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Among dementia-like diseases, Alzheimer disease (AD) and vascular dementia (VD) are

two of the most frequent. AD and VD may share multiple neurological symptoms that

may lead to controversial diagnoses when using conventional clinical and MRI criteria.

Therefore, other approaches are needed to overcome this issue. Machine learning

(ML) combined with magnetic resonance imaging (MRI) has been shown to improve

the diagnostic accuracy of several neurodegenerative diseases, including dementia. To

this end, in this study, we investigated, first, whether different kinds of ML algorithms,

combined with advanced MRI features, could be supportive in classifying VD from AD

and, second, whether the developed approach might help in predicting the prevalent

disease in subjects with an unclear profile of AD or VD. Three ML categories of algorithms

were tested: artificial neural network (ANN), support vector machine (SVM), and adaptive

neuro-fuzzy inference system (ANFIS). Multiple regional metrics from resting-state fMRI

(rs-fMRI) and diffusion tensor imaging (DTI) of 60 subjects (33 AD, 27 VD) were used

as input features to train the algorithms and find the best feature pattern to classify VD

from AD. We then used the identified VD–AD discriminant feature pattern as input for the

most performant ML algorithm to predict the disease prevalence in 15 dementia patients

with a “mixed VD–AD dementia” (MXD) clinical profile using their baseline MRI data. ML

predictions were compared with the diagnosis evidence from a 3-year clinical follow-up.

ANFIS emerged as the most efficient algorithm in discriminating AD from VD, reaching

a classification accuracy greater than 84% using a small feature pattern. Moreover,

ANFIS showed improved classification accuracy when trained with a multimodal input

feature data set (e.g., DTI + rs-fMRI metrics) rather than a unimodal feature data set.
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When applying the best discriminant pattern to the MXD group, ANFIS achieved a

correct prediction rate of 77.33%. Overall, results showed that our approach has a

high discriminant power to classify AD and VD profiles. Moreover, the same approach

also showed potential in predicting earlier the prevalent underlying disease in dementia

patients whose clinical profile is uncertain between AD and VD, therefore suggesting its

usefulness in supporting physicians’ diagnostic evaluations.

Keywords: Alzheimer disease, vascular dementia, machine learning, resting state fMRI, DTI

INTRODUCTION

Alzheimer disease (AD) is the primary and most frequently
diagnosed dementia disease in elderly subjects. At a
physiological level, AD is a progressive neurodegenerative
disease characterized by the accumulation of amyloid-β plaques
and tau-related neurofibrillary tangles mainly affecting the
prefrontal and mesial-temporal areas of the brain. AD is
associated with memory dysfunction and severe cognitive
decline caused by a dramatic shrinking of the brain tissues (i.e.,
atrophy) and neural circuitries (Reitz et al., 2011; Serrano-Pozo
et al., 2011). The accurate diagnosis of AD is crucial for patients’
management and treatment, but it is often challenging, in
particular when AD-like symptoms overlap with cerebrovascular
changes, which are also a characteristic trait of vascular dementia
(VD) (Groves et al., 2000). From an epidemiological point
of view, VD is considered the second most prevalent type of
dementia after AD. VD represents a clinical syndrome that
includes a wide spectrum of cognitive dysfunctions resulting
from brain tissue damage caused by vascular disease that can
lead to large artery strokes, small vessel disease (SVD), and
other less-frequent vascular lesions (Micieli, 2006; Vinters et al.,
2018). From a clinical point of view, VD also represents a great
challenge because of its relatively high prevalence and lack of
effective treatment options (Baskys and Hou, 2007). Indeed,
although cognitive impairment following stroke generally tends
to recede, vascular dementia due to SVD is often progressive and
may be confused with AD, possibly leading to delays and errors
in identifying the best treatment for each individual.

A relevant help in characterizing dementia has come from
advanced magnetic resonance imaging (MRI) techniques, such
as diffusion tensor imaging (DTI) and resting-state functional
magnetic resonance imaging (rs-fMRI) (Agosta et al., 2017;
Filippi et al., 2019). A recent DTI study has shown that AD
and VD are characterized by distinct patterns of white matter
(WM) changes, therefore suggesting DTI parameters as valid
biomarkers to investigate the pathogenesis of dementia (Palesi
et al., 2018). Several studies have instead used rs-fMRI to
investigate the brain functional connectivity (FC) changes caused
by neurodegeneration, providing important insights into the
pathophysiology of dementia (Castellazzi et al., 2014; Buckley
et al., 2017) as well as into the mechanism of disease progression
(Dillen et al., 2017). However, despite the large number of
MRI studies focused on dementia, the identification of MRI
biomarkers to clearly differentiate the AD profile from VD
remains difficult.

Improvements in imaging and the advent of affordable
powerful computational resources have created a fertile ground
for the development of machine learning (ML) approaches,
which represent a pool of qualified methods for exploring data
to discover already present unknown patterns (Bishop, 2006).
Indeed, ML techniques, combined with MRI-derived indices, i.e.,
quantitative MRI (qMRI), have been used to identify AD subjects
from normal elderly people (Long et al., 2017). Other studies
have shown that the combination of ML with qMRI represents
a suitable approach not only to automatically identify dementia
diseases, but also to predict the disease progression as well as the
conversion from a mild cognitive impairment (MCI) to a more
severe condition, such as AD (Dyrba et al., 2015; Dallora et al.,
2017; Pellegrini et al., 2018). Moreover, a recent study showed
that ML combined with volumetric measurements derived from
structural MRI represents a useful approach for the differential
diagnosis between AD and VD (Zheng et al., 2019).

Compared to earlier pieces of work, this study aims to
establish the potential ofML algorithms combined with advanced
qMRI metrics to automatically discriminate AD from VD.
Moreover, we evaluate which algorithms are more suitable in
enhancing classification accuracy when using multimodal MR
features rather than unimodal data. Finally, we test whether
this approach is able to give an earlier and more precise
indication (compared to conventional clinical evaluations) about
the prevalent underlying disease (i.e., AD rather than VD) in
a pool of patients diagnosed with a “mixed” VD–AD dementia
(MXD) profile.

MATERIALS AND METHODS

Subjects
MRI acquisitions were performed on a total data set of 77
subjects with dementia. Thirty-three subjects diagnosed with
AD (age 72.8 ± 7.3), and 27 subjects diagnosed with VD (age
76.6 ± 7.7) were recruited for the study. A third group of
15 subjects diagnosed with mixed AD–VD dementia (MXD,
age 76.3 ± 6.7) was included to test the potential of the
proposed ML approach in predicting the prevalent underlying
dementia disease. AD, VD, and MXD patients were selected
on the basis of the NINCDS2-ARDA criteria (McKhann et al.,
2011) among those regularly attending the Neurological Institute
IRCCS Mondino Foundation (Pavia, Italy). Exclusion criteria
were age>80 years and significant medical or neurological (other
than AD or VD) or psychiatric disease. Patients with significant
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central nervous system (CNS) disorders (e.g., Parkinson’s
disease and other extra-pyramidal disorders, multiple sclerosis,
epilepsy, clinical evidence of acute ischemic or hemorrhagic
stroke, known intracranial lesions, systemic causes of subacute
cognitive impairment, and/or previous head injury with loss of
consciousness) were excluded, too. All subjects were scanned
under an institutional review board (IRB) approved protocol
after obtaining written informed consent from them or their
lawful caregiver.

Clinical and Neuropsychological
Assessment
All subjects underwent clinical and neuropsychological
evaluation to assess their global cognitive status using the
Mini-Mental State Examination (MMSE) (Folstein et al., 1975)
and the following cognitive domains: attention (Stroop test,
trail making test A and B, attentive matrices), memory (digit
and verbal span, Corsi block-tapping test, logical memory,
Rey–Osterrieth complex figure recall, Rey 15 item test), language
(phonological and semantic verbal fluency), executive function
(Raven’s matrices,Wisconsin card sorting test, frontal assessment
battery), visuospatial skills (Rey-Osterrieth complex figure)
(Carlesimo et al., 1996; Bianchi and Dai Prà, 2008). Raw scores
were corrected for age and education and then transformed
into equivalent scores, ranging from zero (pathological) to four
(normal). For each cognitive domain, a weighted score was
obtained averaging the value of the equivalent scores of all tests
belonging to that specific cognitive domain (van Dijk et al., 2008).
Clinical classification of AD or VD was performed according to
the abovementioned criteria and was further refined by excluding
patients with mixed dementia according to the Hachinski scale
(HS) with pathology-validated cutoffs (Hachinski et al., 1975;
Moroney et al., 1997): pure VD (HS≥ 7), pure AD (HS≤ 4), and
MXD (HS 5 and 6). Vascular alterations were semi-quantitatively
rated on radiological bases by evaluating white matter (WM)
leukoaraiosis using the Fazekas scale (Fazekas et al., 1987).

MRI Acquisitions
All subjects underwent MRI examination using a 3T Siemens
Skyra scanner (Siemens, Erlangen, Germany) with a 32-channel
head coil. The MRI acquisition protocol included (1) rs-fMRI:
T2∗-weighted gradient echo echo-planar (GRE-EPI) sequence
(TR/TE = 3,010/20ms; voxel size = 2.5mm isotropic, FOV
= 224mm, 60 slices, 120 volumes) and (2) DTI: twice
refocused spin echo echo-planar (SE-EPI) sequence (TR/TE
= 10,000/97ms, 70 slices with no gap, acquisition matrix =

120×120, voxel size = 2mm isotropic, 64 diffusion-weighted
directions, b = 1,200 s/mm2, 10 volumes with no diffusion
weighting). A high-resolution 3-D sagittal T1-weighted (3-D T1)
scan (MPRAGE sequence: TR/TE/TI = 2,300/2.95/900ms, flip
angle 9◦, 256 slices, voxel size = 1 × 1 × 1.2 mm3, FOV =

270mm) was also acquired for anatomical reference.

Image Processing and Data Analysis
Image analysis was carried out using the FSL tools (FMRIB
Software Library, version 5.0.9, http://www.fmrib.ox.ac.uk/fsl/)
and Matlab (v. R2018b, The Mathworks, Inc., Natick, MA).

DTI Analysis
Data Preprocessing
First, for each subject, the 10 volumes acquired with no diffusion
weighting (b0 = 0 s/mm2) were averaged to obtain a mean
b0 volume. DTI volumes were then corrected for motion and
eddy current distortions using the eddy tool, which aligns the
diffusion-weighted volumes to themean b0 image. A binary brain
mask was obtained from the mean b0 volume using the brain
extraction tool (BET). DTIFIT was used to generate individual
fractional anisotropy (FA) and mean diffusivity (MD) maps. For
each subject, the 3-D T1 images were first segmented with the
FAST algorithm of FSL to produce theWMandGMmaps (as well
as whole brain by their addition). The FA map was then aligned
to the respective 3-D T1 volume using a full-affine registration
with a windowed-sinc interpolation (using a Hanning window
of size 7 × 7 × 7) using the FMRIB’s linear image registration
tool (FLIRT). The mean FA value of the brain was obtained by
overlapping the brain mask with the aligned FA map.

Tract-Based Spatial Statistics
Tract-based spatial statistics (TBSS) was performed on DTI
images to investigate the voxel-wise distribution of FA and
MD differences among groups. This analysis was carried out
using the TBSS tool as implemented in FSL and following the
pipeline reported in Smith et al. (2006). The FA maps of all the
subjects were aligned to the best target and then to a common
space (MNI152 space) by non-linear registration and averaged to
obtain a mean FA skeleton. Finally, each subject’s aligned FA data
were projected onto the mean FA skeleton. MD maps were also
projected into the mean FA skeleton using the same projector
vectors that were obtained in the FA maps alignment. A GLM
was applied to assess differences in FA and MD between patients
and HC. The results of this study have been fully reported in
Palesi et al. (2018).

Features Extraction From DTI
The areas that resulted in being particularly relevant from the
TBSS analysis were saved as regions of interest (ROIs, see
Figure 1A and Table 1). For each ROI, we then extracted mean
FA and MD values. These extracted values were used as DTI-
derived features for the ML approach of this study.

rs-fMRI Analysis
Data Preprocessing
Individual subject’s preprocessing consisted of motion
correction, brain extraction, spatial smoothing using a Gaussian
kernel of full-width-at-half-maximum (FWHM) of 5mm, and
high-pass temporal filtering equivalent to 150 s (0.007Hz).
For each subject, rs-fMRI volumes were then registered to the
corresponding structural 3-D T1w scan using the FMRIB’s
linear image registration tool (FLIRT) and subsequently to
standard space (MNI152) using FMRIB’s non-linear image
registration tool (FNIRT) with default options. Moreover, to
reduce the nuisance effects of non-neuronal BOLD fluctuations,
white matter (WM) and cerebrospinal fluid (CSF) signals were
regressed out from rs-fMRI data.
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FIGURE 1 | (A) Brain areas from which DTI features (FA, MD) have been extracted; (B) the 116 areas from the AAL atlas used to parcellate the brain and then to

calculate the rs-fMRI-derived graph theory (GT) metrics.

TABLE 1 | Overview of the imaging features used to form the three data sets: DTI,

fMRI GT, and DT + fMRI GT data sets.

Dataset ROI Imaging features N

features

DTI Corpus callosum (genu,

body anterior, body

posterior, splenium)

thalamus (left, right)

hippocampus (left, right)

cingulum (left, right)

FA, MD 20

fMRI GT 116 AAL areas Nodal degree (DEG)

participation coefficient (PC)

betweenness centrality (BC)

clustering coefficient (CC)

normalized local efficiency

(Elocnorm)

global efficiency (Eglob)

graph average CC (Cm)

698

DTI + fMRI

GT

Corpus callosum (genu,

body anterior, body

posterior, splenium)

thalamus (left, right)

hippocampus (left, right)

cingulum (left, right)

116 AAL areas

FA, MD

nodal degree (DEG)

participation coefficient (PC)

betweenness centrality (BC)

clustering coefficient (CC)

normalized local efficiency

(Elocnorm)

global efficiency (Eglob)

graph average CC (Cm)

718

Brain Network Computation
For each subject, preprocessed rs-fMRI images were parcellated
using the automated anatomical labeling (AAL) atlas into 116
distinct areas (Tzourio-Mazoyer et al., 2002) that defined the
nodes of the brain network (Figure 1B; see also Table S1).
For each AAL area, the mean rs-fMRI signal was calculated
by averaging the time series of all the voxels within the
AAL region. The edges of the brain network were defined

as the functional connectivity of all pairs of 116 AAL
areas using Pearson’s correlation coefficient. This operation
generated for each subject a weighted undirected functional
connectivity matrix, which corresponded to a dense network.
Each subject-specific connectivity matrix was then thresholded
by preserving a proportion P (0 < P < 1) of the strong
weights, which corresponds to the number of the retained
strong weights divided by the total number of weights. All
diagonal weights (self-connections) were set to zero. P was set
at 12% to obtain the optimal matrix sparsity as suggested by
Rubinov and Sporns (2010).

Graph Metrics Computation
Each graph (i.e., thresholded correlation matrix) was then
treated in Matlab with the Brain Connectivity Toolbox (BCT) to
compute different metrics from graph theory (GT) to investigate
the properties of the 116 AAL brain regions. Specifically, three
measures of functional segregation: the clustering coefficient
(CC), the graph average CC (Cm), and the normalized local
efficiency (Elocnorm) were calculated to characterize the ability
of the brain for specialized processing to occur within a
densely interconnected group of regions. A functional integration
measure, global efficiency (Eglob), was used to assess the ability
of the brain to rapidly combine specialized information from
distributed regions. Moreover, three local nodal measures were
calculated: nodal degree (DEG), participation coefficient (PC),
and betweenness centrality (BC) (Rubinov and Sporns, 2010).

Data Sets for Machine Learning
All MRI features were obtained from the baseline visit of the
patients. For each subject, the measures extracted from DTI (i.e.,
mean FA and MD values from 10 selected brain areas) and rs-
fMRI (graph metrics from 116 AAL areas) were combined in a
vector of parameters (i.e., a record). The records of all subjects
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were then collected to create the following data sets (see also
Table 1):

1. DTI data set (unimodal data set): This contained only theDTI-
derived metrics (20 features per subject). Therefore, it was
considered a unimodal data set.

2. GT data set (unimodal data set): This contains the 698 graph
theoretical metrics per subject, derived from rs-fMRI images.
This was also considered a unimodal data set.

3. DTI + GT data set (multimodal data set): This was obtained
unifying (1) and (2) into a single data set, which resulted in
718 features per subject.

Each data set was screened to remove outliers by deleting those
records that contained more than 30% of features laying three
standard deviations (SD) away from the sample’s mean. The
threshold of 3 SD was chosen as a good value to remove
the spurious feature values, which definitively fell outside the
99.7% of their distributions, from the database (Rousseeuw
and Hubert, 2011). Different thresholding percentages on the
subjects’ features were tested, varying between 10 and 80%, and
the 30% threshold resulted in the best compromise between data
cleaning and data preservation. Moreover, for each data set, data
that survived the outlier-removal procedure were standardized
(i.e., z-score normalized) prior to beginning the following steps
of the analysis. In order to check whether multimodal features
were superior to unimodal ones in separating the two patients’
groups, each ML algorithm was run separately on three distinct
data sets: DTI data set (unimodal), GT fMRI data set (unimodal),
and DTI+ fMRI GT data set (multimodal).

Feature Selection
Not all imaging metrics are useful for classification because
of their intrinsic redundancy. Feature selection is, therefore,
important for extracting the most informative features for the
specific task. Moreover, a high-dimensional data set may lead
to over-fitting issues. For all these reasons, in this paper, the
ReliefF feature selection algorithm was applied to each data set
(see section Datasets for Machine Learning) prior to running
any ML algorithm (Kononenko et al., 1997). This procedure
produced a ranking of features according to their relevance in
determining the class value of the data set records. Indeed, this
step allowed us to select only the most informative features
(and to discard the irrelevant ones) in order to improve the ML
algorithms’ performances. After the feature-selection stage, the
ML algorithms identified as promising for the task of the study
were used to construct the classification models. More details
about how ReliefF was applied in our analyses have been fully
reported in section Cross Validated Accuracy.

Machine Learning Analysis
Three supervised ML approaches were considered for binary
classification: artificial neural network (ANN), support vector
machine (SVM), and adaptive neuro-fuzzy inference system
(ANFIS). All the methods were implemented in Matlab as part of
a dedicated image-based tool. The work was organized into two
main steps as follows.

The selected ML algorithms (i.e., classifiers) were first run
separately to

– AIM 1 (model construction and validation): For each ML
algorithm, a tuning of the relevant parameters was performed
in order to identify the optimal setting to maximize the
algorithm classification performance. We then proceeded
by training the model and testing it independently using
a balanced cross-validation approach (see section Cross
Validated Accuracy). For each algorithm, for each data set
(as in section Datasets for Machine Learning), we identified
the best feature set to discriminate AD from VD as the one
associated with the best classification performance.

Finally, we selected only the ML algorithm with the best
classification performance in the binary task and we used it to

– AIM 2 (prediction): We predicted the prevalent underlying
disease in the MXD subjects, using as input the discriminant
feature pattern previously identified by the selected algorithm
during the training step.

Artificial Neural Network (ANN)
ANN are a family of learning methods inspired by biological
neural networks (Haykin, 1998). In this study, two different
ANN models have been implemented: multilayer perceptron
(MLP) (Rumelhart et al., 1986; Rumelhart and McClelland, 1987;
Geva and Sitte, 1992) and radial basis function network (RBFN)
(Acosta, 1995; Bishop, 2006).

Multilayer perceptron (MLP): The MLP implementation for
this study was performed in Matlab and was composed of three
layers: an input layer with n nodes corresponding to the n input
features from the calculated data set, a hidden layer with eight
nodes and a one-node output layer. The output node resulted
in either zero or one, respectively, for the AD or VD class. A
sigmoidal activation function (tansig) was used to transform data
between the input and the hidden layer as well as between the
hidden layer and the output layer. A Bayesian regularization
back-propagation approach was used to train the MLP network
(Bishop, 2006).

Radial Basis Function network (RBFN): This is a variant of the
three-layer feed-forward neural network, which uses radial basis
(Gaussian) functions as its activation functions (Bishop, 2006).
In this study, the RBFN was implemented in Matlab using the
newrbe function with the spread constant for the radial basis layer
set equal to 0.1.

Support Vector Machine (SVM)
SVM uses training data to find the maximal margin hyperplane
that best divides data belonging to different groups or classes
(Cortes and Vapnik, 1995). The separating hyperplane is selected
to have the largest distance from the nearest training data points
of any class. In the case of non-linearly separable data, a non-
linear kernel function is used to project them into a higher
dimensional space where they can be linearly separated. For the
present study, two SVM architectures with a different non-linear
kernel function were used: SVM with a radial basis function
(RBF) kernel (SVMRBF) and SVM with an MLP sigmoid-like
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kernel (SVMMLP). For each SVM architecture, an iterative grid
search was performed in order to find the optimal combination
of C, σ (for SVMRBF), α, and c (for SVMMLP) to obtain the best
SVM performance with our data.

Adaptive Neuro-Fuzzy Inference System (ANFIS)
ANFIS is a class of ANN that represents a trade-off between
ANN and fuzzy logic systems, offering smoothness due to the
fuzzy control interpolation and adaptability due to the ANN
back-propagation (Zadeh, 1978). ANFIS incorporates both ANN
and fuzzy logic principles and converges the benefits from both
the methods in a single implementation. For this work, the
ANFIS algorithm has been used as implemented in the Fuzzy
Logic toolbox in Matlab using a Sugeno-type fuzzy inference
system (FIS) and Gaussian functions as membership functions
to specify the fuzzy sets. A hybrid learning algorithm, obtained
by combining the least-squares and back-propagation gradient
descent methods, was used to model the training data. For the
purposes of the study, ANFIS was run using 100 epochs.

The ML models implemented for the present study can be
considered as variants of the analog deep learning algorithms,
which differ from the ML ones for their ability to learn features
automatically at multiple levels, therefore allowing the system to
learn complex functions mapping the input to the output directly
from data (Goodfellow et al., 2016).

Cross-Validated Accuracy
To improve the classification performance robustness of each
ML method, for AIM1, we adopted a balanced Monte Carlo
10-fold cross-validation (CV) approach using 100 bootstraps.
Indeed, at each iteration, the CV algorithm divided the original
input data into 10 parts with the two classes (AD and VD)
equally represented. This operation resulted in the creation of
100 new different CV data sets. Specifically, for each CV data
set, for each ML algorithm, nine parts (i.e., 9-folds) were used
as training subset, and the remaining one part (i.e., 1-fold) was
used as testing subset. Moreover, the ReliefF feature-selection
algorithm described above (see section Feature Selection) was
here applied to each generated CV data set. For each classifier,
we considered the best classification performance, obtained over
the 100 bootstraps, and its related model and associated selected
features as final results. This approach allowed reduction variance
of the data, therefore reducing the chance of over-fitting or
bias errors.

Performance Comparison
In this study, an AD subject effectively classified as AD was
considered a true positive (TP), and a VD subject effectively
classified as VD was counted as a true negative (TN). An AD
subject classified as VD was considered a false negative (FN), and
a VD subject classified as AD was counted as a false positive (FP).
Given that, for each experiment, the classification performance of
the constructed model, varying the algorithm parameters as well
as the number of input features presented to it, was assessed by
calculating the classification accuracy (ACC) = (TP + TN)/(TP
+ TN + FP + FN), which denotes the probability of a correct
classification; sensitivity (SEN) = TP/(TP + FN), which scores

the ability of the model to detect a subject with a specific disease
in a population with more than one disease; specificity (SPE) =
TN/(TN+ FP), which scores the ability of the model to correctly
rule out the disease in a disease-free population; precision (PREC)
= TP/(TP + FP), which defines the proportion of positive
predictions; and negative predictive value (NPV) = TN/(TN
+ FN), which denotes the proportion of negative predictions
(Bishop, 2006). For SVMs, the mean ratio of support vectors
(SVr), calculated as the number of support vectors divided by
the number of training subjects, was also reported as a measure
of complexity degree of the models. The receiver operating
characteristic (ROC) curve was calculated for each implemented
model, and its area under the curve (AUC) was used to compare
the different classifiers’ performance (Hanley and McNeil, 1982).
For each performance score, the 95% confidence intervals (95%
IC) were computed using the Wilson score interval with the
continuity correction approach (Newcombe, 1998).

Prediction on MXD
The ML model that showed the highest classification
performance in AIM1 was then considered to fulfill the
prediction purposes of AIM2. To achieve this task, we considered
the AD–VD discriminant feature pattern that resulted from the
best performant classifier in AIM1. We then used this feature
pattern as input for the selected ML algorithm to predict the
prevalent underlying disease (i.e., AD or VD) in the MXD
subjects. Finally, for each MXD subject, the predicted class from
the ML algorithm on baseline MRI data was compared with the
patient’ 3-year follow-up clinical evaluation in order to assess the
reliability of the ML predictions as well as the potential of ML to
notify earlier (than clinical evidence) about the typology of the
patient’s dementia.

Non-imaging Statistics
Statistical analyses were carried out using SPSS (version
21.0; SPSS, Chicago, IL, USA). Demographic, behavioral, and
radiological continuous data were first tested for normality using
the Shapiro–Wilk test, and differences between groups were
assessed with different tests depending on the typology of the
variables (binary, normally or non-normally distributed). Chi-
square tests were performed to compare frequency distributions
of gender in the three groups. One-way analysis of variance
(ANOVA) with Bonferroni correction was used to assess
whether age was statistically different between groups (AD,
VD, and MXD). A non-parametric Kruskal–Wallis test was
applied to test differences between the groups in education
level, clinical indices (HS, Fazekas and AWMRC, see section
Clinical and Neuropsychological Assessment for details),
and neuropsychological scores (attention, memory, language,
executive and visuospatial cognitive domains). A non-parametric
Mann–WhitneyU-test was performed to test differences between
paired groups in HS and Fazekas. A further Mann–Whitney
U-test was applied to test differences in the features that the most
performant ML algorithm identified as relevant to separate AD
and VD.
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TABLE 2 | Demographics of AD, VD, and MXD groups.

AD VD MXD p

N 33 27 15

Sex (M/F) 15/18 3 /24† 7 /8† <0.05*

Age 72.88 ± 7.31 76.67 ± 7.77 76.33 ± 6.78 0.123

Education (years) 6.47 ± 3.26 5.52 ± 2.13 5.08 ± 1.65 0.363

MMSE 16.10 ± 6.32 17.89 ± 4.15 18.59 ± 4.17 0.245

Memory 0.65 ± 0.74 0.73 ± 0.61 0.64 ± 0.70 0.832

Attention 0.91 ± 0.90 0.71 ± 0.68 0.48 ± 0.53 0.185

Language 1.06 ± 1.26 1.02 ± 1.06 1.08 ± 1.48 0.986

Executive function 0.60 ± 0.91 0.45 ± 0.76 0.38 ± 0.87 0.665

Visuospatial skills 0.66 ± 1.41 0.52 ± 1.19 0.30 ± 1.25 0.682

Hachinski score (HS) 2.97 ± 0.84† 8.27 ± 1.58† 5.80 ± 2.11† <0.001*

Fazekas score 2.65 ± 1.27† 4.63 ± 1.52† 4.21 ± 1.82† <0.001*

Demographic and clinical scores for Alzheimer’s disease (AD), vascular dementia (VaD), and mixed VD-AD dementia (MXD) groups. Values are expressed as mean ± SD. MMSE, Mini

Mental State Examination. p-values show statistically significant differences between AD, VD and MXD groups. *p < 0.05 between AD and VD.
†
p < 0.05 between MXD and AD or VD

or between AD and VD. Statistically significant p-values have been highlighted in bold.

TABLE 3 | Classification performance scores obtained using data, respectively, from the DTI, GT fMRI, and DTI + GT data sets.

ACC (%) SENS (%) SPEC (%) PREC (%) NPV (%)

DTI DATASET

SVMRBF 79.75 (66,89) 68.00 (54,79) 91.50 (80,97) 88.89 (76,95) 88.89 (77,95)

SVMMLP 73.00 (59,84) 63.00 (49,75) 83.00 (70,92) 78.75 (65,88) 79.00 (65,88)

MLP 75.00 (61,85) 74.00 (60,85) 76.00 (62,86) 75.51 (62,86) 74.50 (60,85)

RBFN 60.25 (46,73) 65.00 (51,77) 55.50 (42,69) 59.36 (45,72) 38.34 (25,52)

ANFIS 83.50 (71,92) 81.00 (68,90) 86.00 (74,94) 85.26 (73,93) 79.90 (66,89)

GT fMRI DATASET

SVMRBF 81.00 (68-90) 93.50 (83,99) 68.50 (55,80) 74.80 (61,85) 74.80 (61,85)

SVMMLP 78.25 (64-88) 81.00 (68,90) 75.50 (62,86) 76.78 (63,86) 76.78 (63,87)

MLP 58.25 (44,71) 55.50 (42,69) 61.00 (47,74) 58.73 (45,72) 57.81 (43,70)

RBFN 55.75 (42,69) 55.50 (42,69) 56.00 (42,69) 55.78 (42,69) 17.06 (8,29)

ANFIS 82.75 (69,91) 73.50 (64,88) 92.00 (81,97) 90.18 (78,96) 73.60 (59,84)

DTI+GT DATASET

SVMRBF 84.75 (72,93) 84.00 (71,92) 85.50 (73,93) 85.28 (73,93) 85.28 (72,93)

SVMMLP 74.75 (61,85 65.00 (51,77) 84.50 (72,93) 80.75 (68,90) 80.75 (67,89)

MLP 76.75 (63,87) 74.00 (60,85) 79.50 (66,89) 78.31 (65,88) 75.35 (61.85)

RBFN 62.75 (49,75) 86.50 (74,94) 39.00 (27,53) 58.64 (45,71) 74.28 (60,84)

ANFIS 85.25 (73,93) 82.00 (69,91) 88.50 (77,96) 87.70 (76,95) 81.69 (68,90)

Each performance score is expressed as a percentage (%). For each score, the 95% IC is also reported in brackets. Classification performance scores (accuracy, sensitivity, specificity

and AUC) for pairwise classifiers are expressed as percentage (%) with 95% confidence intervals in brackets. AUC, Area under receiver operating characteristic curve. ANFIS emerged

as the most performant method in discriminating at baseline AD from VD independently of the data set (scores highlighted in bold).

RESULTS

Clinical Findings
The demographic and clinical characteristics of patients are
summarized in Table 2. Significant differences were found in
gender between AD and VD as well as between VD and MXD
groups. Fazekas and HS scores showed significant differences
between AD and VD. Significant differences were also found in
HSwhen comparingMXD vs. AD andVD groups. Fazekas scores
were also significantly higher in MXD compared to AD.

Classification Results
Three different kinds ofML algorithms (SVM, ANN, and ANFIS)
were used to identify the best feature pattern to classify AD from
VD. The analyses yielded the following results (details of the
classification performances of each classifier on the three data sets
have been fully reported in Table 3, Figure 2 and Table S2).

Classification using the DTI data set: ANFIS showed the best
classification performance in dividing AD from VD subjects,
reaching a classification accuracy (ACC) of 83.50% and area
under the ROC curve (AUC) equal to 83.72% (see Table 3
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FIGURE 2 | Details of the ROC curves and relative AUC (95% IC) values obtained from each run classifier (SVMRBF, SVMMLP, MLP, RBFN, and ANFIS) using input

data from the DTI data set (on the left), the GT fMRI data set (in the middle), and the DTI + GT data set (on the right).

TABLE 4 | Details (number of features, brain area, and MRI metric) of the discriminant feature pattern identified by ANFIS, which resulted the best classifier in separating

AD and VD using data from the multimodal data set (i.e., DTI + GT data set).

ACC (%) N features Area MRI metric ReliefF ranking score

ANFIS 85.25 10 L Thalamus FA 0.384

Corpus callosum body anterior FA 0.312

R Anterior Cingulum DEG 0.299

Corpus callosum genu FA 0.284

L Precuneus DEG 0.268

L Hippocampus FA 0.255

R Superior Parietal gyrus DEG 0.206

L Fusiform gyrus DEG 0.202

Corpus callosum body posterior FA 0.172

R Fusiform gyrus DEG 0.149

The listed features are reported reflecting the ranking order given by ReliefF (i.e., top feature corresponds to the most informative one). For each feature, the ReliefF ranking score has

also been added. L, left part; R, right part 2.

and Figure 2), using a feature pattern including only four FA
features from four brain regions, including the left hippocampus
and three areas of the corpus callosum (body anterior, genu,
and splenium, see Table S2). SVMRBF (C = 1, σ = 1.87, SVr
= 78.57%) also discriminated the two patient groups with a
relatively high ACC = 79.75% and AUC = 84.30%, using a
feature pattern of seven FA features from seven distinct brain
regions including both hippocampi, left cingulum, left thalamus,
and the corpus callosum (body anterior/posterior, genu, see
Table S2). The remaining ML algorithms (SVMMLP, MLP, and
RBFN) resulted instead in lower classification performance (ACC
≤ 75%) as reported in Table 3.

Classification using the GT fMRI data set: ANFIS reached
the highest performance score with ACC = 82.75%, AUC =

83.01% using 10 features (mainly DEG and Elocnorm) from nine
distinct brain areas, including bilateral superior parietal gyrus,
right anterior cingulum, left precuneus and cuneus, left superior
frontal gyrus, right postcentral gyrus, and bilateral fusiform
gyri (Table 3, Figure 2 and Table S2). SVMRBF (C = 0.14, σ

= 1.73, SVr = 98.21%) resulted in a relatively lower (than
ANFIS) performance, scoring ACC = 81% and AUC = 81%
using six features (mainly DEG and Elocnorm) from six distinct
brain regions, including left precuneus and cuneus, right middle

and left superior frontal gyri, right postcentral gyrus, and right
fusiform gyrus (Table S2). Moreover, SVMMLP (C = 0.37, α =

1, c = −1, SVr = 80.36%) showed a classification performance
closer (even lower) to those of ANFIS and SVMRBF, reaching
ACC= 78.25% and AUC= 75.50% (Table 3 and Figure 2) using
only three features (DEG and Eglob) from two distinct brain
areas: right fusiform and superior parietal gyri (Table S2). The
remaining ANN algorithms (MLP and RBFN) resulted, instead,
in poorer classification performance (ACC < 60%) as reported
in Table 3.

Classification using the DTI + GT data set: Even when using
the multimodal data set (DTI + GT), ANFIS showed the best
performance (Table 3 and Figure 2), scoring ACC= 85.25% and
AUC = 85.27% using a total of 10 features, including five FA
features fromDTI involving left hippocampus, left thalamus, and
corpus callosum (genu, body anterior/posterior) and five features
from GT fMRI, involving right anterior cingulum, right superior
parietal gyrus, left precuneus, and bilateral fusiform gyri (see
Table 4 andTable S2). After ANFIS, SVMRBF (C= 2.72, σ= 2.12,
SVr= 91.07%) resulted in the second most performant classifier,
reaching ACC = 84.75% and AUC = 84.63%, using a total of
nine features, including four FA features from DTI involving
left hippocampus, left thalamus, and corpus callosum (genu,
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FIGURE 3 | Predictions of the prevalent underlying disease (dark gray squares for AD, light gray squares for VD) on the MXD subjects performed by ANFIS using the

feature pattern reported in Table 4. ANFIS correctly predicted the class for 11 out of the 15 MXD subjects (77.33% correct prediction rate). A red asterisk highlights

the four subjects for whom ANFIS predicted a class that was in discordance with the clinical evidence at follow-up.

body anterior); and five features from GT fMRI, involving right
anterior cingulum, right superior parietal gyrus, left precuneus,
left cuneus, and right precentral gyrus (Table S2). The remaining
algorithms (SVMMLP, MLP, and RBFN) showed better results
when compared to the scores obtained using the unimodal data
sets but lower (ACC < 80%) than ANFIS performance overall
(see Table 3).

Prediction Results
ANFIS resulted in the most performant classifier in separating
AD from VD subjects (see Table 3), and its performance
was maximized when using feature patterns that included
multimodal features (i.e., combined DTI and GT features;
see Table 4). Therefore, ANFIS was chosen to perform the
subsequent analysis (i.e., AIM2 analysis). To achieve our AIM2
goal (prediction), the discriminant 10-feature pattern identified
at AIM1 (see Table 4) was used as input to ANFIS to make
predictions on the prevalent underlying disease (i.e., AD or
VD) in MXD subjects. According to the evidence of patients’
diagnosis from clinical evaluation at 3-year follow-up, ANFIS
correctly predicted the prevalent underlying disease for 11 of the
15 MXD subjects, which means a 77.33% correct prediction rate
(see Figure 3).

DISCUSSION

In this paper, ML algorithms were combined with advanced
qMRI metrics to assess their potential to automatically
discriminate AD from VD. First, quantitative metrics from DTI
(FA and MD) and rs-fMRI (GT metrics) were extracted and
used to build two unimodal data sets (DTI data set, GT fMRI
data set). Then, the two data sets were unified in order to
obtain a multimodal structural-functional data set (DTI + GT
data set). Multiple supervised ML algorithms were applied on
each data set, and classification results were obtained. Various
ML methods have been used in literature to identify dementia-
like diseases, including SVM with different kernels and ANNs,
such as RBFN, MLP, and ANFIS. We examined these classifiers
to find the most performant for our study. Finally, the best
discriminant feature pool was identified and used as input for
the most performant classifier to predict the prevalent underlying
disease (i.e., AD rather than VD) on a group of subjects whose

diagnosis, based on clinical evaluation, was unclear and defined
as mixed between VD and AD (MXD group). The algorithm’s
accuracy in predicting the MXD prevalent underlying disease
was compared with the diagnosis evidence obtained from 3-year
follow-up clinical screening.

Among the evaluated algorithms, ANFIS emerged as the
most performant method in discriminating at baseline AD from
VD independently of the data set (unimodal or multimodal)
used as input (see Table 3). Indeed, ANFIS achieved the highest
classification accuracy (ACC > 84%) when using the multimodal
data set as input, i.e., when providing both structural and
functional information as input, simultaneously. These results
are in line with the findings of a number of previous studies that
investigated the use of multimodal data to automatically diagnose
AD (and MCI) from healthy subjects (Zhang et al., 2011; Liu F.
et al., 2014; Liu M. et al., 2014; Lei et al., 2016; Liu et al., 2018). All
these studies concluded that unimodal data generally provides
incomplete information to accurately diagnose dementia, and
multimodal data tends to boost the classification accuracy due to
the complementary information.

Table 4 lists the pattern of features that ANFIS identified as
the most discriminant to separate AD from VD. Brain areas
such as the thalamus, hippocampus, precuneus, and anterior
cingulum were identified as relevant to discriminate AD and VD
subjects. Because AD dementia involves a significant deficit in the
anterograde episodic memory, areas such as the hippocampus
and the thalamus were expected to come out as relevant for
the classification problem (Jahn, 2013; Aggleton et al., 2016).
The anterior cingulum and the precuneus are both relevant for
episodic memory as well and are also core regions of the default
mode network (DMN), which has been extensively studied
because of its severe alterations in AD (Greicius et al., 2004;
Castellazzi et al., 2014). According to the implemented feature
selection algorithm (ReliefF), the FA of the left thalamic white
matter resulted as the most informative feature to discriminate
AD from VD (Table 4). The thalamus region is involved in
neural networks that sustain complex cognitive and behavioral
functions, and a link has been demonstrated between thalamic
dysfunctions and episodic memory impairment in AD (Aggleton
et al., 2016). Indeed, our results revealed that the left thalamic
FA was significantly higher (p < 0.05) in AD compared to VD
(see Figure 4), therefore suggesting that, in AD, the thalamic
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FIGURE 4 | Boxplots representing the summary of the 10 features (WM features on top, GM features on bottom) in AD and VD groups. The ensemble of these

features (see also Table 4) formed the discriminant pattern that was also used to predict the prevalent underlying disease in MXD subjects. Each feature has been

tested with the Mann–Whitney U test in order to assess significant differences between AD and VD values. An asterisk mark has been added on the top of the boxplot

of the features with values significantly (p < 0.05) different between the AD and VD populations.
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tracts might be more coherent possibly due to a loss of crossing
fibers (Teipel et al., 2014). Moreover, the anterior cingulum
nodal degree (DEG), which reflects the number of functional
connections between ACC and other parcellated brain areas,
also resulted as an informative feature to discriminate AD from
VD (Table 4). Indeed, the AD group showed significantly (p <

0.05) lower DEG scores than VD (see Figure 4) in the anterior
cingulum, therefore suggesting a more severe disconnection of
this area in AD patients. In our study, the left hippocampal white
matter FA, extracted by the TBSS analysis (Palesi et al., 2018),
emerged as a relevant feature to separate AD from VD subjects
(Table 4). Indeed, the FA in the left hippocampal area resulted
significantly (p < 0.05) reduced in AD compared to VD (see
Figure 4). This result may be interpreted as the evidence of more
severe tract disconnection affecting the WM portion of the left
hippocampus in AD.

When using the AD–VD discriminant feature pattern
(Table 4) as input to ANFIS to predict the prevalent underlying
disease inMXD patients starting from their baseline data, theML
algorithm achieved a correct prediction rate of 77.33% (Figure 3).
The accuracy of ANFIS predictions has been validated against
the diagnosis obtained from MXD patients’ clinical screening
at 3-year follow-up. The high matching rate between ANFIS
predictions and clinical follow-up suggests the potential of the
ML approach combined with MRI-derived indexes to obtain
an accurate detection of the prevalent disease in individual
subjects withMXD 3 years prior to clinical evidence. Considering
that novel therapeutic approaches to treat the AD condition,
such as those using monoclonal antibodies, are more effective
at early stages of the pathology (van Dyck, 2018), the ML-
based prediction of AD in subjects clinically diagnosed with
MXD could be crucial in order to promptly administrate these
emerging treatments.

From the point of view of study design, the present work is
a cross-sectional investigation, and although the ML algorithms
responded with high performance in discriminating clinical
AD vs. VD, their implication for MXD prognosis and their
integration in patients’ management will require appropriate
longitudinal data. From a technical perspective, this study used
ML to disentangle the feature pattern that better identifies the
AD profile and separate it from the VD one, suggesting a possible
solution to identify the most likely disease progression in subjects
withMXD. Indeed, this will help to identify the most suitable and
prompt therapy for each MXD subject.

A different approach for classification, which is becoming very
popular, is to use deep learning algorithms, which differ from
ML for their ability to learn features automatically at multiple
levels, therefore allowing the system to learn complex functions
mapping the input to the output directly from data (Goodfellow
et al., 2016; Qureshi et al., 2019). It could be envisaged that ML
and deep learning methods could lead beyond current clinical
diagnosis by establishing, in an unsupervised fashion, groups
of patients with similar MRI and clinical scores. This may lead
beyond current clinical classification of dementia and require a
major clinical effort to understand the biological mechanisms
that differentiate potentially novel disease patterns, but this is
beyond the scope of this study.

In this study, we used the AAL atlas to parcellate the brain
before applying GT. The AAL atlas parcels the brain on the
anatomical traits, which do not exactly match functional brain
organization, and this may degrade performance metrics. Indeed,
Shirer et al. (2012) showed that an atlas based on functional
(rather than structural) ROIs provides better classification
performances for the analysis of fMRI data. Nonetheless, there
is still no consensus about the optimal strategy for brain
parcellation (Arslan et al., 2018).

A final consideration is that the 85% accuracy of ANFIS
was achieved solely based on qMRI features without including
clinical tests. This means that objective qMRI features are able to
perform the AD vs. VD classification alone, suggesting that this
ML approach provides a substantial contribution for diagnosis.
Future works should explore the pattern of features identified
here together with clinical and neuropsychological variables and
metrics from biological samples to improve the accuracy of the
algorithm even further.

CONCLUSIONS

This study, which combines local DTI metrics and GT measures
from rs-fMRI data with ML, shows great potential for the
automatic classification of AD and VD in patients with mixed
clinical assessment. Indeed, multimodal features from MRI
could be used to automatically separate AD from VD patients
with high accuracy and balanced sensitivity and specificity.
Among the pool of ML algorithms available to the user, ANFIS
appeared to overcome others in classification performance.
Results were consistent with reported literature in identifying
specific brain regions such as the thalamus, hippocampus, and
anterior cingulum with specific dementia types. Interestingly,
our analytical method, by using baseline data, provided early
prediction of disease type (AD or VD) in patients with clinical
mixed dementia symptoms. Considering these encouraging
results, we strongly believe that ML coupled to high-resolution
MRI will provide a suitable approach to support clinicians in
their clinical work, helping them to improve their diagnostic and
prognostic accuracy as well as therapy and patient management.
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