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Knowledge Graph for Identifying Hazards on Construction Sites: Integrating 28 

Computer Vision with Ontology 29 

 30 

Abstract 31 

Hazards potentially affect the safety of people on construction sites include falls from 32 

heights (FFH), trench and scaffold collapse, electric shock and arc flash/arc blast, and 33 

failure to use proper personal protective equipment. Such hazards are significant 34 

contributors to accidents and fatalities. Computer vision has been used to automatically 35 

detect safety hazards to assist with the mitigation of accidents and fatalities. However, 36 

as safety regulations are subject to change and become more stringent prevailing 37 

computer vision approaches will become obsolete as they are unable to accommodate 38 

the adjustments that are made to practice. This paper integrates computer vision 39 

algorithms with ontology models to develop a knowledge graph that can automatically 40 

and accurately recognise hazards while adhering to safety regulations, even when they 41 

are subjected to change. Our developed knowledge graph consists of: (1) an ontological 42 

model for hazards: (2) knowledge extraction; and (3) knowledge inference for hazard 43 

identification. We focus on the detection of hazards associated with FFH as an example 44 

to illustrate our proposed approach. We also demonstrate that our approach can 45 

successfully detect FFH hazards in varying contexts from images. 46 

 47 

Keywords: Hazards; ontology; computer vision; safety; knowledge graph database 48 

 49 
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1.0 Introduction 54 

Over 60,000 fatal injuries are reported to occur every year from construction projects 55 

worldwide [44]. According to the Occupation Safety and Health Administration 56 

(OSHA), for example, the construction industry is responsible for more than 20% of 57 

fatalities in the United States [53]. In the United Kingdom, for example, a similar 58 

scenario occurs where construction accounts for the highest number of fatalities across 59 

all sectors [16]. 60 

 61 

Typically hazard analysis is undertaken before construction and may be performed 62 

using manual methods and/or three-dimensional (3D) models [27, 50]. Hazards can 63 

change once construction commences, and their identification then needs to be 64 

undertaken manually, which can be a labour-intensive and time-consuming process. 65 

Several automatic computer vision-based approaches have been developed to overcome 66 

the drawbacks of manually identifying hazards [62, 20-24]). 67 

 68 

Despite the success of being able to deploy computer vision to identify hazards, it is 69 

unable to recognise those that are newly defined as a result of changes to safety 70 

regulations and procedures as (1) typically one computer vision algorithm is used to 71 

identify a single hazard in a scene. For example, identifying a person who is not wearing 72 

their safety helmet, and (2) current computer vision approaches are unable to extract 73 

semantic relationships between detected objects. As a result, a 'semantic gap' is formed 74 

between the low-level features derived from images and the high-level semantic 75 

information that people obtain. 76 

 77 

This paper combines computer vision algorithms with ontology to construct a 78 

knowledge graph that can automatically detect hazards to address the 'semantic gap' 79 

that prevails. We aim to determine whether our as-built semantic vision-based 80 

knowledge graph can identify risks with complex rules. In doing so, we develop a 81 
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knowledge graph that integrates computer-vision with ontology. An ontology is used 82 

to help experts annotate knowledge and is used to describe the relationships between 83 

the entities. Describing these relationships enables computer applications to represent 84 

and reason about safety knowledge efficiently. When an ontology is used in conjunction 85 

with computer vision, knowledge can be extracted (i.e., entity recognition and 86 

relationship extraction) from images automatically. 87 

 88 

We commence our paper by providing a review of computer vision-based object 89 

detection approaches and applications of ontology-based risk management that have 90 

been developed in construction (Section 2). Then, we introduce and describe our 91 

proposed knowledge graph framework for identifying hazards (Section 3). Following a 92 

description of the developed framework, we then demonstrate and test the validity of 93 

our developed framework using hazards identified during the construction of the 94 

Wuhan Rail Transit System in China (Section 4). Next, we discuss our research 95 

findings, specifically highlighting the benefits and limitations of our framework. We 96 

conclude our paper by identifying the paper's contributions to the field of computer 97 

vision in construction. 98 

 99 

2.0  Research Methodology 100 

2.1  Computer Vision-based Object Detection 101 

Computer vision has been utilised to perform a variety of tasks in construction such as 102 

productivity analysis [26], progress monitoring [29], as well as the recognition of 103 

unsafe behaviour [10,20,22]. Vision-based object detection within the domain of 104 

construction has focused on utilising the following approaches: (1) hand-crafted 105 

features; and (2) deep learning. In Table 1, we present a summary of critical vision-106 

based object detection studies that have been undertaken.  107 

 108 
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Hand-crafted feature-based methods employ a three-stage procedure, which consists 109 

of: (1) feature extraction; (2) feature representation; and (3) classification. Descriptors 110 

typically used to extract features from images and videos include Histogram of Oriented 111 

Gradients (HOG) [8], Histogram of Optical Flow (HOF) [57], and Scale Invariant 112 

Feature Transform (SIFT) [45]. Once features are extracted, they are then inserted into 113 

a classifier such as Support Vector Machine (SVM) and k-Nearest Neighbour. There 114 

exists a considerable body of work that has used hand-crafted feature approaches to 115 

detect objects in construction.  116 

 117 

Chi and Caldas [6], for example, applied a background subtraction algorithm to extract 118 

features from images. Then, using a naïve Bayes classifier and neural network, people, 119 

loaders, and backhoes were identified [6]. Contrastingly, Park and Brilakis [55] and 120 

Azar and McCabe [2] have utilised HOG and Haar-like feature descriptors to detect 121 

individuals and equipment (e.g., machinery). Similarly, Memarzadeh [3] combined a 122 

HOG and colour features with new multiple binary SVM classifiers to automatically 123 

detect and distinguish between a person and equipment using videos. Despite the 124 

success of hand-crafted feature-based approaches, they are manually created. 125 

Therefore, there is a trade-off between detection accuracy and computational efficiency 126 

(i.e., speed) arises [52]. The uncertainties and changing conditions that prevail on a 127 

construction site can also impact the extraction of features from images. For example, 128 

view-point scale, intraclass and variance as well background clutter can lead to lower 129 

levels of accuracy for object detection [33,56]. 130 

 131 

With the advent of large-scale data sets such as ImageNet [9], improved designs for 132 

modelling and training deep networks, and the development of computer architectures, 133 

deep learning has provided the ability to automatically extract and learn features in an 134 

end to end manner from images with higher levels of accuracy [39]. A Convolutional 135 

Neural Network (CNN) can be used for object detection or action recognition and can 136 
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automatically extract features due to their ability to stack multiple convolutional (i.e., 137 

detects local conjunctions of features from the previous layer) and pooling layers [39]. 138 

 139 

Several studies have demonstrated the potential of CNN's for object detection and 140 

action recognition on construction sites [61,21,23-24]. For example, Fang et al. [21] 141 

developed an improved Faster R-CNN to identify objects from images and have 142 

achieved accuracy with 91% and 95% when detecting individuals and excavators, 143 

respectively [21]. Likewise, Fang et al. [22] applied a computer vision approach with 144 

Mask Region-Based CNN (Mask R-CNN) to identify the unsafe behaviour of 145 

individuals that traversed structural supports. In this research, a Mask R-CNN was used 146 

to accurately identify people and structural supports, which achieved satisfactory levels 147 

of performance [22]. 148 

 149 

A review of computer vision-based studies in construction reveals that acceptable levels 150 

of accuracy (i.e., precision, recall) on object detection and attributes (e.g., distance 151 

measure) exist. For example, Kim et al. [36] applied a transformation matrix to 152 

determine the distance between objects from a single image. Here Kim et al. [36] 153 

applied a transformation matrix to represent the geometric relationship between objects. 154 

The distance between objects was estimated by measuring the pixel distance between 155 

them, where an object's reference geometric was known and used [37]. Drawing on the 156 

research of Fang et al. [22], we can observe that a Mask R-CNN is a suitable approach 157 

to detect objects from two-dimensional (2D) images, and the production of a 158 

transformation matrix [36-38] is appropriate for computing an object's distance from a 159 

single image. 160 
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Table 1. Key object detection studies  161 

 162 

Authors (Year) Target of interest Visual object detection methods  Type of detection approach 

Kim et al. [35] Concrete mixer truck Three-dimensional (3D) Reconstruction and HOG Hand-crafted feature  

Fang et al. [20] People, Safety harness Faster R-CNN Deep learning 

Fang et al. [21] People, Excavator Improved Faster R-CNN Deep learning 

Azar and Mccabe [2] Hydraulic excavator HOG Hand-crafted feature  

Park and Brilakis [55] People Background subtraction, HOG, HSV colour histogram  Hand-crafted feature  

163 
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2.2  Ontology-based Risk Knowledge Management  164 

Ontology is a formal conceptualisation of knowledge. It is a simplified view of a 165 

domain that describes objects, concepts, and relationships between them [15]. 166 

Traditional ontology relies on the experiences of the individual, knowledge of domain 167 

experts, and relevant managerial personnel to support the decision-making process. 168 

Semantic Web technology, for example, can allow various sources of information to be 169 

made available in a format that can be searched and retrieved from the Internet [18]. 170 

Thus, the combination of semantic web technology with ontology can enable the 171 

following advantages to be realised [11,18]: 172 

 173 

• improved model flexibility, enabling the extension of knowledge, which can be 174 

readily changed and adapted by application requirements;  175 

• robust semantic representation, and promotion of the semantical interaction 176 

between different computers; and 177 

• support semantic inference and retrieval through improving requests from a 178 

concept level. 179 

 180 

Ontology-based approaches have been extensively applied to numerous aspects of 181 

construction, such as energy management [7,31], building cost estimation [40] and risk 182 

management [63]. For example, Jia and Issa [32] proposed a synthesised methodology 183 

for taxonomy development in the domain of contractual semantics to support the 184 

development of an ontology model. Similarly, Wang et al. [59] used ontology 185 

technology to structure knowledge, such as activities, job steps, and hazards, to form a 186 

Job Hazard Analysis (JHA) database, and then developed the ontological reasoning 187 

mechanism to determine safety rules. The studies, as mentioned earlier, demonstrate 188 

the potential of ontology technology in supporting risk management, primarily as it can 189 

be used to raise the level of safety awareness. By organising knowledge as a logical 190 

semantic expression, it can be shared using ontology technologies and therefore enable 191 
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semantic interoperability. As a result, the structured and unified knowledge in the 192 

ontology can be understood and readily operated by different parties and computer 193 

applications and thus ensure the re-use and promotion of knowledge. To the best of our 194 

knowledge, however, there has been no research that has integrated computer vision 195 

with ontology to identify hazards on construction sites. 196 

 197 

3.0  Knowledge Graph Framework for Hazard Identification 198 

In Figure 1, we present the workflow for implementing our proposed knowledge graph 199 

framework, which comprises three steps:  200 

 201 

1. Ontology modelling: Engineering documents, historical accident reports, experts' 202 

experience, and safety codes are used to create a hazard taxonomy is constructed, 203 

which contains both the specialisation and relations between entities.  204 

2. Knowledge extraction: Computer vision approaches are used to automatically 205 

detect a set of entities and attributes, using the data derived from step one. In 206 

doing so, object types and their attributes (i.e., geometric, coordinates in images) 207 

are identified so that they can be stored in Neo4j for reasoning and querying. 208 

After identifying objects and their attributes, an intersection over union (IoU) is 209 

used to extract the spatial relationships between objects (i.e., within, away, or 210 

overlap) by using geometric and spatial features. Here, the relationships between 211 

objects for hazards are defined in step one using the hazard taxonomy that is 212 

established. 213 

.214 
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 215 

 216 

 217 

Figure 1. The workflow of the proposed hybrid semantic computer vision approach 218 
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3. Knowledge inference: A reasoning model for hazard identification was developed 219 

using the Neo4j database to create nodes, relationships, and their properties for 220 

modelling. The Neo4j database stores and records all types of objects, their 221 

attributes, and the relationship of objects, which were obtained from step two. 222 

Thus, hazards in the images are automatically identified by querying the created 223 

Neo4j database. 224 

 225 

Each of these steps is examined in further detail below. 226 

 227 

3.1 Ontology Modelling 228 

The initial process for implementing our semantic computer vision-based hazard 229 

identification model was to develop an ontology of a construction site. The ontology 230 

was developed using the Graph Database Language instead of the traditional RDF 231 

mapping models. The Chinese code for 'Quality and Safety Inspection Guide of Urban 232 

Rail Transit Engineering,' for example, was selected as a point of reference to examine 233 

hazards that were incurred during the construction of a metro-rail project in Wuhan, 234 

China. In our ontological model, the information is categorised into seven classes: (1) 235 

thing; (2) part; (3) attribute; (4) time; (5) space; (6) event; and (7) attribute-value. 236 

Within the context of construction, a hazard can be defined by its given time and space, 237 

and entities (with specific attributes), which perform certain activities [12,14]. Thus, a 238 

hazard event consists of semantic information that specifies its:  239 

 240 

1. Entity: The entities that are the objective existence. In this research, the entities 241 

are classified into four categories: (1) people; (2) equipment; (3) materials: and 242 

(4) environment. An example of taxonomy entities is presented in Figure 2. 243 

2. Activity: A change that is caused by a hazard, such as its attributes, states, and 244 

relations, which contain static and dynamic subclasses. For example, "more than 245 

two workers standing in a basket". Here, "standing" represents the activity. 246 
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3. Location: Specific location and the interface with concepts, such as working "in 247 

height". 248 

4. Time: The specific time involved with hazards, such as their duration on a 249 

timeline. 250 

5. Attribute: Specific description of properties. For example, distance, colour, 251 

height, and speed.  252 

 253 

Examples of the entities in the ontology model are shown in Figure 2. 254 

 255 

 256 

 257 

Figure 2. Examples of the entities in the ontology model 258 

 259 

Figure 3 shows an example relationship – 'Spatial relationship' between entities. The 260 

relationship exists between people, between people and a safety helmet, and between 261 

people and machinery. The model will be able to answer the following queries: 262 

 263 

• Who is behind 'John' 264 

• Is there anyone who stands close to 'John' not wearing a safety helmet? 265 

• Who is driving the excavator? 266 

• Is there any worker stands outside of the excavator driver's view range? 267 
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 268 

 269 

 270 

Figure 3. Examples of the entity relationships in the ontology model 271 

 272 

3.2  Knowledge Extraction 273 

Knowledge extraction is a vital step in the construction of a knowledge graph, which 274 

includes the detection of and the relationship between entities. 275 

 276 

3.2.1  Computer Vision-based Entity Detection 277 

The aim of our research is to develop a computer vision approach that can be used to 278 

identify and warn people about the likelihood of hazards. For example, if a person is 279 

entering an area where machinery is present, regardless if it is moving or static, our 280 

model, will identify the action as being 'unsafe'.  Our research solely considers the 281 

extraction of attributes by using a computer vision approach, which was used to explore 282 

the development of a knowledge graph. To this end, we use computer vision to 283 

determine contextual information from a construction site by: 284 

 285 

• Entity Recognition: As shown in Figure 2, entities can be divided into four types 286 
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of objects: (1) people; (2) equipment; (3) materials; and (4) environment. In this 287 

research, two detection approaches are used: (1) object; and (2) scene recognition. 288 

Here, object detection is used to identify people, equipment (i.e., excavator), and 289 

materials (e.g., structural support). The scene recognition approach, one of the 290 

hallmark tasks of computer vision, enables us to define a context for given object 291 

recognition. The Mask R-CNN developed by He et al. [30] adopts a two-stage 292 

procedure whereby:  293 

 294 

1. Images are taken as input for the ResNet network to obtain feature maps. 295 

Then candidates of object bounding boxes are obtained by using the Region 296 

Proposal Network (RPN); and 297 

2. RoiAlign is used to preserve and extract spatial locations from each 298 

candidate box and perform classification, bounding box regression, and 299 

mask generation. 300 

 301 

The Mask R-CNN has achieved higher levels of detection accuracy for objects 302 

than other approaches [30]. With this in mind, we adopted the Mask R-CNN in 303 

our research for entity (i.e., people, equipment) detection. We assume that this 304 

approach can be expanded to identify several types of objects (i.e., people, 305 

equipment, materials) in construction through a process of training. Specific 306 

details about the Mask R-CNN can be found in Fang et al. [22]. 307 

 308 

To understand and accurately recognise scenes (e.g., people working at a height), 309 

a Unified Perceptual Parsing approach (UPP) based on a feature pyramid network 310 

(FPN) is used to segment concepts from images effectively. The UPP approach 311 

was developed by Xiao et al. [60] and can infer and discover rich visual 312 

knowledge from images. The UPP performs better than prevailing state-of-the-313 

art machine learning tools that can be used for segmentation (e.g., fully 314 
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convolutional network (FCN), SegNet, and DilatedNet). A detailed description 315 

of the UPP can be found in Xiao et al. [60].  316 

• Attributes Extraction: As our research focuses on identifying hazards based on 317 

distance and spatial features, as we only need to extract two types of attributes: 318 

(1) the coordinates of each object in the image; and (2) distance among objects 319 

detected by Mask R-CNN. We, therefore, utilised the transformation matrix [36] 320 

within our hybrid semantic computer vision model to compute distances between 321 

objects.` 322 

 323 

3.2.2 Extraction of Spatial-Relationships from Images 324 

After identifying the types of objects and their attributes, three spatial relationships 325 

between them can be computed: (1) within; (2) overlap; and (3) away. An example of 326 

a spatial relationship is presented in Figure 4. In this research, the choice of terminology 327 

and semantics for the spatial relationships is based on the distance between objects (i.e., 328 

between two geometries A and B) and rules specified by Chinese safety codes (Section 329 

4.1). 330 

 331 

 332 

Figure 4. Examples of spatial relationship 333 

 334 

The spatial relationship between object A and object B is defined as the IoU of the 335 

bounding box A and B, as shown in Eq. [1]: 336 

 337 
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        Eq. [1] 338 

 339 

For the conditions of within and overlap, we can use the IoU to identify the spatial 340 

relationships between objects. If the IoU of two objects is 0, we then compute the 341 

distance between them by using the transformation matrix approach (Section 4.2.2). 342 

Figure 5 presents an example of a spatial relationship using the IoU and where distance 343 

is extracted. 344 

IoU A,B( ) =
area A( )∩ area B( )

min area A( ),area B( ){ }
=

1 within

0,1éë ùû overlap

0 away

ì

í
ïï

î
ï
ï
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 345 

(a) Original image  (b) Attributes extraction (i.e., IoU, coordinate) (c) Extraction of spatial relationship 346 

 347 

Figure 5. Extraction of spatial relationship348 
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3.3 Knowledge Inference for Hazard Identification with Graph Database 349 

We use a graph database to present the knowledge needed to infer hazards in a highly 350 

accessible way. A graph structure is used to represent semantic queries with nodes, 351 

relationships and properties, and store data. Due to its ability to present data in a robust 352 

and scalable way, we use the Neo4j graph database management system so that queries 353 

with multiple relationships can be identified [13,34]. To automatically identify hazards, 354 

we perform the following tasks: (1) data modelling; and (2) automated reasoning and 355 

query. 356 

 357 

3.3.1 Data Modelling 358 

The procedure to extract object classes and their spatial relationships have been 359 

described above. The outputs from these procedures are saved as a '.csv' file and loaded 360 

into the Neo4j database. The Neo4j database automatically processes the data and then 361 

provides an output. An example of the detection output is presented in Figure 6.  362 

 363 

 364 

Figure 6. An example of computer vision detection results and the output information 365 
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3.3.2 Automated Reasoning and Query 366 

The final step of the modelling process is to identify hazards by querying the unsafe 367 

behaviour rules that had been defined in the model. The as-built graph database (Section 368 

4.4.1) is constructed based on the objects and their spatial relationship; unsafe rules are 369 

derived from the safety codes, which were re-defined as queries. An unsafe behaviour, 370 

for example, occurs when "people stand on machinery when hoisting". Then, we can 371 

identify the unsafe behaviour by searching for the people (i.e. worker) "whose bounding 372 

box is within a machinery's bounding box". Figure 7 shows that an unsafe condition, in 373 

which a person is standing in a machine paw, is identified by using the rule: "MATCH 374 

(x: worker) – [r: overlap] – (y: equipment) RETURN x,r,y". 375 
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 376 

Figure 7. The reasoning of unsafe conditions by querying in the graph database377 
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4.0 Case Study 378 

To demonstrate and test the validity of our developed semantic model, we can focus on 379 

identifying the unsafe condition that may lead to FFH (Table 2). We have selected an 380 

urban metro system under construction in Wuhan China to evaluate the effectiveness 381 

of detection for the developed semantic approach. Working in collaboration with a 382 

contractor who is involved with constructing the metro system in Wuhan (China) we 383 

were provided safety data from nearly 120 sites and images from a Web-based near-384 

miss management system that had been installed on their sites. In sum, we had access 385 

to more than 3000 near-miss reports and over 40,000 related images (Figure 8).  386 

 387 

The Web-based near-miss management system contains information about hazards, 388 

which includes their code, line, location, name, area, and description. We present an 389 

example of the hazard code in Figure 8: report number: No0000087; Lines: 2; Hazard 390 

name: adjacent edges and other protections do not meet requirements; hazard 391 

description: missing neighbour protection net. We individually examine FFH as they 392 

account for a high proportion (over 30%) of fatalities in construction [42,46]. By being 393 

able to detect of FFH hazards and mitigate their adverse consequences, we can make 394 

headway toward reducing safety incidents [41]. To validate our approach, we focus on 395 

identifying six types of unsafe behaviour that were selected from the near-miss accident 396 

reports (Table 2).  397 

 398 

4.1  Development of Ontology for FFH 399 

A taxonomy of hazards related to FFH was developed based on the checklist in Table 400 

2. The core concepts identified are analysed and classified, which can be seen in Table 401 

3 and serve as an extension to the taxonomy. 402 
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Table 2. Checklist of unsafe behaviour related to FFH 403 

 404 

Number Unsafe Behavior Description 

1 There should be no more than two people in a lift's basket 

2 People should not walk on the support of excavation if there has no 

guardrail  

3 Edges of excavations (over 2m deep) should be protected with a guardrail  

4 People should not stand on machinery when hoisting 

5 People should wear a safety harness when working above a certain height 

6 It is not allowed to use car hopper to pick up people 

405 
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 406 

Figure 8. A web-based near-miss management system407 
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Table 3. Concept identification of hazard information in FFH 408 

 409 

Number Images of hazards  Description 

of hazards 

Hazard 

entity 

Activity 

type 

Location Attribute Relationship 

1 

 

There should 

be no more 

than two 

people in a 

lift's basket 

People, lift 

basket 

Stand   Number, coordinate Overlapped/Within 

2 

 

People 

should not 

walk on the 

support of 

excavation if 

there has no 

guardrail 

People, 

support, 

excavation, 

guardrail 

Stand  coordinate Touch/overlap 
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3 

 

Edges of 

excavations 

(over 2m 

deep) should 

be protected 

with a 

guardrail 

People, 

excavation, 

over 2m,  

stand  Coordinate Near/overlap 

4 

 

people 

should not 

stand on 

machinery 

when 

hoisting 

People, 

machinery 

Stand  Coordinate Overlap/within 
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5 

 

People 

should wear 

a safety 

harness when 

working 

above a 

certain height 

People, 

safety 

harness 

Wear Working 

at heights 

Coordinate Overlap/within 

6 

 

There should 

not use car 

hopper to 

pick up 

people 

People, car 

hopper 

Pick-up  Coordinate Within/overlap 

410 
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4.2  Hazard Identification Results  411 

We initially used computer vision to detect objects and their attributes with individuals, 412 

structural supports, and the foundation pit, as identified in Figure 8. The spatial 413 

relationships between objects are recognised using the IoU and determining the 414 

distance between them. As previously mentioned, the results are stored in the Neo4j 415 

database to identify unsafe conditions using rule the "MATCH (x: labourer)-[r: touch]-416 

(y: structure) RETURN x,r,y" (Figure 9e).  417 

 418 

The performance of our research results is based on two aspects: (1) entity detection; 419 

and (2) attributes detection. The precision and recall are selected as a critical evaluation 420 

metric for object detection. Our developed object detection approach is based on the 421 

previous work of Fang et al. (2019). Also, two key evaluation metrics are used for scene 422 

recognition: (1) pixel accuracy (PA); and (2) mean IoU (mIoU). The applied UPP 423 

achieved mIoU and PA of 41.22 and 79.98 on ADE20K dataset, respectively [60].  424 

 425 

The performance of attributes detection relies on the extraction of coordinates and the 426 

computation of distance from images. Previous studies have demonstrated that the 427 

transformation matrix can be used for distance computation for objects [36-38]. Based 428 

on these performance metrics, our developed semantic computer vision approach 429 

achieves an acceptable level of accuracy for identifying unsafe behaviour. 430 
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 431 

Figure 9. Semantic computer vision detection results 432 
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5.0  Discussion 433 

To improve the efficiency and effectiveness of the safety inspection process and 434 

mitigate unsafe behaviour that occurs on construction sites, a semantic computer vision-435 

based approach that integrates computer vision algorithms with ontologies was 436 

developed to identify hazards from images automatically. This approach provides site 437 

management with a mechanism to proactively identify, record, and analyse unsafe 438 

behaviours and therefore enable appropriate action to be undertaken to reduce and 439 

mitigate the likelihood of FFH. It can also be used for safety intervention by site 440 

management as a means to highlight potential hazards and the possible consequences 441 

that may materialise from peoples unsafe actions. If people are made aware that their 442 

actions are being monitored, then there will be a greater tendency for them to abide by 443 

safety rules. 444 

 445 

In comparison with previous studies that have utilised computer vision to identify 446 

hazards, our study has the following advantages:  447 

 448 

•     We provide an integrated semantic model that can be used for training even when 449 

data is scarce. The unavailability of unsafe behaviour databases, especially for 450 

specific tasks, has hindered the development of deep learning applications in 451 

construction. Our approach not only relies on accurately detecting objects, but 452 

also the use of the spatial relationship between objects to reason hazards. Studies 453 

have demonstrated that prevailing computer-vision based approaches have 454 

achieved a satisfying performance to detect a variety of objects, which renders 455 

our semantic approach to be useful [20-22]. Thus, we have combined graph 456 

database to model data obtained from computer vision detection results to identify 457 

hazards, which makes our approach useable without a specific database for 458 

training; and  459 
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•    The integrated approach is more generalizable than data training-based approaches 460 

due to its excellent performance (i.e., high accuracy on object detection in the 461 

cross-database) on object detection. 462 

 463 

Our knowledge-based graph uses the output (e.g., the location of a person or a basket, 464 

computed by CV and machine learning as the input of the graph database (Neo4j)) to 465 

detect hazards. The knowledge graph can detect hazards which single computer-vision 466 

algorithms unable to do due to the complexity of the rules that need to be considered to 467 

define them. Improving the accuracy of computer vision algorithms and determining 468 

how to extract knowledge (i.e., entity detection) has not been the focus of our paper. 469 

Instead, we have built on the previous work of Fang et al. [22] who used deep learning 470 

to detect FFH by integrating a Mask R-CNN with ontology. As a result, there was no 471 

requirement to develop new algorithms. We acknowledge an array of robust vision-472 

based algorithms are available, but undertaking a comparison between them, however, 473 

is outside the remit of this paper. 474 

 475 

6.0  Limitation 476 

Despite the novelty of the research presented, we need to acknowledge that it has 477 

several limitations. Firstly, our research relied on distance and coordinate information 478 

to extract spatial relationship for reasoning hazards. Many hazards comprise safety 479 

rules with specific features. For example, due to the presence of apanage management, 480 

persons on-site may be prohibited from entering a specific working area. In this case, 481 

computer vision cannot be used to extract the attributes and individuals and the area 482 

where they are performing their tasks. Our future work will need to integrate other 483 

technologies such as Radio Frequency Identification, to extract additional information 484 

to address this limitation, (e.g., identity). 485 

 486 
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Secondly, our research extracts the coordinates and the distance between objects from 487 

2D images and then obtains spatial-relationship following the information obtained 488 

(i.e., coordinate, distance). Mistakes can be made when using the transformation matrix 489 

to compute the distance of objects from single images. Therefore, we suggest that future 490 

research will need to use stereo cameras to collect data and compute depth information 491 

to improve the accuracy of calculating spatial relationships.  492 

 493 

Thirdly, our research solely considers the attribute (i.e., the distance between entities) 494 

in an as-built ontological model to determine whether hazards with complex rules are 495 

identifiable. A hazard is determined by combinations of semantic information (i.e., 496 

activity, time, and location). For example, an individual is not allowed to approach the 497 

working area of a piece of machinery. In this case, we should detect the machinery's 498 

working status (static or moving). We suggest that our approach can be expanded with 499 

consideration of other semantic information according to the as-built ontological 500 

model. 501 

 502 

Fourthly we should acknowledge there have been a limited number of examples that 503 

have been able to integrate computer vision with ontology to identify hazards as data is 504 

scarce. Thus, our future research will focus on creating a database with a significant 505 

number of images in order to validate further and improve the reliability of our 506 

proposed approach. 507 

 508 

Finally, we have also assumed that Mask R-CNN can accurately detect a variety of 509 

objects. However, if an object is occluded or there are unavailable images in the 510 

database for training, then the error rate for object detection may be high. We, therefore, 511 

intend to integrate ontology with the object's features to identify them in the future. For 512 

example, if an object partly occludes an individual, we may infer their presence using 513 

other features, such as shape, size, colour, and clothes. 514 
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7.0  Conclusion 515 

We have introduced a novel semantic model that integrates computer vision and 516 

ontology to identify hazards from images automatically. We utilised the following tools 517 

to develop our model: (1) computer vision algorithms, which were used to extract 518 

implied knowledge from images (i.e., objects detection and attributes extraction); and 519 

(2) ontological reasoning to identify unsafe conditions based on their identified distance 520 

and spatial information. To validate our approach, we created a database of individuals 521 

unsafe behaviour related to FFH from several construction sites. We reveal that our 522 

semantic model can accurately recognise hazards from images with complex rules. We 523 

also suggest that our proposed semantic model can be used by site management to 524 

automatically identify potential hazards and therefore put in place strategies to mitigate 525 

potential injuries and accidents. 526 

 527 

Our future research will focus on (1) combining temporal and spatial information to 528 

identify hazards from video streaming; (2) using stereo a camera to collect data, and 529 

then compute the 3D depth information from stereo videos; (3) combining other 530 

information techniques and computer vision to extract additional features, such as the 531 

size of the foundation, and colour of a hardhat, to identify additional hazard types; and 532 

(4) expanding our approach to integrate semantic information in accordance to our as-533 

built ontological model. 534 
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