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Main text 34 

 35 

Land use change (e.g. agriculture, urbanization) is widely recognised to influence 36 

zoonotic disease risk and emergence in humans1,2, but whether this is underpinned by 37 

predictable ecological changes remains unclear3. In particular, it has been hypothesised 38 

that systematic differences in species resilience to human impacts, linked to traits, life 39 

histories and phylogeny, might result in habitat disturbance causing predictable 40 

changes in potential reservoir host diversity and species composition4,5. Here, we 41 

analyse 6801 ecological assemblages and 376 host species worldwide, controlling for 42 

research effort, and show that land use has global and systematic effects on local 43 

zoonotic host communities. Known wildlife hosts of human-shared pathogens and 44 

parasites overall comprise a significantly greater proportion of local species richness 45 

(18%-72% increase) and total abundance (21%-144% increase) in sites under 46 

substantial human use (secondary, agricultural and urban ecosystems) than in nearby 47 

undisturbed habitats. The magnitude of this effect varies taxonomically and is strongest 48 

for rodent, bat and passerine bird zoonotic host species, which may be one factor 49 

underpinning the global importance of these taxa as zoonotic reservoirs. Crucially, we 50 

further show that mammal species that harbor more pathogens overall (either human-51 

shared or non human-shared) are more likely to occur in human-managed ecosystems, 52 

suggesting that these trends may be mediated by ecological or life-history traits that 53 

influence both host status and human-tolerance6,7. Our results suggest that global 54 

changes in mode and intensity of land use are creating growing hazardous interfaces 55 

between people, livestock and wildlife reservoirs of zoonotic disease. 56 

 57 

 Anthropogenic environmental change impacts many dimensions of human health and 58 

wellbeing, including the incidence and emergence of zoonotic and vector-borne diseases1. 59 

Although large-scale research into environmental drivers of disease has mostly focused on 60 

climate, there is growing consensus that land use change (conversion of natural habitats to 61 

agricultural, urban or otherwise anthropogenic ecosystems) is a globally-significant mediator 62 

of human infection risk and disease emergence2,4. Land use change directly and indirectly 63 

drives biodiversity loss, turnover and homogenisation (including through invasions and rare 64 

species losses)8,9, modifies landscape structure in ways that modulate epidemiological 65 

processes (e.g. fragmentation10, resource provisioning11) and can increase human-wildlife 66 
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contact (e.g. via agricultural practices or hunting)1. These processes interact to influence 67 

transmission dynamics in reservoir and vector communities and ultimately spillover risk to 68 

humans12,13, with land use change implicated in driving both endemic (e.g. trypanosomiasis14, 69 

malaria15) and epidemic (e.g. Nipah16, West Nile17) zoonoses. However, the complexity of 70 

these systems (Extended Data Fig. 1) has made it difficult to identify whether land use has 71 

consistent effects on the ecological factors underpinning zoonotic disease risk2, a critical 72 

knowledge gap given ongoing global land change trends18. 73 

Although there is broad evidence for regulatory effects of local species diversity on 74 

pathogen transmission19, such effects are not universal: higher disease risk in depauperate 75 

assemblages has been observed for some disease systems (e.g. Borrelia20, West Nile17, 76 

Ribeiroia7) but not others. One ecological factor underlying these inconsistencies may be 77 

differences in host species sensitivity to human pressures5. It is often proposed that more 78 

effective zoonotic host species might be generally more likely to persist in disturbed 79 

ecosystems, since certain trait profiles (e.g. ‘fast’ life-histories, higher population densities) 80 

correlate to both reservoir status and reduced extirpation risk in several vertebrate taxa21,22. 81 

Alternatively, any such tendencies might be taxonomically or geographically idiosyncratic: 82 

for example, mammals that are more closely phylogenetically-related to humans are more 83 

likely to be zoonotic reservoirs23, but may also be highly variable in their sensitivity to human 84 

impacts21. Reservoir host responses to disturbance have been investigated in certain taxa (e.g. 85 

primates24) and disease systems14,20, but to date there has been no comprehensive analysis of 86 

the effects of land use on zoonotic host diversity and species composition. 87 

 Here, we use a global dataset of 6801 ecological assemblages derived from the 88 

Projecting Responses of Ecological Diversity in Changing Terrestrial Systems (PREDICTS) 89 

biodiversity database25, to test whether land use has systematic effects on the zoonotic 90 

potential of wildlife communities. We identified records of wildlife hosts of known human 91 

pathogens and endoparasites (henceforth ‘pathogens’) within PREDICTS using a 92 

comprehensive host-pathogen associations database, and classified species as zoonotic hosts 93 

(henceforth ‘hosts’) based on evidence of association with at least one human-shared 94 

pathogen (Methods). PREDICTS compiles >3.2 million species records from 666 published 95 

studies that sampled biodiversity across land use gradients using consistent protocols, 96 

enabling global comparison of local assemblages in primary vegetation (minimally-disturbed 97 

baseline) to nearby secondary (recovering from past disturbance), managed (cropland, 98 

pasture, plantation) and urban sites, of varying use intensities (here, minimal or substantial-99 

use)25. We identified records of 376 host species in a dataset of 6801 survey sites from 184 100 
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studies across 6 continents, with a taxonomic distribution broadly representative of known 101 

zoonotic host diversity (Figure 1, Supp. Tables 1-2; Methods). We compared host responses 102 

to land use to those of all other species at the same locations (‘non-hosts’, approximating the 103 

response of background biodiversity; n=6512 species), using Bayesian mixed-effects models 104 

to control for study methods and sampling design (Methods). Pathogen detection is sensitive 105 

to research effort, such that some poorly studied species might be misclassified as non-hosts. 106 

We account for this uncertainty in our models using a bootstrap approach, with each iteration 107 

transitioning a proportion of non-host species to host status, with species-level transition rates 108 

determined by both publication effort and taxonomic order (Supp. Methods 1, Extended Data 109 

Fig. 2). All parameter estimates are obtained across each full bootstrap ensemble (Methods).   110 

We first estimated the effects of land use type and intensity on two community 111 

metrics: site-level host species richness (number of host species; related to potential pathogen 112 

richness) and host total abundance (total number of host individuals; a more 113 

epidemiologically-relevant metric related to opportunities for transmission)26. Both host 114 

richness and total abundance either persist or increase in response to land use, against a 115 

background of consistent declines in all other (non-host) species in human-dominated 116 

habitats (Figure 2a-b). Together these changes lead to hosts comprising an increasing 117 

proportion of ecological assemblages in secondary, managed and urban land (Figure 2c-d, 118 

Supp. Tables 3-5). Notably, land use intensity has clear positive effects on community 119 

zoonotic potential both within and between land use types, with largest increases in 120 

substantial-use secondary and managed (posterior median: +18-21% host proportion richness, 121 

+21-26% proportion abundance) and urban sites (+62-72% proportion richness, +136-144% 122 

proportion abundance; but with higher uncertainty due to sparser sampling). These results are 123 

robust to testing for sensitivity to random study-level variability (Extended Data Fig. 3a), 124 

geographical biases in data coverage25 (Extended Data Fig. 3b), and strictness of host status 125 

definition (Extended Data Fig. 4). The last of these is crucial to understanding disease risk, 126 

since species capable of being infected by a given pathogen may not contribute substantially 127 

to transmission dynamics or zoonotic spillover risk. We therefore repeated analyses for 128 

mammals only (the major reservoirs of zoonoses globally) with reservoir status strictly-129 

defined as an association with at least one zoonotic agent (aetiologic agent of a specific 130 

human disease with a known animal reservoir), based on pathogen detection, isolation or 131 

confirmed reservoir status (143 host species, 2026 sites, 63 studies). Overall trends remain 132 

consistent, although with notably stronger effects on host proportion of total abundance (+42-133 

52% in secondary and managed land), and weaker effects on host richness that may reflect 134 
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underlying variability in responses between mammal taxa (Extended Data Fig. 4). 135 

 To examine the possibility of such taxonomic variability in host responses to land use, 136 

we analysed mean land use effects on species-level occurrence and abundance of zoonotic 137 

host (strictly-defined) and non-host species, for several mammalian (Carnivora, 138 

Cetartiodactyla, Chiroptera, Primates, Rodentia) and avian orders (Passeriformes, 139 

Psittaciformes) that are well-sampled in PREDICTS and harbour the majority of known 140 

zoonoses (Methods). Within most orders, non-host species tend to decline more strongly in 141 

response to land disturbance than host species, but with substantial between-order variation in 142 

the direction and clarity of effects (Figure 3, Extended Data 5, Supp. Table 6). Notably, 143 

within passerine birds, bats and rodents, hosts and non-hosts show clear divergent responses 144 

to land use, with host species abundances on average increasing (+14-96% Passeriformes, 145 

+45% Chiroptera, +52% Rodentia) while non-host abundances decline (-28-43% 146 

Passeriformes, -13% Chiroptera, -53% Rodentia) in human-dominated relative to primary 147 

sites (Figure 3). Although such a tendency has been observed in some disease systems, our 148 

results suggest this is a more general phenomenon in these taxa, which may contribute to 149 

numerous documented links between anthropogenic ecosystems and bat-, rodent- and bird-150 

borne emerging infections (e.g. corona-, henipa-, arena- and flaviviruses, Borrelia and 151 

Leptospira spp.)16,17,20. In contrast, primate and carnivore host responses are not clearly 152 

distinguishable from overall species declines in these orders, consistent with past studies 153 

showing no consistent links between land disturbance and disease in primates24 and 154 

highlighting the importance of ecotonal or edge habitats as human-primate epidemiological 155 

interfaces15 (although sparser urban sampling means that urban-adapted primates, such as 156 

macaques, are likely underrepresented). 157 

 The differing responses of host and non-host species may be mediated by covariance 158 

between traits influencing both host status and human-tolerance27, but could also reflect 159 

histories of human-wildlife contact and coevolution of shared pathogens12. If the former is the 160 

case we hypothesise that harbouring a higher number of pathogens overall (richness of either 161 

zoonotic or non-zoonotic pathogens; a metric often correlated to species traits28), would be 162 

associated with more positive species responses to land use. We tested this across all 163 

mammals in our dataset (due to more complete pathogen data availability than for other taxa; 164 

546 species, 1950 sites), here controlling for species-level differences in research effort by 165 

analysing residual pathogen richness not explained by publication effort (Methods, Extended 166 

Data Fig. 6). We find that pathogen richness is associated with increasing species probability 167 

of occurrence in managed sites but not in primary habitat, and that this result is consistent for 168 
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either human-shared or non-human-shared pathogens (no documented infection of either 169 

people or domestic animals; Extended Data Fig. 7, Supp. Table 7). This suggests that the net 170 

increase in zoonotic host diversity in disturbed sites is at least partly trait-mediated; in 171 

particular, species traits associated with a faster pace-of-life are often correlated both with 172 

reservoir status and infection outcomes6,27 (potentially owing to life-history trade-offs 173 

between reproductive rate and immune investment29) and with population resilience to 174 

anthropogenic pressures21. A trait-mediated explanation is also supported by our finding that 175 

differential host and non-host species responses to land use are most clearly detected when 176 

comparing across large clades with a wide diversity of life-histories, such as rodents, 177 

passerines and, notably, mammals overall (Extended Data Fig. 5). In contrast, generally 178 

longer-lived, large-bodied clades (e.g. primates, carnivores) show more idiosyncratic or 179 

negative responses to landscape disturbance (Figure 3). 180 

 Overall, our results indicate that the homogenising impacts of land use on biodiversity 181 

globally9 have produced systematic changes to local zoonotic host communities, which may 182 

be one factor underpinning links between human-disturbed ecosystems and disease 183 

emergence. By leveraging site-level survey data, our analyses reflect community changes at 184 

the epidemiologically-relevant local landscape scale22, negating the need to ignore 185 

community interactions or generalise ecological processes to coarser spatial scales (a typical 186 

limitation of global studies that can confound or mask biodiversity-disease relationships3). 187 

Our results reflect potential zoonotic hazard, since proximity to reservoir hosts is not 188 

sufficient for spillover30, and emergent disease risk will depend on contextual factors (e.g. 189 

pathogen prevalence, intermediate host/vector populations, landscape structure, 190 

socioeconomics) that may synergistically or antagonistically affect transmission dynamics 191 

and exposure rates12. Nonetheless, land use also predictably impacts other factors that can 192 

amplify within- and cross-species transmission31 (e.g. resource provisioning11, vector 193 

diversity32), and increases potential for human-wildlife contact13: for example, human 194 

populations are consistently higher at disturbed sites in our dataset (Extended Data Fig. 8). 195 

Global expansion of agricultural and urban land forecast for the coming decades, much of 196 

which is expected to occur in low-and middle-income countries with existing vulnerabilities 197 

to natural hazards18, thus have the potential to create growing hazardous interfaces for 198 

zoonotic pathogen exposure. In particular, the large effect sizes but sparser data availability 199 

for urban ecosystems (especially for mammals; Extended Data Fig. 4) highlight a key 200 

knowledge gap for anticipating urbanisation effects on public health and biodiversity. Our 201 

findings strongly support calls to enhance proactive human and animal surveillance within 202 
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agricultural, pastoral and urbanising ecosystems33,34, and highlight the need to consider 203 

disease-related health costs in land use and conservation planning.   204 
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Figure legends 336 

 337 

Figure 1: Combined ecological communities and zoonotic host species dataset. Map 338 

points show the geographical locations of surveyed assemblages (n=6801 sites), with 339 

mammal survey locations in black and all other sites in red, and countries containing sites 340 

shaded in blue. Inset chart shows the taxonomic distribution of hosts of human-shared 341 

pathogens (birds, invertebrates, mammals, reptiles and amphibians; see Methods). Boxplots 342 

and points show, for each study, host species richness as a percentage of the total per-study 343 

sampled richness, split across temperate and tropical biomes (n=184 studies; boxes show 344 

median and interquartile range, whiskers show values within 1.5*IQR from quartiles).  345 

  346 

Figure 2: Effects of land use on site-level host species richness and total abundance. 347 

Points, wide and narrow error bars show modelled percentage difference in diversity metrics 348 

(posterior marginal median, 67% and 95% quantile ranges respectively, across 1000 349 

bootstrap models) relative to a baseline of primary land under minimal use (dashed line) 350 

(n=6801 sites: primary (1423 and 1457 for minimal and substantial use, respectively), 351 

secondary (1044, 629), managed (565, 1314), urban (136, 233)). Models are of species 352 

richness (A) and total abundance (B) of host species and of all other (non-host) species, and 353 

of hosts as a proportion of total site-level richness and abundance (C-D). Point shape denotes 354 

land use intensity (minimal or substantial) and colour denotes host (brown) or non-host 355 

(green). All posterior estimates were calculated across an ensemble of 1000 bootstrapped 356 

models, each with a proportion of non-hosts probabilistically transitioned to host status 357 

(median 121, range 90–150; Extended Data Fig. 2) to account for variability in species-level 358 

research effort (Methods, Supp. Methods 1). Models also included fixed effects for human 359 

population density and random effects for study methods and biome (Methods). Parameter 360 

estimates represent averaged effect sizes across multiple studies with differing survey 361 

methods and taxonomic focus, so do not have an absolute numerical interpretation. 362 

 363 

Figure 3: Effects of land use on species abundance of mammalian and avian zoonotic 364 

hosts and non-hosts. Points, wide and narrow error bars show average difference in species 365 

abundance (posterior median, 67% and 95% quantile ranges respectively, across 500 366 

bootstrap models to account for host status uncertainty) in secondary (Sec.), managed and 367 

urban sites relative to a primary land baseline (dashed line). Differences are estimated across 368 
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all host (brown) and non-host (green) species in each mammalian or avian order. For 369 

mammals, zoonotic host status was defined strictly (direct pathogen detection, isolation or 370 

confirmed reservoir status), and urban sites were excluded owing to sparse urban sampling 371 

(only 2 studies; additionally, no non-host primates were recorded in managed land, and urban 372 

95% quantile range for Psittaciformes is not shown due to high uncertainty). Abundance 373 

differences were predicted using a hurdle model-based approach to account for zero-inflation 374 

(combining separately-fitted occurrence and zero-truncated abundance models; see Extended 375 

Data Fig. 5, Methods). The inset table show per-order numbers of species in the dataset 376 

(between 8% and 35% of total described species in each order), known zoonotic hosts (prior 377 

to bootstrap), and sampled sites. Silhouettes are from PhyloPic (http://phylopic.org/). 378 

 379 
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Methods 402 

We combined a global database of ecological assemblages (Projecting Responses of 403 

Ecological Diversity In Changing Terrestrial Systems, PREDICTS)25 with data on host-404 

pathogen and host-parasite associations, to create a global, spatially-explicit dataset of local 405 

zoonotic host diversity. We define pathogens and parasites (henceforth ‘pathogens’) as 406 

including bacteria, viruses, protozoa, helminths and fungi (excluding ectoparasites). 407 

PREDICTS contains species records compiled from 666 published studies that sampled local 408 

biodiversity across land use type and intensity gradients, allowing global space-for-time 409 

analysis of land use effects on local species assemblages (i.e. comparison between sites with 410 

natural vegetation considered to be a baseline). We analysed relative differences in wildlife 411 

host community metrics (zoonotic host species richness and abundance) between undisturbed 412 

(primary) land and nearby sites under varying degrees of anthropogenic disturbance. We 413 

subsequently conducted further analyses to examine how host species responses to land use 414 

vary across different mammalian and avian orders, and to test whether mammal pathogen 415 

richness (including both human and non-human pathogens) covaries with tolerance to land 416 

use.  417 

 418 

Datasets 419 

Ecological community and land use data. Each of the >3.2 million records in PREDICTS is a 420 

per-species, per-site measure of either occurrence (including absences) or abundance, 421 

alongside metadata on site location, land use type and use intensity. The database provides as 422 

representative a sample as possible of local biodiversity responses to human pressure, 423 

containing 47,000 species in a taxonomic distribution broadly proportional to the numbers of 424 

described species in major terrestrial taxonomic groups25. We first pre-processed PREDICTS 425 

following previous studies8: records collected during multiple sampling events at one survey 426 

site (e.g. multiple transects) were combined into a single site record, and for studies whose 427 

methods were sensitive to sampling effort (e.g. area sampled), species abundances were 428 

adjusted to standardise sampling effort across all sites within each study, by assuming a linear 429 

relationship between sampling effort and recorded abundance measures (both following 430 

ref.8). Our analyses of species occurrence and richness are therefore based on discrete count 431 

data, whereas abundances are pseudo-continuous (counts adjusted for survey effort). Due to 432 

the multi-source structure of PREDICTS (multiple studies with differing methods and scope), 433 
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the absolute species richness and abundance measures are non-comparable between studies25, 434 

so our analyses necessarily measure relative differences across land use classes. 435 

 436 

Host-pathogen association data. We compiled animal host-pathogen associations from 437 

several source databases, to provide as comprehensive a dataset as possible of zoonotic host 438 

species and their pathogens: the Enhanced Infectious Diseases (EID2) database35; the Global 439 

Mammal Parasite Database v2.0 (GMPD2) which collates records of parasites of 440 

cetartiodactyls, carnivores and primates36; Plourde et al.’s reservoir hosts database37 ; Olival 441 

et al.’s mammal-virus associations database23; and Han et al.’s rodent zoonotic reservoirs 442 

database38 augmented with pathogen data from the Global Infectious Disease and 443 

Epidemiology Network (GIDEON) (Supp. Table 8). We harmonised species names across all 444 

databases, excluding instances where either hosts or pathogens could not be classified to 445 

species level. To prevent erroneous matches due to misspelling or taxonomic revision, all 446 

host species synonyms were accessed from Catalogue Of Life using ‘taxize’ v.0.8.939. 447 

Combined, the dataset contained 20,382 associations between 3883 animal host species and 448 

5694 pathogen species. 449 

Each source database applies different methods and taxonomic scope. EID2 defines 450 

associations broadly, based on evidence of a cargo species being found in association with a 451 

carrier (host) species, rather than strict evidence of a pathogenic relationship or reservoir 452 

status35. The other 4 databases were developed using targeted searches of literature and/or 453 

surveillance reports, focus mainly on mammals, and provide more specific information on 454 

strength of evidence for host status (either serology, pathogen detection/isolation, and/or 455 

evidence of acting as reservoir for cross-species transmission). We therefore harmonised 456 

definitions of host-pathogen associations across the full combined database. Across all animal 457 

taxa we broadly defined associations based on any documented evidence (cargo-carrier or 458 

stronger, i.e. including all datasets). Additionally, for mammals only (due to more 459 

comprehensive pathogen data availability), we were able to define two further tiers based on 460 

progressively stronger evidence: firstly, serological or stronger evidence of infection, and 461 

secondly, either direct pathogen detection, isolation or reservoir status. Across all pathogens, 462 

we also harmonised definitions of zoonotic status. Each pathogen was classified as human-463 

shared if recorded as infecting humans within either one of the source host-pathogen 464 

databases or an external human pathogens list collated from multiple sources (Supp. Table 8). 465 

Because the source datasets contain some organisms that infect humans and animals rarely or 466 

opportunistically, or that may not strictly be zoonotic (e.g. pathogens with an environmental 467 
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or anthroponotic reservoir), pathogens were also more specifically defined as zoonotic agents 468 

(aetiologic agent of a specific human disease with a known animal reservoir) if classed as 469 

such in GIDEON, Wertheim et al.’s Atlas of Human Infectious Diseases40 or Taylor et al.’s 470 

human pathogens database41.  471 

 472 

Combined datasets of hosts and land use. We combined PREDICTS with the compiled host-473 

pathogen database by matching records by species binomial, and each species record was 474 

given a binary classification of ‘host’ or ‘non-host’ of human-shared pathogens. We adopted 475 

a two-tiered definition of host status, to examine the impact of making more or less 476 

conservative assumptions about the likelihood of a species contributing to pathogen 477 

transmission dynamics and spillover to humans. Firstly, we defined host status broadly: as 478 

any species with an association with at least one human-shared pathogen (as defined above), 479 

which for mammals must be based on serological or stronger evidence of infection 480 

(henceforth referred to as the ‘full dataset’). 177 studies in PREDICTS contained host species 481 

matches (190 mammals, 146 birds, 1 reptile, 2 amphibians, 37 invertebrates, listed in Supp. 482 

Table 1). Secondly, since mammals are the predominant reservoirs of both endemic and 483 

emerging zoonotic infections due to their phylogenetic proximity to humans42,43, we also 484 

defined mammal species as zoonotic reservoir hosts based on stricter criteria: an association 485 

with at least one zoonotic agent (as defined above) which must be based on direct pathogen 486 

detection, isolation or confirmed reservoir status (henceforth referred to as ‘mammal 487 

reservoirs subset’). Within PREDICTS, 63 studies contained host matches based on this 488 

narrower definition (143 mammal reservoir hosts; Extended Fig. Data 4, Supp. Table 1). 489 

Prior to analysis, we filtered PREDICTS to include only studies that sampled taxa 490 

relevant to zoonotic transmission, since the full database includes many studies with a 491 

different taxonomic scope (e.g. plants or non-vector invertebrates)25. We retained all studies 492 

that sampled any mammal or bird species, as these groups are the main reservoir hosts of 493 

zoonoses. For all other taxa, given that zoonoses and their hosts occur globally, we made the 494 

more conservative assumption that studies with no sampled hosts represent false absences 495 

(i.e. resulting from study aims and methodology) rather than true absences (i.e. no hosts are 496 

present), and only included studies with at least one host match in one sampled site in 497 

community models. This resulted in a final dataset of 530,161 records from 6801 sites in 184 498 

studies (full dataset) and 51,801 records from 2066 sites within 66 studies (mammal 499 

reservoirs dataset; including mammal studies only) (Figure 1). Some host records were of 500 

arthropod vectors, but as these are a small proportion of records (around 2%; Supp. Table 1) 501 
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we generically refer to all matched species as 'hosts'. By matching on species binomial we 502 

assume that pathogens are equally likely to occur anywhere within their hosts’ geographical 503 

range; evidence from terrestrial mammal orders suggests that this assumption is reasonable 504 

globally44,45. Although overlooking geographical variation in pathogen occurrence, pathogen 505 

geographical distributions are poorly understood and subject to change, making it difficult to 506 

define geographical constraints on host status.  507 

We aggregated land use classes in PREDICTS to ensure a more even distribution of 508 

sampled sites. We assigned each survey site’s land use type to one of four categories: primary 509 

vegetation, secondary vegetation, managed ecosystems (plantation forest, pasture and 510 

cropland) and urban. Land use intensity was assigned to either minimal, substantial 511 

(combining light and intense use), or cannot decide (the latter were excluded from models). 512 

Original use intensity definitions8 reflect gradation of potential human impacts within land 513 

use types; for example urban sites range from minimal (villages, large managed green spaces) 514 

to high intensity (impervious with few green areas). Land use categories simplify complex 515 

landscape processes, so our aggregation might mask subtle differences in disturbance mode 516 

and intensity. However, although some local studies have found differences in zoonotic host 517 

abundance and pathogen prevalence between different management regimes46, we had no a 518 

priori reason to hypothesise differences between managed ecosystem types globally. Study 519 

regions were categorised as temperate or tropical, following ref.47.  520 

 521 

Statistical analysis 522 

Accounting for species-level differences in pathogen discovery effort. The probability of 523 

identifying zoonotic pathogens within a species is strongly influenced by effort, meaning that 524 

poorly-studied species in our data could be falsely classified as non-hosts. Since research 525 

effort might also positively correlate with species’ abundance in anthropogenic landscapes, 526 

accounting for this uncertainty is crucial. In statistical models we therefore consider host 527 

status (and derived metrics such as host richness) to be an uncertain variable, by assuming 528 

that all known hosts in our dataset are true hosts (true positives), and that non-hosts comprise 529 

a mixture of true non-hosts and an unknown number of misclassified species. We propagate 530 

this uncertainty into all model estimates using a bootstrapping approach, in which each 531 

iteration transitions a proportion of non-host species to host status with a probability 532 

influenced by research effort and taxonomic group (with poorly-researched species in 533 

taxonomic orders known to host more zoonoses having the highest transition rates; Extended 534 

Data Fig. 2, Supp. Methods 1).  535 
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We estimate disease-related research effort using species publication counts extracted 536 

from the PubMed biomedical database (1950–2018) for every species within our dataset 537 

(n=7285; Extended Data Fig. 2c), following other studies in disease macroecology in which 538 

publication effort often explains much of the variation in response variables23,48. Across 100 539 

randomly-sampled mammal species from PREDICTS, PubMed publication counts were 540 

highly correlated to those from Web of Science and Google Scholar (both Pearson r = 0.93), 541 

indicating robustness to choice of publications database. Using publication counts directly to 542 

index species misclassification probability is problematic, since the relationship between 543 

publication effort and host status is both nonlinear (e.g. due to positive feedback, where 544 

pathogen detection drives increasing research towards a species or taxon) and taxon-specific 545 

(e.g. because some taxa are more intensely targeted for surveillance). We therefore calculate 546 

a trait-free approximation of false classification probability for non-host species (detailed in 547 

Supp. Methods 1) by assuming, first, that a species’ relative likelihood of being a zoonotic 548 

host is proportional to the number of known hosts in the same taxonomic order (i.e. a poorly-549 

studied primate is more likely to be a zoonotic host than a poorly-studied moth), and second, 550 

that confidence in non-host status accrues and saturates with increasing publication effort 551 

(following the cumulative curve of publication effort for known hosts within the same order; 552 

Extended Data Fig. 2a-b). Therefore, under-researched mammals, followed by birds, have the 553 

highest estimated false classification probabilities, but with substantial variation among 554 

mammalian and avian orders (Extended Data Fig. 2d-e). 555 

Since data constraints prevent direct observation of how host detections accrue with 556 

discovery effort, our trait-free approximation leverages current knowledge of the distribution 557 

of zoonotic hosts and publication effort across broad taxonomic groups, and thus might over- 558 

or underestimate absolute host potential in any particular species. For example, because 559 

species traits and research effort are autocorrelated, our assumption that all non-host species 560 

per taxonomic group are equally likely to host zoonoses may conservatively overestimate 561 

host potential in less-researched species: many ecological traits that make species more likely 562 

to be poorly-studied (e.g. lower population densities, smaller range sizes49,50) would often be 563 

expected to reduce their relative importance in multi-host pathogen systems51. Nonetheless, 564 

our approach is sufficient to address our study’s main confounding factor, i.e. the potential 565 

for biased distribution of research across land use types and biomes globally.  566 

 567 

Community models of host species richness and total abundance. All modelling was 568 

conducted using mixed-effects regression in a Bayesian inference framework (Integrated 569 
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Nested Laplace Approximation (INLA)52. We aggregated ecological communities data to 570 

site-level by calculating the per-site species richness (number of species) and total abundance 571 

(total number of sampled individuals, adjusted for survey effort) of host and non-host species. 572 

Land use type and intensity were combined into a categorical variable with 8 factor levels 573 

(type+intensity, for 4 types and 2 intensity levels). During model selection we considered 574 

fixed effects for land use and log-transformed 2015 human population density extracted from 575 

CIESIN (because synanthropic species diversity might respond to changes in human 576 

population density independently of land use; Extended Data Fig. 8). All models included 577 

random intercept for study to account for between-study variation, and we additionally 578 

considered random intercepts for spatial block within study (to account for the local spatial 579 

arrangement of sites), site ID (to account for overdispersion caused by site-level differences)8 580 

and biome (as defined in PREDICTS).  581 

We modelled the effects of land use on the richness and total abundance of host and 582 

non-host species separately, using a Poisson likelihood (log-link) to model species richness 583 

(discrete counts). Since abundance data were continuous following adjustment for survey 584 

effort, we followed other PREDICTS studies8 and modelled log-transformed abundance with 585 

a Gaussian likelihood; log-transformation both reduces overdispersion and harmonises 586 

interpretation of the fixed effects with the species richness models (i.e. both measure relative 587 

changes in geometric mean diversity from primary land under minimal use). We also 588 

modelled the effects of land use on host richness and abundance as a proportion of overall 589 

site-level sampled species richness or abundance, by including log total species richness as an 590 

offset in Poisson models, and log total abundance as a continuous fixed effect (effectively an 591 

offset) in abundance models.  592 

For each response variable we first selected among candidate model structures, 593 

comparing all combinations of random effects with all fixed effects included, and 594 

subsequently comparing all possible fixed effects combinations using the best-fitting random 595 

effects structure. In all cases we selected among models using the Bayesian pointwise 596 

diagnostic metric Watanabe-Akaike Information Criterion (WAIC)53 (Supp. Table 3-4). The 597 

final models were subsequently checked for fit and adherence to model assumptions, 598 

including testing for spatial autocorrelation in residuals (Extended Data Fig. 9). We then 599 

bootstrapped each final model for 1000 iterations to incorporate research effort. For each 600 

iteration, each non-host species was randomly transitioned to host status as a Bernoulli trial 601 

with success probability p equal to estimated false negative probability (as described above; 602 

Supp. Methods 1, Extended Data Fig. 2), all community response variables were recalculated, 603 
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the model was fitted and 2500 samples were drawn from the approximated joint posterior 604 

distribution. We then calculated posterior marginal parameter estimates (median and quantile 605 

ranges) across all samples from the bootstrap ensemble (Figure 2, Supp. Table 5). Between 606 

90 and 150 non-host species (median 121) were selected to transition per iteration, increasing 607 

the total number of hosts by 24–40% (median 32%; Extended Data Fig. 2e). Because study 608 

coverage is heterogeneous globally, we subjected the full model ensembles to random and 609 

geographical cross-validation (Extended Data Fig. 3). We also conducted the same modelling 610 

procedure using only the strictly-defined mammal reservoirs subset (Extended Data Fig. 4). 611 

  612 

Species-level estimates of land use effects on mammalian and avian zoonotic hosts. Because 613 

aggregate community diversity metrics may mask important variation between taxonomic 614 

groups, we separately modelled the average effects of land use type on the occupancy and 615 

abundance of all hosts and non-hosts of zoonotic agents within five mammalian (Carnivora, 616 

Cetartiodactyla, Chiroptera, Primates, Rodentia) and two avian orders (Passeriformes, 617 

Psittaciformes). For mammals we defined zoonotic host status strictly (pathogen detection, 618 

isolation or confirmed reservoir status, as described above) and excluded urban sites due to 619 

sparse urban sampling for mammals in PREDICTS (only 2 studies). All models included an 620 

interaction term between land use type and zoonotic host status (host or non-host) and 621 

random intercepts for each species-study combination and for taxonomic family (to account 622 

for gross phylogenetic differences). We again accounted for variable research effort per 623 

species as described above, fitting 500 models per order, and calculating posterior marginal 624 

estimates across samples drawn from the whole ensemble (Supp. Table 6). 625 

Abundance data were overdispersed and zero-inflated due to the high proportion of 626 

absence records (i.e. sites where species were not found despite being sampled for). We 627 

therefore used a hurdle model-based approach54 to estimate effects of land use on abundance, 628 

by separately fitting occurrence models (presence-absence; binomial likelihood, logit-link) to 629 

the complete dataset for each mammalian order, and zero-truncated abundance models (ZTA, 630 

log-abundance with Gaussian likelihood) to the dataset with absences removed (Extended 631 

Data Fig. 5). Mean differences in abundance across land uses are then calculated as the 632 

product of the proportional differences in predicted occurrence probability and ZTA relative 633 

to primary land54. We used posterior samples from paired occurrence (transformed to 634 

probability scale) and ZTA models (transformed to linear scale) to calculate a distribution of 635 

hurdle predictions separately for each bootstrap iteration (i.e. with the same non-hosts 636 

reclassified). We then summarised predicted changes per land use type across samples from 637 
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the entire bootstrap ensemble (median and quantile ranges; Figure 3). Due to the complex 638 

nested structure of PREDICTS, our hurdle predictions assume independence between 639 

occurrence and ZTA processes54, so do not formally account for the possibility of covariance 640 

at random effects (species or family) level. For clarity, we therefore show the contributions of 641 

each separate model for each order (Extended Data Fig. 5, Supp. Table 6). In most orders, 642 

and when fitting models across all mammal species, land use often appears to act most 643 

consistently on species occurrence, with more variable effects on ZTA, suggesting that the 644 

independence assumption may be broadly reasonable at this global and cross-taxa scale. 645 

 646 

Relationship between pathogen richness and responses to land use across mammal species. 647 

Pathogen richness (the number of pathogens hosted by a species) is a widely-analysed trait in 648 

disease macroecology, with both overall pathogen richness, shared pathogen richness (i.e. 649 

number of pathogens shared between focal species) and zoonotic pathogen richness often 650 

correlated to species traits such as intrinsic population density, life history strategy and 651 

geographic range size6,23,28,55. If human-disturbed landscapes systematically select for species 652 

trait profiles that facilitate host status, we might expect to observe positive responses to land 653 

use in species with higher richness of either human-shared or non human-shared pathogens24. 654 

We tested this hypothesis for mammals, due to availability of much more comprehensive 655 

pathogen data than for other taxa, by analysing the relationship between species pathogen 656 

richness and probability of occurrence across three land use types (primary, secondary and 657 

managed; urban sites excluded due to limited sampling). 658 

 Within the subset of PREDICTS studies that sampled for mammals, containing 659 

26,569 records of 546 mammal species (1950 sites, 66 studies), we used the host-pathogen 660 

association dataset to calculate, firstly, each mammal species’ richness of human-shared 661 

pathogens, and secondly its richness of pathogens with no evidence of infecting either 662 

humans or domestic animals (‘non human-shared’), defining associations based on 663 

serological evidence or stronger. Of the 546 mammals, 190 species had at least one known 664 

human-shared pathogen (human-shared pathogen richness mean 1.92, sd 6.07) and 96 species 665 

had at least one non human-shared pathogen (non human-shared pathogen richness mean 666 

0.81, sd 4.16). We account for research effort differently than in the binary host status models 667 

above, since pathogen richness is a continuous variable that is influenced by magnitude of 668 

effort (i.e. more effort would be expected to increase the number of detected pathogens; 669 

Extended Data Fig. 6b-c). Therefore, we account for effort by estimating per-species residual 670 

pathogen richness not explained by publication effort (i.e. the difference between observed 671 
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pathogen richness and expected pathogen richness given publication effort and taxonomic 672 

group). To do this, we modelled the effect of publication effort on pathogen richness (discrete 673 

counts) separately for human-shared and non human-shared pathogens, using a Poisson 674 

likelihood with a continuous fixed effect of log-publications and random intercepts and 675 

slopes for each mammalian Order and Family (to account for broad taxonomic differences in 676 

host-pathogen ecology between orders23). We fitted the model to data from all mammal 677 

species in our host-pathogen database (n=780) and predicted expected mean pathogen 678 

richness for all mammals in PREDICTS. We calculated residuals from observed values for 679 

these species (Extended Data Fig. 6), which we expect represent trait-mediated variation, 680 

given the evidence that mammal pathogen richness covaries with species traits after 681 

accounting for phylogeny and research effort23. 682 

We then modelled the relationship between residual pathogen richness (scaled to 683 

mean 0, sd 1) and species probability of occurrence across land use types, separately for 684 

human-shared and non-human-shared pathogens (Extended Data Fig. 7). Species occurrence 685 

was modelled using a binomial (logit-link) likelihood, with fixed effects for the interaction 686 

between residual pathogen richness and land use type, and random intercepts for species, 687 

order, study and spatial block within study. As with prior analyses, models were checked for 688 

fit and adherence to assumptions. Pathogen surveillance in animals is often focused on 689 

species of zoonotic concern, meaning that pathogen inventories (especially of non-human-690 

shared pathogens) may be more complete for some taxonomic groups than others. We 691 

therefore tested model sensitivity to separately fitting models containing, firstly, only species 692 

from the four most comprehensively-sampled mammalian orders for parasites and pathogens 693 

(Primates, Cetartiodactyla, Perissodactyla and Carnivora; the focal taxa of the Global 694 

Mammal Parasite Database36), and secondly, species from all other mammal orders. We also 695 

tested for sensitivity to uncertainty in the publications-pathogen richness relationship, by 696 

separately fitting the land use model to 400 sets of residuals derived using posterior samples 697 

from the fitted publication effort model (Extended Data Fig. 6g-h), and summarising 698 

parameters across the full ensemble. Fixed effects directions and strength of evidence were 699 

consistent across all models (Supp. Table 7). Data processing and analyses were conducted in 700 

R v. 3.4.156, with model inference conducted in R-INLA52.    701 

 702 

 703 

 704 

 705 
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Extended Data 804 

 805 

Extended Data Fig. 1: Conceptual framework for the effects of land use change on 806 

zoonotic disease transmission. Pathogen transmission between potential hosts is shown as 807 

black arrows. Land use change (green driver) acts on ecological community composition and 808 

human populations (white boxes), and on environmental features that influence contact and 809 

transmission both locally (light blue box) and at broader geographical scales (dark blue box). 810 

These processes occur within a broader socio-ecological system context also influenced by 811 

additional environmental (e.g. climatic), socioeconomic and demographic factors. Unpicking 812 

the relative influence of these different processes on disease outcomes is challenging in local 813 

disease system studies, where multiple processes may be acting on pathogen prevalence and 814 

transmission intensity. The aim of this analysis was therefore to specifically examine, at a 815 

global scale, the effects of land use change on the composition of the potential host 816 

community (excluding domestic species), denoted below by the red box. 817 

 818 

Extended Data Fig. 2: Approximating research effort bias for non-host species within 819 

the PREDICTS dataset. For all non-host species, we approximated the likelihood of false 820 

classification given research effort (i.e. probability of being a host, but not detected), based 821 

on the distribution of publication effort across known zoonotic hosts within the same 822 

taxonomic order (Supp. Methods 1). Line graphs show, for several orders, the cumulative 823 

curve of publication counts for known zoonotic hosts (A; shown on log-scale), and 824 

approximated false classification probability, which declines and asymptotes with increasing 825 

levels of research effort (B) (line colours denote taxonomic order). Points and boxplots show 826 

the distribution of PubMed publications for all host and non-host species in PREDICTS (C; 827 

total n=6921), and false classification probabilities (used as bootstrap transition rates) for all 828 

non-host species per taxonomic class in PREDICTS (D; total n=3665), and per key 829 

mammalian and avian order (E; total n=2927) (bracketed numbers denote number of species 830 

per-group; boxes show median and interquartile range, whiskers show values within 1.5*IQR 831 

from quartile). Histogram shows the number of non-host species transitioned to host status 832 

for each of 1000 bootstrapped models of the full dataset (F; median 121, 95% quantile range 833 

102–142).  834 

 835 
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Extended Data Fig. 3: Random (study-level) and geographical cross-validation of 836 

community models (full dataset). We tested the sensitivity of fixed effects estimates to both 837 

random and geographically-structured (biome-level) subsampling. For random tests we fitted 838 

8 hold-out models, excluding all sites from 12.5% of studies at a time (mean 12.5% of total 839 

sites excluded per model, range 4%-19%; results in A). For geographical tests we fitted 14 840 

hold-out models, with each excluding all sites from one biome (mean 7% of sites excluded 841 

per model, range 0.07%-32%; results in B). Points and error bars show posterior marginal 842 

parameter distributions for each hold-out model (median and 95% quantile range, with colour 843 

denoting hold-out group or biome), calculated across samples from 500 bootstrap iterations 844 

per-model to account for variable research effort across species. Directionality and evidence 845 

for fixed-effects estimates are robust to both tests, suggesting that our results are not driven 846 

by data from any particular subset of studies or regions. Urban parameters are however the 847 

most sensitive to exclusion of data, likely due to the relatively sparse representation of urban 848 

vertebrate diversity in the PREDICTS database (17 studies in our full dataset).  849 

 850 

Extended Data Fig. 4: Effects of land use on site-level mammalian reservoir host species 851 

richness and total abundance. Points, wide and narrow error bars show differences in 852 

diversity metrics from primary minimal use baseline (posterior marginal median, 67% and 853 

95% quantile ranges respectively, across 1000 bootstrap models). Models are of species 854 

richness (A) and total abundance (B) of reservoir host and all other (non-host) species, and of 855 

hosts as a proportion of site-level richness (C) and total abundance (D). For managed and 856 

urban sites, use intensities were combined to improve evenness of sampling (n=2026 sites 857 

from 63 studies: primary (589 and 572 for minimal and substantial use respectively), 858 

secondary (144, 257), managed (348) and urban (116)). Posterior estimates were calculated 859 

across an ensemble of 1000 bootstrapped models (median 51, range 38–62 non-hosts 860 

transitioned to host status, i.e. increasing host number by 28–46%) (Methods). Urban sites 861 

results show the same trend as the full dataset (Figure 2), but are not visualised due to wide 862 

uncertainty: 88.7% (-2.1, 252.3) proportion richness, 307% (78.8, 500.7) proportion 863 

abundance (posterior median and 95% quantile range; see Supp. Table 4). Point shape 864 

indicates use intensity (minimal, substantial or both combined) and colour indicates host 865 

(brown) or non-host (green). Reservoir species are listed in Supp. Table 1 (mammal species 866 

listed as ‘Detection/reservoir’ in the ‘Evidence of host status’ column).  867 

 868 
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Extended Data Fig. 5: Effects of land use on occurrence and zero-truncated abundance 869 

(abundance given presence) of mammalian and avian hosts and non-hosts of zoonotic 870 

agents. Each row of three plots shows the results of species-level modelling for each of 5 871 

mammalian and 2 avian orders, and for mammals overall. Points, wide and narrow error bars 872 

show average difference in species occurrence probability (left column) and zero-truncated 873 

abundance (ZTA; middle column) (posterior median, 67% and 95% quantile ranges across 874 

500 and 750 bootstrap iterations, for each order and all mammals respectively). Differences 875 

are shown in secondary (Sec), managed and urban sites relative to a primary land baseline 876 

(dashed line), across all host (brown) and non-host (green) species. Histograms show, for 877 

each taxonomic group, the distribution of host species counts across all bootstrap models (i.e. 878 

after reclassifying non-hosts) compared to current number of known hosts (red vertical line), 879 

and the total number of species included in models (brackets in plot title). Estimates from 880 

occupancy and ZTA models (Supp. Table 6) were combined, assuming independence of 881 

processes, to give the hurdle predictions in Figure 3. Mammal reservoir status was defined 882 

based on strict criteria (pathogen detection or isolation), and the full list of host species 883 

included in these estimates is provided in Supp. Table 1 (scored ‘1’ in the’ zoonotic agent 884 

host’ column). Silhouettes are from PhyloPic (http://phylopic.org/). 885 

 886 

Extended Data Fig. 6: Residual human-shared and non human-shared pathogen 887 

richness across mammals. Distribution of human and non human-shared pathogen richness 888 

(A) and relationship to publication counts (B-C) are shown for mammals in our host-889 

pathogen association dataset (n=780 species; points represent species shaded by Order, 890 

associations defined on serological or stronger evidence). Observed versus fitted plots (D-E) 891 

show where observed deviates from expected pathogen richness given log-publications and 892 

taxonomic group (Poisson likelihood with random intercepts and slopes for Order and 893 

Family; slope estimates for log-publications are similar for both human and non human-894 

shared pathogens, β of 0.298 and 0.248 respectively). We used the fitted models to predict 895 

expected pathogen richness for mammals in PREDICTS (n=546) and derived residuals from 896 

observed values (shown in F), which were used in land use models (Extended Data Fig. 7). 897 

Calculating per-species residual quantile ranges across 2500 posterior parameter samples 898 

shows that within-species residual variance is generally small relative to residual size (G-H, 899 

points and error-bars show posterior median, 67% and 95% intervals, scaled to unit variance), 900 

and land use model results are robust to including this uncertainty (Methods, Supp. Table 7). 901 

 902 
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Extended Data Fig. 7: Effects of land use on the relationship between mammal species 903 

pathogen richness and occurrence probability. Points and error bars show intercept (A-B) 904 

and slope parameters (C-D) of the relationship between residual pathogen richness (scaled to 905 

mean 0 and unit variance) and mammal species occurrence probability (on the log odds scale; 906 

median and 95% credible interval). Model was fitted to occurrence data for all mammals in 907 

the database (n=29,569 records of 546 species, 1950 sites, 66 studies). Intercept parameters 908 

represent the average occurrence probability of a species with residual pathogen richness of 0 909 

(i.e. with average pathogen richness given research effort and taxonomy), and slope 910 

parameters represent the change in occurrence probability for one scaled unit (standard 911 

deviation) increase in residual pathogen richness (Extended Data Fig. 6g-h). Intercept and 912 

slope parameters for primary and secondary land measure the differences relative to managed 913 

land (i.e. delta-intercept or delta-slope; B, D). Plotted lines show these relationships on the 914 

probability scale (E-F), showing the median (black line), 67% (dark shading) and 95% (light 915 

shading) quantile range, based on 3000 samples from the joint posterior distribution. For both 916 

human-shared and non human-shared pathogens, there is a positive relationship between a 917 

species’ residual pathogen richness and its probability of occurrence in human-managed land. 918 

For human-shared pathogens, the strength of this relationship (slope parameter) is 919 

significantly larger in managed sites than in both primary and secondary land, and for non 920 

human-shared pathogens significantly larger in managed than in primary land (D; slopes for 921 

primary land not significantly different from 0). Full model summaries and results of 922 

sensitivity analyses are in Supp. Table 7. 923 

 924 

Extended Data Fig. 8: Differences in human population density between land use types, 925 

for all sites within the full dataset. Points and boxplots show the distributions of log-926 

transformed human population density by land use type and intensity, across all sites included 927 

in community models (n=6801). Boxes show median and interquartile range with whiskers 928 

showing values within 1.5*IQR from quartile, and are coloured by land use type, and 929 

numbers denote the number of sites in each category. Human population density estimates 930 

were extracted from CIESIN Gridded Population of the World 4, for 2005, the median year 931 

of studies included in the dataset. Per-site log human density estimates were considered as 932 

fixed effects in community models of host diversity, since human-tolerant or synanthropic 933 

species might respond to human population change independently of land use (Methods). 934 

 935 
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Extended Data Fig. 9: Diagnostic plots for all community models (full dataset and 936 

mammal reservoirs subset). Species richness counts were modelled with a Poisson 937 

likelihood, and abundance (adjusted counts) were log-transformed and modelled with a 938 

Gaussian likelihood (see Methods). Plot titles refer to model response variables: species 939 

richness (SR), total abundance (Abundance), for hosts, non-hosts, and for hosts as a 940 

proportion of the community (Prop). Points in (A) show observed data against model-fitted 941 

values, and the red line shows the expectation if observed equals fitted (n=6801 for full SR; 942 

n=6093 for full Abundance; n=2026 for mammals SR; n=1963 for mammals Abundance). 943 

We also tested for spatial autocorrelation of residuals across all sites within each study, with 944 

histograms (B) showing the distribution of per-study Moran’s I p-values (indicating 945 

significance of spatial autocorrelation among sites within that study) for each model (n=184 946 

for full SR; n=164 for full Abundance; n=63 for mammals SR; n=60 for mammals 947 

Abundance). Numbers in brackets are the percentage of studies that contained significant 948 

spatial autocorrelation (p<0.05, shown as a red line). Overall, spatial autocorrelation was 949 

fairly low across the dataset (statistically significant in 14%-30% of studies, with maximum 950 

26% for models with host metrics as response variables). Residuals and statistics were 951 

derived from a single fitted model including community mean false classification probability 952 

as a linear covariate to account for research effort (with known hosts given a false 953 

classification probability of 0), rather than the full bootstrap ensemble.  954 


