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ABSTRACT 

Breakdown of the intestinal epithelial barrier and a subsequent increase in intestinal 

permeability can lead to systemic inflammatory diseases and multiple-organ failure.  Nutrition impacts 

the intestinal barrier, with dietary components such as gluten, increasing permeability.  Artificial 

sweeteners are increasingly consumed by the general public in a range of foods and drinks. The sweet 

taste receptor (T1R3) is activated by artificial sweeteners and has been identified in the intestine to 

play a role in incretin release and glucose transport, however, T1R3 has not been previously linked to 

intestinal permeability.   

The intestinal epithelial cell line, Caco-2, was used to study the effect of commonly-consumed 

artificial sweeteners, sucralose, aspartame and saccharin, on permeability.  At high concentrations, 

aspartame and saccharin induce apoptosis and cell death in intestinal epithelial cells, while at low 

concentrations, sucralose and aspartame increase epithelial barrier permeability and down-regulate 

claudin 3 at the cell surface.  T1R3 knockdown attenuates these effects of artificial sweeteners.  

Aspartame induces ROS production to cause permeability and claudin 3 internalisation, while, 

sweetener-induced permeability and oxidative stress is rescued by overexpression of claudin 3.   

Taken together, our findings demonstrate that the artificial sweeteners sucralose, aspartame 

and saccharin, exert a range of negative effects on the intestinal epithelium through the sweet taste 

receptor T1R3.  

  



INTRODUCTION 

Under normal conditions, the intestinal epithelial barrier maintains selective gut permeability 

to allow nutrient absorption but provide a robust barrier and prevent the entry of pathogens and 

pathogenic molecules into the circulation.  Disruption of the intestinal epithelial barrier results in a 

‘leaky gut’, a key pathophysiological event seen in several chronic inflammatory disorders such as 

diabetes, pancreatitis, multiple organ failure and autoimmune diseases [1-3].  Impairment of the 

intestinal barrier and the subsequent increase in leak occurs predominantly in the distal small intestine 

and large intestine and can result in increased systemic inflammatory responses and tissue injury and, 

in some severe cases, sepsis and increased mortality [4].  There are a variety of treatments for 

impaired gut permeability, including prebiotics and metformin [5,6], however, there are limited large-

scale clinical trials to establish the efficacy of interventions in reducing permeability, and the 

associated inflammation. 

The intestinal barrier is maintained by two key mechanisms; (a) epithelial cell homeostasis to 

regulate cell numbers forming the barrier, and (b) homotypic junctional complexes to regulate 

paracellular permeability across the barrier [7].  Intestinal epithelial homeostasis is established by 

equilibrium between cell proliferation and cell death, with dysregulated or excessive epithelial cell 

death associated with diseases of impaired barrier integrity and leak across the paracellular space [4].  

The paracellular space is largely modulated by tight junction (TJ) proteins which control the movement 

of water, nutrients and electrolytes across the epithelium into the interstitial fluid [8].  TJs are a family 

of around 50 proteins of which the main TJ proteins are occludins, claudins and junctional-adhesion 

molecules (JAMs) [9]. Despite this, knockout studies demonstrate a key role for claudins, rather than 

occludins and JAMs, in maintaining barrier integrity [10].  Claudins can form homotypic or heterotypic 

interactions at the epithelial cell-cell junction to form a seal and reduce leak, for example, claudins 1, 

3, 4, 5, 8, 11 and 14, or form a pore to increase leak, for example, claudins 2, 7, 10 and 15 [9,11,12].  

Expression of claudins at the TJ can be regulated via PKC-mediated phosphorylation and downstream 

intracellular trafficking pathways, such as reduced lysosomal degradation or increased trafficking to 

the TJ complex at the epithelial cell surface, to influence barrier integrity [13-16].  As such, diseases 

associated with a leaky gut, such as Crohn’s disease and ulcerative colitis, have been demonstrated to 

impact expression of claudins in the small and large intestine, however, the mechanism for this is not 

clear [16,17].  Studies are therefore required to understand the mechanisms which regulate 

expression and function of claudins in the intestinal epithelium and how these proteins may be 

involved in controlling leak across the gut. 

There is increasing evidence that consumption of a high-fat diet and excessive alcohol intake 

leads to intestinal permeability and metabolic endotoxemia [18-20].  These changes in permeability 



are associated with increased oxidative stress and reorganisation of claudin expression at the tight 

junction [21,22].  While a link between the Western diet and intestinal permeability is established, the 

effect of food additives found in the diet is not well-understood.  A range of artificial sweeteners are 

increasingly utilised as non-caloric sugar substitutes, of which aspartame, sucralose and saccharin are 

most commonly consumed in both food and beverages [23,24]. There is controversy regarding the 

metabolic effects of these acutely-sweet molecules, with studies demonstrating both a positive and 

negative role for artificial sweeteners in the diet [25-28].  Studies in humans and mice demonstrate 

that consumption of artificial sweeteners in the diet is linked with dysbiosis of the gut microbiota and 

an associated increase in levels of endotoxins secreted from these bacteria, such as lipopolysaccharide 

(LPS) [27,28].  LPS released from the gut microbiota is linked to an increase in intestinal permeability 

[29], however, while changes in the gut microbiota are a potential regulator of this permeability, the 

direct effect of artificial sweeteners on intestinal permeability is not well-understood.   

In the studies presented here, we use the well-established intestinal epithelial cell line, Caco-

2, to study the effect of the commonly-consumed artificial sweeteners, aspartame, sucralose and 

saccharin, on intestinal epithelial cell viability, monolayer permeability and claudin expression, and 

oxidative stress response.  These studies utilised a variety of concentrations, which could be achieved 

in the diet, to address the impact of these sweeteners the intestinal epithelium.  As artificial 

sweeteners stimulate the sweet taste receptors, T1R2 and T1R3, to elicit a taste response pathway 

[30], we also sought to demonstrate the role of these G-protein coupled receptors in regulating the 

effect of aspartame, sucralose and saccharin on the intestinal epithelium.  We anticipate that findings 

from this study could expand our understanding of the physiological effect of artificial sweeteners and 

indicate the effect of dietary components on gut health. 

 

 

 

 

  



MATERIALS AND METHODS 

Cell lines and reagents 

Human colon carcinoma cells (Caco-2) were purchased from Sigma-Aldrich (Dorset, UK), 

cultured in Eagle’s Minimum Essential Media containing 10% fetal bovine serum, 1% 

penicillin/streptomycin and used between passage 35-50.  siRNA and DharmaFECTTM reagent were 

obtained from Dharmacon (Cambridge, UK).  Claudin 3 and control vector cDNA were purchased from 

GenScript (Piscataway, USA).  Lipofectamine 3000TM reagent was purchased from Thermo Fisher 

Scientific (Paisley, UK). DCFDA and antibodies directed against claudin 2, 3, 4 and 7 were purchased 

from Abcam (Cambridge, UK), while, claudin 15 antibody was obtained from Novus Biologicals 

(Abingdon, UK) and T1R3 and actin antibodies from Santa Cruz Biotechnology (Santa Cruz, CA).  

Annexin V kit was purchased from BD Pharmingen (Wokingham, UK).  All other reagents, including the 

artificial sweeteners saccharin, sucralose and aspartame, were purchased from Sigma Aldrich (Dorset, 

UK). 

 

Animals and Ethics 

 The study used six male C57BL/6 mice bred at the Comparative Biology Unit at UCL’s Royal 

Free Campus. Animals were allowed ad libitum access to water and a standard rat chow (Diet RM1, 

SDS Ltd, Witham, Essex, UK) until the time of experimentation.  Animals were housed in groups of 3-

4 and were maintained on 12-hour light-dark cycling (7AM-7PM) at a temperature of 22-5 ºC.  At 8-10 

weeks, mice were anaesthetized with an intraperitoneal injection of 60 mg.kg-1 pentobarbitone 

sodium (Pentoject, Animalcare Ltd, York, UK), and monitoring of the pedal and corneal reflex 

undertaken to ensure deep anaesthesia was achieved before the small and large intestine were 

removed. Euthanasia was performed by cervical dislocation, with death confirmed by cessation of the 

heartbeat. The gut was separated into the following sections: duodenum (beginning at the stomach 

and ending at the ligament of Treitz), jejunum (from the ligament of Treitz until halfway along the 

small intestine), ileum (remaining half of the small intestine until the caecum), proximal (1st half of 

the colon) and distal colon (2nd half of the colon). Each segment was flushed with ice cold 0.9% saline 

to remove any contents and transferred to a cold glass surface at 4ᵒC and cut open. The mucosa was 

scraped off using a glass slide and placed in 1ml of RNAlater, snap frozen and stored at -80ᵒC until use. 

All procedures were carried out in accordance with the UK Animals (Scientific Procedures) Act, 1986, 

Amendment Regulations 2012. The protocols were approved by the University College London (Royal 

Free Campus) Comparative Biology Unit Animal Welfare and Ethical Review Body (AWERB) committee.  

 

RT-PCR  



 Total RNA was extracted from mucosal scrapes of the distinct regions of the mouse small and 

large intestine, or from Caco 2 cells, using Trizol reagent (Life Technologies, Paisley, UK) according to 

the manufacturer’s instructions. RNA was DNase treated and reverse transcribed using a Transcriptor 

First Strand cDNA Synthesis Kit (Roche Diagnostics, Mannheim, Germany). An RT-ve control was 

included for each sample. Claudin, taste receptor and β-actin transcripts were analyzed by real-time 

PCR using a Fast Start Essential Green Master kit (Roche Diagnostics, Mannheim, Germany) on a Roche 

LightCycler 96 (Roche Diagnostics, East Sussex,  UK) using specific primers shown in Table 1 and 2. For 

all primers cycling conditions were as follows: 95°C for 10 min followed by 40 cycles of 95°C for 10 sec, 

60°C for 10 sec and 72°C for 10 sec. Relative gene expression compared to β-actin was established 

using the LightCycler 96 software.  

 

Annexin V assay 

 Caco-2 cells were grown to 60% confluence in T-25 flasks prior to exposure with artificial 

sweeteners (range of concentrations) for 24 h.  Artificial sweeteners were dissolved in the vehicle 

control (H2O) and sterile-filtered to prepare a working stock solution.  Adhered and floating cells were 

collected and incubated with binding buffer, annexin V and propidium iodide for 15 mins in the dark.  

Cells were then analysed with Accuri C6 Flow cytometer (BD Biosciences) and the percentage of 

positive cells for annexin V and propidium iodide were calculated with FlowJo (V10.2, Oregon, USA).   

 

siRNA and cDNA transfections 

Caco-2 cells were transiently transfected with siRNA specific to T1R3, or non-specific control 

siRNA, using DharmaFectTM 2 reagent as per manufacturer’s guidelines. Alternatively. Caco-2 cells 

were transiently transfected with wild-type human claudin 3 cDNA (clone ID: OHu26411, vector: 

pcDNA3.1+/C-(K)DYK), or DYK control vector cDNA) using Lipofectamine 3000TM as per manufacturer’s 

guidelines.  Cells were transfected at a seeding density of 0.5 x 104 cells per well of a 96 well plate, 2.5 

x 104 cells per well of a Transwell insert, or 1.5 x 105 cells per well of a 6 well plate.  Transfected cells 

were plated onto Transwell inserts or 96-well plates for analysis of permeability and whole-cell ELISA 

respectively. At 24 h post-transfection, cells were exposed to artificial sweetener (100 µM), or vehicle 

control (H2O), in the presence and absence of the positive control LPS (1 µg/ml) for a further 24 h.  

Experiments were then performed as outlined in ‘permeability’ and ‘whole-cell ELISA’.  To confirm 

knockdown of T1R3 or overexpression of claudin 3, at 48 h post-transfection, cells were lysed with 

RIPA buffer, resuspended in Laemmli buffer and subjected to immunoblot analysis.  Immunoblot 

analyses were performed on 10% SDS-PAGEs using a primary antibody specific to T1R3, DYK tag and 

β-actin at a dilution of 1:1000 and secondary antibody dilutions of 1:5000.  



 

ROS assay 

 Caco-2 cells (1 x 104 cells per well) were plated on black-walled 96-well plate for 24 h followed 

by exposure to the cell permeant, fluorogenic dye 2’,7’ –dichlorofluorescin diacetate (DCFDA) (10 µM), 

or DMSO control, for 30 min at 37oC in the dark. DCFDA was then removed and replaced with artificial 

sweeteners (range of concentrations), or vehicle control (H2O), or the positive control LPS (1 µg/ml) 

for 1.5 h. DCFDA fluorescence was measured at 488 nm using a fluorescent plate reader (Victor, Perkin 

Elmer) and measurements were compared to cells cultured in the absence of DCFDA.   

 

Whole cell ELISA 

Caco-2 cells (1 x 104 cells per well) were plated on black-walled 96-well plate for 24 h, followed 

by exposure to artificial sweeteners (range of concentrations), or vehicle control (H2O), or the positive 

control LPS (1 µg/ml) for a further 24 h.  Where stated, cells were first transfected with siRNA or also 

exposed to N-acetyl cysteine (NAC) (1 mM) or the vehicle for NAC (H2O). Cells were then rinsed once 

with DPBS and fixed using 1% paraformaldehyde at room temperature for 10 min. Whole cell ELISA 

was then performed as previously described [31], in non-permeabilised Caco-2 cells, using antibodies 

specific to claudins 2 (ab76032), 3 (ab214487), 4 (ab210796), 7 (ab207300) and 15 (NBP1-59267).  

Antibodies are specific to αα 150 region of claudins [32].  Fluorescent-conjugated secondary 

antibodies were measured at 1 sec exposure time using a florescent plate reader (Victor, Perkin Elmer) 

and measurements from blank wells (no primary antibody) were subtracted to provide the data 

presented. 

 

Epithelial monolayer permeability 

Epithelial monolayer permeability was assessed using the FITC-dextran permeability assay and 

validated with TER (EVOM2; World Precision Instruments, Herts, UK).  For analysis of monolayer 

permeability, Caco-2 cells were plated onto Transwell filters for 24 h, followed by exposure to artificial 

sweeteners (range of concentration), or vehicle control (H2O), or the positive control LPS (1 µg.ml) for 

a further 24 h.  Where stated, cells were first transfected with siRNA or also exposed to NAC (1 mM) 

or vehicle for NAC (H2O).  Permeability was measured by adding FITC-conjugated to 20 kDa dextran 

(FD20) to media in the upper chamber of the Transwell filter to a concentration of 5 µg/µl.  FD20 was 

allowed to equilibrate for 180 sec at 37oC, and a sample (100 µl) of media from the lower chamber 

was collected and analysed at 488 nm using a fluorescent plate reader (Victor, Perkin Elmer).  

Permeability (%) was calculated by fluorescence accumulated in the lower chamber divided by 

fluorescence in the upper chamber, multiplied by 100.  

https://www.novusbio.com/products/claudin-15-antibody_nbp1-59267


 

Cell viability and morphology studies 

Caco-2 cell viability was assessed using the Cell Counting Kit-8 (CCK-8).  Cells were exposed to 

artificial sweeteners, or vehicle control (H2O), for 24 h, followed by incubation with CCK-8 reagent for 

2 h at 37oC.  Absorbance was then assessed at 450 nm using a microplate reader (Tecan Sunrise) and 

viability was calculated as % normalised to vehicle.   

 

Statistical analysis 

The experimental number is presented in the legend for each experiment.  In vitro 

experiments with Caco-2 cells were performed in duplicates.  Data was analysed using GraphPad Prism 

7.0.  For two groups, the variance in data sets was analysed using the Mann-Whitney test followed by 

the T-test.  For three or more groups, variance was assessed by using Bartlett’s test with data sets not 

reaching significance studied by Kruskal-Wallis test followed by Dunn’s test. For all other data sets, 

differences among the means were tested for significance in all experiments by ANOVA with Tukey’s 

range significance difference test.  Significance was reached when p < 0.05. Values are presented as 

mean ± standard error mean (S.E.M.). 

 

RESULTS 

High physiological concentrations of artificial sweeteners decrease viability and increase apoptosis 

of Caco2 cells through the sweet taste receptor (T1R3) 

Artificial sweeteners stimulate the sweet-taste receptors, T1R2 and T1R3, which are G-

protein-coupled-receptors [30].  We and others have demonstrated expression of T1R2 and T1R3 

protein and mRNA in the intestinal epithelium where they have been identified to act as a sensor to 

stimulate glucose absorption and modulate incretin release [33-35].  Given the wide range of 

concentrations of different artificial sweeteners consumed in the diet [23], we sought to understand 

the dose-dependent effect of the commonly consumed artificial sweeteners sucralose, aspartame and 

saccharin on Caco-2 cell viability, apoptosis and cell death.  Caco-2 cell viability was significantly 

decreased by aspartame and saccharin at concentrations ≥1000 µM (Figure 1a).  Interestingly, there 

was a significant increase in cell viability following exposure to 1000 µM sucralose, however, at higher 

concentrations (10,000 µM), the sweeteners decreased cell viability (Figure 1a).  Whilst there are 

limited studies to indicate the concentration of sweeteners found in the intestine, following 

consumption of artificial sweeteners, this range of concentrations (1-10 mM) is potentially achievable 

in the intestine, and thus physiologically-relevant, for members of the general population who 

regularly consume significant amounts of artificially sweetened foods. For example, a single chewing 



gum contains 0.01 mM, one can of soft drink contains up to 2 mM of artificial sweetener and, more 

generally, the main additives in a range of products including diet drinks, sports drinks, snacks and 

confectionary are artificial sweeteners [23]. Given that the acceptable daily intake for these 

sweeteners is high (between 14-40 mg/kg body weight), it is likely that the public can consume high 

quantities of sweetener in the diet to achieve up to 10mM exposure to sweeteners [23].  Artificial 

sweeteners have been established to bind to the sweet taste receptor T1R2 and T1R3; therefore we 

next sought to establish the mRNA expression and cell surface protein levels of T1R2 and T1R3 in Caco-

2 cells. Both mRNA(ratio: 1.48 x 10-6 ± 1.11 x 10-7) and protein (83.84 ± 2.13 r.f.u.)) expression of T1R3 

was identified in untreated Caco-2 cells, however, T1R2 mRNA was not detected in the cells 

(undetected) and only low abundance of the protein was detected at the cell surface (13.69 ± 0.33 

r.f.u.).  We therefore next studied whether artificial sweeteners affected cell viability through T1R3, 

using siRNA knockdown of the sweet taste receptor (63.5 ± 2.7% decrease, p<0.05, n=6 (Figure 1b).  

The significant decrease in cell viability following exposure to sucralose, saccharin and aspartame at 

10,000 µM was abolished by T1R3 knockdown (Figure 1c).  These findings were supported by studies 

with propidium iodide and Annexin V staining in Caco-2 cells exposed to 0 to 1000 µM artificial 

sweeteners, to measure cell death and apoptosis, respectively. A significant increase in cell death was 

observed at 1000 µM saccharin and aspartame (Figure 1d), matched by an increase in apoptosis at 10 

and 100 µM (Figure 1e).  As for cell viability studies, sucralose had no impact on Caco-2 cell death or 

apoptosis at concentrations ≤ 1000 µM (Figure 1d and e). These findings demonstrate that saccharin 

and aspartame induce apoptosis at lower concentrations (up to 100 µM) and cell death at higher 

concentrations (≤1000 µM).  Taken together, these findings indicate that, at high but physiologically-

relevant concentrations in the small intestine, artificial sweeteners sucralose, aspartame and 

saccharin decrease cell viability through binding to the sweet taste receptor, T1R3.  The findings also 

demonstrate a differential effect of aspartame and saccharin versus sucralose on Caco-2 cell apoptosis 

and death. 

 

Low physiological concentrations of artificial sweeteners sucralose and aspartame disrupt the 

intestinal epithelial barrier through the sweet taste receptor 

Given the detrimental effect of high concentrations (≥ 1000 µM) of artificial sweeteners on 

Caco-2 cell viability, we next sought to establish the impact of a lower concentration (100 µM) on 

intestinal barrier function.  The bacterial endotoxin, lipopolysaccharide (LPS), has been demonstrated 

to increase permeability of the intestinal epithelium [36].  Indeed, we demonstrate increased 

epithelial monolayer permeability when using both 1 and 10 µg/ml LPS using FITC-dextran 

permeability assay (% permeability - 1 µg/ml: 185 ± 6.9%, p<0.05 versus vehicle; 10 µg/ml: 213.7 ± 



10.7%, p<0.05 versus vehicle, n=6) and TER measurements (1 µg/ml: -263 ± 9.8 ohms, p<0.05 versus 

vehicle; 10 µg/ml: -304 ± 15.2 ohms, p<0.05 versus vehicle, n=6). Caco-2 cell viability, however, was 

only decreased at 10 µg/ml LPS exposure (% viability - 10 µg/ml: 70 ± 1.5%, p<0.05 versus vehicle, 

n=6)). Therefore 1 µg/ml LPS was used as a positive control for subsequent studies.  Exposure of Caco-

2 cells to the artificial sweeteners sucralose and aspartame significantly increased permeability of the 

epithelial barrier, to a similar level as seen for LPS (Figure 2a). Conversely, saccharin had no effect on 

epithelial barrier integrity (Figure 2a). Interestingly, siRNA knockdown of the sweet taste receptor, 

T1R3, attenuated sucralose- and aspartame-induced permeability, but had no impact on LPS-induced 

leak across the epithelial barrier (Figure 2b). These findings demonstrate the effect of artificial 

sweeteners, sucralose and aspartame, on intestinal epithelial barrier function. 

 

Sucralose and aspartame modulate claudin 3 and 15 expression in intestinal epithelial cells through 

T1R3 

Given the effect of sucralose and aspartame on epithelial barrier function, we next sought to 

establish the mechanisms regulating this process. Claudins are a key component of the tight junction 

complex and regulate epithelial barrier integrity.  Although 26 claudins have been identified[37], in 

keeping with other studies [38,39] we demonstrate expression of claudins 2, 3, 4, 7, 8, 15 and 23 using 

RT-PCR analysis of the small and large intestine of mice (Figure 3a).  From this data we chose the most 

abundant claudins and determined their expression levels in our Caco-2 cell model. Interestingly, 

claudin 4 was most abundantly expressed in Caco-2 cells, while claudin 7 was almost undetectable in 

the cells in comparison to the high levels present in the murine intestine (Figure 3b).   

Claudins regulate permeability when expressed at the tight junction of the epithelial cell 

surface, with claudins 2 and 15 associated with pore-formation and leak, and claudins 3, 4 and 7 linked 

to tight junction sealing and reduced leak [37].  Therefore, we next studied the effect of sucralose and 

aspartame, on the cell surface protein expression of claudins, using LPS as a control to mimic 

breakdown of the epithelial barrier.  Similar to mRNA expression, claudin 2 protein levels were found 

at low levels at the cell surface, with no significant effect of LPS on the protein (Figure 4a).  In contrast, 

LPS exposure resulted in a significant decrease in claudin 3, 4 and 7 and a significant increase in claudin 

15 protein expression at the cell surface (Figure 4b-e).  Interestingly, both sucralose and aspartame 

significantly decreased claudin 3 surface expression and increased claudin 15 surface expression, 

similar to LPS exposure (Figure 4b and e), while the sweeteners had no effect on claudin 4 and 7 

expression at the epithelial cell surface (Figure 4c and d).  To assess the role of the sweet taste 

receptor, T1R3, in regulating the effect of sucralose and aspartame on claudin 3 and 15 expression, 

these experiments were repeated in Caco-2 cells with T1R3 siRNA.  Knockdown of T1R3 levels 



significantly abrogated the sweetener-induced decrease in claudin 3 surface expression but had no 

impact on the increase in claudin 15 levels (Figure 4f and g). Interestingly, the LPS-mediated decrease 

in claudin 3 was unaffected by T1R3 knockdown (Figure 4f).  

Taken together, these data highlight the differential expression of claudins in the murine 

intestine and cultured intestinal epithelial cells, and demonstrates a key role for sucralose and 

aspartame, in regulating expression of claudin 3 and 15 at the epithelial cell surface. The data further 

indicates that sweeteners modulate claudin 3 and 15 expression at the tight junction through T1R3-

dependent and T1R3-independent signalling pathways respectively.  

 

Overexpression of claudin 3 rescues sweetener-induced barrier leak across the intestinal epithelium 

To confirm that sucralose and aspartame regulate barrier leak across the intestinal epithelium 

through claudin 3, our next experiments were performed in Caco-2 cells overexpressing wild-type 

CLDN3-DYK cDNA, or the vector control (DYK).  Western blotting and whole-cell ELISA confirmed 

overexpression of the construct at protein and cell surface levels, respectively (Figure 5a and b).  

Overexpression of claudin 3 had no impact on Caco-2 cell viability (Figure 5c), indicating no negative 

side effects of the transfection on the cells. Interestingly, leak across the intestinal epithelial cell 

monolayer, induced by aspartame and sucralose, was abrogated by claudin 3 overexpression (Figure 

5d). These data demonstrate a key role for claudin 3 in regulating sweetener-induced permeability of 

the intestinal epithelium.  

 

Aspartame, but not sucralose, increases oxidative stress in intestinal epithelial cells linked to barrier 

leak 

Finally, we sought to establish the mechanism through which the sweet taste receptor and 

the artificial sweeteners sucralose and aspartame regulate claudin 3 expression at the cell surface. 

Oxidative stress is an important regulator of claudin 3 localisation in the intestinal epithelium and is 

linked to LPS-induced permeability [40,41], therefore we studied the effect of the artificial 

sweeteners, sucralose and aspartame, on the production of ROS in intestinal epithelial cells, using LPS 

as a positive control.  Exposure of Caco-2 cells to LPS and aspartame, but not sucralose, significantly 

increased ROS production (Figure 6a).  Interestingly, aspartame-induced ROS production was 

attenuated by exposure to the antioxidant NAC (Figure 6b) and knockdown of T1R3 (Figure 6c).  We 

next studied the role that oxidative stress plays on sweetener-induced permeability of the Caco-2 cell 

monolayer and claudin 3 surface expression.  Whilst NAC significantly attenuated aspartame-induced 

monolayer permeability, the antioxidant had no effect on sucralose-mediated leak (Figure 6d). 

Similarly, the reduction in claudin 3 expression at the cell surface, induced by aspartame, was 



abrogated by NAC (Figure 6e), while sucralose-induced claudin 3 downregulation was unaffected by 

NAC (Figure 6e).  Interestingly, aspartame-induced ROS production was significantly attenuated by 

overexpression of wild-type claudin 3 (Figure 6f) indicating a reciprocal relationship between oxidative 

stress and claudin 3.  

Taken together, these data demonstrate that aspartame, but not sucralose, mediates claudin 

3 expression at the tight junction and increases permeability of the epithelium through the production 

of ROS.  The data further demonstrate a role for T1R3 in regulating aspartame-induced ROS 

accumulation in the intestinal epithelial cell.  

 

DISCUSSION 

At present, a large proportion of the population consumes artificial sweeteners, primarily 

aspartame, sucralose and saccharin [23]; however, there is significant controversy regarding the 

impact which artificial sweeteners in the diet exert on health. In particular, the effect of sweeteners 

on both the diversity and function of the gut microbiota, a key factor which regulates intestinal 

permeability, has been previously established with associated metabolic disruption linked to this 

dysbiosis [27,28]. However, whether there is a direct effect of these sweet-taste molecules on 

intestinal permeability is not well-understood. In the present study we demonstrate the effect of the 

artificial sweeteners, saccharin, sucralose and aspartame on intestinal epithelial cell claudin 

expression, barrier integrity and ROS production.  Our studies show the detrimental and differential 

effects of these non-nutritive sweeteners at concentrations that would be typically found in the diet.  

Findings from this study also further our understanding of the mechanisms which regulate 

permeability of the intestinal epithelium and contribute to the controversy regarding the use of 

artificial sweeteners in the diet. 

The intestinal epithelial barrier is vital in maintaining selective permeability between the small 

and large intestine, and circulation. The integrity of this barrier is maintained, in part, through cell 

survival, with an increase in epithelial cell apoptosis resulting in permeability, both in vitro and in vivo 

[42].  Tight junctions are another mechanism which regulates epithelial permeability, in particular the 

localisation of claudins in the tight junction complex.  In this study, we identified claudin 3, 4, 7 and 15 

expression in the murine small and large intestine and in Caco-2 cells, however, only claudin 3 and 15 

are downregulated and upregulated, respectively, in response to sucralose and aspartame treatment.  

Previous studies have demonstrated that dietary components such as gluten alter claudin 3 and 15 

expression [43,44], however, this is the first study to indicate that artificial sweeteners regulate these 

tight junction proteins.  We further demonstrate the importance of claudin 3, rather than claudin 15, 

in regulating sweetener-induced permeability through T1R3.  This may not be surprising given that 



claudin 3 is a barrier-sealing tight junction protein which is down-regulated in settings of intestinal 

permeability, while the pore-forming claudin 15 is associated with mucosal differentiation in the small 

intestine [45,46].  Interestingly, our studies also demonstrate a role for claudin 3 in regulating 

aspartame-induced oxidative stress in the intestinal epithelial cell.  Previous in vivo studies 

demonstrate a role for oxidative stress in dysregulation of claudin 1, 2 and 4 expression at the tight 

junction due to reduced levels of the antioxidant, superoxide dismutase, or increased levels of 

hypoxia-inducible factor-1 [47,48].  In addition, in gastric epithelial cells, claudin 3 was identified to be 

sensitive to oxidative stress, with siRNA knockdown of the tight junction protein exacerbating 

permeability of the monolayer [49].  Our studies indicate T1R3 as a key regulator of claudin 3-

associated oxidative stress and monolayer permeability of the intestinal epithelial barrier.  

Claudin expression is maintained through coordinated cell signalling processes in the 

intestinal epithelial cell.  The shuttling of claudin proteins to the epithelial cell surface, to form the TJ 

complex, is dynamically regulated through intracellular trafficking processes [50].  Our studies 

demonstrate that the artificial sweeteners aspartame and sucralose bind T1R3 to cause reduced cell 

surface expression of claudin 3.  Internalisation of claudin 3, associated with disruption of the TJ, has 

been observed to be caveolin- and flotillin-dependent [51,52].  It is therefore possible that 

downstream T1R3 signalling promotes these trafficking molecules to increase claudin 3 

internalisation, however, further studies are needed to establish this mechanism.  Furthermore, 

phosphorylation of TJ proteins, including claudin 3, by PKCζ has been demonstrated to play a key role 

in maintaining the TJ complex and therefore barrier function in the intestine [14,53].  Whilst the link 

between PKCζ and sweet taste sensing is not yet known, T1R3 stimulation by aspartame and sucralose 

may inhibit this PKC isoform and therefore promote disruption of the TJ.  Finally, β-catenin, FOXO4 

and hepatocyte nuclear factor alpha bind to claudin promoters to regulate expression of the TJ 

proteins, therefore sucralose and aspartame may affect claudin 3 levels by blocking these 

transcription factors to reduce expression in the intestinal epithelium [54-56].  Further studies are 

needed to understand the molecular mechanisms through which sweeteners reduce claudin 3 

expression at the TJ, and the resulting downstream effects on barrier permeability and ROS 

production.  

Expression of the sweet taste receptors, T1R2 and T1R3, has been established in the intestinal 

epithelium [26,33,35].  Similar to O’Brien and Corpe [57], data from the present study demonstrates 

expression of T1R3, but not T1R2, in Caco-2 cells.  Artificial sweeteners have been demonstrated to 

bind to the sweet taste receptor in extra-oral locations to regulate a range of processes including 

glucose transport and insulin secretion [35,58].  In the present study, we demonstrate that the 

artificial sweeteners saccharin and aspartame exert a toxic effect on intestinal epithelial cells at high 



concentrations while sucralose and aspartame increase epithelial permeability, and only aspartame 

causes oxidative stress.  These studies are in contrast to previous findings where saccharin, but not 

aspartame or sucralose, was demonstrated to disrupt epithelial barrier integrity [59]. This difference 

in findings may be due to the short time point of 3.5 hour studied by Santos et al as oppose to the 24 

hour time point assessed in the current studies.  This time-dependent difference in tight junction 

formation and permeability has been observed in other epithelial tissue. In the choroidal plexus 

epithelium, a comparison of acute (3 hour) versus chronic (20 hour) exposure to the phorbol ester 

PMA demonstrates alternate effects on paracellular permeability [60].  This highlights the complex 

and dynamic nature of claudin organisation and barrier function of the epithelium and indicates that 

artificial sweeteners may have different impact on the intestinal epithelium in short and long term 

studies.   

In vivo studies demonstrate that a saccharin-enriched diet causes accumulation of water in 

the stool of rats which may be indicative of leak across the intestinal epithelium [61].  Therefore whilst 

further in vivo studies are needed to demonstrate the direct effect of sucralose, saccharin and 

aspartame on leak across the intestinal epithelium, in vivo studies over a 3-day period match our in 

vitro findings at 24 hours.   However, whilst sucralose and saccharin are resistant to hydrolysis in the 

small intestine, aspartame is rapidly hydrolysed into aspartic acid, methanol and phenylalanine [62-

64].  Aminopeptidase A, the enzyme which is key for aspartame hydrolysis [62], is predominantly 

expressed and active in the mid and distal regions of the small intestine [65].  Proximal sections of the 

small intestine, the duodenum and early jejunum, are therefore likely be exposed to unmetabolized 

aspartame which is able to bind to the sweet taste receptor, T1R3. In contrast, latter regions of the 

small intestine, the late jejunum and ileum, are more likely to be exposed to the hydrolysis products 

of aspartame which do not bind to T1R3.  

Our studies show that T1R3 is key to the observed cellular effects, with knockdown of the 

receptor attenuating the permeability, decreased viability and ROS production induced by 

sweeteners.  While these findings need to be confirmed using an in vivo permeability model to 

establish the physiological relevance of consuming sweeteners at these concentrations, previous 

studies demonstrate that results from Caco-2 cell culture closely correlate with in vivo measurements 

of permeability [42]. The differential effects may be a result of altered intracellular signalling 

downstream of T1R3 for each artificial sweetener.  These differences may be due, in part, to the 

structure of the artificial sweeteners, with the region of ligand binding in T1R3 mediating the signalling 

response. However, further studies are needed to identify the specific characteristics of each 

sweetener, their binding affinity to the sweet taste receptor, T1R3, and the resulting effect on 

intracellular signalling.  



Artificial sweeteners are consumed by the general public at a range of concentrations, 

depending on the perceived sweet taste of the molecule and dietary choices, with one can of soft 

drink containing between 0.5-2 mM of sweetener [23].  A study of new food products launched in the 

USA between 1999 and 2004 shows that sucralose and aspartame are two of the most commonly-

used artificial sweeteners, while saccharin is typically found in food and drinks blended with 

aspartame [23,66].  Our studies establish a detrimental effect of sucralose, saccharin and aspartame 

on cell viability at a concentration of 10 mM which, although high, is physiologically-achievable and 

within the acceptable daily intake given the increasing consumption of these sweeteners in both food 

and drinks [23,67].  Indeed, many studies in the field utilise concentrations up to 10 mM of artificial 

sweeteners (Santos; Mace; Malaisse WJ, 1998, 727, 10).  Interestingly, at the significantly lower 

concentration of sucralose and aspartame (0.1 mM), we observed leak across the intestinal epithelial 

barrier in vitro. These findings indicate that consumption of both low and high amounts of these two 

sweeteners will disrupt the intestinal epithelium.  
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TABLES 

 

Primer Catalogue number 

T1R2 QT01026508 

T2R3 QT00214270 

claudin 2  QT0089481 

claudin 3 QT00201376 

claudin 4 QT00241073 

claudin 7 QT00236061 

claudin 15 QT00202048 

β-actin Forward TCACCCTGAAGTACCCCATC  
Reverse TAGCACAGCCTGGATAGCAA 

 

Table 1: List of primers used for Caco-2 cell studies. Taste receptor and claudin primers were 

purchased from QIAGEN, while the actin primers were purchased from Sigma-Aldrich. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Gene 
Nucleotide 

Accession number 
Forward Primer Reverse Primer Reference 

claudin 1 NM_016674 CCTTCGGGAGCTCAGGTGCG CCGCGTTGGCCATGGCTCTT [68] 

claudin 2 NM_016675 TGGCGTCCAACTGGTGGGCT ACCGCCGTCACAATGCTGGC [68] 

claudin 3 NM_009902 GGGCAGTCTCTGTGCGAGCC CGGACGTCTGTCGCCGGGAA [68] 

claudin 4 BC132376 TGGGGACAGGCAAACCCGGA CTTGCCGGCCGTAAGGAGCC [68] 

claudin 5 NM_013805 GCTCAGTGCACCACCTGCGT GAACCAGCAGAGCGGCACGA [68] 

claudin 6 NM_018777 AGCACTCGCCCCCTCAACCTC CATGGGCAGGGCACAGGACAC [68] 

claudin 7 NM_001193619 CACGCAGAGCACCGGCATGA AGGGCGAGCACCGAGTCGTA Blast 

claudin 8 NM_018778 TCCCTGTCAGCTGGGTTGCCA GCTCGCGCTTTAGGGCCACA [68] 

claudin 9 NM_020293 TCCCAAGTGGCACCTCACGGT CGCGTTCCTCTCTGCTGGCTG [38] 

claudin 10a NM_023878 GTGGCAGCAGGCAAGGCTGA CACAGACGACGCTCGGGTGG Blast 

claudin 10b NM_001160099 CTCCATCTCGGGCTGGGTGC CAACGCCAGCATGGAGGGGA Blast 

claudin 11 NM_008770 TGGTTCCAGCTCGCCAACGC TTACAGCACCTCGGCGGGCA [38] 

claudin 12 NM_001193659 AGGTATTCCCGAGCGGAGCCA CCCGGAGGCTTCAGGGAACCA [38] 

claudin 13 NM_020504 TGACTCGTCCTGGTCCTGCCA GGTCACCCTCCAAACGGGCA [38] 

claudin 14 NM_001165926 GCAGCTGCGGCAAAGGAGTCT ACGGCCGTCTAATGGGTCCCT [38] 

claudin 15 NM_021719 TATGAACTGGGCCCCGCCCT ATCCGAGGTGGCACGGGGTA [38] 

claudin 16 NM_053241 CCACGAACCAGGATGTGCCCG GCGAGGGTCGTGGAGGTCAC [38] 

claudin 17 NM_181490 CTCCAGCGAGAGGGTCAAAG AGCAGCAATATCCGCAGAGC [38] 

claudin 18 NM_001194921 CCTGACACCAGATGACAGCA GGCAACATTTTGGCCAGAGG [38] 

claudin 19 NM_153105 CAGAGCCGGAGAGGGCGAACA TCTGGGCAAGAGGGTTGCTGG [38] 

claudin 20 NM_001101560 GCACTCTAAAATACTCCATTC TGAAGCAGACTCCTCCAGC Blast 

claudin 21  CTGGGACTATTGGGACTTCTG AGGAGACTGGAAAGAGGGTAG [69] 

claudin 22 NM_029383 TTCCGAACGGCAACGCAGGC CCCATCCCAGCAGGGAGAGCA Blast 

claudin 23 NM_027998 CGACGGACAGCATCGGCCTC GGACTTGGGTGGCGGTCGTG Blast 

claudin 24 NM_001111318 GAACGGCCATGCAATCAGTAGGGC GACGCAGGATTTCCAGAGCCCC Blast 

claudin 25 NM_171826 GAGAGGATGGGCGTATGCAG ACTGCTCCAAGATGCTACGG Blast 

claudin 26 NM_029070 GTGCGGGTGGGATCGCGTAA CCCACGCTCCCCGTCTGTTC Blast 

claudin 27 NM_001085535 TGGGTAGCCGGTGCCTCGAA GCAGGCACCTAGCACAGGGG [69] 

β-actin NM_007393 ATATCGCTGCGCTGGTCGTC AGGATGGCGTGAGGGAGAGC Blast 

 

Table 2: List of primers used for murine intestine claudin expression studies.  Primers sequences 

used were either published sequences or designed by Dr Rajagopal. The compiled list was kindly 

supply by Prof. A Yu of the University of Kansas Medical Center. 

 

  



FIGURE LEGENDS 

 

Figure 1: High physiological concentrations of artificial sweeteners decrease viability and increase 

apoptosis of Caco2 cells through the sweet taste receptor (T1R3). Panel a: Caco-2 cell viability was 

measured using the CCK8 assay following 24 hour exposure to the artificial sweeteners sucralose, 

saccharin and aspartame at concentrations ranging from 0.01 to 10,000 µM.  Absorbance was 

normalised to 0 µM control and expressed as percentage viability. n=8. Panel b and c: Caco-2 cell 

viability was measured as for (a) following siRNA knockdown of T1R3 for 24 hours and exposure to 

sucralose, saccharin and aspartame (10 mM) for a further 24 hours.  A representative blot of T1R3 and 

load control actin are shown to confirm siRNA knockdown using 50 µg protein (b). Panel d and e: Caco-

2 cells were collected following exposure to sucralose, saccharin and aspartame at concentrations 

ranging from 0.1 to 1000 µM. for 24 hours and analysed by flow cytometry.  Cell death (d) and 

apoptosis (e) were measured as propidium iodide and annexin V-positive and annexin V-positive cells 

respectively. n=5-6. Data is expressed as mean ± S.E.M. *p<0.05 versus vehicle (0 µM). 

 

Figure 2: Low physiological concentrations of artificial sweeteners sucralose and aspartame disrupt 

the intestinal epithelial barrier through the sweet taste receptor.  Panels a: Permeability of the 

epithelial monolayer was measured, by FITC-dextran assay, following exposure to sucralose, saccharin 

and aspartame (0.1 mM) for 24 hours, using LPS (1 µg/ml) as a positive control. Panel b: Permeability 

of the Caco-2 cell monolayer was measured by FITC-dextran assay following siRNA knockdown of T1R3 

for 24 hours and exposure to sucralose, saccharin and aspartame (0.1 mM) for a further 24 hours.  % 

permeability was calculated normalised to vehicle treatment. n=6. Data is expressed as mean ± S.E.M. 

*p<0.05 versus vehicle (0 µM). 

 

Figure 3: Claudin mRNA expression profile in the intestinal epithelium in vitro and in vivo. Claudin 

mRNA transcripts were profiled in the small and large intestine and in cultured Caco-2 cells.  Panel a:  

Three segments of the murine small intestine; the duodenum (stomach to ligament of Treitz), jejunum 

(ligament of Treitz until mid-small intestine), ileum (remaining half of small intestine until the caecum), 

and two segments of the large intestine; proximal (first half of the colon) and distal colon (second half 

of the colon); were collected for RT-PCR analysis. Panel b: Untreated Caco-2 cells were collected for 

RT-PCR analysis. The relative ratio is calculated as claudin compared to actin mRNA expression levels.  

Data is expressed as mean ± S.E.M of PCR reactions. n=6.   

 



Figure 4: Sucralose and aspartame modulate claudin 3 and 15 expression in intestinal epithelial cells 

through T1R3. Panels a-e: Cell surface expression of claudins 2 (panel a), 3 (panel b), 4 (panel c), 7 

(panel d) and 15 (panel e) protein was determined, with whole-cell indirect ELISA using 

chemiluminescence, in Caco-2 cells exposed to sucralose or aspartame (0.1 mM) or LPS (1 µg/ml) for 

24 hours.  Panels f and g: Cell surface expression of claudins 3 (panel f) and 15 (panel g) was 

determined in Caco-2 cells following siRNA knockdown of T1R3 for 24 hours and exposure to sucralose 

or aspartame (0.1 mM) for a further 24 hours.  n=6. Data is expressed as mean ± S.E.M. *p<0.05 versus 

vehicle (0 µM). 

 

Figure 5: Overexpression of claudin 3 rescues sweetener-induced barrier leak across the intestinal 

epithelium.  Caco-2 cells were transiently transfected with cDNA encoding wild-type claudin 3 (CLDN3-

DYK) or the vector control (DYK), or untransfected (UT) for 48 hour.  Panel a: Total protein levels of 

claudin 3 in cells was measured by Western blot analysis of cell lysates using 50 µg protein. Panel b: 

Cell surface expression of claudin 3 was determined by whole-cell indirect ELISA using 

chemiluminescence in transfected Caco-2 cells.  Panel c: Viability of transfected Caco-2 cells was 

assessed by CCK8 assay.  Absorbance values were normalised to untransfected control and expressed 

as percentage viability.  Panel d: Permeability of the transfected Caco-2 cell monolayer was measured, 

by FITC-dextran assay, following exposure to sucralose and aspartame (0.1 mM) for 24 hours.  % 

permeability was calculated normalised to vehicle treatment. n=6. Data is expressed as mean ± S.E.M. 

*p<0.05 versus untransfected cells or vehicle (0 µM). 

 

Figure 6: Aspartame, but not sucralose, increases oxidative stress in intestinal epithelial cells linked 

to barrier leak.  Panels a-c: ROS production in Caco-2 cells was measured by fluorescence of DCFDA 

following exposure to sucralose or aspartame (0.1 mM) or LPS (1 µg/ml) as a positive control (panel 

a), in the presence and absence of the anti-oxidant N-acetyl cysteine (NAC; 1 mM) (panel b) or 

following siRNA knockdown of T1R3 (panel c).  Panel d:  Permeability of the Caco-2 cell monolayer was 

measured, by FITC-dextran assay, following exposure to sucralose and aspartame (0.1 mM) for 24 

hours in the presence and absence of NAC.  % permeability was calculated normalised to vehicle 

treatment.  Panel e: Cell surface expression of claudin 3 was determined by whole-cell indirect ELISA 

using chemiluminescence in Caco-2 cells exposed to sucralose or aspartame (0.1 mM) in the presence 

and absence of NAC. Panel f: ROS production was measured by fluorescence of DCFDA in Caco-2 cells 

transiently transfected with CLDN3-DYK or control vector, exposed to aspartame (0.1 mM).  % 

permeability was calculated normalised to vehicle treatment. ROS production was calculated as % 



normalised to 0 µM.  n=5-6.  Data is expressed as mean ± S.E.M. *p<0.05 versus vehicle (0 µM); 

#p<0.05 versus vehicle for NAC. 

 

 

 

 


