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Abstract

Genetic Programming (GP) automatically generates computer programs to solve specified 

problems. It develops programs through the process of a “create-test-modify” cycle which is 

similar to the way a human writes programs. There are various functional programming tech­

niques that human programmers can use to accelerate the program development process. This 

research investigated the applicability o f some of the functional techniques to GP and ana­

lyzed their impact on GP performance.

Among many important functional techniques, three were chosen to be included in this 

research, due to their relevance to GP. They are polymorphism, implicit recursion and higher- 

order Junctions. To demonstrate their applicability, a GP system was developed with those 

techniques incorporated. Furthermore, a number of experiments were conducted using the 

system. The results were then compared to those generated by other GP systems which do not 

support these functional features. Finally, the program search space o f the general e v e n -  

p a r  i t y  problem was analyzed to explain how these techniques impact GP performance.

The experimental results showed that the investigated functional techniques have made 

GP more powerful in the following ways: 1) polymorphism has enabled GP to solve problems 

that are very difficult for standard GP to solve, i.e. n t h  and map programs; 2) higher-order 

functions and implicit recursion have enhanced GP’s ability in solving the general e v e n -  

p a r i t y  problem to a greater degree than with any other known methods. Moreover, the 

analysis showed that these techniques directed GP to generate program solutions in a way that 

has never been previously reported. Finally, we provide the guidelines for the application of 

these techniques to other problems.
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Chapter 1

Introduction

Human computer programming involves a series of problem-solving activities. Firstly, the 

problem is analyzed and the parameters within the problem are defined. Secondly, a method 

to solve the problem is formulated. Finally, the solution is implemented and executed to solve 

the problem. These activities may be iterated during the programming process in order to 

solve the given problem.

Many modem programming techniques focus on the support of these problem solving 

activities. Two popular examples are problem decomposition and contextual checking. Prob­

lem decomposition is a method known as “divide and conquer” ; it involves the subdivision of 

a problem into smaller problems and the use of the solutions to the smaller problems to con­

struct the overall solution. Contextual checking is a procedure to ensure the internal consis­

tency of the program; this checking is normally carried out by an independent agent. For 

example, lexical/syntactic analyzers check that programs conform to the programming lan­

guage grammar while a type checker ensures that the types of data and functions are consis­

tent with those specified by the programmers. The former technique provides guidelines to 

solve the problem while the later provides early warning o f program errors. Both of them sup­

port a more effective program development process.

Modem functional programming languages provide a number of unique techniques to 

support program development. Three o f these techniques are polymorphism, higher-order 

functions and implicit recursion - their details are described in Chapter 2. These techniques 

are unique in that either they are implemented in an unique way or they exist only in func­

tional languages. Polymorphism in functional languages is implemented using a formal type 

system [Bindley 1969; Milner 1978] which is different from the generic function template 

approach used in imperative languages [Barnes, 1994; Stroustmp, 1991]. The implementation 

o f higher-order functions in functional languages is based on the concept that functions are 

like data, hence are allowed to be passed as arguments to other fimctions. In contrast, impera­
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tive languages use function pointers to implement higher-order functions [Kemighan and 

Ritchie, 1988]. Implicit recursion is uniquely supported in functional languages through 

higher-order functions such as f o l d r ,  map and f i l t e r  (see Section 2.3.7). It is not sup­

ported in other types of programming languages. These three are powerful techniques, and 

have made program development an easier task [Hudak, 1989].

1.1 Genetic Programming as a Functional Programmer

The Genetic Programming (GP) [Koza, 1989, 1990, 1992, 1994a] paradigm is a problem­

solving method based on a computational analogy to natural evolution. In this method, com­

puter programs are automatically generated to solve the given problems. Initially, a popula­

tion o f programs is randomly created using functions and terminals appropriate to the 

problem domain. Each individual program is then measured in terms o f how well it solves the 

problem. This measure becomes the fitness o f the program. Next, the Darwinian principle of 

survival o f the fittest is used to select programs for reproduction. The standard selection 

method is fitness-proportionate selection, where the probability o f an individual to be 

selected is equal to its normalized fitness value [Koza, 1992, page 97]. The programs which 

are selected from the current population are manipulated by genetic operations o f crossover 

and mutation to generate new offspring programs. The crossover operator creates offspring 

using two parental programs while the mutation operator generates new offspring by altering 

one individual program. The generated new offspring programs constitute the new popula­

tion. Each individual in the new population is measured for fitness and the process is repeated 

for many generations. Typically, the best program that appears in the last generation is desig­

nated as the result produced by GR

Consequently, there are three main phases in the GP problem solving method:

1. constructing the initial population of computer programs;

2. evaluating each program in the population and assigning it a fitness value according to 

how well it solves the problem;

3. selecting “fit” programs from the current population to create new programs using 

genetic crossover and mutation. The new programs form a new population.

Phases 2 and 3 are iterated until the specified termination criterion is met. The best program 

generated at the end o f the process is the solution (or an approximate solution) to the problem.

The GP program development process can be described as a “create-test-modify” cycle 

(Figure I I) which is similar to the way humans develop their programs. Initially, programs
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are created based on the knowledge given about the problem (given in functions and termi­

nals). These programs are then tested on the problem. If  the results are not satisfactory, modi­

fications are made to improve the programs. This create-test-modify process is repeated until 

either a satisfactory solution is found or a specified condition is met.

Create

Modify j Done

Figure 1.1: GP programs development process.

Depending on the problems that GP is to solve, various issues can arise. For example the 

problem solution may not be able to be represented in a way which satisfies the “closure” 

property [Koza, 1992, page 81]. Another example is that a problem might be much more eas­

ily solved using recursion, yet GP has not been very successful in evolving recursive pro­

grams [Brave, 1996; Wang and Leung, 1996]. These issues limit the applicability of GP. This 

thesis addresses these issues by introducing polymorphism, higher-order functions and 

implicit recursion to the GP paradigm. Extended with these techniques, GP is like a functional 

programmer who uses functional techniques to develop programs to solve the given problem.

Since polymorphism, higher-order functions and implicit recursion have benefited 

human programmers, we hypothesize that these functional programming techniques can also 

enhance GP’s ability in solving suitable problems. This hypothesis will be tested on the gen­

eral e v e n - p a r i t y  problem and the map and the n t h  programs.

1.2 Objectives

This work has three objectives. Firstly, to show that polymorphism, higher-order functions 

and implicit recursion are applicable to the GP paradigm. This has been achieved by imple­

menting a GP system which incorporated these techniques and by generating programs using 

the system. Secondly, to demonstrate that these techniques can be beneficial to GP in solving 

suitable problems. This has been achieved by using the developed GP system to solve prob­

lems that are reported to be very difficult for the standard GP to solve, i.e. the general e v e n -  

p a r i t y  problem and the map and the n t h  programs. As will be shown, these techniques
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have enabled GP to solve these problems very efficiently. Finally, to establish guidelines for 

the application o f these techniques to other problems. This is partially achieved by analyzing 

program structures in the search space to identify how these techniques assist GP to find prob­

lem solutions. The guidelines are formulated accordingly.

1.3 Contributions

This research makes the following contributions:

1. It constructs a formal GP framework to evolve 1-calculus expressions.

• A single language with sufficient computation power to solve a wide variety of prob­

lems is provided in GP. The language also provides a natural integration of a module 

mechanism via X abstractions (see Chapter 4).

2. It demonstrates advantages provided by applying the following functional programming

techniques to GP:

• polymorphism: presents the concept o f types in GP in great detail through the defini­

tion o f and the differentiation between untyped, dynamically typed and strongly typed 

GP. The Strongly Typed Genetic Programming (STGP) [Montana, 1995] is formalized 

and extended to include various kinds o f type variables and higher-order function 

types. Moreover, the impact of different type variables on GP search space is analyzed 

(see Chapter 5).

• implicit recursion: provides recursion semantics in the evolved programs without 

explicit recursive calls. Previously, evolving recursive programs in GP has been diffi­

cult. This work not only identifies the issues that cause such a difficulty but also pro­

vides a solution, implicit recursion, to overcome the difficulty (see Chapter 6).

• higher-order functions: supports an effective module mechanism for GP. In this 

approach, module creation is neither a random process nor determined in advance. 

Instead, it uses the knowledge (function type arguments) specified by the users in the 

higher-order functions to determine the most beneficial way to create modules. Most 

importantly, this work introduces a new term, structure abstraction, to describe the 

structure pattern emerging from the higher-order functions program representation. 

Structure abstraction not only enables GP to evolve a general solution to the e v e n -  

p a r i t y  problem but also achieves greater efficiency than any other previous work 

(see Chapter 6).

3. It identifies structure abstraction as a hierarchical processing engine for GP search. The
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guidelines for the application of structure abstraction to other problems are outlined (see 

Chapter 7).

4. It presents a concept of constraint handling based on the general framework o f evolu­

tionary algorithms (see Appendix A). This general approach provides an easy way to 

compare and contrast different constraint handling methods, e.g. dynamic typing versus 

strong typing (see Chapter 5). Moreover, the seesaw effect demonstrated in the experi­

ments gives a high level view of the impact o f constraint handling on the evolutionary 

process, e.g. see the constraint handling for recursion error in Chapter 5.

1.4 Organization

Following this introductory chapter. Chapter 2 presents background in Genetic Algorithms, 

Genetic Programming and Functional Programming Languages. They are the foundation on 

which this work is based and from which it develops.

Chapter 3 summarizes related work. It is categorized into four areas: syntactic constraints 

using grammars, type constraints, modules and recursion. They are related to our work in 

evolving X calculus and in investigating the applicability and benefits o f the following func­

tional techniques to GP: polymorphism, higher-order functions and implicit recursion.

Chapter 4 describes the GP system which was developed with the mentioned functional 

techniques incorporated. Each component o f the system is presented, with the implementation 

details. The genetic algorithm used in the system and the programming language chosen to 

implement the system are explained. This chapter concludes with an example demonstrating 

the operation o f the system.

Chapter 5 presents the application o f polymorphism in GP. The concept o f types in GP is 

introduced through the definitions of and differentiation between untyped, dynamically typed 

and strongly typed GP. The limitation o f untyped GP in problem solving and the issues occur­

ring in dynamically typed GP are then summarized. This is followed by a list of advantages 

that strongly typed GP can provide. The two different approaches o f strongly typed GP, 

monomorphic and polymorphic GP, are then compared. This work advocates the use of poly­

morphic GP, which is implemented by using three different kinds of type variables. We ana­

lyze the impact of these type variables on GP search space. Finally, two polymorphic 

programs are evolved to demonstrate that polymorphism has enhanced GP applicability to 

problems which are very difficult for GP without polymorphism to solve.

In Chapter 6, higher-order functions are introduced to provide a better program represen­

tation for module creation and reuse. In this approach, a module is represented as a 1 abstrac­
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tion and its reuse is through implicit recursion. We first analyze GP issues in evolving 

recursive programs. Implicit recursion is then introduced as a solution to overcome these 

issues. We explain the 1 abstraction module mechanism and compare it with other module 

approaches. This program representation is then used to evolve general solutions to the 

e v e n - p a r i t y  problem [Koza, 1992]. The experimental results show that this approach has 

enabled GP to find a solution with great efficiency. This chapter proposes that a program 

structure pattern, named "^structure abstraction’', is the cause of the superior performance.

Chapter 7 investigates the impact o f structure abstraction on GP search. A formal defini­

tion o f structure abstraction is first presented. This is followed by a detailed description of the 

application o f structure abstraction to the general e v e n - p a r i t y  problem. The program 

structures and the solution structures in the search space are then analyzed. The results indi­

cate that structure abstraction serves as an engine of hierarchical processing for GP search, 

hence allows the solution to be found very efficiently. Finally, the guidelines for the applica­

tion of structure abstraction to other problems are provided.

Chapter 8 outlines our future work. Firstly, we will investigate the reason why type con­

strained GP is more efficient than standard GP on problems involving multiple types. Sec­

ondly, other forms of implicit recursion will be explored. Finally, we will apply structure 

abstraction to more problems.

The last chapter. Chapter 9, presents the summary and conclusion o f this thesis. This is 

followed by the bibliography.

In Appendix A, a concept o f constraint handling based on the general framework o f evo­

lutionary algorithms is presented. This approach provides an easy contrast and comparison 

between different constraint handling methods used in an evolutionary algorithm. Moreover, 

our experimental results demonstrate the importance o f constraint handling in evolutionary 

algorithms, for if  the search space is not constrained properly, the evolution o f good solutions 

may be prevented.

Appendix B describes the method used to measure the performance o f the GP system in 

various experiments. It is essentially a brief summary o f Chapter 8 in [Koza, 1992].

Appendix C reports our experiments and their results on using a higher-order function 

program representation to solve the artificial ant problem [Koza, 1992].

Finally, Appendix D provides an analysis o f program evolution for e v e n - p a r i t y ,  

n t h  and map programs. It investigates the impact that each component (fitness fimction, run­

time error constraint handling, search algorithm) has on GP in generating these three pro­

grams by conducting a series o f experiments. The results are analyzed and discussed.
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Chapter 2

Background

The first part of this chapter provides a brief introduction to Genetic Algorithms (GAs) [Hol­

land, 1992] from which GP is derived. In particular, we present the schema theorem [Holland, 

1992] and the building block hypothesis [Goldberg, 1989], which were developed to explain 

how GAs search for problem solutions. Meanwhile, related criticisms are highlighted. This is 

followed by a summary of the distinctive features o f GP and research conducted toward a GP 

schema theorem. The second half o f this chapter presents background knowledge in func­

tional programming languages, particularly in the area o f 1 calculus, polymorphism, higher- 

order functions and recursion. They are the functional techniques that this work applies to GP. 

This chapter provides background knowledge about how GP searches for problem solutions, 

thus enabling the analysis o f the impact of functional techniques on GP performance.

2.1 Genetic Algorithms

GAs are search algorithms based on the mechanics o f natural selection and natural genetics. 

Genetic material is packed in a fixed-length string to represent an individual. A population 

consists of many individuals. The natural selection scheme, survival o f the fittest, combined 

with two reproduction mechanisms (the traditional GA uses one-point crossover and point 

mutation while other GAs use different operators) are used to evolve better individuals. The 

GA evolutionary process uses the following 3 artificial operators to mimic natural evolution:

• Fitness-proportionate selection: Darwinian survival o f the fittest;

• One-point crossover: a sexual reproduction operator which generates offspring by inter­

changing sub-strings from two individuals;

• Point mutation: an asexual reproduction operator which generates offspring by modify­

ing a single point in one individual.
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These operators seem simple, yet they provide a powerful search algorithm which explores 

new search points with improved performance by exploiting historical information.

The schema theorem and the building block hypothesis were developed by [Holland, 

1973; Holland, 1992] and [Goldberg, 1989] respectively to provide a theoretical framework 

for GAs. The schema theorem uses a mathematical formulation to explain why GAs are capa­

ble of searching for problem solutions. This theorem is further expanded with the building 

block hypothesis to explain how partial solutions are carried down generation by generation 

to build overall solutions. However, these two works have been widely criticized recently. 

The details o f these two theoretical works and the related criticisms are presented in the fol­

lowing sections.

2.1.1 Schema Theorem

In [Holland, 1992], a schema is defined as a template describing a set o f points, from the 

search space o f a problem, that have certain specified similarities. Each schema is a string 

over an extended alphabet consisting o f the original alphabet (0 and 1) and a hash symbol (the 

“don’t care” symbol). For example, the schema “0##1” describes 4 similar points: “0001”, 

“0011”, “0101” and “0111”. In the conventional GA, the number o f individuals contained in 

the population is usually infinitesimal in comparison to the search space o f the problem. How­

ever, each individual in the population represents 2^ schemata, where L is the length o f the 

string. Consequently, the fitness-proportionate selection for reproduction, which explicitly 

operates only on the individuals present in the population, actually performs on a much larger 

number o f schemata implicitly. However, this claim has been criticized by [Macready and 

Wolpert, 1996].

With the fitness-proportionate selection, the expected number o f occurrences of every 

schema in the next generation can be estimated. Suppose that at a given time t, there are m 

individuals representing a particular schema H  in the population. This is represented with the 

notation m(H,t). At time r+7, the expected number of individuals representing the schema H  

in the population, represented as E [m (H , t+  1 ) ] ,  is given as the following:

E[m(H,t + 1)] = (I)
m

where f(H ,t) is the average fitness o f the individuals representing schema H  at time t and f(t)  is 

the average fitness of the population. Equation 1 says that the number o f individuals repre­

senting a particular schema grows or shrinks at the ratio of the average fitness of the individu­
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als representing the schema to the average fitness of the population. Put in another way, 

schemata with fitness values above the population average are expected to receive an increas­

ing number o f individuals in the next generation, while schemata with fitness values below 

the population average are expected to receive a decreasing number o f individuals in the next 

generation.

Assuming that the fitness of a particular schema H  remains above the average f(t) an 

amount c  • / ( / )  where c is a constant, the equation can be rewritten:

+ 1)] = (1 + c) • m{H,t) (2)
f i t )

Only when the population is infinite and c is a stationary value, this equation represents a geo­

metric progression. This means that a schema with above-average fitness will appear in the 

next generation at an approximately exponential increasing rate over those generations. Hol­

land [1992] argued that this exponential increasing rate is the optimal way o f schemata pro­

cessing through his analysis of the two-armed bandit problem described in the following 

subsection.

The Two-Armed Bandit Problem

In the two-armed bandit problem, there is a slot machine which has two arms. Furthermore, 

one of the arms pays reward pj with variance and the other arm pays reward \x̂  with vari­

ance cs\ where pj > P2 - The objective is to get the most reward by playing the arm with higher

reward more frequently (the arm with a pay-off pj). But how do we know which arm to play 

in each trial, since we have no knowledge about which arm is associated with the higher 

reward? Ideally, we would like to make a decision which can provide not only a good reward 

but also information about which is the better arm to play for the next trial. There is a trade­

off between these two wishes o f the exploration for knowledge and the exploitation of that 

knowledge. Such a dilemma is a fundamental theme in adaptive systems. The two-armed ban­

dit problem is therefore a good candidate to study the optimal trials in any adaptive system 

such as GAs.

In an experiment, presume that a series o f trials have been conducted. The goal is to use 

the acquired knowledge to decide which is the better arm to play in the rest o f the trials. This 

experiment has an expected loss, L, playing the wrong arm, as the following equation:

L{N,n) =  \ \ i^ - \ i -^ { {N -n )q {n )^ n { \ -q {n ) ) ]  (3)
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N  = total number of trials in the experiments.

n = number of trials that have been conducted on each o f the two arms with a total of 2« trials. 

q(n)= probability that the wrong decision is made after the 2n trials.

Equation 3 identifies two sources o f loss:

• The first loss is a result o f choosing the wrong arm, the arm associated with the lower 

payoff, after performing the 2n trials. This means that we choose n wrong arms during 

the 2n trials and also during the rest o f the (N-2n) trials. There are a total of 

(n+(N-2n)) = (N-n) such trials.

• The second loss occurs when we select the correct arm, the arm associated with the bet­

ter payoff, after the 2n trials. This means that we have issued n trials choosing the wrong 

arm during the 2n trials with a probability o f (l-q(n)).

The objective is to allocate the N trials between the two arms so that the expected loss, 

L{N ,ri), can be minimized. Holland [1973, 1992] has calculated that to allocate trials opti­

mally (in the sense of minimal expected loss), an exponentially increasing number of trials 

should be given to the observed better arm, i.e. the arm which receives the reward pi in the 

current trial.

In order to apply the result o f the two-armed bandit analysis to GAs, where multiple 

schemata are competing simultaneously, Holland expanded his analysis to the k-armed bandit 

problem. Holland [1992] demonstrated that the optimal solution to allocate the trials of k  

competing arms is similar to the solution of the two-armed problem and argued that an expo­

nentially increasing number o f trials should be given to the observed best o f the k  arms.

This result of optimal allocation o f trials to the k-armed bandit can be applied to GAs by 

viewing the process of GA search as a competition o f k  schemata. Two schemata A and B 

with individual positions o, and 6, are competing with each other if  for positions i = 1,2 . . . ,  /, at

least one of the i value has feature such that a  - #  #, b- #  # and a  - ^  b -. For example, the fol­

lowing four schemata are competing at locations 2 and 3:

# 0 0 #

# 0 1 #

# 1 0 #

# 1 1 #

The four schemata are competing because they are defined over the same positions (2 and 3). 

They are competing with one another for precious population slots. In order to allocate the 

population slots optimally, exponentially increasing numbers o f slots should be allocated to
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the observed best schema, just as we give exponentially increasing trials to the observed best 

arm in the /r-armed bandit analysis.

This analysis o f the optimal allocation of trials has been criticized by [Fogel, 1995, page 

134]. First, it assumes the independent sampling of schemata. In fact, most GAs employ cod­

ing strings such that schemata are not sampled independently [Davis, 1985]. Second, sam­

pling schemata in a way to minimize expected losses does not guarantee the discovery o f the 

global optimal solutions. Consider the two arms of a bandit, each having mean payoffs pj and

P2  and each having variances o f a j  and , assuming also that p j > P2  and c j  «  To

minimize the expected loss (equation 3), all trials should be devoted to the first distribution 

because it has the larger mean. When the optimal solution is in the second distribution, it can 

never be discovered. For example, a schema A which represents 4 individuals each having fit­

ness 10 would have an average fitness of 10. Another schema B which represents 4 individu­

als with fitness 0, 0, 0 and 20 respectively has an average fitness o f 5. The minimizing 

expected losses approach would choose to sample schema A. However, the optimal solution 

(with fitness 20) is described in schema B, which will not be found by sampling with the prin­

ciple o f minimizing expected losses. “Identifying a schema with above-average performance 

does not, in general, provide information about which particular complete solution, which 

may be described by very many schemata, has the greatest fitness. The single solution with 

the greatest fitness (i.e. the globally optimal solution) may be described in schemata with 

below-average performance. The criterion of minimizing expected losses is quite conserva­

tive and may prevent successful optimization.” [Fogel, 1995].

With the assumption that the exponential increasing of schemata with above-average fit­

ness from one generation to another provides the optimal way to explore the search space in 

mind, we are now back to the schema theorem. Notice that the schema theorem states that the 

optimal schemata processing is achieved through the straightforward operation o f fitness pro­

portionate reproduction. Unfortunately, this selection operator doesn’t introduce any new 

individual to the population. If the population size is the same as the search space, this won’t 

be a problem (and this GA will find a solution in generation 0 through random search). To 

explore new and better individuals, variation operators such as crossover and mutation are 

needed. These variation operators disrupt schemata during their process and will impact the 

schema growth from generation to generation.

The probability of disrupting a schema H  due to the one-point crossover is dependent on 

the defining length of the schema, represented in notation ô(//). The defining length of a 

schema is the distance between the outermost non-# symbols positions. For example: “ 1###” 

has defining length 0 while “#0#0” has defining length 2. A schema is disrupted when the

23



crossover is performed within the defining length among the total o f /-I possible crossover 

locations (/ is the length o f the schema). Assume is the probability that the crossover is per­

formed, and the location o f crossover point is selected randomly, the probability that a 

schema survives from the disruption o f crossover, represented as is given in equation 4.

The inequity in equation 4 is due to the fact that crossover within the defining length o f a 

schema does not always disrupt the schema. For example, schema H  is “ 11#####”. When 

crossover takes place between the first and the second positions o f two strings “ 1110101” 

(which schema //represents) and “0100000”, the generated new string is “ 1100000”. The 

result of the crossover does not disrupt schema / / ,  although the crossover takes place within 

the defining length of the schema.

The next operator to consider is point mutation. The probability o f disrupting a schema H  

due to mutation depends on the order of the schema, represented in notation o(H). The order 

o f a schema is the number of non-# symbols it contains. For example: “ 1#01” has order 3 

while “#0#0” has order 2. Order is the number o f places where mutation can effect a schema. 

Assume is the probability that the mutation operation is performed and the mutation loca­

tion is randomly selected within an individual, the probability that a schema survives from the 

disruption of mutation is the probability that all non-# symbol in the individual survive. This 

can be described in the following equation.

p /m )  = (1 (3)

Equation 6 gives the lower bound for the expected number o f individuals representing schema 

H  in the next generation under fitness-proportionate selection, one-point crossover and point 

mutation. It is the combination o f equation 1,4 and 5.

+ 1)] > -4 ^  • (1 ■ [  1
Â0 / -  I J

(6)

Equation 6 shows that the number o f individuals representing a schema H  grows or decays 

depending upon multiple factors: whether the schema fitness is above or below the population 

average fitness, whether the schema has short or long defining length and whether the schema 

has large or small order. Under untenable assumptions, (e.g. all schemata with above-average 

fitness increase their fitness values in a stationary rate c from generation to generation), the
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schemata with above average fitness, short defining length and small order will appear in the 

next generation at an exponentially increased rate, which in turn provides the best way of 

schema processing, according to the analysis o f the two-armed bandit problem.

2.1.2 Building Block Hypothesis

The schema theorem perceives the operation of GAs through the manipulation o f schemata. 

The schemata with short defining length, low order and high-fitness are sampled most favor­

ably because they have smaller disruption rates during crossover and mutation. In a way, GAs 

work by sampling these particular kind o f schemata (the building blocks), recombining, and 

reassembling them to form individuals o f potentially higher fitness. According to [Goldberg, 

1989], the power o f GAs is due to the ability to find good building blocks and to propagate 

them from generation to generation at a rate close to the optimal rate. This is called the build­

ing block hypothesis.

Dissenting arguments against the schema theorem, two-armed bandit analysis and the 

building block hypothesis have been expressed a number o f times in the past and are 

addressed more profoundly in recent years. Since these topics are beyond the scope o f this 

thesis, only related works are listed below for interested readers. Salomon [1998] also pro­

vides a comprehensive review of related issues.

• Both [Grefenstette and Baker, 1989] and [Muhlenbein, 1991] have criticized the schema 

theorem for not reflecting the real operation of GAs.

• Altenberg [1995] also dismissed the merit of the schema theorem in explaining GA per­

formance.

• Fogel and Ghozeil [1998] pointed out that the schema theorem overlooked the misallo- 

cation of trials in the proeess o f stochastic effects.

• The main theoretical proof o f the incorrectness o f the two-armed bandit analysis was 

first offered in [Macready and Wolpert, 1996; Macready and Wolpert, 1998].

• Later, Rudolph [1997] presented a counter example to demonstrate that the fitness pro­

portionate selection method is not optimal in uncertain environments.

• Beyer [1995, 1997] showed that the power o f crossover does not stem from the “combi­

nation” o f “good properties” o f the mates (as in the building block hypothesis) but rather 

from genetic repair diminishing the influence o f harmful mutations.
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2.2 Genetic Programming

Genetic Programming (GP) [Koza, 1992] is an extension o f GAs. Similar to GAs, GP uses a 

central algorithm loop which applies the basic evolutionary-based genetic operators within a 

population of individuals to search for solutions. The most common way used to differentiate 

GP from GAs is that GP uses a dynamic tree representation and the representation is inter­

preted as a program. In addition, there are a number o f emergent properties in GP that have 

distanced GP from GAs even further.

2.2.1 Genetic Programming Versus Genetic Algorithms

The following are emergent properties of GP that have been identified by [Angeline, 1994; 

Altenberg, 1994a; Altenberg, 1994b; Banzhaf, Francone and Nordin, 1997].

Dynamic Tree Representation

With the variable length program tree representation, GP evolves program contents and struc­

tures at the same time. The search space o f GP is therefore more complicated than that o f the 

traditional GAs, where only the contents of an individual are evolved. However, this property, 

strictly speaking, is not unique to GP. The tree representation is normally constrained to a 

maximum depth or a maximum number of tree nodes due to the virtual size of a computer’s 

memory. In practice, the representation of the “dynamic” tree is implemented using part of a 

frxed-length bit string necessary to represent the tree. As the tree grows, more of the bit string 

is used. This approach has been used by others to implement their GA work [Shaffer, 1987; 

Goldberg, Deb and Korb, 1990; Jefferson et al. 1992].

Complex Representation Interpretation

In GAs, the interpretation function uses a positional encoding where the semantics of a bit are 

tied to its position as well as its content. As a result, the interpretation o f a bit string is often a 

simple combination of the various positions, similar to a union o f all independent features. In 

contrast, GP interprets a particular program tree without considering its position. For exam­

ple, the interpretation of the function “if-then-else” in a genetic program is the same regard­

less o f its position in the program tree. The arbitrarily complex association between an 

expression and its interpreted behavior allows for an big variety o f dynamics to emerge natu­

rally from the evolutionary process.
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Syntax Preserving Crossover

The one-point crossover used in GAs is replaced with a subtree crossover in GP. This cross­

over operator preserves the syntax of the programs by swapping only complete subtrees 

between two parent programs. Many concerns have been raised regarding to its impact on the 

GP evolutionary process. Supposedly, this operator should provide GP the search power to 

find a good problem solution. However, [O’Reilly and Oppacher, 1995] has reported the 

opposite results: this crossover operator seems to destroy rather than facilitate the construc­

tion o f problem solutions. To provide better performance, many alternative genetic operators 

have been proposed [O’Reilly and Oppacher, 1996; Angeline, 1997a; Chellapilla, 1997b; 

Harries and Smith, 1997; Poli and Langdon, 1998b].

Emergence of Introns

A tendency o f GP program evolution is the growth o f program length, commonly known as 

“bloat”. Langdon and Poli [1997b] have argued convincingly that “such growth is inherent in 

using a fixed evaluation function with a discrete but variable length representation”. Briefly, 

the fixed evaluation functions quickly drive search to converge, in the sense o f concentrating 

the search on solutions with the same fitness as previously found solutions. In general, vari­

able length allows many more long representations o f a given solution than short ones of the 

same solution. Consequently, the longer representations occur more often and representation 

length tends to increase.

Angeline [1998] also pointed out an obvious, yet ignored, reason o f bloat: subtree cross­

over promotes the recombining of larger program structures. When a set o f 6  mutation opera­

tors is used to run three different problem experiments, Angeline showed that the program 

size does not grow as much as that using subtree crossover. This result is expected since 5 o f 

these 6  mutation operators either modify a single program point or a program link, i.e. result­

ing no change o f program size. The only exception is a subtree mutation which can potentially 

generate larger program trees. Consequently, program evolution using these 6  mutation oper­

ators does not cause the increase of program size as much as that using subtree crossover.

Program growth is also associated with the appearance o f redundant code, called introns, 

in the evolved genetic programs. Although this redundant code has no effect on the semantics 

o f the programs, its impacts on the GP evolutionary process have been reported in various 

research: according to [Nordin, Francone and Banzhaf, 1995; Haynes, 1996; Wineberg and 

Oppacher, 1996], introns are advantageous to GP as they protect fit building blocks fi’om 

being destroyed by the crossover operator. In contrast, [Andre and Teller, 1997] reported that 

introns have a negative effects on GP. An important distinguishing characteristic is that.
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unlike GAs where introns have to be designed into its representation [Levenick, 1991], 

introns in GP are emerged to its representation naturally through the dynamics of the repre­

sentation.

2.2.2 Genetic Programming Schema Theorem

There are some theoretical works on defining the concept o f schema for program trees and 

using them to define a schema theorem for GP [Koza, 1992; O ’Reilly and Oppacher, 1995; 

Whigham, 1996b; Poli and Langdon, 1997; Rosea, 1997a]. Poli and Langdon [1998a] pro­

vided a good review of schema definition by different researchers. Basically, there are two 

main approaches in schema definition; Non-rooted tree and Rooted tree. The following is 

based on their work with more detailed explanations.

Non-Rooted Tree Approach

In this approach, a schema is a non-rooted program tree. The same schema are allowed to be 

present multiple times within a program parse tree. Since GP program trees can have many 

different sizes and shapes, multiple occurrences o f the same schema can make the computa­

tion o f the probability of schema disruption difficult. The formulation o f schema theorems for 

GP using this approach is therefore inconclusive.

Koza [1992, page 117-118] made the first attempt to provide a schema definition for GP 

program trees. A schema H  is represented as a set o f S-expressions. For example the schema 

H  = {(+ 1 x), x y )}  represents all programs including at least one occurrence of the expres­

sion (+ 1 x) and at least one occurrence of (* xy). Koza’s definition gives only the defining 

components o f a schema not their position, so the same schema can be instantiated in different 

ways, and therefore multiple times, in the same program tree. Koza didn’t provide a schema 

theorem for GP.

O’Reilly and Oppacher [1995] refined Koza’s work and gave a schema theorem for GP 

based on fitness-proportionate selection and subtree crossover. Mutation is not considered in 

their work. A schema is an unordered collection (a miltiset) o f subtrees and tree fragments. 

Tree fragments are trees with at least one leaf that is a “don’t care” symbol (“#”) which can be 

matched by any subtree. For example the schema H={(+ 3 4),(+ 3 4),(- # #)} represents all 

the programs including at least one occurrence of the tree fragment (- # #) and at least two 

occurrences o f the subtree (+ 3  4). The tree fragment (- # #) is present in all programs which 

include a symbol. Like Koza’s, this schema definition gives only the defining components 

o f a schema not their position. Consequently, the same schema can be instantiated in different

28



ways, and therefore multiple times, in the same program. For example the program (IF (+ 3 4) 

3 4) ( - X  2)) instantiates the schema once while the program (AND (+ 3 4) (+ 3 4) (+ 3 4) (- 

xy))  instantiates the schema three times because there are three ways to combine the two (+ 3

4) subtrees and one (-#  #) fragment.

Based on the schema definition, the concept o f order and defining length in GP are devel­

oped. The order of a schema is defined as the number o f non-# nodes in the subtrees or tree 

fragments contained in the schema. For example, the schema {(+ 3 4),(+ 3 4)} has order 6 

and the schema {(- # #)} has order 1. The defining length is defined using two factors: the 

schema and its instantiation program. The defining length o f a schema is the number o f links 

included in the subtrees and tree fragments plus the links which connect them together in its 

schema instantiation program. For example, the schema {(+ 3 4),(+ 3 4)} and its instantiation 

program (IF (+ 3 4) (+ 3 4) (- x  2)) has defining length 4 (for schema) + 2 (for instantiation 

program) = 6. If a schema is instantiated in multiple programs in a population, the average 

number of links to connect the schema’s subtrees for all the instantiated programs is used to 

calculate the defining length o f the schema.

Using these definitions o f schema, defining length and order, they developed a schema 

theorem for GP. In the theorem, the probability o f disrupting a schema due to crossover is not 

a constant but varies depending on the shape, size and the composition o f its instantiation pro­

grams. This is due to the fact that the defining length o f a schema depends on the way a 

schema is instantiated inside the programs sampling it. O ’Reilly and Oppacher argued that 

this variability of disruption from generation to generation makes the propagation and the use 

of building blocks (short, low-order relatively fit schemata) unattainable.

Whigham [1996b, Chapter 6 ] gave schema definition in his context-free grammar GP 

system. In his system, a program is represented as a derivation tree from a pre-defined gram­

mar. The crossover and mutation operators are constrained to produce only valid derivation 

trees. A schema is a partial derivation tree rooted in some non-terminal symbol nodes. The 

schemata represented in a program are a collection of partial derivation tree (represented as 

production rules) organized into a single derivation tree (which represents the program). For 

example, consider the following derivation tree created using a context-free grammar:

and B B

Figure 2.1: A derivation tree in a context-free grammar GP system.

29



s ::= andBB;
B ::= x;
B ::= y;

The program tree in Figure 2.1 can be created using the following derivation steps:

S => andBB => andxB => andxx

Meanwhile, the following schemata are represented in this derivation tree associated with 

these steps:

=> , B ^  , -S' => andBB, S => andxB, S => andBx, S => andxx, B =>x

This definition o f schema doesn’t require a special symbol for don ’t care since every non-ter­

minal {S and B in this example) in a partial derivation tree implicitly represents all legal 

strings that can be derived from the non-terminals. Also, a schema can appear multiple times 

in the same program since a schema derivation tree can be extended by applying one or more 

of the pre-defined grammar rules. For example, the schema ^  => x is present twice in the 

program derivation tree. This is due to the absence o f position information in the schema def­

inition.

Whigham's definition o f schema leads to a simple equation for crossover and mutation 

disruption of schemata without the need of defining length and order. However, as with that 

defined by O ’Reilly and Oppacher, the disruption probabilities vary depending on the size of 

the derivation trees which the schema represents. To formulate his schema theorem, 

Whigham used the average disruption probabilities for all programs which a schema repre­

sents. This GP schema theorem differs from the one obtained by O ’Reilly and Oppacher as 

the concept of schema is different. Whigham didn’t draw any conclusion related to the build­

ing block hypothesis.

Rooted Trees Approach

In this approach, a schema is a rooted program tree or tree fragment. With this position 

restriction, a schema can only be instantiated at most once within a program tree. The study of 

the propagation o f the components of the schema in the population is equivalent to analyzing 

the way the number of programs sampling the schema changes over time.

Rosea [1997a] formulated a schema definition, called rooted tree-schema, where a 

schema is a rooted and contiguous tree fragment. For example, the schema H=^(+ # x) repre­

sents all the programs whose root node is a + and its second argument is x  (“#” is don’t care

so it can be anything)^ He also gave a definition o f order which is the number of functions
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and terminals specified in the schema. The above schema example has order 2. His schema 

theorem doesn’t use the concept o f defining length. Instead, the disruption o f a schema due to 

crossover is the summation o f the disruption o f all programs in the population that the schema 

represents. As an example, if there are 3 programs: (+ xx), (+ (-y  I) x) and f+ f - x y j x j  in the 

population which match the schema H, the disruption rate for the schema is the summation of 

the disruption of the three tree programs. The disruption o f each program depends on 1) the 

size o f the program, 2) its fitness and 3) the order o f the schema represented. Rosea didn’t 

provide conclusion regarding to building block hypothesis from his schema theorem.

Poli and Langdon [1997] defines a schema as a rooted tree fi'agment whose don’t care 

symbol (“ =”) can only be matched by a single function or terminal. This makes a schema / /  

represents only those programs which has the same shape as H  and which have the same 

labels for the non-= nodes. The number o f non-= symbols is called the order o f a schema H, 

while the total number o f nodes in the schema is called the length N(H) o f the schema. The 

number of links in the minimum subtree including all the non-= symbols within a schema H  

is called the defining length L(H) of the schema. For example, the schema (+ (I = = )  x) has 

order 3 and defining length 2.

Using the concept of order, length and defining length. Poli and Langdon formulated a 

schema theorem for a GP system using point mutation and one-point crossover. Point muta­

tion replaces a function in a tree with another function with the same arity or replaces a termi­

nal with another terminal. One-point crossover works by selecting a common crossover point 

(the same position counting from the root of the tree) in the parent programs and then swap­

ping the corresponding subtrees like the standard crossover. They have used the defined 

schema theorem to analyze the disruption of two groups of schemata: schemata representing 

programs with the same shape and size and schemata representing programs with different 

shape and size. The results indicate that these two groups of schemata interact with each other 

during GP run to optimize program structure and contents. According to their study, two con­

jectures have been made:

• During the early stage o f GP run, the schema disruption rate is very high. The effect of 

fitness-proportional selection is counteracted by the crossover disruption.

• In the absence of mutation, after a while the population would start converging and the 

diversity of program shapes and sizes would decrease. During this phase competing 

schemata normally have the same size and shape, which is very much like GAs. There-

1. Rosea didn’t use a “don’t care” symbol since a schema is a rooted and contiguous tree. All 

nodes that extend the schema tree can be thought as “don’t care” nodes.
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fore, during this stage o f GP run schemata with above average fitness, low order and 

short defining length (building blocks) would have a low disruption probability.

The purpose o f formulating a schema theorem for GP is to provide an understanding o f how 

GP searches for problem solutions. Yet, as the validity o f the GA schema theorem is criti­

cized, the usefulness o f GP schema theorem is also under attack. In December o f 1997, a 

heated debate went on the genetic programming list [GP-List, 1997] about the existence of 

building block, schema interpretation and the performance o f crossover versus mutation. In 

fact, using a different approach, an enumeration o f the program search space, [Langdon and 

Poli 1998a] has concluded that there is no building block in the artificial ant problem. Further­

more, they also demonstrated that the ability o f GP to use building blocks to compose prob­

lem solutions is not exhibited in the e v e n - p a r i t y  problem [Langdon and Poli, 1998b]. We 

have used a similar approach to investigate the impact o f a higher-order function program 

representation on the GP search process. This work will be described in Chapter 7.

2.3 Functional Programming Languages

This section summaries functional programming languages work which is related to this 

research. The X calculus is presented first. This is followed by an overview of types and poly­

morphism. A polymorphic X calculus is then given. Finally, two functional programming lan­

guages features, higher-order functions and recursion, are described at the end o f this section.

2.3.1 Lambda Calculus

The X calculus [Church, 1932-1933; Church, 1941] is usually regarded as the first functional 

language, although it was certainly not thought of as programming language at the time, given 

that there were no computers on which to run the programs [Hudak, 1989]. Modem functional 

languages can be thought o f as the X calculus (in various forms) with a lot o f syntactic sugar.

X expressions are expressions in the 1 calculus. The abstract syntax o f the untyped X 

expressions is as the following:

e  : : = c  built-in function or constant

I X identifier

I 0 2  application o f one expression to another

I À X .  e  X abstraction

In its purest form, the X calculus does not have built-in functions or constants (c in the above

syntax). In practice, however, every functional language provides some built-in functions and
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constants, for example +. This extended version is therefore chosen as it represents modem 

functional languages more closely.

Expressions o f the form X x . e  are called X abstractions which represent function defini­

tion. Expressions o f the form 6 2  are called applications which represent the application of

an expression to another expression. By convention, application is left-associative, so that 

(e^ 6 2  6 3 ) is the same a s ( ( e i  6 2 ) 6 3 ). The following gives some examples o f X

expressions: 

a
+ 1 b

(X X .  + 1 x )

2.3.2 The Operational Semantics of the Lambda Calculus

This section provides the “calculation” part of the X calculus: four conversion rules which 

describe how one X expression is converted into another. The operation o f substitution of the 

expression M for the free variable x in the expression E, denoted as E[M/x], is first 

explained since it is used by three of the four conversion rules.

The set o f free variables of a X expression E, which is represented in notion Jv(E), is 

defined by the following rules:

/v (c )  = { }

= { ^ )

p ( \ x  e )  =  f v ( e ) - { x )

A variable x  is free in E i î f  x  g f v { E )  .

Substitution with the expression M of every free variable x i n a X  expression E (denoted 

E [M/x] ) is defined inductively by: 

c [M/x] = c

X [M/x] = M

(6 ] €2 ) [M/x] = ei[M /x] 6 2 [M/x]

(Xx. e) [M/x] =  Xx. e

(Xy. e) [M /x] = Xy. (e[M /x]) i f  (x  ^ / v ( e ) ) o r ( y  0 /v ( M ) )

= Xz. (e[z/y])[M /x] otherw ise
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The last rule is the most complicated one. It deals with name conflict and resolves it by mak­

ing a name change. The following example demonstrates the application of this last rule;

(&y.  + X y)  [ y / x ]  -> ( I z . + x  z)  [ y / x ]  -> X z ,  + y  z

Now the terminologies are clear, the four conversion rules can be presented: 

a-conversion : Xx. e <-> ^y. e[y/x], i f  y  ^ y v (e)

P-conversion; (A,x. e)M  <-> e[M /x]

r|-conversion: (A,x. e x )  <-> e, i f  x ^ f v ( e )

0-conversion: e v a l u a t i o n  o f  b u i l t - i n  f u n c t i o n s

The following gives examples of the application of these conversion rules:

(Xx. + x l )  A (Xy. + y l )

(A.X. + X 1) 6 ( + 6  1)

{ Xx .  + 1 X) a . (+ 1)

+ 1 2 è  3

Note that these four are conversion rules which allow the conversion to happen in either

direction. When these rules are restricted to happen in one direction, these conversion rules 

are called reduction rules: a-reduction, p-reduction, T]-reduction and 5-reduction. A X expres­

sion can be reduced to another one by applying one o f the four reduction rules.

R ed u c tio n  O rd e r

A X expression is in normal form if it can not be reduced further using p or rj rules. There are 

some X expressions which do not have normal form, such as:

(Xx. (X X) ) (Xx. (X X) )

where the only possible reduction leads to an identical term, thus the reduction process is non­

terminating.

Furthermore, some X expressions may or may not reach normal forms depending on the 

reduction order. For example, consider the following X expression:

(Xx. 3 ) (D D) w h e r e  D i s  (Xx. x x)

If we first reduce the application ( X x. 3 ) ( D D ) without reducing its argument ( D D ) , we

got the result 3. However, if we first reduce the argument, we will never get any result as the

process is nonterminating. This example raises an important question: can different reduction 

orders lead to different normal forms?

34



The Church-Rosser Theorem I [Church and Rosser, 1936] provides an answer for this 

question:

If 62, then there exists an expression e, such that e^-^ e and 2̂ ^   ̂• 

Corollary:

No lambda expression can be converted to two distinct normal forms.

Informally, the corollary says that all reduction sequences which terminate will result in the 

same normal form. The next question is which reduction order is mostly likely to terminate 

and to find the normal form?

The Church-Rosser Theorem II [Church and Rosser, 1936] provides an answer for this 

question:

If e Y 2̂' 2̂ normal form, then there exists a normal order reduction

from ej to

These two Theorems promise that there is at most one possible result and normal order reduc­

tion will find it if it exists. So, what is normal order reduction?

A normal order reduction is a sequential reduction in which, where there is more than 

one reducible expression (called a redex), the leftmost outermost one is chosen first. In con­

trast, an applicative order reduction is a sequential reduction in which the leftmost innermost 

redex is reduced first. In the above example ( ( X,x. 3 ) ( D D)), normal-order reduces the Ix- 

redex first while the applicative-order would reduce the ( D D ) -redex first. Intuitively, nor­

mal- order performs reduction on the body of a function first while applicative order performs 

reduction on the argument o f a function first. In this example, normal order reduction pro­

duces a result while applicative order reduction will loop forever.

2.3.3 Typed Lambda Calculus

To introduce types into the 1 calculus, the type language to be used has to be defined: 

a  : :=  X basic type

I -> ( ? 2  function type

With the typed X calculus, each X expression is tagged with a member o f the type language by 

superscripting, as in e®. Type o j -> 0 2  denotes the type o f all functions from value o f type Oj
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to value o f 0 2 - Thus, the type o f application ( ^ 1  ' ^ ^ 2  ' ) is 0 2 . Modifying the X calculus

this way, a typed X calculus can be derived;

e  : : = built-in fonction and constant

I identifier

I ( ^ ^   ̂ application o f one expression to another

I (A, X*' . abstraction

The typed conversion rules are as the following:

Typed-a-conversion: (Ax^' .e^) <-> /x^ ' ]), i f  ^

Typed-P-conversion: ((Ax^' ) <-> /x ^ ' ].

Typed-r|-conversion: (Ax^' .e^ x^ ' ) <-> e*̂ , i f  x '^ '^ /v ( e ^ )  .

Typed-Ô-conversion: e v a l u a t i o n  o f  b u i l t - i n  f u n c t i o n s

The typed A calculus supports a type system which is like that used in monomorphic typed 

languages. Modern functional languages do better than this by supporting polymorphism. The 

next section introduces the concept of polymorphism. A typed A calculus which supports 

polymorphism will be discussed in Section 2.3.5.

2.3.4 Types and Polymorphism 

Static Versus Dynamic Versus Strong Typing

In programming languages, static typing means that the type o f every expression can be deter­

mined by static program analysis. This also means that before a program is executed, the type 

o f every expression is known. By contrast, dynamic typing doesn’t care about the type of an 

expression until program execution time. Dynamically typed languages use a run-time type 

checker and a run-time error handler to either report or repair type errors. Static typing is a 

desirable feature because it allows type errors to be detected at compile time, hence provides 

greater execution-time efficiency.

Although a useful feature, static typing can sometimes be too restrictive. Statically typed 

languages lose some flexibility and power o f expression due to the premature constraint o f the 

behavior o f an object to a particular type. They exclude programming techniques that, 

although sound, are “ineompatible with early binding of program objects to a specific type”
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[Cardelli and Wegner, 1985]. For example, they exclude generic procedures, such as sorting, 

that represent algorithms which are applicable to a range o f types.

Strong typing relaxes the restriction by allowing the exact type of an expression to be 

unknown at program compiling time. However, all expressions have to be type consistent. A 

program that is type consistent at compile time is guaranteed to be executed without run-time 

type errors. Note that every statically typed language is strongly typed, but the reverse is not 

necessarily true.

Kinds of Polymorphism

Strong typing can be implemented in programming languages in two different ways. Conven­

tional typed languages, such as Pascal, are based on the idea that arguments of functions and 

procedures have an unique type. Such languages are called monomorphic languages. By con­

trast, languages allow functions and variables to have more than one type.

Cardelli and Wegner [1985] have classified polymorphism as the following:

Polymorphism

.{param etric
umversaU

[ inclusion

ad
[ coercion

Universally polymorphic functions work on a large number o f types (all the types have a 

given common structure), whereas ad-hoc polymorphic functions only work on a finite set of 

different and potentially unrelated types. With universal polymorphism, a polymorphic func­

tion would operate on arguments of many types. However, this is not always true in ad-hoc 

polymorphism. An ad-hoc polymorphic function can be viewed as a small set o f monomor­

phic functions and the set can contain only one element. In terms of implementation, a univer­

sally polymorphic function executes the same code for arguments o f any admissible types, 

whereas an ad-hoc polymorphic fimction may execute different code for different type of 

argument.

There are two kinds o f universal polymorphism: parametric and inclusion. In parametric 

polymorphism, a polymorphic function takes arguments of any type. The function performs 

the same kind o f operation without considering the type o f the argument. It is the purest form 

o f polymorphism in the sense that any type is acceptable as its argument. With inclusion poly­

morphism, an object can be viewed as belonging to many different types which are related by 

inclusion. One particular instance o f inclusion polymorphism is subtyping. With subtyping, a
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type can be a subtype o f another type. Furthermore, wherever a type may appear, its subtype 

may also appear. Functions that permit subtyping are polymorphic since the same operation 

can be applied to more than one type o f argument.

There are two kinds of ad-hoc polymorphism: overloading and coercion. In overloading, 

the same name is used to denote different functions and the context is used to decide which 

function is denoted by a particular instance o f the name. We may imagine that a preprocessing 

o f the program will eliminate overloading by giving different names to the different func­

tions; in this sense overloading is just a convenient syntactic abbreviation. On the other hand, 

a coercion is instead a semantic operation that is needed to convert the type o f an argument to 

the type expected by a function, otherwise a type error would occur. Coercion can be pro­

vided statically, by automatically inserting the expected type in front o f arguments and func­

tions at compile time, or it can be determined dynamically by run-time tests on the arguments.

2.3.5 Polymorphic Lambda Calculus

One way to achieve parametric polymorphism in the typed X calculus is to add type variables 

to the type language:

o  : : = I basic type

I |i  type variable

I G i -> O2  function type

To accommodate this change, the typed P-conversion rule has to be extended to handle type 

variables:

Typed-p-conversion with type variables:

1. . e^)A/^' ) ^  ]

2. [Gi/|i](e'^[A^'/xf^])

[oj/p] is an operation which substitutes the type variable p with type value a^.

Unfortunately, once type variables are introduced, it is no longer clear whether a X 

expression is correctly typed. In fact, the general type-checking problem for this calculus is 

undecidable [Bohm, 1985; Pfenning, 1988].

Fortunately, [Hindley, 1969] and [Milner, 1978] independently discovered a restricted 

polymorphic type system that is almost as rich as that provided by the above calculus and for 

which type inference is decidable. The restriction o f the type system is that the use of formal 

parameters in a function body must be monomorphic: all occurrences o f a formal parameter
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must have the same type. Since in practice, the class of programs that the type system rejects 

is not large, many functional programming languages, such as Haskell and Miranda, have 

already incorporated this type system to provide polymorphism in the language.

2.3.6 Higher-Order Functions and Partial Application

In functional languages, functions are treated as first-class values and can be stored in data 

structures, passed as arguments and returned as results for other functions. Functions which 

take other functions as arguments or produce other functions as results are referred as higher- 

order functions. The major philosophical argument for higher-order functions is that func­

tions are values just like any others and should be treated just like other values. However, it’s 

their pragmatic benefits which make higher-order functions appealing: they increase the use 

o f abstraction. A function is an abstraction of common behavior over some values. Extend 

this use to functions increases the use o f that kind o f abstraction. As an example, the follow­

ing higher-order function t w i c e  takes its first argument, a function f ,  and applies it twice to 

its second argument x.

twice f x= f(f x)
Now, we can use this higher-order function for many different function arguments (assumes 

a d d l O  and mul  t i p l y l O  are defined before), hence providing another level of abstraction.

twice addlO 1 = 21
twice multiplylO 1 = 100

In modem functional languages, functions can be created in two ways: one is to name them 

using equations, such as the example function t w i c e ,  and the other is to create them directly 

as 1 abstractions, thus rendering them nameless. The following example defines a X abstrac­

tion which takes one input and adds I to the value of the input. The result is the return value of 

the X abstraction.

X X .  + X 1
In the X calculus, functions can only be created using the second method. With higher-order 

functions and currying (named in honor o f the mathematician Haskell Curry), a third way of 

function creation is provided. A function written in curried form allows its arguments to be

partially applied. When only part o f the arguments are provided to a function, a new function

which expects the rest of the arguments is generated. This is called partial application. For 

example, the following is a A, abstraction defining a function taking two arguments.

X X .  X Y , ( + X y  )
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When only one argument, say 10, is given to the 1 abstraction, a new function which expects 

one argument is generated.

X y ,  ( + 10  y  )

2.3.7 Recursion

Recursion is a general mechanism for program code reuse. When the name of a program 

appears in its program body, it is like making a new copy of the program code within the pro­

gram. Recursion leads to more compact programs and can facilitate generalization.

Although a powerful reuse mechanism, recursion must be used carefully to be effective. 

There are two important criteria which are sufficient for a recursive program to terminate;

1. a terminating condition (base case);

2. the recursive calls are successively applied to arguments that eventually converge 

towards the terminating condition.

A recursive program which fails to meet either o f the two requirements may or may not pro­

duce a result depending on the program evaluation style. With lazy evaluation (i.e. the normal 

order reduction described in Section 2.3.2) where arguments o f a function are evaluated only 

if their values are needed, it is possible for programs containing infinite loops to halt. This 

happens when the code which contains infinite loops is not needed and therefore is not exe­

cuted. On the other hand, strict evaluation (i.e. applicative order reduction described in Sec­

tion 2.3.2) requires the evaluation o f a function’s arguments before the function body and can 

make such a program loop forever.

Implicit Recursion

A recursive function can also be implemented using implicit recursion. The relationship 

between explicit recursive calls and implicit recursion is demonstrated in Figure 2.2:

f u n - n a m e  i n p u t s  f u n - n a m e  c o d e  i n p u t s

a p p l y  c o d e  t o  i n p u t s ;  i n p u t s

r e c u r s i v e - c a l l  o n  i n p u t s ;  r e c u r s i v e l y .

Figure 2.2: Explicit recursion versus implicit recursion
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By extracting the code in a recursive function and making it an argument, the function 

becomes a higher-order function. Moreover, in this higher-order function, the code can be 

applied iteratively to the inputs, hence achieve the same recursion semantics as that using 

recursive calls.

This style o f recursion implementation is only supported in functional languages, for 

example through the higher-order functions map,  f o l d r  and f i l t e r . Their operation is 

described as the following:

• map: applies the first argument, a monadic function (one which takes a single argu­

ment), to each element o f the second list argument to produce a list of the results. For 

example:

map (+1) [1,2,3]
= [(+1 1),(+1 2),(+1 3)]
= [2,3,4]

• f o l d :  places the first argument, a dyadic function (one which takes two arguments), 

between each of the items in the list. The f o l d  function family contains two members: 

f o l d r  and f o l d l .  With f o l d r ,  the given terminating value (the second argument) is 

appended to the end o f the expression and the resulting expression is evaluated with 

association to the right. For example:

foldr (+) 10 [1,2,3]
= 1 + (2 + (3 + 10) )
= 1 + (2 + 13)
= 1 + 15 
= 16
With f o l d l ,  the given terminating value (the second argument) is prefixed to the 

expression and the resulting expression is evaluated with the association to the left. For 

example,

foldl (+) 10 [1,2,3]
= ((10 + 1) + 2) + 3 
= (11 + 2) + 3 
= 13 + 3 
=  16

Given the same arguments, f o l d r  and f o l d l  may or may not produce the same result.
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More information about the differences between foldr and foldl functions can be 

found in [Clack, Myers and Poon, 1995, Chapter 4],

• f i l t e r ;  applies the first argument, a predicate operator (a function which returns True 

or False), to each element in the second list argument. It produces a list containing only 

the items which satisfy the predicate operator. For example:

f i l t e r  ( >1)  [ 1 , 2 , 3 ]

= [ 2 , 3 ]

Implicit recursion is normally carried out by higher-order functions. This style o f recursive 

programs do not generate infinite loops because the two required terminating conditions are 

always satisfied.

2.4 Summary

Background knowledge in GAs, GP and functional programming languages has been intro­

duced in this chapter. The GAs/GP schema theorems and building block hypothesis, although 

criticized, provide us with a degree o f understanding o f the process o f program evolution. 

Such understanding can assist us to analyze the impact o f functional techniques on GP (see 

Chapter 6 and 7).

In the next chapter, related research will be presented. They are classified into four main 

categories: syntactic constraints using grammars, type constraints, modules and recursion.
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Chapter 3

Related Work

This chapter summarizes research conducted in GP that is related to our work. This is classi­

fied into four categories: syntactic constraints using grammars, type constraints, modules and 

recursion. Those works use different approaches to tackle the same GP issues that this 

research is addressing. We identify their strength and weakness. They will be compared to our 

work in evolving X calculus and in investigating the application and benefits of the following 

function programming techniques to GP, respectively: polymorphism, higher-order functions 

and implicit recursion.

3.1 Syntactic Constraints using Grammars

The traditional GP paradigm requires a “closure” property, which states that each “...function 

in the function set should be well defined for any combination of arguments that may be 

encountered” [Koza, 1992]. “Closure” allows unrestricted composition o f the available func­

tions and terminals in the program trees. Unfortunately, it also limits the applicability of GP 

because not all problems can be easily represented to satisfy this requirement.

Koza has realized this shortcoming and provided “constrained syntactic structures” to 

relax the closure property [Koza, 1992, Chapter 19]. With “constrained syntactic structures”, 

a set of problem-specific syntactic rules are defined to specify which terminals and functions 

are allowed to be the child nodes of every function in the program trees. As an example, in the 

Fourier series problem [Koza, 1992, Chapter 19], the following syntactic rules are specified:

• The root of the tree is the fimction &.

• The only thing allowed below an & function is either an &, an x s i n  or x c o s  function.

• The only thing allowed below an x s i n  or x c o s  function is either a floating-point ran­

dom constant or an arithmetic function ( + , - , * , % ) .
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Although this method worked adequately for the Fourier problem, it appeared as an ad hoc 

approach that would need to be modified for each new problem. Meanwhile, constraints rep­

resented in English are difficult to process during program evolution. An easier method to 

provide systematic specification of syntactic constraints is using grammars.

A grammar is a set o f rules which specify the syntax o f a language. A widely used nota­

tion is Backus-Naur form (BNP) or context-free grammar [Chomsky, 1956]. The X calculus is 

specified in BNP. Other GP work which utilizes a context-free grammar or a logic grammar 

to specify syntactic constraints are summarized in the following subsections.

3.1.1 Context-Free Grammar Approach

Gruau [1995, Gruau and Whitley, 1996] presented a more general way to implement syntactic 

constraints in GP: syntactic constraints are represented as a context-free grammar and a com­

puter algorithm is used to automatically generate program trees which conform to these con­

straints. The syntactic constraints are stored in a separate file which is a part of the GP 

parameters. Moreover, this file is parsed and translated by an enhanced GP algorithm. Using 

this approach, there is no need to re-implement a new GP algorithm each time the syntactic 

constraints are modified.

“A set o f syntactic constraints is a context-free grammar. A valid GP tree is a parenthe­

sized expression that can be generated by rewriting the axiom of the grammar, using the

rewrite rules o f the grammar” [Gruau, 1996]. For rules whose non-terminal^ can be rewritten 

recursively, an upper bound of the number of recursive rewriting of this rule is specified. 

Implicitly, this bound specifies the size limit o f the program tree. For example, in the follow­

ing grammar, both <DNF> and <term> are non-terminals that can be rewritten recursively. 

The rules specify that <DNF> can only be rewritten at most 7 times while <term> can only 

be rewritten at most 4 times.

<axiom> ::= <DNF>
<DNF>[0..6] : or (<term>)(<DNF>) | <term>
<term>[0..3] ::= and (<literal>)(<term>) | <literal>
<literal> ::= <letter> | not (<letter>)
<letter> ::= A I B I C I D

1. A non-terminal in grammars is a symbol which can be rewritten using one o f the grammar 

rules. A terminal, on the other hand, is a symbol which can not be rewritten.
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To preserve the syntax o f the programs, crossover can only be operated between two nodes 

which rewrite the same non-terminal symbol of the grammar. For example, with two program 

trees (or (and A B) D) and (and (not C) D ) , crossover can be performed between 

the two and nodes since they rewrite the <term> non-terminal. Moreover, leaf nodes A , 

B f C and D can be exchanged between them since they rewrite the same <1 etter> non­

terminal.

An unique feature o f this work is that the grammar supports three types o f data structures; 

list, set and array. The following is a modified version o f the above grammar to generate pro­

grams with a list data structure:

<DNF> : := or list [1..7] of (<terin>)
<terin> : := and list [1..4] of (<literal>)

The range of list of specifies interval for the number o f elements of the list. When two 

subtrees are chosen for crossover and they are elements o f the same type of list, the crossover 

will take place at the list level. For example, the crossover between trees ti = or (and 
(C) (C) (C) and (C) ) and t2 = or (and (A) (B) (B) (A) ) can produce a new tree t3 = 

or (and (C)(C)(A)(B)).In this way, these data structures in the program trees are pre­

served. Similar rules are applied to set and array data structures. With the support o f data 

structures. Gruau’s system essentially provide the implementation o f both syntactic as well as 

type constraints of the GP program trees.

Whigham [1995, 1996a, 1996b] also investigated grammatically-based genetic program­

ming system. However, his work emphasized on the use o f grammars to bias GP learning. 

Similar to Gruau’s, a context-free grammar is used to represent the language syntax and to 

guide genetic operators doing search. However, unlike Gruau’s, Whigham’s system used der­

ivation trees to represent programs in the population. By keeping the information about the 

derivation of the program, crossover and mutation can be performed without the need of 

reconstructing the program. However, the reconstruction o f programs is still needed for fit­

ness evaluation.

Crossover in Whigham’s system is done by swapping two derivation trees associated 

with the same non-terminal. For example, using the following grammar, two derivation pro­

gram trees and their offspring are presented in Figure 3.1.

S : := notB | andBB | orBB | x
B ::= X I y I z
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or B

y

(or y y)

and ̂  B

(and X z)

crossover 
 ►

S
/  | \

or B B

( o ryx)

Figure 3.1: Crossover operation in a grammatically-based GP system.

In addition, a directed mutation is designed to allow a more controlled search in the program 

search space. “A directed mutation specifies that one particular production used in a program 

derivation should be replaced by a second production” [Whigham, 1996b]. Directed mutation 

can be considered as a specialized mutation where the selection site for mutation is specified 

and the form of mutation is defined explicitly. An example is to specify that a derivation tree 

B=>x can only be replaced with a derivation tree B=>z. Directed mutation can also be used to 

specify larger derivation tree structures to be replaced. For example, one can specify that the 

derivation tree S=>notB=>notx to be replaced with S=>andBB=>andzz. Whigham has 

used this particular mutation operator to identify pattern in the programs which should be 

replaced with recursive calls. This work will be summarized in Section 3.4.

Freeman [1998] has also proposed the use of a context-free grammar to allow a linear 

representation o f GP programs. Each individual program is an array of integer values which 

represent the rule numbers in the grammar. Crossover and mutation performed on such a rep­

resentation produce some interesting effects. This style o f program representation also pro­

vide more economic space usage. However, there is overhead of the reconstruction of 

program tree for fitness evaluation. This use of context-free grammar is to allow a linear rep­

resentation of the program. There was no mention o f constraints in her work.

3.1.2 Logic Grammar Approach

Wong and Leung [1995, 1996, 1997] employed a logic grammar to represent context-sensi­

tive information and domain-dependent knowledge in their GP system. A logic grammar dif­

fers from a context-free grammar in that the logic grammar symbols, either terminals or non­

terminals, may include arguments. An argument can be in one of the following 3 forms:

• a variable, represented by a question mark? followed by a string of letters/digits, e.g. ?x;

• a function, represented as a function name followed by a bracketed «-tuple o f terms;
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• a constant, represented as a 0-arity function, e.g. W.

The following is an example logic grammar used in their system:

start -> [(*], exp(W), exp(W), exp(W),[)].
exp(?x) -> [(/ ?x 1.5)].

The programs are represented as derivation trees which show how the programs are derived 

from the logic grammar. For example. Figure 3.2 is a derivation tree representing a program 

using the above logic grammar. The genetic operators o f crossover and mutation are modified 

so that only valid derivation trees are generated.

start

 ̂̂  ̂ exp(W) exp(W) exp(W) [)]

[(/ ?x 1.5)] [(/ ?x 1.5)] [(/ ?x 1.5)]
{?x/W} {?x/W} {?x/W}

( * ( / W 1.5) (/ W 1.5) (/ W 1.5))

Figure 3.2: A derivation tree in the logic grammar GP system.

With the extra token of arguments to be associated with each terminal and non-terminal, a 

logic grammar allows more domain-dependant information to be expressed. For example, to 

evolve a general solution to the even-parity problem, arguments are used to specify that 

the type of the non-terminal S-Exp has to be a list, e.g. S-Exp (List) [Wong and Leung, 

1996]. In addition, the grammar also specifies a semantic constraint that if the input argument 

L is an empty list, the program returns True. The purpose of this semantic constraint is to 

enforce the termination condition for recursive calls in the program (see Section 3.4 for more 

details).

A grammar which is capable of representing syntactic, type and semantic constraints is a 

powerful tool. Yet, it requires a powerful interpreter to process such a grammar. In our work, 

syntactic and type constraints are separated; each o f which is specified with a grammar o f its 

own. Type checking is performed by a type system which is also called upon by a syntactic 

checker during program generation and evolution. This system will be described in Chapter 4.

3.2 Type Constraints in Genetic Programming

Koza’s “constrained syntactic structures” provides probably the most primitive implementa­
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tion o f typing for GP. For example, in the Fourier series problem described in the Section 3.1, 

three different types are defined by the three typing rules. The typing mechanism is imple­

mented by labelling each program node with a symbol number that defines the level in the 

program tree where the node may exist. These special symbols were used to ensure that cross­

over and mutation do not violate the syntactic constraints.

Type constraints in GP have been extended by others as a method to reduce GP search 

space for problems which involve multiple types in order to find solutions faster. Although 

the relationship between the difficulty of a problem for GP to solve and the size o f its search 

space has been questioned [Langdon and Poli, 1998a], the reported performance improvement 

due to type constraints (see the following subsections) can not be dismissed. If it is not a result 

o f reduced search space, there must be another explanation which deserves investigation. 

Moreover, the ability to support multiple types has opened up a wide variety o f applications 

for GP [GP-List 1998].

3.2.1 Strongly Typed Genetic Programming

Montana [1995] has developed Koza’s “constrained syntactic structures” so that type con­

straints are given indirectly, through a type system, rather than directly (per-function). In his 

system, a table giving the types of all available terminals and functions is maintained. Thus, if 

a function takes an argument of type X then this implicitly constrains its child node in the pro­

gram tree to produce a value of type X. A second table, type possibilities table, is generated 

before the GP runs. “Such a table tells for each i = 1,... MAX-TREE-DEPTH what are the 

possible return types for a tree of maximum depth i.” [Montana, 1995]. This extra information 

constrains the choice o f function to create nodes in the tree so that the tree can grow to its 

maximum depth, i.e. a function can be used to construct a node at tree depth i  only if all its 

argument types can be generated by tree depth i  -1 . During the creation of the initial popula­

tion, each program tree is grown top-down by choosing functions and terminals at random 

within the constraints o f the types in the table. The crossover and mutation operators also 

have to consult the table. In this way, the population only consists o f program trees that are 

type-correct.

Additionally, Montana has extended the type notion to include generic functions and 

generic data types. Generic functions are functions which accept arguments of any type. 

Generic data types are type variables used to specify that the generated programs can accept 

arguments o f any type. These two features support parametric polymorphism  and strong typ­

ing discussed in Section 2.3.4., he therefore called the system “Strongly Typed Genetic Pro­

gramming” .
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However, we believe there are two key problems with Montana’s work;

1. The implementation requires the creation o f type possibilities table. The table is built 

started from entry 1 (leaf level) and moves up one level at a time. All terminals can be 

on the leaf level so their types are in entry 1. To build entry i ,  each generic function has 

to have its argument type variables instantiated with types in level i - 1 .  The instantiated 

return type o f the generic function is then added into entry i  in the possibilities table. 

This process is applied to every generic function to build one single entry and repeated 

for every entry to build the table. The computation time varies depending on the number 

o f generic functions in the function set and the specified tree depth limit.

2. The type possibilities table approach also makes the implementation to support function 

types difficult. To evolve the higher-order function m a p c a r  (which is the same as the 

map function described in Section 5.4.2) whose argument is o f function type, Montana 

has adopted an ad-hoc manner: instead o f passing the function argument during program 

evaluation, the function argument is provided as a member o f the function set. Although 

this approach works for the m a p c a r  program, the general support for function types is 

not provided in his system.

These two issues will be addressed in our type system described in Chapter 4.

The concept o f using type constraints to reduce the size o f the search space is also inves­

tigated by [Haynes, Wainwright, Sen and Schoenefeld, 1995]. They demonstrated that STGP 

outperformed standard GP for the problem of evolving cooperation strategies in a predator- 

prey environment. They concluded that the improved performance is due to the reduced 

search space attained by STGP. They also showed that the programs generated by STGP tend 

to be easier to understand.

STGP has also been applied to image processing applications. Harris [1997] used STGP 

to enforce a hierarchy in the program trees by defining a set o f types based on the problem 

domain knowledge. Moreover, functions in the function set are specified with these types so 

that a hierarchy o f program structure is maintained. This approach has been shown to be 

advantageous in solving an image template matching problem. In [Lucier, Mamillapalli and 

Palsberg, 1998], STGP is used as an optimization technique to speed up the evolution o f an 

edge detector for mammogram images.

3.2.2 SubTyping

One kind of inclusion polymorphism (see Section 2.3.4), subtyping, is introduced to GP by 

[Haynes, Schoenefeld and Wainwright, 1996]. In their system, generic functions support sub­
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typing: if an argument is of type A, it also accepts any values o f subtypes of A. Subtyping is 

implemented using a table-lookup mechanism similar to that of Montana’s STGP. However, 

during the selection o f functions and terminals to construct program nodes, one extra check 

has to be made: the selected function has to have both its argument types and the subtypes sat­

isfying the type constraints specified in the type possibilities table. Their type system supports 

subtyping with a non-branch type hierarchy, where each type is allowed to have a maximum 

of one supertype and one subtype. They demonstrated that it is essential for the functions to 

support subtyping in order to evolve the solution to the maximum clique problem [Kalman- 

son, 1986].

3.2.3 Higher-Order Function Types

We pioneered the investigation of using higher-order function types to provide a partial appli­

cation style of program representation [Clack and Yu, 1997]. A higher-order function can 

return a function, i.e. the returned value has a function type. When a function is partially 

applied (only part of its arguments are provided), it returns a function which expects the rest 

of the arguments (see Section 2.3.6). By supporting this use o f higher-order function, a new 

partial application style of program representation is introduced to GP.

In the standard GP system, the program representation is expressed in a full application 

manner, i.e. each function node represents a function where all its arguments are provided. 

For example, the program ( * ( + x y ) y ) is represented as Figure 3.3 (a). Both o f the func­

tion node + and * are full application nodes.

2 +

(a) (b)

Figure 3.3: Standard GP versus partial application program representation.

In contrast, a partial application style o f program representation allows a function node to rep­

resent a function where only part of its arguments are provided. For the previous example, the 

program tree is represented in Figure 3.3 (b). The @ symbol indicates a function application 

node. Node 4 is a partial application node where function + is only provided with one argu-
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ment x. On the other hand, node 3 is a full application node where both arguments, x and y, 

are given to the function +. Node 3 in Figure 3.3 (b) corresponds to node 2 in Figure 3.3 (a).

A program representation which allows partial application to be expressed provides more 

locations for crossover and mutation, e.g. 9 versus 5 in the above example. However, to 

assure that the genetic operation generates valid program trees, the system has to be able to 

distinguish a partial application node from a fiill application node. This can be achieved by 

using type information: a partial application node is associate with a function type while a full 

application node is associated with a value type. We have implemented a type system which 

supports function types to create this new style o f program representation for GP (see Chapter

5).

This work has been farther expanded by [McPhee, Hopper and Reierson 1998] who 

observed that this representation allows crossover to change a function in the program trees 

without affecting the arguments, e.g. crossover performed on the + node in Figure 3.2(b). 

Moreover, the probability to select leaf for crossover is reduced. In problems that are highly 

sensitive to the choice of functions at or near the root, such as MAX problem [Gathercole and 

Ross, 1996], this program representation can produce very different performance than that of 

the traditional GP. To investigate this particular effect of the new style of program representa­

tion, they conducted a series of experiments on different problems. The results showed that 

such a representation produced better performance than that produced by the standard GP rep­

resentation on some problems but has no effect on the others. For problems whose program 

solutions have an obvious desired root, the partial application style o f program representation 

is beneficial. On the other hand, for problems where the optimal solutions can be of different 

roots, both representations have similar performance. Further research is needed to gain more 

understanding o f how this program representation impacts GP search.

3.2.4 Type Constraints using Sets

In the constrained genetic programming system developed by [Janikow 1996], type con­

straints are specified using two different sets: one set contains legal functions and arguments 

combinations while the other contains illegal functions and arguments combinations in the 

program trees. The first set is very similar to Montana’s type possibilities table (see Section 

3.2.1) while the second set provides a further restriction o f the program search space. More­

over, these two sets can contain redundant and incompatible information as they will be trans­

formed into minimal normal forms which are to be used during program generation and 

evolution to ensure that only valid programs are generated.

Constraints specified in the legal/illegal sets do not have to be type related. Janikow and
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DeWeese [1998] provided an example o f using the system on the single-typed multiplexer 

problem [Koza, 1992] where constraints specified are domain knowledge about the beneficial 

ways of constructing program structure. This is another approach o f using one representation 

to express syntax, type and semantic constraints in one fi*amework.

3.3 Modules in Genetic Programming

The original GP paradigm has no explicit support o f module creation and reuse. To enhance 

GP’s ability to scale up to larger and more complex problems, various module approaches 

have been proposed. These include Automatically Defined Functions (ADFs), Module Acqui­

sition (MA), Adaptive Representation through Learning (ARL) and Automatically Defined 

Macros (ADMs).

3.3.1 Automatically Defined Functions

ADFs [Koza, 1993; Koza, 1994a; Koza, 1994b] are mechanisms devised by Koza to facilitate 

the creation and reuse of modules. An ADF is “a function (i.e., subroutine, procedure, mod­

ule) that is evolved during a GP run and which may be called by the main program (or other 

calling program) that is being simultaneously evolved during the same run” [Koza, 1994a]. 

When solving a problem that has considerable regularities in its solutions, ADFs provide GP a 

mechanism to automatically decompose the problem into subproblems and then reuse the 

solution to the subproblem to solve the overall problem. On some problems, GP with ADFs 

can generate simpler program more efficiently [Koza, 1994a; Koza, 1994b; Handley, 1994; 

Koza, Andre, Bennett III and Keane, 1996]. On others, such as the two-boxes problem, ADFs 

do not provide any advantage [Koza, 1994, Chapter 4].

An ADF is an independent module which is evolved using separate function and terminal 

sets from the ones used to evolve the main program. To provide better modularity for the 

problem solutions, [Andre, 1994] has suggested that the function sets for ADFs should be 

grouped by functionality. In this way, each ADF is designated with a task defined by the func­

tion set. Moreover, each ADF can be specified with different parameters such as tree depth 

and crossover rate to suite its designated task. Consequently, the evolution o f ADFs and the 

main program are similar but independent.

In the original ADF implementation, fitness evaluation is applied to the whole program 

and there is one fitness value for the whole program. During the fitness evaluation o f the main 

program, when the name of an ADF is encountered, the evaluation process is suspended. A 

new process is created to evaluate the ADF. The outputs o f the ADF is then used by the main
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program to continue its fitness evaluation. The final result o f the evaluation becomes the fit­

ness o f the overall program. With parallel distributed GP [Poli, 1996], non-parametrized reuse 

and automatically defined links are used to provide more efficient program evaluation.

The structures of programs with ADFs (the number of ADFs in the programs) can be 

defined in three different ways. The first approach is to statically define it before the GP run. 

Once the structure is specified, every program in the population has the same structure. 

Genetic operators are customized to preserve the program structure. The second approach is 

to have various kinds o f program structure randomly created in generation 0. Program struc­

ture is then open to evolutionary determination [Koza, 1994, Chapter 21]. The last approach is 

to define the programs in generation 0 with the same structure. Six architecture-altering oper­

ators are then used to evolve program structures during GP runs [Koza, 1995]. With a pre­

defined program structure, GP does not have the opportunity to explore more advantageous 

structures. When an unsuitable program structure is given, GP is doomed. On the other hand, 

leaving GP to determine the program structure among a wide range o f possibilities can be 

computationally expensive. The architecture-altering operations require more computational 

effort for GP to solve problems [Koza, 1995]. We have identified these shortcoming and pro­

vided a better way to define program structures based on the specification o f higher-order 

functions in function set. This work will be discussed in Chapter 6.

3.3.2 Module Acquisition

MA [Angeline and Pollack, 1992; Angeline and Pollack, 1993; Ange line 1994] is a method to 

support modules reuse by creating a library of subtrees extracted from the program trees in 

the population. Unlike ADFs, which are locally defined for each program tree and which can 

be called by one individual possibly many times, modules in MA are globally defined and can 

be used by other individuals in the population.

Two additional genetic operators are introduced in MA: compression and expansion. 

Compression creates subroutines from subtrees of individuals in the current population and 

introduces the subroutines into a “genetic library”. A name is then given to the created sub­

routine and to replace the subtree extracted in the program tree. Figure 3.4 shows the opera­

tion o f compression operator. Expansion is the opposite o f compression: it replaces the name 

o f a subroutine with its correspondent subtree.

The motivation behind MA is to solve the scaling problem in GP. With the dynamic 

nature o f its representation, GP program trees become very large when learning to solve a 

very complex task. Consequently, the chance o f breaking up desirable portions o f the pro­

gram during genetic operations overwhelms the chance o f improving the program. By using
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the compression operation, a large tree can be represented in a more compact way without 

changing its semantics. In Figure 3.4, this operation reduces the number o f nodes from 10 to 5 

without altering the semantics of the program.

^  and I nj^  '^ e w fu n c

 ̂ / J  \ t  I ^  Ji 1
' /  \  I operator
1 ^  do J  (defun newfunc {para)

j  j (and (or (not para) d2) (not dO))

Figure 3.4: Compression operator in module acquisition.

Angeline argued that the reuse o f the created modules is achieved automatically through the 

fitness-based reproduction without any additional intervention. Initially, when a new module 

is created there is only one member of the population which has a reference to it. However, if 

the program is comparatively fit, it will be selected for reproduction. Consequently, the sub­

tree which contains the module name will be copied into several offspring. On the other hand, 

if the program is comparably unfit, the call of the module will less likely to be copied into the 

next generation. As a result, good modules are promoted while bad modules are killed off 

automatically by the dynamics o f the evolutionary process. There is no explicit heuristics 

needed.

Unfortunately, while the compression operator supplies a method to create subroutines 

from the population, it also reduces the diversity of the population. For a genetic search to 

work, there must be sufficient genetic material in the population so that the combination of 

promising candidates can generate novel programs. The expansion operation remedies this 

shortcoming by restoring the genetic material for the compressed subtrees.

Kinnear Jr. [1994a] has summarized some important characteristics about MA:

• Modules, once defined, don’t evolve. The genetic material in modules does come back 

into play through module expansion, but its identity as a module is lost at that point. It is 

highly unlikely that a similar module would be defined from that material at a later time.

• Modules can never be recursive, although they may call other modules to any arbitrary 

depth.

• As defined, modules use each argument exactly once. Since module definitions don’t 

evolve, there is no possibility of generating multiple uses o f a parameter through evolu­

tion.
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• Module definitions contain the same function and terminal set as the original population.

3.3.3 Adaptive Representation through Learning

Similar to MA, the ARL method extracts program segments to create functions [Rosea and 

Ballard, 1994; Rosea and Ballard, 1996; Rosea, 1995; Rosea, 1996]. However, instead o f 

being added to a genetic library, these functions are added into the GP function set to be used 

for the creation o f the next generation. Moreover, these dynamically created functions may be 

deleted from the fiinction set when their usage doesn’t prove to be advantageous. Conse­

quently, the size of the GP function set expands and shrinks during the GP run.

The motivation behind the dynamic creation and deletion o f functions in GP is to pro­

mote the reuse of “good” program code. To achieve this goal, two issues have to be 

addressed: what is “good” program code and when to create and to delete these program code. 

The ARL approach addresses these two issues. Good program code is detected using local 

measurement such as parent-offspring differential fitness and block activation. In addition, 

global measurement such as population entropy are used to predict when the evolutionary 

search reaches local optima so that the modification of the function set can be performed to 

escape from it. Using these heuristics to detect good program segments for module creation, 

ARL produces better programs than GP alone [Rosea and Ballard, 1996]. A recent research, 

however, reported that ARL do not work too well [Dessi, Giani and Starita, 1999].

3.3.4 Automatically Defined Macros

Spector [1996] has proposed the use o f Automatically Defined Macros (ADMs) in GP to 

simultaneous evolve programs and their control structures. The difference between ADFs and 

ADMs is that an ADF is evaluated in its local environment while an ADM is evaluated in the 

main program global environment. When the name of an ADM is called in the main program, 

a contextual substitution (macro expansion) is performed. The ADM body is then evaluated in 

the main program environment. With this style o f evaluation, one can use ADMs to imple­

ment program control structure. This is done by passing a block o f code as argument to 

ADMs. Since the evaluation o f the arguments is carried out in the main program, depending 

on the calling environment, an argument may or may not be evaluated. ADMs therefore pro­

vide a mean of evolving programs and their control structures that perform multiple evalua­

tion or conditional evaluation o f blocks o f code. For example, they allow speeding up the 

evaluation of Boolean functions.

ADMs are beneficial when the arguments perform side-efifect operation which are sensi­
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tive to their calling environment. For example, in the obstacle-avoiding robot problem [Koza, 

1994a], GP is to evolve a program which performs side-effect functions such as LEFT and 

MOP. These function are sensitive to the robot’s surroundings: the MOP function moves the 

robot in the direction it is currently facing (if no obstacle is ahead), mops the floor at the new 

location and returns a location o f (0,0). Using ADMs, the MOP function is allowed to react 

differently according to the currently environment where the MOP is called upon. With ADFs, 

the MOP function performs the same way independent to where the MOP is invoked. To 

achieve the desired side-effect, an ADF requires an extra argument which specifies the cur­

rent environment. The MOP in the ADF can then react to the environment accordingly. Exper­

iments on the obstacle-avoiding robot problem shows that GP with ADMs performs better 

than GP with ADFs in this particular application.

3.4 Recursion in Genetic Programming

Koza has investigated a problem-specific form of recursion to solve the Fibonacci sequence 

induction problem [Koza, 1992, page 473]. The Fibonacci sequence can be computed using 

the recursive expression: Sj = Sj_^+Sj _ 2  where Sq and Si are both 1. After these two elements 

o f the sequence, each element o f the sequence is computed using two previous values of the 

sequence, e.g. S 2 =Si+Sq-, Sÿ=S2 +Si, etc.

To allow a program to reference previously computed values in the sequence, a sequence 

referencing function SRF is introduced into the function set. When a program containing the 

SRF function is being evaluated for value o f position j ,  the ( SRF k D) computed the value 

for sequence position k provided k is between 0 and j-1 , otherwise, it returns the default 

value D. The SRF function is useful for the Fibonacci sequence problem. However, it can not 

be used to generate general forms o f recursive programs.

Brave [1996] has used GP to evolve programs with recursive ADFs to perform tree 

search. To evolve a recursive ADF, the name of the ADF was included in its function set. 

However, an evolved recursive ADF may contain infinite-loops (see Section 2.3.7). To deal 

with this problem, he specified the depth of the tree as the limit o f the recursive calls. Usually 

such a limit affects the evolution process since a good program may never be discovered if its 

evaluation requires more than the permitted recursive calls. This shortcoming, however, does 

not apply to a tree search program since the maximum number o f iterations required to search 

a tree is its tree-depth. Stopping any recursion after tree-depth number o f iterations therefore 

does not affect the behavior o f the program. However, this property is not present in general 

problems. Thus, Brave’s approach is not a general solution to evolve recursive programs.
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By using recursive ADFs, Brave showed that GP can find solutions to the tree search 

problem faster than that using non-recursive ADFs. Moreover, the program containing recur­

sive ADFs is less complex and requires less computational effort to execute than the pro­

grams with non-recursive ADFs.

Wong and Leung [1996] proposed the use of recursion to evolve a general solution for 

the e v e n - p a r i t y  problem. Their approach is to construct a logic grammar (see Section 

3.1.2) which includes a rule making recursive call. In addition, the grammar enforces a termi­

nation condition in the program structure. However, the convergence o f recursive calls in the 

program is not guaranteed. When evaluating programs, they used an execution time limit to 

halt the program. They have shown that using such a grammar to guide evolution, GP is able 

to find the solution to the general e v e n - p a r i t y  problem more efficiently than Koza’s 

ADFs approach. Yet, our approach o f evolving recursive programs provides even better per­

formance than Wong and Leung’s in this problem. This work will be presented in Chapter 6.

Whigham has designed two directed mutation operators to guide GP to evolve a recur­

sive m em ber function using his GP system [Whigham, 1996b]. As described in Section

3.1.1, Whigham developed a context-free grammar GP system where each program is repre­

sented as a derivation tree. A directed mutation operator specifies that a subtree generated by 

one particular grammar rule should be replaced by another subtree generated by a different 

rule. The two directed mutation operators he designed for recursion serve for two different 

purposes. The first one is to repair programs that contain tautologies by replacing the deriva­

tion tree (eq  x x) with (eq  x ( c a r  y) ). The second one is to detect the pattern in the 

derivation tree where a recursive call should take place: (eq  x ( c a r  ( c d r  ( c d r  y) ) ) ) is 

replaced with (mem ber x ( c d r  y) ).

These two directed mutation operators have improved the likelihood of evolving the 

recursive m em ber function. According to Whigham, this is due to: “The first directed muta­

tion seeds the population with building blocks that will create the intermediate step towards a 

recursive definition. The second directed mutation can exploit the increased bias towards the 

pattern used for recursion.” Yet, these two mutation operators are problem-specific, i.e. they 

are designed for the m em ber function. The knowledge about the solution is nicely used to 

direct GP search. For problems which do not have an obvious recursive pattern, this approach 

may not be appropriate.

3.5 Summary

This chapter has presented research in GP which is related to our work. The use o f grammar
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to specify syntactic constraints for GP has been advocated for some time. Whigham is a par­

ticularly strong believer of using grammar to support language bias and search bias for GP 

learning. We follow this avenue by evolving a grammar-based language, the X calculus, 

whose syntax encompasses the definition o f modules. This work will be described in the fol­

lowing chapter.

Type constraints, originally promoted for their ability to reduce search space, are receiv­

ing much attention recently due to a research result indicating that the size o f the search space 

is not necessary the indication o f the difficulty o f problem for GP to solve [Langdon and Poli, 

1998a], In spite of this controversy, many researchers are interested in types simply because 

there are many applications require GP to be able to handle multiple types [GP-List, 1998]. 

Moreover, the reported performance improvement provided by type constraints is a fact that 

can not be neglected, although the cause behind it needs farther investigation. We will present 

the concept of types in GP with the implementation o f polymorphism in Chapter 5.

Module creation and reuse has been acknowledged as an important problem solving 

method. Various work in this area has demonstrated their success in helping GP learning. We 

will present our novel approach of module creation and reuse in Chapter 6 and 7.

Reeursion, although an important programming technique, has only been implemented in 

some restricted manner in GP. Our approach of using implicit recursion to evolve a general 

solution for the e v e n - p a r i t y  problem will be presented in Chapter 6.
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Chapter 4

The Functional Genetic Programming System

This chapter describes a new GP system, implemented with various functional programming 

techniques incorporated. Firstly, the system evolves programs based on the syntax of the X 

calculus. Secondly, the program representation can contain modules which are represented as 

X abstractions. Finally, the program constructs are allowed to have multiple types. The type 

checking of the programs is performed by a polymorphic type system. The high-level system 

structure is presented in Section 4.1. This is followed by the detailed description of each com­

ponent of the system (Sections 4.2-4.5). Section 4.6 discusses the implementation details such 

as the Genetic Algorithm and the programming language used in the system. In Section 4.7, 

an example is presented to demonstrate the operation of the system.

4.1 System Structure

The functional GP system has four major components: creator, evaluator, evolver and type 

system. Figure 4.1 illustrates the high-level structure of the system.

ü S a  ( '  Evaluator

( Correct 
youtputs

Creator

Terminal
Functions

Fitness
Function

Evolver
Done

Figure 4.1 : High-level system structure of the functional GP system.
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Initially, the creator interacts with the type system to select type-matched functions and termi­

nals to create a population o f type-correct programs. Each program is then evaluated by the 

evaluator using test data as inputs to produce some outputs. Next, the outputs are passed over 

to the fitness function which assigns a fitness value to the program according to the correct­

ness of the outputs. If the fitness value satisfies the requirement, the system stops and returns 

the program with the satisfactory fitness value as the solution. Otherwise, “good” programs 

are selected for the evolver to perform genetic operation and to create a population o f new 

programs. This test-select-reproduction process is repeated until either a satisfactory program 

is found or the termination criterion is met.

Compared with the standard GP system, the functional GP system has an extra compo­

nent: a type system. The type system is used by creator and evolver to ensure that only type- 

correct programs are generated. To use the type system, users have to specify input and output 

types for each function and terminal in the function and terminal sets. The type syntax and the 

details o f the type system are provided in Section 4.5.

4.2 Creator

The programs created are represented as trees. The creator grows a program tree from the top 

node downwards. There is a user-specified type for the root node o f the tree. The creator 

invokes the type system to select a function whose return type satisfies the required type to 

construct the root node. The selected function has arguments to be created at the next level in 

the tree: there will be type requirements for each o f those arguments. If the argument has a 

function type, a X abstraction will be created to represent the function argument (see Section

4.2.1). Otherwise, the type system randomly selects a function (or terminal-see next para­

graph) whose return type satisfies the newly required type to construct the argument node. 

This process is repeated until the specified tree depth limit is reached.

When selecting functions to construct argument nodes, it is possible that there is no func­

tion in the function set whose return type can satisfy the required type. In this case, the creator 

stops growing the tree by selecting a terminal whose type satisfies the required type. Termi­

nals are also randomly selected to construct leaf nodes. However, depending on the types 

defined in the function and terminal sets, program creation using this method of random 

selection of type-matched functions and terminals may not succeed. When the creation o f a 

particular subtree fails, the creator backtracks to the root node of the subtree and regenerates a 

new subtree.

The Creator performs chronological backtracking which withdraws the most recently
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made wrong choice, selects an alternative at that choice point and move ahead again. If all the 

alternatives at the last choice point have been explored already, then go further back until an 

unexplored alternative is found.

This dynamic approach to generate type-correct programs is different from the static 

approach used in STGP (see Section 3.2.1). In STGP, a type possibilities table is computed 

beforehand to specify all the types that are possible to be generated at each tree depth level. 

This table is then consulted by the function selection procedure to generate type-correct pro­

grams. In contrast, the functional GP type system uses a contextual instantiation method (see 

Section 4.5.3) to dynamically instantiate type variables. Hence, there is no need to construct 

type possibilities table.

The contextual instantiation is carried out by an unification algorithm (see Section 4.5.2). 

The linear-time implementation o f the algorithm has been devised by [Paterson and Wegman, 

1978]. However, the functional GP type system has not incorporated such an implementation. 

Compared to the table look-up method used in STGP to instantiate type variables, unification 

algorithm may or may not be more efficient. The evaluation of the two methods in terms of 

CPU time requires future study.

The biggest advantage of unification algorithm over table look-up is its generality: unifi­

cation algorithm is capable of handling any type structure, e.g. function type. This is the area 

where table look-up method would require extra work.

However, there is an overhead associated with the functional GP type system: there is a 

possibility of backtracking when the tree can not be created successfully within the specified 

tree depth. To estimate the chance of its happening, 10,000 map programs (see Section

5.4.2) were generated using this method. Among them, 85% were successfully created with­

out backtracking. More study is required to have better understanding about the frequency of 

backtracking during program generation.

In summary, functional GP and STGP adopt different approaches to implement their type 

systems. Yet they both achieve the same goal of generating type-correct programs.

4.2.1 Lambda Abstractions Creation

If the tree node being constructed is a function which has a function as one of its arguments, 

this function type argument is created as a 1 abstraction. X abstractions are local function def­

initions, similar to function definitions in a conventional language such as C. The following is 

an example X abstraction together with similar C function.

{X X .  (+ X 1)) {X a b s t r a c t io n )
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Inc (int x){return (x+1);} (C function)
X abstractions are created using the same function set as that used to create the main program. 

Thus a X abstraction may contain another X abstraction. The terminal set, however, consists 

only of the arguments of the X abstraction to be created. In the current implementation, no 

global variables or constants are allowed. Argument naming in X abstractions follows a sim­

ple rule: each argument is uniquely named with a hash symbol followed by an unique integer, 

e.g. #1, #2. This consistent naming style allows crossover to be easily performed between X 

abstractions with the same number and type of arguments (see Section 4.4.3).

4.2.2 Curried Format Program Representation

The program trees are represented in a curried form (a function is applied to one argument at 

a time), thus allowing partial application to be expressed (see Section 3.2.3). The motivation 

behind this style of representation is to provide more locations for genetic operation so that 

more diverse new programs can be created. With more diverse programs in the population 

pool, it is hoped that GP can find solutions faster. However, this hypothesis has not been ver­

ified.

McPhee, Hopper and Reierson [1998] also investigated this style of program representa­

tion. Their work has been summarized in Section 3.2.3.

With a curried format program tree, each function application has two branches: a func­

tion and an argument. Figure 4.2 is the curried format program tree for the IF-TEST- 
THEN-ELSE function. The @ denotes an application node (see Section 3.2.3) and is a possi­

ble genetic operation location. The function (IF (TEST-exp) (THEN-exp) (ELSE- 
exp) ) has two branches: (IF (TEST-exp) (THEN-exp) ) and (ELSE-exp). The first 

function branch, (IF (TEST-exp) (THEN-exp) ), also has two branches: (IF (TEST- 
exp) ) and (THEN-exp). The (IF (TEST-exp) also has two branches: IF and (TEST- 
exp).

ELSE-exp

THEN-exp

TEST-exp

Figure 4.2: Curried format program tree for the IF-TEST-THEN-ELSE function.

The curried format program trees are generated in a depth-first-right-first manner, i.e. the 

argument subtree is created before the function branch subtree. In the IF-TEST-THEN-
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ELSE program tree example, the ELSE-exp subtree is first generated, followed by the 

THEN-exp subtree, then the TEST-exp subtree. If any o f the subtree creation fails, the cre­

ator will call the type system to select another function (other than IF-TEST-THEN-ELSE) 
to regenerate a new tree. This is the chronological backtracking procedure described in Sec­

tion 4.2.

When the evolved program contains a X abstraction, a X node is used to indicate that the 

subtree represents a X abstraction. For example. Figure 4.3 is the curried format program tree 

representing program f o l  d r  {X # 1 . + 10 #1) 20 [ 1 , 2 , 3 ] ;

f  o l d r

[ 1 , 2 , 3 ]

+ 10

Figure 4.3: C urried form at program  tree with a X abstraction.

4.3 Evaluator

The system generates expression-based programs (^.-expressions) which are different from 

the statement-based programs generated by the standard GP. A statement-based (or proce­

dural) program can contain multiple assignment, such as the SET-V in the iterative summa­

tion problem [Koza, 1992, page 470]. Moreover, it can have explicit sequencing, such as the 

PR0G2 in the artificial ant problem [Koza, 1992, page 150]. These two features make state­

ment-based programs unsuitable for the implementation o f strongly-typed GP (in the sense o f 

100% confidence of the type-safe of the evolved programs) due to the following reasons:

• Both assignment and sequencing statements are side-effect operators which do not 

return any value. This means that the type system has to be extended with a VOl D type 

to support nodes which do not return a value. Consequently, the tree construction pro­

cess can be effected since special rules must be applied to cater for this additional type.

• The assignment statement causes the search space to be larger than necessary. This is 

because GET-V (the opposite o f SET-V) can legally be applied to a variable that has not 

yet had a value: this should be detected as an error, yet it is very difficult for the state­

ment-based type system to detect this kind o f error. As a result, the search space may
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contain invalid program trees.

In contrast, expression-based program trees contain neither assignments nor sequencing state­

ments. Consequently, the type system is less complex (VOID type is no longer needed) and 

more rigorous (more invalid programs are detected).

4.3.1 Program Syntax

The abstract syntax o f the expression-based program is described as the following. This is the 

same as the syntax o f untyped X expressions described in Section 2.3.1. 

e  : : = c  built-in function or constant

I X identifier

I 0 2  application o f one expression to another

I A, X . e  X abstraction

Constants and identifiers are provided in the terminal set. Meanwhile, built-in functions are 

provided in the function set. Application of expressions and X abstractions are constructed by 

the creator as described in Section 4.2.

However, this grammar only specifies part of the program syntax generated by the sys­

tem. In addition, each node in the program tree is annotated with a type. The type syntax will 

be given later in Section 4.5.

4.3.2 Program Evaluation

A generated program is first converted into a X abstraction before it can be evaluated. This is 

done by wrapping the program with X notation and input variables, which have been made 

available to the program as members of the terminal set. For example, a program ( + x y) is 

converted into X x . X y . ( + x y ). This converted program is then applied to test data, one

at a time, to produce outputs. The application o f programs to test data is a process of syntax 

transformation. It involves a sequence o f applications of (3 and 5 reduction rules (see Section

2.3.2). These rules are briefly summarized in the following:

p rule is the function application rule. It produces a new instance of the function body 

by substituting the arguments in the function with formal parameters. This rule can be 

expressed using the following notation:

(Ax.E) M => E [M/x]
E [M/x] represents an expression E with M substituted for free occurrences o f x.
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• ô rules are rules associated with each function in the function set. For example, the I F -  

TEST-THEN-ELSE function has one rule to describe how it should be transformed.

The application o f these two rules to a program is performed in a normal order sequence, i.e. 

the leftmost outermost expression is evaluated first. Intuitively, this means the body of a func­

tion is evaluated first and its arguments are evaluated when necessary. As mentioned in Sec­

tion 2.3.2, if a program terminates, the order of evaluation should not make any difference; 

they should reach the same result. However, not all programs terminate. The Church-Rosser 

Theorem II says that normal order evaluation is the most likely to terminate [Church and 

Rosser, 1936]. This system therefore performs normal order evaluation rather than any other 

evaluation order. An example to apply the 5 and P rules in normal order sequence is presented 

in the following:

{% X ( +  X {X #1 (* #1 #1))  5))  10 

P=> (+ 10 (À #1 (* #1 #1))  5)

P=> (+ 10 ( * 5  5))

0=> (+ 10 25)

5=> 35

As mentioned in Section 4.2.1, the evolved programs can contain X abstractions and a X 

abstraction can itself have another X abstraction inside. The evaluation o f X abstraction is to 

apply P and 6 rules like that o f main programs. Since the X abstractions are created with a ter­

minal set which contains only argument to the X abstraction (see Section 4.2.1), no global 

variables would exist in a 1 abstraction. Consequently, the name conflict described in Section

2.3.2 would never happen during program evaluation in this system.

4.3.3 Run-Time Error Handling

During programs evaluation, run-time errors may arise. An example run-time error is 

applying the head function to an empty list (the result has an undefined value). A program 

containing run-time errors may still have useful partial solutions. To allow these partial solu­

tions to be returned for fitness evaluation, a default value is returned when a run-time error is 

encountered during program evaluation. In this way, the evaluator can continue its evaluation 

of the program and return with outputs. The fitness o f a program is computed based on the 

correctness o f the outputs and the run-time error penalty defined by users (see Section 5.4 for 

examples). Table 4.1 provides the default values that are used for run-time error handling.
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Table 4.1 : Defaults for run-time errors in the functional GP system.

Type Default Type Default Type Default

int 0 bool False string

There are many other ways that run-time errors can be handled. Wong and Leung [1996] sim­

ply regarded a program with run-time errors as a program which produced wrong outputs. No 

partial credit nor penalty is considered for this kind o f programs. In Section 5.4, a different 

way to handle a non-termination run-time error will be presented.

Section A 4 presents experiments on using five dififerent methods to handle a division by 

0 run-time error. The results show that the five different methods have different impact on GP 

evolutionary process. Consequently, some of them allow GP to find good and legal solutions 

faster than the others. It is important to handle constraints with care, or the evolution o f prob­

lem solutions may be prevented.

4.4 Evolver

After programs are selected for reproduction (see Section 4.6.1), the evolver performs genetic 

operation (crossover and mutation) on them to generate new programs. A genetic operation 

can be performed on three different kinds of node; fu ll application nodes, partial application 

nodes and X modular nodes. We first describe the method used to select the genetic operation 

location in program trees. Next, the point typing method is explained. Finally, the genetic 

operations performed on the three different kinds o f node will be discussed.

4.4.1 Selection of Genetic Operation Location

A program tree consists o f many nodes. Potentially, a genetic operation can be performed on 

any o f these nodes. This system adopts a selection scheme which biases genetic operations 

towards the root node. To select a node, a program tree is traversed in a depth-first, right-to- 

left manner. Moreover, the possibility o f the node selection decreases exponentially every 

level, i.e. the root node has a 50% probability to be selected; the nodes on the next level shares 

a total o f 25% probability to be selected and so on. In this way, the upper portion o f the pro­

gram trees can have more opportunities to be replaced with new nodes.

This location selection scheme is designed to prevent the premature convergence o f the 

root nodes which has been observed during our experiments (map program in Section 5.4.2)
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and has been reported in [Gathercole and Ross 1996]. In brief, due to the restriction o f tree 

depth, the standard subtree crossover operator is not able to swap all possible pairs o f subtrees 

between two parents and still produce “legal” trees. Instead, most o f the genetic exchanges 

take place near the leaf nodes, with nodes near the root left unchanged. The premature con­

vergence of the root node can severely impair GP performance if the behavior of a program 

depends highly on the program root node. This is the case with the map program. With this 

biased selection scheme, we are able to evolve the map program successfully (see Chapter 5).

Using a similar curried format program representation, [McPhee, Hopper and Reierson, 

1998] has reported that because such a representation allows more opportunities for the root 

node to be modified, the premature convergence of the root node is less likely to happen. 

However, it did happen in our experiments. The following conjecture may explain these con­

flicting results:

• The two GP systems use different selection scheme for reproduction. In their system, a 

tournament selection with a tournament size o f 10 is employed. In contrast, ours uses 

rank selection with exponential fitness normalization (see Section 4.6.1). With this 

implementation, the programs with high-rank fitness may have much higher probability 

to be selected for reproduction than those with low-rank fitness. Consequently, prema­

ture convergence may occur.

This is an interesting problem and deserves further investigation. We hope to conduct more 

research on this issue in the near future.

4.4.2 Point Typing Method

The system uses “point-typing” [Koza, 1994, page 532] during genetic operations to preserve 

program syntax. Initially, a node is selected from the first program tree. Depending on the 

source of the node (the main program or a 1 abstraction), a node with the same source is 

selected from the second program tree to perform crossover. In other words, X abstractions 

can only crossover with the same kind o f X abstractions, i.e. the X abstraction that represent­

ing the same function argument for the same higher-order function. For mutation, a new sub­

tree is generated using the same function and terminal sets as the replaced subtree. The point- 

typing assures that the produced new program has valid syntax, e.g. no undefined variables.

Point-typing is implemented by using the X node in the program tree as an indicator of a 

X abstraction subtree (see Section 4.2.2). If a 1 node is encountered during the traversal of 

program trees, it indicates that a subsequent selected node is inside a X abstraction. Otherwise, 

the selected node is a part of the main program. Since the program traversal process is done
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recursively, the flag which specifies the current location o f traverse is only set when inside a X 

abstraction. It is turned off once the traversal leaves the X abstraction. Based on the flag, the 

source o f the selected node (main program or X abstraction) can be easily identified. Another 

subtree with the same source can be chosen or generated to replace the subtree in the first pro­

gram.

4.4.3 Genetic Operations

The genetic operation of crossover and mutation are only performed on internal nodes o f the 

trees. This decision is strongly influenced by [Koza, 1992, page 114] who allocated higher 

probability distribution (90%) to internal nodes during crossover. “This distribution promotes 

the recombining o f larger structure whereas an uniform probability distribution over all points 

would do an inordinate amount of mere swapping of terminals from tree to tree in a manner 

more akin to point mutation than to recombining of small structure or building blocks.” 

[Koza, 1992, page 114]. As the ability of subtree crossover on using building blocks to com­

pose problem solutions is discredited (see Section 2.2.2), this implementation will be modi­

fied accordingly in the future.

With the curried style program representation, there are three kinds o f internal nodes: fu ll 

application, partial application and X module nodes. We describe genetic operations per­

formed on these nodes in the following subsections.

Full Application Nodes

A full application node is annotated with a primitive type, i.e. a non-function type, to indicate 

that the function has all its arguments provided. For example, int and [int] are primitive 

types. Primitive types include “bracketed function type” (see Section 4.5) which indicates that 

the return value of a function is another function. A full application node can only crossover 

with another full application node with the same primitive type. Meanwhile, the mutation 

operator has to create a new subtree returning the same primitive type to replace the subtree 

rooted with the selected node. These two genetic operations can be applied to nodes in either 

the main program or a 1 abstraction.

The mutation operator uses the same procedures that generate the main program to gener­

ate a new subtree (see Section 4.2). However, depending on the source o f the mutation node, 

different terminal set is used. If the mutation node is inside a X abstraction, the terminal set 

contains arguments to the X abstraction. If  the mutation node is in the main program, the same 

terminal set as that used to generate the main program is used. The function set that is used to
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generate the main program is always used by the mutation operator to generate the new sub­

tree.

Partial Application Nodes

A partial application node is annotated with a function type. The syntax of fimction type is 

described in Section 4.5. For example, i n t - > i n t  and b o o l - > i n t - > i n t  are function types. 

A partial application node can only crossover with another partial application node with the 

same function type, i.e. node o f type i n t - > i n t  crossover with another node o f type 

i n t - > i n t .  Moreover, the mutation operator has to create a new subtree with the same func­

tion type to replace the subtree rooted with the selected node. These two operators can be 

applied to nodes in either the main program or a 1 abstraction.

Since the creator (Section 4.2) is capable of generating program trees of any types, 

including function type, the operation of mutation on partial application nodes is identical to 

that on full application nodes.

Lambda Modular Nodes

Crossover on the X nodes (see Figure 4.3) has the effect o f swapping the definition o f a 1 

abstraction definition in one program with a X abstraction definition in another program, i.e. 

the whole of the X abstraction in the first program is replaced by the whole of the X abstrac­

tion in the second program. We call this “X. modular crossover”. Similarly, X modular muta­

tion replaces a X abstraction definition with a newly created X abstraction definition. The 

creation of a 1 abstraction is as described in Section 4.2.1.

In program trees, X abstractions are viewed as structured building blocks. Genetic opera­

tions are therefore allowed to be performed on them like other program segments. The X mod­

ular crossover is similar to the modular crossover in [Kinnear, Jr., 1994a]. However, with the 

benefit of the type system, the argument-mismatching mentioned in his work does not hap­

pen. Each X node is annotated with a type (see Section 4.5) which indicates the number and 

type of argument defined in the X abstraction. The type system assures that X modular cross­

over is only performed between two X abstractions definitions with the same number and type 

of arguments.

4.5 Type System

The functional GP system employs a type system to perform type checking so that invalid 

program trees are never created. Initially, the user has to specify the type o f each function and
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terminal. This type information is used by the type system and the creator to generate a popu­

lation o f type-correct programs (see Section 4.2). Each of the generated program trees has its 

nodes annotated with a type. During program evolution, this type information is used by the 

type system and the evolver to perform genetic operations. In this way, only type-correct pro­

grams are generated.

Type Syntax

The type syntax used to specify the of types of functions and terminals is as the following: 

a  : : = I  built-in type

I u type variable

1 -> G2 function type

I [a]  list o f  elements all o f  type a

I (Oi -> 0 2 ) bracketed function type

T ::= int I string | bool I generic^

D : := dummy  ̂ | temporary^

Each node in the tree is also annotated with a type specified in the above type syntax. A full 

application node is specified by a primitive type such as int. On the other hand, a partial 

application node is indicated by a function type 0 i-> 0 2 . To specify a higher-order function 

type, the bracketed function type is used. In particular, the fimction arguments and function 

values returned by a higher-order function are expressed using a bracketed function type. The 

usage of the three different kinds of type variables and their instantiation will be described in 

Section 4.5.1.

Annotating Expressions with Types

Every expression in the language (Section 4.3.1) is annotated with a type:

• Constants such as 0 and identifiers such as x have a type specified by the user;

• Functions also have pre-defined types. For example, the function head has the type 

[a] ->a, where a is a dummy type variable;

• Applications o f expressions have a type given as follows: 

if has type -> 0 2  and 8 2  has type a j

then the application of to 0 2 , represented as 0 2 , has type ^ 2  else there is a type 

error;
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• X abstractions have the following type:

if X has type and e has type 0 2  

then X x .  e  has type ctj > ^ 2 - 

With the additional type annotation, the evolved programs are essentially the polymorphic X 

calculus described in Section 2.3.5.

4.5.1 Type Variables and Instantiation

The system supports three kinds of type variables: generic^ dummy and temporary. Their 

usages and their instantiation are described as follow.

Generic Type Variables

The generic type variables are used to indicate that the evolved programs are polymorphic, 

i.e. they can accept inputs or produce outputs of more than one type. For example, the 

l e n g t h  program (see Section 4.7) has type [ G1 ] - > i n t , where G1 is a generic type vari­

able. This specifies that the program takes as input a list of any type and returns an integer 

value. While the program is being evolved, this kind of type variable must not be instantiated: 

it therefore takes on the role of a built-in type.

Dummy and Temporary Type Variables

Dummy type variables are used to express polymorphism of functions in the function set and 

terminals in the terminal set. Table 4.2 gives some examples o f functions and terminals with 

their type information. The a and b are dummy type variables; b o o l  is a built-in type;

( a->b ) is a bracketed function type.

Table 4.2: Examples of functions and terminals with type information

Name Type

if-test-then-else b o o l-> a -> a -> a

head [a ]  ->a

map (a -> b )  -> [a ]  -> [b]

= a -> a -> b o o l

When a polymorphic function or terminal is selected to construct a program tree node, its 

dummy type variables are instantiated to some other type values (and the type must not 

involve a dummy type, but it may be a generic or temporary type). Note that if  a dummy type
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variable occurs more than once in the selected function, the dummy type variable has to be 

instantiated to the same type. This is done through the process o f contextual instantiation 

which will be discussed in Section 4.5.3. Table 4.3 shows how the dummy type variables are 

instantiated.

Table 4.3: Examples of dummy type variables instantiation

Required Type Selected Function Instantiated Type

[Gl] if-test-then-else bool -> [Gl] [Gl] -> [Gl]

[int] map (Tl->int) > [Tl] -> [int]

bool == T2 -> T2 -> bool

Typically, the constraints imposed by the return type of the function will allow the dummy 

type to be instantiated to a known type. For example, the return type variable a of if-test- 
then-else function is instantiated to [ G1 ]. This enforces the types o f the second and the 

third argument to be of type [Gl]. However, there are also situations when such constraints 

do not exist. For example, the dummy type variable a in the function map has no such con­

straint. In this case, the dummy type is instantiated to a new temporary type variable (T1 in 

Table 4.3). A program tree may contain node which has a temporary type. However, dummy 

types would never exist in the program tree nodes.

Temporary type variables may become instantiated to other types at a later time during 

the growing of the program or during crossover or mutation (see Section 4.7 for examples). 

This delayed binding of temporary type variables provides greater flexibility and generality; 

essentially it supports a form of polymorphism within the program tree as it is being evolved.

Within a program tree, temporary type variables must be instantiated consistently to 

maintain the legality of the program. A global type environment is maintained for each pro­

gram tree during the creation and evolution of the program. This environment records how 

each temporary type variable is instantiated. Once a temporary type variable is instantiated, 

all occurrences of the same variable in the same program are instantiated to the same type.

4.5.2 Unification Algorithm

The creation of type-correct programs is essentially a sequence o f selecting type-matched 

functions and terminals to construct the programs (see Section 4.2). This important process of 

determining whether a type satisfies the required type is carried out by Robinson’s unification 

algorithm [Robinson, 1965]. Briefly, the unification algorithm takes inputs o f two types. In
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this application, one type is the required node type and the other is the return type o f a 

selected function or the type of a selected terminal. The algorithm determines whether they 

can “unify” with each other (unify will be explained in the next paragraph). If the two types 

unify, the algorithm returns their “most general unifier” (also explained in the next para­

graph), otherwise it flags an error.

In this application, if the return type of the selected function unifies with the required 

node type, this function is used to construct the node. Otherwise, another function will be 

selected and type checked. Using the unification algorithm, functions and terminals can be 

randomly selected and typed checked as the tree grows. No preprocess (such as the generation 

of type possibilities table in STGP) is required. The linear-time implementation of this algo­

rithm has been devised by [Paterson and Wegman, 1978]. However, the type system has not 

incorporated such an implementation.

A few terminologies need to be explained to understand the unification algorithm. They 

are listed in the following:

• A substitution, 0, is a finite set (possible empty) o f pairs o f the form (X^, t^)  where

is a type variable and is a type value or a type variable. In this application, the type 

variable X̂  is either a dummy type or a temporary type while the type value can be o f  

any type specified in the type syntax (Section 4.5) except dummy type. For example: 0 = 

{ ( a ,  i n t ) , ( b , T 2 ) } ,  where a and b are dummy types and T2 is a temporary type.

• The result of applying a substitution 0 to a type A, denoted by A0, is the type obtained by 

replacing every occurrence of X̂  in A by t^, for each pair (X^, ) in 0. For example:

a -> a -> b { (a, i n t )  , (b,  T2 ) } = i n t  -> i n t  -> T2 . This process is called coM- 

textual instantiation described in Section 4.5.3.

• Two types A and B unify if  there exists a substitution 0 which makes A = B. For example, 

if A = T l - > i n t  and B = [ s t r i n g ] - > T 2 ,  A and B unify with 

0={ ( Tl ,  [ s t r i n g ]  ) ,  (T2, i n t ) }. Note that 0 can be empty. This is the case when 

A and B are identical.

• There may be more than one substitution which unifies two types. The most general uni­

fier of two types A and B is a substitution 0 that unifies A and B such that A0 is more gen­

eral than any other common instance o f A and B. For example, if  Afij = T l -> i n t  and 

A02  = i n t  -> i n t ,  then A0i is more general than A02  and 0  ̂ is the most general unifier.

The following gives some examples which apply the unification algorithm, called unify, to 

different types:
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unify (int->int, int->int) = (True, { } ) 
unify(int, bool) = (False, {})
unify (int->int->Tl, a->a->b) = (True, { (a, int) , (b, Tl) } )

4.5.3 Contextual Instantiation

Type expressions which contain several occurrences o f the same type variable, like in a-> a, 

express contextual dependencies [Cardelli, 1987]. Whenever an occurrence o f a type variable 

is instantiated, all the other occurrences o f the same type variable must be instantiated to the 

same type value. This is done through the process o i contextual instantiation: applying a sub­

stitution, which contains the instantiation o f type variables, to the type expression. An exam­

ple of it operations has been given in Section 4.5.2.

The process of contextual instantiation is applied in two places by the type system:

• During the selection o f functions and terminals for tree construction. In this instance, all 

dummy type variables in the selected function or terminal have to be instantiated and 

bound to type values. Consequently, program trees would never contain a node with a 

dummy type.

• During the growing o f a program tree. In this instance, a temporary type in a tree node 

may become bounded to another type value. Once this happens, all occurrences of this 

temporary type variable in the same program tree are instantiated and bound to the same 

type value.

Using the contextual instantiation method to instantiate type variables dynamically, the type 

system allows the program trees to be generated by random selection o f type-matched func­

tions and terminals.

4.6 Implementation

The functional GP system is implemented with two different genetic algorithms: generational 

replacement using fitness-proportionate selection and steady-state replacement [Syswerda, 

1989; Reynolds, 1993] with rank selection. These two algorithms are described in Section

4.6.1. In Section 4.6.2, the implementation programming language Haskell and the advan­

tages/disadvantages the language brings to the GP system are discussed.
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4.6.1 Genetic Algorithms 

Generational Replacement

Generational replacement is the traditional GP implementations: a population with a specified 

size is first created; new programs are generated from programs in the current generation to 

compose a new generation. The process of program evolution from generation to generation 

terminates when a satisfactory program is found or the maximum number o f generations has 

reached.

The selection of programs for reproduction is based on the fitness-proportionate selection 

method. A random fitness v a lu e / is  first generated (0.0 < = /< =  total fitness of the popula­

tion). The population is then enumerated, one at a time in the order that the program is gener­

ated, to accumulate their fitness value. This process stops when the accumulated value is 

equal or greater than the random fitness value /  The last program visited is selected as a par­

ent to generate offspring to compose the next generation. This algorithm allows that the 

expected number of children a program has in the next generation approximately equals the 

ratio of its fitness to that of the average fitness in the population. The higher a program’s fit­

ness, the better chance it has to be selected for reproduction.

Steady-State Replacement

Initially, a population with a specified size is created. Within the population, every tree is 

unique. During program evolution, a newly generated program is checked for uniqueness 

before it is used to replace the programs with the lowest fitness score in the same population 

pool. As a result, the size o f the population remains constant.

The advantage of steady-state replacement, compared with generational replacement, is 

that a program with a good fitness score is immediately available as a parent for reproduction 

rather than having to wait until the next generation. However, such an aggressive evolution­

ary approach may cause premature convergence to local optimum; the search for the global 

optima may never be achieved [Syswerda, 1991; Fogel and Fogel, 1995].

The selection scheme used with this GA is a rank selection combined with exponential 

fitness normalization [Cox, Davis and Qiu, 1991]. This means:

• The probability that a program is selected depends on its relative rank in the population;

• The probability of selecting the n-th best program is parent-scalar times the probability 

of selecting the (n-l)-th best individual. The parent-scalar is a parameter, valued 

between 0 and 1, provided by the user.
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4.6.2 Programming Language

The system is implemented in Haskell 1.4 [Peterson and Hammond 1997] using the Glasgow 

Haskell Compiler version 2.02. Haskell is a non-strict purely functional programming lan­

guage. Non-strict languages evaluate a program expression only when its value is needed; this 

is commonly referred as lazy evaluation. This is an advantage to the GP system because pro­

gram trees normally contain “redundant expressions” (introns). Without the need to evaluate 

these redundant expressions, the GP system may take less time to evolve problem solution. 

The “purity” feature means no side-efiFect operation is allowed in the language. Consequently, 

each time a member o f the population is updated, a new copy of the population may be made. 

Fortunately, the Glasgow Haskell compiler provided an updatable data structure (array) 

which can be used to implement GP population. This data structure supports effective meth­

ods in accessing and modifying the members of the population. Nevertheless, compared with 

other GP systems which are implemented in imperative languages, such as C and C++, the 

functional GP system is still slow.

Haskell is also a “typeful” programming language [Hudak, Peterson and Fasel, 1997]. 

The implementation o f the GP system has benefited from Haskell’s rich type system in the 

following ways:

• By declaring a user-defined type to be a derived type o f an existing type class supported 

by the Haskell language, the code associated with the type class will be automatically 

generated for the user-defined type. For example, by specifying that Type Exp is 

derived from Eq and Text type classes, the “==” and “print” functions for Type Exp 
are automatically generated. The following shows the declaration of the TypeExp to be 

a derived type for Eq and Text type classes.

data TypeExp = IntNum | Boolean 
derived (Eq, Text)

• Haskell’s pattern matching mechanism for type constructors (such as InNum, Boolean 
above) has made the implementation of functions easier. For example, the function 

applySub, which performs different operation based on the type construct of the argu­

ment, can be written as the following:

applySub typeExp = Case typeExp of {
IntNum -> .... ;
Boolean }
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4.7 An Example

This section presents a worked example to demonstrate the operation o f the functional GP 

system. Section 4.7.1 presents the creation o f a single program. Section 4.7.2, 4.7.3 and 4.7.4 

explain the genetic operations.

Problem  Description: The objective is to evolve the l e n g t h  program, which takes a list o f 

items o f any type, and returns the number o f items in the list. Note that the input has to be a 

finite list. For example, l e n g t h  [1,  9, 3 ] =3; l e n g t h  [ 'a' , ' b' ] =2 .

Inpu t Type: The input L has a generic type [G l ] .

O utput Type: The output has type i  n t .

Terminal Set: (L:: [Gl] ; zero:: in t }  (where L: : [Gl] reads “L has type [G l]”)

Function Set: (head:: [a] - > a ; t a i l : :  [a] -> [a];

f  oldr:: (a -> b > b) -> b -> [a] -> b; addl:: i n t  -> i n t  }

M aximum Tree Depth: 3.

M aximum X A bstraction Tree Depth: 3.

4.7.1 Program Creation

The following presentation is organized by headings which indicate the new technique used 

in creating the program tree. The generated program is presented in c o u r ie r  font with the 

type o f each program construct (function or terminal) in superscript. Meanwhile, at each 

stage, the node that will be expanded in the next stage is underlined.

Contextual instantiation of dum m y type variables: Based on the required return type, in t ,  

the type system randomly selects a function to construct the root node. For example, let the 

function be fo ldr .  The contextual instantiation process takes place to instantiate dummy 

type variable b to in t .  The unconstrained dummy type variable a is instantiated to a new 

temporary type variable Tl:

( ( ( f o l d r  (Tl->int->int ) ->int-> [Tl ] (Tl->int->int ) j int-> [Tl ] ->int

ARG2^^ )̂ [Tl]->int^^^[Tl] j int

Depth-first-riyht-first tree expansion: The right branch o f the program, ARG3, is first 

expanded. The type system selects the t a i l  function:

( ( ( f o l d r  (Tl->int->int ) ->int-> [Tl ]  ̂ int-> [Tl ]->int

ARG2'"^) tTl]->int(tail[Tl]->[Tl] [Tl])int

Contextual instantiation of tem porary  tvoe variables: The depth-first-right-first approach
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makes ARG4 the next node to be expanded. Since the maximum tree depth is reached, the type 

system selects terminal L to construct a leaf node. After the temporary type variable Tl is 

instantiated to Gl, the contextual instantiation process propagates this effect throughout the 

whole program;

( ( (foldr (Gl->int->int )->int-> [Gl ] (Gl->int->int )  ̂int-> [Gl ]->int 

ARG2^^^) ] ->int  ̂ [Gl ] -> [Gl ] ̂  (Gl ] ̂ [Gl] j int

The next node to be expanded is ARG2 whose type is int. The function head is selected to 

construct this node. The dummy type variable a is instantiated to i nt to match the type o f 

ARG2:

( ( ( f o l d r  (Gl->int->int ) ->int-> [Gl ] ->int^p^g2 (Gl->int->int )  ̂int-> [Gl ] ->int 

(head '^̂ "̂ ARG5 [Gl]->int  ̂ [Gl]-> [Gl] ̂  [Gl ]  ̂[Gl]  ̂int

Backtracking: The next node to be expanded is ARG5 which has to be a leaf node since the 

maximum tree depth is reached. Unfortunately, there is no terminal whose type unifies with 

the required type of [int]. The system backtracks and selects the function addl to replace 

the head function:

( ( ( foldr ('^l"^i'^t:->int)->int->[Gl]->int^^g2 (Gl->int->int)  ̂int-> [Gl ]->int 
(addl"‘‘̂~̂ ""‘̂ARG6^̂ )̂ [Gl]->int [G1]->[G1] ̂  [Gl] ) [Gl] ̂  int

The next node to be expanded is ARG6 which has to be a leaf node since the maximum tree 

depth is reached. The only terminal satisfying the required type o f int is zero:

( ( (foldr (Gl->int->int )->int-> [Gl ]->int^p^Q2 (Gl->int->int )  ̂int-> [Gl ]->int

( a d d l" " ^ - " '" '" ^ Z e rO ^ " ^ )  [Gl]->int [G1]->[G1]]^[G1]  ̂[G1]  ̂int

X Abstractions creation: The next node to be expanded is ARGl which has a function type 

( G l - > i n t - > i n t ) .  This specifies that this is a function which takes first argument o f type 

Gl and second argument of type int. It returns a value of type int. This function argument 

is created as a 1 abstraction. The procedure of X abstraction creation is similar to that of the 

main program. The only difference is that it uses a different terminal set which contains only 

its arguments, i.e. #1:: Gl; #2:: int. We skip the intermediate steps and present the final 

program which has its X abstraction generated:

( ( ( f o l d r  (G l-> in t-> in t  ) [Gl ] -> in t  (^^^^^Gl ( a d d l^ " ^ -^ ^ '" ^

 ̂int j int->int ̂ Gl->int->int ̂ int-> [Gl ] ->int  ̂  ̂int j

( [Gl]->int [G1]->[G1] j^[Gl] j [Gl]  ̂int
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This generated program is not only type-correct but also general since its argument L can be 

a list o f any type o f values.

4.7.2 Full Application Node Crossover

The following two programs are used as parents to demonstrate the crossover operation;

( ( ( f o l d r  ARGl) A R G 2 ^ ) ARG3)

( h e a d  L )

The crossover operation is performed on nodes ARG2 and (head  L ) . The underlined type 

T l and i n t  unify with each other. As a result, the temporary type variable T l is instantiated 

to i n t .  The crossover operator generates the following program:

( ( ( f o l d r  ARGl) (head  L) '̂"̂ ) ARG3)

4.7.3 Partial Application Node Mutation

The following is the parent program for the mutation operation:

( ( ( f o l d r  (1#1 (1#2 ( (* 1 0 ) ( a d d l  #1 ) ) ) ) ) ARG2 ) ARG3 )

The Creator (see Section 4.2) generates a subtree whose return type is the underlined type

i n t - > i n t :

( -  ( a d d l  #2) ) int->int

The new tree is used to replace the mutation node subtree and a new program is generated:

( ( ( f o l d r ( 1 # 1 ( 1 # 2 ( ( -  ( a d d l  #2))( a d d l  # 1 ) ) ) ) ) ARG2) ARG3)

4.7.4 Lambda Modular Crossover

The first parent program is:

( ( ( f o l d r  (1#1 (1#2 ( a d d l  (+ #1 #2) ) ) ) ( ) ARG3 )

The second parent program is:

( a d d l (  ( ( f o l d r  (X#1(X#2 ( a d d l  #1)  ) ) . ( in t - > in t - > in ^ ) ) ARG3) )

The underlined type in the two parent programs unify with each other. The X module cross­

over replaces the X abstraction in the first parent program by the X abstraction in the second 

parent program and produce the following new program:
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( ( ( f o l d r  ( 1 # 1  (1 # 2  ( a d d l  # 1 )  ) ) ) ARG2) ARG3)

4.8 Summary

This chapter presents a functional GP system which (1) evolves programs based on the syntax 

o f the 1 calculus-, (2) supports module creation through the use o f 1 abstractions, which can 

be reused through higher-order functions; and (3) performs type checking for the programs 

using a polymorphic type system. In addition, each component o f the system and its operation 

are described in detail. This working system shows that these functional techniques are indeed 

applicable to GP. In the following three chapters, the impact o f those functional techniques on 

GP will be further analyzed.

Chapter 5 first presents the concept of types and their implementation in GP. Advantages 

and drawbacks of different type checking approaches are compared. This is followed by two 

worked examples to demonstrate that polymorphism can enhance GP applicability to prob­

lems which require multiple types, type variables or function types. Chapter 6 provides a case 

of successful usage of X abstractions and implicit recursion to provide module creation and 

reuse for GP. This approach has enabled GP to evolve a general solution for the even-par- 
i t y  problem veiy efficiently. Chapter 7 studies the program representation used in Chapter 

6. A detailed analysis of the search space is conducted to provide guidelines for the applica­

tion of this program representation to other problems.
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Chapter 5

Polymorphism and Genetic Programming

This chapter presents the application of polymorphism in GP. Firstly, the concept of types in 

GP is presented by defining and differentiating untyped, dynamically typed and strongly typed 

GP. Secondly, the two different implementations o f strongly typed GP, monomorphic GP and 

polymorphic GP, are introduced. In particular, we analyze the impacts of the three different 

type variables used in polymorphic GP. Finally, the experiments to generate two polymorphic 

programs: nth and map are presented. These two programs are chosen to demonstrate the 

power of polymorphism as they contain features which make them very difficult (if not 

impossible) for an untyped, dynamically typed or monomorphic typed GP to generate.

5.1 Types and Genetic Programming

The road from untyped to typed GP is motivated by two reasons. Firstly, to enhance the appli­

cability of GP by removing the closure requirement. Secondly, to assist GP searching for 

problem solutions using type information. Koza made the first attempt to introduce types to 

GP by extending GP with “constrained syntactic structures” when he realized that not all 

problems have solutions which can be represented in ways that satisfy the closure require­

ment [Koza, 1992]. Supporters o f this argument [Montana 1995; Haynes, Wainwright, Sen 

and Schoenefeld, 1995; Haynes, Schoenefeld and Wainwright, 1996; Clack and Yu, 1997] 

believe that it is important for GP to be able to handle multiple types and advocate excluding 

type-incorrect programs from the search space to speed up GP search. Another route to pro­

mote the use of types in GP is based on the idea that types provide inductive bias to direct GP 

learning. For example, [Wong and Leung, 1995] included type information in a logic gram­

mar to bias the selection of genetic operation location during program evolution. McPhee, 

Hopper and Reierson [1998] also demonstrated that program representation which utilizes 

“ function type” can bias recombination operations and benefit GP search on some problems.
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These two paths, although with different purposes, are aetually interrelated. Types exist in the 

real world naturally [Cardelli and Wegner, 1985]; by allowing problems to be represented in 

their natural ways, an inductive bias is established which selects solutions based on criteria 

that reflect experience with similar problems.

In its traditional style, the GP paradigm is not capable of distinguishing different types: 

the term untyped is used to refer to such a system. In the case when the programs manipulate 

multiple data types and contain functions designed to operate on particular data types, 

untyped GP leads to an unnecessary large search space, which contains both type-correct and 

type-incorrect programs. To enforce type constraints, two approaches can be used: dynami­

cally typed GP and strongly typed GP. In dynamically typed GP, type checking is performed at 

program evaluation time. In contrast, strongly typed GP performs type checking at program 

generation time. The computation effort required for these two different type checking 

approaches is implementation dependent. It is not valid to claim that dynamic typing is more 

efficient than strong typing; nor the other way around. The details o f these two type checking 

approaches are discussed in the following sections.

5.2 Dynamically Typed GP

Dynamic typing is a hard constraint method (see Appendix A): type-ineorrect programs are 

not allowed to exist in the solution space; although the search space may contain illegal pro­

grams (see Figure 5.1).

Search Space

Map
Discard

»  Solution Space

Figure 5.1 : Search space versus solution space in dynamically typed GP.

The transformatior. of a type-incorrect into a type-correct program can be implemented using 

a “legal map” method (see Appendix A). For example, a value with an illegal type o f “real” 

can be mapped into a value with legal type “integer”. However, for more complex types such 

as list or matrix,, a proper mapping scheme can be difficult to design. Montana implemented 

this dynamic typing approach in one o f his experiments. When trying to add a 3-vector with a

4 x 2  matrix, thie matrix is considered as an 8-vector, which is converted into a 3-vector by 

throwing away the last 5 entries. “The problem with such unnatural operations is that, while
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they may succeed in finding a solution for a particular set o f data, they are unlikely to be part 

o f a symbolic expression that can generalize to new data.” [Montana, 1995].

Another way to implement dynamic typing is to discard the type-incorrect program (see 

Figure 5.1). “The problem with this approach is that it can be terribly inefficient, spending 

most of its time evaluating programs that turn out to be illegal.” [Montana, 1995]. In his 

experiments, Montana reported that within 50,000 programs in the initial population, only 20 

are type-correct. Because of these issues, dynamic typing is not an ideal way to implement 

type checking in GP.

5.3 Strongly Typed GP

Similar to dynamic typing, strong typing is a hard constraint method. However, in addition to 

the solution space, the search space is restricted to contain only type-correct programs (see 

Figure 5.2). This is done through the “legal seeding” method (the initial population is seeded 

with solutions that do not conflict with the type constraints) and the “legal birth” method 

(crossover and mutation operators are designed such that they cannot generate illegal off­

spring) (see Appendix A).

Search Space == Solution Space

Figure 5.2: Search space versus solution space in strongly typed GP.

There are two approaches in implementing strong typing in GP: monomorphic GP and poly­

morphic GP. Monomorphic GP uses monomorphic functions and terminals to generate mono­

morphic programs. In contrast, polymorphic GP can generate polymorphic programs using 

polymorphic functions and terminals. In the first instance, inputs and outputs of a program 

need to be o f the specified types. In the latter case, programs can accept inputs and produce 

outputs o f more than one type. Polymorphic GP therefore can potentially generate more gen­

eral solutions than those produced by monomorphic GP.

5.3.1 Generality and Polymorphism

The generality o f polymorphic GP is achieved through the use o f three different type variables 

(see Section 4.5.1). On the surface level, it seems that polymorphic GP is simply monomor-
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phic GP plus type variables. Indeed, when functions and terminals are defined without any 

type variables, polymorphic GP becomes monomorphic GP. However, the use o f these type 

variables can have impacts on the GP search space that is not obvious to the GP users. The 

purpose o f this analysis is not to claim that the smaller search space produced by one particu­

lar GP system will make the solving o f a problem easier. Instead, we identify such impacts so 

that users can be more careful when using these type variables to define functions and termi­

nals. For some problems, polymorphic GP is necessary, e.g. n t h  and map programs (see Sec­

tion 5.4). For others, monomorphic GP is more appropriate, e.g. the general e v e n - p a r i t y  

problem (see Chapter 6 & 7). Misuse o f these type variables can cause unnecessary overhead 

to the GP system. With the provided information, users can select polymorphism or mono­

morphism by incorporating or not incorporating type variables to suit their target problems.

Generic Type Variables

Generic type variables are used to specify that the inputs and/or outputs o f tlie target programs 

have generic type. Similar to built-in types, generic types are not allowed to be instantiated to 

other types during program evolution. Consequently, generic type variables do not cause 

polymorphic GP to generate search space that is any different from that produced by mono­

morphic GP. However, by supporting generic types, polymorphic GP can generate generic 

programs. This is the most important advantage that polymorphic GP provides which is not 

available in monomorphic GP.

This advantage, however, can not be achieved by using generic type variables alone. To 

allow the evolved program to accept inputs o f any type, the functions and terminals used to 

construct the program trees have to be able to handle arguments of multiple types, i.e. speci­

fied with dummy types. It is the combination usage of generic types and dummy types that 

enables polymorphic GP to evolve generic programs.

Dummy Type Variables

Dummy type variables allow a single function to represent multiple functions operating in the 

same way for different types o f arguments. For example, the function h e a d  takes a list as 

input and returns the first element o f the list as output. With polymorphic GP, one function 

with the type o f [a ]  -  >a is sufficient to represent this functionality (where a is a dummy 

type). In contrast, with monomorphic GP, multiple functions, one for each type, have to be 

defined. For example, one for input of integer list, one for input o f Boolean list and so on. 

Consequently, the function set in monomorphic GP can contain more entries than that in poly­

morphic GP even though the fiinctionality provided by the two function sets are identical. The
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same effect also applies to the terminal set.

With a smaller function set to represent the same problem, it is expected that the search 

space (which consists of programs that are composed using available functions and terminals) 

using polymorphic GP is smaller than that using monomorphic GP. Yet, this is not true. Since 

a dummy type variable can be instantiated to any type, a polymorphic function can be used in 

many different ways to construct GP program tree nodes. As a trivial example, assume the 

program to be evolved takes two inputs; a list o f integer and a list o f character. It returns True 

if  the two lists have the same length and False otherwise. With a polymorphic GP system, the 

fimction t a i l  is defined with type [ a  ] -  > [ a  ]. This function can be used to construct a pro­

gram node which requires either integer list type or character list type. i.e. it represents both 

the t a i l - i n t - l i s t  and t a i l - c h a r - l i s t  functions defined in a monomorphic GP 

system. In fact, the function t a i l  represents more than just two functions since its dummy 

type can be instantiate to any type. Consequently, when solving the same problem, using 

polymorphic GP may generate not smaller but larger search space than that produced by 

monomorphic GP

Because a single function can be used to represent multiple functions that perform the 

same operation, polymorphic GP requires less user effort to implement the function set com­

pared to that required by a monomorphic GP system. Moreover, polymorphic GP allows func­

tions or terminals with unknown types to be represented using dummy type variables. These 

are advantages that a polymorphic GP system has over a monomorphic GP system.

Temporary Type Variables

Temporary type variables can only be used in conjunction with the dummy type variables. A 

dummy type variable is instantiated to a temporary type when its type can not be decided. 

Temporary type variables may or may not be instantiated to other types later during the 

growth o f the program trees (see Section 4.5.1). Consequently, a generated program may con­

tain a node whose type is a temporary type variable.

The use of temporary types in polymorphic GP may potentially generate a larger search 

space than that produced by a monomorphic GP system (providing that both function sets are 

of the same functionality). The reason is that a temporary type is allowed to be instantiated to 

any type. For example, the polymorphic function l e n g t h  has type [a ]  - > i n t .  Its equiva­

lencies in the monomorphic GP may be two monomorphic functions l e n g t h - i n t - l i s t  

and l e n g t h - c h a r - l i s t .  When the l e n g t h  function is selected to construct a program 

node, its dummy type a is instantiated to a temporary type, which can be instantiated to any 

type at a later time. Compared with monomorphic GP which only has the same function
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defined for two types ( i n t  and c h a r ) ,  the search space produced by polymorphic GP may 

be larger because the length function represents more functions than that as defined in the 

monomorphic GP.

5.3.2 Polymorphism in STGP

Generic functions in Montana’s STGP provide a form of parametric polymorphism (see Sec­

tion 3.2.1). Generic functions are parameterized templates that have to be instantiated with 

actual values before they can be used to construct tree nodes. The parameters can be type 

parameters, function parameters or value parameters. Generic functions with type parameters 

are polymorphic since the parameters can be instantiated with many different type values.

In STGP, the function set may contain generic functions. To be used in a program tree, a 

generic function has to be instantiated by specifying the argument and return types of the 

generic function. Instantiating a generic function can be viewed as making a new copy of the 

generic function with specified argument and return types. Instantiated generic functions are 

therefore monomorphic functions.

The implementation of polymorphism in STGP is different from that o f the functional GP 

in the following areas:

• it requires the generation of a type possibilities table (see Section 3.2.1).

• it uses a table-lookup mechanism to instantiate type variables (see Section 3.2.1).

• it does not provide a systematic way to support function types (see Section 3.2.1).

• it does not uses temporary type variables to support polymorphism within a program 

tree during program evolution.

5.4 Experiments

The problems of evolving the nth and the map programs are chosen to demonstrate the 

power of polymorphism in GP. These two programs have the following characteristics that 

make them very difficult for a GP system without polymorphism to evolve:

• Both nth and map programs are required to manipulate multiple types. In the nth pro­

gram, the two inputs are o f different types (an integer and a list) while the map program 

takes two inputs of function type and list type respectively.

• Both nth and map are polymorphic programs. The type o f the two programs are as the 

following (where Gl and G2 are generic types):
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nth : : int->[Gl]->G1
map : : (G1->G2)->[Gl]->[G2]

• The map program requires the manipulation o f function types. There has not been a GP 

system which can systematically handle function types up to now.

The ability of polymorphic GP to generate these two programs demonstrates that polymor­

phism is, indeed, applicable to GP. Moreover, polymorphism also enhances the applicability 

of GP to problems that are very difficult for the standard GP to solve.

Both n th  and map are also recursive programs. To allow GP to evolve recursive pro­

grams, a simple method similar to [Brave, 1996] is used. In this method, the name of the pro­

gram is included in the function set so that it can be used to construct program trees; hence 

making recursive calls. The results o f this implementation o f recursion will be analyzed in 

Section 5.4.3.

5.4.1 The Nth Program

Problem  Description: The nth program takes two arguments, an integer N and a list L. It 

returns the N-th element of L. If the value of N is less than 1, it returns the first element of L. If 

the value of N is greater than the length o f L, it returns the last element o f L.
Input Types: The input N has type int and the input L has type [Gl].
O utput Type: The output has type Gl.
Terminal Set: {L : : [Gl] , Nr: int, one : : int}
Function Set: {head : : [a]->a, if-then-else : : bool->a->a->a,

tail : : [a]->[a], less-eq:: int->int->bool,
gtr:: int->int->bool, length:: [a]->int,
minus:: int->int->int, nth : : int->[Gl]->G1}

Genetic Param eters: The experiments were carried out using a steady-state replacement 

method described in Section 4.6.1. The population size is 3,000; parent scalar value (see Sec­

tion 4.6.1) is 0.9965; maximum tree depth is 5; and crossover rate is 100%. Each run termi­

nates when a correct nth program is found or 33,000 programs have been generated (3,000 

by Creator and 30,000 by Evolvor).

Test Cases

Twelve test cases were used to evaluate the generated programs. Each test case gave N a dif­

ferent value from 0 to II. The value L, however, is the same for all 12 test cases; it is a list
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containing the characters a to j . Table 5.1 lists the 12 test cases and their expected outputs. 

Table 5.1 : The 12 test cases for evolving n th  program.

Case No. Value of N Value of L Expected Output

1 0 [a,b,c,d,e,f,g,h,ij] a

2 1 [a,b,c,d,e,f,g,h,i,j] a

3 2 [a,b,c,d,e,f,g,h,i,j] b

4 3 [a,b,c,d,e,f,g,h,ij] c

5 4 [a,b,c,d,e,f,g,h,ij] d

6 5 [a,b,c,d,e,f,g,h,i,j] e

7 6 [a,b,c,d,e,f,g,h,i,j] f

8 7 [a,b,c,d,e,f,g,h,i,j] g

9 8 [a,b,c,d,e,f,g,h,i,j] h

10 9 [a,b,c,d,e,f,g,h,i,j] i

11 10 [a,b,c,d,e,f,g,h,i,j] j

12 11 [a,b,c,d,e,f,g,h,i,j] j

Fitness Function

A program tree is evaluated with each of the 12 test cases, one at a time. The produced output 

is compared with the expected output to compute the fitness value for each test case according 

to equation 7:

F itn e s s  = 10 - 2 -  (10  - r tE r r o r )  -  (10 - re  E r r  o r ) (V

where d  is the distance between the position of the expected value and the position of the 

value returned by the generated program; rtError is 1 if there is a run-time empty-list error 

(explained later); and reError is 1 if there is a run-time non-terminating recursion error 

(explained later). In this fitness function, the value 10 is chosen according to the number of 

elements in the input list. This number is designed to scale up the output fitness (the first part 

of the equation) for better precision due to computation round up. Since we give equal weight 

to each of these three components o f the fitness function (range between 0 and 1), the same 

value is applied to scale up the two run-time errors fitness.

The first part of equation 7 specifies that a program which returns the value at the 

expected position receives a fitness 10. This fitness value decreases as the position of the 

returned value is farther away from the position of the expected value. If  the returned value is
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not a part of the input list (it’s an “0” returned as default by the run-time error handler for 

recursion error), this fitness is 0. When no run-time error is encountered during program eval­

uation, a program can receives a maximum fitness value o f 10 for each test case. The fitness 

o f a program is the summation o f the fitness for all 12 test cases, i.e. the maximum fitness o f a 

program is 120.

The two kinds of run-time error and their handling methods need further explanation. 

The first kind of run-time error is to apply function h e a d  or t a i l  to an empty list (which has 

an undefined value). When this error occurs during program evaluation, a default value is 

returned (see Section 4.3.3) and the evaluation o f the program continues. In this way, partial 

solutions can be considered for partial credit. For example, a program which is expected to 

return the fifth element of the list may return the third element of the list due to this error. This 

program is given partial credit even a non-optimal program is generated. The second kind of 

run-time error is the non-terminating recursion error. The recursive calls in a evolved n t h  

program may generate infinite-loop, hence makes the evaluation o f such a program non-ter­

minating. This error is handled by specifying a limit of the number o f recursive calls allowed 

in the program (the length of the input list, 10, is used in this case). When this limit is reached, 

program evaluation halts and returns with a flag to indicate this error. Consequently, no partial 

credit is given to this kind of program, i.e. the first part of the equation 7 is 0. Both of these 

two errors are also penalized in the fitness function (see Equation 7). Referring to the con­

straints handling methods defined in the Appendix A, the combination o f “legal map” and 

“phenotype penalty” are used to handle these two constraints.

Results

10 runs were made and four of them found an optimal solution. All correct programs were 

found before 12,000 programs were processed. The shortest program found was:

if-then-else (less-eq (length (tail L)) (minus N N)) 
(head L)
(if-then-else (gtr (minus N N)(minus one N)) 
(nth (minus N one) (tail L))
(head L))

Analysis and Discussion

In this experiment, the fimess function specifies that the optimal solutions not only have to 

produce the desired output but also have to satisfy two different constraints: a non-terminating
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error constraint and an empty-list error constraint. To meet the three criteria, the evolutionary 

process is directed in different directions. Consequently, the seesaw o f evolutionary pressure 

can favor either o f the criteria (see Appendix A).

In the fitness function, these three criteria are given equal importance (10 point each). 

However, the two run-time error constraints are handled in ways which implicitly generated 

more weight for them. These effects can be illustrated in Table 5.2 where four categories are 

defined for a generated n t h  program when evaluated with a test case.

Table 5.2: The 4 categories of n th  programs with different run-time errors.

Run-time Errors Output Penalty Fitness

non-terminating+empty-list nothing 20 -20

non-terminating nothing 10 -10

empty-list a value 10 partial credit-10

none a value 0 calculated fitness

It is clear that programs of the first two categories, which are non-terminating, have very low 

fitness value hence are very unwelcome in the evolutionary process. They soon will be gotten 

rid off from the population pool. The evolution is to find programs which produce the correct 

output for this problem and also satisfy the empty-list error constraint (see Appendix D).

5.4.2 The Map Program

Problem Description: The map program takes inputs o f two arguments, a function F and a 

list L. It returns the list obtained by applying F to each element o f L.
Input Types: The input F has type G1->G2 and the input L has type [Gl]
Output Type: The output has type [ G2 ]

Terminal Set; {L : : [Gl] , nil : : [a], F: : (G1->G2) }
Function Set: (head: : [a]->a, if-then-else : :bool->a->a->a,

tail : :[a]->[a], cons : :a->[a]->[a], null : : [a]->bool,

F:: G1->G2, map : : (G1->G2)->[Gl]->[G2] }
Genetic Parameters: The experiments were carried out using a steady-state replacement 

method described in Section 4.6.1. The population size is 5,000; parent scalar value is 0.999; 

maximum tree depth is 5; and crossover rate is 100%. Each run terminates when a correct 

map program is found or 55,000 programs have been generated (5,000 by Creator and 50,000 

by Evolvor).
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Test Cases

Two different lists were used for the argument L and one function for the argument F. The two 

lists were: (1) a list with 10 elements whose values were the characters A to J and (2) an 

empty list. The function F converts an alphabetic character input into a number, i.e. A to 1, B 
to 2, C to 3 and so on. Table 5.3 lists these two test cases and their expected outputs.

Table 5.3: The 2 test cases for evolving map program.

Case No. Value of F Value o f L Expected Output

1 atoi [A,B,C,D,E,F,G,H,I,J] [1,2,3,4,5,6,7,8,9,10]

2 atoi [] []

Fitness Function

The fitness value is computed based on how close the return list is to the expected list. There 

are two elements in this criterion: 1) whether the returned list has the correct length and 2) 

whether the returned list has the correct contents. Equation 8 is the fitness function used to 

measure both elements for each test case.

F itn e s s  = - 2 -Y e n g th ^ L ^ )  -  length(^L^)\-^  ^  10 • (2  ^
e

- (1 0  + 2 • le n g th {L  ))  • r tE r r o r  - ( 1 0  + 2 • le n g th {L ^ ))  • r e E r r o r (8)

where Lg is the expected list and is the list returned by the generated program; d ist{e j^^  is

the distance between the position o f e in the expected list and in the returned list. If e does not

exist in e ^ L ^ , this value is oo. The rtError is 1 if  there is a run-time empty-list error.

The reError is 1 if there is a run-time non-terminating recursion error. Similar to equation 7, 

the value 10 is used to scale up the output fitness for better precision.

The first item in equation 8 measures whether the returned list has the same length as the 

expected list. Each discrepancy is penalized with value of 2.

The second item in equation 8 measures whether the returned list has the same contents 

as the expected list. For each element in the expected list, the distance between its position in 

the expected list and in the returned list is measured. If  the element is in the correct position in 

the returned list, a fitness value o f 10 is given. This value decreases as the position of g in the 

returned list is farther away from the expected position. In the case that e does not exist in the 

returned list, this fitness is 0. The same measurement is applied to each element in the
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expected list. For the first test case, a program which generates a list with the correct length 

and contents will receive a fitness value o f 100. For the second test case, a program which 

generates a list with the correct length and contents will receive a fitness value of 0.

The third and the fourth items in equation 8 measure whether an empty-list or a non-ter­

minating run-time error is encountered during program evaluation. The penalties o f these two 

types o f run-time error are the same. It is proportionate to the length o f the expected output 

list (the same as the length o f the input list). This decision is due to the recursion limit is set to 

be the length o f the input list (see Section 5.4.1). It seems to be reasonable to penalize run­

time errors using the same criterion. The handling method for these two run-time errors is the 

same as that described in Section 5.4.1.

When no run-time error is encountered during program evaluation, a program receives a 

maximum fitness value of 100 for the first test case and 0 for the second test case. The fitness 

o f a program is the summation o f the fitness for the two test cases, i.e. the maximum fitness of 

a program is 100.

Results

Ten runs were made and three o f them found an optimal solution. All correct solutions were 

found before 35,000 programs were processed. The shortest program generated is as the fol­

lowing:

if-then-else (null L)
(head (cons nil nil))
(cons (F (head L)) (map F (tail L))))

Analysis and Discussion

The experiment results indicate that the map program is harder than the n t h  program for GP 

to evolve. Unlike the n th  program where only one correct return value is required to get the 

maximum fitness, an optimal map program has to be able to process each of the 10 elements 

in the input list correctly. To meet this objective, one more criterion is added to the fitness 

function: the length discrepancy between the expected and the generated lists (see equation 

8). Moreover, unlike that for the n t h  program, the fitness function for the map program gives 

different importance to the two objectives and the two constraints. In the first test case, 100 

points are given to programs which return list with the correct contents; 20 points are given to 

programs which return list with the correct length; 30 points are given to programs which pro­

duce no non-terminating error and 30 points are given to programs which produce no empty-
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list error. This is designed to direct GP searching for programs which return list with the cor­

rect contents. In the second test case, the two objectives are not considered in the fitness func­

tion while the two constraints are each given 10 points o f importance in the fitness function. It 

is obvious that the purpose o f the second test case is to train GP to handle empty list without 

producing any run-time errors. In addition, the handling methods for the two constraints dur­

ing program evaluation also generates another evolutionary pressures. Due to such a compli­

cated fitness assignment and constraint handling pressure, the evolutionary process is directed 

into many directions. Consequently, the generation o f the correct map program is harder than 

the generation of the correct nth program.

To analyze the effect o f these fitness assignment to the evolutionary process, we identify 

four categories for the generated map programs when evaluated with the first test case (Table

5.4) and the second test case (Table 5.5).

Table 5.4: The 4 categories of map programs for the first test case.

Run-time Errors Output
Run-time

Error
Penalty

Length
Penalty Fitness

non-terminating+empty-list nothing 60 20 -80

non-terminating nothing 30 20 -50

empty-list a value 30 calculated
penalty

partial credit-30 - 
calculated penalty

none a value 0 calculated
penalty

calculated fitness - 
calculated penalty

Table 5.5: The 4 categories of map programs for the second test case.

Run-time Errors Output
Run-time

Error
Penalty

Length
Penalty Fitness

non-terminating+empty-list nothing 20 0 -20

non-terminating nothing 10 0 -10

empty-list empty list 10 0 -10

none empty list 0 0 0

With these two test cases, programs with non-termination errors are heavily discriminated in 

the population (the first and the second categories, with fitness values -100 and -60 respec­

tively). Consequently, they would be eliminated from the population first. After that, evolu­

tion is a process of competition among programs to meet the three other criteria (see
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Appendix D).

5.4.3 Evolving Recursive Programs

The implementation of recursion used in these two experiments has enabled GP to evolve 

both n t h  and map recursive programs. In this approach, the name of the program is included 

in the function set so that it can be used to construct the programs, hence making recursive 

calls. However, such recursive calls may cause the program become non-terminating during 

program evaluation. To discourage its happening, the termination o f the program is treated as 

a constraint that the evolved programs have to satisfy. This constraint is made as an additional 

criterion in the fitness function that the solution has to meet. Consequently, the fitness func­

tion directs GP to evolve programs which not only generate desired outputs but also make 

successful recursive calls.

However, this approach is not ideal because it complicates the dynamic o f program evo­

lution with other issues. The first issue is the handling o f infinite loops. In these experiments, 

the maximum number of recursive calls allowed in a program is the length of the input list. 

This limit may prevent GP from discovering good program segments if the program takes 

more than the permitted recursive calls to evaluate. The second issue is the fitness penalty 

applied to programs with infinite loops. In the n t h  experiments, the penalty is the size o f the 

input list while in the map experiments, a program with infinite loops is penalized by an 

amount which is proportional to the length o f the expected list. It is not clear whether these 

decisions are appropriate or not. Finally, the most important issue is that a small change in a 

recursive program can lead to large variation o f the program’s functionality and fitness. This 

means that recursive programs are extremely deceptive. The fitness of a recursive program 

therefore does not necessarily reflect its proximity to a solution in the space o f programs. Due 

to these issues, the evolution o f recursive programs becomes very difficult for the fitness- 

based GP search algorithm.

To overcome these issues, an alternative to provide recursion in GP is proposed. In this 

approach, recursion semantics are provided implicitly by a higher-order function. The pro­

gram evolution process is therefore relieved from dealing with any issues related to recursion 

semantics. This work will be presented in details in the following chapter.

5.5 Summary

This chapter has presented the application o f polymorphism in GP. We first present the con­

cept of types in GP. The three different approaches to handle types in GP are then summa-
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rized. With untyped GP, programs containing multiple types can lead to an unnecessary large 

search space. Moreover, type information is not able to be used to guide GP learning. With 

dynamically typed GP, the search space for programs with multiple types is still not con­

strained. Moreover, designing a scheme to transform type-incorrect programs into type-cor­

rect programs can be a complicated task. In contrast, strongly typed GP not only enforces the 

search space to contain only type-correct programs but also allows type information to be 

used to bias the selection o f genetic operation locations. It is therefore a preferred method to 

implement type checking for GP in evolving programs with multiple types.

The two implementations o f strongly typed GP are polymorphic GP and monomorphic 

GP. On the surface level, polymorphic GP is monomorphic GP added with type variables. 

However, a deeper analysis shows that the use o f different type variables can impact GP 

search space in ways that are not obvious to GP users. We provide this information so that 

users can be cautious when using these type variables to design the function and terminal sets.

When no type variables are used to define functions and terminals, polymorphic GP is 

essentially monomorphic GP. Depending on the target problem, users can select polymor­

phism or monomorphism by incorporating type variables or not incorporating type variables. 

Type variables hence provide the flexibility of one GP system to perform two different type 

constraints implementations.

Two polymorphic programs, n t h  and map, are evolved using our polymorphic GP sys­

tem. The two programs require the manipulation o f multiple types, type variables and func­

tion types. The ability of polymorphic GP to generate these two programs demonstrates that 

polymorphism is, indeed, applicable to GP. Polymorphism also enhances the applicability of 

GP to problems that are very difficult for the standard GP to solve.

Both n t h  and map are also recursive programs. An approach which includes the pro­

gram name in the function set is used to allow the evolved programs to make recursive calls. 

However, such kind o f programs may also generate infinite loop hence becomes non-termi­

nating during program evaluation. A method which treats the termination o f programs as a 

constraint is used to discourage its happening. This approach is shown to be successful in 

these two cases. However, it also brings out other issues that GP faces when evolving general 

recursive programs. In the next chapter, a more sophisticated approach which uses higher- 

order functions to provide recursion semantics will be presented.

95



Chapter 6

Recursion, Lambda Abstractions and Genetic 

Programming

The previous chapter has identified GP issues in evolving recursive programs. In this chapter, 

an alternative mechanism to provide recursion in the evolved programs is introduced. With 

this approach, recursion is provided implicitly by the higher-order function foldr. This 

higher-order function recursively applies its function argument to each pair of the elements in 

the input list. In addition, the function argument is represented as a function module. Conse­

quently, program representation using the higher-order function foldr provides a mecha­

nism of module creation (as function argument) and reuse (through implicit recursion).

We first analyze the difficulties of GP to evolve recursive programs. An alternative using 

implicit recursion to provide recursion semantics in the evolved programs is then presented. 

This is followed by the introduction of a new module mechanism using X abstraction. A com­

parison of X abstractions with other module approaches is then provided. Next, the general 

even-parity problem [Koza, 1992] and other work using recursion or modules to solve 

the problem are summarized. We then introduce our new technique which uses the higher- 

order function foldr to evolve a general solution to this problem. The experiments and their 

results show that this approach has enhanced GP performance on this problem to a great 

degree that has never been reported before. Most importantly, a new term “structure abstrac­

tion” is introduced to describe the property emerged from the program representation. Our 

analysis indicates that structure abstraction has helped GP to find good program structures, 

hence reduced GP effort in finding the overall problem solutions. Finally, the limitations of 

implicit recursion to general GP problem solving is provided.
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6.1 Challenges in Evolving Recursive Programs

Recursion is a powerful mechanism for program reuse. However, when a recursive program is 

not implemented with care, it may produce infinite loops and become useless (see Section

2.3.7). In Section 5.4.3, the issues related to evolving recursive programs are briefly men­

tioned. This section provides more detailed analysis to identify the challenges that GP faces 

when evolving recursive programs. These difficulties have hindered the success of GP in 

evolving recursive programs (see Section 3.4).

6.1.1 Determining the Indication of Non-terminating Programs

When evaluating a recursive program, there is no way of knowing whether the program is 

going to terminate or not, i.e. the halting problem is undecidable [Hopcroft and Ullman, 

1979]. Instead of letting the program evaluation process run for an unknown length of time, a 

decision has to be made about what indicates the program will not halt. This is not only a dif­

ficult decision (because of the theoretical impossibility) but also an important decision 

because it has impact on GP in searching for problem solutions. If a “fit” program is wrongly 

classified as a program which does not terminate, the program does not have a chance to con­

tribute to the search of problem solutions. Furthermore, if a class o f programs are wrongly 

classified as programs that do not terminate, GP search is directed to overlook a potentially 

beneficial area in the search space. Consequently, the optimal solution may never be found.

Various approaches have been used as the indication o f non-terminating recursive pro­

grams. Brave [1996] used the depth of the tree as the limit o f recursive calls in his tree search 

recursive programs (see Section 3.4). Once the tree-depth number o f iterations is reached, the 

evaluation returns the value of the current tree node. Wong and Leung [1996] adopted an exe­

cution time limit to halt their recursive e v e n - p a r i t y  programs (see Section 3.4). A pro­

gram which takes longer than the permitted time to execute is considered as a program that 

does not terminate. In the previous chapter, we imposed the lengüi o f the input list as the 

recursion limit when evolving the n t h  and the map recursive programs. Although these 

approaches have enabled GP to evolve recursive programs successfully, no detailed analysis 

is provided about how these methods direct GP search.

6.1.2 Handling the Non-terminating Programs

When a program is classified as non-terminating during its evaluation, a decision has to be 

made about how to handle such a program. This is yet another difficult and important deci­
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sion. It is difficult because non-terminating programs can be of many diversified contents. 

Attempting to design a handling method which is appropriate for all non-terminating pro­

grams is a challenging task. The decision is also important because the consequences can 

impact how GP searches for problem solutions.

The handling method consists of two parts; 1) the return value o f the program and 2) the 

penalty, if any, to be reflected in the fitness function. A non-terminating program may still 

contain good partial solutions. Ideally, these partial solutions should be credited so that they 

can be used to generate new and hopefully better programs. To achieve this goal, the return 

value for the non-terminating programs has to be defined. This value has influence on 

whether or not the partial solutions are credited and how they are credited (examples are 

given later). Moreover, the non-termination o f a program can also be reflected in the fitness 

function to guide GP search. Ideally, the fitness function should be designed to promote pro­

grams which not only produce the correct outputs but also terminate. The analysis in the 

Appendix A has shown that such a goal is difficult as the evolution is directed in different 

directions.

Wong and Leung [1996] regarded a program which does not produce a result after the 

allowed execution time as a program producing a wrong result. No partial credits nor extra 

penalty is given to the program. Similarly, we return an empty list for non-terminating pro­

grams when evolving the map and the n t h  programs, hence no partial credits are given (see 

Section 5.4). However, we do penalize non-terminating programs. How these handling meth­

ods affect GP performance has to be further studied.

6.1.3 Measuring the Recursion Semantics in the Programs

The standard GP paradigm uses a syntactic approach to build programs; no semantic analysis 

is supported. A recursive program which contains a perfect base-case statement (see Section

2.3.7) is therefore not necessary to be selected for reproduction since program structure are 

not normally considered during GP search. Whigham and McKay [1995] have identified this 

problem and suggested the application of genetic operators to be performed in an environ­

ment where semantic analysis is supported.

6.2 Implicit Recursion

The issues that explicit recursion highlighted in GP can be solved by a particular functional 

programming technique - implicit recursion. Functional languages provide various higher- 

order functions to support implicit recursion. They are map, f o l d  (includes f o l d r  and
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f o l d l )  and f i l t e r .  These higher-order functions provide recursion semantics in the pro­

grams without explicit recursive calls. The operation o f these higher-order functions are 

described in Section 2.3.7.

An important characteristic o f implicit recursion is that programs always terminate. This 

is because the terminating condition is incorporated into the higher-order functions. More­

over, there are no explicit recursive calls in the programs as the recursion is performed in the 

higher-order functions. Consequently, none o f the issues raised in Section 6.1 applies to 

implicit recursion. This makes implicit recursion an ideal mechanism to support recursion in 

GP.

6.3 Lambda Abstractions Module Approach

This work also introduces a new module mechanism using X abstractions. X abstractions are 

local function definitions within programs. The creation of A, abstractions in the program trees 

has been described in Section 4.2.1. The role o f 1 abstractions in the programs is to provide a 

mechanism of module creation and reuse. For problem solutions which contain regularity, a 

module mechanism allows for the decomposition of the problem into smaller problems and 

the use of the solutions of the smaller problems to compose the overall solution. With such a 

goal in mind, various module mechanisms have been proposed to assist GP performing prob­

lem solving (see Section 3.3).

The X abstractions module approach is similar to Automatically Defined Function (ADF) 

(see Section 3.3.1) in the following ways;

• a 1 abstraction has formal parameters and a function body.

• X abstractions are simultaneously evolved with the main program.

Consequently, X abstractions provide the same two functions in GP as that provided by ADFs: 

first, they perform a top-down process of problem decomposition or a bottom-up process of 

representational change to exploit identified regularities in the problem. Second, they dis­

cover and exploit inherent patterns and modularities within a problem [Koza, 1994a]. 

However, X abstraction module mechanism differs from ADFs in the following areas:

• X abstractions are anonymous hence cannot be invoked by name. The reuse of X abstrac­

tions is carried out by passing them as arguments to other functions which then reuse the 

X abstraction. In the following example, the X abstraction (X x. (+ x 1)) is reused in the 

t w i c e  function:

twice f X = f (f x)
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t w i c e  X . (+ X 1 ) )  2

= {X X .  ( +  X 1)) { {X X .  ( +  X 1)) 2)

= + {{X X .  (+ X 1) ) 2)  1 

=  + ( +  2 1 ) 1 

=  + 3 1  

= 4

• The determination of the program structure with X abstraction is different from that with 

ADFs. Instead of having the program structure predefined in advance or complete open 

to evolutionary determination (see Section 3.3.1), X abstractions are created dynamically 

by GP according to the function arguments specified by the higher-order functions (see 

Section 4.2.1). Briefly, when a higher-order function is selected to construct the program 

node. Its function argument is created a s a l  abstraction. In this way, a priori knowledge

about the creation and reuse of X abstractions can be incorporated in the higher-order

function to facilitate GP in determining the most effective program structure.

There are two other approaches which also support module creation and reuse: Module 

Acquisition (MA) and Adaptive Representation through Learning (ARL) (see Sections 3.3.2 

and 3.3.3). In both approaches, program structures are created and modified dynamically dur­

ing GP run. One important concept about MA and ARL is that modules are building blocks 

and should be protected from destruction. Modules in MA and ARL are therefore frozen for a 

period o f time without any changes. The only way to modify a module is to Delete (in ARL) 

or to Expand (in MA) the module and to create a new one. Because o f the less frequent modi­

fication, the quality of the modules becomes very important. Kinnear, Jr. [1994a] reported that 

the MA approach, where modules are created using randomly extracted program fragments, 

does not provide performance advantages. ARL adopts heuristics to detect good program seg­

ments for module creation. This approach produces better programs than GP alone [Rosea 

and Ballard, 1996].

6.4 The Even-Parity Problem

The e v e n - p a r i t y  has been used by many researchers as a benchmark problem for GP to 

solve [Koza, 1992; Wong and Leung, 1996; Chellapilla, 1997b; Gathercole and Ross, 1997; 

Poli, Page and Langdon, 1999]. This problem may have different number o f inputs. For 

number o f inputs, the solution of the problem returns True if an even number of inputs are 

True. Otherwise, it returns False. This problem uses the following function and terminal sets:

100



• Function Set: {and ,  o r ,  n a n d ,  n o r } .

These are standard logic functions and are logically complete in the sense that all Bool­

ean funetions can be built using these four functions.

• Terminal Set: {bo, .

These are the N  number o f Boolean inputs.

Rosea [1995] and [Poli, Page and Langdon, 1999] have identified two reasons why the 

e v e n - p a r i t y  problem is difficult:

• The problem solution is very sensitive to the value of the inputs. A single change of one 

o f the N  number inputs would generate a different output.

• The function set used does not contain the Boolean functions x o r  or eq . These two use­

ful building blocks to this problem have to be discovered by GP.

Moreover, as the value of N  increases, the problem becomes more difficult. Koza has experi­

mented with different values of N  for this problem. Using the standard GP, he was able to 

solve the problem up to N=5. When N=6, none of his 19 runs found a 100%-correct solution 

[Koza, 1992]. His results also indicate that the number of program evaluation required for the 

standard GP to solve the problem increases by about an order of magnitude for each incre­

ment o f A.

There are two other works which use modules or recursion to solve the e v e n - p a r i t y  

problem:

• Using ADFs to support modules in GP, Koza has solved this parity problem up to vV=ll 

[Koza, 1994, Chapter 6].

• Wong and Leung [1996] has evolved a general solution to this problem using recursion. 

In their approach, a logic grammar is used to enforce the terminating-condition in the 

programs. Moreover, type knowledge and semantics information are also incorporated in 

the logic grammar to guide GP search (see Section 3.1.2). Using this method, GP was 

able to find a solution more efficiently than that using ADFs. However, their method 

requires a significant amount of domain knowledge. Moreover, the explicit recursion 

approach (see Section 3.4) has the disadvantages that summarized in Section 6.1. 

Finally, the generated programs do not contain any subroutines, although an x o r  func­

tion can be extracted from the programs.

In the following section, we present a new strategy to evolve a general solution to the e v e n -  

p a r i t y  problem which works for any value o f A, i.e. solving the general e v e n - p a r i t y  

problem.
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6.5 A New Strategy

To solve the general e v e n - p a r i t y  problem, we introduce a new strategy which uses the 

higher-order function f  o l d r  to support implicit recursion and module creation (as X abstrac­

tions). Implicit recursion enables GP to generate general solutions which work for any value 

o f N  while X abstractions provide a module mechanism for GP to exploit the structure inher­

ent in the e v e n - p a r i t y  problem. This combination o f implicit recursion and X abstractions 

will be shown to provide great performance advantages over previous work with this prob­

lem.

6.5.1 FOLDR: Implicit Recursion

For this problem, the higher-order function selected to provide implicit recursion is f  o l d r .  

This is because f  o l d r  produces a single output value and so does the general e v e n - p a r ­

i t y  program. For different problem domains, other higher-order functions might be more 

suitable. Moreover, combining different higher-order functions or leaving GP to decide the 

most beneficial combination for each problem is possible.

6.5.2 Lambda Abstractions: Module Mechanism

It might be possible to evolve the general e v e n - p a r i t y  program using implicit recursion 

alone without X abstractions. In this case, the function argument to f  o l d r  would be selected 

from the function set provided by the users. However, in this research, we would like to 

explore the structure inherent in the problem solutions. The function argument is therefore 

allowed to be discovered through the evolution of X abstractions. The investigation of GP per­

formance using implicit recursion to solve the general e v e n - p a r i t y  problem with and 

without X abstractions will be conducted in the future.

The creation o f X abstraction has been described in Section 4.2.1. Briefly, each time 

f o l d r  function is selected to construct a program tree node, a X abstraction is generated as 

its function argument. The X abstraction is then reused by the higher function f o l d r  through 

implicit recursion. During programs evolution, both the main program and its X abstractions 

are subject to genetic operations (see Section 4.4.3).

6.5.3 Type System: Structure Preserving Engine

A type system is used to preserve the structure of X abstractions and implicit recursion in the 

program trees. The details o f the type system are described in Section 4.5. In brief, f o l d r
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function is specified with the fo llow ing type:

foldr : : (a->b->b) -> b -> [a] -> b

This type information indicates that foldr takes three arguments: the first one is a function, 

the second one is a value and the third one is a list. It returns a single value. Additionally, the 

first argument is a function which takes two arguments and returns one value. D uring the 

generation o f  the initial population, each tim e foldr is selected to  construct the pro­

gram , a 2-input 1-output X abstraction is generated as its function argum ent.

During program evolution, the program structure is also maintained by the type system. 

This is accomplished by the “point-typing” mechanism (Section 4.4.2). Thus, the structure of 

X abstractions and implicit recursion can be preserved throughout the evolutionary process.

Notice that foldr is a polymorphic function whose types contains type variables. The 

type system instantiates these type variables each time foldr function is selected to con­

s ta n t a program tree node. By supporting type variables in the type language (see Section

4.5), the generality of functions in the function set are enhanced. For example, foldr can be 

used to provide implicit recursion for many different types of arguments (see Section 6.6.3). 

However, type variables may also make the search space larger than necessary (see Section 

5.3.1). This work has identified that the even-parity can be solved without polymor­

phism (see Section 6.8.1). We will run the same experiment by replacing type variables with 

Boolean types in the next chapter.

6.6 Experiments

The following terminal and function sets are used in the experiments:

Input Type: The input L has type [bool ]. (L is a list of N Boolean values)

Output Type: The output has type bool.
Terminal Set: {L: : [bool] }
Function Set: {head : : [a] ->a, tail:: [a]->[a],

and::bool->bool->bool, or::bool->bool->bool, 
nand::bool->bool->bool, nor::bool->bool->bool, 
foldr: : (a->b->b)->b->[a]->b}

6.6.1 Test Cases

The test cases of the even-2-parity and the even-3-parity are selected to evaluate 

the generated programs. There are therefore 2^ + 2^= 12 test cases. This decision is based on

103



our observation that a general e v e n - p a r i t y  program should be able to handle any number 

o f inputs, i.e. the value N  can be an any odd or even number. The test cases o f e v e n - 2 -  

p a r  i t y  help GP to learn to handle an input list with an even number o f elements while the 

test cases o f e v e n - 3 - p a r i t y  train GP to work on input lists with an odd number o f ele­

ments. With this set o f test cases, it will be shown that the generated programs are general 

solutions which work for any value ofN.

6.6.2 Fitness Function

The fitness function used is the same as that used by Koza [Koza 1992, page 160] except that 

an empty-list run-time error is punished (see Section 4.3.3 for run-time errors handling and 

Section 5.4 for examples). Each program is evaluated against all o f the 12 test cases. When a 

correct result is produced for a test case, the program receives a 1; otherwise, it receives a 0. If 

the empty-list error has been flagged during program evaluation, fitness is reduced by 0.5. 

The fitness of a program is the sum of the fitness values for ail o f the 12 test cases. Thus, a 

perfect solution would receive a fitness of 12. Based on the fitness function, 4 categories are 

defined for tlie generated general e v e n - p a r i t y  programs (see Table 6.1).

Table 6.1 : The 4 categories for the general even-parity program s.

E m pty-list Run-tim e E rror Output Fitness

flagged w rong -0.5

not flagged w rong 0.0

flagged correct 0.5

not flagged correct 1.0

This fitness function was designed to assign more importance on output fitness than on run­

time error fitness, i.e. 1.0 vs. 0.5. However, further investigation shows that most programs 

with run-time errors do not produce correct output, even with an error handler that encourages 

partial solutions (see Appendix D). Consequently, not many programs belong to the third cat­

egory in Table 6.1. This also means that programs with run-time errors are mostly with low 

fitness (-0.5) and would be eliminated from the population very fast during the evolutionary 

process. These results and other related issues will be discussed in Appendix D.

6.6.3 Genetic Parameters

The experiments are conducted using generational replacement method described in Section
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4.6.1. Following the GP setup defined in [Koza, 1992, page 114], a population size of 500 and 

a maximum generation of 51 (an initial random generation, called generation 0, plus 50 sub­

sequent generations) are used. However, the crossover rate is 100%, i.e. no mutation nor 

reproduction is performed.

A X abstraction is considered as one single node in the program trees as it performs one 

single task just like a function in the function set. For example, in Figure 6.1, the 1 subtree 

inside the dash-line is considered as one single node. Consequently, the program is considered 

as having tree depth 3.

head
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foldr \

/
foldr
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Figure 6.1: A program with nested X abstractions.

The polymorphic feature defined by foldr function has enabled nested X abstractions to be 

created in a program tree. For example, the boxed foldr function in Figure 6.1 has its type 

variables instantiated in the following ways;

foldr :: (a->b->b) -> b ->[a] -> b
(Boolean->[Boolean]->[Boolean])->[Boolean]
->[Boolean]->[Boolean]

I.e., a is instantiated to Boolean while b is instantiated to list of Boolean. This makes its first 

argument to be a function of two arguments: one with Boolean type and the other with list of 

Boolean type. During the creation o f the function argument (as a X abstraction), foldr func­

tion may be selected to create a program node. This requires another X abstraction to be cre­

ated as the function argument for the selected foldr function. As a result, nested X 

abstractions are created. Moreover, as mentioned before, a X abstraction is viewed as one sin-
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gle node in the program tree. Consequently, f o l d r  function can be selected to construct a X 

abstraction as many times as it happens (2 in Figure 6.1). With such a setup, there is no need 

to have large tree depth to obtain big size trees. The maximum tree depth is therefore set to be 

4. The same maximum tree depth (4) is also applied to X abstraction subtrees for the same rea­

son.

However, a f o l d r  function inside another f o l d r  function creates nested recursion. 

Nested recursive programs require a considerable amount of time and space to evaluate. The 

depth of the nested recursion is therefore limited to 100. Once this limit is reached during pro­

gram creation, f o l d r  is excluded from being used to construct the X abstraction. The same 

rule is also applied during genetic operations. As shown by the experiment results, this limit is 

powerful enough to handle the general e v e n - p a r i t y  problem. In fact, a further analysis 

has indicated that the e v e n - p a r i t y  can be solved with a limit of 3 f o l d r  in a program 

tree (see Section 6.8.1).

6.7 Results

Sixty runs were made and 57 of them found a perfect solution. Moreover, all 57 are general 

solutions which work for any N  number of inputs. To facilitate direct comparison with others’ 

work, we have adopted the most widely used measurement method within GP field, the 

“effort” requirement described in [Koza, 1992, Chapter 8], to evaluate the performance of the 

new strategy. A detailed explanation of this method is given in Appendix B.

Figure 6.2 shows the performance curves o f the experimental results.
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Figure 6.2: Performance curves for the general even-parity problem.
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The curve P(M,i) shows the cumulative probability o f success to solve the problem at each 

generation. It indicates that 2 runs found a solution during generation 0 through random 

search and more than 50% of the 60 runs obtained a solution before generation 5. Moreover, 

all 57 successful runs found solutions before generation 44.

The “effort” curve, I(M,i,z), indicates the number o f program evaluations required at 

each generation to find a perfect solution with 99% confidence. This value is calculated using 

the following formula given by [Koza, 1992, page 194]:

R(z) = l o g ( l - z )  
log( l -P (M ,/) )

, where z = 99% (9)

The smallest value on this curve is used to indicate the minimum “effort” required for GP to 

solve the given problem. According to the experiment results, the curve of I(M,i,z) reaches a 

minimum value of 14,000 at generation 3 (marked on the figure). Since 12 test cases were 

used to test each program, the number of test cases processed was 168,000.

6.8 Analysis and Discussion

The results of our experiments indicate that by using the structure o f 1 abstractions and 

implicit recursion, GP is able to evolve the general solutions to the e v e n - p a r i t y  problem 

very efficiently. This is in comparison with the results reported by other researchers using the 

same measurement method to evaluate their GP system in solving the same problem. In par­

ticular, we compare our results with two other previous works in using modules or recursion 

to solve this problem. Table 6.2 summarizes the performance o f related work. Note that the 

“effort” value, I(M,i,z), indicates the performance of the overall GP system in solving the 

problem. No detailed comparison o f each components o f the system is made in this work.

Table 6.2: Performance summary for the even-parity problem.

Results
Implicit Recursion 
+ X Abstractions

Generic Genetic 
Programming GP with ADFs

Programs general even-parity general even-parity even-7-parity

Runs/Success 60/57 60/17 29/10

Minimum I(M,i,z) 14,000 220,000 1,440,000

Number of Fitness Cases 12 8 128

Fitness Cases Processed 168,000 1,760,000 184,320,00
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With the ADF module mechanism, Koza was able to use GP to evolve the e v e n - 1 1 - p a r ­

i t y  programs. However, the performance details were not reported. We therefore show the 

performance o f his work on the e v e n - 7 - p a r i t y  instead. We also show the performance of 

the Generic Genetic Programming (GGP) system [Wong and Leung, 1996] which uses recur­

sion to evolve a general solution for the same problem.

As shown, the structure o f X abstractions and implicit recursion has enabled GP to evolve 

the general e v e n - p a r i t y  programs by processing much fewer programs than the number 

required either by the ADF approach or by the GGP system. Besides the benefits of recursion 

and modules, we believe that there is one more factor which contributes to such an excep­

tional performance;

Higher-order functions provide structure abstraction in the program trees. The type sys­

tem protects this structure abstraction and helps GP to find  good program structures during 

program evolution.

The ability of the standard GP to build good solutions from partial solutions hierarchi­

cally has been challenged [O’Reilly and Oppacher, 1995]. The module mechanisms of ADFs, 

MA and ARL are designed to facilitate GP in hierarchical processing by abstracting program 

contents. The X abstractions module mechanism promotes the use of hierarchy further by sup­

porting program structure abstraction (a formal definition will be provided in Chapter 7). As 

an argument to a higher-order function, a X abstraction is constrained to sit underneath the 

higher-order function in the program tree hierarchy. During program evolution, the type sys­

tem protects this two-layer-hierarchy program structure grouping from disruption; crossover 

can only change its contents but not its structure. Consequently, GP can use the two-layer- 

hierarchy structure as one unit to exploit the most advantageous program structure.

Figure 6.3 shows three structure abstraction groupings. Note that they may have different 

contents since the three X abstractions may be different.

fo ldr

X abstraction

foldr,
foldr)

X abstractionX abstraction

Figure 6.3: Structure abstraction grouping with foldr.
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6.8.1 Program Structure Evolution with Structure Abstraction

To investigate the impact o f structure abstraction on GP program structure evolution, we have 

conducted two sets o f experiments. In the first experiment, 100,000 programs were randomly 

generated. These programs contain different number o f f o l d r  structure abstraction group­

ings. Table 6.3 summarizes the results.

Table 6.3: Results of the 100,000 randomly generated even-parity programs.

No. of foldr structure 
abstraction groupings No. of programs No. of program with above 

average fitness

0 10,068 1,589

1 41,104 2,885

2 13,516 429

more than 2 35,312 0

As shown in the third column, the programs which have above average fitness are either with 

2 or 1 or no fo ldr .  We have also examined all 57 generated correct programs and found 

them contain either 1 or 2 occurrences of f o l d r  (see Table 6.4). This suggests that structure 

abstraction has helped identifying good structures for the general e v e n - p a r i t y  programs 

at generation 0. Most evolutionary effort is to search for the program contents to fill in the 

program structures.

To confirm this hypothesis, a second experiment is conducted. In this experiment, 10 GP 

runs were made and the evolution o f program structures (in terms o f the number of f o l d r  

structure abstraction groupings in the programs) is recorded. The results are shown in Figure 

6.4.

At generation 0, different program structures were created (the proportion is very similar 

to the results of the first experiment). However, once the GP evolution process began, the 

number o f programs with more than 2 f o l d r  decreased quickly. At generation 3, the popula­

tion contained no program with more than two fo ld r .  GP evolution became a process of 

competition among programs with 0, I or 2 fo ldr .

These results confirm our hypothesis that structure abstraction helps identifying good 

program structures at generation 0. Consequently, the evolutionary efforts required to find 

program structures for the solutions is reduced. GP evolution becomes focused on the search 

of good program contents o f the solutions. As a result, the solutions can be found more effi­

ciently.
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Figure 6.4: The evolution of program  structure grouping.

Wc have also observed tw o interesting phenom ena in these two experim ents:

• Random se are h has generated more programs with one foldr than any other kinds o f  

program structures. A close exam ination o f  the function set tells us that foldr is only  

one out o f  seven  functions that can be used to construct a program tree’s internal nodes. 

Since the Creator randomly selects type-m atched funetions to build program trees (see  

Section 4 .2 ), unless the txpe variables o f  foldr is instantiated to a type other than 

Boolean (w hich the experim ental records show  that it is less lik ely), foldr function has 

a possib ility  o f  1/7 to be selected to construct a program tree node. In conjunction with  

the tree depth restriction, it is highly p ossib le that foldr is selected  once during the cre­

ation o f  a program tree.

• All the generated programs (either by random search or evolutionary search) can be 

divided into two groups. In tlie first group, type variables o f  foldr are consistently  

instantiated to Boolean  t \p e , i.e. foldr is used as a m onom orphie function. In the se c ­

ond group, type variable b o f  foldr is instantiated to Boolean  type in som e eases and 

to list o f  B oolean type in otliers, i.e. the polym orphic feature o f  foldr is utilized. M ore­

over, the first group consists o f  programs with 1 or 2 or no foldr w hile programs with  

more than two foldr belong to the second  group. A s indicated in our investigation, 

programs with 1 or 2 or no f o l d r  are the prom ising area o f  the search space. H ence, by
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specifying f o l d r  as a monomorphie function, the e v e n - p a r i t y  problem can be 

solved more efficiently. This is one example where monomorphism is more advanta­

geous than polymorphism in GP seareh (see Section 5.3.1).

6.8.2 The Generated Perfect Solutions

The 27 generated eorrect programs can be divided into 8 groups (see Table 6.4). In each 

group, the X abstraetion in the programs represents the same Boolean function. Those func­

tions are anonymous in the programs but for easy reference, we use the names defined by 

Koza [Koza, 1992, page 228] and present them in italics, i.e. r l  to rl6. The Truth Table for 

these Boolean functions are presented in Table 6.5. Note that those X abstractions which com­

pute the same Boolean function might contain very different code. The values True and False 

in Table 6.4 indicate expressions which produce True or False under all conditions.

Table 6.4: G enerated correct general even-parity program s.

Number of 
Programs

General Even-Parity Program

22 nor (foldr r6 (head L)(tail L)) False

9 foldr r6 (nor (head L)(head L)) (tail L)

6 nor (foldr r6 (head L)(tail L))(foldr r4 (head L)(tail L))

6 foldr r6 (nand (head L)(head L))(tail L)

6 nand (foldr or (head L)(tail L))(foldr r6 (head L)(tail L))

5 nand (foldr r6 (head L)(tail L)) True

2 foldr rS (foldr r9 (head L)(tail L)) (tail (tail L))

1 nor (foldr r6 (head L)(tail L)) (foldr r6 (head L) (tail L))

Table 6.5: T ruth table for the X abstraction in the generated program s.

X y r3 r4 r6 r9

False False False False False True

False True False True True False

True False True False True False

True True False False False True
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6.8.3 Limitations of Implicit Recursion

We also analyze the limitations of implicit recursion provided by higher-order functions. Gen­

erally, implicit recursion can be achieved by any higher-order functions which contain recur­

sion semantics. This means that the higher-order function contains the following two 

elements:

• one or more function arguments;

• the reuse o f at least one of the function arguments.

However, a higher-order function which satisfies the two requirements does not necessary 

provide effective implicit recursion for the target problem. As being shown, the implicit 

recursion provided by the f o l d r  higher-order function is very effective with the general 

e v e n - p a r i t y  problem. With f o l d r ,  the recursion is applied to a list structure, i.e. recur­

sion is carried around a list of inputs. However, not all problem contain this recursion pattern. 

For example, in the Fibonacci sequence problem [Koza, 1992, page 473], the recursion is car­

ried around a numerical value. In this case, a different higher-order function has to be 

designed to provide effective implicit recursion. Although the concept of using the implicit 

recursion provided by higher-order fimctions to evolve recursive programs can be applied to 

general problems, it’s only the properly designed higher-order functions can receive the bene­

fits.

6.9 Summary

Module creation and reuse are important for GP to be effective with problems whose solu­

tions contain regularities. This chapter has presented a particular kind o f  program  repre­

sentation to supports module creation and reuse. In this representation, modules are 

represented as X abstractions and their reuse is achieved through implicit recursion. A type 

system is used to preserve this representation during program evolution.

This style o f module creation and reuse provides the following advantages:

• Module creation is neither a random process nor a predefined condition. A randomly 

generated module may or may not be beneficial to the problem to be solved. On the other 

hand, a hard-wired module template precludes the generation of more advantageous pro­

gram structures. Our new approach is to generate modules dynamically, based on the 

function argument specified in the higher-order functions. This allows the exploration of 

beneficial program structures according to the higher-order functions defined by the 

users.
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• Implicit recursion provides reuse without the possible side effect o f infinite loops 

because there are no explicit recursive calls present in the program. This is an inherent 

feature o f implicit recursion. Such a condition not only relieves GP from handling infi­

nite loops in a program but also removes the need for GP to measure the semantic ele­

ments o f recursive programs. Consequently, the fitness would reflect the ability o f the 

program in solving the target problem more accurately, hence direct GP to search for 

problem solution more effectively.

• This style of program representation provides structure abstraction in the programs. Our 

investigation indicates that structure abstraction has helped identifying good program 

structures at generation 0. The evolutionary effort is hence reduced to search for pro­

gram contents for the solutions.

We have evolved the general solutions to the e v e n - p a r i t y  problem using GP with this 

program representation. The results show that this style of module creation and reuse is very 

effective with this problem. As will be shown in the next chapter, the selected functions and 

terminals are veiy suitable to this problem. The detailed investigation of why such a represen­

tation is so effective with this problem is the topic of the next chapter.
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Chapter 7

Structure Abstraction and Genetic Programming

In the previous chapter, a program representation which incorporates a higher-order function 

f o l d r  was introduced to solve the general e v e n - p a r i t y  problem. This program repre­

sentation contains a particular structure pattern named structure abstraction which we have 

identified to be the cause of its outstanding performance. However, when we use the same 

kind of program representation (with a different higher-order function) to solve the artificial 

ant problem [Koza, 1992], no performance advantage was found (see Appendix C). This 

prompts us to investigate why structure abstraction provided by f o l d r  is particularly effec­

tive with the general e v e n - p a r i t y  problem.

This chapter starts by providing a formal definition o f structure abstraction. This is fol­

lowed by a detsiled description o f the application o f structure abstraction to the general 

e v e n - p a r i t y  problem. Next, a systematic analysis of program structures is presented. We 

investigate all perfect solutions in the search space. Based on the analysis, the effort required 

to find a solution to the problem is calculated. The result indicates that due to structure 

abstraction, the complexity o f the general e v e n - p a r i t y  problem is reduced to that of a 

much simpler Boolean function with two arguments problem.

The GP experimental results are consistent with our analysis. Indeed, structure abstrac­

tion provides a mechanism of hierarchical processing to solve this problem, hence enables the 

solution to be found very efficiently. As there is a trend in developing problem-specific evolu­

tionary algorithms [Leonhardi, Reissenberger, Schmelmer, Weicker and Weicker, 1998], we 

make the first-step in formulating guidelines for the application o f structure abstraction to 

other problems.

7.1 Structure Abstraction in Program Evolution

The structure evolved by GP is a program tree where the internal nodes are labelled with
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functions and the external nodes (leaves) are labelled with terminals. During program evolu­

tion, each subtree and leaf node acts as an independent unit and can be replaced by any other 

subtree and leaf node (based on the standard GP implementation defined in [Koza, 1992, page 

114]). It is hoped that the evolutionary process will promote “good” subtrees/leaf nodes to 

compose the program which solves the target problem.

When modules are incorporated in the program representation, some additional dynamics 

are introduced to the evolutionary process. A module is a block of code represented as a sin­

gle tree. It might or might not have any input arguments. It normally, but not always, produces 

outputs. With ADFs (see Section 3.3.1), a module is provided with a name. Like other func­

tions and terminals, the names o f ADFs can be used to compose the main program. In other 

words, an ADF can appear anywhere in the main program tree. During GP runs, both ADFs 

and the main program are evolved simultaneously.

Modules can also be incorporated into program representation through the use of higher- 

order functions (see Chapter 6). A higher-order function is a function which takes other func­

tions as arguments or returns functions as outputs. When a higher-order function is included 

in the function set, its function arguments can be represented either as function names or X 

abstractions in the evolved program trees. In this work, we choose X abstractions to represent 

the function arguments (see Section 6.5.2).

Similar to ADFs, X abstractions are modules which evolve during GP runs. However, 

unlike ADFs, X abstractions can only be positioned in a certain way in the program trees. As 

an argument to a higher-order function, a X abstraction is constrained to sit underneath the 

higher-order function in the program tree hierarchy (see Figure 7.1).

higher-order 
function .

X abstraction

higher-order
function

X abstraction

Figure 7.1: Structure abstraction in program tree hierarchy.

Consequently, a higher-order function and its function argument group into a two-1 ayer-hier-
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archy in the program trees. We term this two-layer-hierarchy “structure abstraction” as it 

groups into one structural unit during program creation and evolution. Although the contents 

of a grouping can change, i.e. X abstractions also evolve, the two-layer-hierarchy structure 

grouping of higher-order functions and its function argument holds throughout the evolution­

ary process. Structure abstraction is a common property for any program representation using 

higher-order functions.

7.2 Structure Abstraction on Even-Parity Problem

The e v e n - p a r i t y  problem has been described in Section 6.4. We implemented structure 

abstraction for this problem the same way as that in the previous chapter. However, the poly­

morphic functions are specified as monomorphie by replacing all type variables with Boolean 

types. This change will be discussed in the following subsection.

7.2.1 Program Representation with Structure Abstraction

The higher-order function selected to support structure abstraction for this problem is f o l d r .  

The operation o f f o l d r  is described in Section 2.3.7. In brief, this function takes 3 argu­

ments: the first argument is a function, the second argument is a value and the third argument 

is a list. It returns a single value. The function argument is represented as a X abstraction in the 

program tree, hence provides the structure abstraction grouping in the program trees.

The inputs to the problem are given through a list named L, i.e. L is a list o f N Boolean 

values. To allow the processing of each item in the input list, two more functions are included 

in the function set: h e a d  and t a i l .  The function h e a d  takes a list as argument and returns 

the first element of the list. The t a i l  function takes a list as argument and returns the list 

with its first element removed.

The functions f o l d r ,  h e a d  and t a i l  are specified with types that are different from 

the previous chapter 6 (see Table 7.1). In Chapter 6, these functions are polymorphic. Our 

analysis has identified that the structure abstraction provided by polymorphic f o l d r  helped 

identifying good program structures (those with 0, 1 or 2 f o l d r )  at generation 0 hence 

allowed the solutions to be found very efficiently. In this chapter, we further our investigation 

on the impact o f structure abstraction on GP search within the search space o f these good pro­

gram structures. Since this search space (programs with 0 ,1  or 2 f o l d r )  can be defined by 

using monomorphie f o l d r  (see Section 6.8.1), this chapter uses monomorphie implementa­

tion o f the functions to conduct this research.
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Table 7.1: Functions and terminals with their types.

Name Type

and bool->bool->bool
or bool->bool->bool

nand bool->bool->bool
nor bool->bool->bool

foldr (bool->bool->bool)->bool->[bool]->bool
head [bool]->bool
tail [bool]->[bool]
L [bool]

7.2.2 Type System

The structure abstraction grouping in the program trees is preserved by the type system 

described in Section 4.5. In brief, based on the function argument specified for foldr (a 

function of two Boolean inputs and one Boolean output), the type system would allow only 

such kind of X abstractions to be generated during program creation. During crossover and 

mutation, the “point typing” method (see Section 4.4.2) is applied to maintain the structure 

abstraction grouping throughout the program evolutionary process.

7.3 Program Structures in the Search Space

The search space o f GP consists o f all program trees that can be composed using the available 

functions and terminals. The number of such trees increases rapidly as the number o f tree 

nodes increases. This fast growth is due to 1) the substantial number o f different tree struc­

tures and 2) the enormous number of permutations in labelling the internal and external nodes 

using the provided functions and terminals. Without any restriction on its program trees, the 

GP search space is infinite. In practice, however, most implementations either restrict the 

number o f tree nodes or the tree depth to prevent the otherwise explosive computation. This 

work applied a tree depth restriction of 4 to evolve the solutions to the general e v e n - p a r ­

i t y  problem.

We analyze program structures in the search space. The term “program structure” is used 

to describe a program where a X abstraction module is considered as one partial solution unit. 

Hence, only the semantics (outputs) of the X abstractions are considered in the program struc-
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turcs. The contents o f the X abstractions are ignored in this analysis. However, they will be 

discussed in the next section during the calculation o f the effort required to solve the problem 

(see Section 7.4).

At first, the program structure o f foldr is investigated because it is more complicated 

than the rest o f the functions and terminals. A foldr program tree can only be constructed in 

some restricted ways due to the type constraints specified by the functions and terminals (see 

Table 7.1). The first argument o f foldr is specified with a function type (bool->bool->bool). 

This function argument is constructed as a A. abstraction which takes 2 inputs of Boolean type 

and produces one output of Boolean type. The terminal set used to construct a X abstraction is 

designed such that only arguments o f the X abstraction are included (see Section 4.2.1). Since 

both arguments are Boolean values, there is no terminal with the type o f Boolean list that can 

be used to construct the X abstraction. Consequently, those functions (head, tail and 

foldr) which require Boolean list type argument can never appear in a 1 abstraction. Only 

the four Boolean operators (and, or, nand and nor) can be used to construct the internal 

nodes of X abstractions. With two Boolean inputs and one Boolean output (each of them can 

be either True or False), there are total of 16 possible Boolean functions that a X abstraction 

can generate.

The second argument of foldr is of type Boolean. There are six functions which return 

a Boolean value and hence can be used to built the internal nodes o f the subtree. However, 

there is only one terminal L which can be used to construct the leaves o f the subtree. As spec­

ified, L has type of Boolean list. To bridge between the leaf type (Boolean list) and the subtree 

root node type (Boolean), the head function is used. Consequently, the subtree (head L) 
occupied the fringes of the subtree representing the second argument.

The third argument o f foldr is specified with Boolean list type. Among the functions 

and terminal, only tail and L return Boolean list type. Moreover, tail also requires its 

argument to be o f Boolean list type. Consequently, the subtree representing the third argument 

can only be constructed using tail and L. Figure 7.2 shows the program structure for 

foldr. An * on the node indicates the node is optional.

foldr
★

X abstraction ^  * t a i l  
(16 Boolean A ^ I 
functions) head L 

L

Figure 7.2: The f o ld r  program tree structure.
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The program structures in the search space is analyzed according to the numbers o f f o l d r  in 

the program trees. Figure 7.3 shows all the possible program structures containing 2 f o l d r .  

Figure 7.3(a) represents 1,536 program structures (Each o f the two 1 abstractions can gener­

ate 16 Boolean functions and there are 3 optional nodes in the tree). Figure 7.3 (b) represents 

4,096 program structures. In total, there are 5,632 program structures containing 2 f o l d  r s  in 

the search space.

.fold]

A-abstraction f o l d r  
(16 boolean 

functions)

tail*

head tail’
X  abstraction 
(16 boolean 
functions) ^

(a)

4 operators

tail’

X  abstraction 
(16 boolean 
functions)

oldr

head
tail*

foldr
X  abstraction 1 

(16 boolean 
functions) h e a dtail*

(b)

Figure 7.3: Program structures with 2 f o ld r s  .

Figure 7.4 shows program structures with 1 f o l d r .  The structure of Figure 7.4 (a) represents 

192 programs. Figure 7,4 (b) represents 1,024 programs; Figure 7.4 (c) represents 96 pro­

grams and Figure 7.4 (d) represents 512 programs. In total, there are 1,824 program structures 

with 1 f o l d r  in the search space.

Figure 7.5 shows program structures without f o l d r .  Figure 7.5(a) represents 64 pro­

gram structures. Figure 7.5(b) represents 64 program structures. Figure 7.5(c) represents 3 

program structures and Figure 7.5(d) represents 16 program structures. In total, there are 147 

program structures without f o l d r  in the search space.

In summary, there are 7,603 program structures in the search space. Among them, 5,632 

are with 2 f o ld r s ;  1,824 are with I f o l d r  and 147 are without f o l d r .
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foldr

t a i l *X, abstraction  ̂operators 
(16 boolean ,  x.
functions) \  t a i l *  head

 ̂ , headhead

(a)

4 operators

4 operators f o ld r

\
X, abstraction t a i l *  
(16 boolean head
functions) ^

f o ld r 4 operators

X abstraction 
(16 boolean 
functions)

head

tail*

tail*

tail *

head

t a i l

 ^  f o ld r

X abstraction ' I 
(16 boolean head  
functions) i

tail*

(c) (d)

Figure 7.4: Program structures with 1 fo ld r .

4 operators 4 operators

4 operators 4 operators

/  \  /  \
head head head head

4 operators ^  >  head

/  \  \
head  head t a i l *

L L L L
(a) (b)

head

t a i l *

4 operators

head head

tail* tail* tail*

L

(c )
(d)

Figure 7.5: Program structures without f o ld r
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7.3.1 Fitness Distribution

The 7,603 program structures in the search space are capable o f solving the general e v e n -  

p a r i t y  problem in different degree. A general solution to this problem has to be able to han­

dle any number o f inputs, i.e. N  can be o f any value. To evaluate how well each program 

structure is in solving the problem, we use e v e n - 2 - p a r i t y  and e v e n - 3 - p a r i t y  as test

cases (see Section 6.6.1). There are a total of 2^ + 2^= 12 test cases. A program structure 

receives one point for each correctly handled test case. The program which contains code 

causing empty-list run-time error is penalized with 0.5 (see Section 6.6.2). A perfect solution 

receives a fitness value o f 12.

Note that there is only one program in the search space which produces empty-list run­

time error: head (tail (tail L) ). When evaluated against the test cases for the even- 
2-parity (which have 2 inputs), empty-list run-time error would occur. Since this is the 

only case where run-time error can happen, we believe that the constraint handling has very 

little impact on GP search.

Figure 7.6 shows the fitness distribution in the search space.

0.7

0.6  -

0.5  -  

I 0 . 4 -roa
2 0.3  -

Q.
0.2  -

0 1  2 3 4 5 6 7 8 9  10  11 12

Fitness

Figure 7.6: Fitness distribution in the search space.

More than 60 percent o f the program structures are o f fitness 6. The number of program struc­

tures with other fitness falls dramatically away either side o f the peak. There are only 29 pro­

gram structures which score 12 and are prefect solutions to the general e v e n - p a r i t y  

problem. If the 16 Boolean functions are provided in the function set and they have equal 

probability to be selected to construct the programs, an unbiased random search could find
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(on average) a solution with 262 fitness evaluations. However, this work intents to let GP dis­

cover these partial solutions to the problem. The Boolean functions are therefore evolved (as 

1 abstractions), not given directly in the function set. Consequently, this is a harder problem 

which requires more program evaluation to find the solutions.

7.4 Solutions in the Search Space

The 29 solutions in the search space are split into 11 groups (Tables 7.3 - 7.13). Programs in 

each group have the same structure but different X abstraction values (Boolean functions). We 

will calculate the probability to find each solution based on the program structure and its 

Boolean functions.

To successfully find a solution, it requires to find both the correct program structure and 

the correct Boolean functions. Based on the analysis o f program structures in Section 7.3, the 

probability to find each program structure can be calculated. Meanwhile, the search of the 16 

Boolean functions has been studied by Koza [Koza, 1992, page 228]. For each o f the 16 Bool­

ean functions, Koza did random search using a program tree with 31 nodes. The results are 

summarized in Table 7.2. We use this table to measure the probability to find each of the 16 

Boolean functions (Koza called them Boolean rules). For example, rule 15 can be generated 

by random creation o f 4.8 programs. The probability of success to this rule is therefore 1/4.8.

Table 7.2: 16 Boolean rules found using random search.

Rule No. Random Search Rule No. Random Search

15 4.8 13 31.9

00 4.8 11 32.0

10 7.8 04 32.0

05 7.8 03 32.0

14 28.8 02 32.1

08 28.8 12 32 2

07 28 9 09 821.0

01 29.0 06 846.0

Table 7.3 to Table 7.12 present the probability to find the 29 solutions. The caption indicates 

the solution. Columns 1 & 2 are the Boolean rules for the 1 abstractions. Columns 3 & 4 are 

the probability to find each o f the Boolean rules. Column 5 is the probability to find the pro­

gram structure. Finally, column 6 is the probability to find the solution. It is the result of mul­
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tiplying columns 3, 4 and 5. Table 7.13 is slightly different in that the solution only contains 

one X abstraction. However, the method to measure the probability to find the solution is the 

same.

Table 7.3: foldr (foldr X2  (head L) (tail L)) (tail (tail L))

^ 2 P(^i) P(str) P(s)

r3 r9 1/32 1/821 256/7603 1.28e-6

Table 7.4: foldr (foldr X2  (head L) (tail L)) L

^ 1 X2 l^ k ^ PC^J P(str) P(s)

r3 r9 1/32 1/821 256/7603 1.28e-6

r6 rl5 1/846 1/4.8 256/7603 8.29e-6

Table 7.5: foldr Xj (foldr X2  (head L) L) (tail L)

>̂ 1 X2 PC^) P (^ ) P(str) P(s)

r6 r5 1/846 1/7.8 256/7603 5.10e-6

r9 r3 1/821 1/32 256/7603 1.28e-6

Table 7.6: foldr X̂  (foldr X2  (head L) L) L

^ 2 P (li) P (^ ) P(str) P(s)

r6 rl5 1/846 1/4.8 256/7603 8.29e-6

r6 rl3 1/846 1/31.9 256/7603 1.25e-6

Table 7.7: nand (foldr (head L) L) (foldr X2  (head L) (tail L))

X, ^2 P(^l) P(^2) P(str) P(s)

rl3 r6 1/31.9 1/846 256/7603 1.25e-6

rl4 r6 1/28.8 1/846 256/7603 1.38e-6

rl5 r6 1/4.8 1/846 256/7603 8.29e-6

Table 7.8: nand (foldr X̂  (head L) (tail L)) (foldr X2  (head L) L)

^ 1 'h. P& l) PC^J P(str) P(s)

r6 rl3 1/846 1/31.9 256/7603 1.25e-6

r6 rl4 1/846 1/28.8 256/7603 1.38e-6

r6 rl5 1/846 1/4.8 256/7603 8.29e-6
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Table 7.9: nand (foldrÂ i (head L) (tail L)) (foldrX-2 (head L) (tail L))

X, X2 P(^i) P ( ^ ) P(str) P(s)

r6 f6 1/846 1/846 256/7603 4.70e-8

r6 f14 1/846 1/28.8 256/7603 1.38e-6

f6 f15 1/846 1/4.8 256/7603 8.29e-6

rl4 f6 1/28.8 1/846 256/7603 1.38e-6

rl5 f6 1/4.8 1/846 256/7603 8.29e-6

Table 7.10: nor (foldrl^ (head L) (tail L)) (foldrX-2 (head L) (tail L))

^2 P()?) P(stF) P(s)

fO f6 1/4.8 1/846 256/7603 8.29e-6

f4 f6 1/32 1/846 256/7603 1.24e-6

f6 f6 1/846 1/846 256/7603 4.70e-8

f6 f4 1/846 1/32 256/7603 1.24e-6

f6 fO 1/846 1/4.8 256/7603 8.29e-6

Table 7.11 : nor (foldr Xj (head L) L) (foldr Xj (head L) (tail L))

II I 2 PC^) P()^J P(stF) PkO

fO f6 1/4.8 1/846 256/7603 8.29e-6

f4 f6 1/32 1/846 256/7603 1.24e-6

Table 7.12: nor (foldr (head L) (tail L)) (foldr I 2  (head L) L)

II ^ 2 PC^) P(l2) P(stF) P(s)

f6 fO 1/846 1/4.8 256/7603 8.29C-6

f6 f4 1/846 1/32 256/7603 1.24e-6

Table 7.13: foldr (fun (head L) (head L)) (tail L)

I I fun P(^l) P(str) P(s)

f6 nand 1/846 16/7603 2.48e-6

f6 noF 1/846 16/7603 2.48e-6
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The probability to find a solution to the general e v e n - p a r i t y  problem is the summation of 

the probability to find each of the 29 solutions:

29
P(S) = = 0.000111

i = 1

Using the probability o f finding a solution, the number o f program evaluations required to 

find a solution can be calculated. This is the “Effort” defined in [Koza, 1992, page 194].

E  = — £ i  ̂  where z = 99%
lo g ( l  - P )

18, 000
P

When random search is performed without repetition, the effort required would be 9,000 fit­

ness evaluation.

The results o f our analysis have two important implications:

• Structure abstraction enables the general e v e n - p a r i t y  problem to be solved very 

efficiently. Related work using different techniques requires the evaluation of a much 

bigger number of programs before a solution can be found (see Table 7.14). Moreover, 

their solutions only work for a particular value o f 7/ and are not general solutions.

• Most of the effort used to find a solution is devoted to the search of the correct Boolean 

rules. This is based on the observation that P{s) PCij) {P{str) does not effect

P(s) much compared to P tij)  )• This means that the complexity o f the general

e v e n - p a r i t y  problem is almost reduced to that of the problem of Boolean functions 

with two arguments.

Table 7.14: Various techniques used to solve the even-parity problem.

Techniques N Effort value

Standard GP [Koza, 1992] 5 6,528,000

Standard GP with ADFs [Koza, 1994] 7 1,440,000

GP with global ADFs [Aler, 1998] 6 627,200

HP with ADFs [Chellapilla, 1998] 9 586,000

Sub-machine Code GP [Poli, Page and Langdon, 1999] 22 418,600

7.5 Experiments and Results

We conduct experiments to verify our analysis. The implementations are basically the same as
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that of the previous chapter except the following:

• The functions and terminals are monomorphic instead o f polymorphic (see Table 7.1).

• Unlike polymorphic f o l d r ,  which allows a program to contain infinite number of 

f o l d r  (see Section 6.6.3), the monomorphic f o l d r  function can only appear at most 

twice in a program within the restricted tree depth 4 (see Section 7.3). Consequently, the 

nested recursion limit of 100 is not necessary.

• The subtrees representing X abstractions are restricted to a depth limit of 5. This is the 

same as that used by Koza to run his Boolean rules experiments (see Section 7.4).

• Instead o f selection nodes with bias towards the root nodes (see Section 4.4.1), we allow 

each external/internal node in a program tree to have an equal opportunity to be selected 

for crossover and mutation. Moreover, genetic operations are applied to full application 

nodes only. This is the normal GP implementation which allows the experiment results 

to reflect GP performance more accurately.

Figure 7.7 shows the performance curves based on 50 runs.
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Figure 7.7: Perform ance curves for the general even-parity problem .

Due to the different implementations, the results are different from that in Figure 6.2. In par­

ticular, the probability o f success at generation 0 is 3 times higher (7/50 vs. 2/50) in this 

experiment. This is a reasonable result based on our analysis in Section 6.8.1. With polymor­

phic implementation, it takes GP about 3 generations to identify the promising area o f the
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search space, i.e. that contains programs with 1, 2 or no f o l d r .  In contrast, monomorphic 

implementation allows GP to start with a search space that contains only 1, 2 or no f o l d r .  

Consequently, the solutions can be found more easily at generation 0 through random search.

All 50 runs find a perfect solution. Among them, 7 runs find a solution at generation 0. 

The probability o f success curve, P(M,i), starts as 14% at generation 0 and reaches 100% at 

generation 27. The “effort” curve, l(M,i,z), gives the number o f program evaluations required 

at each generation to find a solution (see Appendix B). According to the experiment results, a 

solution to the general e v e n - p a r i t y  problem can be found by evaluating 15,500 programs 

which are randomly generated at generation 0. This is very close to our estimate of 18,000 

program evaluations. Consequently, the 2 implications of our analysis are asserted.

7.6 Analysis and Discussion

With a program representation which supports structure abstraction, the general e v e n - p a r ­

i t y  problem can be solved by random generation of 15,500 program trees. This result raises 

two important questions:

• Why structure abstraction makes the general e v e n - p a r i t y  an easy problem?

• Why random search outperforms GP search on this problem?

We address these two questions in the following subsections.

7.6.1 Impacts of Structure Abstraction

Structure abstraction has enabled the general e v e n - p a r i t y  problem to be solved very effi­

ciently. Yet, this problem has a search space (the 7,603 program structures with their X 

abstractions expanded with all possible subtrees) which is undoubtedly large. Moreover, the 

density of the solution is very low (0.38%). This suggests that the difficulty o f a problem 

might be independent o f the density of the solution in the search space. Instead, it relies on 

how easily these solutions can be found. Our analysis indicates that the effort required to find 

a solution to the problem is approximately the same as that to find the Boolean rules partial 

solutions. This means that the module mechanism of X abstraction, which allows partial solu­

tions to be evolved, is very important to the search o f the solution. However, provided with 

partial solutions alone, [Langdon and Poli, 1998b] has shown that the generation o f the over­

all solution is still not able to be achieved. An additional ingredient is the method to manipu­

late the partial solutions. The structure abstraction supported by f o l d r  provides both 

ingredients, hence enables the solutions to be found easily:
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• The bottom level o f the structure abstraction hierarchy (1 abstraction) supports the evo­

lution o f partial solutions (Boolean rules).

• The top level o f the structure abstraction hierarchy ( f o l d r  higher-order function) pro­

vides a mechanism for the manipulation o f the partial solutions (reuse the Boolean rules) 

and the specification of the inputs order (as a list).

In other words, structure abstraction provides a mechanism of hierarchical processing in prob­

lem solving: partial solutions are evolved and manipulated to form a bigger solution. This 

hierarchical processing is shown to be very effective in solving the general e v e n - p a r i t y  

problem.

7.6.2 Random Search Versus GP Search

The fitness distribution (Figure 7.6) shows that program structures with fitness 6 occupies 

more than 60% of the search space while program structures with other fitness are sparse. 

This means that the search space contains little gradient information. Like any other progres­

sive search algorithms, GP relies on gradient information to perform search. Without such 

information, GP is not able to outperform random search on this problem.

However, structure abstraction does not always create this kind of search space. With dif­

ferent problems, we anticipate that structure abstraction will generate a search space which 

allows GP to shine.

7.7 Guidelines to Apply Structure Abstraction

Although an engine of hierarchical processing, structure abstraction must be applied properly 

in order to receive the benefits. This is the lesson learned from our experiences with the artifi­

cial ant problem (see Appendix C). We have made the first-step to formulate guidelines for 

the application o f structure abstraction to other problems:

Design a higher-order function which provides the following:

• function arguments to allow partial solutions, represented as X abstractions, to be 

evolved;

• methods to manipulate the partial solutions in constructing a bigger solution;

• specifications of the order of the inputs that the partial solutions can apply.

These guidelines will evolve as more experiences are gained.
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7.8 Summary

By selecting an appropriate program representation (higher-order function foldr, functions 

head & tail and terminal L), we present a successful example o f using an evolutionary 

algorithm to solve a difficult problem. The important property of such a program representa­

tion is “structure abstraction”, which can be obtained by including a higher-order function in 

the function set. The analysis o f the program search space indicates that the structure abstrac­

tion provided by foldr provides a mechanism of hierarchical processing for GP search. 

Consequently, the effort required to find a solution is reduced. The general even-parity 
problem presented is an example o f good use of structure abstraction. As there is a trend in 

developing problem-specific evolutionary algorithms [Leonhardi, Reissenberger, 

Schm elm er, W eicker and W eicker, 1998], we have outlined the guidelines for the applica­

tion o f structure abstraction to other problems.
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Chapter 8

Future Work

We have investigated the impact o f three different functional programming techniques (poly­

morphism, implicit recursion and higher-order functions) on GP. The results show that these 

techniques are advantageous to GP problem solving. However, there are also open issues that 

need further study. This chapter highlights some of the areas that we will be following in the 

future.

8.1 Polymorphism

Type constraints have been applied to GP successfully by various researchers (see Section 

3.2). One important motivation o f this avenue of work is to enhance GP performance by the 

achieved reduced search space. Indeed, the reported results have confirmed that when solving 

problems involving multiple types, GP with type constraints performs better than the GP 

without (see Section 3.2). These results, however, do not provide any evidence that the per­

formance advantage is due to the reduced search space. In fact, [Langdon and Poli, 1998a] has 

shown that there is no direct relationship between the size of the search space and the diffi­

culty o f a problem. Our investigation of constraint handling (see Appendix A) also shows that 

if the search space is not constrained properly, the search of a solution will become harder, 

not easier. These new results raise a couple of interesting questions for future work: why type 

constraints make GP search more efficient? Can we generalize these results to other prob­

lems?

8.2 Implicit Recursion

Implicit recursion can be achieved by any higher-order functions which provide recursion 

semantics (see Section 6.8). We have used the higher-order function f o l d r  to solve the gen­
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eral e v e n - p a r i t y  problem. However, there are other problems where a designed higher- 

order funetion may be required. For example, the Fibonaeei sequence problem [Koza, 1992, 

page 473] does not have a structured input (list). Instead, the recursion is carried around a 

numerical value. A higher-order function which performs recursion based on a numerical 

input value would be more appropriate to this problem. This proposition needs farther investi­

gation.

8.3 Higher-Order Functions

We have shown that the higher-order function program representation provides hierarchical 

processing for GP to solve the general e v e n - p a r i t y  problem. However, to generalize this 

result, this program representation needs to be tested on more problems. Moreover, the guide­

lines for the application of structure abstraction should evolve as more experiences are 

gained. Finally, to promote hierarchical processing farther, we will investigate structure 

abstraction with multiple-layer hierarchy.

8.4 Summary

The investigation of functional programming techniques on GP has opened a new potential 

research area. This chapter provides future research which stems from this work. Firs, poly­

morphism raises the question o f why type constraints make GP search more efficient. Second, 

there are other forms of implicit recursion that can be explored. Finally, the claim of hierar­

chical processing provided by the higher-order functions program representation need to be 

tested against more problems. We hope to carry out these research in the near future.
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Chapter 9

Summary and Conclusions

The similarity between humans and GP in their program development process has motivated 

this research. Indeed, Fogel has observed the “intelligence” demonstrated in the human prob­

lem solving process and proposed automating this process to create “artificial intelligence” 

[Fogel, 1962; Fogel, Owens and Walsh, 1966]. This is the fundamental theme of today’s evo­

lutionary algorithms.

Today, human programmers have applied and benefited from many modem functional 

programming techniques. We hypothesize that these techniques will also benefit evolutionary 

algorithms, such as GP. We have tested this hypothesis with three functional programming 

techniques (polymorphism, implicit recursion and higher-order functions). The results of our 

investigation are very encouraging. These techniques not only are applicable to GP but also 

have enhanced GP’s applicability and efficiency.

9.1 Summary of Research

Chapter 4 presents a GP system which is developed with the functional programming tech­

niques incorporated. Each component of the system is explained and its implementation is 

provided. This work demonstrates that the functional programming techniques of polymor­

phism, implicit recursion and higher-order-functions, are indeed applicable to GP.

In Chapter 5, we show that polymorphism  enables GP to evolve the map and the n t h  

programs. This has never been attempted by the standard GP because evolving these two pro­

grams requires the manipulation o f multiple types and type variables. A previous non-stan­

dard GP [Montana, 1995], which does support these requirements, did evolve these two 

programs. However, that GP does not support function types. Our work has enhanced GP’s 

applicability to problems that require multiple types, type variables or function types.

Recursion is an important programming technique because it provides an elegant way of
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code reuse and produces programs more general than those do not use recursion. Yet, GP has 

not had much success in evolving recursive programs, due to various difficulties. In Chapter 

6, we have not only identified these difficulties but also introduced implicit recursion to over­

come these difficulties. Moreover, by combining implicit recursion with 1 abstractions, GP is 

able to evolve a general solution to the e v e n - p a r i t y  problem very efficiently. This tech­

nique has enhanced GP performance on this problem to a degree that has never been reported 

by any previous work.

Higher-order functions provide a new kind of program representation for GP. This repre­

sentation contains a special property which we named “structure abstraction”. Chapter 7 iden­

tifies structure abstraction as an engine of hierarchical processing for GP search. It is this 

hierarchical processing which enables GP to solve the general e v e n - p a r i t y  very effi­

ciently. This chapter provides guidelines for the application o f structure abstraction to other 

problems.

Constraint handling can have strong impact on the evolution o f problem solutions. 

Appendix A identifies eleven ways to handle constraints based on the general framework of 

the evolutionary algorithms. Five o f these methods are experimented on a run-time error con­

straint using a GP system. The results show that an appropriate constraint method can help GP 

to search for solutions, whereas an inappropriate method would prevent the problem solutions 

to be found.

9.2 Summary of Contributions

This research makes the following contributions:

1. it constructs a formal GP framework to evolve 1-calculus expressions.

• a single language with sufficient computation power to solve a wide variety of prob­

lems is provided in GP. The language also provides a natural integration of a module 

mechanism via 1 abstractions (see Chapter 4).

2. it demonstrates advantages provided by applying the following functional programming 

techniques to GP:

• polymorphism , presents the concept o f types in GP in great detail through the defini­

tion of and the differentiation between untyped, dynamically typed and strongly typed 

GP. The Strongly Typed Genetic Programming (STGP) [Montana, 1995] is formalized 

and extended to include various kinds of type variables and higher-order function 

types. Moreover, the impact o f different type variables on GP search space is analyzed
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(see Chapter 5).

• implicit recursion; provides recursion semantics in the evolved programs without 

explicit recursive calls. Previously, evolving recursive programs in GP has been diffi­

cult. This work not only identifies the issues that cause such a difficulty but also pro­

vides a solution, implicit recursion, to overcome the difficulty (see Chapter 6).

• higher-order functions: supports an ejBfective module mechanism for GP. In this 

approach, module creation is neither a random process nor determined in advance. 

Instead, it uses the knowledge (function type arguments) specified by the users in the 

higher-order functions to determine the most beneficial way to create modules. Most 

importantly, this work introduces a new term, structure abstraction, to describe the 

structure pattern emerging from the higher-order functions program representation. 

Structure abstraction not only enables GP to evolve a general solution to the e v e n -  

p a r i t y  problem but also achieve greater efficiency than any other previous work 

(see Chapter 6).

3. it identifies structure abstraction as a hierarchical processing engine for GP search. The 

guidelines for the application o f structure abstraction to other problems are outlined (see 

Chapter 7).

4. it presents a concept of constraints handling based on the general framework of evolu­

tionary algorithms (see Appendix A). This general approach provides an easy way to 

compare and contrast different constraint handling methods, e.g. dynamic typing versus 

strong typing (see Chapter 5). Moreover, the seesaw effect demonstrated in the experi­

ments gives a high level view of the impact of constraint handling on the evolutionary 

process, e.g. see the constraint handling for recursion error in Chapter 5.

9.3 Conclusions

With the combination of its GA heritage and its unique interesting features (see Chapter 2), 

GP has attracted many researchers and practitioners as a promising paradigm to solve com­

plex real-world problems. However, as efforts are made to push the field toward this goal, 

many fundamental questions arise. The journey o f this research is an example of such a pro­

cess, and it reflects the current state o f art in the field.

Functional programming techniques, like other techniques used in GP, were proposed to 

make GP more powerful. Polymorphism extends previous work in applying type constraints 

to reduce search space (see Chapter 5). Intuitively, a smaller search space would allow a solu­
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tion to be found faster. This conjecture has been confirmed by a number o f researchers (see 

Section 3.2). However, a recent work has demonstrated clearly that the size o f program search 

space is not necessarily an indication o f the difficulty o f a problem [Langdon and Poli, 

1998a]. Moreover, our investigation o f constraint handling methods indicates that if the 

search space is not constrained properly, the search for a solution will become harder, not eas­

ier (see Appendix A). These new discoveries raise a new question: Why does strong typing 

make GP search more efficient? This question touches the fundamental issue o f how GP per­

forms search.

Koza expects the search process of GP to be explained by following the GA schema the­

orem (he used the term “schema” to describe the GP sampling process). However, Chapter 2 

shows that this approach is not able to describe the complex GP evolutionary process, where 

both the structure and the contents o f the programs are evolved at the same time. The only 

attempt at describing the GP search process using a schema theorem is made by [Poli and 

Langdon, 1998a; Poli and Langdon, 1998c]. They described the evolutionary process o f GP 

with one-point crossover as having 2 stages. In the first stage, competitions are between pro­

grams with different structures (program contents are ignored). Once the program structure in 

the population is settled, the second stage starts, and the competitions are between programs 

with the same structure but different contents. (This is very much like competition in GAs). 

Yet, as the validity of the GA schema theorem is under attack (see Chapter 2), this view of GP 

search process, which relies on the GA schema theorem, requires more work to be helpful 

[Poli, 1999]. The search for the interpretation o f GP search process continues.

Higher-order functions, which provide module creation and reuse, were proposed to 

enhance GP’s ability to scale up to larger and more complex problems. Indeed, this approach 

has enabled GP to solve the general e v e n - p a r i t y  problem very efficiently (see Chapter 6). 

Further investigation indicates that the power o f the higher-order functions program represen­

tation stems from the hierarchical processing it provides (see Chapter 7). This hierarchical 

processing was hoped to be provided by the GP search operator, subtree crossover (i.e. build­

ing block hypothesis). Yet, [Langdon and Poli, 1998b] has demonstrated that provided with 

building blocks, the subtree crossover operator is not able to construct solutions for the 

e v e n - p a r i t y  problem using these building blocks. This raises other important questions: 

How does the subtree crossover operator perform search? Is it an appropriate search engine 

for GP?

We have considered these questions from the aspect of programming languages and their 

interpretation. A program’s behavior depends on its constructs (functions and terminals) as 

well as the global environment in which its evaluation is conducted (the program input value).
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Additionally, the behavior o f each construct depends on its local environment: the argument 

values that are provided to the function and the value that a terminal is bound to. In GP pro­

gram tree representation, the arguments to a function are results produced by the function’s 

surrounding constructs. In biological terms, we say the genes (program constructs) have very 

high epistasis. The subtree crossover operator does not consider the surrounding environment 

of the two swapped subtrees. Consequently, the linkage between genes which produce good 

fitness are very likely to be destroyed. The syntax-based crossover operator is therefore more 

destructive than constructive in building fitter programs. Following previous wisdom [01s- 

son, 1995; Whigham, 1996b], we believe that semantics-based genetic operators, where the 

meaning of the functions and terminals are considered for the application of genetic operators, 

are better search strategies for GP.

Our investigation o f the impact of functional programming techniques on GP has pro­

duced many positive results. Polymorphism has enhanced GP applicability to problems which 

require multiple types, type variables or function types, e.g. the nth and map problems. 

Implicit recursion introduces a more effective way for GP to evolve recursive programs. 

Higher-order functions generate a new program representation (structure abstraction) which 

provides hierarchical processing for GP search. The limitation of these techniques are also 

discussed. For example, polymorphism may become an overhead when the type variables are 

not used with care; the design of a suitable higher-order function to provide effective implicit 

recursion or hierarchical processing for the target problem might not be easy. Meanwhile, 

some fundamental questions are raised by these results. How does GP perform its search for 

problem solutions? What kind o f genetic operators provide good search strategy for GP? 

These questions are vital to the advance of this field. Only when the operation of GP is under­

stood it can be applied effectively to solve complex real-world problems.
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Appendix A

Methods to Evolve Legal Phenotypes

A .l Introduction

Constraints form an integral part o f every optimization problem, and yet they are often over­

looked in evolutionary algorithms [Michalewicz, 1995b]. A problem with constraints has 

both an objective and a set o f restrictions. For example, when designing a VLSI circuit, the 

objective may be to maximize speed and the constraint may be to use no more than 50 logic 

gates. It is vital to perform constraint handling with care, for, if evolutionary search is 

restricted inappropriately, the evolution o f good solutions may be prevented.

In order to explore the relationship between constraints and evolutionary algorithms, this 

appendix presents an evolutionary framework in which the search space and solution space 

are separated. In this framework, a genotype represents a point in the search space and is 

operated on by the genetic operators (crossover and mutation). A phenotype represents a point 

in solution space and is evaluated by the fitness function. The result of the evaluation gives 

the fitness of the phenotype, and by implication, o f the underlying genotype.

In the same way that phenotypes are evaluated for fitness, not genotypes, it is the pheno­

types which must satisfy the problem constraints, not the genotypes (although their enforce­

ment may result in the restriction o f some genotypes). However, unlike the fitness evaluation, 

constraints can be enforced at any point in the algorithm to attain legal phenotypes. As will be 

described later, they may be incorporated into the genotype or phenotype representations, 

during the seeding of the population, during reproduction, or handled at other stages.

There are two main types o f constraint; the soft constraint and the hard constraint. Soft 

constraints are restrictions on phenotypes that should be satisfied, but will not always be. 

Such constraints are often enforced by using penalty values to lower fitnesses. Illegal pheno­

types (which conflict with the constraints) are permitted to exist as second-class, in the hope 

that some portions o f their genotypes will aid the search for fit phenotypes [Michalewicz,
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1995b], Hard constraints, on the other hand, must always be satisfied. Illegal phenotypes are 

not permitted to exist (although their corresponding genotypes may be, as will be shown).

We identifies eleven methods to enforce constraints on phenotypes during various stages 

o f evolutionary algorithms. Five methods are experimented on a run-time error constraint in a 

Genetic Programming (OP) system. The results are compared and analyzed.

The appendix is structured as follows: Section A.2 provides related work; Section A.3 

classifies and describes the constraint handling methods; Section A.4 presents the experi­

ments; Section A.5 gives the results; Section A.6 analyzes the results and Section A .7 con­

cludes.

A.2 Related Work 

A.2.1 Genetic Algorithms

Michalewicz and Schoenauer provide perhaps the most comprehensive reviews of implemen­

tations o f constraint handling in genetic algorithms (GAs) [Michalewicz 1995b, Michalewicz 

and Schoenauer 1996]. They identify and discuss eleven different types of system. However, 

upon examination it is clear that their classification is based upon differences in implementa­

tion, and perhaps because of confusion of various multiobjective techniques, it fails to group 

constraint handling methods which employ similar underlying concepts. Nevertheless, the 

work o f Michalewicz and colleagues provides some of the key investigations in this area. For 

example, [Michalewicz, 1995a] describes the application of five methods (three based on 

penalizing illegal phenotypes) to five test functions. Michalewicz and Schoenauer [1996] 

describe the use o f behavioral memory and other penalty-based approaches in GAs to evolve 

different engineering designs. Schoenauer and Michalewicz [1997] described the use o f a 

repair method in a GA to evolve legal phenotypes.

A.2.2 Evolution Strategies & Evolutionary Programming

In their original implementations, both ES and EP performed constraint handling during the 

creation o f the initial populations. SchwefeTs ES algorithm also used a ‘legal mutant’ con­

straint handling method, where the creation o f an individual is simply repeated as long as the 

individual violates one or more constraints [Back, 1996]. The original EP, on the other hand, 

typically does not enforce constraints during the generation o f new offspring. More recent 

research on constrained optimization problems in EP is described in [McDormell, Reynolds 

and Fogel, 1995] and [Fogel, Angeline and Back 1996].
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A.2.3 Genetic Programming

The traditional GP paradigm [Koza, 1992] does not distinguish genotypes from phenotypes, 

i.e. the search space is regarded as being the same as the solution space. An individual is rep­

resented as a program tree. This program tree represents both the genotype and phenotype of 

an individual as it is modified by the genetic operators and it is evaluated by the fitness func­

tion. Consequently, constraints in traditional GP are perceived as being applied to phenotypes 

and genotypes.

For example, program trees in GP are restricted by syntactic constraints: they must sat­

isfy the syntax o f the underlying language. Various other forms of syntactic constraints have 

been proposed [Gruau, 1996; Janikow, 1996]. In Chapter 4, we applied both syntactic con­

straints and type constraints in our GP system.

Banzhaf [1994] proposed an alternative paradigm for GP, where the search space is sep­

arated from the solution space. A mapping scheme is used to transform genotypes into legal 

phenotypes [Keller and Banzhaf, 1996].

A 3 Constraints in Evolutionary Algorithms

Just as evolution requires selection pressure to generate phenotypes that satisfy the objective 

function, evolution can have a second selection pressure placed upon it in order to generate 

phenotypes that do not conflict the constraints. However, using pressure in evolutionary 

search to evolve legal solutions is no guarantee that all o f the solutions will always be legal 

(i.e., they are soft constraints).

Constraints can also be handled in two other ways: solutions that do not satisfy the con­

straints can be prevented from being created, or they can be corrected. Such methods can have 

significant drawbacks such as loss of diversity and premature convergence. Nevertheless, 

these two types o f constraint handling ensure that all solutions are always legal (i.e., they are 

hard constraints). The following section identifies eleven methods which enforce ''hard con­

straints" or 'soft constraints". These methods also fall within the three conceptual categories: 

Prevention, Correction, and Pressure (see Table A .l).

Table A.l: Classification of constraint handling methods

Prevention HARD C1,C2, C3,C 10

Correction HARD C4, C5

Pressure SOFT C6, C7,C8, C9,C11
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The detailed description will be presented in the subsection. (Note that this categorization 

encompasses the Pro-Life, Pro-Choice categorization o f Michalewicz and Michalewicz 

[1995]. It is felt that the use o f more neutral terminology is more appropriate for such techni­

cal classifications.)

A.3.1 Detailed Classification

Whilst previous classification of constraint handling methods within evolutionary search has 

identified implementation differences of existing systems [Michalewicz, 1995b], to date there 

has not been a general classification of constraint handling based on the underlying concepts 

of evolutionary algorithms.

Such a classification can be achieved, not only by examining the existing work of others, 

but also by examining the significant stages within evolutionary algorithms and identifying 

where it is possible to incorporate constraints. This allows all existing constraint handling 

methods to be clearly categorized and understood, and also identifies new, previously unex­

amined ways of tackling constraints in evolutionary search. Figure A. 1 shows the most signif­

icant and commonly used stages within current evolutionary algorithms (GAs, GP, ES and 

EP).

After some careful consideration of these stages, it becomes clear that constraints can be 

incorporated at eleven different places within the design and execution o f evolutionary algo­

rithms (as shown on the right hand side o f Figure A. 1). These eleven methods should not be 

confused with Michalewicz’s [1995b] list of different researchers’ implementations (which 

coincidentally also contains eleven elements). The methods shown in Figure A. 1 are catego­

rized solely on their placement within the evolutionary algorithm, and can be used in combi­

nation or separately o f each other. There follows a description o f each method and its 

potential advantages and disadvantages;

Cl : LEGAL SEARCHSPACE Design genotype representation.
During the design o f the evolutionary system, create a genotype representation that is only

capable o f representing legal solutions. Evolutionary search is then forced to consider only

the space o f legal solutions, where all constraints are satisfied. This method is frequently

used, although designers who use it are often unaware that they are performing constraint

handling o f any kind. For example, in GAs, if  the range o f a problem parameter must be

between 0 and 255, most designers would automatically use a binary gene consisting o f eight

bits - and this genotype representation would then ensure that the 0-255 range constraint was

always satisfied.
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Design:

Figure A .l: Constraint placement within stages of evolutionary algorithms.
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CIO: LEGAL BIRTH

C ll; ILLEGAL REPLACEMENT

C2: LEGAL SOLUTIONSPACE Design phenotype representation.

During the design of the evolutionary system, create a new phenotype representation, so that 

only legal phenotypes can be defined. All genotypes are then mapped onto these phenotypes, 

which by definition, must always satisfy the constraints.

Often great care can go into the design of suitable phenoty pes. For example, practitio­

ners of floor-planning problems have two important constraints: room-spaces should not 

overlap, and no space should be left unaccounted for. To ensure that the computer alway s 

evolves solutions that satisfy these constraints, designers of these sy stems use phenotype rep­

resentations which define the location of rooms indirectly, by defining the location and num­

ber of dividing walls [Gero and Kazakov, 1998|.

C3: LEGAL SEED ^eed with non-conflicting solutions.

The initial population is seeded with solutions that do not conflict with the constraints and the
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crossover and mutation operators are designed so that they cannot generate illegal solutions. 

Many constraints in GP are implemented using this method. For example, [Gruau, 1996] uses 

a context-free grammar to specify syntactic constraints of parse trees. In Chapter 4, we 

employ a type system to ensure that only type-correct programs are considered during evolu­

tion.

C4: GENETIC REPAIR Correct illegal genotypes.
If a new individual conflicts with a constraint, correct the genes that are responsible for the 

conflict to make it satisfy that constraint. For algorithms such as GP which make no explicit 

distinction between genotypes and phenotypes, this method modifies the solution, and the 

modification is inherited by its offspring.

This genetic engineering approach ensures that all solutions will satisfy all constraints, 

but may damage epistatic genotypes, discarding the result of careful evolution over many 

generations. In addition, the design of the repair procedure may be a non-trivial task for some 

problems.

C5: LEGAL MAP Correct illegal phenotypes.
Map every genotype o f an individual to a phenotype that satisfies the constraints using some 

form of simple embryology. This forces all solutions to satisfy all constraints, and also does 

not disrupt or constrain the genotypes in any way, allowing evolutionary search to continue 

unrestricted. For algorithms such as GP which make no distinction between genotypes and 

phenotypes, this method modifies the solution before fitness evaluation, but the modification 

is not inherited by its offspring. (Also note that although this method is often used in combi­

nation with C2, the use of a phenotype representation which can only represent legal solutions 

is not a prerequisite for the use o f Legal Map.)

Using a mapping stage to generate legal phenotypes is a very common approach to per­

form simple constraint handling. Goldberg [1989] describes perhaps the simplest: mapping 

the range o f a gene to a specified interval. This permits constraints on parameter range and 

precision to be satisfied without the need to redesign the genotype representation and coding. 

More recently mapping stages have become more intricate and deserving o f the term ‘artifi­

cial embryology’. Researchers in GP have also reported that the use of an explicit genotype 

and mapping stage for constraint handling can increase diversity in populations [Banzhaf, 

1994].

Type constraints in GP can be implemented using this method as an alternative to the 

Legal Seed method. A simple example is to map a value with an illegal type of ‘real’ into a 

value with legal type ‘integer’. However, for other more complex types such as list or array, a 

proper mapping scheme may be difficult to design. This kind of type-constraint handling is
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called ‘dynamic typing’ - in contrast to the ‘strong typing’ approach mentioned in the Legal 

Seed method.

C6: GENOTYPE PENALTY Penalize illegal genotypes.
Identify alleles or gene fragments within genotypes that seem to increase the chances o f a 

solution conflicting the constraints, and reduce the fitness o f any individual containing these 

fragments o f genetic code. Although the identification o f bad genes may discourage solutions 

from conflicting constraints, it will not guarantee that all solutions satisfy all constraints. In 

addition, with epistatic genotypes, this approach may result in the discouragement o f other, 

epistatically linked, useful features within solutions. To date, research has investigated the 

automatic identification of ‘good genes’ during evolution to eneourage the evolution o f solu­

tions with higher fitnesses [Gero and Kazakov, 1998]. However, we are unaware o f any work 

which identifies bad genes for constraint handling.

C7: PHENOTYPE PENALTY Penalize illegal phenotypes.
When a phenotype conflicts a constraint, reduce its fitness. This soft constraint discourages 

all phenotypes that conflict the constraints, but does not force evolutionary seareh to generate 

legal solutions. In effect, the use of a penalty value becomes an additional criterion to be con­

sidered by the evolutionary algoritlim, and multiobjective techniques should be used to ensure 

that all criteria are eonsidered separately (otherwise one or more criteria may dominate the 

others) [Bentley and Wakefield, 1997]. This is one o f the most commonly used methods for 

constraint handling in evolutionary algorithms. (Indeed, it is the only one explicitly men­

tioned in [Goldberg, 1989].)

CS: LEGAL SELECTION Select only legal parents for reproduction.
During reproduction, only select parent solutions which satisfy the constraints. This method 

should be used with a fitness-based replacement method to ensure that evolution is guided to 

evolve fit solutions in addition to legal solutions. (If all solutions are illegal, parents which 

violate the fewest constraints to the least extent should be seleeted.) However, the exclusion 

o f potential parents may discard beneficial genetic material and so could be harmful to evolu­

tion. Other than the work described in this paper, only one reeent investigation has been made 

on this method [Hinterding and Michalewicz, 1998].

C9: LEGAL FERTILITY Increase the no. o f offspring for legal parents.
Having selected the parent genotypes (based on their fitnesses) this method allocates a larger

fertility to parents whieh better satisfy the constraints. This method can be thought of as an 

implicit multiobjective method, allowing independent selection pressure to be exerted for 

high fitness and legal solutions. Being a ‘soft constraint’, there are no guarantees that all solu­

tions will always satisfy the constraints. In addition, if  legal parents are favored excessively, it
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is possible that the diversity o f the population could be reduced. To our knowledge, this idea 

has not been previously used for constraint handling.

CIO: LEGAL BIRTH Stop illegal offspring from being born.
If a new solution conflicts a constraint, discard it, and try generating another solution using 

the same parents. This brute-force method, which is sometimes used in GAs [Michalewicz, 

1995b] forces all solutions to satisfy the constraints, but may discard useful genetic material 

(and may also be prohibitively slow).

Another implementation is to modify crossover and mutation operators to incorporate 

the constraint bias so that only legal offspring can be generated.

C l l  : ILLEGAL REPLACEM ENT Replace illegal solutions with legal offspring.
When replacing individuals with new offspring in the population, always replace the solutions 

that conflict constraints. (If all solutions satisfy the constraints, either replace randomly or 

replace the least fit.) This method should be used with a fitness-based selection method to 

ensure that evolution is guided to evolve fit solutions in addition to legal solutions. However, 

the replacement of potential parents discards potentially beneficial genetic material and so 

may be harmful to evolution. This method requires the use o f a steady-state GA [Syswerda, 

1989].

A.4 Experiments with a Run-Time Constraint in GP

This section describes experiments conducted to compare five of the constraint handling 

methods described above in a GP system. The experiments are focused on one particular kind 

of constraint in GP; the run-time error constraint.

GP evolves computer programs as problem solutions. Thus, in most cases the genetic 

material is in some sense executable. When run-time errors occur during the execution o f a 

program, its behavior is undefined. A fundamental constraint is therefore imposed on GP: no 

programs can contain run-time errors.

Unlike other types o f constraint, the run-time error constraint has a special property: 

when it occurs the fitness cannot be calculated. (When the behavior o f the program is unde­

fined, the evaluation o f its fitness cannot be performed.) Illegal phenotypes are therefore not 

allowed to exist. This means that soft constraint methods (where illegal phenotypes can exist 

as second-class) can only be used in conjunction with a phenotype correction method - they 

cannot be used on their own. In the experiments, the Legal Map method is used to serve this 

purpose.

A constraint can be handled using many different methods, yet some are more suitable
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than others. For the run-time error constraint, its prevention (in methods C l, C2, C3 and CIO) 

is extremely hard because these errors are only evident during program execution. In addition, 

genetic repair (method C4) requires the corrected material to follow the genotype syntax (so 

that it can be inherited) which is not appropriate (or easy to implement) for this constraint. 

Consequently, none o f the hard constraint methods are suitable for this problem except for the 

Legal Map method (C5), which corrects illegal phenotypes (and the corrections are not inher­

ited by offspring).

Soft constraint approaches, on the other hand, are appropriate for this problem. The 

experiments investigate four of these methods (C7, C8, C9, and C ll). (Method C6 which 

penalizes illegal genotypes by identifying bad genes was not investigated because o f the sub­

stantial time required for its implementation).

In summary, the experiments investigate one hard constraint-handling method (Legal 

Map) and four soft constraint methods (Phenotype Penalty, Legal Selection, Legal Fertility, 

and Illegal Replacement) to enforce the zero-division run-time error constraint. The zero-divi­

sion constraint was chosen as it is the most frequently observed run-time error, potentially 

occurring in any numerical problem tackled by GP.

Table A.2: Tableau of the simple symbolic regression problem

Objective: Find the symbolic function x^ - x^ + x^ - x using 9 pairs of 
sample points.

Terminal Set: X

Function Set: +,

Fitness Cases: 9 data points (xj,yj) where Xj is the input value between -1.0 and 
1.0 and yj is the desired output value

Fitness: 9
9l{9+total_error), where total error is ^  [y, and is the

/ = 1

result of phenotype execution given input Xj

Hits:
y  /?, where /?,• = 1̂ ' “ '̂1 “
"  \ 0, otherwise )

Parameters: PopSize = 500, MaxTest = 25500, TreeSize = 25,
Crossover = 60%, Mutation = 4%, Copy = 36%, Runs = 20

Success predicate: 9 hits (GP stop a run when the success predicate is met)

The experiments use GP to solve a symbolic regression problem, which is to find a function, 

in symbolic form (with numeric coefficients) that fits a given finite sample o f data. It is “data-
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to-function” regression. The goal is to find the target function of x"*-x^+x^-x, given a data 

sample o f nine pairs (xj, yj), where xj is a value o f the independent variable and yj is the asso­

ciated value of the dependent variable. Table A.2 provides the features of this problem.

A.4.1 Implementation of Constraints

To allow the use of the Illegal Replacement method, the GP system uses a steady-state 

replacement scheme [Syswerda, 1989] where a population with a constant number of individ­

uals is maintained. Unless otherwise stated, parents are selected using fitness proportionate 

selection, and offspring replace individuals with the worst fitness in the population. The five 

constraint handling methods were implemented as follows;

C5: Legal Map. When a run-time error occurs during the execution o f a phenotype, the value 

1 is returned and the execution continues. For example, if the phenotype is 5+x/x and x = 0.0, 

Legal Map changes the phenotype to: 5+1. Corrected phenotypes are marked with a run-time 

error flag to allow this method to be used in conjunction with the following four.

C7 & C5: Phenotype Penalty with Legal Map. Phenotypes that have to be corrected are 

penalized by multiplying their total error values by 2. Legal phenotypes that do not have to 

be corrected are not penalized.

C8 & C5: Legal Selection with Legal Map. During the selection of parents for reproduction, 

only programs without run-time errors are selected randomly.

C9 & C5: Legal Fertility with Legal Map. If both parents are legal, three offspring are gener­

ated from them. If one parent is legal, two offspring are generated, and if  neither of the par­

ents is legal, only one offspring is generated from them.

C ll  & C5: Illegal Replacement with Legal Map. One offspring (legal/illegal) is generated to 

replace a randomly selected illegal individual. I f  there is no illegal individual left in the popu­

lation, the normal replacement scheme is used.

A.5 Results

Twenty runs were performed for each constraint handling method. Each run was terminated 

when a program which produced nine hits was found (i.e., when the evolved function pro­

duced output sufficiently close to the desired output for all nine data points) or when 25,500 

programs had been processed. If the former occurs, the run is termed successful. Table A .3 

summarizes the experiment results.
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Table A 3: Summary of experiment results

Method Success/Runs Average Number of Programs 
Processed in Successful Runs

Legal Map 18/20 3,983

Phenotype Penalty & Legal Map 18/20 4,841

Legal Selection & Legal Map 5/20 18,284

Legal Fertility^ & Legal Map 20/20 3,984

Illegal Replacement & Legal Map 3/20 6,998

The experiments show that Legal Map, Phenotype Penalty with Legal Map and Legal Fertility 

with Legal Map find a phenotype with nine hits in most o f the runs (18/20 and 20/20). For the 

successful runs, the average number of programs tested is around 4,000. In contrast. Legal 

Selection with Legal Map and Illegal Replacement with Legal Map methods do not perform 

well. Most of the runs are unsuccessful and in the small number of successful runs, they have 

to test a larger number of phenotypes to find one with nine hits.

Figure A.2(A) provides the probability of success of each method based on the experi­

ments. The Legal Map, Phenotype Penalty with Legal Map and Legal Fertility with Legal 

Map methods all perform comparably. Their success curves increase stability from the begin­

ning. Most of the runs found a phenotype with nine hits before 10,000 phenotypes had been 

tested. However, Legal Selection with Legal Map did not achieve this. Its best success rate 

was 25% with a requirement o f processing 25,000 phenotypes. The success probability of 

Illegal Replacement with Legal Map was also very low. Even when 14,000 phenotypes were 

processed, there was less than a 20% probability that this method would find a phenotype 

with nine hits.

It is clear that three of the methods provide good success rates in evolving phenotypes

with nine hits, see Figure A.2(B)^. However, the results also show that these same methods 

were the worst at evolving phenotypes which satisfied the run-time error constraint. As shown 

in Figure A.2(C), the two methods with the lowest success rates: Legal Selection with Legal 

Map and Illegal Replacement with Legal Map were able to evolve considerably more legal 

phenotypes than the other methods. Only one method: Legal Fertility with Legal Map, had a 

high success rate and evolved larger numbers o f legal phenotypes.

2. Note that the data shown in Figure A .2(B) were generated in separate runs.
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Figure A.2: Result summary charts.
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A.6 A nalysis and Discussion

The experiments with the run-time error constraint demonstrate a common dilemma in all 

constrained optimization problems; both the objective and constraints need to be satisfied, 

and evolving phenotypes which fulfill one of them can sacrifice tlie evolution of phenotv pes 

which fulfill the other. Using an evolutionary algorithm to find solutions for such problems is 

therefore difficult because evolutionaiy search is directed in different directions. The experi­

ments investigated five different ways in which a GP system could be made to evolve both fit
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and legal programs. The results show, however, that each method exerted a different level of 

evolutionary pressure for the constraint and objective. It is clear that such different levels of 

pressure can effect the degree to which both criteria are met.

In the implementation described above, the Legal Map method (a hard constraint) is the 

neutral placement in the spectrum (i.e., the control method) as it repairs phenotypes without 

the addition o f a second selection pressure for the constraint. The other four (soft constraint) 

methods use this same phenotype repair scheme with an added pressure to reduce the number 

o f illegal programs evolved.

Figure A.2(C) shows the average number of bom-legal phenotypes in the population 

using these methods. Our control, the Legal Map method, enforces no pressure for the con­

straint and the average number o f legal individuals remains around 200 throughout the mns. 

In contrast, the Illegal Replacement method shows that a very strong pressure is exerted on 

the GP system to evolve legal programs. After the processing of only 2,500 phenotypes, all 

illegal phenotypes have been replaced and the population contains only legal phenotypes. The 

Legal Selection method also exerts a strong pressure for the constraint. Since only legal phe­

notypes are selected for reproduction, programs which satisfy the constraint are propagated 

quickly: after 15,000 phenotypes are processed, only legal phenotypes exist in the population. 

The Fertility method exerts pressure for constraints by generating more offspring for legal 

parents than for illegal parents. Compared to the control method. Legal Map, all twenty mns 

of this method show a consistent increase of legal phenotypes in the population. (The down­

ward trend after 5,000 individuals have been processed, evident in Figure A.2(C), is a distor­

tion o f the graph caused by a single run, and is not considered significant.)

Not all of the methods exert such consistent pressures for the constraint, however. The 

Penalty method generates a strong fitness-driven evolutionary process (illegal phenotypes 

have their total error values doubled to reduce fitness values, so pressure for the constraint 

drops as individuals become fitter ). As Figure A.2(C) shows, this results in the number of 

legal phenotypes being gradually reduced to satisfy fitness (objective) requirement. It seems 

likely that the use of fixed penalty values might prevent this effect.

Figure A.2(D) shows the average fitness in the population using these methods. Driven 

to satisfy only the fitness (objective), the Map method raises population fitness consistently 

through fitness proportionate selection. Similarly, the strong fitness-oriented pressure o f the 

Penalty method and the Fertility method raises population fitness consistently. The Selection 

method also raises the average fitness as it replaces the worst individuals with newly created 

offspring. However, the average fitness stays below 0.87 because by only selecting legal phe­

notypes for reproduction, the genetic diversity is dramatically reduced. (Figure A.2(C) shows
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that only 15% of initial population were legal). Because o f this reduced diversity, combined 

with the strong pressure for constraints, the population tends to converge prematurely. This is 

why only 5 out o f the 20 runs for the Selection method were successful. The same effect is 

evident for the Replacement method. Again, genetic diversity is lost as a large number of ille­

gal phenotypes are replaced. Populations converged when around 2000 phenotypes had been 

processed. Only 3 out o f the 20 runs were successful.

In summary, the combination o f pressure for the run-time error constraint and fitness 

directs evolutionary search to find a legal phenotype which produces nine hits. While some of 

the results may be due to the type of constraint tackled and the implementation of the con­

straint handling methods, these experiments show that the Fertility method seems to provide 

the best balance of evolutionary pressure on both criteria. It raises the average fitness value 

and at the same time reduces the number of illegal phenotypes in the population. As a result, 

the average number of hits in the population is raised consistently (see Figure A.2(B)) and 

successful phenotypes are found in all 20 runs.

A.7 Conclusions

This appendix presented a framework to allow the classification of constraint handling meth­

ods within various stages of evolutionary algorithms. Such methods impose either hard con­

straints or soft constraints, and all use prevention, correction, or pressure to enforce the 

constraints. Eleven methods were identified, including some which had not been explored 

previously.

Five of these eleven methods were tested on a run-time error constraint in a GP system. 

The results show that depending on the problem, the methods used and their implementation, 

the seesaw of evolutionary pressure can either favor constraints or objectives. For this partic­

ular problem, of the methods examined, the Legal Fertility method provided a good balance 

between these two criteria, and led GP to find phenotypes which satisfied both objective and 

constraints.
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Appendix B

Measurement Method

This appendix describes the method used to measure GP performance in this thesis. This 

method is created by [Koza, 1992 Chapter 8] and has been used by most GP researchers as a 

standard to evaluate GP performance in their experiments. To facilitate a direct comparison of 

the performance o f our GP system to others’, we have adopted the same method in this work.

In this method, the performance of a GP system is measured by the number o f  programs 

that must be processed in order to satisfy the success predicate o f the problem with a specified 

probability (e.g. 99%). This number is then used to indicate the efficiency of the GP system in 

solving the problem: the smaller the number is, the more effective the system is.

GP is a probabilistic search method. This means that there is no guarantee that a given 

run will yield a solution that satisfies the success predicate o f the problem. In some runs, pre­

mature convergence or non-convergence might happen. In other runs, good solutions might 

emerge quickly. To measure the performance of a particular GP system, one approach is to 

make multiple independent runs on a problem. The best-of-run program from all of the inde­

pendent runs can then be designated as the result of the group o f the runs.

To measure the amount of computational resources required by a GP system in solving a 

problem, one can first calculate the number of independent runs {R) that is needed to yield a 

success with a certain probability (say 99%). Once this number is found, it is then multiplied 

by the amount o f processing required for each run {E) to get the total amount of processing 

required in solving the problem (7) (i.e. /  =  R x  E ).

The following section describe how the values o f R, E  and 1 are obtained.

B.l The Value/?

To obtain the value R, the value o f cumulative probability of success P(M,i) for each genera­

tion i using population size M  has to be calculated first.

168



P(M,i) = /  T , where T  is total number of runs and S  is the number of success­

ful runs in generation / (see examples in column 3 of Table B.l).

Once the value oîP(M ,i) is found, the probability to satisfy the success predicate by gen­

eration / at least once in R  runs is can be obtained by:

i - [ l - P ( M O f .

As P(M,i) is the cumulative probability of success in generation i, {\-P(M,i)) is the cumula­

tive probability of failure in generation /. The cumulative probability of failure in R runs is 

then:

[ \ - P ( M , i ) f  ■
The cumulative probability of success in R runs is therefore:

If we want to satisfy the success predicate with a probability of, say z = 1 - e = 99%, then it 

must be that:

t - [ 1  - P ( M , i ) f  =99%.

Using this equation, the number of independent runs required {R) to satisfy the predicate by 

generation i with a probability of z can then be computed:

1 - [ 1  - P { M , t ) f  = z 

[ \ - P ( M , i ) f  = 1 - z

lo g [ l -P (M ,/)]^  = lo g ( l  - z )

R  l o g [ l - P ( M ,/ ) ]  = l o g ( l - z )

R = r l o g ( l - z )  1
lo g ( l  - P ( M , i ) )

R  = lo g s
lo g ( l  - P (M O )

where the square brackets indicate the ceiling function for rounding up to the next 

highest integer.

B.2 The Value E

The amount of processing required for each run {E) is the product o f the following two factors

{E  = M x  G ):
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• the number of individuals {M) in the population, and

• the number of generations (G) executed in each run.

This is based on the following assumptions:

• Evaluation of the program is the only processing required;

• Every program is evaluated exactly once in each generation. This is not always true

especially for the generation where the optimal solution is found. In this case, GP nor­

mally abort the process and returns with the optimal solution. Consequently, the rest of 

the program in the generation will left without being evaluated.

• All programs take equal amount of processing to evaluate.

B.3 The Value /

Once both the values o f R and E  are obtained, the value o f /  can be found. The smallest value 

of I  is used to indicate the minimum “effort” required for GP to solve the given problem; 

hence, the efficiency o f the GP system.

Table B. 1 provides an example to demonstrate how the values R and I are obtained with 

M=500 and G=51.

Table B.l : Procedures to obtain R and I

/
no. o f  

successful 
run

P(50,i)

0 0 0.0 00 00

1 2 0.25 17 1,700

2 3 0.625 5 750

3 1 0.75 4 800

4 0 0.75 4 850

5 1 0.875 3 900

6 0 0.875 3 950

B.4 The Code

We enclosed the code to calculate the value 1.
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/* cc -Im process.c */
#include <stdlib.h>
#include <stdio.h>
#include <math.h>

tdefine MAXGEN 51 
#define TOTALRUN 60 
#define POPSIZE 500 
main(argc, argv) 
int argc; 
char *argv[];
{

FILE *fp, *fopen(); 
double inputs[MAXGEN][5]; 
int a; 
int i-0;

if (argc == 1)
{
printf("Wrong number of arguments.\n"); 
exit ;

)
if ((fp=fopen(*++argv, "r")) =- NULL)

{

printf("Can't open %s \n", *argv); 
exit;

while (i < MAXGEN

inputs[i][0]=0.0 
inputs[i][1]=0.0 
inputs[i][2]=0.0 
inputs[i][3]=0.0, 
inputs[i++][4]=0.0;

while ( !feof(fp))
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fscanf(fp," %d", &a); 
inputs[a][0]++;

inputs[0][1] = inputs [0][0]; 
i = 1;
while (i < MAXGEN )

inputs[i][1] = inputs[i-1][1]+inputs[i++][0];

i = 0;
while (i < MAXGEN )

inputs[i][2] = inputs[i++][1]/TOTALRUN;

i - 0 ;
while (i < MAXGEN )

{
if (inputs[i][2] != 1.0)

inputs[i][3] = c eil(-2.0 / loglO (1.0 - inputs[i][2])); 
i++;

i - 0;
while (i < MAXGEN )

{

inputs[i][4] = inputs[i][3]* POPSIZE * (i+1);
i++;

i = 0;
while (i < MAXGEN )

{

print f ("generation %d I is %. Of %. Of %0.3f %. Of %.Of\n", i, 
inputs[i] [0] , inputs [i] [ 1], inputs[i] [2] , inputs[i] [3],
inputs[i][ 4 ]); 

i++;
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Appendix C

Structure Abstraction on Artificial Ant Problem

The artificial ant problem [Koza, 1992] has been shown to be difficult for different search 

algorithms (GP and hill climbing) [Langdon and Poli, 1998a], In particular, they showed that 

“current GP techniques are not exploiting the symmetries o f the problem.” [Langdon and 

Poli, 1998a], We have conducted experiments using a higher-order function program repre­

sentation and hoped it would allow GP to exploit the symmetries. However, the results show 

no performance improvement over that reported by other researchers using other techniques. 

We report our experiments and the results. Meanwhile, we are continuing the design of a bet­

ter higher-order function which can provide the hierarchical processing described in Chapter 

7,

Table C l explains the problem and the parameters used in the experiments.

Table C.l : The artificial ant problem.

Test Case The Santa Fe trail

Fitness Food eaten

Wrapper Program repeatedly executed for 600 time steps

Parameters popSize=500; generation=50; crossoverRate=100%; treeDepth=5

Table C,2 gives the functions and terminals used in the experiments.

Table C.2: Functions and terminals for artificial ant problem.

Name Type

if-food-ahead state->(state->state)->(state->state)->state

move state-> state

right state->state

left state->state
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The higher-order function i f - f o o d - a h e a d  needs more explanation. The first argument is 

the current state that the ant is in. If  there is food in front o f the ant, the second argument, a X 

abstraction function module, is executed. Otherwise, the third argument, another X abstraction 

function module, is executed. This function returns a new state.

During crossover, a X abstraction can only crossover with another X abstraction repre­

senting the same function argument in the program trees. This means that the first argument 

of a i f - f o o d - a h e a d  function can only crossover with the first argument of another i f -  

f o o d - a h e a d  function. In this way, GP can use the X abstraction module mechanism to 

exploit the symmetries present in the problem, if they exist.

We have made 6 runs and none of them find a solution which can eat all of the 89 pieces 

of food in the trail, although the average fitness in the population increases gradually. Figure

C.l shows the average fitness in the population.
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Figure C.l : Average fitness in the population for the artificial ant problem.
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Appendix D

An Analysis of Program Evolution

In Chapter 5 and 6, three sets o f experimental results were used to support the claim that func­

tional techniques have enhanced GP applicability and efficiency. Polymorphism was endorsed 

by n th  and map programs, where the incorporation o f type variables and function types has 

enabled GP to evolve these two polymorphic programs. The advantages o f implicit recursion 

and higher-order functions were demonstrated in the general e v e n - p a r i t y  problem. 

According to the experimental result, which was measured using the method developed by 

Koza (see Appendix B), the performance of the functional GP system was superior to any 

other known systems on this problem. These experimental results were sufficient to provide a 

holistic justification about the applicability and effectiveness of these techniques on GP.

However, the implementation of these techniques has also complicated the GP system 

with other issues. For example, the system is required to handle two different kinds of run­

time error (see Section 4.3.3). To understand the impact that each component (fitness func­

tion, run-time error constraint handling, search algorithm) has on the overall good perfor­

mance, a series of experiments were conducted. The goal o f these experiments was to 

determine whether the undoubted successes in evolving the n th ,  map and e v e n - p a r i t y  

programs should be interpreted as the result of;

1. random sampling of the set o f type-correct programs;

2. sampling by genetic search in the set o f type-correct programs that satisfy the run-time 

error constraints;

3. genetic search guided by the fitness function towards a correct solution.

D.l Experimental Setup

To achieve this goal, we have designed and implemented the following four experiments:

1. Programs are randomly generated by Creator only, no genetic operation is applied.
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2. Programs are generated using Creator (initial population) and Evolver (subsequent genera­

tions). However, the fitness function is not used for selection, i.e. programs are randomly 

selected for reproduction.

3. Programs are generated using Creator, Evolver and a fitness-based selection. The fitness 

function only considers the satisfaction o f the run-time error constraints. The correctness 

o f the outputs is not used to direct GP search.

4. Programs are generated using Creator, Evolver and a fitness-based selection. The fitness 

function evaluates both the correctness of the outputs and the satisfaction of the run-time 

error constraints.

In each set o f the four experiments, the following data are recorded:

• The number o f correct solutions found;

• The mean value of each component of the fitness function.

To allow for a statistically meaningful analysis, the first experiment is implemented by ran­

dom generation of 100,000 programs. For each of the second, third and fourth experiments, 

10 runs are performed. Moreover, each run continues until the end, even if a solution has been 

found. In terms o f implementation, these three experiments are basically the same, except for 

the fitness function used for selection. With the second experiment, a flat fitness (I.O) is given 

to every evolved program. With the third experiment, the run-time error fitness is used as the 

program’s fitness. With the fourth experiment, the combination of run-time error fitness and 

output fitness is used as the program’s fitness. The following subsections report the results 

and our analysis.

D.2 The General Even-Parity Problem

This problem has been described in Section 6.4. The fitness function for this problem consists 

of two parts: the first part evaluates the satisfaction o f the run-time error constraint (run-time 

error fitness) and the second part evaluates the correctness of the output (output fitness). 

Moreover, output fitness is weighted as twice as important as run-time error fitness, i.e. 1.0 

Vs. 0.5 (see Section 6.6.2).

The first experiment took 70 minutes to complete. Within the 100,000 randomly gener­

ated programs, 3 of them are correct solutions. Hence, the “effort” required to find a solution 

is 33,333 programs. The average fitness of the programs is 4.31351 where -1.6882 is the aver­

age run-time error fitness and 6.00171 is the average output fitness.

For the second, third and fourth experiments, each run took about 9 minutes to complete. 

The results o f these three experiments are presented in Figure D. 1
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Figure D .l: Experimental results for the general even-parity problem.

Figure D. 1 (A ) sh ow s the probability o f  su ccess o f  the three experim ents. With the application  

o f  genetic operations (flatFitness), 7 out o f  tlie 10 m ns have found solu tions (the probability  

o f  su ccess is 70%). Added w ith a fitness function (that evaluates the satisfaction o f  run-time 

error constraint) to select 'Tit” programs for reproduction, 9 out o f  the 10 runs have found 

solutions (the probability o f  su ccess is 90% ). Extending this fitness function to evaluate the 

correctness o f  the output, 8 out the 10 runs have found solutions (the probabilitv o f  su ccess is 

80%). A ltliough errorFitness has the highest probability o f  success, it requires m ore genera­

tions to find a solution. Consequently, its required “effort” to find a solution is higher than the 

other tw o approaches (see Figure 0 .4 (A )) .

Figure D .l  show s that w ithout the guidance o f  a fitness function (flatF itness), genetic
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operations search solutions in an ad-hoc manner. In Figure D .l(C), its average run-time error 

fitness gets worse as the generations progress. The average output fitness, although it does not 

decrease, improves very slowly during the run (see Figure D. 1(D)). As a result, the number of 

correct solutions found in the population increases slowly (see Figure D. 1(B)).

When genetic operations are combined with fitness-based selection, evolution happens. 

In the third experiment, evolution is directed toward solutions that do not violate the run-time 

error constraint (errorFitness). Consequently, the average run-time error fitness improves very 

fast. At generation 6, the population contains no programs with mn-time error (see Figure

D.l(C)). Genetic operations are applied randomly within the set of programs that satisfy the 

run-time error constraint. Figure D. 1 (D) shows that these operations have improved the aver­

age fitness of the population. Consequently, the number o f correct solutions found in the pop­

ulation increases faster than that using genetic operations alone (see Figure D.l(B)).

With a fitness function which guides GP to evolve solutions that not only satisfy the run­

time error constraint but also produce correct outputs (fullFitness), programs with run-time 

error were eliminated even faster than the errorFitness approach (see Figure D.l(C)). This 

suggests that programs without run-time error also produce better outputs. After generation 4, 

genetic operations are solely guided by output fitness. As shown in Figure D .l (D), this guid­

ances has made genetic operations to improve output fitness faster than that without guidance 

(errorFitness). Consequently, the number of correct solutions in the population increases 

much faster than the errorFitness approach (see Figure D.l(B)).

The results o f the third and the fourth experiments show that a genetic search guided by 

fitness provides a systematic way to find solutions. During the search process, solutions are 

improved gradually and consistently. At the end, even if a perfect solution is not found, an 

approximate solution is guaranteed.

D.3 The Nth Program

The n t h  program is explained in Section 5.4.1. The fitness function for this program has 

three parts; the first part evaluates the correctness o f the output (output fitness), the second 

part evaluates the satisfaction of the empty-list run-time error constraint (empty-list error fit­

ness) and the last part evaluates the satisfaction o f the recursion run-time error constraint 

(recursion error fitness). With one more component, this fitness function is more complicated 

than that for the e v e n - p a r i t y  problem. Moreover, unlike the e v e n - p a r i t y ,  the three 

components of the fitness function are given equal weight. However, due to the ways that the 

two run-time errors are handled, more weight is given to the run-time errors (see Section
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5.4.1).

The first experiment took 90 minutes to completed Within the 100,000 randomly gener­

ated programs, none of them is a correct program. The average fitness is -121.266 where 

7.342464 is the average output fitness; -41.9595 is the average empty-list error fitness and 

-86.6488 is the average recursion error fitness.
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Figure D.2: Experim ental results for the nth program .

1. The experiments were conducted through the internet which took longer than normal due to 
network delay. Also, the experiments used my old code which implemented population as a 
list (an inefficient data structure for updating), hence required more time to run.
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Each run for the second, third and fourth experiments took about 60 minutes to completed 

Since this experiment used a steady-state replacement, there is no concept o f “generation”. 

Instead, the data are reported every 3,000 (the size of the population) programs were pro­

cessed. The results of these three experiments are presented in Figure D.2.

For these three sets o f experiments, only the one which applied genetic operations with 

full fitness has found correct n t h  programs. Within 10 runs, 4 o f them found a solution. The 

probability of success is 40%. Moreover, all the successful runs found a solution before 

12,000 programs were processed (see Figure D.2 (A)).

Similar to the results from the e v e n - p a r i t y  experiments, genetic operations applied 

on randomly selected programs do not provide a consistent improvement o f the solutions. 

Although the average empty-list error fitness increases (see figure D.2 (C)), the average out­

put fitness and recursion error fitness decrease as the number o f programs processed 

increases. Consequently, no solution was found at the end of the 10 runs.

When genetic operations were guided by a fitness function to evolve programs which 

satisfy the two run-time error constraints (errorFitness), both the average empty-list and 

recursion error fitness improve very fast during the runs. After 3,000 genetic operations, all 

programs with run-time errors were eliminated from the population (see Figure D.2 (C) & 

(D)). Unfortunately, this “biased” selection also eliminated potential good programs from the 

population. As shown in Figure D.2 (B), applying genetic operations randomly on the set of 

programs which satisfy the run-time error constraints does not improve output fitness (due to 

premature convergence). Consequently, no solution was found at the end o f the 10 runs.

Using the combination of run-time error and output fitness to determine the selection of 

programs for reproduction, correct n t h  programs have emerged during the runs. At the 

beginning of the evolutionary process, programs with recursion error were eliminated from 

the population very quickly (see Figure D.2 (D)). The evolution became a competition 

between programs with good output fitness and good empty-list error fitness. This result con­

firms our analysis in Section 5.4.1. Between the processing of 6,000 and 8,000 programs, the 

average output fitness increases while the average empty-list error fitness decreases, i.e. evo­

lution is driven by the output fitness. After that, both output and empty-list fitness improve 

consistently (see Figure D.2 (B) & (C)). As a result, 4 o f the 10 runs have found a correct n th  

program.

D.4 The Map Program

The map program is explained in Section 5.4.2. The fitness function for this program has four
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parts: the first part evaluates the correct length o f the output (length fitness), the second part 

evaluates the correct contents o f the output (output fitness), the third part evaluates the satis­

faction of the empty-list run-time error constraint (empty-list error fitness) and the last part 

evaluates the satisfaction o f the recursion run-time error constraint (recursion error fitness). 

With one more component, this fitness function is more complicated than that used to evolve 

n t h  program. Moreover, unlike the n th ,  the four components o f the fitness function are 

weighted with different importance. With the addition of an extra pressure caused by the two 

run-time error handling methods, the evolutionary process of this program becomes very 

complicated. Consequently, the generation of the correct map program is harder than the gen­

eration of the correct n t h  program (see Section 5.4.2).

The first experiment took 90 minutes to complete*. Within the 100,000 randomly gener­

ated programs, none o f them is a correct program. The average fitness is -82.6504 where - 

19.9724 is the average length fitness; 0.0976 is the average output fitness; -27.9946 is the 

average empty-list error fitness and -34.7787 is the average recursion error fitness.

Each run in the second, third and fourth experiments took about 120 minutes to

complete*. The results are presented in Figure D.3.

Among these GP runs, only those which applied genetic operations with full fitness 

function have found correct map programs. There are 3 such successful runs within 10 trials. 

The probability of success is thus 30%. All correct solutions were found before 35,000 pro­

grams were processed.

Applying genetic operations on randomly selected programs does not generate better 

programs than those created using random search (initial population). Figure D.3 (A), (B), (C) 

& (D) show that the four average fitness stay pretty much the same as the initial population 

through out the run.

When genetic operations were directed to evolve programs which satisfy the two run­

time error constraints, both the average empty-list and recursion error fitness improved (see 

Figure D.3 (C) & (D). However, similar to the results of n t h ,  the average length and output 

fitness do not improve at all through out the runs. Consequently, no solution was found at the 

end o f the 10 runs.

Using the combination o f run-time errors, length and output fitness to select programs 

for reproduction, correct map programs have emerged during the runs. Because evolution is 

pulled toward different directions by the four different criteria, the 4 fitness graphs have very 

interesting shapes (see Figure D.3 (A), (B), (C) & (D)).
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Figure D.3: Experim ental results for the m ap program .

At the very beginning of the evolution (before 20,000 programs were processed), recursion 

error fitness dominates evolution because it is weighted the most in the fitness function (see 

Section 5.4.2). The average output and length fitness also improve (see Figure D.3 (A) & 

(B)), which indicate that programs without recursion error also produce more accurate out­

puts. The empty-list error fitness, however, does not increase consistently during this period 

o f time.This result can be explained by the sea-saw effect described in Appendix A.

After most of the programs with recursion error were eliminated from the population.
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empty-list error fitness becomes the dominant factor to drive evolution. Between the process­

ing o f 20,000 and 35,000 programs, its fitness improved very fast. However, both output and 

length fitness decreased.

After 35,000 programs were processed, the population contained no program with recur­

sion errors. Since the empty-list error fitness was reasonably good (-5), the evolution became 

focused on improving output and length fitness. As shown in Figure D.3 (A) & (B), their fit­

ness values increase very fast. At a result, 3 of the 10 runs have generated correct map pro­

grams.

D.5 Discussion

Based on the experimental results, we will address the questions posed at the beginning of the 

appendix. Random sampling o f the set of type-correct programs has found correct general 

e v e n - p a r i t y  program, but not n t h  nor map programs. Moreover, the effort required to 

find the correct e v e n - p a r i t y  using random search is 33,333 (see Section D.2), which is 

more than that required by genetic operations or evolutionary search (see Figure D.4 

(A)).These results suggested that the good performance of functional GP on these 3 problems 

can’t be achieved by random sampling of the set of type-correct programs.

Genetic operations on randomly selected programs did not provide better performance 

than random search. As shown in Figure D.4 (B), (C) and (D), this approach generates aver­

age fitness that is about the same as that o f the initial generation throughout the runs. In fact, 

it even caused the fitness to decrease with the e v e n - p a r i t y  problem. This can be 

explained by perceiving genetic operations as performing random search within the popula­

tion. Instead o f the whole search space of all possible solution to explore, genetic search is 

restricted within the population. For some problems, such as n t h  and map, this constraint 

does not have an effect on the performance. For others, such as e v e n - p a r i t y ,  this lack of 

diversity causes genetic search to perform worse than random search.

Genetic operations guided by a fitness fimction towards programs without run-time 

errors have successfully eliminated all programs with run-time errors from the population. 

This leads to the random application o f genetic operations within the set o f programs that sat­

isfy the run-time error constraints. With the e v e n - p a r i t y  problem, this set is the promis­

ing area o f search space, i.e. programs without run-time error also produce better outputs. 

Hence, the random genetic operations have improved population fitness (see Figure D.3 (B)). 

However, this is not the case with n t h  or map programs. The restricted set has redueed pro­

gram diversity and prevented the improvement of population fitness (see Figure D.4 (C) &
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(D)).^ Based on these results, we conclude that the good performance o f functional GP on 

these 3 problems can’t be achieved by applying genetic operations randomly in the set of 

type-correct programs that satisfy run-time error constraints.
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Figure D.4: Sum m ary of perform ance.

The good performance of functional GP on n t h  and map programs is a result of genetic

2. With the map experiments, programs with b o t h  run-time errors are completely eliminated 
from population after 35,000 programs are processed.
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search guided by the fitness function towards a correct solution. Although the two fitness 

functions are designed with different emphasis, evolution complies the law of “survival of the 

fittest” and enables programs which most satisfy the fitness function to emerge.

With n t h  program, the fitness function and run-time error handling methods are 

designed to eliminate programs with recursion error from the population first (see Table 5.2). 

Indeed, this is exactly what has happened in our experiments. This leads the evolution to 

become a process of competition between programs with good empty-list fitness and good 

output fitness. Initially, output fitness drives the evolution (population input fitness improves 

very fast). After a while, both empty-list error fitness and output fitness improve consistently. 

The experimental results indicate that this fitness function has directed genetic operations to 

find correct n t h  programs successfully.

With map program, the fitness function and run-time error handling methods are 

designed to eliminate programs with recursion error from the population first (see Table 5.4 & 

5.5). Indeed, this has also happened in our experiments.This makes the evolution become a 

process of competition between programs with good empty-list fitness, good length fitness 

and good output fitness.This competition process, however, is complicated as the three fitness 

values seem to relate to each other in ways that cause the see-saw effects to appear in various 

stages of the evolutionary process (see Section D.4). Nevertheless, this fitness function has 

directed genetic operations to find correct map programs successfully.

The experimental results for the e v e n - p a r i t y  problem suggested a similar conclu­

sion yet the search space is so small that the performance advantage provided by genetic oper­

ations with full fitness (13,000) over other method (25,000 by errorFitness and 19,500 by flat 

Fitness) is not as obvious as that in the other two problems (see Figure D.4 (A)). Nevertheless, 

the fitness function has successfully directed evolution to find correct e v e n - p a r i t y  pro­

grams.

The fitness function and run-time error handling method are designed to give more 

weight to output fitness (see section 6.6.2). However, the experimental results show that most 

programs with run-time error also can’t produce good outputs, i.e. not many programs belong 

to the third category in Table 6.1. Consequently, all programs with run-time error have bad fit­

ness (-5) and are eliminated from the population first. The evolution is then solely directed by 

output fitness. As shown in our experimental results, this fitness function has directed genetic 

operations to find correct e v e n - p a r i t y  programs successfully.
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