - D { x , y )  + c (1)

After calculating the density image, the total energy imparted to the intensifying screen 

can be obtained by (2):

D(%,y) = ylogio(/)E%(%,y)) (2)

Where P is a linear constant related the film-speed, and y is the film screen gradient and 

can be calculated from the film-screen characteristic curve as described in [*, Chapter 2]. 

After calculating the total energy imparted in the intensifying screen the primary 

component is given by (3):

(X, y )  =  E %  (X, y )  -  y )  -  y )  0 )

Where Es(x,y) and Ee(x,y) are the scattered and extra-focal radiation that are modelled 

and calculated in ([4], Chapter 3) and ([4], Chapter 4) respectively. The last step is to 

combine equations (4) and (5) to calculate y) for all the image pixels:

h p { E ,  X, y )  =  /ijnt {x,  y)//i„t { E )  + h f ^  ( x,  y ) p (E) = /ij„t {x,  y)(/z,nt (^) ( E ) )  + H p (E) (4)

^lube

E , ( x ,  y )  =  4 i(V ,^ „ x , y ) A ^ t , j N " '  (E)E5(£)G(£) (5)
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Where (j) is the photon flux corresponding to an X-ray tube voltage of Vtube, Ap is the pixel 

area, ts is the time of exposure, No ^^\E) is the relative number of photons at energy E, 

S(E) is the absorption ratio of the screen to primary photons of energy E, G{E) is the 

transmission ratio of the grid for primary photons of energy E, jUiudE) is the linear 

attenuation coefficient of Incite at E  and /ipiate is the thickness of the Incite compression 

plate. In the system of equations of (4) and (5), the only unknown is hint(x, y).

By exploiting the hint representation, it is possible to simulate a scatter-free 

monoenergetic simulation thus enhancing the image [4]. Consequently, it is possible to 

reduce the radiation dose to the patient by removing the anti-scatter grid and enhancing 

the image using the representation [101].

The /lint representation of a temporal mammogram pair can be represented by:

D '"  ( x , y )

eq.(2) to{5)  ̂ ( 2 )  ^ ^ e n h a n c e d

D ‘elhanced(^^y)
(6)

Thus we can use this representation for registration or matching of temporal 

mammograms either on the hmt domain or in the enhanced mammogram pair. These ideas 

are summarised in (7):

( x ,  y ) ^  

D ‘  ̂ (x ,  y )

eq.{2) to {5)

y)
T ( x ,y ) y)]

y)
(2) (7)

Where T(x, y) is the non-rigid transformation (thin-plate spline interpolating function in 

our case), that approximates the difference in compression between the temporal pair. In 

chapter 5, a method for preserving the hmt image information after registration was 

suggested.
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In this Appendix, some of the more common concepts related to Information Mastery and 

Evidence Based Medicine (EBM) for clinical diagnosis are described. A more analytical 

description can be found in [192].

Clinical information from patients is routinely collected in all hospital across the country. 

However, in order to understand the correlation of the different clinical signs, symptoms 

and diagnostic tests to the likelihood of a disease, this information has to be accurately 

analysed and interpreted through objective measures and definitions.

The following definitions are related to clinical diagnostic tests and the main interest 

from the image analysis standpoint is to improve the understanding of clinical articles as 

well as the reported results on CAD systems:

Sensitivitv: Is the probability of a positive test among patients with a disease. For 

example if a diagnostic test was positive in 85 out of 100 patients previously diagnosed 

with breast cancer (in 15 cases the test was negative), then the sensitivity of the test is 

85%.

Specificitv: It is the probability of a test being negative among “healthy” patients. Again, 

the number of negative tests (among patients without the disease) has to be divided with 

the total number of tests to calculate the specificity.

Incidence: Is the probability that a healthy patient develops the disease during an interval 

(e.g. in a year, or in the screening interval for the case of breast cancer). This definition is 

important when determining the incidence of breast cancer, since a significant number of 

cancers are missed. In chapter 4 we suggested the use of image registration to determine 

(retrospectively) the number of “true” interval cancers.

Prevalence: Is the probability of a disease in the entire population. Using the definitions 

of sensitivity, specificity and prevalence the probability of disease given a positive test 

can be defined according to Bayes’equation:
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P (disease | positive test) =
prevalence • sensitivity

[ (prevalence • sensitivity) + ( (1 - prevalence) • (1 - sensitivity) ) ]

Although, sensitivity and specificity are important in describing diagnostic tests, they do 

not give plenty of information to interpret the results of a test. For this reason, the 

predictive values are more useful to the clinicians:

Positive predictive value: Is the probability of disease among patients that had a positive 

test.

Negative predictive value: Is the probability of no disease among patients that has a 

negative test.

For example, if we want to describe a diagnostic test foe breast cancer (e.g. a CAD 

systems that detects malignant masses) and we get the following results:

Patients with breast cancer Patient without breast cancer

Positive test 89 (true positives) 40 (false positives)

Negative test 11 (false negatives) 60 (true negatives)

Then we can calculate the following:

Sensitivity = 89 / 100 = 89%, Specificity = 40 /100= 40%

Positive predictive value = 89 / (89 + 40) = 69%

Negative predictive value = 1 1 / ( 1 1 +  60) =15%

This means that although the sensitivity of the test is very high the probability of disease 

among patients with a positive test is 69%, which is the probability that a patient has 

breast cancer if  the CAD test for cancer is positive.

If now, we can redefine what is “positive” or “negative” according to the CAD (e.g. 

change the threshold at which a detected mass is classified as abnormal), the values for 

the specificity and sensitivity will change. By doing that for several thresholds we can
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plot the values of sensitivity vs. (1-specificity). This is called a receiver-operating 

characteristic curve (ROC). Examining different thresholds represent the trade-off 

between sensitivity and specificity, or between false positives and negatives. The area 

under the ROC curve is measure of good the test is in discriminating between “healthy” 

and non-“healthy” patients and can be used for comparison with other tests. Following 

the previous example, lets assume that by changing the threshold at which (e.g. based on 

texture) a mass was classified as malignant, we got the following values for the 

specificity and sensitivity:

Threshold that defines 
malignancy

Sensitivity Specificity

Threshold 1 60% 98%

Threshold 2 80% 94%

Threshold 3 90% 85%

Threshold 4 95% 75%

Then the ROC curve shows that the test is adequate for discriminating between benign 

and malignant masses:

R O C

100 - 
9 0  
8 0  - 
7 0  - 
6 0  < 
5 0  - I 
4 0

R O C

10020 4 0 6 0

1-specificity
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Registration of bilateral pairs

In this section, we present results of bilateral mammograms. In each case the source 

image is registered to the target and the resulting, transformed image is shown together 

with the transformed grid and the difference image after registration. In some cases, we 

also show the subtraction image before registration and the joint histograms (before and 

after registration).

In the end of each case we include some comments and in certain cases some clinical 

information that is derived from the registration of the image pair. The following cases 

are presented in this section:

Case 1: Bilateral mammogram pair of a post-menopausal woman. There is a mass in the 

left breast that is highlighted after registration.

Case 2 : Bilateral mammogram pair of a post-menopausal woman. The right mammogram 

is slightly denser in the nipple plane.

Case 3 : Bilateral mammogram pair of a post-menopausal woman. Registration highlights 

a mass in the lower quadrants of the right breast.

Case 4 : Bilateral mammogram pair of a post-menopausal woman. A cancer in the left 

breast is pronounced after registering the images.

Case 5 : Bilateral mammogram pair of a post-menopausal woman. An increased density in 

the right breast and a “suspicious” density in the left breast near the axilla are highlighted 

after registration.

Case 6 : Bilateral mammogram pair of a post-menopausal woman. A small mass is present 

in the lower quadrants of the right breast

The registration results on these cases are now presented in detail:
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CASE 1:

TARGET SOURCE

TARGET SOURCE TRANSFORMED
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JOINT HISTOGRAM BEFORE (A) AND AFTER (B) REGISTRATION

D enser tissue

Abnorm ality

DIFFERENCE IMAGE AFTER REGISTRATION

COMMENTS

There is a cancer present in the left breast. Image registration allows an automated 

comparison of the differences in tissue structure between the bilateral pair. As shown in 

the difference image the two areas of “significant “ differences correspond to a denser 

tissue region and an abnormality present in the left (target) mammogram.
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CASE 2:

TARGET SOURCE

-.rA' : o 3

TARGET SOURCE TRANSFORMED
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JOINT HISTOGRAM BEFORE (A) AND AFTER (B) REGISTRATIONmm
-

THE TRANSFORMATION GRID AND THE DIFFERENCE IMAGE BEFORE (A)

AND AFTER (B) REGISTRATION

COMMENTS

In this pair of bilateral mammograms there is a difference in the tissue architecture near 

the nipple. As shown in the joint histogram images after the images are aligned the 

intensity pairs are more concentrated in the main diagonal. The good overlap is also 

confirmed by the difference image after registration
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CASE3:

TARGET SOURCE

TARGET SOURCE TRANSFORMED
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JOINT HISTOGRAM BEFORE (A) AND AFTER (B) REGISTRATION

■ n i
4 ^

^  ' I '

THE TRANSFORMATION GRID (A) AND THE DIFFERENCE AFTER (B)

REGISTRATION

COMMENTS

In this pair of bilateral mammograms the right breast appears to be denser than the left. 

As shown in the joint histogram images after the images are aligned the intensity pairs 

are more concentrated in the main diagonal. In the difference image after registration the 

region that exhibits the larger intensity difference (shown by the arrow) corresponds to 

the mass present in the lower quadrants of the right breast.
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CASE 4:

TARGET SOURCE

TARGET SOURCE TRANSFORMED
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JOINT HISTOGRAM BEFORE (A) AND AFTER (B) REGISTRATION

THE TRANSFORMATION GRID (A) AND THE DIFFERENCE AFTER (B)

REGISTRATION

COMMENTS

The cancer in the left breast appears as the dominant dissimilarity in the difference image 

after registration as the rest of the breast is aligned. The arrow shows the “bright” region 

of the cancer in the difference image.
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CASES:

»

TARGET SOURCE

TARGET SOURCE TRANSFORMED
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JOINT HISTOGRAM BEFORE (A) AND AFTER (B) REGISTRATION

H I s i g l l H  1

THE TRANSFORMATION GRID (A) AND THE DIFFERENCE AFTER (B)

REGISTRATION

COMMENTS

In this bilateral pair there are two different between the left and right mammogram. As is 

highlighted in the difference image after registration, there is a dense region present only 

in the right mammogram (indicated by the black arrow), and a small “suspicious” density 

near the axilla (indicated by the ‘’’white” anow) in the left breast.
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CASE 6:

TARGET SOURCE

TARGET SOURCE TRANSFORMED

Page 257



Appendix E: Gallery of Results

JOINT HISTOGRAM BEFORE (A) AND AFTER (B) REGISTRATION

magmssgii

THE TRANSFORMATION GRID (A) AND THE DIFFERENCE AFTER (B)

REGISTRATION

COMMENTS

After registering the bilateral air, the main difference in the subtraction image is a small 

mass in the lower quadrants of the right breast (indicated by the arrow in the difference 

image).
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Registration of temporal HRT pairs

In this section, we present results of temporal mammograms. In each case the source 

image is registered to the target and the resulting, transformed image is shown together 

with the transformed grid and the difference image after registration. In some cases, we 

also show the subtraction image before registration and the joint histograms (before and 

after registration).

In the end of each case we include some comments and in certain cases some clinical 

information that is derived from the registration of the image pair. The following cases 

are presented in this section:

Case 1: HRT user (5 years). The mammogram where the cancer was diagnosed is 

compared with a previous one.

Case 2 : HRT user (2 years). HRT was stopped because a cancer was detected in the right 

breast. A temporal sequence of the left breast is registered highlighting a new mass.

Case 3 : HRT user (continuing). A temporal mammogram sequence is registered in order 

to highlight the regions of density regeneration.

Case 4 : HRT user due to hysterectomy. Four mammograms after HRT cessation are 

registered.

Case 5 : Five mammograms (two before and two after HRT cessation are registered) 

highlighting the changes in breast tissue density (first increase and then decrease).

The registration results on these cases are now presented in detail:
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CASE 1:

1

TARGET (L ML 98) SOURCE (L ML 96)

a #

TARGET SOURCE TRANSFORMED
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0

THE TRANSFORMATION GRID AND THE DIFFERENCE IMAGE BEFORE (A)

AND AFTER (B) REGISTRATION

COMMENTS

The patient was bom in 1931 and had her menopause in 1984. The use of HRT started in 

1993 until 1998 when a cancer was diagnosed in the left breast. Here, we register the left 

ML mammograms from 1996 and 1998 (when the cancer was diagnosed). After 

registration there is a small number of “significant difference” regions in the difference 

image. The arrow indicates the region that corresponds to the cancer that was diagnosed 

in the left ML mammogram (1998).

Page 261



Appendix E: Gallery of Results

CASE 2:

TARGET (L LMQ 95) SOURCE (L LMQ 96)

-

TARGET SOURCE TRANSFORMED

Page 262



Appendix E: Gallery of Results

HI uliüiiiinl

■■■iill
Milita

THE TRANSFORMATION GRID AND THE DIFFERENCE IMAGE AFTER 

REGISTRATION (not processed (A), thresholded (B))

COMMENTS

The patient was bom in 1944 and had her menopause in 1991. The use of HRT started in 

1992 until 1994 when a cancer was diagnosed in the right breast. Here, we register the 

left LMQ mammograms from 1995 and 1996. After registration there is one predominant 

region of significant difference in the subtraction image (indicated by the arrow). That 

corresponds to a mass developed in the left breast (L LMQ 96).
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CASE 3:

TARGET (R ML 97) SOURCE (R ML 98)

?• 'S v . •

I  '

TARGET SOURCE TRANSFORMED MIXED
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THE TRANSFORMATION GRID AND THE DIFFERENCE IMAGE BEFORE (A)

AND AFTER (B) REGISTRATION

DIFFERENCE IMAGE AFTER REGISTRATION 

(THRESHOLDED)

COMMENTS

The patient was born in 1937 and had her menopause in 1992. The use of HRT started in 

1992. Here, we register the right ML mammograms from 1997 and 1998. The “MIXED” 

image after registration, shown in the previous page, could assist the clinician to better 

understand the local variations in tissue density over time, and their possible implications. 

Obviously, in this case there is an overall increase in density due to HRT. From the 

difference image we see that the most significant area of change is near the nipple.
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CASE 4:

TARGET (L ML 96) SOURCE 1(LM L97)

SOURCE 2(L ML 98) SOURCE 3(L ML 99)
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TARGET (L ML 96) REGISTERED (L ML 97)

REGISTERED (L ML 98) REGISTEREDL ML 99)

COMMENTS

The patient was born in 1932 and had her menopause in 1972 due to hysterectomy. The 

use of HRT stopped in 1996. Here we register 3 subsequent mammograms to the first one 

(left ML 1996), and observe the gradual density decrease (due to HRT cessation).
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CASE 5:

1991 1992(TARGET) 1993

1994 1992(TARGET) 1996
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REGISTERED 1991 1992(TARGET) REGISTERED 1993

REGISTERED 1994 1992(TARGET) REGISTERED 1996

COMMENTS

The patient was born in 1940 and had her menopause in 1970 due to hysterectomy. The 

use of HRT stopped in 1992. Here we register mammograms before and after 1992 to the 

left ML (1992). Registration can facilitate the comparison of the images, in this case first 

the density increase (from 91 to 93 due to HRT) and subsequently decrease (94 to 96 due 

to HRT cessation).
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Registration of normalised image pairs

In this section, we present results of temporal image pairs that have been normalised 

using the hmt representation of interesting tissue (Appendix C). In each case the source 

image is registered to the target and the resulting, transformed image is shown together 

with the transformed grid and the difference image after registration. In some cases, we 

also show the subtraction image before registration and the joint histograms (before and 

after registration).

In the end of each case we include some comments and in certain cases some clinical 

information that is derived from the registration of the image pair. The following cases 

are presented in this section:

Case 1: Temporal /zim mammogram pair. No significant changes.

Case 2 : Temporal hint mammogram pair. There is a slight increase in density in the lower 

quadrants.

Case 3: Temporal hint mammogram pair. The breast if highly involuted and there are no 

significant changes.

Case 4 : Temporal hint mammogram pair. There is a slight decrease in density highlighted 

by the difference image after registration.

The registration results on these cases are now presented in detail:
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CASE 1:

TARGET SOURCE

TARGET SOURCE TRANSFORMED
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SUBTRACTION

AFTER

COMMENTS

The image pair is normalised using the hmt representation of interesting tissue. There is 

no significant tissue density change between the mammograms. Due to the difference in 

compression the images are not aligned, as is highlighted by the difference image before 

registration (large intensity differences). Most of these differences disappear after 

aligning the images as is shown in the difference image after registration. The 

background corresponds to grey-level zero (since the intensities are rescaled in the 

subtraction image).
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CASE 2:

TARGET SOURCE

TARGET SOURCE TRANSFORMED
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SUBTRACTION

BEFORE

SUBTRACTION

AFTER

COMMENTS

There is an increase in tissue density in the most recent mammogram. It is obvious that 

the increase is more dominant in the lower part of the breast. After registration, the 

subtraction image highlights regions of significant difference. The arrow, in the 

subtraction image after registration shows the region of increased density in the lower 

quadrants of the breast (the most recent image is subtracted from the previous one after 

registration.
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CASE 3:

TARGET SOURCE

TARGET SOURCE TRANSFORMED
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a s
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TRANSFORMED GRID SUBTRACTION SUBTRACTION

BEFORE AFTER

COMMENTS

The image pair is normalised using the him representation of interesting tissue. The tissue 

structure appears to be very similar in the two mammograms. Due to the difference in 

compression the images are not aligned, as is highlighted by the difference image before 

registration (large intensity differences) where the glandular structures are misaligned. 

Most of these differences disappear after aligning the images as is shown in the 

difference image after registration. The background corresponds to grey-level zero (since 

the intensities are rescaled in the subtraction image).
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CASE 4:
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TARGET SOURCE

TARGET SOURCE TRANSFORMED
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BEFORE

SUBTRACTION

AFTER

COMMENTS

The image pair is normalised using the him representation of interesting tissue. The 

second mammogram is slightly less dense than the first one. Although the compression is 

slightly different the internal structures are significantly displaced between the two 

mammograms as is shown by the transformation grid. After registration, the difference 

image highlights a region of involution (density decrease).
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